WorldWideScience

Sample records for curing agent detda

  1. Thermodynamic and Mechanical Properties of Epon 862 With Curing Agent Detda by Molecular Simulation

    National Research Council Canada - National Science Library

    Tack, Jeremy L

    2006-01-01

    Fully atomistic molecular dynamics (MD) simulations were used to predict the properties of EPON 862 cross-linked with curing agent DETDA, a potentially useful epoxy resin for future applications of nanocomposites...

  2. Vibrational characteristics of diethyltoluenediamines (DETDA) functionalized carbon nanotubes using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Ajori, S.; Ansari, R.

    2015-01-01

    Functionalization of carbon nanotubes (CNTs) can be viewed as an important process by which the dispersion and solubility of CNTs in the matrices of nanocomposites are improved. Covalent functionalization can affect the mechanical behavior of CNTs. In this paper, the vibrational behavior of diethyltoluenediamines (DETDA) functionalized CNTs is investigated utilizing molecular dynamics simulations in canonical ensemble at room temperature. The models of simulations are divided into two categories of functionalized CNTs with regular and random distributions of DETDA polymers. The results demonstrate that natural frequency of functionalized CNTs is lower than that of pristine ones. Also, it is observed that buckling phenomenon occurs during vibration for functionalized CNTs with regular distribution of polymers. It is further observed that polymer mass and van der Waals (vdW) forces are responsible for frequency changes in functionalized CNTs with random and regular distribution patterns of CNTs, respectively

  3. Self-curing concrete with different self-curing agents

    Science.gov (United States)

    Gopala krishna sastry, K. V. S.; manoj kumar, Putturu

    2018-03-01

    Concrete is recognised as a versatile construction material globally. Properties of concrete depend upon, to a greater extent, the hydration of cement and microstructure of hydrated cement. Congenial atmosphere would aid the hydration of cement and hence curing of concrete becomes essential, till a major portion of the hydration process is completed. But in areas of water inadequacy and concreting works at considerable heights, curing is problematic. Self-Curing or Internal Curing technique overcomes these problems. It supplies redundant moisture, for more than sufficient hydration of cement and diminish self-desiccation. Self-Curing agents substantially help in the conservation of water in concrete, by bringing down the evaporation during the hydration of Concrete. The present study focuses on the impact of self-curing agents such as Poly Ethylene Glycol (PEG), Poly Vinyl Alcohol (PVA) and Super Absorbent Polymer (SAP) on the concrete mix of M25 grade (reference mix). The effect of these agents on strength properties of Concrete such as compressive strength, split tensile strength and flexural strength was observed on a comparative basis which revealed that PEG 4000 was the most effective among all the agents.

  4. Experimental Study on the Curing Effect of Dredged Sediments with Three Types of Curing Agents

    Directory of Open Access Journals (Sweden)

    Yan Lei-Ming

    2016-01-01

    Full Text Available Sediment solidification technology is widely used to dispose dredged sediment, three types of curing agents were used in this study to solidified the dredged sediment from shallows in Nantong with three types of curing agents: JY, ZL and FJ. The results showed that the optimal additive amounts of these three curing agents were 140g JY, 16g ZL, 2.0g FJ per 1000g of the dredged sediment respectively, their 28d USC were up to 2.48 MPa, 2.96 MPa and 3.00 MPa. JY has obvious early strength effect, which of FJ is not that obvious, but the later-stage strength of sediment solidified by FJ are relatively higher.

  5. Curing agent for polyepoxides and epoxy resins and composites cured therewith. [preventing carbon fiber release

    Science.gov (United States)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D. (Inventor)

    1981-01-01

    A curing for a polyepoxide is described which contains a divalent aryl radical such as phenylene a tetravalent aryl radical such as a tetravalent benzene radical. An epoxide is cured by admixture with the curing agent. The cured epoxy product retains the usual properties of cured epoxides and, in addition, has a higher char residue after burning, on the order of 45% by weight. The higher char residue is of value in preventing release to the atmosphere of carbon fibers from carbon fiber-epoxy resin composites in the event of burning of the composite.

  6. Catalyzed Synthesis and Characterization of a Novel Lignin-Based Curing Agent for the Curing of High-Performance Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Saeid Nikafshar

    2017-07-01

    Full Text Available In this study, lignin, an aromatic compound from the forestry industry, was used as a renewable material to synthesize a new aromatic amine curing agent for epoxy resin. Firstly, lignin was separated from black liquor and hydroxyl groups were converted to tosyl groups as leaving groups. Then, primary amination was conducted using an ammonia solution at high pressure and temperature, in the presence of a nano-alumina-based catalyst. The structure of the nanocatalyst was confirmed by FT-IR, ICP, SEM, and XPS analyses. According to the FT-IR spectra, a demethylation reaction, the substitution of hydroxyl groups with tosyl groups, and then an amination reaction were successfully performed on lignin, which was further confirmed by the 13C NMR and CHNS analyses. The active hydrogen equivalent of aminated lignin was determined and three samples with 9.9 wt %, 12.9 wt %, and 15.9 wt % of aminated lignin, as curing agents, were prepared for curing the diglycidyl ether of bisphenol A (DGEBA. The thermal characteristics of the curing process of these epoxy samples were determined by DSC and TGA analyses. Moreover, the mechanical performance of the cured epoxy systems, e.g., the tensile strength and Izod impact strength, were measured, showing that in the presence of 12.9 wt % aminated lignin, the mechanical properties of the aminated lignin-epoxy system exhibited the best performance, which was competitive, compared to the epoxy systems cured by commercial aromatic curing agents.

  7. Synthesis and characterization of novel curing agents for surface coatings based on acrylamide copolymers

    International Nuclear Information System (INIS)

    Patel, N. V.; Parmar, R. J.; Parmar, J. S.

    2003-01-01

    The acrylamide based curing agents were prepared form methyl methacrylate-acrylamide copolymers by further methylolation and subsequent etherification with butanol. These were characterized for their various physico-chemical characteristics. Various sets of these ACAs were blended with hydroxyl functional acrylic resin to prepare the staving compared with the conventional melamine-formaldehyde based curing agent containing compositions. The films were also characterized thermogravimetric analysis and IR-spectra. The result reveals that the properties of certain compositions based on ACAs were remarkably better than those of conventional melamine-formaldehyde based curing agent based coatings

  8. Response behavior of an epoxy resin/amine curing agent/carbon black composite film to various solvents

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yanling [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)]. E-mail: luoyl0401@yahoo.com.cn; Li Zhanqing [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Lan Wenxiang [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2007-04-25

    A novel polymer based sensitive film was prepared from thermosetting epoxy resins (EP) filled with carbon blacks. The curing reaction of amine curing agents with epoxy resins and the response of the curing resultants to solvent vapors were dealt with. The influence of the types and content of carbon blacks and curing agents, and curing temperatures and time on curing reactions and response selectivity of the conductive films were investigated. The structural characterization was conducted on a Fourier transform infrared spectrophotometer (FTIR). The results indicated that the conductive films showed high response selectivity to polar solvent vapors, especially to chloroform vapor, while no response was observed in non-polar solvent vapors. The responsivity of the film increased with the decreased carbon black contents. The film filled with acetylene carbon black gave an optimal response, with responsivity of about 700 times. The response performances were improved with the amount of curing agents increased, and an optimal response appeared at the amount of the curing agent of 8%. The film's responsivity was remarkably enhanced, the reversibility property, however, rapidly declined in the order of diethyleneltriamine < triethylenetetramine < ethylenediamine. The curing reaction tended to complete with the curing temperature elevated and the curing time prolonged. But the response performance dropped because of over cross-linking as the temperature was too high or the time was too long.

  9. Response behavior of an epoxy resin/amine curing agent/carbon black composite film to various solvents

    International Nuclear Information System (INIS)

    Luo Yanling; Li Zhanqing; Lan Wenxiang

    2007-01-01

    A novel polymer based sensitive film was prepared from thermosetting epoxy resins (EP) filled with carbon blacks. The curing reaction of amine curing agents with epoxy resins and the response of the curing resultants to solvent vapors were dealt with. The influence of the types and content of carbon blacks and curing agents, and curing temperatures and time on curing reactions and response selectivity of the conductive films were investigated. The structural characterization was conducted on a Fourier transform infrared spectrophotometer (FTIR). The results indicated that the conductive films showed high response selectivity to polar solvent vapors, especially to chloroform vapor, while no response was observed in non-polar solvent vapors. The responsivity of the film increased with the decreased carbon black contents. The film filled with acetylene carbon black gave an optimal response, with responsivity of about 700 times. The response performances were improved with the amount of curing agents increased, and an optimal response appeared at the amount of the curing agent of 8%. The film's responsivity was remarkably enhanced, the reversibility property, however, rapidly declined in the order of diethyleneltriamine < triethylenetetramine < ethylenediamine. The curing reaction tended to complete with the curing temperature elevated and the curing time prolonged. But the response performance dropped because of over cross-linking as the temperature was too high or the time was too long

  10. X-ray emission spectroscopic determination of iron in a polyurethane encapsulant curing agent

    International Nuclear Information System (INIS)

    Carter, J.M.; Kling, E.N.

    1979-01-01

    Presented is a procedure for determining the iron content in a polyurethane encapsulant curing agent by x-ray emission spectroscopy. Standards were prepared by adding ferric acetyl acetonate to a curing agent of identical composition to that being analyzed, but containing no iron. Results show that x-ray emission spectroscopy is feasible for determination of iron in the 30 to 50 ppM range. This range could probably be extended by the preparation of additional standards. Precision of the method is approximately 1.2 ppM at the 99 percent confidence level

  11. The role of the epoxy resin: Curing agent ratio in composite interfacial strength by single fibre microbond test

    DEFF Research Database (Denmark)

    Minty, Ross; Thomason, James L.; Petersen, Helga Nørgaard

    2015-01-01

    This paper focuses on an investigation into the role of the epoxy resin: curing agent ratio in composite interfacial shear strength of glass fibre composites. The procedure involved changing the percentage of curing agent (Triethylenetetramine [TETA]) used in the mixture with several different...... percentages used, ranging from 4% up to 30%, including the stoichiometric ratio. It was found by using the microbond test, that there may exist a relationship between the epoxy resin to curing agent ratio and the level of adhesion between the reinforcing fibre and the polymer matrix of the composite....

  12. Performance of super-absorbent polymer as an internal curing agent for self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Al-Hubboubi Suhair

    2018-01-01

    Full Text Available Internal curing agent by using super-absorbent polymer was present in this study, its effect on the properties of self-compacting concrete was evaluated .The SAP content in the concrete mix was 0.5 % by weight of cement. Three procedures for curing were adopted; curing in water, curing in water and air and curing in polyethylene sealed bags. Fresh concrete tests conducted to assess the self-compactability of the produced concrete. Moreover, compressive and splitting strength tests were carried out. The testing program had been extended to the age of 90 days.The use of super-absorbent polymer did not affect the fresh state characteristics of the studied SCC and achieved an increase in both compressive and tensile strengths as compared to the reference concrete mix.

  13. Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins. [Patent application

    Science.gov (United States)

    Rinde, J.A.; Newey, H.A.

    Primary diamines are prepared for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and preimpregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses a room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.

  14. Preparation and characterization of a novel epoxy based nanocomposite using tryptophan as an eco-friendly curing agent

    International Nuclear Information System (INIS)

    Motahari, Ahmad; Omrani, Abdollah; Rostami, Abbas Ali; Ehsani, Morteza

    2013-01-01

    Highlights: • Epoxy cured with tryptophan in the presence of 2,4,5-triphenylimidazole. • Kinetic study on the epoxy nanocomposite using advanced isoconversional method. • Structural study and characterization of nanocomposite using SEM, XRD, AFM and DMTA. - Abstract: In this study, kinetics of the curing reaction between DGEBA epoxy resin and tryptophan as an environmentally friendly curing agent in the presence of 2,4,5-triphenylimidazole was reported. The role of silica nanoparticles (SiNP) in changing the mechanism of the curing reaction was also studied. The optimum molar ratio of DGEBA/tryptophan and the optimum content of SiNP were determined by calorimetry analyses. Kinetic analysis using the advanced isoconversional method revealed that the system undergoes the vitrification. Thermogravimetric analysis demonstrated that addition of SiNP does not improve the thermal stability of the tryptophan based thermosets. Impedance spectroscopy and also the standard four-probe method were performed to investigate the effect of curing agent and SiNP loading level on the electrical properties of the cured epoxy. The structure and morphology of the nanocomposite were studied by X-ray diffraction analysis, atomic force microscopy and scanning electron microscopy imaging. Dynamic mechanical thermal analysis revealed that the crosslinking density cannot be significantly affected with the addition of SiNP

  15. Improved Concrete Materials with Hydrogel-Based Internal Curing Agents

    Directory of Open Access Journals (Sweden)

    Matthew J. Krafcik

    2017-11-01

    Full Text Available This research article will describe the design and use of polyelectrolyte hydrogel particles as internal curing agents in concrete and present new results on relevant hydrogel-ion interactions. When incorporated into concrete, hydrogel particles release their stored water to fuel the curing reaction, resulting in reduced volumetric shrinkage and cracking and thus increasing concrete service life. The hydrogel’s swelling performance and mechanical properties are strongly sensitive to multivalent cations that are naturally present in concrete mixtures, including calcium and aluminum. Model poly(acrylic acid(AA-acrylamide(AM-based hydrogel particles with different chemical compositions (AA:AM monomer ratio were synthesized and immersed in sodium, calcium, and aluminum salt solutions. The presence of multivalent cations resulted in decreased swelling capacity and altered swelling kinetics to the point where some hydrogel compositions displayed rapid deswelling behavior and the formation of a mechanically stiff shell. Interestingly, when incorporated into mortar, hydrogel particles reduced mixture shrinkage while encouraging the formation of specific inorganic phases (calcium hydroxide and calcium silicate hydrate within the void space previously occupied by the swollen particle.

  16. Evaluation of in vitro antibacterial effect of room curing polymethylmethacrylate material adding nano-silver base inorganic antibacterial agents

    International Nuclear Information System (INIS)

    Jia Chunli; Wang Xiaorong; Zhang Citong; Sun Shiqun; Yang Yun

    2012-01-01

    Objective: To investigate the antibacterial effect of room curing polymethylmethacrylate (PMMA) material adding nano-silver base inorganic antibacterial agent and to detect the changes of its mechanical property. Methods: Nano-silver base inorganic antibacterial agent was added to the room curing PMMA material in the range of 0.5% -3.0% at an interval of 0.5% by ball milling specimen. Antibacterial rates of the specimens were detected by film method. Bending strength, impact strength, and wear resistance of the specimens were respectively detected on electronic universal testing machine, impact test machine and friction and wear test machine. Results: The antibacterial rates of Streptococcus mutans and Candida albicans were more than 50% when antibiotics content was 1.0% . The antibacterial rates of Streptococcus mutans and Candida albicans were more than 90% when the antibiotics content was 2.5% . The three mechanical properties were increased compared with control group when the antibacterial agents were in the range of 1.0% -1.5% . Then the three mechanical properties were decreased with the increasing of antimicrobial concentration. When the antibiotics content was 2.0% , the wear resistance had significant difference compared with control group (P<0.05); when the antibiotics content was 2.5% , the bending strength and impact strength had significant difference compared with control group (P<0.05). Conclusion: The antibacterial effect of room curing PMMA adding nano-silver base inorganic antibacterial agent is ideal. The antibacterial rate is increased gradually with the increasing content of antibacterial agents. There is no significant effect on the mechanical properties of room curing PMMA material, but the antibacterial effects are satisfied when the content of antibacterial agents is 2.0% . (authors)

  17. Physical properties of self-curing concrete (SCUC

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa

    2015-08-01

    The results show that the use of self-curing agent (Ch. in concrete effectively improves the physical properties compared with conventional concrete. On the other hand, up to 15% saturated leca was effective while 20% saturated leca was effective for permeability and mass loss but adversely affects the sorptivity and volumetric water absorption. Self-curing agent Ch. was more effective than self-curing agent leca. In all cases, both 2% Ch. and 15% leca were the optimum values. Higher cement content and/or lower water–cement ratio leads to more effective results of self-curing agents in concrete. Incorporation of silica fume into concrete mixtures enhances all physical properties.

  18. Preparation of hyperbranched poly (amidoamine)-grafted graphene nanolayers as a composite and curing agent for epoxy resin

    Science.gov (United States)

    Gholipour-Mahmoudalilou, Meysam; Roghani-Mamaqani, Hossein; Azimi, Reza; Abdollahi, Amin

    2018-01-01

    Thermal properties of epoxy resin were improved by preparation of a curing agent of poly (amidoamine) (PAMAM) dendrimer-grafted graphene oxide (GO). Hyperbranched PAMAM-modified GO (GD) was prepared by a divergent dendrimer synthesis methodology. Modification of GO with (3-Aminopropyl)triethoxysilane (APTES), Michael addition of methacrylic acid, and amidation reaction with ethylenediamine results in the curing agent of GD. Then, epoxy resin was cured in the presence of different amounts of GD and the final products were compared with ethylenediamine-cured epoxy resin (E) in their thermal degradation temperature and char contents. Functionalization of GO with APTES and hyperbranched dendrimer formation at the surface of GO were evaluated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and thermogravimetric analysis (TGA) results. TGA results showed that the weight loss associated with chemical moieties in GONH2, GOMA, and GD is estimated to be 10.1, 12.2, and 14.1%, respectively. Covalent attachment of dendrimer at the surface of GO increases its thermal stability. TGA also showed that decomposition temperature and char content are higher for composites compared with E. Scanning and transmission electron microscopies show that flat and smooth graphene nanolayers are wrinkled in GO and re-stacking and flattening of nanolayers is observed in GD.

  19. Mechanical properties of self-curing concrete (SCUC

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa

    2015-12-01

    Full Text Available The mechanical properties of concrete containing self-curing agents are investigated in this paper. In this study, two materials were selected as self-curing agents with different amounts, and the addition of silica fume was studied. The self-curing agents were, pre-soaked lightweight aggregate (Leca; 0.0%, 10%, 15%, and 20% of volume of sand; or polyethylene-glycol (Ch.; 1%, 2%, and 3% by weight of cement. To carry out this study the cement content of 300, 400, 500 kg/m3, water/cement ratio of 0.5, 0.4, 0.3 and 0.0%, 15% silica fume of weight of cement as an additive were used in concrete mixes. The mechanical properties were evaluated while the concrete specimens were subjected to air curing regime (in the laboratory environment with 25 °C, 65% R.H. during the experiment. The results show that, the use of self-curing agents in concrete effectively improved the mechanical properties. The concrete used polyethylene-glycol as self-curing agent, attained higher values of mechanical properties than concrete with saturated Leca. In all cases, either 2% Ch. or 15% Leca was the optimum ratio compared with the other ratios. Higher cement content and/or lower water/cement ratio lead(s to more efficient performance of self-curing agents in concrete. Incorporation of silica fume into self-curing concrete mixture enhanced all mechanical properties, not only due to its pozzolanic reaction, but also due to its ability to retain water inside concrete.

  20. Influence of ceramic thickness and type on micromechanical properties of light-cured adhesive bonding agents.

    Science.gov (United States)

    Öztürk, Elif; Bolay, Sükran; Hickel, Reinhard; Ilie, Nicoleta

    2014-10-01

    The aim of this study was to evaluate the micromechanical properties of different adhesive bonding agents when polymerized through ceramics. Sixty sound extracted human third molars were selected and the crowns were sectioned perpendicular to the long axis in order to obtain dentin slices to be bonded with one of the following adhesives: Syntac/Heliobond (Ivoclar-Vivadent) or Adper-Scotchbond-1XT (3M-ESPE). The adhesives were cured by using a LED-unit (Bluephase®, Ivoclar Vivadent) with three different curing times (10 s, 20 s and 30 s) under two ceramics (IPS-e.max-Press, Ivoclar-Vivadent; IPS-Empress®CAD, Ivoclar-Vivadent) of different thicknesses (0 mm, 0.75 mm, 2 mm). Thirty groups were included, each containing 60 measurements. Micromechanical properties (Hardness, HV; indentation modulus, E; and creep, Cr) of the adhesives were measured with an automatic microhardness indenter (Fisherscope H100C, Germany). Data were statistically analyzed by using one-way ANOVA and Tukey's post-hoc test, as well as a multivariate analysis to test the influence of the study parameters (SPSS 18.0). Significant differences were observed between the micromechanical properties of the adhesives (p ceramic type showed the highest effect on HV (Partial-eta squared (η(2)) = 0.109) of the tested adhesives, while E (η(2) = 0.275) and Cr (η(2) = 0.194) were stronger influenced by the adhesive type. Ceramic thickness showed no effect on the E and Cr of the adhesives. The adhesive bonding agents used in this study performed well by curing through different thicknesses of ceramics. The micromechanical properties of the adhesives were determined by the adhesive type and were less influenced by ceramic type and curing time.

  1. Effect of curing agents on the oxidative and nitrosative damage to meat proteins during processing of fermented sausages.

    Science.gov (United States)

    Villaverde, A; Morcuende, D; Estévez, M

    2014-07-01

    The effect of increasing concentrations of curing agents, ascorbate (0, 250, and 500 ppm), and nitrite (0, 75, and 150 ppm), on the oxidative and nitrosative damage to proteins during processing of fermented sausages was studied. The potential influence of these reactions on color and texture of the fermented sausages was also addressed. Nitrite had a pro-oxidant effect on tryptophan depletion and promoted the formation of protein carbonyls and Schiff bases. The nitration degree in the fermented sausages was also dependent on nitrite concentration. On the other hand, ascorbate acted as an efficient inhibitor of the oxidative and nitrosative damage to meat proteins. As expected, nitrite clearly favored the formation of the cured red color and ascorbate acted as an enhancer of color formation. Nitrite content was positively correlated with hardness. The chemistry behind the action of nitrite and ascorbate on muscle proteins during meat fermentation is thoroughly discussed. The results suggest that ascorbate (500 ppm) may be required to compensate the pro-oxidant impact of nitrite on meat proteins. This study provides insight on the action of curing agents on meat proteins during processing of fermented sausages. This chemistry background provides understanding of the potential influence of the oxidative and nitrosative damage to proteins on the quality of processed muscle foods. The study provides novel information on the impact of the combination of nitrite and ascorbate on the chemical deterioration of proteins and the influence on particular quality traits of fermented sausages. These data may be of interest for the design of cured muscle foods of enhanced quality. © 2014 Institute of Food Technologists®

  2. Intrinsic Flame-Retardant and Thermally Stable Epoxy Endowed by a Highly Efficient, Multifunctional Curing Agent

    Directory of Open Access Journals (Sweden)

    Chunlei Dong

    2016-12-01

    Full Text Available It is difficult to realize flame retardancy of epoxy without suffering much detriment in thermal stability. To solve the problem, a super-efficient phosphorus-nitrogen-containing reactive-type flame retardant, 10-(hydroxy(4-hydroxyphenylmethyl-5,10-dihydrophenophosphazinine-10-oxide (HB-DPPA is synthesized and characterized. When it is used as a co-curing agent of 4,4′-methylenedianiline (DDM for curing diglycidyl ether of bisphenol A (DGEBA, the cured epoxy achieves UL-94 V-0 rating with the limiting oxygen index of 29.3%. In this case, the phosphorus content in the system is exceptionally low (0.18 wt %. To the best of our knowledge, it currently has the highest efficiency among similar epoxy systems. Such excellent flame retardancy originates from the exclusive chemical structure of the phenophosphazine moiety, in which the phosphorus element is stabilized by the two adjacent aromatic rings. The action in the condensed phase is enhanced and followed by pressurization of the pyrolytic gases that induces the blowing-out effect during combustion. The cone calorimeter result reveals the formation of a unique intumescent char structure with five discernible layers. Owing to the super-efficient flame retardancy and the rigid molecular structure of HB-DPPA, the flame-retardant epoxy acquires high thermal stability and its initial decomposition temperature only decreases by 4.6 °C as compared with the unmodified one.

  3. Mechanical properties of styrene-butadiene rubber cured by ionizing radiation in the presence of sulfur and polyfunctional agent

    International Nuclear Information System (INIS)

    Basfar, A.A.; Al-Harithy, F.A.; Abdel-Aziz, M.M.

    1997-01-01

    The mechanical Properties of Styrene-Butadiene Rubber (SBR) samples cured by a combination of sulfur and ionizing radiation in the presence of polyfunctional crosslinking agent were studied. SBR formulations containing various concentrations of trimethyl propane triacrylate (TMPTA) were irradiated at absorbed doses in the range of 35-200 kGy. The influence of TMPTA on the mechanical properties, solubility % and swelling % were investigated. The various formulations were compared at the same crosslink density as determined by 200% modulus (i.e. tensile strength at 200% elongation). The increase in TMPTA concentration has led to the decrease in the absorbed dose required to achieve full-cure conditions. Another set of SBR formulations containing partial levels of sulfur in the presence of the same TMPTA concentrations as the earlier formulations were irradiated at the same absorbed dose range. The presence of sulfur has further decreased the absorbed dose required to achieve full-cure conditions. Thermal stability of the two sets of SBR formulations as studied by Thermogravimetric Analyzer (TGA) and Differential Scanning Calorimeter (DSC) remained unchanged over the entire range of absorbed dose

  4. Efficiency of Sodium Polyacrylate to Improve Durability of Concrete under Adverse Curing Condition

    Directory of Open Access Journals (Sweden)

    Tanvir Manzur

    2015-01-01

    Full Text Available The conventional external curing process requires supply of large amount of water in addition to mixing water as well as strict quality control protocol. However, in a developing country like Bangladesh, many local contractors do not have awareness and required knowledge on importance of curing which often results in weaker concrete with durability issues. Moreover, at times it is difficult to maintain proper external curing process due to nonavailability of water and skilled laborer. Internal curing can be adopted under such scenario since this method is simple and less quality intensive. Usually, naturally occurring porous light weight aggregates (LWA are used as internal curing agent. However, naturally occurring LWA are not available in many countries like Bangladesh. Under these circumstances, Super Absorbent Polymer (SAP can be utilized as an alternative internal curing agent. In this study, sodium polyacrylate (SP as SAP has been used to produce internally cured concrete. Desorption isotherm of SP has been developed to investigate its effectiveness as internal curing agent. Test results showed that internally cured concrete with SP performed better in terms of both strength and durability as compared to control samples when subjected to adverse curing conditions where supply of additional water for external curing was absent.

  5. Sodium nitrite: the "cure" for nitric oxide insufficiency.

    Science.gov (United States)

    Parthasarathy, Deepa K; Bryan, Nathan S

    2012-11-01

    This process of "curing" food is a long practice that dates back thousands of years long before refrigeration or food safety regulations. Today food safety and mass manufacturing are dependent upon safe and effective means to cure and preserve foods including meats. Nitrite remains the most effective curing agent to prevent food spoilage and bacterial contamination. Despite decades of rigorous research on its safety and efficacy as a curing agent, it is still regarded by many as a toxic undesirable food additive. However, research within the biomedical science community has revealed enormous therapeutic benefits of nitrite that is currently being developed as novel therapies for conditions associated with nitric oxide (NO) insufficiency. Much of the same biochemistry that has been understood for decades in the meat industry has been rediscovered in human physiology. This review will highlight the fundamental biochemistry of nitrite in human physiology and highlight the risk benefit evaluation surrounding nitrite in food and meat products. Foods or diets enriched with nitrite can have profound positive health benefits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The curing behavior and properties of phthalonitrile resins using ionic liquids as a new class of curing agents

    Directory of Open Access Journals (Sweden)

    K. Cheng

    2017-11-01

    Full Text Available Binary blends composed of 1,3-bis (3,4-dicyanophenoxy benzene (3BOCN and ionic liquids (ILs with different molecular structures were prepared. The curing behavior of these 3BOCN/ILs blends were studied by thermogravimetric analysis (TGA, differential scanning calorimetry (DSC and rheological analysis. The study suggested that the blends possessed a wide processing window and the structures of ILs (anion, cation and alkyl chain length at cation had an effect on curing behavior. The 3BOCN/[EPy]BF4 resins were prepared at elevated temperature. IR spectra of the resins showed that there were triazine and isoindoline formed in curing process. The TGA and dynamic mechanical analysis (DMA revealed that the resins have excellent thermal stability together with high storage modulus and high glass transition temperature (Tg. Dielectric properties, long term oxidative aging and water uptake measurements of the resins suggested the IL brought some unique properties to the resins.

  7. Host-Targeting Agents to Prevent and Cure Hepatitis C Virus Infection.

    Science.gov (United States)

    Zeisel, Mirjam B; Crouchet, Emilie; Baumert, Thomas F; Schuster, Catherine

    2015-11-02

    Chronic hepatitis C virus (HCV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC) which are leading indications of liver transplantation (LT). To date, there is no vaccine to prevent HCV infection and LT is invariably followed by infection of the liver graft. Within the past years, direct-acting antivirals (DAAs) have had a major impact on the management of chronic hepatitis C, which has become a curable disease in the majority of DAA-treated patients. In contrast to DAAs that target viral proteins, host-targeting agents (HTAs) interfere with cellular factors involved in the viral life cycle. By acting through a complementary mechanism of action and by exhibiting a generally higher barrier to resistance, HTAs offer a prospective option to prevent and treat viral resistance. Indeed, given their complementary mechanism of action, HTAs and DAAs can act in a synergistic manner to reduce viral loads. This review summarizes the different classes of HTAs against HCV infection that are in preclinical or clinical development and highlights their potential to prevent HCV infection, e.g., following LT, and to tailor combination treatments to cure chronic HCV infection.

  8. 2015 Philip S. Portoghese Medicinal Chemistry Lectureship. Curing Hepatitis C Virus Infection with Direct-Acting Antiviral Agents: The Arc of a Medicinal Chemistry Triumph.

    Science.gov (United States)

    Meanwell, Nicholas A

    2016-08-25

    The development of direct-acting antiviral agents that can cure a chronic hepatitis C virus (HCV) infection after 8-12 weeks of daily, well-tolerated therapy has revolutionized the treatment of this insidious disease. In this article, three of Bristol-Myers Squibb's HCV programs are summarized, each of which produced a clinical candidate: the NS3 protease inhibitor asunaprevir (64), marketed as Sunvepra, the NS5A replication complex inhibitor daclatasvir (117), marketed as Daklinza, and the allosteric NS5B polymerase inhibitor beclabuvir (142), which is in late stage clinical studies. A clinical study with 64 and 117 established for the first time that a chronic HCV infection could be cured by treatment with direct-acting antiviral agents alone in the absence of interferon. The development of small molecule HCV therapeutics, designed by medicinal chemists, has been hailed as "the arc of a medical triumph" but may equally well be described as "the arc of a medicinal chemistry triumph".

  9. The Curing Agent Sodium Nitrite, Used in the Production of Fermented Sausages, Is Less Inhibiting to the Bacteriocin-Producing Meat Starter Culture Lactobacillus curvatus LTH 1174 under Anaerobic Conditions

    Science.gov (United States)

    Verluyten, Jurgen; Messens, Winy; De Vuyst, Luc

    2003-01-01

    Curvacin A is a listericidal bacteriocin produced by Lactobacillus curvatus LTH 1174, a strain isolated from fermented sausage. The response of this strain to an added curing agent (sodium nitrite) in terms of cell growth and bacteriocin production was investigated in vitro by laboratory fermentations with modified MRS broth. The strain was highly sensitive to nitrite; even a concentration of 10 ppm of curing agent inhibited its growth and both volumetric and specific bacteriocin production. A meat simulation medium containing 5 ppm of sodium nitrite was tested to investigate the influence of the gas phase on the growth and bacteriocin production of L. curvatus LTH 1174. Aerating the culture during growth had no effect on biomass formation, but the oxidative stress caused a higher level of specific bacteriocin production and led to a metabolic shift toward acetic acid production. Anaerobic conditions, on the other hand, led to an increased biomass concentration and less growth inhibition. Also, higher maximum volumetric bacteriocin activities and a higher level of specific bacteriocin production were obtained in the presence of sodium nitrite than in fermentations under aerobic conditions or standard conditions of air supply. These results indicate that the inhibitory effect of the curing agent is at least partially masked under anaerobic conditions. PMID:12839751

  10. The curing agent sodium nitrite, used in the production of fermented sausages, is less inhibiting to the bacteriocin-producing meat starter culture Lactobacillus curvatus LTH 1174 under anaerobic conditions.

    Science.gov (United States)

    Verluyten, Jurgen; Messens, Winy; De Vuyst, Luc

    2003-07-01

    Curvacin A is a listericidal bacteriocin produced by Lactobacillus curvatus LTH 1174, a strain isolated from fermented sausage. The response of this strain to an added curing agent (sodium nitrite) in terms of cell growth and bacteriocin production was investigated in vitro by laboratory fermentations with modified MRS broth. The strain was highly sensitive to nitrite; even a concentration of 10 ppm of curing agent inhibited its growth and both volumetric and specific bacteriocin production. A meat simulation medium containing 5 ppm of sodium nitrite was tested to investigate the influence of the gas phase on the growth and bacteriocin production of L. curvatus LTH 1174. Aerating the culture during growth had no effect on biomass formation, but the oxidative stress caused a higher level of specific bacteriocin production and led to a metabolic shift toward acetic acid production. Anaerobic conditions, on the other hand, led to an increased biomass concentration and less growth inhibition. Also, higher maximum volumetric bacteriocin activities and a higher level of specific bacteriocin production were obtained in the presence of sodium nitrite than in fermentations under aerobic conditions or standard conditions of air supply. These results indicate that the inhibitory effect of the curing agent is at least partially masked under anaerobic conditions.

  11. Thermal stabilities of various rubber vulcanization cured by sulfur, peroxide and gamma radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Shamshad Ahmed; Abdel Aziz, M.M.

    1999-01-01

    Sulfur and peroxide-cured rubber vulcanizates of NR and EPDM were obtained by blending the elastomers with fillers, antioxidants and appropriate accelerators, followed by vulcanization at 150 - 160 degree C. Blends of the same elastomers with appropriate co-agents and additives were also cured by gamma radiation at 150 and 200 kGy. A comparison of the thermal stabilities of these vulcanizates prepared by different curing techniques has been made by thermogravimetric analysis (TGA), assessed on the basis of comparison of DTG peak maxima, temperature for loss of 50% mass and actual thermal curves. The comparison reveals that the sulfur-cured vulcanizates are less thermally stable than their peroxide-cured counterparts. This may be attributed to the presence of a stronger C-C bond in case of peroxide-cured vulcanizates compared to weaker C-S sub x-C bond in case of sulfur-cured vulcanizates. However, compared to peroxide-cured vulcanizates, radiation-cured formulations demonstrated much improved thermal stability. This may originate from the existence of more uniformly distributed crosslinks and the enhanced rate of crosslink formation in the radiation process as compared to peroxide curing. In all the formulations whether sulfur, peroxide or radiation-cured, the natural rubber vulcanizates were found to be thermally much inferior to the synthetic contender, EPDM. Influence of variation of the amount of co-agent and other additives on the thermal stabilities of formulations of radiation cured NR and EPDM vulcanizates was also investigated

  12. Cure and mechanical properties of carboxylated nitrile rubber (XNBR) vulcanized by alkaline earth metal compounds

    Science.gov (United States)

    Tulyapitak, Tulyapong

    Compounds of carboxylated nitrile rubber (XNBR) with alkaline metal oxides and hydroxide were prepared, and their cure and mechanical properties were investigated. Magnesium oxide (MgO) with different specific surface areas (45, 65, and 140 m2/g) was used. Increased specific surface area and concentration of MgO resulted in higher cure rate. Optimum stiffness, tensile strength, and ultimate strain required an equimolar amount of acidity and MgO. The effect of specific surface area on tensile properties was not significant. Crosslink density of XNBR-MgO vulcanizates increased with increased amounts of MgO. ATR-IR spectroscopy showed that neutralization occurs in two steps: (1) During mixing and storage, MgO reacts with carboxyl groups (RCOOH) to give RCOOMgOH. (2) Upon curing, these react bimolecularly to form RCOOMgOOCR and Mg(OH)2. Dynamic mechanical thermal analysis revealed an ionic transition at higher temperature, in addition to the glass transition. The ionic transition shifts to higher temperature with increasing MgO concentration. Like MgO-XNBR systems, cure rates of XNBR-calcium hydroxide (Ca(OH)2) and XNBR-barium oxide (BaO) compounds increased with increased content of curing agents. Curing by these two agents resulted in ionic crosslinks. To ensure optimum tensile properties, equimolar amounts of carboxyl groups and curing agents were required. Dynamic mechanical analysis revealed the ionic transition in these two systems. It shifted to higher temperature with increased amounts of curing agents. In contrast to MgO, Ca(OH)2, and BaO, calcium oxide (CaO) gave results similar to those for thermally cured samples. No ionic transition was observed in XNBR-CaO systems. Tensile strength of XNBR depended on the strength of ionic crosslinks, which was dependent on the size of the alkaline metal ions.

  13. Novel Latency Reversal Agents for HIV-1 Cure.

    Science.gov (United States)

    Spivak, Adam M; Planelles, Vicente

    2018-01-29

    Antiretroviral therapy (ART) has rendered HIV-1 infection a treatable illness; however, ART is not curative owing to the persistence of replication-competent, latent proviruses in long-lived resting T cells. Strategies that target these latently infected cells and allow immune recognition and clearance of this reservoir will be necessary to eradicate HIV-1 in infected individuals. This review describes current pharmacologic approaches to reactivate the latent reservoir so that infected cells can be recognized and targeted, with the ultimate goal of achieving an HIV-1 cure.

  14. Synthesis, Characterization and Curing Studies of Thermosetting Epoxy Resin with Amines

    International Nuclear Information System (INIS)

    Lakshmi, B.; Mahendra, K. N.; Shivananda, K. N.

    2010-01-01

    A new hybrid thermosetting maleimido epoxy compound 4-(N-maleimidophenyl) glycidylether (N-MPGE) is prepared by reacting N-(4-hydroxyphenyl) maleimide (HPM) with Epichlorohydrin by using benzyltrimethylammonium chloride as a catalyst. The resulting compound possesses both the oxirane ring and maleimide group. The curing reaction of these maleimidophenyl glycidylether epoxy compound (N-MPGE) with amines as curing agents such as ethylendiamine (EDA), diethylentriamine (DETA) and triethylenetetramine (TETA), aminoethylpiperazine (AEP) and isophoronediamine, IPDA), are studied. Incorporation of maleimide groups in the epichlorohydrin provides cyclic imide structure and high cross-linking density to the cured resins. The cured samples exhibited good thermal stability, excellent chemical (acid/alkali/solvent) and water absorption resistance. Morphological studies by the SEM technique further confirmed the phase homogeneity net work of the cured systems

  15. Synthesis, Characterization and Curing Studies of Thermosetting Epoxy Resin with Amines

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, B.; Mahendra, K. N. [Bangalore University, Bangalore (India); Shivananda, K. N. [Technion - Israel Institute of Technology, Haifa (Israel)

    2010-08-15

    A new hybrid thermosetting maleimido epoxy compound 4-(N-maleimidophenyl) glycidylether (N-MPGE) is prepared by reacting N-(4-hydroxyphenyl) maleimide (HPM) with Epichlorohydrin by using benzyltrimethylammonium chloride as a catalyst. The resulting compound possesses both the oxirane ring and maleimide group. The curing reaction of these maleimidophenyl glycidylether epoxy compound (N-MPGE) with amines as curing agents such as ethylendiamine (EDA), diethylentriamine (DETA) and triethylenetetramine (TETA), aminoethylpiperazine (AEP) and isophoronediamine, IPDA), are studied. Incorporation of maleimide groups in the epichlorohydrin provides cyclic imide structure and high cross-linking density to the cured resins. The cured samples exhibited good thermal stability, excellent chemical (acid/alkali/solvent) and water absorption resistance. Morphological studies by the SEM technique further confirmed the phase homogeneity net work of the cured systems.

  16. Hardness measurements of silicon rubber and polyurethane rubber cured by ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.

    1995-01-01

    This work investigates the hardness of both silicon rubber and polyurethane rubber cured by ionizing radiation. Shore A Hardness is used to characterize the subject elastomers in relation to the crosslinking process. Various formulations of both materials have been investigated in order to achieve the optimum cure conditions desired. A small amount of the curing agent has been incorporated in some formulations in order to reduce the required dose to achieve full cure conditions. Silicon rubber has shown improvements in hardness as absorbed dose is increased, whereas hardness remained constant over a range of absorbed doses for polyurethane rubber

  17. Do blood contamination and haemostatic agents affect microtensile bond strength of dual cured resin cement to dentin?

    Directory of Open Access Journals (Sweden)

    Kerem KiLiC

    2013-01-01

    Full Text Available Objective The purpose of this study was to evaluate the effects of blood contamination and haemostatic agents such as Ankaferd Blood Stopper (ABS and hydrogen peroxide (H2O2 on the microtensile bond strength between dual cured resin cement-dentin interface. Material and Methods Twelve pressed lithium disilicate glass ceramics were luted to flat occlusal dentin surfaces with Panavia F under the following conditions: Control Group: no contamination, Group Blood: blood contamination, Group ABS: ABS contamination Group H2O2: H2O2 contamination. The specimens were sectioned to the beams and microtensile testing was carried out. Failure modes were classified under stereomicroscope. Two specimens were randomly selected from each group, and SEM analyses were performed. Results There were significant differences in microtensile bond strengths (µTBS between the control and blood-contaminated groups (p0.05. Conclusions Contamination by blood of dentin surface prior to bonding reduced the bond strength between resin cement and the dentin. Ankaferd Blood Stoper and H2O2 could be used safely as blood stopping agents during cementation of all-ceramics to dentin to prevent bond failure due to blood contamination.

  18. Virulence factor genotypes of Helicobacter pylori affect cure rates of eradication therapy.

    Science.gov (United States)

    Sugimoto, Mitsushige; Yamaoka, Yoshio

    2009-01-01

    The cure rates of Helicobacter pylori infection by using a combination of a proton pump inhibitor (PPI) and antimicrobial agents are mainly influenced by bacterial susceptibility to antimicrobial agents and the magnitude of acid inhibition during the treatment. Currently used empirical triple therapies do not reliably produce a > or =80% cure rate on an intention-to-treat basis. Therefore, tailored regimens based on relevant microbiological findings and pharmacogenomics are recommended for attaining an acceptable > or =95% cure rate. Recently, virulence factors of H. pylori, such as cagA and vacA, are reported to be major factors determining the cure rates. Individuals infected with strains with cagA-negative and vacA s2 genotypes have significantly increased risk of eradication failure of H. pylori infection. These virulence factors enhance gastric mucosal inflammation and are associated with the development of peptic ulcer and gastric cancer. H. pylori virulence factors induce proinflammatory cytokines, such as interleukin (IL)-1, IL-8, and tumor necrosis factor (TNF)- which influence mucosal inflammation and/or gastric acid secretion. When physicians select an H. pylori eradication regimen with an acceptable cure rate, they might need to consider H. pylori virulence factors, especially cagA and vacA.

  19. A comparative evaluation of the shear bond strength of five different orthodontic bonding agents polymerized using halogen and light-emitting diode curing lights: An in vitro investigation

    Directory of Open Access Journals (Sweden)

    Sujoy Banerjee

    2011-01-01

    Full Text Available Purpose: With the introduction of photosensitive (light-activated restorative materials in orthodontics, various methods have been suggested to enhance the polymerization of the materials used, including use of more powerful light curing devices. Bond strength is an important property and determines the amount of force delivered and the treatment duration. Many light-cured bonding materials have become popular but it is the need of the hour to determine the bonding agent that is the most efficient and has the desired bond strength. Aim: To evaluate and compare the shear bond strengths of five different orthodontic light cure bonding materials cured with traditional halogen light and low-intensity light-emitting diode (LED light curing unit. Materials and Methods: 100 human maxillary premolar teeth, extracted for orthodontic purpose, were used to prepare the samples. 100 maxillary stainless steel bicuspid brackets of 0.018 slot of Roth prescription, manufactured by D-tech Company, were bonded to the prepared tooth surfaces of the mounted samples using five different orthodontic bracket bonding light-cured materials, namely, Enlight, Fuji Ortho LC (resin-modified glass ionomer cement, Orthobond LC, Relybond, and Transbond XT. The bond strength was tested on an Instron Universal testing machine (model no. 5582. Results: In Group 1 (halogen group, Enlight showed the highest shear bond strength (16.4 MPa and Fuji Ortho LC showed the least bond strength (6.59 MPa (P value 0.000. In Group 2 (LED group, Transbond showed the highest mean shear bond strength (14.6 MPa and Orthobond LC showed the least mean shear bond strength (6.27 MPa (P value 0.000. There was no statistically significant difference in the shear bond strength values of all samples cured using either halogen (mean 11.49 MPa or LED (mean 11.20 MPa, as the P value was 0.713. Conclusion: Polymerization with both halogen and LED resulted in shear bond strength values which were above the

  20. Compatibility of anhydride cured epoxies with hexanitroazobenzene (HNAB) and hexanitrostilbene (HNS)

    International Nuclear Information System (INIS)

    Massis, T.M.; Wischmann, K.B.

    1985-01-01

    The explosives HNAB (hexanitroazobenzene) and HNS (hexanitrostilbene) have compatibility problems with amine-cured epoxy systems. A program was instituted to find compatible polymeric substitutes for use with these explosives. These polymeric materials must have rigid structures after curing for both adhesive and encapsulant applications. A promising class of epoxy materials using anhydride curing agents with various catalysts to trigger the cure reaction were developed. These polymeric systems have very good compatibility with HNS. Of those tested with HNAB, the anhydride epoxy system that used uranyl nitrate as the catalyst was found to be marginally compatible while the others were incompatible. These results indicated further studies are needed. The CRT (chemical reactivity test) was used to evaluate the compatibility of these materials. 6 references, 2 figures, 5 tables

  1. Comparison of temperature rise in the pulp chamber with different light curing units: An in-vitro study.

    Science.gov (United States)

    Rajesh Ebenezar, A V; Anilkumar, R; Indira, R; Ramachandran, S; Srinivasan, M R

    2010-07-01

    This in vitro study was designed to measure and compare the temperature rise in the pulp chamber with different light curing units. The study was done in two settings-in-vitro and in-vivo simulation. In in-vitro setting, 3mm and 6mm acrylic spacers with 4mm tip diameter thermocouple was used and six groups were formed according to the light curing source- 3 Quartz-Tungsten-Halogen (QTH) units and 3 Light-Emitting-Diode (LED) units. For the LED units, three modes of curing like pulse-cure mode, fast mode and ramp mode were used. For in-vivo simulation, 12 caries free human third molar tooth with fused root were used. K-type thermocouple with 1 mm tip diameter was used. Occlusal cavity was prepared, etched, rinsed with water and blot dried; bonding agent was applied and incremental curing of composite was done. Thermal emission for each light curing agent was noted. Temperature rise was very minimal in LED light cure units than in QTH light cure units in both the settings. Temperature rise was minimal at 6mm distance when compared to 3 mm distance. Among the various modes, fast mode produces the less temperature rise. Temperature rise in all the light curing units was well within the normal range of pulpal physiology. Temperature rise caused due to light curing units does not result in irreversible pulpal damage.

  2. Light curing through glass ceramics: effect of curing mode on micromechanical properties of dual-curing resin cements.

    Science.gov (United States)

    Flury, Simon; Lussi, Adrian; Hickel, Reinhard; Ilie, Nicoleta

    2014-04-01

    The aim of this study was to investigate micromechanical properties of five dual-curing resin cements after different curing modes including light curing through glass ceramic materials. Vickers hardness (VH) and indentation modulus (Y HU) of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA were measured after 1 week of storage (37 °C, 100 % humidity). The resin cements were tested following self-curing or light curing with the second-generation light-emitting diode (LED) curing unit Elipar FreeLight 2 in Standard Mode (1,545 mW/cm(2)) or with the third-generation LED curing unit VALO in High Power Mode (1,869 mW/cm(2)) or in XtraPower Mode (3,505 mW/cm(2)). Light curing was performed directly or through glass ceramic discs of 1.5 or 3 mm thickness of IPS Empress CAD or IPS e.max CAD. VH and Y HU were analysed with Kruskal-Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). RelyX Unicem 2 Automix resulted in the highest VH and Y HU followed by BeautiCem SA, BisCem, SpeedCEM, and finally Panavia F2.0. Self-curing of RelyX Unicem 2 Automix and SpeedCEM lowered VH and Y HU compared to light curing whereas self-curing of Panavia F2.0, BisCem, and BeautiCem SA led to similar or significantly higher VH and Y HU compared to light curing. Generally, direct light curing resulted in similar or lower VH and Y HU compared to light curing through 1.5-mm-thick ceramic discs. Light curing through 3-mm-thick discs of IPS e.max CAD generally reduced VH and Y HU for all resin cements except SpeedCEM, which was the least affected by light curing through ceramic discs. The resin cements responded heterogeneously to changes in curing mode. The applied irradiances and light curing times adequately cured the resin cements even through 1.5-mm-thick ceramic discs. When light curing resin cements through thick glass ceramic restorations, clinicians should consider to prolong the light curing times even with LED curing units providing high

  3. The effects of light curing units and environmental temperatures on C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 C conversion of commercial and experimental bonding agents.

    Science.gov (United States)

    Jafarzadeh-Kashi, Tahereh Sadat; Erfan, Mohmmad; Kalbasi, Salmeh; Ghadiri, Malihe; Rakhshan, Vahid

    2014-10-01

    Polymerization of bonding agents (BA) is a critical factor in determining the success of bonded restorations. We aimed to assess the effects of two light curing units and two temperatures on the extent of polymerization (EP) of a commercial BA and an experimental BA. Forty BA specimens were randomly divided into 8 subgroups of n = 5 to compare the polymerization of two BAs (experimental/Scotchbond) based on the variables: temperature (23/37 °C) and light-curing unit (quartz-tungsten-halogen/light-emitting diode). The EP (%) was measured using differential scanning calorimetry, and analyzed using the t-test, two- and three-way analyses of variance (ANOVA), and the Bonferroni test (α = 0.05). There were significant differences between the EP results between the two BAs (P = 0.012) and due to the different temperatures (P = 0.001), but not between the different light-curing units (P = 0.548). The interaction between BA and temperature was significant (P units had similar effects on the EP. The EP values were better when curing was performed at human body temperature.

  4. Influence of curing agents on gelation and exotherm behaviour of an ...

    Indian Academy of Sciences (India)

    Unsaturated polyester resin; resin curing; gel time; exotherm behaviour; peroxide initiator. 1. Introduction ... process cycle to manufacture a composite part. The magni- ... work, which makes sudden irreversible transformation from a liquid resin to a ... anistic models attempt to quantify the balance of chemical species taking ...

  5. The role of latency reversal agents in the cure of HIV: A review of current data.

    Science.gov (United States)

    Bashiri, Kiandokht; Rezaei, Nima; Nasi, Milena; Cossarizza, Andrea

    2018-04-01

    The definitive cure for human immunodeficiency virus type-1 (HIV) infection is represented by the eradication of the virus from the patient's body. To reach this result, cells that are infected but do not produce the virus must become recognizable to be killed by the immune system. For this purpose, drugs defined "latency reverting agents" (LRA) that reactivate viral production are under investigation. A few clinical studies have been performed in HIV-infected patients treated with LRA and combined antiretroviral therapy (cART). The strategy is thus to combine cART and LRA to reactivate the virus and unmask latently infected cells that, because of cART, cannot produce a fully competent form of the virus. Unmasked cells can present viral antigens to the immune system, that ultimately recognizes and kills such latently infected cells. This review reports and discusses recent studies that have been published on this topic. Copyright © 2018 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  6. Curing mechanism of flexible aqueous polymeric coatings.

    Science.gov (United States)

    Irfan, Muhammad; Ahmed, Abid Riaz; Kolter, Karl; Bodmeier, Roland; Dashevskiy, Andriy

    2017-06-01

    The objective of this study was to explain curing phenomena for pellets coated with a flexible polymeric coating based on poly(vinyl acetate) (Kollicoat® SR 30D) with regard to the effect of starter cores, thickness of drug layer, adhesion of coating to drug-layered-cores as well as coating properties. In addition, appropriate approaches to eliminate the curing effect were identified. Sugar or MCC cores were layered with the model drugs carbamazepine, theophylline, propranolol HCl, tramadol HCl and metoprolol HCl using HPMC (5 or 25% w/w, based on drug) as a binder. Drug-layered pellets were coated with Kollicoat® SR 30D in a fluidized bed coater using TEC (10% w/w) as plasticizer and talc (35-100% w/w) as anti-tacking agent. Drug release, pellet properties (morphology, water uptake-weight loss and osmolality) and adhesion of the coating to the drug layer were investigated as a function of curing at 60°C or 60°C/75% RH for 24h. The film formation of the aqueous dispersion of Kollicoat® SR 30D was complete, and therefore, a strong curing effect (decrease in drug release) at elevated temperature and humidity (60°C/75% RH) could not be explained by the well-known hydroplasticization and the further gradual coalescence of the colloidal polymer particles. According to the provided mechanistic explanation, the observed curing effect was associated with (1) high flexibility of coating, (2) adhesion between coating and drug layer, (3) water retaining properties of the drug layer, and (4) osmotically active cores. Unwanted curing effects could be minimized/eliminated by the addition of talc or/and pore-forming water soluble polymers in the coating, increasing binder amount or applying an intermediate coating, by increasing the thickness of drug layer or using non-osmotic cores. A new insight into curing phenomena mainly associated with the adhesion between drug layer and coating was provided. Appropriate approaches to avoid unwanted curing effect were identified

  7. CURING EFFICIENCY OF DUAL-CURE RESIN CEMENT UNDER ZIRCONIA WITH TWO DIFFERENT LIGHT CURING UNITS

    Directory of Open Access Journals (Sweden)

    Pınar GÜLTEKİN

    2015-04-01

    Full Text Available Purpose: Adequate polymerization is a crucial factor in obtaining optimal physical properties and a satisfying clinical performance from composite resin materials. The aim of this study was to evaluate the polymerization efficiency of dual-cure resin cement cured with two different light curing units under zirconia structures having differing thicknesses. Materials and Methods: 4 zirconia discs framework in 4 mm diameter and in 0.5 mm, 1 mm and 1.5 mm thickness were prepared using computer-aided design system. One of the 0.5 mm-thick substructures was left as mono-layered whereas others were layered with feldspathic porcelain of same thickness and ceramic samples with 4 different thicknesses (0.5, 1, 1.5 and 2.0 mm were prepared. For each group (n=12 resin cement was light cured in polytetrafluoroethylene molds using Light Emitting Diode (LED or Quartz-Tungsten Halogen (QHT light curing units under each of 4 zirconia based discs (n=96. The values of depth of cure (in mm and the Vickers Hardness Number values (VHN were evaluated for each specimen. Results: The use of LED curing unit produced a greater depth of cure compared to QTH under ceramic discs with 0.5 and 1 mm thickness (p<0.05.At 100μm and 300 μm depth, the LED unit produced significantly greater VHN values compared to the QTH unit (p<0.05. At 500 μm depth, the difference between the VHN values of LED and QTH groups were not statistically significant. Conclusion: Light curing may not result in adequate resin cement polymerization under thick zirconia structures. LED light sources should be preferred over QTH for curing dual-cure resin cements, especially for those under thicker zirconia restorations.

  8. Luminescence spectroscopy applied to a study of the curing process of diglycidyl-ether of bisphenol-A (DGEBA

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Mendonça Sales

    2005-09-01

    Full Text Available This work involved the application of luminescence spectroscopy under steady-state conditions to study the curing process of the epoxy resin diglycidyl-ether of bisphenol-A (DGEBA using the curing agents 4,4'-diaminodiphenylmethane (DDM and 4,4'-diaminodiphenylsulfone (DDS. Two fluorescence methods were employed: the intrinsic method related to the polymeric matrix and the extrinsic method, using the molecular probe 9-anthroic acid (9-AA. Stoichiometric mixtures, with and without 9-AA, were heated to 120 °C at a 5 °C/min heating rate. These samples were then cured at 120 °C for a further 2 hours and allowed to cool to room temperature for 20 minutes. The results obtained by the two methods indicate that the cross-linking reaction can be monitored by analyzing the spectral changes of the emission bands of DGEBA, curing agents and 9-AA.

  9. Characterization of cure kinetics and physical properties of a high performance, glass fiber-reinforced epoxy prepreg and a novel fluorine-modified, amine-cured commercial epoxy

    Science.gov (United States)

    Bilyeu, Bryan

    Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage due to both resin consolidation and fiber rearrangement is measured as the linear expansion of the piston on a quartz dilatometry cell using TMA. The shrinkage of prepregs was determined to depend on the curing temperature, pressure applied and the fiber orientation. Chemical modification of an epoxy was done by mixing a fluorinated aromatic amine (aniline) with a standard aliphatic amine as a curing agent for a commercial Diglycidylether of Bisphenol-A (DGEBA) epoxy. The resulting cured network

  10. Pre-cure freezing affects proteolysis in dry-cured hams.

    Science.gov (United States)

    Bañón, S; Cayuela, J M; Granados, M V; Garrido, M D

    1999-01-01

    Several parameters (sodium chloride, moisture, intramuscular fat, total nitrogen, non-protein nitrogen, white precipitates, free tyrosine, L* a* b* values and acceptability) related with proteolysis during the curing were compared in dry-cured hams manufactured from refrigerated and frozen/thawed raw material. Pre-cure freezing increased the proteolysis levels significantly (pcured meat, although it does not significantly affect the sensory quality of the dry-cured ham.

  11. Effect of In-Situ Curing on Compressive Strength of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Bali Ika

    2016-01-01

    Full Text Available A development of Reactive Powder Concrete (RPC currently is the use of quartz powder as a stabilizing agent with the content to cement ratio of 30% and steam curing method in an autoclave temperature of 250ºC which produced a high compressive strength of 180 MPa. That RPC can be generated due to one reason for using the technique of steam curing in an autoclave in the laboratory. This study proposes in-situ curing method in order the curing can be applied in the field and with a reasonable compressive strength results of RPC. As the benchmarks in this study are the curing methods in laboratory that are steam curing of 90°C for 8 hours (C1, and water curing for 28 days (C2. For the in-situ curing methods that are covering with tarpaulins and flowed steam of 3 hours per day for 7 days (C3, covering with wet sacks for 28 days (C4, and covering with wet sacks for 28 days for specimen with unwashed sand as fine aggregate (C5. The comparison of compressive strength of the specimens in this study showed compressive strength of RPC with in-situ steam curing (101.64 MPa close to the compressive strength of RPC with steam curing in the laboratory with 8.2% of different. While in-situ wet curing compared with the water curing in laboratory has the different of 3.4%. These results indicated that the proposed in-situ curing methods are reasonable good in term of the compressive strength that can be achieved.

  12. Cure of skin cancer. Surgical cure of skin cancer

    International Nuclear Information System (INIS)

    Zikiryakhodjaev, D.Z.; Sanginov, D.R.

    2001-01-01

    In this chapter authors studied the cure of skin cancer in particular the surgical cure of skin cancer. They noted that surgical cure of skin cancer is remain one of the primary and most important methods in treatment of skin cancer

  13. Influence of curing time, overlay material and thickness on three light-curing composites used for luting indirect composite restorations.

    Science.gov (United States)

    D'Arcangelo, Camillo; De Angelis, Francesco; Vadini, Mirco; Carluccio, Fabio; Vitalone, Laura Merla; D'Amario, Maurizio

    2012-08-01

    .13). In the SAR group, acceptable hardness values were only achieved with 2-mm-thick overlays after 120 or 80 s curing time (VH 39.81 and 29.78, respectively). In the EST-X group, acceptable hardness values were only achieved with 3-mm or thinner overlays, after 120 or 80 s curing time (VH 36.20 and 36.03, respectively). Curing time, restoration thickness, and overlay material significantly influenced the microhardness of the tested resin composites employed as luting agents. The clinician should carefully keep these factors under control.

  14. Non-isothermal cure and exfoliation of tri-functional epoxy-clay nanocomposites

    Directory of Open Access Journals (Sweden)

    F. Shiravand

    2015-08-01

    Full Text Available The non-isothermal cure kinetics of polymer silicate layered nanocomposites based on a tri-functional epoxy resin has been investigated by differential scanning calorimetry. From an analysis of the kinetics as a function of the clay content, it can be concluded that the non-isothermal cure reaction can be considered to consist of four different processes: the reaction of epoxy groups with the diamine curing agent; an intra-gallery homopolymerisation reaction which occurs concurrently with the epoxy-amine reaction; and two extra-gallery homopolymerisation reactions, catalysed by the onium ion of the organically modified clay and by the tertiary amines resulting from the epoxy-amine reaction. The final nanostructure displays a similar quality of exfoliation as that observed for the isothermal cure of the same nanocomposite system. This implies that the intra-gallery reaction, which is responsible for the exfoliation, is not significantly inhibited by the extra-gallery epoxy-amine cross-linking reaction.

  15. Cure Cycle Optimization of Rapidly Cured Out-Of-Autoclave Composites

    Science.gov (United States)

    Dong, Anqi; Zhao, Yan; Zhao, Xinqing; Yu, Qiyong

    2018-01-01

    Out-of-autoclave prepreg typically needs a long cure cycle to guarantee good properties as the result of low processing pressure applied. It is essential to reduce the manufacturing time, achieve real cost reduction, and take full advantage of out-of-autoclave process. The focus of this paper is to reduce the cure cycle time and production cost while maintaining high laminate quality. A rapidly cured out-of-autoclave resin and relative prepreg were independently developed. To determine a suitable rapid cure procedure for the developed prepreg, the effect of heating rate, initial cure temperature, dwelling time, and post-cure time on the final laminate quality were evaluated and the factors were then optimized. As a result, a rapid cure procedure was determined. The results showed that the resin infiltration could be completed at the end of the initial cure stage and no obvious void could be seen in the laminate at this time. The laminate could achieve good internal quality using the optimized cure procedure. The mechanical test results showed that the laminates had a fiber volume fraction of 59–60% with a final glass transition temperature of 205 °C and excellent mechanical strength especially the flexural properties. PMID:29534048

  16. How far is cancer cured by radiation sensitization?

    International Nuclear Information System (INIS)

    Ando, Koichi; Sasaki, Takehito; Ikeda, Hiroshi

    1990-01-01

    Some types of cancer are not cured by radiation alone in view of histology, location, and size. In facing so-called radioresistant cancer, antineoplastic agents, hypoxic cell sensitizers, biological response modifiers, or hyperthermia are used in combination with radiation, with the aim of cancer cure. First of all, this chapter discusses the subject of 'what is tumor cure by radiation therapy'. Current conditions of the aforementioned combined modalities and the future perspectives are presented. The following subjects are covered: (1) tumor control - significance of the number of stem cells; (2) biological evaluation of chemo-radiotherapy with cisplatin; (3) clinical results and experience with combination of radiotherapy and radiosensitizers; (4) radiosensitization with hypoxic cell radiosensitizers - present status (5) hypoxic cell radiosensitizers - present status and problems from the viewpoint of clinical radiotherapy; (6) thermal radiosensitization in vitro and its implications for radiotherapy; (7) clinical assessment of thermoradiotherapy for breast cancer and cancer of the urinary bladder; (8) interactions of radiation and biological response modifiers in the treatment of malignant tumor; (9) improvement in the effects of radiation therapy with biological response modifiers. (N.K.)

  17. The software package for solving problems of mathematical modeling of isothermal curing process

    Directory of Open Access Journals (Sweden)

    S. G. Tikhomirov

    2016-01-01

    Full Text Available Summary. On the basis of the general laws of sulfur vulcanization diene rubbers the principles of the effective cross-linking using a multi-component agents was discussed. It is noted that the description of the mechanism of action of the complex cross-linking systems are complicated by the diversity of interactions of components and the influence of each of them on the curing kinetics, leading to a variety technological complications of real technology and affects on the quality and technical and economic indicators of the production of rubber goods. Based on the known theoretical approaches the system analysis of isothermal curing process was performed. It included the integration of different techniques and methods into a single set of. During the analysis of the kinetics of vulcanization it was found that the formation of the spatial grid parameters vulcanizates depend on many factors, to assess which requires special mathematical and algorithmic support. As a result of the stratification of the object were identified the following major subsystems. A software package for solving direct and inverse kinetic problems isothermal curing process was developed. Information support “Isothermal vulcanization” is a set of applications of mathematical modeling of isothermal curing. It is intended for direct and inverse kinetic problems. When solving the problem of clarifying the general scheme of chemical transformations used universal mechanism including secondary chemical reactions. Functional minimization algorithm with constraints on the unknown parameters was used for solving the inverse kinetic problem. Shows a flowchart of the program. An example of solving the inverse kinetic problem with the program was introduced. Dataware was implemented in the programming language C ++. Universal dependence to determine the initial concentration of the curing agent was applied . It allowing the use of a model with different properties of multicomponent

  18. Short communication: pre- and co-curing effect of adhesives on shear bond strengths of composite resins to primary enamel and dentine: an in vitro study.

    Science.gov (United States)

    Viswanathan, R; Shashibhushan, K K; Subba Reddy, V V

    2011-12-01

    To evaluate and compare shear bond strengths of composite resins to primary enamel and dentine when the adhesives are pre-cured (light cured before the application of the resin) or co-cured (adhesive and the resin light cured together). Buccal surfaces of 80 caries-free primary molars were wet ground to create bonding surfaces on enamel and dentine and specimens mounted on acrylic blocks. Two bonding agents (Prime and Bond NT® and Xeno III®) were applied to either enamel or dentine as per manufacturer's instructions. In 40 specimens, the bonding agent was light cured immediately after the application (pre-cured). The other 40 specimens were not light cured until the composite resin application (co-cured). Resin composite cylinders were made incrementally using acrylic moulds over the adhesives and light cured. Specimens were stored in deionised water for 24 hours at room temperature. Shear bond strength was measured using an Instron universal testing machine (in MPa) and was analysed with Student's unpaired t test. Light curing the adhesive separately produced significantly higher bond strengths to primary dentine than co-curing (padhesive separately did not produce significantly different bond strengths to primary enamel (p>0.05). Curing sequence had no significant effect on shear bond strength of adhesives on the primary enamel. Pre-curing adhesives before curing composite resins produced greater shear bond strength to primary dentine.

  19. EVALUATION OF DIELECTRIC CURING MONITORING INVESTIGATING LIGHT-CURING DENTAL FILLING COMPOSITES

    Directory of Open Access Journals (Sweden)

    Johannes Steinhaus

    2011-05-01

    Full Text Available The aim of this study is the evaluation of a dielectric analysis (DEA method monitoring the curing behaviour of a light curing dental filling material in real-time. The evaluation is to extract the influence of light intensity on the photo-curing process of dental composite filling materials. The intensity change is obtained by measuring the curing process at different sample depth. It could be shown that increasing sample thickness, and therefore exponentially decreasing light intensity, causes a proportional decrease in the initial curing rate. Nevertheless, the results give rise to the assumption that lower illumination intensities over a long period cause higher overall conversion, and thus better mechanical properties. This would allow for predictions of the impact of different curing-rates on the final mechanical properties.

  20. Cure kinetics and mechanical interfacial characteristics of zeolite/DGEBA composites

    International Nuclear Information System (INIS)

    Park, Soo Jin; Kim, Young Mi; Shin, Jae Sup

    2003-01-01

    In this work, the zeolite/diglycidylether of bisphenol A(DGEBA) systems were investigated in terms of the cure kinetics and mechanical interfacial properties of the composites. The 4, 4-Diamino Diphenyl Methane(DDM) was used as a curing agent for epoxy. Two types of zeolite(PZ) were prepared with 15 and 35 wt% KOH treatments(15-BZ and 35-BZ, respectively) for 24 h, and their surface characteristics were studied by X-ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD). Cure kinetics of the composites were examined in the context of Differential Scanning Calorimetry(DSC), and mechanical interfacial properties were investigated in critical stress intensity factor(K IC ) and critical strain energy release rate(G IC ). In the results of XPS and XRD, sodium ion(Na) of zeolite was exchanged for potassium ion(K), resulting from the treatment of KOH. Also, Si 2p /A1 2p composition ratios of the treated zeolite were increased, which could be attributed to the weakening of A1-O bond in framework. Cure activation energy(E a ) of 15-BZ composites was decreased, whereas K IC and G IC were increased, compared with those of the pure zeolite/DGEBA composites. It was probably accounted that the acidity of zeolite was increased by surface treatments and the cure reaction between zeolite and epoxy was influenced on the increased acidity of zeolite

  1. Self-curing concrete types; water retention and durability

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa

    2015-09-01

    This study was carried out to compare among concretes without or with silica fume (SF along with chemical type of shrinkage reducing admixture, polyethylene-glycol (Ch, and leca as self-curing agents for water retention even at elevated temperature (50 °C and their durability. The cement content of 400 kg/m3, silica fume of 15% by weight of cement, polyethylene-glycol of 2% by weight of cement, pre-saturated lightweight aggregate (leca 15% by volume of sand and water with Ch/binder ratio of 0.4 were selected in this study. Some of the physical and mechanical properties were determined periodically up to 28 days in case of exposure to air curing in temperature of (25 °C and (50 °C while up to 6 months of exposure to 5% of carbon dioxide and wet/dry cycles in 8% of sodium chloride for durability study. The concrete mass loss and the volumetric water absorption were measured, to evaluate the water retention of the investigated concretes. Silica fume concrete either without or with Ch gave the best results under all curing regimes; significant water retention and good durability properties.

  2. Light-Cured Self-Etch Adhesives Undergo Hydroxyapatite-Triggered Self-Cure

    Science.gov (United States)

    Liu, Y.; Bai, X.; Liu, Y.W.; Wang, Y.

    2015-01-01

    Light cure is a popular mode of curing for dental adhesives. However, it suffers from inadequate light delivery when the restoration site is less accessible, in which case a self-cure mechanism is desirable to salvage any compromised polymerization. We previously reported a novel self-cure system mediated by ethyl 4-(dimethylamino)-benzoate (4E) and hydroxyapatite (HAp). The present work aims to investigate if such self-cure phenomenon takes place in adhesives that underwent prior inadequate light cure and to elucidate if HAp released from the dental etching process is sufficient to trigger it. Model self-etch adhesives were formulated with various components, including bis[2-methacryloyloxy)ethyl]-phosphate (2MP) as acidic monomer and trimethylbenzoyl-diphenylphosphine oxide (TPO) as photoinitiator. In vitro evolution of degree of conversion (DC) of HAp-incorporated adhesives was monitored by infrared spectroscopy during light irradiation and dark storage. Selected adhesives were allowed to etch and extract HAp from enamel, light-cured in situ, and stored in the dark, after which Raman line mapping was used to obtain spatially resolved DC across the enamel-resin interface. Results showed that TPO+4E adhesives reached DC similar to TPO-only counterparts upon completion of light irradiation but underwent another round of initiation that boosted DC to ~100% regardless of HAp level or prior light exposure. When applied to enamel, TPO-only adhesives had ~80% DC in resin, which gradually descended to ~50% in enamel, whereas TPO+4E adhesives consistently scored ~80% DC across the enamel-resin interface. These observations suggest that polymerization of adhesives that underwent insufficient light cure is salvaged by the novel self-cure mechanism, and such salvaging effect can be triggered by HAp released from dental substrate during the etching process. PMID:26635279

  3. Light-Cured Self-Etch Adhesives Undergo Hydroxyapatite-Triggered Self-Cure.

    Science.gov (United States)

    Liu, Y; Bai, X; Liu, Y W; Wang, Y

    2016-03-01

    Light cure is a popular mode of curing for dental adhesives. However, it suffers from inadequate light delivery when the restoration site is less accessible, in which case a self-cure mechanism is desirable to salvage any compromised polymerization. We previously reported a novel self-cure system mediated by ethyl 4-(dimethylamino)-benzoate (4E) and hydroxyapatite (HAp). The present work aims to investigate if such self-cure phenomenon takes place in adhesives that underwent prior inadequate light cure and to elucidate if HAp released from the dental etching process is sufficient to trigger it. Model self-etch adhesives were formulated with various components, including bis[2-methacryloyloxy)ethyl]-phosphate (2MP) as acidic monomer and trimethylbenzoyl-diphenylphosphine oxide (TPO) as photoinitiator. In vitro evolution of degree of conversion (DC) of HAp-incorporated adhesives was monitored by infrared spectroscopy during light irradiation and dark storage. Selected adhesives were allowed to etch and extract HAp from enamel, light-cured in situ, and stored in the dark, after which Raman line mapping was used to obtain spatially resolved DC across the enamel-resin interface. Results showed that TPO+4E adhesives reached DC similar to TPO-only counterparts upon completion of light irradiation but underwent another round of initiation that boosted DC to ~100% regardless of HAp level or prior light exposure. When applied to enamel, TPO-only adhesives had ~80% DC in resin, which gradually descended to ~50% in enamel, whereas TPO+4E adhesives consistently scored ~80% DC across the enamel-resin interface. These observations suggest that polymerization of adhesives that underwent insufficient light cure is salvaged by the novel self-cure mechanism, and such salvaging effect can be triggered by HAp released from dental substrate during the etching process. © International & American Associations for Dental Research 2015.

  4. SureCure{sup (R)}-A new material to reduces curing time and improve curing reproducibility of lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Boden, David P.; Loosemore, Daniel V.; Botts, G. Dean [Hammond Lead Products Division, Hammond Group Inc., 2323 165th Street, Hammond, IN 46320 (United States)

    2006-08-25

    This paper introduces a technology that considerably reduces the time to cure the positive plates of lead-acid batteries. In each of several full-scale trials at automotive and industrial battery manufacturers, the simple replacement of 1wt.% of leady oxide with finely-divided tetrabasic lead sulfate (SureCure(TM) by Hammond Group Inc.) is shown to accelerate significantly the conversion of tribasic lead sulfate (3BS) to tetrabasic lead sulfate (4BS) in the curing process while improving crystal structure and reproducibility. Shorter curing times result in reduced labour and energy costs, as well as reduced fixed (curing chambers and plant footprint) and working (plate inventory) capital investment. (author)

  5. Effect of Using Porcelanite as Partial Replacement of Fine Aggregate on Roller Compacted Concrete with Different Curing Methods

    Directory of Open Access Journals (Sweden)

    Abeer Abdulqader Salih

    2016-09-01

    Full Text Available Roller-Compacted Concrete is a no-slump concrete, with no reinforcing steel, no forms, no finishing and wet enough to support compaction by vibratory rollers. Due to the effect of curing on properties and durability of concrete, the main purpose of this research is to study the effect of various curing methods (air curing, 7 days water curing, and permanent water curing and porcelanite (local material used as an Internal Curing agent with different replacement percentages of fine aggregate (volumetric replacement on some properties of Roller-Compacted Concrete and to explore the possibility of introducing practical Roller-Compacted Concrete for road pavement with minimum requirement of curing. Specimens were sawed from slabs of (380*380*100 mm for determination of Ultrasonic Pulse Velocity (UPV and Voids volume. Results show that using (5 % porcelanite improved the results of UPV and Voids volume of Roller-Compacted Concrete (with air curing as compared with reference Roller-Compacted Concrete (with permanent water curing by percentages ranging from(3.6 to 28.9% and (-8 to -15.5% respectively.

  6. Grafting and curing

    International Nuclear Information System (INIS)

    Garnett, J.L.; Loo-Teck Ng; Visay Viengkhou

    1998-01-01

    Progress in radiation grafting and curing is briefly reviewed. The two processes are shown to be mechanistically related. The parameters influencing yields are examined particularly for grafting. For ionising radiation grafting systems (EB and gamma ray) these include solvents, substrate and monomer structure, dose and dose-rate, temperature and more recently role of additives. In addition, for UV grafting, the significance of photoinitiators is discussed. Current applications of radiation grafting and curing are outlined. The recent development of photoinitiator free grafting and curing is examined as well as the potential for the new excimer laser sources. The future application of both grafting and curing is considered, especially the significance of the occurrence of concurrent grafting during cure and its relevance in environmental considerations

  7. Effect of cure cycle on curing process and hardness for epoxy resin

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available A 3-dimensional finite element model is developed to simulate and analyze the temperature and degree of cure field of epoxy casting part during cure process. The present model based on general finite element software ABAQUS is verified by literature example and experimental data. The numerical results show good agreement with literature example and measured data, and are even more accurate than the simulation of literature. After modeling successfully, the influence of temperature cure cycle ramps have on the temperature and degree of cure gradient is investigated. Moreover, the effect of non-uniform temperature and degree of cure field within epoxy casting part on hardness is demonstrated. The present model provides an accurate and novel method that allows further insight into the process of cure for epoxy resin.

  8. Properties of Radiation Cured Elastomer/ Thermoplastic Blends Containing Different Additives

    International Nuclear Information System (INIS)

    Abou Zeid, M.M.; Shaltout, N.A.; Khalil, A.M.; El Miligy, A.A.

    2008-01-01

    The effect of different co agents on the physico-chemical properties of NBR/HDPE composites reinforced with 40 phr (part per hundred part of rubber by weight) HAF carbon black and cured with accelerated electrons was investigated. The co agents N, N- methylene bis acrylamide (MBAAm) and trimethylol propane trimethacrylate (TMPTMA) were used at a constant content of 10 phr. The physico-chemical properties such as tensile strength (TS), tensile modulus at 50% elongation (M50), elongation at break (Eb), hardness, soluble fraction (SF), swelling number (SN) and thermal properties were studied. The results obtained showed that the TMPTMA as a co agent is more effective than MDA in enhancing the mechanical and physical properties of NBR/HDPE vulcanized composites

  9. Assessment of environmental impact of ultraviolet radiation or electron beam cured print inks on plastic packaging materials

    International Nuclear Information System (INIS)

    Bardi, Marcelo Augusto Goncalves

    2014-01-01

    The high level of pollution generated by the inadequate disposal of polymeric materials has motivated the search for environmentally friendly systems and techniques such as the application of biodegradable polymers and the replacement of the solvent-based paint systems by those with high solids content, based water or cured by radiation, practically free of volatile organic compounds. However, the cured polymer coatings are neither soluble nor molten, increasing the complexity of the reprocessing, recycling and degradation. Thus, this work aimed to develop print inks modified with pro-degrading agents, cured by ultraviolet radiation or electron beam, for printing or decoration in plastic packaging products of short lifetime, which are biodegradable or not. Six coatings (varnish and inks in five colors: yellow, blue, white, black and red), three pro-degrading agents (cobalt stearate, cerium stearate and manganese stearate), five polymeric substrates (Ecobras®, low density polyethylene and its respective modifications with pro-degrading agents). The coatings were applied to the substrates and cured by ultraviolet radiation or electron beam, resulting in 180 samples. These materials were then exposed to accelerated aging chamber, type 'QUV', and composting in natural environment. In order to assess the effects of the polymer coatings on the degradation process of the specimens, only the yellow and black samples were exposed to a controlled composting environment via respirometry, reducing to 16 the number of samples. The organic compound generated by the biodegradation process was analyzed by the ecotoxicity tests. It was observed that the coating layer acted as a barrier that inhibits degradation of the plastic when exposed to weathering. The addition of pro-degrading agents promoted acceleration in the degradation process, promoting the migration of the metal ion to the medium without affecting the final quality of the organic compost. (author)

  10. Reply to Commentary: "Are HIV-Infected Candidates for Participation in Risky Cure-Related Studies Otherwise Healthy?"

    Science.gov (United States)

    Dubé, Karine; Sylla, Laurie; Dee, Lynda

    2018-02-01

    We respond to Eyal et al.'s commentary focusing on how people living with HIV participating in HIV cure-related studies are defined. We argue that the types of participants enrolled in research cannot be dissociated from the study interventions, the types of anticipated risks, and the background standard of care. As the field of HIV cure research advances, more nuance and granularity will be needed to define research criteria and acceptable risk/benefit ratios for cure study participants, as well as specific tiered protocol designs that serve to protect various participant populations from untoward risks, especially in very early phase research with interventions known to have potentially serious toxicities. We highlight key lessons from the ACTIVATE study involving a latency-reversing agent, Panobinostat, for HIV cure study design involving "otherwise healthy volunteers".

  11. Influence of different curing methods on the fatty acid composition in sausages prepared from red deer meat

    Directory of Open Access Journals (Sweden)

    Marek Šnirc

    2016-11-01

    Full Text Available These curing agents play a decisive role in obtaining the specific sensory properties, stability and hygienic safety of products such as fermented sausages, ham and, more recently, emulsion type of sausages. The effect of using two different curing agents (sodium chloride and nitrate on fatty acid compounds in dry-cured deer meat was investigated in our study. The concentration of free fatty acids in the fat depends on the hydrolytic activity of the lipases, the microbial metabolic processes, and the oxidative reactions that work on the free fatty acids released in the lipolysis. The main identified fatty acids in all different types of curing were palmitic acid (16 : 0, oleic acid (c18 : 1 cis-9, stearic acid (C18 : 0. The resulting n-6/n-3 PUFA ratio in the muscle samples of red deer showed no variation in different types of curing and was beneficially low within the range of 3.9 : 1 and 4.49 : 1. Total free fatty acids, whether saturated, monounsaturated or polyunsaturated fatty acids, did not increased (p >0.05 greatly through the processing of dry-cured deer meat. Also there was no effect of curing method on fatty acids composition in two different muscles Semitendinosus muscle (ANOVA, p >0.05, F - 0.003, F crit. - 3.041 and Triceps brachii muscle (ANOVA, p >0.05, F - 0.05, F crit. - 3.01. There were found no significant (p >0.05 differences between fatty acids content in sausages prepared by brining in NaCl and Nitrate salt. The present study revealed that game meat can function as a good source of bioactive compounds that are essential for human nutrition. 

  12. Enhanced inhibition of Aspergillus niger on sedge (Lepironia articulata) treated with heat-cured lime oil.

    Science.gov (United States)

    Matan, N; Matan, N; Ketsa, S

    2013-08-01

    This study aimed to examine heat curing effect (30-100°C) on antifungal activities of lime oil and its components (limonene, p-cymene, β-pinene and α-pinene) at concentrations ranging from 100 to 300 μl ml(-1) against Aspergillus niger in microbiological medium and to optimize heat curing of lime oil for efficient mould control on sedge (Lepironia articulata). Broth dilution method was employed to determine lime oil minimum inhibitory concentration, which was at 90 μl ml(-1) with heat curing at 70°C. Limonene, a main component of lime oil, was an agent responsible for temperature dependencies of lime oil activities observed. Response surface methodology was used to construct the mathematical model describing a time period of zero mould growth on sedge as functions of heat curing temperature and lime oil concentration. Heat curing of 90 μl ml(-1) lime oil at 70°C extended a period of zero mould growth on sedge to 18 weeks under moist conditions. Heat curing at 70°C best enhanced antifungal activity of lime oil against A. niger both in medium and on sedge. Heat curing of lime oil has potential to be used to enhance the antifungal safety of sedge products. © 2013 The Society for Applied Microbiology.

  13. Application of a silver–olefin coordination polymer as a catalytic curing agent for self-healing epoxy polymers

    International Nuclear Information System (INIS)

    Everitt, D T; Coope, T S; Trask, R S; Bond, I P; Wass, D F

    2015-01-01

    A silver–olefin based coordination polymer was prepared in a simple, one step process to act as an initiator to facilitate the ring-opening polymerization of epoxides. Thermal analysis found the complex to be capable of curing a range of commercially available epoxy resins used in the manufacture of conventional composite materials. Curing of the oligomeric diglycidyl ether bisphenol A resin, Epon 828, in combination with a non-toxic solvent, ethyl phenylacetate, was studied by differential scanning calorimetry. The mechanical characterization of the resultant cured polymers was conducted by single lap shear tests. Tapered double cantilever beam (TDCB) test specimens containing 2.5 pph of silver–olefin initiator, both with and without embedded microcapsules, were analyzed for their healing performance. Healing efficiency values were found to be strongly dependent on the applied healing temperature. A mean recovery of 74% fracture load was found in TDCB samples after being healed at 70 °C for 48 h. (paper)

  14. Behaviors of nitrite in cured meat

    International Nuclear Information System (INIS)

    Miwa, Misao

    1980-01-01

    The behaviors of nitrite in cured meat were studied by means of 15 N on the basis of the gaseous 15 N volume from the added nitric acid. The myoglobin, 15 N-nitrite and ascorbate model systems showed a 15 N recovery rate of approximately 100%, but actual meat samples, treated similarly, showed a recovery rate ranging from 66 to 90%, with formation of an unidentified 15 N agent. The largest amount of this unidentified agent was obtained by reaction of the 0.05 M NaCl-soluble dialyzable fraction of meat with 15 N-nitrite. When the reaction product was isolated by Sephadex column chromatography, 15 N in the fraction, which was thought to be the agent, contained approximately 26% of the added 15 N, possessed no UV absorption, and was negative for a ninhydrin reagent. Of the NaCl soluble fraction, reaction in the acidic fraction produced the largest quantity of the unidentified 15 N compound (31% of the added 15 N). This compound was strongly acidic and consisted of 30.7% C, 6.6% H and 4.9% N on element analysis. It showed no mutagenicity against Salmonella by Ames Test. (Chiba, N.)

  15. Impact of a novel phosphorus-nitrogen flame retardant curing agent on the properties of epoxy resin

    Science.gov (United States)

    Liu, Xiaoli; Liang, Bing

    2017-12-01

    A phosphorus-nitrogen flame retardant curing agent diethyl phosphonic p-Phenylenediamine diamide (DEPPPD) was synthesized. The chemical structure of the obtained compound was identified by Fourier transform infrared (FTIR), 1H nuclear magnetic resonance (1HNMR), and mass spectroscopies. A series of t hermosetting systems were prepared by conventional epoxy resins (E-44) and DEPPPD. The effects of DEPPPD on flame retardancy, thermal degradation behavior, mechanical properties and the morphologies of char residues of EP/DEPPPD thermosets were investigated. The results demonstrated that when the phosphorus content of 2.88 wt%, EP-3 successfully passed UL-94 V-0 flammability rating, the LOI value was as high as 31.1%, the impact strength and tensile strength of it was 6.50 KJ m-2 and 48.21 MPa, the adhesive strength could reach 14.61 MPa, respectively. The TGA results indicated that the introduction of DEPPPD promoted EP matrix decomposed at a lower temperature, the rate of the thermal decomposition also decreased compared with EP-0. The residual char ratio of 800 °C was increased whether in nitrogen or in the air. The morphological structures of char residue were more compact and homogeneous which could prevent the heat transmission and diffusion, limit the production of combustible gases and reduced the heat release rate.

  16. Radiation curing - a personal perspective

    International Nuclear Information System (INIS)

    Pappas, S.P.

    1992-01-01

    This chapter briefly introduces radiation curing from the personal perspective of the author. Topics covered in this chapter include characteristic features of radiation curing, photoinitiated polymerization -- ultraviolet (UV) curing, and general principles of electron beam (EB) curing. 57 refs., 2 tabs

  17. Synthesis and curing of alkyd enamels based on ricinoleic acid

    Directory of Open Access Journals (Sweden)

    Jovičić Mirjana C.

    2010-01-01

    Full Text Available A combination of an alkyd resin with a melamine-formaldehyde resin gives a cured enamel film with the flexibility of the alkyd constituent and the high chemical resistance and hardness of the melamine resin at the same time. The melamine resin is a minor constituent and plays the role of a crosslinking agent. In this paper, alkyd resins of high hydroxyl numbers based on trimethylolpropane, ricinoleic acid and phthalic anhydride were synthesized. Two alkyds having 30 and 40 wt% of ricinoleic acid were formulated by calculation on alkyd constant. Alkyds were characterized by FTIR and by the determination of acid and hydroxyl numbers. Then synthesized alkyds were made into baking enamels by mixing with melamine-formaldehyde resins (weight ratio of 70:30 based on dried mass. Two types of commercial melamine resins were used: threeisobutoxymethyl melamine-formaldehyde resin (TIMMF and hexamethoxymethyl melamine resin (HMMMF. Prepared alkyd/melamine resin mixtures were cured in a differential scanning calorimeter (DSC under non-isothermal mode. Apparent degree of curing as a function of temperature was calculated from the curing enthalpies. Kinetic parameters of curing were calculated using Freeman-Carroll method. TIMMF resin is more reactive with synthesized alkyds than HMMMF resin what was expected. Alkyd resin with 30 wt% of ricinoleic acid is slightly more reactive than alkyd with 40 wt% of ricinoleic acid, probably because it has the high contents of free hydroxyl and acid groups. The gel content, Tg, thermal stability, hardness, elasticity and impact resistance of coated films cured at 150°C for 60 min were measured. Cured films show good thermal stability since the onset of films thermal degradation determined by thermogravimetric analysis (TGA is observed at the temperatures from 281 to 329°C. Films based on alkyd 30 are more thermal stable than those from alkyd 40, with the same melamine resin. The type of alkyd resin has no significant

  18. Radiation curing of polymers

    International Nuclear Information System (INIS)

    Randell, D.R.

    1987-01-01

    The contents of this book are: Areas of Application of UV Curing; Areas of Application of EB Curing; Laser Curing of Acrylic Coatings; A User's View of the Application of Radiation Curable Materials; Radiation Curable Offset Inks: A Technical and Marketing Overview; and UV Curable Screen Printing Inks

  19. their use as Accelerator in Curing Process of Rubber Compounds

    Directory of Open Access Journals (Sweden)

    S. taghvaee

    2007-06-01

    Full Text Available In some special cases, rubber compounds with high amounts of unsaturated elastomer are recommended with organic sulfur donors instead of mineral sulfurs. In this condition, activated sulfur is produced in situ and curingprocess is facilitated without accelerators. Organic sulfur donor compounds have low thermal stability and in the vulcanization temperature produce free and activated sulfurs. The advantages of these compounds are:1. High effectiveness of curing agent in low quantities in rubber compounds manufacturing.2. Producing activated sulfurs in controlled condition and avoiding the over curing of rubber compounds.In this report the novel synthesis of some derivatives of diamino-disulfides which can be applied as sulfur donors in vulcanization of special rubber compounds is introduced. The key process is reaction of sulfurmonochloride with amines in petroleum ether as solvent in low temperature. Dithio-dimorpholine(DTDM, dithio-dipipyridyl (DTDP, dithio-bis dibutylamine (DTBDB and dithio-bisdiisopropyl amine (DTBDI were prepared according to this method. All products thus obtained were characterized by 1H and 13C-NMR spectroscopies. The effects of accelerating and sulfur donoring of all prepared agents were detected in rubber compounds with natural and synthetic rubber bases. All physical, chemical, reological and mechanical properties of rubber compounds based on prepared sulfur donors were characterized.

  20. Influence of cure activator on the structure and properties of rubbers

    Directory of Open Access Journals (Sweden)

    O. V. Karmanova

    2013-01-01

    Full Text Available The influence of vulcanization activator type on the properties of the compositions and elastic-strength characteristics of rubber was studied. Found that the modification of zinc oxide as the basis of actual formation curing vulcanization agents leads to an increase of vulcanization active centers, providing an increase in the velocity of rubber vulcanization and improvement of physical and mechanical rubber’s properties.

  1. Conservation of mining and metallurgic arachaeologic wooden objects by impregnation and radiation curing

    International Nuclear Information System (INIS)

    Schaudy, R.; Slais, E.; Eibner, C.

    1983-05-01

    The conservation of mining and metallurgic archaeologic wooden objects of different grade of destruction by impregnation with radiation-curable impregnating agents followed by in-situ-curing with gamma rays is described. Dry objects have been consolidated after cautious cleaning, whereas wet findings had to be freezedried first. The results are discussed. (Author) [de

  2. Radiation curing in the eighties

    International Nuclear Information System (INIS)

    Vrancken, A.

    1984-01-01

    The subject is discussed under the headings: introduction; what is radiation curing; history; radiation curable resins (with properties of products); ultraviolet and electron beam curing; photoinitiation and the ultraviolet light curing process; electron beam curing (initiation; electron beam accelerators); end uses (graphic arts; wood finishing; paper upgrading; adhesives; metal finishing; electronic chemical; floor coatings). (U.K.)

  3. A flexible cure rate model with dependent censoring and a known cure threshold.

    Science.gov (United States)

    Bernhardt, Paul W

    2016-11-10

    We propose a flexible cure rate model that accommodates different censoring distributions for the cured and uncured groups and also allows for some individuals to be observed as cured when their survival time exceeds a known threshold. We model the survival times for the uncured group using an accelerated failure time model with errors distributed according to the seminonparametric distribution, potentially truncated at a known threshold. We suggest a straightforward extension of the usual expectation-maximization algorithm approach for obtaining estimates in cure rate models to accommodate the cure threshold and dependent censoring. We additionally suggest a likelihood ratio test for testing for the presence of dependent censoring in the proposed cure rate model. We show through numerical studies that our model has desirable properties and leads to approximately unbiased parameter estimates in a variety of scenarios. To demonstrate how our method performs in practice, we analyze data from a bone marrow transplantation study and a liver transplant study. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Relaxed Poisson cure rate models.

    Science.gov (United States)

    Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N

    2016-03-01

    The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effects of Nano-Aluminum Nitride on the Performance of an Ultrahigh-Temperature Inorganic Phosphate Adhesive Cured at Room Temperature.

    Science.gov (United States)

    Ma, Chengkun; Chen, Hailong; Wang, Chao; Zhang, Jifeng; Qi, Hui; Zhou, Limin

    2017-11-03

    Based on the optimal proportion of resin and curing agent, an ultrahigh-temperature inorganic phosphate adhesive was prepared with aluminum dihydric phosphate, aluminium oxide ( α -Al₂O₃), etc. and cured at room temperature (RT). Then, nano-aluminum nitride (nano-AlN), nano-Cupric oxide (nano-CuO), and nano-titanium oxide (nano-TiO₂) were added into the adhesive. Differential scanning calorimetry was conducted using the inorganic phosphate adhesive to analyze the phosphate reactions during heat treatment, and it was found that 15 wt % nano-AlN could clearly decrease the curing temperature. Scanning electron microscopy was used to observe the microphenomenon of the modified adhesive at ultrahigh-temperature. The differential thermal analysis of the inorganic phosphate adhesive showed that the weight loss was approximately 6.5 wt % when the mass ratio of resin to curing agent was 1:1.5. An X-ray diffraction analysis of the adhesive with 10% nano-AlN showed that the phase structure changed from AlPO₄(11-0500) to the more stable AlPO₄(10-0423) structure after heat treatment. The shear strength of the adhesive containing 10% nano-AlN reached 7.3 MPa at RT due to the addition of nano-AlN, which promoted the formation of phosphate and increased the Al 3+ .

  6. Critical parameters for electron beam curing of cationic epoxies and property comparison of electron beam cured cationic epoxies versus thermal cured resins and composites

    International Nuclear Information System (INIS)

    Janke, C.J.; Norris, R.E.; Yarborough, K.; Lopata, V.J.

    1997-01-01

    Electron beam curing of composites is a nonthermal, nonautoclave curing process offering the following advantages compared to conventional thermal curing: substantially reduced manufacturing costs and curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvements in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance electron beam curing of composites. The CRADA has successfully developed hundreds of new toughened and untoughened resins, offering unlimited formulation and processing flexibility. Several patent applications have been filed for this work. Composites made from these easily processable, low shrinkage material match the performance of thermal cured composites and exhibit: low void contents comparable to autoclave cured composites (less than 1%); superb low water absorption values in the same range as cyanate esters (less than 1%); glass transition temperatures rivaling those of polyimides (greater than 390 C); mechanical properties comparable to high performance, autoclave cured composites; and excellent property retention after cryogenic and thermal cycling. These materials have been used to manufacture many composite parts using various fabrication processes including hand lay-up, tow placement, filament winding, resin transfer molding and vacuum assisted resin transfer molding

  7. Curing kinetics of visible light curing dental resin composites investigated by dielectric analysis (DEA).

    Science.gov (United States)

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Großgarten, Mandy; Möginger, Bernhard

    2014-03-01

    During the curing process of light curing dental composites the mobility of molecules and molecule segments is reduced leading to a significant increase of the viscosity as well as the ion viscosity. Thus, the kinetics of the curing behavior of 6 different composites was derived from dielectric analysis (DEA) using especially redesigned flat sensors with interdigit comb electrodes allowing for irradiation at the top side and measuring the ion viscosity at the bottom side. As the ion viscosities of dental composites change 1-3 orders of magnitude during the curing process, DEA provides a sensitive approach to evaluate their curing behavior, especially in the phase of undisturbed chain growth. In order to determine quantitative kinetic parameters a kinetic model is presented and examined for the evaluation of the ion viscosity curves. From the obtained results it is seen that DEA might be employed in the investigation of the primary curing process, the quality assurance of ingredients as well as the control of processing stability of the light curing dental composites. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Residual Stress Developed During the Cure of Thermosetting Polymers: Optimizing Cure Schedule to Minimize Stress.

    Energy Technology Data Exchange (ETDEWEB)

    Kropka, Jamie Michael; Stavig, Mark E.; Jaramillo, Rex

    2016-06-01

    When thermosetting polymers are used to bond or encapsulate electrical, mechanical or optical assemblies, residual stress, which often affects the performance and/or reliability of these devices, develops within the structure. The Thin-Disk-on-Cylinder structural response test is demonstrated as a powerful tool to design epoxy encapsulant cure schedules to reduce residual stress, even when all the details of the material evolution during cure are not explicitly known. The test's ability to (1) distinguish between cohesive and adhesive failure modes and (2) demonstrate methodologies to eliminate failure and reduce residual stress, make choices of cure schedules that optimize stress in the encapsulant unambiguous. For the 828/DEA/GMB material in the Thin-Disk-on-Cylinder geometry, the stress associated with cure is significant and outweighs that associated with cool down from the final cure temperature to room temperature (for measured lid strain, Scure I > I I e+h erma * II) * The difference between the final cure temperature and 1 1 -- the temperature at which the material gels, Tf-T ge i, was demonstrated to be a primary factor in determining the residual stress associated with cure. Increasing T f -T ge i leads to a reduction in cure stress that is described as being associated with balancing some of the 828/DEA/GMB cure shrinkage with thermal expansion. The ability to tune residual stress associated with cure by controlling T f -T ge i would be anticipated to translate to other thermosetting encapsulation materials, but the times and temperatures appropriate for a given material may vary widely.

  9. Effect of curing mode on the hardness of dual-cured composite resin core build-up materials

    Directory of Open Access Journals (Sweden)

    César Augusto Galvão Arrais

    2010-06-01

    Full Text Available This study evaluated the Knoop Hardness (KHN values of two dual-cured composite resin core build-up materials and one resin cement exposed to different curing conditions. Two dual-cured core build-up composite resins (LuxaCore®-Dual, DMG; and FluoroCore®2, Dentsply Caulk, and one dual-cured resin cement (Rely X ARC, 3M ESPE were used in the present study. The composite materials were placed into a cylindrical matrix (2 mm in height and 3 mm in diameter, and the specimens thus produced were either light-activated for 40 s (Optilux 501, Demetron Kerr or were allowed to self-cure for 10 min in the dark (n = 5. All specimens were then stored in humidity at 37°C for 24 h in the dark and were subjected to KHN analysis. The results were submitted to 2-way ANOVA and Tukey's post-hoc test at a pre-set alpha of 5%. All the light-activated groups exhibited higher KHN values than the self-cured ones (p = 0.00001, regardless of product. Among the self-cured groups, both composite resin core build-up materials showed higher KHN values than the dual-cured resin cement (p = 0.00001. LuxaCore®-Dual exhibited higher KHN values than FluoroCore®2 (p = 0.00001 when they were allowed to self-cure, while no significant differences in KHN values were observed among the light-activated products. The results suggest that dual-cured composite resin core build-up materials may be more reliable than dual-cured resin cements when curing light is not available.

  10. Accelerated dry curing of hams.

    Science.gov (United States)

    Marriott, N G; Kelly, R F; Shaffer, C K; Graham, P P; Boling, J W

    1985-01-01

    Uncured pork legs from the right side of 18 carcasses were treated with a Ross Tenderizer and the left side were controls. All 36 samples were dry-cured for 40, 56 or 70 days and evaluated for appearance traits, cure penetration characteristics, microbial load, Kramer Shear force and taste attributes. The tenderization treatment had no effect (P > 0·05) on visual color or cure penetration rate, weight loss before curing, percentage moisture, nitrate level, nitrite level, total plate count, anaerobic counts, psychrotrophic counts, objective and subjective tenderness measurements or juiciness. However, the higher values of salt suggested a possible acceleration of the dry cure penetration process among the tenderized samples. Cure time had no effect (P > 0·05) on percentage moisture, percentage salt, nitrate content, nitrite content, shear force and juiciness. Results suggest a limited effect of the mechanical tenderization process on certain traits related to dry curing and that total process time should be at least 70 days if color stability during cooking is desired. Copyright © 1985. Published by Elsevier Ltd.

  11. Development situation of radiation curing materials

    International Nuclear Information System (INIS)

    He Songhua; Luo Junyi; Liu Zhen

    2010-01-01

    Due to fitting the '4E' principle, radiation curing technology, known as green technology, have shown its own superiority in many applications. It has been rapid developed in China and abroad in recent years, especially ultraviolet/electron beam (UV/EB) radiation curing technology. In order to let the researchers have a general understanding on the radiation curing materials and their development, in this paper a briefly introducing on the related radiation sources, chemical systems, curing mechanism, and the application, the common and difference of ultraviolet curing and electron beam curing has been made. A brief account of development of radiation-curable material in China and the outlook of the development of materials can be found in this paper. At last, we have proposed that the development of radiation curing technology will promote the development of the radiation curing material and benefit in the humanity. (authors)

  12. Curing behavior and thermal properties of trifunctional epoxy resin cured by 4, 4’-diaminodiphenyl sulfone

    Directory of Open Access Journals (Sweden)

    2009-08-01

    Full Text Available A novel trifunctional epoxy resin 4-(3, 3-dihydro-7-hydroxy-2, 4, 4-trimethyl-2H-1-benzopyran-2-yl-1, 3-benzenediol glycidyl (shorted as TMBPBTH-EPOXY was synthesized in our lab to improve thermal performance. Its curing behavior and performance were studied by using 4, 4′-diaminodiphenyl sulfone (DDS as hardener with the mass ratio of 100:41 of TMBPBTH-EPOXY and DDS. The curing activation energy was investigated by differential scanning calorimetry (DSC to be 64.0 kJ/mol estimated by Kissinger’s method and 68.7 kJ/mol estimated by Flynn-Wall-Ozawa method respectively. Thermogravimetric analyzer (TGA was used to investigate the thermal decomposition of cured compounds. It was found that when curing temperature was lower than 180°C, the thermal decomposition temperature increased with the rise of curing temperature and curing time. On the other hand, when the curing temperature was higher than 180°C, the thermal decomposition temperature went down instead with the increase of curing time that might be the over-crosslinking of TMBPBTH-EPOXY and DDS hardener. The glass transition temperature (Tg of cured TMBPBTH-EPOXY/DDS compound determined by dynamic mechanical thermal analysis (DMTA is 290.1°C.

  13. Degree of conversion and surface hardness of resin cement cured with different curing units.

    Science.gov (United States)

    Ozturk, Nilgun; Usumez, Aslihan; Usumez, Serdar; Ozturk, Bora

    2005-01-01

    The aim of this study was to evaluate the degree of conversion and Vickers surface hardness of resin cement under a simulated ceramic restoration with 3 different curing units: a conventional halogen unit, a high-intensity halogen unit, and a light-emitting diode system. A conventional halogen curing unit (Hilux 550) (40 s), a high-intensity halogen curing unit used in conventional and ramp mode (Optilux 501) (10 s and 20 s, respectively), and a light-emitting diode system (Elipar FreeLight) (20 s, 40 s) were used in this study. The dual-curing resin cement (Variolink II) was cured under a simulated ceramic restoration (diameter 5 mm, height 2 mm), and the degree of conversion and Vickers surface hardness were measured. For degree of conversion measurement, 10 specimens were prepared for each group. The absorbance peaks were recorded using the diffuse-reflection mode of Fourier transformation infrared spectroscopy. For Vickers surface hardness measurement, 10 specimens were prepared for each group. A load of 200 N was applied for 15 seconds, and 3 evaluations of each of the samples were performed. Degree of conversion achieved with Optilux 501 (20 s) was significantly higher than those of Hilux, Optilux 501 (10 s), Elipar FreeLight (20 s), and Elipar FreeLight (40 s). For Vickers surface hardness measurement, Optilux 501 (20 s) produced the highest surface hardness value. No significant differences were found among the Hilux, Optilux 501 (10 s), Elipar FreeLight (20 s), and Elipar FreeLight (40 s). The high-intensity halogen curing unit used in ramp mode (20 s) produced harder resin cement surfaces than did the conventional halogen curing unit, high-intensity halogen curing unit used in conventional mode (10 s) and light-emitting diode system (20 s, 40 s), when cured through a simulated ceramic restoration.

  14. Morphological Study on Room-Temperature-Cured PMMA-Grafted Natural Rubber-Toughened Epoxy/Layered Silicate Nanocomposite

    Directory of Open Access Journals (Sweden)

    N. Y. Yuhana

    2012-01-01

    Full Text Available A morphological study was conducted on ternary systems containing epoxy, PMMA-grafted natural rubber, and organic chemically modified montmorillonite (Cloisite 30B. Optical microscopy, transmission electron microscopy (TEM, scanning electron microscopy (SEM, energy dispersive X-ray (EDX, and wide-angle X-ray diffraction (WAXD analysis were used. The following four materials were prepared at room temperature: cured unmodified epoxy, cured toughened epoxy, cured unmodified epoxy/Cloisite 30B nanocomposites, and cured toughened epoxy/Cloisite 30B nanocomposites. Mixing process was performed by mechanical stirring. Poly(etheramine was used as the curing agent. The detailed TEM images revealed co-continuous and dispersed spherical rubber in the epoxy-rubber blend, suggesting a new proposed mechanism of phase separation. High-magnification TEM analysis showed good interactions between rubber and Cloisite 30B in the ternary system. Also, it was found that rubber particles could enhance the separation of silicates layers. Both XRD and TEM analyses confirmed that the intercalation of Cloisite 30B was achieved. No distinct exfoliated silicates were observed by TEM. Aggregates of layered silicates (tactoids were observed by SEM and EDX, in addition to TEM at low magnification. EDX analysis confirmed the presence of organic and inorganic elements in the binary and ternary epoxy systems containing Cloisite 30B.

  15. The Hepatitis C Genotype 1 Paradox: Cost per Treatment Is Increasing, but Cost per Cure Is Decreasing

    Directory of Open Access Journals (Sweden)

    Stephen D Shafran

    2015-01-01

    Full Text Available Significant attention has been focused on the perceived increase in the cost of antiviral treatment for hepatitis C genotype 1 infection since the approval of the first direct-acting antiviral agents in 2011. Using Canadian list prices, the present analysis points out a paradox: while the cost per antiviral regimen is increasing, the cost per cure is decreasing, especially with interferon-free therapy. In a publicly funded health care system, the lowest cost per cure is a more valuable measure of value for public money than the cost per regimen.

  16. The hepatitis C genotype 1 paradox: cost per treatment is increasing, but cost per cure is decreasing.

    Science.gov (United States)

    Shafran, Stephen D

    2015-01-01

    Significant attention has been focused on the perceived increase in the cost of antiviral treatment for hepatitis C genotype 1 infection since the approval of the first direct-acting antiviral agents in 2011. Using Canadian list prices, the present analysis points out a paradox: while the cost per antiviral regimen is increasing, the cost per cure is decreasing, especially with interferon-free therapy. In a publicly funded health care system, the lowest cost per cure is a more valuable measure of value for public money than the cost per regimen.

  17. Excimer UV curing in printing

    International Nuclear Information System (INIS)

    Mehnert, R.

    1999-01-01

    It is the aim of this study to investigate the potential of 308 run excimer UV curing in web and sheet fed offset printing and to discuss its present status. Using real-time FTIR-ATR and stationary or pulsed monochromatic (313 nm) irradiation chemical and physical factors affecting the curing speed of printing inks such as nature and concentration of photo-initiators, reactivity of the ink binding system, ink thickness and pigmentation, irradiance in the curing plane, oxygen concentration and nitrogen inerting, multiple pulse exposure, the photochemical dark reaction and temperature dependence were studied. The results were used to select optimum conditions for excimer UV curing in respect to ink reactivity, nitrogen inerting and UV exposure and to build an excimer UV curing unit consisting of two 50 W/cm 308 run excimer lamps, power supply, cooling and inerting unit. The excimer UV curing devices were tested under realistic conditions on a web offset press zirkon supra forte and a sheet fed press Heidelberg GTO 52. Maximum curing speeds of 300 m/min in web offset and 8000 sheets per hour in sheet fed offset were obtained

  18. Electron curing of surface coatings

    International Nuclear Information System (INIS)

    Nablo, S.V.

    1974-01-01

    The technical development of electron curing of surface coatings has received great impetus since 1970 from dramatic changes in the economics of the conventional thermal process. The most important of these changes are reviewed, including: the Clear Air Act, increasing cost and restrictive allocation of energy, decreased availability and increased costs of solvents, competitive pressure for higher line productivity. The principles of free-radical initiated curing as they pertain to industrial coatings are reviewed. Although such electron initiated processes have been under active development for at least two decades, high volume production applications on an industrial scale have only recently appeared. These installations are surveyed with emphasis on the developments in machinery and coatings which have made this possible. The most significant economic advantages of electron curing are presented. In particular, the ability of electron curing to eliminate substrate damage and to eliminate the curing station (oven) as the pacing element for most industrial surface coating curing applications is discussed. Examples of several new processes of particular interest in the textile industry are reviewed, including the curing of transfer cast urethane films, flock adhesives, and graftable surface finishes

  19. Composite cements benefit from light-curing.

    Science.gov (United States)

    Lührs, Anne-Katrin; De Munck, Jan; Geurtsen, Werner; Van Meerbeek, Bart

    2014-03-01

    To investigate the effect of curing of composite cements and a new ceramic silanization pre-treatment on the micro-tensile bond strength (μTBS). Feldspathic ceramic blocks were luted onto dentin using either Optibond XTR/Nexus 3 (XTR/NX3; Kerr), the silane-incorporated 'universal' adhesive Scotchbond Universal/RelyX Ultimate (SBU/RXU; 3M ESPE), or ED Primer II/Panavia F2.0 (ED/PAF; Kuraray Noritake). Besides 'composite cement', experimental variables were 'curing mode' ('AA': complete auto-cure at 21°C; 'AA*': complete auto-cure at 37°C; 'LA': light-curing of adhesive and auto-cure of cement; 'LL': complete light-curing) and 'ceramic surface pre-treatment' ('HF/S/HB': hydrofluoric acid ('HF': IPS Ceramic Etching Gel, Ivoclar-Vivadent), silanization ('S': Monobond Plus, Ivoclar-Vivadent) and application of an adhesive resin ('HB': Heliobond, Ivoclar-Vivadent); 'HF/SBU': 'HF' and application of the 'universal' adhesive Scotchbond Universal ('SBU'; 3M ESPE, only for SBU/RXU)). After water storage (7 days at 37°C), ceramic-dentin sticks were subjected to μTBS testing. Regarding the 'composite cement', the significantly lowest μTBSs were measured for ED/PAF. Regarding 'curing mode', the significantly highest μTBS was recorded when at least the adhesive was light-cured ('LA' and 'LL'). Complete auto-cure ('AA') revealed the significantly lowest μTBS. The higher auto-curing temperature ('AA*') increased the μTBS only for ED/PAF. Regarding 'ceramic surface pre-treatment', only for 'LA' the μTBS was significantly higher for 'HF/S/HB' than for 'HF/SBU'. Complete auto-cure led to inferior μTBS than when either the adhesive (on dentin) or both adhesive and composite cement were light-cured. The use of a silane-incorporated adhesive did not decrease luting effectiveness when also the composite cement was light-cured. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Curing efficiency of three light emitting diode units at different curing profiles

    Directory of Open Access Journals (Sweden)

    Priyanka Verma

    2016-01-01

    Conclusions: Reduction of exposure time to 6 s with high-intensity curing light seemed to be clinically acceptable and should be recommended. Curing of metal brackets with single exposure from buccal side showed lower shear bond strength values.

  1. Conservation of diverse old wooden objects by impregnation and radiation curing

    International Nuclear Information System (INIS)

    Schaudy, R.; Slais, E.; Eibner, C.

    1983-12-01

    The conservation by impregnation with radiation-curable impregnating agents and subsequent curing with gamma radiation of an medieval wooden window-frame, several gold-coated frame fragments, a primitive flail and a poppy mallet as well as fragments of a painted mail-box and of a border is described and the results are discussed. The process is especially suited for the consolidation of heavily decayed porous objects, e.g. archaeologic findings. (Author) [de

  2. Influence of Curing Conditions on Long-Term Compressive Strength of Mortars with Accelerating Admixtures

    Science.gov (United States)

    Pizoń, Jan; Łaźniewska-Piekarczyk, Beata

    2017-10-01

    One of disadvantages of accelerating admixtures usage is possibility of significant decline of long-term compressive strength of concrete in comparison to non-modified one. Described tests were intended to define scale of lowered long-term compressive strength of mortars caused by accelerating admixtures in different curing conditions. Portland cement and blended cement with ground granulated blast furnace slag (GGBFS) addition and four types of non-chloride accelerating agents were used. Compressive strength was tested after 7 up to 360 days. Curing conditions were designed to simulate probable conditions close to reality. Such conditions are simulation of internal concrete elements, external elements cast on start of summer and external elements cast on start of winter. Results had shown that it is invalid to state that every accelerating admixture will cause drop of long-term compressive strength in every conditions and for every cement type. Change of curing conditions even after a long time (in this case half of the year) leads to significant differences in compression strength.

  3. Self-Shrinkage Behaviors of Waste Paper Fiber Reinforced Cement Paste considering Its Self-Curing Effect at Early-Ages

    Directory of Open Access Journals (Sweden)

    Zhengwu Jiang

    2016-01-01

    Full Text Available The aim of this paper was to study how the early-age self-shrinkage behavior of cement paste is affected by the addition of the waste paper fibers under sealed conditions. Although the primary focus was to determine whether the waste paper fibers are suitable to mitigate self-shrinkage as an internal curing agent under different adding ways, evaluating their strength, pore structure, and hydration properties provided further insight into the self-cured behavior of cement paste. Under the wet mixing condition, the waste paper fibers could mitigate the self-shrinkage of cement paste and, at additions of 0.2% by mass of cement, the waste paper fibers were found to show significant self-shrinkage cracking control while providing some internal curing. In addition, the self-curing efficiency results were analyzed based on the strength and the self-shrinkage behaviors of cement paste. Results indicated that, under a low water cement ratio, an optimal dosage and adding ways of the waste paper fibers could enhance the self-curing efficiency of cement paste.

  4. Effects of Nano-Aluminum Nitride on the Performance of an Ultrahigh-Temperature Inorganic Phosphate Adhesive Cured at Room Temperature

    Directory of Open Access Journals (Sweden)

    Chengkun Ma

    2017-11-01

    Full Text Available Based on the optimal proportion of resin and curing agent, an ultrahigh-temperature inorganic phosphate adhesive was prepared with aluminum dihydric phosphate, aluminium oxide ( α -Al2O3, etc. and cured at room temperature (RT. Then, nano-aluminum nitride (nano-AlN, nano-Cupric oxide (nano-CuO, and nano-titanium oxide (nano-TiO2 were added into the adhesive. Differential scanning calorimetry was conducted using the inorganic phosphate adhesive to analyze the phosphate reactions during heat treatment, and it was found that 15 wt % nano-AlN could clearly decrease the curing temperature. Scanning electron microscopy was used to observe the microphenomenon of the modified adhesive at ultrahigh-temperature. The differential thermal analysis of the inorganic phosphate adhesive showed that the weight loss was approximately 6.5 wt % when the mass ratio of resin to curing agent was 1:1.5. An X-ray diffraction analysis of the adhesive with 10% nano-AlN showed that the phase structure changed from AlPO4(11-0500 to the more stable AlPO4(10-0423 structure after heat treatment. The shear strength of the adhesive containing 10% nano-AlN reached 7.3 MPa at RT due to the addition of nano-AlN, which promoted the formation of phosphate and increased the Al3+.

  5. Post-cure depth of cure of bulk fill dental resin-composites.

    Science.gov (United States)

    Alrahlah, A; Silikas, N; Watts, D C

    2014-02-01

    To determine the post-cure depth of cure of bulk fill resin composites through using Vickers hardness profiles (VHN). Five bulk fill composite materials were examined: Tetric EvoCeram(®) Bulk Fill, X-tra base, Venus(®) Bulk Fill, Filtek™ Bulk Fill, SonicFill™. Three specimens of each material type were prepared in stainless steel molds which contained a slot of dimensions (15 mm × 4 mm × 2 mm), and a top plate. The molds were irradiated from one end. All specimens were stored at 37°C for 24h, before measurement. The Vickers hardness was measured as a function of depth of material, at 0.3mm intervals. Data were analysed by one-way ANOVA using Tukey post hoc tests (α=0.05). The maximum VHN ranged from 37.8 to 77.4, whilst the VHN at 80% of max.VHN ranged from 30.4 to 61.9. The depth corresponding to 80% of max.VHN, ranged from 4.14 to 5.03 mm. One-way ANOVA showed statistically significant differences between materials for all parameters tested. SonicFill exhibited the highest VHN (pFill the lowest (p≤0.001). SonicFill and Tetric EvoCeram Bulk Fill had the greatest depth of cure (5.03 and 4.47 mm, respectively) and was significant's different from X-tra base, Venus Bulk Fill and Filtek Bulk Fill (p≤0.016). Linear regression confirmed a positive regression between max.VHN and filler loading (r(2)=0.94). Bulk fill resin composites can be cured to an acceptable post-cure depth, according to the manufacturers' claims. SonicFill and Tetric EvoCeram Bulk Fill had the greatest depth of cure among the composites examined. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Cure Schedule for Stycast 2651/Catalyst 11.

    Energy Technology Data Exchange (ETDEWEB)

    Kropka, Jamie Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McCoy, John D. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2017-11-01

    The Henkel technical data sheet (TDS) for Stycast 2651/Catalyst 11 lists three alternate cure schedules for the material, each of which would result in a different state of reaction and different material properties. Here, a cure schedule that attains full reaction of the material is defined. The use of this cure schedule will eliminate variance in material properties due to changes in the cure state of the material, and the cure schedule will serve as the method to make material prior to characterizing properties. The following recommendation was motivated by (1) a desire to cure at a single temperature for ease of manufacture and (2) a desire to keep the cure temperature low (to minimize residual stress build-up associated with the cooldown from the cure temperature to room temperature) without excessively limiting the cure reaction due to vitrification (i.e., material glass transition temperature, Tg, exceeding cure temperature).

  7. Properties of radiation cured coatings

    International Nuclear Information System (INIS)

    Larson, E.G.; Spencer, D.S.; Boettcher, T.E.; Melbauer, M.A.; Skarjune, R.P.

    1987-01-01

    Coatings were prepared from acrylate or methacrylate functionalized resins to study the effect of end group functionality on the physical properties of u.v. and electron beam cured coatings. Cure response was measured by solid state NMR and gel extraction, as expected, methacrylate resins cured much slower. Thermal Gravimetric Analysis (TGA) revealed acrylate coatings have greater thermal stability. Properties such as tensile strength and hardness showed little effect of end group functionality or curing method. The O 2 and H 2 O permeabilities of the coating were correlated with the processing conditions. (author)

  8. The situation of radiation curing

    International Nuclear Information System (INIS)

    Chen Weixiu

    1988-01-01

    Radiation curing is a branch of radiation processing. It has developed significantly and its annual growth rate exceeds 10% in the nineteen eighties. Several products were manufactured by radiation curing, such as magnetic media, release coating, floor tile, printing flates, optical fiber, electronics, lithography and pressure sensitive adhesives etc. The chemistry of radiation curing is often considered ahead. The safe handling of UV/EB curable material, the regulation of industial and the patent protection for development in radiation curing were introduced. The equipment and processes of this field have got progress recently

  9. Electron beam curing of coatings

    International Nuclear Information System (INIS)

    Schmidt, J.; Mai, H.

    1986-01-01

    Modern low-energy electron beam processors offer the possibility for high-speed curing of coatings on paper, plastics, wood and metal. Today the electron beam curing gets more importance due to the increasing environmental problems and the rising cost of energy. For an effective curing process low-energy electron beam processors as well as very reactive binders are necessary. Generally such binders consist of acrylic-modified unsaturated polyester resins, polyacrylates, urethane acrylates or epoxy acrylates and vinyl monomers, mostly multifunctional acrylates. First results on the production of EBC binders on the base of polyester resins and vinyl monomers are presented. The aim of our investigations is to obtain binders with curing doses ≤ 50 kGy. In order to reduce the curing dose we studied mixtures of resins and acrylates. (author)

  10. A New Epoxy-Based Layered Silicate Nanocomposite Using a Hyperbranched Polymer: Study of the Curing Reaction and Nanostructure Development.

    Science.gov (United States)

    Cortés, Pilar; Fraga, Iria; Calventus, Yolanda; Román, Frida; Hutchinson, John M; Ferrando, Francesc

    2014-03-04

    Polymer layered silicate (PLS) nanocomposites have been prepared with diglycidyl ether of bisphenol-A (DGEBA) epoxy resin as the matrix and organically modified montmorillonite (MMT) as the clay nanofiller. Resin-clay mixtures with different clay contents (zero, two, five and 10 wt%) were cured, both isothermally and non-isothermally, using a poly(ethyleneimine) hyperbranched polymer (HBP), the cure kinetics being monitored by differential scanning calorimetry (DSC). The nanostructure of the cured nanocomposites was characterized by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), and their mechanical properties were determined by dynamic mechanical analysis (DMA) and impact testing. The results are compared with an earlier study of the structure and properties of the same DGEBA-MMT system cured with a polyoxypropylene diamine, Jeffamine. There are very few examples of the use of HBP as a curing agent in epoxy PLS nanocomposites; here, it is found to enhance significantly the degree of exfoliation of these nanocomposites compared with those cured with Jeffamine, with a corresponding enhancement in the impact energy for nanocomposites with the low clay content of 2 wt%. These changes are attributed to the different cure kinetics with the HBP, in which the intra-gallery homopolymerization reaction is accelerated, such that it occurs before the bulk cross-linking reaction.

  11. A New Epoxy-Based Layered Silicate Nanocomposite Using a Hyperbranched Polymer: Study of the Curing Reaction and Nanostructure Development

    Directory of Open Access Journals (Sweden)

    Pilar Cortés

    2014-03-01

    Full Text Available Polymer layered silicate (PLS nanocomposites have been prepared with diglycidyl ether of bisphenol-A (DGEBA epoxy resin as the matrix and organically modified montmorillonite (MMT as the clay nanofiller. Resin-clay mixtures with different clay contents (zero, two, five and 10 wt% were cured, both isothermally and non-isothermally, using a poly(ethyleneimine hyperbranched polymer (HBP, the cure kinetics being monitored by differential scanning calorimetry (DSC. The nanostructure of the cured nanocomposites was characterized by small angle X-ray scattering (SAXS and transmission electron microscopy (TEM, and their mechanical properties were determined by dynamic mechanical analysis (DMA and impact testing. The results are compared with an earlier study of the structure and properties of the same DGEBA-MMT system cured with a polyoxypropylene diamine, Jeffamine. There are very few examples of the use of HBP as a curing agent in epoxy PLS nanocomposites; here, it is found to enhance significantly the degree of exfoliation of these nanocomposites compared with those cured with Jeffamine, with a corresponding enhancement in the impact energy for nanocomposites with the low clay content of 2 wt%. These changes are attributed to the different cure kinetics with the HBP, in which the intra-gallery homopolymerization reaction is accelerated, such that it occurs before the bulk cross-linking reaction.

  12. Thermal Aging Behaviors of Rubber Vulcanizates Cured with Single and Binary Cure Systems

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sung Seen; Ha, Sung Ho [Sejong University, Seoul (Korea, Republic of); Woo, Chang Su [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2006-03-15

    In general, an accelerated sulfur cure system consists of elemental sulfur, one or two cure accelerators, and cure activators. Crosslink density of a rubber vulcanizate determines the physical properties. By increasing the crosslink density, the modulus, hardness, resilience, and abrasion resistance increase, whereas the elongation at break, heat build-up, and stress relaxation decrease. Sulfur linkages are composed of monosulfide, disulfide, and polysulfides. Sulfur linkages, especially polysulfides, are dissociated by heating and this brings about decrease of the crosslink density.

  13. Strength of Geopolymer Cement Curing at Ambient Temperature by Non-Oven Curing Approaches: An Overview

    Science.gov (United States)

    Wattanachai, Pitiwat; Suwan, Teewara

    2017-06-01

    At the present day, a concept of environmentally friendly construction materials has been intensively studying to reduce the amount of releasing greenhouse gases. Geopolymer is one of the cementitious binders which can be produced by utilising pozzolanic wastes (e.g. fly ash or furnace slag) and also receiving much more attention as a low-CO2 emission material. However, to achieve excellent mechanical properties, heat curing process is needed to apply to geopolymer cement in a range of temperature around 40 to 90°C. To consume less oven-curing energy and be more convenience in practical work, the study on geopolymer curing at ambient temperature (around 20 to 25°C) is therefore widely investigated. In this paper, a core review of factors and approaches for non-oven curing geopolymer has been summarised. The performance, in term of strength, of each non-oven curing method, is also presented and analysed. The main aim of this review paper is to gather the latest study of ambient temperature curing geopolymer and to enlarge a feasibility of non-oven curing geopolymer development. Also, to extend the directions of research work, some approaches or techniques can be combined or applied to the specific properties for in-field applications and embankment stabilization by using soil-cement column.

  14. A comparative evaluation of effect of modern-curing lights and curing modes on conventional and novel-resin monomers

    Science.gov (United States)

    Roy, Konda Karthik; Kumar, Kanumuru Pavan; John, Gijo; Sooraparaju, Sujatha Gopal; Nujella, Surya Kumari; Sowmya, Kyatham

    2018-01-01

    Aim: The aim of this study is to compare and to evaluate effect of curing light and curing modes on the nanohybrid composite resins with conventional Bis-GMA and novel tricyclodecane (TCD) monomers. Methodology: Two nanohybrid composites, IPS empress direct and charisma diamond were used in this study. Light-emitting diode (LED)-curing unit and quartz-tungsten-halogen (QTH)-curing unit which were operated into two different modes: continuous and soft start. Based on the composite resin, curing lights, and mode of curing used, the samples were divided into 8 groups. After polymerization, the samples were stored for 48 h in complete darkness at 37°C and 100% humidity. The Vickers hardness (VK) of the surface was determined with Vickers indenter by the application of 200 g for 15 s. Three VK readings were recorded for each sample surface both on top and bottom surfaces. For all the specimens, the three hardness values for each surface were averaged and reported as a single value. The mean VK and hardness ratio were calculated. The depth of cure was assessed based on the hardness ratio. Results: Comparison of mean hardness values and hardness ratios was done using ANOVA with post hoc Tukey's test. Conclusion: Both QTH- and LED-curing units had shown the adequate depth of cure. Soft-start-curing mode in both QTH- and LED-curing lights had effectively increased microhardness than the continuous mode of curing. TCD monomer had shown higher hardness values compared with conventional Bis-GMA-containing resin. PMID:29628651

  15. Direct anti-HCV agents

    Directory of Open Access Journals (Sweden)

    Xingquan Zhang

    2016-01-01

    Full Text Available Unlike human immunodeficiency virus (HIV and hepatitis B virus (HBV, hepatitis C virus (HCV infection is a curable disease. Current direct antiviral agent (DAA targets are focused on HCV NS3/4A protein (protease, NS5B protein (polymerase and NS5A protein. The first generation of DAAs includes boceprevir and telaprevir, which are protease inhibitors and were approved for clinical use in 2011. The cure rate for genotype 1 patients increased from 45% to 70% when boceprevir or telaprevir was added to standard PEG-IFN/ribavirin. More effective and less toxic second generation DAAs supplanted these drugs by 2013. The second generation of DAAs includes sofosbuvir (Sovaldi, simeprevir (Olysio, and fixed combination medicines Harvoni and Viekira Pak. These drugs increase cure rates to over 90% without the need for interferon and effectively treat all HCV genotypes. With these drugs the “cure HCV” goal has become a reality. Concerns remain about drug resistance mutations and the high cost of these drugs. The investigation of new HCV drugs is progressing rapidly; fixed dose combination medicines in phase III clinical trials include Viekirax, asunaprevir+daclatasvir+beclabuvir, grazoprevir+elbasvir and others.

  16. Adhesion of Candida albicans to Vanillin Incorporated Self-Curing Orthodontic PMMA Resin.

    Science.gov (United States)

    Zam, K.; Sawaengkit, P.; Thaweboon, S.; Thaweboon, B.

    2018-02-01

    It has been observed that there is an increase in Candida carriers during the treatment with orthodontic removable appliance. Vanillin is flavouring agent, which is known to have antioxidant and antimicrobial properties. The aim of this study was to evaluate the effect of vanillin incorporated PMMA on adhesion of Candida albicans. A total of 36 orthodontic self-curing PMMA resin samples were fabricated. The samples were divided into 3 groups depending on percentage of vanillin incorporated (0.1%, 0.5% and PMMA without vanillin as control). PMMA samples were coated with saliva. The adhesion assay was performed with C. albicans (ATCC 10231). The adherent yeast cells were stained with crystal violet and counted under microscope by random selection of 3 fields at 10X magnification. The statistical analyses performed by Kruskal Wallis and Mann Whitney non-parametric test. It was found that the PMMA resin samples with vanillin incorporation significantly reduced the adhesion of C. albicans as compared to the control group. This study indicates that vanillin incorporated resin can impede the adhesion of C. albicans to about 45 - 56 %. With further testing and development, vanillin can be employed as an antifungal agent to prevent adhesion of C. albicans to orthodontic self-curing PMMA resin.

  17. The effect of bleaching agents on the microhardness of dental aesthetic restorative materials.

    Science.gov (United States)

    Türker, S B; Biskin, T

    2002-07-01

    This study investigated the effects of three home bleaching agents on the microhardness of various dental aesthetic restorative materials. The restorative materials were: feldspatic porcelain, microfilled composite resin and light-cured modified glass-ionomer cement and the bleaching agents Nite-White (16% carbamide peroxide), Opalescence (10% carbamide peroxide and carbapol jel) and Rembrandt (10% carbamide peroxide jel). A total of 90 restorative material samples were prepared 1 cm diameter and 6 mm thick and kept in distilled water for 24 h before commencing bleaching which was carried out for 8 h day-1 for 4 weeks. Microhardness measurements were then made using a Tukon tester. Statistically significant differences with respect to unbleached controls were found only for the feldspatic porcelain and microfilled composite resins (P light cured modified glass-ionomer cement. For the composite resin, whereas Nite-White increased its microhardness, the other bleaching agents decreased it. There were no significant differences between the bleaching agents for any of the restorative materials.

  18. Carbon anhydrase IX specific immune responses in patients with metastatic renal cell carcinoma potentially cured by interleukin-2 based immunotherapy

    DEFF Research Database (Denmark)

    Rasmussen, Susanne; Donskov, Frede; Pedersen, Johannes W

    2013-01-01

    Abstract The majority of clear-cell renal cell carcinomas (ccRCC) show high and homogeneous expression levels of the tumor associated antigen (TAA) carbonic anhydrase IX (CAIX), and treatment with interleukin-2 (IL-2) based immunotherapy can lead to cure in patients with metastatic renal cell...... of disease (NED) following treatment with IL-2 based immunotherapy, and thus potentially cured. Immune reactivity in these patients was compared with samples from patients with dramatic tumor response obtained immediately at the cessation of therapy, samples from patients that experienced progressive disease...... interest in future cancer vaccines, but more studies are needed to elucidate the immunological mechanisms of action in potentially cured patients treated with an immunotherapeutic agent....

  19. Water and Oil Repellent Finishing of Textiles by UV Curing: Evaluation of the Influence of Scaled-Up Process Parameters

    Directory of Open Access Journals (Sweden)

    Franco Ferrero

    2017-04-01

    Full Text Available In this work, various textile fabrics were coated with silicone and fluorocarbon-based resins by photo-curing using ultraviolet irradiation. A great number of large fabric samples were impregnated by padding with commercial finishing agents and then irradiated in air with a high power, semi-industrial UV source. The add-on of various finishing agents was kept low to reduce the treatment cost. White and dyed samples of different textile composition were treated and evaluated in terms of conferred repellency, yellowing, or color changes. Most relevant process parameters were investigated, utilizing the thermal process normally adopted at industrial level as reference. The results were statistically evaluated by ANOVA using Minitab 16 software, in order to identify the most influential parameters and to evaluate the real possibility of replacing the thermal treatment with UV curing.

  20. Dielectric Cure Monitoring of Thermosetting Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Geun [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Dae Gil [KAIST, Daejeon (Korea, Republic of)

    2003-10-15

    Cure monitoring can be used to improve the quality and productivity of thermosetting resin matrix composite products during their manufacturing process. In this work, the sensitivity of dielectrometry was improved by adequate separation the efforts of sensor and externals on the measured signal. A new algorithm to obtain the degree of cure during dielectric cure monitoring of glass/polyester and glass/epoxy composites was developed by employing a function of both temperature and dissipation factor, in which five cure monitoring parameters were used to calculate the degree of cure. The decreasing pattern of dissipation factor was compared with the relationships between the degree of cure and the resin viscosity. The developed algorithm might be employed for the in situ cure monitoring of thermosetting resin composites

  1. Dielectric Cure Monitoring of Thermosetting Matrix Composites

    International Nuclear Information System (INIS)

    Kim, Hyoung Geun; Lee, Dae Gil

    2003-01-01

    Cure monitoring can be used to improve the quality and productivity of thermosetting resin matrix composite products during their manufacturing process. In this work, the sensitivity of dielectrometry was improved by adequate separation the efforts of sensor and externals on the measured signal. A new algorithm to obtain the degree of cure during dielectric cure monitoring of glass/polyester and glass/epoxy composites was developed by employing a function of both temperature and dissipation factor, in which five cure monitoring parameters were used to calculate the degree of cure. The decreasing pattern of dissipation factor was compared with the relationships between the degree of cure and the resin viscosity. The developed algorithm might be employed for the in situ cure monitoring of thermosetting resin composites

  2. Curing behaviors and properties of an extrinsic toughened epoxy/anhydride system and an intrinsic toughened epoxy/anhydride system

    International Nuclear Information System (INIS)

    Fan, Mengjin; Liu, Jialin; Li, Xiangyuan; Cheng, Jue; Zhang, Junying

    2013-01-01

    Highlights: ► Two curing systems (ETRS and ITRS) with similar chemical composite were prepared. ► The curing kinetics of the ETRS and the novel ITRS were comparatively studied. ► Crosslinking density can affect the kinetic schemes of the two curing systems. ► Their mechanical properties and thermal stabilities were also comparatively studied. ► Crosslinking density may play an influential role in mechanical properties. - Abstract: The curing kinetics of an extrinsic toughened epoxy (mixture of diglycidyl ether of bisphenol-A and 1,4-butanediol epoxy resin, DGEBA/DGEBD) and an intrinsic toughened epoxy (ethoxylated bisphenol-A epoxy resin with two oxyethylene units, DGEBAEO-2) using hexahydrophthalic anhydride (HHPA) as curing agent and tris-(dimethylaminomethyl) phenol (DMP-30) as accelerator were comparatively studied by non-isothermal DSC with a model-fitting Málek approach and a model-free advanced isoconversional method of Vyazovkin. The dynamic mechanical properties and thermal stabilities of the cured materials were investigated by DMTA and TGA, respectively. The results showed that Šesták–Berggren model can generally simulate well the reaction rates of these two systems. The activation energy of DGEBA/DGEBD/HHPA/DMP-30 at high fractional conversion changed much higher than that of DGEBAEO-2/HHPA/DMP-30, indicating the increased steric hindrance mainly affected the reaction kinetic scheme of DGEBA/DGEBD/HHPA/DMP-30. The T g and storage moduli of cured DGEBAEO-2/HHPA/DMP-30 were lower than those of cured DGEBA/DGEBD/HHPA/DMP-30 according to DMTA while TGA showed that the thermal stabilities of these two cured systems were similar

  3. Curing behaviors and properties of an extrinsic toughened epoxy/anhydride system and an intrinsic toughened epoxy/anhydride system

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Mengjin; Liu, Jialin; Li, Xiangyuan [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Cheng, Jue, E-mail: chengjue@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Junying, E-mail: zjybuct@gmail.com [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2013-02-20

    Highlights: ► Two curing systems (ETRS and ITRS) with similar chemical composite were prepared. ► The curing kinetics of the ETRS and the novel ITRS were comparatively studied. ► Crosslinking density can affect the kinetic schemes of the two curing systems. ► Their mechanical properties and thermal stabilities were also comparatively studied. ► Crosslinking density may play an influential role in mechanical properties. - Abstract: The curing kinetics of an extrinsic toughened epoxy (mixture of diglycidyl ether of bisphenol-A and 1,4-butanediol epoxy resin, DGEBA/DGEBD) and an intrinsic toughened epoxy (ethoxylated bisphenol-A epoxy resin with two oxyethylene units, DGEBAEO-2) using hexahydrophthalic anhydride (HHPA) as curing agent and tris-(dimethylaminomethyl) phenol (DMP-30) as accelerator were comparatively studied by non-isothermal DSC with a model-fitting Málek approach and a model-free advanced isoconversional method of Vyazovkin. The dynamic mechanical properties and thermal stabilities of the cured materials were investigated by DMTA and TGA, respectively. The results showed that Šesták–Berggren model can generally simulate well the reaction rates of these two systems. The activation energy of DGEBA/DGEBD/HHPA/DMP-30 at high fractional conversion changed much higher than that of DGEBAEO-2/HHPA/DMP-30, indicating the increased steric hindrance mainly affected the reaction kinetic scheme of DGEBA/DGEBD/HHPA/DMP-30. The T{sub g} and storage moduli of cured DGEBAEO-2/HHPA/DMP-30 were lower than those of cured DGEBA/DGEBD/HHPA/DMP-30 according to DMTA while TGA showed that the thermal stabilities of these two cured systems were similar.

  4. A clinical trial of Empress II porcelain inlays luted to vital teeth with a dual-curing adhesive system and a self-curing resin cement.

    Science.gov (United States)

    Fabianelli, Andrea; Goracci, Cecilia; Bertelli, Egidio; Davidson, Carel L; Ferrari, Marco

    2006-12-01

    The aim of the study was to clinically evaluate Empress II inlays cemented with a dual-curing bonding agent and a self-curing luting system. Forty patients were selected to receive one Empress II inlay. Empress II is a heat-pressed glass ceramic containing lithium disilicate and lithium orthophosphate crystals, purported to provide higher stress resistance and improved strength. The restorations were placed between March and May 2000. Recalls were performed after 6, 12, 24, and 36 months. At the 3-year recall, 7 patients were lost to follow-up. Inlays were evaluated for postoperative sensitivity, marginal integrity, marginal leakage, color stability, surface staining, retention, and surface crazing (microcracks). At the 3-year recall, all the restorations were in place and only one showed postoperative sensitivity (at the first recall, 1 week after placement). Only 3 inlays showed slight marginal staining, and 4 inlays showed gaps, with little surface staining or microcracks. No inlay debonded or fractured during theobservation period. All the evaluated inlays were in place and acceptable.

  5. EB/UV curing market in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Dahlan, Khairul Zaman; Nik Salleh, Nik Ghazali; Mahmood, Mohd Hilmi [Malaysian Inst. for Nuclear Technology Res. (MINT), Bangi (Malaysia)

    1999-07-01

    Radiation curing of coatings of wood based products is expanding and being used for curing of coatings of table tops, parquet, wood panel, furniture, curtain railing, etc. UV curing of over print varnish is still the main application of UV curing in printing industry. However, curing ofprinting ink has also been extended in the printing of CD and VCD in addition to other printing such as paper, magazine, label on bottles, metal-can, etc. In the electronic industry, the manufacturer of printed circuit board is still the main consumer of UV curable resins. On the other hand, low energy electron beam machine is used mainly for cross-linking of heat shrink films.

  6. EB/UV curing market in Malaysia

    International Nuclear Information System (INIS)

    Khairul Zaman Dahlan; Nik Ghazali Nik Salleh; Mohd Hilmi Mahmood

    1999-01-01

    Radiation curing of coatings of wood based products is expanding and being used for curing of coatings of table tops, parquet, wood panel, furniture, curtain railing, etc. UV curing of over print varnish is still the main application of UV curing in printing industry. However, curing of printing ink has also been extended in the printing of CD and VCD in addition to other printing such as paper, magazine, label on bottles, metal-can, etc. In the electronic industry, the manufacturer of printed circuit board is still the main consumer of UV curable resins. On the other hand, low energy electron beam machine is used mainly for cross-linking of heat shrink films

  7. Effect of mode of polymerization of bonding agent on shear bond strength of autocured resin composite luting cements.

    Science.gov (United States)

    Dong, Cecilia C S; McComb, Dorothy; Anderson, James D; Tam, Laura E

    2003-04-01

    There have been anecdotal reports of low bond strength with autocured resin composite materials, particularly when light-cured bonding agents that combine primer and adhesive in a 1-bottle preparation are used. The objective of this study was to determine if the mode of polymerization of the bonding agent influences the strength of the attachment of autocured resin composite luting cements to dentin. The shear bond strength of 2 resin luting cements, Calibra and RelyX ARC, polymerized by autocuring, in combination with 4 different bonding agents, Scotchbond Multipurpose Plus, Prime & Bond NT, IntegraBond and Single Bond, polymerized to bovine dentin by light-curing, autocuring or dual-curing, was determined. The pH of each bonding agent and its components was measured. Two-way analysis of variance was used to test the effect of cement and adhesive on shear bond strength. For each bonding agent, the adhesive variable combined the factors product brand and mode of polymerization. With significant interaction among the above variables, the least square means of the 16 combinations of resin cement and adhesive were compared. There was no consistent relationship between shear bond strength and mode of polymerization of the bonding agent. Significant differences in bond strength were specific to the proprietary brand of bonding agent. The pH of the bonding agent depends on the manufacturer's formulation, and low pH may contribute to low bond strength. The low in vitro bond strength occurring with some combinations of bonding agent and resin cement could be clinically significant.

  8. Determination of transmission factors of concretes with different water/cement ratio, curing condition, and dosage of cement and air entraining agent

    International Nuclear Information System (INIS)

    Sahin, Remzi; Polat, Recep; Icelli, Orhan; Celik, Cafer

    2011-01-01

    Highlights: → We determined transmission factors of parameters affecting properties of concrete. → The most important parameter is W/C ratio for attenuation of radiation of concrete. → Taguchi Method provides an appropriate methodology for parameter reduction. - Abstract: This study focuses on determination of transmission factors of main parameters affecting the properties of both normal- and heavy-weight concrete in order to increase knowledge and understanding of radiation attenuation in concrete at a later age. Water/cement (W/C) ratio, curing condition, cement quantity and air entraining agent (AEA) were selected as the main parameters. Eight energy values have been selected within the energy interval of 30.85-383.85 keV to be used in the radiation source. The Taguchi Method was used as the method of optimization. It was determined in the study that the most important parameter affecting the attenuation of the radiation of the concrete is the W/C ratio and the concretes produced with the lowest level of W/C ratio absorb more radiation. However, it was also determined that there was a combined effect between the W/C ratio and the cement dosage.

  9. Cure Behavior and Thermal Properties of Diepoxidized Cardanol Resin Cured by Electron Beam Process

    International Nuclear Information System (INIS)

    Cho, Donghwan; Cheon, Jinsil

    2013-01-01

    Thermal curing of epoxy resin requires high temperature, time-consuming process and the volatilization of hardener. It has known that electron beam curing of epoxy resin is a fast process and occurs at low or room temperature that help reduce residual mechanical stresses in thermosetting polymers. Diepoxidized cardanol (DEC) can be synthesized by an enzymatic method from cashew nut shell liquid (CNSL), that constitutes nearly one-third of the total nut weight. A large amount of CNSL can be formed as a byproduct of the mechanical processes used to render the cashew kerneledible and its total production approaches one million tons annually, which can be bio-degradable and replace the industrial thermosetting plastics. It is expected that DEC may be cured as in an epoxy resin, which was constituted on two epoxide group and long alkyl chain, and two-types of onium salts (cationic initiator) were used as a photo-initiator. The experimental variables of this study are type and concentration of photo-initiators and electron beam dosage. In this study, the effects of initiator type and concentration on the cure behavior and the thermal properties of DEC resin processed by using electron beam technology were studied using FT-IR, TGA, TMA, DSC, and DMA. Figure 1 is the FT-IR results, showing the change of chemical structure of pure DEC and electron beam cured DEC. The characteristic absorption peak of epoxide group appeared at 850cm -1 . The shape and the height were reduced when the sample was irradiated with electron beam. From this result, the epoxide groups is DEC were opened by electron beam and cured. After then, electron beam cured DEC was investigated the effect of forming 3-dimensional network

  10. Cure Behavior and Thermal Properties of Diepoxidized Cardanol Resin Cured by Electron Beam Process

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Donghwan; Cheon, Jinsil [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2013-07-01

    Thermal curing of epoxy resin requires high temperature, time-consuming process and the volatilization of hardener. It has known that electron beam curing of epoxy resin is a fast process and occurs at low or room temperature that help reduce residual mechanical stresses in thermosetting polymers. Diepoxidized cardanol (DEC) can be synthesized by an enzymatic method from cashew nut shell liquid (CNSL), that constitutes nearly one-third of the total nut weight. A large amount of CNSL can be formed as a byproduct of the mechanical processes used to render the cashew kerneledible and its total production approaches one million tons annually, which can be bio-degradable and replace the industrial thermosetting plastics. It is expected that DEC may be cured as in an epoxy resin, which was constituted on two epoxide group and long alkyl chain, and two-types of onium salts (cationic initiator) were used as a photo-initiator. The experimental variables of this study are type and concentration of photo-initiators and electron beam dosage. In this study, the effects of initiator type and concentration on the cure behavior and the thermal properties of DEC resin processed by using electron beam technology were studied using FT-IR, TGA, TMA, DSC, and DMA. Figure 1 is the FT-IR results, showing the change of chemical structure of pure DEC and electron beam cured DEC. The characteristic absorption peak of epoxide group appeared at 850cm{sup -1}. The shape and the height were reduced when the sample was irradiated with electron beam. From this result, the epoxide groups is DEC were opened by electron beam and cured. After then, electron beam cured DEC was investigated the effect of forming 3-dimensional network.

  11. 7 CFR 30.12 - Fire-cure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fire-cure. 30.12 Section 30.12 Agriculture Regulations... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.12 Fire-cure. To cure tobacco under artificial atmospheric conditions by the use of open fires, the smoke and...

  12. Radiation curing

    International Nuclear Information System (INIS)

    Wendrinsky, J.

    1987-04-01

    In the beginning of the seventies the two types of radiation sources applied in industrial processes, electron radiation and UV, had been given rather optimistic forecasts. While UV could succeed in the field of panel and film coating, electron radiation curing seems to gain success in quite new fields of manufacturing. The listing of the suggested applications of radiation curing and a comparison of both advantages and disadvantages of this technology are followed by a number of case studies emphasizing the features of these processes and giving some examplary calculations. The data used for the calculations should provide an easy calculation of individual manufacturing costs if special production parameters, investment or energy costs are employed. (Author)

  13. Accounting for Cured Patients in Cost-Effectiveness Analysis.

    Science.gov (United States)

    Othus, Megan; Bansal, Aasthaa; Koepl, Lisel; Wagner, Samuel; Ramsey, Scott

    2017-04-01

    Economic evaluations often measure an intervention effect with mean overall survival (OS). Emerging types of cancer treatments offer the possibility of being "cured" in that patients can become long-term survivors whose risk of death is the same as that of a disease-free person. Describing cured and noncured patients with one shared mean value may provide a biased assessment of a therapy with a cured proportion. The purpose of this article is to explain how to incorporate the heterogeneity from cured patients into health economic evaluation. We analyzed clinical trial data from patients with advanced melanoma treated with ipilimumab (Ipi; n = 137) versus glycoprotein 100 (gp100; n = 136) with statistical methodology for mixture cure models. Both cured and noncured patients were subject to background mortality not related to cancer. When ignoring cured proportions, we found that patients treated with Ipi had an estimated mean OS that was 8 months longer than that of patients treated with gp100. Cure model analysis showed that the cured proportion drove this difference, with 21% cured on Ipi versus 6% cured on gp100. The mean OS among the noncured cohort patients was 10 and 9 months with Ipi and gp100, respectively. The mean OS among cured patients was 26 years on both arms. When ignoring cured proportions, we found that the incremental cost-effectiveness ratio (ICER) when comparing Ipi with gp100 was $324,000/quality-adjusted life-year (QALY) (95% confidence interval $254,000-$600,000). With a mixture cure model, the ICER when comparing Ipi with gp100 was $113,000/QALY (95% confidence interval $101,000-$154,000). This analysis supports using cure modeling in health economic evaluation in advanced melanoma. When a proportion of patients may be long-term survivors, using cure models may reduce bias in OS estimates and provide more accurate estimates of health economic measures, including QALYs and ICERs. Copyright © 2017 International Society for Pharmacoeconomics

  14. Effects of Grapefruit Seed Extract on Oxidative Stability and Quality Properties of Cured Chicken Breast.

    Science.gov (United States)

    Kang, Su-Tae; Son, Hee-Kyoung; Lee, Hyun-Joo; Choi, Jung-Seok; Choi, Yang-Il; Lee, Jae-Joon

    2017-01-01

    This study investigated the antioxidative and functional effects of a curing agent containing grapefruit seed extract (GSE) on the quality and storage characteristics of chicken breast. The total polyphenol and total flavonoid contents of GSE were 45.06 mg/g and 36.06 mg/g, respectively. The IC 50 value of 2,2-diphenyl-1-picrylhydrazyl hydroxyl scavenging of GSE was 333.33 μg/mL. The chicken breast comprised six groups: no-treatment (N), 0.2% ascorbic acid + 70 ppm sodium nitrite (C), 0.05% GSE (G0.05), 0.1% GSE (G0.1), 0.3% GSE (G0.3), and 0.5% GSE (G0.5). The pH and cooking loss of cured chicken breast decreased with increasing GSE levels, and the water holding capacity increased with increasing GSE levels. The hardness and chewiness of GSE-treated chicken breast were higher than those of N and C. Hunter's L and a color values increased significantly after GSE addition. Moreover, 0.1% GSE (G0.1) increased the flavor and total acceptability scores. The 2-thiobarbituric acid and volatile basic nitrogen values of the 0.5% GSE group decreased significantly compared with those of C group. Total microbial counts of GSE-treated chicken breast were higher than those of C, but that lower than those of N. Adding GSE to chicken breast delayed lipid peroxidation and had antimicrobial effects during cold storage. GSE improved shelf life and palatability; therefore, it could be used as a natural antioxidant and functional curing agent ingredient in meat products.

  15. Novel techniques for concrete curing

    DEFF Research Database (Denmark)

    Kovler, Konstantin; Jensen, Ole Mejlhede

    2005-01-01

    It is known that some high-strength/high-performance concretes (HSC/HPC) are prone to cracking at an early age unless special precautions are taken. The paper deals with the methods of curing as one of the main strategies to ensure good performance of concrete. Curing by both external (conventional......) and internal methods is reviewed and analyzed, among other methods of mitigating shrinkage and cracking of concrete. The focus is on the mitigation of autogenous shrinkage of low water to binder ratio (w/b) concrete by means of internal curing. The concepts of internal curing are based on using lightweight...... aggregate, superabsorbent polymers or water-soluble chemicals, which reduce water evaporation (so called "internal sealing"). These concepts have been intensively researched in the 90s, but still are not widespread among contractors and concrete suppliers. The differences between conventional methods...

  16. C-CURE

    Data.gov (United States)

    US Agency for International Development — C-CURE system manages certain aspects of the access control system, including collecting employee and contractor names and photographs. The Office of Security uses...

  17. Gamma and electron beam curing of polymers and composites

    International Nuclear Information System (INIS)

    Saunders, C.B.; Dickson, L.W.; Singh, A.

    1987-01-01

    Radiation polymerization has helped us understand polymer chemistry, and is also playing an increasing role in the field of practical applications. Radiation curing has a present market share of about 5% of the total market for curing of polymers and composites and the annual growth rate of the radiation curing market is ≥20% per year. Advantages of radiation curing over thermal or chemical curing methods include: improved control of the curing rate, reduced curing times, curing at ambient temperatures, curing without the need for chemical initiators, and complete (100%) curing with minimal toxic chemical emissions. Radiation treatment may also be used to effect crosslinking and grafting of polymer and composite materials. The major advantage in these cases is the ability to process products in their final shape. Cable insulation, automotive and aircraft components, and improved construction materials are some of the current and near-future industrial applications of radiation curing and crosslinking. 19 refs

  18. Cure Schedule for Stycast 2651/Catalyst 9.

    Energy Technology Data Exchange (ETDEWEB)

    Kropka, Jamie Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McCoy, John D. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2017-11-01

    The Emerson & Cuming technical data sheet (TDS) for Stycast 2651/Catalyst 9 lists three alternate cure schedules for the material, each of which would result in a different state of reaction and different material properties. Here, a cure schedule that attains full reaction of the material is defined. The use of this cure schedule will eliminate variance in material properties due to changes in the cure state of the material, and the cure schedule will serve as the method to make material prior to characterizing properties. The following recommendation uses one of the schedules within the TDS and adds a “post cure” to obtain full reaction.

  19. UV/EB curing market in Indonesia

    International Nuclear Information System (INIS)

    Hilmy, N.; Danu, S.

    1999-01-01

    The most application of UV curing of surface coating in Indonesia are on fancy plywood, furniture and wood flooring industry. Other application are on papers, printing ink/labelling, printed circuit board/PCB and dental materials. At present, application of EB curing coating is still in a pilot plant scale due to the high cost of production. Limited number of application of EB curing by using low energy electron beam machine are on wood panels, ceramics and marbles. This paper describes the market and the problem faced by the largest user of radiation curing systems such as the secondary process plywood, furniture and paper industries

  20. Radiation curing of polymers II

    International Nuclear Information System (INIS)

    Randell, D.R.

    1991-01-01

    During the last decade radiation cured polymers have continued to grow in importance not only by expansion within existing coatings applications but also by extension into new fields of application such as ceramics, ink-jet inks and fibres. To provide a further update on the rapidly growing science and technology of radiation curing the Third International Symposium was held. Apart from providing an update on the application, chemistry and control aspects of the radiation curing the aim of the meeting was also to provide the newcomer with a basic insight into radiation curing applications. Accordingly the proceedings contained in this special publication which follow closely the format of the meeting, has five sections covering the background/trends, applications, initiator chemistry, substrate chemistry and analytical, physical chemical and health and safety aspects. There are twenty-five papers all told, three of which are indexed separately. (Author)

  1. Curing reaction of bisphenol-A based benzoxazine with cyanate ester resin and the properties of the cured thermosetting resin

    Directory of Open Access Journals (Sweden)

    H. Kimura

    2011-12-01

    Full Text Available Curing reaction of bisphenol-A based benzoxazine with cyanate ester resin and the properties of the cured thermosetting resin were investigated. The cure behavior of benzoxazine with cyanate ester resin was monitored by model reaction using nuclear magnetic resonance (NMR. As a result of the model reaction, the ring opening reaction of benzoxazine ring and thermal self-cyclotrimerization of cyanate ester group occurred, and then the phenolic hydoroxyl group generated by the ring opening reaction of benzoxazine ring co-reacted with cyanate ester group. The properties of the cured thermosetting resin were estimated by mechanical properties, electrical resistivity, water resistance and heat resistance. The cured thermosetting resin from benzoxazine and cyanate ester resin showed good heat resistance, high electrical resistivity and high water resistance, compared with the cured thermosetting resin from benzoxazine and epoxy resin.

  2. Effects of Chemical Curing Temperature and Time on the Properties of Liquefied Wood based As-cured Precursors and Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Junbo Shang

    2015-09-01

    Full Text Available Liquefied wood based as-cured precursors and carbon fibers prepared by different chemical curing processes were carried out to investigate the effects of curing temperature and time on the thermostability and microstructure of liquefied wood based precursors, the tensile strength of carbon fibers as well. The primary fibers can be converted into precursors with high performance by directly heating at target curing temperature. With the temperature and duration increasing, the numbers of methylene bonds in precursors increased, resulting in the enhancement of cross-linkages among molecular chains and then the improvement of thermostability of precursors. Carbon fibers prepared from as-cured precursors (curing temperature 95 oC, curing time 3h had the minimum value of the average interlayer spacing (d002, it also showed the highest tensile strength, almost 800 MPa, which can be classified as fibers of general grade.

  3. 潜伏性热释放2PZ-PS-co-MAA微胶囊固化剂的制备与性能%Preparation and Performance of Heat Released 2PZ-PS-co-MAA Mierocapsule-Type Latent Curing Agent

    Institute of Scientific and Technical Information of China (English)

    史有强; 张秋禹; 陈少杰; 马明亮; 马爱洁; 顾军渭

    2012-01-01

    以2-苯基咪唑(2PZ)为芯材,苯乙烯-甲基丙烯酸共聚物(PS-co-MAA)为壁材,采用溶剂挥发技术,成功地制备了一种新型潜伏性热释放2PZ-PS-co-MAA微胶囊固化剂。通过红外光谱仪(FT-IR)、热重分析仪(TGA)、扫描电子显微镜(SEM)、粒度分析仪和差示扫描量热仪(DSC)对微胶囊固化剂的化学结构、芯材含量、表面形貌、粒径分布及固化性能等进行了表征。所制备的微胶囊固化剂表面光滑,粒径分布较窄,平均粒径约为15.60μm,壁材厚度约为0.5μm,芯材2PZ含量约为39.19%。由微胶囊固化剂与环氧树脂E-51制备的单组分胶粘剂,具有优良的固化特性和潜伏性能,可在100℃,30 min内实现固化,室温储存期可达32 d以上。%A heat released microcapsule-type latent curing agent was successfully prepared by solvent evaporation technique with 2-phenylimidazole(2PZ) as the core material and styrene/methacrylic acid copolymer(PS-co-MAA) as the wall material.The chemical structure,core material content,surface morphology,size distribution and curing characteristics of this microcapsule-type curing agent were characterized by Fourier transform infrared spectrum(FT-IR),thermogravimetric analysis(TGA),scanning electron microscope(SEM),granulometer and differential scanning calorimetry(DSC).The obtained microcapsules have a smooth surface and display a narrow size distribution with the mean size about 15.60 μm,and its wall thickness is about 0.5 μm with core material content about 39.19%.In addition,the one-component adhesive made from the microcapsules and epoxy resin E-51 shows advanced curing characteristics and latent properties.It is found that the E-51/PS-co-MAA microcapsule system can be cured at 100 ℃ in 30 min and its shelf life at room temperature is more than 32 days.

  4. The irradiation curing of coatings

    International Nuclear Information System (INIS)

    Autio, T.

    1974-01-01

    The electron beam irradiation curing of coatings has been technically feasible for over a decade. A brief description of the process is presented. The progress in this field has been astonishingly slow in comparison with the use of UV lamps as radiation source. The primary reason for this has been the great advantage in terms of capital cost of the UV curing lines and their ready adaptability to low or high production rates. A literature survey is given concerning basic and applied research in the electron curing area, patents, economics and existing installations around the world. (author)

  5. Study on compressive strength of self compacting mortar cubes under normal & electric oven curing methods

    Science.gov (United States)

    Prasanna Venkatesh, G. J.; Vivek, S. S.; Dhinakaran, G.

    2017-07-01

    In the majority of civil engineering applications, the basic building blocks were the masonry units. Those masonry units were developed as a monolithic structure by plastering process with the help of binding agents namely mud, lime, cement and their combinations. In recent advancements, the mortar study plays an important role in crack repairs, structural rehabilitation, retrofitting, pointing and plastering operations. The rheology of mortar includes flowable, passing and filling properties which were analogous with the behaviour of self compacting concrete. In self compacting (SC) mortar cubes, the cement was replaced by mineral admixtures namely silica fume (SF) from 5% to 20% (with an increment of 5%), metakaolin (MK) from 10% to 30% (with an increment of 10%) and ground granulated blast furnace slag (GGBS) from 25% to 75% (with an increment of 25%). The ratio between cement and fine aggregate was kept constant as 1: 2 for all normal and self compacting mortar mixes. The accelerated curing namely electric oven curing with the differential temperature of 128°C for the period of 4 hours was adopted. It was found that the compressive strength obtained from the normal and electric oven method of curing was higher for self compacting mortar cubes than normal mortar cube. The cement replacement by 15% SF, 20% MK and 25%GGBS obtained higher strength under both curing conditions.

  6. Study on the heat-resistant EB curing composites

    International Nuclear Information System (INIS)

    Bao Jianwen; Li Yang; Li Fengmei

    2000-01-01

    There are many advantages in the EB-curing process of composites. Heat-resistant EB-curing composites could substitute for polyimide composites used in aeronautical engine. The effects of catalyst and dose on the cured resin were investigated. The heat-resistance of the resin cured by EB was evaluated by dynamic mechanical thermal analysis (DMTA). The experiment result shows that the mechanical property of the composites cured by EB could meet the needs of the aeronautical engine in 250degC. (author)

  7. Comparison of the Amount of Temperature Rise in the Pulp Chamber of Teeth Treated With QTH, Second and Third Generation LED Light Curing Units: An In Vitro Study.

    Science.gov (United States)

    Mahant, Rajesh Harivadanbhai; Chokshi, Shraddha; Vaidya, Rupal; Patel, Pruthvi; Vora, Asima; Mahant, Priyanka

    2016-01-01

    Introduction: This in vitro study was designed to measure and compare the amount of temperature rise in the pulp chamber of the teeth exposed to different light curing units (LCU), which are being used for curing composite restorations. Methods: The study was performed in two settings; first, an in vitro and second was mimicking an in vivo situation. In the first setup of the study, three groups were formed according to the respective three light curing sources. i.e. quartz-tungsten-halogen (QTH) unit and two light-emitting diode (LED) units (second and third generations). In the in vitro setting, direct thermal emission from three light sources at 3 mm and 6 mm distances, was measured with a k-type thermocouple, and connected to a digital thermometer. For a simulation of an in vivo situation, 30 premolar teeth were used. Class I Occlusal cavity of all the teeth were prepared and they were restored with incremental curing of composite, after bonding agent application. While curing the bonding agent and composite in layers, the intrapulpal temperature rise was simultaneously measured with a k-type thermocouple. Results: The first setting of the study showed that the heat produced by irradiation with LCU was significantly less at 6 mm distance when compared to 3 mm distance. The second setting of the study showed that the rise of intrapulpal temperature was significantly less with third generation LED light cure units than with second generation LED and QTH light cure units. Conclusion: As the distance from the light source increases, less irradiation heat is produced. Third generation LED lights cause the least temperature change in the pulp chamber of single rooted teeth.

  8. MANAGEMENT OF CLINICALLY CURED TONSILLOPHARYNGITIS IN PATIENTS WITH GROUP A STREPTOCOCCUS ISOLATED FROM A PHARYNGEAL SWAB

    Directory of Open Access Journals (Sweden)

    Radica Živković-Zarić

    2015-12-01

    Full Text Available The group A streptococcus (GAS tonsillopharyngitis is a very common disease in children’s age. Inappropriate use of antibiotics is frequently encountered, both for treatment purposes and for eradication of the causative agents. The aim of our study was to discover reasons and causes for inappropriate use of antibiotics in children. We have used the triangulation approach to the problem which was studied by the analysis of interviews, observation of patient-cases and by the review of medical records. We discovered that prescribers had very different attitudes towards curing GAS tonsillopharyngitis as well as towards curing GAS carriage. The physicians were under the pressure to prescribe antibiotics and the parents were prone to administer antibiotics to children by themselves. Such behavior could be partially explained by the lack of funds for laboratory analyses. Moreover, the patients were still allowed to buy antibiotics without prescriptions. General culture of using antibiotics should be increased to a higher level among both health workers and parents in order to change some irrational behavior when managing patients who have been cured from streptococcal tonsillopharyngitis.

  9. An emerging alternative to thermal curing: Electron curing of fiber-reinforced composites

    International Nuclear Information System (INIS)

    Singh, A.; Saunders, C.B.; Lopata, V.J.; Kremers, W.; Chung, M.

    1995-01-01

    Electron curing of fiber-reinforced composites to produce materials with good mechanical properties has been demonstrated by the authors' work, and by Aerospatiale. The attractions of this technology are the technical and processing advantages offered over thermal curing, and the projected cost benefits. Though the work so far has focused on the higher value composites for the aircraft and aerospace industries, the technology can also be used to produce composites for the higher volume industries, such as transportation and automotive

  10. Radiation cured acrylonitrile--butadiene elastomers

    International Nuclear Information System (INIS)

    Eldred, R.J.

    1976-01-01

    In accordance with a preferred embodiment of this invention, the ultimate elongation of an electron beam radiation cured acrylonitrile-butadiene elastomer is significantly increased by the incorporation of a preferred noncrosslinking monomer, glycidyl methacrylate, in combination with the conventional crosslinking monomer, trimethylolpropanetrimethacrylate, prior to the radiation curing process

  11. Techniques for internal water curing of concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Pietro, Lura

    2003-01-01

    This paper gives an overview of different techniques for incorporation of internal curing water in concrete. Internal curing can be used to mitigate self-desiccation and self-desiccation shrinkage. Some concretes may need 50 kg/m3 of internal curing water for this purpose. The price of the internal...

  12. A cure for HIV: is it in sight?

    Science.gov (United States)

    Pace, Matthew; Frater, John

    2014-07-01

    HIV is a devastating disease affecting millions of people worldwide despite the advent of successful antiretroviral therapy (ART). However, ART does not result in a cure and has to be taken for life. Accordingly, researchers are turning towards cure efforts, particularly in the light of two patients whose HIV has been seemingly eradicated. Numerous approaches and strategies have been considered for curing HIV, but no scalable and safe solution has yet been reached. With newly discovered difficulties in measuring the HIV reservoir, the main barrier to a cure, the only true test of cure is to stop ART and see whether the virus becomes detectable. However, it is possible that this treatment interruption may be associated with certain risks for patients. Here, we compare the current major approaches and recent advances for curing HIV, as well as discuss ways of evaluating HIV cure and the safety concerns involved.

  13. Effect of various infection-control methods for light-cure units on the cure of composite resins.

    Science.gov (United States)

    Chong, S L; Lam, Y K; Lee, F K; Ramalingam, L; Yeo, A C; Lim, C C

    1998-01-01

    This study (1) compared the curing-light intensity with various barrier infection-control methods used to prevent cross contamination, (2) compared the Knoop hardness value of cured composite resin when various barrier control methods were used, and (3) correlated the hardness of the composite resin with the light-intensity output when different infection-control methods were used. The light-cure unit tips were covered with barriers, such as cellophane wrap, plastic gloves, Steri-shields, and finger cots. The control group had no barrier. Composite resins were then cured for each of the five groups, and their Knoop hardness values recorded. The results showed that there was significant statistical difference in the light-intensity output among the five groups. However, there was no significant statistical difference in the Knoop hardness values among any of the groups. There was also no correlation between the Knoop hardness value of the composite resin with the light-intensity output and the different infection-control methods. Therefore, any of the five infection-control methods could be used as barriers for preventing cross-contamination of the light-cure unit tip, for the light-intensity output for all five groups exceeded the recommended value of 300 W/m2. However, to allow a greater margin of error in clinical situations, the authors recommend that the plastic glove or the cellophane wrap be used to wrap the light-cure tip, since these barriers allowed the highest light-intensity output.

  14. Curing behavior and reaction kinetics of binder resins for 3D-printing investigated by dielectric analysis (DEA)

    Science.gov (United States)

    Möginger, B.; Kehret, L.; Hausnerova, B.; Steinhaus, J.

    2016-05-01

    3D-Printing is an efficient method in the field of additive manufacturing. In order to optimize the properties of manufactured parts it is essential to adapt the curing behavior of the resin systems with respect to the requirements. Thus, effects of resin composition, e.g. due to different additives such as thickener and curing agents, on the curing behavior have to be known. As the resin transfers from a liquid to a solid glass the time dependent ion viscosity was measured using DEA with flat IDEX sensors. This allows for a sensitive measurement of resin changes as the ion viscosity changes two to four decades. The investigated resin systems are based on the monomers styrene and HEMA. To account for the effects of copolymerization in the calculation of the reaction kinetics it was assumed that the reaction can be considered as a homo-polymerization having a reaction order n≠1. Then the measured ion viscosity curves are fitted with the solution of the reactions kinetics - the time dependent degree of conversion (DC-function) - for times exceeding the initiation phase representing the primary curing. The measured ion viscosity curves can nicely be fitted with the DC-function and the determined fit parameters distinguish distinctly between the investigated resin compositions.

  15. Calcium and α-tocopherol suppress cured-meat promotion of chemically induced colon carcinogenesis in rats and reduce associated biomarkers in human volunteers123

    Science.gov (United States)

    Martin, Océane CB; Santarelli, Raphaelle L; Taché, Sylviane; Naud, Nathalie; Guéraud, Françoise; Audebert, Marc; Dupuy, Jacques; Meunier, Nathalie; Attaix, Didier; Vendeuvre, Jean-Luc; Mirvish, Sidney S; Kuhnle, Gunter CG; Cano, Noel; Corpet, Denis E

    2013-01-01

    Background: Processed meat intake has been associated with increased colorectal cancer risk. We have shown that cured meat promotes carcinogen-induced preneoplastic lesions and increases specific biomarkers in the colon of rats. Objectives: We investigated whether cured meat modulates biomarkers of cancer risk in human volunteers and whether specific agents can suppress cured meat–induced preneoplastic lesions in rats and associated biomarkers in rats and humans. Design: Six additives (calcium carbonate, inulin, rutin, carnosol, α-tocopherol, and trisodium pyrophosphate) were added to cured meat given to groups of rats for 14 d, and fecal biomarkers were measured. On the basis of these results, calcium and tocopherol were kept for the following additional experiments: cured meat, with or without calcium or tocopherol, was given to dimethylhydrazine-initiated rats (47% meat diet for 100 d) and to human volunteers in a crossover study (180 g/d for 4 d). Rat colons were scored for mucin-depleted foci, putative precancer lesions. Biomarkers of nitrosation, lipoperoxidation, and cytotoxicity were measured in the urine and feces of rats and volunteers. Results: Cured meat increased nitroso compounds and lipoperoxidation in human stools (both P meat (P = 0.01). Conclusion: Data suggest that the addition of calcium carbonate to the diet or α-tocopherol to cured meat may reduce colorectal cancer risk associated with cured-meat intake. This trial was registered at clinicaltrials.gov as NCT00994526. PMID:24025632

  16. Radiation curing - twenty five years on

    International Nuclear Information System (INIS)

    Garnett, J.L.

    1995-01-01

    Progress in UV/EB curing during the past twenty five years is briefly reviewed. During this time developments in unique polymer chemistry, novel equipment design and the introduction of relevant educational programmes has enabled radiation curing to become an established technology with specific strengths in certain industries. Possible reasons for the emergence of the technology in these niche markets are discussed. Despite the worldwide recession, radiation curing is shown to be expanding at 5% per annum with the prospect of higher growth with improving economic conditions. (Author)

  17. Silicone rubber curing by high intensity infrared radiation

    International Nuclear Information System (INIS)

    Huang, T.; Tsai, J.; Cherng, C.; Chen, J.

    1994-01-01

    A high-intensity (12 kW) and compact (80 cm) infrared heating oven for fast curing (12 seconds) of tube-like silicone rubber curing studies is reported. Quality inspection by DSC and DMA and results from pilot-scale curing oven all suggest that infrared heating provides a better way of vulcanization regarding to curing time, quality, cost, and spacing over conventional hot air heating. copyright 1995 American Institute of Physics

  18. Bond strength of a pit-and-fissure sealant associated to etch-and-rinse and self-etching adhesive systems to saliva-contaminated enamel: individual vs. simultaneous light curing.

    Science.gov (United States)

    Gomes-Silva, Jaciara Miranda; Torres, Carolina Paes; Contente, Marta Maria Martins Giamatei; Oliveira, Maria Angélica Hueb de Menezes; Palma-Dibb, Regina Guenka; Borsatto, Maria Cristina

    2008-01-01

    This study evaluated in vitro the shear bond strength (SBS) of a resin-based pit-and-fissure sealant [Fluroshield (F), Dentsply/Caulk] associated with either an etch-and-rinse [Adper Single Bond 2 (SB), 3M/ESPE] or a self-etching adhesive system [Clearfil S3 Bond (S3), Kuraray Co., Ltd.] to saliva-contaminated enamel, comparing two curing protocols: individual light curing of the adhesive system and the sealant or simultaneous curing of both materials. Mesial and distal enamel surfaces from 45 sound third molars were randomly assigned to 6 groups (n=15), according to the bonding technique: I - F was applied to 37% phosphoric acid etched enamel. The other groups were contaminated with fresh human saliva (0.01 mL; 10 s) after acid etching: II - SB and F were light cured separately; III - SB and F were light cured together; IV - S3 and F were light cured separately; V - S3 and F were light cured simultaneously; VI - F was applied to saliva-contaminated, acid-etched enamel without an intermediate bonding agent layer. SBS was tested to failure in a universal testing machine at 0.5 mm/min. Data were analyzed by one-way ANOVA and Fisher's test (alpha=0.05).The debonded specimens were examined with a stereomicroscope to assess the failure modes. Three representative specimens from each group were observed under scanning electron microscopy for a qualitative analysis. Mean SBS in MPa were: I-12.28 (+/-4.29); II-8.57 (+/-3.19); III-7.97 (+/-2.16); IV-12.56 (+/-3.11); V-11.45 (+/-3.77); and VI-7.47 (+/-1.99). In conclusion, individual or simultaneous curing of the intermediate bonding agent layer and the resin sealant did not seem to affect bond strength to saliva-contaminated enamel. S3/F presented significantly higher SBS than the that of the groups treated with SB etch-and-rinse adhesive system and similar SBS to that of the control group, in which the sealant was applied under ideal dry, noncontaminated conditions.

  19. Effect of curing modes of dual-curing core systems on microtensile bond strength to dentin and formation of an acid-base resistant zone.

    Science.gov (United States)

    Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Waidyasekera, Kanchana; Ikeda, Masaomi; Chen, Jihua; Nikaido, Toru; Tagami, Junji

    2011-12-01

    To evaluate the microtensile bond strength (μTBS) and acid-base resistant zone (ABRZ) of two dualcuring core systems to dentin using four curing modes. Sixty-four caries-free human molars were randomly divided into two groups according to two dual-curing resin core systems: (1) Clearfil DC Core Automix; (2) Estelite Core Quick. For each core system, four different curing modes were applied to the adhesive and core resin: (1) dual-cured and dual-cured (DD); (2) chemically cured and dual-cured (CD); (3) dual-cured and chemically cured (DC); (4) chemically cured and chemically cured (CC). The specimens were sectioned into sticks (n = 20 for each group) for the microtensile bond test. μTBS data were analyzed using two-way ANOVA and the Dunnett T3 test. Failure patterns were examined with scanning electron microscopy (SEM) to determine the proportion of each mode. Dentin sandwiches were produced and subjected to an acid-base challenge. After argon-ion etching, the ultrastructure of ABRZ was observed using SEM. For Clearfil DC Core Automix, the μTBS values in MPa were as follows: DD: 29.1 ± 5.4, CD: 21.6 ± 5.6, DC: 17.9 ± 2.8, CC: 11.5 ± 3.2. For Estelite Core Quick, they were: DD: 48.9 ±5.7, CD: 20.5 ± 4.7, DC: 41.4 ± 8.3, CC: 19.1 ± 6.0. The bond strength was affected by both material and curing mode, and the interaction of the two factors was significant (p < 0.001). Within both systems, there were significant differences among groups, and the DD group showed the highest μTBS (p < 0.05). ABRZ morphology was not affected by curing mode, but it was highly adhesive-material dependent. The curing mode of dual-curing core systems affects bond strength to dentin, but has no significant effect on the formation of ABRZ.

  20. Effect of curing methods, packaging and gamma irradiation on the weight loss and dry matter percent of garlic during curing and storage

    International Nuclear Information System (INIS)

    Mahmoud, A.A.; El-Oksh, I.I.; Farag, S.E.A.

    1988-01-01

    The Egyptian garlic plants, showed higher percent of weight loss at 17 or 27 days from curing compared to those of Chinese plants. The curing period of 17 days seemed satisfactory for the Egyptian cultivar, whereas, 27 days seemed to be enough for the Chinese garlic. No significant differences were observed between common and shaded curing methods in weight loss per cent. The Chinese garlic contained higher dry matter percentage than those of the Egyptian cultivar. Shaded cured plants of the two cultivars contained higher dry matter percent than those subjected to the common curing methods. Irradiation of garlic bulbs, shaded curing method and sack packaging decreased, in general the weight loss during storage in comparison with other treatments

  1. Proceedings of workshop on surface finishing by radiation curing technology: radiation curing for better finishing

    International Nuclear Information System (INIS)

    1993-01-01

    This book compiled the paper presented at this workshop. The papers discussed are 1. Introduction to radiation curing, 2. Radiation sources -ultraviolet and electron beams, 3. UV/EB curing of surface coating - wood and nonwood substrates, 4. Development of EPOLA (epoxidised palm oil products acrylate) and its application, 5. Development of radiation-curable resin based natural rubber

  2. Proceedings of workshop on surface finishing by radiation curing technology: radiation curing for better finishing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This book compiled the paper presented at this workshop. The papers discussed are 1. Introduction to radiation curing, 2. Radiation sources -ultraviolet and electron beams, 3. UV/EB curing of surface coating - wood and nonwood substrates, 4. Development of EPOLA (epoxidised palm oil products acrylate) and its application, 5. Development of radiation-curable resin based natural rubber.

  3. Comparing depth-dependent curing radiant exposure and time of curing of regular and flow bulk-fill composites

    Directory of Open Access Journals (Sweden)

    Jose Augusto RODRIGUES

    2017-08-01

    Full Text Available Abstract The effect of restoration depth on the curing time of a conventional and two bulk-fill composite resins by measuring microhardness and the respective radiosity of the bottom surface of the specimen was investigated. 1-, 3- and 5-mm thick washers were filled with Surefil SDR Flow–U (SDR, Tetric EvoCeram Bulk Fill-IVA (TEC or Esthet-X HD–B1 (EHD, and cured with Bluephase® G2 for 40s. Additional 1-mm washers were filled with SDR, TEC or EHD, placed above the light sensor of MARC®, stacked with pre-cured 1-, 3- or 5-mm washer of respective material, and cured for 2.5~60s to mimic 2-, 4- and 6-mm thick composite curing. The sensor measured the radiosity (EB at the bottom of specimen stacks. Vickers hardness (VH was measured immediately at 5 locations with triplicate specimens. Nonlinear regression of VH vs EB by VH=α[1-exp(-EB/β] with all thickness shows that the values of α, maximum hardness, are 21.6±1.0 kg/mm2 for SDR, 38.3±0.6 kg/mm2 for TEC and 45.3±2.6 kg/mm2 for EHD, and the values of β, rate parameter, are 0.40±0.06 J/cm2 for SDR, 0.77±0.04 J/cm2 for TEC and 0.58±0.09 J/cm2 for EHD. The radiosity of the bottom surface was calculated when the bottom surface of each material attained 80% of α of each material. The curing times for each material are in agreement with manufacturer recommendation for thickness. It is possible to estimate time needed to cure composite resin of known depth adequately by the radiosity and microhardness of the bottom surface.

  4. Comparing depth-dependent curing radiant exposure and time of curing of regular and flow bulk-fill composites.

    Science.gov (United States)

    Rodrigues, Jose Augusto; Tenorio, Ilana Pais; Mello, Ginger Baranhuk Rabello de; Reis, André Figueiredo; Shen, Chiayi; Roulet, Jean-François

    2017-08-21

    The effect of restoration depth on the curing time of a conventional and two bulk-fill composite resins by measuring microhardness and the respective radiosity of the bottom surface of the specimen was investigated. 1-, 3- and 5-mm thick washers were filled with Surefil SDR Flow-U (SDR), Tetric EvoCeram Bulk Fill-IVA (TEC) or Esthet-X HD-B1 (EHD), and cured with Bluephase® G2 for 40s. Additional 1-mm washers were filled with SDR, TEC or EHD, placed above the light sensor of MARC®, stacked with pre-cured 1-, 3- or 5-mm washer of respective material, and cured for 2.5~60s to mimic 2-, 4- and 6-mm thick composite curing. The sensor measured the radiosity (EB) at the bottom of specimen stacks. Vickers hardness (VH) was measured immediately at 5 locations with triplicate specimens. Nonlinear regression of VH vs EB by VH=α[1-exp(-EB/β)] with all thickness shows that the values of α, maximum hardness, are 21.6±1.0 kg/mm2 for SDR, 38.3±0.6 kg/mm2 for TEC and 45.3±2.6 kg/mm2 for EHD, and the values of β, rate parameter, are 0.40±0.06 J/cm2 for SDR, 0.77±0.04 J/cm2 for TEC and 0.58±0.09 J/cm2 for EHD. The radiosity of the bottom surface was calculated when the bottom surface of each material attained 80% of α of each material. The curing times for each material are in agreement with manufacturer recommendation for thickness. It is possible to estimate time needed to cure composite resin of known depth adequately by the radiosity and microhardness of the bottom surface.

  5. Secondary Leukemia Associated with the Anti-Cancer Agent, Etoposide, a Topoisomerase II Inhibitor

    OpenAIRE

    Sachiko Ezoe

    2012-01-01

    Etoposide is an anticancer agent, which is successfully and extensively used in treatments for various types of cancers in children and adults. However, due to the increases in survival and overall cure rate of cancer patients, interest has arisen on the potential risk of this agent for therapy-related secondary leukemia. Topoisomerase II inhibitors, including etoposide and teniposide, frequently cause rearrangements involving the mixed lineage leukemia (MLL<...

  6. Electron beam curing of coating

    International Nuclear Information System (INIS)

    Fujioka, S.; Fujikawa, Z.

    1974-01-01

    Electron beam curing (EBC) method, by which hardened coating film is obtained by polymerizing and cross-linking paint with electron beam, has finally reached industrialized stage. While about seven items such as short curing time, high efficiency of energy consumption, and homogeneous curing are enumerated as the advantages of EBC method, it has limitations of the isolation requirement from air needing the injection of inert gas, and considerable amount of initial investment. In the electron accelerators employed in EBC method, the accelerating voltage is 250 to 750 kV, and the tube current is several tens of mA to 200 mA. As an example of EBC applications, EBC ''Erio'' steel sheet was developed by the cooperative research of Nippon Steel Corp., Dai-Nippon Printing Co. and Toray Industries, Inc. It is a high-class pre-coated metal product made from galvanized steel sheets, and the flat sheets with cured coating are sold, and final products are fabricated by being worked in various shapes in users. It seems necessary to develop the paint which enables to raise added value by adopting the EBC method. (Wakatsuki, Y.)

  7. The Cure Rate after Placebo or No Therapy in American Cutaneous Leishmaniasis: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Gláucia Fernandes Cota

    Full Text Available There are few drugs with proven efficacy in cutaneous leishmaniasis (CL, and pentavalent antimonial derivatives are still the main first-line therapeutic agents worldwide, despite their recognized high toxicities. Randomized controlled clinical trials assessing the efficacy and safety of new therapeutic modalities are of high priority, and the definition of the design of such trials raises debate about the use of placebo as a comparator. To support the use of placebo as a comparator, two main points need to be addressed: 1--the cure rate without any therapeutic intervention and 2--the damage caused by CL and its impact on patients.The aim of this study was to systematically assess the spontaneous cure rate for American CL and to broaden the discussion about placebo use in CL trials.The PRISMA guidelines for systematic reviews and the Cochrane manual were followed. The sources used were the PubMed and LILACS databases. Studies were included if they reported cure rates using placebo or no treatment in American CL.Thirteen studies of a total of 352 patients were ultimately included in this review. The summarized global cure rates for all Leishmania species according to the intention-to-treat analyses performed at approximately three ("initial cure" and nine ("definitive cure" months after "no treatment" or placebo use were 26% (CI95%: 16 to 40% and 26% (CI95%:16 to 38%, respectively. Notably, a significantly lower cure rate was observed for L. braziliensis infection (6.4%, CI95%:0.2 to 20% than for L. mexicana infection (44%, CI95%:19 to 72%, p = 0.002. Of note, relapse occurred in 20% of patients with initial healing (CI95%:9.2 to 38.9%.These results clearly demonstrate a low spontaneous cure rate following no-treatment or placebo use, confirming that this strategy for the control group in CL studies expose patients to greater morbidity, especially for CL caused by L. braziliensis. Therefore, from this point, the crucial question to consider

  8. Accelerated production of dry cured hams.

    Science.gov (United States)

    Marriott, N G; Graham, P P; Shaffer, C K; Phelps, S K

    1987-01-01

    Ten uncured legs from the right side of the sampled pork carcasses (Study A) were vacuum tumbled with the cure adjuncts for 30 min (T) and 10 counterparts from the left side were tumbled 30 min, rested 30 min and tumbled an additional 30 min (TRT). Evaluations were conducted at 40 and 70 days after cure application for color, taste attributes, percentage moisture, percentage salt and NO(3)(-) and NO(2)(-) content. Study B was the same except that 18 legs were boned, tumbled and cured for 40, 56 and 70 days. The TRT samples (Study A) at 40 days sustained less color fading (P 0.05) existed among the uncooked hams. Increased cure time enhanced moisture loss and salt content (Study A) and color retention during cookery (Study B). The TRT samples had increased moisture loss and salt content (Study A). Copyright © 1987. Published by Elsevier Ltd.

  9. Rubber curing chemistry governing the orientation of layered silicate

    Directory of Open Access Journals (Sweden)

    2007-11-01

    Full Text Available The effect of curing systems on the orientation and the dispersion of the layered silicates in acrylonitrile butadiene rubber nanocomposite is reported. Significant differences in X-ray diffraction pattern between peroxide curing and sulfur curing was observed. Intense X-ray scattering values in the XRD experiments from peroxide cured vulcanizates indicate an orientation of the layers in a preferred direction as evinced by transmission electron micrographs. However, sulfur cured vulcanizates show no preferential orientation of the silicate particles. Nevertheless, a closer inspection of transmission electron microscopy (TEM images of peroxide and sulfur cured samples shows exfoliated silicate layers in the acrylonitrile butadiene rubber (NBR matrix. It was revealed in the prevailing study that the use of an excess amount of stearic acid in the formulation of the sulfur curing package leads to almost exfoliated type X-ray scattering pattern.

  10. Evolution of Immiscibly Blended Functionalized Polymers with Respect to Cure Parameters and Formulation

    Science.gov (United States)

    Heller, Nicholas Walter Medicus

    Powder coatings are becoming ubiquitous in the coating marketplace due to the absence of solvents in their formulation, but they have yet to see implementation in low-reflectance outdoor applications. This demand could be met by utilizing polymer blends formulated with low loadings of matting agents and pigments. The goal of this research is a thorough characterization of prototype low-reflectance coatings through several analytical techniques. Prototypical thermoset blends consist of functionalized polyurethanes rendered immiscible by differences in polar and hydrogen bonding characteristics, resulting in a surface roughened by droplet domains. Analysis of both pigmented and control clear films was performed. This research project had three primary aims: (1) determine the composition of the resin components of the polymer blend; (2) to monitor the evolution of domains before and during curing of clear polymer blends; (3) to monitor the evolution of these domains when pigments are added to these blends. The clear films enabled unhindered analysis by Fourier transform infrared (FTIR) and Raman spectroscopy on the binder. However, these domains provided no spectroscopic signatures despite their observation by optical microscopy. This necessitated the development of a new procedure for cross-section preparation that leaves no contamination from polishing media, which enabled Raman mapping of the morphology via an introduced marker peak from styrene monomer. The clears were analyzed as a powder and as films that were quenched at various cure-times using FTIR, Raman, transmission electron microscopy (TEM), and thermomechanical methods to construct a model of coating evolution based on cure parameters and polymer dynamics. Domains were observed in the powder, and underwent varying rates of coarsening as the cure progressed. TEM, scanning electron microscopy and thermomechanical methods were also used on pigmented systems at different states of the cure, including in

  11. Curing kinetics of alkyd/melamine resin mixtures

    Directory of Open Access Journals (Sweden)

    Jovičić Mirjana C.

    2009-01-01

    Full Text Available Alkyd resins are the most popular and useful synthetic resins applied as the binder in protective coatings. Frequently they are not used alone but are modified with other synthetic resins in the manufacture of the coatings. An alkyd/melamine resin mixture is the usual composition for the preparation of coating called 'baking enamel' and it is cured through functional groups of resins at high temperatures. In this paper, curing kinetics of alkyd resins based on castor oil and dehydrated castor oil with melamine resin, has been studied by DSC method with programmed heating and in isothermal mode. The results determined from dynamic DSC curves were mathematically transformed using the Ozawa isoconversional method for obtaining the isothermal data. These results, degree of curing versus time, are in good agreement with those determined by the isothermal DSC experiments. By applying the Ozawa method it is possible to calculate the isothermal kinetic parameters for the alkyd/melamine resin mixtures curing using only calorimetric data obtained by dynamic DSC runs. Depending on the alkyd resin type and ratio in mixtures the values of activation energies of curing process of resin mixtures are from 51.3 to 114 kJ mol-1. The rate constant of curing increases with increasing the content of melamine resin in the mixture and with curing temperature. The reaction order varies from 1.12 to 1.37 for alkyd based on dehydrated castor oil/melamine resin mixtures and from 1.74 to 2.03 for mixtures with alkyd based on castor oil. Based on the results obtained, we propose that dehydrated castor oil alkyd/melamine resin mixtures can be used in practice (curing temperatures from 120 to 160°C.

  12. Monitoring Prepregs As They Cure

    Science.gov (United States)

    Young, P. R.; Gleason, J. R.; Chang, A. C.

    1986-01-01

    Quality IR spectra obtained in dynamic heating environment. New technique obtains quality infrared spectra on graphite-fiber-reinforced, polymeric-matrix-resin prepregs as they cure. Technique resulted from modification of diffuse reflectance/Fourier transform infrared (DR/FTIR) technique previously used to analyze environmentally exposed cured graphite composites. Technique contribute to better understanding of prepreg chemistry/temperature relationships and development of more efficient processing cycles for advanced materials.

  13. Translating Genomic Discoveries to Cure Ultrahypermutant ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Translating Genomic Discoveries to Cure Ultrahypermutant Mismatch Repair Deficient Brain Tumours. Malignant brain tumours are the most common cause of death among children with cancer, but there is no known cure. This project will advance research in this important field. Inherited mutations and childhood cancer.

  14. Radiation cured coating containing glitter particles and process therefor

    International Nuclear Information System (INIS)

    Sachs, P.R.; Sears, J.W.

    1992-01-01

    Radiation curable coatings for use on a variety of substrates and curable by exposure to ionizing irradiation of ultraviolet light are well known. The use of urethane type coatings cured with ultraviolet light to provide protective wear layers for wall or floor tile is for instance described in U.S. Pat. No. 4,180,615. U.S. Pat. No. 3,918,393 describes a method for obtaining a non-glossy coating on various substrates by curing radiation sensitive material with ionizing irradiation or ultraviolet light in two stages. In this process the coating is partially cured in an oxygen-containing atmosphere and the curing is completed in an inert atmosphere. U.S. Pat. No. 4,122,225 discloses a method and apparatus for coating tile which involves the application of one coat of radiation curable material to an entire substrate followed by partial curing and the subsequent application and curing of a second coat or radiation curable material only on high areas of the substrate which are subject to greater than average wear. Use of pigment in radiation cured coatings on products such as floor covering which are subject to wear during use has presented substantial difficulties. Incorporation of pigment, especially enough pigment to make the coating opaque, makes the coating hard to cure and substantially reduces the thicknesses of coating which can be cured relative to a clear coating cured under the same conditions

  15. Accelerated Cure Project for Multiple Sclerosis

    Science.gov (United States)

    ... questions and enable an era of optimized MS treatment. Read more... The Accelerated Cure Project for MS is a non-profit, 501(c)(3) tax-exempt organization whose mission is to accelerate efforts toward a cure for multiple sclerosis by rapidly advancing research that determines its causes ...

  16. 7 CFR 29.3002 - Air-cured.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Air-cured. 29.3002 Section 29.3002 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-cured tobacco should not carry the odor of smoke or fumes resulting from the application of artificial...

  17. Microwave and thermal curing of an epoxy resin for microelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, K. [Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Pavuluri, S.K.; Leonard, M.T.; Desmulliez, M.P.Y. [MIcroSystems Engineering Centre (MISEC), Institute of Signals, Sensors and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Arrighi, V., E-mail: v.arrighi@hw.ac.uk [Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2015-09-20

    Graphical abstract: - Highlights: • Thermal and microwave curing of a commercial epoxy resin EO1080 are compared. • Microwave curing increases cure rate and does not adversely affect properties. • The curing of EO1080 is generally autocatalytic but deviates at high conversion. • Microwave radiation has a more complex effect on curing kinetics. - Abstract: Microwave curing of thermosetting polymers has a number of advantages to natural or thermal oven curing and is considered a cost-effective alternative. Here we present a detailed study of a commercially available epoxy resin, EO1080. Samples that are thermally cured are compared to curing using a recently developed modular microwave processing system. For commercial purposes it is crucial to demonstrate that microwave curing does not adversely affect the thermal and chemical properties of the material. Therefore, the kinetics of cure and various post cure properties of the resin are investigated. Attenuated Total Reflectance Fourier-Transform Infrared (ATR-FTIR) analysis shows no significant difference between the conventionally and microwave cured samples. Differential scanning calorimetry (DSC) is used to monitor the kinetics of the curing reaction, as well as determine the thermal and ageing properties of the material. As expected, the rate of curing is higher when using microwave energy and we attempt to quantify differences compared to conventional thermal curing. No change in glass transition temperature (T{sub g}) is observed. For the first time, enthalpy relaxation measurements performed on conventional and microwave cured samples are reported and these indicate similar ageing properties at any given temperature under T{sub g}.

  18. Microwave and thermal curing of an epoxy resin for microelectronic applications

    International Nuclear Information System (INIS)

    Johnston, K.; Pavuluri, S.K.; Leonard, M.T.; Desmulliez, M.P.Y.; Arrighi, V.

    2015-01-01

    Graphical abstract: - Highlights: • Thermal and microwave curing of a commercial epoxy resin EO1080 are compared. • Microwave curing increases cure rate and does not adversely affect properties. • The curing of EO1080 is generally autocatalytic but deviates at high conversion. • Microwave radiation has a more complex effect on curing kinetics. - Abstract: Microwave curing of thermosetting polymers has a number of advantages to natural or thermal oven curing and is considered a cost-effective alternative. Here we present a detailed study of a commercially available epoxy resin, EO1080. Samples that are thermally cured are compared to curing using a recently developed modular microwave processing system. For commercial purposes it is crucial to demonstrate that microwave curing does not adversely affect the thermal and chemical properties of the material. Therefore, the kinetics of cure and various post cure properties of the resin are investigated. Attenuated Total Reflectance Fourier-Transform Infrared (ATR-FTIR) analysis shows no significant difference between the conventionally and microwave cured samples. Differential scanning calorimetry (DSC) is used to monitor the kinetics of the curing reaction, as well as determine the thermal and ageing properties of the material. As expected, the rate of curing is higher when using microwave energy and we attempt to quantify differences compared to conventional thermal curing. No change in glass transition temperature (T g ) is observed. For the first time, enthalpy relaxation measurements performed on conventional and microwave cured samples are reported and these indicate similar ageing properties at any given temperature under T g

  19. Financing cures in the United States.

    Science.gov (United States)

    Basu, Anirban

    2015-02-01

    True cures in health care are rare but likely not for long. The high price tag that accompanies a cure along with its rapid uptake create challenges in the financing of cures by public and private payers. In the US, the disaggregated nature of health insurance system adds to this challenge as patients frequently churn across multiple health plans. This creates a 'free-rider' problem, where no one health plan has the incentive to invest in cure since the returns will be scattered over many health plans. Here, a new health currency is proposed as a generalized version of a social impact bond that has the potential to solve this free-rider problem, as it can be traded not only between public and private payers but also within the private sector. An ensuing debate as to whether and how to develop such a currency can serve the US health care system well.

  20. Biocontrol of Listeria monocytogenes in a meat model using a combination of a bacteriocinogenic strain with curing additives.

    Science.gov (United States)

    Orihuel, Alejandra; Bonacina, Julieta; Vildoza, María José; Bru, Elena; Vignolo, Graciela; Saavedra, Lucila; Fadda, Silvina

    2018-05-01

    The aim of this work was to evaluate the effect of meat curing agents on the bioprotective activity of the bacteriocinogenic strain, Enterococcus (E.) mundtii CRL35 against Listeria (L.) monocytogenes during meat fermentation. The ability of E. mundtii CRL35 to grow, acidify and produce bacteriocin in situ was assayed in a meat model system in the presence of curing additives (CA). E. mundtii CRL35 showed optimal growth and acidification rates in the presence of CA. More importantly, the highest bacteriocin titer was achieved in the presence of these food agents. In addition, the CA produced a statistical significant enhancement of the enterocin CRL35 activity. This positive effect was demonstrated in vitro in a meat based culture medium, by time-kill kinetics and finally by using a beaker sausage model with a challenge experiment with the pathogenic L. monocytogenes FBUNT strain. E. mundtii CRL35 was found to be a promising strain of use as a safety adjunct culture in meat industry and a novel functional supplement for sausage fermentation, ensuring hygiene and quality of the final product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The impact of high hydrostatic pressure on the functionality and consumer acceptability of reduced sodium naturally cured wieners.

    Science.gov (United States)

    Pietrasik, Z; Gaudette, N J; Johnston, S P

    2017-07-01

    The effects of high pressure processing (HPP; 600MPa for 3min at 8°C) on the quality and shelf life of reduced sodium naturally-cured wieners was studied. HPP did not negatively impact processing characteristics and assisted in extending shelf life of all wiener treatments up to a 12week storage period. At week 8, HPP wieners received higher acceptability scores, indicating HPP can effectively extend the sensory quality of products, including sodium reduced formulations containing natural forms of nitrite. Substitution of 50% NaCl with modified KCl had negative effect on textural characteristics of conventionally cured wieners but not those processed with celery powder as a source of nitrite. Celery powder favorably affected hydration of textural properties of wieners, and consumer acceptability of juiciness and texture was higher compared to nitrite. Sodium reduction, independent of curing agent, negatively impacted flavor acceptability, while only nitrite containing reduced sodium wieners scored significantly lower than both regular salt wieners for texture, juiciness and saltiness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effect of silane coupling agent on interfacial adhesion of copper/glass fabric/epoxy composites

    International Nuclear Information System (INIS)

    Langroudi, A. E.; Yousefi, A. A.; Kabiri, Kourosh

    2003-01-01

    The effect of silane coupling agent on the peel strength of copper/prep reg/copper composites was investigated. The composite consisted of one or two sheets of prepress covered by two copper plates. The prep reg was prepared by hand dry-lay-up technique using an epoxy resin and an electrical resistant glass fabric (e-glass style 2165). 4,4'-methylene dianiline. An aromatic amine, was used as curing agent. curing times for prep reg and composite at 120 d ig C and 170 d ig C were 15 min and 1 h, respectively. γ-aminopropyl trimethoxy silane was used as coupling agent. The effect of aminopropyl trimethoxy silane on the adhesion of epoxy/glass and epoxy/copper interfaces was investigated by two methods. In the first method, the surface of the glass fabric and/or the copper plates were treated by aminopropyl trimethoxy silane. In the second method, aminopropyl trimethoxy silane was directly added to epoxy resin. In addition, the effect of additional resin on the adhesion strength was also studied by the latter method

  3. Photoacoustic monitoring of inhomogeneous curing processes in polystyrene emulsions

    International Nuclear Information System (INIS)

    Vargas-Luna, M.; Gutierrez-Juarez, G.; Rodriguez-Vizcaino, J.M.; Varela-Nsjera, J.B.; Rodriguez-Palencia, J.M.; Bernal-Alvarado, J.; Sosa, M.; Alvarado-Gil, J.J.

    2002-01-01

    The time evolution of the inhomogeneous curing process of polystyrene emulsions is studied using a variant of the conventional photoacoustic (PA) technique. The thermal effusivity, as a function of time, is determined in order to monitor the sintering process of a styrene emulsion in different steps of the manufacturing procedure. PA measurements of thermal effusivity show a sigmoidal growth as a function of time during the curing process. The parameterization of these curves permits the determination of the characteristic curing time and velocity of the process. A decreasing of the curing time and an increasing curing velocity for the final steps of the manufacturing process are observed. The feasibility of our approach and its potentiality for the characterization of other curing process are discussed. (author)

  4. Effect of nano silica based modifying agent for hydrophobic coating application

    International Nuclear Information System (INIS)

    Nurul Huda Mudri; Nik Ghazali Nik Salleh; Mek Zah Salleh

    2016-01-01

    Hydrophobic coatings find wide application in industry due to their unique features such as water repellent and self-cleaning properties. In this study, modifying agent was synthesized by way of nano silica particles dispersion in polydimethyl siloxane with addition of surfactant, catalyst and stabilizer using high speed distemper. The modifying agent was added into coating formulation and cured under UV exposure. Scanning Electron Microscopy image of the film found that the nano silica particles were distributed well on substrate. Contact angle measurement gave the highest reading of 116 degree for 20 % wt of the modifying agent. The optical properties of the film were evaluated via transmission and haze test. (author)

  5. 7 CFR 29.1019 - Flue-cured.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Flue-cured. 29.1019 Section 29.1019 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... tobacco; or tobacco cured by some other process which accomplishes the same results. [42 FR 21092, Apr. 25...

  6. CURING OF POLYMERIC COMPOSITES USING MICROWAVE RESIN TRANSFER MOULDING (RTM

    Directory of Open Access Journals (Sweden)

    R. YUSOFF

    2007-08-01

    Full Text Available The main objective of this work is to compare the difference between microwave heating and conventional thermal heating in fabricating carbon/epoxy composites. Two types of epoxy resin systems were used as matrices, LY5052-HY5052 and DGEBA-HY917-DY073. All composite samples were fabricated using resin transfer moulding (RTM technique. The curing of the LY5052-HY5052-carbon and the DGEBA-HY917-DY073-carbon composite systems, were carried out at 100 °C and 120 °C, respectively. Microwave heating showed better temperature control than conventional heating, however, the heating rate of the microwave cured samples were slower than the conventionally cured samples. This was attributed to the lower power (250 W used when heating with microwaves compared to 2000 W used in conventional heating. Study of thermal characteristics as curing progressed showed that the polymerisation reaction occurred at a faster rate during microwave curing than in conventional curing for both the DGEBA and the LY/HY5052 carbon composite systems. The actual cure cycle was reduced from 60 minutes to 40 minutes when using microwaves for curing DGEBA-carbon composites. As for LY/HY5052-carbon composites, the actual cure cycle was reduced from 3 hours to 40 minutes. Both conventional and microwave heating yielded similar glass transition temperatures (120 °C for DGEBA systems and 130 °C for LY/HY5052 systems. Microwave cured composites had higher void contents than conventionally cured composites (2.2-2.8% and 1.8-2.4% for DGEBA and LY/HY5052 microwave cured composites, respectively, compared to 0.2-0.4% for both DGEBA and LY/HY5052 thermally cured composites. C-scan traces showed that all composites, regardless of methods of curing, had minimal defects.

  7. Determinant of flexible Parametric Estimation of Mixture Cure ...

    African Journals Online (AJOL)

    AIC, mean time to cure), variance and cure fraction (c) were used to determine the flexible Parametric Cure Fraction Model among the considered models. Gastric Cancer data from 76 patients received adjuvant CRT and 125 receiving resection (surgery) alone were used to confirm the suitability of the models. The data was ...

  8. Curing of Thick Thermoset Composite Laminates: Multiphysics Modeling and Experiments

    Science.gov (United States)

    Anandan, S.; Dhaliwal, G. S.; Huo, Z.; Chandrashekhara, K.; Apetre, N.; Iyyer, N.

    2017-11-01

    Fiber reinforced polymer composites are used in high-performance aerospace applications as they are resistant to fatigue, corrosion free and possess high specific strength. The mechanical properties of these composite components depend on the degree of cure and residual stresses developed during the curing process. While these parameters are difficult to determine experimentally in large and complex parts, they can be simulated using numerical models in a cost-effective manner. These simulations can be used to develop cure cycles and change processing parameters to obtain high-quality parts. In the current work, a numerical model was built in Comsol MultiPhysics to simulate the cure behavior of a carbon/epoxy prepreg system (IM7/Cycom 5320-1). A thermal spike was observed in thick laminates when the recommended cure cycle was used. The cure cycle was modified to reduce the thermal spike and maintain the degree of cure at the laminate center. A parametric study was performed to evaluate the effect of air flow in the oven, post cure cycles and cure temperatures on the thermal spike and the resultant degree of cure in the laminate.

  9. Radiation curing--new technology of green industries facing 21st century

    International Nuclear Information System (INIS)

    Wang Jianguo; Teng Renrui

    2000-01-01

    The development of radiation curing was simply reviewed and the mechanism of UV curing and EB curing, the equipment and materials used in the radiation curing were also introduced. Compared with ordinary curing, the radiation curing has advantages of energy saving, high effectiveness and little pollution. It is a new technology of green industries facing the 21st century

  10. Overview of UV and EB curing

    International Nuclear Information System (INIS)

    Garnett, J.L.

    2000-01-01

    Full text: UV and EB are complementary techniques in radiation curing. In the proposed paper, a brief review of both fields will be given. This will include principles of the process, the chemistry of the systems including monomers/oligomers/polymers used, additives required where necessary such as photoinitiators for UV, flow aids, adhesion promoters and the like. The types of equipment used in such processes will also be discussed including low energy electron beam utilisation and excimer curing. The advantages and disadvantages of both techniques will be examined. Mechanistic aspects of both curing systems will be discussed. Applications of the technology including developments in the banknote printing field will be summarised

  11. A Comparison of Curing Process-Induced Residual Stresses and Cure Shrinkage in Micro-Scale Composite Structures with Different Constitutive Laws

    Science.gov (United States)

    Li, Dongna; Li, Xudong; Dai, Jianfeng; Xi, Shangbin

    2018-02-01

    In this paper, three kinds of constitutive laws, elastic, "cure hardening instantaneously linear elastic (CHILE)" and viscoelastic law, are used to predict curing process-induced residual stress for the thermoset polymer composites. A multi-physics coupling finite element analysis (FEA) model implementing the proposed three approaches is established in COMSOL Multiphysics-Version 4.3b. The evolution of thermo-physical properties with temperature and degree of cure (DOC), which improved the accuracy of numerical simulations, and cure shrinkage are taken into account for the three models. Subsequently, these three proposed constitutive models are implemented respectively in a 3D micro-scale composite laminate structure. Compared the differences between these three numerical results, it indicates that big error in residual stress and cure shrinkage generates by elastic model, but the results calculated by the modified CHILE model are in excellent agreement with those estimated by the viscoelastic model.

  12. High Power UV LED Industrial Curing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  13. Proceedings of national executive management seminar on surface finishing by radiation curing technology: radiation curing for better finishing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This book compiled the paper presented at this seminar. The papers discussed are 1. Incentives for investment in the manufacturing sector (in Malaysia) 2.Trends and prospect of surface finishing by radiation curing technology in Malaysia 3. Industrial application of radiation curing.

  14. Proceedings of national executive management seminar on surface finishing by radiation curing technology: radiation curing for better finishing

    International Nuclear Information System (INIS)

    1993-01-01

    This book compiled the paper presented at this seminar. The papers discussed are 1. Incentives for investment in the manufacturing sector (in Malaysia) 2.Trends and prospect of surface finishing by radiation curing technology in Malaysia 3. Industrial application of radiation curing

  15. Additive effects in radiation grafting and curing

    International Nuclear Information System (INIS)

    Viengkhou, V.; Ng, L.

    1996-01-01

    Full text: Detailed studies on the accelerative effect of novel additives in radiation grafting and curing using acrylated monomer/oligomer systems have been performed in the presence of ionising radiation and UV as sources. Methyl methacrylate (MMA) is used as typical monomer for these grafting studies in the presence of the additives with model backbone polymers, cellulose and propropylene. Additives which have been found to accelerate these grafting processes are: mineral acid, occlusion compounds like urea, thermal initiators and photoinitiators as well as multifunctional monomers such as multifunctional acrylates. The results from irradiation with gamma rays have also been compared with irradiation from a 90W UV lamp. The role of the above additives in accelerating the analogous process of radiation curing has been investigated. Acrylated urethanes, epoxies and polyesters are used as oligomers together with acrylated monomers in this work with uv lamps of 300 watts/inch as radiation source. In the UV curing process bonding between film and substrate is usually due to physical forces. In the present work the presence of additives are shown to influence the occurrence of concurrent grafting during cure thus affecting the nature of the bonding of the cured film. The conditions under which concurrent grafting with UV can occur will be examined. A mechanism for accelerative effect of these additives in both grafting and curing processes has been proposed involving radiation effects and partitioning phenomena

  16. Radiation sources EB and UV curing machines

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Takashi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-12-31

    This paper describes electron beam processors and related technologies for curing applications to facilitate those industrial personals who are trying to understand and evaluate the applicability and benefits of radiation curing to their products. 4 tabs., 10 figs.

  17. Radiation sources EB and UV curing machines

    International Nuclear Information System (INIS)

    Takashi Sasaki

    1993-01-01

    This paper describes electron beam processors and related technologies for curing applications to facilitate those industrial personals who are trying to understand and evaluate the applicability and benefits of radiation curing to their products. 4 tabs., 10 figs

  18. Effects of Shrinkage Reducing Agent and Expansive Additive on Mortar Properties

    Directory of Open Access Journals (Sweden)

    Sarapon Treesuwan

    2017-01-01

    Full Text Available This research is to study the effect of mortar mixed with shrinkage reducing agent (polyoxyalkylene alkyl ether type, expansive additive (CaO type, and fly ash (hereinafter “SRA,” “EX,” and “FA,” resp.. Moreover, steam curing was studied to improve the properties of mortar. The plastic shrinkage test was conducted by using the strain gauge embedded at 0.5 cm from the surface according to the ASTM C1579-06 standard within early age followed by the total shrinkage test and compressive strength test. The test results showed that mixing both the EX and SRA increases the plastic enlargement of the mortar during the early age more than using either the EX or SRA solely. The steam curing helps to reduce the plastic shrinkage when the mortar is added with the FA and SRA while adding the EX increases the enlargement compared to the normal curing. When the EX, SRA, and FA are all added to the mortar mixing, great attention should be paid due to the increase of greater enlargement. For the compressive strength view, the steam curing increases the compressive strength in all types of mixture. The steam curing significantly helps increasing the compressive strength of mortar with combination of EX, SRA, and FA. Nevertheless, the XRD and SEM tests explain such enlargement accordingly.

  19. What is radiation curing

    International Nuclear Information System (INIS)

    Kinstle, J.F.

    1975-01-01

    Radiation curing is a highly interdisciplinary and sophisticated field. Successful interplay between chemists and engineers of various disciplines is required. Throughout the research-development-applications cycle, two disciplines for which hybridization is extremely important are radiation chemistry and polymer chemistry. The molecular level effects caused by absorbed radiation depend strongly on the type and intensity of the radiation. Efficient utilization of the radiation to effect desired transformations in a monomer and/or polymer system, and maximization of final properties, depend on well-planned polymer synthesis and system formulation. The elementary basis of these two disciplines and the manner in which they necessarily coalesce in the field of radiation curing are reviewed

  20. Modeling the curing process of thermosetting resin matrix composites

    Science.gov (United States)

    Loos, A. C.

    1986-01-01

    A model is presented for simulating the curing process of a thermosetting resin matrix composite. The model relates the cure temperature, the cure pressure, and the properties of the prepreg to the thermal, chemical, and rheological processes occurring in the composite during cure. The results calculated with the computer code developed on the basis of the model were compared with the experimental data obtained from autoclave-curved composite laminates. Good agreement between the two sets of results was obtained.

  1. Excimer Laser Curing Of Polymer Coatings

    Science.gov (United States)

    Klick, David; Akerman, M. Alfred; Paul, George L.; Supurovic, Darko; Tsuda, Haruki

    1988-12-01

    The use of the excimer laser as a source of energy for photo-assisted curing of industrial polymeric coatings was investigated. Presently, UV lamps are sometimes used to excite a photoinitiating molecule mixed with the starting monomers and oligomers of a coating. The resulting polymeric chain reaction multiplies the effect of the initial photons, making economical use of the light source. The high cost of laser photons may thus be justifiable if lasers provide advantages over lamps. A series of visibly transparent 7 μm coatings (a typical thickness for 'slick' magazine coatings) with various photoinitiators, monomers, and oligomers was illuminated with excimer laser light of various wavelengths, fluences, and pulse repetition rates. For the optimum parameters, it was found that the laser had large advantages in curing speed over existing UV lamp processes, due to its monochromaticity. Pigmented coatings (20 μm TiO2 mixtures typical of appliance or automotive finishes) are not easily cured with UV lamps due to the inability of light to penetrate the absorbing and scattering pigmented layer. However, economically-viable cure rates were achieved with certain photoinitiators using a tunable excimer-pumped dye laser. A prototype of such a laser suitable for factory use was built and used to cure these coatings. Results are scaled to a factory situation, and costs are calculated to show the advantages of the laser method over currently used processes.

  2. Injectable biomaterials for the treatment of stress urinary incontinence: their potential and pitfalls as urethral bulking agents.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2013-06-01

    Injectable urethral bulking agents composed of synthetic and biological biomaterials are minimally invasive treatment options for stress urinary incontinence (SUI). The development of an ideal urethral bulking agent remains challenging because of clinical concerns over biocompatibility and durability. Herein, the mechanical and biological features of injectable urethral biomaterials are investigated, with particular emphasis on their future potential as primary and secondary treatment options for SUI. A literature search for English language publications using the two online databases was performed. Keywords included "stress urinary incontinence", "urethral bulking agent" and "injectable biomaterial". A total of 98 articles were analysed, of which 45 were suitable for review based on clinical relevance and importance of content. Injectable biomaterials are associated with a lower cure rate and fewer postoperative complications than open surgery for SUI. They are frequently reserved as secondary treatment options for patients unwilling or medically unfit to undergo surgery. Glutaraldehyde cross-linked bovine collagen remains the most commonly injected biomaterial and has a cure rate of up to 53 %. Important clinical features of an injectable biomaterial are durability, biocompatibility and ease of administration, but achieving these requirements is challenging. In carefully selected patients, injectable biomaterials are feasible alternatives to open surgical procedures as primary and secondary treatment options for SUI. In future, higher cure rates may be feasible as researchers investigate alternative biomaterials and more targeted injection techniques for treating SUI.

  3. Bulk-Fill Composites: Effectiveness of Cure With Poly- and Monowave Curing Lights and Modes.

    Science.gov (United States)

    Gan, J K; Yap, A U; Cheong, J W; Arista, N; Tan, Cbk

    This study compared the effectiveness of cure of bulk-fill composites using polywave light-emitting diode (LED; with various curing modes), monowave LED, and conventional halogen curing lights. The bulk-fill composites evaluated were Tetric N-Ceram bulk-fill (TNC), which contained a novel germanium photoinitiator (Ivocerin), and Smart Dentin Replacement (SDR). The composites were placed into black polyvinyl molds with cylindrical recesses of 4-mm height and 3-mm diameter and photopolymerized as follows: Bluephase N Polywave High (NH), 1200 mW/cm 2 (10 seconds); Bluephase N Polywave Low (NL), 650 mW/cm 2 (18.5 seconds); Bluephase N Polywave soft-start (NS), 0-650 mW/cm 2 (5 seconds) → 1200 mW/cm 2 (10 seconds); Bluephase N Monowave (NM), 800 mW/cm 2 (15 seconds); QHL75 (QH), 550 mW/cm 2 (21.8 seconds). Total energy output was fixed at 12,000 mJ/cm 2 for all lights/modes, with the exception of NS. The cured specimens were stored in a light-proof container at 37°C for 24 hours, and hardness (Knoop Hardness Number) of the top and bottom surfaces of the specimens was determined using a Knoop microhardness tester (n=6). Hardness data and bottom-to-top hardness ratios were subjected to statistical analysis using one-way analysis of variance/Scheffe's post hoc test at a significance level of 0.05. Hardness ratios ranged from 38.43% ± 5.19% to 49.25% ± 6.38% for TNC and 50.67% ± 1.54% to 67.62% ± 6.96% for SDR. For both bulk-fill composites, the highest hardness ratios were obtained with NM and lowest hardness ratios with NL. While no significant difference in hardness ratios was observed between curing lights/modes for TNC, the hardness ratio obtained with NM was significantly higher than the hardness ratio obtained for NL for SDR.

  4. A Fourier transform Raman spectroscopy analysis of the degree of conversion of a universal hybrid resin composite cured with light-emitting diode curing units.

    Science.gov (United States)

    Lindberg, Anders; Emami, Nazanin; van Dijken, Jan W V

    2005-01-01

    The degree of conversion (DC), of a universal hybrid resin composite cured with LED curing units with low and high power densities and a 510 mW/cm2 quartz tungsten halogen unit, was investigated with Fourier Transform Raman spectroscopy. Three curing depths (0, 2, 4mm) and 0 and 7 mm light guide tip - resin composite (LT - RC) distances were tested. The DC of the LED units varied between 52.3% - 59.8% at the top surface and 46.4% - 57.0% at 4 mm depth. The DC of specimen cured with a 0 mm LT- RC distance at 4 mm depth varied between 50.8% - 57.0% and with 7 mm distance between 46.4% - 55.4%. The low power density LED unit showed a significantly lower DC for both distances at all depth levels compared to the other curing units (p units were only found at the 4 mm depth level cured from 7 mm distance (p units. It can be concluded that the improved LED curing units could cure the studied resin composite to the same DC as the control unit.

  5. Cure kinetics and chemorheology of EPDM/graphene oxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Allahbakhsh, Ahmad [Department of Polymer Engineering, Islamic Azad University, South Tehran Branch, 17776-13651 Tehran (Iran, Islamic Republic of); Mazinani, Saeedeh, E-mail: s.mazinani@aut.ac.ir [Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Kalaee, Mohammad Reza [Department of Polymer Engineering, Islamic Azad University, South Tehran Branch, 17776-13651 Tehran (Iran, Islamic Republic of); Sharif, Farhad [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2013-07-10

    Graphical abstract: - Highlights: • Graphene oxide content and dispersion as effective parameters on cure kinetics. • Graphene oxide as an effective controlling factor of crosslink density. • Interaction of graphene oxide with curing system (ZnO) during curing process. - Abstract: In this study, the effect of graphene oxide on cure behavior of ethylene–propylene–diene rubber (EPDM) nanocomposite is studied. In this regard, the cure kinetics of nanocomposite is studied employing different empirical methods. The required activation energy of nth-order cure process shows about 160 kJ/mol increments upon 5 phr graphene oxide loading compared to 1 phr graphene oxide loading. However, the required activation energy is significantly reduced followed by incorporation of graphene oxide in nanocomposites compared to neat EPDM sample. Furthermore, the effect of graphene oxide on structural properties of nanocomposites during the cure process is studied using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectrometry techniques. As the results show, graphene oxide interestingly affects the structure of zinc oxide during the vulcanization process. This behavior could be probably related to high tendency of zinc oxide to react with oxidized surface of graphene oxide.

  6. UV curing of a liquid based bismaleimide-containing polymer system

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available A new liquid formulation of commercial bismaleimide and n-acryloylmorpholine was prepared that could be UV cured as an alternative to traditional thermal cure methods presently used for BMI in the industry. UV curing was shown to be an efficient method which promoted the reaction rate significantly and was able to achieve this at low temperatures (30–50°C. A free radical polymerization approach has been used to explain the cure mechanism and cure kinetics, using data elucidated from the DPC and FTIR. The cured thin film was shown to achieve very high thermal stability (~400°C, with the BMI shown to retard the thermal degradation temperature and rate.

  7. Radiation curing: Science and technology

    International Nuclear Information System (INIS)

    Pappas, S.P.

    1992-01-01

    The science and technology of radiation curing have progressed substantially within the last 20 years. Nevertheless, radiation-curable compositions typically command relatively small shares in many of their competitive markets. This situation signifies that potential advantages of radiation curing are not generally perceived to overcome their limitations. An important objective of this book is to address this issue, within the scope of the subjects offered, by providing the present state of knowledge and by identifying the directions and challenges for future studies. The first chapter introduces radiation curing. Chapter 2 offers the first systematic presentation of inorganic and organometallic photoinitiators. Chapters 3 and 4 present the analytical techniques of photocalorimetry and real-time infrared spectroscopy, respectively. Recent advances in resin technology are offered in Chapters 5 and 6, which constitute the first comprehensive accounts of (meth)acrylated silicones and vinyl ethers, respectively. Radiation-curable coatings, printing inks, and adhesives are discussed in Chapters 7-9, respectively. Chapter 10 offers a discussion on photopolymer imaging systems

  8. Techniques and materials for internal water curing of concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Lura, Pietro

    2006-01-01

    This paper gives an overview of different techniques for incorporation of internal curing water in concrete. Internal water curing can be used to mitigate self-desiccation and selfdesiccation shrinkage. Some concretes may need 50 kg/m3 of internal curing water for this purpose. The price...

  9. Factors affecting dry-cured ham consumer acceptability.

    Science.gov (United States)

    Morales, R; Guerrero, L; Aguiar, A P S; Guàrdia, M D; Gou, P

    2013-11-01

    The objectives of the present study were (1) to compare the relative importance of price, processing time, texture and intramuscular fat in purchase intention of dry-cured ham through conjoint analysis, (2) to evaluate the effect of dry-cured ham appearance on consumer expectations, and (3) to describe the consumer sensory preferences of dry-cured ham using external preference mapping. Texture and processing time influenced the consumer preferences in conjoint analysis. Red colour intensity, colour uniformity, external fat and white film presence/absence influenced consumer expectations. The consumer disliked hams with bitter and metallic flavour and with excessive saltiness and piquantness. Differences between expected and experienced acceptability were found, which indicates that the visual preference of consumers does not allow them to select a dry-cured ham that satisfies their sensory preferences of flavour and texture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Methyl methacrylate as a healing agent for self-healing cementitious materials

    International Nuclear Information System (INIS)

    Van Tittelboom, K; De Belie, N; Adesanya, K; Dubruel, P; Van Puyvelde, P

    2011-01-01

    Different types of healing agents have already been tested on their efficiency for use in self-healing cementitious materials. Generally, commercial healing agents are used while their properties are adjusted for manual crack repair and not for autonomous crack healing. Consequently, the amount of regain in properties due to self-healing of cracks is limited. In this research, a methyl methacrylate (MMA)-based healing agent was developed specifically for use in self-healing cementitious materials. Various parameters were optimized including the viscosity, curing time, strength, etc. After the desired properties were obtained, the healing agent was encapsulated and screened for its self-healing efficiency. The decrease in water permeability due to autonomous crack healing using MMA as a healing agent was similar to the results obtained for manually healed cracks. First results seem promising: however, further research needs to be undertaken in order to obtain an optimal healing agent ready for use in practice

  11. Steam-cured stabilised soil blocks for masonry construction

    Energy Technology Data Exchange (ETDEWEB)

    Venkatarama Reddy, B.V. [Indian Inst. of Science, Bangalore (India). Dept. of Civil Engineering; Lokras, S.S. [Indian Inst. of Science, Bangalore (India). ASTRA

    1998-12-01

    Energy-efficient, economical and durable building materials are essential for sustainable construction practices. The paper deals with production and properties of energy-efficient steam-cured stabilised soil blocks used for masonry construction. Problems of mixing expansive soil and lime, and production of blocks using soil-lime mixtures have been discussed briefly. Details of steam curing of stabilised soil blocks and properties of such blocks are given. A comparison of energy content of steam-cured soil blocks and burnt bricks is presented. It has been shown that energy-efficient steam cured soil blocks (consuming 35% less thermal energy compared to burnt clay bricks) having high compressive strength can be easily produced in a decentralised manner. (orig.)

  12. UV/EB curing in Australia

    International Nuclear Information System (INIS)

    Woods, R.; Garnett, J.; Loo Teck Ng

    1999-01-01

    Progress in LTV/EB curing is reviewed in Australia. Generally the technology is used by those industries where curing is well developed in Europe and North America, however the scale is an order of magnitude lower due to the smaller market size. The Asian economic crisis does not appear to have affected expansion of the technology in Australia. EB continues to be successfully used in the packaging and foam fields whilst in UV, security devices, particularly banknotes are steadily expanding especially in export markets have been studied

  13. Preparation and Characterization of UV-Curable Cyclohexanone-Formaldehyde Resin and Its Cured Film Properties

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2014-01-01

    Full Text Available UV-curable cyclohexanone-formaldehyde (UVCF resin was prepared with cyclohexanone-formaldehyde (CF resin, isophorone diisocyanate (IPDI, and pentaerythritol triacrylate (PETA as base substance, bridging agent, and functional monomer, respectively. The structure of UVCF was characterized by Fourier transform infrared spectroscopy (FT-IR, 1H-nuclear magnetic resonance spectroscopy (1H-NMR, and gel permeation chromatography (GPC. The viscosity and photopolymerization behavior of the UV-curable formulations were studied. The thermal stability and mechanical properties of the cured films were also investigated. The results showed that UVCF resin was successfully prepared, the number of average molecular weight was about 2010, and its molecular weight distribution index was 2.8. With the increase of UVCF resin content, the viscosity of the UV-curable formulations increased. After exposure to UV irradiation for 230 s, the photopolymerization conversion of the UV-curable formulations was above 80%. Moreover, when the UVCF content was 60%, the formulations had high photopolymerization rate, and the cured UVCF films showed good thermal stability and mechanical properties.

  14. Muscle individual phospholipid classes throughout the processing of dry-cured ham: influence of pre-cure freezing.

    Science.gov (United States)

    Pérez-Palacios, Trinidad; Ruiz, Jorge; Dewettinck, Koen; Le, Thien Trung; Antequera, Teresa

    2010-03-01

    This paper aims to study the profile of phospholipid (PL) classes of Iberian ham throughout its processing and the changes it underwent due to the influence of the pre-cure freezing treatment. The general profile of each PL class did not vary during the ripening stage. Phosphatidylcholine (PC) showed the highest proportion, followed by phosphatidyletanolamine (PE) and phosphatidylserine (PS) and phosphatidylinositol (PI) being the minor PL. The four PL classes were highly hydrolysed during the salting stage and their degradation continued during the rest of the processing. Pre-cure freezing of Iberian ham influenced the levels of the four PL classes at the initial stage, all of them being higher in refrigerated (R) than in pre-cure frozen (F) hams. Moreover, the pattern of hydrolysis was not the same in these two groups. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Curing the queue

    NARCIS (Netherlands)

    Zonderland, Maartje Elisabeth

    2012-01-01

    In this dissertation we study several problems related to the management of healthcare and the cure of disease. In each chapter a hospital capacity distribution problem is analyzed using techniques from operations research, also known as mathematical decision theory. The problems considered are

  16. Effect of curing time on microstructure and mechanical strength ...

    Indian Academy of Sciences (India)

    The aim of this paper is to study the influence of curing time on the microstructure and mechanical strength development of alkali activated binders based on vitreous calcium aluminosilicate (VCAS). Mechanical strength of alkali activated mortars cured at 65 °C was assessed for different curing times (4–168 h) using 10 ...

  17. Curing potential of experimental resin composites with systematically varying amount of bioactive glass: Degree of conversion, light transmittance and depth of cure.

    Science.gov (United States)

    Par, Matej; Spanovic, Nika; Bjelovucic, Ruza; Skenderovic, Hrvoje; Gamulin, Ozren; Tarle, Zrinka

    2018-06-17

    The aim of this work was to investigate the curing potential of an experimental resin composite series with the systematically varying amount of bioactive glass 45S5 by evaluating the degree of conversion, light transmittance and depth of cure. Resin composites based on a Bis-GMA/TEGDMA resin with a total filler load of 70 wt% and a variable amount of bioactive glass (0-40 wt%) were prepared. The photoinitiator system was camphorquinone and ethyl-4-(dimethylamino) benzoate. The degree of conversion and light transmittance were measured by Raman spectroscopy and UV-vis spectroscopy, respectively. The depth of cure was evaluated according to the classical ISO 4049 test. The initial introduction of bioactive glass into the experimental series diminished the light transmittance while the further increase in the bioactive glass amount up to 40 wt% caused minor variations with no clear trend. The curing potential of the experimental composites was similar to or better than that of commercial resin composites. However, unsilanized bioactive glass fillers demonstrated the tendency to diminish both the maximum attainable conversion and the curing efficiency at depth. Experimental composite materials containing bioactive glass showed a clinically acceptable degree of conversion and depth of cure. The degree of conversion and depth of cure were diminished by bioactive glass fillers in a dose-dependent manner, although light transmittance was similar among all of the experimental composites containing 5-40 wt% of bioactive glass. Reduced curing potential caused by the bioactive glass has possible consequences on mechanical properties and biocompatibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Hard facts for radiation curing of elastomers

    International Nuclear Information System (INIS)

    Lyall, D.J.

    1984-01-01

    The subject is covered under the headings: introduction; outline of chemistry (differences between conventional and radiation curing); compounding; green strength; response of rubbers to electron beam treatment; electron beam cured applications:(a) wire and cable applications;(b) rubber tyre components;(c) heat shrinkable materials;(d) roofing materials. (U.K.)

  19. Cure modeling in real-time prediction: How much does it help?

    Science.gov (United States)

    Ying, Gui-Shuang; Zhang, Qiang; Lan, Yu; Li, Yimei; Heitjan, Daniel F

    2017-08-01

    Various parametric and nonparametric modeling approaches exist for real-time prediction in time-to-event clinical trials. Recently, Chen (2016 BMC Biomedical Research Methodology 16) proposed a prediction method based on parametric cure-mixture modeling, intending to cover those situations where it appears that a non-negligible fraction of subjects is cured. In this article we apply a Weibull cure-mixture model to create predictions, demonstrating the approach in RTOG 0129, a randomized trial in head-and-neck cancer. We compare the ultimate realized data in RTOG 0129 to interim predictions from a Weibull cure-mixture model, a standard Weibull model without a cure component, and a nonparametric model based on the Bayesian bootstrap. The standard Weibull model predicted that events would occur earlier than the Weibull cure-mixture model, but the difference was unremarkable until late in the trial when evidence for a cure became clear. Nonparametric predictions often gave undefined predictions or infinite prediction intervals, particularly at early stages of the trial. Simulations suggest that cure modeling can yield better-calibrated prediction intervals when there is a cured component, or the appearance of a cured component, but at a substantial cost in the average width of the intervals. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Electron Beam Curing of Polymer Matrix Composites - CRADA Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Janke, C. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Dave [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Norris, Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1997-05-01

    The major cost driver in manufacturing polymer matrix composite (PMC) parts and structures, and one of the elements having the greatest effect on their quality and performance, is the standard thermal cure process. Thermal curing of PMCs requires long cure times and high energy consumption, creates residual thermal stresses in the part, produces volatile toxic by-products, and requires expensive tooling that is tolerant of the high cure temperatures.

  1. UV curing by radical, cationic and concurrent radicalcationic polymerization

    International Nuclear Information System (INIS)

    Pappas, S.P.

    1984-01-01

    UV and EB curing represent complementary technologies with respective advantages and disadvantages. This paper deals with the design and evaluation of UV curable coatings to optimize cure rate and film properties. Topics included are state-of-the-art photoinitiator systems, light intensity effects, retardation of air-inhibition, adhesion, and amplification of photons for enhanced speed of cure

  2. Mechanistic aspects of polymer chemistry for radiation curing

    International Nuclear Information System (INIS)

    Dickson, Lawrence W.

    1988-01-01

    The chemistry of polymer production has been reviewed for the purpose of identifying suitable uses for high-energy electron accelerators in the plastics industry. High-energy radiation produces free radicals, electrons and ions in irradiated materials. These species initiate polymerization and cross-linking reactions in a manner analogous to that of chemical agents. The chemical mechanisms of radiation-induced polymerization, co-polymerization and cross-linking are compared with those of chemical and thermal initiation. Radiation polymerization can be a very fast process, but the polymerization reactions are quite exothermic, and temperature increases of up to 400 degrees Celcius may result if insufficient cooling is provided. Several approaches to reducing the temperature increase during radiation curing are presented. Chemical kinetic simulations of the radiation-induced cationic polymerization of styrene have shown that the effect of water inhibition on the rate of polymerization may be eliminated at the high dose rates available from high power accelerators. 25 refs

  3. Can superabsorent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength?

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jensen, Ole Mejlhede; Kovler, Konstantin

    2012-01-01

    The paper “Super absorbing polymers as an internal curing agent for mitigation of early-age cracking of high-performance concrete bridge decks” deals with different aspects of using superabsorbent polymers (SAP) in concrete to mitigate self-desiccation. The paper concludes that “Addition of SAP...... by overestimation of SAP water absorption. This results in an increase in water/cement ratio (w/c) for concrete with SAP. It is misleading to conclude on how SAP influences concrete properties, based on comparison of concrete mixes with SAP and reference concrete without SAP, if SAP mixes have higher w/c than...

  4. Study of oxygen inhibition effect on radiation curing

    International Nuclear Information System (INIS)

    Xiao Bin; Yang Xuemei; Zhao Pengji; Zeng Shuqing; Jiang Bo; Zhou Yong; Huang Wei; Zhou Youyi

    1995-01-01

    Michacl addition reaction product was used in the research of oxygen inhibition effect of radiation curing. The experimental results was measured by the content of gel and percentage of double bonds. It was proved that 9% of Michacl addition product could speed up 1.2 times of the radiation curing rate at 30 kGy of EB irradiation. This kind of formulation can withstand oxygen inhibition effect obviously, so it was the foundation of application for radiation curing in atmospheric condition

  5. Curing and caring competences in the skills training of physiotherapy students.

    Science.gov (United States)

    Dahl-Michelsen, Tone

    2015-01-01

    This article explores the significance of curing and caring competences in physiotherapy education, as well as how curing and caring competences intersect within the professional training of physiotherapy students. The empirical data include participant observations and interviews with students attending skills training in the first year of a bachelor's degree program in Norway. Curing and caring are conceptualized as gender-coded competences. That is, curing and caring are viewed as historical and cultural constructions of masculinities and femininities within the physiotherapy profession, as well as performative actions. The findings illuminate the complexity of curing and caring competences in the skills training of physiotherapy students. Curing and caring are both binary and intertwined competences; however, whereas binary competences are mostly concerned with contextual frames, intertwined competences are mostly concerned with performative aspects. The findings also point to how female and male students attend to curing and caring competences in similar ways; thus, the possibilities of transcending traditional gender norms turn out to be significant in this context. The findings suggest that, although curing somehow remains hegemonic to caring, the future generation of physiotherapists seemingly will be able to use their skills for both caring and curing.

  6. effect of curing methods on the compressive strength of concrete

    African Journals Online (AJOL)

    High curing temperature (up to 212◦F or. 100◦C) ... are affected by curing and application of the ... for concrete production, it is important to ... Concrete properties and durability are signif- ... Curing compounds are merely temporary coatings on.

  7. 7 CFR 30.36 - Class 1; flue-cured types and groups.

    Science.gov (United States)

    2010-01-01

    ...-cured, produced principally in the Piedmont sections of Virginia and North Carolina. (b) Type 11b. That... lying between the Piedmont and coastal plains regions of Virginia and North Carolina. (c) Type 12. That type of flue-cured tobacco commonly known as Eastern Flue-cured or Eastern Carolina Flue-cured...

  8. Determinant of flexible Parametric Estimation of Mixture Cure ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2015-12-01

    Dec 1, 2015 ... Suitability of four parametric mixture cure models were considered namely; Log .... regression analysis which relies on the ... The parameter of mixture cure fraction model was ..... Stochastic Models of Tumor Latency and Their.

  9. The Effect of Simplified Bonding Agents on the Bond Strength to Dentin of Self-Activated Dual-Cure Resin Cements

    Science.gov (United States)

    2013-04-26

    steps that included an acidic conditioner, primer, and adhesive monomer. Examples include Optibond FL (Kerr) and Adper Scotchbond MultiPurpose ( 3M ESPE...Bond NT (Dentsply) and Adper Prompt L-Pop ( 3M /ESPE); and two non-simplified adhesives , Optibond FL (Kerr) and Clearfil SE (Kuraray). The four...presentation at the 2013 IADR by Bisco Inc. compared their simplified adhesive and self-cure resin combination All-Bond Universal and Duolink with

  10. Year of progress for radiation curing

    International Nuclear Information System (INIS)

    Mesrobian, R.B.

    1975-01-01

    New developments in ultraviolet and electron beam curing of inks and coatings are reviewed. Current installations of radiation systems are noted. An assessment is presented on raw and intermediate materials availability. Current outlook on such problems as toxicity (FDA and OSHA), residual volatiles, materials cost, adhesion and flow-out of coatings is discussed. The future potential for radiation curing systems is contrasted with that of other systems, in view of EPA requirements

  11. Thermal analysis of bulk filled composite resin polymerization using various light curing modes according to the curing depth and approximation to the cavity wall

    Directory of Open Access Journals (Sweden)

    Hoon-Sang Chang

    2013-07-01

    Full Text Available OBJECTIVE: The purpose of this study was to investigate the polymerization temperature of a bulk filled composite resin light-activated with various light curing modes using infrared thermography according to the curing depth and approximation to the cavity wall. MATERIAL AND METHODS: Composite resin (AeliteFlo, Bisco, Schaumburg, IL, USA was inserted into a Class II cavity prepared in the Teflon blocks and was cured with a LED light curing unit (Dr's Light, GoodDoctors Co., Seoul, Korea using various light curing modes for 20 s. Polymerization temperature was measured with an infrared thermographic camera (Thermovision 900 SW/TE, Agema Infra-red Systems AB, Danderyd, Sweden for 40 s at measurement spots adjacent to the cavity wall and in the middle of the cavity from the surface to a 4 mm depth. Data were analyzed according to the light curing modes with one-way ANOVA, and according to curing depth and approximation to the cavity wall with two-way ANOVA. RESULTS: The peak polymerization temperature of the composite resin was not affected by the light curing modes. According to the curing depth, the peak polymerization temperature at the depth of 1 mm to 3 mm was significantly higher than that at the depth of 4 mm, and on the surface. The peak polymerization temperature of the spots in the middle of the cavity was higher than that measured in spots adjacent to the cavity wall. CONCLUSION: In the photopolymerization of the composite resin, the temperature was higher in the middle of the cavity compared to the outer surface or at the internal walls of the prepared cavity.

  12. Monitoring cure of composite resins using frequency dependent electromagnetic sensing techniques

    Science.gov (United States)

    Kranbuehl, D. E.; Hoff, M. S.; Loos, A. C.; Freeman, W. T., Jr.; Eichinger, D. A.

    1988-01-01

    A nondestructive in situ measurement technique has been developed for monitoring and measuring the cure processing properties of composite resins. Frequency dependent electromagnetic sensors (FDEMS) were used to directly measure resin viscosity during cure. The effects of the cure cycle and resin aging on the viscosity during cure were investigated using the sensor. Viscosity measurements obtained using the sensor are compared with the viscosities calculated by the Loos-Springer cure process model. Good overall agreement was obtained except for the aged resin samples.

  13. Mixture proportioning for internal curing

    DEFF Research Database (Denmark)

    Bentz, Dale P.; Pietro, Lura; Roberts, John W.

    2005-01-01

    of additional internal water that is not part of the mixing water.” The additional internal water is typically supplied by using relatively small amounts of saturated, lightweight, fine aggregates (LWA) or superabsorbent polymer (SAP) particles in the concrete. Benefits of internal curing include increased...... less than that of bulk water, a hydrating cement paste will imbibe water (about 0.07 g water/g cement) from an available source. While in higher w/c concretes, this water can be, and often is, supplied by external (surface) curing, in low w/c concretes, the permeability of the concrete quickly becomes...

  14. Simulation of curing of a slab of rubber

    International Nuclear Information System (INIS)

    Abhilash, P.M.; Kannan, K.; Varkey, Bijo

    2010-01-01

    The objective of the present work is to predict the degree of curing for a rectangular slab of rubber, which was subjected to non-uniform thermal history. As the thermal conductivity of rubber is very low, the temperature gradient across a slab is quite large, which leads to non-uniform vulcanization, and hence non-uniform mechanical properties-an inhomogeneous material. Since curing is an exothermic reaction, heat transfer and chemical reactions are solved in a coupled manner. The effect of heat generation on curing is also discussed.

  15. Experimental observation of internal water curing of concrete

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede

    2007-01-01

    Internal water curing has a significant effect on concrete. In addition to affecting hydration and moisture distribution, it influences most concrete properties, such as strength, shrinkage, cracking, and durability. The following paper is an overview of experimental methods to study internal water...... curing of concrete and its consequences. The special techniques needed to study internal water curing are dealt with along with the consequences of this process. Examples of applications are given and new measuring techniques that may potentially be applied to this field are addressed....

  16. Simulation of curing of a slab of rubber

    Energy Technology Data Exchange (ETDEWEB)

    Abhilash, P.M. [Department of Mechanical Engineering, IIT Madras, Chennai 600036 (India); Kannan, K., E-mail: krishnakannan@iitm.ac.i [Department of Mechanical Engineering, IIT Madras, Chennai 600036 (India); Varkey, Bijo [Advanced Design Department, MRF Ltd., Chennai 600019 (India)

    2010-04-15

    The objective of the present work is to predict the degree of curing for a rectangular slab of rubber, which was subjected to non-uniform thermal history. As the thermal conductivity of rubber is very low, the temperature gradient across a slab is quite large, which leads to non-uniform vulcanization, and hence non-uniform mechanical properties-an inhomogeneous material. Since curing is an exothermic reaction, heat transfer and chemical reactions are solved in a coupled manner. The effect of heat generation on curing is also discussed.

  17. Easy Debonding of Ceramic Brackets Bonded with a Light-Cured Orthodontic Adhesive Containing Microcapsules with a CO2 Laser.

    Science.gov (United States)

    Arima, Shiori; Namura, Yasuhiro; Tamura, Takahiko; Shimizu, Noriyoshi

    2018-03-01

    An easy debonding method for ceramic brackets using a light-cured Bis-GMA resin containing heat-expandable microcapsules and CO 2 laser was investigated. Ceramic brackets are used frequently in orthodontic treatment because of their desirable esthetic properties. However, the application of heavy force to ceramic brackets in debonding can fracture the tooth enamel and ceramic brackets, causing tooth pain. In total, 60 freshly extracted bovine permanent mandibular incisors were divided randomly into 10 groups of 6 specimens each, corresponding to the number of variables tested. Ceramic brackets were bonded to bovine permanent mandibular incisors using an orthodontic bonding agent containing heat-expandable microcapsules at different levels (0-30 wt%) and resin composite paste, and cured by a curing device. The bond strengths were measured before and after CO 2 laser irradiation, and the temperature increase in the pulp chamber in fresh human first premolars was also evaluated. With CO 2 laser irradiation for 5 sec to the bracket, the bond strength in the 25% microcapsule group decreased significantly, to ∼0.17-fold, compared with that of the no-laser group (p brackets, with less debonding time and enamel damage.

  18. Effect of light-curing units on the thermal expansion of resin nanocomposites.

    Science.gov (United States)

    Park, Jeong-Kil; Hur, Bock; Ko, Ching-Chang; García-Godoy, Franklin; Kim, Hyung-Il; Kwon, Yong Hoon

    2010-12-01

    To examine the thermal expansion of resin nanocomposites after light-curing using different light-curing units. Four different resin nanocomposites and four different light-curing units [quartz-tungsten-halogen (QTH), light emitting diode (LED), laser, and plasma arc] were chosen. Metal dies were filled with resin to make specimens and light-cured. The light intensity and light-curing time of the QTH and LED light-curing units were 1000 mW/cm2 and 40 seconds, 700 mW/cm2 and 40 seconds for the laser, and 1600 mW/cm2 and 3 seconds for the plasma arc. The coefficient of thermal expansion (CTE) was evaluated using a thermomechanical analyzer (TMA) at temperatures ranging from 30-80 degrees C. The CTE of the resin nanocomposites tested ranged from 28.5 to 65.8 (x 10(-6)/ degrees C), depending on the product and type of light-curing unit used. Among the specimens, Grandio showed the lowest CTE. The specimens cured using the plasma arc unit (Apollo 95E) showed the highest CTE. There was a linear correlation between the CTE and filler content (vol%) (R: -0.94-0.99 depending on the light-curing unit). The results may suggest a careful selection of the light-curing unit because there was more expansion in the specimens cured using the plasma arc unit than those cured by the other units.

  19. UV-cured polymer optics

    Science.gov (United States)

    Piñón, Victor; Santiago, Freddie; Vogelsberg, Ashten; Davenport, Amelia; Cramer, Neil

    2017-10-01

    Although many optical-quality glass materials are available for use in optical systems, the range of polymeric materials is limited. Polymeric materials have some advantages over glass when it comes to large-scale manufacturing and production. In smaller scale systems, they offer a reduction in weight when compared to glass counterparts. This is especially important when designing optical systems meant to be carried by hand. We aimed to expand the availability of polymeric materials by exploring both crown-like and flint-like polymers. In addition, rapid and facile production was also a goal. By using UV-cured thiolene-based polymers, we were able to produce optical materials within seconds. This enabled the rapid screening of a variety of polymers from which we down-selected to produce optical flats and lenses. We will discuss problems with production and mitigation strategies in using UV-cured polymers for optical components. Using UV-cured polymers present a different set of problems than traditional injection-molded polymers, and these issues are discussed in detail. Using these produced optics, we integrated them into a modified direct view optical system, with the end goal being the development of drop-in replacements for glass components. This optical production strategy shows promise for use in lab-scale systems, where low-cost methods and flexibility are of paramount importance.

  20. Weak interfaces for UV cure nanoimprint lithography

    Science.gov (United States)

    Houle, Frances; Fornof, Ann; Simonyi, Eva; Miller, Dolores; Truong, Hoa

    2008-03-01

    Nanoimprint lithography using a photocurable organic resist provides a means of patterning substrates with a spatial resolution in the few nm range. The usefulness of the technique is limited by defect generation during template removal, which involves fracture at the interface between the template and the newly cured polymer. Although it is critical to have the lowest possible interfacial fracture toughness (Gc less than 0.1 Jm-2) to avoid cohesive failure in the polymer, there is little understanding on how to achieve this using reacting low viscosity resist fluids. Studies of debonding of a series of free-radical cured polyhedral silsesquioxane crosslinker formulations containing selected reactive diluents from fluorosilane-coated quartz template materials will be described. At constant diluent fraction the storage modulus of cured resists follows trends in initial reaction rate, not diluent Tg. Adhesion is uncorrelated with both Tg and storage modulus. XPS studies of near-interface compositions indicate that component segregation within the resist fluid on contact with the template, prior to cure, plays a significant role in controlling the fracture process.

  1. Cure monitoring of epoxy resin by using fiber bragg grating sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hyuk [KEPCO, Naju (Korea, Republic of); Kim, Dae Hyun [Dept. of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2016-06-15

    In several industrial fields, epoxy resin is widely used as an adhesive for co-curing and manufacturing various structures. Controlling the manufacturing process is required for ensuring robust bonding performance and the stability of the structures. A fiber optic sensor is suitable for the cure monitoring of epoxy resin owing to the thready shape of the sensor. In this paper, a fiber Bragg grating (FBG) sensor was applied for the cure monitoring of epoxy resin. Based on the experimental results, it was demonstrated that the FBG sensor can monitor the status of epoxy resin curing by measuring the strain caused by volume shrinkage and considering the compensation of temperature. In addition, two types of epoxy resin were used for the cure-monitoring; moreover, when compared to each other, it was found that the two types of epoxy had different cure-processes in terms of the change of strain during the curing. Therefore, the study proved that the FBG sensor is very profitable for the cure-monitoring of epoxy resin.

  2. Investigation of the cure behaviour of an epoxy polyester powder coating

    International Nuclear Information System (INIS)

    Ishrat, S.; Nadeem, M.

    1993-01-01

    The epoxy polyester based thermo sets make attractive matrix materials for many industrial and commercial applications because of their excellent performance properties. These properties for example, dimensional stability, adhesion, chemical resistance, and thermal stability arise primarily from the formation of crosslinks during cure. While many factors, such as the reactivity and stoichiometry of the reactants can influence the course of the crosslinking reaction, the cure temperature and cure time ultimately govern the end use performance of the thermosetting systems of powder coatings. The interrelationship between the network formation process and performance properties makes cure process studies critically important in product development. A products end use performance properties can be correlated with the processing conditions by monitoring specific polymeric properties such as gel points, glass transition temperature (TgS,) and the kinetics of the crosslinking reaction. By plotting the change in these properties against cure time and or cure temperature, a 'profile' or degree of cure (DOC) curve can be formed. These profiles illustrate the progress of the crosslinking reaction and can be used to optimize thermo set handling, processing and cure process. (author)

  3. The Effect of Ultrasonic Treatment on Thermal Stability of the Cured Epoxy/Layered Silicate Nanocomposite

    Directory of Open Access Journals (Sweden)

    N. Y. Yuhana

    2012-01-01

    Full Text Available The effect of ultrasonic treatment on thermal stability of binary systems containing epoxy and organic chemically modified montmorillonite (Cloisite 30B was studied. Differential scanning calorimetry (DSC, thermal gravimetric analysis (TGA, transmission electron microscopy (TEM, and wide angle X-ray diffraction (WAXD analysis were utilized. The mixing of epoxy and Cloisite 30B nanocomposites was performed by mechanical stirring, followed by 1 or 3-hour ultrasonic treatment, and polyetheramine as the curing agent. Both XRD and TEM analyses confirmed that the intercalation of Cloisite 30B was achieved. The d0 spacings for silicate in cured sample prepared at 1- and 3-hour duration of ultrasonic treatment were about 21 and 18 Å, respectively. This shows that shorter duration or ultrasonic treatment may be preferable to achieve higher d0 spacing of clay. This may be attributed to the increase in viscosity as homopolymerization process occurred, which restricts silicate dispersion. The 1-hour sonicated samples seem to be more thermally stable during the glass transition, but less stable during thermal decomposition process.

  4. Status of radiation curing in South America

    International Nuclear Information System (INIS)

    Machado, L.D.B.; Rotta, A.C.; Petrie, I.

    2007-01-01

    In August 2006, an agreement between the Rad tech International North America and the ATBCR, the Brazillian Technical Association for Radiation cure, turns ATCBR into RadTech South America. This new institution starts with already 10 years of history and pioneering technical experience and achievements in UV and EB radiation cure. Both RadTech institutions have asserted a whole cooperation and information exchange to continue with the initial ATBCR compromise in promoting UV and EB curing technology and to make it available to professionals, enterprise and other organizations. The RadTech South America has it's headquarter at the Energy and Nuclear Research Institute, IPEN, in Sao Paulo, Brazil, from whom also gets sponsorship. (Author)

  5. Potential of yeasts isolated from dry-cured ham to control ochratoxin A production in meat models.

    Science.gov (United States)

    Peromingo, Belén; Núñez, Félix; Rodríguez, Alicia; Alía, Alberto; Andrade, María J

    2018-03-02

    The environmental conditions reached during the ripening of dry-cured meat products favour the proliferation of moulds on their surface. Some of these moulds are hazardous to consumers because of their ability to produce ochratoxin A (OTA). Biocontrol using Debaryomyces hansenii could be a suitable strategy to prevent the growth of ochratoxigenic moulds and OTA accumulation in dry-cured meat products. The aim of this work was to evaluate the ability of two strains of D. hansenii to control the growth and OTA production of Penicillium verrucosum in a meat model under water activities (a w ) values commonly reached during the dry-cured meat product ripening. The presence of D. hansenii strains triggered a lengthening of the lag phase and a decrease of the growth rate of P. verrucosum in meat-based media at 0.97 and 0.92 a w . Both D. hansenii strains significantly reduced OTA production (between 85.16 and 92.63%) by P. verrucosum in the meat-based medium at 0.92 a w . Neither absorption nor detoxification of OTA by D. hansenii strains seems to be involved. However, a repression of the expression of the non-ribosomal peptide synthetase (otanpsPN) gene linked to the OTA biosynthetic pathway was observed in the presence of D. hansenii. To confirm the protective role of D. hansenii strains, they were inoculated together with P. verrucosum Pv45 in dry-fermented sausage and dry-cured ham slices. Although P. verrucosum Pv45 counts were not affected by the presence of D. hansenii in both meat matrices, a reduction of OTA amount was observed. Therefore, the effect of D. hansenii strains on OTA accumulation should be attributed to a reduction at transcriptional level. Consequently, native D. hansenii can be useful as biocontrol agent in dry-cured meat products for preventing the hazard associated with the presence of OTA. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing

    Science.gov (United States)

    Zhang, Linglin; Li, Yingguang; Zhou, Jing

    2018-01-01

    Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.

  7. Comparison of the heat generation of light curing units.

    Science.gov (United States)

    Bagis, Bora; Bagis, Yildirim; Ertas, Ertan; Ustaomer, Seda

    2008-02-01

    The aim of this study was to evaluate the heat generation of three different types of light curing units. Temperature increases were recorded from a distance of 1 mm from a thermocouple to the tip of three different types of light curing units including one quartz-tungsten halogen (QTH), one plasma arc (PAC), and one light emitting diode (LED) unit. An experimental model was designed to fix the 1 mm distance between the tip of the light curing units and the thermocouple wire. Temperature changes were recorded in 10 second intervals up to 40 seconds. (10, 20, 30, and 40 seconds). Temperature measurements were repeated three times for every light curing unit after a one hour standby period. Statistical analysis of the results was performed using the analysis of variance (ANOVA) and the Bonferroni Test. The highest temperature rises (54.4+/-1.65 degrees C) occurred during activation of a PAC light curing unit for every test period (pdamage to the pulp.

  8. Aiming for cure in HBV and HDV infection.

    Science.gov (United States)

    Petersen, Jörg; Thompson, Alexander J; Levrero, Massimo

    2016-10-01

    Chronic hepatitis B virus (HBV) infection continues to be a major health burden worldwide. Currently available antiviral treatment options for chronic hepatitis B include pegylated interferon alpha2a (PegIFN) or nucleos(t)ide analogues (NAs). The major advantages of NAs are good tolerance and potent antiviral activity associated with high rates of sustained on-treatment response to therapy. The advantages of PegIFN include a finite course of treatment, the absence of drug resistance, and an opportunity to obtain a durable post-treatment response to therapy. Furthermore, PegIFN is the only approved agent known to be active against hepatitis D virus (HDV). The use of these two antiviral agents with different mechanisms of action in combination against hepatitis B is theoretically an attractive approach for treatment. Although several studies have confirmed certain virological advantages of combination therapies, data supporting a long-term clinical benefit for patients are lacking and monotherapy with PegIFN or NAs remains the therapy of choice. Moreover, with the current treatment approaches, only a limited number of patients achieve hepatitis B surface antigen (HBsAg) loss. HBsAg loss is considered a "functional cure", but does not mean viral eradication. There is a need for novel therapeutic approaches that enable not only suppression of viral replication, but resolution of HBV infection. A key challenge is to target covalently closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. The recent development and availability of innovative in vitro and in vivo systems and sensitive molecular techniques has opened new possibilities to study the complex network of interactions that HBV establishes with the host in the course of infection and to define new targets for antiviral strategies. Several new antiviral or immunomodulatory compounds have reached preclinical or clinical testing with the aim of silencing or eradicating cccDNA to achieve functional cure

  9. Influence of curing protocol on selected properties of light-curing polymers

    DEFF Research Database (Denmark)

    Dewaele, Magali; Asmussen, Erik; Peutzfeldt, Anne

    2009-01-01

    The purpose of this study was to investigate the effect of light-curing protocol on degree of conversion (DC), volume contraction (C), elastic modulus (E), and glass transition temperature (T(g)) as measured on a model polymer. It was a further aim to correlate the measured values with each other....

  10. Preparation of Shrinkage Compensating Concrete with HCSA Expansive Agent

    Science.gov (United States)

    Li, Changcheng; Jia, Fujia

    2017-10-01

    Shrinkage compensating concrete (SCC) has become one of the best effective methods of preventing and reducing concrete cracking. SCC is prepared by HCSA high performance expansive agent for concrete which restrained expansion rate is optimized by 0.057%. Slump, compressive strength, restrained expansion rate and cracking resistance test were carried out on SCC. The results show that the initial slump of fresh SCC was about 220mm-230mm, while slump after 2 hours was 180mm-200mm. The restrained expansion rate of SCC increased with the mixing amount of expansive agent. After cured in water for 14 days, the restrained expansion rate of C35 and C40 SCC were 0.020%-0.032%. With the dosage of expansive agent increasing, restrained expansion rate of SCC increased, maximum compressive stress and cracking stress improved, cracking temperature fell, thus cracking resistance got effectively improvement.

  11. Temperature rise produced by different light-curing units through dentin.

    Science.gov (United States)

    Yazici, A Rüya; Müftü, Ali; Kugel, Gerard

    2007-11-01

    This study investigated the temperature rise caused by different light curing units and the temperature increase in dentin of different thicknesses. Dentin discs of 1.0 and 2.0 mm thicknesses were prepared from extracted human mandibular molars. Temperatures were recorded directly at the surface of the light guide tip, under dentin discs with different thicknesses, and through a sandwich composed of 2 mm thick cured composite and dentin using a K-type thermocouple. The curing units used were two quartz-tungsten-halogen lights (Spectrum and Elipar Trilight-ET) and a light-emitting diode (LED). The highest temperature rise was observed under a Mylar strip using ET standard mode. Under 1 and 2 mm thick dentin barriers, the lowest temperature rise was measured for the LED curing light. Significant differences in temperature rise existed among all curing units except between the Spectrum and ET exponential modes under a 1 mm thick dentin barrier with cured composite. Temperature rises were insignificant between the Spectrum and ET exponential modes and between two modes of Trilight when the same experimental setup was used under a 2 mm thick dentin barrier. For all curing units, temperature elevation through 2 mm of dentin was less than for 1 mm of dentin thickness. The ET standard mode produced the highest and the LED produced the lowest temperature rise for all tested conditions. The thickness of dentin and light-curing unit might affect temperature transmission.

  12. Monitoring the Cure State of Thermosetting Resins by Ultrasound.

    Science.gov (United States)

    Lionetto, Francesca; Maffezzoli, Alfonso

    2013-09-05

    The propagation of low intensity ultrasound in a curing resin, acting as a high frequency oscillatory excitation, has been recently proposed as an ultrasonic dynamic mechanical analysis (UDMA) for cure monitoring. The technique measures sound velocity and attenuation, which are very sensitive to changes in the viscoelastic characteristics of the curing resin, since the velocity is related to the resin storage modulus and density, while the attenuation is related to the energy dissipation and scattering in the curing resin. The paper reviews the results obtained by the authors' research group in the last decade by means of in-house made ultrasonic set-ups for both contact and air-coupled ultrasonic experiments. The basics of the ultrasonic wave propagation in polymers and examples of measurements of the time-evolution of ultrasonic longitudinal modulus and chemical conversion of different thermosetting resins are presented. The effect of temperature on the cure kinetics, the comparison with rheological, low frequency dynamic mechanical and calorimetric results, and the correlation between ultrasonic modulus and crosslinking density will be also discussed. The paper highlights the reliability of ultrasonic wave propagation for monitoring the physical changes taking place during curing and the potential for online monitoring during polymer and polymer matrix composite processing.

  13. Monitoring the Cure State of Thermosetting Resins by Ultrasound

    Directory of Open Access Journals (Sweden)

    Alfonso Maffezzoli

    2013-09-01

    Full Text Available The propagation of low intensity ultrasound in a curing resin, acting as a high frequency oscillatory excitation, has been recently proposed as an ultrasonic dynamic mechanical analysis (UDMA for cure monitoring. The technique measures sound velocity and attenuation, which are very sensitive to changes in the viscoelastic characteristics of the curing resin, since the velocity is related to the resin storage modulus and density, while the attenuation is related to the energy dissipation and scattering in the curing resin. The paper reviews the results obtained by the authors’ research group in the last decade by means of in-house made ultrasonic set-ups for both contact and air-coupled ultrasonic experiments. The basics of the ultrasonic wave propagation in polymers and examples of measurements of the time-evolution of ultrasonic longitudinal modulus and chemical conversion of different thermosetting resins are presented. The effect of temperature on the cure kinetics, the comparison with rheological, low frequency dynamic mechanical and calorimetric results, and the correlation between ultrasonic modulus and crosslinking density will be also discussed. The paper highlights the reliability of ultrasonic wave propagation for monitoring the physical changes taking place during curing and the potential for online monitoring during polymer and polymer matrix composite processing.

  14. Solid-state /sup 13/C NMR study of cured resorcinol-formaldehyde resins

    Energy Technology Data Exchange (ETDEWEB)

    Lippmaa, H.; Samoson, A.

    1988-08-01

    The curing process generally follows the pattern observed in the stage of prepolymer formation. Catalysts (NaOH, hexa, Mg(OCOCH/sub 3/)/sub 2/) that have no substantial influence on the isomeric composition of the resorcinol-formaldehyde prepolymers, do not affect the isomeric composition of the cured resins to any significant extent either. Isomeric composition of the cured resins depends mostly on the presence of water during the curing process, necessary for depolymerisation of the added paraformaldehyde. Curing in the melt leads to enhanced 2-substitution in the 1,3-dihydroxybenzene rings. In the /sup 13/C NMR spectra of cured powdered samples, the tendency of 5-methylresorcinol to form oligomers with a higher degree of 2-substitution than resorcinol is clearly apparent. Polycondensation process continues in the powdered resins after initial curing until complete consumption of all formaldehyde. Curing of phenol-formaldehyde resols proceeds through intermediate dimethylene ether formation.

  15. Efficiency of light curing units in a government dental school.

    Science.gov (United States)

    Nassar, Hani M; Ajaj, Reem; Hasanain, Fatin

    2018-01-01

    The light intensity of a light-curing unit is a crucial factor that affects the clinical longevity of resin composites. This study aimed to investigate the efficiency of light-curing units in use at a local governmental dental school for curing conventional and bulk-fill resin materials. A total of 166 light-curing units at three locations were examined, and the brand, type, clinic location, diameter of curing tip, tip cleanliness (using a visual score), and the output (in mW/cm 2 using a digital radiometer) were recorded. Only 23.5% of the units examined had clean tips, with the graduate student clinical area containing the highest percentage of clean tips. Further, tips with poor cleanliness score values were associated with significantly lower output intensities. A small percentage (9.4%) of units was capable of producing intensities higher than 1,200 mW/cm 2 and lower than 600 mW/cm 2 (7.6%). The majority of the low intensity units were located in the undergraduate student area, which also contained the highest number of units with intensities between 900 and 1,200 mW/cm 2 . The output of all the units in service was satisfactory for curing conventional resin composites, and most units were capable of curing bulk-fill resin materials.

  16. Pulp chamber temperature rise during curing of resin-based composites with different light-curing units.

    Science.gov (United States)

    Durey, Kathryn; Santini, Ario; Miletic, Vesna

    2008-01-01

    The purpose of the present study was to measure the intrapulpal temperature rise occurring during polymerisation of different shades of resin-based composites (RBCs), and two light-emitting diode (LED) units. Seventy non-carious permanent molars, that had been extracted for orthodontic purposes and stored in 2% thymol for not more than four months, were selected. Patient age range was 11-18 years. Standard cavity preparation with standardised remaining dentine thickness and placement of thermocouples (TCs) was prepared using a novel split-tooth technique. Cavities were filled with one of two shades of RBC (A2 and C4, Filtek Z250, 3M ESPE, Seefeld, Germany), and cured with two LED high-intensity units (Elipar Freelight2, 3M ESPE, Seefeld, Germany; Bluephase, Ivoclar Vivadent, Schaan, Liechtenstein) and a conventional halogen light-curing unit (LCU) (Prismetics Lite 2, Dentsply, Weybridge, Surrey, UK) as a control. Pulp temperature rises during bonding [A2 results: H;2.67/0.48:E;5.24/1.32;B;5.99/1.61] were always greater than during RBC curing [A2 results: 2.44/0.63;E3.34/0.70;B3.38/0.60], and these were significant for both LED lights but not for the halogen control, irrespective of shade (Mann-Whitney test: 95% confidence limits). Temperature rises were at times in excess of the values normally quoted as causing irreversible pulp damage. Pulp temperature rises during bonding were higher with the LED lights than with the halogen control. There was no significant difference in temperature rise between the two LED lights when bonding but there was a significant difference between the two LED lights and the halogen control LCUs (Kruskal-Wallis Test: 95% confidence limits). The results support the view that there is a potential risk for heat-induced pulpal injury when light-curing RBCs. The risk is greater during bonding and with high energy, as compared to low-energy output systems. As the extent of tolerable thermal trauma by the pulp tissues is unknown, care and

  17. Electron beam-cured coating

    International Nuclear Information System (INIS)

    Kishi, Naoyuki

    1976-01-01

    The method for hardening coatings by the irradiation with electron beams is reviewed. The report is divided into seven parts, namely 1) general description and characteristics of electron beam-cured coating, 2) radiation sources of curing, 3) hardening conditions and reaction behaviour, 4) uses and advantages, 5) latest trends of the industry, 6) practice in the field of construction materials, and 7) economy. The primary characteristics of the electron beam hardening is that graft reaction takes place between base resin and coating to produce strong adhesive coating without any pretreatment. A variety of base resins are developed. High class esters of acrylic acid monomers and methacrylic acid monomers are mainly used as dilutants recently. At present, scanning type accelerators are used, but the practical application of the system producing electron beam of curtain type is expected. The dose rate dependence, the repetitive irradiation and the irradiation atmosphere are briefly described. The filed patent applications on the electron beam hardening were analyzed by the officer of Japan Patent Agency. The production lines for coatings by the electron beam hardening in the world are listed. In the electron beam-cured coating, fifty percent of given energy is consumed effectively for the electron beam hardening, and the solvents discharged from ovens and polluting atmosphere are not used, because the paints of high solid type is used. The running costs of the electron beam process are one sixth of the thermal oven process. (Iwakiri, K.)

  18. Degree of conversion of resin-based materials cured with dual-peak or single-peak LED light-curing units.

    Science.gov (United States)

    Lucey, Siobhan M; Santini, Ario; Roebuck, Elizabeth M

    2015-03-01

    There is a lack of data on polymerization of resin-based materials (RBMs) used in paediatric dentistry, using dual-peak light-emitting diode (LED) light-curing units (LCUs). To evaluate the degree of conversion (DC) of RBMs cured with dual-peak or single-peak LED LCUs. Samples of Vit-l-escence (Ultradent) and Herculite XRV Ultra (Kerr) and fissure sealants Delton Clear and Delton Opaque (Dentsply) were prepared (n = 3 per group) and cured with either one of two dual-peak LCUs (bluephase(®) G2; Ivoclar Vivadent or Valo; Ultradent) or a single-peak (bluephase(®) ; Ivoclar Vivadent). High-performance liquid chromatography and nuclear magnetic resonance spectroscopy were used to confirm the presence or absence of initiators other than camphorquinone. The DC was determined using micro-Raman spectroscopy. Data were analysed using general linear model anova; α = 0.05. With Herculite XRV Ultra, the single-peak LCU gave higher DC values than either of the two dual-peak LCUs (P < 0.05). Both fissure sealants showed higher DC compared with the two RBMs (P < 0.05); the DC at the bottom of the clear sealant was greater than the opaque sealant, (P < 0.05). 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Lucirin(®) TPO) was found only in Vit-l-escence. Dual-peak LED LCUs may not be best suited for curing non-Lucirin(®) TPO-containing materials. A clear sealant showed a better cure throughout the material and may be more appropriate than opaque versions in deep fissures. © 2014 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Consumer satisfaction with dry-cured ham in five European countries.

    Science.gov (United States)

    Resano, H; Pérez-Cueto, F J A; Sanjuán, A I; de Barcellos, M D; Grunert, K G; Verbeke, W

    2011-04-01

    The objective is to investigate consumer satisfaction with dry-cured ham in five European countries. A logistic regression model has been fitted using data collected through a cross-sectional web-based survey carried out in Belgium, Germany, Denmark, Poland and Greece during January 2008 (n=2437 of which 2156 were dry-cured ham consumers). Satisfaction was evaluated as overall satisfaction, as well as specific satisfaction with healthfulness, price, convenience and taste. The findings show that the main determinant of overall satisfaction is taste satisfaction, hence, producers are recommended to focus on matching sensory acceptability of dry-cured ham. No significant between-country differences were found, reflecting the wide availability of this product in all countries. Consumer characteristics influenced their level of satisfaction. Men, older (age > 52 years) and frequent consumers of dry-cured ham consumption were more likely to be satisfied with dry-cured ham. Consumers trust the butcher's advice and they preferred purchasing dry-cured ham at a butcher shop rather than in a supermarket. © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  20. Optimal cure cycle design of a resin-fiber composite laminate

    Science.gov (United States)

    Hou, Jean W.; Sheen, Jeenson

    1987-01-01

    A unified computed aided design method was studied for the cure cycle design that incorporates an optimal design technique with the analytical model of a composite cure process. The preliminary results of using this proposed method for optimal cure cycle design are reported and discussed. The cure process of interest is the compression molding of a polyester which is described by a diffusion reaction system. The finite element method is employed to convert the initial boundary value problem into a set of first order differential equations which are solved simultaneously by the DE program. The equations for thermal design sensitivities are derived by using the direct differentiation method and are solved by the DE program. A recursive quadratic programming algorithm with an active set strategy called a linearization method is used to optimally design the cure cycle, subjected to the given design performance requirements. The difficulty of casting the cure cycle design process into a proper mathematical form is recognized. Various optimal design problems are formulated to address theses aspects. The optimal solutions of these formulations are compared and discussed.

  1. Evaluation of shear bond strength of orthodontic brackets using trans-illumination technique with different curing profiles of LED light-curing unit in posterior teeth.

    Science.gov (United States)

    Heravi, Farzin; Moazzami, Saied Mostafa; Ghaffari, Negin; Jalayer, Javad; Bozorgnia, Yasaman

    2013-11-21

    Although using light-cured composites for bonding orthodontic brackets has become increasingly popular, curing light cannot penetrate the metallic bulk of brackets and polymerization of composites is limited to the edges. Limited access and poor direct sight may be a problem in the posterior teeth. Meanwhile, effectiveness of the trans-illumination technique is questionable due to increased bucco-lingual thickness of the posterior teeth. Light-emitting diode (LED) light-curing units cause less temperature rise and lower risk to the pulpal tissue. The purpose of this study was to evaluate the clinical effectiveness of trans-illumination technique in bonding metallic brackets to premolars, using different light intensities and curing times of an LED light-curing unit. Sixty premolars were randomly divided into six groups. Bonding of brackets was done with 40- and 80-s light curing from the buccal or lingual aspect with different intensities. Shear bond strengths of brackets were measured using a universal testing machine. Data were analyzed by one-way analysis of variance test and Duncan's post hoc test. The highest shear bond belonged to group 2 (high intensity, 40 s, buccal) and the lowest belonged to group 3 (low intensity, 40 s, lingual). Bond strength means in control groups were significantly higher than those in experimental groups. In all experimental groups except group 6 (80 s, high intensity, lingual), shear bond strength was below the clinically accepted values. In clinical limitations where light curing from the same side of the bracket is not possible, doubling the curing time and increasing the light intensity during trans-illumination are recommended for achieving acceptable bond strengths.

  2. Assessment of Salmonella survival in dry-cured Italian salami.

    Science.gov (United States)

    Bonardi, S; Bruini, I; Bolzoni, L; Cozzolino, P; Pierantoni, M; Brindani, F; Bellotti, P; Renzi, M; Pongolini, S

    2017-12-04

    The inactivation of Salmonella during curing of Italian traditional pork salami was investigated. A total of 150 batches of ground raw meat (GRM) used for salami manufacturing by four producers were tested for Salmonella by real-time PCR followed by ISO 6579 cultural confirmation and MPN enumeration. Salami produced with Salmonella positive GRMs were re-tested at the end of their curing period. Aw, pH and NaCl content were also measured. Detection of Salmonella was performed testing both 25 and 50g of the samples. By Real-Time PCR 37% of the GRMs resulted positive, but cultural detection of Salmonella was obtained in 14% of the samples only. Salmonella enumeration ranged from 31 MPN/g to Salmonella in 100% of all positive samples, vs. 62% of ISO-25g. Salami made of the contaminated GRMs were 29% Salmonella-positive, as most batches of salami produced with Salmonella-positive GRMs resulted negative after regular curing (20-48days). Overall, 13% of salami produced with Salmonella-contaminated GRMs were positive. They belonged to six batches, which turned out negative after prolonged curing ranging between 49 and 86days. Salmonella enumeration in salami ranged from 8.7 MPN/g to Salmonella in cured salami (p value: >0.05). The most common Salmonella serovars in GRMs were Derby (52%), Typhimurium monophasic variant 4, (Barbuti et al., 1993), 12:i:- (19%) and Stanley (10%). Salmonella Derby (56%), London, Branderup, Panama (13%, respectively) and Goldcoast (6%) were most frequent in cured salami. The study showed negative correlation between real-time CT values and cultural confirmation of Salmonella, as well as the importance of sample size for Salmonella detection. Among considered factors with possible effect on the occurrence of Salmonella in salami, statistical analysis revealed a role for aw in salami and for Salmonella load in GRMs, while pH and NaCl content did not significantly affect the probability of finding Salmonella in dry-cured salami in the context of

  3. Process Formulations And Curing Conditions That Affect Saltstone Properties

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. M.; Pickenheim, B. R.; Daniel, W. E.

    2012-09-28

    The first objective of this study was to analyze saltstone fresh properties to determine the feasibility of reducing the formulation water to premix (w/p) ratio while varying the amount of extra water and admixtures used during processing at the Saltstone Production Facility (SPF). The second part of this study was to provide information for understanding the impact of curing conditions (cure temperature, relative humidity (RH)) and processing formulation on the performance properties of cured saltstone.

  4. Radiation curing technology progress and its industrial applications in Japan

    International Nuclear Information System (INIS)

    Ukachi, Takashi

    2003-01-01

    Optics, electronics and display industries are now the driving forces for the Japanese radiation curing technology. The purpose of this paper is to overview the newly developed radiation curing technology in Japan, in particular, its industrial applications, and to present the market figures in radiation curing applications, which were surveyed by RadTech Japan in 2002 afresh. (author)

  5. Effects of the presence of the curing agent sodium nitrite, used in the production of fermented sausages, on bacteriocin production by Weissella paramesenteroides DX grown in meat simulation medium.

    Science.gov (United States)

    Papagianni, M; Sergelidis, D

    2013-06-10

    Weissellin A is a listericidal bacteriocin produced by the sausage-isolated strain of Weissella paramesenteroides DX. The response of the strain to various concentrations of the added curing agent NaNO2 (0.0025, 0.005 and 0.01g/L) was evaluated in bioreactor fermentations using a meat simulation medium. The presence of nitrite suppressed bacteriocin production - the effect being more pronounced with increasing concentrations. Weissellin A was produced as a growth-associated metabolite in the absence of nitrite or its presence in the low concentration of 0.005g/L under aerobic conditions. The suppressive effect of nitrite was apparent under conditions supporting increased specific production rates, e.g. 50% and 100% dissolved oxygen tension, but no effect was observed under anaerobic conditions. As the latter prevail in the microenvironment of fermented meat products, the absence of any influence of nitrite on bacteriocin production is an important finding that enlightens the role of this species of lactic acid bacteria in its common substrates. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. UV curing silicon-containing epoxy resin and its glass cloth reinforced composites

    International Nuclear Information System (INIS)

    Yang Guang; Tang Zhuo; Huang Pengcheng

    2007-01-01

    A UV-curable cationic silicon-containing epoxy resin formulation was developed. The gel conversion of the cured resin after 10-min UV irradiation reached 80% in the presence of 5% diaryliodonium salt photoinitiator and 5.5% polyol chain transfer agent by cationic ring-opening polymerization. The glass cloth-reinforced composites were fabricated with the silicon-containing epoxy resin using the wet lay-up technique and UV irradiation. The mechanical properties of the composites were evaluated. Compared with glass cloth reinforced bisphenol A epoxy resin matrix composites, the silicon-containing epoxy resin matrix composites possessed higher tensile strength and interlayer shear strength which was 158.5MPa and 9.9MPa respectively while other mechanical properties such as flexural property and tensile modulus were similar. (authors)

  7. A genetic study of a Staphylococus aureus plasmid involving cure and transference

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Costa Darini

    Full Text Available High frequency transfer and elimination of drug resistance may indicate an extrachromosomal inheritance of genetic determinants. This study shows the cure and transfer of a small plasmid and tetracycline resistance in Staphylococcus aureus 1030 (55TetR strains. Several methods are available for plasmid elimination. We used ethidium bromide, an agent that binds to DNA, and thus inhibits DNA polymerase. This caused a high frequency of loss of the small plasmid and resistance to tetracycline. Transfer of tetracycline resistance was done in a mixed culture at a frequency of 10-6. This type of study is very important to physicians and epidemiology investigators and provides better knowledge on antibiotic-resistance mechanisms that may occur in vivo in a hospital environment.

  8. Electron beam curing - taking good ideas to the manufacturing floor

    International Nuclear Information System (INIS)

    Saunders, C.; Lopata, V.; Barnard, J.; Stepanik, T.

    2000-01-01

    Acsion is exploiting several emerging electron beam EB applications ranging from composite curing and repair to viscose manufacturing. EB curing of composite structures offers several advantages: significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; improvements in material handling; and reduced overall manufacturing costs compared to thermal curing. The aerospace industry is developing EB technology in all of their market sectors, including military aviation and space products. Some specific products include cryogenic fuel tanks, improved canopy frames for jet aircraft, and the all-composite military aircraft. This paper discusses each of these opportunities. (author)

  9. Variable selection for mixture and promotion time cure rate models.

    Science.gov (United States)

    Masud, Abdullah; Tu, Wanzhu; Yu, Zhangsheng

    2016-11-16

    Failure-time data with cured patients are common in clinical studies. Data from these studies are typically analyzed with cure rate models. Variable selection methods have not been well developed for cure rate models. In this research, we propose two least absolute shrinkage and selection operators based methods, for variable selection in mixture and promotion time cure models with parametric or nonparametric baseline hazards. We conduct an extensive simulation study to assess the operating characteristics of the proposed methods. We illustrate the use of the methods using data from a study of childhood wheezing. © The Author(s) 2016.

  10. Nitrite-cured color and phosphate-mediated water binding of pork muscle proteins as affected by calcium in the curing solution.

    Science.gov (United States)

    Zhao, Jing; Xiong, Youling L

    2012-07-01

    Calcium is a mineral naturally present in water and may be included into meat products during processing thereby influencing meat quality. Phosphates improve myofibril swelling and meat water-holding capacity (WHC) but can be sensitive to calcium precipitation. In this study, pork shoulder meat was used to investigate the impact of calcium at 0, 250, and 500 ppm and phosphate type [sodium pyrophosphate (PP), tripolyphosphate (TPP), and hexametaphopshate (HMP)] at 10 mM on nitrite-cured protein extract color at various pH levels (5.5, 6.0, and 6.5) and crude myofibril WHC at pH 6.0. Neither calcium nor phosphates present in the curing brines significantly affected the cured color. Increasing the pH tended to promote the formation of metmyoglobin instead of nitrosylmyoglobin. The ability of PP to enhance myofibril WHC was hampered (P meat products. Although not affecting nitrite-cured color, calcium hampers the efficacy of phosphates to promote water binding by muscle proteins, underscoring the importance of water quality for brine-enhanced meat products. © 2012 Institute of Food Technologists®

  11. Influence of curing rate of resin composite on the bond strength to dentin

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Asmussen, E; Peutzfeldt, A

    2007-01-01

    @ 1000 mW/cm2) for all groups. A split Teflon mold was clamped to the treated dentin surface and filled with resin composite. The rate of cure was varied, using one of four LED-curing units of different power densities. The rate of cure was also varied using the continuous or pulse-delay mode....... In continuous curing mode, in order to give an energy density totaling 16 J/cm2, the power densities (1000, 720, 550, 200 mW/cm2) emitted by the various curing units were compensated for by the light curing period (16, 22, 29 or 80 seconds). In the pulse-delay curing mode, two seconds of light curing at one...... of the four power densities was followed by a one-minute interval, after which light cure was completed (14, 29, 27 or 78 seconds), likewise, giving a total energy density of 16 J/cm2. The specimens produced for each of the eight curing protocols and two resin composites (Tetric EvoCeram, Ivoclar Vivadent...

  12. Study on curing reaction of 4-aminophenoxyphthalonitrile/bisphthalonitrile

    Institute of Scientific and Technical Information of China (English)

    Xiao

    2010-01-01

    A series of phthalonitrile blending resins were prepared from 4-aminophenoxyphthalonitrile (APN) and 4,4'-bis (3,4-dicyanophenoxy)biphenyl (BPH) by directly powder-mixing and copolymerization. Differential scanning calorimeter (DSC) and dynamic rheology were used to study the curing reaction behaviors of APN/BPH blends, and the results indicated that the introduction of APN accelerated the curing rate of BPH, and the existence of BPH decreased the curing temperature of APN/BPH systems. The thermal stability of postcured APN/BPH resins was investigated by thermogravimetric analysis (TGA), and the TGA results indicated that the crosslinked polymers of APN/BPH systems possessed good thermal stability.

  13. The Effect of Rubber Mixing Process on The Curing Characteristics of Natural Rubber

    Directory of Open Access Journals (Sweden)

    Abu Hasan

    2013-04-01

    Full Text Available This research is aimed at studying the relationship between rubber mixing processes and curing characteristics of natural rubber. The curing characteristic analysis was carried out through a natural rubber formula having been masticated and mixed, followed by curing. As many as four mastication methods were finely applied; each respected four sequences of rubber mixing process. In the first method, rubber was masticated for 5 minutes and then rubber chemicals and carbon black N 330 were  simultaneously added. In the second and the third methods, rubber was masticated for 1 minute and then carbon blacks and rubber chemicals were also simultaneously added but using different type of fillers. In the fourth method, rubber was masticated for 3 minutes and then rubber chemicals and carbon black were subsequently added. The additions of rubber chemicals and carbon blacks to the masticated rubber were distinguished by the sequence and time allocated for each mixing process. The carbon blacks were added in two stages by which 10 phr was added first and the remaining 40 phr was added later along with oil. In another method, ratios of the carbon blacks addition (as done in the first  and the second stages were 20:30, 30:20, and 40:10. The examination results showed that rubber mixing process gave an impact on the changes of curing characteristics. They were much affected by the method of carbon black addition. The mixing temperature also had an effect on both curing time and curing rate in which the higher the mixing temperature, the lower the curing time and curing rate. Vulcanization temperature also affected the curing time and curing rate in which the higher the vulcanization temperature, the lower the curing time and the higher the curing rate. Lastly, particle size of carbon black also gave an impact on the curing time and curing rate in which the smaller the particle size, the lower the curing time and the higher the curing rate.

  14. Effect of gamma-radiation on major aroma compounds and vanillin glucoside of cured vanilla beans (Vanilla planifolia)

    International Nuclear Information System (INIS)

    Salmah Moosa; Seri Chempaka Mohd Yusof; Ruzalina Bahrin; Maizatul Akmam Mohd Nasir

    2014-01-01

    Radiation processing of food materials by gamma-radiation is a well established method for microbial decontamination and insect disinfestation. Irradiation of spices at doses ranging from 10 to 30 kGy has been reported to result in complete elimination of microorganisms with negligible changes in the flavour quality. The effect of gamma-radiation on microflora and vanillin content of cured vanilla beans in the dose range of 5-50 kGy has been investigated, but its effect on other major aroma compounds and vanillin glucoside (vanillin aroma precursor) remaining after curing have not been studied so far. Vanillin (4-hydroxy-3-methoxybenzaldehyde) is one such compound used as a flavouring agent and as a dietary component. It is the major component of natural vanilla, which is one of the most widely used and important flavouring materials throughout the world. Vanillin is an antioxidant capable of protecting membrane against lipid peroxidation and DNA against strand breaks induced by reactive oxygen species. The present work was aimed to study the effect of gamma-radiation processing on the major aroma compounds of cured vanilla beans and also to investigate possible enhancement in vanillin content by the radiolytic breakdown of vanillin glucoside present already. Cured vanilla beans were irradiated (5, 10, 15, 20 and 30 kGy) and the vanillin content of control and irradiated samples were analysed, respectively for a possible enhancement of vanillin content by radiolysis of vanillin glucoside. Radiolytic breakdown of glycosidic precursors of aroma constituents and consequent release of free aroma was shown to result in the enhancement of aroma quality of these products. Since a considerable amount of vanillin exists as its glycosidic precursor in cured vanilla pods, a possible enhancement in yield of vanillin by radiation processing is thus expected. Hence the highly stable oxygen-carbon linkage between vanillin and glucose limits the possible enhancement of aroma

  15. Effect of reduced exposure times on the cytotoxicity of resin luting cements cured by high-power led

    Directory of Open Access Journals (Sweden)

    Gulfem Ergun

    2011-06-01

    Full Text Available OBJECTIVE: Applications of resin luting agents and high-power light-emitting diodes (LED light-curing units (LCUs have increased considerably over the last few years. However, it is not clear whether the effect of reduced exposure time on cytotoxicity of such products have adequate biocompatibility to meet clinical success. This study aimed at assessing the effect of reduced curing time of five resin luting cements (RLCs polymerized by high-power LED curing unit on the viability of a cell of L-929 fibroblast cells. MATERIAL AND METHODS: Disc-shaped samples were prepared in polytetrafluoroethylene moulds with cylindrical cavities. The samples were irradiated from the top through the ceramic discs and acetate strips using LED LCU for 20 s (50% of the manufacturer's recommended exposure time and 40 s (100% exposure time. After curing, the samples were transferred into a culture medium for 24 h. The eluates were obtained and pipetted onto L-929 fibroblast cultures (3x10(4 per well and incubated for evaluating after 24 h. Measurements were performed by dimethylthiazol diphenyltetrazolium assay. Statistical significance was determined by two-way ANOVA and two independent samples were compared by t-test. RESULTS: Results showed that eluates of most of the materials polymerized for 20 s (except Rely X Unicem and Illusion reduced to a higher extent cell viability compared to samples of the same materials polymerized for 40 s. Illusion exhibited the least cytotoxicity for 20 s exposure time compared to the control (culture without samples followed by Rely X Unicem and Rely X ARC (90.81%, 88.90%, and 83.11%, respectively. For Rely X ARC, Duolink and Lute-It 40 s exposure time was better (t=-1.262 p=0,276; t=-9.399 p=0.001; and t=-20.418 p<0.001, respectively. CONCLUSION: The results of this study suggest that reduction of curing time significantly enhances the cytotoxicity of the studied resin cement materials, therefore compromising their clinical

  16. Method for curing polymers using variable-frequency microwave heating

    Science.gov (United States)

    Lauf, Robert J.; Bible, Don W.; Paulauskas, Felix L.

    1998-01-01

    A method for curing polymers (11) incorporating a variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34). By varying the frequency of the microwave signal, non-uniformities within the cavity (34) are minimized, thereby achieving a more uniform cure throughout the workpiece (36). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. The furnace cavity (34) may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing.

  17. Effect of commercially available egg cures on the survival of juvenile salmonids.

    Directory of Open Access Journals (Sweden)

    Shaun Clements

    Full Text Available There is some concern that incidental consumption of eggs cured with commercially available cures for the purpose of sport fishing causes mortality in juvenile salmon. We evaluated this by feeding juvenile spring Chinook (Oncorhynchus tshawytscha and steelhead (O. mykiss with eggs cured with one of five commercially available cures. We observed significant levels of mortality in both pre-smolts and smolts. Depending on the experiment, 2, 3, or 4 of the cures were associated with mortality. Mortality tended to be higher in the smolts than in the parr, but there was no clear species effect. The majority of mortality occurred within the first 10 d of feeding. Removal of sodium sulfite from the cure significantly reduced the level of mortality. Soaking the eggs prior to feeding did not reduce mortality. We observed a clear relationship between the amount of cured egg consumed each day and the survival time. We conclude that consumption of eggs cured with sodium sulfite has the potential to cause mortality in juvenile steelhead and Chinook salmon in the wild.

  18. Effect of commercially available egg cures on the survival of juvenile salmonids

    Science.gov (United States)

    Clements, S.; Chitwood, R.; Schreck, C.B.

    2011-01-01

    There is some concern that incidental consumption of eggs cured with commercially available cures for the purpose of sport fishing causes mortality in juvenile salmon. We evaluated this by feeding juvenile spring Chinook (Oncorhynchus tshawytscha) and steelhead (O. mykiss) with eggs cured with one of five commercially available cures. We observed significant levels of mortality in both pre-smolts and smolts. Depending on the experiment, 2, 3, or 4 of the cures were associated with mortality. Mortality tended to be higher in the smolts than in the parr, but there was no clear species effect. The majority of mortality occurred within the first 10 d of feeding. Removal of sodium sulfite from the cure significantly reduced the level of mortality. Soaking the eggs prior to feeding did not reduce mortality. We observed a clear relationship between the amount of cured egg consumed each day and the survival time. We conclude that consumption of eggs cured with sodium sulfite has the potential to cause mortality in juvenile steelhead and Chinook salmon in the wild.

  19. Dsc cure kinetics of an unsaturated polyester resin using empirical kinetic model

    International Nuclear Information System (INIS)

    Abdullah, I.

    2015-01-01

    In this paper, the kinetics of curing of unsaturated polyester resin initiated with benzoyl peroxide was studied. In case of unsaturated polyester (UP) resin, isothermal test alone could not predict correctly the curing time of UP resin. Therefore, isothermal kinetic analysis through isoconventional adjustment was used to correctly predict the curing time and temperature of UP resin. Isothermal kinetic analysis through isoconversional adjustment indicated that 97% of UP resin cures in 33 min at 120 degree C. Curing of UP resin through microwaves was also studied and found that 67% of UP resin cures in 1 min at 120 degree C. The crosslinking reaction of UP resin is so fast at 120 degree C that it becomes impossible to predict correctly the curing time of UP resin using isothermal test and the burial of C=C bonds in microgels makes it impossible to be fully cured by microwaves at 120 degree C. The rheological behaviour of unsaturated polyester resin was also studied to observe the change in viscosity with respect to time and temperature. (author)

  20. Warpage of QFN Package in Post Mold Cure Process of integrated circuit packaging

    Science.gov (United States)

    Sriwithoon, Nattha; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon

    2017-09-01

    This research studied about warpage of QFN package in post mold cure process of integrated circuit (IC) packages using pre-plated (PPF) leadframe. For IC package, epoxy molding compound (EMC) are molded by cross linking of compound stiffness but incomplete crosslinked network and leading the fully cured thermoset by post mold cure (PMC) process. The cure temperature of PMC can change microstructure of EMC in term of stress inside the package and effect to warpage of the package due to coefficient of thermal expansion (CTE) between EMC and leadframe. In experiment, cure temperatures were varied to check the effect of internal stress due to different cure temperature after completed post mold cure for TDFN 2×3 8L. The cure temperature were varied with 180 °C, 170 °C, 160 °C, and 150°C with cure time 4 and 6 hours, respectively. For analysis, the TDFN 2×3 8L packages were analyzed the warpage by thickness gauge and scanning acoustic microscope (SAM) after take the test samples out from the oven cure. The results confirmed that effect of different CTE between EMC and leadframe due to different cure temperature resulting to warpage of the TDFN 2×3 8L packages.

  1. Evaluation of Flexural Strength of Polymethyl Methacrylate modified with Silver Colloidal Nanoparticles subjected to Two Different Curing Cycles: An in vitro Study.

    Science.gov (United States)

    Munikamaiah, Ranganath L; Jain, Saket K; Pal, Kapil S; Gaikwad, Ajay

    2018-03-01

    Silver colloidal nanoparticles have been incorporated into acrylic resins to induce antimicrobial properties. However, as additives, they can influence the mechanical properties of the final product. Mechanical properties are also dependent on different curing cycles. The aim of this study was to evaluate flexural strength of a denture base resin incorporated with different concentrations of silver colloidal nanoparticles subjected to two different curing cycles. Lucitone 199 denture base resin was used into which silver colloidal nanoparticles were incorporated at 0.5 and 5% by polymer mass. Specimens devoid of nanoparticles were used as controls. A total of 60 specimens were fabricated and divided into two groups. Each group was divided into three subgroups consisting of 10 specimens each. The specimens were fabricated according to American Dental Association (ADA) specification No. 12 and tested for flexural strength using universal testing machine. Silver colloidal nanoparticle incorporation at 0.5% concentration increased the mean flexural strength in both curing cycles by 7.5 and 4.4%, respectively, when compared with the control group. The study suggested that the mean flexural strength value of 0.5% silver colloidal nanoparticles in denture base resin was above the value of the control group both in short and long curing cycles, which makes it clinically suitable as a denture base material. However, at 5% concentration, the statistically significant amount of decrease in flexural strength compared with the value of control group both in short and long curing cycles gives it a questionable prognosis. The specimens incorporated with the antimicrobial agent 0.5% silver colloidal nanoparticles and processed by long curing cycles showed significant increase in its flexural strength compared with the control group, which makes it clinically suitable as a denture base material.

  2. Electron curing for high speed paper, film and foil converting

    International Nuclear Information System (INIS)

    Nablo, S.V.; Tripp, E.P.

    1979-01-01

    The status of self-shielded, compact electron processors for flexible web converting applications is reviewed. The uses of these units for a variety of laminating applications are described, with emphasis on the application techniques appropriate for low weight, (1 to 2 gm/m 2 ) 100% convertible adhesives. Performance data for electron cured adhesives with polyester/polyethylene systems is presented and compared with conventional urethane systems. The unique surface features of electron cured gravure coatings applied and cured at high speed are discussed, with reference to both paper and film substrates. An important advantage of electron curing of buried adhesive layers is the process quality control permitted by this 'all-electric' system. The performance characteristics of curing atmosphere control (inerting) for coatings are reviewed. Industrial experience with these processors has shown that effective inerting of coated flexible webs at speeds to 250 m/minute is both practical and economical. (author)

  3. The effect of curing conditions on the durability of high performance concrete

    Science.gov (United States)

    Bumanis, G.; Bajare, D.

    2017-10-01

    This study researches compressive strength and durability of the high strength self-compacting concrete (SCC) impacted at early stage by the curing conditions. The mixture compositions of metakaolin containing waste and cenospheres as partial cement replacement (15 wt%) were compared to reference SCC with 100% cement. The specimens prepared in advance were demoulded 24h after casting of the SCC and the specific curing conditions were applied for up to 28 days: standard water curing at 20°C (i); indoor curing at 20°C, RH 60% (ii) and low temperature air curing (2°C) at RH 60% (iii). Results indicate that at early stage (14 days) indoor curing conditions increase compressive strength of the SCC whilst no strength loss has been detected even at a low temperature curing. The further strength gain has been substantially reduced for samples cured indoor and at a low temperature with significant variation observed for long term compressive strength (180 days). The metakaolin containing waste has proved to be an effective partial cement replacement and it has improved strength gain even at a low temperature curing. Meanwhile cenospheres have reduced the SCC strength and with no positive effect on strength observed within the standard term. Freeze-thaw durability and resistance to the chloride penetration have been improved for the SCC cured at low temperature. The SCC with metakaolin containing waste has proved to be the most durable thus demonstrating importance of effective micro filler use.

  4. Radiation-curable impregnating agents for the conservation of archaeologic wooden objects. Part 2

    International Nuclear Information System (INIS)

    Schaudy, R.; Wendrinsky, J.; Kalteis, H.; Grienauer, W.

    1982-12-01

    As a continuation of the work described in OEFZS Ber. No. 4165, impregnating agents curable by ionizing radiation, such as free radical polymerizable monomers or artificial resins, have been investigated. Specific weight and viscosity of the liquid mixtures have been as well determined as the specific weight and gel content of the gamma radiation-cured samples. Hardness and elastic behaviour have been estimated only. The shrinkage during hardening was found to be 5 to 12 % for low viscous mixtures (up to 600 mPa.s) and 3 to 8 % for higher viscous impregnating agents. The results are to be discussed. (Author) [de

  5. Techno-economic benefits of radiation curing: a comparison studies

    Energy Technology Data Exchange (ETDEWEB)

    French, D [Universal Wood Inc., Lousville (United States)

    1994-12-31

    In comparing radiation cure versus conventional heat cure systems, the factors are considered in this studies i.e. environmental laws - includes the future regulations concerning volatile organic emissions and waste disposal may weigh heavily in the decision.

  6. Electron Beam curing of intaglio inks

    International Nuclear Information System (INIS)

    O'Brien, T.

    1984-01-01

    Press trials conducted by the US Bureau of Engraving and Printing at the National Bank of Denmark in September 8-21, 1982, clearly indicated the feasibility of Electron Beam (EB) curing for web intaglio printing. These trials, some at continuous press runs of up to six hours, gave positive results for virtually all our requirements including: print quality, press speeds, ability to print both sides of the web on one pass through a press, acceptable ink curing at one megarad or less, and minimum substrate deterioration or loss of moisture. In addition, these trials demonstrated many advantages over thermal curing which is the only other alternative to two sided printing in one pass through the press. These advantages can be found in product quality, a cleaner environment, and in economics. This development program is still in progress with efforts now directed towards adapting EB ink technology to the latest developments in intaglio printing, i.e. aqueous cylinder wiping which requires EB inks to be water dispersable. Also the stability of materials in contact with EB inks is being investigated

  7. Electron beam curing of intaglio inks

    International Nuclear Information System (INIS)

    O'Brien, T.

    1985-01-01

    Press trials conducted by the U.S. Bureau of Engraving and Printing at the National Bank of Denmark clearly indicated the feasibility of Electron Beam (E.B.) curing for web intaglio printing . These trials, some at continuous press runs of up to six hours, gave positive results for virtually all our requirements including: print quality, press speeds, ability to print both sides of the web on one pass through a press, acceptable ink curing at one megarad or less, and minimum substrate deterioration or loss of moisture. In addition, these trials demonstrated many advantages over thermal curing which is the only other alternative to two sided printing in one pass through the press. These advantages can be found in product quality, a cleaner environment, and in economics. This development program is still in progress with efforts now directed towards adapting E.B. ink technology to the latest developments in intaglio printing, i.e. aqueous cylinder wiping which requires E.B. inks to be water dispersable. Also the stability of materials in contact with E.B. inks is being investigated. (author)

  8. Depth of cure of bulk-fill flowable composite resins.

    Science.gov (United States)

    Pedalino, Inaam; Hartup, Grant R; Vandewalle, Kraig S

    2015-01-01

    In recent years, manufacturers have introduced flowable composite resins that reportedly can be placed in increments of 4 mm or greater. The purpose of this study was to evaluate the depth of cure of bulk-fill flowable composite resins (SureFil SDR Flow, Grandio Flow, and Venus Bulk Fill) and a conventional flowable composite resin (Revolution Formula 2). Depth of cure was measured in terms of bottom-maximum Knoop hardness number (KHN) ratios and the International Organization for Standardization (ISO) 4049 scrape technique. Shades A2 and A3 of SureFil SDR Flow, Grandio Flow, and Revolution Formula 2 were tested. Venus Bulk Fill was tested in its only available shade (universal). Specimens in thicknesses of 2, 3, 4, 5, and 6 mm were polymerized for 20 or 40 seconds, and a hardness tester was used to determine the hardness ratios for each shade at each thickness. For the scraping technique, after specimens were exposed to the curing light, unpolymerized composite resin was removed with a plastic instrument, the polymerized composite was measured, and the length was divided by 2 per ISO guidelines. According to the KHN ratios and the scrape test, Venus Bulk Fill predictably exceeded the manufacturer's claim of a 4-mm depth of cure at both 20 and 40 seconds of curing time. The overall results for depth of cure showed that Venus Bulk Fill ≥ SureFil SDR Flow ≥ Grandio Flow ≥ Revolution Formula 2.

  9. Recent advance and applications in radiation curing of coatings

    International Nuclear Information System (INIS)

    Kishi, Naoyuki

    1976-01-01

    The recent advance and application as well as the profitability of method of coating by curing with electron beam are reviewed. The acrylic prepolymers having two or more acryloyl radicals on side chains or at the end can be cured with electron beam, and have excellent characteristics. The technique to use acrylic esters and methacrylic esters as dilutant monomers has been developed. Mitsubishi Rayon Co., Ltd. is finishing asbestos slate boards and calcium silicate boards for prefabricated houses, utilizing an electron beam curing coating line. The line serves as a semicommercial production line having the capacity of continuously coating and curing boards of 1,200 mm by 2,400 mm. It is equipped with an electron beam accelerator of 500 kV x 65 mA (max. 100 mA), a conveyor running at speed of 5 to 100 m/min, and a curtain flow coater, a roller coater and the like. It can be cured rapidly at room temperature. The finished coatings have high cross-linking density and withstand particularly blocking, freezing and solvents. Its application to the coating of automotive parts by Suzuki Automobile Co. is briefly mentioned. (Iwakiri, K.)

  10. Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes

    Science.gov (United States)

    Meador, Mary Ann B.; Tigelaar, Dean M.

    2009-01-01

    Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.

  11. Effect of light-curing units, post-cured time and shade of resin cement on knoop hardness.

    Science.gov (United States)

    Reges, Rogério Vieira; Costa, Ana Rosa; Correr, Américo Bortolazzo; Piva, Evandro; Puppin-Rontani, Regina Maria; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço

    2009-01-01

    The aim of this study was to evaluate the Knoop hardness after 15 min and 24 h of different shades of a dual-cured resin-based cement after indirect photoactivation (ceramic restoration) with 2 light-curing units (LCUs). The resin cement Variolink II (Ivoclar Vivadent) shade XL, A2, A3 and opaque were mixed with the catalyst paste and inserted into a black Teflon mold (5 mm diameter x 1 mm high). A transparent strip was placed over the mold and a ceramic disc (Duceram Plus, shade A3) was positioned over the resin cement. Light-activation was performed through the ceramic for 40 s using quartz-tungsten-halogen (QTH) (XL 2500; 3M ESPE) or light-emitting diode (LED) (Ultrablue Is, DMC) LCUs with power density of 615 and 610 mW/cm(2), respectively. The Koop hardness was measured using a microhardness tester HMV 2 (Shimadzu) after 15 min or 24 h. Four indentations were made in each specimen. Data were subjected to ANOVA and Tukey's test (alpha=0.05). The QTH LCU provided significantly higher (pcement showed lower Knoop hardness than the other shades for both LCUs and post-cure times.

  12. Normal value collection in nuclear cardiological examination: The 'cured norm' concept

    International Nuclear Information System (INIS)

    Maul, F.D.; Standke, R.; Hoer, G.

    1989-01-01

    As a refence a standard of 'cured norm' is proposed. The patients who come under the 'cured norm' category are those without previous myocardial infarctions and who are free of symptoms after a successful transluminal coronary angioplasty (TCA) with a normalized exercise ECG. Global and sectorial parameters of radionuclide-vetriculography (RNV) and 201 Tl-myocardial-scintigraphy ( 201 Tl-MS) are in good accordance with the published data from other authors. An improvement is found after successful TCA but results are even better in the special 'cured norm' group indicating an additional normalization. Sensitivity and specificity based on the 'cured norm' is comparable with the results published by others. From these results we conclude that the 'cured norm' is suitable for clinical use. (orig.) [de

  13. Distance to Cure

    OpenAIRE

    Capachi, Casey

    2013-01-01

    Distance to Cure A three-part television series by Casey Capachi www.distancetocure.com   Abstract   How far would you go for health care? This three-part television series, featuring two introductory segments between each piece, focuses on the physical, cultural, and political obstacles facing rural Native American patients and the potential of health technology to break down those barriers to care.   Part one,Telemedici...

  14. Curing mode affects bond strength of adhesively luted composite CAD/CAM restorations to dentin.

    Science.gov (United States)

    Lührs, Anne-Katrin; Pongprueksa, Pong; De Munck, Jan; Geurtsen, Werner; Van Meerbeek, Bart

    2014-03-01

    To determine the effect of curing mode and restoration-surface pre-treatment on the micro-tensile bond strength (μTBS) to dentin. Sandblasted CAD/CAM composite blocks (LAVA Ultimate, 3M ESPE) were cemented to bur-cut dentin using either the etch & rinse composite cement Nexus 3 ('NX3', Kerr) with Optibond XTR ('XTR', Kerr), or the self-etch composite cement RelyX Ultimate ('RXU', 3M ESPE) with Scotchbond Universal ('SBU', 3M ESPE). All experimental groups included different 'curing modes' (light-curing of adhesive and cement ('LL'), light-curing of adhesive and auto-cure of cement ('LA'), co-cure of adhesive through light-curing of cement ('AL'), or complete auto-cure ('AA')) and different 'restoration-surface pre-treatments' of the composite block (NX3: either a silane primer (Kerr), or the XTR adhesive; RXU: either silane primer (RelyX Ceramic Primer, 3M ESPE) and SBU, or solely SBU). After water-storage (7 days, 37°C), the μTBS was measured. Additionally, the degree of conversion (DC) of both cements was measured after 10min and after 1 week, either auto-cured (21°C/37°C) or light-cured (directly/through 3-mm CAD/CAM composite). The linear mixed-effects model (α=0.05) revealed a significant influence of the factors 'curing mode' and 'composite cement', and a less significant effect of the factor 'restoration-surface pre-treatment'. Light-curing 'LL' revealed the highest μTBS, which decreased significantly for all other curing modes. For curing modes 'AA' and 'AL', the lowest μTBS and a high percentage of pre-testing failures were reported. Overall, DC increased with light-curing and incubation time. The curing mode is decisive for the bonding effectiveness of adhesively luted composite CAD/CAM restorations to dentin. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Polyurethane curing kinetics for polymer bonded explosives: HTPB/IPDI binder

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangmook; Hong, In-Kwon [Dankook University, Yongin (Korea, Republic of); Choi, Chong Han; Lee, Jae Wook [Sogang University, Seoul (Korea, Republic of)

    2015-08-15

    The kinetics of polyurethane reaction and the effect of catalysts on the curing behavior were studied. The mixtures of hydroxyl terminated polybutadiene and isophorone diisocyanate with different reaction catalysts were dynamically cured in a differential scanning calorimeter. The activation energies were evaluated by the Kissinger and the Ozawa methods. The Chang plot was also used to determine reaction order and rate constant. The results showed that the activation energies were influenced remarkably by the choice of catalysts. The degree of cure and the cure time at given temperatures were calculated by direct integration of modified auto-catalytic kinetic model. It would give valuable information like pot-life estimation during manufacturing polymer-bonded explosives.

  16. Thermal conductivity and Kapitza resistance of cyanate ester epoxy mix and tri-functional epoxy electrical insulations at superfluid helium temperature

    CERN Document Server

    Pietrowicz, S; Jones, S; Canfer, S; Baudouy, B

    2012-01-01

    In the framework of the European Union FP7 project EuCARD, two composite insulation systems made of cyanate ester epoxy mix and tri-functional epoxy (TGPAP-DETDA) with S-glass fiber have been thermally tested as possible candidates to be the electrical insulation of 13 T Nb$_{3}$Sn high field magnets under development for this program. Since it is expected to be operated in pressurized superfluid helium at 1.9 K and 1 atm, the thermal conductivity and the Kapitza resistance are the most important input parameters for the thermal design of this type of magnet and have been determined in this study. For determining these thermal properties, three sheets of each material with different thicknesses varying from 245 μm to 598 μm have been tested in steady-state condition in the temperature range of 1.6 K - 2.0 K. The thermal conductivity for the tri-functional epoxy (TGPAP-DETDA) epoxy resin insulation is found to be k=[(34.2±5.5).T-(16.4±8.2)]×10-3 Wm-1K-1 and for the cyanate ester epoxy k=[(26.8±4.8).T- (9...

  17. Nitrite, nitrite alternatives, and the control of Clostridium botulinum in cured meats.

    Science.gov (United States)

    Pierson, M D; Smoot, L A

    1982-01-01

    Historically, nitrite has been a component of meat-curing additives for several centuries. In recent years the safety of nitrite as an additive in cured meats has been questioned mainly because of the possible formation of carcinogenic nitrosamines. Nitrite has many important functions in meat curing including its role in color development, flavor, antioxidant properties, and antimicrobial activity. The inhibition of Clostridium botulinum growth and toxin production is an especially important antimicrobial property of nitrite. This review discusses the effects of processing, curing ingredients (especially nitrite), and storage of cured meats in relation to the control of C. botulinum. If nitrite is eliminated from cured meats or the level of usage decreased, then alternatives for the antibotulinal function of nitrite need to be considered. Several potential alternatives including sorbates, parabens, and biological acidulants are discussed.

  18. Swelling of radiation-cured polymer precursor powder for silicon carbide by pyrolysis

    Directory of Open Access Journals (Sweden)

    Akinori Takeyama

    2015-12-01

    Full Text Available Ceramic yield, density, volume change and pore size distribution were measured for radiation- and thermally cured PCS powder when they were pyrolyzed in the temperature range of 673–973 K. Higher ceramic yield was obtained for radiation-cured powder due to smaller amount of evolved gas. Temperature dependence of volume change and the total pore volume show that the formation and disappearance of pores in the powders were determined by the volume shrinkage and evolution of decomposed gases. Volume shrinkage narrowed the pore size distribution for radiation-cured powder. For thermally cured powder, the narrowing of size distribution was disturbed by aggregated pores. Smaller amount of evolved gas from radiation-cured powder relative to thermally cured powder prevented the aggregation of pores and provided the narrow size distribution.

  19. Fight fire with fire: Gene therapy strategies to cure HIV.

    Science.gov (United States)

    Huyghe, Jon; Magdalena, Sips; Vandekerckhove, Linos

    2017-08-01

    Human Immunodeficiency Virus (HIV) to date remains one of the most notorious viruses mankind has ever faced. Despite enormous investments in HIV research for more than 30 years an effective cure for HIV has been elusive. Areas covered: Combination antiretroviral therapy (cART) suppresses active viral replication, but is not able to eliminate the virus completely due to stable integration of HIV inside the host genome of infected cells and the establishment of a latent reservoir, that is insensitive to cART. Nevertheless, this latent HIV reservoir is fully capable to refuel viral replication when treatment is stopped, creating a major obstacle towards a cure for HIV. Several gene therapy approaches ranging from the generation of HIV resistant CD4 + T cells to the eradication of HIV infected cells by immune cell engineering are currently under pre-clinical and clinical investigation and may present a promising road to a cure. In this review, we focus on the status and the prospects of gene therapy strategies to cure/eradicate HIV. Expert commentary: Recent advances in gene therapy for oncology and infectious diseases indicate that gene therapy may be a feasible and very potent cure strategy, and therefore a potential game changer in the search for an effective HIV cure.

  20. Talking Cure Models: A Framework of Analysis

    Directory of Open Access Journals (Sweden)

    Christopher Marx

    2017-09-01

    Full Text Available Psychotherapy is commonly described as a “talking cure,” a treatment method that operates through linguistic action and interaction. The operative specifics of therapeutic language use, however, are insufficiently understood, mainly due to a multitude of disparate approaches that advance different notions of what “talking” means and what “cure” implies in the respective context. Accordingly, a clarification of the basic theoretical structure of “talking cure models,” i.e., models that describe therapeutic processes with a focus on language use, is a desideratum of language-oriented psychotherapy research. Against this background the present paper suggests a theoretical framework of analysis which distinguishes four basic components of “talking cure models”: (1 a foundational theory (which suggests how linguistic activity can affect and transform human experience, (2 an experiential problem state (which defines the problem or pathology of the patient, (3 a curative linguistic activity (which defines linguistic activities that are supposed to effectuate a curative transformation of the experiential problem state, and (4 a change mechanism (which defines the processes and effects involved in such transformations. The purpose of the framework is to establish a terminological foundation that allows for systematically reconstructing basic properties and operative mechanisms of “talking cure models.” To demonstrate the applicability and utility of the framework, five distinct “talking cure models” which spell out the details of curative “talking” processes in terms of (1 catharsis, (2 symbolization, (3 narrative, (4 metaphor, and (5 neurocognitive inhibition are introduced and discussed in terms of the framework components. In summary, we hope that our framework will prove useful for the objective of clarifying the theoretical underpinnings of language-oriented psychotherapy research and help to establish a more

  1. Swelling of Superabsorbent Poly(Sodium-Acrylate Acrylamide) Hydrogels and Influence of Chemical Structure on Internally Cured Mortar

    Science.gov (United States)

    Krafcik, Matthew J.; Erk, Kendra A.

    Superabsorbent hydrogel particles show promise as internal curing agents for high performance concrete (HPC). These gels can absorb and release large volumes of water and offer a solution to the problem of self-dessication in HPC. However, the gels are sensitive to ions naturally present in concrete. This research connects swelling behavior with gel-ion interactions to optimize hydrogel performance for internal curing, reducing the chance of early-age cracking and increasing the durability of HPC. Four different hydrogels of poly(sodium-acrylate acrylamide) are synthesized and characterized with swelling tests in different salt solutions. Depending on solution pH, ionic character, and gel composition, diffrerent swelling behaviors are observed. As weight percent of acrylic acid increases, gels demonstrate higher swelling ratios in reverse osmosis water, but showed substantially decreased swelling when aqueous cations are present. Additionally, in multivalent cation solutions, overshoot peaks are present, whereby the gels have a peak swelling ratio but then deswell. Multivalent cations interact with deprotonated carboxylic acid groups, constricting the gel and expelling water. Mortar containing hydrogels showed reduced autogenous shrinkage and increased relative humidity.

  2. 21 CFR 170.60 - Nitrites and/or nitrates in curing premixes.

    Science.gov (United States)

    2010-04-01

    ... premixes, may continue to be used under prior sanctions in the commercial curing of meat and meat products... that apply to meat curing preparations for the home curing of meat and meat products, including poultry and wild game. To assure safe use of such ingredients the labeling of the premixes shall bear...

  3. Temperature and curing time affect composite sorption and solubility

    Directory of Open Access Journals (Sweden)

    Fabrício Luscino Alves de Castro

    2013-04-01

    Full Text Available Objective: This study evaluated the effect of temperature and curing time on composite sorption and solubility. Material and Methods: Seventy five specimens (8×2 mm were prepared using a commercial composite resin (ICE, SDI. Three temperatures (10°C, 25°C and 60°C and five curing times (5 s, 10 s, 20 s, 40 s and 60 s were evaluated. The specimens were weighed on an analytical balance three times: A: before storage (M1; B: 7 days after storage (M2; C: 7 days after storage plus 1 day of drying (M3. The storage solution consisted of 75% alcohol/25% water. Sorption and solubility were calculated using these three weights and specimen dimensions. The data were analyzed using the Kruskal-Wallis and Mann-Whitney U Tests (α=5%. Results: The results showed that time, temperature and their interaction influenced the sorption and solubility of the composite (p0.05. The 60°C composite temperature led to lower values of sorption for all curing times when compared with the 10°C temperature (p0.05. Solubility was similar at 40 s and 60 s for all temperatures (p>0.05, but was higher at 10°C than at 60°C for all curing times (p0.05. Conclusions: In conclusion, higher temperatures or longer curing times led to lower sorption and solubility values for the composite tested; however, this trend was only significant in specific combinations of temperature and curing times.

  4. Assessment of environmental impact of ultraviolet radiation or electron beam cured print inks on plastic packaging materials; Avaliacao do impacto ambiental gerado por tintas graficas curadas por radiacao ultravioleta ou feixe de eletrons em materiais para embalagens plasticas convencionais ou biodegradaveis pos-consumo

    Energy Technology Data Exchange (ETDEWEB)

    Bardi, Marcelo Augusto Goncalves

    2014-07-01

    The high level of pollution generated by the inadequate disposal of polymeric materials has motivated the search for environmentally friendly systems and techniques such as the application of biodegradable polymers and the replacement of the solvent-based paint systems by those with high solids content, based water or cured by radiation, practically free of volatile organic compounds. However, the cured polymer coatings are neither soluble nor molten, increasing the complexity of the reprocessing, recycling and degradation. Thus, this work aimed to develop print inks modified with pro-degrading agents, cured by ultraviolet radiation or electron beam, for printing or decoration in plastic packaging products of short lifetime, which are biodegradable or not. Six coatings (varnish and inks in five colors: yellow, blue, white, black and red), three pro-degrading agents (cobalt stearate, cerium stearate and manganese stearate), five polymeric substrates (Ecobras®, low density polyethylene and its respective modifications with pro-degrading agents). The coatings were applied to the substrates and cured by ultraviolet radiation or electron beam, resulting in 180 samples. These materials were then exposed to accelerated aging chamber, type 'QUV', and composting in natural environment. In order to assess the effects of the polymer coatings on the degradation process of the specimens, only the yellow and black samples were exposed to a controlled composting environment via respirometry, reducing to 16 the number of samples. The organic compound generated by the biodegradation process was analyzed by the ecotoxicity tests. It was observed that the coating layer acted as a barrier that inhibits degradation of the plastic when exposed to weathering. The addition of pro-degrading agents promoted acceleration in the degradation process, promoting the migration of the metal ion to the medium without affecting the final quality of the organic compost. (author)

  5. Simulation of Injection Molding Process Including Mold Filling and Compound Curing

    Directory of Open Access Journals (Sweden)

    Mohamad Reza Erfanian

    2012-12-01

    Full Text Available The present work reports and discusses the results of a 3D simulation of the injection molding process of a rubber compound that includes the mold flling stage and  material curing, using the computer code is developed in “UDF” part of the Fluent 6.3 CAE software. The data obtained from a rheometer (MDR 2000 is used to characterize the rubber material in order to fnd the cure model parameters which exist in curing model. Because of non-newtonian behavior of rubber, in this work the non-newtonian model for viscosity was used and viscosity parameters were computed by mean of viscometry test by RPA. After calculation of the physical and curing properties, vulcanization process was simulated for a complex rubber article with non-uniform thickness by solving the continuity, momentum, energy and curing process equations. Predicted flling and curing time in a complex and 3D rubber part is compared with experimentally measured data which confrmed  the accuracy and applicability of the method.

  6. Sensory and physicochemical characteristics of salamis added with vegetable-based curing ingredients

    Directory of Open Access Journals (Sweden)

    Vicky Lilge Kawski

    Full Text Available ABSTRACT: The aim of this study was to evaluate the sensory and physicochemical quality of colonial salamis added with vegetable-based curing ingredients as potential enhancers of quality products. Salamis were produced according to three treatments: (A Control: 0.1% curing salt; (B rosemary: 0.05% curing salt + 0.5% rosemary extract (RE; and (C RE+celery: 0.14% Veg 503 + 0.27% Veg 504 (sea salt plus celery, nitrate and nitrite supplies, respectively + 0.5% of RE. No significant differences were observed (P>0.05 among the three treatments for dry matter (DM, crude protein (CP, ash, ether extract (EE and gross energy (GE. Sensory analysis was performed by applying the preference test and multiple comparison between the three treatments. Salamis added with vegetable-based curing ingredients were sensory equivalent to conventional level of curing salts. Vegetable extracts allowed the development of the sensory features of salami and did not interfere in the fermentation process. Results suggested that the extracts can serve as effective natural curing ingredients for the ripening process and cured meat color as well as adequate shelf-life replacing the commercial curing salts in meat and meat products. After 30 days of ripening, salami from the control treatment (conventional levels of nitrite and nitrate and the treatments with added vegetable-based curing ingredients and low nitrite and nitrate content (RE and RE + celery were equivalent in sensory quality.

  7. Free radical and thermal curing of terpyridine-modified terpolymers

    NARCIS (Netherlands)

    Hofmeier, H.; El-Ghayoury, A.; Schubert, U.S.

    2004-01-01

    Terpolymers bearing terpyridine as well as (meth)acrylates as free radical curable groups (UV-curing) or hydroxyl groups (thermal curing with bis-isocyanates) were synthesized and characterized using 1H NMR, IR and UV-vis spectroscopy as well as GPC. Subsequently, the ability of covalent

  8. Correlation between the state of cure of thermosetting resins and their properties

    International Nuclear Information System (INIS)

    Haffane, N.; Benameur, T.; Granger, R.; Vergnaud, J.M.

    1996-01-01

    Thermosetting resins, in the same way as polymers, are more and more used for coating metal sheets, in order to bring various interesting properties. An important problem arises with the cure of the thermoset, the process of cure being complex with heating conduction and convection and the heat generated by the cure reaction. The kinetics of the heat evolved from the overall cure reaction is determined through calorimetry experiments in scanning mode. The state of cure at time t is expressed by the heat generated by reaction up to time t as a fraction of the total heat generated. A numerical model taking all the facts into account is able to evaluate the profile of the state of cure developed through the thickness of the thermoset. The state of cure which derives from a theoretical point of view is correlated with some properties of interest for the coating, such as the hardness and the resistance to liquids. The resistance to water and ethanol is evaluated by determining the kinetics of absorption which is controlled by diffusion. copyright 1996 American Institute of Physics

  9. Comparison study of crosslink density determination in cured rubber

    International Nuclear Information System (INIS)

    El-sabbagh, S.H.; Yehia, A.A.

    2005-01-01

    The crosslink density is an important property affecting the major characteristics of cured rubber. The crosslink density can be determined by different methods such as: 1. Dynamic mechanical method using the data of stress-strain relationship. 2. Mooney-Rivlin equation 3. Swelling in organic solvents measurements using Flory-Rehner equation. The crosslink density calculated by the previous methods were discussed and compared with each other for cured NR, SBR and NBR. The obtained data showed that the dynamic-mechanical method can be considered as a simple and reliable method for determination of crosslink density for cured rubbers

  10. The difference nanocomposite hardness level using LED photoactivation based on curing period variations

    Directory of Open Access Journals (Sweden)

    Hasiana Tatian

    2011-03-01

    Full Text Available Polimerizatian is the critical stage to determine the quality of composites resin, this involves isolated monomer carbon double bonds being converted to an extended network of single bonds. Physical and mechanical properties of composites are influenced by the level of conversion attained during polymerization. An adequate light intensity and light curing time are important to obtain the degree of polymerization. The objective of this study is to evaluate the difference of the hardness nanocomposites which activated by LED LCU based on the variation of curing times. This study is a true experimental research. The samples were made from nanocomposites material with cylinder form of 4 mm in depth, 6 mm in diameter. This samples divided into 3 groups of curing times. Group, I was cured for 20's curing time as a control due to manufactory recommended; Group II was cured for 30's, and Group III was cured for 40's and the hardness (Rebound hardness tester was determined using Rebound scale (RS and converted by Mohs scale (MS. There was a very significant level of hardness rate from each group using ANOVA test. The result of the study concludes that there were the differences on the nanocomposites hardness level cured under different curing times 20, 30 and 40 sec. The longer of curing times, the higher level of hardness.

  11. Cycloaliphatic epoxide resins for cationic UV - cure

    International Nuclear Information System (INIS)

    Verschueren, K.; Balwant Kaur

    1999-01-01

    This paper introduces the cyclo - aliphatic epoxide resins used for the various applications of radiation curing and their comparison with acrylate chemistry. Radiation curable coatings and inks are pre - dominantly based on acrylate chemistry but over the last few years, cationic chemistry has emerged successfully with the unique properties inherent with cyclo - aliphatic epoxide ring structures. Wide variety of cationic resins and diluents, the formulation techniques to achieve the desired properties greatly contributes to the advancement of UV - curing technology

  12. Radiation cured coatings for high performance products

    International Nuclear Information System (INIS)

    Parkins, J.C.; Teesdale, D.H.

    1984-01-01

    Development over the past ten years of radiation curable coating and lacquer systems and the means of curing them has led to new products in the packaging, flooring, furniture and other industries. Solventless lacquer systems formulated with acrylates and other resins enable high levels of durability, scuff resistance and gloss to be achieved. Ultra violet and electron beam radiation curing are used, the choice depending on the nature of the coating, the product and the scale of the operation. (author)

  13. Heat transfer properties and thermal cure of glass-ionomer dental cements.

    Science.gov (United States)

    Gavic, Lidia; Gorseta, Kristina; Glavina, Domagoj; Czarnecka, Beata; Nicholson, John W

    2015-10-01

    Under clinical conditions, conventional glass-ionomer dental cements can be cured by application of heat from dental cure lamps, which causes acceleration in the setting. In order for this to be successful, such heat must be able to spread sufficiently through the cement to enhance cure, but not transmit heat so effectively that the underlying dental pulp of the tooth is damaged. The current study was aimed at measuring heat transfer properties of modern restorative glass-ionomers to determine the extent to which they meet these twin requirements. Three commercial glass ionomer cements (Ionofil Molar, Ketac Molar and Equia™ Fill) were used in association with three different light emitting diode cure lamps designed for clinical use. In addition, for each cement, one set of specimens was allowed to cure without application of a lamp. Temperature changes were measured at three different depths (2, 3 and 4 mm) after cure times of 20, 40 and 60 s. The difference among the tested groups was evaluated by ANOVA (P heat irradiation, but much greater temperature increases when exposed to the cure lamp. However, temperature rises did not exceed 12.9 °C. Application of the cure lamp led to the establishment of a temperature gradient throughout each specimen. Differences were typically significant (P heating effect. Because the thermal conductivity of glass-ionomers is low, temperature rises at 4 mm depths were much lower than at 2 mm. At no time did the temperature rise sufficiently to cause concern about potential damage to the pulp.

  14. Radiation Supporting Synthezis and Curing of Composites Suitable for Practical Applications

    International Nuclear Information System (INIS)

    Przybytniak, G.; Antoniak, M.; Nowicki, A.; Mirkowski, K.; Walo, M.

    2011-01-01

    Epoxy resins (ER) due to favorable combination of superior mechanical and thermal properties with unusual radiation resistance play an important role in some nuclear and aerospace industries. They are also widely used as matrices of reinforced composites since the homogeneous dissipation of fillers in the non-cured material is uncomplicated and efficient. Curing procedure is a very important factor determining final features of the epoxy resin and its composite. It was confirmed that irradiation facilitates molecular mobility and decreases glass transition as a result of chain scission. On the other hand, the increase in local mobility accelerates crosslinking thus the total effect is dependent on the relation between these two processes. Larieva reported that the ratio between degradation and crosslinking is 0.43, thus under selected conditions yield of curing more than twice prevails over yield of decomposition. The nature of hardener and its radiosensitivity also significantly influence the radiation induced curing. During exposure to ionizing radiation the binders participate in the processes initiated both by radiation and by heating, as curing is highly exothermic and considerably increases temperature of the system. Application of radiation treatment lowers energy consumption, shortens curing time and decreases curing temperature enhancing dimensional stability. In the past some attempts were made to improve heat resistance and strength of epoxy resins by the incorporation of various particles, e.g. silica, carbon nanotubes, montmorillonite, etc, however the results were unambiguous. In the reported studies the effects of radiation and thermal curing were investigated for ER and its composites either in the presence of cationic initiator or amine hardener

  15. Radiation Supporting Synthezis and Curing of Composites Suitable for Practical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Przybytniak, G.; Antoniak, M.; Nowicki, A.; Mirkowski, K.; Walo, M. [Institute of Nuclear Chemistry and Technology, Dorodna 16 Str., 03-195 Warsaw (Poland)

    2011-07-01

    Epoxy resins (ER) due to favorable combination of superior mechanical and thermal properties with unusual radiation resistance play an important role in some nuclear and aerospace industries. They are also widely used as matrices of reinforced composites since the homogeneous dissipation of fillers in the non-cured material is uncomplicated and efficient. Curing procedure is a very important factor determining final features of the epoxy resin and its composite. It was confirmed that irradiation facilitates molecular mobility and decreases glass transition as a result of chain scission. On the other hand, the increase in local mobility accelerates crosslinking thus the total effect is dependent on the relation between these two processes. Larieva reported that the ratio between degradation and crosslinking is 0.43, thus under selected conditions yield of curing more than twice prevails over yield of decomposition. The nature of hardener and its radiosensitivity also significantly influence the radiation induced curing. During exposure to ionizing radiation the binders participate in the processes initiated both by radiation and by heating, as curing is highly exothermic and considerably increases temperature of the system. Application of radiation treatment lowers energy consumption, shortens curing time and decreases curing temperature enhancing dimensional stability. In the past some attempts were made to improve heat resistance and strength of epoxy resins by the incorporation of various particles, e.g. silica, carbon nanotubes, montmorillonite, etc, however the results were unambiguous. In the reported studies the effects of radiation and thermal curing were investigated for ER and its composites either in the presence of cationic initiator or amine hardener.

  16. Evaluation of compatibility between different types of adhesives and dual-cured resin cement.

    Science.gov (United States)

    Franco, Eduardo B; Lopes, Lawrence G; D'alpino, Paulo H P; Pereira, José C; Mondelli, Rafael F L; Navarro, Maria F L

    2002-01-01

    The objective of this in vitro study was to evaluate the bonding compatibility between different adhesives and a dual-cured resin cement, using a conventional tensile bond test. The adhesives used were: Prime & Bond (PB) (Dentsply) (PB), Scotchbond Multi Purpose (SB) (3M), and the activator Self Cure (SC) (Dentsply). The dual-curing resin cement used was Enforce (EF) (Dentsply). Six groups with five specimens in each were tested: G1: EF/PB/EF (light cured); G2: EF/SB/EF (light cured); G3: EF/PB+SC/EF (light cured); G4: EF/PB+SC/EF (only chemically cured); G5: EF/EF (light cured); G6: EF/EF (only chemically cured). The resin cement was applied in two stainless steel molds with a cone-shaped perforation measuring 4 mm in diameter and 1 mm in thickness, and the adhesive was applied between them. Ten minutes after specimens were cured, the tensile strength was measured in a universal testing machine at a crosshead speed of 0.5 mm/min. The mean values (MPa) +/- SD obtained in each experimental group were: G1: 1.4 +/- 0.2; G2: 1.3 +/- 0.2; G3: 1.2 +/- 0.4; G4: 0.8 +/- 0.2; G5: 1.2 +/- 0.1; G6: 0.7 +/- 0.1. The results were statistically evaluated using nonparametric Kruskal-Wallis and Dunn tests (p adhesives used with dual-cured resin cement. The lowest tensile bond strength values occurred in the absence of photoactivation.

  17. Electron beam curing — taking good ideas to the manufacturing floor

    Science.gov (United States)

    Saunders, C.; Lopata, V.; Barnard, J.; Stepanik, T.

    2000-03-01

    Acsion is exploiting several emerging electron beam EB applications ranging from composite curing and repair to viscose manufacturing. EB curing of composite structures offers several advantages: significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; improvements in material handling; and reduced overall manufacturing costs compared to thermal curing. The aerospace industry is developing EB technology in all of their market sectors, including military aviation and space products. Some specific products include cryogenic fuel tanks, improved canopy frames for jet aircraft, and the all-composite military aircraft. This paper discusses each of these opportunities.

  18. Industrial application of radiation curing

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Takashi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-12-31

    The contents are advantages of radiation processes - a solvent-free system, less energy consumative, higher production rate, processability at ambient temperature; electron beams vs. ultraviolet curing; applications -broad spectrum of markets use radiation curable materials.

  19. Industrial application of radiation curing

    International Nuclear Information System (INIS)

    Takashi Sasaki

    1993-01-01

    The contents are advantages of radiation processes - a solvent-free system, less energy consumative, higher production rate, processability at ambient temperature; electron beams vs. ultraviolet curing; applications -broad spectrum of markets use radiation curable materials

  20. Tools for Visualizing HIV in Cure Research.

    Science.gov (United States)

    Niessl, Julia; Baxter, Amy E; Kaufmann, Daniel E

    2018-02-01

    The long-lived HIV reservoir remains a major obstacle for an HIV cure. Current techniques to analyze this reservoir are generally population-based. We highlight recent developments in methods visualizing HIV, which offer a different, complementary view, and provide indispensable information for cure strategy development. Recent advances in fluorescence in situ hybridization techniques enabled key developments in reservoir visualization. Flow cytometric detection of HIV mRNAs, concurrently with proteins, provides a high-throughput approach to study the reservoir on a single-cell level. On a tissue level, key spatial information can be obtained detecting viral RNA and DNA in situ by fluorescence microscopy. At total-body level, advancements in non-invasive immuno-positron emission tomography (PET) detection of HIV proteins may allow an encompassing view of HIV reservoir sites. HIV imaging approaches provide important, complementary information regarding the size, phenotype, and localization of the HIV reservoir. Visualizing the reservoir may contribute to the design, assessment, and monitoring of HIV cure strategies in vitro and in vivo.

  1. Industrial potential for application of radiation curing in Pakistan

    International Nuclear Information System (INIS)

    Ahmed, S.

    1991-01-01

    Potential applications of radiation curing of coating are in the field of wood and wood products, drying of printing inks, ceramics (roof and floor tiles) and textiles. Pakistan a 'timber deficit' country needs to improve her wood, plywood, hardboard and particle board to make for shortage of quality wood. Imports of wood and wood products are in excess of 3000 million rupees. Radiation curing can be applied and itexcels over heat treatment. Whereas costs of high energy units (500 KeV) with scanning type are rather high, low energy (100-175 KeV) flat beam self-shielded units costing 200,000 US$ are available. For developing countries ultraviolet (UV) curing is ideally suited because of its low price, flexibility and simplicity in handling. Alternately, multipurpose bunker type facility such as 500 KeV current mA can be utilized in carrying out heat-shrinkables production, irradiation of cable and wire and curing of coatings on wood and wood products. (author)

  2. Studies on cationic UV curing of epoxidised palm oil (EPO) for surface coatings

    International Nuclear Information System (INIS)

    Mek Zah Salleh; Mohd Hilmi Mahmood; Wan Rosli Wan Daud; Kumar, R.N.

    2000-01-01

    Epoxidised palm oil (EPO) resin can be cured by ultraviolet (UV) radiation either by radical, cationic or hybrid system. Cationic curing system has been chosen in this study due to the fact that epoxy groups present in EPO can be utilised directly to form crosslinking. Curing was done by means of a 20 cm wide UV IST machine with the conditions of 7.5 A current and 4 m/min conveyor speed. Sulphonium and ferrocenium salts were used as cationic photoinitiator. A formulations study was performed on the selected grades of EPO with other materials. These include types and concentration of photoinitiator, monomers, concentration of EPO and post-cure. The properties of the cured film such as pendulum hardness, percentage of gel content and tensile strength were determined. It was found that triarylsulphonium hexafluorophosphate has a very low solubility in EPO. Addition of vinyl ether monomer to the formulation did not enhance pendulum hardness and gel content of the cured films. It is also found that the post cure temperature has no significant effect on the cured film

  3. Application conditions for ester cured alkaline phenolic resin sand

    Directory of Open Access Journals (Sweden)

    Ren-he Huang

    2016-07-01

    Full Text Available Five organic esters with different curing speeds: propylene carbonate (i.e. high-speed ester A; 1, 4-butyrolactone; glycerol triacetate (i.e. medium-speed ester B; glycerol diacetate; dibasic ester (DBE (i.e. low-speed ester C, were chosen to react with alkaline phenolic resin to analyze the application conditions of ester cured alkaline phenolic resin. The relationships between the curing performances of the resin (including pH value, gel pH value, gel time of resin solution, heat release rate of the curing reaction and tensile strength of the resin sand and the amount of added organic ester and curing temperature were investigated. The results indicated the following: (1 The optimal added amount of organic ester should be 25wt.%-30wt.% of alkaline phenolic resin and it must be above 20wt.%-50 wt.% of the organic ester hydrolysis amount. (2 High-speed ester A (propylene carbonate has a higher curing speed than 1, 4-butyrolactone, and they were both used as high-speed esters. Glycerol diacetate is not a high-speed ester in alkaline phenolic resin although it was used as a high-speed ester in ester cured sodium silicate sand; glycerol diacetate and glycerol triacetate can be used as medium-speed esters in alkaline phenolic resin. (3 High-speed ester A, medium-speed ester B (glycerol triacetate and low-speed ester C (dibasic ester, i.e., DBE should be used below 15 ìC, 35 ìC and 50 ìC, respectively. High-speed ester A or low-speed ester C should not be used alone but mixed with medium-speed ester B to improve the strength of the resin sand. (4 There should be a suitable solid content (generally 45wt.%-65wt.% of resin, alkali content (generally 10wt.%-15wt.% of resin and viscosity of alkaline phenolic resin (generally 50-300 mPa≤s in the preparation of alkaline phenolic resin. Finally, the technique conditions of alkaline phenolic resin preparation and the application principles of organic ester were discussed.

  4. Ionizing radiation post-curing of objects produced by stereolithography and other methods

    Science.gov (United States)

    Howell, David H.; Eberle, Claude C.; Janke, Christopher J.

    2000-01-01

    An object comprised of a curable material and formed by stereolithography or another three-dimensional prototyping method, in which the object has undergone initial curing, is subjected to post-curing by ionizing radiation, such as an electron beam having a predetermined beam output energy, which is applied in a predetermined dosage and at a predetermined dose rate. The post-cured object exhibits a property profile which is superior to that which existed prior to the ionizing radiation post-curing.

  5. Beam in on curing

    International Nuclear Information System (INIS)

    Holl, Dr.

    1981-01-01

    Electron beam curing of paints and allied materials is discussed. Examples of applications are: silicone papers; painting of metal; bonding of flake adhesives; bonding of grinding media (binders); paints for external uses; painting shaped parts; bi-reactive painting systems. An example is given of the calculation of the cost of irradiation. (U.K.)

  6. An Evaluation of Fracture Toughness of Vinyl Ester Composites Cured under Microwave Conditions

    Science.gov (United States)

    Ku, H.; Chan, W. L.; Trada, M.; Baddeley, D.

    2007-12-01

    The shrinkage of vinyl ester particulate composites has been reduced by curing the resins under microwave conditions. The reduction in the shrinkage of the resins by microwaves will enable the manufacture of large vinyl ester composite items possible (H.S. Ku, G. Van Erp, J.A.R. Ball, and S. Ayers, Shrinkage Reduction of Thermoset Fibre Composites during Hardening using Microwaves Irradiation for Curing, Proceedings, Second World Engineering Congress, Kuching, Malaysia, 2002a, 22-25 July, p 177-182; H.S. Ku, Risks Involved in Curing Vinyl Ester Resins Using Microwaves Irradiation. J. Mater. Synth. Proces. 2002b, 10(2), p 97-106; S.H. Ku, Curing Vinyl Ester Particle Reinforced Composites Using Microwaves. J. Comp. Mater., (2003a), 37(22), p 2027-2042; S.H. Ku and E. Siores, Shrinkage Reduction of Thermoset Matrix Particle Reinforced Composites During Hardening Using Microwaves Irradiation, Trans. Hong Kong Inst. Eng., 2004, 11(3), p 29-34). In tensile tests, the yield strengths of samples cured under microwave conditions obtained are within 5% of those obtained by ambient curing; it is also found that with 180 W microwave power, the tensile strengths obtained for all duration of exposure to microwaves are also within the 5% of those obtained by ambient curing. While, with 360 W microwave power, the tensile strengths obtained for all duration of exposure to microwaves are 5% higher than those obtained by ambient curing. Whereas, with 540 W microwave power, the tensile strengths obtained for most samples are 5% below those obtained by ambient curing (H. Ku, V.C. Puttgunta, and M. Trada, Young’s Modulus of Vinyl Ester Composites Cured by Microwave Irradiation: Preliminary Results, J. Electromagnet. Waves Appl., 2007, 20(14), p. 1911-1924). This project, using 33% by weight fly ash reinforced vinyl ester composite [VE/FLYSH (33%)], is to further investigate the difference in fracture toughness between microwave cured vinyl ester particulate composites and those cured

  7. Flexural behaviour of post-cured composites at oral-simulating temperatures.

    Science.gov (United States)

    Ho, C T; Vijayaraghavan, T V; Lee, S Y; Tsai, A; Huang, H M; Pan, L C

    2001-07-01

    Post-curing treatments have been known to improve the mechanical stability of visible light-cured composites. After individual post-curing treatment, the flexural strength (FS) of four commercial direct/indirect placement composite materials which differ greatly in composition [oligocarbonate dimethacrylate (OCDMA)-based Conquest C & B (CQT), Bisphenol-A glycidyl dimethacrylate (BisGMA)-based Charisma, urethane dimethacrylate (UDMA)-based Concept (CCT), and BisGMA/UDMA-based Dentacolor] was evaluated under water in the temperature range of 12-50 degrees C. A control series was tested in air at room temperature (25 +/- 1 degrees C). Data were analysed using ANOVA and Duncan's test. Flexural strengths overall decreased (20-40%, P OCDMA-based materials. Post-cured composites can be significantly affected by exposure to oral environments. Different composition determines the degree of influence.

  8. Strontium binding to cement paste cured at different temperature

    International Nuclear Information System (INIS)

    Peterson, V.K.; Ray, A.

    1999-01-01

    Concentration - depth profiles were measured using Proton Induced X-ray Emission (PIXE). These results were used as a measure of the Sr 2+ retention abilities of each matrix. Ordinary Portland cement (OPC) and cemented clinoptilolite samples were cured at 25 deg C, 60 deg C and 150 deg C. As expected, the Sr 2+ penetration depth increased with increasing OPC cure temperature, caused by an increase in sample permeability. Surprisingly, the penetration depths of Sr 2+ increased with the addition of clinoptilolite to the OPC, also thought to be caused by an increase in sample permeability. However, the increase in penetration depth was reduced in samples cured at higher temperatures

  9. Current and future market of UV/EB curing in Thailand

    International Nuclear Information System (INIS)

    Suda Kiatkamjornwong; Aran Hanseubsai

    1999-01-01

    Current status and future market of UV/EB curing in Thailand were presented. Included number of printing houses, export, main export market and the role of radiation curing in printing and packaging industries of Thailand

  10. Effects of the different atmospheric steam curing processes on the ...

    Indian Academy of Sciences (India)

    hardness when exposed to different atmospheric steam curing temperatures. ... Use of self-compacting concretes (SCCs) lowered the noise level on the ... Although maximum temperature limit values in curing locations should be from 40 to ...

  11. Promotion time cure rate model with nonparametric form of covariate effects.

    Science.gov (United States)

    Chen, Tianlei; Du, Pang

    2018-05-10

    Survival data with a cured portion are commonly seen in clinical trials. Motivated from a biological interpretation of cancer metastasis, promotion time cure model is a popular alternative to the mixture cure rate model for analyzing such data. The existing promotion cure models all assume a restrictive parametric form of covariate effects, which can be incorrectly specified especially at the exploratory stage. In this paper, we propose a nonparametric approach to modeling the covariate effects under the framework of promotion time cure model. The covariate effect function is estimated by smoothing splines via the optimization of a penalized profile likelihood. Point-wise interval estimates are also derived from the Bayesian interpretation of the penalized profile likelihood. Asymptotic convergence rates are established for the proposed estimates. Simulations show excellent performance of the proposed nonparametric method, which is then applied to a melanoma study. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Qualitative Beam Profiling of Light Curing Units for Resin Based Composites.

    Science.gov (United States)

    Haenel, Thomas; Hausnerová, Berenika; Steinhaus, Johannes; Moeginger, Ing Bernhard

    2016-12-01

    This study investigates two technically simple methods to determine the irradiance distribution of light curing units that governs the performance of a visible-light curing resin-based composites. Insufficient light irradiation leads to under-cured composites with poor mechanical properties and elution of residual monomers. The unknown irradiance distribution and its effect on the final restoration are the main critical issues requiring highly sophisticated experimental equipment. The study shows that irradiance distributions of LCUs can easily be determined qualitatively with generally available equipment. This significantly helps dentists in practices to be informed about the homogeneity of the curing lights. Copyright© 2016 Dennis Barber Ltd.

  13. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy.

    Science.gov (United States)

    Clossen, Bryan L; Reddy, Doodipala Samba

    2017-06-01

    This article describes the recent advances in epileptogenesis and novel therapeutic approaches for the prevention of epilepsy, with a special emphasis on the pharmacological basis of disease-modification of epileptogenesis for curing epilepsy. Here we assess animal studies and human clinical trials of epilepsy spanning 1982-2016. Epilepsy arises from a number of neuronal factors that trigger epileptogenesis, which is the process by which a brain shifts from a normal physiologic state to an epileptic condition. The events precipitating these changes can be of diverse origin, including traumatic brain injury, cerebrovascular damage, infections, chemical neurotoxicity, and emergency seizure conditions such as status epilepticus. Expectedly, the molecular and system mechanisms responsible for epileptogenesis are not well defined or understood. To date, there is no approved therapy for the prevention of epilepsy. Epigenetic dysregulation, neuroinflammation, and neurodegeneration appear to trigger epileptogenesis. Targeted drugs are being identified that can truly prevent the development of epilepsy in at-risk people. The promising agents include rapamycin, COX-2 inhibitors, TRK inhibitors, epigenetic modulators, JAK-STAT inhibitors, and neurosteroids. Recent evidence suggests that neurosteroids may play a role in modulating epileptogenesis. A number of promising drugs are under investigation for the prevention or modification of epileptogenesis to halt the development of epilepsy. Some drugs in development appear rational for preventing epilepsy because they target the initial trigger or related signaling pathways as the brain becomes progressively more prone to seizures. Additional research into the target validity and clinical investigation is essential to make new frontiers in curing epilepsy. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Steam Cured Self-Consolidating Concrete and the Effects of Limestone Filler

    Science.gov (United States)

    Aqel, Mohammad A.

    The purpose of this thesis is to determine the effect and the mechanisms associated with replacing 15% of the cement by limestone filler on the mechanical properties and durability performance of self-consolidating concrete designed and cured for precast/prestressed applications. This study investigates the role of limestone filler on the hydration kinetics, mechanical properties (12 hours to 300 days), microstructural and durability performance (rapid chloride permeability, linear shrinkage, sulfate resistance, freeze-thaw resistance and salt scaling resistance) of various self-consolidating concrete mix designs containing 5% silica fume and steam cured at a maximum holding temperature of 55°C. This research also examines the resistance to delayed ettringite formation when the concrete is steam cured at 70°C and 82°C and its secondary consequences on the freeze-thaw resistance. The effect of several experimental variables related to the concrete mix design and also the curing conditions are examined, namely: limestone filler fineness, limestone filler content, cement type, steam curing duration and steam curing temperature. In general, the results reveal that self-consolidating concrete containing 15% limestone filler, steam cured at 55°C, 70°C and 82°C, exhibited similar or superior mechanical and transport properties as well as long term durability performance compared to similar concrete without limestone filler. When the concrete is steam cured at 55°C, the chemical reactivity of limestone filler has an important role in enhancing the mechanical properties at 16 hours (compared to the concrete without limestone filler) and compensating for the dilution effect at 28 days. Although, at 300 days, the expansion of all concrete mixes are below 0.05%, the corresponding freeze-thaw durability factors vary widely and are controlled by the steam curing temperature and the chemical composition of the cement. Overall, the material properties indicate that the use

  15. Color and oxidative stability of nitrite-free cured meat after gamma irradiation

    International Nuclear Information System (INIS)

    Shahidi, F.; Pegg, R.B.; Shamsuzzaman, K.

    1991-01-01

    The effects of 5 and 10 kGy irradiation on the color and oxidative stability of meats treated with nitrite or a nitrite-free curing system were investigated. The nitrite-free curing system consisted of the preformed cooked cured-meat pigment, sodium ascorbate and sodium tripolyphosphate with or without sodium acid pyrophosphate. Irradiation had no detrimental effects on the color or flavor of either cured samples. Polyphosphates had a beneficial effect on oxidative stability but had a slight detrimental effect on color stability of irradiated samples

  16. Characterization and Curing Kinetics of Epoxy/Silica Nano-Hybrids

    Science.gov (United States)

    Yang, Cheng-Fu; Wang, Li-Fen; Wu, Song-Mao; Su, Chean-Cheng

    2015-01-01

    The sol-gel technique was used to prepare epoxy/silica nano-hybrids. The thermal characteristics, curing kinetics and structure of epoxy/silica nano-hybrids were studied using differential scanning calorimetry (DSC), 29Si nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM). To improve the compatibility between the organic and inorganic phases, a coupling agent was used to modify the diglycidyl ether of bisphenol A (DGEBA) epoxy. The sol-gel technique enables the silica to be successfully incorporated into the network of the hybrids, increasing the thermal stability and improving the mechanical properties of the prepared epoxy/silica nano-hybrids. An autocatalytic mechanism of the epoxy/SiO2 nanocomposites was observed. The low reaction rate of epoxy in the nanocomposites is caused by the steric hindrance in the network of hybrids that arises from the consuming of epoxide group in the network of hybrids by the silica. In the nanocomposites, the nano-scale silica particles had an average size of approximately 35 nm, and the particles were well dispersed in the epoxy matrix, according to the TEM images. PMID:28793616

  17. Evidence-based Nursing in the IED: From Caring to Curing?

    Directory of Open Access Journals (Sweden)

    Jette Ernst

    2016-03-01

    Full Text Available Danish hospitals are major sites of healthcare reform, and new public management accountability and performance management tools have been applied to improve the quality and efficiency of services. One consequence of this is that nurses’ work in hospitals is increasingly standardized through medical evidence. Using Bourdieu’s theory of practice in combination with an ethnographic field study, it is analyzed how the nurses of a Danish Integrated Emergency Department respond to the changing conditions of work. It is illuminated how two opposing approaches to nursing of humanistically and pluralistically oriented caring, and evidence-based scientifically oriented curing inform nursing in the department. The curing approach is however trumping the caring approach. Curing creates new nursing career pathways and is by some nurses embraced with enthusiasm. For others, the new situation creates tension and distress. It is illustrated how the nurses position their practice in relation to the changing working conditions taking sides for either curing or caring, or finding a way to maneuver in between the two. The article argues that the normative enforcement of the curing approach may carry unintended side effects to the goals of quality and efficiency enhancements.

  18. Electron beam curing of dimer acid-based urethane acrylates for pressure sensitive adhesives

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Takeda, Satoe; Shiraishi, Katsutoshi.

    1995-01-01

    Polyester urethane diacrylate prepolymers prepared from dimer acids (DUA) were cured with low energy electron beams to investigate adhesive properties of cured films. Among various type monomers added, monofunctional methacrylates such as isobornyl methacrylate (IBXMA) were effective for higher peel strength cured films although the dose-to-cure for the mixtures increased to 100 kGy or more. The increase in the molecular weight of prepolymers resulted in lower curing rates but higher peel strength. Aging tests up to 80degC for four weeks proved good stability in peel strength of the stored products. (author)

  19. Stress and flow analyses of ultraviolet-curable resin during curing

    Science.gov (United States)

    Umezaki, Eisaku; Okano, Akira; Koyama, Hiroto

    2014-06-01

    The stress and flow generated in ultraviolet (UV)-curable resin during curing in molds were measured to investigate their relationship. The specimens were molds consisting of glass plates and acrylic bars, and UV-curable liquid resin. The specimens were illuminated from above with UV rays. Photoelastic and visual images were separately obtained at a constant time interval using cameras during curing. To help obtain the visual images, acrylic powder was mixed with the liquid resin. The stress was obtained from the photoelastic images by a digital photoelastic technique with phase stepping, and the flow was obtained from the visual images by a particle-tracking velocimetry technique. Results indicate that the stress generated in the UV-curable resin during curing depends on the degree of contact between the mold and the cured area of the resin, and is hardly related to the flow.

  20. Advances in spot curing technology

    International Nuclear Information System (INIS)

    Burga, R.

    1999-01-01

    A brief review of spot curing technology was presented. The process which a spot of energy of a specific wavelength bandwidth and irradiance is used to cause a coating, encapsulant or adhesive to change from a liquid to a solid state

  1. Effect of High-Irradiance Light-Curing on Micromechanical Properties of Resin Cements

    Directory of Open Access Journals (Sweden)

    Anne Peutzfeldt

    2016-01-01

    Full Text Available This study investigated the influence of light-curing at high irradiances on micromechanical properties of resin cements. Three dual-curing resin cements and a light-curing flowable resin composite were light-cured with an LED curing unit in Standard mode (SM, High Power mode (HPM, or Xtra Power mode (XPM. Maximum irradiances were determined using a MARC PS radiometer, and exposure duration was varied to obtain two or three levels of radiant exposure (SM: 13.2 and 27.2 J/cm2; HPM: 15.0 and 30.4 J/cm2; XPM: 9.5, 19.3, and 29.7 J/cm2 (n=17. Vickers hardness (HV and indentation modulus (EIT were measured at 15 min and 1 week. Data were analyzed with nonparametric ANOVA, Wilcoxon-Mann-Whitney tests, and Spearman correlation analyses (α=0.05. Irradiation protocol, resin-based material, and storage time and all interactions influenced HV and EIT significantly (p≤0.0001. Statistically significant correlations between radiant exposure and HV or EIT were found, indicating that high-irradiance light-curing has no detrimental effect on the polymerization of resin-based materials (p≤0.0021. However, one resin cement was sensitive to the combination of irradiance and exposure duration, with high-irradiance light-curing resulting in a 20% drop in micromechanical properties. The results highlight the importance of manufacturers issuing specific recommendations for the light-curing procedure of each resin cement.

  2. Comparative Evaluation of Shear Bond Strength and Debonding Characteristics using Conventional Halogen Light Curing Unit and LED Light Curing Unit: An in vitro Study

    Directory of Open Access Journals (Sweden)

    Amit Bhardwaj

    2013-01-01

    Conclusion: The result of this study showed promise for the orthodontic application of LED as light curing units and 20 seconds of exposure time is adequate for both LED and Halogen light, since increasing the curing time to 40 seconds showed no significant difference.

  3. CUREs in biochemistry?where we are and where we should go

    OpenAIRE

    Bell, Jessica K.; Eckdahl, Todd T.; Hecht, David A.; Killion, Patrick J.; Latzer, Joachim; Mans, Tamara L.; Provost, Joseph J.; Rakus, John F.; Siebrasse, Erica A.; Ellis Bell, J.

    2016-01-01

    Abstract Integration of research experience into classroom is an important and vital experience for all undergraduates. These course?based undergraduate research experiences (CUREs) have grown from independent instructor lead projects to large consortium driven experiences. The impact and importance of CUREs on students at all levels in biochemistry was the focus of a National Science Foundation funded think tank. The state of biochemistry CUREs and suggestions for moving biochemistry forward...

  4. Electron beam curing of composites in North America

    International Nuclear Information System (INIS)

    Berejka, Anthony J.; Eberle, Cliff

    2002-01-01

    Electron beam curing of fiber-reinforced composites was explored over 30 years ago. Since then there have been developments in accelerator technology, in processes for handling materials presented to an accelerator, and in materials that can be used as matrix binders. In recent years in North America, Cooperative Research and Development Agreements (CRADAs) have been formed involving collaboration amongst materials suppliers, accelerator manufacturers and service providers, national laboratories, such as Oak Ridge National Laboratory, and interested potential users. The scope and status of these CRADAs are reviewed along with other recent developments in the electron beam curing of composites in North America. Innovative and proprietary materials technology has been developed and progress made toward implementing commercial practice. Significant market interest has developed in the military/aerospace industries that are finding the process and performance of electron beam cured composites to offer significant benefits

  5. Preliminary study on solar-assisted tobacco curing in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Bamrungwong, S [Chiang Mai Univ.; Suchinda, B; Malila, D

    1982-04-01

    A solar heating system for assisting flue curing of Virginia tobacco leaf was studied. The equipment consisted of a brick and mortar tobacco curing barn of 3.6 m/sup 3/ volume. The solar air heater of 2.8 m/sup 2/ was a non-focus type, made from corrugated galvanized stel sheet coated with flat-black paint. The collector had a single glass cover on top and a 25 mm layer of styrofoam at the bottom. Electrical heating was utilized inside the bar to simulate the main heat source. The system under study had no thermal storage, therefore it was extremely difficult to regulate the temperature inside the barn precisely. Consequently, the solar assisting mode is not recommended during the yellowing stage of curing where very precise temperature control is required. Utilization of solar energy during other stages of curing showed a saving of the main conventional energy up to 33 to 15 percent. The average thermal efficiencies of the collector varied from 70 percent at high flow rate to 67 percent at low flow rate. 6 references.

  6. A novel calorimetry technique for monitoring electron beam curing of polymer resins

    International Nuclear Information System (INIS)

    Chen, J.H.; Johnston, A.; Petrescue, L.; Hojjati, M.

    2006-01-01

    This paper describes the development of a calorimetry-based technique for monitoring of the curing of electron beam (EB) curable resins, including design of the calorimeter hardware and the development of an analytical model for calculating resin cure rates and radiation dose. Factors affecting the performance of the calorimeter were investigated. Experimental trials monitoring the curing of epoxy resin were conducted under single pass and multiple passes of EB irradiation. Results show that the developed calorimeter is a simple, inexpensive and reasonably accurate technique for monitoring the EB curing of cationic epoxies

  7. Manufacturing prepainted steel sheet by electron beam curing

    International Nuclear Information System (INIS)

    Oka, Joji

    1987-01-01

    Several advantages are offered by electron beam curing. A formidably hard and stain resistant paint film which is difficult to obtain by heat curing paint is developed. As a result, a unique new prepainted steel is produced. Four technologies are involved: development high-quality paint, selection of optimum electron beam processor, technology to control electron beam processing atmosphere and secondary X-ray shield technology. These technologies are described in detail. (A.J.)

  8. A combinaison of UV curing technology with ATL process

    Science.gov (United States)

    Balbzioui, I.; Hasiaoui, B.; Barbier, G.; L'hostis, G.; Laurent, F.; Ibrahim, A.; Durand, B.

    2017-10-01

    In order to reduce the time and the cost of manufacturing composite, UV curing technology combined with automated tape placement process (ATL) based on reverse approach by working with a fixed head was studied in this article. First, a brief description of the developed head placement is presented. Mechanical properties are then evaluated by varying process parameters, including compaction force and tape placement speed. Finally, a parametric study is carried out to identify suitable materials and process parameters to manufacture a photo composite material with high mechanical performances. The obtained results show that UV curing is a very good alternative for thermal polymerization because of its fast cure speed due to less dependency on temperature.

  9. Polymerization and curing kinetics of furan resins under conventional and microwave heating

    International Nuclear Information System (INIS)

    Lopez de Vergara, Unai; Sarrionandia, Mariasun; Gondra, Koldo; Aurrekoetxea, Jon

    2014-01-01

    Graphical abstract: - Highlights: • The furan resin structure was investigated using IR and RMN techniques. • The polymerization of furan resins was developed based on multistage kinetics. • Vyazovkin numerical analysis was found the most accurate kinetic method. • Microwave curing of furan resins was much faster than thermal curing. - Abstract: The challenge of this work is the microwave curing study of low free-furfuryl alcohol content furan resins. The chemical characterization of the furan resins has been made by infrared spectroscopy and nuclear magnetic resonance spectroscopy. The chemical composition of the resin and its reactions with p-toluensulfonic acid are proposed, with the aim of understanding the mechanism responsible for the main reactions. The results show the presence of methyl and ether bridges between the furan rings, and the formation of ketone and conjugated structures. Furthermore, the curing kinetics of the furan resins has been characterized by differential scanning calorimetry. Different methods have been applied in order to obtain and compare the activation energy of the process. Vyazovkin numerical analysis was found the most accurate method. Finally, microwave and conventional curing processes has been compared. The analysis showed that microwave curing of furan resins was twice faster than thermal curing

  10. Polymerization and curing kinetics of furan resins under conventional and microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Lopez de Vergara, Unai, E-mail: bergara@gaiker.es [Plastics and Composites Department, Gaiker IK4 Research Centre, Parque Tecnológico, Ed. 202, 48170 Zamudio Spain (Spain); Mechanical Engineering and Industrial Manufacturing Department, Mondragón Unibertsitatea, Loramendi 4, 20500 Mondragón Spain (Spain); Sarrionandia, Mariasun [Mechanical Engineering and Industrial Manufacturing Department, Mondragón Unibertsitatea, Loramendi 4, 20500 Mondragón Spain (Spain); Gondra, Koldo [Plastics and Composites Department, Gaiker IK4 Research Centre, Parque Tecnológico, Ed. 202, 48170 Zamudio Spain (Spain); Aurrekoetxea, Jon [Mechanical Engineering and Industrial Manufacturing Department, Mondragón Unibertsitatea, Loramendi 4, 20500 Mondragón Spain (Spain)

    2014-04-01

    Graphical abstract: - Highlights: • The furan resin structure was investigated using IR and RMN techniques. • The polymerization of furan resins was developed based on multistage kinetics. • Vyazovkin numerical analysis was found the most accurate kinetic method. • Microwave curing of furan resins was much faster than thermal curing. - Abstract: The challenge of this work is the microwave curing study of low free-furfuryl alcohol content furan resins. The chemical characterization of the furan resins has been made by infrared spectroscopy and nuclear magnetic resonance spectroscopy. The chemical composition of the resin and its reactions with p-toluensulfonic acid are proposed, with the aim of understanding the mechanism responsible for the main reactions. The results show the presence of methyl and ether bridges between the furan rings, and the formation of ketone and conjugated structures. Furthermore, the curing kinetics of the furan resins has been characterized by differential scanning calorimetry. Different methods have been applied in order to obtain and compare the activation energy of the process. Vyazovkin numerical analysis was found the most accurate method. Finally, microwave and conventional curing processes has been compared. The analysis showed that microwave curing of furan resins was twice faster than thermal curing.

  11. Cytotoxicity of Light-Cured Dental Materials according to Different Sample Preparation Methods

    Directory of Open Access Journals (Sweden)

    Myung-Jin Lee

    2017-03-01

    Full Text Available Dental light-cured resins can undergo different degrees of polymerization when applied in vivo. When polymerization is incomplete, toxic monomers may be released into the oral cavity. The present study assessed the cytotoxicity of different materials, using sample preparation methods that mirror clinical conditions. Composite and bonding resins were used and divided into four groups according to sample preparation method: uncured; directly cured samples, which were cured after being placed on solidified agar; post-cured samples were polymerized before being placed on agar; and “removed unreacted layer” samples had their oxygen-inhibition layer removed after polymerization. Cytotoxicity was evaluated using an agar diffusion test, MTT assay, and confocal microscopy. Uncured samples were the most cytotoxic, while removed unreacted layer samples were the least cytotoxic (p < 0.05. In the MTT assay, cell viability increased significantly in every group as the concentration of the extracts decreased (p < 0.05. Extracts from post-cured and removed unreacted layer samples of bonding resin were less toxic than post-cured and removed unreacted layer samples of composite resin. Removal of the oxygen-inhibition layer resulted in the lowest cytotoxicity. Clinicians should remove unreacted monomers on the resin surface immediately after restoring teeth with light-curing resin to improve the restoration biocompatibility.

  12. UV-LED Curing Efficiency of Wood Coatings

    Directory of Open Access Journals (Sweden)

    Véronic Landry

    2015-12-01

    Full Text Available Ultraviolet light emitting diodes (UV-LEDs have attracted great interest in recent years. They can be used to polymerize coatings, such as those used for prefinished wood flooring. In this project, two lamps were compared for their suitability to be used on a wood flooring finishing line: a UV-microwave and a UV-LED lamp. Low heat emission was found for the UV-LED lamp compared to the UV-microwave one. This study also reveals that the 4 W/cm2 UV-LED lamp used is not powerful enough to cure UV high solids acrylate coatings while satisfactory results can be obtained for UV water-based formulations. In fact, conversion percentages were found to be low for the high solids coatings, leaving the coatings tacky. Higher conversion percentages were obtained for the UV water-based formulations. As a result, mass loss, hardness, and scratch resistance found for the samples cured by UV-LED were closed to the ones found for the samples cured using the UV microwave lamp.

  13. The use of high pressure processing to enhance the quality and shelf life of reduced sodium naturally cured restructured cooked hams.

    Science.gov (United States)

    Pietrasik, Z; Gaudette, N J; Johnston, S P

    2016-06-01

    The combined effect of partial salt replacement with modified potassium chloride and high pressure processing (600 MPa for 3 min at 8°C) on the quality and shelf life of naturally-cured restructured hams was investigated over a 12 week storage period. Instrumental, microbiological and consumer acceptability testing was performed. A partial salt substitution with modified potassium chloride adversely affected textural and water binding characteristics of hams and led to a decrease in the consumer acceptance compared to regular salt hams. Celery powder used as a curing agent had beneficial effects on water holding and moisture retention and improved bind of restructured hams; however the consumer acceptability of flavor and aftertaste received significantly lower scores compared to nitrite. No significant differences in all consumer acceptability parameters resulted for hams subjected to HPP compared to non-HPP for all storage periods indicating that HPP can effectively extend shelf-life of restructured ham without compromising eating quality. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  14. Beliefs about the causes and cures of depression

    OpenAIRE

    Furnham, A.; Ritchie, W.; Lay, A.

    2016-01-01

    BACKGROUND: This study used attitude statement and vignette methodology to examine a mixed British sample’s belies about the causes and consequences of depression. AIMS: To test whether the group would recognise both vignettes with having depression and that the favoured cure would be Psychotherapy/Talking Cure. METHOD: In all, 320 adults completed a two-part questionnaire. In the first part, they were given two vignettes describing a 30-year-old female and a 45-year-old male...

  15. Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units.

    Science.gov (United States)

    Asmussen, Erik; Peutzfeldt, Anne

    2005-02-01

    Because of the risk of thermal damage to the pulp, the temperature rise induced by light-curing units should not be too high. LED (light emitting diode) curing units have the main part of their irradiation in the blue range and have been reported to generate less heat than QTH (quartz-tungsten-halogen) curing units. This study had two aims: first, to measure the temperature rise induced by ten LED and three QTH curing units; and, second, to relate the measured temperature rise to the power density of the curing units. The light-induced temperature rise was measured by means of a thermocouple embedded in a small cylinder of resin composite. The power density was measured by using a dental radiometer. For LED units, the temperature rise increased with increasing power density, in a statistically significant manner. Two of the three QTH curing units investigated resulted in a higher temperature rise than LED curing units of the same power density. Previous findings, that LED curing units induce less temperature rise than QTH units, does not hold true in general.

  16. Radiation cured polyester compositions containing metal-properties

    Science.gov (United States)

    Szalińska, H.; Pietrzak, M.; Gonerski, A.

    The subject of the studies was unsaturated polyester resin, Polimal-109 and its compositions containing acrylates of: sodium, potassium, calcium, magnesium, barium, manganese, iron, cobalt, copper and acrylic acid. Polyester resin modified with acrylic acid salts was cured with 60Co gamma radiation. Measurements of Vicat softening temperature, water absorption, creep current resistance, volume and surface resistivity, the tangent of dielectric loss angle and permittivity of radiation cured compositions were carried out. The results of the studies presented testify to the fact that the properties of cross-linked polymers alter after ionogenic compounds have been introduced into them.

  17. Radiation cured polyester compositions containing metal-properties

    International Nuclear Information System (INIS)

    Szalinska, H.; Pietrzak, M.; Gonerski, A.

    1987-01-01

    The subject of the studies was unsaturated polyester resin, Polimal-109 and its compositions containing acrylates of: sodium, potassium, calcium, magnesium, barium, manganese, iron, cobalt, copper and acrylic acid. Polyester resin modified with acrylic acid salts was cured with 60 Co gamma radiation. Measurements of Vicat softening temperature, water absorption, creep current resistance, volume and surface resistivity, the tangent of dielectric loss angle and permittivity of radiation cured compositions were carried out. The results of the studies presented testify to the fact that the properties of cross-linked polymers alter after ionogenic compounds have been introduced into them. (author)

  18. Radiation curing applications of palm oil acrylates

    International Nuclear Information System (INIS)

    Mohd Hilmi Mahmood; Khairul Zaman; Rida, Anak Tajau; Mek Zah Salleh; Rosley Che Ismail

    2007-01-01

    Various palm oil based urethan acrylate prepolymers (UP) were prepared from palm oil based polyols, diisocyanate compounds and hydroxyl terminated acrylate monomers by following procedure derived from established methods. The products were compared with each other in term of their molecular weights (MW), viscosities, curing speed by UV irradiation, gel contents and film hardness. The molecular structure of diisocyanate compounds and hydroxyl acrylate monomers were tend to determine the molecular weights and hence viscosities of the final products of urethan acrylate prepolymers (UP), whereas, the MW of the UP has no direct effects on the UV curing properties of the prepolymers. (author)

  19. Effect of Resident Performance on Midurethral Sling Cure and Complication Rates

    Directory of Open Access Journals (Sweden)

    Sabri Cavkaytar

    2016-01-01

    Full Text Available Aim: To evaluate the cure rates and complications of midurethral slings performed by residents under an experienced surgeon supervision. Material and Method: Between January 2013 and January 2014, one hundred forty-one midurethral slings performed in the urogynecology clinic of Ankara Zekai Tahir Burak Women%u2019s Health Research and Education Hospital were reviewed.Age, parity,body mass index,menopausal status, grade 2 preoperative pelvic organ prolapsus,concomitant vaginal surgery and intraoperative (bladder and bowel perforations,bleeding,vaginal laceration and early postoperative (urinary retention etc.complications were recorded.All women were re-examined at postoperative 6 th month and symptoms were questioned. The patients were classified as %u2018%u2019cured%u2019%u2019 if the stress test was negative , %u2018%u2019partially cured%u2019%u2019 if continence frequency decreased but still continued and %u2018%u2019unsatisfied%u2019%u2019 if there was no change in symptoms. Both TVT and TOT groups were compared in case of complications and cure rates. Results: Among 141 patients who had undergone midurethral sling due to urinary stress incontinence,50(35.5% were TOT , 91(64.5% were TVT. In the TVT group, 3 (3.3% patients had bleeding which requires transfusion and 5(5.5% patients had bladder perforations. But in the TOT group,there was no bladder perforation and bleeding that requires transfusion. In the early postoperative period, urinary retention was encountered in 7(14.0% patients in TOT group and in 17(18.7% patients in TVT group. There was no statistically significant difference between the groups in case of complications. At postoperative 6th month, in the TOT group 76% of patients were cured,18% were partially cured and 6% were unsatisfied. In the TVT group, 83.5% of patients were cured, 12.1% were partially cured and 4.4% were unsatisfied and there was no significant difference in cure rates between the groups. Discussion: The

  20. Influence of site curing on bond properties of reinforced lightweight ...

    African Journals Online (AJOL)

    ... the requirements for structural lightweight concrete. The developed compressive strength and pull-out strength under both site curing conditions were relatively lower than full water curing condition but still were higher than minimum requirement as per standard. Journal of Civil Engineering Research and Practice Vol.

  1. Electron-beam curing of paints and varnishes on wood panels

    International Nuclear Information System (INIS)

    Grosmaire, P.R.

    1977-01-01

    An analysis is presented of the relative costs of curing polyester coated wood panels using (a) the conventional peroxide cure, (b) treatment with UV light, or (c) electron beams. Electron treatment is shown to compare very favourably with either of the other treatments. (U.K.)

  2. Vanilla--its science of cultivation, curing, chemistry, and nutraceutical properties.

    Science.gov (United States)

    Anuradha, Krushnamurthy; Shyamala, Bellur Nanjundaiah; Naidu, Madeneni Madhava

    2013-01-01

    Vanilla is a tropical orchid belonging to the family Orchidaceae and it is mainly used in food, perfumery, and pharmaceutical preparations. The quality of the bean depends on the volatile constituent's, viz., the vanillin content, the species of the vine used, and the processing conditions adopted. Hence, proper pollination during flowering and curing by exercising utmost care are the important aspects of vanilla cultivation. There are different methods of curing, and each one is unique and named after the places of its origin like Mexican process and Bourbon process. Recently, Central Food Technological Research Institute, Mysore has developed know-how of improved curing process, where the green vanilla beans are cured immediately after harvest and this process takes only 32 days, which otherwise requires minimum of 150-180 days as reported in traditional curing methods. Vanillin is the most essential component of the 200 and odd such compounds present in vanilla beans. Vanillin as such has not shown any antioxidant properties, it is along with other compounds has got nutraceutical properties and therefore its wide usage. The medicinal future of vanilla may definitely lie in further research on basic science and clinical studies on the constituents and their mechanism of action.

  3. The statistics of dose/cure relationships for irradiated tumours

    International Nuclear Information System (INIS)

    Porter, E.H.

    1980-01-01

    Consideration is given to the theoretical effects of different factors on the form of dose/cure relationships. Single-clonogen recurrences, dominant anoxic fractions, asymptotically straight survival curves, variable tumour sizes and variable radiation doses are all discussed. Statistical methods are then reviewed, and the conclusions are summarized in the form of advice to experimenters who are studying dose/cure relationships. (UK)

  4. Incidence and Cure Rate of Leprosy from 2006 to 2010 in Sinop, Mato Grosso

    Directory of Open Access Journals (Sweden)

    A. Lima

    2014-03-01

    Full Text Available Leprosy is an infectious contagious granulomatous Mycobacterium leprae is the causative agent that affects skin cells and peripheral nerve, the reservoir is the human being, being recognized as the only source of infection. It is a public health problem in our country. In the Americas, Brazil is the most responsible for the endemic and ranks first in the absolute number of cases worldwide. It is a reportable disease, the cases should be entered in the Information System for Notifiable Diseases (SINAN. As the Ministry of Health operational classification of leprosy cases considered paucibacillary (PB and multibacillary (MB. It is important to note that this research will contribute for the strategic planning and actions regarding the prevention of leprosy. The aim of this study was to identify the incidence of reported cases of leprosy as a clinical form at Sinop - MT and the cure rate between the years 2006 to 2010. This is a quantitative research conducted by documentary SINAN with verification survey data in Sinop through compulsory notification and investigation in the period 2006-2010. The results show that, the city has a higher incidence and cure rates as Borderline leprosy. In the future, it is expected that cases even decrease gradually due to the interruption in the transmission chain with the diagnostics performed during said period.

  5. Evaluating the use of renewable fuel sources to heat flue-cured tobacco barns

    OpenAIRE

    Brown, Robert T

    2018-01-01

    Evaluating the use of renewable fuel sources to heat flue-cured tobacco barns Robert Taylor Brown ABSTRACT The curing of flue-cured tobacco (Nicotiana tabacum L.) is an energy intensive process and represents a significant portion of the overall cost of production. Given the goal of the industry to reduce the environmental footprint of tobacco production and the energy demand of curing, attention has been directed to explore options for the use of renewable fuels for heating to...

  6. Development of a modified dry curing process for beef.

    Science.gov (United States)

    Hayes, J E; Kenny, T A; Ward, P; Kerry, J P

    2007-11-01

    The development of a dry curing process using physical treatments to promote the diffusion of the cure ingredients was studied. Vacuum pulsing with and without tumbling, continuous vacuum, and tumbling only treatments were compared with a conventional static dry cure control method on beef M. supraspinatus. Vacuum tumble and tumble only treatments gave highest core salt content after 7 days conditioning (3.3% and 3.1%, respectively). All test treatments resulted in higher colour uniformity and lower % cook loss in comparison to control (PCured beef slices were stored in modified atmosphere packs (MAP) (80%N(2):20%CO(2)) for up to 28 day at 4°C. Redness (a(∗), Pcured beef products with enhanced organoleptic quality and increased yields.

  7. Application of electron beam curing technology for paper products

    International Nuclear Information System (INIS)

    Takaharu Miura

    1999-01-01

    The electron beam (EB) curing technology has rapidly advanced in recent years. However there were few examples applying this technology to paper products. One reason comes from the high price of EB equipment and the other comes from the difficulty of controlling the irradiation which gives damages to paper. In spite of these problems, the EB cured coating layer shows remarkable features, such as solvent-resistance, water-resistance, heat-resistance and high smoothness using the drum casting technique. Concentrating on application of this technology to paper, we have already developed some products. For example, paper for printings (Super Mirror PN) and for white boards (Super Mirror WB) have been manufactured. In this presentation, we are going to introduce this EB curing technique and the products

  8. Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser

    Directory of Open Access Journals (Sweden)

    Roberto De Santis

    2018-03-01

    Full Text Available Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design/CAM (computer-aided manufacturing assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance.

  9. Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser

    Science.gov (United States)

    De Santis, Roberto; Gloria, Antonio; Maietta, Saverio; Martorelli, Massimo; De Luca, Alessandro; Spagnuolo, Gianrico; Riccitiello, Francesco; Rengo, Sandro

    2018-01-01

    Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED) curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design)/CAM (computer-aided manufacturing) assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance. PMID:29584683

  10. Semiparametric accelerated failure time cure rate mixture models with competing risks.

    Science.gov (United States)

    Choi, Sangbum; Zhu, Liang; Huang, Xuelin

    2018-01-15

    Modern medical treatments have substantially improved survival rates for many chronic diseases and have generated considerable interest in developing cure fraction models for survival data with a non-ignorable cured proportion. Statistical analysis of such data may be further complicated by competing risks that involve multiple types of endpoints. Regression analysis of competing risks is typically undertaken via a proportional hazards model adapted on cause-specific hazard or subdistribution hazard. In this article, we propose an alternative approach that treats competing events as distinct outcomes in a mixture. We consider semiparametric accelerated failure time models for the cause-conditional survival function that are combined through a multinomial logistic model within the cure-mixture modeling framework. The cure-mixture approach to competing risks provides a means to determine the overall effect of a treatment and insights into how this treatment modifies the components of the mixture in the presence of a cure fraction. The regression and nonparametric parameters are estimated by a nonparametric kernel-based maximum likelihood estimation method. Variance estimation is achieved through resampling methods for the kernel-smoothed likelihood function. Simulation studies show that the procedures work well in practical settings. Application to a sarcoma study demonstrates the use of the proposed method for competing risk data with a cure fraction. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Predictive Modeling of Fast-Curing Thermosets in Nozzle-Based Extrusion

    Science.gov (United States)

    Xie, Jingjin; Randolph, Robert; Simmons, Gary; Hull, Patrick V.; Mazzeo, Aaron D.

    2017-01-01

    This work presents an approach to modeling the dynamic spreading and curing behavior of thermosets in nozzle-based extrusions. Thermosets cover a wide range of materials, some of which permit low-temperature processing with subsequent high-temperature and high-strength working properties. Extruding thermosets may overcome the limited working temperatures and strengths of conventional thermoplastic materials used in additive manufacturing. This project aims to produce technology for the fabrication of thermoset-based structures leveraging advances made in nozzle-based extrusion, such as fused deposition modeling (FDM), material jetting, and direct writing. Understanding the synergistic interactions between spreading and fast curing of extruded thermosetting materials will provide essential insights for applications that require accurate dimensional controls, such as additive manufacturing [1], [2] and centrifugal coating/forming [3]. Two types of thermally curing thermosets -- one being a soft silicone (Ecoflex 0050) and the other being a toughened epoxy (G/Flex) -- served as the test materials in this work to obtain models for cure kinetics and viscosity. The developed models align with extensive measurements made with differential scanning calorimetry (DSC) and rheology. DSC monitors the change in the heat of reaction, which reflects the rate and degree of cure at different crosslinking stages. Rheology measures the change in complex viscosity, shear moduli, yield stress, and other properties dictated by chemical composition. By combining DSC and rheological measurements, it is possible to establish a set of models profiling the cure kinetics and chemorheology without prior knowledge of chemical composition, which is usually necessary for sophisticated mechanistic modeling. In this work, we conducted both isothermal and dynamic measurements with both DSC and rheology. With the developed models, numerical simulations yielded predictions of diameter and height of

  12. Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.

    Science.gov (United States)

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H

    2011-02-17

    Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.

  13. Electron beam curing polyurethane acrylate oligomer in air

    International Nuclear Information System (INIS)

    Zhu, Zhenkang; Chen, Xing; Zhou, Jichun; Ma, Zue-Teh

    1988-01-01

    It has been found according to our synthesis that a novel kind of polyurethane acrylate oligomer can be cured by electron beam in the presence of oxygen, even at normal atomospheric levels, without any additives. Irradiation of the oligomer with substantially complete cure to a solid non-tacky state is quite remarkable. It has the same gel content (90 %) in air as in nitrogen at dose of 33 kGy. Double bond conversion of the oligomer is about 50 % by I.R. (author)

  14. Influence of curing rate on softening in ethanol, degree of conversion, and wear of resin composite

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Asmussen, Erik

    2011-01-01

    PURPOSE: To investigate the effect of curing rate on softening in ethanol, degree of conversion, and wear of resin composites. METHOD: With a given energy density and for each of two different light-curing units (QTH or LED), the curing rate was reduced by modulating the curing mode. Thus......, the irradiation of resin composite specimens (Filtek Z250, Tetric Ceram, Esthet-X) was performed in a continuous curing mode and in a pulse-delay curing mode. Wallace hardness was used to determine the softening of resin composite after storage in ethanol. Degree of conversion was determined by infrared...... exposed to the pulse-delay curing mode were softer than resin composites exposed to continuous cure (Pconversion (P

  15. Radiation cured silicone rubber articles

    International Nuclear Information System (INIS)

    DuPont, J.G.; Goodwin, P.A.

    1984-01-01

    A process for making radiation cured silicone rubber articles is disclosed wherein a hydroxyl-terminated polysilaxane having a molecular weight from about 50,000 to about 2,000,000, optionally modified by mixing with up to 85% of an end-stopped silicone rubber, is mixed with from about 10 to about 70 parts per hundred of rubber of a finely divided silica filler with a particle size in the reinforcing range and other inert fillers as determined by desired final properties; the composition so prepared is formed into the desired shape at room temperature; the article so formed is precured to improve the mechanical properties of the material with which it is made by exposure to ammonia gas, ammonium hydroxide, or to the vapors or solutions of a volatile amine at room temperature; and the precured article is irradiated with high energy electrons or gamma radiation to effect a permanent cure of the material from which the article is formed

  16. E-Beam-Cured Layered-Silicate and Spherical Silica Epoxy Nanocomposites (Preprint)

    National Research Council Canada - National Science Library

    Chen, Chenggang; Anderson, David P

    2007-01-01

    .... The nanofillers can be two dimensional (layered-silicate) and zero dimensional (spherical silica). Both the spherical silica epoxy nanocomposite and the layered-silicate epoxy nanocomposite can be cured to a high degree of curing...

  17. Influence of amine structure on the post-cured photo-yellowing of novel amine diacrylate terminated ultraviolet and electron beam cured coatings

    International Nuclear Information System (INIS)

    Allen, N.S.; Lo, D.

    1990-01-01

    The post ultraviolet (UV) and electron beam (EB) cured photo-yellowing of nine novel amine terminated diacrylate monomers has been compared with that of standard commercial diethylamine diacrylate monomer using second order derivative UV absorption spectroscopy. Whilst all the UV cured monomers exhibited an initial rapid growth in UV absorption followed by a rapid photo-bleaching, the EB cured monomers exhibited a very slow growth in absorption followed by a plateau and subsequent slow photo-bleaching. In the former case the residual benzophenone photo-initiator is sensitising the photo-yellowing reaction and its subsequent photo-bleaching. Differences in the rates may be determined by the nature of the exciplex between the terminal amine groups and the benzophenone initiator. With regard to the nature of the amine structure all the simple alkylamines exhibit the greatest degree of photo-yellowing whilst hydroxyl containing amines are generally lower. In the former case methylene hydrogen atoms alpha to the nitrogen atom are important for abstraction. Dicyclohexylamine provides the most stable monomer toward photo-yellowing due to the stability of the alpha methylene hydrogen atoms and steric hindrance by the two bulky cyclohexane rings towards the formation of conjugated chromophores. For the EB cured monomers the degree of photo-yellowing increases with increasing alkyl chain length of the amine group due to the increased possibility of the formation of conjugated chromophores. (author)

  18. Effect of Light Curing Unit Characteristics on Light Intensity Output ...

    African Journals Online (AJOL)

    Background: Modern dental composite restorations are wholly dependent on the use of Visible Light Curing devices. The characteristics of these devices may influence the quality of composite resin restorations. Objective: To determine the characteristics of light curing units (LCUs) in dental clinics in Nairobi and their effect ...

  19. Beam in on curing

    International Nuclear Information System (INIS)

    Holl, Dr.

    1981-01-01

    This third part of an article on the electron beam curing of paints covers the following aspects: inertising equipment; working without inert gas; increase in temperature when irradiating; irradiating plants; laboratory plants; plant operating from coil to coil; plant for shaped parts; possible applications; decorative films, paper, PVC; packaging material; metallisation of paper films; film bonding; strengthening of flock; coating; pressure sensitive adhesives. (U.K.)

  20. Significance of grafting in radiation curing reactions. Comparison of ionising radiation and UV systems

    International Nuclear Information System (INIS)

    Zilic, E.; Ng, L.; Viengkhou, V.; Garnett, J.L.

    1998-01-01

    Full text: Radiation curing is now an accepted commercial technology where both ionising radiation (electron beam) and ultra violet light (UV) sources are used. Grafting is essentially the copolymerisation of a monomer/oligomer to a backbone polymer whereas curing is the rapid polymerisation of a monomer/oligomer mixture onto the surface of the substrate. There is no time scale theoretically associated with grafting processes which can occur in minutes or hours whereas curing reactions are usually very rapid, occurring within a fraction of a second. An important difference between grafting and curing is the nature of the bonding occurring in each process. In grafting covalent carbon-carbon bonds are formed, whereas in curing, bonding usually involves weaker Van der Waals or London dispersion forces. The bonding properties of the systems are important in determining their use commercially. Thus the possibility that concurrent grafting during curing could occur in a system is important since if present, grafting would not only minimise delamination of the coated product but could also, in some circumstances, render difficulties recycling of the finished product especially if it were cellulosic. Hence the conditions for observing the occurrence of concurrent grafting during radiation curing are important. In the present paper, this problem has been studied by examining the effect that the components used in radiation curing exert on a typical reaction. Instead of electron beam sources, the spent fuel element facility at Lucas Heights is used to simulate such ionising radiation sources. The model system utilised is the grafting of a typical methacrylate to cellulose. This is the generic chemistry used in curing systems. The effect of typical additives from curing systems including polyfunctional monomer and oligomers in the grafting reactions have been studied. The ionising radiation results have been compared with analogous data from UV experiments. The significance

  1. Cure shrinkage in casting resins

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J. Brock [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    A method is described whereby the shrinkage of a casting resin can be determined. Values for the shrinkage of several resin systems in frequent use by Sandia have been measured. A discussion of possible methods for determining the stresses generated by cure shrinkage and thermal contraction is also included.

  2. Are we eliminating cures with antibiotic abuse? A study among ...

    African Journals Online (AJOL)

    Context: The theme of “World Health Day 2011” is “combat drug resistance- No action today, No cure tomorrow” which is very pertinent. The present study emphatically demonstrates the current issues related to the overwhelming concerns regarding indiscriminate use of antibiotics, leading to a bleak tomorrow where cures ...

  3. Thermal curing of PBI membranes for high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Cleemann, Lars N.; Li, Qingfeng

    2012-01-01

    (MEAs) is currently hampering the commercial viability of the technology. In the present study, thermoset PBI membranes were prepared by curing the membranes under inert atmosphere at temperatures of up to 350 °C prior to the acid doping. The systematic membrane characterizations with respect...... to solubility, phosphoric acid doping, radical-oxidative resistance and mechanical strength indicated that the PBI membranes were irreversibly cured by the thermal treatment. After curing, the PBI membranes demonstrated features that are fundamental characteristics of a thermoset resin including complete...

  4. Beliefs about the causes and cures of depression

    OpenAIRE

    Furnham, Adrian; Ritchie, William; Lay, Alixe

    2016-01-01

    Aims: To test whether the group would recognise both vignettes with having depression and that the favoured cure would be Psychotherapy/Talking Cure. Method: In all, 320 adults completed a two-part questionnaire. In the first part, they were given two vignettes describing a 30-year-old female and a 45-year-old male both with depression. They were asked what they thought (if anything) was wrong with the person and how they could best be helped. In the second part, they completed two ...

  5. Additives in UV and ionising radiation grafting and curing processes

    International Nuclear Information System (INIS)

    Garnett, J.L.; Ng, L.T.; Viengkhou, V.

    1998-01-01

    Full text: Curing of polymers induced by both UV and ionising radiation are now established technologies. Currently both systems are predominantly based on acrylate chemistry. UV processes use photoinitiators to achieve fast polymerisation. In the proposed paper the significance of the occurrence of concurrent grafting with cure will be examined. particularly with respect to the recycling of finished product. Basic studies on grafting initiated by UV and ionising radiation will be discussed. Polar methyl methacrylate (MMA) and non-polar styrene will be used as representative monomers with cellulose and propylene typifying the backbone polymers. The additives chosen for examination in this study are predominantly components used in radiation curing formulations since grafting and curing are known to be mechanically related. The additives used were mineral acid, photoinitiators, vinyl ethers, oligomers, polyfunctional monomers including multifunctional acrylates (MFAs) and methacrylates (MFMAs). For the first time the use of charge transfer complexes in the Mulliken sense as additives in radiation grafting will be discussed. The CT complexes themselves, being monomers, have also been grafted to the above polymers. Recent developments with excimer laser sources for initiating these processes will be discussed, especially the use of non-acrylate chemistry. Excimer laser sources are shown to complement conventional UV and ionising radiation and are photoinitiator free. Mechanisms for the above grafting and curing processes will be outlined

  6. Glass transition and degree of conversion of a light-cured orthodontic composite

    Directory of Open Access Journals (Sweden)

    Michela M. D. S. Sostena

    2009-12-01

    Full Text Available OBJECTIVE: This study evaluated the glass transition temperature (Tg and degree of conversion (DC of a light-cured (Fill Magic versus a chemically cured (Concise orthodontic composite. MATERIAL AND METHODS: Anelastic relaxation spectroscopy was used for the first time to determine the Tg of a dental composite, while the DC was evaluated by infrared spectroscopy. The light-cured composite specimens were irradiated with a commercial LED light-curing unit using different exposure times (40, 90 and 120 s. RESULTS: Fill Magic presented lower Tg than Concise (35-84ºC versus 135ºC, but reached a higher DC. CONCLUSIONS: The results of this study suggest that Fill Magic has lower Tg than Concise due to its higher organic phase content, and that when this light-cured composite is used to bond orthodontic brackets, a minimum energy density of 7.8 J/cm² is necessary to reach adequate conversion level and obtain satisfactory adhesion.

  7. Preparation of temperature responsive fragrance release membranes by UV curing

    International Nuclear Information System (INIS)

    Nakayama, Hiroshi; Kaetsu, Isao; Uchida, Kumao; Okuda, Jyunya; Kitami, Toshiaki; Matsubara, Yoshio

    2003-01-01

    The authors have studied the preparation and the function of intelligent drug release membranes by UV curing. Temperature responsive fragrance release membranes were prepared by UV curing process and the release functions were investigated as the function of thickness and composition of membrane. Microscopic observations were used to prove the postulated release mechanism

  8. Expert incentives: cure versus prevention

    NARCIS (Netherlands)

    de Jaegher, K.

    This paper distinguishes between two scenarios for the expert-client encounter. In the cure scenario, the client does not know whether a loss can be recovered. In the prevention scenario, the client faces a threat but does not know whether this threat is real enough to justify preventive action. The

  9. Curing Characterisation of Spruce Tannin-based Foams using the Advanced Isoconversional Method

    Directory of Open Access Journals (Sweden)

    Matjaž Čop

    2014-06-01

    Full Text Available The curing kinetics of foam prepared from the tannin of spruce tree bark was investigated using differential scanning calorimetry (DSC and the advanced isoconversional method. An analysis of the formulations with differing amounts of components (furfuryl alcohol, glycerol, tannin, and a catalyst showed that curing was delayed with increasing proportions of glycerol or tannins. An optimum amount of the catalyst constituent was also found during the study. The curing of the foam system was accelerated with increasing temperatures. Finally, the advanced isoconversional method, based on the model-free kinetic algorithm developed by Vyazovkin, appeared to be an appropriate model for the characterisation of the curing kinetics of tannin-based foams.

  10. Effect of rheological parameters on curing rate during NBR injection molding

    Science.gov (United States)

    Kyas, Kamil; Stanek, Michal; Manas, David; Skrobak, Adam

    2013-04-01

    In this work, non-isothermal injection molding process for NBR rubber mixture considering Isayev-Deng curing kinetic model, generalized Newtonian model with Carreau-WLF viscosity was modeled by using finite element method in order to understand the effect of volume flow rate, index of non-Newtonian behavior and relaxation time on the temperature profile and curing rate. It was found that for specific geometry and processing conditions, increase in relaxation time or in the index of non-Newtonian behavior increases the curing rate due to viscous dissipation taking place at the flow domain walls.

  11. 'Every disease has its cure': faith and HIV therapies in Islamic ...

    African Journals Online (AJOL)

    'Every disease has its cure': faith and HIV therapies in Islamic northern Nigeria. ... African Journal of AIDS Research ... a divine cure for HIV exists, many Muslim patients on ART, and the predominantly Muslim biomedical staff who treat them, ...

  12. The influence of curing time on the shear strength of fluidized fly ash

    Directory of Open Access Journals (Sweden)

    Gruchot Andrzej

    2015-06-01

    Full Text Available The paper presents results of research on the influence of compaction and air and water curing on angle of internal friction and cohesion of fluidized fly ash from “Połaniec” Power Plant. It was stated that the increase in compaction resulted in an insignificant increase of the angle of internal friction and a quite significant increase of cohesion. While the type and time of curing had a great influence on the angle of internal friction and cohesion. The highest values of angle of internal friction were obtained in the air curing, and the lowest in the water curing whereas in case of cohesion there was an inverse relation. The rise of curing time resulted in largely increased cohesion and small changes of angle of internal friction.

  13. 7 CFR 29.6002 - Air-cured.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Air-cured. 29.6002 Section 29.6002 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... resulting from the application of artificial heat. ...

  14. The chemistry of UV and EB radiation curing

    International Nuclear Information System (INIS)

    Garnett, J.L.

    1987-01-01

    The application of photopolymerisation (UV) and electron beam (EB) technologies in radiation rapid cure (RRC) processing is discussed. The chemistry associated with such reactions and the mechanisms of the processes are treated. The occurrence of concurrent grafting to substrate with radiation curing of film is shown to be an advantage in enhancing the properties of certain finished products. The parameters influencing the optimum grafting yield in such RRC processes are discussed. In many applications, the chemistry of the process combined with the machine, expecially for EB, is shown a so-called ''turn-key'' operation. (author)

  15. The chemistry of UV and BE radiation curing

    International Nuclear Information System (INIS)

    Garnett, J.L.

    1991-01-01

    The application of photopolymerisation (UV) and electron beams (EB) technologies in radiation rapid cure (PRC) processing is discussed. The chemistry associated with such reactions and the mechanisms of the processes are treated. The occurrence of concurrent grafting to substrate with radiation curing of films is shown to be an advantage in enhancing the properties of certain finished products. The parameters influencing the optimum grafting yield in such PRC processes are discussed. In many applications, the chemistry of such processes combined with the machine, specially for EB is shown. (author)

  16. effect of light intensity on the cure characteristics of photo

    African Journals Online (AJOL)

    2012-05-05

    May 5, 2012 ... Objective: To determine the light intensity emitted by light curing units (LCUs) and its effect on the cure characteristics of ... of carbon-carbon double bonds conversion (11-13). Additionally, the light intensity output of a ... increases within the unit and in the restoration. This heat not only contributes to the ...

  17. Properties of ambient cured blended alkali activated cement concrete

    Science.gov (United States)

    Talha Junaid, M.

    2017-11-01

    This paper presents results of the development and strength properties of ambient-cured alkali activated geopolymer concrete (GPC). The study looks at the strength properties, such as compressive strength, splitting tensile strength, and elastic modulus of such concretes and its dependency on various parameters. The parameters studied in this work are the type and proportions of pre-cursor materials, type of activator and their respective ratios and the curing time. Two types of pre-cursor material; low calcium fly ash (FA) and ground granulated blast furnace slag (GGBFS) were activated using different proportions of sodium silicate and sodium hydroxide solutions. The results indicate that ambient cured geopolymer concrete can be manufactured to match strength properties of ordinary Portland cement concrete (OPC). The strength properties of GPC are dependent on the type and ratio of activator and the proportion of GGBFS used. Increasing the percentage of GGBFS increased the compressive and tensile strengths, while reducing the setting time of the mix. The effect of GGBFS on strength was more pronounced in mixes that contained sodium silicate as activator solution. Unlike OPC, ambient-cured GPC containing sodium silicate gain most of their strength in the first 7 days and there is no change in strength thereafter. However, GPC mixes not containing sodium silicate only achieve a fraction of their strength at 7 days and extended curing is required for such concretes to gain full strength. The results also indicate that the elastic modulus values of GPC mixes without sodium silicate are comparable to OPC while mixes with sodium silicate have elastic modulus values much lower than ordinary concrete.

  18. Practical aspects of irradiance and energy in UV curing

    International Nuclear Information System (INIS)

    Stowe, R.W.

    1999-01-01

    The physical properties of UV-cured materials are substantially affected by the lamp systems used to cure them. The development of the intended properties, whether a varnish, an ink, or an adhesive, can depend on how well these lamp factors are designed and managed. The four key factors of UV exposure are: UV irradiance (or intensity), spectral distribution (wavelengths) of UV, effective energy (time-integrated UV irradiance), and infrared radiation. Inks and varnishes will exhibit very different response to peak irradiance or energy, as well as to different UV spectra. The ability to identify the various lamp characteristics and match them to the optical properties of the curable materials, widens the range in which UV curing is a faster, more efficient production process. This paper explores the reasons for clearly identifying these factors for process optimization

  19. A study on the influence of curing on the strength of a standard grade concrete mix

    OpenAIRE

    Krishna Rao M.V.; Kumar Rathish P.; Khan Azhar M.

    2010-01-01

    Curing is essential if concrete is to perform the intended function over the design life of the structure while excessive curing time may lead to the escalation of the construction cost of the project and unnecessary delays. Where there is a scarcity of water and on sloping surfaces where curing with water is difficult and in cases where large areas like pavements have to be cured, the use of curing compound may be resorted to. The parameters of the study include the curing period [1, 3, 7, 1...

  20. Sebastian Kneipp and the Natural Cure Movement of Germany: Between Naturalism and Modern Medicine

    Directory of Open Access Journals (Sweden)

    Youkyung KO

    2016-12-01

    Full Text Available This study discusses the historical significance of the Natural Cure Movement of Germany, centering on the Kneipp Cure, a form of hydrotherapy practiced by Father Sebastian Kneipp (1821-1897. The Kneipp Cure rested on five main tenets: hydrotherapy, exercise, nutrition, herbalism, and the balance of mind and body. This study illuminates the reception of the Kneipp Cure in the context of the trilateral relationship among the Kneipp Cure, the Natural Cure Movement in general, and modern medicine. The Natural Cure Movement was ideologically based on naturalism, criticizing industrialization and urbanization. There existed various theories and methods in it, yet they shared holism and vitalism as common factors. The Natural Cure Movement of Germany began in the early 19th century. During the late 19th century and the early 20th century, it became merged in the Lebensreformbewegung (life reform movement which campaigned for temperance, anti-tobacco, and anti-vaccination. The core of the Natural Cure Movement was to advocate the world view that nature should be respected and to recognize the natural healing powers of sunlight, air, water, etc. Among varied natural therapies, hydrotherapy spread out through the activities of some medical doctors and amateur healers such as Johann Siegmund Hahn and Vincenz Prie β nitz. Later, the supporters of hydrotherapy gathered together under the German Society of Naturopathy. Sebastian Kneipp, one of the forefathers of hydrotherapy, is distinguished from other proponents of natural therapies in two aspects. First, he did not refuse to employ vaccination and medication. Second, he sought to be recognized by the medical world through cooperating with medical doctors who supported his treatment. As a result, the Kneipp cure was able to be gradually accepted into the medical world despite the “quackery” controversy between modern medicine and the Natural Cure Movement. Nowadays, the name of Sebastian Kneipp

  1. Radiation curing of intelligent coating for controlled release and permeation

    International Nuclear Information System (INIS)

    Nakayama, Hiroshi; Kaetsu, Isao; Uchida, Kumao; Sakata, Shoei; Tougou, Kazuhide; Hara, Takamichi; Matsubara, Yoshio

    2002-01-01

    Intelligent membranes for pH and temperature-responsive drug releases were developed by coating and curing of polymer-drug composite film with electrolyte or N-isopropyl acrylamide curable mixture. It was proved that those intelligent membranes showed the stimule-sensitive and responsive release functions and could be produced efficiently by radiation curing processing with a conveyer system

  2. Influence of post pattern and resin cement curing mode on the retention of glass fibre posts.

    Science.gov (United States)

    Poskus, L T; Sgura, R; Paragó, F E M; Silva, E M; Guimarães, J G A

    2010-04-01

    To evaluate the influence of post design and roughness and cement system (dual- or self-cured) on the retention of glass fibre posts. Two tapered and smooth posts (Exacto Cônico No. 2 and White Post No. 1) and two parallel-sided and serrated posts (Fibrekor 1.25 mm and Reforpost No. 2) were adhesively luted with two different resin cements--a dual-cured (Rely-X ARC) and a self-cured (Cement Post)--in 40 single-rooted teeth. The teeth were divided into eight experimental groups (n = 5): PFD--Parallel-serrated-Fibrekor/dual-cured; PRD--Parallel-serrated-Reforpost/dual-cured; TED--Tapered-smooth-Exacto Cônico/dual-cured; TWD--Tapered-smooth-White Post/dual-cured; PFS--Parallel-serrated-Fibrekor/self-cured; PRS--Parallel-serrated-Reforpost/self-cured; TES--Tapered-smooth-Exacto Cônico/self-cured; TWS--Tapered-smooth-White Post/self-cured. The specimens were submitted to a pull-out test at a crosshead speed of 0.5 mm min(-1). Data were analysed using analysis of variance and Bonferroni's multiple comparison test (alpha = 0.05). Pull-out results (MPa) were: PFD = 8.13 (+/-1.71); PRD = 8.30 (+/-0.46); TED = 8.68 (+/-1.71); TWD = 9.35 (+/-1.99); PFS = 8.54 (+/-2.23); PRS = 7.09 (+/-1.96); TES = 8.27 (+/-3.92); TWS = 7.57 (+/-2.35). No statistical significant difference was detected for posts and cement factors and their interaction. The retention of glass fibre posts was not affected by post design or surface roughness nor by resin cement-curing mode. These results imply that the choice for serrated posts and self-cured cements is not related to an improvement in retention.

  3. Effects of Shrinkage Reducing Agent and Expansive Additive on Mortar Properties

    OpenAIRE

    Treesuwan, Sarapon; Maleesee, Komsan

    2017-01-01

    This research is to study the effect of mortar mixed with shrinkage reducing agent (polyoxyalkylene alkyl ether type), expansive additive (CaO type), and fly ash (hereinafter “SRA,” “EX,” and “FA,” resp.). Moreover, steam curing was studied to improve the properties of mortar. The plastic shrinkage test was conducted by using the strain gauge embedded at 0.5 cm from the surface according to the ASTM C1579-06 standard within early age followed by the total shrinkage test and compressive streng...

  4. Role of Oxides of Nitrogen in Tobacco-Specific Nitrosamine Formation in Flue-Cured Tobacco

    Directory of Open Access Journals (Sweden)

    Nestor TB

    2014-12-01

    Full Text Available Tobacco is known to contain a class of nitrosamines known as tobacco-specific nitrosamines or TSNA. Nitrosation of naturally occurring tobacco alkaloids is commonly accepted as the mechanism of TSNA formation in tobacco. Because green and freshly harvested tobaccos are virtually free of TSNA, formation and accumulation of TSNA are generally considered to occur during the curing process. Most recent hypotheses have focused on microbial reduction of nitrate to nitrite and other oxides of nitrogen (NOcompounds that react with tobacco alkaloids to form TSNA during curing. This natural microbial process remains the prevalent hypothesis for TSNA formation in burley and other air-cured tobaccos. However, a different mechanism for the formation of TSNA in flue-cured tobacco, independent of microbial activity, is documented in this paper. It is common practice to flue-cure Virginia or blonde tobacco in bulk barns that incorporate forced air ventilation and temperature control. For the last thirty-five years, many modern bulk barns in North America generally have used liquid propane gas (LPG with direct-fired burners that exhaust combustion gases directly into the barn where the tobacco is exposed to those gases. Our studies indicate that LPG combustion by-products in the exhaust stream, namely NO, react with naturally occurring tobacco alkaloids to form TSNA. Heat exchange curing methods preclude exposure of the tobacco to combustion gases and by-products, thereby eliminating this significant source of TSNA formation, without degrading leaf quality or smoking character. Research findings from 1998 and 1999 are presented to demonstrate the role of NOgases in TSNA formation and the significance of direct-fired curing as a primary source of TSNA formation in flue-cured tobacco. Also, data from an extensive barn conversion program in 2000, which resulted in a 94% average reduction in TSNA levels in cured flue-cured leaf, are presented.

  5. Contribution for study on curing of organic coatings in papers, by electron beam

    International Nuclear Information System (INIS)

    Taqueda, M.H.S.

    1986-01-01

    The behaviour of national raw material is studied: paper, resins vamishes used on the surface finishing furniture, when subnitted to electron beam curing in an inert atmosphere. The dosimetric control of the irradiation system was made by using CTA films. The minimum cure dose obtained for the EBC 1650/3009 varnish(national polyester) was 2.4 Mrad and of 2.0 Mrad for the EBC 1650/3010 (imported polyester from Germany). The optimun cure dose for both was 3.0 Mrad. The papers impregnated with EBC varnish of with conventional varnish were measured mechanically for resistance in traction and an evaluation of resistance of the finished surfaces with the ebc varnishes was made. The coatings obtained with the EBC varnishes manufactured nationally were compared with the conventional vamishes of thermal cure and with paper samples impregnated and cured in Germany. (author) [pt

  6. Efficient composite fabrication using electron-beam rapidly cured polymers engineered for several manufacturing processes

    International Nuclear Information System (INIS)

    Walton, T.C.; Crivello, J.V.

    1995-01-01

    Low cost, efficiently processed ultra high specific strength and stiffness graphite fiber reinforced polymeric composite materials are of great interest to commercial transportation, construction and aerospace industries for use in various components with enhanced degrees of weight reduction, corrosion/erosion resistance and fatigue resistance. 10 MeV Electron Beam cure processing has been found to increase the cure rate by an order of magnitude over thermally cured systems yet provide less molded in stresses and high T g s. However, a limited range of resins are available which are easily processed with low shrinkage and with performance properties equal or exceeding those of state of the art toughened epoxies and BMI's. The technology, introduced by an academia-industry partnership sparked by Langley Research Center utilizes a cost effective, rapid curing polymeric composite processing technique which effectively reduces the need for expensive tooling and energy inefficient autoclave processing and can cure the laminate in seconds (compared to hours for thermal curing) in ambient or sub-ambient conditions. The process is based on electron beam (E-Beam) curing of a new series of (65 to 1,000,000 cPs.) specially formulated resins that have been shown to exhibit excellent mechanical and physical properties once cured. Fabrication processes utilizing these specially formulated and newly commercialized resins, (e.g. including Vacuum Assist Resin Transfer molding (VARTM), vacuum bag prepreg layup, pultrusion and filament winding grades) are engineered to cure with low shrinkage, provide excellent mechanical properties, be processed solventless (environmentally friendly) and are inherently non toxic

  7. How does duration of curing affect the radiopacity of dental materials?

    Energy Technology Data Exchange (ETDEWEB)

    Bejeh Mir, Arash Poorsattar [School of Dentistry, Babol University of Medical Sciences, Babol (Iran, Islamic Republic of); Bejeh Mir, Morvarid Poorsattar [Private Practice of Orthodontics, Montreal (Canada)

    2012-06-15

    Clinicians commonly encounter cases in which it is difficult to determine whether adjacent radiopacities are normal or pathologic. The ideal radiopacity of composite resin is equal to or higher than that of the same thickness of aluminum. We aimed to investigate the possible effects of different curing times on the post-24-hour radiopacity of composite resins on digital radiographs. One mm thick samples of Filtek P60 and Clearfil resin composites were prepared and cured with three regimens of continuous 400 mW/cm{sup 2} irradiance for 10, 20 and 30 seconds. Along with a 12-step aluminum step wedge, digital radiographs were captured and the radiopacities were transformed to the equivalent aluminum thicknesses. Data were compared by a general linear model and repeated-measures of ANOVA. Overall, the calculated equivalent aluminum thicknesses of composite resins were increased significantly by doubling and tripling the curing times (F(2,8)=8.94, p=0.002). Notably, Bonferroni post-hoc tests confirmed that the radiopacity of the cured Filtek P60 was significantly higher at 30 seconds compared with 10 seconds (p=0.04). Although the higher radiopacity was observed by increasing the time, other comparisons showed no statistical significance (p>0.05). These results supported the hypothesis that the radiopacity of resin composites might be related to the duration of light curing. In addition to the current standards for radiopacity of digital images, defining a standard protocol for curing of dental materials should be considered, and it is suggested that they should be added to the current requirements for dental material.

  8. Development of a fast curing tissue adhesive for meniscus tear repair.

    Science.gov (United States)

    Bochyńska, Agnieszka Izabela; Hannink, Gerjon; Janssen, Dennis; Buma, Pieter; Grijpma, Dirk W

    2017-01-01

    Isocyanate-terminated adhesive amphiphilic block copolymers are attractive materials to treat meniscus tears due to their tuneable mechanical properties and good adhesive characteristics. However, a drawback of this class of materials is their relatively long curing time. In this study, we evaluate the use of an amine cross-linker and addition of catalysts as two strategies to accelerate the curing rates of a recently developed biodegradable reactive isocyanate-terminated hyper-branched adhesive block copolymer prepared from polyethylene glycol (PEG), trimethylene carbonate, citric acid and hexamethylene diisocyanate. The curing kinetics of the hyper-branched adhesive alone and in combination with different concentrations of spermidine solutions, and after addition of 2,2-dimorpholinodiethylether (DMDEE) or 1,4-diazabicyclo [2.2.2] octane (DABCO) were determined using FTIR. Additionally, lap-shear adhesion tests using all compositions at various time points were performed. The two most promising compositions of the fast curing adhesives were evaluated in a meniscus bucket handle lesion model and their performance was compared with that of fibrin glue. The results showed that addition of both spermidine and catalysts to the adhesive copolymer can accelerate the curing rate and that firm adhesion can already be achieved after 2 h. The adhesive strength to meniscus tissue of 3.2-3.7 N was considerably higher for the newly developed compositions than for fibrin glue (0.3 N). The proposed combination of an adhesive component and a cross-linking component or catalyst is a promising way to accelerate curing rates of isocyanate-terminated tissue adhesives.

  9. How does duration of curing affect the radiopacity of dental materials?

    International Nuclear Information System (INIS)

    Bejeh Mir, Arash Poorsattar; Bejeh Mir, Morvarid Poorsattar

    2012-01-01

    Clinicians commonly encounter cases in which it is difficult to determine whether adjacent radiopacities are normal or pathologic. The ideal radiopacity of composite resin is equal to or higher than that of the same thickness of aluminum. We aimed to investigate the possible effects of different curing times on the post-24-hour radiopacity of composite resins on digital radiographs. One mm thick samples of Filtek P60 and Clearfil resin composites were prepared and cured with three regimens of continuous 400 mW/cm 2 irradiance for 10, 20 and 30 seconds. Along with a 12-step aluminum step wedge, digital radiographs were captured and the radiopacities were transformed to the equivalent aluminum thicknesses. Data were compared by a general linear model and repeated-measures of ANOVA. Overall, the calculated equivalent aluminum thicknesses of composite resins were increased significantly by doubling and tripling the curing times (F(2,8)=8.94, p=0.002). Notably, Bonferroni post-hoc tests confirmed that the radiopacity of the cured Filtek P60 was significantly higher at 30 seconds compared with 10 seconds (p=0.04). Although the higher radiopacity was observed by increasing the time, other comparisons showed no statistical significance (p>0.05). These results supported the hypothesis that the radiopacity of resin composites might be related to the duration of light curing. In addition to the current standards for radiopacity of digital images, defining a standard protocol for curing of dental materials should be considered, and it is suggested that they should be added to the current requirements for dental material.

  10. Influence of light-exposure methods and depths of cavity on the microhardness of dual-cured core build-up resin composites

    Directory of Open Access Journals (Sweden)

    Keiichi YOSHIDA

    2014-01-01

    Full Text Available Objective: The purpose of this study was to evaluate the Knoop hardness number (KHN of dual-cured core build-up resin composites (DCBRCs at 6 depths of cavity after 3 post-irradiation times by 4 light-exposure methods. Material and Methods: Five specimens each of DCBRCs (Clearfil DC Core Plus [DCP] and Unifil Core EM [UCE] were filled in acrylic resin blocks with a semi-cylindrical cavity and light-cured using an LED light unit (power density: 1,000 mW/cm2at the top surface by irradiation for 20 seconds (20 s, 40 seconds (40 s, bonding agent plus 20 seconds (B+20 s, or 40 seconds plus light irradiation of both sides of each acrylic resin block for 40 seconds each (120 s. KHN was measured at depths of 0.5, 2.0, 4.0, 6.0, 8.0, and 10.0 mm at 0.5 hours, 24 hours, and 7 days post-irradiation. Statistical analysis was performed using repeated measures ANOVA and Tukey's compromise post-hoc test with a significance level of p0.05. In DCP, and not UCE, at 24 hours and 7 days post-irradiation, the B+20 s method showed significantly higher KHN at all depths of cavity, except the depth of 0.5 mm (p<0.05. Conclusion: KHN depends on the light-exposure method, use of bonding agent, depth of cavity, post-irradiation time, and material brand. Based on the microhardness behavior, DCBRCs are preferably prepared by the effective exposure method, when used for a greater depth of cavity.

  11. Effect of bench time polymerization on depth of cure of dental composite resin

    Science.gov (United States)

    Harahap, K.; Yudhit, A.; Sari, F.

    2017-07-01

    The aim of this research was to investigate the effect of bench time before light cured polymerization on the depth of cure of dental composite resin. Nanofiller composite resin (Filtek Z350 XT,3M, ESPE,China) was used in this study. Sixty samples of nanofiller composite resin were made and divided into control and test groups with bench time for 0, 15, 30, 45, and 60 min. For the test group, composite resins were stored in refrigerator with 4°C temperatures. Meanwhile, for the control groups, the composite resin was stored at room temperature. The samples were prepared using metal mould with size diameter of 6 mm and 4 mm in thickness. Samples were cured for 20 s by using visible blue light curing unit. Part of samples that unpolymerized were removed by using a plastic spatula. The remaining parts of samples were measured by digital caliper and noted as depth of cure (mm). Data were analyzed to one-way ANOVA and LSD tests (p≤0.05). Results showed there was no significance differences between test groups (p=0.5). A 60 minutes bench time group showed the highest depth of cure value among test group, and it was almost similar with control group value. It can be concluded that longer bench time can increase the depth of cure of composite resin.

  12. UV curing of teak veneers for decorative panel

    International Nuclear Information System (INIS)

    Gatot Trimulyadi Rekso; Darsono

    1999-01-01

    The radiation curing of surface coating of teak veneers for decorative panels has been conducted by using ultra violet (UV) as radiation source. In this experiment teak wood veneer was use as a substrate. Epoxy acrylate (import product,) and unsaturated polyester (locally product) were used as coating materials after being added with difunctional monomer TPGDA, and photo-initiator darocur 1173 or irgacure 184. Irradiation was conducted using 80 watt/cm LTV source at conveyor speed of 3,0 m/min. Parameters observed were viscosity of coating materials, hardness, adhesion, appearance, abrasion and chemical resistance of cured films. In general the results showed that viscosity of the formulations based on epoxy acrylate and unsaturated polyester resin were effected by the storage. Film cured by LTV made of epoxy acrylate and unsaturated polyester on the teak veneer wood have the same adhesion and abrasion resistant properties but the hardness and chemical resistant of epoxy acrylate are better than unsaturated polyester. From the experiment result it can be concluded the unsaturated polyester (locally product) can be used as radiation curable material for coating teak veneer panels

  13. Optimal temperature profiles for minimum residual stress in the cure process of polymer composites

    CSIR Research Space (South Africa)

    Gopal, AK

    2000-01-01

    Full Text Available include the minimum residual stresses, minimum cure cycle lime and full degree of cure. The development of residual stresses during the cure cycle is one of the most important problems as they affect the strength and the mechanical properties of the final...

  14. Use of natural ingredients to control growth of Clostridium perfringens in naturally cured frankfurters and hams.

    Science.gov (United States)

    Jackson, Armitra L; Kulchaiyawat, Charlwit; Sullivan, Gary A; Sebranek, Joseph G; Dickson, James S

    2011-03-01

    A major concern for processed meats marketed as natural/organic is that they do not contain nitrite in concentrations known to be most effective for inhibiting foodborne pathogens. Supplemental treatments to increase the level and consistency of antimicrobial protection in these products may be important to provide consumers with the degree of safety that they have come to expect from conventionally cured meats. Therefore, the objective of this study was to identify and test ingredients that might improve processed meat product safety without altering their natural/organic status. Eight treatments of hams and frankfurters were prepared: (A) uncured control (typical ingredients except nitrite and nitrate); (B) conventionally cured control (erythorbate, nitrite, and a lactate-diacetate blend); (C) natural nitrate cure (including starter culture containing Staphylococcus carnosus); (D) natural nitrate cure (culture and natural antimicrobial A containing a vinegar, lemon, and cherry powder blend); (E) natural nitrate cure (culture and antimicrobial B containing a cultured sugar and vinegar blend); (F) natural nitrite cure without additional antimicrobials; (G) natural nitrite cure with natural antimicrobial A; and (H) natural nitrite cure with antimicrobial B. For the hams, treatments C, D, E, and H impacted growth of Clostridium perfringens to the same extent (P cured control (approximately 2 log less growth over time than uncured control). For frankfurters, treatments D, G, and H had an effect (approximately 1 log) on growth equivalent to that of the conventionally cured control (P cured meats have more potential for pathogen growth than conventionally cured products, but supplemental natural ingredients offer safety improvement.

  15. Inkjet-printed silver tracks : low temperature curing and thermal stability investigation

    NARCIS (Netherlands)

    Perelaer, J.; Laat, de A.W.M.; Hendriks, C.E.; Schubert, U.S.

    2008-01-01

    In this contribution the curing behavior and conductivity development of several commercially available silver inks is discussed. In addition, the preparation and characterization of a silver particle ink that shows a curing temperature as low as 80 ÝC is described. Good to excellent conductivity

  16. Low Temperature Cure Powder Coatings (LTCPC)

    Science.gov (United States)

    2010-10-01

    Dr. Glen Merfeld, General Electric Global Research evaluated and optimized the formulation, and cure and performance parameters of candidate LTCPC...Unacceptable test result = Marginal test result = Acceptable test result 80 therefore suffer from brittleness at extremely low temperatures. NASA’s

  17. Prospects of success of radon cures in patients with progressive sclerodermia

    International Nuclear Information System (INIS)

    Brenke, R.; Brenke, A.

    1989-01-01

    Physiotherapy and spa-therapy occupy a high value in the treatment of the progressive sclerodermia. On the basis of 59 radon cures at Bad Brambach in patients with this disease is shown that a success of the cure lasting for a long time is to be expected particularly in patients with a relatively bad initial situation. Above all an amelioration of the subjective condition as well as the movability of the joints is achieved. The necessity of repeated cures for selected patients at an interval of 1 to 2 years is discussed. There was no evidence concerning a possibly specific radon effect. (author)

  18. CUREs in biochemistry—where we are and where we should go

    Science.gov (United States)

    Bell, Jessica K.; Eckdahl, Todd T.; Hecht, David A.; Killion, Patrick J.; Latzer, Joachim; Mans, Tamara L.; Rakus, John F.; Siebrasse, Erica A.; Ellis Bell, J.

    2016-01-01

    Abstract Integration of research experience into classroom is an important and vital experience for all undergraduates. These course‐based undergraduate research experiences (CUREs) have grown from independent instructor lead projects to large consortium driven experiences. The impact and importance of CUREs on students at all levels in biochemistry was the focus of a National Science Foundation funded think tank. The state of biochemistry CUREs and suggestions for moving biochemistry forward as well as a practical guide (supplementary material) are reported here. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):7–12, 2017. PMID:27357379

  19. The characteristics of epoxy resin cured by {gamma}-ray and E-beam

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Y.C. E-mail: ycnho@kaeri.re.kr; Kang, Phil Hyun; Park, Jong Seok

    2004-10-01

    Epoxy resins are widely used as high-performance thermosetting resins for many industrial applications. In this study, the effect of an electron beam (E-beam) and {gamma}-ray irradiation on the curing of epoxy resins was investigated. Diglycidyl ether of bisphenol-A(DGEBA), diglycidyl ether of bisphenol-F(DGEBF) as epoxy resins, triarylsulfonium hexafluoroantimonate(TASHFA), and triarylsulfonium hexafluorophosphate(TASHFP) as initiators were used in this study. The chemical and mechanical characteristics of irradiated epoxy resins were compared after curing of E-beam and {gamma}-ray irradiation up to 50 kGy in N{sub 2} and air atmosphere. We ascertained the effect of oxygen on the radiation curing of epoxy resin. The thermal properties of cured epoxy were investigated using DMA and TGA. Mechanical properties such as flexural strength were measured. The chemical structures of cured epoxy were characterized by FT-NIR. The gel fraction and the stress at yield of epoxy resins irradiated by E-beam and {gamma}-ray in N{sub 2} atmosphere were also compared with those of epoxy resins irradiated by E-beam and {gamma}-ray in air.

  20. Monitoring cure properties of out-of-autoclave BMI composites using IFPI sensor

    Science.gov (United States)

    Kaur, Amardeep; Anandan, Sudharshan; Yuan, Lei; Watkins, Steve E.; Chandrashekhara, K.; Xiao, Hai; Phan, Nam

    2016-04-01

    A non-destructive technique for inspection of a Bismaleimide (BMI) composite is presented using an optical fiber sensor. High performance BMI composites are used for Aerospace application for their mechanical strength. They are also used as an alternative to toughened epoxy resins. A femtosecond-laser-inscribed Intrinsic Fabry-Perot Interferometer (IFPI) sensor is used to perform real time cure monitoring of a BMI composite. The composite is cured using the out-of-autoclave (OOA) process. The IFPI sensor was used for in-situ monitoring; different curing stages are analyzed throughout the curing process. Temperature-induced-strain was measured to analyze the cure properties. The IFPI structure comprises of two reflecting mirrors inscribed on the core of the fiber using a femtosecond-laser manufacturing process. The manufacturing process makes the sensor thermally stable and robust for embedded applications. The sensor can withstand very high temperatures of up to 850 °C. The temperature and strain sensitivities of embedded IFPI sensor were measured to be 1.4 pm/μepsilon and 0.6 pm/μepsilon respectively.

  1. The Effects of Different Curing Methods on the Compressive Strength of Terracrete

    Directory of Open Access Journals (Sweden)

    O. Alake

    2009-01-01

    Full Text Available This research evaluated the effects of different curing methods on the compressive strength of terracrete. Several tests that included sieve analysis were carried out on constituents of terracrete (granite and laterite to determine their particle size distribution and performance criteria tests to determine compressive strength of terracrete cubes for 7 to 35 days of curing. Sand, foam-soaked, tank and open methods of curing were used and the study was carried out under controlled temperature. Sixty cubes of 100 × 100 × 100mm sized cubes were cast using a mix ratio of 1 part of cement, 1½ part of latrite, and 3 part of coarse aggregate (granite proportioned by weight and water – cement ratio of 0.62. The result of the various compressive strengths of the cubes showed that out of the four curing methods, open method of curing was the best because the cubes gained the highest average compressive strength of 10.3N/mm2 by the 35th day.

  2. Light output from six battery operated dental curing lights

    Energy Technology Data Exchange (ETDEWEB)

    Shimokawa, Carlos Alberto Kenji, E-mail: carlos.shimokawa@usp.br [University of São Paulo, School of Dentistry, Restorative Dentistry, Avenida Professor Lineu Prestes, 2227, 05508-000, São Paulo, São Paulo (Brazil); Dalhousie University, Faculty of Dentistry, Dental Clinical Sciences, 5981 University Avenue, B3H 4R2, Halifax, Nova Scotia (Canada); Turbino, Míriam Lacalle, E-mail: miturbin@usp.br [University of São Paulo, School of Dentistry, Restorative Dentistry, Avenida Professor Lineu Prestes, 2227, 05508-000, São Paulo, São Paulo (Brazil); Harlow, Jessie Eudora, E-mail: jessie.harlow@dal.ca [Dalhousie University, Faculty of Dentistry, Dental Clinical Sciences, 5981 University Avenue, B3H 4R2, Halifax, Nova Scotia (Canada); Price, Hannah Louise, E-mail: hannlprice@gmail.com [Dalhousie University, Faculty of Dentistry, Dental Clinical Sciences, 5981 University Avenue, B3H 4R2, Halifax, Nova Scotia (Canada); Price, Richard Bengt, E-mail: richard.price@dal.ca [Dalhousie University, School of Biomedical Engineering and Faculty of Dentistry, 5981 University Avenue, B3H 4R2, Halifax, Nova Scotia (Canada)

    2016-12-01

    Light Curing Units (LCUs) are used daily in almost every dental office to photocure resins, but because the light is so bright, the user is unable to tell visually if there are any differences between different LCUs. This study evaluated the light output from six dental LCUs: Elipar Deep Cure-S (3M ESPE), Bluephase G2 (Ivoclar Vivadent), Translux 2Wave (Heraeus Kulzer), Optilight Prime (Gnatus), Slim Blast (First Medica) and Led.B (Guilin Woodpecker) with a fully charged battery, after 50, and again after 100, 20 second light exposures. For each situation, the radiant power was measured 10 times with a laboratory-grade power meter. Then, the emission spectrum was measured using a fiber-optic spectrometer followed by an analysis of the light beam profile. It was found there were significant differences in the LCU power and the irradiance values between the LCUs (p < 0.01). The Optilight Prime and Slim Blast LCUs showed a significant reduction in light output after a 50 and 100 exposures, while Bluephase G2 exhibited a significant reduction only after 100 exposures (p < 0.01). The Bluephase G2 and Translux 2 Wave delivered an emission spectrum that had two distinct wavelength emission peaks. Only the Elipar Deep Cure-S and Bluephase G2 LCUs displayed homogeneous light beam profiles, the other LCUs exhibited highly non-homogeneous light beam profiles. It was concluded that contemporary LCUs could have very different light output characteristics. Both manufacturers and researchers should provide more information about the light output from LCUs. - Highlights: • The six LCUs delivered significantly different light output characteristics. • The use of a single irradiance value does not adequately describe the light output from a curing light. • Small differences in the tip area, or how it is defined, will have a large effect on the calculated irradiance. • In some cases there were large portions of the light tip that emitted less than 400 mW/cm². • The radiant

  3. Light output from six battery operated dental curing lights

    International Nuclear Information System (INIS)

    Shimokawa, Carlos Alberto Kenji; Turbino, Míriam Lacalle; Harlow, Jessie Eudora; Price, Hannah Louise; Price, Richard Bengt

    2016-01-01

    Light Curing Units (LCUs) are used daily in almost every dental office to photocure resins, but because the light is so bright, the user is unable to tell visually if there are any differences between different LCUs. This study evaluated the light output from six dental LCUs: Elipar Deep Cure-S (3M ESPE), Bluephase G2 (Ivoclar Vivadent), Translux 2Wave (Heraeus Kulzer), Optilight Prime (Gnatus), Slim Blast (First Medica) and Led.B (Guilin Woodpecker) with a fully charged battery, after 50, and again after 100, 20 second light exposures. For each situation, the radiant power was measured 10 times with a laboratory-grade power meter. Then, the emission spectrum was measured using a fiber-optic spectrometer followed by an analysis of the light beam profile. It was found there were significant differences in the LCU power and the irradiance values between the LCUs (p < 0.01). The Optilight Prime and Slim Blast LCUs showed a significant reduction in light output after a 50 and 100 exposures, while Bluephase G2 exhibited a significant reduction only after 100 exposures (p < 0.01). The Bluephase G2 and Translux 2 Wave delivered an emission spectrum that had two distinct wavelength emission peaks. Only the Elipar Deep Cure-S and Bluephase G2 LCUs displayed homogeneous light beam profiles, the other LCUs exhibited highly non-homogeneous light beam profiles. It was concluded that contemporary LCUs could have very different light output characteristics. Both manufacturers and researchers should provide more information about the light output from LCUs. - Highlights: • The six LCUs delivered significantly different light output characteristics. • The use of a single irradiance value does not adequately describe the light output from a curing light. • Small differences in the tip area, or how it is defined, will have a large effect on the calculated irradiance. • In some cases there were large portions of the light tip that emitted less than 400 mW/cm². • The radiant

  4. Strength development of concrete made with recycled glass aggregates subjected to frost curing conditions

    OpenAIRE

    Poutos, Konstantinos; Nwaubani, Sunny

    2013-01-01

    An experimental investigation was undertaken to study whether the strength behavior of concrete made with glass aggregate differed significantly from that made with natural aggregates when concretes cured in low temperatures. The aim of the research work presented is to examine the strength behavior of glass concrete when cured under freezing conditions at -15°C and -10°C. The results showed that when glass concrete is cured at low curing temperature, the 28 day compressive strength is higher...

  5. Development of greenhouse solar systems for bulk tobacco curing and plant production

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.K.; Bowers, C.G. Jr.

    1986-12-01

    Among many farm crops, bright leaf tobacco is the most energy- and labor-intensive crop. The greenhouse solar system (solar bulk-curing/greenhouse system, or solar barn) was developed to provide multiple-use facilities for year-round solar energy utilization to save fossil fuels in tobacco curing and plant production and to facilitate the total mechanization of tobacco culture. Two types of full-size greenhouse solar systems, the load-supporting wall design and the shell design, both utilizing the thermal envelope concept, were designed and constructed for solar bulk-curing of tobacco, growing transplants and horticultural crops under controlled environment, and aiding automation of transplanting operations. Full-scale field tests of solar bulk curing showed that the fuel savings were consistantly improved from 37% in 1975 to 51% in 1978 for this solar bulk-curing system as compared with a conventional bulk-curing barn as a control. The feasibility of the system to save energy by using solar energy as a first priority source was significantly demonstrated. Three-year greenhouse and field tests showed that high germination rate of 95-97% with excellent emergence frequency was obtained for tobacco seeds under the controlled environment provided by the greenhouse solar system. In general, the containerized transplants from greenhouse solar system significantly exceeded the conventional bare-root transplants in growth, leaf-quality and yield. 9 figs., 3 tabs., 10 refs.

  6. Patients cured of acromegaly do not experience improvement of their skull deformities.

    Science.gov (United States)

    Rick, Jonathan W; Jahangiri, Arman; Flanigan, Patrick M; Aghi, Manish K

    2017-04-01

    Acromegaly is a rare disease that is associated with many co-morbidities. This condition also causes progressive deformity of the skull which includes frontal bossing and cranial thickening. Surgical and/or medical management can cure this condition in many patients, but it is not understood if patients cured of acromegaly experience regression of their skull deformities. We performed a retrospective analysis on patients treated at our dedicated pituitary center from 2009 to 2014. We looked at all MRI images taken during the treatment of these patients and recorded measurements on eight skull dimensions. We then analyzed these measurements for changes over time. 29 patients underwent curative treatment for acromegaly within our timeframe. The mean age for this population was 45.0 years old (range 19-70) and 55.2 % (n = 16) were female. All of these patients were treated with a transsphenoidal resection for a somatotropic pituitary adenoma. 9 (31.1%) of these patients required further medical therapy to be cured. We found statically significant variation in the coronal width of the sella turcica after therapy, which is likely attributable to changes from transsphenoidal surgery. None of the other dimensions had significant variation over time after cure. Patients cured of acromegaly should not expect natural regression of their skull deformities. Our study suggests that both frontal bossing and cranial thickening do not return to normal after cure.

  7. Isothermal and non-isothermal cure of a tri-functional epoxy resin (TGAP): a stochastic TMDSC study

    OpenAIRE

    Hutchinson, John M.; Shiravand, Fatemeh; Calventus Solé, Yolanda; Fraga Rivas, Iria

    2012-01-01

    The isothermal cure of a highly reactive tri-functional epoxy resin, tri-glycidyl para-amino phenol (TGAP), with diamino diphenyl sulphone (DDS), at two different cure temperatures Tc has been studied by both conventional differential scanning calorimetry (DSC) and by a stochastic temperature modulated DSC technique, TOPEM. From a series of isothermal cure experiments for increasing cure times, the glass transition temperature Tg as a function of isothermal cure time is determined by co...

  8. Microporous polyurethane-acrylamide film cured by electron beam irradiation

    International Nuclear Information System (INIS)

    Ando, Masayuki; Goto, Takakazu; Tsuchiya, Mitsuru; Uryu, Toshiyuki

    1988-01-01

    The morphology and aggregation structure of electron beam (EB)-cured microporous polyurethane-acrylamide film was investigated. The urethane-acrylamide prepolymer was synthesized by the reaction of poly(butylene adipate)diol, diphenylmethane diisocyanate, and N-(hydroxymethyl)acrylamide. It was found from scanning electron microscopy that the urethane-acrylamide film, which was prepared by using a methyl ethyl ketone and dimethylformamide (3:1 v/v) mixture as casting solvent, had a microporous structure with pore size of several micrometers, and that the morphology was fixed by EB irradiation. The pore volume of the EB-cured microporous film was determined to be about 460 mm 3 g -1 by mercury porosimetry. The micropores were not destroyed even after immersing in solvent, possibly because the cured film had high crystallinity and dense crosslinking. Moreover, it was found by X-ray photelectron spectroscopy that terminal portions of urethane-acrylamide were localized at the film surface. (author)

  9. The use of atmospheric pressure plasma as a curing process for canned ground ham.

    Science.gov (United States)

    Lee, Juri; Jo, Kyung; Lim, Yubong; Jeon, Hee Joon; Choe, Jun Ho; Jo, Cheorun; Jung, Samooel

    2018-02-01

    This study investigated the potential use of atmospheric pressure plasma (APP) treatment as a curing process for canned ground ham. APP treatment for 60min while mixing increased the nitrite content in the meat batters from 0.64 to 60.50mgkg -1 while the pH and the total content of aerobic bacteria in the meat batters were unchanged. The canned ground hams cured by the APP treatment for 30min displayed no difference in their physicochemical qualities, such as nitrosyl hemochrome, color, residual nitrite, texture, lipid oxidation, and protein oxidation, compared with those of canned ground hams cured with sodium nitrite or celery powder at 42mgkg -1 of nitrite. The canned ground hams cured by the APP treatment received a higher score in taste and overall acceptability than those cured with sodium nitrite. Canned ground ham can be cured by the APP treatment without nitrite additives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. About the cure kinetics in natural rubber/styrene Butadiene rubber blends at 433 K

    International Nuclear Information System (INIS)

    Mansilla, M.A.; Marzocca, A.J.

    2012-01-01

    Vulcanized blends of elastomers are employed in several goods mainly to improve physical properties and reduce costs. One of the most used blends of this kind is that composed by natural rubber (NR) and styrene butadiene rubber (SBR). The cure kinetic of these blends depends mainly on the compound formulation and the cure temperature and time. The preparation method of the blends can influence the mechanical properties of the vulcanized compounds. In this work the cure kinetic at 433 K of NR/SBR blends vulcanized with the system sulfur/TBBS (N-t-butyl-2-benzothiazole sulfenamide) is analyzed in samples prepared by mechanical mixing and solution blending. The two methods produce elastomer domains of NR and SBR, which present different microstructure due to the cure level attained during vulcanization. The cure kinetics is studied by means of rheometer tests and the model proposed by Kamal and Sourour. The analysis of the cure rate is presented and is related to the structure obtained during the vulcanization process.

  11. About the cure kinetics in natural rubber/styrene Butadiene rubber blends at 433 K

    Energy Technology Data Exchange (ETDEWEB)

    Mansilla, M.A., E-mail: mmansilla@df.uba.ar [Laboratorio de Polimeros y Materiales Compuestos, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 1, C1428EGA Buenos Aires (Argentina); Marzocca, A.J. [Laboratorio de Polimeros y Materiales Compuestos, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 1, C1428EGA Buenos Aires (Argentina)

    2012-08-15

    Vulcanized blends of elastomers are employed in several goods mainly to improve physical properties and reduce costs. One of the most used blends of this kind is that composed by natural rubber (NR) and styrene butadiene rubber (SBR). The cure kinetic of these blends depends mainly on the compound formulation and the cure temperature and time. The preparation method of the blends can influence the mechanical properties of the vulcanized compounds. In this work the cure kinetic at 433 K of NR/SBR blends vulcanized with the system sulfur/TBBS (N-t-butyl-2-benzothiazole sulfenamide) is analyzed in samples prepared by mechanical mixing and solution blending. The two methods produce elastomer domains of NR and SBR, which present different microstructure due to the cure level attained during vulcanization. The cure kinetics is studied by means of rheometer tests and the model proposed by Kamal and Sourour. The analysis of the cure rate is presented and is related to the structure obtained during the vulcanization process.

  12. Influence of curing conditions on the sorptivity and weight change characteristics of self-compacting concrete

    International Nuclear Information System (INIS)

    Caliskan, S.

    2006-01-01

    This paper reports on a study carried out to investigate the influence of curing conditions on the capillary water absorption and weight change characteristics of self compacting concrete (SCC). Specimens were prepared using three types of concrete (SCC, Portland cement (PC), Fly ash (FA) concretes) and were cured under three different curing conditions (20C water and 20C and 40C air cure) for 28 days. Weight gain (water intake) in water curing and weight loss (water loss) in 20C and 40C air curing were recorded throughout the curing period. Compressive strength, water absorption and capillary water absorption tests were carried out at 28 days. The results indicated that FA concrete gained about 0.5% whilst PC and self-compacting concretes gained about 1.0% of the initial weight. This indicates that due to the slower reaction process more free water remains within FA concrete avoiding further water intake. In the weight loss study, FA concrete lost about 4.0% and 6.0% of the initial weight at 20C and 40C air curing, respectively; whereas SCC and PC concretes (both had almost identical values) lost about 3.2 and 5.2% at 20C and 40C, respectively. The absorption test results indicated that SCC gave the lowest captivity coefficient values followed by PC and FA concretes in all curing conditions. (author)

  13. Economic evaluation of five curing processes for wood coatings

    International Nuclear Information System (INIS)

    Martinez M, I.

    1996-01-01

    In this work we study the economic feasibility of five methods for curing coatings over sheet wood products. Each year, Mexico is producing more than 40 millions of square meters of wood panels, but the demand is of the range of 58 millions of square meters of this product. Two millions are expended after they are coated, and 38 millions without coating, they are coated artisanilly when they are used to make pieces of furniture. The technical characteristics and the costs involved in each one of five methods of curing, are described. Investments involved with each method are processed to establish: fixed costs, variable costs, equilibrium point, and others. Initial investment, coasts and revenues are processed to determine the income statement pro-form, the projected statement of change in financial position, the projected working capital, the projected balance sheet, the cash-flow, and some economical and financial indicators for each one of the five curing methods. With this information, the internal rate of return (IRR) is determined, and used to compare the economic worth of each of the five methods. The five methods are profitable, because all they have a IRR greater than the opportunity cost of capital (15%) of projects with similar characteristics. Despite, with each one of the five methods, the capital invested is recoverable, and profits can be obtained; curing by ultraviolet light or by electron beam, let recover the investment in less than two years, require fewer dollars for investment, and have a IRR of 135% and 111% respectively. Besides ultraviolet light or electron beam curing processes, pollute less with volatile solvents, use the energy efficiently, have greater production rate, and the coating obtained have better quality than with the other three methods. (Author)

  14. Cure4Kids for Kids: school-based cancer education outreach.

    Science.gov (United States)

    Van Kirk Villalobos, Aubrey; Quintana, Yuri; Ribeiro, Raul C

    2012-01-01

    In 2006, St. Jude Children's Research Hospital created Cure4Kids for Kids, a school-based outreach program. The objectives of this community education program are to teach about cancer and healthy lifestyles and to inspire an interest in science and health-related careers. A multidisciplinary team of St. Jude and outside experts developed and pilot tested age-appropriate educational materials and activities with 4th grade students. Eight schools and more than 800 children have participated in the program since 2006. Teachers and students have demonstrated a very positive response to the program for it being both fun and educational. Cure4Kids for Kids resources have been collected into a teacher's kit and are now freely available online at www.cure4kids.org/kids.

  15. Sensory and physicochemical characteristics of salamis added with vegetable-based curing ingredients

    OpenAIRE

    Kawski, Vicky Lilge; Bertol, Teresinha Marisa; Santos, Maria José Honorato dos; Sawitzki, Maristela Cortez; Fiorentini, Angela Maria; Coldebella, Arlei; Agnes, Ingrid Beatriz Lermen

    2017-01-01

    ABSTRACT: The aim of this study was to evaluate the sensory and physicochemical quality of colonial salamis added with vegetable-based curing ingredients as potential enhancers of quality products. Salamis were produced according to three treatments: (A) Control: 0.1% curing salt; (B) rosemary: 0.05% curing salt + 0.5% rosemary extract (RE); and (C) RE+celery: 0.14% Veg 503 + 0.27% Veg 504 (sea salt plus celery, nitrate and nitrite supplies, respectively) + 0.5% of RE. No significant differe...

  16. Viral hepatitis B and C. Cure or treatment?

    Directory of Open Access Journals (Sweden)

    Dimitrios A. Kountouras

    2014-12-01

    Full Text Available HBV and HCV infections are among the most important global health problems; both represent also the leading cause of cirrhosis and HCC worldwide. HBV treatment cannot be considered cure but effective viral suppression can be achieved and remains the current principal goal of therapy. Talking about HCV treatment today equals to talking about total cure of the patient, with treatments of very high SVR rates, shorter if not shortest duration, minimal risk for resistance, pangenotypic and practically with no serious adverse events, no fibrosis or previous treatment status limitations, but also with a very high cost.

  17. DSC and curing kinetics study of epoxy grouting diluted with furfural -acetone slurry

    Science.gov (United States)

    Yin, H.; Sun, D. W.; Li, B.; Liu, Y. T.; Ran, Q. P.; Liu, J. P.

    2016-07-01

    The use of furfural-acetone slurry as active diluents of Bisphenol-A epoxy resin (DGEBA) groutings has been studied by dynamic and non-isothermal DSC for the first time. Curing kinetics study was investigated by non-isothermal differential scanning calorimetries at different heating rates. Activation enery (Ea) was calculated based on Kissinger and Ozawa Methods, and the results showed that Ea increased from 58.87 to 71.13KJ/mol after the diluents were added. The furfural-acetone epoxy matrix could cure completely at the theoretical curing temperature of 365.8K and the curing time of 139mins, which were determined by the kinetic model parameters.

  18. An Enhanced Vacuum Cure Technique for On-Aircraft Repair of Carbon-Bismaleimide Composites

    Science.gov (United States)

    Rider, Andrew N.; Baker, Alan A.; Wang, Chun H.; Smith, Graeme

    2011-06-01

    Carbon/bismaleimide (BMI) composite is increasingly employed in critical load carrying aircraft structures designed to operate at temperatures approaching 180°C. The high post-cure temperature (above 220°C) required to fully react the BMI resin, however, renders existing on-aircraft prepreg or wet layup repair methods invalid. This paper presents a new on-aircraft repair technique for carbon/BMI composites. The composite prepregs are first warm-staged to improve the ability to evacuate entrapped air. Then the patch is cured in the scarf cavity using the vacuum bag technique, followed by off-aircraft post-cure. The fully cured patch then can be bonded using a structural adhesive.

  19. Cure Kinetics of Benzoxazine/Cycloaliphatic Epoxy Resin by Differential Scanning Calorimetry

    Science.gov (United States)

    Gouni, Sreeja Reddy

    Understanding the curing kinetics of a thermoset resin has a significant importance in developing and optimizing curing cycles in various industrial manufacturing processes. This can assist in improving the quality of final product and minimizing the manufacturing-associated costs. One approach towards developing such an understanding is to formulate kinetic models that can be used to optimize curing time and temperature to reach a full cure state or to determine time to apply pressure in an autoclave process. Various phenomenological reaction models have been used in the literature to successfully predict the kinetic behavior of a thermoset system. The current research work was designed to investigate the cure kinetics of Bisphenol-A based Benzoxazine (BZ-a) and Cycloaliphatic epoxy resin (CER) system under isothermal and nonisothermal conditions by Differential Scanning Calorimetry (DSC). The cure characteristics of BZ-a/CER copolymer systems with 75/25 wt% and 50/50 wt% have been studied and compared to that of pure benzoxazine under nonisothermal conditions. The DSC thermograms exhibited by these BZ-a/CER copolymer systems showed a single exothermic peak, indicating that the reactions between benzoxazine-benzoxazine monomers and benzoxazine-cycloaliphatic epoxy resin were interactive and occurred simultaneously. The Kissinger method and isoconversional methods including Ozawa-Flynn-Wall and Freidman were employed to obtain the activation energy values and determine the nature of the reaction. The cure behavior and the kinetic parameters were determined by adopting a single step autocatalytic model based on Kamal and Sourour phenomenological reaction model. The model was found to suitably describe the cure kinetics of copolymer system prior to the diffusion-control reaction. Analyzing and understanding the thermoset resin system under isothermal conditions is also important since it is the most common practice in the industry. The BZ-a/CER copolymer system with

  20. Common errors in the treatment of intra-abdominal infections: the irrational use of antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Belinda De Simone

    2016-06-01

    Full Text Available Antimicrobial resistance (AR is a global, emergent problem because an increasing numbers of serious community acquired and nosocomial infections are caused by resistant bacterial pathogens. It is a direct consequence of the excessive and irrational use of antibiotics. The use of antimicrobial agents – aimed to decrease morbidity and mortality rate related to intra-abdominal infections – is very high, often improper, in the Departments of General and Emergency Surgery and Intensive Cure Units. Source control and empiric antibiotic therapy have to be administrated as early as possible to decrease high mortality rates in patients with severe sepsis or septic shock and, in this, the general surgeon has a crucial role. Proper antimicrobial stewardship in selecting an appropriate antibiotic and optimizing its dose and duration to cure intraabdominal infections may prevent the emergence of AR and decrease costs for antibiotics.

  1. 7 CFR 30.38 - Class 3; air-cured types and groups.

    Science.gov (United States)

    2010-01-01

    ... known as Burley, produced principally in Kentucky, Tennessee, Virginia, North Carolina, Ohio, Indiana, West Virginia, and Missouri. Groups applicable to type 31: X—Flyings. C—Lugs or Cutters. B—Leaf. T—Tips... Green River, Green River Air-cured, or Dark Air-cured of the Henderson and Owensboro Districts, and...

  2. Crosslinked bicontinuous biobased PLA/NR blends via dynamic vulcanization using different curing systems.

    Science.gov (United States)

    Yuan, Daosheng; Chen, Kunling; Xu, Chuanhui; Chen, Zhonghua; Chen, Yukun

    2014-11-26

    In this study, blends of entirely biosourced polymers, namely polylactide (PLA) and natural rubber (NR), were prepared through dynamic vulcanization using dicumyl peroxide (DCP), sulphur (S) and phenolic resin (2402) as curing agents, respectively. The crosslinked NR phase was found to be a continuous structure in all the prepared blends. The molecular weight changes of PLA were studied by gel permeation chromatography. Interfacial compatibilization between PLA and NR was investigated using Fourier transform infrared spectroscopy and scanning electron microscopy. The thermal properties of blends were evaluated by differential scanning calorimetry and thermogravimetric analysis instrument. It was found that the molecular weight of PLA and interfacial compatibilizaion between PLA and NR showed a significant influence on the mechanical and thermal properties of blends. The PLA/NR blend (60/40 w/w) by DCP-induced dynamic vulcanization owned the finest mechanical properties and thermal stability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A Call to Develop Course-Based Undergraduate Research Experiences (CUREs) for Nonmajors Courses.

    Science.gov (United States)

    Ballen, Cissy J; Blum, Jessamina E; Brownell, Sara; Hebert, Sadie; Hewlett, James; Klein, Joanna R; McDonald, Erik A; Monti, Denise L; Nold, Stephen C; Slemmons, Krista E; Soneral, Paula A G; Cotner, Sehoya

    2017-01-01

    Course-based undergraduate research experiences (CUREs) for non-science majors (nonmajors) are potentially distinct from CUREs for developing scientists in their goals, learning objectives, and assessment strategies. While national calls to improve science, technology, engineering, and mathematics education have led to an increase in research revealing the positive effects of CUREs for science majors, less work has specifically examined whether nonmajors are impacted in the same way. To address this gap in our understanding, a working group focused on nonmajors CUREs was convened to discuss the following questions: 1) What are our laboratory-learning goals for nonmajors? 2) What are our research priorities to determine best practices for nonmajors CUREs? 3) How can we collaborate to define and disseminate best practices for nonmajors in CUREs? We defined three broad student outcomes of prime importance to the nonmajors CURE: improvement of scientific literacy skills, proscience attitudes, and evidence-based decision making. We evaluated the state of knowledge of best practices for nonmajors, and identified research priorities for the future. The report that follows is a summary of the conclusions and future directions from our discussion. © 2017 C. J. Ballen et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Cushing's syndrome: aftermath of the cure.

    Science.gov (United States)

    Pivonello, Rosario; De Martino, Maria Cristina; De Leo, Monica; Tauchmanovà, Libuse; Faggiano, Antongiulio; Lombardi, Gaetano; Colao, Annamaria

    2007-11-01

    Cushing's syndrome (CS) is a chronic and systemic disease caused by endogenous or exogenous hypercortisolism, associated with an increase of mortality rate due to the clinical consequences of glucocorticoid excess, especially cardiovascular diseases. After cure, usually obtained by the surgical removal of the tumor responsible for the disease, the normalization of cortisol secretion is not constantly followed by the recovery of the clinical complications developed during the active disease, and it is often followed by the development of novel clinical manifestations induced by the fall of cortisol levels. These evidences were mostly documented in patients with pituitary-dependent CS, after surgical resection of the pituitary tumor. Indeed, despite an improvement of the mortality rate, metabolic syndrome and the consequent cardiovascular risk have been found to partially persist after disease remission, strictly correlated to the insulin resistance. Skeletal diseases, mainly osteoporosis, improve after normalization of cortisol levels but require a long period of time or the use of specific treatment, mainly bisphosphonates, to reach the normalization of bone mass. A relevant improvement or resolution of mental disturbances has been described in patients cured from CS, although in several cases, cognitive decline persisted and psychological or psychiatric improvement was erratic, delayed, or incomplete. On the other hand, development or exacerbation of autoimmune disorders, mainly thyroid autoimmune diseases, was documented in predisposed patients with CS after disease remission. The totality of these complications persisting or occurring after successful treatment contribute to the impairment of quality of life registered in patients with CS after disease cure.

  5. NONA Cure of Prepreg Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CRG's no-oven, no-autoclave (NONA) cure of OoA or autoclave prepreg materials allows the manufacture of large composite structures without the expensive and...

  6. Low-temperature technique for thick film resist stabilization and curing

    Science.gov (United States)

    Minter, Jason P.; Wong, Selmer S.; Marlowe, Trey; Ross, Matthew F.; Narcy, Mark E.; Livesay, William R.

    1999-06-01

    For a range of thick film photoresist applications, including MeV ion implant processing, thin film head manufacturing, and microelectromechanical systems processing, there is a need for a low-temperature method for resist stabilization and curing. Traditional methods of stabilizing or curing resist films have relied on thermal cycling, which may not be desirable due to device temperature limitations or thermally-induced distortion of the resist features.

  7. Radiation curing of mixtures of diallylphthalate prepolymer and vinyl monomer, 9

    International Nuclear Information System (INIS)

    Gotoda, Masao; Kitada, Yoshinori.

    1975-01-01

    Radiation curing, mainly by electron beams was studied with mixtures of low molecular weight diallylphthalate prepolymer (DAPsub(p).L) and vinyl monomers with special reference to their workability. Among the vinyl monomers, acrylonitrile gave a solution of low viscosity and methyl acrylate gave a solution of low dose curing. Radiation curing of DAPsub(p).L/vinyl monomer mixtures impregnated in wood was also tried. To obtain uniform wood-polymer composites, γ-irradiation after impregnation at 10 kg/cm 2 was found to be required for thick plate (110 mm), while electron beam irradiation after impregnation at normal pressure was sufficient for thin plate. (author)

  8. Effects of benzoxazine resin on property enhancement of shape memory epoxy: A dual function of benzoxazine resin as a curing agent and a stable network segment

    Directory of Open Access Journals (Sweden)

    T. Tanpitaksit

    2015-09-01

    Full Text Available An ability of bisphenol-A/aniline based benzoxazine resin (BA-a to simultaneously acts as a curing agent and a stable or rigid network segment for shape memory epoxy, i.e. a two component system, is demonstrated. This significantly simplifies a formulation of present shape memory epoxy systems, i.e. a three or four component system. A suitable content of BA-a in the aliphatic epoxy (NGDE/polybenzoxazine (PBA-a samples for good shape memory performance is in a range of 30 to 50 mol%. The storage modulus of the obtained NGDE/PBA-a shape memory polymers (SMPs was increased from 3.57 GPa for 30 mol% BA-a content to 4.50 GPa for 50 mol% BA-a content. Glass transition temperature of the sample was also substantially increased with increasing BA-a fraction, i.e. from 51°C to 140°C. Flexural modulus and strength at room temperature of the samples at 50 mol% BA-a were found to be as high as 3.97 GPa and 132 MPa compared to the maximum values of 2.54 GPa and 100 MPa of SMP based on cyanate ester-epoxy. All samples exhibited a high value of shape fixity close to 100%. A presence of the BA-a in the samples also imparted a greater recovery stress ranging from 0.25 to 1.59 MPa. Consequently, the obtained NGDE/PBA-a copolymers are highly attractive for shape memory materials to be used in a broader range of applications particularly at elevated temperature and a higher recovery stress value.

  9. Development of high-performance shielding material by heat curing method

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Toshimasa; Hirao, Yoshihiro; Hayashi, Takayuki; Okuno, Koichi; Sato, Osamu [National Maritime Research Institute, Ibaraki (Japan)

    2002-07-01

    A high-performance shielding material is developed by a heat curing method. It is mainly made of a thermosetting resin, lead powder, and a boron compound. To make the resin, a single functional monomer stearyl methacrylate (SMA) is used. To get good dispersion of lead and the boron compound in the resin, the viscosity of the SMA is increased by adding a small amount of a peroxide into the liquid monomer and heating up to the temperature of 100 .deg. C. Next, a peroxide, lead powder, a boron compound, a three functional monomer, and a curing accelerator are mixed into the viscous SMA. The mixture is cured in an atmosphere of nitrogen after removing bubbles using a vacuum pump. Measured properties of the cured material are as follows. The curing rate of SMA is 97 %. The density is kept 2.35 g/cm{sub 3} in the range from room temperature to 150 .deg. C. The weight-change measured by a thermogravimetry is 0.16 % in the range from room temperature to 200 .deg. C. Details of fragments in the gas released from the material is analyzed by a gas chromatography and a mass spectrometry. The hydrogen content of the material is 6.04x10 {sub 22} /cm{sub 3} . The shielding effect is calculated for a fission source by an Sn code ANISN. The shielding effect of the curing material is excellent. For example, concrete shield of a certain thickness can be replaced by the material having a thickness less than a half of concrete. Several samples of the material are irradiated at an irradiation equipment of the research reactor JRR-4 installed at Japan Atomic Energy Research Institute. At the 14{sub th} day after irradiating with the thermal neutron fluence of 6.6x10{sub 15} /cm{sub 2} , the radioactivity is less than one tenth of 75 Bq/g above which materials are regulated as the radioactive substance in Japan.

  10. Cure of Helicobacter pylori-associated ulcer disease through eradication.

    Science.gov (United States)

    Malfertheiner, P; Leodolter, A; Peitz, U

    2000-02-01

    The eradication of Helicobacter pylori (H. pylori) infection has led to a dramatic benefit for patients with gastroduodenal ulcer disease, as the majority of these patients receive a lifelong cure. Relapses after successful H. pylori cure may be caused by either recrudescence or reinfection, both rare events nowadays, or be attributed to non-steroidal anti-inflammatory drugs or aspirin intake. In certain geographical areas, H. pylori-negative relapses are proposed as a new, pathophysiological and not yet elucidated entity. The cure of H. pylori infection in uncomplicated duodenal ulcer diseases consists of 7 days of proton pump inhibitor (PPI) based triple therapy, containing two antibiotics from clarithromycin, amoxicillin and metronidazole. In gastric ulcer, it is recommended that the PPI is continued for a further 3 weeks as these ulcers have a prolonged healing time. Rescue therapies after failure need to take into consideration the resistance pattern of the micro-organism and are offered in the form of quadruple therapy or a high-dose PPI with amoxicillin.

  11. Use of 'eradication' in HIV cure-related research: a public health debate.

    Science.gov (United States)

    Dubé, Karine; Luter, Stuart; Lesnar, Breanne; Newton, Luke; Galea, Jerome; Brown, Brandon; Gianella, Sara

    2018-02-13

    The landscape of Human Immunodeficiency Virus (HIV) research has changed drastically over the past three decades. With the remarkable success of antiretroviral treatment (ART) in decreasing AIDS-related mortality, some researchers have shifted their HIV research focus from treatment to cure research. The HIV cure research community often uses the term eradication to describe the science, and talks about eradicating the virus from the body. In public discourse, the term eradication could be conflated with disease eradication at the population level. In this paper, we call for a reframing of HIV cure research as control, as it is a more accurate descriptor and achievable goal in the foreseeable future. The properties of HIV are discordant with eradicability standards at both the individual level (as a clinical concept), and at the population level (as a public health concept). At the individual level, true eradication would necessitate absolute elimination of all latent HIV reservoirs from the body. Current HIV cure-related research strategies have proven unsuccessful at accurately quantifying, let alone eliminating these reservoirs. At the population level, eradication implies the permanent global reduction of HIV to zero new cases and to zero risk for future cases. Given the absence of an efficacious HIV vaccine and the impracticality and unethicality of eliminating animal reservoirs, global eradication of HIV is highly implausible. From a public health perspective, HIV eradication remains an elusive goal. The term 'eradication' is a misleading description of current HIV cure-related research. Instead, we call for the use of more realistic expressions such as 'sustained virologic HIV suppression (or control)' or 'management of HIV persistence' to describe HIV cure-related research. Using these terms reorients what HIV cure science can potentially achieve in the near future and avoids creating unrealistic expectations, particularly among the millions of people

  12. Highlights from the HIV Cure and Reservoir Symposium, 11-12 September 2017, Ghent, Belgium.

    Science.gov (United States)

    Kint, Sam; Van Hecke, Clarissa; Cole, Basiel; Vandekerckhove, Linos; Sips, Magdalena

    2018-01-01

    For the second time, the HIV Cure Research Center (HCRC) at Ghent University organised the HIV Cure and Reservoir Symposium, in Ghent, Belgium, where in this two-day conference, virologists, molecular biologists, immunologists and clinicians presented the most recent achievements in the field of HIV cure, including data on therapeutic vaccines, HIV remission strategies such as 'shock and kill' or 'block and lock', benefits of early ART and potential of haematopoietic stem cell transplant in achieving cure. Furthermore, methods to characterise and quantify the HIV reservoir were discussed along with HIV reservoir characterisation in different body parts, including the central nervous system. An HIV activist and representative of a patients' agency also presented the patients' perspective on HIV cure. This report is a summary of all topics discussed during this symposium.

  13. The effect of cure conditions on the stability of cement waste forms after immersion in water

    International Nuclear Information System (INIS)

    Siskind, B.; Adams, J.W.; Clinton, J.H.; Piciulo, P.L.; McDaniel, K.

    1988-01-01

    We investigated the effects of curing conditions on the stability of cement-solidified ion-exchange resins after immersion in water. The test specimens consisted of partially depleted mixed-bed bead resins solidified in one of three vendor-supplied Portland I cement formulations, in a reference cement formulation, or in a gypsum-based binder formulation. We cured samples prepared using each formulation in sealed containers for periods of 7, 14, or 28 days as well as in air or with an accelerated heat cure prior to 90-day immersion in water. Two cement formulations exhibited apparent Portland-cement-like behavior, i.e., compressive strength increased or stabilized with increasing cure time. Two cement formulations exhibited behavior apparently unlike that of Portland cement, i.e., compressive strength decreased with increasing cure time. Such non-Portland-cement-like behavior is correlated with higher waste loadings. The gypsum-based formulation exhibited approximately constant compressive strength with cure time. Accelerated heat cures may not give compressive strengths representative of real-time cures. Some physical deterioration (cracking, spalling) of the waste form occurs during immersion

  14. The effect of cure conditions on the stability of cement waste forms after immersion in water

    International Nuclear Information System (INIS)

    Siskind, B.; Adams, J.W.; Clinton, J.H.; Piciulo, P.L.

    1988-01-01

    The authors investigated the effects of curing conditions on the stability of cement-solidified ion-exchange resins after immersion in water. The test specimens consisted of partially depleted mixed-bed bead resins solidified in one of three vendor-supplied Portland I cement formulations, in a reference cement formulation, or in a gypsum-based binder formulation. They cured samples prepared using each formulation in sealed containers for periods of 7, 14, or 28 days as well as in air or with an accelerated heat cure prior to 90-day immersion in water. Two cement formulations exhibited apparent Portland-cement-like behavior, i.e., compressive strength increased or stabilized with increasing cure time. Two cement formulations exhibited behavior apparently unlike that of Portland cement, i.e. compressive strength decreased with increasing cure time. Such non-Portland-cement-like behavior is correlated with higher waste loadings. The gypsum-based formulation exhibited approximately constant compressive strength with cure time. Accelerated heat cures may not give compressive strengths representative of real-time cures. Some physical deterioration (cracking, spalling) of the waste form occurs during immersion

  15. Cost analysis of low energy electron accelerator for film curing

    International Nuclear Information System (INIS)

    Ochi, Masafumi

    2003-01-01

    Low energy electron accelerators are recognized as one of the advanced curing means of converting processes for films and papers. In the last three years the price of the accelerator equipment has been greatly reduced. The targeted application areas are mainly processes of curing inks, coatings, and adhesives to make packaging materials. The operating cost analyses were made for electron beam (EB) processes over the conventional ones without EB. Then three new proposals for cost reduction of EB processes are introduced. Also being developed are new EB chemistries such as coatings, laminating adhesives and inks. EB processes give instantaneous cure and EB chemistries are basically non solvent causing less VOC emission to the environment. These developments of both equipment and chemistries might have a potential to change conventional packaging film industries. (author)

  16. Preparation of low viscosity epoxy acrylic acid photopolymer prepolymer in light curing system

    Science.gov (United States)

    Li, P.; Huang, J. Y.; Liu, G. Z.

    2018-01-01

    With the integration and development of materials engineering, applied mechanics, automatic control and bionics, light cured composite has become one of the most favourite research topics in the field of materials and engineering at home and abroad. In the UV curing system, the prepolymer and the reactive diluent form the backbone of the cured material together. And they account for more than 90% of the total mass. The basic properties of the cured product are mainly determined by the prepolymer. A low viscosity epoxy acrylate photosensitive prepolymer with a viscosity of 6800 mPa • s (25 °C ) was obtained by esterification of 5 hours with bisphenol A epoxy resin with high epoxy value and low viscosity.

  17. Effect of microwave cured acrylic resin on candidal growth in complete denture

    International Nuclear Information System (INIS)

    Rasmy, A.H.M.

    2009-01-01

    This study was conducted to evaluate the effect of heat-cured acrylic resin denture base and microwave-cured acrylic resin denture base on candidal growth . Seven completely edentulous male patients with on history of denture wearing participated in this study. all the selected patients were re-habilitated by mucosa supported complete dentures .The dentures were constructed from conventional heat-cured acrylic resin denture base following monoplane concept of occlusion. Before dismissing the patients and one month after denture insertion, salivary samples were collected according to oral rinse technique. one month resting period was allowed so as candidal count can reach to normal, then dentures were re based using microwave-cured acrylic denture base, before denture insertion and one month after denture insertion, salivary sample were collected before and one month following the same oral rinse technique.

  18. Radiation curing of inks and coatings. Annual report 1 Oct 81-30 Sep 82

    International Nuclear Information System (INIS)

    Senich, G.A.; Florin, R.E.

    1983-06-01

    The science and technology of curing organic materials with radiation is reviewed. Electron beam, ultraviolet, infrared, microwave, and high frequency radiation sources and the resin systems suitable for use with these sources are considered. Equipment necessary to affect a radiation cure is discussed and some practical problems unique to each radiation method are indicated. The application of radiation curing to industrial processes which employ inks and coatings is covered, with particular emphasis given to printing with radiation curable formulations. Included are discussions of the advantages and disadvantages of radiation curing inks, some typical ink components and formulations, the specialized machinery required, and the influence of parameters unique to radiation curing methods on the printing process. Other nonprinting but related industrial operations utilizing radiation for treating thin films and coatings are also considered. Some costs, examples, and market statistics are given for these commercial procedures. New nonconventional, but also nonradiation, alternative curing methods are discussed briefly. A bibliography of recommended further reading and a list of over two hundred fifty references are included

  19. Inhibition of ochratoxigenic moulds by Debaryomyces hansenii strains for biopreservation of dry-cured meat products.

    Science.gov (United States)

    Andrade, Maria J; Thorsen, Line; Rodríguez, Alicia; Córdoba, Juan J; Jespersen, Lene

    2014-01-17

    The ability of the osmotolerant yeast Debaryomyces hansenii to inhibit Penicillium nordicum, the most common ochratoxigenic mould encountered in dry-cured meat products, was evaluated. The antagonistic effect of ten D. hansenii strains isolated from dry-cured ham was screened in vitro using malt extract media and meat extract peptone media with the water activity (a(w)) adjusted to 0.97 and 0.90. A significant inhibition of the two tested P. nordicum strains by D. hansenii cells and cell-free supernatants was observed. At 0.97 a(w), increasing D. hansenii inoculum concentrations significantly improved the inhibition of mould growth on solid medium, whereas at 0.90 a(w) this was not always the case. As observed by bright field microscopy, most D. hansenii strains were able to delay P. nordicum spore germination when co-cultured in malt extract broth. D. hansenii FHSCC 253H showed the highest overall in vitro inhibition of ochratoxigenic mould growth, and was therefore chosen for co-cultivation assays in dry-cured ham slices incubated at 0.94 and 0.84 a(w) simulating ham ripening. Regardless of the experimental conditions tested, lower levels of the inoculated P. nordicum strain were detected in co-cultivation batches compared with batches without D. hansenii. The highest level of mould growth inhibition was observed in batches at 0.94 a(w). Ochratoxin A (OTA) production in ham samples was detected by HPLC-MS. Co-culturing of P. nordicum with D. hansenii FHSCC 253H resulted in lower OTA levels compared with control samples without D. hansenii. The decrease of the mycotoxin presence due to D. hansenii FHSCC 253H was more efficient at 0.94 a(w) (OTA was below the detection limit). In conclusion, D. hansenii is potentially suitable as a biopreservative agent for preventing ochratoxigenic mould growth and OTA accumulation in dry-cured meat products. The inoculation of D. hansenii should be made at the beginning of processing (at the end of post salting) when the a(w) of

  20. Standardized Cloning and Curing of Plasmids

    DEFF Research Database (Denmark)

    Lauritsen, Ida; Kim, Se Hyeuk; Porse, Andreas

    2018-01-01

    and exchange of genetic parts in the Standard European Vectors Architecture (SEVA) vector system. Additionally, to facilitate rapid testing and iterative bioengineering using different vector designs, we provide a one-step protocol for a universal CRISPR-Cas9-based plasmid curing system (pFREE) and demonstrate...

  1. Nitrate reductase activity of Staphylococcus carnosus affecting the color formation in cured raw ham.

    Science.gov (United States)

    Bosse Née Danz, Ramona; Gibis, Monika; Schmidt, Herbert; Weiss, Jochen

    2016-07-01

    The influence of the nitrate reductase activity of two Staphylococcus carnosus strains used as starter cultures on the formation of nitrate, nitrite and color pigments in cured raw ham was investigated. In this context, microbiological, chemical and multivariate image analyses were carried out on cured raw hams, which were injected with different brines containing either nitrite or nitrate, with or without the S. carnosus starter cultures. During processing and storage, the viable counts of staphylococci remained constant at 6.5logcfu/g in the hams inoculated with starter cultures, while the background microbiota of the hams processed without the starter cultures developed after 14days. Those cured hams inoculated with S. carnosus LTH 7036 (high nitrate reductase activity) showed the highest decrease in nitrate and high nitrite concentrations in the end product, but were still in the range of the legal European level. The hams cured with nitrate and without starter culture or with the other strain, S. carnosus LTH 3838 (low nitrate reductase activity) showed higher residual nitrate levels and a lower nitrite content in the end product. The multivariate image analysis identified spatial and temporal differences in the meat pigment profiles of the differently cured hams. The cured hams inoculated with S. carnosus LTH 3838 showed an uncured core due to a delay in pigment formation. Therefore, the selection of starter cultures based on their nitrate reductase activity is a key point in the formation of curing compounds and color pigments in cured raw ham manufacture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Differences in the curing of [PSI+] prion by various methods of Hsp104 inactivation.

    Directory of Open Access Journals (Sweden)

    Yang-Nim Park

    Full Text Available [PSI(+] yeast, containing the misfolded amyloid conformation of Sup35 prion, is cured by inactivation of Hsp104. There has been controversy as to whether inactivation of Hsp104 by guanidine treatment or by overexpression of the dominant negative Hsp104 mutant, Hsp104-2KT, cures [PSI(+] by the same mechanism- inhibition of the severing of the prion seeds. Using live cell imaging of Sup35-GFP, overexpression of Hsp104-2KT caused the foci to increase in size, then decrease in number, and finally disappear when the cells were cured, similar to that observed in cells cured by depletion of Hsp104. In contrast, guanidine initially caused an increase in foci size but then the foci disappeared before the cells were cured. By starving the yeast to make the foci visible in cells grown with guanidine, the number of cells with foci was found to correlate exactly with the number of [PSI(+] cells, regardless of the curing method. Therefore, the fluorescent foci are the prion seeds required for maintenance of [PSI(+] and inactivation of Hsp104 cures [PSI(+] by preventing severing of the prion seeds. During curing with guanidine, the reduction in seed size is an Hsp104-dependent effect that cannot be explained by limited severing of the seeds. Instead, in the presence of guanidine, Hsp104 retains an activity that trims or reduces the size of the prion seeds by releasing Sup35 molecules that are unable to form new prion seeds. This Hsp104 activity may also occur in propagating yeast.

  3. Effect of light dispersion of LED curing lights on resin composite polymerization.

    Science.gov (United States)

    Vandewalle, Kraig S; Roberts, Howard W; Andrus, Jeffrey L; Dunn, William J

    2005-01-01

    This study evaluated the effect of light dispersion of halogen and LED curing lights on resin composite polymerization. One halogen (Optilux 501, SDS/Kerr, Orange, CA, USA) and five light-emitting diode (LED) curing lights (SmartLite iQ, Dentsply Caulk, Milford, DE, USA; LEDemetron 1, SDS/Kerr; FLASHlite 1001, Discus Dental, Culver City, CA, USA; UltraLume LED 5, Ultradent Products, South Jordan, UT, USA; Allegro, Den-Mat, Santa Maria, CA, USA) were used in this study. Specimens (8 mm diameter by 2 mm thick) were made in polytetrafluoroethylene molds using hybrid (Z100, 3M ESPE, St. Paul, MN, USA) and microfill (A110, 3M ESPE) composite resins. The top surface was polymerized for 5 seconds with the curing light guide tip positioned at a distance of 1 and 5 mm. Degree of conversion (DC) of the composite specimens was analyzed on the bottom surface using micro-Fourier Transform Infrared (FTIR) spectroscopy (Perkin-Elmer FTIR Spectrometer, Wellesley, PA, USA) 10 minutes after light activation. DC at the bottom of the 2 mm specimen was expressed as a percentage of the mean maximum DC. Five specimens were created per curing light and composite type (n=5). Percent mean DC ratios and SDs were calculated for each light under each testing condition. Data were analyzed by analysis of variance (ANOVA)/Tukey's test (alpha = .05). A beam analyzer (LBA-700, Spiricon, Logan, UT, USA) was used to record the emitted light from the curing lights at 0 and 5 mm distances (n=5). A Top Hat factor was used to compare the quality of the emitted beam profile (LBA/PC, Spiricon). The divergence angle from vertical was also determined in the x- and y-axes (LBA/PC). Mean values and SDs were calculated for each light under each testing condition (0 and 5 mm, x- and y-axes) and analyzed by a two-way ANOVA/Tukey's test (alpha = .05). For DC ratios, significant differences were found based on curing light and curing distance (p < .05). At 1 mm, Optilux 501 and FLASHlite 1001 produced significantly

  4. Isothermal and non-isothermal cure of a tri-functional epoxy resin (TGAP): A stochastic TMDSC study

    International Nuclear Information System (INIS)

    Hutchinson, John M.; Shiravand, Fatemeh; Calventus, Yolanda; Fraga, Iria

    2012-01-01

    Highlights: ► First evaluation of T g of tri-functional epoxy resin TGAP by DSC. ► Clearly shows advantages of TOPEM for isothermal and non-isothermal cure analysis. ► Evidence of highly non-linear enthalpy relaxation in partially cured TGAP system. - Abstract: The isothermal cure of a highly reactive tri-functional epoxy resin, tri-glycidyl para-amino phenol (TGAP), with diamino diphenyl sulphone (DDS), at two different cure temperatures T c has been studied by both conventional differential scanning calorimetry (DSC) and by a stochastic temperature modulated DSC technique, TOPEM. From a series of isothermal cure experiments for increasing cure times, the glass transition temperature T g as a function of isothermal cure time is determined by conventional DSC from a second (non-isothermal) scan, and the vitrification time t v is obtained as the time at which T g = T c . In parallel, TOPEM experiments at the same T c lead directly to the determination of t v from the sigmoidal change in the quasi-static heat capacity. It is not possible to identify the glass transition temperature of the fully cured system, T g∞ , in a third scan by conventional DSC. In contrast, with TOPEM a second (non-isothermal) scan at 2 K/min after the isothermal cure gives rise to three separate transitions: devitrification of the partially cured and vitrified material; almost immediate vitrification as the T g of the system again rises; finally another devitrification, at a temperature approximating closely to T g∞ . Thus with TOPEM it is possible to obtain a calorimetric measure of the glass transition temperature of this fully cured system.

  5. Out-of-Autoclave Cure Composites

    Science.gov (United States)

    Hayes, Brian S.

    2015-01-01

    As the size of aerospace composite parts exceeds that of even the largest autoclaves, the development of new out-of-autoclave processes and materials is necessary to ensure quality and performance. Many out-of-autoclave prepreg systems can produce high-quality composites initially; however, due to long layup times, the resin advancement commonly causes high void content and variations in fiber volume. Applied Poleramic, Inc. (API), developed an aerospace-grade benzoxazine matrix composite prepreg material that offers more than a year out-time at ambient conditions and provides exceptionally low void content when out-of-autoclave cured. When compared with aerospace epoxy prepreg systems, API's innovation offers significant improvements in terms of out-time at ambient temperature and the corresponding tack retention. The carbon fiber composites developed with the optimized matrix technology have significantly better mechanical performance in terms of hot-wet retention and compression when compared with aerospace epoxy matrices. These composites also offer an excellent overall balance of properties. This matrix system imparts very low cure shrinkage, low coefficient of thermal expansion, and low density when compared with most aerospace epoxy prepreg materials.

  6. Handling and Curing Characteristics of Cut-Strip Tobacco. Part 2: Effect of Yellowing Time and Drying Potential

    Directory of Open Access Journals (Sweden)

    Johnson WH

    2014-12-01

    Full Text Available This paper presents Part 2 of a study on comparative handling and curing characteristics of cut-strip vs. whole leaf tobacco. Part 1 considered the effect of leaf size (cut-strip size vs. whole leaf, packing density and mode of leaf orientation on cured leaf chemistry and leaf quality; whereas, the present study considers further the effect of leaf form, two yellowing times and two drying potentials during yellowing. Results showed that leaf chemistry and quality were quite similar for cut-strip (15.2 × 22.9 cm and whole leaf. Insignificant differences were noted for cured leaf starch and sugars, although slightly lower levels of alkaloids (significant at the 0.01 level were observed for cut strip. Curing treatments significantly affected leaf chemistry. Increased yellowing time resulted in lower levels of starch and higher levels of sugar. Sugars were also higher for tobacco yellowed under the higher drying potential. The two forms of leaf responded similarly to different curing schedules (i.e. no interaction of leaf form with schedule. Also, government grade and price data were essentially unaffected by leaf form or curing schedule over the range of variables tested. Cured leaf starch was abnormally high on the average for both leaf forms. Interestingly, starch levels were lower when intact tobacco was bulk-cured in racks rather than box cured (6.35% vs. 9.02%. Since curing schedules were similar, air velocity in the two curing methods might be a factor. Also the cured leaf starch content was about 56% lower for tobacco produced at the Oxford Tobacco Research Station (in a secondary study than at the Central Crops Research Station. It is postulated that carbohydrate and nitrogen metabolism during growth and maturation might be affected by excess rainfall events and/or nitrogen availability, with subsequent effects on starch-to-sugar conversion during curing.

  7. Effect of different curing modes on the degree of conversion and the microhardness of different composite restorations

    Directory of Open Access Journals (Sweden)

    Reem Ali Ajaj

    2015-01-01

    Full Text Available Introduction: This study aims to evaluate the effects of different curing units and modes on the degree of conversion (DC and microhardness (MH of two different resin composites [ESTELITE ∑ QUICK (EQ, and Z350 XT (Z3]. Materials and Methods: One hundred (100 discs of each tested material were made and divided into two subgroups (n = 50 according to the discs′ dimensions: 5 mm diameter × 2 mm thickness, and 2 mm diameter × 2 mm thickness. Each subgroup was further subdivided into the following five classes (n = 10: I cured with halogen light curing-unit; II cured with light-emitting diode (LED unit; III cured with argon laser; IV cured with halogen light-curing unit for 5 s, 10 s rest followed by 20 s curing; and V cured with halogen light-curing unit for 10 s, then 10 s rest, followed by 10 s curing. The first subgroup was tested for MH using the Vickers Microhardness tester and the second subgroup was tested for DC using Fourier transform infrared spectroscopy (FTIR. Data were statistically analyzed using two-way analysis of variance (ANOVA and Tukey′s post hoc test P < 0.05. Results: Specimens in class IV showed the highest mean DC and MH, followed by class III, then class II. Class I showed significantly lower mean values for both DC and MH. On the other hand, Z3 showed statistically significantly higher mean DC and MH than EQ. Conclusion: Although the two tested composites did not perform similarly under the test conditions, curing with halogen unit for 5 s, then 10 s rest, followed by 10 s curing improved the DC and the MH of both the tested materials.

  8. Inorganic polymers from alkali activation of metakaolin: Effect of setting and curing on structure

    Energy Technology Data Exchange (ETDEWEB)

    Lancellotti, Isabella, E-mail: isabella.lancellotti@unimore.it [Deparment of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905/A, Modena I-41125 (Italy); Catauro, Michelina [Department of Aerospace and Mechanical Engineering, Second University of Naples, Via Roma 29, Aversa (CE) I-81031 (Italy); Ponzoni, Chiara [Deparment of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905/A, Modena I-41125 (Italy); Bollino, Flavia [Department of Aerospace and Mechanical Engineering, Second University of Naples, Via Roma 29, Aversa (CE) I-81031 (Italy); Leonelli, Cristina [Deparment of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905/A, Modena I-41125 (Italy)

    2013-04-15

    Geopolymers, obtained by chemical reaction between aluminosilicate oxides and silicates under highly alkaline conditions, are studied in this paper. The proposed mechanism of geopolymer setting and hardening or curing consists of a dissolution, a transportation or an orientation, as well as a polycondensation step. The aim of this paper is to investigate the influence of the curing time and temperature, the relative humidity and the reagents temperature on the geopolymerization process in order to obtain a resistant matrix usable for inertization of hazardous wastes. The evolution of the process from the precursors dissolution to final geopolymer matrix hardening has been followed by FTIR spectroscopy, X-ray diffractometry, SEM/EDS and leaching tests. The results show the significant influence of both curing temperature in the curing stage and of the mould materials on the matrix stability. The easy-to-run preparation procedure for a chemically stable metakaolin geopolymer individuated can be summarized as reagents setting and curing at room temperature and material mould which permits moisture level around 40%. - Graphical abstract: Chemical stability as a function of curing conditions. Highlights: ► Metakaolin in highly alkaline solutions produced solid materials at room temperature. ► Curing time and temperature, relative humidity, reagents temperature were optimized. ► Leaching tests were used to confirm final hardening. ► FTIR spectroscopy, SEM analysis and X-ray diffractometry were used to interpret matrix stability.

  9. Inorganic polymers from alkali activation of metakaolin: Effect of setting and curing on structure

    International Nuclear Information System (INIS)

    Lancellotti, Isabella; Catauro, Michelina; Ponzoni, Chiara; Bollino, Flavia; Leonelli, Cristina

    2013-01-01

    Geopolymers, obtained by chemical reaction between aluminosilicate oxides and silicates under highly alkaline conditions, are studied in this paper. The proposed mechanism of geopolymer setting and hardening or curing consists of a dissolution, a transportation or an orientation, as well as a polycondensation step. The aim of this paper is to investigate the influence of the curing time and temperature, the relative humidity and the reagents temperature on the geopolymerization process in order to obtain a resistant matrix usable for inertization of hazardous wastes. The evolution of the process from the precursors dissolution to final geopolymer matrix hardening has been followed by FTIR spectroscopy, X-ray diffractometry, SEM/EDS and leaching tests. The results show the significant influence of both curing temperature in the curing stage and of the mould materials on the matrix stability. The easy-to-run preparation procedure for a chemically stable metakaolin geopolymer individuated can be summarized as reagents setting and curing at room temperature and material mould which permits moisture level around 40%. - Graphical abstract: Chemical stability as a function of curing conditions. Highlights: ► Metakaolin in highly alkaline solutions produced solid materials at room temperature. ► Curing time and temperature, relative humidity, reagents temperature were optimized. ► Leaching tests were used to confirm final hardening. ► FTIR spectroscopy, SEM analysis and X-ray diffractometry were used to interpret matrix stability

  10. Late-Age Properties of Concrete with Different Binders Cured under 45°C at Early Ages

    Directory of Open Access Journals (Sweden)

    Hu Jin

    2017-01-01

    Full Text Available It is commonly accepted that high curing temperature (near 60°C or above results in reduced mechanical properties and durability of concrete compared to normal curing temperature. The internal temperature of concrete structures at early ages is not so high as 60°C in many circumstances. In this paper, concretes were cured at 45°C at early ages and their late-age properties were studied. The concrete cured at 20°C was employed as the reference sample. Four different concretes were used: plain cement concrete, concrete containing fly ash, concrete containing ground granulate blast furnace slag (GGBS, and concrete containing silica fume. The results show that, for each concrete, high-temperature curing after precuring does not have any adverse effect on the nonevaporable water content, compressive strength, permeability to chloride ions, and the connected porosity of concrete at late ages compared with standard curing. Additionally, high-temperature curing improves the late-age properties of concrete containing fly ash and GGBS.

  11. Radiation cured coatings for fiber optics

    International Nuclear Information System (INIS)

    Ketley, A.D.; Morgan, C.R.

    1978-01-01

    A continuous protective coating is formed on a fiber optic by coating the fiber optic in a bath of a liquid radiation curable composition at a temperature up to 90 0 C and exposing the coated conductor to ultraviolet or high energy ionizing radiation to cure the coating

  12. X-ray diffractometry of steam cured ordinary Portland and blast-furnace-slag cements

    International Nuclear Information System (INIS)

    Camarini, G.; Djanikian, J.G.

    1994-01-01

    This work studies some aspects of the phases produced by hydration of ordinary and blast-furnace-slag cements, at normal conditions and steam cured (60 and 95 0 C), using an X-ray diffraction technique. The blast-furnace-slag cement was a mixture of 50% of ordinary Portland cement and 50% of blast-furnace-slag (separately grinding). After curing the X-ray diffraction reveals that, in relation to ordinary Portland cement, the main phases in blast-furnace-slag cement are hydrated silicates and aluminates, hydro garnet, etringitte and mono sulphate. After steam curing the hydration of blast-furnace-slag cement proceeds. This is a result of the slag activation by the curing temperature. (author). 8 refs., 3 figs., 1 tab

  13. Color Developing Capacity of Plasma-treated Water as a Source of Nitrite for Meat Curing.

    Science.gov (United States)

    Jung, Samooel; Kim, Hyun Joo; Park, Sanghoo; Yong, Hae In; Choe, Jun Ho; Jeon, Hee-Joon; Choe, Wonho; Jo, Cheorun

    2015-01-01

    The interaction of plasma with liquid generates nitrogen species including nitrite (NO(-) 2). Therefore, the color developing capacity of plasma-treated water (PTW) as a nitrite source for meat curing was investigated in this study. PTW, which is generated by surface dielectric barrier discharge in air, and the increase of plasma treatment time resulted in increase of nitrite concentration in PTW. The PTW used in this study contains 46 ppm nitrite after plasma treatment for 30 min. To evaluate the effect of PTW on the cured meat color, meat batters were prepared under three different conditions (control, non-cured meat batter; PTW, meat batter cured with PTW; Sodium nitrite, meat batter cured with sodium nitrite). The meat batters were vacuum-packaged and cooked in a water-bath at 80℃ for 30 min. The typical color of cured meat developed in cooked meat batter treated with sodium nitrite or PTW. The lightness (L*) and yellowness (b*) values were similar in all conditions, whereas, the redness (a*) values of cooked meat batter with PTW and sodium nitrite (pnitrite source in the curing process of meat without addition of other nitrite sources.

  14. New-generation curing units and short irradiation time: the degree of conversion of microhybrid composite resin.

    Science.gov (United States)

    Scotti, Nicolla; Venturello, Alberto; Migliaretti, Giuseppe; Pera, Francesco; Pasqualini, Damiano; Geobaldo, Francesco; Berutti, Elio

    2011-09-01

    This in vitro study investigated the depth of cure of a microhybrid composite resin when cured with reduced times of exposure to three commercially available curing lights. Different sample thicknesses (1, 2, and 3 mm) were light cured in high intensity polymerization mode (2,400 mW/cm² for 5, 10, 15, and 20 seconds; 1,100 mW/cm² for 10, 20, 30, and 40 seconds; and 1,100 mW/cm² for 10, 20, 30, and 40 seconds, respectively). The degree of conversion (%) at the bottom of each sample was measured by Attenuated Total Reflection Fourier Transform Infrared (ATR F-TIR) analysis after each polymerization step. Data were analyzed by ANOVA for repeated measures, showing the degree of conversion was not influenced by the curing light employed (P = .622) but was significantly influenced by the thickness of composite resin (P conversion vs the shorter irradiation time permitted (T1) were not significant among different lamps but were significant among different thicknesses. The depth of cure of microhybrid composite resin appears not to be influenced by the curing light employed. Increased irradiation time significantly increases the degree of conversion. Thickness strongly influences depth of cure.

  15. Curing of polymer thermosets via click reactions and on demand processes

    Science.gov (United States)

    Brei, Mark Richard

    In the first project, an azide functional resin and tetra propargyl aromatic diamines were fabricated for use as a composite matrix. These systems take already established epoxy/amine matrices and functionalize them with click moieties. This allows lower temperatures to be used in the production of a thermoset part. These new systems yield many better mechanical properties than their epoxy/amine derivatives, but their Tgs are low in comparison. The second project investigates the characterization of a linear system based off of the above azide functional resin and a difunctional alkyne. Through selectively choosing catalyst, the linear system can show regioselectivity to either a 1,4-disubstituted triazole, or a 1,5-disubstituted triazole. Without the addition of catalyst, the system produces both triazoles in almost an equal ratio. The differently catalyzed systems were cured and then analyzed by 1H and 13C NMR to better understand the structure of the material. The third project builds off of the utility of the aforementioned azide/alkyne system and introduces an on-demand aspect to the curing of the thermoset. With the inclusion of copper(II) within the azide/alkyne system, UV light is able to catalyze said reaction and cure the material. It has been shown that the copper(II) loading levels can be extremely small, which helps in reducing the copper's effect on mechanical properties The fourth project takes a look at polysulfide-based sealants. These sealants are normally cured via an oxidative reaction. This project took thiol-terminated polysulfides and fabricated alkene-terminated polysulfides for use as a thiol-ene cured material. By changing the mechanism for cure, the polysulfide can be cured via UV light with the use of a photoinitiator within the thiol/alkene polysulfide matrix. The final chapter will focus on a characterization technique, MALDI-TOF, which was used to help characterize the above materials as well as many others. By using MALDI-TOF, the

  16. Studies on curing effect of phosphite monomer by EB radiation in the air

    International Nuclear Information System (INIS)

    Xiao, B.; Zhou, Y.; Li, S.; Luo, M.; Wang, X.; Zhao, P.

    2000-01-01

    A new type phosphite active monomer was synthesized. The resisting oxygen inhibition effect of this monomer and the effects of irradiation dose and concentration of phosphite active monomer on curing were studied. At the same time, curing results were analysed, through gel content and IR spectrum. The excellent resisting oxygen inhibition result of this phosphite active monomer was shown by experiments. EB radiation curing in the air was successfully carried out by the phosphite active monomer. (author)

  17. Electron beam curing of EPDM

    International Nuclear Information System (INIS)

    Vroomen, G.L.M.; Visser, G.W.; Gehring, J.

    1991-01-01

    Normally EPDM rubbers are vulcanized by systems based on sulphur, resin or peroxide. The common feature of these systems is that they all require activator energy in the form of heat. The (extremely) high temperatures (approximately 180C) have the disadvantage that the final properties of the finished product may be affected in one way or another by a variety of uncontrolled side reactions which may occur. Radiation curing, on the other hand, is a process which differs from those mentioned above in that the final curing is carried out at about 20C under closely controlled conditions (such as radiation dose, penetration depth, etc.), and this form of curing ultimately results in a more well-defined end product. In the rubber industry, this technique is used by large rubber processors (for example, in roof sheeting and cable production). Its widespread use is, however, impeded by the high investment costs. One way of avoiding these high costs is to arrange for the products to be irradiated by contractors. The optimum radiation dose for EPDM is determined by the required pattern of properties. From this study it may be concluded that the network is primarily built up at a radiation dose of up to approximately 100 kGy. The degree to which it is built up depends partly on the coactivator used and the EPDM type used. In choosing the coactivator, allowance has to be made for its solubility in EPDM. The type of oil chosen and any stabilizer additions will affect the crosslinking efficiency. Contrary to studies published earlier, in this study it was found that when EDMA is used as a coactivator, no difference can be detected between a DCPD type (4%) and an ENB type (4%), provided both have an identical molecular weight distribution. Increasing the ENB content has less effect on the final crosslink density than using a type having a broader molecular weight distribution

  18. High Tg and fast curing epoxy-based anisotropic conductive paste for electronic packaging

    Science.gov (United States)

    Keeratitham, Waralee; Somwangthanaroj, Anongnat

    2016-03-01

    Herein, our main objective is to prepare the fast curing epoxy system with high glass transition temperature (Tg) by incorporating the multifunctional epoxy resin into the mixture of diglycidyl ether of bisphenol A (DGEBA) as a major epoxy component and aromatic diamine as a hardener. Furthermore, the curing behavior as well as thermal and thermomechanical properties were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA). It was found that Tg obtained from tan δ of DGEBA/aromatic diamine system increased from 100 °C to 205 °C with the presence of 30 percentage by weight of multifunctional epoxy resin. Additionally, the isothermal DSC results showed that the multifunctional epoxy resin can accelerate the curing reaction of DGEBA/aromatic diamine system. Namely, a high degree of curing (˜90%) was achieved after a few minutes of curing at low temperature of 130 °C, owing to a large number of epoxy ring of multifunctional epoxy resin towards the active hydrogen atoms of aromatic diamine.

  19. Reversible Cysteine Protease Inhibitors Show Promise for a Chagas Disease Cure

    Science.gov (United States)

    Beaulieu, Christian; Black, W. Cameron; Isabel, Elise; Vasquez-Camargo, Fabio; Nath-Chowdhury, Milli; Massé, Frédéric; Mellon, Christophe; Methot, Nathalie

    2014-01-01

    The cysteine protease cruzipain is essential for the viability, infectivity, and virulence of Trypanosoma cruzi, the causative agent of Chagas disease. Thus, inhibitors of cruzipain are considered promising anti-T. cruzi chemotherapeutic agents. Reversible cruzipain inhibitors containing a nitrile “warhead” were prepared and demonstrated 50% inhibitory concentrations (IC50s) as potent as 1 nM in baculovirus-generated cruzipain enzyme assays. In epimastigote and intracellular amastigote in vitro assays, the most potent compounds demonstrated antiparasitic behavior in the 5 to 10 μM IC50 range; however, trypomastigote production from the amastigote form was ∼90 to 95% inhibited at 2 μM. Two key compounds, Cz007 and Cz008, with IC50s of 1.1 and 1.8 nM, respectively, against the recombinant enzyme were tested in a murine model of acute T. cruzi infection, with oral dosing in chow for 28 days at doses from 3 to 50 mg/kg of body weight. At 3 mg/kg of Cz007 and 3 mg/kg of Cz008, the blood parasitemia areas under the concentration-time curves were 16% and 25% of the untreated group, respectively. At sacrifice, 24 days after immunosuppression with cyclophosphamide, parasite presence in blood, heart, and esophagus was evaluated. Based on negative quantitative PCR results in all three tissues, cure rates in surviving animals were 90% for Cz007 at 3 mg/kg, 78% for Cz008 at 3 mg/kg, and 71% for benznidazole, the control compound, at 50 mg/kg. PMID:24323474

  20. The effect of steam curing on chloride penetration in geopolymer concrete

    Directory of Open Access Journals (Sweden)

    Jaya Ekaputri Januarti

    2017-01-01

    Full Text Available In this paper, we present the result of our study on the effect of steam curing to chloride ion penetration in geopolymer concrete. Class F fly ash was activated using sodium hydroxide (NaOH and sodium silicate (Na2SiO3. The concrete specimens were then steam-cured at 40°C, 60°C, 80°C and room temperature at 24 hours. The treatment was followed by wet curing for 28 days, and then followed by immersion of all specimens in salt water for the durations of 30, 60, and 90 days. Cylindrical specimens were then prepared for compressive strength, chloride ion penetration, pH, and porosity tests. A 16 mm-steel bar was fixed at the center of the specimen concrete blocks (specimen size: 10cm × 10cm × 15cm. Corrosion probability was determined by conducting Half Cell Potential test. Our result showed that increasing the curing temperature to 80°C induced chloride ion penetration into the concrete’s effective pores, despite improvements in compressive strength. We also found that chloride ingress on the geopolymer concrete increases commensurately with the increase of the curing temperature. The corrosion potential measurement of geopolymer concrete was higher than OPC concrete even if corrosion was not observed in reinforcing. Based on our result, we suggest that the corrosion categorization for geopolymer concretes needs to be adjusted.

  1. Elastic properties, reaction kinetics, and structural relaxation of an epoxy resin polymer during cure

    Science.gov (United States)

    Heili, Manon; Bielawski, Andrew; Kieffer, John

    The cure kinetics of a DGEBA/DETA epoxy is investigated using concurrent Raman and Brillouin light scattering. Raman scattering allows us to monitor the in-situ reaction and quantitatively assess the degree of cure. Brillouin scattering yields the elastic properties of the system, providing a measure of network connectivity. We show that the adiabatic modulus evolves non-uniquely as a function of cure degree, depending on the cure temperature and the molar ratio of the epoxy. Two mechanisms contribute to the increase in the elastic modulus of the material during curing. First, there is the formation of covalent bonds in the network during the curing process. Second, following bond formation, the epoxy undergoes structural relaxation toward an optimally packed network configuration, enhancing non-bonded interactions. We investigate to what extent the non-bonded interaction contribution to structural rigidity in cross-linked polymers is reversible, and to what extent it corresponds to the difference between adiabatic and isothermal moduli obtained from static tensile, i.e. the so-called relaxational modulus. To this end, we simultaneously measure the adiabatic and isothermal elastic moduli as a function of applied strain and deformation rate.

  2. Microbiological quality and sensory evaluation of new cured products obtained from sheep and goat meat

    OpenAIRE

    Tolentino, Georgina Santos; Estevinho, Leticia M.; Pascoal, Ananias; Rodrigues, Sandra; Teixeira, A.

    2017-01-01

    The present work aims to study the effect of species and seasoning time on the physicochemical, microbiological and sensory characteristics of cured legs of sheep and goats. Three cure periods were used: two for sheep and one for goat legs. Legs of lamb were cured for 7 and 8 months whereas legs of goat were cured for 8 months only. Samples were evaluated regarding pH, water activity and indicators of food microbial q uality and safety. A trained panel carried out the sensory analysis, with a...

  3. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    Science.gov (United States)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  4. Leprosy: eradication or cure?

    Science.gov (United States)

    Kakar, S

    1995-01-01

    The National Leprosy Eradication Program (NLEP), launched in 1986, has brought medicine for leprosy to more people than ever before, covering 200 of India's 455 districts. Since 1988, the number of leprosy patients discharged as cured each year has been greater than the number of newly detected, thus moving the country closer to its goal of eradicating leprosy from India. A substantial number of the 3 million people with leprosy in India are likely to come under the coverage of the NLEP. The author, however, argues that the fight against leprosy and the NLEP should be considered in their historical context. Leprosy is therefore used to illustrate how the perhaps interchangeable terms eradication and cure are charged with history and custom. Historically, the focus on eradicating leprosy has had terrible consequences for the patient. In England, perceptions about leprosy are relevant to the situation India, for colonial policy on leprosy was largely derivative. In the 1880s, especially, leprosy excited the public imagination. Asylums adopted segregation and confinement during this period for people with leprosy and the colonial government in India supported that approach from 1882. The author concludes that while the NLEP is laudable, the program must not focus upon eradicating leprosy. It should instead focus upon the leprosy patient, who has for so long been denied and discriminated against. The individual must be placed at the center of any program. Some steps in this direction have been taken.

  5. Towards Multidisciplinary HIV-Cure Research: Integrating Social Science with Biomedical Research.

    Science.gov (United States)

    Grossman, Cynthia I; Ross, Anna Laura; Auerbach, Judith D; Ananworanich, Jintanat; Dubé, Karine; Tucker, Joseph D; Noseda, Veronica; Possas, Cristina; Rausch, Dianne M

    2016-01-01

    The quest for a cure for HIV remains a timely and key challenge for the HIV research community. Despite significant scientific advances, current HIV therapy regimens do not completely eliminate the negative impact of HIV on the immune system; and the economic impact of treating all people infected with HIV globally, for the duration of their lifetimes, presents significant challenges. This article discusses, from a multidisciplinary approach, critical social, behavioral, ethical, and economic issues permeating the HIV-cure research agenda. As part of a search for an HIV cure, both the perspective of patients/participants and clinical researchers should be taken into account. In addition, continued efforts should be made to involve and educate the broader community. Published by Elsevier Ltd.

  6. CUREs in biochemistry-where we are and where we should go.

    Science.gov (United States)

    Bell, Jessica K; Eckdahl, Todd T; Hecht, David A; Killion, Patrick J; Latzer, Joachim; Mans, Tamara L; Provost, Joseph J; Rakus, John F; Siebrasse, Erica A; Ellis Bell, J

    2017-01-02

    Integration of research experience into classroom is an important and vital experience for all undergraduates. These course-based undergraduate research experiences (CUREs) have grown from independent instructor lead projects to large consortium driven experiences. The impact and importance of CUREs on students at all levels in biochemistry was the focus of a National Science Foundation funded think tank. The state of biochemistry CUREs and suggestions for moving biochemistry forward as well as a practical guide (supplementary material) are reported here. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):7-12, 2017. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  7. Microstructure aspects of radiation-cured networks: Cationically polymerized aromatic epoxy resins

    Science.gov (United States)

    Kowandy, Christelle; Ranoux, Guillaume; Walo, Marta; Vissouvanadin, Bertrand; Teyssedre, Gilbert; Laurent, Christian; Berquand, Alexandre; Molinari, Michaël; Coqueret, Xavier

    2018-02-01

    The thermo-mechanical properties and nanostructural features of epoxy aromatic resins cationically cured by UV-visible or electron beam radiation have been studied by FT-NIR spectroscopy, dynamic mechanical analysis (DMA), dielectric spectroscopy (DS), and atomic force microscopy (AFM). The influence of formulation (nature and content of onium salt) and of curing parameters (doses, thermal treatment) on the thermophysical have been investigated. The presence of several relaxation domains observed by DMA and DS analysis confirms the presence of heterogeneities in the cured materials. Network formation is described by the percolation of glassy nanoclusters which are evidenced by AFM analyses. AFM probing by quantitative nanomechanical measurements confirms the gradual build-up of the local Young's modulus in good agreement with the macroscopic value.

  8. Environmental and conservation considerations for electron curing

    International Nuclear Information System (INIS)

    Nablo, S.V.; Fletcher, P.M.

    1992-01-01

    This paper reviews the more important features of electron curing pertaining to environmental protection and conservation. The high electrical conversion efficiencies of these devices measured at output power levels to 200 kilowatts are reviewed with attention to energy transport to the product. The comparative energetics of free radical initiated addition chemistry with that of the more conventional condensation polymerized systems are presented. Some details of recent studies of the repulpability and de-inkability of electron cured products are presented with mill scale trials showing successful recycling with up to 75 % EB processed material in the waste. The ability of energetic electrons to effectively replace toxic chemicals such as H 2 O 2 and ethylene oxide in product sterilization will be presented with a discussion of the regulatory aspects of this process for medical device applications. (author)

  9. Effect of dual-cure composite resin as restorative material on marginal adaptation of class 2 restorations.

    Science.gov (United States)

    Bortolotto, Tissiana; Melian, Karla; Krejci, Ivo

    2013-10-01

    The present study attempted to find a simple direct adhesive restorative technique for the restoration of Class 2 cavities. A self-etch adhesive system with a dual-cured core buildup composite resin (paste 1 + paste 2) was evaluated in its ability to restore proximo-occlusal cavities with margins located on enamel and dentin. The groups were: A, cavity filling (cf) with paste 1 (light-curing component) by using a layering technique; B, cf by mixing both pastes, bulk insertion, and dual curing; and C, cf by mixing both pastes, bulk insertion, and chemical curing. Two control groups (D, negative, bulk; and E, positive, layering technique) were included by restoring cavities with a classic three-step etch-and-rinse adhesive and a universal restorative composite resin. SEM margin analysis was performed before and after thermomechanical loading in a chewing simulator. Percentages (mean ± SD) of "continuous margins" were improved by applying the material in bulk and letting it self cure (54 ± 6) or dual cure (59 ± 9), and no significant differences were observed between these two groups and the positive control (44 ± 19). The present study showed that the dual-cured composite resin tested has the potential to be used as bulk filling material for Class 2 restorations. When used as filling materials, dual-cure composite resins placed in bulk can provide marginal adaptation similar to light-cured composites applied with a complex stratification technique.

  10. Internal curing with lightweight aggregate produced from biomass-derived waste

    International Nuclear Information System (INIS)

    Lura, Pietro; Wyrzykowski, Mateusz; Tang, Clarence; Lehmann, Eberhard

    2014-01-01

    Shrinkage of concrete may lead to cracking and ultimately to a reduction of the service life of concrete structures. Among known methods for shrinkage mitigation, internal curing with porous aggregates was successfully utilized in the last couple of decades for decreasing autogenous and drying shrinkage. In this paper, the internal curing performance of pre-saturated lightweight aggregates produced from biomass-derived waste (bio-LWA) was studied. In the first part of this paper, the microstructure of the bio-LWA is investigated, with special focus on their pore structure and on their water absorption and desorption behavior. The bio-LWA has large porosity and coarse pore structure, which allows them to release the entrained water at early age and counteract self-desiccation and autogenous shrinkage. In the second part, the efficiency of internal curing in mortars incorporating the bio-LWA is examined by neutron tomography, internal relative humidity and autogenous deformation measurements

  11. Internal curing with lightweight aggregate produced from biomass-derived waste

    Energy Technology Data Exchange (ETDEWEB)

    Lura, Pietro, E-mail: pietro.lura@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Institute for Building Materials (IfB), ETH Zürich (Switzerland); Wyrzykowski, Mateusz [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Department of Building Physics and Building Materials, Lodz University of Technology (Poland); Tang, Clarence [Siam Research and Innovation, SCG Cement–Building Materials, Saraburi (Thailand); Lehmann, Eberhard [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2014-05-01

    Shrinkage of concrete may lead to cracking and ultimately to a reduction of the service life of concrete structures. Among known methods for shrinkage mitigation, internal curing with porous aggregates was successfully utilized in the last couple of decades for decreasing autogenous and drying shrinkage. In this paper, the internal curing performance of pre-saturated lightweight aggregates produced from biomass-derived waste (bio-LWA) was studied. In the first part of this paper, the microstructure of the bio-LWA is investigated, with special focus on their pore structure and on their water absorption and desorption behavior. The bio-LWA has large porosity and coarse pore structure, which allows them to release the entrained water at early age and counteract self-desiccation and autogenous shrinkage. In the second part, the efficiency of internal curing in mortars incorporating the bio-LWA is examined by neutron tomography, internal relative humidity and autogenous deformation measurements.

  12. Effect of Particular Breed on the Chemical Composition, Texture, Color, and Sensorial Characteristics of Dry-cured Ham

    Directory of Open Access Journals (Sweden)

    Pil Nam Seong

    2014-08-01

    Full Text Available The present study demonstrates the impact of specific breed on the characteristics of dry-cured ham. Eighty thighs from Korean native pig (KNP, crossbreed (Landrace×Yorkshire♀×Duroc♂ (LYD, Berkshire (Ber, and Duroc (Du pig breeds (n = 10 for each breed were used for processing of dry-cured ham. The thighs were salted with 6% NaCl (w/w and 100 ppm NaNO2, and total processing time was 413 days. The effects of breed on the physicochemical composition, texture, color and sensory characteristics were assessed on the biceps femoris muscle of the hams. The results revealed that the highest weight loss was found in the dry-cured ham of LYD breed and the lowest weight loss was found in Ber dry-cured ham. The KNP dry-cured ham contain higher intramuscular fat level than other breed hams (p<0.05. It was observed that the dry-cured ham made from KNP breed had the lowest water activity value and highest salt content, while the LYD dry-cure ham had higher total volatile basic nitrogen content than the Ber and Du hams (p<0.05. Zinc, iron and total monounsaturated fatty acids levels were higher in KNP ham while polyunsaturated fatty acids levels were higher in Du ham when compared to other breed hams (p<0.05. Additionally, the KNP dry-cured ham possessed higher Commission International de l’Eclairage (CIE a* value, while the Du dry-cured ham had higher L*, CIE b* and hue angle values (p<0.05. Furthermore, breed significantly affected the sensory attributes of dry-cured hams with higher scores for color, aroma and taste found in KNP dry-cured ham as compared to other breed hams (p<0.05. The overall outcome of the study is that the breed has a potential effect on the specific chemical composition, texture, color and sensorial properties of dry-cured hams. These data could be useful for meat processors to select the suitable breeds for economical manufacturing of high quality dry-cured hams.

  13. Radtech Asia'95 radiation curing conference proceedings

    International Nuclear Information System (INIS)

    1995-01-01

    The Radtech Asia'95 Radiation Curing Conference was held in November, 20-24, 1995 in Guilin, China. The subjects include chemistry, application, Measurement and Equipment, and Material modification. Out of 86 titles, some 30 papers are in INIS scope

  14. Is There a Cure for Cushing's Syndrome?

    Science.gov (United States)

    ... Pinterest Email Print Is there a cure for Cushing syndrome? Untreated Cushing syndrome can be life-threatening—fortunately, most people with ... their previous strength. People who no longer have Cushing syndrome might be more likely to develop diabetes, high ...

  15. Effects of the curing pressure on the torsional fatigue characteristics of adhesively bonded joints

    International Nuclear Information System (INIS)

    Hwang, Hui Yun; Kim, Byung Jung; Lee, Dai Gil

    2004-01-01

    Adhesive joints have been widely used for fastening thin adherends because they can distribute the load over a larger area than mechanical joints, require no hole, add very little weight to the structure and have superior fatigue resistance. However, the fatigue characteristics of adhesive joints are much affected by applied pressure during curing operation because actual curing temperature is changed by applied pressure and the adhesion characteristics of adhesives are very sensitive to manufacturing conditions. In this study, cure monitoring and torsional fatigue tests of adhesive joints with an epoxy adhesive were performed in order to investigate the effects of the applied pressure during curing operation. From the experiments, it was found that the actual curing temperature increased as the applied pressure increased, which increased residual thermal stress in the adhesive layer. Therefore, the fatigue life decreased as the applied pressure increased because the mean stress during fatigue tests increased due to the residual thermal stress

  16. Investigation of synthesis, thermal properties and curing kinetics of fluorene diamine-based benzoxazine by using two curing kinetic methods

    International Nuclear Information System (INIS)

    He, Xuan-yu; Wang, Jun; Ramdani, Noureddine; Liu, Wen-bin; Liu, Li-jia; Yang, Lei

    2013-01-01

    Graphical abstract: - Highlights: • A novel diamine-based benzoxazine monomer containing aryl ether and bulky fluorene groups (BEF-p) is synthesized. • Kinetic parameters can be calculated by Starink-LSR method and direct LSR method. • Cure reaction could be successfully described with the autocatalytic model. • The poly(BEF-p) exhibits high T g and superior thermal stability. • Aryl ether linkages had little influence on the thermal stability. - Abstract: A novel diamine-based benzoxazine monomer containing aryl ether and bulky fluorene groups (BEF-p) was prepared from the reaction of 9,9-bis-[4-(p-aminophenoxy)-phenyl]fluorene with paraformaldehyde and phenol. The chemical structure of monomer was confirmed by Fourier-transform infrared (FTIR) and 1 H and 13 C nuclear magnetic resonance spectroscopy ( 1 H and 13 C NMR). The polymerization behavior of monomer was analyzed by differential scanning calorimetry (DSC) and FTIR. The curing kinetics was studied by non-isothermal DSC, and the kinetic parameters were determined. The autocatalytic model based on two kinetic methods (Starink-LSR method and direct LSR method) showed good agreement with experimental results. The thermal and mechanical properties of poly(BEF-p) were evaluated with DSC, dynamic mechanical thermal analysis (DMTA), and thermogravimetric analysis (TGA). The results showed that the cured polymer exhibited higher glass transition temperature (T g ) and better thermal stability compared with diaminodiphenylmethane-based benzoxazine(P-ddm), and was slightly lower than those of fluorene diamine-phenol-based polybenzoxazine (poly(BF-p))

  17. Structural and mechanical properties of a giomer-based bulk fill restorative in different curing conditions

    Directory of Open Access Journals (Sweden)

    Mustafa Sarp Kaya

    2018-01-01

    Full Text Available ABSTRACT Objective: The main goal of this study was to compare the polymerization degree of bulk-fill giomer resin cured with three different light-curing units (LCUs: a polywave third-generation (Valo; a monowave (DemiUltra: DU; and a second-generation LED (Optima 10: Opt LCUs by using structural and mechanical properties. Material and methods: Giomer samples of 2 and 4 mm cured with three LCUs were employed in vitro analysis. The degree of curing (DC% was determined with Fourier-Transform Infrared Spectroscopy (FTIR. Microstructural features were observed with scanning electron microscopy (SEM. Flexural strength (FS, compression strength (CS, elastic modulus and fracturing strain were determined for mechanical properties. Surface microhardness (SMH values were also measured. Oneway ANOVA, two-way analysis of variance and Tukey multiple comparison tests were used for statistically analyzing the FS and SMH. Results: DC% values were 58.2, 47.6, and 39.7 for the 2 mm samples cured with DU, Opt., and Valo LCUs, respectively. DC% values of the 4 mm samples were 50.4, 44.6, and 38.2 for DU, Opt, and Valo, respectively. SMH values were Valo, Optcured with Opt and DU exhibited higher FS values than Valo. CS values were similar but compressive modulus and fracturing strain (% varied depending on the curing protocol. Conclusions: Based on the results, it can be concluded that curing device and protocol strongly affect crosslinking reactions and thus DC%, SMH, compressive modulus and strain at break values. Consequently, it can be deduced that curing protocol is possibly the most important parameter for microstructure formation of highly-filled composite restoratives because it may bring some structural defects and physical frailties on restorations due to lower degree of polymerization.

  18. Coil measurement data acquisition and curing press control system for SSC dipole magnet coils

    International Nuclear Information System (INIS)

    Dickey, C.E.

    1989-03-01

    A coil matching program, similar in theory to the methods used to match Tevatron coils, is being developed at Fermilab. Modulus of elasticity and absolute coil size will be determined at 18-inch intervals along the coils while in the coil curing press immediately following the curing process. A data acquisition system is under construction to automatically acquire and manage the large quantities of data that result. Data files will be transferred to Fermilab's VAX Cluster for long-term storage and actual coil matching. The data acquisition system will also provide the control algorithm for the curing press hydraulic system. A description of the SSC Curing Press Data Acquisition and Controls System will be reported. 20 figs

  19. Effect of Relining Methods (Cold & Heat Cure On the Accuracy of Posterior

    Directory of Open Access Journals (Sweden)

    Nafiseh AsadzadehOghadaee

    2013-01-01

    Full Text Available Introduction: The posterior palatal area is the most important area for retention of maxillary dentures and must be considered carefully during and after the reline. The purpose of this in vitro study was to compare the posterior palatal seal in relined complete dentures with two different methods.Materials & Methods: An average size of edentulous maxillary acrylic arch without undercuts was selected in this in vitro study. The alginate impression was made of this model ten times and was poured with a type IV gypsum product, and the casts of control groups were prepared. Then 10 definitive bases were created for each cast. For the experimental groups, one relief wax layer with a thickness of 2mm was put in post-dam area for relining processes. Then, 20 alginate impressions were made of this model. On definitive base, clear heat-cured acrylic bases were fabricated. In experimental groups, bases were divided into 2 groups of 10: first group was relined with heat-cured acrylic resin and another one was relined with cold cured acrylic resin. All of the bases were put in distilled water for two weeks and then each of them was placed on the definitive base. One code was considered for each model. The gap in posterior area between acrylic bases and arch was measured in five points (a-b-c-d-e: mid line, two points in hamular notch, and two points between midline and hamular notch by two practicers in two different times (during two weeks with light B×60 microscope. The data were analyzed by Tukey and Kruskal Wallis tests.Results: The results of this study indicated that there was a statistically significant difference in the amount of gap at point A between control (bases without reline and experimental groups (P=0.047. At point D there was no significant difference between experimental groups, but a significant difference was detected between control group and bases relined with cold cure acryl (P<0.05.Conclusion: The results of this laboratory study

  20. Polyurethane acrylate networks including cellulose nanocrystals: a comparison between UV and EB- curing

    International Nuclear Information System (INIS)

    Furtak-Wrona, K.; Kozik-Ostrówka, P.; Jadwiszczak, K.; Maigret, J.E.; Aguié-Béghin, V.; Coqueret, X.

    2018-01-01

    A water-based polyurethane (PUR) acrylate water emulsion was selected as a radiation curable matrix for preparing nanocomposites including cellulose nanocrystals (CNC) prepared by controlled hydrolysis of Ramie fibers. Cross-linking polymerization of samples prepared in the form of films or of 1 mm-thick bars was either initiated by exposure to the 395 nm light of a high intensity LED lamp or by treatment with low energy electron beam (EB). The conversion level of acrylate functions in samples submitted to increasing radiation doses was monitored by Fourier Transform Infrared Spectroscopy (FTIR). Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) were used to characterize changes in the glass transition temperature of the PUR-CNC nanocomposites as a function of acrylate conversion and of CNC content. Micromechanical testing indicates the positive effect of 1 wt% CNC on Young's modulus and on the tensile strength at break (σ) of cured nanocomposites. The presence of CNC in the PUR acrylate matrix was shown to double the σ value of the nanocomposite cured to an acrylate conversion level of 85% by treatment with a 25 kGy dose under EB, whereas no increase of σ was observed in UV-cured samples exhibiting the same acrylate conversion level. The occurrence of grafting reactions inducing covalent linkages between the polysaccharide nanofiller and the PUR acrylate matrix during the EB treatment is advanced as an explanation to account for the improvement observed in samples cured under ionizing radiation. - Highlights: • Nanocomposites were prepared from o/w PUR acrylate emulsion and CNC suspension. • Nanocomposite and reference materials were cured to the same conversion by UV or EB. • Introducing 1 wt% CNC in EB-cured composites doubles the tensile strength. • UV-cured nanocomposites did not show significant improvement in tensile strength.