WorldWideScience

Sample records for curcumin ginkgo biloba

  1. Ginkgo biloba treating patients with attention-deficit disorder.

    Science.gov (United States)

    Niederhofer, Helmut

    2010-01-01

    Various medications such as clonidine facilitate calming, enhance frustration tolerance and reduce aggression in attention-deficit disorder (ADD) patients. The use of Ginkgo biloba was studied as an herbal alternative. Six psychiatric outpatients diagnosed with ADD were rated at baseline and while taking Ginkgo biloba to determine its efficacy as a treatment for ADD. Comparisons of Wender Utah ratings within subject were used to measure behavioral changes in the subjects. During Ginkgo biloba treatment, the patients' mean scores improved significantly overall and in hyperactivity, inattention, and immaturity factors. This preliminary study indicates that Ginkgo biloba might be a beneficial and useful treatment of ADD, with minimal side effects. (c) 2009 John Wiley & Sons, Ltd.

  2. Chemistry and biology of terpene trilactones from Ginkgo biloba

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Nakanishi, Koji

    2004-01-01

    Ginkgo biloba, the ginkgo tree, is the oldest living tree, with a long history of use in traditional Chinese medicine. In recent years, the leaf extracts have been widely sold as phytomedicine in Europe and as a dietary supplement worldwide. Effects of Ginkgo biloba extracts have been postulated ...

  3. Screening and Identifying Antioxidative Components in Ginkgo biloba Pollen by DPPH-HPLC-PAD Coupled with HPLC-ESI-MS2

    Science.gov (United States)

    Netrusov, A. I.; Zhou, Qingxin; Guo, Danyang; Liu, Xiaoyong; He, Hailun; Xin, Xue; Wang, Yifen; Chen, Leilei

    2017-01-01

    The Ginkgo biloba is one of ancient trees that exists from billions of years ago, its leaf and nut are used as herbs and foods in China, while so far its pollen does not have any application except pollination. In order to evaluate the antioxidant activity of Ginkgo biloba pollen, and rapidly screen its antioxidative components, the 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability, total flavonoid, total phenol, and proanthocyanidin of Ginkgo biloba pollen were determined and compared with those of Ginkgo biloba leaf and nut, and the off-line DPPH-HPLC-PAD and HPLC-ESI-MS2 were applied for screening and identifying the antioxidant flavonoids in Ginkgo biloba pollen. The results showed that the DPPH scavenging ability of Ginkgo biloba pollen was much higher than Ginkgo biloba nut, but lower than Ginkgo biloba leaf, while the total content of flavonoid in Ginkgo biloba pollen was approximately 4.37 times higher than in Ginkgo biloba leaf. Further studies found that the major flavonol aglycone in Ginkgo biloba pollen was kaempferol, which accounted for 96.71% of the total aglycones (includes quercetin, kaempferol and isorhamnetin), and the main flavonoid components in Ginkgo biloba pollen were flavonoid glycosides. Finally, ten antioxidant peaks were screened and identified to be flavonoids (including kaempferol and nine flavonoid glycosides), so flavonoids were likely to be the main antioxidant components in GP, and among them, three novel kaempferol glycosides (peaks 1, 2, and 3) were found in Ginkgo biloba pollen for the first time, which had never been found in Ginkgo biloba. PMID:28095510

  4. Ginkgo biloba in the treatment of tinnitus: An updated literature review.

    Science.gov (United States)

    Mahmoudian-Sani, Mohammad Reza; Hashemzadeh-Chaleshtori, Morteza; Asadi-Samani, Majid; Yang, Qian

    2017-06-01

    Tinnitus is one of the common diseases of the ear that is associated with numerous physical and mental disorders. One of the known mechanisms in the tinnitus area with unknown reason is oxidative events. Based on the prevalence and economic costs and physical- psychological side effects caused by tinnitus and the importance of finding a suitable solution for its prevention and treatment, the need for further studies becomes more obvious in this context. This review article aimed to review studies on the effectiveness of Ginkgo biloba as a medicinal plant on patients with tinnitus. Google Scholar, Directory of Open Access Journals (DOAJ), PubMed, LISTA (EBSCO) and Web of Science have been searched. There are many studies on the therapeutic effect of Ginkgo biloba on patients with tinnitus. Most findings are in contrast with each other so that some of studies reported that Ginkgo biloba is effective in the treatment of tinnitus and other studies referred to it as ineffective herbal medicine. Generally, according to the previous studies and the present study, it can mention that the Ginkgo biloba may somewhat improve tinnitus. Since tinnitus is multifactorial, it is recommended to evaluate patients individually based on the cause of tinnitus, treatment formulas, and different doses of Ginkgo biloba at the more extensive level in future studies.

  5. Ginkgo Biloba extract for angina pectoris: a systematic review.

    Science.gov (United States)

    Sun, Tian; Wang, Xian; Xu, Hao

    2015-07-01

    To evaluate the efficacy and safety of Ginkgo Biloba extract for patients with angina pectoris according to the available evidence. Electronic databases were searched for all of the randomized controlled trials (RCTs) of angina pectoris treatments with Ginkgo Biloba extract, either alone or combined with routine Western medicine (RWM), and controlled by untreated, placebo, Chinese patent medicine, or RWM treatment. The RCTs were retrieved from the following electronic databases: PubMed/MEDLINE, ProQuest Health and Medical Complete, Springer, Elsevier, and ProQuest Dissertations and Theses, Wanfang Data, China National Knowledge Infrastructure (CNKI), VIP database, China Biology Medicine (CBM), Chinese Medical Citation Index (CMCI), from the earliest database records to December 2012. No language restriction was applied. Study selection, data extraction, quality assessment, and data analyses were conducted according to the Cochrane standards. RevMan 5.1.0 provided by Cochrane Collaboration The data were analysed by using. A total of 23 RCTs (involving 2,529 patients) were included and the methodological quality was evaluated as generally low. Ginkgo Biloba extract with RWM was more effective in angina relief and electrocardiogram improvement than RWM alone. Reported adverse events included epigastric discomfort, nausea, gastrointestinal reaction, and bitter taste. Ginkgo Biloba extract may have beneficial effects on patients with angina pectoris, although the low quality of existing trials makes it difficult to draw a satisfactory conclusion. More rigorous, high quality clinical trials are needed to provide conclusive evidence.

  6. Protective effect of Ginkgo biloba extract against oxidative stress induced by gamma-irradiation in rats

    International Nuclear Information System (INIS)

    Hashim, I. M.; El-Hindy, H.M.A.; Moussa, S.Z.; Mansour, S.Z.

    2013-01-01

    This study was to evaluate the prophylactic and therapeutic efficacy of Ginkgo biloba extract against redox imbalance induced by protracted exposure to γ -rays. Rats were exposed to γ-radiation at a dose 2 Gy / week for 4 weeks (γ-radiated group) Ginkgo biloba extract was administered in a dose of 100 mg/kg b. wt. for 7 days before the first dose of γ-radiation and contemned during for exposure period (Ginkgo biloba pre- treated group) and also after the last dose of γ-radiation (Ginkgo biloba post- treated group), these groups were compared with either control or Ginkgo biloba animals. The results reveal obtained significant increases in malondialdhyde and nitric oxide concentrations in blood and liver of γ-irradiated group with concomitant decrease in reduced glutathione content and glutathione peroxidase, superoxide dismutase and catalase activities. Histopathological examinations in the liver revealed a severe damage showed by dilated congested control vein with ruptured endothelium. Vacuolated hapatocytes and extensive cell necrosis were also seen. Note extravagated RBCs within sinusoidal spaces. In addition, the enzymes of liver function and bilirubin content were increased. DNA fragmentation percentage and tumor necrosis factor alpha concentration were also increased in liver. Ginkgo biloba extract administration significantly ameliorated the adverse effects of γ-irradiation in rats. It could be concluded that Ginkgo biloba extract has a role in reducing the oxidative stress of pre or post γ-irradiation on liver tissue of rats

  7. Does Adjuvant Treatment With Ginkgo Biloba to Statins Have Additional Benefits in Patients With Dyslipidemia?

    Directory of Open Access Journals (Sweden)

    Yu Fan

    2018-06-01

    Full Text Available Objective: Ginkgo biloba are widely used alone or in combination with other lipid-lowering agents in the treatment of dyslipidemia in China. We conducted this meta-analysis to investigate whether adjuvant treatment with ginkgo biloba leaves to statins has incremental benefits in patients with dyslipidemia.Methods: Potential studies were searched from PubMed, EMBASE, Cochrane Library, China National Knowledge Infrastructure, VIP, and Wanfang database up to October 2017. Only randomized controlled trials (RCTs comparing the efficacy and safety of ginkgo biloba leaves plus statins versus statins alone in patients with dyslipidemia were included.Results: Eight RCTs involving 664 patients were included. Compared with statins therapy alone, combination of statins and ginkgo biloba leaves therapy achieved greater reductions in triglycerides [mean difference (MD -0.32 mmol/L; 95% confidence interval (CI -0.43 to -0.20], total cholesterol (MD -0.61 mmol/L; 95% CI -0.90 to -0.33, or low-density lipoprotein cholesterol (LDL-C (MD -0.32 mmol/L; 95% CI -0.48 to -0.16, and a greater increment in high-density lipoprotein cholesterol (MD 0.26 mmol/L; 95% CI 0.15 to 0.37. Subgroup analyses showed that ginkgo biloba leaves plus simvastatin appeared to achieve a greater reduction in serum levels of triglycerides, total cholesterol, and LDL-C than in combination with atorvastatin therapy.Conclusion: This meta-analysis suggests that adjuvant treatment with ginkgo biloba leaves appears to improve blood lipid parameters than statins therapy alone. More well-designed RCTs are needed to investigate the benefits of the combination of statins and ginkgo biloba leaves.

  8. [Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].

    Science.gov (United States)

    Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin

    2017-07-01

    In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.

  9. EST analysis in Ginkgo biloba: an assessment of conserved developmental regulators and gymnosperm specific genes

    Directory of Open Access Journals (Sweden)

    Runko Suzan J

    2005-10-01

    Full Text Available Abstract Background Ginkgo biloba L. is the only surviving member of one of the oldest living seed plant groups with medicinal, spiritual and horticultural importance worldwide. As an evolutionary relic, it displays many characters found in the early, extinct seed plants and extant cycads. To establish a molecular base to understand the evolution of seeds and pollen, we created a cDNA library and EST dataset from the reproductive structures of male (microsporangiate, female (megasporangiate, and vegetative organs (leaves of Ginkgo biloba. Results RNA from newly emerged male and female reproductive organs and immature leaves was used to create three distinct cDNA libraries from which 6,434 ESTs were generated. These 6,434 ESTs from Ginkgo biloba were clustered into 3,830 unigenes. A comparison of our Ginkgo unigene set against the fully annotated genomes of rice and Arabidopsis, and all available ESTs in Genbank revealed that 256 Ginkgo unigenes match only genes among the gymnosperms and non-seed plants – many with multiple matches to genes in non-angiosperm plants. Conversely, another group of unigenes in Gingko had highly significant homology to transcription factors in angiosperms involved in development, including MADS box genes as well as post-transcriptional regulators. Several of the conserved developmental genes found in Ginkgo had top BLAST homology to cycad genes. We also note here the presence of ESTs in G. biloba similar to genes that to date have only been found in gymnosperms and an additional 22 Ginkgo genes common only to genes from cycads. Conclusion Our analysis of an EST dataset from G. biloba revealed genes potentially unique to gymnosperms. Many of these genes showed homology to fully sequenced clones from our cycad EST dataset found in common only with gymnosperms. Other Ginkgo ESTs are similar to developmental regulators in higher plants. This work sets the stage for future studies on Ginkgo to better understand seed and

  10. Análise das bulas de medicamentos à base de Ginkgo biloba L.

    Directory of Open Access Journals (Sweden)

    Alexsandro Branco

    2010-06-01

    Full Text Available Ginkgo biloba L. atua no aumento do fluxo sanguíneo dos tecidos protegendo-os contra os danos causados pela hipóxia, além de inibir a agregação plaquetária. Sua indicação terapêutica consiste em casos de desordens e sintomas decorrentes da deficiência do fluxo sanguíneo no cérebro e que podem acarretar na perda de memória, alteração da função cognitiva, tonturas, dor de cabeça, vertigens, estágios iniciais de demência, zumbidos, estágios iniciais de Alzheimer e demências mistas, entre outros. Neste sentido os medicamentos à base de Ginkgo biloba L. configuram entre os fitoterápicos mais vendidos do Brasil. As bulas têm como objetivo central esclarecer e informar, pacientes e profissionais da saúde, sobre seus benefícios e seus riscos com intuito de promover o uso racional de medicamento. Este estudo teve como objetivo analisar as informações contidas nas bulas de medicamentos à base Ginkgo biloba L., comercializadas no Brasil, frente à legislação nacional referente. Assim, em uma amostragem correspondente a 30 % de medicamentos registrados na ANVISA, pode-se constatar que nenhuma bula analisada neste trabalho encontra-se totalmente de acordo com as exigências da legislação vigente no Brasil. Palavras-chave: Ginkgo biloba. Fitoterápicos. Bula de medicamentos. Legislação. ABSTRACT Analysis of the package inserts for medicines to the base of Ginkgo biloba L. Ginkgo biloba L. acts by increasing the blood flow in the tissues, thus protecting them against damage caused by hypoxia, besides inhibiting platelet aggregation. It is therapeutically indicated in cases of disorders and symptoms arising from deficient blood flow in the brain, such as memory loss, changes in cognitive function, dizziness, headache, vertigo, early stages of dementia, tinnitus, early stages of Alzheimer's and other types of dementia. These symptoms occur mainly in elderly patients and there is a continuous rise in the consumption of this

  11. Ginseng and Ginkgo Biloba Effects on Cognition as Modulated by Cardiovascular Reactivity: A Randomised Trial.

    Directory of Open Access Journals (Sweden)

    Derek Ong Lai Teik

    Full Text Available There is some evidence to suggest that ginseng and Ginkgo biloba can improve cognitive performance, however, very little is known about the mechanisms associated with such improvement. Here, we tested whether cardiovascular reactivity to a task is associated with cognitive improvement.Using a double-blind, placebo controlled, crossover design, participants (N = 24 received two doses of Panax Ginseng (500, 1000 mg or Ginkgo Biloba (120, 240 mg (N = 24, and underwent a series of cognitive tests while systolic, diastolic, and heart rate readings were taken. Ginkgo Biloba improved aspects of executive functioning (Stroop and Berg tasks in females but not in males. Ginseng had no effect on cognition. Ginkgo biloba in females reversed the initial (i.e. placebo increase in cardiovascular reactivity (systolic and diastolic readings increased compared to baseline to cognitive tasks. This effect (reversal was most notable after those tasks (Stroop and Iowa that elicited the greatest cardiovascular reactivity during placebo. In males, although ginkgo also decreased cardiovascular readings, it did so from an initial (placebo blunted response (i.e. decrease or no change from baseline to cognitive tasks. Ginseng, on the contrary, increased cardiovascular readings compared to placebo.These results suggest that cardiovascular reactivity may be a mechanism by which ginkgo but not ginseng, in females is associated with certain forms of cognitive improvement.ClinicalTrials.gov NCT02386852.

  12. Biochemical and molecular evidences for the antitumor potential of Ginkgo biloba leaves extract in rodents.

    Science.gov (United States)

    Ahmed, Hanaa H; Shousha, Wafaa Gh; El-Mezayen, Hatem A; El-Toumy, Sayed A; Sayed, Alaa H; Ramadan, Aesha R

    2017-01-01

    Hepatocellular carcinoma (HCC) is one of the deadliest primary cancers, with a 5-year survival rate of 10% or less. This study was undertaken to elucidate the underlying biochemical and molecular mechanisms in favor of N-nitrosodiethylamine-induced hepatocellular carcinoma. Furthermore, the aim of this work was extended to explore the efficacy of Ginkgo biloba leaves extract in deterioration of HCC in rats. In the current study, HCC group experienced significant downregulation of ING-3 gene expression and upregulation of Foxp-1 gene expression in liver. Treatment of HCC groups with Ginkgo biloba leaves extract resulted in upregulation of ING-3 and downregulation of Foxp-1 gene expression in liver. In addition, there was significant increase in serum alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) and glypican-3 (GPC-3) levels in HCC group versus the negative control group. In contrast, the groups with HCC subjected to either high or low dose of Ginkgo biloba leaves extract elicited significant reduction (Panaplasia. Interestingly, treatment with Ginkgo biloba leaves extract elicited marked improvement in the histological feature of liver tissue in HCC groups. In conclusion, this research indicated that the carcinogenic potency of N-nitrosodiethylamine targeted multiple systems on the cellular and molecular levels. In addition, the results of the current study shed light on the promising anticancer activity of Ginkgo biloba leaves extract in treatment of hepatocellular carcinoma induced chemically in the experimental model through its apoptotic and antiproliferative properties.

  13. [INDENA SPA company's patent portfolio of Ginkgo biloba preparation].

    Science.gov (United States)

    Wang, Nan; Guo, Kai; Cheng, Xin-min; Liu, Wei

    2015-10-01

    INDENA SPA Company in Italy is a multi-national company that produces and sells plant extracts. Based on its own re- search advantages in the field of Ginkgo biloba preparation, the company protects its own products market effectively through building patent portfolio around the patents of its opponent. Based on the multi-angle analysis for patent portfolio of G. biloba preparation from the aspects of application time, legal status, technical development route, and patent portfolio layout, this article provides technical reference on research and development of G. biloba preparation, and the author suggest that Chinese applicants learn techniques and layout experiences of other patents fully to enhance the level of research and patent protection level.

  14. Effekten af Ginkgo biloba-ekstrakt hos patienter med claudicatio intermittens

    DEFF Research Database (Denmark)

    Drabaek, H; Petersen, J R; Wïnberg, N

    1996-01-01

    Eighteen patients with stable intermittent claudication were randomized in a double blind cross-over study comparing the effects of the Ginkgo biloba extract GB-8 at a dose of 120 mg o.d. with placebo. All patients were treated for three months with the active extract and three months with placebo...... of concentration, and inability to remember. Short-term memory was objectively assessed. We did not find any significant changes in either peripheral blood pressures, walking distances or the severity of leg pain. Systemic blood pressure was reduced both by placebo and GB-8. The impairment of concentration...... and the inability to remember were both reduced, when comparing results during active treatment to placebo. Short-term memory did not change significantly. In conclusion, our study has shown that treatment with the Ginkgo biloba extract GB-8 improves some cognitive functions in elderly patients with moderate...

  15. Ginkgo biloba as an adjunct to methylphenidate in the treatment of attention deficit hyperactivity disorder in children: review of articles

    Directory of Open Access Journals (Sweden)

    Paria Hebrani

    2015-01-01

    Full Text Available Attention-deficit/hyperactivity disorder is one of the most common psychiatric disorders in childhood. The medications which inhibit the reuptake of noradrenline and dopamine including psychostimulants such as methylphenidate and dextroamphetamine and non-stimulating pre-frontal cortex noradrenaline reuptake inhibitor such as atomoxetine, are the standard treatment of ADHD. Adverse effects of stimulants have been reported in thirty percent of patients with attention-deficit/hyperactivity disorder. More than fifty percent of the parents of these children have tried one or more complementary or alternative medicines including vitamins in their children. Ginkgo biloba has been described to be effective for various neuropsychiatric symptoms. It was assumed that ginkgo biloba might improve some symptoms of attention deficit disorder as well. Nevertheless, no systematic study reported a possible efficacy of ginkgo biloba in attention deficit disorder. This review article evaluates the available evidence on the efficacy of ginkgo biloba medication in Attention-deficit/hyperactivity disorder children to present an appropriate guidance for this common child disorder.

  16. Role of Ginkgo Biloba in Hyperhomocysteinemia Induced in Rats By L-Methionine and Gamma Irradiation

    International Nuclear Information System (INIS)

    Mansour, S.Z.

    2011-01-01

    The objective of this study is to evaluate the role of Ginkgo biloba in hyperhomocysteinemia and oxidative stress. Methionine was supplied orally to adult male albino rats with a dose of 1.7 g/kg/day during 4 weeks. Irradiation was applied to rats by whole body gamma irradiation with a dose of 2 Gy/week up to a total dose of 8 Gy. Ginkgo biloba (100 mg/kg/day) was supplemented orally to rats, daily, during the period of methionine administration and/or radiation exposure. Biochemical analysis in blood and brain tissues showed that methionine and/or gamma irradiation produced significant increases in homocysteine and acetylcholine esterase levels and significant decrease in nitric oxide (NO). Significant increase in malondialdehyde (MDA) with significant decreases in glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase levels were observed and alteration in plasma lipid profile was also recorded. Ginkgo biloba supplementation has significantly decreased homocysteine and acetylcholine esterase levels and increased NO while was associated with significant improvement of oxidative stress and lipid profile. It could be concluded that the protective effect of Gingko biloba against hyperhomocysteinemia and oxidative stress is attributed to its antioxidant and free radicals scavenging properties.

  17. Cardioprotective Action of Ginkgo biloba Extract against Sustained β-Adrenergic Stimulation Occurs via Activation of M2/NO Pathway

    Directory of Open Access Journals (Sweden)

    Thássio R. R. Mesquita

    2017-05-01

    Full Text Available Ginkgo biloba is the most popular phytotherapic agent used worldwide for treatment of several human disorders. However, the mechanisms involved in the protective actions of Ginkgo biloba on cardiovascular diseases remain poorly elucidated. Taking into account recent studies showing beneficial actions of cholinergic signaling in the heart and the cholinergic hypothesis of Ginkgo biloba-mediated neuroprotection, we aimed to investigate whether Ginkgo biloba extract (GBE promotes cardioprotection via activation of cholinergic signaling in a model of isoproterenol-induced cardiac hypertrophy. Here, we show that GBE treatment (100 mg/kg/day for 8 days, v.o. reestablished the autonomic imbalance and baroreflex dysfunction caused by chronic β-adrenergic receptor stimulation (β-AR, 4.5 mg/kg/day for 8 days, i.p.. Moreover, GBE prevented the upregulation of muscarinic receptors (M2 and downregulation of β1-AR in isoproterenol treated-hearts. Additionally, we demonstrated that GBE prevents the impaired endothelial nitric oxide synthase activity in the heart. GBE also prevented the pathological cardiac remodeling, electrocardiographic changes and impaired left ventricular contractility that are typical of cardiac hypertrophy. To further investigate the mechanisms involved in GBE cardioprotection in vivo, we performed in vitro studies. By using neonatal cardiomyocyte culture we demonstrated that the antihypertrophic action of GBE was fully abolished by muscarinic receptor antagonist or NOS inhibition. Altogether, our data support the notion that antihypertrophic effect of GBE occurs via activation of M2/NO pathway uncovering a new mechanism involved in the cardioprotective action of Ginkgo biloba.

  18. A novel substance with allelopathic activity in Ginkgo biloba.

    Science.gov (United States)

    Kato-Noguchi, Hisashi; Takeshita, Sayaka; Kimura, Fukiko; Ohno, Osamu; Suenaga, Kiyotake

    2013-12-15

    Ginkgo (Ginkgo biloba) is one of the oldest living tree species and has been widely used in traditional medicine. Leaf extracts of ginkgo, such as the standardized extract EGb761, have become one of the best-selling herbal products. However, no bioactive compound directed at plants has been reported in this species. Therefore, we investigated possible allelopathic activity and searched for allelopathically active substances in ginkgo leaves. An aqueous methanol leaf extract inhibited the growth of roots and shoots of garden cress (Lepidium sativum), lettuce (Lactuca sativa), timothy (Phleum pratense) and ryegrass (Lolium multiflorum) seedlings. The extract was purified by several chromatographic runs and an allelopathically active substance was isolated and identified by spectral analysis to be the novel compound 2-hydroxy-6-(10-hydroxypentadec-11-enyl)benzoic acid. The compound inhibited root and shoot growth of garden cress and timothy at concentrations greater than 3 μM. The activity of the compound was 10- to 52-fold that of nonanoic acid. These results suggest that 2-hydroxy-6-(10-hydroxypentadec-11-enyl)benzoic acid may contribute to the allelopathic effect caused by ginkgo leaf extract. The compound may also have potential as a template for the development of new plant control substances. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yan-yu [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Yang, Hui, E-mail: 549456369@qq.com [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Tao [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Chuang [Department of Highway & Bridge, Shaanxi Railway Institute, Weinan 714000 (China)

    2016-11-25

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag{sup +} (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO{sub 3}) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO{sub 3} concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV–vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10–16 nm. FTIR analysis revealed that biological macromolecules with groups of −NH{sub 2}, −OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications. - Highlights: • Monodisperse silver nanoparticles were first prepared by a green synthetical way through Ginkgo Biloba leaf extract. • The synthesized AgNPs is of high crystallinity, stable and good dispersion with smaller sizes between 10–16 nm. • The achieved AgNPs exhibits good antibacterial activities. • The biosynthesis method is advantageous for its cost effectiveness, availability, portability, nontoxic and environmentally benign.

  20. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    International Nuclear Information System (INIS)

    Ren, Yan-yu; Yang, Hui; Wang, Tao; Wang, Chuang

    2016-01-01

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag + (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO 3 ) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO 3 concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV–vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10–16 nm. FTIR analysis revealed that biological macromolecules with groups of −NH 2 , −OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications. - Highlights: • Monodisperse silver nanoparticles were first prepared by a green synthetical way through Ginkgo Biloba leaf extract. • The synthesized AgNPs is of high crystallinity, stable and good dispersion with smaller sizes between 10–16 nm. • The achieved AgNPs exhibits good antibacterial activities. • The biosynthesis method is advantageous for its cost effectiveness, availability, portability, nontoxic and environmentally benign.

  1. The Comparison of Ginkgo biloba and Cinnarizine effectiveness in tinnitus intensity of patients with subjective tinnitus

    Directory of Open Access Journals (Sweden)

    Hamidreza Khazraei

    2015-01-01

    Conclusion: It was found that after two months of treatment with Ginkgo biloba (120-140 mg daily tinnitus severity and the adverse changes on quality of life significantly decreased in the patients, whereas Cinnarizine did not reduce the latter significantly. However, no significant difference was observed between the two groups (Cinnarizine & Ginko biloba.

  2. Additional information to the in vitro antioxidant activity of Ginkgo biloba L

    NARCIS (Netherlands)

    Lugasi, A; Horvahovich, P; Dworschák, E

    The in vitro antioxidant and free radical scavenging activity of the ethanol extract from Ginkgo biloba L. was examined in different systems. The extract showed hydrogen-donating ability, reducing power, copper-binding property, free radical scavenging activity in a H2O2/.OH-luminol system and it

  3. Acetylcholinesterase Inhibitory Activities of Flavonoids from the Leaves of Ginkgo biloba against Brown Planthopper

    Directory of Open Access Journals (Sweden)

    Xiao Ding

    2013-01-01

    Full Text Available Ginkgo biloba is a traditional Chinese medicinal plant which has potent insecticidal activity against brown planthopper. The MeOH extract was tested in the acetylcholinesterase (AChE inhibitory assay with IC50 values of 252.1 μg/mL. Two ginkgolides and thirteen flavonoids were isolated from the leaves of Ginkgo biloba. Their structures were established on the basis of spectroscopic data interpretation. It revealed that the 13 isolated flavonoids were found to inhibit AChE with IC50 values ranging from 57.8 to 133.1 μg/mL in the inhibitory assay. AChE was inhibited dose dependently by all tested flavonoids, and compound 6 displayed the highest inhibitory effect against AChE with IC50 values of 57.8 μg/mL.

  4. Effects of Ginkgo biloba extract on free radical metabolism of liver in ...

    African Journals Online (AJOL)

    This study investigated the effect of Ginkgo biloba extract on Free Radical Metabolism of Liver in mice during endurance exercise. Forty-eight mice were divided into the quiet group and the exercised group. And the two groups were both grouped again, including the control group and the drug-treated group.

  5. Adição de extratos de Ginkgo biloba e Panax ginseng em néctares mistos de frutas tropicais Addition of Ginkgo biloba and Panax ginseng extracts to mixed tropical fruit nectars

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Machado de Sousa

    2010-06-01

    Full Text Available O estudo objetivou desenvolver formulações de néctares mistos de frutas tropicais, acrescidos de diferentes concentrações de extratos de Ginkgo biloba, Panax ginseng e misturas de Ginkgo biloba e Panax ginseng, avaliar características sensoriais, físico-químicas e químicas dos néctares selecionados. As formulações dos néctares tiveram a seguinte composição de polpa: caju (Anacardium occidentale, 12,25%; manga (Mangifera indica L, 21%; e acerola (Malpighia emarginata D.C., 1,75%. Foram desenvolvidas diferentes formulações, com a adição dos extratos nas concentrações variando de 15 a 30 mg.100 mL-1 de néctar. A avaliação sensorial da impressão global, sabor e aroma foi feita por meio de teste de aceitação. Para as bebidas formuladas com Panax ginseng, somente o atributo sabor apresentou variação com o aumento da concentração do extrato. Para as bebidas acrescidas de Ginkgo biloba, observou-se um decréscimo linear para todos os atributos avaliados com o aumento da concentração do extrato. Para a mistura de extratos, não se observou variação das médias com o aumento da concentração dos extratos. Conclui-se que a adição de extrato de Panax ginseng até a concentração de 20 mg.100 mL-1 de néctar e a mistura dos extratos, em concentrações de 7,5 mg.100 mL-1 de néctar de cada extrato, apresentam boa aceitação sensorial. A adição dos extratos não afetou a composição química dos néctares que apresentaram quantidades elevadas de vitamina C, carotenoides, fenólicos totais e antocianinas.The objectives of this study were to develop formulations of mixed nectars of tropical fruits adding different concentrations of Ginkgo biloba, Panax ginseng, and a mixture of Ginkgo biloba and Panax ginseng extracts and to assess sensory, physicochemical, and chemical characteristics of selected nectars. The nectar formulations had the following pulp composition: cashew apple (Anacardium occidentale, 12.25%, mango

  6. The health state of Ginkgo biloba L. in the presence of microfungi

    Directory of Open Access Journals (Sweden)

    Adamčíková Katarína

    2015-01-01

    Full Text Available The health state of Ginkgo biloba L. and damage caused by microscopic fungi were evaluated over the 2010-2011 time period, in selected localities of Slovakia and Czechia. The trees were assessed and put into two categories of health. Trees in very good (category 1 or good vitality and health with no or only light damage (category 2. A total of seven species of microscopic fungi were identified from samples taken from branches, fruits, and leaves. The following fungal genera were detected: Epicoccum, Fusarium, Alternaria, Phomopsis, Cylindrosporium, Phyllosticta, and Cladosporium. This present study is the first report about microscopic fungi determined on G. biloba for Slovakia

  7. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    Science.gov (United States)

    Ren, Yan-yu; Yang, Hui; Wang, Tao; Wang, Chuang

    2016-11-01

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag+ (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO3) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO3 concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV-vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10-16 nm. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications.

  8. Contribution of a phytotoxic compound to the allelopathy of Ginkgo biloba.

    Science.gov (United States)

    Kato-Noguchi, Hisashi; Takeshita, Sayaka

    2013-11-01

    Ginkgo (Ginkgo biloba L.) has not changed over 121 million years. There may be unknown special strategy for the survival. Gingko litter inhibited the growth of weed species ryegrass (Lolium multiflorum L.). The inhibition was greater with the litter of the close position than that of the far position from the gingko tree. A phytotoxic substance, 2-hydroxy-6-(10-hydroxypentadec-11-enyl)benzoic acid (HHPEBA) was isolated in the litter. HHPEBA concentration was greater in the litter of the close position than that of the far position from the tree. HHPEBA inhibited the ryegrass growth at concentrations greater than 3 μM. HHPEBA was estimated to be able to cause 47-62% of the observed growth inhibition of ryegrass by the gingko litter. Therefore, HHPEBA may contribute to the inhibitory effect caused by ginkgo litter and may provide a competitive advantage for gingko to survive through the growth inhibition of the neighboring plants.

  9. The protective effect of grape seed and Ginkgo biloba against hepatotoxicity induced by the antidysrhythmic drug “amiodarone” in male albino rats

    Directory of Open Access Journals (Sweden)

    Manal Abdul-Hamid

    2018-06-01

    Full Text Available Amiodarone was an orally effective antiarrhythmic drug widely used throughout the world, had long-term administration side effects such as hepatotoxicity. The actions of two antioxidants; grape seed and Ginkgo biloba on the extent of tissue damage in amiodarone-induced hepatotoxicity were elucidated in this study. We equally divided thirty-six albino rats into six groups given doses by gastric tube daily for 8 weeks as follow; the 1st group (G1 served as an untreated control group under the same laboratory conditions and was given distilled water, the 2nd group (G2 grape seed-treated group that received (100 mg/kg/day, the 3rd group (G3 Ginkgo biloba-treated group that received (100 mg/kg/day, the 4th group (G4 amiodarone-treated group that received (40 mg/kg/day, the 5th group (G5 received amiodarone parallel with grape seed at the same time and the 6th group (G6 received amiodarone parallel with Ginkgo biloba at the same time. The current histological study revealed that amiodarone caused marked change in the liver including degeneration, proliferation of bile duct, inflammatory cells infiltration and fatty changes of hepatocytes in addition to deposition of collagen fibers in the hepatic tissue moreover, ultra-structural observations in the liver including vacuolation, fibrosis and pyknotic nuclei. In addition, histochemical study revealed depletion of glycogen and comet assay revealed marked of DNA damage.Treatment with the two used antioxidants reduced the extent of liver damage induced by amiodarone as indicated by decreased Aspartate aminotransferase (AST and Alanine aminotransferase (ALT activities. These antioxidants ameliorated the histopathological, histochemical and ultrastructure alternations of the liver tissue. In conclusion, grape seed was markedly effective than Ginkgo biloba in protecting rats against amiodarone. Keywords: Amiodarone, Grape seed, Ginkgo biloba, Comet assay, Hepatotoxicity, Histopathology, Ultrastructure

  10. Effects of Ginkgo biloba on corticosterone stress responses after inescapable shock exposure in the rat

    NARCIS (Netherlands)

    Markus, C.R.; Lammers, J.H.C.M.

    2003-01-01

    Extracts from the leaves of the Ginkgo biloba tree (GBE) are found to be clinically effective in neuroprotection, cerebral and cardiovascular function and cognitive processing. Recent animal findings suggest that GBE also may improve stress adaptation and prevent learned helplessness, as evidenced

  11. Changes of main secondary metabolites in leaves of Ginkgo biloba in response to ozone fumigation

    Institute of Scientific and Technical Information of China (English)

    HE Xingyuan; HUANG Wei; CHEN Wei; DONG Tian; LIU Changbing; CHEN Zhenju; XU Sheng; RUAN Yanan

    2009-01-01

    To investigate the effect of elevated O3 on the accumulation of main secondary metabolites in leaves of Ginkgo biloba L., four-year-old trees were exposed in open-top chambers with ambient air and the air with twice ambient O3 concentration in Shenyang in 2006.Elevated O3 increased the concentrations of terpenes, but decreased the concentrations of phenolics in G.biloba leaves.The results showed that secondary compounds from G.biloba leaves responded to the elevated O3 exposure in a different way when compared to previous studies which showed elevated O3 increased the concentrations of phenolics but had no effect on the terpenes in leaves of other deciduous trees.Furthermore, reduced synthesis of phenolics may decrease the resistance of G.biloba to O3 and other environmental factors.On the other hand, the induced synthesis of terpenes may enhance the antioxidant abilities in G.biloba leaves at the end of O3 fumigation.

  12. Effects of colchicine treatment on the microtubule cytoskeleton and total protein during microsporogenesis in ginkgo biloba

    International Nuclear Information System (INIS)

    Cao, Q.J.; Mei, F.F.

    2015-01-01

    The purpose of this study was to examine the effects of colchicine treatment on the microtubule cytoskeleton and the expression of proteins during microsporogenesis in G. biloba, as observed by immunofluorescence and 2-DE analysis in microsporangia treated with colchicine. The results showed the microtubule structures were affected by the colchicine in Ginkgo biloba, but the treatment effect of the colchicine had certain limitation in G. biloba. The percentage of microsporocytes whose microtubule structures were affected by the colchicine treatment was less than that observed in other plant species, not higher than 10 %. It was also found that the expression level of several endogenous proteins were changed in G. biloba when the microsporangia were treated with colchicine. Although we only tested colchicines was only tested in the present study, G. biloba appeared to possess factors that restricted the effect of such chemical agents. Our observations led us to speculate that the endogenous proteins are possibly responsible for the reduced effects of colchicine treatment in G. biloba. (author)

  13. The effect of Bacillus coagulans-fermented and nonfermented Ginkgo biloba on the immunity status of broiler chickens.

    Science.gov (United States)

    Liu, Xiaoyan; Cao, Guanjun; Wang, Qin; Yao, Xuan; Fang, Binghu

    2015-07-01

    To evaluate and compare the effects of Bacillus coagulans-fermented Ginkgo biloba (FG) and nonfermented Ginkgo biloba (NFG) on the immunity status of broiler chickens, 180 1-d-old female Arbor Acres chicks were divided into 3 groups and fed either a basal diet, a basal diet supplemented with 0.3% NFG, or a basal diet supplemented with 0.3% FG. Blood samples were taken on the seventh (before vaccination), 14th, 21st, 28th and 35th day for the assessment of serum IL-18 and interferon γ (IFN-γ) levels by ELISA. In addition, Newcastle disease antibody titer analysis was made via hemagglutination and hemagglutination inhibition test methods. On d 35, 6 chickens from each group were sacrificed and the thymus, liver, spleen, small intestine (jejunum segment), cecum, and bursa of Fabricius from each chicken were removed for analysis. RNA was isolated for defensin expression detection by real-time PCR (q-PCR). The results showed that serum IL-18 and IFN-γ levels decreased after treatment with NFG and FG compared with untreated control chickens. The ND antibody titers did not differ significantly between the 3 groups on the seventh, 14th, 21st and 28th day; however, on the 35th day, the ND antibody titers of the NFG and FG chickens were both significantly higher than those of control group chickens. Defensin RNA expression levels were inhibited by NFG; however, they were induced by FG. In conclusion, fermentation of Ginkgo biloba with Bacillus coagulans can promote the beneficial effect of Gingko biloba on the immunity status of broiler chickens.

  14. Effekten af Ginkgo biloba-ekstrakt hos patienter med claudicatio intermittens

    DEFF Research Database (Denmark)

    Drabaek, H; Petersen, J R; Wïnberg, N

    1996-01-01

    of concentration, and inability to remember. Short-term memory was objectively assessed. We did not find any significant changes in either peripheral blood pressures, walking distances or the severity of leg pain. Systemic blood pressure was reduced both by placebo and GB-8. The impairment of concentration...... and the inability to remember were both reduced, when comparing results during active treatment to placebo. Short-term memory did not change significantly. In conclusion, our study has shown that treatment with the Ginkgo biloba extract GB-8 improves some cognitive functions in elderly patients with moderate...

  15. DEVELOPMENT OF THE METHODS OF STANDARTIZATION DRY EXTRACT AND MEDICAL DRUGS GINKGO BILOBA

    Directory of Open Access Journals (Sweden)

    M. A. Marchenko

    2017-01-01

    Full Text Available The article presents new approaches to standardization of dry extract and medicinal preparations (MD of ginkgo bilobate. Methods for the spectrophotometric determination of flavonoids, terpenolactones and ginkgoic acids in the active pharmaceutical substance “Ginkgo biloba dry extract “ (further in the text “ginkgo extract”, as well as methods for analysis of MD “GINKGO, tablets coated with 40 mg” (“GINKGO”, Tablets and “GINKGO, solution for enteral use, 40 mg/ml “(“GINKGO, solution”. The aim – development and validation of methods for standardization of plant-derived APS – ginkgo extract, as well as MD based on it. Materials and methods. The samples of the APS “Ginkgo biloba dry extract “, MD “GINKGO, tablets” and “GINKGO, solution”, produced by CJSC “VIFITEH” (Russia served as the objects of the study. Research methods: spectrophotometry (further in the text “SF-metry” and high-performance liquid chromatography (HPLC. Used equipment: SF-56 spectrophotometer manufactured by LLC “LOMO-SPECTR” (Russia and liquid chromatograph of the brand Shimadzu Prominence LC-20AD (Japan with software control and computer processing of analysis results. Results and discussion. The use of the method of SF-metry optimizes the analysis process not only during the standardization of the finished product, but also at all stages of industrial production of MD within the framework of interoperational control. The content of the sum of flavonoids in the samples of two series of ginkgo extract in terms of rutine was determined by direct SF-metry – (29.64 ± 0.36% and (28.88 ± 0.54%; method of differential SF-metry – (21.78 ± 0.41 and (20.98 ± 0.24%. The content of the amount of flavonoids in the preparations “GINKGO, tablets” and “GINKGO, solution” was: by direct SF-metry – (9.84 ± 0.15 mg/tab. and (10.07 ± 0.10 mg/ml; Method of differential SF-metry – (7.33 ± 1.13 mg/tab. and (8.30 ± 0.13 mg

  16. Ginkgo biloba extract alters the binding of the sodium [123I] iodide (Na123I) on blood constituents

    International Nuclear Information System (INIS)

    Aleixo, Luiz Cláudio Martins; Moreno, Silvana Ramos Farias; Freitas, Rosimeire de Souza; Thomaz, Hélio; Santos-Filho, Sebastião David

    2012-01-01

    We evaluated the in vitro effect of an aqueous extract of Ginkgo biloba (EGb) on the distribution in blood cells (BC) and plasma (P) and on the binding of Na 123 I to the blood constituents using precipitation with trichloroacetic acid. The radioactivity percentages insoluble (SF) and insoluble fraction (IF) of blood constituents were determined. The EGb interfered (p 123 I in the P (from 69.64 to 86.13) and BC (from 30.36 to 13.87) and altered the fixation of the Na 123 I in IF-P and in IF-BC. - Highlights: ► Interaction between the Ginkgo biloba and blood constituents radiolabeled. ► Modification of the binding of sodium iodide (Na 123 I) to the blood constituents. ► This alteration should have influence in a diagnosis of nuclear medicine.

  17. [Simultaneous determination of eleven components in Ginkgo biloba leaves by high performance liquid chromatography method].

    Science.gov (United States)

    Lv, Jin-Li; Yang, Biao; Li, Meng-Xuan; Meng, Zhao-Qing; Ma, Shi-Ping; Wang, Zhen-Zhong; Ding, Gang; Huang, Wen-Zhe; Xiao, Wei

    2017-03-01

    To study Ginkgo biloba leaves in different producing area, we establish an HPLC method for the simultaneously determination of seven flavonoids glycosides and four biflavonoids in G. biloba leaves. The analysis was performed on an Agilent ZORBAX SB-C₁₈ column(4.6 mm×250 mm, 5 μm) wich acetonitrile, and 0.4% phosphoric acid as mobile phase at flow rate of 1 mL•min⁻¹ in a gradient edution, and the detection was carried out at 254 nm.The calibration curves of the seven flavonoids glycosides and four biflavonoids had a good linearitiy with good recoveries. The established HPLC method is simple, rapid, accurate, reliable, and sensitive, and can be applied to the identification and quality control of G. biloba leaves. Copyright© by the Chinese Pharmaceutical Association.

  18. Evidence of the regulatory effect of Ginkgo biloba extract on skin blood flow and study of its effects on urinary metabolites in healthy humans

    NARCIS (Netherlands)

    Boelsma, E.; Lamers, R.-J.A.N.; Hendriks, H.F.J.; Nesselrooij, J.H.J. van; Roza, L.

    2004-01-01

    Ginkgo biloba extract has been advocated for the improvement of blood circulation in circulatory disorders. This study investigated the effect of the Gingko biloba extract EGb 761 on skin blood flow in healthy volunteers and accompanying changes in urinary metabolites. Twenty-seven healthy

  19. Study on the improvement effect of edaravone combined with Ginkgo biloba extract on neurological function after interventional therapy of cerebral infarction

    Directory of Open Access Journals (Sweden)

    Xiang-Yang Hu1

    2017-05-01

    Full Text Available Objective: To study the effect of edaravone combined with Ginkgo biloba extract on neurological function after interventional therapy of cerebral infarction. Methods: A total of 152 cases of patients with acute cerebral infarction who received interventional therapy in Mianyang Central Hospital between May 2013 and September 2016 were retrospectively analyzed and divided into intervention group and control group, intervention group received routine treatment combined with edaravone and Ginkgo biloba extract treatment after interventional therapy, and control group received routine medical treatment after interventional therapy. 3 d, 7 d, 14 d after therapy, serum was separated, and the levels of neural function injury markers, oxidative stress products, antioxidant enzymes and platelet activation indexes were determined. Results: 3 d, 7 d and 14 d after treatment, serum UCH-L1, GFAP, NSE, S100B, ROS, GMP-140, PAC-1 and CD62p contents of intervention group were significantly lower than those of control group while CAT, SOD and GSH-PX contents were significantly higher than those of control group. Conclusion: Edaravone combined with Ginkgo biloba extract can reduce neurological injury and promote neurological function recovery after interventional therapy of cerebral infarction, and this effect is related to the reduction of oxidative stress and inhibition of platelet activation.

  20. Identification of Ginkgo biloba supplements adulteration using high performance thin layer chromatography and ultra high performance liquid chromatography-diode array detector-quadrupole time of flight-mass spectrometry.

    Science.gov (United States)

    Avula, Bharathi; Sagi, Satyanarayanaraju; Gafner, Stefan; Upton, Roy; Wang, Yan-Hong; Wang, Mei; Khan, Ikhlas A

    2015-10-01

    Ginkgo biloba is one of the most widely sold herbal supplements and medicines in the world. Its popularity stems from having a positive effect on memory and the circulatory system in clinical studies. As ginkgo popularity increased, non-proprietary extracts were introduced claiming to have a similar phytochemical profile as the clinically tested extracts. The standardized commercial extracts of G. biloba leaf used in ginkgo supplements contain not less than 6% sesquiterpene lactones and 24% flavonol glycosides. While sesquiterpene lactones are unique constituents of ginkgo leaf, the flavonol glycosides are found in many other botanical extracts. Being a high value botanical, low quality ginkgo extracts may be subjected to adulteration with flavonoids to meet the requirement of 24% flavonol glycosides. Chemical analysis by ultra high performance liquid chromatography-mass spectrometry revealed that adulteration of ginkgo leaf extracts in many of these products is common, the naturally flavonol glycoside-rich extract being spiked with pure flavonoids or extracts made from another flavonoid-rich material, such as the fruit/flower of Japanese sophora (Styphnolobium japonicum), which also contains the isoflavone genistein. Recently, genistein has been proposed as an analytical marker for the detection of adulteration of ginkgo extracts with S. japonicum. This study confirms that botanically authenticated G. biloba leaf and extracts made therefrom do not contain genistein, and the presence of which even in trace amounts is suggestive of adulteration. In addition to the mass spectrometric approach, a high performance thin layer chromatography method was developed as a fast and economic method for chemical fingerprint analysis of ginkgo samples.

  1. Trace elements determination in ginseng and ginkgo biloba medicinal plants; Determinacao de elementos traco nos fitofarmacos ginseng e ginkgo biloba

    Energy Technology Data Exchange (ETDEWEB)

    Avino, Simone; Saiki, Mitiko; Fulfaro, Roberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Lab. de Analise por Ativacao Neutronica

    2002-07-01

    Determinations of trace elements in medicinal plants or in their extracts are of great interest since some elements are components of active constituents or they can affect the plant metabolism and consequently the formation of active constituents. In this work, inorganic components in medicinal drugs, Ginseng e Ginkgo Biloba provided from different laboratories, were analyzed by neutron activation analysis. Elements As, Br, Ca, Cl, Co Cr, Cs, Fe, K, La, Mg, Mn, Na, Rb, Sb, Sc, and Zn, were determined in these samples. Comparisons carried out between the results obtained for samples from different laboratories indicated distinct concentrations for several elements. These results may be attributed to the effect of soil composition and environmental conditions where these plants were cultivated. The precision and accuracy of the results were evaluated by analyzing reference materials Bowen's Kale from IUAPC and Cabbage from IAEA. (author)

  2. Investigating sesquiterpene biosynthesis in Ginkgo biloba: molecular cloning and functional characterization of (E,E)-farnesol and a-bisabolene synthases

    Science.gov (United States)

    Ginkgo biloba is one of the oldest living tree species and has been extensively investigated as a source of bioactive natural compounds, including flavonoids, diterpene lactones, terpenoids and polysaccharides which accumulate in leaf tissues. Relatively few genes associated with biosynthetic pathwa...

  3. DNA polymorphism in the living fossil Ginkgo biloba from the eastern United States.

    Science.gov (United States)

    Kuddus, Ruhul H; Kuddus, Nayema N; Dvorchik, Igor

    2002-02-01

    Random amplified polymorphic DNA (RAPD) analysis is a valuable tool in studying inter- and intra-specific genetic variations, patterns of gene expression, and for the identification of specific genes using nearly isogenic variants. Here we used RAPD analysis to study the genetic variation in Ginkgo biloba grown in the eastern United States. Our results support the evidence that Southern blot hybridization of RAPD using probes made from cloned DNA fragments allows a more accurate analysis of the RAPD pattern than dye-stained gels or Southern blot hybridization of RAPD blots using probes made from purified PCR products. Using these techniques, we observed a high degree of relatedness among plants grown in certain localities although significant genetic variation may exist in the species, and could be a possible explanation for the observed variations in the efficacy of medications derived from G. biloba extract.

  4. Inhibitory Effect of Ginkgo Biloba Extract on the Tonus of the Small Intestine and the Colon of Rabbits

    Directory of Open Access Journals (Sweden)

    Svetlana Trivic

    2010-03-01

    Full Text Available Ginkgo biloba is widely used in folk medicine. Patients very often use the plant preparation with no concern for purity. They also tend to increase the dosage by themselves and this may result in certain insufficiently researched acute effects. Due to this extremely widespread application, the aim of this work is an examination of the possible acute effects of Ginkgo bilobaon the motility of the small and the large intestine of rabbits. Тhe effects of Gingium® - a standardized ginkgo biloba extract (GBE [one milliliter preparation contained 8.8–10.8 mg ginkgo flavonol glycoside and 2.0–2.8 mg lactone ring-containing terpenes (ginkgolides and bilobalides], on the tonus of isolated segments of the ileum and the colon of rabbits were examined. The experiments were carried out on isolated bowel incisions according to the Magnus method. Data was registered by physiography (Narco-Bio-System. Our results show that GBE (0.006 g/L, - 0.06 g/L concentration-dependently reduces the tonus of the ileum and the colon of rabbits. Apart from that, GBE reduces the increase of the tonus of the ileum caused by acetylcholine (ACh, but does not change colon tonus intensified by ACh. This indicates that the effects of the used extract in the ileum are predominantly achieved through cholinergic mechanisms, while the relaxant effects in the colon are achieved in some other way.

  5. [Protective effect and mechanism of compound Ginkgo biloba granules on oxidative stress injury of HUVEC].

    Science.gov (United States)

    Li, Qi; Chen, Xi; Kan, Xiao-Xi; Li, Yu-Jie; Yang, Qing; Wang, Ya-Jie; Chen, Ying; Weng, Xiao-Gang; Cai, Wei-Yan; Huang, He-Fei; Zhu, Xiao-Xin

    2016-02-01

    To reveal the protective and anti-apoptosis effect of compound Ginkgo biloba granules on oxidative stress injury of human umbilical vein endothelial cells (HUVEC). Negative control group, H2O2 model group and 4 drug pretreatment groups (80, 160, 320, 640 mg• L⁻¹) were established. The cell proliferation, morphological changes in each group after oxidative stress injury was detected by MTT assay and through microscope observation respectively. The content of LDH, MDA, SOD and NO and SOD activity in supernatant were detected to judge the protection effect of the drugs on endothelial cells. The protective effect on HUVEC apoptosis was analyzed by Caspase-3 activity test and Annexin V-FITC/PI staining. Western blot was used to observe the expression of apoptosis-related proteins Bcl-2 and Bax. Results showed that 1 200 μmol• L⁻¹ H2O2 can induce oxidative stress injury in endothelial cells and reduce the cell survival rate; cell proliferation inhibition degree is positively correlated with the effect time of H2O2. Besides, 80, 160, 320 640 mg•L⁻¹ compound Ginkgo biloba granules can protect HUVEC from oxidative stress injury, recover the normal proliferation level of cells, improve their state, prohibit cell apoptosis, and can up-regulate and down-regulate the expression level of Bcl-2 and Bax respectively. In conclusion, compound G. biloba granules can protect HUVEC from the oxidative stress injury induced by H2O2, its mechanism may be correlated with inhibition of the mitochondrial apoptotic pathway in HUVEC. Copyright© by the Chinese Pharmaceutical Association.

  6. Complete 1H NMR spectral analysis of ten chemical markers of Ginkgo biloba

    OpenAIRE

    Napolitano, José G.; Lankin, David C.; Chen, Shao-Nong; Pauli, Guido F.

    2012-01-01

    The complete and unambiguous 1H NMR assignments of ten marker constituents of Ginkgo biloba are described. The comprehensive 1H NMR profiles (fingerprints) of ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, bilobalide, quercetin, kaempferol, isorhamnetin, isoquercetin, and rutin in DMSO-d6 were obtained through the examination of 1D 1H NMR and 2D 1H,1H-COSY data, in combination with 1H iterative Full Spin Analysis (HiFSA). The computational analysis of discrete spin systems allowed a ...

  7. Identification of Ginkgo biloba supplements adulteration using high performance thin layer chromatography and ultra high performance liquid chromatography-diode array detector-quadrupole time of flight-mass spectometry

    Science.gov (United States)

    Ginkgo biloba is one of the most widely sold herbal supplements and medicines in the world. Its popularity stems to have a positive effect on memory and the circulatory system in clinical studies. As ginkgo popularity increased, non-proprietary extracts were introduced claiming to have similar phyto...

  8. Effects of Six-Week Ginkgo biloba Supplementation on Aerobic Performance, Blood Pro/Antioxidant Balance, and Serum Brain-Derived Neurotrophic Factor in Physically Active Men

    Directory of Open Access Journals (Sweden)

    Ewa Sadowska-Krępa

    2017-07-01

    Full Text Available Extracts of Ginkgo biloba leaves, a natural source of flavonoids and polyphenolic compounds, are commonly used as therapeutic agents for the improvement of both cognitive and physiological performance. The present study was aimed to test the effects of a six-week supplementation with 160 mg/day of a standardized extract of Ginkgo biloba or a matching placebo on aerobic performance, blood antioxidant capacity, and brain-derived neurotrophic factor (BDNF level in healthy, physically active young men, randomly allocated to two groups (n = 9 each. At baseline, as well as on the day following the treatment, the participants performed an incremental cycling test for the assessment of maximal oxygen uptake. Venous blood samples taken at rest, then immediately post-test and following 1 h of recovery, were analyzed for activities of antioxidant enzymes and plasma concentrations of non-enzymatic antioxidants, total phenolics, uric acid, lipid peroxidation products, ferric reducing ability of plasma (FRAP, and serum brain-derived neurotrophic factor (BDNF. Our results show that six weeks’ supplementation with Ginkgo biloba extract in physically active young men may provide some marginal improvements in their endurance performance expressed as VO2max and blood antioxidant capacity, as evidenced by specific biomarkers, and elicit somewhat better neuroprotection through increased exercise-induced production of BDNF.

  9. Ginkgo biloba in the treatment of attention-deficit/hyperactivity disorder in children and adolescents. A randomized, placebo-controlled, trial.

    Science.gov (United States)

    Shakibaei, Fereshteh; Radmanesh, Mehrsa; Salari, Elham; Mahaki, Behzad

    2015-05-01

    To evaluate the efficacy of Ginkgo biloba as a complementary therapy for attention-deficit/hyperactivity disorder (ADHD). Children and adolescents with ADHD received methylphenidate (20-30 mg/day) plus either G. biloba (80-120 mg/day) or placebo for 6 weeks. Parent and teacher forms of the ADHD Rating Scale-IV (ADHD-RS-IV) were completed at baseline, week 2, and week 6. Treatment response was defined as 27% improvement from baseline in the ADHD-RS-IV. Compared with placebo, more reduction was observed with G. biloba regarding ADHD-RS-IV parent rating inattention score (-7.74 ± 1.94 vs. -5.34 ± 1.85, P rating inattention score (-7.29 ± 1.90 vs. -5.96 ± 1.52, P = 0.004). Response rate was higher with G. biloba compared with placebo based on parent rating (93.5% vs. 58.6%, P = 0.002). The G. biloba is an effective complementary treatment for ADHD. Further studies with longer treatment duration are warranted in this regard. IRCT2014111519958N1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A double-blind, placebo-controlled, randomized trial of Ginkgo biloba extract EGb 761 in a sample of cognitively intact older adults: neuropsychological findings.

    Science.gov (United States)

    Mix, Joseph A; Crews, W David

    2002-08-01

    There appears to be an absence of large-scaled clinical trials that have examined the efficacy of Ginkgo biloba extract on the neuropsychological functioning of cognitively intact older adults. The importance of such clinical research appears paramount in light of the plethora of products containing Ginkgo biloba that are currently being widely marketed to predominantly cognitively intact adults with claims of enhanced cognitive performances. The purpose of this research was to conduct the first known, large-scaled clinical trial of the efficacy of Ginkgo biloba extract (EGb 761) on the neuropsychological functioning of cognitively intact older adults. Two hundred and sixty-two community-dwelling volunteers (both male and female) 60 years of age and older, who reported no history of dementia or significant neurocognitive impairments and obtained Mini-Mental State Examination total scores of at least 26, were examined via a 6-week, randomized, double-blind, fixed-dose, placebo-controlled, parallel-group, clinical trial. Participants were randomly assigned to receive either Ginkgo biloba extract EGb 761(n = 131; 180 mg/day) or placebo (n = 131) for 6 weeks. Efficacy measures consisted of participants' raw change in performance scores from pretreatment baseline to those obtained just prior to termination of treatment on the following standardized neuropsychological measures: Selective Reminding Test (SRT), Wechsler Adult Intelligence Scale-III Block Design (WAIS-III BD) and Digit Symbol-Coding (WAIS-III DS) subtests, and the Wechsler Memory Scale-III Faces I (WMS-III FI) and Faces II (WMS-III FII) subtests. A subjective Follow-up Self-report Questionnaire was also administered to participants just prior to termination of the treatment phase. Analyses of covariance indicated that cognitively intact participants who received 180 mg of EGb 761 daily for 6 weeks exhibited significantly more improvement on SRT tasks involving delayed (30 min) free recall (p visual material

  11. Cross matching observations on toxicological and clinical data for the assessment of tolerability and safety of Ginkgo biloba leaf extract

    International Nuclear Information System (INIS)

    Heinonen, Tuula; Gaus, Wilhelm

    2015-01-01

    Highlights: • Cross-matching of toxicological, clinical and other data improves risk analysis. • Induction of drug metabolism is linked to increased cell proliferation. • Rodents and man have differences in metabolism of Ginkgo biloba. • Controlled clinical data did not reveal any serious or specific adverse drug reaction. • Cross-matching of various sources gives strong evidence that G. biloba is safe. - Abstract: Ginkgo biloba is one of the most widely used herbal remedies in Europe and the US. It may be purchased in different types of formulations, but most of the clinical studies have been performed with the controlled G. biloba extract EGb761 ® . Indications include Alzheimers disease, cardiovascular disease, dementia, memory loss, and cerebral ischemia. The pharmacological modes of action cover antioxidant effects, radical scavenging, inhibition of platelet activating factor, alterations in membrane fluidity (signal transduction), and inhibition of glucocorticoid synthesis. Due to the widespread and long-term use of G. biloba – about a million doses of EGb761 ® are sold per day – tolerability and safety are a crucial issue. Based on broad and long-term clinical use of G. biloba extracts, it is regarded as well tolerated in man. Cross matching, a tool we introduced, combines different fields of knowledge and types of data to a consolidated result. In this article, we combine toxicological and clinical data and utilize other sources of information to assess tolerability and safety of G. biloba. It is well known that because of biological differences between animals and man or even between animal species, animal experiments do not necessarily mimic the effects in humans. Therefore, for adequate risk assessment, the relevance of non-clinical toxicological findings should be correlated with human data. The cross matching of toxicological data and results from clinical studies is possible because many toxicological and clinical studies are available

  12. Comparative Characterization of Total Flavonol Glycosides and Terpene Lactones at Different Ages, from Different Cultivation Sources and Genders of Ginkgo biloba Leaves

    Directory of Open Access Journals (Sweden)

    Yong Qin

    2012-08-01

    Full Text Available The extract from Ginkgo biloba leaves has become a very popular plant medicine and herbal supplement for its potential benefit in alleviating symptoms associated with peripheral vascular disease, dementia, asthma and tinnitus. Most research on G. biloba leaves focus on the leaves collected in July and August from four to seven year-old trees, however a large number of leaves from fruit cultivars (trees older than 10 years are ignored and become obsolete after fruit harvest season (November. In this paper, we expand the tree age range (from one to 300 years and first comparatively analyze the total flavonol glycosides and terpene lactones at different ages, from different cultivation sources and genders of G. biloba leaves collected in November by using the validated HPLC-ELSD and HPLC-PDA methods. The results show that the contents of total terpene lactones and flavonol glycosides in the leaves of young ginkgo trees are higher than those in old trees, and they are higher in male trees than in female trees. Geographical factors appear to have a significant influence on the contents as well. These results will provide a good basis for the comprehensive utilization of G. biloba leaves, especially the leaves from fruit cultivars.

  13. Characterization of UGT716A1 as a Multi-substrate UDP:Flavonoid Glucosyltransferase Gene in Ginkgo biloba

    Directory of Open Access Journals (Sweden)

    Xiaojia Su

    2017-12-01

    Full Text Available Ginkgo biloba L., a “living fossil” and medicinal plant, is a well-known rich source of bioactive flavonoids. The molecular mechanism underlying the biosynthesis of flavonoid glucosides, the predominant flavonoids in G. biloba, remains unclear. To better understand flavonoid glucosylation in G. biloba, we generated a transcriptomic dataset of G. biloba leaf tissue by high-throughput RNA sequencing. We identified 25 putative UDP-glycosyltransferase (UGT unigenes that are potentially involved in the flavonoid glycosylation. Among them, we successfully isolated and expressed eight UGT genes in Escherichia coli, and found that recombinant UGT716A1 protein was active toward broad range of flavonoid/phenylpropanoid substrates. In particular, we discovered the first recombinant UGT protein, UGT716A1 from G. biloba, possessing unique activity toward flavanol gallates that have been extensively documented to have significant bioactivity relating to human health. UGT716A1 expression level paralleled the flavonoid distribution pattern in G. biloba. Ectopic over-expression of UGT716A1 in Arabidopsis thaliana led to increased accumulation of several flavonol glucosides. Identification and comparison of the in vitro enzymatic activity of UGT716A1 homologs revealed a UGT from the primitive land species Physcomitrella patens also showed broader substrate spectrum than those from higher plants A. thaliana, Vitis vinifera, and Medicago truncatula. The characterization of UGT716A1 from G. biloba bridges a gap in the evolutionary history of UGTs in gymnosperms. We also discuss the implication of UGT716A1 for biosynthesis, evolution, and bioengineering of diverse glucosylated flavonoids.

  14. [Comparative effects of ginkgo biloba extracts on psychomotor performances and memory in healthy subjects].

    Science.gov (United States)

    Warot, D; Lacomblez, L; Danjou, P; Weiller, E; Payan, C; Puech, A J

    1991-01-01

    The effect on psychomotor and mnesic performances of acute oral dose (600 mg) of 2 Ginkgo biloba extracts were evaluated in twelve healthy female in a dummy placebo-controlled double blind study. Tests were performed comprising: objective measures of vigilance [critical flicker frequency (CFF), choice reaction time (CRT)], memory tasks (pictures and Sternberg scanning tests) and self-rating evaluation (visual analogue scales). Tests session took place before and 1 hour post-dosing. No statistically significant changes from placebo were observed on CFF, CRT or subjective rating of drug effects. No differences between treatment were evidenced on Sternberg scanning test and pictures recognition. Comparing to baseline, free recall score, while decreasing under placebo and Ginkgo, remained the same under Tanakan. As the differences between treatment are localized on one test, it appears important to examine the reproductility in healthy subjects. In order to verify the clinical relevance of these results, they need to be replicated in older healthy volunteers with age-associated memory impairment.

  15. UTILIZAÇÕES E INTERAÇÕES MEDICAMENTOSAS DE PRODUTOS CONTENDO O GINKGO BILOBA

    Directory of Open Access Journals (Sweden)

    Thiago Ferreira Oliveira da Silva

    2010-06-01

    Full Text Available The extract of Ginkgo Biloba has been used in various dosage forms like capsules, creams, shampoos, and other forms, having multiple uses for the treatment of various diseases, one of the older drugs used and studied to date. The aim of this paper was to review the literature on the main uses of this herbal, showing various therapeutics uses, such as dizziness, headache, peripheral circulatory disorders and other diseases. Moreover, it is worth highlighting its role as a drug and as such its warnings, for example, children under 12 years and patients treated with antithrombotics. Its adverse effects may worsen the condition of the individual if there is not an interruption of treatment. Added to this the need to do an analysis to minimize the risk of possible drug interactions before starting treatment to avoid in example the interaction between Ginkgo and calcium channel inhibitors antihypertensives (nifedipine, amlodipine and diltiazem, that may increase adverse effects of these drugs.

  16. Study the Effect of Ginkgo biloba Leaf Extract on ‎Induce Experimental Brain Poisoning in Rabbits

    Directory of Open Access Journals (Sweden)

    Zinah I. Khaleel ‎

    2018-02-01

    Full Text Available    The current study was designed to investigate the therapeutic role of the water extract of leaves of ginkgo biloba plant against the acute poisoning of the nervous system caused by exposure to mercury. Experimental animals were divided into four groups. The first group was treated as a control group treated with physiological saline solution. The second group was given mercury chloride at 0.12 mg / kg . bw for seven days. The third group was given mercury chloride orally at 0.12 mg / Kg for five days and then injected under the peritoneal membrane with water extract for leaves of ginkgo plant for 25 days at a concentration of 250 mg / kg / day, while The fourth group gave mercury chloride for five days and then injected with the water extract of the leaves of the ginkgo plant at a concentration of 500 mg / kg / day under the peritoneal membrane. All groups were treated daily according to prescribed doses and 24 hours after the last given dose, the animals were explained and the study criteria were met. Mercury treatment caused obvious tissue changes in brain tissue. The treatment with water extract of leaves of the ginkgo plant led to improvement in brain cells and tissues.

  17. Effect of single-dose Ginkgo biloba and Panax ginseng on driving performance.

    Science.gov (United States)

    LaSala, Gregory S; McKeever, Rita G; Patel, Urvi; Okaneku, Jolene; Vearrier, David; Greenberg, Michael I

    2015-02-01

    Panax ginseng and Gingko biloba are commonly used herbal supplements in the United States that have been reported to increase alertness and cognitive function. The objective of this study was to investigate the effects of these specific herbals on driving performance. 30 volunteers were tested using the STISIM3® Driving Simulator (Systems Technology Inc., Hawthorne, CA, USA) in this double-blind, placebo-controlled study. The subjects were randomized into 3 groups of 10 subjects per group. After 10-min of simulated driving, subjects received either ginseng (1200 mg), Gingko (240 mg), or placebo administered orally. The test herbals and placebo were randomized and administered by a research assistant outside of the study to maintain blinding. One hour following administration of the herbals or placebo, the subjects completed an additional 10-min of simulated driving. Standard driving parameters were studied including reaction time, standard deviation of lateral positioning, and divided attention. Data collected for the divided attention parameter included time to response and number of correct responses. The data was analyzed with repeated-measures analysis of variance (ANOVA) and Kruskal-Wallis test using SPSS 22 (IBM, Armonk, NY, USA). There was no difference in reaction time or standard deviation of lateral positioning for both the ginseng and Ginkgo arms. For the divided attention parameter, the response time in the Ginkgo arm decreased from 2.9 to 2.5 s. The ginseng arm also decreased from 3.2 to 2.4 s. None of these values were statistically significant when between group differences were analyzed. The data suggests there was no statistically significant difference between ginseng, Ginkgo or placebo on driving performance. We postulate this is due to the relatively small numbers in our study. Further study with a larger sample size may be needed in order to elucidate more fully the effects of Ginkgo and ginseng on driving ability.

  18. Attenuation of salicylate-induced tinnitus by Ginkgo biloba extract in rats.

    Science.gov (United States)

    Jastreboff, P J; Zhou, S; Jastreboff, M M; Kwapisz, U; Gryczynska, U

    1997-01-01

    The effects of an extract from Ginkgo biloba, EGb 761, on tinnitus were tested using an animal model of tinnitus. Daily oral administration of EGb 761 in doses from 10 to 100 mg/ kg/day began 2 weeks before behavioral procedures and continued until the end of the experiment. Tinnitus was induced by daily administration of 321 mg/kg sodium salicylate s.c. (corresponding to 275 mg/kg/day of salicylate acid) in fourteen groups of pigmented rats, 6 animals/group. The results from salicylate- and EGb-761-treated animals were compared to control groups receiving either salicylate, saline, or EGb 761 only in doses of 100 mg/kg. Administration of EGb 761 resulted in a statistically significant decrease of the behavioral manifestation of tinnitus for doses of 25, 50 and 100 mg/kg/ day.

  19. Bilobalide, a unique constituent of Ginkgo biloba, inhibits inflammatory pain in rats.

    Science.gov (United States)

    Goldie, Michelle; Dolan, Sharron

    2013-08-01

    Standardized Ginkgo biloba extract EGb 761 has been shown to inhibit inflammatory hyperalgesia in rats; however, the mechanism of action is not known. This study set out to investigate the anti-inflammatory and analgesic potential of bilobalide, a unique G. biloba constituent, in three well-characterized models of acute inflammatory pain. The effect of oral, intraplantar or intrathecal administration of bilobalide or drug-vehicle (0.25% agar; 10% ethanol in H2O) on responses to noxious thermal and mechanical stimulation of the hindpaw, and paw oedema were assessed in adult male Wistar rats before and after intradermal hindpaw injection of carrageenan (3%; 50 μl) or capsaicin (10 μg; 50 μl) or after hindpaw incision (n=6-8/group). Oral administration of bilobalide (10-30 mg/kg) significantly inhibited thermal hyperalgesia in response to carrageenan, capsaicin and paw incision, independent of dose, with an efficacy similar to that of diclofenac. In the carrageenan model, mechanical hypersensitivity and paw oedema were also significantly reduced after treatment with bilobalide (10-30 mg/kg). Intrathecal administration of bilobalide (0.5-1 μg) inhibited carrageenan-induced thermal hyperalgesia, but had no effect on mechanical hypersensitivity or paw oedema (application≥2 μg induced adverse effects, precluding testing of higher doses). Intraplantar administration of bilobalide (30-100 μg) had no effect. These data show that bilobalide is a potent anti-inflammatory and antihyperalgesic agent, the therapeutic effects of which are mediated in part through a central site of action, and may account for the therapeutic action of the whole extract G. biloba.

  20. High-resolution gas chromatography/mas spectrometry method for characterization and quantitative analysis of ginkgolic acids in ginkgo biloba plants, extracts, and dietary supplements

    Science.gov (United States)

    A high resolution GC/MS with Selected Ion Monitor (SIM) method focusing on the characterization and quantitative analysis of ginkgolic acids (GAs) in Ginkgo biloba L. plant materials, extracts and commercial products was developed and validated. The method involved sample extraction with (1:1) meth...

  1. Effects of Ginkgo biloba constituents on fruit-infesting behavior of codling moth (Cydia pomonella) in apples.

    Science.gov (United States)

    Pszczolkowski, Maciej A; Durden, Kevin; Sellars, Samantha; Cowell, Brian; Brown, John J

    2011-10-26

    Codling moth, Cydia pomonella (L.), is a cosmopolitan pest of apple, potentially causing severe damage to the fruit. Currently used methods of combating this insect do not warrant full success or are harmful to the environment. The use of plant-derived semiochemicals for manipulation with fruit-infesting behavior is one of the new avenues for controlling this pest. Here, we explore the potential of Ginkgo biloba and its synthetic metabolites for preventing apple feeding and infestation by neonate larvae of C. pomonella. Experiments with crude extracts indicated that deterrent constituents of ginkgo are present among alkylphenols, terpene trilactones, and flavonol glycosides. Further experiments with ginkgo synthetic metabolites of medical importance, ginkgolic acids, kaempferol, quercetin, isorhamnetin, ginkgolides, and bilobalide, indicated that three out of these chemicals have feeding deterrent properties. Ginkgolic acid 15:0 prevented fruit infestation at concentrations as low as 1 mg/mL, bilobalide had deterrent effects at 0.1 mg/mL and higher concentrations, and ginkgolide B at 10 mg/mL. On the other hand, kaempferol and quercetin promoted fruit infestation by codling moth neonates. Ginkgolic acids 13:0, 15:1, and 17:1, isorhamnetin, and ginkgolides A and C had no effects on fruit infestation-related behavior. Our research is the first report showing that ginkgo constituents influence fruit infestation behavior and have potential applications in fruit protection.

  2. The Antibiofilm Effect of Ginkgo biloba Extract Against Salmonella and Listeria Isolates from Poultry.

    Science.gov (United States)

    Wu, Yan; Park, Keun Cheol; Choi, Beom Geun; Park, Jin Hwa; Yoon, Ki Sun

    2016-05-01

    Salmonella spp. and Listeria spp. are common foodborne pathogens in poultry and have caused a large number of outbreaks worldwide. Biofilm formation is common in the food industry and is also a mechanism of antimicrobial resistance. The aim of this work was to investigate the antimicrobial effect and mechanism of Ginkgo biloba extract against the biofilm formation of Salmonella and Listeria isolates from poultry at retail markets. Bacteria detection, isolation, and enumeration were carried out on 27 chicken and 29 ducks at retail markets. The effects of temperature and G. biloba extract against biofilm formation of Salmonella and Listeria isolates were measured using the crystal violet assay and swimming and swarming motilities. The monitoring results of Salmonella and Listeria in 56 poultry carcasses at retail markets in Korea showed that the prevalence of Salmonella spp. in poultry was low (5.4%), but the prevalence of Listeria spp (78.6%) was high. L. innocua was the predominant serotype (80%) in the isolated Listeria species. Temperature, strain, and surface affected the biofilm formation of Salmonella spp. and Listeria spp. L. innocua showed the best biofilm formation ability on a 96-well plate, while Salmonella Enteritidis formed the most biofilm on a glass slide. Biofilm formation abilities of Salmonella spp. and Listeria spp. were increased with the increase of temperature. G. biloba extract at 75 μg/mL significantly inhibited biofilm formation of Salmonella spp. and Listeria spp (p Listeria, but not L. monocytogenes. The findings of this study provided the basis for the application of G. biloba extract as a food additive to promote the quality and safety of poultry products.

  3. Limited cognitive benefits in Stage +2 postmenopausal women after 6 weeks of treatment with Ginkgo biloba.

    Science.gov (United States)

    Elsabagh, Sarah; Hartley, David E; File, Sandra E

    2005-03-01

    Gingko biloba has cognitive benefits both in populations suffering from dementia and after acute treatment in healthy volunteers, with some evidence indicating that those with poorer cognitive performance show greater benefit. We have previously found that 1 week of treatment with ginkgo improved attention, memory and mental flexibility in post-menopausal women, but the evidence for any beneficial effects of longer treatment is less well-established. The present study aimed to determine whether cognitive benefits, similar to those previously found after 1 week of treatment, would persist after 6 weeks of treatment, and whether those with poorer cognitive performance would benefit more. In a placebo-controlled, double-blind study, postmenopausal women (aged 51-67 years) were randomly allocated to receive a standardized extract of ginkgo (LI 1370, Lichtwer Pharma, Marlow, UK) (one capsule/day of 120 mg, n = 45) or matching placebo (n = 42) for 6 weeks. According to an established reproductive staging system, subjects were divided into those in the early (Stage +1; mean age 55 years) and late (Stage +2: mean age 61 years) stages of menopause. At baseline and after 6 weeks of treatment, subjects completed tests of mental flexibility, planning, memory and sustained attention, and ratings of mood, sleepiness, bodily and menopausal symptoms. The only significant effects of ginkgo were in the test of mental flexibility, in which there were significant menopausal stage-ginkgo interactions. This was because subjects in Stage +2 required fewer trials to complete the task and made fewer errors after ginkgo treatment, whereas those in Stage +1 showed no benefits. Subjects in Stage +2 had poorer performance at baseline compared to those in Stage +1 both in this task and the test of planning ability. The beneficial effects of ginkgo were limited to the test of mental flexibility and to those with poorer performance.

  4. Efficacy and safety of Ginkgo biloba standardized extract in the treatment of vascular cognitive impairment: a randomized, double-blind, placebo-controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Demarin V

    2017-02-01

    Full Text Available Vida Demarin,1,2 Vanja Bašić Kes,1 Zlatko Trkanjec,1 Mislav Budišić,1 Marija Bošnjak Pašić,3,4 Petra Črnac,5 Hrvoje Budinčević4,5 1Department of Neurology, University Hospital Center “Sestre Milosrdnice”, 2International Institute for Brain Health, 3Department of Neurology, University Hospital Center Zagreb, Zagreb, 4Department of Neurology, School of Medicine, University Josip Juraj Strossmayer, Osijek, 5Department of Neurology, Stroke and Intensive Care Unit, University Hospital “Sveti Duh”, Zagreb, Croatia Objectives: The aim of this randomized, double-blind, placebo-controlled trial was to determine the efficacy and safety of Ginkgo biloba extract in patients diagnosed with vascular cognitive impairment (VCI. Methods: A total of 90 patients (aged 67.1±8.0 years; 59 women were randomly allocated (1:1:1 to receive G. biloba 120 mg, G. biloba 60 mg, or placebo during a 6-month period. Assessment was made for efficacy indicators, including neuropsychological tests scores (Sandoz Clinical Assessment Geriatric Scale, Folstein Mini-Mental State Examination, Mattis Dementia Rating Scale, and Clinical Global Impression and transcranial Doppler ultrasound findings. Safety indicators included laboratory findings, reported adverse reactions, and clinical examination. Results: At the end of 6-month study period, G. biloba 120 and 60 mg showed a statistically significant positive effect in comparison with placebo only on the Clinical Global Impression score (2.6±0.8 vs 3.1±0.7 vs 2.8±0.7, respectively; P=0.038. The Clinical Global Impression score showed a significant deterioration from the baseline values in the placebo group (-0.3±0.5; P=0.021 as opposed to G. biloba groups. No significant differences were found in the transcranial Doppler ultrasound findings. Adverse reactions were significantly more common and serious in the placebo group (16 subjects than in either of the two G. biloba extract groups (eight and nine subjects

  5. [Study on optimization of drying method and its mechanism in Ginkgo biloba leaves].

    Science.gov (United States)

    Guan, Han-Liang; Qian, Da-Wei; Duan, Jin-Ao; Ren, Hao; Qian, Ye-Fei; Tang, Yu-Ping; Liu, Pei

    2013-07-01

    To provide a scientific evidence for the initial primary processing method, an ultra-high performance liquid chromatography combined with a triple quadrupole electrospray tandem mass spectrometry (UPLC-MS/MS) was used to analyze the contents variation of catechins, flavonoids, flavonoid glycosides, biflavones, terpene lactones and phenolic acids during the process of drying in the sun, in the shade, and baked with 35, 45, 60, 80 degrees C, respectively. The results show that drying in the 80 degrees C is conducive to the accumulation of catechins, flavonoid glycosides, terpene lactones, better than the effects of other procedures. Therefore, the fast drying at 80 degrees C is beneficial for the retention of various types of active ingredient of Ginkgo biloba, and this method could be applied as a preferably dry processing.

  6. Fuzzy clustering evaluation of the discrimination power of UV-Vis and (±) ESI-MS detection system in individual or coupled RPLC for characterization of Ginkgo Biloba standardized extracts.

    Science.gov (United States)

    Medvedovici, Andrei; Albu, Florin; Naşcu-Briciu, Rodica Domnica; Sârbu, Costel

    2014-02-01

    Discrimination power evaluation of UV-Vis and (±) electrospray ionization/mass spectrometric techniques, (ESI-MS) individually considered or coupled as detectors to reversed phase liquid chromatography (RPLC) in the characterization of Ginkgo Biloba standardized extracts, is used in herbal medicines and/or dietary supplements with the help of Fuzzy hierarchical clustering (FHC). Seventeen batches of Ginkgo Biloba commercially available standardized extracts from seven manufacturers were measured during experiments. All extracts were within the criteria of the official monograph dedicated to dried refined and quantified Ginkgo extracts, in the European Pharmacopoeia. UV-Vis and (±) ESI-MS spectra of the bulk standardized extracts in methanol were acquired. Additionally, an RPLC separation based on a simple gradient elution profile was applied to the standardized extracts. Detection was made through monitoring UV absorption at 220 nm wavelength or the total ion current (TIC) produced through (±) ESI-MS analysis. FHC was applied to raw, centered and scaled data sets, for evaluating the discrimination power of the method with respect to the origins of the extracts and to the batch to batch variability. The discrimination power increases with the increase of the intrinsic selectivity of the spectral technique being used: UV-VisGinkgo Biloba extracts. © 2013 Elsevier B

  7. Anti-inflammatory and PPAR transactivational effects of components from the stem bark of Ginkgo biloba.

    Science.gov (United States)

    Ngan, Nguyen Thi Thanh; Quang, Tran Hong; Tai, Bui Huu; Song, Seok Bean; Lee, Dongho; Kim, Young Ho

    2012-03-21

    Ginkgo biloba, which is considered a "living fossil", has been used for medicinal purposes for thousands of years. Currently, extracts of G. biloba are some of the most widely used herbal products and/or dietary supplements in the world. In this study, three new compounds, (2E,4E,1'R,3'S,5'R,8'S)-dihydrophaseic acid 3'-O-β-D-glucopyranoside (1), 7,8-dihydro-(R)-7-methoxyconiferyl alcohol (2), and (8S)-3-methoxy-8,4'-oxyneolignan-4,9,9'-triol 3'-O-β-D-glucopyranoside (3), and 13 known compounds (4-16) were isolated from the stem bark of G. biloba. Their structures were determined by extensive spectroscopic methods, including 1D and 2D NMR, MS, and circular dichroism spectra. Four of the compounds (1, 2, 7, and 10) inhibited TNFα-induced NF-κB transcriptional activity significantly in HepG2 cells in a dose-dependent manner, with IC₅₀ values ranging from 6.9 to 9.1 μM. Furthermore, the transcriptional inhibitory function of these compounds was confirmed based on decreases in COX-2 and iNOS gene expression in HepG2 cells. Compounds 1-5, 7, 9, 10, and 12-14 significantly activated the transcriptional activity of PPARs in a dose-dependent manner, with EC₅₀ values ranging from 0.7 to 12.8 μM. Compounds 2, 3, and 12 exhibited dose-dependent PPARα transactivational activity, with EC₅₀ values of 7.0, 3.3, and 10.1 μM, respectively. Compounds 1-3 activated PPARγ transcriptional activity, with EC₅₀ values of 11.9, 11.0, and 15.3 μM, whereas compounds 1 and 3 promoted the transactivational activity of PPARβ(δ) with EC₅₀ values of 10.7 and 11.2 μM, respectively. These results provide a scientific support for the use of G. biloba stem bark for the prevention and treatment of inflammatory and metabolic diseases. Moreover, these data provide the rationale for further studies of the potential of G. biloba stem bark in functional foods.

  8. Protective role of ginkgo Biloba extract against gamma radiation and alcohol induced liver damage in albino rats

    International Nuclear Information System (INIS)

    Fahmy, N. M.; Mohamed, E.T.; Mansour, H.H; Hafez, H.F.

    2007-01-01

    Ginkgo biloba extract (EGb 761) is a standardized extract of Ginkgo biloba leaves that promotes vasodilatation and improves blood flow through arteries, veins and capillaries and has antioxidant properties as a tree radical scavenger. This study was designed to evaluate the protective efficacy of EGb 761 against gamma radiation and/ or alcohol induced disorders in the liver of male albino rats. EGb 761 was given orally at a dose level of 100 mg/ kg body wt for 4 days, absolute alcohol was administered orally at a dose level of 1ml/ rat for 4 days and the dose of gamma radiation was 6.5 Gy. All animals were subjected to the following investigations: nitric oxide (NO), superoxide dismutase (SOD), malonaldehyde (MDA). reduced glutathion (GSH) and glutathione peroxidase (GSHPx) in the liver tissue. In irradiated and/ or alcoholic animal groups, there was a highly significant decrease in liver NO and GSH content and in the activities of GSHPx and SOD. On the other hand, significant increase in MDA content was observed. Treatment with EGb 761 before irradiation and/or alcohol causes significant increase in NO and GSH content and in the activities of GSHPx and SOD and significant decrease in MDA content compared to the irradiated and/ or alcoholic groups. Based on these observations, one could conclude that pre-treatment of rats with EGb 761 could partly protect liver from gamma rays and/ or absolute alcohol injurious and this protection may be induced, at least partly, through antioxidant mechanisms

  9. Una experiencia educativa acerca de Ginkgo biloba, una especie vegetal con aplicación medicinal

    OpenAIRE

    Fait, María Elisa; Fangano, I.; Valle, M. del; Moracci, Luis; Beltrami, Franco; Rosella, María Adelaida; Vairo Cavalli, Sandra; Morcelle del Valle, Susana R.

    2016-01-01

    Ginkgo biloba L. (Ginkgoaceae) —un árbol ornamental popular en parques y veredas de nuestra ciudad— es ideal para la forestación urbana debido a su gran resistencia a pestes y contaminación, así como también por su bajo potencial invasivo. Esta especie, también conocida como “fósil viviente”, es considerada una de las más antiguas, ya que ha sobrevivido durante millones de años en la superficie de nuestro planeta, soportando incluso catástrofes nucleares como la bomba de Hiroshima. Las hojas ...

  10. Desenvolvimento de néctares mistos de frutas tropicais adicionados de Ginkgo biloba e Panax ginseng

    OpenAIRE

    Sousa, Paulo Henrique Machado de

    2006-01-01

    Com o apelo da mudança para hábitos saudáveis, observa-se o aumento do consumo de fruta fresca em todo o mundo, que se estende aos sucos processados. Bebidas com novos sabores e aromas estão sendo elaboradas, sendo as bebidas mistas de frutas mais uma opção para os consumidores e uma tendência do mercado internacional. A adição de componentes funcionais também vem sendo feita, e os extratos de Ginkgo biloba e Panax ginseng vêm como uma nova opção, por apresentarem inúmeros benefícios à saúde,...

  11. Effect of two doses of ginkgo biloba extract (EGb 761) on the dual-coding test in elderly subjects.

    Science.gov (United States)

    Allain, H; Raoul, P; Lieury, A; LeCoz, F; Gandon, J M; d'Arbigny, P

    1993-01-01

    The subjects of this double-blind study were 18 elderly men and women (mean age, 69.3 years) with slight age-related memory impairment. In a crossover-study design, each subject received placebo or an extract of Ginkgo biloba (EGb 761) (320 mg or 600 mg) 1 hour before performing a dual-coding test that measures the speed of information processing; the test consists of several coding series of drawings and words presented at decreasing times of 1920, 960, 480, 240, and 120 ms. The dual-coding phenomenon (a break point between coding verbal material and images) was demonstrated in all the tests. After placebo, the break point was observed at 960 ms and dual coding beginning at 1920 ms. After each dose of the ginkgo extract, the break point (at 480 ms) and dual coding (at 960 ms) were significantly shifted toward a shorter presentation time, indicating an improvement in the speed of information processing.

  12. Mitigating potential of Ginkgo biloba extract and melatonin against hepatic and nephrotoxicity induced by Bisphenol A in male rats

    Directory of Open Access Journals (Sweden)

    Mayssaa M. Wahby

    2017-12-01

    Full Text Available Bisphenol A is one of the anthropogenic chemicals produced worldwide, currently released into the environment and causes endocrine-disruption. The largest environmental compartments of BPA are abiotic associated with water and suspended solids that becomes an integrated part of the food chain. The present study aimed to examine the possible protective role of Ginkgo biloba extract (GBE, melatonin and their combination against BPA-induced liver and kidney toxicity of male rats. Fifty rats were divided into five equal groups: control, BPA, BPA plus GBE, BPA plus melatonin and BPA plus GBE plus melatonin. The elevated activities of plasma ALT and AST in addition to increased levels of urea and creatinine concomitant with the decreased total plasma protein could reflect the injurious effect of BPA. Liver and kidney levels of TBARS were significantly increased, while GSH, SOD and GPX were decreased in BPA-treated rats. Also, CAT and GST activities were significantly disrupted in the liver and kidney of rats treated with BPA. Moreover, BPA significantly increased the proinflammatory cytokine TNF-α in the liver and kidney tissues. The histopathological analysis confirmed these results. All the previous alterations in the liver and kidney could be ameliorated when BPA-treated rats were co-administrated either with GBE, melatonin or their combination. These natural substances could exhibit protective effects against BPA-induced hepato- and nephrotoxicity owing to their antioxidative and anti-inflammatory potentials. Keywords: Bisphenol A, Ginkgo biloba extract, Melatonin, Lipid peroxidation, Antioxidant enzymes, Histopathological analysis

  13. Efeitos do extrato de Ginkgo biloba (EGb 761 sobre a atividade motora e a memória em ratos nadadores

    Directory of Open Access Journals (Sweden)

    José Geraldo Pereira Cruz

    2010-11-01

    Full Text Available

    O extrato de Ginkgo biloba (EGb 761 ou exercício físico, modificam as funções cognitivas e aliviam os sintomas de ansiedade; contudo, estes efeitos devem ser melhor caracterizados. A administração oral repetida do extrato (40 ou 80 mg/kg/dia e exercício de natação em ratos indicam um aumento de entradas nos braços fechados no labirinto em cruz elevado (F5,55 = 6.295; p < 0,001 e uma diminuição na imobilidade no campo aberto (F5,55 = 6.997; p < 0,001, sugerindo um aumento na atividade motora. Além disto, o exercício de natação aumenta a exploração no campo aberto e o tratamento com EGb 761 cancela este efeito (F5,55 = 8.575; p < 0,001; indicando uma interação entre EGb 761 e exercício de natação, provavelmente, com um mesmo substrato neurobiológico. Análises comportamentais no teste de reconhecimento de objetos mostraram que o exercício de natação e/ou tratamento com EGb 761, durante os testes de 24 horas, gastavam mais tempo explorando os novos objetos que os familiares (F5,55 = 4.392; p < 0,01; razão de discriminação; memória a longo prazo, indicando que o exercício de natação e/ou EGb 761 alteram a memória. Estes resultados levantam a possibilidade do EGb 761 e exercício físico atuarem em diferentes regiões do cérebro e provocarem diferentes efeitos sobre a atividade motora e funções cognitivas. Palavras-chave: Atividade motora. Campo aberto. Ginkgo biloba. Memória. Labirinto em cruz elevado. Reconhecimento de objetos. ABSTRACT Either ingestion of a Ginkgo biloba proprietary extract (EGb 761 or physical exercise can enhance cognitive functioning and alleviate symptoms of anxiety; however, their combined effects have yet to be characterized. Rats subjected to repeated oral administration of the extract (40 or 80 mg/kg/day and swimming exercise exhibited an increased number of closed-arm entries in the elevated plus-maze and decreased immobility in the open field, suggesting an

  14. The Efficacy and Safety of Add-on Ginko TD (Ginkgo Biloba) Treatment for PTSD: Results of a 12-Week Double-Blind Placebo-Controlled Study

    OpenAIRE

    Laleh Koohi Habibi; Behzad Ghorbani; Ali Reza Norouzi; Sharokh S.P. Gudarzi; Jamal Shams; Mohammad-Taghi Yasami

    2007-01-01

    "nObjective: Exposure to traumatic stressors lead to activation of arousal responses mediated by serotonergic and noradrenergic systems and it may cause a change in numerous neurotransmitters and neuroendocrine systems. There is ample experimental and clinical evidence to suggest that Ginkgo biloba extract is neuroprotective and has antioxidant properties and can restore stress-induced elevation in brain levels of catecholamines, 5-HT and plasma corticosterone to normal level. "nMethod: In a ...

  15. Early evolutionary colocalization of the nuclear ribosomal 5S and 45S gene families in seed plants: evidence from the living fossil gymnosperm Ginkgo biloba.

    Science.gov (United States)

    Galián, J A; Rosato, M; Rosselló, J A

    2012-06-01

    In seed plants, the colocalization of the 5S loci within the intergenic spacer (IGS) of the nuclear 45S tandem units is restricted to the phylogenetically derived Asteraceae family. However, fluorescent in situ hybridization (FISH) colocalization of both multigene families has also been observed in other unrelated seed plant lineages. Previous work has identified colocalization of 45S and 5S loci in Ginkgo biloba using FISH, but these observations have not been confirmed recently by sequencing a 1.8 kb IGS. In this work, we report the presence of the 45S-5S linkage in G. biloba, suggesting that in seed plants the molecular events leading to the restructuring of the ribosomal loci are much older than estimated previously. We obtained a 6.0 kb IGS fragment showing structural features of functional sequences, and a single copy of the 5S gene was inserted in the same direction of transcription as the ribosomal RNA genes. We also obtained a 1.8 kb IGS that was a truncate variant of the 6.0 kb IGS lacking the 5S gene. Several lines of evidence strongly suggest that the 1.8 kb variants are pseudogenes that are present exclusively on the satellite chromosomes bearing the 45S-5S genes. The presence of ribosomal IGS pseudogenes best reconciles contradictory results concerning the presence or absence of the 45S-5S linkage in Ginkgo. Our finding that both ribosomal gene families have been unified to a single 45S-5S unit in Ginkgo indicates that an accurate reassessment of the organization of rDNA genes in basal seed plants is necessary.

  16. Effects of ionizing radiation in ginkgo and guarana

    International Nuclear Information System (INIS)

    Rabelo Soriani, Renata; Satomi, Lucilia Cristina; Pinto, Terezinha de Jesus A.

    2005-01-01

    Raw plant materials normally carry high bioburden due to their origin, offering potential hazards to consumers. The use of decontamination processes is therefore an important step towards the consumer safety and therapeutical efficiency. Several authors have reported the treatment of medicinal herbs with ionizing radiation. This work evaluated the effects of different radiation doses on the microbial burden and chemical constituents of ginkgo (Ginkgo biloba L.) and guarana (Paullinia cupana H.B.K.)

  17. Proper interpretation of chronic toxicity studies and their statistics: A critique of "Which level of evidence does the US National Toxicology Program provide? Statistical considerations using the Technical Report 578 on Ginkgo biloba as an example".

    Science.gov (United States)

    Kissling, Grace E; Haseman, Joseph K; Zeiger, Errol

    2015-09-02

    A recent article by Gaus (2014) demonstrates a serious misunderstanding of the NTP's statistical analysis and interpretation of rodent carcinogenicity data as reported in Technical Report 578 (Ginkgo biloba) (NTP, 2013), as well as a failure to acknowledge the abundant literature on false positive rates in rodent carcinogenicity studies. The NTP reported Ginkgo biloba extract to be carcinogenic in mice and rats. Gaus claims that, in this study, 4800 statistical comparisons were possible, and that 209 of them were statistically significant (p<0.05) compared with 240 (4800×0.05) expected by chance alone; thus, the carcinogenicity of Ginkgo biloba extract cannot be definitively established. However, his assumptions and calculations are flawed since he incorrectly assumes that the NTP uses no correction for multiple comparisons, and that significance tests for discrete data operate at exactly the nominal level. He also misrepresents the NTP's decision making process, overstates the number of statistical comparisons made, and ignores the fact that the mouse liver tumor effects were so striking (e.g., p<0.0000000000001) that it is virtually impossible that they could be false positive outcomes. Gaus' conclusion that such obvious responses merely "generate a hypothesis" rather than demonstrate a real carcinogenic effect has no scientific credibility. Moreover, his claims regarding the high frequency of false positive outcomes in carcinogenicity studies are misleading because of his methodological misconceptions and errors. Published by Elsevier Ireland Ltd.

  18. Effects of ginkgo biloba extract on laser-induced choroidal neovascularization in rats

    Directory of Open Access Journals (Sweden)

    Chao Chen

    2013-11-01

    Full Text Available AIM: To investigate the effects of ginkgo biloba extract(EGb 761on laser-induced choroidal neovascularization(CNVin rats.METHODS: Totally 60 BN rats were randomly divided into 4 groups: normal control group, model group, experimental group, physiological saline group with 15 in each group. All CNV models were made by krypton laser. Rats in experimental group were intraperitoneally injected with 0.35% EGb761(100mg/kgevery day after laser exposure until they were sacrificed. Rats in physiological saline group were intraperitoneally injected physiological saline every day after laser exposure until they were sacrificed. Fundus fluorescein angiography(FFAwas performed on every rat on the 7th day, 14th day and the 21st day after laser exposure, then the rats were sacrificed immediately. The eyes were enucleated and processed for histopathologic examination.RESULTS: There was no choroidal fluorescein leakage staining in normal rats. There were obviously less choroidal fluorescein leakage points in experimental groups than that in the corresponding model groups(PCONCLUSION: EGb761 len inhibit the formation of laser-induced CNV in rats. The longer the time, the better curative effect.

  19. The geranylgeranyl pyrophosphate synthase gene from Ginkgo ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-06

    Apr 6, 2009 ... Ginkgo biloba is one of the oldest living plant species and often referred to as “a .... GbGGDPS were analyzed and the sequence comparison was conducted ... function of plant GGDPS genes (Zhu et al., 1997) and human and.

  20. Ginkgolide A contributes to the potentiation of acetaminophen toxicity by Ginkgo biloba extract in primary cultures of rat hepatocytes

    International Nuclear Information System (INIS)

    Rajaraman, Ganesh; Chen, Jie; Chang, Thomas K.H.

    2006-01-01

    The present cell culture study investigated the effect of Ginkgo biloba extract pretreatment on acetaminophen toxicity and assessed the role of ginkgolide A and cytochrome P450 3A (CYP3A) in hepatocytes isolated from adult male Long-Evans rats provided ad libitum with a standard diet. Acetaminophen (7.5-25 mM for 24 h) conferred hepatocyte toxicity, as determined by the lactate dehydrogenase (LDH) assay. G. biloba extract alone increased LDH leakage in hepatocytes at concentrations ≥ 75 μg/ml and ≥ 750 μg/ml after a 72 h and 24 h treatment period, respectively. G. biloba extract (25 or 50 μg/ml once every 24 h for 72 h) potentiated LDH leakage by acetaminophen (10 mM for 24 h; added at 48 h after initiation of extract pretreatment). The effect was confirmed by a decrease in [ 14 C]-leucine incorporation. At the level present in a modulating concentration (50 μg/ml) of the extract, ginkgolide A (0.55 μg/ml), which increased CYP3A23 mRNA levels and CYP3A-mediated enzyme activity, accounted for part but not all of the potentiating effect of the extract on acetaminophen toxicity. This occurred as a result of CYP3A induction by ginkgolide A because triacetyloleandomycin (TAO), a specific inhibitor of CYP3A catalytic activity, completely blocked the effect of ginkgolide A. Ginkgolide B, ginkgolide C, ginkgolide J, quercetin, kaempferol, isorhamnetin, and isorhamnetin-3-O-rutinoside did not alter the extent of LDH leakage by acetaminophen. In summary, G. biloba pretreatment potentiated acetaminophen toxicity in cultured rat hepatocytes and ginkgolide A contributed to this novel effect of the extract by inducing CYP3A

  1. Hydrogen/deuterium exchange, a unique and effective method for MS fragmentation behavior elucidation of ginkgolides and its application to systematic research in Ginkgo biloba.

    Science.gov (United States)

    Niu, Xingliang; Luo, Jun; Xu, Deran; Zou, Hongyan; Kong, Lingyi

    2017-02-05

    Ginkgolides, the main active constituents of Ginkgo biloba, possess significant selectively inhibition on platelet-activating factor and pancreatic lipase and attract wide attention in pharmacological research area. In our study, an effective hydrogen/deuterium (H/D) exchange method was developed by exchanging the α-Hs of lactone groups in ginkgolides with Ds, which was very useful for the elucidation of the fragmentation patterns of ginkgolides in Quadrupole Time-of-flight Mass Spectrometry (Q-TOF-MS), especially in accurately distinguishing the type and position of substituent in framework of ginkgolides. Then, a systematic research strategy for qualitative and quantitative analysis of ginkgolides, based on H/D exchange, tandem solid-phase extraction and LC-Q-TOF-MS, was developed, which was successfully applied in each medicinal part of G. biloba, which indicated that ginkgolide B was the most abundant ginkgolide in the seeds of G. biloba (60.6μg/g). This research was the successful application of H/D exchange in natural products, and proved that H/D exchange is a potential method for analysis research of complex TCMs active constituents. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Ginkgo Biloba Extract Kaempferol Inhibits Cell Proliferation and Induces Apoptosis in Pancreatic Cancer Cells

    Science.gov (United States)

    Zhang, Yuqing; Chen, Aaron Y.; Li, Min; Chen, Changyi; Yao, Qizhi

    2010-01-01

    Background Kaempferol is one of the most important constituents in ginkgo flavonoids. Recent studies indicate kaempferol may have anti-tumor activities. The objective in this study was to determine the effect and mechanisms of kaempferol on pancreatic cancer cell proliferation and apoptosis. Materials and Methods Pancreatic cancer cell lines MIA PaCa-2 and Panc-1 were treated with Kampferol, and the inhibitory effects of kaempferol on pancreatic cancer cell proliferation were examined by direct cell counting, 3H-thymidine incorporation and MTS assay. Lactate dehydrogenase (LDH) release from cells was determined as an index of cytotoxicity. Apoptosis was analyzed by TUNEL assay. Results Upon the treatment with 70 μM kaempferol for 4 days, MIA PaCa-2 cell proliferation was significantly inhibited by 79% and 45.7% as determined by direct cell counting and MTS assay, respectively, compared with control cells (Pkaempferol significantly inhibited Panc-1 cell proliferation. Kaempferol treatment also significantly reduced 3H-thymidine incorporation in both MIA PaCa-2 and Panc-1 cells. Combination treatment of low concentrations of kaempferol and 5-fluorouracil (5-FU) showed an additive effect on the inhibition of MIA PaCa-2 cell proliferation. Furthermore, kaempferol had a significantly less cytotoxicity than 5-FU in normal human pancreatic ductal epithelial cells (P=0.029). In both MIA PaCa-2 and Panc-1 cells, apoptotic cell population was increased when treated with kaempferol in a concentration-dependent manner. Conclusions Ginkgo biloba extract kaempferol effectively inhibits pancreatic cancer cell proliferation and induces cancer cell apoptosis, which may sensitize pancreatic tumor cells to chemotherapy. Kaempferol may have clinical applications as adjuvant therapy in the treatment of pancreatic cancer. PMID:18570926

  3. Complete 1H NMR spectral analysis of ten chemical markers of Ginkgo biloba.

    Science.gov (United States)

    Napolitano, José G; Lankin, David C; Chen, Shao-Nong; Pauli, Guido F

    2012-08-01

    The complete and unambiguous (1)H NMR assignments of ten marker constituents of Ginkgo biloba are described. The comprehensive (1)H NMR profiles (fingerprints) of ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, bilobalide, quercetin, kaempferol, isorhamnetin, isoquercetin, and rutin in DMSO-d(6) were obtained through the examination of 1D (1)H NMR and 2D (1)H,(1)H-COSY data, in combination with (1)H iterative full spin analysis (HiFSA). The computational analysis of discrete spin systems allowed a detailed characterization of all the (1)H NMR signals in terms of chemical shifts (δ(H)) and spin-spin coupling constants (J(HH)), regardless of signal overlap and higher order coupling effects. The capability of the HiFSA-generated (1)H fingerprints to reproduce experimental (1)H NMR spectra at different field strengths was also evaluated. As a result of this analysis, a revised set of (1)H NMR parameters for all ten phytoconstituents was assembled. Furthermore, precise (1)H NMR assignments of the sugar moieties of isoquercetin and rutin are reported for the first time. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Spatial and temporal changes in leaf coloring date of Acer palmatum and Ginkgo biloba in response to temperature increases in South Korea.

    Science.gov (United States)

    Park, Chang-Kyun; Ho, Chang-Hoi; Jeong, Su-Jong; Lee, Eun Ju; Kim, Jinwon

    2017-01-01

    Understanding shifts in autumn phenology associated with climate changes is critical for preserving forest ecosystems. This study examines the changes in the leaf coloring date (LCD) of two temperate deciduous tree species, Acer palmatum (Acer) and Ginkgo biloba (Ginkgo), in response to surface air temperature (Ts) changes at 54 stations of South Korea for the period 1989-2007. The variations of Acer and Ginkgo in South Korea are very similar: they show the same mean LCD of 295th day of the year and delays of about 0.45 days year-1 during the observation period. The delaying trend is closely correlated (correlation coefficient > 0.77) with increases in Ts in mid-autumn by 2.8 days °C-1. It is noted that the LCD delaying and temperature sensitivity (days °C-1) for both tree species show negligible dependences on latitudes and elevations. Given the significant LCD-Ts relation, we project LCD changes for 2016-35 and 2046-65 using a process-based model forced by temperature from climate model simulation. The projections indicate that the mean LCD would be further delayed by 3.2 (3.7) days in 2016-35 (2046-65) due to mid-autumn Ts increases. This study suggests that the mid-autumn warming is largely responsible for the observed LCD changes in South Korea and will intensify the delaying trends in the future.

  5. Determination of the distribution and reaction of polysaccharides in wood cell walls by the isotope tracer technique, 6: Selective radio-labeling of mannan in ginkgo (Ginkgo biloba)

    International Nuclear Information System (INIS)

    Imai, T.; Terashima, N.; Yasuda, S.

    1997-01-01

    D-Mannose-[2-H-3] and GDP (guanosine diphosphate)-D-mannose-[mannose-1-H-3] were administered to the shoots of ginkgo (Ginkgo biloba L.) tolabel mannan selectively in the cell walls. To suppress the incorporation of radioactivity into the lignin and cellulose, the precursors were administered in the presence of the inhibitor of phenylalanine ammonia-lyase (PAL): namely, L-alpha-aminooxy-beta-phenylpropionic acid (AOPP) and the inhibitor of glucan synthesis: namely, 2-deoxy-D-glucose (2-DG) and 2.6-dichlorobenzonitrile (2.6-DCB). When D-mannose-[2-H-3] was administered in the absence of the inhibitors, great radioactivities were found in the mannose and glucose obtained by sulfuric acid hydrolysis of the newly-formed xylem, and also in the vanillin obtained by nitrobenzene oxidation. These results indicate that the radioactivity was incorporated not only into mannan but also into cellulose and lignin. When D-mannose-[2-H-3] was administered in the presence of both AOPP and 2-DG, the radioactivities of vanillin and glucose were decreased but that of mannose was not decreased. These results indicate that the incorporations of radioactivities into lignin and cellulose were suppressed by the inhibitors, but the incorporation into mannan was not interfered with. The treatment with 2,6-DCB lessened the incorporations of radioactivity into vanillin, xylose, mannose, and glucose of the newly formed xylem considerably which indicated that 2,6-DCB disturbed the metabolic activities of the plant fatally. Consequently, the selective radiolabeling of mannan in ginkgo was achieved by the administration of D-mannose-[2-H-3], in the presence of both AOPP and 2-DG, toa growing stem. In the case of GDP-D-mannose-[mannose-1-H-3], the radioactivity incorporated into the newly-formed xylem was very little, and the selectivity in labeling and the effects of the inhibitors were not clear

  6. Bioavailability of the sodium pertechnetate and morphometry of organs isolated from rats: study of possible pharmacokinetic interactions of a ginkgo biloba extract

    International Nuclear Information System (INIS)

    Moreno, Silvana Ramos Farias; Arnobio, Adriano; Caldas, Luiz Querino de Araujo; Carvalho, Jorge Jose; Nascimento, Ana Lucia; Pereira, Mario; Dire, Glaucio; Bernardo Filho, Mario; Rocha, Emely Kazan

    2005-01-01

    Many compounds affect the bioavailability of radiobiocomplexes as radiopharmaceuticals. Ginkgo Biloba extract (EGb) has several effects. The influence of an EGb on the bioavailability of the radiobiocomplex sodium pertechnetate (Na 99m TcO 4 ) and on the morphometry of the organs was evaluated. Rats were treated with EGb and Na 99m TcO 4 was injected. The animals were sacrificed; the radioactivity in the organs was counted. The results showed that EGb altered the Na 99m TcO 4 bioavailability in the kidneys, liver and duodenum. Morphometric analysis of the organs showed significant alterations (P 99m TcO 4 . (author)

  7. Histopathological, immunohistochemical, and stereological analysis of the effect of Ginkgo biloba (Egb761) on the hippocampus of rats exposed to long-term cellphone radiation.

    Science.gov (United States)

    Gevrek, Fikret

    2018-05-01

    Cellular phones are major sources of electromagnetic radiation (EMR) that can penetrate the human body and pose serious health hazards. The increasingly widespread use of mobile communication systems has raised concerns about the effects of cellphone radiofrequency (RF) on the hippocampus because of its close proximity to radiation during cellphone use. The effects of cellphone EMR exposure on the hippocampus of rats and the possible counteractive effects of Ginkgo biloba (Egb761) were aimed to investigate. Rats were divided into three groups: Control, EMR, and EMR+Egb761. The EMR and EMR+Egb761 groups were exposed to cellphone EMR for one month. Egb761 was also administered to the EMR+Egb761 group. Specifically, we evaluated the effect of RF exposure on rat hippocampi at harmful EMR levels (0.96 W/kg specific absorption rate [SAR]) for one month and also investigated the possible impact of Ginkgo biloba (Egb761) using stereological, TUNEL-staining, and immunohistochemical methods. An increase in apoptotic proteins (Bax, Acas-3) and a decrease in anti-apoptotic protein (Bcl-2) immunoreactivity along with a decrease in the total granule and pyramidal cell count were noted in the EMR group. A decrease in Bax and Acas-3 and an increase in Bcl-2 immunoreactivity were observed in rats treated with Egb761 in addition to a decrease in TUNEL-stained apoptotic cells and a higher total viable cell number. In conclusion, chronic cellphone EMR exposure may affect hippocampal cell viability, and Egb761 may be used to mitigate some of the deleterious effects.

  8. Simultaneous Quantification of Flavonol Glycosides, Terpene Lactones, Biflavones, Proanthocyanidins, and Ginkgolic Acids in Ginkgo biloba Leaves from Fruit Cultivars by Ultrahigh-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xin Yao

    2013-01-01

    Full Text Available On the basis of liquid chromatography coupled with triple quadrupole mass spectrometry working in multiple reaction monitoring mode, an analytical method has been established to simultaneously determine flavonol glycosides, terpene lactones, biflavones, proanthocyanidins, and ginkgolic acids in Ginkgo biloba leaves. Chromatographic separation was carried out on an Acquity BEH C18 column (100 mm × 2.1 mm, 1.7 μm with gradient elution of acetonitrile and 0.10% formic acid (v/v at a flow rate of 0.4 mL/min, and column temperature 30°C. The developed method was validated in terms of linearity, accuracy, precision, stability, and sensitivity. The optimized method was successfully applied to analyze twenty-two G. biloba leaf samples of fruit cultivars collected from different places in China. Furthermore, hierarchical clustering analysis (HCA was performed to evaluate and classify the samples according to the contents of the twenty-four chemical constituents. All of the results demonstrated that the developed method was useful for the overall evaluation of the quality of G. biloba leaves, and this study was also helpful for the comprehensive utilization and development of G. biloba resources.

  9. Research progress on the mutation of diploid microspore in Ginkgo biloba L

    International Nuclear Information System (INIS)

    Sun Yuhan; Li Yun; Yang Nina; Cheng Jinxin; Hu Junyan; Wang Yaru

    2011-01-01

    With the gradual development of Ginkgo's comprehensive utilization in recent years, the requirements of leaf yield and growth rate are increased year by year. And the results show that the triploid variety is predominant in these sides, so the ploidy breeding research has important promote significance to variety improvement in Ginkgo. The paper briefly introduced the prophase research of Ginkgo's ploidy breeding, and made a comprehensive discussion of the mutation research and influence factors in the diploid microspore of Ginkgo. (authors)

  10. Psychiatric Disorders and Polyphenols: Can They Be Helpful in Therapy?

    Directory of Open Access Journals (Sweden)

    Jana Trebatická

    2015-01-01

    Full Text Available The prevalence of psychiatric disorders permanently increases. Polyphenolic compounds can be involved in modulation of mental health including brain plasticity, behaviour, mood, depression, and cognition. In addition to their antioxidant ability other biomodulating properties have been observed. In the pathogenesis of depression disturbance in neurotransmitters, increased inflammatory processes, defects in neurogenesis and synaptic plasticity, mitochondrial dysfunction, and redox imbalance are observed. Ginkgo biloba, green tea, and Quercus robur extracts and curcumin can affect neuronal system in depressive patients. ADHD patients treated with antipsychotic drugs, especially stimulants, report significant adverse effects; therefore, an alternative treatment is searched for. An extract from Ginkgo biloba and from Pinus pinaster bark, Pycnogenol, could become promising complementary supplements in ADHD treatment. Schizophrenia is a devastating mental disorder, with oxidative stress involved in its pathophysiology. The direct interference of polyphenols with schizophrenia pathophysiology has not been reported yet. However, increased oxidative stress caused by haloperidol was inhibited ex vivo by different polyphenols. Curcumin, extract from green tea and from Ginkgo biloba, may have benefits on serious side effects associated with administration of neuroleptics to patients suffering from schizophrenia. Polyphenols in the diet have the potential to become medicaments in the field of mental health after a thorough study of their mechanism of action.

  11. [Ginkgo biloba extract (EGb 761). State of knowledge in the dawn of the year 2000].

    Science.gov (United States)

    Clostre, F

    1999-07-01

    EGb 761 is a standardized extract of dried leaves of Ginkgo biloba containing 24% ginkgo-flavonol glycosides, 6% terpene lactones such as ginkgolides A, B, C, J and bilobalide. Its broad spectrum of pharmacological activities allows it to be in adequacy to the numerous pathological requirements--hemodynamic, hemorheological, metabolic--which occur in cerebral, retinal, cochleovestibular, cardiac or peripheral ischemia. Moreover, EGb 761 has direct effects against necrosis and apoptosis of neurons and improves neural plasticity as evidenced in vestibular compensation. At the molecular and the cellular levels, some evidence obtained with animal models indicates that EGb 761 can interact as a free radical-scavenger and a inhibitor of lipid peroxidation with all, or nearly all reactive oxygen species; maintains ATP content by a protection of mitochondrial respiration and preservation of oxidative phosphorylations; exerts arterial and venous vasoregulator effects involving the release of endothelial factors and the catecholaminergic system. Moreover, EGb 761 regulates ionic balance in damaged cells and exerts a specific and potent Platelet-activating factor antagonist activity. Numerous well-controlled clinical studies, realized in Europe and in USA, have revealed that EGb 761 is an effective therapy for a wide variety of disturbances of cerebral function, ranging from cerebral impairment of ischemic vascular origins (i.e. multi infarct dementia), early cognitive decline to mild-to-moderate cases of the more severe types of senile dementias (including Alzheimer's disease) or mixed origins (i.e. psychoorganic origin). Improvement of signs and symptoms have been demonstrated for cognitive functions, particularly for memory loss, attention, alertness, vigilance, arousal and mental fluidity. Some clinical studies have showed that EGb 761 treatment may improve the capacity of geriatric patients to cope with the stressful demands of daily life. The explanation is a dual

  12. Enraizamento de estacas de Ginkgo biloba tratadas com ácido indolbutírico e ácido bórico Rooting of Ginkgo biloba cuttings treated with indolbutyric and boric acids

    Directory of Open Access Journals (Sweden)

    Janice Valmorbida

    2008-04-01

    Full Text Available Objetivou-se neste trabalho estudar o efeito do ácido indolbutírico (AIB e do ácido bórico (B no enraizamento de estacas de Ginkgo biloba. Em estacas com duas folhas, medindo 15 cm de comprimento foram provocadas duas lesões na base de aproximadamente 2 cm, expondo o câmbio e procedeu-se à imersão por 10 segundos no tratamento correspondente, AIB (0, 1000, 2000 e 3000 mg L-1 na ausência ou presença de B (0 e 150 mg L-1. Em seguida foram colocadas para enraizar em bandejas de polipropileno contendo areia lavada. O delineamento foi em blocos casualizados num fatorial 4X2, com seis repetições. Foram avaliadas porcentagem de estacas enraizadas, estacas não enraizadas e mortas, diâmetro e comprimento das raízes, aos 70 dias do tratamento. Os dados foram submetidos à análise de variância sendo previamente testados para normalidade pelo Teste de Shapiro-Wilk. As médias foram comparadas pelo Teste de Tukey. Os tratamentos com 2000 mg L-1 de AIB foram superiores à ausência de AIB (80,55% vs. 55,56%, respectivamente, não diferindo dos demais tratamentos. A utilização de B não afetou a taxa de enraizamento, de estacas não enraizadas e mortas, não havendo interação entre a concentração de AIB e a utilização ou não de B. O diâmetro e o comprimento das raízes não foram afetados pela utilização de AIB e B.The aim of the work was to study the effect of indolbutyric (IBA and boric (B acids to root Ginkgo biloba cuttings. At the base of cuttings, with two leaves and 15 cm of length, were made two lesions with 2 cm to expose the cambium. Cuttings were treated for a period of 10 seconds with four concentrations of IBA (0, 1000, 2000 and 3000 mg L-1 combined with two concentration of B (0 and 150 mg L-1. After that, cuttings were taken in polypropylene trays filled with washed sand. The experimental design was of randomized blocks in the factorial arrangement (4x2, with six replications. After 70 days, evaluations were done

  13. In vivo photoprotective effects of cosmetic formulations containing UV filters, vitamins, Ginkgo biloba and red algae extracts.

    Science.gov (United States)

    Mercurio, D G; Wagemaker, T A L; Alves, V M; Benevenuto, C G; Gaspar, L R; Maia Campos, P M B G

    2015-12-01

    The aim of this study was to assess the photoprotective effects of cosmetic formulations containing UV filters, red algae, Porphyra umbilicalis, extracts and combinations of the extract with vitamins and Ginkgo biloba through the use of in vivo preclinical studies. For this study, 4 groups of 4 hairless mice each were treated with topical formulations applied on the dorsum for 5 days as follows: group 1 - control (no treatment); group 2 - application of the formulation F (sunscreen formulation containing only UV filters); group 3 - application of the formulation FA (sunscreen formulation with red algae extract); and group 4 - application of the formulation FVGA (sunscreen formulation with red algae extract, G. biloba and vitamins A, C and E). The effects of these formulations were evaluated by determining the transepidermal water loss (TEWL) and erythema index. Apoptosis was detected by immunohistochemical staining with anti-p53 and anti-caspase-3 antibodies. The results showed that the formulations protected the skin from erythema when exposed to UV radiation. The group that received the formulation FVGA presented a greater TEWL than did the other groups, suggesting that this formulation was involved in cell renewal. Immunohistochemical analysis showed that UV radiation caused an increase in the expression of p53 and active caspase-3, confirming that the damage caused by UV radiation exposure led to apoptosis. The application of all formulations studied resulted in a statistically significant reduction in the expression of p53 and caspase-3, with a more pronounced effect observed following treatment with FA. In conclusion, extracts from the red algae P. umbilicalis could be considered effective ingredients to be used in sunscreen formulations. The combination of vitamins A, E, C and G. biloba along with red algae extracts can improve significantly the performance of the sunscreens, preventing UV-induced DNA damage and inflammation. Thus, they should be considered

  14. Rapid determination of ginkgolic acids in Ginkgo biloba kernels and leaves by direct analysis in real time-mass spectrometry.

    Science.gov (United States)

    Huang, Zhongping; Xu, Yueting; Huang, Yilei; Liu, Charles; Jiang, Kezhi; Wang, Lili

    2017-12-01

    A novel method based on direct analysis in real time integrated with mass spectrometry was established and applied into rapid determination of ginkgolic acids in Ginkgo biloba kernels and leaves. Instrument parameter settings were optimized to obtain the sensitive and accurate determination of ginkgolic acids. At the sample introduction speed of 0.2 mm/s, high intensity of [M-H] - ions for ginkgolic acids were observed in the negative ion mode by utilization of high-purity helium gas at 450°C. Two microliters of methanol extract of G. biloba kernels or leaves dropped on the surface of Quick-Strip module was analyzed after solvent evaporated to dryness. A series of standard solutions of ginkgolic acid 13:0 in the range of 2-50 mg/L were analyzed with a correlation coefficient r = 0.9981 and relative standard deviation (n = 5) from 12.5 to 13.7%. The limit of detection was 0.5 mg/L. The results of direct analysis in real time-mass spectrometry were in agreement with those observed by thermochemolysis gas chromatography. The proposed method demonstrated significant potential in the application of the high-throughput screening and rapid analysis for ginkgolic acids in dietary supplements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Efficacy and Safety of Add-on Ginko TD (Ginkgo Biloba Treatment for PTSD: Results of a 12-Week Double-Blind Placebo-Controlled Study

    Directory of Open Access Journals (Sweden)

    Laleh Koohi Habibi

    2007-06-01

    Full Text Available "nObjective: Exposure to traumatic stressors lead to activation of arousal responses mediated by serotonergic and noradrenergic systems and it may cause a change in numerous neurotransmitters and neuroendocrine systems. There is ample experimental and clinical evidence to suggest that Ginkgo biloba extract is neuroprotective and has antioxidant properties and can restore stress-induced elevation in brain levels of catecholamines, 5-HT and plasma corticosterone to normal level. "nMethod: In a 12-week, double-blind, placebo-controlled study, the efficacy and safety of adding-on a fixed-dose (200mg of Ginkgo TD to the previous treatment regime of adults with PTSD were examined. Subjects were forty male and female outpatients from a public-owned psychiatric clinic who met criteria for PTSD seven month after a 6.3 Richter earthquake in Bam city on December 26, 2003. The changes in five symptom domains including posttraumatic stress, anxiety and affective symptoms, general health and subjective stress after trauma were ssessed at weeks 0, 12 and 16 to examine effectiveness of the added-on Ginkgo TD and stability of its effects. "nResults: Ginkgo TD was associated with a significantly greater improvement than placebo in PTSD patients as measured by five symptom domain scales including: GHQ-28; Watson PTSD Scale; HAM-D; HAM-A and IES (p= 0.02, 0.01, 0.001, 0.01, 0.02 respectively Four weeks after the discontinuation of intervention, no significant difference was determined between the two groups in the five outcome measures (p= 0.005, 0.01, 0.004, 0.005, 0.01 respectively. No significant difference was observed between the two groups in terms of side effects. "nConclusions: We found Ginkgo TD to be superior to placebo as an adding-on in the treatment of PTSD. Although we did not examine the comparative efficacy of Ginkgo TD on the three main elements of PTSD, beneficial effects both on specific PTSD symptomatology and general conditions including

  16. Converging effects of Ginkgo biloba extract at the level of transmitter release, NMDA and sodium currents and dendritic spikes.

    Science.gov (United States)

    Szasz, Bernadett K; Lenkey, Nora; Barth, Albert M; Mike, Arpad; Somogyvari, Zsolt; Farkas, Orsolya; Lendvai, Balazs

    2008-08-01

    In this study, an attempt was made to integrate the effects of GINKGO BILOBA extract (GBE) in different experimental systems (IN VITRO cochlea, brain slice preparations and cortical cell culture) to elucidate whether these processes converge to promote neuroprotection or interfere with normal neural function. GBE increased the release of dopamine in the cochlea. NMDA-evoked currents were dose-dependently inhibited by rapid GBE application in cultured cortical cells. GBE moderately inhibited Na+ channels at depolarised holding potential in cortical cells. These inhibitory effects by GBE may sufficiently contribute to the prevention of excitotoxic damage in neurons. However, these channels also interact with memory formation at the cellular level. The lack of effect by GBE on dendritic spike initiation in neocortical layer 5 pyramidal neurons indicates that the integrative functions may remain intact during the inhibitory actions of GBE.

  17. Isolation, Expression, and Promoter Analysis of GbWRKY2: A Novel Transcription Factor Gene from Ginkgo biloba

    Directory of Open Access Journals (Sweden)

    Yong-Ling Liao

    2015-01-01

    Full Text Available WRKY transcription factor is involved in multiple life activities including plant growth and development as well as biotic and abiotic responses. We identified 28 WRKY genes from transcriptome data of Ginkgo biloba according to conserved WRKY domains and zinc finger structure and selected three WRKY genes, which are GbWRKY2, GbWRKY16, and GbWRKY21, for expression pattern analysis. GbWRKY2 was preferentially expressed in flowers and strongly induced by methyl jasmonate. Here, we cloned the full-length cDNA and genomic DNA of GbWRKY2. The full-length cDNA of GbWRKY2 was 1,713 bp containing a 1,014 bp open reading frame encoding a polypeptide of 337 amino acids. The GbWRKY2 genomic DNA had one intron and two exons. The deduced GbWRKY2 contained one WRKY domain and one zinc finger motif. GbWRKY2 was classified into Group II WRKYs. Southern blot analysis revealed that GbWRKY2 was a single copy gene in G. biloba. Many cis-acting elements related to hormone and stress responses were identified in the 1,363 bp-length 5′-flanking sequence of GbWRKY2, including W-box, ABRE-motif, MYBCOREs, and PYRIMIDINE-boxes, revealing the molecular mechanism of upregulated expression of GbWRKY2 by hormone and stress treatments. Further functional characterizations in transiently transformed tobacco leaves allowed us to identify the region that can be considered as the minimal promoter.

  18. Changes in nutrients and decay rate of Ginkgo biloba leaf litter exposed to elevated O3 concentration in urban area

    Directory of Open Access Journals (Sweden)

    Wei Fu

    2018-03-01

    Full Text Available Ground-level ozone (O3 pollution has been widely concerned in the world, particularly in the cities of Asia, including China. Elevated O3 concentrations have potentially influenced growth and nutrient cycling of trees in urban forest. The decomposition characteristics of urban tree litters under O3 exposure are still poorly known. Ginkgo biloba is commonly planted in the cities of northern China and is one of the main tree species in the urban forest of Shenyang, where concentrations of ground-level O3 are very high in summer. Here, we hypothesized that O3 exposure at high concentrations would alter the decomposition rate of urban tree litter. In open-top chambers (OTCs, 5-year-old G. biloba saplings were planted to investigate the impact of elevated O3 concentration (120 ppb on changes in nutrient contents and decomposition rate of leaf litters. The results showed that elevated O3 concentration significantly increased K content (6.31 ± 0.29 vs 17.93 ± 0.40, P < 0.01 in leaves of G. biloba, significantly decreased the contents of total phenols (2.82 ± 0.93 vs 1.60 ± 0.44, P < 0.05 and soluble sugars (86.51 ± 19.57 vs 53.76 ± 2.40, P < 0.05, but did not significantly alter the contents of C, N, P, lignin and condensed tannins, compared with that in ambient air. Furthermore, percent mass remaining in litterbags after 150 days under ambient air and elevated O3 concentration was 56.0% and 52.8%, respectively. No significant difference between treatments was observed in mass remaining at any sampling date during decomposition. The losses of the nutrients in leaf litters of G. biloba showed significant seasonal differences regardless of O3 treatment. However, we found that elevated O3 concentration slowed down the leaf litter decomposition only at the early decomposition stage, but slightly accelerated the litter decomposition at the late stage (after 120 days. This study provides our understanding of the ecological processes regulating

  19. Ginkgotides: Proline-Rich Hevein-Like Peptides from Gymnosperm Ginkgo biloba.

    Science.gov (United States)

    Wong, Ka H; Tan, Wei Liang; Serra, Aida; Xiao, Tianshu; Sze, Siu Kwan; Yang, Daiwen; Tam, James P

    2016-01-01

    Hevein and hevein-like peptides belong to the family of chitin-binding cysteine-rich peptides. They are classified into three subfamilies, the prototypic 8C- and the 6C- and 10C-hevein-like peptides. Thus far, only five 8C-hevein-like peptides have been characterized from three angiosperms and none from gymnosperm. To determine their occurrence and distribution in the gymnosperm, Ginkgo biloba leaves were examined. Here, we report the discovery and characterization of 11 novel 8C-hevein-like peptides, namely ginkgotides gB1-gB11. Proteomic analysis showed that the ginkgotides contain 41-44 amino acids (aa), a chitin-binding domain and are Pro-rich, a distinguishing feature that differs from other hevein-like peptides. Solution NMR structure determination revealed that gB5 contains a three β-stranded structure shaped by a cystine knot with an additional disulfide bond at the C-terminus. Transcriptomic analysis showed that the ginkgotide precursors contain a three-domain architecture, comprised of a C-terminal tail (20 aa) that is significantly shorter than those of other 8C- and 10C-hevein-like peptides, which generally contain a protein cargo such as a Barwin-like protein (126 aa) or class I chitinase (254 aa). Transcriptomic data mining found an additional 48 ginkgotide homologs in 39 different gymnosperms. Phylogenetic analysis revealed that ginkgotides and their homologs belong to a new class of 8C-hevein-like peptides. Stability studies showed that ginkgotides are highly resistant to thermal, acidic and endopeptidase degradation. Ginkgotides flanked at both the N- and C-terminal ends by Pro were resistant to exopeptidase degradation by carboxypeptidase A and aminopeptidase. Antifungal assays showed that ginkgotides inhibit the hyphal growth of phyto-pathogenic fungi. Taken together, ginkgotides represent the first suite of hevein-like peptides isolated and characterized from gymnosperms. As a group, they represent a novel class of 8C-hevein-like peptides that

  20. Effects of oral Ginkgo biloba supplementation on cataract formation and oxidative stress occurring in lenses of rats exposed to total cranium radiotherapy

    International Nuclear Information System (INIS)

    Ertekin, M.V.; Kocer, I.; Karslioglu, I.; Taysi, S.; Gepdiremen, A.; Sezen, O.; Balci, E.; Bakan, N.

    2004-01-01

    The objective of this study was to determine the antioxidant role of Ginkgo biloba (GB) in preventing radiation-induced cataracts in the lens after total-cranium irradiation of rats with a single radiation dose of 5 Gy. Sprague-Dawley rats were randomly divided into three groups. Group 1 received neither GB nor irradiation (control group). Group 2 was exposed to total-cranium irradiation of 5 Gy in a single dose [radiation therapy (RT) group], and group 3 received total cranium irradiation from a cobalt-60 teletherapy unit, plus 40 mg/kg per day GB (RT+GB group). At the end of the tenth day, the rats were killed and their eyes were enucleated to measure the antioxidant enzymes, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the lipid peroxidation level [malondialdehyde (MDA)]. Irradiation significantly increased both the MDA level and the activity of GSH-Px, and significantly decreased the activity of SOD in the rat lenses. GB supplementation significantly increased the activities of SOD and GSH-Px enzymes and significantly decreased the MDA level. Total cranium irradiation of 5 Gy in a single dose promoted cataract formation, and GB supplementation protected the lenses from radiation-induced cataracts. We suggest that Grinkgo biloba is an antioxidant that protects the rat lens from radiation-induced cataracts. (author)

  1. Effect of Ginkgo biloba extract on procarcinogen-bioactivating human CYP1 enzymes: Identification of isorhamnetin, kaempferol, and quercetin as potent inhibitors of CYP1B1

    International Nuclear Information System (INIS)

    Chang, Thomas K.H.; Chen Jie; Yeung, Eugene Y.H.

    2006-01-01

    In the present study, we investigated the effect of Ginkgo biloba extracts and some of its individual constituents on the catalytic activity of human cytochrome P450 enzymes CYP1B1, CYP1A1, and CYP1A2. G. biloba extract of known abundance of terpene trilactones and flavonol glycosides inhibited 7-ethoxyresorufin O-dealkylation catalyzed by human recombinant CYP1B1, CYP1A1, and CYP1A2, and human liver microsomes, with apparent K i values of 2 ± 0.3, 5 ± 0.5, 16 ± 1.4, and 39 ± 1.2 μg/ml (mean ± SE), respectively. In each case, the mode of inhibition was of the mixed type. Bilobalide, ginkgolides A, B, C, and J, quercetin 3-O-rutinoside, kaempferol 3-O-rutinoside, and isorhamentin 3-O-rutinoside were not responsible for the inhibition of CYP1 enzymes by G. biloba extract, as determined by experiments with these individual chemicals at the levels present in the extract. In contrast, the aglycones of quercetin, kaempferol, and isorhamentin inhibited CYP1B1, CYP1A1, and CYP1A2. Among the three flavonol aglycones, isorhamentin was the most potent in inhibiting CYP1B1 (apparent K i = 3 ± 0.1 nM), whereas quercetin was the least potent in inhibiting CYP1A2 (apparent K i 418 ± 50 nM). The mode of inhibition was competitive, noncompetitive, or mixed, depending on the enzyme and the flavonol. G. biloba extract also reduced benzo[a]pyrene hydroxylation, and the effect was greater with CYP1B1 than with CYP1A1 as the catalyst. Overall, our novel findings indicate that G. biloba extract and the flavonol aglycones isorhamnetin, kaempferol, and quercetin preferentially inhibit the in vitro catalytic activity of human CYP1B1

  2. Separation and characterization of chemical constituents in Ginkgo biloba extract by off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography coupled with quadrupole-time of flight mass spectrometry.

    Science.gov (United States)

    Ji, Shuai; He, Dan-Dan; Wang, Tian-Yun; Han, Jie; Li, Zheng; Du, Yan; Zou, Jia-Hui; Guo, Meng-Zhe; Tang, Dao-Quan

    2017-11-30

    Ginkgo biloba extract (GBE), derived from the leaves of Ginkgo biloba L., is one of the most widely used traditional Chinese medicines worldwide. Due to high structural diversity and low abundance of chemical constituents in GBE, conventional reversed-phase liquid chromatography has limited power to meet the needs of its quality control. In this study, an off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography (HILIC×RP 2D-LC) system coupled with diode array detection (DAD) and quadrupole time-of-flight mass spectrometry (qTOF-MS) was established to comprehensively analyze the chemical constituents of GBE. After optimizing the chromatographic columns and mobile phase of 2D-LC, a Waters XBridge Amide column using acetonitrile/water/formic acid as the mobile phase was selected as the first dimension to fractionate GBE, and the obtained fractions were further separated on an Agilent Zorbax XDB-C18 column with methanol/water/formic acid as the mobile phase. As a result, a total of 125 compounds were detected in GBE. The orthogonality of the 2D-LC system was 69.5%, and the practical peak capacity was 3864 and 2994, respectively, calculated by two different methods. The structures of 104 compounds were tentatively characterized by qTOF-MS analysis, and 21 of them were further confirmed by comparing with reference standards. This established HILIC×RP 2D-LC-qTOF/MS system can greatly improve the separation and characterization of natural products in GBE or other complicated herbal extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Contents of Terpene Trilactone and Flavonoid in Leaves of Seedlings from Ancient Female Ginkgo Trees in China

    Directory of Open Access Journals (Sweden)

    Yanhui ZHANG

    2017-07-01

    Full Text Available Flavonoids and terpene trilactones, especially, ginkgo flavonglycosides, ginkgolides and bilobalides in leaves of ginkgo trees, need to be studied for effective application of these active components with high medical and health-care values. This study was aimed to provide scientific bases for genealogies selection and harvest season confirmation for Ginkgo biloba. A high-performance liquid chromatographic method (HPLC-ELSD was developed to determine the contents of terpene trilactone and flavonoid of 36 ancient G. biloba genealogies from 19 provinces in China. The study indicated that the content gradually increased from April to August, and thereafter declined. Analysis of variance indicated that the contents of terpene trilactone, flavonoids, and their respective components had significant difference among 36 genealogies. The cluster analysis showed that No. 72 (Xing'an, Guangxi, No. 58 (Youyang, Chongqing, No. 82 (Rugao, Jiangsu, No. 123 (Huixian, Gansu, No. 99 (Dujun, Guizhou, No. 10 (Tai'an, Shandong and No. 133 (Mentougou, Beijing genealogies have higher content of terpene trilactone and flavonoid. These results can help us to select superior variety containing high content of terpene trilactone and flavonoid.

  4. Development of an ultra-fast liquid chromatography-tandem mass spectrometry method for simultaneous determination of seven flavonoids in rat plasma: Application to a comparative pharmacokinetic investigation of Ginkgo biloba extract and single pure ginkgo flavonoids after oral administration.

    Science.gov (United States)

    Wang, Tianyang; Xiao, Jie; Hou, Huiping; Li, Pei; Yuan, Ziyue; Xu, Huarong; Liu, Ran; Li, Qing; Bi, Kaishun

    2017-08-15

    For deeper pharmacokinetic investigation and further curative application of ginkgo flavonoids, a delicate, efficient and precise UFLC-MS/MS technique for synchronous quantitation of seven flavonoids, apigenin, luteolin, naringenin, quercetin, diosmetin, kaempferol and isorhamnetin in rat plasma has been established. After mixing with the internal standard (IS) linarin, bio-samples were pretreated via ethyl acetate for liquid-liquid extraction, then isolated at 0.2ml/min flow rate on a Venusil MP C 18 chromatographic column (100mm×2.1mm, 3μm) by means of gradient elution. 0.1% formic acid-water and methanol system was used as the mobile phase. Mass spectrometric inspection was conducted on a 4000Q UFLC-MS/MS system with turbo ion spray source in patterns of negative ion and multiple reaction-monitoring (MRM). All calibration curves proved favorable linearity (R 2 ≥0.9918) in linear ranges. Intra-day and inter-day precisions didn't exceed 14.0% for all the analytes, and the accuracy was within 6.9%. Extraction recoveries of analytes and IS were less than ±15.0% of nominal concentrations. This method has been under thorough and firm verification for a comparative pharmacokinetic research after gavage between Ginkgo biloba extract and single pure ginkgo flavonoids. The results demonstrated that there're evident pharmacokinetic discrepancies, and possible structural influences were innovatively proposed. Generally, substitution with 3-hydroxylation, a double bond in ring C, ring B methoxylation often confer longer onset period. The existence of ring B catechol group gives rise to faster clearance. Copyright © 2017. Published by Elsevier B.V.

  5. The Protective Role of Ginkgo Biloba against Radiation Induced Injury on Rat Gastro-intestinal Tract

    International Nuclear Information System (INIS)

    El-Ghazaly, M.A.; Gharib, O.A.; El-Sheikh, M.M.; Khayyal, M.T.

    2015-01-01

    Ginkgo Biloba extract (EGb 761) is an antioxidant substance exhibits a wide variety of biological activities. The present study was performed to evaluate oxidative stress and inflammatory parameters of gastrointestinal injury induced by exposing rats to acute doses of γ-rays and the potential value of EGb 761 in preventing changes in these parameters. Male albino rats were treated orally with the extract in a dose of 100 mg/ kg for 7 successive days before whole body exposure to acute radiation levels of 2 and 6 Gray (Gy). Control groups were run concurrently. The rats were sacrificed 3 days after irradiation. Various inflammatory mediators and biochemical parameters were determined in the stomach and intestine. Both tissues were also examined histopathologically. Exposure to radiation led to dose dependent changes in the level of oxidative stress biomarkers (elevation of thiobarbituric acid reactive substance (TBARS) and nitrite associated with a glutathione (GSH) decrease as well as in the level of inflammatory parameters (elevation of Tumour necrosis factorα (TNF-α) and myeloperoxidase (MPO) associated with depletion of prostaglandin E 2 (PGE 2 ). Pre-treatment with EGb 761 protected against the changes in both oxidative stress biomarkers and inflammatory mediators. EGb 761 exerted a protective effect against the radiation induced gastrointestinal damage, possibly through its anti-inflammatory and anti-oxidant properties.

  6. A Systematic Review and Meta-Analysis of Ginkgo biloba in Neuropsychiatric Disorders: From Ancient Tradition to Modern-Day Medicine

    Directory of Open Access Journals (Sweden)

    Natascia Brondino

    2013-01-01

    Full Text Available Ginkgo biloba (Gb has demonstrated antioxidant and vasoactive properties as well as clinical benefits in several conditions such as ischemia, epilepsy, and peripheral nerve damage. Additionally, Gb is supposed to act as potential cognitive enhancer in dementia. So far, several trials have been conducted to investigate the potential effectiveness of Gb in neuropsychiatric conditions. However, the results of these studies remain controversial. We conducted a systematic review and a meta-analysis of three randomised controlled trials in patients with schizophrenia and eight randomised controlled trials in patients with dementia. Gb treatment reduced positive symptoms in patients with schizophrenia and improved cognitive function and activities of daily living in patients with dementia. No effect of Gb on negative symptoms in schizophrenic patients was found. The general lack of evidence prevents drawing conclusions regarding Gb effectiveness in other neuropsychiatric conditions (i.e., autism, depression, anxiety, attention-deficit hyperactivity disorder, and addiction. Our data support the use of Gb in patients with dementia and as an adjunctive therapy in schizophrenic patients.

  7. Molecular cloning and characterization of three genes encoding dihydroflavonol-4-reductase from Ginkgo biloba in anthocyanin biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Cheng Hua

    Full Text Available Dihydroflavonol-4-reductase (DFR, EC1.1.1.219 catalyzes a key step late in the biosynthesis of anthocyanins, condensed tannins (proanthocyanidins, and other flavonoids important to plant survival and human nutrition. Three DFR cDNA clones (designated GbDFRs were isolated from the gymnosperm Ginkgo biloba. The deduced GbDFR proteins showed high identities to other plant DFRs, which form three distinct DFR families. Southern blot analysis showed that the three GbDFRs each belong to a different DFR family. Phylogenetic tree analysis revealed that the GbDFRs share the same ancestor as other DFRs. The expression of the three recombinant GbDFRs in Escherichia coli showed that their actual protein sizes were in agreement with predictions from the cDNA sequences. The recombinant proteins were purified and their activity was analyzed; both GbDFR1 and GbDFR3 could catalyze dihydroquercetin conversion to leucocyanidin, while GbDFR2 catalyzed dihydrokaempferol conversion to leucopelargonidin. qRT-PCR showed that the GbDFRs were expressed in a tissue-specific manner, and transcript accumulation for the three genes was highest in young leaves and stamens. These transcription patterns were in good agreement with the pattern of anthocyanin accumulation in G.biloba. The expression profiles suggested that GbDFR1 and GbDFR2 are mainly involved in responses to plant hormones, environmental stress and damage. During the annual growth cycle, the GbDFRs were significantly correlated with anthocyanin accumulation in leaves. A fitted linear curve showed the best model for relating GbDFR2 and GbDFR3 with anthocyanin accumulation in leaves. GbDFR1 appears to be involved in environmental stress response, while GbDFR3 likely has primary functions in the synthesis of anthocyanins. These data revealed unexpected properties and differences in three DFR proteins from a single species.

  8. The effects of Bacillus coagulans-fermented and non-fermented Ginkgo biloba on abdominal fat deposition and meat quality of Peking duck.

    Science.gov (United States)

    Liu, Xiaoyan; Cao, Guanjun; Zhou, Jinglong; Yao, Xuan; Fang, Binghu

    2017-07-01

    In order to evaluate the effects of Bacillus coagulans-fermented Ginkgo biloba (FG) and non-fermented G. biloba (NFG) on abdominal fat deposition and meat quality, 270 female Peking ducks were randomly assigned to the following experimental groups: a control group (fed a basal diet), an NFG group (fed a basal diet + 0.3% NFG), and an FG group (fed a basal diet + 0.3% FG). Body weight and feed intake were recorded weekly, and feed conversion ratio was calculated to assess growth performance. After 6 wk, 18 ducks from each group were killed. Abdominal fat ratio and pH (at 45 min and 24 h postmortem), color parameters (lightness, redness, and yellowness), water-holding capacity, cooking loss, shear force, and intramuscular fat and fatty acid contents were measured. Six more ducks were killed to isolate RNA from their abdominal fat tissue for measurements of peroxisome proliferator-activated receptor-γ (PPARγ), obese (leptin), and adiponectin (ADP) expression using real-time polymerase chain reaction. The results revealed that body weight gain was higher in the FG group than in the control and NFG groups, whereas feed conversion ratio was lower (P < 0.05). The abdominal fat contents were lower in the NFG and FG groups than in the control group (P < 0.05). The NFG and FG groups had lower levels of saturated fatty acids (mainly palmitic acid) and higher levels of polyunsaturated fatty acids (mainly linoleic acid and arachidonic acid) than the control group. The mRNA expressions of PPARγ, leptin, and ADP in abdominal fat tissue were significantly increased in the NFG and FG groups, and the mRNA expression of PPARγ was higher in the FG group than in the NFG group (P < 0.05). These results suggest that fermenting G. biloba reduces the deposition of abdominal fat and improves the fatty acid profile of Peking duck meat. © 2017 Poultry Science Association Inc.

  9. The Fossil Atmospheres Project: A novel approach for simultaneously refining the Ginkgo paleo-pCO2 barometer & educating citizens about climate change

    Science.gov (United States)

    Barclay, R. S.; Soul, L.; Bolton, A.; Wilson, J. P.; Megonigal, P.; Wing, S. L.

    2017-12-01

    During the Late Cretaceous and Paleogene, the Earth's climate was much warmer than today, often punctuated by rapid hyperthermal events. The background warmth and hyperthermals are often attributed to increased atmospheric carbon dioxide (pCO2), yet paleo-pCO2 proxy estimates for this interval often disagree widely, and there are few paired records of temperature and pCO2. Consequently, we have an inadequate understanding of what generated past warm climates, and of the magnitude of pCO2 change associated with hyperthermals. We aim to develop a more reliable stomatal proxy for paleo-pCO2 by quantifying the effect of pCO2 and other environmental variables on stomatal properties of living Ginkgo biloba trees. Herbarium collections of G. biloba demonstrate that the stomatal index proxy for paleo-pCO2 is strongly correlated with pCO2 over the range of 290-400 ppm. However, despite wide application of the Ginkgo paleo-pCO2 barometer, our understanding of pCO2 in the fossil record has been hindered because the morphological and physiological changes in Ginkgo biloba stomata under pCO2 above 400 ppm have been poorly constrained. To address this problem, we are conducting an elevated CO2 experiment that will quantify the response of Ginkgo to elevated pCO2, an experiment we call 'Fossil Atmospheres'. We are growing 15 Ginkgo biloba trees in open-topped chambers in natural field conditions, under atmospheres with ambient (400), 600, 800, and 1,000 ppm of CO2. Each tree is regularly monitored for changes in stomatal frequency, and rates of photosynthesis and transpiration to constrain parameters used in gas exchange models of paleo-pCO2. We have also involved citizen scientists in the process of collecting stomatal index measurements with the Zooniverse platform, utilizing the interaction to educate citizens about modern climate change from the less-menacing viewpoint of deep-time climate change events. Our results can then be used to infer paleo-pCO2 from stomatal features

  10. Ginkgotides: Proline-rich Hevein-like Peptides from Gymnosperm Ginkgo biloba

    Directory of Open Access Journals (Sweden)

    Ka Ho Wong

    2016-11-01

    Full Text Available Hevein and hevein-like peptides belong to the family of chitin-binding cysteine-rich peptides. They are classified into three subfamilies, the prototypic 8C- and the 6C- and 10C-hevein-like peptides. Thus far, only five 8C-hevein-like peptides have been characterized from three angiosperms and none from gymnosperm. To determine their occurrence and distribution in the gymnosperm, Ginkgo biloba leaves were examined. Here, we report the discovery and characterization of eleven novel 8C-hevein-like peptides, namely ginkgotides gB1–gB11. Proteomic analysis showed that the ginkgotides contain 41–44 amino acids (aa, a chitin-binding domain and are Pro-rich, a distinguishing feature that differs from other hevein-like peptides. Solution 1H-NMR structure determination revealed that gB5 contains a three β-stranded structure shaped by a cystine knot with an additional disulfide bond at the C-terminus. Transcriptomic analysis showed that the ginkgotide precursors contain a three-domain architecture, comprised of a C-terminal tail (20 aa that is significantly shorter than those of other 8C- and 10C-hevein-like peptides, which generally contain a protein cargo such as a Barwin-like protein (126 aa or class I chitinase (254 aa. Transcriptomic data mining found an additional 48 ginkgotide homologs in 39 different gymnosperms. Phylogenetic analysis revealed that ginkgotides and their homologs belong to a new class of 8C-hevein-like peptides. Stability studies showed that ginkgotides are highly resistant to thermal, acidic and endopeptidase degradation. Ginkgotides flanked at both the N- and C-terminal ends by Pro were resistant to exopeptidase degradation by carboxypeptidase A and aminopeptidase. Antifungal assays showed that ginkgotides inhibit the hyphal growth of phyto-pathogenic fungi. Taken together, ginkgotides represent the first suite of hevein-like peptides isolated and characterized from gymnosperms. As a group, they represent a novel class of 8C

  11. Action Mechanism of Ginkgo biloba Leaf Extract Intervened by Exercise Therapy in Treatment of Benign Prostate Hyperplasia

    Directory of Open Access Journals (Sweden)

    Chiung-Chi Peng

    2013-01-01

    overexpression of stromal, and epithelial growth factors associated with chronic inflammation, has become an atypical direct cause of mortality of aged male diseases. Ginkgo possesses anti-inflammatory, blood flow-enhancing, and free radical scavenging effects. Considering strenuous exercise can reduce BPH risks, we hypothesize Ginkgo + exercise (Ginkgo + Ex could be beneficial to BPH. To verify this, rat BPH model was induced by s.c. 3.5 mg testosterone (T and 0.1 mg estradiol (E2 per head per day successively for 8 weeks, using mineral oil as placebo. Cerenin® 8.33 μL/100 g was applied s.c. from the 10th to the 13th week, and simultaneously, Ex was applied (30 m/min, 3 times/week. In BPH, Ginkgo alone had no effect on T, 5α-reductase, and dihydrotestosterone (DHT, but suppressed androgen receptor (AR, aromatase, E2 and estrogen receptor (ER, and the proliferating cell nuclear antigen (PCNA; Ex alone significantly reduced T, aromatase, E2, ER, AR, and PCNA, but highly raised DHT. While Ginkgo + Ex androgenically downregulated T, aromatase, E2, and ER, but upregulated DHT, AR, and PCNA, implying Ginkgo + Ex tended to worsen BPH. Conclusively, Ginkgo or Ex alone may be more beneficial than Ginkgo + Ex for treatment of BPH.

  12. The tandem of full spin analysis and qHNMR for the quality control of botanicals exemplified with Ginkgo biloba.

    Science.gov (United States)

    Napolitano, José G; Gödecke, Tanja; Rodríguez-Brasco, María F; Jaki, Birgit U; Chen, Shao-Nong; Lankin, David C; Pauli, Guido F

    2012-02-24

    Botanical dietary supplements and herbal remedies are widely used for health promotion and disease prevention. Due to the high chemical complexity of these natural products, it is essential to develop new analytical strategies to guarantee their quality and consistency. In particular, the precise characterization of multiple botanical markers remains a challenge. This study demonstrates how a combination of computer-aided spectral analysis and 1D quantitative ¹H NMR spectroscopy (qHNMR) generates the analytical foundation for innovative means of simultaneously identifying and quantifying botanical markers in complex mixtures. First, comprehensive ¹H NMR profiles (fingerprints) of selected botanical markers were generated via ¹H iterative full spin analysis (HiFSA) with PERCH. Next, the ¹H fingerprints were used to assign specific ¹H resonances in the NMR spectra of reference materials, enriched fractions, and crude extracts of Ginkgo biloba leaves. These ¹H fingerprints were then used to verify the assignments by 2D NMR. Subsequently, a complete purity and composition assessment by means of 1D qHNMR was conducted. As its major strengths, this tandem approach enables the simultaneous quantification of multiple constituents without the need for identical reference materials, the semiquantitative determination of particular subclasses of components, and the detection of impurities and adulterants.

  13. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    Directory of Open Access Journals (Sweden)

    R.M. Banin

    2014-09-01

    Full Text Available Ginkgo biloba extract (GbE has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1, protein tyrosine phosphatase 1B (PTP-1B, and protein kinase B (Akt, as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD or a normal fat diet (NFD for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V, and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb. NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment.

  14. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    International Nuclear Information System (INIS)

    Banin, R.M.; Hirata, B.K.S.; Andrade, I.S.; Zemdegs, J.C.S.; Clemente, A.P.G.; Dornellas, A.P.S.; Boldarine, V.T.; Estadella, D.; Albuquerque, K.T.; Oyama, L.M.; Ribeiro, E.B.; Telles, M.M.

    2014-01-01

    Ginkgo biloba extract (GbE) has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1), protein tyrosine phosphatase 1B (PTP-1B), and protein kinase B (Akt), as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD) or a normal fat diet (NFD) for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V), and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb). NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment

  15. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    Energy Technology Data Exchange (ETDEWEB)

    Banin, R. M.; Hirata, B. K.S. [Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP (Brazil); Andrade, I. S.; Zemdegs, J. C.S. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Clemente, A. P.G. [Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, AL (Brazil); Dornellas, A. P.S.; Boldarine, V. T. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Estadella, D. [Departamento de Biociências, Universidade Federal de São Paulo, Baixada Santista, SP (Brazil); Albuquerque, K. T. [Curso de Nutrição, Universidade Federal do Rio de Janeiro, Macaé, RJ (Brazil); Oyama, L. M.; Ribeiro, E. B. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Telles, M. M. [Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP (Brazil)

    2014-07-25

    Ginkgo biloba extract (GbE) has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1), protein tyrosine phosphatase 1B (PTP-1B), and protein kinase B (Akt), as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD) or a normal fat diet (NFD) for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V), and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb). NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment.

  16. Protective effects of Ginkgo biloba extract on the ethanol-induced gastric ulcer in rats

    Science.gov (United States)

    Chen, Sheng-Hsuan; Liang, Yu-Chih; Chao, Jane CJ; Tsai, Li-Hsueh; Chang, Chun-Chao; Wang, Chia-Chi; Pan, Shiann

    2005-01-01

    AIM: To evaluate the preventive effect of Ginkgo biloba extract (GbE) on ethanol-induced gastric mucosal injuries in rats. METHODS: Female Wistar albino rats were used for the studies. We randomly divided the rats for each study into five subgroups: normal control, experimental control, and three experimental groups. The gastric ulcers were induced by instilling 1 mL 50% ethanol into the stomach. We gave GbE 8.75, 17.5, 26.25 mg/kg intravenously to the experimental groups respectively 30 min prior to the ulcerative challenge. We removed the stomachs 45 min later. The gastric ulcers, gastric mucus and the content of non-protein sulfhydryl groups (NP-SH), malondialdehyde (MDA), c-Jun kinase (JNK) activity in gastric mucosa were evaluated. The amount of gastric juice and its acidity were also measured. RESULTS: The findings of our study are as follows: (1) GbE pretreatment was found to provide a dose-dependent protection against the ethanol-induced gastric ulcers in rats; (2) the GbE pretreatment afforded a dose-dependent inhibition of ethanol-induced depletion of stomach wall mucus, NP-SH contents and increase in the lipid peroxidation (increase MDA) in gastric tissue; (3) gastric ulcer induced by ethanol produced an increase in JNK activity in gastric mucosa which also significantly inhibited by pretreatment with GbE; and (4) GbE alone had no inhibitory effect on gastric secretion in pylorus-ligated rats. CONCLUSION: The finding of this study showed that GbE significantly inhibited the ethanol-induced gastric lesions in rats. We suggest that the preventive effect of GbE may be mediated through: (1) inhibition of lipid peroxidation; (2) preservation of gastric mucus and NP-SH; and (3) blockade of cell apoptosis. PMID:15968732

  17. Protective Effect of Ginkgo Biloba Leaf Extract on Learning and Memory Deficit Induced by Aluminum in Model Rats

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To examine the protective effect of Ginkgo biloba leaf extract (GbE) on learning and memory deficit induced by aluminum chloride (AlCl3), and explore its mechanisms. Methods: The rat models with learning and memory deficit were induced by administering via gastrogavage and drinking of AlCl3 solution. And the model rats were treated with GbE at the dose of 50, 100, 200 mg/kg every day for 2months accompanied with drinking of AlCl3 solution, respectively. Their abilities of spatial learning and memory were tested by Morris water maze, and the acetylcholinesterase (AChE) activity in serum was assayed with chemical method, the AChE expression in hippocampus was observed by immunohistochemistry assay,and then quantitative analysis was done by BI 2000 image analysis system. Results: Learning and memory deficit of rats could be induced by AlCl3 solution (P<0.01), and AChE expressions in rats hippocampus were increased (P<0.01); GbE ameliorated learning and memory deficit and reduced AChE expression in rats hippocampus in a dose-dependent manner, while GbE significantly increased serum AChE activity at the dose of 200 mg/kg each day (P<0.05). Conclusion: GbE can ameliorate learning and memory deficit induced by AlCl3, which may be due to its inhibition of the AChE expression in hippocampus.

  18. Ultrastructural analysis of kidney, liver and duodenum isolated from treated rats with Ginkgo Biloba extract and effects of this medicinal plant on the biodistribution of the padiopharmaceutical sodium pertechnetate

    Directory of Open Access Journals (Sweden)

    Silvana Ramos Farias Moreno

    2008-12-01

    Full Text Available Ginkgo biloba extract (EGb has been used to treat memory and concentration deficits, acts as platelet activating factor antagonism and prevents against damages caused by free radicals. EGb is a standardized extract that contains 24% flavonoids and 6% terpenoids. The aim of this work was to evaluate the possible influence of an EGb on the ultrastructure of some organs isolated from rats and on the biodistribution of sodium pertechnetate (99mTcO4Na. The animals were treated with EGb and after six days, received 99mTcO4Na. The organs were isolated and fixed for ultrastructural analysis. The results showed that EGb has modified the ultrastructure of kidney, liver and duodenum and altered the biodistribution of 99mTcO4Na (PO extrato de Ginkgo Biloba extract (EGb tem sido usado para tratar dificuldades de concentração, memória, age como antagonista do fator de ativação de plaquetas e previne contra danos causados por radicais livres. EGb é um extrato padronizado com 24% de flavonóides e 6% de lactonas terpênicas. O objetivo deste estudo foi avaliar o efeito de um EGb na ultraestrutura de alguns órgãos isolados de ratos e na biodistribuição do radiofármaco pertecnetato de sódio (99mTcO4Na. Os animais foram tratados com EGb e após 6 dias receberam 99mTcO4Na. Os órgãos foram isolados e a radioatividade determinada. Os tecidos foram fixados para microscopia eletrônica. Os resultados mostraram que EGb alterou a ultraestrutura do rim, figado e duodeno e modificou a biodistribuição do 99mTcO4Na. Sugerimos que substâncias presentes no EGb poderiam agir diretamente ou gerar metabólitos capazes de promover alterações na biodistribuição e na morfologia de órgãos em nível ultraestrutural.

  19. Mutagenic and morphologic impacts of 1.8 GHz radiofrequency radiation on human peripheral blood lymphocytes (hPBLs) and possible protective role of pre-treatment with Ginkgo biloba (EGb 761)

    Energy Technology Data Exchange (ETDEWEB)

    Esmekaya, Meric Arda, E-mail: mericarda@yahoo.com [Department of Biophysics, Gazi University, Faculty of Medicine and Gazi Non-ionizing Radiation, Protection (GNRP) Center, Ankara (Turkey); Aytekin, Ebru [Department of Medical Genetics, Gazi University Faculty of Medicine, Ankara (Turkey); Ozgur, Elcin; Gueler, Goeknur [Department of Biophysics, Gazi University, Faculty of Medicine and Gazi Non-ionizing Radiation, Protection (GNRP) Center, Ankara (Turkey); Ergun, Mehmet Ali [Department of Medical Genetics, Gazi University Faculty of Medicine, Ankara (Turkey); Oemeroglu, Suna [Department of Histology and Embryology, Gazi University, Faculty of Medicine, Ankara (Turkey); Seyhan, Nesrin [Department of Biophysics, Gazi University, Faculty of Medicine and Gazi Non-ionizing Radiation, Protection (GNRP) Center, Ankara (Turkey)

    2011-12-01

    The mutagenic and morphologic effects of 1.8 GHz Global System for Mobile Communications (GSM) modulated RF (radiofrequency) radiation alone and in combination with Ginkgo biloba (EGb 761) pre-treatment in human peripheral blood lymphocytes (hPBLs) were investigated in this study using Sister Chromatid Exchange (SCE) and electron microscopy. Cell viability was assessed with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction assay. The lymphocyte cultures were exposed to GSM modulated RF radiation at 1.8 GHz for 6, 8, 24 and 48 h with and without EGb 761. We observed morphological changes in pulse-modulated RF radiated lymphocytes. Longer exposure periods led to destruction of organelle and nucleus structures. Chromatin change and the loss of mitochondrial crista occurred in cells exposed to RF for 8 h and 24 h and were more pronounced in cells exposed for 48 h. Cytoplasmic lysis and destruction of membrane integrity of cells and nuclei were also seen in 48 h RF exposed cells. There was a significant increase (p < 0.05) in SCE frequency in RF exposed lymphocytes compared to sham controls. EGb 761 pre-treatment significantly decreased SCE from RF radiation. RF radiation also inhibited cell viability in a time dependent manner. The inhibitory effects of RF radiation on the growth of lymphoctes were marked in longer exposure periods. EGb 761 pre-treatment significantly increased cell viability in RF + EGb 761 treated groups at 8 and 24 h when compared to RF exposed groups alone. The results of our study showed that RF radiation affects cell morphology, increases SCE and inhibits cell proliferation. However, EGb 761 has a protective role against RF induced mutagenity. We concluded that RF radiation induces chromosomal damage in hPBLs but this damage may be reduced by EGb 761 pre-treatment. - Highlights: Black-Right-Pointing-Pointer RF Radiation inhibits cell proliferation. Black-Right-Pointing-Pointer RF radiation induces chromosomal damage

  20. Effects of Ginkgo biloba extract on the apoptosis of oxygen and glucose-deprived SH-SY5Y cells and its mechanism.

    Science.gov (United States)

    Ba, Xiao-Hong; Min, Lian-Qiu

    2015-01-01

    The aim was to observe the effects of the extract of Ginkgo biloba (EGb761) on the apoptosis of oxygen and glucose-deprived (OGD) human neuroblastoma cells (SH-SY5Y) cells and explore its mechanism. SH-SY5Y cells were divided into normal control group, OGD group, OGD for 4 h and EGb761-pretreated groups including very low-concentration (20 μg/ml), low-concentration group (25 μg/ml), moderate-concentration group (50 μg/ml) and high-concentration group (100 μg/ml). Twenty four hours after reoxygenation, cell viability was determined with 3-[4, 5-dimehyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide assay, apoptosis rate was detected with annexin V-fluorescein isothiocyanate/propidium iodide double staining flow cytometry and the protein level of apoptosis-inducing factor (AIF) was observed with immunofluorescence technique in each group. Cell viability was significantly lower in OGD group than in EGb761-pretreated groups, especially in moderate-concentration group (50 μg/ml) (P cells probably through inhibiting AIF nuclear translocation. This study provides a theoretical basis for the application of EGb761 in clinical practice.

  1. Chaetoglobosins from Chaetomium globosum, an endophytic fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities.

    Science.gov (United States)

    Li, He; Xiao, Jian; Gao, Yu-Qi; Tang, Jiang Jiang; Zhang, An-Ling; Gao, Jin-Ming

    2014-04-30

    In preceding studies, cultivation of Chaetomium globosum, an endophytic fungus in Ginkgo biloba, produced five cytochalasan mycotoxins, chaetoglobosins A, G, V, Vb, and C (1-5), in three media. In the present work, five known chaetoglobosins, C, E, F, Fex, and 20-dihydrochaetoglobosin A (5-9), together with the four known compounds (11-14), were isolated from the MeOH extracts of the solid culture of the same endophyte. The structures of these metabolites were elucidated on the basis of spectroscopic analysis. Treatment of chaetoglobosin F (7) with (diethylamino)sulfur trifluoride (DAST) in dichloromethane afforded an unexpected fluorinated chaetoglobosin, named chaetoglobosin Fa (10), containing an oxolane ring between C-20 and C-23. The phytotoxic effects of compounds 1, 3-8, and 10 were assayed on radish seedlings; some of these compounds (1, 3, and 6-8) significantly inhibited the growth of radish (Raphanus sativus) seedlings with inhibitory rates of >60% at a concentration of 50 ppm, which was comparable or superior to the positive control, glyphosate. In addition, the cytotoxic activities against HCT116 human colon cancer cells were also tested, and compounds 1 and 8-10 showed remarkable cytotoxicity with IC50 values ranging from 3.15 to 8.44 μM, in comparison to the positive drug etoposide (IC50 = 2.13 μM). The epoxide ring between C-6 and C-7 or the double bond at C-6(12) led to a drastically increased cytotoxicity, and chaetoglobosin Fa (10) displayed a markedly increased cytotoxicity but decreased phytotoxicity.

  2. Effect of Ginkgo biloba extract combined with prednisone on bronchoalveolar lavage fluid related cytokines in patients with IPF

    Directory of Open Access Journals (Sweden)

    Zhen-Chun Shi

    2016-09-01

    Full Text Available Objective: To explore the effect of Ginkgo biloba extract (EGb combined with prednisone on bronchoalveolar lavage fluid (BALF related cytokines in patients with idiopathic pulmonary fibrosis (IPF. Methods: A total of 60 patients with IPF who were admitted in our hospital from March, 2015 to March, 2016 were included in the study and randomized into the observation group and the control group with 30 cases in each group. The patients in the two groups were given oxygen inhalation, bronchodilator agents, phlegm dissipating and asthma relieving, anti-infection, and other supporting treatments. The patients in the control group were orally given prednisone (0.5 mg/kg•d, continuously for 4 weeks, then in a dose of 0.25 mg/kg•d, continuously for 8 weeks, and finally the dosage was reduced to 0.125 mg/kg•d. On this basis, the patients in the observation group were given additional EGb, ie. ginkgo leaf capsule, 1 g/time, 3 times/d, continuously for 12 weeks. The efficacy was evaluated after 12- week treatment. ELISA was used to detect the levels of TNF-毩, IL-4, IL-10, and IFN-γ in BALF. The radioimmunoassay was used to determine the levels of serum HA, ColⅢ, PCⅢ, and LN. The pulmonary function detector was used to measure TLC, VC, DLCO, and 6MWT. Results: After treatment, TNF-毩 level in the control group was significantly reduced when compared with before treatment (P0.05, while HA, ColⅢ, PCⅢ, and LN levels in the observation group were significantly reduced when compared with before treatment (P<0.05, and the difference between the two groups was statistically significant (P<0.05. After treatment, TLC, VC, DLCO, and 6MWT in the two groups were significantly improved when compared with before treatment (P<0.05, and the difference between the two groups was statistically significant (P<0.05. Conclusions: EGb combined with prednisone can effectively enhance the levels of TNF-毩, IL-4, IL-10, and IFN-γ in BALF in patients with IPF, and

  3. Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitor-induced flavonol glycoside accumulation of Ginkgo biloba cells.

    Science.gov (United States)

    Xu, Maojun; Dong, Jufang; Wang, Huizhong; Huang, Luqi

    2009-08-01

    The antagonistic action between jasmonic acid (JA) and salicylic acid (SA) in plant defence responses has been well documented. However, their relationship in secondary metabolite production is largely unknown. Here, we report that PB90, a protein elicitor from Phytophthora boehmeriae, triggers JA generation, SA accumulation and flavonol glycoside production of Ginkgo biloba cells. JA inhibitors suppress not only PB90-triggered JA generation, but also the elicitor-induced flavonol glycoside production. However, the elicitor can still enhance flavonol glycoside production even though the JA generation is totally inhibited. Over-expression of SA hydrolase gene NahG not only abolishes SA accumulation, but also suppresses the elicitor-induced flavonol glycoside production when JA signalling is inhibited. Interestingly, expression of NahG does not inhibit the elicitor-induced flavonol glycoside accumulation in the absence of JA inhibitors. Moreover, JA levels are significantly enhanced when SA accumulation is impaired in the transgenic cells. Together, the data suggest that both JA and SA are involved in PB90-induced flavonol glycoside production. Furthermore, we demonstrate that JA signalling might be enhanced to substitute for SA to mediate the elicitor-induced flavonol glycoside accumulation when SA signalling is impaired, which reveals an unusual complementary relationship between JA and SA in mediating plant secondary metabolite production.

  4. Effects of Ginkgo biloba on cerebral blood flow assessed by quantitative MR perfusion imaging: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Mashayekh, Ameneh; Pham, Dzung L.; Yousem, David M.; Dizon, Mercedes; Barker, Peter B.; Lin, Doris D.M. [Johns Hopkins University School of Medicine, Department of Radiology, Division of Neuroradiology, Baltimore, MD (United States)

    2011-03-15

    Extract of Ginkgo biloba (EGb), a dietary supplement used for a number of conditions including dementia, has been suggested to increase cerebral blood flow (CBF). The purpose of this study was to determine if changes in CBF could be detected by dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) in elderly human subjects taking EGb. DSC-MRI was performed in nine healthy men (mean age 61 {+-} 10 years) before and after 4 weeks of 60 mg EGb taken twice daily. One subject underwent six consecutive scans to evaluate intrasubject reproducibility. CBF values were computed before and after EGb, and analyzed at three different levels of spatial resolution, using voxel-based statistical parametric mapping (SPM), and regions of interest in different lobes, and all regions combined. Normalized intrasubject CBF (nCBF) measurements had a standard deviation of 7% and 4% in gray and white matter (WM) regions, respectively. SPM using an uncorrected, voxel-level threshold of P {<=} 0.001 showed a small CBF increase in the left parietal-occipital region. CBF in individual lobar regions did not show any significant change post-EGb, but all regions combined showed a significant increase of non-normalized CBF after EGb (15% in white and 13% in gray matter, respectively, P {<=} 0.0001). nCBF measured by DSC-MRI has good intrasubject reproducibility. In this small cohort of normal elderly individuals, a mild increase in CBF is found in the left parietal-occipital WM after EGb, as well as a small but statistically significant increase in global CBF. (orig.)

  5. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals

    NARCIS (Netherlands)

    Beek, van T.A.; Montoro, P.

    2009-01-01

    The chemical analysis and quality control of Ginkgo leaves, extracts, phytopharmaceuticals and some herbal supplements is comprehensively reviewed. The review is an update of a similar, earlier review in this journal [T.A. van Beek, J. Chromatogr. A 967 (2002) 21¿55]. Since 2001 over 3000 papers on

  6. Sexual Enhancement Products for Sale Online: Raising Awareness of the Psychoactive Effects of Yohimbine, Maca, Horny Goat Weed, and Ginkgo biloba

    Directory of Open Access Journals (Sweden)

    Ornella Corazza

    2014-01-01

    Full Text Available Introduction. The use of unlicensed food and herbal supplements to enhance sexual functions is drastically increasing. This phenomenon, combined with the availability of these products over the Internet, represents a challenge from a clinical and a public health perspective. Methods. A comprehensive multilingual assessment of websites, drug fora, and other online resources was carried out between February and July 2013 with exploratory qualitative searches including 203 websites. Additional searches were conducted using the Global Public Health Intelligence Network (GPHIN. Once the active constitutes of the products were identified, a comprehensive literature search was carried out using PsycInfo and PubMed. Results. The most common sexual enhancement products available on the Internet were identified. Their active ingredients included yohimbine, maca, horny goat weed and Ginkgo biloba. These four substances were reported with the occurrence of adverse events and the induction of psychological symptoms, such as mood changes, anxiety, and hallucinations as well as addictive behaviours. Conclusions. Uncontrolled availability of sexual enhancement products that contain potentially harmful substances is a major public health concern. The possible impact on population health, particularly among subjects with psychiatric disorders, usually at risk for sexual dysfunction, may be significant. This new trend needs to be extensively studied and monitored.

  7. Ototoxicidade da cisplatina e otoproteção pelo extrato de ginkgo biloba às células ciliadas externas: estudo anatômico e eletrofisiológico Cisplatin ototoxycity and otoprotector to cilliated cells by ginkgo biloba extract: anatomic and eletrophisiologic study

    Directory of Open Access Journals (Sweden)

    Miguel Angelo Hyppolito

    2003-08-01

    Full Text Available A Cisplatina é uma potente droga antineoplásica, largamente utilizada para o tratamento do câncer, tanto em adultos quanto em crianças. Dentre seus efeitos colaterais, a ototoxicidade se apresenta como um dos mais importantes e leva à perda auditiva irreversível, bilateral, para as altas freqüências (4KHz#8KHz. Estudos têm tentado identificar drogas que, associadas à cisplatina possam atuar como otoprotetores. Sabe-se que o mecanismo da ototoxicidade pela cisplatina está relacionado a alterações nos mecanismos antioxidantes das células ciliadas, principalmente as células ciliadas externas da cóclea. OBJETIVO: Nossa proposta foi de avaliar através de emissões otoacústicas, por produtos de distorção (EOAPD e por microscopia eletrônica de superfície (ME, a ação do extrato de ginkgo biloba (EGB 761, que tem conhecida ação antioxidante, como possível otoprotetor, utilizando como modelo experimental cobaias albinas. FORMA DE ESTUDO: Experimental. MATERIAL E MÉTODO: Observamos EOAPD presentes pré e pós tratamento no grupo EGB (100 mg/Kg/dia via oral e 90 minutos após cisplatina (80 mg/Kg/dia via intraperitoneal por 8 dias. RESULTADO: Houve também manutenção da arquitetura ciliar nas células ciliadas externas em todas as espiras da cóclea, enquanto que no grupo tratado somente com cisplatina (80 mg/Kg/dia via intraperitoneal por 8 dias, houve desaparecimento das EOAPD pós tratamento, com desaparecimento dos cilios das células ciliadas externas e distorção na arquitetura dos cílios remanescentes à ME. CONCLUSÃO: Concluímos que a EGB, por sua ação antioxidante, atua como fator otoprotetor à ototoxicidade pela cisplatina, devendo ser testada tal ação na prática clínica em pacientes que utilizam a cisplatina, pois o uso do EGB está extremamente difundido no tratamento de diferentes doenças.Cisplatin is an antineoplastic drug for cancer treatment in children and adults. The side effects of cisplatin

  8. Branch architecture in Ginkgo biloba: wood anatomy and long shoot-short shoot interactions.

    Science.gov (United States)

    Little, Stefan A; Jacobs, Brooke; McKechnie, Steven J; Cooper, Ranessa L; Christianson, Michael L; Jernstedt, Judith A

    2013-10-01

    Ginkgo, centrally placed in seed plant phylogeny, is considered important in many phylogenetic and evolutionary studies. Shoot dimorphism of Ginkgo has been long noted, but no work has yet been done to evaluate the relationships between overall branch architecture and wood ring characters, shoot growth, and environmental conditions. • Branches, sampled from similar canopy heights, were mapped with the age of each long shoot segment determined by counting annual leaf-scar series on its short shoots. Transverse sections were made for each long shoot segment and an adjacent short shoot; wood ring thickness, number of rings, and number of tracheids/ring were determined. Using branch maps, we identified wood rings for each long shoot segment to year and developmental context of each year (distal short shoot growth only vs. at least one distal long shoot). Climate data were also analyzed in conjunction with developmental context. • Significantly thicker wood rings occur in years with distal long shoot development. The likelihood that a branch produced long shoots in a given year was lower with higher maximum annual temperature. Annual maximum temperature was negatively correlated with ring thickness in microsporangiate trees only. Annual minimum temperatures were correlated differently with ring thickness of megasporangiate and microsporangiate trees, depending on the developmental context. There were no significant effects associated with precipitation. • Overall, developmental context alone predicts wood ring thickness about as well as models that include temperature. This suggests that although climatic factors may be strongly correlated with wood ring data among many gymnosperm taxa, at least for Ginkgo, correlations with climate data are primarily due to changes in proportions of shoot developmental types (LS vs. SS) across branches.

  9. The effect of Ginkgo biloba extract on parkinsonisminduced biochemical changes in brain of irradiated rats

    International Nuclear Information System (INIS)

    Abd El-Aziz, E.R.

    2012-01-01

    Parkinson's disease (PD) is the second most common neuro degenerative disorder after Alzheimer's disease. In the present study, neuro modulatory effects of standardized ginkgo biloba extract (EGb 761) and low dose whole-body γ-irradiation in a reserpine model of rat Parkinsonism were investigated. Male Wistar rats were pretreated orally with EGb 761 (100 mg/kg BW/day for 3 weeks) or low dose whole-body γ-irradiation (0.25 Gy once a week for 6 weeks) and their combination (EGb 761 was received during the last three weeks of the irradiation period) and then subjected to intraperitoneal injection of reserpine (5 mg/kg BW dissolved in 1% acetic acid) 24h after last dose of EGb761or radiation. All rats were sacrificed 24h after reserpine injection. Depletion of striatal dopamine (DA) level, increased oxidative stress indicated via depletion of glutathione (GSH), increased malondialdehyde (MDA) and iron levels; decrease of dopamine metabolites metabolizing enzymes; indicated by decrease of glutathione-S transferase (GST) and NADPH-quinone oxidoreductase (NQO) activities; mitochondrial dysfunction; indicated by decline of complex I activity and adenosine triphosphate (ATP) level and increased apoptosis; indicated by the decrease of mitochondrial B cell lymphoma-2 protein (Bcl-2) level and as shown by transmission electron microscope (TEM) were observed in brain of reserpine-induced PD model group, along with behavioral study indicated by increased catalepsy score. Moreover, the level of GSH was correlated with the levels of both DA (r = 0.78) and MDA (r = -0.93). The level of Bcl-2 was correlated with the complex I activity (r = 0.94) and ATP level (r = 0.98). Results revealed that either EGb 761 or irradiation and their combination ameliorated most of the biochemical and behavioral changes induced by reserpine possibly via replenishment of normal glutathione levels. This study revealed that EGb 761, which is a widely used herbal medicine and low dose of whole-body

  10. Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2014-01-01

    Full Text Available Sangiliyandi Gurunathan, Jae Woong Han, Jung Hyun Park, Vasuki Eppakayala, Jin-Hoi Kim Department of Animal Biotechnology, Konkuk University, Seoul, South Korea Background: Graphene is a novel two-dimensional planar nanocomposite material consisting of rings of carbon atoms with a hexagonal lattice structure. Graphene exhibits unique physical, chemical, mechanical, electrical, elasticity, and cytocompatible properties that lead to many potential biomedical applications. Nevertheless, the water-insoluble property of graphene restricts its application in various aspects of biomedical fields. Therefore, the objective of this work was to find a novel biological approach for an efficient method to synthesize water-soluble and cytocompatible graphene using Ginkgo biloba extract (GbE as a reducing and stabilizing agent. In addition, we investigated the biocompatibility effects of graphene in MDA-MB-231 human breast cancer cells. Materials and methods: Synthesized graphene oxide (GO and GbE-reduced GO (Gb-rGO were characterized using various sequences of techniques: ultraviolet-visible (UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR, dynamic light scattering (DLS, scanning electron microscopy (SEM, atomic force microscopy (AFM, and Raman spectroscopy. Biocompatibility of GO and Gb-rGO was assessed in human breast cancer cells using a series of assays, including cell viability, apoptosis, and alkaline phosphatase (ALP activity. Results: The successful synthesis of graphene was confirmed by UV-vis spectroscopy and FTIR. DLS analysis was performed to determine the average size of GO and Gb-rGO. X-ray diffraction studies confirmed the crystalline nature of graphene. SEM was used to investigate the surface morphologies of GO and Gb-rGO. AFM was employed to investigate the morphologies of prepared graphene and the height profile of GO and Gb-rGO. The formation of defects in Gb-rGO was confirmed by Raman spectroscopy. The biocompatibility

  11. Examining Brain-Cognition Effects of Ginkgo Biloba Extract: Brain Activation in the Left Temporal and Left Prefrontal Cortex in an Object Working Memory Task

    Directory of Open Access Journals (Sweden)

    R. B. Silberstein

    2011-01-01

    Full Text Available Ginkgo Biloba extract (GBE is increasingly used to alleviate symptoms of age related cognitive impairment, with preclinical evidence pointing to a pro-cholinergic effect. While a number of behavioral studies have reported improvements to working memory (WM associated with GBE, electrophysiological studies of GBE have typically been limited to recordings during a resting state. The current study investigated the chronic effects of GBE on steady state visually evoked potential (SSVEP topography in nineteen healthy middle-aged (50-61 year old male participants whilst completing an object WM task. A randomized double-blind crossover design was employed in which participants were allocated to receive 14 days GBE and 14 days placebo in random order. For both groups, SSVEP was recorded from 64 scalp electrode sites during the completion of an object WM task both pre- and 14 days post-treatment. GBE was found to improve behavioural performance on the WM task. GBE was also found to increase the SSVEP amplitude at occipital and frontal sites and increase SSVEP latency at left temporal and left frontal sites during the hold component of the WM task. These SSVEP changes associated with GBE may represent more efficient processing during WM task completion.

  12. [Changes of nitric oxide after trichloroethylene irritation in hairless mice skin and protection of ginkgo biloba extract and vitamin E].

    Science.gov (United States)

    Wang, Liang; Shen, Tong; Zhou, Cheng-fan; Yu, Jun-feng; Zhu, Qi-xing

    2009-04-01

    To study the changes of nitric oxide (NO) in the BALB/c hairless mice skin after trichloroethylene (TCE) irritation and the protection of ginkgo biloba extract (GbE) and vitamin E (VE). 132 BALB/c hairless mice were randomly divided into blank control group, solvent group (olive oil), TCE groups (20%TCE, 40%TCE, 80%TCE and 100%TCE), GbE groups (0.1%GbE, 1%GbE and 10%GbE) and VE groups (5%VE, 10% VE and 20% VE), with 11 animals in each group, 5 for acute irritation test and 6 for the cumulative irritation test. The skin irritation was observed, and the levels of NO in the dorsal skin of BALB/C hairless mice were detected. The kit of NO was used to detect the levels of NO in the dorsal skin of BALB/c hairless mice. (1) The skin presented erythema and edema after TCE irritation both in acute irritation and cumulative irritation test and the skin inflammation showed time-dose effect relationship; the mice skin was protected in GbE or VE groups. (2) In the acute stimulation test, the levels of NO in 80%TCE group (69.895 +/- 9.605 micromol/mg pro) and 100%TCE group (77.273 +/- 9.290 micromol/mg pro) were significantly different compared with blank control group and solvent control group (P skin of BALB/c hairless mice and induce the significant increase of the NO levels. GbE and VE can protect the skin from TCE irritation damage.

  13. In Vivo and In Vitro Toxicity Evaluation of Polyprenols Extracted from Ginkgo biloba L. Leaves

    Directory of Open Access Journals (Sweden)

    Cheng-Zhang Wang

    2015-12-01

    Full Text Available Polyprenols of Ginkgo biloba L. leaves (GBP are a new type of lipid with 14–24 isoprenyl units, which in humans have strong bioactivity like the dolichols. A large amount of work showed that GBP had good antibacterial activity and powerful protective effects against acute hepatic injury induced by carbon tetrachloride and alcohol, as well as antitumor activity, but the safety of GBP was not considered. The current study was designed to evaluate the toxicity of these polyprenols. Acute toxicity in mice was observed for 14 days after GBP oral dosing with 5, 7.5, 10, 15 and 21.5 g/kg body weight (b. wt. Further, an Ames toxicity assessment was carried out by plate incorporation assay on spontaneous revertant colonies of TA97, TA98, TA100 and TA102, with GBP doses designed as 8, 40, 200, 1000 and 5000 μg/dish, and subchronic toxicity was evaluated in rats for 91 days at GBP doses of 500, 1000 and 2000 mg/kg b. wt./day. The weight, food intake, hematological and biochemical indexes, the ratio of viscera/body weight, and histopathological examinations of tissue slices of organs were all investigated. The results showed that no animal behavior and appearance changes and mortality were seen during the observation period with 21.5 g/kg GBP dose in the acute toxicity test. Also, no mutagenicity effects were produced by GBP (mutation rate < 2 on the four standard Salmonella strains (p > 0.05 in the Ames toxicity test. Furthermore, the no observed adverse effect level (NOAEL of GBP was 2000 mg/kg for 91 days feeding of rats in the subchronic toxicity tests. Results also showed the hematological and biochemical indexes as well as histopathological examination changed within a small range, and all clinical observation indexes were normal. No other distinct impacts on cumulative growth of body weight, food intake and food utilization rate were discovered with GBP. No significant difference was discovered for the rats’ organ weight and the ratio of viscera

  14. Effect of Ginkgo biloba extract in combined with prednisone on the arterial blood gas and pulmonary function in patients with idiopathic pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Zhen-Chun Shi

    2016-09-01

    Full Text Available Objective: To explore the effect of Ginkgo biloba extract (EGb in combined with prednisone on the arterial blood gas and pulmonary function in patients with idiopathic pulmonary fibrosis (IPF. Methods: A total of 76 patients with IPF who were admitted in our hospital from March, 2015 to March, 2016 were included in the study and randomized into the observation group and the control group. The patients in the two groups were given oxygen inhalation, bronchodilator agents, phlegm dissipating and asthma relieving, anti-infection, and other supporting treatments. The patients in the control group were orally given prednisone (0.5 mg/ kg.d, continuously for 4 weeks, then in a dose of 0.25 mg/kg.d, continuously for 8 weeks, and finally the dosage was reduced to 0.125 mg/kg.d. On this basis, the patients in the observation group were given additional EGb, i.e. Ginkgo leaf capsule, 1 g/time, 3 times/d, continuously for 12 weeks. The efficacy was evaluated after 12-week treatment. PaO2, PaCO2, P(A-aO2, and SaO2 before and after treatment were detected. FVC, FEV1/FVC, MVV, TLC, and DLCO before and after treatment were determined. Results: PaO2, PaCO2, and SaO2 after treatment were significantly elevated, while P(A-aO2 was significantly reduced when compared with before treatment. The comparison of PaO2 and P(A-aO2 between the two groups was statistically significant, while the comparison of PaCO2 and SaO2 between the two groups was not statistically significant. After treatment, FVC, FEV1/FVC, MVV, TLC, and DLCO in the two groups were significantly elevated when compared with before treatment, and those in the observation group were significantly superior to those in the control group. Conclusions: EGb in combined with prednisone in the treatment of IPF can effectively improve the arterial blood gas indicators and pulmonary function, and enhance the patients’ living qualities; therefore, it deserves to be widely recommended.

  15. Ginkgo biloba extract mitigates liver fibrosis and apoptosis by regulating p38 MAPK, NF-κB/IκBα, and Bcl-2/Bax signaling

    Directory of Open Access Journals (Sweden)

    Wang YY

    2015-12-01

    Full Text Available Yuanyuan Wang, Rong Wang, Yujie Wang, Ruqin Peng, Yan Wu, Yongfang Yuan Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China Background: Liver fibrosis is the consequence of diverse liver injuries and can eventually develop into liver cirrhosis. Ginkgo biloba extract (GBE is an extract from dried ginkgo leaves that has many pharmacological effects because of its various ingredients and has been shown to be hepatoprotective. Purpose and methods: Aimed to investigate the underlying protective mechanisms of GBE on carbon tetrachloride (CCl4-induced liver fibrosis in rats. Male Sprague Dawley rats were randomly divided into four groups: control group (C, model group (M, low-dose group (L, and high-dose group (H. Liver fibrosis was induced by CCl4 groups M, L, and H: group C was administered saline. In addition, GBE at different doses was used to treat groups L and H. Results: The results of hematoxylin and eosin staining, Masson’s trichrome staining, a liver function index, and a liver fibrosis index showed that GBE application noticeably mitigated fibrosis and improved the function of the liver. The western blotting and immunohistochemistry analyses indicated that GBE reduced liver fibrosis not only by inhibiting p38 MAPK and NF-κBp65 via inhibition of IκBα degradation but also by inhibiting hepatocyte apoptosis via downregulation of Bax, upregulation of Bcl-2, and subsequent inhibition of caspase-3 activation. Inflammation-associated factors and hepatic stellate cell (HSC-activation markers further demonstrated that GBE could effectively inhibit HSC activation and inflammation as a result of its regulation of p38 MAPK and nuclear factor-kappa B/IκBα signaling. Conclusion: Our findings indicated a novel role for GBE in the treatment of liver fibrosis. The potential mechanisms may be associated with the following signaling pathways: 1 the p38 MAPK

  16. Antidepressant-like effect of a Ginkgo biloba extract (EGb761) in the mouse forced swimming test: role of oxidative stress.

    Science.gov (United States)

    Rojas, Patricia; Serrano-García, Norma; Medina-Campos, Omar N; Pedraza-Chaverri, José; Ogren, Sven O; Rojas, Carolina

    2011-10-01

    EGb761 is a well-defined mixture of active compounds extracted from Ginkgo biloba leaves. This extract is used clinically due to its neuroprotective effects, exerted probably via its potent antioxidant or free radical scavenger action. Previous studies suggest that oxidative stress, via free radical production, may play an important role in depression and animal models for depression-like behavior. Preclinical studies have suggested that antioxidants may have antidepressants properties. The aim of this study was to investigate the antidepressant-like of EGb761 due to its antioxidant role against oxidative stress induced in the forced swimming test, the most widely used preclinical model for assessing antidepressant-like behavior. Male BALB/c mice were pretreated with EGb761 (10mg/kg, ip) daily for 17 days followed by the forced swimming test and spontaneous locomotor activity. Animals were sacrificed to evaluate lipid peroxidation, different antioxidant enzyme activities, serotonin and dopamine content in midbrain, hippocampus and prefrontal cortex. EGb761 significantly decreased the immobility time (39%) in the forced swimming test. This antidepressant-like effect of EGb761 was associated with a reduction in lipid peroxidation and superoxide radical production (indicated by a downregulation of Mn-superoxide dismutase activity), both of which are indicators of oxidative stress. The protective effect of EGb761 is not related to excitatory or inhibitory effects in locomotor activity, and was also associated with the modulation of serotonergic and dopaminergic neurotransmission. It is suggested that EGb761 produces an antidepressant-like effect, and that an antioxidant effect against oxidative stress may be partly responsible for its observed neuroprotective effects. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Ginkgo biloba extract and long-term cognitive decline: a 20-year follow-up population-based study.

    Directory of Open Access Journals (Sweden)

    Hélène Amieva

    Full Text Available Numerous studies have looked at the potential benefits of various nootropic drugs such as Ginkgo biloba extract (EGb761®; Tanakan® and piracetam (Nootropyl® on age-related cognitive decline often leading to inconclusive results due to small sample sizes or insufficient follow-up duration. The present study assesses the association between intake of EGb761® and cognitive function of elderly adults over a 20-year period.The data were gathered from the prospective community-based cohort study 'Paquid'. Within the study sample of 3612 non-demented participants aged 65 and over at baseline, three groups were compared: 589 subjects reporting use of EGb761® at at least one of the ten assessment visits, 149 subjects reporting use of piracetam at one of the assessment visits and 2874 subjects not reporting use of either EGb761® or piracetam. Decline on MMSE, verbal fluency and visual memory over the 20-year follow-up was analysed with a multivariate mixed linear effects model. A significant difference in MMSE decline over the 20-year follow-up was observed in the EGb761® and piracetam treatment groups compared to the 'neither treatment' group. These effects were in opposite directions: the EGb761® group declined less rapidly than the 'neither treatment' group, whereas the piracetam group declined more rapidly (β = -0.6. Regarding verbal fluency and visual memory, no difference was observed between the EGb761® group and the 'neither treatment' group (respectively, β = 0.21 and β = -0.03, whereas the piracetam group declined more rapidly (respectively, β = -1.40 and β = -0.44. When comparing the EGb761® and piracetam groups directly, a different decline was observed for the three tests (respectively β = -1.07, β = -1.61 and β = -0.41.Cognitive decline in a non-demented elderly population was lower in subjects who reported using EGb761® than in those who did not. This effect may be a specific medication

  18. The spatial distribution of fossil fuel CO2 traced by Δ(14)C in the leaves of gingko (Ginkgo biloba L.) in Beijing City, China.

    Science.gov (United States)

    Niu, Zhenchuan; Zhou, Weijian; Zhang, Xiaoshan; Wang, Sen; Zhang, Dongxia; Lu, Xuefeng; Cheng, Peng; Wu, Shugang; Xiong, Xiaohu; Du, Hua; Fu, Yunchong

    2016-01-01

    Atmospheric fossil fuel CO2 (CO2ff ) information is an important reference for local government to formulate energy-saving and emission reduction in China. The CO2ff spatial distribution in Beijing City was traced by Δ(14)C in the leaves of gingko (Ginkgo biloba L.) from late March to September in 2009. The Δ(14)C values were in the range of -35.2 ± 2.8∼15.5 ± 3.2 ‰ (average 3.4 ± 11.8 ‰), with high values found at suburban sites (average 12.8 ± 3.1 ‰) and low values at road sites (average -8.4 ± 18.1 ‰). The CO2ff concentrations varied from 11.6 ± 3.7 to 32.5 ± 9.0 ppm, with an average of 16.4 ± 4.9 ppm. The CO2ff distribution in Beijing City showed spatial heterogeneity. CO2ff hotspots were found at road sites resulted from the emission from vehicles, while low CO2ff concentrations were found at suburban sites because of the less usage of fossil fuels. Additionally, CO2ff concentrations in the northwest area were generally higher than those in the southeast area due to the disadvantageous topography.

  19. Extract of Ginkgo Biloba Ameliorates Streptozotocin-Induced Type 1 Diabetes Mellitus and High-Fat Diet-Induced Type 2 Diabetes Mellitus in Mice.

    Science.gov (United States)

    Rhee, Ki-Jong; Lee, Chang Gun; Kim, Sung Woo; Gim, Dong-Hyeon; Kim, Hyun-Cheol; Jung, Bae Dong

    2015-01-01

    Diabetes mellitus (DM) is caused by either destruction of pancreatic β-cells (type 1 DM) or unresponsiveness to insulin (type 2 DM). Conventional therapies for diabetes mellitus have been developed but still needs improvement. Many diabetic patients have complemented conventional therapy with alternative methods including oral supplementation of natural products. In this study, we assessed whether Ginkgo biloba extract (EGb) 761 could provide beneficial effects in the streptozotocin-induced type 1 DM and high-fat diet-induced type 2 DM murine model system. For the type 1 DM model, streptozotocin-induced mice were orally administered EGb 761 for 10 days prior to streptozotocin injection and then again administered EGb 761 for an additional 10 days. Streptozotocin-treated mice administered EGb 761 exhibited lower blood triglyceride levels, lower blood glucose levels and higher blood insulin levels compared to streptozotocin-treated mice. Furthermore, liver LPL and liver PPAR-α were increased whereas IL-1β and TNF-α were decreased in streptozotocin-injected mice treated with EGb 761 compared to mice injected with streptozotocin alone. For the type 2 DM model, mice were given high-fat diet for 60 days and then orally administered EGb 761 every other day for 80 days. We found that mice given a high-fat diet and EGb 761 showed decreased blood triglyceride levels, increased liver LPL, increased liver PPAR-α and decreased body weight compared to mice given high-fat diet alone. These results suggest that EGb 761 can exert protective effects in both type 1 and type 2 DM murine models.

  20. Recalibrating the Ginkgo Stomatal Index Proxy for Past CO2 with Herbarium Specimens

    Science.gov (United States)

    Conde, G. D.; Retallack, G.

    2015-12-01

    The stomatal index of plant cuticles is inversely related to atmospheric CO2 concentrations, as calibrated from greenhouse experiments and herbarium specimens. Such calibration data for Ginkgo biloba are available for the ongoing rise in atmospheric CO2 and for high levels of CO2 anticipated in the future, but lacking for low CO2 levels of preindustrial and glacial ages. The oldest modern specimen that we have been able to obtain consists of leaf fragments collected in 1829 and provided by Arne Anderberg from the Swedish Natural History Museum. The specimen was labeled "Argentina", but also "Hortus Botanicus Augustinus", a garden founded in 1638 in Amsterdam, Netherlands. Ginkgo has a very thin cuticle that is difficult to prepare, but images very similar to cuticular preparation can be obtained by backscatter SEM imagery. We also obtained secondary SEM images of the same areas and counted 13 images with 6,184 cells from five leaf fragments. Our analyses yield a stomatal index of 10.9 ± 0.9 % for an atmospheric CO2 of 286 ppm, as determined by ice core data from Ciais and Sabine for IPCC-2013. This value is lower than from previous calibration curves for this level of CO2 and changes their curvature. With additional late nineteenth, twentieth and twenty-first century leaves, we can improve both the precision and lower limits of the transfer function for atmospheric CO2 from Ginkgo stomatal index last revised in 2009.

  1. Preliminary EEG study of protective effects of Tebonin in transient global cerebral ischemia in rats

    DEFF Research Database (Denmark)

    Zagrean, L; Vatasescu, R; Munteanu, A M

    2000-01-01

    and metabolism. The objective of this study was to investigate the effects of preventive treatment with Ginkgo biloba extract (EGb 761--Tebonin) in cerebral global ischemia and reperfusion in rats using computerized EEG analysis. Ginkgo biloba extract, known to be, in vitro, a free radicals scavanger and a PAF......--antagonist, was administrated in dose of 100 mg/kg over 24 hours, for 5 days before and 5 days after cerebral ischemia--reperfusion. The apparition of isoelectric EEG (flat-line) following 4-vessel occlusion was observed after a mean time of 25 sec. in Ginkgo biloba treated rats and after 18 sec. in control rats (p

  2. Ginkgo Biloba Extract and Long-Term Cognitive Decline: A 20-Year Follow-Up Population-Based Study

    Science.gov (United States)

    Amieva, Hélène; Meillon, Céline; Helmer, Catherine; Barberger-Gateau, Pascale; Dartigues, Jean François

    2013-01-01

    Background Numerous studies have looked at the potential benefits of various nootropic drugs such as Ginkgo biloba extract (EGb761®; Tanakan®) and piracetam (Nootropyl®) on age-related cognitive decline often leading to inconclusive results due to small sample sizes or insufficient follow-up duration. The present study assesses the association between intake of EGb761® and cognitive function of elderly adults over a 20-year period. Methods and Findings The data were gathered from the prospective community-based cohort study ‘Paquid’. Within the study sample of 3612 non-demented participants aged 65 and over at baseline, three groups were compared: 589 subjects reporting use of EGb761® at at least one of the ten assessment visits, 149 subjects reporting use of piracetam at one of the assessment visits and 2874 subjects not reporting use of either EGb761® or piracetam. Decline on MMSE, verbal fluency and visual memory over the 20-year follow-up was analysed with a multivariate mixed linear effects model. A significant difference in MMSE decline over the 20-year follow-up was observed in the EGb761® and piracetam treatment groups compared to the ‘neither treatment’ group. These effects were in opposite directions: the EGb761® group declined less rapidly than the ‘neither treatment’ group, whereas the piracetam group declined more rapidly (β = −0.6). Regarding verbal fluency and visual memory, no difference was observed between the EGb761® group and the ‘neither treatment’ group (respectively, β = 0.21 and β = −0.03), whereas the piracetam group declined more rapidly (respectively, β = −1.40 and β = −0.44). When comparing the EGb761® and piracetam groups directly, a different decline was observed for the three tests (respectively β = −1.07, β = −1.61 and β = −0.41). Conclusion Cognitive decline in a non-demented elderly population was lower in subjects who reported using EGb761® than in

  3. Vasodilators and nootropics as predictors of dementia and mortality in the PAQUID cohort.

    Science.gov (United States)

    Dartigues, Jean-François; Carcaillon, Laure; Helmer, Catherine; Lechevallier, Nathalie; Lafuma, Antoine; Khoshnood, Babak

    2007-03-01

    To assess the effects of treatment for memory impairment and the Ginkgo biloba extract (EGb 761) on dementia, mortality, and survival without dementia. Prospective community-based cohort study. France. Three thousand five hundred thirty-four subjects aged 65 and older. Information on drug consumption was obtained by interview and visual assessment of patients' medicine chests. Active screening of dementia was performed every 2 years over a 13-year period. The independent effects of treatment for memory impairment and the Ginkgo biloba extract on the risks of dementia and death were estimated using Cox proportional hazards models, adjusted for potentially confounding factors (including comorbidities). The initial consumption of Ginkgo biloba did not modify the risk of dementia (relative risk (RR)=1.16, 95% confidence interval (CI)=0.84-1.60), whereas the consumption of other treatments for memory impairment was associated with a higher risk of dementia (RR=1.35, 95% CI=1.11-1.63). Subjects who took Ginkgo biloba had a significantly lower risk of mortality in the long term (RR=0.76, 95% CI=0.62-0.93), even after adjustment for potentially confounding factors. The initial consumption of treatment for memory impairment other than Ginkgo biloba did not modify the risk of mortality. These results suggest that treatment with EGb 761 may increase the probability of survival in the elderly population. These findings need to be corroborated and further assessed using randomized, controlled trials.

  4. EGb761, an extract of Ginkgo biloba leaves, reduces insulin resistance in a high-fat-fed mouse model

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    2011-06-01

    Full Text Available EGb761, a standardized and well-defined product extract of Ginkgo biloba leaves, has beneficial effects on the treatment of multiple diseases, including diabetes and dyslipidemia. However, it is still unclear whether EGb761 can increase insulin sensitivity. The objectives of the present study are to evaluate the effects of EGb761 on insulin sensitivity in an obese and insulin-resistant mouse model, established through chronic feeding of C57BL/6J mice with a high-fat diet (HFD, and to explore potential mechanisms. Mice fed with HFD for 18 weeks (starting from 4 weeks of age developed obesity, dyslipidemia (as indicated by biochemical measurements of blood glucose, triglyceride (TG, total cholesterol (TC, and free fatty acids (FFA, and insulin resistance (as determined by the oral glucose tolerance test (OGTT and the homeostasis model assessment of insulin resistance (HOMA-IR index, compared to control mice fed with a standard laboratory chow. Oral treatment of the HFD-fed mice with EGb761, at low (100 mg/kg, medium (200 mg/kg, or high (400 mg/kg doses, via oral gavage (once daily for 8 weeks (starting from 26 weeks of age dose-dependently enhanced glucose tolerance in OGTT, and decreased both the insulin levels (by 29%, 55%, and 70%, respectively, and the HOMA-IR index values (by 50%, 69%, and 80%, respectively. EGb761 treatment also ameliorated HFD-induced obesity, dyslipidemia, and liver injury, as indicated by decreases in body weight (by 4%, 11%, and 16%, respectively, blood TC levels (by 23%, 32%, and 37%, respectively, blood TG levels (by 17%, 23%, and 33%, respectively, blood FAA levels (by 35%, 38%, and 46%, respectively, and liver index (liver weight/body weight values (by 12.8%, 25%, and 28%, respectively in the low, medium, and high EGb761 dose groups, respectively. In further mechanism studies, EGb761 was found to protect hepatic insulin receptor β and insulin receptor substrate 1 from HFD-induced degradation, and to keep the AMP

  5. Effects of standardized Ginkgo biloba extract on the acquisition, retrieval and extinction of conditioned suppression: Evidence that short-term memory and long-term memory are differentially modulated.

    Science.gov (United States)

    Zamberlam, C R; Vendrasco, N C; Oliveira, D R; Gaiardo, R B; Cerutti, S M

    2016-10-15

    Studies in our laboratory have characterized the putative neuromodulatory effects of a standardized extract of the green leaves of Ginkgo biloba (EGb), which comprises a formulation of 24% ginkgo-flavoglycosides and 6% ginkgo-terpenoid lactones, on conditioned suppression. This model comprises a suitable animal model for investigating the behavioral changes and pharmacological mechanisms that underlie fear memory and anxiety. The characterization of the effects on distinct stages of fear memory or fear extinction will help illustrate both the beneficial and harmful effects. Three hundred adult male Wistar rats were randomly assigned to 30 groups according to the treatment as follows: i-ii) control groups (CS-US and CSno-US); iii) vehicle group (12% Tween®80); and iv-vi) EGb groups (250, 500 and 1000mgkg(-1)); or experimental procedures designed to assess the effects of EGb treatment prior to the acquisition (n=20 per group) and retrieval of conditioned fear (n=10 per group) or prior to the extinction training (n=10 per group) and extinction retention test (n=10 per group). Furthermore, to better understand the effects of acute EGb treatment on fear memory, we conducted two additional analyses: the acquisition of within- and between-session extinction of fear memory (short- and long-term memory, respectively). No difference was identified between the control and treatment groups during the retention test (P>0.05), with the exception of the CSno-US group in relation to all groups (Pmemory, which was verified by the suppression ration in the first trial of extinction training (SR=0.39) and the extinction retention test session (SR=0.53, Pmemory acquisition, which were evaluated during the retention test (SR=0.79). Moreover, EGb administered at 1000mgkg(-1) prior to conditioning did not enhance the long-term extinction memory, i.e., it did not prevent the return of extinguished fear memory in the extinction retention test, in which the spontaneous recovery of fear was

  6. Protective Effects of Indian Spice Curcumin Against Amyloid-β in Alzheimer's Disease.

    Science.gov (United States)

    Reddy, P Hemachandra; Manczak, Maria; Yin, Xiangling; Grady, Mary Catherine; Mitchell, Andrew; Tonk, Sahil; Kuruva, Chandra Sekhar; Bhatti, Jasvinder Singh; Kandimalla, Ramesh; Vijayan, Murali; Kumar, Subodh; Wang, Rui; Pradeepkiran, Jangampalli Adi; Ogunmokun, Gilbert; Thamarai, Kavya; Quesada, Kandi; Boles, Annette; Reddy, Arubala P

    2018-01-01

    The purpose of our article is to assess the current understanding of Indian spice, curcumin, against amyloid-β (Aβ)-induced toxicity in Alzheimer's disease (AD) pathogenesis. Natural products, such as ginger, curcumin, and gingko biloba have been used as diets and dietary supplements to treat human diseases, including cancer, cardiovascular, respiratory, infectious, diabetes, obesity, metabolic syndromes, and neurological disorders. Products derived from plants are known to have protective effects, including anti-inflammatory, antioxidant, anti-arthritis, pro-healing, and boosting memory cognitive functions. In the last decade, several groups have designed and synthesized curcumin and its derivatives and extensively tested using cell and mouse models of AD. Recent research on Aβ and curcumin has revealed that curcumin prevents Aβ aggregation and crosses the blood-brain barrier, reach brain cells, and protect neurons from various toxic insults of aging and Aβ in humans. Recent research has also reported that curcumin ameliorates cognitive decline and improves synaptic functions in mouse models of AD. Further, recent groups have initiated studies on elderly individuals and patients with AD and the outcome of these studies is currently being assessed. This article highlights the beneficial effects of curcumin on AD. This article also critically assesses the current limitations of curcumin's bioavailability and urgent need for new formulations to increase its brain levels to treat patients with AD.

  7. [Platelet hyperreactivity and antiaggregatory properties of nootropic drugs under conditions of alloxan-induced diabetes in rats].

    Science.gov (United States)

    Zhiliuk, V I; Levykh, A É; Mamchur, V I

    2012-01-01

    The effects of nootropic drugs (noopept, pentoxifylline, piracetam, pramiracetam, Ginkgo biloba extract, entrop, cerebrocurin and citicoline) on platelet aggregation in rats with experimental diabetes have been studied. It is established that all these drugs exhibit an inhibitory action of various degrees against platelet hyperreactivity under conditions of chronic hyperglycemia. The maximum universality of the antiaggregatory action is characteristic of pramiracetam, entrop and Ginkgo biloba extract.

  8. [Therapeutic follow-up using automatic perimetry in chronic cerebroretinal ischemia in elderly patients. Prospective double-blind study with graduated dose ginkgo biloba treatment (EGb 761)].

    Science.gov (United States)

    Raabe, A; Raabe, M; Ihm, P

    1991-12-01

    The chronic cerebral retinal insufficiency syndrome in elderly patients is an organ specific expression of a generalized vascular cerebral deficiency. The progress of the disease is characterized by complex symptoms, variation in course, spontaneous remissions and, until recently inadequate diagnostic measurement methods. The new method of automated perimetry with the octopus 2000 P offers a patient-friendly procedure for indirect non-invasive diagnosis of circulatory state in limited cerebral retinal perfusion. In the present study measurements were made with this method on 24 patients (4 men and 20 women with an age of 74.9 +/- 6.9 years). The effect of the extract of Ginkgo biloba (EGb 761) on the reversibility of visual field disturbances was tested using a randomized and double blind study-design in two phases and with two dose levels. The main parameter investigated in this study was the change in the luminous density difference threshold after therapy with EGb 761. In group B (EGb 761 dose 160 mg/day) a significant increase in retinal sensitivity was seen within 4 weeks (p less than 0.05). In the lower dose (80 mg EGb 761/day) group (A), this change in retinal sensitivity was first seen after increasing the dose to 160 mg/day (p less than 0.01). The relative sensitivity of damaged retinal areas was more strongly influenced than "healthy" areas. The assessment by both doctors and patients of the general condition of the patients showed a significant improvement after the course of therapy. The results presented here show that damage to the visual field by chronic lack of bloodflow are significantly reversible.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Influences of air pollution on the growth of ornamental tree species-particularly with reference to SO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T W

    1975-01-01

    For the purpose of detecting resistance to air pollution, particularly SO/sub 2/ contamination, six ornamental tree species were selected, i.e., Ginkgo biloba, Larix leptolepis, Pinus rigida, Syringa dilatata, Hibiscus syriacus, and Forsythia koreana. The sensitivity was observed and analyzed on the basis of the area ratio of smoke injury spot to the total leaf area. According to the results, the decreasing order of SO/sub 2/ sensitivity by species could be arranged as follows: (1) Hibiscus syriacus, (2) Ginkgo biloba, (3) Forsythia koreana, (4) Syringa dilatata, (5) Larix leptolepis, and (6) Pinus rigida. In general, Hibiscus syriacus and Ginkgo biloba can be grouped as the most resistant ones and Larix leptolepis and Pinus rigida as the weakest ones and Forsythia koreana and Syringa dilatata as the intermediate. Due to the sprouting ability and the formative ability of adventitious buds, the recovery from the SO/sub 2/ fumigation was prominent in Hibiscus syriacus, Syringa dilatata and Forsythia koreana. The differences in the smoke spot color were recognized by species, namely, dirt brown in Syringa dilatata, brilliant yellow brown in Pinus rigida and Ginkgo biloba, whitish yellow in Hibiscus syriacus, and red brown in Forsythia koreana. In the case of Ginkgo biloba and Larix leptolepis, the younger leaves were more resistant to SO/sub 2/ than the old ones. The sulfur content of leaves showed that on the basis of %/dry weight, broad-leaved species contained the higher amount of sulfur than the coniferous species. 15 ornamental tree species which have been growing in Seoul city were sampled from the 19 air polluted spots. The elucidated were the heavily polluted regions and the lightly polluted regions. The SO/sub 2/ absorbing capacities by species are explained in the text. 17 references.

  10. Effects of flavonoid glycosides obtained from a Ginkgo biloba extract fraction on the physical and oxidative stabilities of oil-in-water emulsions prepared from a stripped structured lipid with a low omega-6 to omega-3 ratio.

    Science.gov (United States)

    Yang, Dan; Wang, Xiang-Yu; Gan, Lu-Jing; Zhang, Hua; Shin, Jung-Ah; Lee, Ki-Teak; Hong, Soon-Taek

    2015-05-01

    In this study, we have produced a structured lipid with a low ω6/ω3 ratio by lipase-catalysed interesterification with perilla and grape seed oils (1:3, wt/wt). A Ginkgo biloba leaf extract was fractionated in a column packed with HP-20 resin, producing a flavonoid glycoside fraction (FA) and a biflavone fraction (FB). FA exhibited higher antioxidant capacity than FB, showing 58.4 mmol gallic acid equivalent (GAE)/g-of-total-phenol-content, 58.8 mg quercetin equivalent (QUE)/g-of-total-flavonoid-content, 4.5 mmol trolox/g-of-trolox-equivalent antioxidant capacity, 0.14 mg extract/mL-of-free-radical-scavenging-activity (DPPH assay, IC50), and 2.3 mmol Fe2SO4 · 7H2O/g-of-ferric-reducing-antioxidant-power. The oil-in-water emulsion containing the stripped structured lipid as an oil phase with FA exhibited the highest stability and the lowest oil globule diameters (d43 and d32), where the aggregation was unnoticeable by Turbiscan and particle size analyses during 30 days of storage. Furthermore, FA was effective in retarding the oxidation of the emulsions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. [Pharmacological treatment].

    Science.gov (United States)

    Arriola Manchola, Enrique; Álaba Trueba, Javier

    2016-06-01

    Alzheimer's disease (AD) is a chronic degenerative and inflammatory process leading to synapticdysfunction and neuronal death. A review about the pharmacological treatment alternatives is made: acetylcholinesterase inhibitors (AChEI), a nutritional supplement (Souvenaid) and Ginkgo biloba. A special emphasis on Ginkgo biloba due to the controversy about its use and the approval by the European Medicines Agency is made. Copyright © 2016 Sociedad Española de Geriatría y Gerontología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Ginkgo

    Science.gov (United States)

    ... Database Systematic Review. 2013;(1):CD001775. Accessed at http://www.thecochranelibrary.com on April 10, 2015. Ginkgo. ... of Systematic Reviews. 2013;(3):CD003852. Accessed at http://www.thecochranelibrary.com on April 10, 2015. Kuller ...

  13. Antiapoptotic Effects of EGb 761

    Directory of Open Access Journals (Sweden)

    Norma Serrano-García

    2013-01-01

    Full Text Available Ginkgo biloba extracts have long been used in Chinese traditional medicine for hundreds of years. The most significant extract obtained from Ginkgo biloba leaves has been EGb 761, a widely used phytopharmaceutical product in Europe. EGb 761 is a well-defined mixture of active compounds, which contains two main active substances: flavonoid glycosides (24–26% and terpene lactones (6–8%. These compounds have shown antiapoptotic effects through the protection of mitochondrial membrane integrity, inhibition of mitochondrial cytochrome c release, enhancement of antiapoptotic protein transcription, and reduction of caspase transcription and DNA fragmentation. Other effects include the reduction of oxidative stress (which has been related to the occurrence of vascular, degenerative, and proliferative diseases, coupled to strong induction of phase II-detoxifying and cellular defense enzymes by Nrf2/ARE activation, in addition to the modulation of transcription factors, such as CREB, HIF-1α, NF-κB, AP-1, and p53, involved in the apoptosis process. This work reviews experimental results about the antiapoptotic effects induced by the standardized extract of Ginkgo biloba leaves (EGb 761.

  14. Antiapoptotic Effects of EGb 761

    Science.gov (United States)

    Serrano-García, Norma; Pedraza-Chaverri, José; Mares-Sámano, José Juan; Orozco-Ibarra, Marisol; Cruz-Salgado, Arturo; Jiménez-Anguiano, Anabel; Sotelo, Julio; Trejo-Solís, Cristina

    2013-01-01

    Ginkgo biloba extracts have long been used in Chinese traditional medicine for hundreds of years. The most significant extract obtained from Ginkgo biloba leaves has been EGb 761, a widely used phytopharmaceutical product in Europe. EGb 761 is a well-defined mixture of active compounds, which contains two main active substances: flavonoid glycosides (24–26%) and terpene lactones (6–8%). These compounds have shown antiapoptotic effects through the protection of mitochondrial membrane integrity, inhibition of mitochondrial cytochrome c release, enhancement of antiapoptotic protein transcription, and reduction of caspase transcription and DNA fragmentation. Other effects include the reduction of oxidative stress (which has been related to the occurrence of vascular, degenerative, and proliferative diseases), coupled to strong induction of phase II-detoxifying and cellular defense enzymes by Nrf2/ARE activation, in addition to the modulation of transcription factors, such as CREB, HIF-1α, NF-κB, AP-1, and p53, involved in the apoptosis process. This work reviews experimental results about the antiapoptotic effects induced by the standardized extract of Ginkgo biloba leaves (EGb 761). PMID:23983787

  15. Anti-angiogenic effect of curcumin, curcumin ethylenediamine derivative and curcumin ethylenediamine manganese complex

    OpenAIRE

    SUNTORNSUK, Leena; Koizumi, Keiichi; Saitoh, Yurika; Nakamura, ElianeShizuka; KAMMASUD, Naparat; VAJARAGUPTA, Opa; Saiki, Ikuo

    2004-01-01

    We investigated the anti-angiogenic effect of curcumin, curcumin ethylenediamine derivative (curcumin ED) and curcumin ethylenediamine manganese complex (curcumin EDMn) through the inhibition of the formation of tube-like structures by human umbilical vascular endothelial cells (HUVEC). Curcumin, curcumin ED, curcumin EDMn did not show cytotoxicity to HUVEC at concentrations equal and lower than 10 μM. At the concentration of 10 μM,curcumin, curcumin ED and curcumin EDMn inhibited the tube fo...

  16. Effects of Gingko biloba Extract on Tissue Distribution of Fluoxetine and Venlafaxine in Rats

    Directory of Open Access Journals (Sweden)

    Saad Abdulrahman Hussain

    2015-09-01

    Full Text Available Objective: There are many concerns about the interactions of herbal products with conventional drugs, which are mostly used as multiple drug treatment approach. The present study was designed to evaluate the effect of long-term use of Ginkgo biloba extract (GK on the absorption and tissue distribution of fluoxetine and venlafaxine. Materials and Methods: Forty-six Wistar rats are utilized and allocated into eight groups; 2 groups administered the vehicle and saved as control; 4 groups are treated with 100 and 200 mg/kg of GK extract for 30 days; 2 groups are treated with 40mg/kg verapamil for 10 days. The liver, kidney and brain distribution of fluoxetine and venlafaxine were evaluated after single oral doses using HPLC method. Results: 200 mg/kg GK increases fluoxetine concentrations in all studied organs, while GK 100mg/kg increases venlafaxine levels in kidney tissue and not affected in the other two organs. Conclusion: Thirty days treatment with GK (100 mg/kg increases kidney availability of venlafaxine, while 200 mg GK dose increases fluoxetine availability in the liver, kidney and brain tissues after single oral doses. [J Intercult Ethnopharmacol 2015; 4(3.000: 234-238

  17. Estimating Latest Cretaceous and Tertiary Atmospheric PCO2 from Stomatal Indices

    Science.gov (United States)

    Royer, D. L.; Wing, S. L.; Beerling, D. J.

    2001-05-01

    Most modern C3 seed plants show an inverse relationship between PCO2 and stomatal index (SI), where SI is the proportion of epidermal cells that are stomatal packages. This plant-atmosphere response therefore provides a reliable approach for estimating paleo-CO2 levels. Since stomatal responses to CO2 are generally species-specific, one is limited in paleo-reconstructions to species that exist both in the fossil record and living today. Fossils morphologically similar to living Ginkgo biloba and Metasequoia glyptostroboides extend back to the early and late Cretaceous, respectively, indicating that the fossil and living forms are very closely related. Measurements of SI made on fossil Ginkgo and Metasequoia were calibrated with historical collections of G. biloba and M. glyptostroboides leaves from sites that developed during the anthropogenically-driven CO2 increases of the past 145 years (288-369 ppmv) and with saplings of G. biloba and M. glyptostroboides grown in CO2 controlled growth chambers (350-800 ppmv). Both nonlinear regressions are highly significant (Ginkgo: n = 40, r2 = 0.91; Metasequoia: n = 18; r2 = 0.85). Results from a sequence of 23 latest Cretaceous to early Eocene-aged Ginkgo-bearing sites indicate that CO2 remained between 300 and 450 ppmv with the exception of one high estimate ( ~800 ppmv) near the Paleocene/Eocene boundary, and results from 4 middle Miocene-aged Ginkgo- and Metasequoia-bearing sites indicate that CO2 was between 320 and 400 ppmv. If correct, the CO2 values estimated here are too low to explain via the CO2 greenhouse effect alone the higher global mean temperatures (e.g., 3-4 ° C for the early Eocene) inferred from models and geological data for these two intervals.

  18. Impact of elevated CO2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba.

    Science.gov (United States)

    Li, Dewen; Chen, Ying; Shi, Yi; He, Xingyuan; Chen, Xin

    2009-04-01

    In natural environment with ambient air, ginkgo trees emitted volatile organic compounds 0.18 microg g(-1) h(-1) in July, and 0.92 microg g(-1) h(-1) in September. Isoprene and limonene were the most abundant detected compounds. In September, alpha-pinene accounted for 22.5% of the total. Elevated CO(2) concentration in OTCs increased isoprene emission significantly in July (pemission was enhanced in July and decreased in September by elevated CO(2). Exposed to elevated O(3) increased the isoprene and monoterpenes emissions in July and September, and the total volatile organic compounds emission rates were 0.48 microg g(-1) h(-1) (in July) and 2.24 microg g(-1) h(-1) (in September), respectively. The combination of elevated CO(2) and O(3) did not have any effect on biogenic volatile organic compounds emissions, except increases of isoprene and Delta3-carene in September.

  19. Inhibition of lipid oxidation in foods and feeds and hydroxyl radical-treated fish erythrocytes: A comparative study of Ginkgo biloba leaves extracts and synthetic antioxidants

    Directory of Open Access Journals (Sweden)

    Huatao Li

    2016-09-01

    Full Text Available This study explored the effects of butylated hydroxytoluene (BHT and ethoxyquin (EQ and ethyl ether extracts, ethyl acetate extracts (EAE, acetone extracts, ethanol extracts and aqueous extracts of Ginkgo biloba leaves (EGbs on lipid oxidation in a linoleic acid emulsion, fish flesh and fish feed and in hydroxyl radical (·OH-treated carp erythrocytes. The linoleic acid, fish flesh and fish feed were incubated with BHT, EQ and EGbs at 45°C for 8 d, respectively, except for the control group. The lipid oxidation in the linoleic acid emulsion, fish flesh and fish feed was then measured by the ferric thiocyanate method or thiobarbituric acid method. The carp erythrocytes were treated with BHT, EQ or EGbs in the presence of 40 μmol/L FeSO4 and 20 μmol/L H2O2 at 37°C for 6 h, except for the control group. Oxidative stress and apoptosis parameters in carp erythrocytes were then evaluated by the commercial kit. The results showed that BHT, EQ and EGbs inhibited lipid oxidation in the linoleic acid emulsion, fish flesh and fish feed and ·OH-induced phosphatidylserine exposure and DNA fragmentation (the biomarkers of apoptosis in carp erythrocytes. Furthermore, BHT, EQ and EGbs decreased the generation of reactive oxygen species (ROS, inhibited the oxidation of cellular components and restored the activities of enzymatic antioxidants in ·OH-treated carp erythrocytes. Of all examined EGbs, EAE showed the strongest effects. The effects of EAE on lipid oxidation in the linoleic acid emulsion and on superoxide anion and malonaldehyde levels, catalase activity and apoptosis in ·OH-treated carp erythrocytes were equivalent to or stronger than those of BHT. Moreover, these results indicated that the inhibition order of EGbs on the generation of ROS and oxidation of cellular components in fish erythrocytes approximately agreed with that for the food and feed materials tested above. And, the antioxidative and anti-apoptotic effects of EGbs were

  20. Cannabis-induced impairment of learning and memory: effect of different nootropic drugs

    Science.gov (United States)

    Abdel-Salam, Omar M.E.; Salem, Neveen A.; El-Sayed El-Shamarka, Marwa; Al-Said Ahmed, Noha; Seid Hussein, Jihan; El-Khyat, Zakaria A.

    2013-01-01

    Cannabis sativa preparations are the most commonly used illicit drugs worldwide. The present study aimed to investigate the effect of Cannabis sativa extract in the working memory version of the Morris water maze (MWM; Morris, 1984[43]) test and determine the effect of standard memory enhancing drugs. Cannabis sativa was given at doses of 5, 10 or 20 mg/kg (expressed as Δ9-tetrahydrocannabinol) alone or co-administered with donepezil (1 mg/kg), piracetam (150 mg/ kg), vinpocetine (1.5 mg/kg) or ginkgo biloba (25 mg/kg) once daily subcutaneously (s.c.) for one month. Mice were examined three times weekly for their ability to locate a submerged platform. Mice were euthanized 30 days after starting cannabis injection when biochemical assays were carried out. Malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide, glucose and brain monoamines were determined. Cannabis resulted in a significant increase in the time taken to locate the platform and enhanced the memory impairment produced by scopolamine. This effect of cannabis decreased by memory enhancing drugs with piracetam resulting in the most-shorter latency compared with the cannabis. Biochemically, cannabis altered the oxidative status of the brain with decreased MDA, increased GSH, but decreased nitric oxide and glucose. In cannabis-treated rats, the level of GSH in brain was increased after vinpocetine and donepezil and was markedly elevated after Ginkgo biloba. Piracetam restored the decrease in glucose and nitric oxide by cannabis. Cannabis caused dose-dependent increases of brain serotonin, noradrenaline and dopamine. After cannabis treatment, noradrenaline is restored to its normal value by donepezil, vinpocetine or Ginkgo biloba, but increased by piracetam. The level of dopamine was significantly reduced by piracetam, vinpocetine or Ginkgo biloba. These data indicate that cannabis administration is associated with impaired memory performance which is likely to involve decreased brain glucose

  1. Study on Ca2+ antagonistic effect and mechanism of Chinese herbal drugs using 45Ca

    International Nuclear Information System (INIS)

    Yang Yuanyou; Liu Ning; Mo Shangwu; Qiu Mingfeng; Jin Jiannan; Liao Jiali

    2002-01-01

    The Ca 2+ antagonistic effect and mechanism of Chinese herbal drugs are studied by using 45 Ca. The results indicate that potential-dependent Ca 2+ channel (PDC) and receptor-operated Ca 2+ channel (ROC) in cell membranes of smooth muscle can be blocked by several Chinese herbal drugs, including as Crocus sativus L., Carthamus L., Di-ao-xin-xue-kang (DAXXG) and Ginkgo biloba L. leaves. Among them Crocus sativus L. has the strongest antagonistic effect on Ca 2+ channel, while Ginkgo biloba L. leaves has no obvious effect. The whole prescription and the other functional drugs have significant effect on ROC and PDC. The compositions extracted by hexane have the strongest antagonistic. The wrinkled giant hyssop have five active compositions and Pei-lan have two active compositions

  2. The effect of Ginkgo extract EGb761 in cisplatin-induced peripheral neuropathy in mice

    International Nuclear Information System (INIS)

    Oeztuerk, Guerkan; Anlar, Oemer; Erdogan, Ender; Koesem, Mustafa; Oezbek, Hanefi; Tuerker, Aybars

    2004-01-01

    Neuroprotective effect of Ginkgo biloba extract EGb761 in cisplatin (cis-diamminedi-chloroplatinum, or CDDP)-induced peripheral neuropathy was investigated. Swiss albino mice were treated with CDDP, 2 mg/kg ip twice a week for nine times. One group of the animals also received EGb761 in the drinking water at an estimated dosage of 100 mg/kg per day. Two other groups received vehicle (control) or EGb761 only. Development of neuropathy was evaluated with changes in sensory nerve conduction velocity (NCV). Following the treatments, dorsal root ganglia (DRGs) were microscopically examined and some were cultured for 3 days. EGb761 proved effective in preventing the reduction in NCV (P < 0.0001) caused by CDDP. CDDP caused a decrease in the number of migrating cells (P < 0.01) and in the length of outgrowing axons (P < 0.01) while EGb761 treatment prevented the latter. CDDP led to smaller nuclear and somatic sizes in neurons (P < 0.01), while with EGb761 co-administration, both were close to control values. Animals having EGb761 only had similar results with controls. In conclusion, EGb761 was found to be effective in preventing some functional and morphological deteriorations in CDDP-induced peripheral neuropathy

  3. Disintegration Test of Health Food Products Containing Ginkgo Biloba L. or Vitex Agnus-Castus L. in the Japanese Market

    Science.gov (United States)

    Sato-Masumoto, Naoko; Masada, Sayaka; Takahashi, Satoshi; Terasaki, Sachiko; Yokota, Yoichi; Hakamatsuka, Takashi; Goda, Yukihiro

    2015-01-01

    For many years now, a number of Western herbs have been widely used in health food products in Japan and as pharmaceuticals in Europe. There are few or no mandated criteria concerning the quality of these herbal health food products, thus clarification is warranted. Here, we performed disintegration tests of 26 pharmaceutical and health food products containing the Western herbs ginkgo leaf and chaste tree fruit, in accord with the Japanese Pharmacopoeia. All eight pharmaceutical herbal products found in the European market completely disintegrated within the defined test time, and 11 of the 18 tested herbal products distributed as health foods in Japan disintegrated. Among the incompatible products identified in the Pharmacopoeia test, some products remained intact after incubation in water for 60 min. To ensure the efficacy of Western herbal products sold as health food in Japan, quality control, including disintegration, is therefore recommended, even though these products are not regulated under the Pharmaceutical Affairs Law. PMID:28930200

  4. Disintegration Test of Health Food Products Containing Ginkgo Biloba L. or Vitex Agnus-Castus L. in the Japanese Market.

    Science.gov (United States)

    Sato-Masumoto, Naoko; Masada, Sayaka; Takahashi, Satoshi; Terasaki, Sachiko; Yokota, Yoichi; Hakamatsuka, Takashi; Goda, Yukihiro

    2015-04-23

    For many years now, a number of Western herbs have been widely used in health food products in Japan and as pharmaceuticals in Europe. There are few or no mandated criteria concerning the quality of these herbal health food products, thus clarification is warranted. Here, we performed disintegration tests of 26 pharmaceutical and health food products containing the Western herbs ginkgo leaf and chaste tree fruit, in accord with the Japanese Pharmacopoeia. All eight pharmaceutical herbal products found in the European market completely disintegrated within the defined test time, and 11 of the 18 tested herbal products distributed as health foods in Japan disintegrated. Among the incompatible products identified in the Pharmacopoeia test, some products remained intact after incubation in water for 60 min. To ensure the efficacy of Western herbal products sold as health food in Japan, quality control, including disintegration, is therefore recommended, even though these products are not regulated under the Pharmaceutical Affairs Law.

  5. Los estados inmaduros de Coelosis biloba (Coleoptera: Melolonthidae: Dynastinae y notas sobre su biología Immature stages of Coelosis biloba (Coleoptera: Melolonthidae: Dynastinae with notes on their biology

    Directory of Open Access Journals (Sweden)

    Luis Carlos Pardo-Locarno

    2006-12-01

    Full Text Available Se describen la larva de tercer estadio y las pupas de macho y hembra de Coelosis biloba (Linné 1767 con ejemplares recolectados en Colombia (Cauca y Valle y en México (Veracruz asociados con los hormigueros de Atta cephalotes (Linné 1750. Se incluyen ilustraciones de las estructuras diagnósticas, una clave para separar las larvas de tercer estadio hasta ahora conocidas de la tribu Oryctini en América, y observaciones sobre la biología de C. biloba como inquilino de los nidos de hormigas.The larva of third instar, male and female pupae of Coelosis biloba obtained inside ant nests of Atta cephalotes in Colombia (Cauca, Valle and Mexico (Veracruz are described. Drawings of diagnostic structures, a key to the known third instar larvae of American Oryctini, and observations on the biology of C. biloba as inquiline of ant nests, are included.

  6. Dissolution enhancement of curcumin via curcumin-prebiotic inulin nanoparticles.

    Science.gov (United States)

    Fares, Mohammad M; Salem, Mu'taz Sheikh

    2015-01-01

    Dissolution enhancement of curcumin via prebiotic inulin designed to orally deliver poorly water-soluble curcumin at duodenum low acidity (pH 5.5) was investigated. Different prebiotic inulin-curcumin nanoparticles were synthesized in ethanol-water binary system at different pre-adjusted pH values. Characterization via FTIR, XRD and TGA revealed the formation of curcumin-inulin conjugates, whereas surface morphology via SEM and TEM techniques implied the formation of nanoparticle beads and nanoclusters. Prebiotic inulin-curcumin nanoparticles prepared at pH 7.0 demonstrated a maximum curcumin dissolution enhancement of ≈90% with respect to 30% for curcumin alone at pH 5.5. Power law constant values were in accordance with dissolution enhancement investigations. All samples show Fickian diffusion mechanism. XRD investigations confirm that inulin maintain its crystalline structure in curcumin-inulin conjugate structure, which confirms that it can exert successfully its prebiotic role in the gastrointestinal (GI) tract. Therefore, the use of curcumin-inulin nanoparticles can perform dual-mission in the GI tract at the duodenum environment; release of 90% of curcumin followed by prebiotic activity of inulin, which will probably play a significant role in cancer therapeutics for the coming generations.

  7. Descripción del último estadio larval de Neofulla biloba (Plecoptera: Notonemouridae Description of the last larval instar of Neofulla biloba (Plecoptera: Notonemouridae

    Directory of Open Access Journals (Sweden)

    Pablo Pessacq

    2008-12-01

    Full Text Available Se describe el último estadio larval de Neofulla biloba (Aubert, desconocido para la ciencia. Se brindan caracteres morfológicos que lo separan de N. areolata (Navás, la única especie del género cuya larva ha sido descripta previamente.The last instar larva of Neofulla biloba (Aubert is described for the first time. Morphological characters to separate it from that of N. areolata (Navás, the only previously known larva of the genus, are given.

  8. Xu et al., Afr J Tradit Complement Altern Med. (2013) 10(2):356-367 ...

    African Journals Online (AJOL)

    AJTCAM

    , 50: 1352-1364. 13. von Moltke L.L., Weemhoff J.L., Bedir E., Khan I.A., Harmatz J.S., Goldman P. and Greenblatt D.J. (2004). Inhibition of human cytochromes P450 by components of Ginkgo biloba. J. Pharm. Pharmacol., 56: 1039-1044. 14.

  9. Rainfall interception of three trees in Oakland, California

    Science.gov (United States)

    Qingfu Xiao; E. Gregory McPherson

    2011-01-01

    A rainfall interception study was conducted in Oakland, California to determine the partitioning of rainfall and the chemical composition of precipitation, throughfall, and stemflow. Rainfall interception measurements were conducted on a gingko (Ginkgo biloba) (13.5 m tall deciduous tree), sweet gum (Liquidambar styraciflua) (8...

  10. Preliminary study on the inducement effect of colchicine during ...

    African Journals Online (AJOL)

    ... were detected in meiotic products (less than 10%). These observations suggest that 2n pollen can be induced by colchicine but treatment conditions and slowing development of colchicine-treated microsporocyte may affect the inducement effect of colchicines. Key words: Ginkgo biloba L., microsporogenesis, colchicine, ...

  11. Pharmacokinetics of Curcumin Diethyl Disuccinate, a Prodrug of Curcumin, in Wistar Rats.

    Science.gov (United States)

    Bangphumi, Kunan; Kittiviriyakul, Chuleeporn; Towiwat, Pasarapa; Rojsitthisak, Pornchai; Khemawoot, Phisit

    2016-12-01

    Curcumin is the major bioactive component of turmeric, but has poor oral bioavailability that limits its clinical applications. To improve the in vitro solubility and alkaline stability, we developed a prodrug of curcumin by succinylation to obtain curcumin diethyl disuccinate, with the goal of improving the oral bioavailability of curcumin. The in vivo pharmacokinetic profile of curcumin diethyl disuccinate was compared with that of curcumin in male Wistar rats. Doses of curcumin 20 mg/kg intravenous or 40 mg/kg oral were used as standard regimens for comparison with the prodrug at equivalent doses in healthy adult rats. Blood, tissues, urine, and faeces were collected from time zero to 48 h after dosing to determine the prodrug level, curcumin level and a major metabolite by liquid chromatography-tandem spectrometry. The absolute oral bioavailability of curcumin diethyl disuccinate was not significantly improved compared with curcumin, with both compounds having oral bioavailability of curcumin less than 1 %. The major metabolic pathway of the prodrug was rapid hydrolysis to obtain curcumin, followed by glucuronidation. Interestingly, curcumin diethyl disuccinate gave superior tissue distribution with higher tissue to plasma ratio of curcumin and curcumin glucuronide in several organs after intravenous dosing at 1 and 4 h. The primary elimination route of curcumin glucuronide occurred via biliary and faecal excretion, with evidence of an entry into the enterohepatic circulation. Curcumin diethyl disuccinate did not significantly improve the oral bioavailability of curcumin due to first pass metabolism in the gastrointestinal tract. Further studies on reduction of first pass metabolism are required to optimise delivery of curcumin using a prodrug approach.

  12. Hydroquinone; A novel bioactive compound from plant-derived smoke can cue seed germination of lettuce

    Science.gov (United States)

    Kamran, Muhammad; Khan, Abdul L.; Ali, Liaqat; Hussain, Javid; Waqas, Muhammad; Al-Harrasi, Ahmed; Imran, Qari M.; Kim, Yoon-Ha; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-05-01

    Plant-derived smoke has been known to play an important role in distribution and growth of vegetation. Using a proficiently designed furnace, we extracted smoke from the leaves of four plant viz. Helianthus annuus, Aloe vera, Ginkgo biloba, and Cymbopogon jwarancusa. Smoke dilutions obtained from these plants were obtained in different concentrations to identify potential lettuce growth promoting smoke solution. Results revealed that smoke obtained from Ginkgo biloba significantly enhanced the lettuce seed germination. This solution was then partitioned into ethyl acetate, dichloromethane, n-hexane, chloroform and ether fractions. Ethyl acetate fraction was found to be potent to enhance seed germination. This fraction was subjected to column chromatography and spectroscopic techniques to obtain compound 1. This compound was identified as hydroquinone using 1D and 2D NMR techniques. At low concentrations (5, 10 and 20 ppm), compound 1 enhanced the lettuce seed germination; however, higher concentrations inhibited its growth as compared to control.

  13. Accumulation of copper by the aquatic macrophyte Salvinia biloba Raddi (Salviniaceae

    Directory of Open Access Journals (Sweden)

    F. Freitas

    2017-07-01

    Full Text Available Abstract Aquatic macrophytes have properties and mechanisms which are useful for the removal of substances in solution, commonly used in phytoremediation processes in aquatic environments. This study evaluated the performance of copper (Cu accumulation by Salvinia biloba Raddi (Salviniaceae in different metal concentrations (1, 3 and 5 µg mL-1, as well as the control treatment, measured at intervals of 0, 7 and 14 days under laboratory conditions, with control as to pH and luminosity. After the experiment, the S. biloba biomass was washed, kiln dried, crushed and subjected to the process of digestion, and subsequently the accumulated copper content was determined by atomic absorption spectroscopy. The results showed that S. biloba is apt at accumulating copper, varying significantly between different treatments and days of exposure to the contaminant, as well as its interaction (treatment × days. The highest accumulation values were observed in treatment with 5 µg mL-1, which at 14 days, with 11,861 µg g-1 of copper. We observed symptoms of toxicity and mortality in plants, probably indicating the effect of copper on the species when at high levels. Salvinia biloba is an efficient species in the removal of copper in solution, its recommendation as a remediating agent in aquatic ecosystems being possible.

  14. When science meets culture: The prevention and management of ...

    African Journals Online (AJOL)

    Because of the increasing number of men seeking treatment for ED, there is a need to assess the safety and biological plausibility of some of the readily available ... These include oysters, alcoholic beverages, chocolate, chilli, Epimedium extract (horny goat weed), Panax ginseng, Ginkgo biloba, Tribulis terrestris, Eriosema ...

  15. Ginkgolides and glycine receptors

    DEFF Research Database (Denmark)

    Jaracz, Stanislav; Nakanishi, Koji; Jensen, Anders A.

    2004-01-01

    Ginkgolides from the Ginkgo biloba tree are diterpenes with a cage structure consisting of six five-membered rings and a unique tBu group. They exert a variety of biological properties. In addition to being antagonists of the platelet activating factor receptor (PAFR), it has recently been shown ...

  16. Preparation of a tritiated ginkgolide

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Suehiro, Makiko; Nakanishi, Koji

    2004-01-01

    Ginkgolide B, a constituent of the tree Ginkgo biloba, was radiolabeled with the beta-emitter tritium ([(3)H]) in two steps from ginkgolide C. First, a triflate precursor was prepared utilizing the selective reactivity of 7-OH in ginkgolide C; the triflate was then reduced with sodium borotritide...

  17. Cooking enhances curcumin anti-cancerogenic activity through pyrolytic formation of "deketene curcumin".

    Science.gov (United States)

    Dahmke, Indra N; Boettcher, Stefan P; Groh, Matthias; Mahlknecht, Ulrich

    2014-05-15

    Curcumin is widely used in traditional Asian kitchen as a cooking ingredient. Despite its low bioavailability, epidemiological data, on low cancer incidence in Asia, suggest beneficial health effects of this compound. Therefore, the question arose whether cooking modifies the anti-cancerogenic effects of curcumin. To evaluate this, we pyrolysed curcumin with and without coconut fat or olive oil, and analysed the products by high-performance liquid chromatography (HPLC). A number of more hydrophilic curcumin isoforms and decomposition products, including a compound later identified by nuclear magnetic resonance spectroscopy (NMR) as "deketene curcumin" (1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one), formerly described as a synthetic curcumin derivative, were detected. Additionally, we proved that deketene curcumin, compared to curcumin, exhibits higher toxicity on B78H1 melanoma cells resulting in G2 arrest. In conclusion, deketene curcumin is formed as a consequence of pyrolysis during common household cooking, showing stronger anti-cancer effects than curcumin. Moreover, we propose a chemical reaction-pathway for this process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Inhibition of HIV-1 by curcumin A, a novel curcumin analog

    Science.gov (United States)

    Kumari, Namita; Kulkarni, Amol A; Lin, Xionghao; McLean, Charlee; Ammosova, Tatiana; Ivanov, Andrey; Hipolito, Maria; Nekhai, Sergei; Nwulia, Evaristus

    2015-01-01

    Despite the remarkable success of combination antiretroviral therapy at curtailing HIV progression, emergence of drug-resistant viruses, chronic low-grade inflammation, and adverse effects of combination antiretroviral therapy treatments, including metabolic disorders collectively present the impetus for development of newer and safer antiretroviral drugs. Curcumin, a phytochemical compound, was previously reported to have some in vitro anti-HIV and anti-inflammatory activities, but poor bioavailability has limited its clinical utility. To circumvent the bioavailability problem, we derivatized curcumin to sustain retro-aldol decomposition at physiological pH. The lead compound derived, curcumin A, showed increased stability, especially in murine serum where it was stable for up to 25 hours, as compared to curcumin that only had a half-life of 10 hours. Both curcumin and curcumin A showed similar inhibition of one round of HIV-1 infection in cultured lymphoblastoid (also called CEM) T cells (IC50=0.7 μM). But in primary peripheral blood mononuclear cells, curcumin A inhibited HIV-1 more potently (IC50=2 μM) compared to curcumin (IC50=12 μM). Analysis of specific steps of HIV-1 replication showed that curcumin A inhibited HIV-1 reverse transcription, but had no effect on HIV-1 long terminal repeat basal or Tat-induced transcription, or NF-κB-driven transcription at low concentrations that affected reverse transcription. Finally, we showed curcumin A induced expression of HO-1 and decreased cell cycle progression of T cells. Our findings thus indicate that altering the core structure of curcumin could yield more stable compounds with potent antiretroviral and anti-inflammatory activities. PMID:26366056

  19. Novel Curcumin Diclofenac Conjugate Enhanced Curcumin Bioavailability and Efficacy in Streptococcal Cell Wall-induced Arthritis.

    Science.gov (United States)

    Jain, S K; Gill, M S; Pawar, H S; Suresh, Sarasija

    2014-09-01

    Curcumin-diclofenac conjugate as been synthesized by esterification of phenolic group of curcumin with the acid moiety of diclofenac, and characterized by mass spectrometry, NMR, FTIR, DSC, thermogravimetric analysis and X-ray diffraction analysis. The relative solubility of curcumin-diclofenac conjugate, curcumin and diclofenac; stability of curcumin-diclofenac conjugate in intestinal extract; permeability study of curcumin-diclofenac conjugate using the everted rat intestinal sac method; stability of curcumin-diclofenac conjugate in gastrointestinal fluids and in vitro efficacy have been evaluated. In vivo bioavailability of curcumin-diclofenac conjugate and curcumin in Sprague-Dawley rats, and antiarthritic activity of curcumin-diclofenac conjugate, curcumin and diclofenac in modified streptococcal cell wall-induced arthritis model in Balb/c mice to mimic rheumatoid arthritis in humans have also been studied. In all of the above studies, curcumin-diclofenac conjugate exhibited enhanced stability as compared to curcumin; its activity was twice that of diclofenac in inhibiting thermal protein denaturation taken as a measure of in vitro antiinflammatory activity; it enhanced the bioavailability of curcumin by more than five folds, and significantly (Parthritis in streptococcal cell wall-induced arthritis model as compared to both diclofenac and curcumin.

  20. Modulation of the Proteasome Pathway by Nano-Curcumin and Curcumin in Retinal Pigment Epithelial Cells.

    Science.gov (United States)

    Ramos de Carvalho, J Emanuel; Verwoert, Milan T; Vogels, Ilse M C; Schipper-Krom, Sabine; Van Noorden, Cornelis J F; Reits, Eric A; Klaassen, Ingeborg; Schlingemann, Reinier O

    2018-01-01

    Curcumin has multiple biological effects including the modulation of protein homeostasis by the ubiquitin-proteasome system. The purpose of this study was to assess the in vitro cytotoxic and oxidative effects of nano-curcumin and standard curcumin and characterize their effects on proteasome regulation in retinal pigment epithelial (RPE) cells. Viability, cell cycle progression, and reactive oxygen species (ROS) production were determined after treatment with nano-curcumin or curcumin. Subsequently, the effects of nano-curcumin and curcumin on proteasome activity and the gene and protein expression of proteasome subunits PA28α, α7, β5, and β5i were assessed. Nano-curcumin (5-100 μM) did not show significant cytotoxicity or anti-oxidative effects against H2O2-induced oxidative stress, whereas curcumin (≥10 μM) was cytotoxic and a potent inducer of ROS production. Both nano-curcumin and curcumin induced changes in proteasome-mediated proteolytic activity characterized by increased activity of the proteasome subunits β2 and β5i/β1 and reduced activity of β5/β1i. Likewise, nano-curcumin and curcumin affected mRNA and protein levels of household and immunoproteasome subunits. Nano-curcumin is less toxic to RPE cells and less prone to induce ROS production than curcumin. Both nano-curcumin and curcumin increase proteasome-mediated proteolytic activity. These results suggest that nano-curcumin may be regarded as a proteasome-modulating agent of limited cytotoxicity for RPE cells. The Author(s). Published by S. Karger AG, Basel.

  1. Synthesis and Evaluation of the Anti-Oxidant Capacity of Curcumin Glucuronides, the Major Curcumin Metabolites

    OpenAIRE

    Choudhury, Ambar K.; Raja, Suganya; Mahapatra, Sanjata; Nagabhushanam, Kalyanam; Majeed, Muhammed

    2015-01-01

    Curcumin metabolites namely curcumin monoglucuronide and curcumin diglucuronide were synthesized using an alternative synthetic approach. The anti-oxidant potential of these curcumin glucuronides was compared with that of curcumin using DPPH scavenging method and Oxygen Radical Absorbance Capacity (ORAC) assay. The results show that curcumin monoglucuronide exhibits 10 fold less anti-oxidant activity (DPPH method) and the anti-oxidant capacity of curcumin diglucuronide is highly attenuated co...

  2. Novel Curcumin Diclofenac Conjugate Enhanced Curcumin Bioavailability and Efficacy in Streptococcal Cell Wall-induced Arthritis

    OpenAIRE

    Jain, S. K.; Gill, M. S.; Pawar, H. S.; Suresh, Sarasija

    2014-01-01

    Curcumin-diclofenac conjugate as been synthesized by esterification of phenolic group of curcumin with the acid moiety of diclofenac, and characterized by mass spectrometry, NMR, FTIR, DSC, thermogravimetric analysis and X-ray diffraction analysis. The relative solubility of curcumin-diclofenac conjugate, curcumin and diclofenac; stability of curcumin-diclofenac conjugate in intestinal extract; permeability study of curcumin-diclofenac conjugate using the everted rat intestinal sac method; st...

  3. Curcumin and aging

    Science.gov (United States)

    Curcumin has been used commonly as a spice, food additive, and an herbal medicine worldwide. Known as a bioactive polyphenolic, curcumin has a broad range of beneficial properties to human health. Recently, active research on curcumin with respect to aging and related traits in model organisms has d...

  4. Effects of elevated ozone concentrations on reactive oxygen metabolism and related gene expression in Ginkgo biloba leaves%大气臭氧浓度升高对银杏叶片活性氧代谢及相关基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    阮亚男; 徐胜; 郭龙; 朱明珠; 王聪; 李淑媛; 王红艳

    2017-01-01

    By using the open top chambers (OTCs) fumigation method,this paper investigated the changes of foliar injury,level of reactive oxygen species (ROS),activities and gene expression of antioxidant enzymes in Ginkgo biloba leaves under different ozone (ambient ozone≈40,80,160,200 nmol · mol-1) concentrations,in order to study the effects of elevated ozone (O3) concentrations on reactive metabolism.The results showed that the obvious foliar injuries were observed in 160 and 200 nmol mol-1 O3 treatments,while no visible injury was observed in 80 nmol · mol-1 O3 and ambient O3 treatments.After 20 d,a significant increase in O2 generation rate was observed in G.biloba leaves exposed to 160,200 nmol · mol-1 O3,compared with ambient ozone and 80 nmol · mol-1 O3,and there were no significant differences between ambient O3 and 80 nmol · mol-1 treatments.After 40 d,H2O2 content of G.biloba leaves in 160 and 200 nmol · mol-1 O3 was significantly higher than that in 80 nmol · mol-1 and ambient ozone,respectively.The activities of catalase (CAT) in 160 and 200 nmol · mol-1 treatments were also significantly higher than that in 80 nmol · mol-1 and ambient O3 treatments.The ascorbate peroxidase (APX) activity of leaves for each elevated O3 treatment was lower than that of ambient ozone.The level of CAT and APX expression increased progressively after 40 d O3 treatment.The expression intensity of GbD was conspicuously strengthened along with the increase of ozone concentration and fumigation time.Level of reactive oxygen increased,activities of antioxidant enzyme decreased,level of gene expression down-regulated,and foliar visible injury was observed in leaves of G.biloba in elevated ozone stress.%采用开顶式气室熏蒸法,设置自然条件下臭氧(O3)浓度(对照,约40 nmol·mol-1)、80、160及200 nmol·mol-14

  5. A chemical profiling strategy for semi-quantitative analysis of flavonoids in Ginkgo extracts.

    Science.gov (United States)

    Yang, Jing; Wang, An-Qi; Li, Xue-Jing; Fan, Xue; Yin, Shan-Shan; Lan, Ke

    2016-05-10

    Flavonoids analysis in herbal products is challenged by their vast chemical diversity. This work aimed to develop a chemical profiling strategy for the semi-quantification of flavonoids using extracts of Ginkgo biloba L. (EGB) as an example. The strategy was based on the principle that flavonoids in EGB have an almost equivalent molecular absorption coefficient at a fixed wavelength. As a result, the molecular-contents of flavonoids were able to be semi-quantitatively determined by the molecular-concentration calibration curves of common standards and recalculated as the mass-contents with the characterized molecular weight (MW). Twenty batches of EGB were subjected to HPLC-UV/DAD/MS fingerprinting analysis to test the feasibility and reliability of this strategy. The flavonoid peaks were distinguished from the other peaks with principle component analysis and Pearson correlation analysis of the normalized UV spectrometric dataset. Each flavonoid peak was subsequently tentatively identified by the MS data to ascertain their MW. It was highlighted that the flavonoids absorption at Band-II (240-280 nm) was more suitable for the semi-quantification purpose because of the less variation compared to that at Band-I (300-380 nm). The semi-quantification was therefore conducted at 254 nm. Beyond the qualitative comparison results acquired by common chemical profiling techniques, the semi-quantitative approach presented the detailed compositional information of flavonoids in EGB and demonstrated how the adulteration of one batch was achieved. The developed strategy was believed to be useful for the advanced analysis of herbal extracts with a high flavonoid content without laborious identification and isolation of individual components. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Molecular cloning, characterization and expression of phenylalanine ...

    African Journals Online (AJOL)

    A full-length cDNA and genomic DNA of phenylalanine ammonia-lyase gene, which catalyzes the first step in the flavonoid biosynthetic pathway, were isolated from Ginkgo biloba for the first time (designated as GbPAL, GenBank Accession No. EU071050). The cDNA and genomic DNA sequences of GbPAL were the same, ...

  7. Curcumin Implants, not Curcumin Diet Inhibits Estrogen-Induced Mammary Carcinogenesis in ACI Rats

    Science.gov (United States)

    Bansal, Shyam S.; kausar, Hina; Vadhanam, Manicka V.; Ravoori, Srivani; Pan, Jianmin; Rai, Shesh N.; Gupta, Ramesh C.

    2014-01-01

    Curcumin is widely known for its anti-oxidant, anti-inflammatory and anti-proliferative activities in cell culture studies. However, poor oral bioavailability limited its efficacy in animal and clinical studies. Recently, we developed polymeric curcumin implants that circumvents oral bioavailability issues, and tested their potential against 17β-estradiol (E2)-mediated mammary tumorigenesis. Female ACI rats were administered curcumin either via diet (1,000 ppm) or via polymeric curcumin implants (two 2-cm; 200 mg each; 20% drug load) 4 days prior to grafting a subcutaneous E2 silastic implant (1.2 cm, 9 mg E2). Implants were changed after 4½ months to provide higher curcumin dose at the appearance of palpable tumors. The animals were euthanized after 3 weeks, 3 months and after the tumor incidence reached >80% (~6 months) in control animals. The curcumin administered via implants resulted in significant reduction in both the tumor multiplicity (2±1 vs 5±3; p=0.001) and tumor volume (184±198 mm3 vs 280±141 mm3; p=0.0283); the dietary curcumin, however, was ineffective. Dietary curcumin increased hepatic CYP1A and CYP1B1 activities without any effect on CYP3A4 activity whereas curcumin implants increased both CYP1A and CYP3A4 activities but decreased CYP1B1 activity in presence of E2. Since CYP1A and 3A4 metabolize most of the E2 to its non-carcinogenic 2-OH metabolite and CYP1B1 produces potentially carcinogenic 4-OH metabolite, favorable modulation of these CYPs via systemically delivered curcumin could be one of the potential mechanisms. The analysis of plasma and liver by HPLC showed substantially higher curcumin levels via implants versus the dietary route despite substantially higher dose administered. PMID:24501322

  8. Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice

    Science.gov (United States)

    Zhongfa, Liu; Chiu, Ming; Wang, Jiang; Chen, Wei; Yen, Winston; Fan-Havard, Patty; Yee, Lisa D.; Chan, Kenneth K.

    2012-01-01

    Purpose Curcumin has shown a variety of biological activity for various human diseases including cancer in preclinical setting. Its poor oral bioavailability poses significant pharmacological barriers to its clinical application. Here, we established a practical nano-emulsion curcumin (NEC) containing up to 20% curcumin (w/w) and conducted the pharmacokinetics of curcuminoids and curcumin metabolites in mice. Methods This high loading NEC was formulated based on the high solubility of curcumin in polyethylene glycols (PEGs) and the synergistic enhancement of curcumin absorption by PEGs and Cremophor EL. The pharmacokinetics of curcuminoids and curcumin metabolites was characterized in mice using a LC–MS/MS method, and the pharmacokinetic parameters were determined using WinNonlin computer software. Results A tenfold increase in the AUC0→24h and more than 40-fold increase in the Cmax in mice were observed after an oral dose of NEC compared with suspension curcumin in 1% methylcellulose. The plasma pharmacokinetics of its two natural congeners, demethoxycurcumin and bisdemethoxycurcumin, and three metabolites, tetrahydrocurcumin (THC), curcumin-O-glucuronide, and curcumin-O-sulfate, was characterized for the first time in mice after an oral dose of NEC. Conclusion This oral absorption enhanced NEC may provide a practical formulation to conduct the correlative study of the PK of curcuminoids and their pharmacodynamics, e.g., hypomethylation activity in vivo. PMID:21968952

  9. Ginkgo fruit extract as an additive to modify rumen microbiota and fermentation and to mitigate methane production.

    Science.gov (United States)

    Oh, S; Shintani, R; Koike, S; Kobayashi, Y

    2017-03-01

    Ginkgo fruit, an unused byproduct of the ginkgo nut industry, contains antimicrobial compounds known as anacardic acids. Two major cultivars of ginkgo, Kyuju (K) and Tokuro (T), were evaluated for their potential as a feed additive for ruminants. In batch culture, we incubated a mixture of hay and concentrate in diluted rumen fluid with or without 1.6% (fruit equivalent) ginkgo fruit extract. We conducted another series of batch culture studies to determine the dose response of fermentation. We also conducted continuous culture using the rumen simulation technique (RUSITEC) with cultivar K and carried out a pure culture study to monitor the sensitivity of 17 representative rumen bacterial species to ginkgo extract and component phenolics. Although both K and T extracts led to decreased methane and increased propionate production, changes were more apparent with K extract, and were dose-dependent. Total gas production was depressed at doses ≥3.2%, suggesting that 1.6% was the optimal supplementation level. In RUSITEC fermentation supplemented with 1.6% ginkgo K, methane decreased by 53% without affecting total gas or total VFA production, but with decreased acetate and increased propionate. Disappearance of dry matter, neutral detergent fiber, and acid detergent fiber were not affected by ginkgo, but ammonia levels were decreased. Quantitative PCR indicated that the abundance of protozoa, fungi, methanogens, and bacteria related to hydrogen and formate production decreased, but the abundance of bacteria related to propionate production increased. MiSeq analysis (Illumina Inc., San Diego, CA) confirmed these bacterial changes and identified archaeal community changes, including a decrease in Methanobrevibacter and Methanomassiliicoccaceae and an increase in Methanoplanus. Pure culture study results supported the findings for the above bacterial community changes. These results demonstrate that ginkgo fruit can modulate rumen fermentation toward methane mitigation

  10. The Role of Liuwei Dihuang Pills and Ginkgo Leaf Tablets in Treating Diabetic Complications

    Directory of Open Access Journals (Sweden)

    Yue Zhao

    2016-01-01

    Full Text Available Objective. To observe the clinical prophylactic and therapeutic efficacy of Liuwei Dihuang Pills and Ginkgo Leaf Tablets for type 2 diabetic vascular complications. Methods. It was a randomized, double-blind and placebo-controlled clinical trial. 140 outpatients with type 2 diabetes were recruited and randomly divided into the treatment group and control group. The two groups were given basic therapy (management of blood sugar, blood pressure, etc.. Additionally, the treatment group was given Liuwei Dihuang Pills and Ginkgo Leaf Tablets, while the control group was given Liuwei Dihuang Pills and Ginkgo Leaf Tablets placebos. All subjects were followed up for consecutive 36 months and observed monthly. The clinical data as urinary microalbumin to urinary creatinine ratio (Umalb/cr, carotid intima-media thickness (IMT, diabetic nephropathy (DN and diabetic retinopathy (DR prevalence, cardiovascular and cerebrovascular events, blood glucose, and blood pressure were collected and analyzed statistically. Results. After 36-month treatment, the Umalb/cr level and DN and DR prevalence in treatment group were all significantly lower than control group (P0.05. Conclusions. Liuwei Dihuang Pills and Ginkgo Leaf Tablets are beneficial to diabetic microvascular complications, while the efficacy to diabetic macrovascular complications needs more observations.

  11. The Role of Liuwei Dihuang Pills and Ginkgo Leaf Tablets in Treating Diabetic Complications.

    Science.gov (United States)

    Zhao, Yue; Yu, Jiangyi; Liu, Jingshun; An, Xiaofei

    2016-01-01

    Objective. To observe the clinical prophylactic and therapeutic efficacy of Liuwei Dihuang Pills and Ginkgo Leaf Tablets for type 2 diabetic vascular complications. Methods. It was a randomized, double-blind and placebo-controlled clinical trial. 140 outpatients with type 2 diabetes were recruited and randomly divided into the treatment group and control group. The two groups were given basic therapy (management of blood sugar, blood pressure, etc.). Additionally, the treatment group was given Liuwei Dihuang Pills and Ginkgo Leaf Tablets, while the control group was given Liuwei Dihuang Pills and Ginkgo Leaf Tablets placebos. All subjects were followed up for consecutive 36 months and observed monthly. The clinical data as urinary microalbumin to urinary creatinine ratio (Umalb/cr), carotid intima-media thickness (IMT), diabetic nephropathy (DN) and diabetic retinopathy (DR) prevalence, cardiovascular and cerebrovascular events, blood glucose, and blood pressure were collected and analyzed statistically. Results. After 36-month treatment, the Umalb/cr level and DN and DR prevalence in treatment group were all significantly lower than control group ( P 0.05). Conclusions. Liuwei Dihuang Pills and Ginkgo Leaf Tablets are beneficial to diabetic microvascular complications, while the efficacy to diabetic macrovascular complications needs more observations.

  12. Formulation and characterization of novel functional beverages with antioxidant and anti-acetylcholinesterase activities

    OpenAIRE

    Suree Nanasombat; Jidapa Thonglong; Jutharat Jitlakha

    2015-01-01

    Background: Nowadays, there is increased consumer demand for high-antioxidant foods. Drinking high-antioxidant beverages may help to protect against aging, Alzheimer’s disease, and other chronic diseases. Grapes and some plants including Phyllanthus emblica, Terminalia chebula, Kaempferia parviflora, Centella asiatica, Nelumbo nucifera, Rauvolfia serpentina, Ginkgo biloba, Crocus sativus, Clitoria ternatea and others are well-known to possess antioxidant, neuroprotective and other hea...

  13. A curcumin activated carboxymethyl cellulose-montmorillonite clay nanocomposite having enhanced curcumin release in aqueous media.

    Science.gov (United States)

    Madusanka, Nadeesh; de Silva, K M Nalin; Amaratunga, Gehan

    2015-12-10

    A novel curcumin activated carboxymethylcellulose-montmorillonite nanocomposite is reported. A superabsorbent biopolymer; carboxymethyl cellulose (CMC) was used as an emulsifier for curcumin which is a turmeric derived water insoluble polyphenolic compound with antibacterial/anti-cancer properties. Montmorillonite (MMT) nanoclay was incorporated in the formulation as a matrix material which also plays a role in release kinetics. It was observed that water solubility of curcumin in the nanocomposite has significantly increased (60% release within 2h and 30 min in distilled water at pH 5.4) compared to pure curcumin. The prepared curcumin activated carboxymethylcellulose-montmorillonite nanocomposite is suitable as a curcumin carrier having enhanced release and structural properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Awareness Support in Scientific Event Management with ginkgo

    NARCIS (Netherlands)

    Reinhardt, Wolfgang; Maicher, Julian; Drachsler, Hendrik; Sloep, Peter

    2011-01-01

    Reinhardt, W., Maicher, J., Drachsler, H., & Sloep, P. B. (2011). Awareness Support in Scientific Event Management with ginkgo. In Proceedings of the 11th International Conference on Knowledge Management and Knowledge Technologies (i-Know’11) (pp. 40:1–40:8). New York, NY, USA: ACM.

  15. Curcumin and neurodegenerative diseases

    Science.gov (United States)

    Monroy, Adriana; Lithgow, Gordon J.; Alavez, Silvestre

    2013-01-01

    Over the last ten years curcumin has been reported to be effective against a wide variety of diseases and is characterized as having anti-carcinogenic, hepatoprotective, thrombosuppressive, cardioprotective, anti-arthritic, and anti-infectious properties. Recent studies performed in both vertebrate and invertebrate models have been conducted to determine whether curcumin was also neuroprotective. The efficacy of curcumin in several pre-clinical trials for neurodegenerative diseases has created considerable excitement mainly due to its lack of toxicity and low cost. This suggests that curcumin could be a worthy candidate for nutraceutical intervention. Since aging is a common risk factor for neurodegenerative diseases, it is possible that some compounds that target aging mechanisms could also prevent these kinds of diseases. One potential mechanism to explain several of the general health benefits associated with curcumin is that it may prevent aging-associated changes in cellular proteins that lead to protein insolubility and aggregation. This loss in protein homeostasis is associated with several age-related diseases. Recently, curcumin has been found to help maintain protein homeostasis and extend lifespan in the model invertebrate Caenorhabditis elegans. Here, we review the evidence from several animal models that curcumin improves healthspan by preventing or delaying the onset of various neurodegenerative diseases. PMID:23303664

  16. Targets of curcumin

    Science.gov (United States)

    Zhou, Hongyu; Beevers, Christopher S.; Huang, Shile

    2010-01-01

    Curcumin (diferuloylmethane), an orange-yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of the plant Curcuma longa. For centuries, curcumin has been used in some medicinal preparation or used as a food-coloring agent. In recent years, extensive in vitro and in vivo studies suggested curcumin has anticancer, antiviral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties. The underlying mechanisms of these effects are diverse and appear to involve the regulation of various molecular targets, including transcription factors (such as nuclear factor-κB), growth factors (such as vascular endothelial cell growth factor), inflammatory cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6), protein kinases (such as mammalian target of rapamycin, mitogen-activated protein kinases, and Akt) and other enzymes (such as cyclooxygenase 2 and 5 lipoxygenase). Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, curcumin has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various malignant diseases, arthritis, allergies, Alzheimer’s disease, and other inflammatory illnesses. This review summarizes various in vitro and in vivo pharmacological aspects of curcumin as well as the underlying action mechanisms. The recently identified molecular targets and signaling pathways modulated by curcumin are also discussed here. PMID:20955148

  17. Bioavailability of curcumin: problems and promises.

    Science.gov (United States)

    Anand, Preetha; Kunnumakkara, Ajaikumar B; Newman, Robert A; Aggarwal, Bharat B

    2007-01-01

    Curcumin, a polyphenolic compound derived from dietary spice turmeric, possesses diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Phase I clinical trials have shown that curcumin is safe even at high doses (12 g/day) in humans but exhibit poor bioavailability. Major reasons contributing to the low plasma and tissue levels of curcumin appear to be due to poor absorption, rapid metabolism, and rapid systemic elimination. To improve the bioavailability of curcumin, numerous approaches have been undertaken. These approaches involve, first, the use of adjuvant like piperine that interferes with glucuronidation; second, the use of liposomal curcumin; third, curcumin nanoparticles; fourth, the use of curcumin phospholipid complex; and fifth, the use of structural analogues of curcumin (e.g., EF-24). The latter has been reported to have a rapid absorption with a peak plasma half-life. Despite the lower bioavailability, therapeutic efficacy of curcumin against various human diseases, including cancer, cardiovascular diseases, diabetes, arthritis, neurological diseases and Crohn's disease, has been documented. Enhanced bioavailability of curcumin in the near future is likely to bring this promising natural product to the forefront of therapeutic agents for treatment of human disease.

  18. Sensory and chemical assessment of silver pomfret (Pampus argenteus treated with Ginkgo biloba leaf extract treatment during storage in ice

    Directory of Open Access Journals (Sweden)

    Weiqing Lan

    2018-01-01

    Full Text Available This study investigated the physical (L*, a*, b*, texture profile analyses, pH, chemical (TVB-N, K value and TBA, microbiological, amino acid content, and flavor effects that Gingko biloba leaf extract (GBLE had on silver pomfret (Pampus argenteus stored at 4 ± 1 °C in ice for 18 days. Fresh pomfret samples were obtained directly from the local fish market and transported to the laboratory with ice immediately. After being gutted, washed, filleted and trimmed in a water-ice mixture, samples were treated with different concentrations of GBLE (0.0 mg/mL, 2.5 mg/mL, 5.0 mg/mL, 10.0 mg/mL and packaged in Polyethylene bag, then stored in a refrigerator at 4 ± 1 °C with ice. The results show that the shelf-life of untreated (0.0 mg/mL pomfret samples was 8–9 days compared to 14–15 days for the GBLE1 (2.5 mg/mL treated group. The assessment results showed that different concentrations of GBLE had variable effects on preserving the texture parameters of acceptability limit, inhibit lipid oxidation, protein degradation, and microorganism growth. 2.5 mg/mL of GBLE was the best for the preservation of pomfret during storage in ice. Therefore, there is potential use for GBLE as a preservative to extend the shelf-life of pomfret during chilled storage in ice.

  19. Topical Curcumin-Based Cream Is Equivalent to Dietary Curcumin in a Skin Cancer Model

    International Nuclear Information System (INIS)

    Sonavane, K.; Phillips, J.; Lakshmaiah, R. R.; Ekshyyan, O.; Moore-Medlin, T.; Rong, X.; Nathan, C. O.; Ekshyyan, O.; Moore-Medlin, T.; Rong, X.; Nathan, C.O.; Gill, J. R.; Clifford, J. L.; Abreo, F.; Boudreaux, D.; Nathan, C. O.

    2012-01-01

    Skin squamous cell carcinoma (SCC), the most common cancer in the USA, is a growing problem with the use of tanning booths causing sun-damaged skin. Antiproliferative effects of curcumin were demonstrated in an aggressive skin cancer cell line SRB12-p9 (ρ< 0.05 compared to control). Topical formulation was as effective as oral curcumin at suppressing tumor growth in a mouse skin cancer model. Curcumin at 15 mg administered by oral, topical, or combined formulation significantly reduced tumor growth compared to control (ρ=0.004). Inhibition of pAKT, pS6, p-4EBP1, pSTAT3, and pERK 1/2 was noted in SRB12-p9 cells post-curcumin treatment compared to control (ρ<0.05). Inhibition of pSTAT3 and pERK 1/2 was also noted in curcumin-treated groups in vivo. IHC analysis revealed human tumor specimens that expressed significantly more activated pERK ( ρ=0.006) and pS6 (ρ< 0.0001) than normal skin samples. This is the first study to compare topical curcumin to oral curcumin. Our data supports the use of curcumin as a chemo preventive for skin SCC where condemned skin is a significant problem. Prevention strategies offer the best hope of future health care costs in a disease that is increasing in incidence due to increased sun exposure.

  20. Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin.

    Science.gov (United States)

    Dey, Soma; Sreenivasan, K

    2014-01-01

    Curcumin is a potential drug for various diseases including cancer. Prime limitations associated with curcumin are low water solubility, rapid hydrolytic degradation and poor bioavailability. In order to redress these issues we developed Alginate-Curcumin (Alg-Ccm) conjugate which was characterized by FTIR and (1)H NMR spectroscopy. The conjugate self-assembled in aqueous solution forming micelles with an average hydrodynamic diameter of 459 ± 0.32 nm and negative zeta potential. The spherical micelles were visualized by TEM. The critical micelle concentration (CMC) of Alg-Ccm conjugate was determined. A significant enhancement in the aqueous solubility of curcumin was observed upon conjugation with alginate. Formation of micelles improved the stability of curcumin in water at physiological pH. The cytotoxic activity of Alg-Ccm was quantified by MTT assay using L-929 fibroblast cells and it was found to be potentially cytotoxic. Hence, Alg-Ccm could be a promising drug conjugate as well as a nanosized delivery vehicle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Curcumin in inflammatory diseases.

    Science.gov (United States)

    Shehzad, Adeeb; Rehman, Gauhar; Lee, Young Sup

    2013-01-01

    Curcumin (diferuloylmethane), a yellow coloring agent extracted from turmeric is also used as a remedy for the treatment and prevention of inflammatory diseases. Acute and chronic inflammation is a major factor in the progression of obesity, type II diabetes, arthritis, pancreatitis, cardiovascular, neurodegenerative and metabolic diseases, as well as certain types of cancer. Turmeric has a long history of use in Ayurvedic medicine for the treatment of inflammatory disorders. Recent studies on the efficacy and therapeutic applicability of turmeric have suggested that the active ingredient of tumeric is curcumin. Further, compelling evidence has shown that curcumin has the ability to inhibit inflammatory cell proliferation, invasion, and angiogenesis through multiple molecular targets and mechanisms of action. Curcumin is safe, non-toxic, and mediates its anti-inflammatory effects through the down-regulation of inflammatory transcription factors, cytokines, redox status, protein kinases, and enzymes that all promote inflammation. In addition, curcumin induces apoptosis through mitochondrial and receptor-mediated pathways, as well as activation of caspase cascades. In the current study, the anti-inflammatory effects of curcumin were evaluated relative to various chronic inflammatory diseases. Based on the available pharmacological data obtained from in vitro and in vivo research, as well as clinical trials, an opportunity exists to translate curcumin into clinics for the prevention of inflammatory diseases in the near future. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  2. Multifunctional Curcumin Mediate Multitherapeutic Effects.

    Science.gov (United States)

    Shehzad, Adeeb; Qureshi, Munibah; Anwar, Muhammad Nabeel; Lee, Young Sup

    2017-09-01

    Inflammation can promote the development of arthritis, obesity, cardiovascular, type II diabetes, pancreatitis, metabolic and neurodegenerative diseases, and certain types of cancer. Compounds isolated from plants have been practiced since ancient times for curing various ailments including inflammatory disorders and to support normal physiological functions. Curcumin (diferuloylmethane) is a yellow coloring agent, extracted from turmeric that has been used for the prevention and treatment of various inflammatory diseases. Numerous studies have shown that curcumin modulate multiple molecular targets and can be translated to the clinics for multiple therapeutic processes. There is compelling evidence that curcumin can block cell proliferation, invasion, and angiogenesis as well as reduced the prolonged survival of cancer cells. Curcumin mediates anti-inflammatory effect through downregulation of inflammatory cytokines, transcription factors, protein kinases, and enzymes that promote inflammation and development of chronic diseases. In addition, curcumin induces apoptosis through mitochondrial and receptor-mediated pathways by activating caspase cascades. Curcumin is a safe and nontoxic drug that has been reported to be well tolerated. Available clinical trials support the potential role of curcumin for treatment of various inflammatory disorders. However, curcumin's efficacy is hindered by poor absorption and low bioavailability, which limit its translation into clinics. This review outlines the potential pharmacological and clinical role of curcumin, which provide a gateway for the beneficial role of plant isolated compounds in treatment of various inflammatory diseases and cancer. © 2017 Institute of Food Technologists®.

  3. Effect of plant extracts on Alzheimer′s disease: An insight into therapeutic avenues

    Directory of Open Access Journals (Sweden)

    M Obulesu

    2011-01-01

    Full Text Available Alzheimer′s disease (AD is a devastative neurodegenerative disorder which needs adequate studies on effective treatment options. The extracts of plants and their effect on the amelioration of AD symptoms have been extensively studied. This paper summarizes the mechanisms like acetylcholinesterase (AChE inhibition, modification of monoamines, antiamyloid aggregation effect, and antioxidant activity which are actively entailed in the process of amelioration of AD symptoms. These effects are induced by extracts of a few plants of different origin like Yizhi Jiannao, Moringa oleifera (Drumstick tree, Ginkgo Biloba (Ginkgo/Maidenhair tree, Cassia obtisufolia (Sicklepod, Desmodium gangeticum (Sal Leaved Desmodium, Melissa officinalis (Lemon Balm, and Salvia officinalis (Garden sage, common sage.

  4. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth

    Directory of Open Access Journals (Sweden)

    Yallapu Murali M

    2010-04-01

    Full Text Available Abstract Background Chemo/radio-resistance is a major obstacle in treating advanced ovarian cancer. The efficacy of current treatments may be improved by increasing the sensitivity of cancer cells to chemo/radiation therapies. Curcumin is a naturally occurring compound with anti-cancer activity in multiple cancers; however, its chemo/radio-sensitizing potential is not well studied in ovarian cancer. Herein, we demonstrate the effectiveness of a curcumin pre-treatment strategy for chemo/radio-sensitizing cisplatin resistant ovarian cancer cells. To improve the efficacy and specificity of curcumin induced chemo/radio sensitization, we developed a curcumin nanoparticle formulation conjugated with a monoclonal antibody specific for cancer cells. Methods Cisplatin resistant A2780CP ovarian cancer cells were pre-treated with curcumin followed by exposure to cisplatin or radiation and the effect on cell growth was determined by MTS and colony formation assays. The effect of curcumin pre-treatment on the expression of apoptosis related proteins and β-catenin was determined by Western blotting or Flow Cytometry. A luciferase reporter assay was used to determine the effect of curcumin on β-catenin transcription activity. The poly(lactic acid-co-glycolic acid (PLGA nanoparticle formulation of curcumin (Nano-CUR was developed by a modified nano-precipitation method and physico-chemical characterization was performed by transmission electron microscopy and dynamic light scattering methods. Results Curcumin pre-treatment considerably reduced the dose of cisplatin and radiation required to inhibit the growth of cisplatin resistant ovarian cancer cells. During the 6 hr pre-treatment, curcumin down regulated the expression of Bcl-XL and Mcl-1 pro-survival proteins. Curcumin pre-treatment followed by exposure to low doses of cisplatin increased apoptosis as indicated by annexin V staining and cleavage of caspase 9 and PARP. Additionally, curcumin pre

  5. Comparison of Inhibitory Effect of Curcumin Nanoparticles and Free Curcumin in Human Telomerase Reverse Transcriptase Gene Expression in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Nosratollah Zarghami

    2013-02-01

    Full Text Available Purpose: Telomerase is expressed in most cancers, including breast cancer. Curcumin, a polyphenolic compound that obtained from the herb of Curcuma longa, has many anticancer effects. But, its effect is low due to poor water solubility. In order to improve its solubility and drug delivery, we have utilized a β-cyclodextrin-curcumin inclusion complex. Methods: To evaluate cytotoxic effects of cyclodextrin-curcumin and free curcumin, MTT assay was done. Cells were treated with equal concentration of cyclodextrin-curcumin and free curcumin. Telomerase gene expression level in two groups was compared by Real-time PCR. Results: MTT assay demonstrated that β-cyclodextrin-curcumin enhanced curcumin delivery in T47D breast cancer cells. The level of telomerase gene expression in cells treated with cyclodextrin-curcumin was lower than that of cells treated with free curcumin (P=0.001. Conclusion: Results are suggesting that cyclodextrin-curcumin complex can be more effective than free curcumin in inhibition of telomerase expression.

  6. Curcumin-Eudragit® E PO solid dispersion: A simple and potent method to solve the problems of curcumin.

    Science.gov (United States)

    Li, Jinglei; Lee, Il Woo; Shin, Gye Hwa; Chen, Xiguang; Park, Hyun Jin

    2015-08-01

    Using a simple solution mixing method, curcumin was dispersed in the matrix of Eudragit® E PO polymer. Water solubility of curcumin in curcumin-Eudragit® E PO solid dispersion (Cur@EPO) was greatly increased. Based on the results of several tests, curcumin was demonstrated to exist in the polymer matrix in amorphous state. The interaction between curcumin and the polymer was investigated through Fourier transform infrared spectroscopy and (1)H NMR which implied that OH group of curcumin and carbonyl group of the polymer involved in the H bonding formation. Cur@EPO also provided protection function for curcumin as verified by the pH challenge and UV irradiation test. The pH value influenced curcumin release profile in which sustained release pattern was revealed. Additionally, in vitro transdermal test was conducted to assess the potential of Cur@EPO as a vehicle to deliver curcumin through this alternative administration route. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Curcumin Reverse Methicillin Resistance in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Su-Hyun Mun

    2014-11-01

    Full Text Available Curcumin, a natural polyphenolic flavonoid extracted from the rhizome of Curcuma longa L., was shown to possess superior potency to resensitize methicillin-resistant Staphylococcus aureus (MRSA to antibiotics. Previous studies have shown the synergistic activity of curcumin with β-lactam and quinolone antibiotics. Further, to understand the anti-MRSA mechanism of curcumin, we investigated the potentiated effect of curcumin by its interaction in diverse conditions. The mechanism of anti-MRSA action of curcumin was analyzed by the viability assay in the presence of detergents, ATPase inhibitors and peptidoglycan (PGN from S. aureus, and the PBP2a protein level was analyzed by western blotting. The morphological changes in the curcumin-treated MRSA strains were investigated by transmission electron microscopy (TEM. We analyzed increased susceptibility to MRSA isolates in the presence of curcumin. The optical densities at 600 nm (OD600 of the suspensions treated with the combinations of curcumin with triton X-100 and Tris were reduced to 63% and 59%, respectively, compared to curcumin without treatment. N,N'-dicyclohexylcarbodiimide (DCCD and sodium azide (NaN3 were reduced to 94% and 55%, respectively. When peptidoglycan (PGN from S. aureus was combined with curcumin, PGN (0–125 μg/mL gradually blocked the antibacterial activity of curcumin (125 μg/mL; however, at a concentration of 125 µg/mL PGN, it did not completely block curcumin. Curcumin has a significant effect on the protein level of PBP2a. The TEM images of MRSA showed damage of the cell wall, disruption of the cytoplasmic contents, broken cell membrane and cell lysis after the treatment of curcumin. These data indicate a remarkable antibacterial effect of curcumin, with membrane permeability enhancers and ATPase inhibitors, and curcumin did not directly bind to PGN on the cell wall. Further, the antimicrobial action of curcumin involved in the PBP2a-mediated resistance mechanism was

  8. Curcumin nanodisks: formulation and characterization

    OpenAIRE

    Ghosh, Mistuni; Singh, Amareshwar T. K.; Xu, Wenwei; Sulchek, Todd; Gordon, Leo I.; Ryan, Robert O.

    2010-01-01

    Nanodisks (ND) are nanoscale, disk-shaped phospholipid bilayers whose edge is stabilized by apolipoproteins. In the present study, ND were formulated with the bioactive polyphenol, curcumin, at a 6:1 phospholipid:curcumin molar ratio. Atomic force microscopy revealed that curcumin-ND are particles with diameters

  9. Modulation of the Proteasome Pathway by Nano-Curcumin and Curcumin in Retinal Pigment Epithelial Cells

    NARCIS (Netherlands)

    Ramos de Carvalho, J. Emanuel; Verwoert, Milan T.; Vogels, Ilse M. C.; Schipper-Krom, Sabine; van Noorden, Cornelis J. F.; Reits, Eric A.; Klaassen, Ingeborg; Schlingemann, Reinier O.

    2018-01-01

    Curcumin has multiple biological effects including the modulation of protein homeostasis by the ubiquitin-proteasome system. The purpose of this study was to assess the in vitro cytotoxic and oxidative effects of nano-curcumin and standard curcumin and characterize their effects on proteasome

  10. Plantas medicinais no tratamento do transtorno de ansiedade generalizada: uma revisão dos estudos clínicos controlados Medicinal plants for the treatment of generalized anxiety disorder: a review of controlled clinical studies

    Directory of Open Access Journals (Sweden)

    Thalita Thais Faustino

    2010-12-01

    Full Text Available OBJETIVO: Revisar os estudos clínicos controlados sobre a efetividade de plantas medicinais/fitoterápicos no transtorno de ansiedade generalizada. MÉTODO: Realizou-se uma busca (Medline, Web of Science, SciELO, Biblioteca Cochrane por artigos originais utilizando as palavras ["plant OR phytomed* OR extract OR herbal OR medicinal (OR specific name plants"] AND ("anxie* OR anxioly* OR tranquil* OR GAD", delimitada a "human OR clinical trial OR randomized controlled trial OR meta-analysis OR review" e à língua inglesa. Os critérios de inclusão foram: estudos randomizados, comparativos e duplo-cegos. RESULTADOS: Foram selecionados sete dos 267 artigos encontrados. O Piper methysticum (kava-kava foi o fitoterápico mais estudado, sendo sugerido um efeito ansiolítico. Entretanto, a maioria destes estudos incluiu outros transtornos de ansiedade e os dois estudos com transtorno de ansiedade generalizada apresentaram resultados contraditórios. Estudos isolados envolvendo Ginkgo biloba, Galphimia glauca, Matricaria recutita (camomila, Passiflora incarnata e Valeriana officinalis indicaram potencial efeito ansiolítico no transtorno de ansiedade generalizada. A Ginkgo biloba e a Matricaria recutita apresentaram um effect size ('d' de Cohen = 0,47 e 0,87 similar ou superior ao dos ansiolíticos atuais (0,17-0,38. Não foram localizados estudos com outras plantas. CONCLUSÃO: Apesar do potencial terapêutico dos fitoterápicos no transtorno de ansiedade generalizada, poucos ensaios clínicos controlados foram identificados, com a maioria apresentando limitações metodológicas.OBJECTIVE: This work aimed to identify controlled trials, which evaluated effectiveness of herbal medicines in subjects suffering generalized anxiety disorder. METHOD: Controlled studies (randomized, comparative with placebo and/or standard drug, double-blind were sought through electronic and hand-searches. The word strategy used "plant OR phytomed* OR extract OR herbal OR

  11. Stachys sieboldii (Labiatae, Chorogi) Protects against Learning and Memory Dysfunction Associated with Ischemic Brain Injury.

    Science.gov (United States)

    Harada, Shinichi; Tsujita, Tsukasa; Ono, Akiko; Miyagi, Kei; Mori, Takaharu; Tokuyama, Shogo

    2015-01-01

    Stachys sieboldii (Labiatae; Chinese artichoke, a tuber), "chorogi" in Japanese, has been extensively used in folk medicine, and has a number of pharmacological properties, including antioxidative activity. However, few studies have examined the neuroprotective effects of S. sieboldii tuber extract (chorogi extract), and it remains unknown whether the extract can alleviate learning and memory dysfunction associated with vascular dementia or Alzheimer's disease. Therefore, in this study, we investigated the neuroprotective effects of chorogi extract, and examined its protection against learning and memory dysfunction using Ginkgo biloba leaf extract (ginkgo extract) as a positive control. Mice were subjected to bilateral carotid artery occlusion (BCAO) for 30 min. Oral administration of chorogi extract or ginkgo extract significantly reduced post-ischemic glucose intolerance on day 1 and neuronal damage including memory impairment on day 3 after BCAO, compared with the vehicle-treated group. Neither herbal medicine affected locomotor activity. Furthermore, neither significantly alleviated scopolamine-induced learning and memory impairment. In primary neurons, neuronal survival rate was significantly reduced by hydrogen peroxide treatment. This hydrogen peroxide-induced neurotoxicity was significantly suppressed by chorogi extract and ginkgo extract. Taken together, our findings suggest that chorogi extract as well as ginkgo extract can protect against learning and memory dysfunction associated with ischemic brain injury through an antioxidative mechanism.

  12. Structural and Spectral Properties of Curcumin and Metal- Curcumin Complex Derived from Turmeric (Curcuma longa)

    Science.gov (United States)

    Bich, Vu Thi; Thuy, Nguyen Thi; Binh, Nguyen Thanh; Huong, Nguyen Thi Mai; Yen, Pham Nguyen Dong; Luong, Tran Thanh

    Structural and spectral properties of curcumin and metal- curcumin complex derived from turmeric (Curcuma longa) were studied by SEM and vibrational (FTIR and Raman) techniques. By comparison between curcumin commercial, fresh turmeric and a yellow powder obtained via extraction and purification of turmeric, we have found that this insoluble powder in water is curcumin. The yellow compound could complex with certain ion metal and this metal-curcumin coloring complex is water soluble and capable of producing varying hues of the same colors and having antimicrobial, cytotoxicity activities for use in foodstuffs and pharmacy. The result also demonstrates that Micro-Raman spec-troscopy is a valuable non-destructive tool and fast for investigation of a natural plant even when occurring in low concentrations.

  13. The functional genomic studies of curcumin.

    Science.gov (United States)

    Huminiecki, Lukasz; Horbańczuk, Jarosław; Atanasov, Atanas G

    2017-10-01

    Curcumin is a natural plant-derived compound that has attracted a lot of attention for its anti-cancer activities. Curcumin can slow proliferation of and induce apoptosis in cancer cell lines, but the precise mechanisms of these effects are not fully understood. However, many lines of evidence suggested that curcumin has a potent impact on gene expression profiles; thus, functional genomics should be the key to understanding how curcumin exerts its anti-cancer activities. Here, we review the published functional genomic studies of curcumin focusing on cancer. Typically, a cancer cell line or a grafted tumor were exposed to curcumin and profiled with microarrays, methylation assays, or RNA-seq. Crucially, these studies are in agreement that curcumin has a powerful effect on gene expression. In the majority of the studies, among differentially expressed genes we found genes involved in cell signaling, apoptosis, and the control of cell cycle. Curcumin can also induce specific methylation changes, and is a powerful regulator of the expression of microRNAs which control oncogenesis. We also reflect on how the broader technological progress in transcriptomics has been reflected on the field of curcumin. We conclude by discussing the areas where more functional genomic studies are highly desirable. Integrated OMICS approaches will clearly be the key to understanding curcumin's anticancer and chemopreventive effects. Such strategies may become a template for elucidating the mode of action of other natural products; many natural products have pleiotropic effects that are well suited for a systems-level analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. [Neuroprotective effects of curcumin].

    Science.gov (United States)

    Li, Yong; Wang, Pengwen

    2009-12-01

    Traditionally, turmeric has been put to use as a food additive and herbal medicine in Asia. Curcumin is an active principle of the perennial herb curcuma longa (commonly known as turmeric). Recent evidence suggests that curcumin has activities with potential for neuroprotective efficacy, including anti-inflammatory, antioxidant, and antiprotein-aggregate activities. In the current review, we provide the newly evidence for the potential role of curcumin in the neuroprotective effects of neurodegenerative diseases like Alzheimer's disease (AD).

  15. The Essential Medicinal Chemistry of Curcumin.

    Science.gov (United States)

    Nelson, Kathryn M; Dahlin, Jayme L; Bisson, Jonathan; Graham, James; Pauli, Guido F; Walters, Michael A

    2017-03-09

    Curcumin is a constituent (up to ∼5%) of the traditional medicine known as turmeric. Interest in the therapeutic use of turmeric and the relative ease of isolation of curcuminoids has led to their extensive investigation. Curcumin has recently been classified as both a PAINS (pan-assay interference compounds) and an IMPS (invalid metabolic panaceas) candidate. The likely false activity of curcumin in vitro and in vivo has resulted in >120 clinical trials of curcuminoids against several diseases. No double-blinded, placebo controlled clinical trial of curcumin has been successful. This manuscript reviews the essential medicinal chemistry of curcumin and provides evidence that curcumin is an unstable, reactive, nonbioavailable compound and, therefore, a highly improbable lead. On the basis of this in-depth evaluation, potential new directions for research on curcuminoids are discussed.

  16. Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: A review.

    Science.gov (United States)

    Mahmood, Kashif; Zia, Khalid Mahmood; Zuber, Mohammad; Salman, Mahwish; Anjum, Muhammad Naveed

    2015-11-01

    Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anticoagulant and anti-infective effects. This review summarizes and discusses recently published papers on the key biomedical applications of curcumin based materials. The highlighted studies in the review provide evidence of the ability of curcumin to show the significant vitro antioxidant, diabetic complication, antimicrobial, neuroprotective, anti-cancer activities and detection of hypochlorous acid, wound healing, treatment of major depression, healing of paracentesis, and treatment of carcinoma and optical detection of pyrrole properties. Hydrophobic nature of this polyphenolic compound along with its rapid metabolism, physicochemical and biological instability contribute to its poor bioavailability. To redress these problems several approaches have been proposed like encapsulation of curcumin in liposomes and polymeric micelles, inclusion complex formation with cyclodextrin, formation of polymer-curcumin conjugates, etc. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Piracetam reverses haloperidol-induced catalepsy in mice

    OpenAIRE

    SALAM, Omar Abdel; NADA, Somaia

    2014-01-01

    To investigate the memory-enhancing drugs piracetam, vinpocetine, and ginkgo biloba for their ability to reduce catalepsy in mice treated with haloperidol. Haloperidol is a classic neuroleptic drug that induces motor abnormalities and cognitive impairment due to a blockade of dopamine D2 receptors in the striatum. Materials and methods: Catalepsy was induced by intraperitoneal haloperidol (2 mg/kg) administration. The drugs being tested were either administered intraperitoneally (IP) along ...

  18. Protective Effects of Two Constituents of Chinese Herbs on Spinal Motor Neurons from Embryonic Rats with Hypoxia Injury

    OpenAIRE

    Chen, Jian-feng; Fan, Jian; Tian, Xiao-wu; Tang, Tian-si

    2011-01-01

    Neuroprotective agents are becoming significant tools in the repair of central nervous system injuries. In this study, we determined whether ginkgolides (Gin, extract of GinkgoBiloba) and Acanthopanax senticosus saponins (ASS, flavonoids extracted from Acanthopanax herbal preparations) have protective effects on rat spinal cords exposed to anoxia and we explored the mechanisms that underlie the protective effects. Spinal motor neurons (SMNs) from rat spinal cords were obtained and divided int...

  19. The targets of curcumin.

    Science.gov (United States)

    Zhou, Hongyu; Beevers, Christopher S; Huang, Shile

    2011-03-01

    Curcumin (diferuloylmethane), an orange-yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of the plant Curcuma longa. For centuries, curcumin has been used in some medicinal preparation or used as a food-coloring agent. In recent years, extensive in vitro and in vivo studies suggested curcumin has anticancer, antiviral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties. The underlying mechanisms of these effects are diverse and appear to involve the regulation of various molecular targets, including transcription factors (such as nuclear factor-kB), growth factors (such as vascular endothelial cell growth factor), inflammatory cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6), protein kinases (such as mammalian target of rapamycin, mitogen-activated protein kinases, and Akt) and other enzymes (such as cyclooxygenase 2 and 5 lipoxygenase). Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, curcumin has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various malignant diseases, arthritis, allergies, Alzheimer's disease, and other inflammatory illnesses. This review summarizes various in vitro and in vivo pharmacological aspects of curcumin as well as the underlying action mechanisms. The recently identified molecular targets and signaling pathways modulated by curcumin are also discussed here.

  20. Neuroprotective effects of curcumin and highly bioavailable curcumin on oxidative stress induced by sodium nitroprusside in rat striatal cell culture.

    Science.gov (United States)

    Nazari, Qand Agha; Kume, Toshiaki; Izuo, Naotaka; Takada-Takatori, Yuki; Imaizumi, Atsushi; Hashimoto, Tadashi; Izumi, Yasuhiko; Akaike, Akinori

    2013-01-01

    Curcumin, a polyphenolic compound extracted from Curcuma longa, has several pharmacological activities such as anticancer, anti-inflammatory, and antioxidant effects. The purpose of this study was to investigate the protective effects of curcumin and THERACURMIN, a highly bioavailable curcumin, against sodium nitroprusside (SNP)-induced oxidative damage in primary striatal cell culture. THERACURMIN as well as curcumin significantly prevented SNP-induced cytotoxicity. To elucidate the cytoprotective effects of curcumin and THERACURMIN, we measured the intracellular glutathione level in striatal cells. Curcumin and THERACURMIN significantly elevated the glutathione level, which was decreased by treatment with SNP. Moreover, curcumin showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging ability. Finally, a ferrozine assay showed that curcumin (10-100 µg/mL) has potent Fe(2+)-chelating ability. These results suggest that curcumin and THERACURMIN exert potent protective effects against SNP-induced cytotoxicity by free radical-scavenging and iron-chelating activities.

  1. Inhibition of enveloped viruses infectivity by curcumin.

    Directory of Open Access Journals (Sweden)

    Tzu-Yen Chen

    Full Text Available Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter than for the pseudorabies virus (approximately 180 nm and the vaccinia virus (roughly 335 × 200 × 200 nm. These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses.

  2. Inhibition of Enveloped Viruses Infectivity by Curcumin

    Science.gov (United States)

    Wen, Hsiao-Wei; Ou, Jun-Lin; Chiou, Shyan-Song; Chen, Jo-Mei; Wong, Min-Liang; Hsu, Wei-Li

    2013-01-01

    Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA) activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB)-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter) than for the pseudorabies virus (approximately 180 nm) and the vaccinia virus (roughly 335 × 200 × 200 nm). These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses. PMID:23658730

  3. Antiproliferative effects of an analog of curcumin in Hep-2 cells: a comparative study with curcumin.

    Science.gov (United States)

    Kumaravel, Mohankumar; Sankar, Pajaniradje; Latha, Periyasamy; Benson, Chellakan S; Rukkumani, Rajagopalan

    2013-02-01

    Curcumin, the major active principle of Curcuma longa, is one of the promising, plant-derived, chemopreventive agents being studied for its anticarcinogenic and antioxidant properties. Hence, in our study, we aimed at testing the antiproliferative efficacy of an o-hydroxyl substituted analog of curcumin, bis demethoxy curcumin analog (BDMC-A), and comparing its efficacy with that of curcumin. BDMC-A was synthesised with a yield of 78% and 98% purity. Hep-2 cells and the MTT cell viability assay were used to examine cell proliferation. LDH assay and cell counts were performed to assess the cytotoxicity and anti-proliferative effects of the compound, respectively. Flow cytometry followed by Western blot were performed to investigate the cell cycle distribution. BDMC-A inhibited cell proliferation at a much lower concentration (IC50 20 microM) than curcumin (IC50 50 microM). Similar effects were observed in the LDH release and cell count assays. Flow cytometric studies using propidium iodide showed accumulation of cells in the G0/G1 phase and the arrest was further confirmed by immunoblotting of protein cyclin D1. BDMC-A was more potent in inhibiting the cells at a lower dose when compared with curcumin. Our results showed that the analog of curcumin is likely to possess more efficacy compared with curcumin in inhibiting cancer.

  4. The Effects of Curcumin and Curcumin-Phospholipid Complex on the Serum Pro-oxidant-Antioxidant Balance in Subjects with Metabolic Syndrome.

    Science.gov (United States)

    Ghazimoradi, Maryam; Saberi-Karimian, Maryam; Mohammadi, Farzane; Sahebkar, Amirhossein; Tavallaie, Shima; Safarian, Hamideh; Ferns, Gordon A; Ghayour-Mobarhan, Majid; Moohebati, Mohsen; Esmaeili, Habibollah; Ahmadinejad, Malihe

    2017-11-01

    Metabolic syndrome (MetS) is defined by a clustering of metabolic and anthropometric abnormalities and is associated by an increased risk of cardiovascular disease. We have investigated the effect of curcumin supplementation on the serum pro-oxidant-antioxidant balance (PAB) in patients with MetS. This double-blind, randomized, placebo-controlled trial was conducted over 6 weeks. Subjects (n = 120) were randomly allocated to one of three groups (curcumin, phospholipidated curcumin, and placebo). The curcumin group received 1 g/day of simple curcumin, the phospholipidated curcumin group received 1 g/day of phospholipidated curcumin (containing 200 mg of pure curcumin), and the control group received 1 g/day of placebo. Serum PAB was measured before and after the intervention (at baseline and at 6 weeks). Data analyses were performed using spss software (version 16.0). Serum PAB increased significantly in the curcumin group (p curcumin group, elevation of PAB level was not significant (p = 0.053). The results of our study did not suggest any improvement of PAB following supplementation with curcumin in MetS subjects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Paleobotanical Evidence for Near Present-Day Levels of Atmospheric CO2 During Part of the Tertiary

    Science.gov (United States)

    Royer, Dana L.; Wing, Scott L.; Beerling, David J.; Jolley, David W.; Koch, Paul L.; Hickey, Leo J.; Berner, Robert A.

    2001-06-01

    Understanding the link between the greenhouse gas carbon dioxide (CO2) and Earth's temperature underpins much of paleoclimatology and our predictions of future global warming. Here, we use the inverse relationship between leaf stomatal indices and the partial pressure of CO2 in modern Ginkgo biloba and Metasequoia glyptostroboides to develop a CO2 reconstruction based on fossil Ginkgo and Metasequoia cuticles for the middle Paleocene to early Eocene and middle Miocene. Our reconstruction indicates that CO2 remained between 300 and 450 parts per million by volume for these intervals with the exception of a single high estimate near the Paleocene/Eocene boundary. These results suggest that factors in addition to CO2 are required to explain these past intervals of global warmth.

  6. The effect of ginkgo biloba extract on the fractionated radiation therapy in C3H mouse fibrosarcoma

    International Nuclear Information System (INIS)

    Kim, Jong Hoon; Ha, Sung Whan; Park, Charn Il

    2002-01-01

    A gingko biloba extract (GBE) has been known as a hypoxic cell radiosensitizer. Its mechanisms of action are increase of the red blood cell deformability, decrease the blood viscosity, and decrease the hypoxic cell fraction in the tumor. The aims of this study were to estimate the effect of GBE on fractionated radiotherapy and to clarify the mechanism of action of the GBE by estimating the blood flow in tumor and normal muscle. Fibrosarcoma (FSall) growing in a C3H mouse leg muscle was used as the tumor model. When the tumor size reached 7 mm in diameter, the GBE was given intraperitoneally at 1 and 25 hours prior to irradiation. The tumor growth delay was measured according to the various doses of radiation (3, 6, 9, 12, Gy and 15 Gy) and to the fractionation (single and fractionated irradiation) with and without the GBE injection. The radiation dose to the tumor the response relationships and the enhancement ratio of the GBE were measured. In addition, the blood flow of a normal muscle and a tumor was compared by laser Doppler flowmetry according to the GBE treatment. When the GBE was used with single fraction irradiation with doses ranging from 3 to 12 Gy, GBE increased the tumor growth delay significantly (ρ < 0.05) and the enhancement ratio of the GBE was 1.16. In fractionated irradiation with 3 Gy per day, the relationships between the radiation dose (D) and the tumor growth delay (TGD) were TGD (days) = 0.26 x D (Gy)+0.13 in the radiation alone group, and the TGD (days) = 0.30 x D (Gy) + 0.13 in the radiation with GBE group. As a result, the enhancement ratio was 1.19 (95% confidence interval; 1.13 ∼ 1.27). Laser Doppler flowmetry was used to measure the blood flow. The mean blood flow was higher in the muscle (7.78 mL/100 g/min in tumor and the 10.15 mL/100 g/min in muscle, ρ = 0.0001) and the low blood flow fraction (less than 2 mL/100 g/min) was higher in the tumor (0.5% vs. 5.2%, ρ = 0.005). The blood flow was not changed with the GBE in normal

  7. Structure-Activity Relationship of Curcumin: Role of the Methoxy Group in Anti-inflammatory and Anticolitis Effects of Curcumin.

    Science.gov (United States)

    Yang, Haixia; Du, Zheyuan; Wang, Weicang; Song, Mingyue; Sanidad, Katherine; Sukamtoh, Elvira; Zheng, Jennifer; Tian, Li; Xiao, Hang; Liu, Zhenhua; Zhang, Guodong

    2017-06-07

    Curcumin, a dietary compound from turmeric, has beneficial effects on inflammatory diseases such as inflammatory bowel disease. Most previous studies have focused on the structure-activity relationship of the thiol-reactive α,β-unsaturated carbonyl groups of curcumin, so little is known about the roles of methoxy groups in biological activities of curcumin. Here we synthesized a series of curcumin analogues with different substitution groups (R = H-, Br-, Cl-, F-, NO 2 -, CH 3 -, and OH-) to replace the methoxy group and evaluated their biological effects in vitro and in vivo. Curcumin, Cur-OH, and Cur-Br (25 μM) suppressed 74.91 ± 0.88, 77.75 ± 0.89, and 71.75 ± 0.90% of LPS-induced NO production, respectively (P 0.05). In the dextran sulfate sodium (DSS)-induced colitis mouse model, the Cur-Br analogue also showed a beneficial effect the same as curcumin (P 0.05). Together, the analogues have dramatically different effects on inflammation, supporting that the substitution group on the methoxy position plays an important role in the anti-inflammatory effects of curcumin. The methoxy group is a potential structural candidate for modification to design curcumin-based drugs for inflammatory diseases.

  8. Advances in clinical study of curcumin.

    Science.gov (United States)

    Yang, Chunfen; Su, Xun; Liu, Anchang; Zhang, Lin; Yu, Aihua; Xi, Yanwei; Zhai, Guangxi

    2013-01-01

    Curcumin has been estimated as a potential agent for many diseases and attracted great attention owing to its various pharmacological activities, including anti-cancer, and anti-inflammatory. Now curcumin is being applied to a number of patients with breast cancer, rheumatoid arthritis, Alzheimer's disease, colorectal cancer, psoriatic, etc. Several clinical trials have stated that curcumin is safe enough and effective. The objective of this article was to summarize the clinical studies of curcumin, and give a reference for future studies.

  9. Physiological barriers to the oral delivery of curcumin.

    Science.gov (United States)

    Berginc, K; Trontelj, J; Basnet, N Skalko; Kristl, A

    2012-06-01

    Curcumin, a principal component from Curcuma longa, with antioxidant and anti-inflammatory activities was proposed as a potential candidate for the preventation and/or treatment of cancer and chronic diseases. However, curcumin could not achieve its expected therapeutic outcome in clinical trials due to its low solubility and poor bioavailability. The actual intestinal physiological barriers limiting curcumin absorption after oral administration have not been fully investigated. To identify the main barriers curtailing its absorption, in vitro permeability of curcumin and flux of its glucuronide were monitored in rat jejunum and Transwell grown Caco-2 cells. Curcumin was more permeable under acidic conditions, but the permeability was substantially below the permeability of highly permeable standards. Its efflux could not be inhibited by specific Pgp and MRP inhibitors. BCRP was found to participate in curcumin transport, but the Organic Anion Transporting Polypeptide (OATP) did not. The permeability of curcumin significantly increased when the structure of mucus was compromised. The inhibitor of curcumin metabolism, piperin, failed to act as a permeability enhancer. Piperin inhibited Pgp and MRP transporters and decreased the amount of glucuronide transported back into the intestine. Inclusion of piperin in curcumin-containing formulations is highly recommended as to inhibit curcumin glucuronidation and to increase the transport of formed glucuronides into the plasma, therefore increasing the probability of glucuronide distribution into target tissue and inter-convertion to curcumin. It would also be beneficial, if curcumin delivery systems could reversibly compromise the mucous integrity to minimize the non-specific binding of curcumin to its constituents.

  10. Determination of process parameters for curcumin - dextrose cocrystallization

    Science.gov (United States)

    Katherine; Nugroho, Denny; Sugih, Asaf K.

    2018-01-01

    Curcumin is a polyphenol that could act as anti-oxidant and anti - inflammation agent. It is usually isolated from rhizome plants such as turmeric and temulawak. Despite its many favorable properties, curcumin is practically insoluble in water, thus limiting its application. In the present investigation, variables affecting preparation of curcumin-dextrose cocrystal were examined with the aim to increase the solubility of curcumin. The effect of different processing conditions, such as water to dextrose ratio, final heating temperature and water bath temperature to the formation of cocrystal, were studied and the yield and solubility of curcumin - dextrose cocrystal products were analyzed. The morphology of the cocrystals were also analyzed using SEM and fluorescence microscopy.. Curcumin - dextrose cocrystals showed a significant increase in solubility up to 25 mg curcumin per mL water compared to pure curcumin.

  11. Curcumin β-D-Glucuronide Plays an Important Role to Keep High Levels of Free-Form Curcumin in the Blood.

    Science.gov (United States)

    Ozawa, Hitomi; Imaizumi, Atsushi; Sumi, Yoshihiko; Hashimoto, Tadashi; Kanai, Masashi; Makino, Yuji; Tsuda, Takanori; Takahashi, Nobuaki; Kakeya, Hideaki

    2017-01-01

    Curcumin, a polyphenol derived from the rhizome of the naturally occurring plant Curcuma longa, has various pharmacological actions such as antioxidant and anti-inflammatory effects. In this paper, we evaluated the role of its internal metabolite, curcumin β-D-glucuronide (curcumin monoglucuronide, CMG), by investigating curcumin kinetics and metabolism in the blood. Firstly, we orally administered highly bioavailable curcumin to rats to elucidate its kinetics, and observed not only the free-form of curcumin, but also, curcumin in a conjugated form, within the portal vein. We confirmed that curcumin is conjugated when it passes through the intestinal wall. CMG, one of the metabolites, was then orally administered to rats. Despite its high aqueous solubility compared to free-form curcumin, it was not well absorbed. In addition, CMG was injected intravenously into rats in order to assess its metabolic behavior in the blood. Interestingly, high levels of free-form curcumin, thought to be sufficiently high to be pharmacologically active, were observed. The in vivo antitumor effects of CMG following intravenous injection were then evaluated in tumor-bearing mice with the HCT116 human colon cancer cell line. The tumor volume within the CMG group was significantly less than that of the control group. Moreover, there was no significant loss of body weight in the CMG group compared to the control group. These results suggest that CMG could be used as an anticancer agent without the serious side effects that most anticancer agents have.

  12. Okrasné parkové dřeviny zásobárnou virů čeledi Rhabdoviridae

    OpenAIRE

    PECKOVÁ, Lucie

    2012-01-01

    Rhabdoviridae family viruses attacking the plant hosts were only described at the angiosperms. In this work, a gymnosperm rhabdoviridae infection was described for the first time ever ? specifically at Ginkgo biloba. Even though there were not observed any kinds of obvious infection symptoms on any of randomly chosen plant samples, through the molecular methods and detection primers the rhabdoviridae infection was proved at six of the plant samples. The acquired nucleotide and amino acid sequ...

  13. Therapeutic Strategy for Chronic Headache in Children

    Directory of Open Access Journals (Sweden)

    H.O. Lezhenko

    2016-05-01

    Full Text Available The therapeutic efficacy of a combined homeopathic preparation Cefavora, which consists of alcoholic extracts of Ginkgo biloba, hawthorn (Crataegus and white mistletoe (Viscum album, has been studied in the treatment of chronic tension-type headache in children. It has been shown that alongside with elimination of headache manifestations, the use of homeopathic medicine has contributed to the normalization of adaptive mechanisms of autonomic regulation in children indicating its high therapeutic efficacy.

  14. Effects of curcumin on HDL functionality.

    Science.gov (United States)

    Ganjali, Shiva; Blesso, Christopher N; Banach, Maciej; Pirro, Matteo; Majeed, Muhammed; Sahebkar, Amirhossein

    2017-05-01

    Curcumin, a bioactive polyphenol, is a yellow pigment of the Curcuma longa (turmeric) plant. Curcumin has many pharmacologic effects including antioxidant, anti-carcinogenic, anti-obesity, anti-angiogenic and anti-inflammatory properties. Recently, it has been found that curcumin affects lipid metabolism, and subsequently, may alleviate hyperlipidemia and atherosclerosis. Plasma HDL cholesterol (HDL-C) is an independent negative risk predictor of cardiovascular disease (CVD). However, numerous clinical and genetic studies have yielded disappointing results about the therapeutic benefit of raising plasma HDL-C levels. Therefore, research efforts are now focused on improving HDL functionality, independent of HDL-C levels. The quality of HDL particles can vary considerably due to heterogeneity in composition. Consistent with its complexity in composition and metabolism, a wide range of biological activities is reported for HDL, including antioxidant, anti-glycation, anti-inflammatory, anti-thrombotic, anti-apoptotic and immune modulatory activities. Protective properties of curcumin may influence HDL functionality; therefore, we reviewed the literature to determine whether curcumin can augment HDL function. In this review, we concluded that curcumin may modulate markers of HDL function, such as apo-AI, CETP, LCAT, PON1, MPO activities and levels. Curcumin may subsequently improve conditions in which HDL is dysfunctional and may have potential as a therapeutic drug in future. Further clinical trials with bioavailability-improved formulations of curcumin are warranted to examine its effects on lipid metabolism and HDL function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Curcumin Modulates α-Synuclein Aggregation and Toxicity

    Science.gov (United States)

    2012-01-01

    In human beings, Parkinson’s disease (PD) is associated with the oligomerization and amyloid formation of α-synuclein (α-Syn). The polyphenolic Asian food ingredient curcumin has proven to be effective against a wide range of human diseases including cancers and neurological disorders. While curcumin has been shown to significantly reduce cell toxicity of α-Syn aggregates, its mechanism of action remains unexplored. Here, using a series of biophysical techniques, we demonstrate that curcumin reduces toxicity by binding to preformed oligomers and fibrils and altering their hydrophobic surface exposure. Further, our fluorescence and two-dimensional nuclear magnetic resonance (2D-NMR) data indicate that curcumin does not bind to monomeric α-Syn but binds specifically to oligomeric intermediates. The degree of curcumin binding correlates with the extent of α-Syn oligomerization, suggesting that the ordered structure of protein is required for effective curcumin binding. The acceleration of aggregation by curcumin may decrease the population of toxic oligomeric intermediates of α-Syn. Collectively; our results suggest that curcumin and related polyphenolic compounds can be pursued as candidate drug targets for treatment of PD and other neurological diseases. PMID:23509976

  16. Novel dipeptide nanoparticles for effective curcumin delivery

    Science.gov (United States)

    Alam, Shadab; Panda, Jiban J; Chauhan, Virander S

    2012-01-01

    Background: Curcumin, the principal curcuminoid of the popular Indian spice turmeric, has a wide spectrum of pharmaceutical properties such as antitumor, antioxidant, antiamyloid, and anti-inflammatory activity. However, poor aqueous solubility and low bioavailability of curcumin is a major challenge in its development as a useful drug. To enhance the aqueous solubility and bioavailability of curcumin, attempts have been made to encapsulate it in liposomes, polymeric nanoparticles (NPs), lipid-based NPs, biodegradable microspheres, cyclodextrin, and hydrogels. Methods: In this work, we attempted to entrap curcumin in novel self-assembled dipeptide NPs containing a nonprotein amino acid, α, β-dehydrophenylalanine, and investigated the biological activity of dipeptide-curcumin NPs in cancer models both in vitro and in vivo. Results: Of the several dehydrodipeptides tested, methionine-dehydrophenylalanine was the most suitable one for loading and release of curcumin. Loading of curcumin in the dipeptide NPs increased its solubility, improved cellular availability, enhanced its toxicity towards different cancerous cell lines, and enhanced curcumin’s efficacy towards inhibiting tumor growth in Balb/c mice bearing a B6F10 melanoma tumor. Conclusion: These novel, highly biocompatible, and easy to construct dipeptide NPs with a capacity to load and release curcumin in a sustained manner significantly improved curcumin’s cellular uptake without altering its anticancer or other therapeutic properties. Curcumin-dipeptide NPs also showed improved in vitro and in vivo chemotherapeutic efficacy compared to curcumin alone. Such dipeptide-NPs may also improve the delivery of other potent hydrophobic drug molecules that show poor cellular uptake, bioavailability, and efficacy. PMID:22915849

  17. Novel dipeptide nanoparticles for effective curcumin delivery

    Directory of Open Access Journals (Sweden)

    Alam S

    2012-08-01

    Full Text Available Shadab Alam,* Jiban J Panda,* Virander S Chauhan International Centre for Genetic Engineering and Biotechnology, New Delhi, India*Both authors contributed equally to this workBackground: Curcumin, the principal curcuminoid of the popular Indian spice turmeric, has a wide spectrum of pharmaceutical properties such as antitumor, antioxidant, antiamyloid, and anti-inflammatory activity. However, poor aqueous solubility and low bioavailability of curcumin is a major challenge in its development as a useful drug. To enhance the aqueous solubility and bioavailability of curcumin, attempts have been made to encapsulate it in liposomes, polymeric nanoparticles (NPs, lipid-based NPs, biodegradable microspheres, cyclodextrin, and hydrogels.Methods: In this work, we attempted to entrap curcumin in novel self-assembled dipeptide NPs containing a nonprotein amino acid, α,β-dehydrophenylalanine, and investigated the biological activity of dipeptide-curcumin NPs in cancer models both in vitro and in vivo.Results: Of the several dehydrodipeptides tested, methionine-dehydrophenylalanine was the most suitable one for loading and release of curcumin. Loading of curcumin in the dipeptide NPs increased its solubility, improved cellular availability, enhanced its toxicity towards different cancerous cell lines, and enhanced curcumin’s efficacy towards inhibiting tumor growth in Balb/c mice bearing a B6F10 melanoma tumor.Conclusion: These novel, highly biocompatible, and easy to construct dipeptide NPs with a capacity to load and release curcumin in a sustained manner significantly improved curcumin’s cellular uptake without altering its anticancer or other therapeutic properties. Curcumin-dipeptide NPs also showed improved in vitro and in vivo chemotherapeutic efficacy compared to curcumin alone. Such dipeptide-NPs may also improve the delivery of other potent hydrophobic drug molecules that show poor cellular uptake, bioavailability, and efficacy

  18. Telomerase: a target for therapeutic effects of curcumin and a curcumin derivative in Aβ1-42 insult in vitro.

    Directory of Open Access Journals (Sweden)

    Zijian Xiao

    Full Text Available This study was designed to investigate whether telomerase was involved in the neuroprotective effect of curcumin and Cur1. Alzheimer's disease is a consequence of an imbalance between the generation and clearance of amyloid-beta peptide in the brain. In this study, we used Aβ1-42 (10 µg/ml to establish a damaged cell model, and curcumin and Cur1 were used in treatment groups. We measured cell survival and cell growth, intracellular oxidative stress and hTERT expression. After RNA interference, the effects of curcumin and Cur1 on cells were verified. Exposure to Aβ1-42 resulted in significant oxidative stress and cell toxicity, and the expression of hTERT was significantly decreased. Curcumin and Cur1 both protected SK-N-SH cells from Aβ1-42 and up-regulated the expression of hTERT. Furthermore, Cur1 demonstrated stronger protective effects than curcumin. However, when telomerase was inhibited by TERT siRNA, the neuroprotection by curcumin and Cur1 were ceased. Our study indicated that the neuroprotective effects of curcumin and Cur1 depend on telomerase, and thus telomerase may be a target for therapeutic effects of curcumin and Cur1.

  19. Telomerase: A Target for Therapeutic Effects of Curcumin and a Curcumin Derivative in Aβ1-42 Insult In Vitro

    Science.gov (United States)

    Lin, Jianwen; Zheng, Zhenyang; Shi, Xiaolei; Di, Wei; Qi, Weiwei; Zhu, Yingting; Zhou, Guijuan; Fang, Yannan

    2014-01-01

    This study was designed to investigate whether telomerase was involved in the neuroprotective effect of curcumin and Cur1. Alzheimer's disease is a consequence of an imbalance between the generation and clearance of amyloid-beta peptide in the brain. In this study, we used Aβ1-42 (10 µg/ml) to establish a damaged cell model, and curcumin and Cur1 were used in treatment groups. We measured cell survival and cell growth, intracellular oxidative stress and hTERT expression. After RNA interference, the effects of curcumin and Cur1 on cells were verified. Exposure to Aβ1–42 resulted in significant oxidative stress and cell toxicity, and the expression of hTERT was significantly decreased. Curcumin and Cur1 both protected SK-N-SH cells from Aβ1–42 and up-regulated the expression of hTERT. Furthermore, Cur1 demonstrated stronger protective effects than curcumin. However, when telomerase was inhibited by TERT siRNA, the neuroprotection by curcumin and Cur1 were ceased. Our study indicated that the neuroprotective effects of curcumin and Cur1 depend on telomerase, and thus telomerase may be a target for therapeutic effects of curcumin and Cur1. PMID:24983737

  20. Recent progress on curcumin-based therapeutics: a patent review (2012-2016). Part I: Curcumin.

    Science.gov (United States)

    Di Martino, Rita Maria Concetta; Luppi, Barbara; Bisi, Alessandra; Gobbi, Silvia; Rampa, Angela; Abruzzo, Angela; Belluti, Federica

    2017-05-01

    curcumin is the main bioactive component contained in Curcuma Longa, largely employed in traditional medicine. Recently, beneficial properties, useful for prevention and treatment of several disorders, have been discovered for this compound. Peculiar structural feature is an α,β-unsaturated carbonyl system essential for establishing contacts with critical cysteine residues of several targets. This distinctive mechanism of action imparts to the molecule the ability to affect a large number of targets, accounting for its pleiotropic behaviour and definition of "privileged structure". Areas covered: The objective of the review is an examination of the recent developments in the field of the anti-cancer applications of curcumin, together with formulation issues, considering the patent literature in the years 2012-2016. Expert opinion: The wide therapeutic efficacy of curcumin is related to synergistic interactions with several biological targets, along with the modulation of several signaling pathways. This peculiar behaviour could be useful in the treatment of multifactorial diseases such as cancer. Combination of curcumin with a first line antineoplastic drug proved to be a valuable strategy to obtain an amplified response with minimized side effects. Innovative curcumin formulations based on the nanotechnology approach allowed improving both bioavailability and therapeutic efficacy.

  1. Production, solubility and antioxidant activity of curcumin nanosuspension

    Directory of Open Access Journals (Sweden)

    Deivis de Moraes Carvalho

    2015-03-01

    Full Text Available Curcumin is a powerful bioactive agent and natural antioxidant, but it is practically water-insoluble and has low bioavailability; a possible solution to this obstacle would be formulations of curcumin nanoparticles. Surfactants such as tween 80 can be used to stabilize low-solubility molecules preventing particle aggregation. The objectives of this study were the preparation of a suspension with curcumin nanoparticles in tween 80, the testing of pure curcumin solubility and of a simple mixture of curcumin with tween 80 and nanosuspension in water and ethanol as solvents, and finally the assessment of the antioxidant activity. We prepared the nanosuspension by injecting a curcumin solution in dichloromethane at low flow in water with tween 80 under heating and ultrasound. The analysis of particles size was conducted through dynamic light scattering; the non-degradation of curcumin was verified through thin-layer chromatography. The analyses of antioxidant activity were carried out according to the DPPH method. The method applied to reduce the particles size was efficient. Both the curcumin suspension and nanosuspension in tween 80 increased its solubility. Curcumin and the formulations presented antioxidant activity.

  2. Therapeutic actions of curcumin in bone disorders

    OpenAIRE

    Rohanizadeh, Ramin; Deng, Yi; Verron, Elise

    2016-01-01

    Curcumin is the active component of turmeric extract derived from the Curcuma longa plant. In the last decade, curcumin has raised a considerable interest in medicine owing to its negligible toxicity and multiple therapeutic actions including anti-cancer, anti-inflammatory and anti-microbial activities. Among the various molecular targets of curcumin, some are involved in bone remodeling, which strongly suggests that curcumin can affect the skeletal system. The review sheds light on the curre...

  3. Curcumin as potential therapeutic natural product: a nanobiotechnological perspective.

    Science.gov (United States)

    Shome, Soumitra; Talukdar, Anupam Das; Choudhury, Manabendra Dutta; Bhattacharya, Mrinal Kanti; Upadhyaya, Hrishikesh

    2016-12-01

    Nanotechnology-based drug delivery systems can resolve the poor bioavailability issue allied with curcumin. The therapeutic potential of curcumin can be enhanced by making nanocomposite preparation of curcumin with metal oxide nanoparticles, poly lactic-co-glycolic acid (PLGA) nanoparticles and solid lipid nanoparticles that increases its bioavailability in the tissue. Curcumin has manifold therapeutic effects which include antidiabetic, antihypertensive, anticancer, anti-inflammatory and antimicrobial properties. Curcumin can inhibit diabetes, heavy metal and stress-induced hypertension with its antioxidant, chelating and inhibitory effects on the pathways that lead to hypertension. Curcumin is an anticancer agent that can prevent abnormal cell proliferation. Nanocurcumin is an improved form of curcumin with enhanced therapeutic properties due to improved delivery to the diseased tissue, better internalization and reduced systemic elimination. Curcumin has multiple pharmacologic effects, but its poor bioavailability reduces its therapeutic effects. By conjugating curcumin to metal oxide nanoparticles or encapsulation in lipid nanoparticles, dendrimers, nanogels and polymeric nanoparticles, the water solubility and bioavailability of curcumin can be improved and thus increase its pharmacological effectiveness. © 2016 Royal Pharmaceutical Society.

  4. Molecular mechanisms of anti-angiogenic effect of curcumin.

    Science.gov (United States)

    Gururaj, Anupama E; Belakavadi, Madesh; Venkatesh, Deepak A; Marmé, Dieter; Salimath, Bharathi P

    2002-10-04

    Modulation of pathological angiogenesis by curcumin (diferuloylmethane), the active principle of turmeric, seems to be an important possibility meriting mechanistic investigations. In this report, we have studied the effect of curcumin on the growth of Ehrlich ascites tumor cells and endothelial cells in vitro. Further, regulation of tumor angiogenesis by modulation of angiogenic ligands and their receptor gene expression in tumor and endothelial cells, respectively, by curcumin was investigated. Curcumin, when injected intraperitoneally (i.p) into mice, effectively decreased the formation of ascites fluid by 66% in EAT bearing mice in vivo. Reduction in the number of EAT cells and human umbelical vein endothelial cells (HUVECs) in vitro by curcumin, without being cytotoxic to these cells, is attributed to induction of apoptosis by curcumin, as is evident by an increase in cells with fractional DNA content seen in our results on FACS analysis. However, curcumin had no effect on the growth of NIH3T3 cells. Curcumin proved to be a potent angioinhibitory compound, as demonstrated by inhibition of angiogenesis in two in vivo angiogenesis assay systems, viz. peritoneal angiogenesis and chorioallantoic membrane assay. The angioinhibitory effect of curcumin in vivo was corroborated by the results on down-regulation of the expression of proangiogenic genes, in EAT, NIH3T3, and endothelial cells by curcumin. Our results on Northern blot analysis clearly indicated a time-dependent (0-24h) inhibition by curcumin of VEGF, angiopoietin 1 and 2 gene expression in EAT cells, VEGF and angiopoietin 1 gene expression in NIH3T3 cells, and KDR gene expression in HUVECs. Further, decreased VEGF levels in conditioned media from cells treated with various doses of curcumin (1 microM-1mM) for various time periods (0-24h) confirm its angioinhibitory action at the level of gene expression. Because of its non-toxic nature, curcumin could be further developed to treat chronic diseases that

  5. Regulation of COX and LOX by curcumin.

    Science.gov (United States)

    Rao, Chinthalapally V

    2007-01-01

    Turmeric (Curcuma longa) is extensively used as a household remedy for various diseases. For the last few decades, work has been done to establish the biological activities and pharmacological actions of curcumin, the principle constituent of turmeric. Curcumin has proven to be beneficial in the prevention and treatment of a number of inflammatory diseases due to its anti-inflammatory activity. Arachidonic acid-derived lipid mediators that are intimately involved in inflammation are biosynthesized by pathways dependent on cyclooxygenase (COX) and lipoxygenase (LOX) enzymes. The role of LOX and COX isoforms, particularly COX-2, in the inflammation has been well established. At cellular and molecular levels, curcumin has been shown to regulate a number of signaling pathways, including the eicosanoid pathway involving COX and LOX. A number of studies have been conducted that support curcumin-mediated regulation of COX and LOX pathways, which is an important mechanism by which curcumin prevents a number of disease processes, including the cancer. The specific regulation of 5-LOX and COX-2 by curcumin is not fully established; however, existing evidence indicates that curcumin regulates LOX and COX-2 predominately at the transcriptional level and, to a certain extent, the posttranslational level. Thus, the curcumin-selective transcriptional regulatory action of COX-2, and dual COX/LOX inhibitory potential of this naturally occurring agent provides distinctive advantages over synthetic COX/LOX inhibitors, such as nonsteroidal anti-inflammatory drugs. In this review, we discuss evidence that supports the regulation of COX and LOX enzymes by curcumin as the key mechanism for its beneficial effects in preventing various inflammatory diseases.

  6. A comparative study of the spectral, fluorometric properties and photostability of natural curcumin, iron- and boron- complexed curcumin

    Science.gov (United States)

    Mohammed, Fatima; Rashid-Doubell, Fiza; Cassidy, Seamas; Henari, Fryad

    2017-08-01

    Curcumin is a yellow phenolic compound with a wide range of reported biological effects. However, two main obstacles hinder the use of curcumin therapeutically, namely its poor bioavailability and photostability. We have synthesized two curcumin complexes, the first a boron curcumin complex (B-Cur2) and the second an iron (Fe-Cur3) complex of curcumin. Both derivatives showed high fluorescence efficiency (quantum yield) and greater photostability in solution. The improved photostability could be attributed to the coordination structures and the removal of β-diketone group from curcumin. The fluorescence and ultra violet/visible absorption spectra of curcumin, B-Cur2 and Fe-Cur3 all have a similar spectral pattern when dissolved in the same organic solvent. However, a shift towards a lower wavelength was observed when moving from polar to non-polar solvents, possibly due to differences in solvent polarity. A plot of Stokes' shift vs the orientation polarity parameter (Δf) or vs the solvent polarity parameter (ET 30) showed an improved correlation between the solvent polarity parameter than with the orientation polarity parameter and indicating that the red shift observed could be due to hydrogen-bonding between the solvent molecules. A similar association was obtained when Stokes' shift was replaced by maximum synchronous fluorescence. Both B-Cur2 and Fe-Cur3 had larger quantum yields than curcumin, suggesting they may be good candidates for medical imaging and in vitro studies.

  7. Descripción del último estadio larval de Neofulla biloba (Plecoptera: Notonemouridae

    Directory of Open Access Journals (Sweden)

    Pablo PESSACQ

    2008-01-01

    Full Text Available Se describe el último estadio larval de Neofulla biloba (Aubert, desconocido para la ciencia. Se brindan caracteres morfológicos que lo separan de N. areolata (Navás, la única especie del género cuya larva ha sido descripta previamente.

  8. Anti-ischemic effect of curcumin in rat brain.

    Science.gov (United States)

    Shukla, Pradeep K; Khanna, Vinay K; Ali, Mohd M; Khan, Mohd Y; Srimal, Rikhab C

    2008-06-01

    Turmeric has been in use since ancient times as a condiment and due to its medicinal properties. Curcumin, the yellow colouring principle in turmeric, is polyphenolic and major active constituent. Besides anti-inflammatory, thrombolytic and anticarcinogenic activities, curcumin also possesses strong antioxidant property. In view of the novel combination of properties, neuroprotective efficacy of curcumin was studied in rat middle cerebral artery occlusion (MCAO) model. Rats were subjected to 2 h of focal ischemia followed by 72 h of reperfusion. They were pre-treated with curcumin (100 mg/kg, po) for 5 days prior to MCAO and for another 3 days after MCAO. The parameters studied were behavioural, biochemical and histological. Treatment with curcumin could significantly improve neurobehavioral performance compared to untreated ischemic rats as judged by its effect on rota-rod performance and grid walking. A significant inhibition in lipid peroxidation and an increase in superoxide dismutase (SOD) activity in corpus striatum and cerebral cortex was observed following treatment with curcumin in MCAO rats as compared to MCAO group. Intracellular calcium levels were decreased following treatment with curcumin in MCAO rats. Histologically, a reduction in the infarct area from 33% to 24% was observed in MCAO rats treated with curcumin. The study demonstrates the protective efficacy of curcumin in rat MCAO model.

  9. Eliminating the Heart from the Curcumin Molecule: Monocarbonyl Curcumin Mimics (MACs

    Directory of Open Access Journals (Sweden)

    Dinesh Shetty

    2014-12-01

    Full Text Available Curcumin is a natural product with several thousand years of heritage. Its traditional Asian application to human ailments has been subjected in recent decades to worldwide pharmacological, biochemical and clinical investigations. Curcumin’s Achilles heel lies in its poor aqueous solubility and rapid degradation at pH ~ 7.4. Researchers have sought to unlock curcumin’s assets by chemical manipulation. One class of molecules under scrutiny are the monocarbonyl analogs of curcumin (MACs. A thousand plus such agents have been created and tested primarily against cancer and inflammation. The outcome is clear. In vitro, MACs furnish a 10–20 fold potency gain vs. curcumin for numerous cancer cell lines and cellular proteins. Similarly, MACs have successfully demonstrated better pharmacokinetic (PK profiles in mice and greater tumor regression in cancer xenografts in vivo than curcumin. The compounds reveal limited toxicity as measured by murine weight gain and histopathological assessment. To our knowledge, MAC members have not yet been monitored in larger animals or humans. However, Phase 1 clinical trials are certainly on the horizon. The present review focuses on the large and evolving body of work in cancer and inflammation, but also covers MAC structural diversity and early discovery for treatment of bacteria, tuberculosis, Alzheimer’s disease and malaria.

  10. Eliminating the Heart from the Curcumin Molecule: Monocarbonyl Curcumin Mimics (MACs)

    Science.gov (United States)

    Shetty, Dinesh; Kim, Yong Joon; Shim, Hyunsuk; Snyder, James P.

    2015-01-01

    Curcumin is a natural product with several thousand years of heritage. Its traditional Asian application to human ailments has been subjected in recent decades to worldwide pharmacological, biochemical and clinical investigations. Curcumin’s Achilles heel lies in its poor aqueous solubility and rapid degradation at pH ~ 7.4. Researchers have sought to unlock curcumin’s assets by chemical manipulation. One class of molecules under scrutiny are the monocarbonyl analogs of curcumin (MACs). A thousand plus such agents have been created and tested primarily against cancer and inflammation. The outcome is clear. In vitro, MACs furnish a 10–20 fold potency gain vs. curcumin for numerous cancer cell lines and cellular proteins. Similarly, MACs have successfully demonstrated better pharmacokinetic (PK) profiles in mice and greater tumor regression in cancer xenografts in vivo than curcumin. The compounds reveal limited toxicity as measured by murine weight gain and histopathological assessment. To our knowledge, MAC members have not yet been monitored in larger animals or humans. However, Phase 1 clinical trials are certainly on the horizon. The present review focuses on the large and evolving body of work in cancer and inflammation, but also covers MAC structural diversity and early discovery for treatment of bacteria, tuberculosis, Alzheimer’s disease and malaria. PMID:25547726

  11. Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin.

    Science.gov (United States)

    Kumar, Sunny; Kesharwani, Siddharth S; Mathur, Himanshi; Tyagi, Mohit; Bhat, G Jayarama; Tummala, Hemachand

    2016-01-20

    Curcumin is a natural dietary compound with demonstrated potential in preventing/treating several chronic diseases in animal models. However, this success is yet to be translated to humans mainly because of its poor oral bioavailability caused by extremely low water solubility. This manuscript demonstrates that water insoluble curcumin (~1μg/ml) forms highly aqueous soluble complexes (>2mg/ml) with a safe pH sensitive polymer, poly(butyl-methacrylate-co-(2-dimethylaminoethyl) methacrylate-co-methyl-methacrylate) when precipitated together in water. The complexation process was optimized to enhance curcumin loading by varying several formulation factors. Acetone as a solvent and polyvinyl alcohol as a stabilizer with 1:2 ratio of drug to polymer yielded complexes with relatively high loading (~280μg/ml) and enhanced solubility (>2mg/ml). The complexes were amorphous in solid and were soluble only in buffers with pHs less than 5.0. Hydrogen bond formation and hydrophobic interactions between curcumin and the polymer were recorded by infrared spectroscopy and nuclear magnetic resonance spectroscopy, respectively. Molecular complexes of curcumin were more stable at various pHs compared to unformulated curcumin. In mice, these complexes increased peak plasma concentration of curcumin by 6 times and oral bioavailability by ~20 times. This is a simple, economic and safer strategy of enhancing the oral bioavailability of curcumin. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Fluorescence enhancement effect for the determination of curcumin with yttrium(III)-curcumin-sodium dodecyl benzene sulfonate system

    International Nuclear Information System (INIS)

    Wang Feng; Huang Wei; Wang Yanwei

    2008-01-01

    It is found that the fluorescence of curcumin is greatly enhanced by yttrium(III) (Y 3+ ) in the presence of sodium dodecyl benzene sulfonate. Based on this, a sensitive fluorimetric method for the determination of curcumin in aqueous solution is proposed. In the potassium hydrogen phthalate (KHP) buffer, the fluorescence intensity of curcumin is proportional to the concentration of curcumin in the range of 7.37x10 -4 -0.18, 0.18-2.95 μg mL -1 and the detection limit is 0.1583 ng mL -1 . The actual samples are satisfactorily determined. In addition, the interaction mechanism is also studied

  13. Curcumin-Free Turmeric Exhibits Activity against Human HCT-116 Colon Tumor Xenograft: Comparison with Curcumin and Whole Turmeric

    Science.gov (United States)

    Prasad, Sahdeo; Tyagi, Amit K.; Siddik, Zahid H.; Aggarwal, Bharat B.

    2017-01-01

    Extensive research within last two decades has indicated that curcumin extracted from turmeric (Curcuma longa), exhibits anticancer potential, in part through the modulation of inflammatory pathways. However, the residual antitumor activity of curcumin-free turmeric (CFT) relative to curcumin or turmeric is not well-understood. In the present study, therefore, we determined activities of these agents in both in vitro and in vivo models of human HCT-116 colorectal cancer (CRC). When examined in an in vitro antiproliferative, clonogenic or anti-inflammatory assay system, we found that curcumin was highly active whereas turmeric and CFT had relatively poor activity against CRC cells. However, when examined in vivo at an oral dose of either 100 or 500 mg/kg given to nude mice bearing CRC xenografts, all three preparations of curcumin, turmeric, and CFT similarly suppressed the growth of the xenograft. The effect of CFT on suppression of tumor growth was dose-dependent, with 500 mg/kg tending to be more effective than 100 mg/kg. Interestingly, 100 mg/kg curcumin or turmeric was found to be more effective than 500 mg/kg. When examined in vivo for the expression of biomarkers associated with cell survival (cIAP-1, Bcl-2, and survivin), proliferation (Ki-67 and cyclin D1) and metastasis (ICAM-1 and VEGF), all were down-modulated. These agents also suppressed inflammatory transcription factors (NF-κB and STAT3) in tumor cells. Overall, our results with CFT provide evidence that turmeric must contain additional bioactive compounds other than curcumin that, in contrast to curcumin, exhibit greater anticancer potential in vivo than in vitro against human CRC. Moreover, our study highlights the fact that the beneficial effects of turmeric and curcumin in humans may be more effectively realized at lower doses, whereas CFT could be given at higher doses without loss in favorable activity. PMID:29311914

  14. Curcumin-Free Turmeric Exhibits Activity against Human HCT-116 Colon Tumor Xenograft: Comparison with Curcumin and Whole Turmeric

    Directory of Open Access Journals (Sweden)

    Sahdeo Prasad

    2017-12-01

    Full Text Available Extensive research within last two decades has indicated that curcumin extracted from turmeric (Curcuma longa, exhibits anticancer potential, in part through the modulation of inflammatory pathways. However, the residual antitumor activity of curcumin-free turmeric (CFT relative to curcumin or turmeric is not well-understood. In the present study, therefore, we determined activities of these agents in both in vitro and in vivo models of human HCT-116 colorectal cancer (CRC. When examined in an in vitro antiproliferative, clonogenic or anti-inflammatory assay system, we found that curcumin was highly active whereas turmeric and CFT had relatively poor activity against CRC cells. However, when examined in vivo at an oral dose of either 100 or 500 mg/kg given to nude mice bearing CRC xenografts, all three preparations of curcumin, turmeric, and CFT similarly suppressed the growth of the xenograft. The effect of CFT on suppression of tumor growth was dose-dependent, with 500 mg/kg tending to be more effective than 100 mg/kg. Interestingly, 100 mg/kg curcumin or turmeric was found to be more effective than 500 mg/kg. When examined in vivo for the expression of biomarkers associated with cell survival (cIAP-1, Bcl-2, and survivin, proliferation (Ki-67 and cyclin D1 and metastasis (ICAM-1 and VEGF, all were down-modulated. These agents also suppressed inflammatory transcription factors (NF-κB and STAT3 in tumor cells. Overall, our results with CFT provide evidence that turmeric must contain additional bioactive compounds other than curcumin that, in contrast to curcumin, exhibit greater anticancer potential in vivo than in vitro against human CRC. Moreover, our study highlights the fact that the beneficial effects of turmeric and curcumin in humans may be more effectively realized at lower doses, whereas CFT could be given at higher doses without loss in favorable activity.

  15. β-Cyclodextrin-curcumin complex inhibit telomerase gene ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... have various applications in cancer therapy. But, its low water solubility and bioavailability is possible for poor drug delivery of curcumin. In this study, we prepared β-cyclodextrin-curcumin complex to determine the inhibitory effect of this drug on telomerase gene expression. Curcumin was encapsulated.

  16. Facile synthesis of water-soluble curcumin nanocrystals

    Directory of Open Access Journals (Sweden)

    Marković Zoran M.

    2015-01-01

    Full Text Available In this paper, facile synthesis of water soluble curcumin nanocrystals is reported. Solvent exchange method was applied to synthesize curcumin nanocrystals. Different techniques were used to characterize the structural and photophysical properties of curcumin nanocrystals. We found that nanocurcumin prepared by this method had good chemical and physical stability, could be stored in the powder form at room temperature, and was freely dispersible in water. It was established that the size of curcumin nanocrystals was varied in the range of 20-500 nm. Fourier transform infrared spectroscopy and UV-Vis analyses showed the presence of tetrahydrofuran inside the curcumin nanocrystals. Also, it was found that nanocurcumin emitted photoluminescencewith yellow-green colour. [Projekat Ministarstva nauke Republike Srbije, br. 172003

  17. Facile Synthesis of Curcumin-Loaded Starch-Maleate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2014-01-01

    Full Text Available We have demonstrated the loading of curcumin onto starch maleate (SM under mild conditions by mixing dissolved curcumin and SM nanoparticles separately in absolute ethanol and ethanol/aqueous (40 : 60 v/v, respectively. Curcumin-loaded starch-maleate (CurSM nanoparticles were subsequently precipitated from a homogeneous mixture of these solutions in absolute ethanol based on the solvent exchange method. TEM analysis indicated that the diameters of CurSM nanoparticles were ranged between 30 nm and 110 nm with a mean diameter of 50 nm. The curcumin loading capacity of SM as a function of loading duration was investigated using the UV-visible spectrophotometer. The loading of curcumin onto SM increased rapidly initially with loading duration, and the curcumin loading capacity of 15 mg/g was reached within 12 hours. CurSM nanoparticles exhibited substantially higher water solubility of 6.0 × 10−2 mg/mL which is about 300 times higher than that of pure curcumin. With enhanced water solubility and bioaccessibility of curcumin, the potential utility of CurSM nanoparticles in various biomedical applications is therefore envisaged.

  18. Protection effect of ginkgo albumin extract on γ-ray irradiated mice

    International Nuclear Information System (INIS)

    Deng Qianchun; Duan Huike; Wang Lan; Xie Bijun; Chen Chunyan

    2005-01-01

    Water soluble ginkgo albumin extract (GAE), which was extracted for the first time from seeds of Ginkgo bilbo L in our laboratory has good antioxidant and anti-aging activity. In this paper, protective effect of GAE on γ-rays irradiated mice was studied. The results showed that the mice irradiated to 8.5 Gy were zero, whereas survival rate of the high dosage GAE group was 20 percent. Blood picture of the 8.5 Gy irradiated mice suffered damages of different degrees, while blood picture index of the GAE group decreased slower and recovered faster significantly than the irradiation control group. GAE and Vitamin C could significantly enhance serum SOD activity in serum and increase DNA content in bone marrow cells, and also promote recovery of damaged immunology function of the irradiated mice. These suggest that GAE may protect mice from the radiation damages by enhancement of antioxidant activity, hemopoiesis function and immunologic function of mice. (authors)

  19. Curcumin and autoimmune disease.

    Science.gov (United States)

    Bright, John J

    2007-01-01

    The immune system has evolved to protect the host from microbial infection; nevertheless, a breakdown in the immune system often results in infection, cancer, and autoimmune diseases. Multiple sclerosis, rheumatoid arthritis, type 1 diabetes, inflammatory bowel disease, myocarditis, thyroiditis, uveitis, systemic lupus erythromatosis, and myasthenia gravis are organ-specific autoimmune diseases that afflict more than 5% of the population worldwide. Although the etiology is not known and a cure is still wanting, the use of herbal and dietary supplements is on the rise in patients with autoimmune diseases, mainly because they are effective, inexpensive, and relatively safe. Curcumin is a polyphenolic compound isolated from the rhizome of the plant Curcuma longa that has traditionally been used for pain and wound-healing. Recent studies have shown that curcumin ameliorates multiple sclerosis, rheumatoid arthritis, psoriasis, and inflammatory bowel disease in human or animal models. Curcumin inhibits these autoimmune diseases by regulating inflammatory cytokines such as IL-1beta, IL-6, IL-12, TNF-alpha and IFN-gamma and associated JAK-STAT, AP-1, and NF-kappaB signaling pathways in immune cells. Although the beneficial effects of nutraceuticals are traditionally achieved through dietary consumption at low levels for long periods of time, the use of purified active compounds such as curcumin at higher doses for therapeutic purposes needs extreme caution. A precise understanding of effective dose, safe regiment, and mechanism of action is required for the use of curcumin in the treatment of human autoimmune diseases.

  20. Supramolecular curcumin-barium prodrugs for formulating with ceramic particles.

    Science.gov (United States)

    Kamalasanan, Kaladhar; Anupriya; Deepa, M K; Sharma, Chandra P

    2014-10-01

    A simple and stable curcumin-ceramic combined formulation was developed with an aim to improve curcumin stability and release profile in the presence of reactive ceramic particles for potential dental and orthopedic applications. For that, curcumin was complexed with barium (Ba(2+)) to prepare curcumin-barium (BaCur) complex. Upon removal of the unbound curcumin and Ba(2+) by dialysis, a water-soluble BaCur complex was obtained. The complex was showing [M+1](+) peak at 10,000-20,000 with multiple fractionation peaks of MALDI-TOF-MS studies, showed that the complex was a supramolecular multimer. The (1)H NMR and FTIR studies revealed that, divalent Ba(2+) interacted predominantly through di-phenolic groups of curcumin to form an end-to-end complex resulted in supramolecular multimer. The overall crystallinity of the BaCur was lower than curcumin as per XRD analysis. The complexation of Ba(2+) to curcumin did not degrade curcumin as per HPLC studies. The fluorescence spectrum was blue shifted upon Ba(2+) complexation with curcumin. Monodisperse nanoparticles with size less than 200dnm was formed, out of the supramolecular complex upon dialysis, as per DLS, and upon loading into pluronic micelles the size was remaining in similar order of magnitude as per DLS and AFM studies. Stability of the curcumin was improved greater than 50% after complexation with Ba(2+) as per UV/Vis spectroscopy. Loading of the supramloecular nanoparticles into pluronic micelles had further improved the stability of curcumin to approx. 70% in water. These BaCur supramolecule nanoparticles can be considered as a new class of prodrugs with improved solubility and stability. Subsequently, ceramic nanoparticles with varying chemical composition were prepared for changing the material surface reactivity in terms of the increase in, degradability, surface pH and protein adsorption. Further, these ceramic particles were combined with curcumin prodrug formulations and optimized the curcumin release

  1. Molecular mechanisms of curcumin action: gene expression.

    Science.gov (United States)

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  2. Comparison of Inhibitory Effect of Curcumin Nanoparticles and Free Curcumin in Human Telomerase Reverse Transcriptase Gene Expression in Breast Cancer

    OpenAIRE

    Nosratollah Zarghami; Abbas Rami; Fatemeh Kazemi-Lomedasht

    2013-01-01

    Purpose: Telomerase is expressed in most cancers, including breast cancer. Curcumin, a polyphenolic compound that obtained from the herb of Curcuma longa, has many anticancer effects. But, its effect is low due to poor water solubility. In order to improve its solubility and drug delivery, we have utilized a β-cyclodextrin-curcumin inclusion complex. Methods: To evaluate cytotoxic effects of cyclodextrin-curcumin and free curcumin, MTT assay was done. Cells were treated with equal concentrati...

  3. Enzymatic Synthesis and Anti-Allergic Activities of Curcumin Oligosaccharides

    Directory of Open Access Journals (Sweden)

    Kei Shimoda

    2010-01-01

    Full Text Available Curcumin 4‘- O -glucooligosaccharides were synthesized by a two step-enzymatic method using almond β-glucosidase and cyclodextrin glucanotransferase (CGTase. Curcumin was glucosylated to curcumin 4‘- O -β-D-glucopyranoside by almond β-glucosidase in 19% yield. Curcumin 4‘- O -β-D-glucopyranoside was converted into curcumin 4‘- O -β-glucooligosaccharides, i.e. 4‘- O -β-maltoside (51% and 4‘- O -β-maltotrioside (25%, by further CGTase-catalyzed glycosylation. Curcumin 4‘- O -β-glycosides showed suppressive action on IgE antibody formation and inhibitory effects on histamine release from rat peritoneal mast cells.

  4. Curcumin inhibits aggregation of alpha-synuclein.

    Science.gov (United States)

    Pandey, Neeraj; Strider, Jeffrey; Nolan, William C; Yan, Sherry X; Galvin, James E

    2008-04-01

    Aggregation of amyloid-beta protein (Abeta) is a key pathogenic event in Alzheimer's disease (AD). Curcumin, a constituent of the Indian spice Turmeric is structurally similar to Congo Red and has been demonstrated to bind Abeta amyloid and prevent further oligomerization of Abeta monomers onto growing amyloid beta-sheets. Reasoning that oligomerization kinetics and mechanism of amyloid formation are similar in Parkinson's disease (PD) and AD, we investigated the effect of curcumin on alpha-synuclein (AS) protein aggregation. In vitro model of AS aggregation was developed by treatment of purified AS protein (wild-type) with 1 mM Fe3+ (Fenton reaction). It was observed that the addition of curcumin inhibited aggregation in a dose-dependent manner and increased AS solubility. The aggregation-inhibiting effect of curcumin was next investigated in cell culture utilizing catecholaminergic SH-SY5Y cell line. A model system was developed in which the red fluorescent protein (DsRed2) was fused with A53T mutant of AS and its aggregation examined under different concentrations of curcumin. To estimate aggregation in an unbiased manner, a protocol was developed in which the images were captured automatically through a high-throughput cell-based screening microscope. The obtained images were processed automatically for aggregates within a defined dimension of 1-6 microm. Greater than 32% decrease in mutant alpha-synuclein aggregation was observed within 48 h subsequent to curcumin addition. Our data suggest that curcumin inhibits AS oligomerization into higher molecular weight aggregates and therefore should be further explored as a potential therapeutic compound for PD and related disorders.

  5. New perspectives of curcumin in cancer prevention

    Science.gov (United States)

    Park, Wungki; Amin, A.R.M Ruhul; Chen, Zhuo Georgia; Shin, Dong M.

    2013-01-01

    Numerous natural compounds have been extensively investigated for their potential for cancer prevention over decades. Curcumin, from Curcuma longa, is a highly promising natural compound that can be potentially used for chemoprevention of multiple cancers. Curcumin modulates multiple molecular pathways involved in the lengthy carcinogenesis process to exert its chemopreventive effects through several mechanisms: promoting apoptosis, inhibiting survival signals, scavenging reactive oxidative species (ROS), and reducing the inflammatory cancer microenvironment. Curcumin fulfills the characteristics for an ideal chemopreventive agent with its low toxicity, affordability, and easy accessibility. Nevertheless, the clinical application of curcumin is currently compromised by its poor bioavailability. Here we review the potential of curcumin in cancer prevention, its molecular targets, and action mechanisms. Finally, we suggest specific recommendations to improve its efficacy and bioavailability for clinical applications. PMID:23466484

  6. Understanding curcumin-induced modulation of protein aggregation.

    Science.gov (United States)

    Ahmad, Basir; Borana, Mohanish S; Chaudhary, Ankur P

    2017-07-01

    Curcumin, a diarylheptanoid compound, found in spice turmeric is known to alter the aggregation of proteins and reduce the toxicity of the aggregates. This review looks at the molecular basis of modulating protein aggregation and toxicity of the aggregates. Foremost, we identify the interaction of curcumin and its derivatives with proteins/peptides and the effect of their interaction on the conformational stability and unfolding/folding pathway(s). The unfolding/folding processes generate partially folded/unfolded intermediate, which serve as aggregation precursor state. Secondly, we discuss the effect of curcumin binding on the kinetics parameters of the aggregation process, which give information about the mechanism of the aggregation inhibition. We describe, in addition, that curcumin can accelerate/promote fibril formation by binding to oligomeric intermediate(s) accumulated in the aggregation pathway. Finally, we discuss the correlation of curcumin-induced monomeric and/or oligomeric precursor states with aggregate structure and toxicity. On the basis of these discussions, we propose a model describing curcumin-induced inhibition/promotion of formation of amyloid-like fibrils. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Curcumin enhances human macrophage control of Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Bai, Xiyuan; Oberley-Deegan, Rebecca E; Bai, An; Ovrutsky, Alida R; Kinney, William H; Weaver, Michael; Zhang, Gong; Honda, Jennifer R; Chan, Edward D

    2016-07-01

    With the worldwide emergence of highly drug-resistant tuberculosis (TB), novel agents that have direct antimycobacterial effects or that enhance host immunity are urgently needed. Curcumin is a polyphenol responsible for the bright yellow-orange colour of turmeric, a spice derived from the root of the perennial herb Curcuma longa. Curcumin is a potent inducer of apoptosis-an effector mechanism used by macrophages to kill intracellular Mycobacterium tuberculosis (MTB). An in vitro human macrophage infection model was used to determine the effects of curcumin on MTB survival. We found that curcumin enhanced the clearance of MTB in differentiated THP-1 human monocytes and in primary human alveolar macrophages. We also found that curcumin was an inducer of caspase-3-dependent apoptosis and autophagy. Curcumin mediated these anti-MTB cellular functions, in part, via inhibition of nuclear factor-kappa B (NFκB) activation. Curcumin protects against MTB infection in human macrophages. The host-protective role of curcumin against MTB in macrophages needs confirmation in an animal model; if validated, the immunomodulatory anti-TB effects of curcumin would be less prone to drug resistance development. © 2016 Asian Pacific Society of Respirology.

  8. Novel delivery system for natural products: Nano-curcumin formulations.

    Science.gov (United States)

    Rahimi, Hamid Reza; Nedaeinia, Reza; Sepehri Shamloo, Alireza; Nikdoust, Shima; Kazemi Oskuee, Reza

    2016-01-01

    Curcumin is extracted from Curcuma longa and regulates the intracellular signal pathways which control the growth of cancerous cell, inflammation, invasion and apoptosis. Curcumin molecules have special intrinsic features that can target the intracellular enzymes, genome (DNA) and messengers (RNA). A wide range of studies have been conducted on the physicochemical traits and pharmacological effects of curcumin on different diseases like cardiovascular diseases, diabetes, cancer, rheumatoid arthritis, Alzheimer's, inflammatory bowel disease (IBD), and even it has wound healing. Oral bioavailability of curcumin is rather poor, which would certainly put some boundaries in the employment of this drug. Bibliographical searches were performed using MEDLINE/ScienceDirect/OVID up to February 2015 using the following keywords (all fields): ("Curcumin" OR "Curcuma longa") AND [(nanoparticles) OR (Nanomicelles) OR (micro emulsions) OR (liposome) OR (phospholipid). Consequently, for any developments of curcumin in the future, analogues of curcumin that have better bioavailability or substitute formulations are needed crucially. These studies indicated that nanotechnology can formulate curcumin effectively, and this nano-formulated curcumin with a potent ability against various cancer cells, were represented to have better efficacy and bioavailability under in vivo conditions.

  9. Curcumin-functionalized silk biomaterials for anti-aging utility.

    Science.gov (United States)

    Yang, Lei; Zheng, Zhaozhu; Qian, Cheng; Wu, Jianbing; Liu, Yawen; Guo, Shaozhe; Li, Gang; Liu, Meng; Wang, Xiaoqin; Kaplan, David L

    2017-06-15

    Curcumin is a natural antioxidant that is isolated from turmeric (Curcuma longa) and exhibits strong free radical scavenging activity, thus functional for anti-aging. However, poor stability and low solubility of curcumin in aqueous conditions limit its biomedical applications. Previous studies have shown that the anti-oxidation activity of curcumin embedded in silk fibroin films could be well preserved, resulting in the promoted adipogenesis from human mesenchymal stem cells (hMSCs) cultured on the surface of the films. In the present study, curcumin was encapsulated in both silk fibroin films (silk/cur films) and nanoparticles (silk/cur NPs), and their anti-aging effects were compared with free curcumin in solution, with an aim to elucidate the mechanism of anti-aging of silk-associated curcumin and to better serve biomedical applications in the future. The morphology and structure of silk/cur film and silk/cur NP were characterized using SEM, FTIR and DSC, indicating characteristic stable beta-sheet structure formation in the materials. Strong binding of curcumin molecules to the beta-sheet domains of silk fibroin resulted in the slow release of curcumin with well-preserved activity from the materials. For cell aging studies, rat bone marrow mesenchymal stem cells (rBMSCs) were cultured in the presence of free curcumin (FC), silk/cur film and silk/cur NP, and cell proliferation and markers of aging (P53, P16, HSP70 gene expression and β-Galactosidase activity) were examined. The results indicated that cell aging was retarded in all FC, silk/cur NP and silk/cur film samples, with the silk-associated curcumin superior to the FC. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Polymeric Nanoparticles for Increasing Oral Bioavailability of Curcumin

    Directory of Open Access Journals (Sweden)

    Anita Umerska

    2018-03-01

    Full Text Available Despite the promising biological and antioxidant properties of curcumin, its medical applications are limited due to poor solubility in water and low bioavailability. Polymeric nanoparticles (NPs adapted to oral delivery may overcome these drawbacks. Properties such as particle size, zeta potential, morphology and encapsulation efficiency were assessed. Then, the possibility of storing these NPs in a solid-state form obtained by freeze-drying, in vitro curcumin dissolution and cytocompatibility towards intestinal cells were evaluated. Curcumin-loaded Eudragit® RLPO (ERL NPs showed smaller particle diameters (245 ± 2 nm and better redispersibility after freeze-drying than either poly(lactic-co-glycolic acid (PLGA or polycaprolactone (PCL NPs. The former NPs showed lower curcumin encapsulation efficiency (62% than either PLGA or PCL NPs (90% and 99%, respectively. Nevertheless, ERL NPs showed rapid curcumin release with 91 ± 5% released over 1 h. The three curcumin-loaded NPs proposed in this work were also compatible with intestinal cells. Overall, ERL NPs are the most promising vehicles for increasing the oral bioavailability of curcumin.

  11. Curcumin (Turmeric) and cancer.

    Science.gov (United States)

    Unlu, Ahmet; Nayir, Erdinc; Dogukan Kalenderoglu, Muhammed; Kirca, Onder; Ozdogan, Mustafa

    2016-01-01

    Curcumin is a substance obtained from the root of the turmeric plant, which has the feature of being a yellow or orange pigment. It is also the main component of curry powder commonly used in Asian cuisine. Curcumin, a substance that has had an important place in traditional Indian and Chinese medicines for thousands of years, has been the center of interest for scientific studies especially in the field of cancer treatment for several years. Laboratory studies have presented some favorable results in terms of curcumin's antioxidant, antiinflammatory and anticancer properties in particular. However, since such findings have yet to be confirmed in clinical studies, its effect on humans is not clearly known. Therefore, when its advantages in terms of toxicity, cost and availability as well as the favorable results achieved in laboratory studies are considered, it would not be wrong to say that curcumin is a substance worth being studied. However, for now the most correct approach is to abstain from its use for medical purposes due to lack of adequate reliable evidence obtained from clinical studies, and because of its potential to interfere with other drugs.

  12. Curcumin as "Curecumin": from kitchen to clinic.

    Science.gov (United States)

    Goel, Ajay; Kunnumakkara, Ajaikumar B; Aggarwal, Bharat B

    2008-02-15

    Although turmeric (Curcuma longa; an Indian spice) has been described in Ayurveda, as a treatment for inflammatory diseases and is referred by different names in different cultures, the active principle called curcumin or diferuloylmethane, a yellow pigment present in turmeric (curry powder) has been shown to exhibit numerous activities. Extensive research over the last half century has revealed several important functions of curcumin. It binds to a variety of proteins and inhibits the activity of various kinases. By modulating the activation of various transcription factors, curcumin regulates the expression of inflammatory enzymes, cytokines, adhesion molecules, and cell survival proteins. Curcumin also downregulates cyclin D1, cyclin E and MDM2; and upregulates p21, p27, and p53. Various preclinical cell culture and animal studies suggest that curcumin has potential as an antiproliferative, anti-invasive, and antiangiogenic agent; as a mediator of chemoresistance and radioresistance; as a chemopreventive agent; and as a therapeutic agent in wound healing, diabetes, Alzheimer disease, Parkinson disease, cardiovascular disease, pulmonary disease, and arthritis. Pilot phase I clinical trials have shown curcumin to be safe even when consumed at a daily dose of 12g for 3 months. Other clinical trials suggest a potential therapeutic role for curcumin in diseases such as familial adenomatous polyposis, inflammatory bowel disease, ulcerative colitis, colon cancer, pancreatic cancer, hypercholesteremia, atherosclerosis, pancreatitis, psoriasis, chronic anterior uveitis and arthritis. Thus, curcumin, a spice once relegated to the kitchen shelf, has moved into the clinic and may prove to be "Curecumin".

  13. Encapsulated Curcumin for Transdermal Administration

    African Journals Online (AJOL)

    Purpose: To develop a proniosomal carrier system of curcumin for transdermal delivery. Methods: Proniosomes of curcumin were prepared by encapsulation of the drug in a mixture of Span 80, cholesterol and diethyl ether by ether injection method, and then investigated as a transdermal drug delivery system (TDDS).

  14. Curcumin attenuates surgery-induced cognitive dysfunction in aged mice.

    Science.gov (United States)

    Wu, Xiang; Chen, Huixin; Huang, Chunhui; Gu, Xinmei; Wang, Jialing; Xu, Dilin; Yu, Xin; Shuai, Chu; Chen, Liping; Li, Shun; Xu, Yiguo; Gao, Tao; Ye, Mingrui; Su, Wei; Liu, Haixiong; Zhang, Jinrong; Wang, Chuang; Chen, Junping; Wang, Qinwen; Cui, Wei

    2017-06-01

    Post-operative cognitive dysfunction (POCD) is associated with elderly patients undergoing surgery. However, pharmacological treatments for POCD are limited. In this study, we found that curcumin, an active compound derived from Curcuma longa, ameliorated the cognitive dysfunction following abdominal surgery in aged mice. Further, curcumin prevented surgery-induced anti-oxidant enzyme activity. Curcumin also increased brain-derived neurotrophic factor (BDNF)-positive area and expression of pAkt in the brain, suggesting that curcumin activated BDNF signaling in aged mice. Furthermore, curcumin neutralized cholinergic dysfunction involving choline acetyltransferase expression induced by surgery. These results strongly suggested that curcumin prevented cognitive impairments via multiple targets, possibly by increasing the activity of anti-oxidant enzymes, activation of BDNF signaling, and neutralization of cholinergic dysfunction, concurrently. Based on these novel findings, curcumin might be a potential agent in POCD prophylaxis and treatment.

  15. Determining whether curcumin degradation/condensation is actually bioactivation (Review).

    Science.gov (United States)

    Jankun, Jerzy; Wyganowska-Świątkowska, Marzena; Dettlaff, Katarzyna; Jelińska, Anna; Surdacka, Anna; Wątróbska-Świetlikowska, Dorota; Skrzypczak-Jankun, Ewa

    2016-05-01

    Curcumin has been shown to exert therapeutic or protective effects against a variety of diseases, such as cancer, pulmonary diseases, neurological, liver, metabolic, autoimmune, cardiovascular diseases and numerous other chronic ailments. Over 116 clinical studies on curcumin in humans were registered with the US National Institutes of Health in 2015. However, it is mystifying how curcumin can be so effective in the treatment of many diseases since it has very low water solubility and bioavailability. Furthermore, curcumin is not stable under various conditions; its degradation or condensation into different bioactive compounds may be responsible for its biological activities rather than curcumin itself. In this review, we provide evidence of curcumin degradation and condensation into different compounds which have or may have health benefits themselves. Literature reviews strongly suggest that these molecules contribute to the observed health benefits, rather than curcumin itself.

  16. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies.

    Science.gov (United States)

    Mirzaei, Hamed; Shakeri, Abolfazl; Rashidi, Bahman; Jalili, Amin; Banikazemi, Zarrin; Sahebkar, Amirhossein

    2017-01-01

    Curcumin, a hydrophobic polyphenol, is the principal constituent extracted from dried rhizomes of Curcuma longa L. (turmeric). Curcumin is known as a strong anti-oxidant and anti-inflammatory agent that has different pharmacological effects. In addition, several studies have demonstrated that curcumin is safe even at dosages as high as 8g per day; however, instability at physiological pH, low solubility in water and rapid metabolism results in a low oral bioavailability of curcumin. The phytosomal formulation of curcumin (a complex of curcumin with phosphatidylcholine) has been shown to improve curcumin bioavailability. Existence of phospholipids in phytosomes leads to specific physicochemical properties such as amphiphilic nature that allows dispersion in both hydrophilic and lipophilic media. The efficacy and safety of curcumin phytosomes have been shown against several human diseases including cancer, osteoarthritis, diabetic microangiopathy and retinopathy, and inflammatory diseases. This review focuses on the pharmacokinetics as well as pharmacological and clinical effects of phytosomal curcumin. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Preparation of curcumin nanoparticle by using reinforcement ionic gelation technique

    Science.gov (United States)

    Suryani, Halid, Nur Hatidjah Awaliyah; Akib, Nur Illiyyin; Rahmanpiu, Mutmainnah, Nina

    2017-05-01

    Curcumin, a polyphenolic compound present in curcuma longa has a wide range of activities including anti-inflammatory properties. The potency of curcumin is limited by its poor oral bioavailability because of its poor solubility in aqueous. Various methods have been tried to solve the problem including its encapsulation into nanoparticle. The aim of this study is to develop curcumin nanoparticle by using reinforcement ionic gelation technique and to evaluate the stability of curcumin nanoparticles in gastrointestinal fluid. Curcumin nanoparticles were prepared by using reinforcement ionic gelation technique with different concentrations of chitosan, trypolyphosphate, natrium alginate and calcium chloride. Curcumin nanoparticles were then characterized including particle size and zeta potential by using particle size analyzer and morphology using a transmission electron microscope, entrapment efficiency using UV-Vis Spectrophotometer and chemical structure analysis by Infra Red Spectrophotometer (FTIR). Furthermore, the stability of curcumin nanoparticles were evaluated on artificial gastric fluid and artificial intestinal fluids by measuring the amount of curcumin released in the medium at a time interval. The result revealed that curcumin nanoparticles can be prepared by reinforcement ionic gelation technique, the entrapment efficiency of curcumin nanoparticles were from 86.08 to 91.41%. The average of particle size was 272.9 nm and zeta potential was 12.05 mV. The morphology examination showed that the curcumin nanoparticles have spherical shape. The stability evaluation of curcumin nanoparticles showed that the nanoparticles were stable on artificial gastric fluid and artificial intestinal fluid. This result indicates that curcumin nanoparticles have the potential to be developed for oral delivery.

  18. Preparation and evaluation of curcumin-loaded self-assembled micelles.

    Science.gov (United States)

    Wang, Lu-Lu; He, Dan-Dan; Wang, Shu-Xia; Dai, Yun-Hao; Ju, Jian-Ming; Zhao, Cheng-Lei

    2018-04-01

    Curcumin being used to treat various chronic diseases while its poor bioavailability issue limited its wide clinical application as a therapeutic agent. The aim of this work was to prepare curcumin-loaded self-assembled micelles using soluplus and solutol ® HS15 (SSCMs) to enhance curcumin's solubility and thus oral bioavailability. Optimum formulation was investigated and the optimized ratio of drugs and excipients was obtained and the SSCMs were prepared via ethanol solvent evaporation method. The optimal SSCMs were characterized by transmission electron microscopy, drug content analysis including loading efficiency (LE%) and entrapment efficiency (EE%), and the cumulative amount of curcumin released from the micelles were all calculated using HPLC method. The in vitro cytotoxicity and the permeability of SSCMs were measured by Caco-2 cell monolayers and the oral bioavailability was evaluated by SD rats. The solubility of curcumin in self-assembled micelles was dramatically increased by 4200 times as compared to free curcumin. Caco-2 cells transport experiment exhibited that while soluplus and solutol ® HS15 were self-assembled into micelles, it could not only promote the permeability of curcumin across membrane for better absorption, but also could restrain the curcumin pumped outside due to the role of P-gp efflux mechanism of soluplus and solutol ® HS15. Furthermore, the prepared SSCMs formulation was almost nontoxic and had safety performance on Caco-2 cells model. Moreover, curcumin's oral bioavailability of SSCMs formulation in SD rats had doubled than that of free curcumin. The prepared SSCMs were characterized by PS, PDI, LE%, EE% data analysis. After the soluplus and solutol ® HS15 were self assembled into micelles, both the solubility and membrane permeability of curcumin were evaluated to have been enhanced, as well as the effect of efflux pump of curcumin was inhibited, hence to promote oral absorption and generate an increased bioavailability.

  19. Longevity of guard cell chloroplasts in falling leaves: implication for stomatal function and cellular aging.

    Science.gov (United States)

    Zeiger, E; Schwartz, A

    1982-11-12

    Guard cell chloroplasts in senescing leaves from 12 species of perennial trees and three species of annual plants survived considerably longer than their mesophyll counterparts. In Ginkgo biloba, stomata from yellow leaves opened during the day and closed at night; guard cell chloroplasts from these leaves showed fluorescence transients associated with electron transport and photophosphorylation. These findings indicate that guard cell chloroplasts are highly conserved throughout the life-span of the leaf and that leaves retain stomatal control during senescence.

  20. Curcumin Quantum Dots Mediated Degradation of Bacterial Biofilms

    Directory of Open Access Journals (Sweden)

    Ashish K. Singh

    2017-08-01

    Full Text Available Bacterial biofilm has been reported to be associated with more than 80% of bacterial infections. Curcumin, a hydrophobic polyphenol compound, has anti-quorum sensing activity apart from having antimicrobial action. However, its use is limited by its poor aqueous solubility and rapid degradation. In this study, we attempted to prepare quantum dots of the drug curcumin in order to achieve enhanced solubility and stability and investigated for its antimicrobial and antibiofilm activity. We utilized a newer two-step bottom up wet milling approach to prepare Curcumin Quantum Dots (CurQDs using acetone as a primary solvent. Minimum inhibitory concentration against select Gram-positive and Gram-negative bacteria was performed. The antibiofilm assay was performed at first using 96-well tissue culture plate and subsequently validated by Confocal Laser Scanning Microscopy. Further, biofilm matrix protein was isolated using formaldehyde sludge and TCA/Acetone precipitation method. Protein extracted was incubated with varying concentration of CurQDs for 4 h and was subjected to SDS–PAGE. Molecular docking study was performed to observe interaction between curcumin and phenol soluble modulins as well as curli proteins. The biophysical evidences obtained from TEM, SEM, UV-VIS, fluorescence, Raman spectroscopy, and zeta potential analysis confirmed the formation of curcumin quantum dots with increased stability and solubility. The MICs of curcumin quantum dots, as observed against both select gram positive and negative bacterial isolates, was observed to be significantly lower than native curcumin particles. On TCP assay, Curcumin observed to be having antibiofilm as well as biofilm degrading activity. Results of SDS–PAGE and molecular docking have shown interaction between biofilm matrix proteins and curcumin. The results indicate that aqueous solubility and stability of Curcumin can be achieved by preparing its quantum dots. The study also demonstrates

  1. Transdermal delivery of curcumin via microemulsion.

    Science.gov (United States)

    Sintov, Amnon C

    2015-03-15

    The objective of this study was to evaluate the transdermal delivery potential of a new curcumin-containing microemulsion system. Three series of experiments were carried out to comprehend the system characteristics: (a) examining the influence of water content on curcumin permeation, (b) studying the effect of curcumin loading on its permeability, and (c) assessing the contribution of the vesicular nature of the microemulsion on permeability. The skin permeability of curcumin from microemulsions, which contained 5%, 10%, and 20% of water content (1% curcumin), was measured in vitro using excised rat skin. It has been shown that the permeability coefficient of CUR in a formulation containing 10% aqueous phase (ME-10) was twofold higher than the values obtained for formulations with 5% and 20% water (Papp=0.116 × 10(-3)± 0.052 × 10(-3)vs. 0.043 × 10(-3)± 0.022 × 10(-3) and 0.047 × 10(-3)± 0.025 × 10(-3)cm/h, respectively. A reasonable explanation for this phenomenon may be the reduction of both droplet size and droplets' concentration in the microemulsion as the aqueous phase decreased from 20% to 5%. It has also been shown that a linear correlation exists between the decrease in droplet size and the increase of curcumin loading in the microemulsion. In addition, it has been demonstrated that a micellar system, S/O-mix, and a plain solution of curcumin resulted in a significantly lower curcumin permeation relative to that presented by the microemulsion, Papp=0.018 × 10(-3)± 0.011 × 10(-3), 0.005 × 10(-3)± 0.002 × 10(-3), and 0.002 × 10(-3)± 0.000 × 10(-3)cm/h, respectively, vs. 0.110 × 10(-3)± 0.021 × 10(-3)cm/h for the microemulsion. The enhancement ratio (ER=Jss-ME/Jss-solution) of CUR permeated via 1% loaded microemulsion was 55. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Curcumin as a potential protective compound against cardiac diseases.

    Science.gov (United States)

    Jiang, Shuai; Han, Jing; Li, Tian; Xin, Zhenlong; Ma, Zhiqiang; Di, Wencheng; Hu, Wei; Gong, Bing; Di, Shouyin; Wang, Dongjin; Yang, Yang

    2017-05-01

    Curcumin, which was first used 3000 years ago as an anti-inflammatory agent, is a well-known bioactive compound derived from the active ingredient of turmeric (Curcuma longa). Previous research has demonstrated that curcumin has immense therapeutic potential in a variety of diseases via anti-oxidative, anti-apoptotic, and anti-inflammatory pathways. Cardiac diseases are the leading cause of mortality worldwide and cause considerable harm to human beings. Numerous studies have suggested that curcumin exerts a protective role in the human body whereas its actions in cardiac diseases remain elusive and poorly understood. On the basis of the current evidence, we first give a brief introduction of cardiac diseases and curcumin, especially regarding the effects of curcumin in embryonic heart development. Secondly, we analyze the basic roles of curcumin in pathways that are dysregulated in cardiac diseases, including oxidative stress, apoptosis, and inflammation. Thirdly, actions of curcumin in different cardiac diseases will be discussed, as will relevant clinical trials. Eventually, we would like to discuss the existing controversial opinions and provide a detailed analysis followed by the remaining obstacles, advancement, and further prospects of the clinical application of curcumin. The information compiled here may serve as a comprehensive reference of the protective effects of curcumin in the heart, which is significant to the further research and design of curcumin analogs as therapeutic options for cardiac diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Photodecomposition Profile of Curcumin in the Existence of Tungsten Trioxide Particles

    Science.gov (United States)

    Nandiyanto, A. B. D.; Zaen, R.; Oktiani, R.; Abdullah, A. G.

    2018-02-01

    The purpose of this study was to investigate the stability of curcumin solution in the existence of tungsten trioxide (WO3) particles under light illumination. In the experimental method, curcumin extracted from Indonesian local turmeric was added with WO3 microparticles and put into the photoreactor system. The photostability performance of curcumin was conducted for 22 hours using 100 W of Neon Lamp. The results showed that the curcumin solution was relatively stable. When curcumin without existence of WO3 was irradiated, no change in the curcumin concentration was found. However, when curcumin solution was mixed with WO3 particles, decreases in the concentration of curcumin was found. The concentration of curcumin with WO3 after light irradiation was about 73.58%. Based on the results, we concluded that the curcumin is relatively stable against light. However, its lightirradiation stability decreases with additional inorganic material.

  4. Curcumin inhibits amygdaloid kindled seizures in rats.

    Science.gov (United States)

    DU, Peng; Li, Xin; Lin, Hao-Jie; Peng, Wei-Feng; Liu, Jian-Ying; Ma, Yu; Fan, Wei; Wang, Xin

    2009-06-20

    Curcumin can reduce the severity of seizures induced by kainate acid (KA), but the role of curcumin in amygdaloid kindled models is still unknown. This study aimed to explore the effect of curcumin on the development of kindling in amygdaloid kindled rats. With an amygdaloid kindled Sprague-Dawley (SD) rat model and an electrophysiological method, different doses of curcumin (10 mgxkg(-1)xd(-1) and 30 mgxkg(-1)xd(-1) as low dose groups, 100 mgxkg(-1)xd(-1) and 300 mgxkg(-1)xd(-1) as high dose groups) were administrated intraperitoneally during the whole kindling days, by comparison with the course of kindling, afterdischarge (AD) thresholds and the number of ADs to reach the stages of class I to V seizures in the rats between control and experimental groups. One-way or two-way ANOVA and Fisher's least significant difference post hoc test were used for statistical analyses. Curcumin (both 100 mgxkg(-1)xd(-1) and 300 mgxkg(-1)xd(-1)) significantly inhibited the behavioral seizure development in the (19.80 +/- 2.25) and (21.70 +/- 2.21) stimulations respectively required to reach the kindled state. Rats treated with 100 mgxkg(-1)xd(-1) curcumin 30 minutes before kindling stimulation showed an obvious increase in the stimulation current intensity required to evoke AD from (703.3 +/- 85.9) microA to (960.0 +/- 116.5) microA during the progression to class V seizures. Rats treated with 300 mgxkg(-1)xd(-1) curcumin showed a significant increase in the stimulation current intensity required to evoke AD from (735.0 +/- 65.2) microA to (867.0 +/- 93.4) microA during the progression to class V seizures. Rats treated with 300 mgxkg(-1)xd(-1) curcumin required much more evoked ADs to reach the stage of class both IV (as (199.83 +/- 12.47) seconds) and V seizures (as (210.66 +/- 10.68) seconds). Rats treated with 100 mgxkg(-1)xd(-1) curcumin required much more evoked ADs to reach the stage of class V seizures (as (219.56 +/- 18.24) seconds). Our study suggests that curcumin has

  5. Molecular understanding of curcumin in diabetic nephropathy.

    Science.gov (United States)

    Soetikno, Vivian; Suzuki, Kenji; Veeraveedu, Punniyakoti T; Arumugam, Somasundaram; Lakshmanan, Arun P; Sone, Hirohito; Watanabe, Kenichi

    2013-08-01

    Diabetic nephropathy is characterized by a plethora of signaling abnormalities. Recent trials have suggested that intensive glucose-lowering treatment leads to hypoglycemic events, which can be dangerous. Curcumin is the active ingredient of turmeric, which has been widely used in many countries for centuries to treat numerous diseases. The preventive and therapeutic properties of curcumin are associated with its antioxidant and anti-inflammatory properties. Here, we highlight the renoprotective role of curcumin in diabetes mellitus (DM) with an emphasis on the molecular basis of this effect. We also briefly discuss the numerous approaches that have been undertaken to improve the pharmacokinetics of curcumin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Curcuma Contra Cancer? Curcumin and Hodgkin's Lymphoma

    Directory of Open Access Journals (Sweden)

    Stefanie Kewitz

    2013-01-01

    Full Text Available Curcumin, a phytochemical isolated from curcuma plants which are used as coloring ingredient for the preparation of curry powder, has several activities which suggest that it might be an interesting drug for the treatment or prevention of cancer. Curcumin targets different pathways which are involved in the malignant phenotype of tumor cells, including the nuclear factor kappa B (NFKB pathway. This pathway is deregulated in multiple tumor entities, including Hodgkin's lymphoma (HL. Indeed, curcumin can inhibit growth of HL cell lines and increases the sensitivity of these cells for cisplatin. In this review we summarize curcumin activities with special focus on possible activities against HL cells.

  7. Enhanced solubilization of curcumin in mixed surfactant vesicles.

    Science.gov (United States)

    Kumar, Arun; Kaur, Gurpreet; Kansal, S K; Chaudhary, Ganga Ram; Mehta, S K

    2016-05-15

    Self-assemblies of equimolar double and single chain mixed ionic surfactants, with increasing numbers of carbon atoms of double chain surfactant, were analyzed on the basis of fluorescence and conductivity results. Attempts were also made to enhance the solubilization of curcumin in aqueous equimolar mixed surfactant systems. Mixed surfactant assembly was successful in retarding the degradation of curcumin in alkaline media (only 25-28 40% degraded in 10h at pH 13). Fluorescence spectroscopy and fluorescence quenching methods were employed to predict the binding position and mechanism of curcumin with self-assemblies. Results indicate that the interactions take place according to both dynamic and static quenching mechanisms and curcumin was distributed in a palisade layer of mixed aggregates. Antioxidant activity (using DPPH radical) and biocompatibility (using calf-thymus DNA) of curcumin-loaded mixed surfactant formulations were also evaluated. The prepared systems improved the stability, solubility and antioxidant activity of curcumin and additionally are biocompatible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Curcumin phytosomal softgel formulation: Development, optimization and physicochemical characterization.

    Science.gov (United States)

    Allam, Ahmed N; Komeil, Ibrahim A; Abdallah, Ossama Y

    2015-09-01

    Curcumin, a naturally occurring lipophilic molecule can exert multiple and diverse bioactivities. However, its limited aqueous solubility and extensive presystemic metabolism restrict its bioavailability. Curcumin phytosomes were prepared by a simple solvent evaporation method where free flowing powder was obtained in addition to a newly developed semisolid formulation to increase curcumin content in softgels. Phytosomal powder was characterized in terms of drug content and zeta potential. Thirteen different softgel formulations were developed using oils such as Miglyol 812, castor oil and oleic acid, a hydrophilic vehicle such as PEG 400 and bioactive surfactants such as Cremophor EL and KLS P 124. Selected formulations were characterized in terms of curcumin in vitro dissolution. TEM analysis revealed good stability and a spherical, self-closed structure of curcumin phytosomes in complex formulations. Stability studies of chosen formulations prepared using the hydrophilic vehicle revealed a stable curcumin dissolution pattern. In contrast, a dramatic decrease in curcumin dissolution was observed in case of phytosomes formulated in oily vehicles.

  9. Curcumin phytosomal softgel formulation: Development, optimization and physicochemical characterization

    Directory of Open Access Journals (Sweden)

    Allam Ahmed N.

    2015-09-01

    Full Text Available Curcumin, a naturally occurring lipophilic molecule can exert multiple and diverse bioactivities. However, its limited aqueous solubility and extensive presystemic metabolism restrict its bioavailability. Curcumin phytosomes were prepared by a simple solvent evaporation method where free flowing powder was obtained in addition to a newly developed semisolid formulation to increase curcumin content in softgels. Phytosomal powder was characterized in terms of drug content and zeta potential. Thirteen different softgel formulations were developed using oils such as Miglyol 812, castor oil and oleic acid, a hydrophilic vehicle such as PEG 400 and bioactive surfactants such as Cremophor EL and KLS P 124. Selected formulations were characterized in terms of curcumin in vitro dissolution. TEM analysis revealed good stability and a spherical, self-closed structure of curcumin phytosomes in complex formulations. Stability studies of chosen formulations prepared using the hydrophilic vehicle revealed a stable curcumin dissolution pattern. In contrast, a dramatic decrease in curcumin dissolution was observed in case of phytosomes formulated in oily vehicles.

  10. Novel delivery system for natural products: Nano-curcumin formulations

    Directory of Open Access Journals (Sweden)

    Hamid Reza Rahimi

    2016-06-01

    Full Text Available Objective: Curcumin is extracted from Curcuma longa and regulates the intracellular signal pathways which control the growth of cancerous cell, inflammation, invasion and apoptosis. Curcumin molecules have special intrinsic features that can target the intracellular enzymes, genome (DNA and messengers (RNA. A wide range of studies have been conducted on the physicochemical traits and pharmacological effects of curcumin on different diseases like cardiovascular diseases, diabetes, cancer, rheumatoid arthritis, Alzheimer’s, inflammatory bowel disease (IBD, and even it has wound healing. Oral bioavailability of curcumin is rather poor, which would certainly put some boundaries in the employment of this drug. Materials and Methods: Bibliographical searches were performed using MEDLINE/ScienceDirect/OVID up to February 2015 using the following keywords (all fields: (“Curcumin” OR “Curcuma longa” AND [(nanoparticles OR (Nanomicelles OR (micro emulsions OR (liposome OR (phospholipid. Results: Consequently, for any developments of curcumin in the future, analogues of curcumin that have better bioavailability or substitute formulations are needed crucially. Conclusion: These studies indicated that nanotechnology can formulate curcumin effectively, and this nano-formulated curcumin with a potent ability against various cancer cells, were represented to have better efficacy and bioavailability under in vivo conditions.

  11. Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin.

    Science.gov (United States)

    Ji, Hongyu; Tang, Jingling; Li, Mengting; Ren, Jinmei; Zheng, Nannan; Wu, Linhua

    2016-01-01

    The present study was to formulate curcumin solid lipid nanoparticles (Cur-SLNs) with P-gp modulator excipients, TPGS and Brij78, to enhance the solubility and bioavailability of curcumin. The formulation was optimized by Plackett-Burman screening design and Box-Behnken experiment design. Then physiochemical properties, entrapment efficiency and in vitro release of Cur-SLNs were characterized. In vivo pharmacokinetics study and in situ single-pass intestinal perfusion were performed to investigate the effects of Cur-SLNs on the bioavailability and intestinal absorption of curcumin. The optimized formulations showed an average size of 135.3 ± 1.5 nm with a zeta potential value of -24.7 ± 2.1 mV and 91.09% ± 1.23% drug entrapment efficiency, meanwhile displayed a sustained release profile. In vivo pharmacokinetic study showed AUC0→t for Cur-SLNs was 12.27-folds greater than curcumin suspension and the relative bioavailability of Cur-SLNs was 942.53%. Meanwhile, Tmax and t(1/2) of curcumin for Cur-SLNs were both delayed comparing to the suspensions (p curcumin for SLNs was significantly improved (p curcumin solution. Cur-SLNs with TPGS and Brij78 could improve the oral bioavailability and intestinal absorption of curcumin effectively.

  12. Potentials of Curcumin as an Antidepressant

    Directory of Open Access Journals (Sweden)

    S.K. Kulkarni

    2009-01-01

    Full Text Available Major depression, a debilitating psychiatric disorder, is predicted to be the second most prevalent human illness by the year 2020. Various antidepressants, ranging from monoamine oxidase inhibitors to recently developed dual reuptake inhibitors, are prescribed for alleviating the symptoms of depression. Despite the availability of these blockbuster molecules, approximately 30% of depressed patients do not respond to the existing drug therapies and the remaining 70% fails to achieve complete remission. Moreover, antidepressants are associated with a plethora of side effects and drug-drug/drug-food interactions. In this context, novel approaches are being tried to find more efficacious and safer drugs for the treatment of major depression. Curcumin is one such molecule that has shown promising efficacy in various animal models of major depression. Although the mechanism of the antidepressant effect of curcumin is not fully understood, it is hypothesized to act through inhibiting the monoamine oxidase enzyme and modulating the release of serotonin and dopamine. Moreover, evidences have shown that curcumin enhances neurogenesis, notably in the frontal cortex and hippocampal regions of the brain. The use of curcumin in clinics for the treatment of major depression is limited due to its poor gastrointestinal absorption. The present review attempts to discuss the pharmacological profile along with molecular mechanisms of the antidepressant effect of curcumin in animal models of depression. A need for clinical trials in order to explore the antidepressant efficacy and safety profile of curcumin is emphasized.

  13. Modulation of transcription factors by curcumin.

    Science.gov (United States)

    Shishodia, Shishir; Singh, Tulika; Chaturvedi, Madan M

    2007-01-01

    Curcumin is the active ingredient of turmeric that has been consumed as a dietary spice for ages. Turmeric is widely used in traditional Indian medicine to cure biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. Extensive investigation over the last five decades has indicated that curcumin reduces blood cholesterol, prevents low-density lipoprotein oxidation, inhibits platelet aggregation, suppresses thrombosis and myocardial infarction, suppresses symptoms associated with type II diabetes, rheumatoid arthritis, multiple sclerosis, and Alzheimer's disease, inhibits HIV replication, enhances wound healing, protects from liver injury, increases bile secretion, protects from cataract formation, and protects from pulmonary toxicity and fibrosis. Evidence indicates that the divergent effects of curcumin are dependent on its pleiotropic molecular effects. These include the regulation of signal transduction pathways and direct modulation of several enzymatic activities. Most of these signaling cascades lead to the activation of transcription factors. Curcumin has been found to modulate the activity of several key transcription factors and, in turn, the cellular expression profiles. Curcumin has been shown to elicit vital cellular responses such as cell cycle arrest, apoptosis, and differentiation by activating a cascade of molecular events. In this chapter, we briefly review the effects of curcumin on transcription factors NF-KB, AP-1, Egr-1, STATs, PPAR-gamma, beta-catenin, nrf2, EpRE, p53, CBP, and androgen receptor (AR) and AR-related cofactors giving major emphasis to the molecular mechanisms of its action.

  14. Renoprotective effect of the antioxidant curcumin: Recent findings☆

    Science.gov (United States)

    Trujillo, Joyce; Chirino, Yolanda Irasema; Molina-Jijón, Eduardo; Andérica-Romero, Ana Cristina; Tapia, Edilia; Pedraza-Chaverrí, José

    2013-01-01

    For years, there have been studies based on the use of natural compounds plant-derived as potential therapeutic agents for various diseases in humans. Curcumin is a phenolic compound extracted from Curcuma longa rhizome commonly used in Asia as a spice, pigment and additive. In traditional medicine of India and China, curcumin is considered as a therapeutic agent used in several foods. Numerous studies have shown that curcumin has broad biological functions particularly antioxidant and antiinflammatory. In fact, it has been established that curcumin is a bifunctional antioxidant; it exerts antioxidant activity in a direct and an indirect way by scavenging reactive oxygen species and inducing an antioxidant response, respectively. The renoprotective effect of curcumin has been evaluated in several experimental models including diabetic nephropathy, chronic renal failure, ischemia and reperfusion and nephrotoxicity induced by compounds such as gentamicin, adriamycin, chloroquine, iron nitrilotriacetate, sodium fluoride, hexavalent chromium and cisplatin. It has been shown recently in a model of chronic renal failure that curcumin exerts a therapeutic effect; in fact it reverts not only systemic alterations but also glomerular hemodynamic changes. Another recent finding shows that the renoprotective effect of curcumin is associated to preservation of function and redox balance of mitochondria. Taking together, these studies attribute the protective effect of curcumin in the kidney to the induction of the master regulator of antioxidant response nuclear factor erythroid-derived 2 (Nrf2), inhibition of mitochondrial dysfunction, attenuation of inflammatory response, preservation of antioxidant enzymes and prevention of oxidative stress. The information presented in this paper identifies curcumin as a promising renoprotective molecule against renal injury. PMID:24191240

  15. Renoprotective effect of the antioxidant curcumin: Recent findings

    Directory of Open Access Journals (Sweden)

    Joyce Trujillo

    2013-01-01

    Full Text Available For years, there have been studies based on the use of natural compounds plant-derived as potential therapeutic agents for various diseases in humans. Curcumin is a phenolic compound extracted from Curcuma longa rhizome commonly used in Asia as a spice, pigment and additive. In traditional medicine of India and China, curcumin is considered as a therapeutic agent used in several foods. Numerous studies have shown that curcumin has broad biological functions particularly antioxidant and antiinflammatory. In fact, it has been established that curcumin is a bifunctional antioxidant; it exerts antioxidant activity in a direct and an indirect way by scavenging reactive oxygen species and inducing an antioxidant response, respectively. The renoprotective effect of curcumin has been evaluated in several experimental models including diabetic nephropathy, chronic renal failure, ischemia and reperfusion and nephrotoxicity induced by compounds such as gentamicin, adriamycin, chloroquine, iron nitrilotriacetate, sodium fluoride, hexavalent chromium and cisplatin. It has been shown recently in a model of chronic renal failure that curcumin exerts a therapeutic effect; in fact it reverts not only systemic alterations but also glomerular hemodynamic changes. Another recent finding shows that the renoprotective effect of curcumin is associated to preservation of function and redox balance of mitochondria. Taking together, these studies attribute the protective effect of curcumin in the kidney to the induction of the master regulator of antioxidant response nuclear factor erythroid-derived 2 (Nrf2, inhibition of mitochondrial dysfunction, attenuation of inflammatory response, preservation of antioxidant enzymes and prevention of oxidative stress. The information presented in this paper identifies curcumin as a promising renoprotective molecule against renal injury.

  16. Investigation on Curcumin nanocomposite for wound dressing.

    Science.gov (United States)

    Venkatasubbu, G Devanand; Anusuya, T

    2017-05-01

    Curcuma longa (turmeric) has a long history of use in medicine as a treatment for inflammatory conditions. The primary active constituent of turmeric and the one responsible for its vibrant yellow color is curcumin. Curcumin is used for treatment of wound and inflammation. It had antimicrobial and antioxidant property. It has low intrinsic toxicity and magnificent properties like with comparatively lesser side-effects. Cotton cloth is one of the most successful wound dressings which utilize the intrinsic properties of cotton fibers. Modern wound dressings, however, require other properties such as antibacterial and moisture maintaining capabilities. In this study, conventional cotton cloth was coated with Curcumin composite for achieving modern wound dressing properties. Curcumin nanocomposite is characterized. The results show that coated cotton cloth with Curcumin nanocomposite has increased drying time (74%) and water absorbency (50%). Furthermore, they show antibacterial efficiency against bacterial species present in wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Curcumin Alleviates Diabetic Retinopathy in Experimental Diabetic Rats.

    Science.gov (United States)

    Yang, Fang; Yu, Jinqiang; Ke, Feng; Lan, Mei; Li, Dekun; Tan, Ke; Ling, Jiaojiao; Wang, Ying; Wu, Kaili; Li, Dai

    2018-03-29

    To investigate the potential protective effects of curcumin on the retina in diabetic rats. An experimental diabetic rat model was induced by a low dose of streptozotocin combined with a high-energy diet. Rats which had blood glucose levels ≥11.6 mmol/L were used as diabetic rats. The diabetic rats were randomly divided into 3 groups: diabetic rats with no treatment (DM), diabetic rats treated with 100 mg/kg curcumin (DM + Cur 100 mg/kg), and diabetic rats treated with 200 mg/kg curcumin (DM + Cur 200 mg/kg). Curcumin was orally administered daily for 16 weeks. After 16 weeks of administration, the rats were euthanized, and eyes were dissected. Retinal histology was examined, and the thickness of the retina was measured. Ultrastructural changes of retinal ganglion cells, inner layer cells, retinal capillary, and membranous disks were observed by electron microscopy. Malondialdehyde, superoxide dismutase, and total antioxidant capacity were measured by ELISA. Expression levels of vascular endothelial growth factor (VEGF) in retina tissues were examined by immunohistochemical staining and ELISA. Expression levels of Bax and Bcl-2 in retina tissues were determined by immunohistochemical staining and Western blotting. Curcumin reduced the blood glucose levels of diabetic rats and decreased diabetes-induced body weight loss. Curcumin prevented attenuation of the retina in diabetic rats and ameliorated diabetes-induced ultrastructure changes of the retina, including thinning of the retina, apoptosis of the retinal ganglion cells and inner nuclear layer cells, thickening of retinal capillary basement membrane and disturbance of photoreceptor cell membranous disks. We also found that curcumin has a strong antioxidative ability in the retina of diabetic rats. It was observed that curcumin attenuated the expression of VEGF in the retina of diabetic rats. We also discovered that curcumin had an antiapoptotic effect by upregulating the expression of Bcl-2 and downregulating

  18. Curcumin nanoformulations: a future nanomedicine for cancer

    Science.gov (United States)

    Yallapu, Murali M; Jaggi, Meena; Chauhan, Subhash C

    2011-01-01

    Curcumin, a natural diphenolic compound derived from turmeric Curcuma longa, has proven to be a modulator of intracellular signaling pathways that control cancer cell growth, inflammation, invasion, apoptosis and cell death, revealing its anticancer potential. In this review, we focus on the design and development of nanoparticles, self-assemblies, nanogels, liposomes and complex fabrication for sustained and efficient curcumin delivery. We also discuss the anticancer applications and clinical benefits of nanocurcumin formulations. Only a few novel multifunctional and composite nanosystem strategies offer simultaneous therapy as well as imaging characteristics. We also summarize the challenges to developing curcumin delivery platforms and up-to-date solutions for improving curcumin bioavailability and anticancer potential for therapy. PMID:21959306

  19. Direct regulation of IL-2 by curcumin.

    Science.gov (United States)

    Oh, Jin-Gyo; Hwang, Da-Jeong; Heo, Tae-Hwe

    2018-01-01

    Interleukin-2 (IL-2) is a crucial growth factor for both regulatory and effector T cells. Thus, IL-2 plays a critical role in the stimulation and suppression of immune responses. Recently, anti-IL-2 antibodies (Abs) have been shown to possess strong IL-2 modulatory activities by affecting the interaction between IL-2 and IL-2 receptors. In this study, we screened an herbal library to identify a compound that regulates IL-2, which resulted in the identification of curcumin as a direct binder and inhibitor of IL-2. Curcumin is a phytochemical with well-known anti-cancer properties. In this study, curcumin mimicked or altered the binding pattern of anti-IL-2 Abs against IL-2 and remarkably inhibited the interaction of recombinant IL-2 with the IL-2 receptor α, CD25. Interestingly, curcumin neutralized the biological activities of IL-2 both in vitro and in vivo. In this report, we elucidated the unsolved mechanism of the anti-cancer effect of curcumin by identifying IL-2 as a direct molecular target. Curcumin, as a small molecule IL-2 modulator, has the potential to be used to treat IL-2 related pathologic conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Curcumin: the spicy modulator of breast carcinogenesis.

    Science.gov (United States)

    Banik, Urmila; Parasuraman, Subramani; Adhikary, Arun Kumar; Othman, Nor Hayati

    2017-07-19

    Worldwide breast cancer is the most common cancer in women. For many years clinicians and the researchers are examining and exploring various therapeutic modalities for breast cancer. Yet the disease has remained unconquered and the quest for cure is still going on. Present-day strategy of breast cancer therapy and prevention is either combination of a number of drugs or a drug that modulates multiple targets. In this regard natural products are now becoming significant options. Curcumin exemplifies a promising natural anticancer agent for this purpose. This review primarily underscores the modulatory effect of curcumin on the cancer hallmarks. The focus is its anticancer effect in the complex pathways of breast carcinogenesis. Curcumin modulates breast carcinogenesis through its effect on cell cycle and proliferation, apoptosis, senescence, cancer spread and angiogenesis. Largely the NFkB, PI3K/Akt/mTOR, MAPK and JAK/STAT are the key signaling pathways involved. The review also highlights the curcumin mediated modulation of tumor microenvironment, cancer immunity, breast cancer stem cells and cancer related miRNAs. Using curcumin as a therapeutic and preventive agent in breast cancer is perplexed by its diverse biological activity, much of which remains inexplicable. The information reviewed here should point toward potential scope of future curcumin research in breast cancer.

  1. Curcumin, a potential therapeutic candidate for retinal diseases.

    Science.gov (United States)

    Wang, Lei-Lei; Sun, Yue; Huang, Kun; Zheng, Ling

    2013-09-01

    Curcumin, the major extraction of turmeric, has been widely used in many countries for centuries both as a spice and as a medicine. In the last decade, researchers have found the beneficial effects of curcumin on multiple disorders are due to its antioxidative, anti-inflammatory, and antiproliferative properties, as well as its novel function as an inhibitor of histone aectyltransferases. In this review, we summarize the recent progress made on studying the beneficial effects of curcumin on multiple retinal diseases, including diabetic retinopathy, glaucoma, and age-related macular degeneration. Recent clinical trials on the effectiveness of phosphatidylcholine formulated curcumin in treating eye diseases have also shown promising results, making curcumin a potent therapeutic drug candidate for inflammatory and degenerative retinal and eye diseases. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Drug-Drug/Drug-Excipient Compatibility Studies on Curcumin using Non-Thermal Methods

    Directory of Open Access Journals (Sweden)

    Moorthi Chidambaram

    2014-05-01

    Full Text Available Purpose: Curcumin is a hydrophobic polyphenol isolated from dried rhizome of turmeric. Clinical usefulness of curcumin in the treatment of cancer is limited due to poor aqueous solubility, hydrolytic degradation, metabolism, and poor oral bioavailability. To overcome these limitations, we proposed to fabricate curcumin-piperine, curcumin-quercetin and curcumin-silibinin loaded polymeric nanoformulation. However, unfavourable combinations of drug-drug and drug-excipient may result in interaction and rises the safety concern. Hence, the present study was aimed to assess the interaction of curcumin with excipients used in nanoformulations. Methods: Isothermal stress testing method was used to assess the compatibility of drug-drug/drug-excipient. Results: The combination of curcumin-piperine, curcumin-quercetin, curcumin-silibinin and the combination of other excipients with curcumin, piperine, quercetin and silibinin have not shown any significant physical and chemical instability. Conclusion: The study concludes that the curcumin, piperine, quercetin and silibinin is compatible with each other and with other excipients.

  3. Curcumin: the Indian solid gold.

    Science.gov (United States)

    Aggarwal, Bharat B; Sundaram, Chitra; Malani, Nikita; Ichikawa, Haruyo

    2007-01-01

    Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal "Spice for Life".

  4. (Cationic + nonionic) mixed surfactant aggregates for solubilisation of curcumin

    International Nuclear Information System (INIS)

    Kumar, Arun; Kaur, Gurpreet; Kansal, S.K.; Chaudhary, G.R.; Mehta, S.K.

    2016-01-01

    Highlights: • Critical micelle concentration of mixed surfactant has been measured. • Aqueous solubility and alkaline stability of curcumin has been significantly improved. • Location of curcumin within micelles has been evaluated. • Scavenging activity of curcumin has been improved. • Non-intercalative binding with ct-DNA has been observed. - Abstract: Curcumin is a potential drug for variety of diseases. Major limitations of curcumin are low water solubility, rapid hydrolytic degradation in alkaline medium and poor bioavailability. To overcome these limitations, highly potential mixed micellar system has been prepared. In order to reduce inter ionic repulsion and precipitation of surfactants, (cationic + non-ionic) mixed system have been chosen that directly influence its applicability. Hydrophobic chain of non-ionic surfactant significantly influences the cmc of mixed surfactant system as indicated by fluorescence and conductivity data. UV–visible spectroscopy analyses show that solubility, stability and antioxidant property of the curcumin is remarkably improved depending on cmc and aggregation number (N_a_g_g) of mixed surfactants, where N_a_g_g plays crucial role. Generally, curcumin undergoes complete degradation in slight basic medium, but stability has been maintained up to 8 h at pH-13 using formulated mixed micelles (only (20 to 25)% degraded). Location of curcumin which is monitored using emission spectroscopy, fluorescence quenching and "1H NMR spectroscopy techniques play the most important role. Observed results show that the major population of curcumin is located at the polar region and some are in hydrophobic region of the mixed micelles. To ensure the effect of mixed surfactants and curcumin loaded mixed surfactants on DNA, the interaction parameter indicates non-interclative interactions.

  5. The Stability, Sustained Release and Cellular Antioxidant Activity of Curcumin Nanoliposomes

    Directory of Open Access Journals (Sweden)

    Xing Chen

    2015-08-01

    Full Text Available Curcumin is a multifunctional and natural agent considered to be pharmacologically safe. However, its application in the food and medical industry is greatly limited by its poor water solubility, physicochemical instability and inadequate bioavailability. Nanoliposome encapsulation could significantly enhance the solubility and stability of curcumin. Curcumin nanoliposomes exhibited good physicochemical properties (entrapment efficiency = 57.1, particle size = 68.1 nm, polydispersity index = 0.246, and zeta potential = −3.16 mV. Compared with free curcumin, curcumin nanoliposomes exhibited good stability against alkaline pH and metal ions as well as good storage stability at 4 °C. Curcumin nanoliposomes also showed good sustained release properties. Compared with free curcumin, curcumin nanoliposomes presented an equal cellular antioxidant activity, which is mainly attributed to its lower cellular uptake as detected by fluorescence microscopy and flow cytometry. This study provide theoretical and practical guides for the further application of curcumin nanoliposomes.

  6. Enhancement of Curcumin Bioavailability Via the Prodrug Approach: Challenges and Prospects.

    Science.gov (United States)

    Ratnatilaka Na Bhuket, Pahweenvaj; El-Magboub, Asma; Haworth, Ian S; Rojsitthisak, Pornchai

    2017-06-01

    Curcumin is a natural product with many interesting pharmacological properties. However, these are offset by the particularly poor biopharmaceutical properties. The oral bioavailability of curcumin in humans is very low, mainly due to low solubility, poor stability, and extensive metabolism. This has led to multiple approaches to improve bioavailability, including administration of curcumin with metabolism inhibitors, formulation into nanoparticles, modification of the curcumin structure, and development of curcumin prodrugs. In this paper, we focus on the pharmacokinetic outcomes of these approaches. Pharmacokinetic parameters of curcumin after release from prodrugs are dependent on the linker between curcumin and the promoiety, and the release itself may depend on the physiological and enzymatic environment at the site of cleavage. This is an area in which more data are required for rational design of improved linkers. Cytotoxicity of curcumin prodrugs seems to correlate well with cellular uptake in vitro, but the in vivo relevance is uncertain. We conclude that improved experimental and theoretical models of absorption of curcumin prodrugs, development of accurate analytical methods for simultaneous measurement of plasma levels of prodrug and released curcumin, and acquisition of more pharmacokinetic data in animal models for dose prediction in humans are required to facilitate movement of curcumin prodrugs into clinical trials.

  7. Palmitic Acid Curcumin Ester Facilitates Protection of Neuroblastoma against Oligomeric Aβ40 Insult.

    Science.gov (United States)

    Qi, Zhangyang; Wu, Meihao; Fu, Yun; Huang, Tengfei; Wang, Tingting; Sun, Yanjie; Feng, Zhibo; Li, Changzheng

    2017-01-01

    The generation of reactive oxygen species (ROS) caused by amyloid-β (Aβ) is considered to be one of mechanisms underlying the development of Alzheimer's disease. Curcumin can attenuate Aβ-induced neurotoxicity through ROS scavenging, but the protective effect of intracellular curcumin on neurocyte membranes against extracellular Aβ may be compromised. To address this issue, we synthesized a palmitic acid curcumin ester (P-curcumin) which can be cultivated on the cell membrane and investigated the neuroprotective effect of P-curcumin and its interaction with Aβ. P-curcumin was prepared through chemical synthesis. Its structure was determined via nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). An MTT assay was used to assess Aβ cytotoxicity and the protective effect of P-curcumin on SH-SY5Y cells. The effect of P-curcumin on Aβ-induced ROS production in vitro and in vivo were assessed based on changes in dichlorofluorescein (DCF) fluorescence. A spectrophotometric method was employed to detect lipid peroxidation. To mimic the interaction of P-curcumin on cell membranes with Aβ, liposomes were prepared by thin film method. Finally, the interactions between free P-curcumin and P-curcumin cultivated on liposomes and Aβ were determined via spectrophotometry. A novel derivative, palmitic acid curcumin ester was prepared and characterized. This curcumin, cultivated on the membranes of neurocytes, may prevent Aβ-mediated ROS production and may inhibit the direct interaction between Aβ and the cellular membrane. Furthermore, P-curcumin could scavenge Aβ-mediated ROS as curcumin in vitro and in vivo, and had the potential to prevent lipid peroxidation. Morphological analyses showed that P-curcumin was better than curcumin at protecting cell shape. To examine P-curcumin's ability to attenuate direct interaction between Aβ and cell membranes, the binding affinity of Aβ to curcumin and P-curcumin was determined. The association

  8. Enhanced solubility and targeted delivery of curcumin by lipopeptide micelles.

    Science.gov (United States)

    Liang, Ju; Wu, Wenlan; Lai, Danyu; Li, Junbo; Fang, Cailin

    2015-01-01

    A lipopeptide (LP)-containing KKGRGDS as the hydrophilic heads and lauric acid (C12) as the hydrophobic tails has been designed and prepared by standard solid-phase peptide synthesis technique. LP can self-assemble into spherical micelles with the size of ~30 nm in PBS (phosphate buffer saline) (pH 7.4). Curcumin-loaded LP micelles were prepared in order to increase the water solubility, sustain the releasing rate, and improve the tumor targeted delivery of curcumin. Water solubility, cytotoxicity, in vitro release behavior, and intracellular uptake of curcumin-loaded LP micelles were investigated. The results showed that LP micelles can increase the water solubility of curcumin 1.1 × 10(3) times and sustain the release of curcumin in a low rate. Curcumin-loaded LP micelles showed much higher cell inhibition than free curcumin on human cervix carcinoma (HeLa) and HepG2 cells. When incubating these curcumin-loaded micelles with HeLa and COS7 cells, due to the over-expression of integrins on cancer cells, the micelles can efficiently use the tumor-targeting function of RGD (functionalized peptide sequences: Arg-Gly-Asp) sequence to deliver the drug into HeLa cells, and better efficiency of the self-assembled LP micelles for curcumin delivery than crude curcumin was also confirmed by LCSM (laser confocal scanning microscope) assays. Combined with the enhanced solubility and higher cell inhibition, LP micelles reported in this study may be promising in clinical application for targeted curcumin delivery.

  9. Palmitic Acid Curcumin Ester Facilitates Protection of Neuroblastoma against Oligomeric Aβ40 Insult

    Directory of Open Access Journals (Sweden)

    Zhangyang Qi

    2017-11-01

    Full Text Available Background/Aims: The generation of reactive oxygen species (ROS caused by amyloid-β (Aβ is considered to be one of mechanisms underlying the development of Alzheimer’s disease. Curcumin can attenuate Aβ-induced neurotoxicity through ROS scavenging, but the protective effect of intracellular curcumin on neurocyte membranes against extracellular Aβ may be compromised. To address this issue, we synthesized a palmitic acid curcumin ester (P-curcumin which can be cultivated on the cell membrane and investigated the neuroprotective effect of P-curcumin and its interaction with Aβ. Methods: P-curcumin was prepared through chemical synthesis. Its structure was determined via nuclear magnetic resonance (NMR and high-resolution mass spectrometry (HRMS. An MTT assay was used to assess Aβ cytotoxicity and the protective effect of P-curcumin on SH-SY5Y cells. The effect of P-curcumin on Aβ-induced ROS production in vitro and in vivo were assessed based on changes in dichlorofluorescein (DCF fluorescence. A spectrophotometric method was employed to detect lipid peroxidation. To mimic the interaction of P-curcumin on cell membranes with Aβ, liposomes were prepared by thin film method. Finally, the interactions between free P-curcumin and P-curcumin cultivated on liposomes and Aβ were determined via spectrophotometry. Results: A novel derivative, palmitic acid curcumin ester was prepared and characterized. This curcumin, cultivated on the membranes of neurocytes, may prevent Aβ-mediated ROS production and may inhibit the direct interaction between Aβ and the cellular membrane. Furthermore, P-curcumin could scavenge Aβ-mediated ROS as curcumin in vitro and in vivo, and had the potential to prevent lipid peroxidation. Morphological analyses showed that P-curcumin was better than curcumin at protecting cell shape. To examine P-curcumin’s ability to attenuate direct interaction between Aβ and cell membranes, the binding affinity of Aβ to curcumin

  10. Curcumin: getting back to the roots.

    Science.gov (United States)

    Shishodia, Shishir; Sethi, Gautam; Aggarwal, Bharat B

    2005-11-01

    The use of turmeric, derived from the root of the plant Curcuma longa, for treatment of different inflammatory diseases has been described in Ayurveda and in traditional Chinese medicine for thousands of years. The active component of turmeric responsible for this activity, curcumin, was identified almost two centuries ago. Modern science has revealed that curcumin mediates its effects by modulation of several important molecular targets, including transcription factors (e.g., NF-kappaB, AP-1, Egr-1, beta-catenin, and PPAR-gamma), enzymes (e.g., COX2, 5-LOX, iNOS, and hemeoxygenase-1), cell cycle proteins (e.g., cyclin D1 and p21), cytokines (e.g., TNF, IL-1, IL-6, and chemokines), receptors (e.g., EGFR and HER2), and cell surface adhesion molecules. Because it can modulate the expression of these targets, curcumin is now being used to treat cancer, arthritis, diabetes, Crohn's disease, cardiovascular diseases, osteoporosis, Alzheimer's disease, psoriasis, and other pathologies. Interestingly, 6-gingerol, a natural analog of curcumin derived from the root of ginger (Zingiber officinalis), exhibits a biologic activity profile similar to that of curcumin. The efficacy, pharmacologic safety, and cost effectiveness of curcuminoids prompt us to "get back to our roots."

  11. Curcumin Inhibits Tau Aggregation and Disintegrates Preformed Tau Filaments in vitro.

    Science.gov (United States)

    Rane, Jitendra Subhash; Bhaumik, Prasenjit; Panda, Dulal

    2017-01-01

    The pathological aggregation of tau is a common feature of most of the neuronal disorders including frontotemporal dementia, Parkinson's disease, and Alzheimer's disease. The inhibition of tau aggregation is considered to be one of the important strategies for treating these neurodegenerative diseases. Curcumin, a natural polyphenolic molecule, has been reported to have neuroprotective ability. In this work, curcumin was found to bind to adult tau and fetal tau with a dissociation constant of 3.3±0.4 and 8±1 μM, respectively. Molecular docking studies indicated a putative binding site of curcumin in the microtubule-binding region of tau. Using several complementary techniques, including dynamic light scattering, thioflavin S fluorescence, 90° light scattering, electron microscopy, and atomic force microscopy, curcumin was found to inhibit the aggregation of tau. The dynamic light scattering analysis and atomic force microscopic images revealed that curcumin inhibits the oligomerization of tau. Curcumin also disintegrated preformed tau oligomers. Using Far-UV circular dichroism, curcumin was found to inhibit the β-sheets formation in tau indicating that curcumin inhibits an initial step of tau aggregation. In addition, curcumin inhibited tau fibril formation. Furthermore, the effect of curcumin on the preformed tau filaments was analyzed by atomic force microscopy, transmission electron microscopy, and 90° light scattering. Curcumin treatment disintegrated preformed tau filaments. The results indicated that curcumin inhibited the oligomerization of tau and could disaggregate tau filaments.

  12. Curcumin prevents human dendritic cell response to immune stimulants

    International Nuclear Information System (INIS)

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2008-01-01

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14 + monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4 + T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant

  13. Biological and therapeutic activities, and anticancer properties of curcumin.

    Science.gov (United States)

    Perrone, Donatella; Ardito, Fatima; Giannatempo, Giovanni; Dioguardi, Mario; Troiano, Giuseppe; Lo Russo, Lucio; DE Lillo, Alfredo; Laino, Luigi; Lo Muzio, Lorenzo

    2015-11-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis.

  14. Curcumin Alleviates the Functional Gastrointestinal Disorders of Mice In Vivo.

    Science.gov (United States)

    Yu, Jing; Xu, Wen-Hua; Sun, Wei; Sun, Yi; Guo, Zhi-Li; Yu, Xiao-Ling

    2017-12-01

    Curcumin is a natural polyphenol extracted from the turmeric rhizome, which has a wide range of biological activities, but until now the effects of curcumin on the gastrointestinal peristalsis have not been fully understood. In vivo study, we observed the effects of curcumin on gastric emptying and intestinal propulsion rates of mice in normal state and in delayed state by atropine (ATR) or nitric oxide precursor L-arginine (L-Arg). An in vitro study explored the direct effects of curcumin on the intestinal contractility, but were studied through measuring spontaneous contraction of isolated jejunum of mice. Our results showed that intragastric administration of curcumin (200 mg/kg/day) for 10-20 days significantly improved gastric emptying and intestinal propulsion rates of mice delayed by ATR. Moreover, intragastric administration of curcumin (200 mg/kg/day) for 15 days also significantly improved mice gastric emptying and intestinal propulsion rates delayed by L-Arg. There was no significant effect on normal gastrointestinal propulsion of mice after intragastric administration of curcumin (200 mg/kg/day) for 1-20 days. When normal isolated jejunum of mice were incubated with curcumin in vitro, the amplitude of the spontaneous contractile waves of jejunum was reduced in a concentration-dependent manner. Moreover, curcumin reduced the amplitude of the contractile waves of jejunum in both contracted and relaxed state induced by acetylcholine or ATR individually. Taken together, our results suggest that curcumin has quite different effects on gastrointestinal peristalsis in vivo and in vitro. Moderate dose of curcumin by intragastric administration for more than 10 days can alleviate the functional gastrointestinal disorders of mice, but cannot affect normal gastrointestinal propulsion.

  15. New Dendrimer-Based Nanoparticles Enhance Curcumin Solubility.

    Science.gov (United States)

    Falconieri, Maria Cristina; Adamo, Mauro; Monasterolo, Claudio; Bergonzi, Maria Camilla; Coronnello, Marcella; Bilia, Anna Rita

    2017-03-01

    Curcumin, the main curcuminoid of the popular Indian spice turmeric, is a potent chemopreventive agent and useful in many different diseases. A major limitation of applicability of curcumin as a health promoting and medicinal agent is its extremely low bioavailability due to efficient first pass metabolism, poor gastrointestinal absorption, rapid elimination, and poor aqueous solubility. In the present study, nanotechnology was selected as a choice approach to enhance the bioavailability of the curcuminis. A new polyamidoamine dendrimer (G0.5) was synthesized, characterized, and tested for cytotoxicity in human breast cancer cells (MCF-7). No cytotoxicity of G0.5 was found in the range between 10 -3 and 3 × 10 -8  M. Consequently, G0.5 was used to prepare spherical nanoparticles of ca. 150 nm, which were loaded with curcumin [molar ratio G0.5/curcumin 1 : 1 (formulation 1) and 1 : 0.5 (formulation 2)]. Remarkably, the occurrence of a single population of nanoparticles having an excellent polydispersity index (solubility of curcumin was increased ca. 415 and 150 times with respect to the unformulated drug, respectively, for formulation 1 and formulation 2. The release of curcumin from the nanoparticles showed an interesting prolonged and sustained release profile. Georg Thieme Verlag KG Stuttgart · New York.

  16. Nanoparticles Containing Curcumin Useful for Suppressing Macrophages In Vivo in Mice.

    Directory of Open Access Journals (Sweden)

    Chie Amano

    Full Text Available To explore a novel method using liposomes to suppress macrophages, we screened food constituents through cell culture assays. Curcumin was one of the strongest compounds exhibiting suppressive effects on macrophages. We subsequently tried various methods to prepare liposomal curcumin, and eventually succeeded in preparing liposomes with sufficient amounts of curcumin to suppress macrophages by incorporating a complex of curcumin and bovine serum albumin. The diameter of the resultant nanoparticles, the liposomes containing curcumin, ranged from 60 to 100 nm. Flow cytometric analyses revealed that after intraperitoneal administration of the liposomes containing curcumin into mice, these were incorporated mainly by macrophages positive for F4/80, CD36, and CD11b antigens. Peritoneal cells prepared from mice injected in vivo with the liposomes containing curcumin apparently decreased interleukin-6-producing activities. Major changes in body weight and survival rates in the mice were not observed after administrating the liposomes containing curcumin. These results indicate that the liposomes containing curcumin are safe and useful for the selective suppression of macrophages in vivo in mice.

  17. Neutron activation analysis of phytotherapic obtained from medicinal plants; Analise por ativacao com neutrons de fitoterapicos obtidos de plantas medicinais

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Henrique S. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: hs_moreira@hotmail.com; Saiki, Mitiko; Vasconcellos, Marina B.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: mitiko@ipen.br; mbvascon@ipen.br

    2007-07-01

    This paper determines the inorganic constituents in phytotherapic samples for posterior study of the relationship existent among the concentrations of the found elements and the their possible therapeutical effects. The samples of phytotherapic pills (Centella asiatica, Ginkgo biloba and Ginseng) were analysed by using neutron activation analysis (NAA). The As, Br, Ca, Co, Cr, Cs, Fe, K, La, Na, Rb, Sc, Se and Zn samples were determined in the phytotherapics, The Centella asiatica presented the higher concentrations of Br, Co, Cr, Fe, K, La, Na, Rb, Sc, Se and Zn. In the sample of Ginko biloba, higher levels of As and Ca were found, while in the sample ol Ginseng the element As were not detected. The found results have shown the the NAA method is appropriated for analysing this type of materials due to his simplicity, multielemental capacity and quality of the results obtained. (author)

  18. PLGA-Curcumin Attenuates Opioid-Induced Hyperalgesia and Inhibits Spinal CaMKIIα.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Hu

    Full Text Available Opioid-induced hyperalgesia (OIH is one of the major problems associated with prolonged use of opioids for the treatment of chronic pain. Effective treatment for OIH is lacking. In this study, we examined the efficacy and preliminary mechanism of curcumin in attenuating OIH. We employed a newly developed PLGA-curcumin nanoformulation (PLGA-curcumin in order to improve the solubility of curcumin, which has been a major obstacle in properly characterizing curcumin's mechanism of action and efficacy. We found that curcumin administered intrathecally or orally significantly attenuated hyperalgesia in mice with morphine-induced OIH. Furthermore, we demonstrated that the effects of curcumin on OIH correlated with the suppression of chronic morphine-induced CaMKIIα activation in the superficial laminae of the spinal dorsal horn. These data suggest that PLGA-curcumin may reverse OIH possibly by inhibiting CaMKIIα and its downstream signaling.

  19. Identification of proteins regulated by curcumin in cerebral ischemia.

    Science.gov (United States)

    Shah, Fawad-Ali; Gim, Sang-Ah; Sung, Jin-Hee; Jeon, Seong-Jun; Kim, Myeong-Ok; Koh, Phil-Ok

    2016-03-01

    Curcumin is known to have a neuroprotective effect against cerebral ischemia. The objective of this study was to identify various proteins that are differentially expressed by curcumin treatment in focal cerebral ischemia using a proteomic approach. Adult male rats were treated with vehicle or curcumin 1 h after middle cerebral artery occlusion. Brain tissues were collected 24 h after the onset of middle cerebral artery occlusion, and cerebral cortices proteins were identified by two-dimensional gel electrophoresis and mass spectrometry. We detected several proteins with altered expression levels between vehicle- and curcumin-treated animals. Among these proteins, ubiquitin carboxy-terminal hydrolase L1, isocitrate dehydrogenase, adenosylhomocysteinase, and eukaryotic initiation factor 4A were decreased in the vehicle-treated animal, and curcumin treatment attenuated the injury-induced decreases of these proteins. Conversely, pyridoxal phosphate phosphatase was increased in the vehicle-treated animal, and curcumin treatment prevented decreases in this protein. The identified altered proteins are associated with cellular metabolism and differentiation. The results of this study suggest that curcumin exerts a neuroprotective effect by regulating the expression of various proteins in focal cerebral ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions.

    Science.gov (United States)

    Adiwidjaja, Jeffry; McLachlan, Andrew J; Boddy, Alan V

    2017-09-01

    Curcumin has been extensively studied for its anti-cancer properties. While a diverse array of in vitro and preclinical research support the prospect of curcumin use as an anti-cancer therapeutic, most human studies have failed to meet the intended clinical expectation. Poor systemic availability of orally-administered curcumin may account for this disparity. Areas covered: This descriptive review aims to concisely summarise available clinical studies investigating curcumin pharmacokinetics when administered in different formulations. A critical analysis of pharmacokinetic- and pharmacodynamic-based interactions of curcumin with concomitantly administered drugs is also provided. Expert opinion: The encouraging clinical results of curcumin administration are currently limited to people with colorectal cancer, given that sufficient curcumin concentrations persist in colonic mucosa. Higher parent curcumin systemic exposure, which can be achieved by several newer formulations, has important implications for optimal treatment of cancers other than those in gastrointestinal tract. Curcumin-drug pharmacokinetic interactions are also almost exclusively in the enterocytes, owing to extensive first pass metabolism and poor curcumin bioavailability. Greater scope of these interactions, i.e. modulation of the systemic elimination of co-administered drugs, may be expected from more-bioavailable curcumin formulations. Further studies are still warranted, especially with newer formulations to support the inclusion of curcumin in cancer therapy regimens.

  1. Strategies to enhance the bioavailability of curcumin: a potential antitumor drug

    Science.gov (United States)

    Kumar, Abhishek; Chittigori, Joshna; Li, Lian; Samuelson, Lynne; Sandman, Daniel; Kumar, Jayant

    2012-02-01

    Curcumin is a polyphenol which has elicited considerable interest for its antioxidant and anti tumor properties. Although curcumin may be used as potential therapeutic drug, it is very sparingly soluble in water which makes it less bioavailable under physiological conditions. We report two approaches to make curcumin more bioavailable. The first approach involves fabricating colloidal dispersions of curcumin in the range of tens of nanometers. The second approach involves functionalization of curcumin with polyethylene glycol (PEG) to render it water dispersible or soluble. Since curcumin is a fluorescent molecule as well as a potential drug, its interactions with cells have been investigated using one and two photon confocal fluorescence imaging. We have also observed strong interaction between curcumin and metal ions, which may have physiological implications.

  2. Preparation and Characterization of Starch Nanoparticles for Controlled Release of Curcumin

    Directory of Open Access Journals (Sweden)

    Suk Fun Chin

    2014-01-01

    Full Text Available Curcumin was loaded onto starch nanoparticles by using in situ nanoprecipitation method and water-in-oil microemulsion system. Curcumin loaded starch nanoparticles exhibited enhanced solubility in aqueous solution as compared to free curcumin. Effects of formulation parameters such as types of reaction medium, types of surfactant, surfactant concentrations, oil/ethanol ratios, loading time, and initial curcumin concentration were found to affect the particle size and loading efficiency (LF of the curcumin loaded starch nanoparticles. Under optimum conditions, curcumin loaded starch nanoparticles with mean particles size of 87 nm and maximum loading efficiency of 78% were achieved. Curcumin was observed to release out from starch nanoparticles in a sustained way under physiological pH over a period of 10 days.

  3. Anti-inflammatory Effects of Curcumin in Microglial Cells

    Directory of Open Access Journals (Sweden)

    Yangyang Yu

    2018-04-01

    Full Text Available Lipoteichoic acid (LTA induces neuroinflammatory molecules, contributing to the pathogenesis of neurodegenerative diseases. Therefore, suppression of neuroinflammatory molecules could be developed as a therapeutic method. Although previous data supports an immune-modulating effect of curcumin, the underlying signaling pathways are largely unidentified. Here, we investigated curcumin’s anti-neuroinflammatory properties in LTA-stimulated BV-2 microglial cells. Inflammatory cytokine tumor necrosis factor-α [TNF-α, prostaglandin E2 (PGE2, and Nitric Oxide (NO] secretion in LTA-induced microglial cells were inhibited by curcumin. Curcumin also inhibited LTA-induced inducible NO synthases (iNOS and cyclooxygenase-2 (COX-2 expression. Subsequently, our mechanistic studies revealed that curcumin inhibited LTA-induced phosphorylation of mitogen-activated protein kinase (MAPK including ERK, p38, Akt and translocation of NF-κB. Furthermore, curcumin induced hemeoxygenase (HO-1HO-1 and nuclear factor erythroid 2-related factor 2 (Nrf-2 expression in microglial cells. Inhibition of HO-1 reversed the inhibition effect of HO-1 on inflammatory mediators release in LTA-stimulated microglial cells. Taken together, our results suggest that curcumin could be a potential therapeutic agent for the treatment of neurodegenerative disorders via suppressing neuroinflammatory responses.

  4. Antiangiogenic effects of synthetic analogs of curcumin in vivo ...

    African Journals Online (AJOL)

    The active compound curcumin is isolated from the spice turmeric. Curcumin, curcuminoids and their synthetic analogs have been shown to inhibit the progression of cancer in animal models. In colon and skin carcinogenesis the genetic changes engross different genes, but curcumin is effective in preventing ...

  5. Curcumin Treatment Improves Motor Behavior in α-Synuclein Transgenic Mice

    Science.gov (United States)

    Spinelli, Kateri J.; Osterberg, Valerie R.; Meshul, Charles K.; Soumyanath, Amala; Unni, Vivek K.

    2015-01-01

    The curry spice curcumin plays a protective role in mouse models of neurodegenerative diseases, and can also directly modulate aggregation of α-synuclein protein in vitro, yet no studies have described the interaction of curcumin and α-synuclein in genetic synucleinopathy mouse models. Here we examined the effect of chronic and acute curcumin treatment in the Syn-GFP mouse line, which overexpresses wild-type human α-synuclein protein. We discovered that curcumin diet intervention significantly improved gait impairments and resulted in an increase in phosphorylated forms of α-synuclein at cortical presynaptic terminals. Acute curcumin treatment also caused an increase in phosphorylated α-synuclein in terminals, but had no direct effect on α-synuclein aggregation, as measured by in vivo multiphoton imaging and Proteinase-K digestion. Using LC-MS/MS, we detected ~5 ng/mL and ~12 ng/mL free curcumin in the plasma of chronic or acutely treated mice, with a glucuronidation rate of 94% and 97%, respectively. Despite the low plasma levels and extensive metabolism of curcumin, these results show that dietary curcumin intervention correlates with significant behavioral and molecular changes in a genetic synucleinopathy mouse model that mimics human disease. PMID:26035833

  6. Photodynamic inactivation of Listeria innocua biofilms with food-grade photosensitizers: a curcumin-rich extract of Curcuma longa vs commercial curcumin.

    Science.gov (United States)

    Bonifácio, D; Martins, C; David, B; Lemos, C; Neves, M G P M S; Almeida, A; Pinto, D C G A; Faustino, M A F; Cunha, Â

    2018-03-22

    The aim of this work is to assess the potential of curcumin in the photosensitization of biofilms of Listeria. Biofilms of Listeria innocua, were irradiated with blue light in the presence of a curcumin-rich extract of Curcuma longa or commercial curcumin. Similar experiments were conducted with planktonic cells, for comparison. A reduction of 4·9 log in the concentration of viable biofilm cells was obtained with 3·7 mg l -1 of commercial curcumin. Planktonic cells were much more susceptible (6·1 log reduction). A tetracationic porphyrin, used as a reference photosensitizer (PS), caused a very modest inactivation of the biofilm (1·1 log) and complete inactivation of the planktonic form (>8 log). Curcumin is an effective PS for the photodynamic control of Listeria biofilms and the inactivation efficiency attained with this natural compound is higher than with the porphyrin. This result may point to a better performance of type I PSs against bacterial biofilms by circumventing the limitations to singlet-oxygen diffusion imposed by the extracellular matrix. Curcumin represents a promising alternative to the control of bacteria and bacterial biofilms in food products particularly in the case of meat products in which turmeric is used as spice. © 2018 The Society for Applied Microbiology.

  7. Turmeric active substance, curcumin, enhanced apomorphine-induced yawning in rats

    Directory of Open Access Journals (Sweden)

    Esmaeal Tamaddonfard

    2013-05-01

    Full Text Available Objective: Curcumin is a major constituent of turmeric and influences many functions of the brain. In the present study, we investigated the effect of curcumin on yawning induced by apomorphine in rats. Materials and Methods: Curcumin administered orallyfor 10 consecutive days. Yawning was induced by subcutaneous (s.c. injection of apomorphine (a dopamine receptor agonist and the number of yawns was recorded for a period of 30 min. Results: Apomorphine (0.05 and 0.1 mg/kg produced yawning. Haloperidol (a dopamine receptors antagonist at a dose of 0.05 mg/kg partially and at a dose of 0.2 mg/kg completely inhibited apomorphine-induced yawning. Curcumin alone produced no yawning, whereas at doses of 30 and 60 mg/kg, it increased yawning induced by 0.1 mg/kg of apomorphine. Curcumin at the high doses (30 and 60 mg/kg produced yawning when apomorphine (0.1 mg/kg action was partially blocked with 0.5 mg/kg of haloperidol. In the presence of complete blockade of apomorphine (0.1 mg/kg action with 0.2 mg/kg of haloperidol, curcumin did not produce yawning. Conclusion: The results showed that curcumin at high doses increased apomorphine-induced yawning. In the presence of partial, but not complete blockade of apomorphine action, curcumin produced yawning. Curcumin produced a dopamine-like effect on yawning.

  8. Neuroprotective properties of curcumin in Alzheimer's disease--merits and limitations.

    Science.gov (United States)

    Chin, Dawn; Huebbe, Patricia; Pallauf, Kathrin; Rimbach, Gerald

    2013-01-01

    As demographics in developed nations shift towards an aging population, neurodegenerative pathologies, especially dementias such as Alzheimer's disease, pose one of the largest challenges to the modern health care system. Since there is yet no cure for dementia, there is great pressure to discover potential therapeutics for these diseases. One popular candidate is curcumin or diferuloylmethane, a polyphenolic compound that is the main curcuminoid found in Curcuma longa (family Zingiberaceae). In recent years, curcumin has been reported to possess anti-amyloidogenic, antiinflammatory, anti-oxidative, and metal chelating properties that may result in potential neuroprotective effects. Particularly, the hydrophobicity of the curcumin molecule hints at the possibility of blood-brain barrier penetration and accumulation in the brain. However, curcumin exhibits extremely low bioavailability, mainly due to its poor aqueous solubility, poor stability in solution, and rapid intestinal first-pass and hepatic metabolism. Despite the many efforts that are currently being made to improve the bioavailability of curcumin, brain concentration of curcumin remains low. Furthermore, although many have reported that curcumin possesses a relatively low toxicity profile, curcumin applied at high doses, which is not uncommon practice in many in vivo and clinical studies, may present certain dangers that in our opinion have not been addressed sufficiently. Herein, the neuroprotective potential of curcumin, with emphasis on Alzheimer's disease, as well as its limitations will be discussed in detail.

  9. The role of some natural products in protecting against the effect of gamma irradiation on the gastrointestinal tract in rats

    International Nuclear Information System (INIS)

    El-Sheikh, M.M.

    2012-01-01

    Ionizing radiation induces a wide range of biological effects including inflammation, DNA damage, chromosomal aberration, mutation, carcinogenesis, and hereditary diseases. These effects are mainly mediated through generation of reactive oxygen species (ROS), which affect particularly tissues with a high rate of cell turnover, such as gastrointestinal tract. Thus, patients with abdominal and pelvic malignancies are at high risk of developing ulceration, perforation, chronic atrophic gastroenteritis, and depression of secretory and motor function due to high doses of ionizing radiation exposure. Therefore there is a continued interest and need for the identification and development of non-toxic and effective radio-protective compounds that can reduce the deleterious effect of radiation. Such compounds could potentially protect humans against the genetic damage, mutation, alteration in the immune system and teratogenic effects of toxic agents including radiation, which act through the generation of free radicals. Ginkgo biloba extract (EGb 761) is known to contain flavonoids which confer on it various biological and pharmacological properties, including antioxidant, anti-inflammatory and immuno-modulatory effects. However in Ginger, the gingerols were identified as the major active components which have radio protective, antioxidant, anti-inflammatory activity, stimulation of digestion and absorption in the digestive tract. This study was designed to investigate the possible protective effect of certain natural products such as Ginkgo biloba extract and Ginger powder and their mechanism of actions in guarding against the oxidative stress and inflammatory reaction induced in gastrointestinal tissues after exposure to whole body γ-radiation as acute doses.

  10. Mechanism for ginkgolic acid (15 : 1)-induced MDCK cell necrosis: Mitochondria and lysosomes damages and cell cycle arrest.

    Science.gov (United States)

    Yao, Qing-Qing; Liu, Zhen-Hua; Xu, Ming-Cheng; Hu, Hai-Hong; Zhou, Hui; Jiang, Hui-Di; Yu, Lu-Shan; Zeng, Su

    2017-05-01

    Ginkgolic acids (GAs), primarily found in the leaves, nuts, and testa of ginkgo biloba, have been identified with suspected allergenic, genotoxic and cytotoxic properties. However, little information is available about GAs toxicity in kidneys and the underlying mechanism has not been thoroughly elucidated so far. Instead of GAs extract, the renal cytotoxicity of GA (15 : 1), which was isolated from the testa of Ginkgo biloba, was assessed in vitro by using MDCK cells. The action of GA (15 : 1) on cell viability was evaluated by the MTT and neutral red uptake assays. Compared with the control, the cytotoxicity of GA (15 : 1) on MDCK cells displayed a time- and dose-dependent manner, suggesting the cells mitochondria and lysosomes were damaged. It was confirmed that GA (15 : 1) resulted in the loss of cells mitochondrial trans-membrane potential (ΔΨm). In propidium iodide (PI) staining analysis, GA (15 : 1) induced cell cycle arrest at the G0/G1 and G2/M phases, influencing on the DNA synthesis and cell mitosis. Characteristics of necrotic cell death were observed in MDCK cells at the experimental conditions, as a result of DNA agarose gel electrophoresis and morphological observation of MDCK cells. In conclusion, these findings might provide useful information for a better understanding of the GA (15 : 1) induced renal toxicity. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  11. Novel water-soluble curcumin derivative mediating erectile signaling.

    Science.gov (United States)

    Abdel Aziz, Mohamed Talaat; El Asmer, Mohammed F; Rezq, Ameen; Kumosani, Taha Abdullah; Mostafa, Samya; Mostafa, Taymour; Atta, Hazem; Abdel Aziz Wassef, Mohamed; Fouad, Hanan H; Rashed, Laila; Sabry, Dina; Hassouna, Amira A; Senbel, Amira; Abdel Aziz, Ahmed

    2010-08-01

    Curcumin is an inducer of heme oxygenase enzyme-1 (HO-1) that is involved in erectile signaling via elevating cyclic guanosine monophosphate (cGMP)levels. To assess the effect of oral administration of a water-soluble long-acting curcumin derivative on erectile signaling. Two hundred and thirty six male white albino rats were divided into four groups; group 1 (N = 20) includes control. Group 2 (N = 72) was equally divided into four subgroups; subgroup 1 received pure curcumin (10 mg/kg), subgroup 2 received the long-acting curcumin derivative (2 mg/kg), subgroup 3 received the long-acting curcumin derivative (10 mg/kg), and subgroup 4 received sildenafil (4 mg/kg). Subgroups were sacrificed after the first, second, and third hour. Group 3 (N = 72) was equally divided into the same four subgroups already mentioned and were sacrificed after 24 hours, 48 hours, and 1 week. Group 4 (N = 72) was subjected to intracavernosal pressure (ICP) measurements 1 hour following oral administration of the same previous doses in the same rat subgroups. Cavernous tissue HO enzyme activity, cGMP, and ICP. In group 2, there was a significant progressive maintained elevation of HO activity and cGMP tissue levels starting from the first hour in subgroups 3 and 4, whereas, the rise in HO activity and cGMP started from second hour regarding the other rat subgroups. Sildenafil effect decreased after 3 hours. In group 3, there was a significant maintained elevation of HO activity and cGMP tissue levels extended to 1 week as compared to controls for all rat subgroups that received both forms of curcumin. In group 4, long-acting curcumin derivative exhibited more significant potentiation of intracavernosal pressure as compared to control and to the pure curcumin. Water-soluble long-acting curcumin derivative could mediate erectile function via upregulating cavernous tissue cGMP. © 2009 International Society for Sexual Medicine.

  12. Curcumin and its topical formulations for wound healing applications.

    Science.gov (United States)

    Mohanty, Chandana; Sahoo, Sanjeeb K

    2017-10-01

    Oxidative damage and inflammation have been identified, through clinical and preclinical studies, as the main causes of nonhealing chronic wounds. Reduction of persistent chronic inflammation by application of antioxidant and anti-inflammatory agents such as curcumin has been well studied. However, low aqueous solubility, poor tissue absorption, rapid metabolism and short plasma half-life have made curcumin unsuitable for systemic administration for better wound healing. Recently, various topical formulations of curcumin such as films, fibers, emulsion, hydrogels and different nanoformulations have been developed for targeted delivery of curcumin at wounded sites. In this review, we summarize and discuss different topical formulations of curcumin with emphasis on their wound-healing properties in animal models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Niosome Encapsulation of Curcumin: Characterization and Cytotoxic Effect on Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ying-Qi Xu

    2016-01-01

    Full Text Available Curcumin, a natural chemical compound found in Curcuma longa, has been applied in multiple medicinal areas from antibiotic to antitumor treatment. However, the chemical structure of curcumin results in poor stability, low solubility, and rapid degradation in vivo, hindering its clinical utilization. To address these issues, we have developed a novel niosome system composed of nonionic surfactants: Span 80, Tween 80, and Poloxamer 188. Curcumin was encapsulated in the niosomes with a high entrapment efficiency of 92.3±0.4%. This system provided controlled release of curcumin, thereby improving its therapeutic capability. Dynamic dialysis was conducted to evaluate the in vitro drug release of curcumin-niosomes. Curcumin-niosomes exhibited enhanced cytotoxic activity and apoptotic rate against ovarian cancer A2780 cells compared with freely dispersed curcumin. These results demonstrate that the curcumin-niosome system is a promising strategy for the delivery of curcumin and ovarian cancer therapy.

  14. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    Directory of Open Access Journals (Sweden)

    Soheil Zorofchian Moghadamtousi

    2014-01-01

    Full Text Available Curcuma longa L. (Zingiberaceae family and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent.

  15. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    Science.gov (United States)

    Zorofchian Moghadamtousi, Soheil; Abdul Kadir, Habsah; Hassandarvish, Pouya; Tajik, Hassan; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent. PMID:24877064

  16. Biocompatible Lipid Nanoparticles as Carriers To Improve Curcumin Efficacy in Ovarian Cancer Treatment.

    Science.gov (United States)

    Bondì, Maria Luisa; Emma, Maria Rita; Botto, Chiara; Augello, Giuseppa; Azzolina, Antonina; Di Gaudio, Francesca; Craparo, Emanuela Fabiola; Cavallaro, Gennara; Bachvarov, Dimcho; Cervello, Melchiorre

    2017-02-22

    Curcumin is a natural molecule with proved anticancer efficacy on several human cancer cell lines. However, its clinical application has been limited due to its poor bioavailability. Nanocarrier-based drug delivery approaches could make curcumin dispersible in aqueous media, thus overtaking the limits of its low solubility. The aim of this study was to increase the bioavailability and the antitumoral activity of curcumin, by entrapping it into nanostructured lipid carriers (NLCs). For this purpose here we describe the preparation and characterization of three kinds of curcumin-loaded NLCs. The nanosystems allowed the achievement of a controlled release of curcumin, the amounts of curcumin released after 24 h from Compritol-Captex, Compritol-Miglyol, and Compritol NLCs being, respectively, equal to 33, 28, and 18% w/w on the total entrapped curcumin. Considering the slower curcumin release profile, Compritol NLCs were chosen to perform successive in vitro studies on ovarian cancer cell lines. The results show that curcumin-loaded NLCs maintain anticancer activity, and reduce cell colony survival more effectively than free curcumin. As an example, the ability of A2780S cells to form colonies was decreased after treatment with 5 μM free curcumin by 50% ± 6, whereas, at the same concentration, the delivery of curcumin with NLC significantly (p < 0.05) inhibited colony formation to approximately 88% ± 1, therefore potentiating the activity of curcumin to inhibit A2780S cell growth. The obtained results clearly suggest that the entrapment of curcumin into NLCs increases curcumin efficacy in vitro, indicating the potential use of NLCs as curcumin delivery systems.

  17. Preclinical assessment of curcumin as a potential therapy for B-CLL.

    Science.gov (United States)

    Everett, Peter C; Meyers, John A; Makkinje, Anthony; Rabbi, Mohammed; Lerner, Adam

    2007-01-01

    Curcumin, the principle component of the spice turmeric, has been used as an anti-inflammatory medication in India and China for centuries. Recent studies, predominantly using actively dividing cell lines, have suggested that this compound could be used as a chemopreventative or therapeutic agent for epithelial tumors. As curcumin has been reported to inhibit the NIK/IKK complex, an activity that would be expected to induce apoptosis in B cell malignancies, we sought to determine whether curcumin induces apoptosis in vitro in primary chronic lymphocytic leukemia (B-CLL) cells. Primary leukemic cells were incubated with varying dosages of curcumin, followed by assessment for apoptosis. The role of PPARgamma or NF-kappaB signaling in curcumin-induced apoptosis was examined by cotreatment with a PPARgamma antagonist or EMSA of nuclear NFkappaB complexes. We also examined whether a clinically achievable concentration of curcumin (1 microM) would augment the apoptotic effects of fludarabine, dexamethasone, vincristine or the PDE4 inhibitor rolipram. In B-CLL cells from 14 patients, curcumin-induced apoptosis with a mean EC(50) of 5.5 microM. In contrast, the EC(50) for whole mononuclear cells from a healthy donor was 21.8 microM. In a 48 hr wash-out time course, curcumin-induced apoptosis was time-dependent, with a substantial reduction in apoptosis observed when curcumin was removed after 5 hr. Curcumin treatment reduced basal nuclear NF-kappaB levels and 1 microM curcumin augmented both vinca alkaloid and PDE4 inhibitor-induced apoptosis in B-CLL cells. Our studies suggest that curcumin may augment the efficacy of established or experimental therapies for B-CLL.

  18. Oxidative Metabolites of Curcumin Poison Human Type II Topoisomerases†

    Science.gov (United States)

    Ketron, Adam C.; Gordon, Odaine N.; Schneider, Claus; Osheroff, Neil

    2013-01-01

    The polyphenol curcumin is the principal flavor and color component of the spice turmeric. Beyond its culinary uses, curcumin is believed to positively impact human health and displays antioxidant, anti-inflammatory, antibacterial, and chemopreventive properties. It also is in clinical trials as an anticancer agent. In aqueous solution at physiological pH, curcumin undergoes spontaneous autoxidation that is enhanced by oxidizing agents. The reaction proceeds through a series of quinone methide and other reactive intermediates to form a final dioxygenated bicyclopentadione product. Several naturally occurring polyphenols that can form quinones have been shown to act as topoisomerase II poisons (i.e., increase levels of topoisomerase II-mediated DNA cleavage). Because several of these compounds have chemopreventive properties, we determined the effects of curcumin, its oxidative metabolites, and structurally related degradation products (vanillin, ferulic acid, and feruloylmethane), on the DNA cleavage activities of human topoisomerase IIα and IIβ. Intermediates in the curcumin oxidation pathway increased DNA scission mediated by both enzymes ~4-5–fold. In contrast, curcumin and the bicyclopentadione, as well as vanillin, ferulic acid, and feruloylmethane, had no effect on DNA cleavage. As found for other quinone-based compounds, curcumin oxidation intermediates acted as redox-dependent (as opposed to interfacial) topoisomerase II poisons. Finally, under conditions that promote oxidation, the dietary spice turmeric enhanced topoisomerase II-mediated DNA cleavage. Thus, even within the more complex spice formulation, oxidized curcumin intermediates appear to function as topoisomerase II poisons. PMID:23253398

  19. Comparative effects of curcumin and an analog of curcumin on alcohol and PUFA induced oxidative stress.

    Science.gov (United States)

    Rukkumani, Rajagopalan; Aruna, Kode; Varma, Penumathsa Suresh; Rajasekaran, Kallikat Narayanan; Menon, Venugopal Padmanabhan

    2004-08-20

    Alcoholic liver disease is a major medical complication of alcohol abuse and a common liver disease in western countries. Increasing evidence demonstrates that oxidative stress plays an important etiologic role in the development of alcoholic liver disease. Alcohol alone or in combination with high fat is known to cause oxidative injury. The present study therefore aims at evaluating the protective role of curcumin, an active principle of turmeric and a synthetic analog of curcumin (CA) on alcohol and thermally oxidised sunflower oil (DeltaPUFA) induced oxidative stress. Male albino Wistar rats were used for the experimental study. The liver marker enzymes: gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), the lipid peroxidative indices: thiobarbituric acid reactive substances (TBARS) and hydroperoxides (HP) and antioxidants such as vitamin C, vitamin E, reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) were used as biomarkers for testing the antioxidant potential of the drugs. The liver marker enzymes and lipid peroxidative indices were increased significantly in alcohol, DeltaPUFA and alcohol + DeltaPUFA groups. Administration of curcumin and CA abrograted this effect. The antioxidant status which was decreased in alcohol, DeltaPUFA and alcohol + DeltaPUFA groups was effectively modulated by both curcumin and CA treatment. However, the reduction in oxidative stress was more pronounced in CA treatment groups compared to curcumin. In conclusion, these observations show that CA exerts its protective effect by decreasing the lipid peroxidation and improving antioxidant status, thus proving itself as an effective antioxidant.

  20. The circadian clock modulates anti-cancer properties of curcumin

    International Nuclear Information System (INIS)

    Sarma, Ashapurna; Sharma, Vishal P.; Sarkar, Arindam B.; Sekar, M. Chandra; Samuel, Karunakar; Geusz, Michael E.

    2016-01-01

    Curcuminoids of the spice turmeric and their enhanced derivatives have much potential as cancer treatments. They act on a wide variety of biological pathways, including those regulating cell division and circadian rhythms. It is known that circadian clocks can modify cancer therapy effectiveness, according to studies aimed at optimizing treatments based on the circadian cycle. It is therefore important to determine whether treatments with curcumin or similar chemotherapeutic agents are regulated by circadian timing. Similarly, it is important to characterize any effects of curcumin on timing abilities of the circadian clocks within cancer cells. We examined the circadian clock’s impact on the timing of cell death and cell division in curcumin-treated C6 rat glioma cells through continuous video microscopy for several days. To evaluate its persistence and distribution in cancer cells, curcumin was localized within cell compartments by imaging its autofluorescence. Finally, HPLC and spectroscopy were used to determine the relative stabilities of the curcumin congeners demethoxycurcumin and bisdemethoxycurcumin that are present in turmeric. Circadian rhythms in cell death were observed in response to low (5 μM) curcumin, reaching a peak several hours before the peak in rhythmic expression of mPER2 protein, a major circadian clock component. These results revealed a sensitive phase of the circadian cycle that could be effectively targeted in patient therapies based on curcumin or its analogs. Curcumin fluorescence was observed in cell compartments at least 24 h after treatment, and the two congeners displayed greater stability than curcumin in cell culture medium. We propose a mechanism whereby curcuminoids act in a sustained manner, over several days, despite their tendency to degrade rapidly in blood and other aqueous media. During cancer therapy, curcumin or its analogs should be delivered to tumor cells at the optimal phase for highest efficacy after identifying

  1. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000 (China); Wu, Jincai [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (China); Fang, Jianguo, E-mail: fangjg@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000 (China); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2012-08-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ► Curcumin induces oxidative stress by targeting the thioredoxin system. ► Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ► Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells.

  2. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    International Nuclear Information System (INIS)

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu; Wu, Jincai; Fang, Jianguo

    2012-01-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ► Curcumin induces oxidative stress by targeting the thioredoxin system. ► Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ► Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells. ► Curcumin

  3. Curcumin AntiCancer Studies in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Sabrina Bimonte

    2016-07-01

    Full Text Available Pancreatic cancer (PC is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC.

  4. Design and synthesis of dimethylaminomethyl-substituted curcumin derivatives/analogues: potent antitumor and antioxidant activity, improved stability and aqueous solubility compared with curcumin.

    Science.gov (United States)

    Fang, Xubin; Fang, Lei; Gou, Shaohua; Cheng, Lin

    2013-03-01

    A series of dimethylaminomethyl-substituted curcumin derivatives/analogues were designed and synthesized. All compounds effectively inhibited HepG2, SGC-7901, A549 and HCT-116 tumor cell lines proliferation in MTT assay. Particularly, compounds 2a and 3d showed much better activity than curcumin against all of the four tumor cell lines. Antioxidant test revealed that these compounds had higher free radical scavenging activity than curcumin towards both DPPH and galvinoxyl radicals. Furthermore, the aqueous solubility and stability of the target compounds were also significantly improved compared with curcumin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Curcumin Modulates Pancreatic Adenocarcinoma Cell-Derived Exosomal Function

    Science.gov (United States)

    Osterman, Carlos J. Diaz; Lynch, James C.; Leaf, Patrick; Gonda, Amber; Ferguson Bennit, Heather R.; Griffiths, Duncan; Wall, Nathan R.

    2015-01-01

    Pancreatic cancer has the highest mortality rates of all cancer types. One potential explanation for the aggressiveness of this disease is that cancer cells have been found to communicate with one another using membrane-bound vesicles known as exosomes. These exosomes carry pro-survival molecules and increase the proliferation, survival, and metastatic potential of recipient cells, suggesting that tumor-derived exosomes are powerful drivers of tumor progression. Thus, to successfully address and eradicate pancreatic cancer, it is imperative to develop therapeutic strategies that neutralize cancer cells and exosomes simultaneously. Curcumin, a turmeric root derivative, has been shown to have potent anti-cancer and anti-inflammatory effects in vitro and in vivo. Recent studies have suggested that exosomal curcumin exerts anti-inflammatory properties on recipient cells. However, curcumin’s effects on exosomal pro-tumor function have yet to be determined. We hypothesize that curcumin will alter the pro-survival role of exosomes from pancreatic cancer cells toward a pro-death role, resulting in reduced cell viability of recipient pancreatic cancer cells. The main objective of this study was to determine the functional alterations of exosomes released by pancreatic cancer cells exposed to curcumin compared to exosomes from untreated pancreatic cancer cells. We demonstrate, using an in vitro cell culture model involving pancreatic adenocarcinoma cell lines PANC-1 and MIA PaCa-2, that curcumin is incorporated into exosomes isolated from curcumin-treated pancreatic cancer cells as observed by spectral studies and fluorescence microscopy. Furthermore, curcumin is delivered to recipient pancreatic cancer cells via exosomes, promoting cytotoxicity as demonstrated by Hoffman modulation contrast microscopy as well as AlamarBlue and Trypan blue exclusion assays. Collectively, these data suggest that the efficacy of curcumin may be enhanced in pancreatic cancer cells through

  6. Role of curcumin in health and disease.

    Science.gov (United States)

    Pari, Leelavinothan; Tewas, Daniel; Eckel, Juergen

    2008-04-01

    Curcumin (diferuloylmethane) is an orange-yellow component of turmeric (Curcuma longa), a spice often found in curry powder. In recent years, considerable interest has been focused on curcumin due to its use to treat a wide variety of disorders without any side effects. It is one of the major curcuminoids of turmeric, which impart its characteristic yellow colour. It was used in ancient times on the Indian subcontinent to treat various illnesses such as rheumatism, body ache, skin diseases, intestinal worms, diarrhoea, intermittent fevers, hepatic disorders, biliousness, urinary discharges, dyspepsia, inflammations, constipation, leukoderma, amenorrhea, and colic. Curcumin has the potential to treat a wide variety of inflammatory diseases including cancer, diabetes, cardiovascular diseases, arthritis, Alzheimer's disease, psoriasis, etc, through modulation of numerous molecular targets. This article reviews the use of curcumin for the chemoprevention and treatment of various diseases.

  7. Targeted delivery of curcumin for treating type 2 diabetes.

    Science.gov (United States)

    Maradana, Muralidhara Rao; Thomas, Ranjeny; O'Sullivan, Brendan J

    2013-09-01

    Type 2 diabetes is a chronic condition in which cells have reduced insulin signalling, leading to hyperglycemia and long-term complications, including heart, kidney and liver disease. Macrophages activated by dying or stressed cells, induce the transcription factor nuclear factor kappa-B leading to the production of pro-inflammatory cytokines including TNF and IL-6. These inflammatory macrophages in liver and adipose tissue promote insulin resistance, and medications which reduce inflammation and enhance insulin signalling improve glucose control. Curcumin is an anti-oxidant and nuclear factor kappa-B inhibitor derived from turmeric. A number of studies have shown that dietary curcumin reduces inflammation and delays or prevents obesity-induced insulin resistance and associated complications, including atherosclerosis and immune mediate liver disease. Unfortunately dietary curcumin is poorly absorbed by the digestive system and undergoes glucuronidation and excretion rather than being released into the serum and systemically distributed. This confounds understanding of how dietary curcumin exerts its beneficial effects in type 2 diabetes and associated diseases. New improved methods of delivering curcumin are being developed including nanoparticles and lipid/liposome formulations that increase absorption and bioavailability of curcumin. Development and refinement of these technologies will enable cell-directed targeting of curcumin and improved therapeutic outcome. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Protective Effects of Curcumin on Manganese-Induced BV-2 Microglial Cell Death.

    Science.gov (United States)

    Park, Euteum; Chun, Hong Sung

    2017-08-01

    Curcumin, a bioactive component in tumeric, has been shown to exert antioxidant, anti-inflammatory, anticarcinogenic, hepatoprotective, and neuroprotective effects, but the effects of curcumin against manganese (Mn)-mediated neurotoxicity have not been studied. This study examined the protective effects of curcumin on Mn-induced cytotoxicity in BV-2 microglial cells. Curcumin (0.1-10 µM) dose-dependently prevented Mn (250 µM)-induced cell death. Mn-induced mitochondria-related apoptotic characteristics, such as caspase-3 and -9 activation, cytochrome c release, Bax increase, and Bcl-2 decrease, were significantly suppressed by curcumin. In addition, curcumin significantly increased intracellular glutathione (GSH) and moderately potentiated superoxide dismutase (SOD), both which were diminished by Mn treatment. Curcumin pretreatment effectively suppressed Mn-induced upregulation of malondialdehyde (MDA), total reactive oxygen species (ROS). Moreover, curcumin markedly inhibited the Mn-induced mitochondrial membrane potential (MMP) loss. Furthermore, curcumin was able to induce heme oxygenase (HO)-1 expression. Curcumin-mediated inhibition of ROS, down-regulation of caspases, restoration of MMP, and recovery of cell viability were partially reversed by HO-1 inhibitor (SnPP). These results suggest the first evidence that curcumin can prevent Mn-induced microglial cell death through the induction of HO-1 and regulation of oxidative stress, mitochondrial dysfunction, and apoptotic events.

  9. Dangshen (Codonopsis pilosula) and Bai guo (Gingko biloba) enhance learning and memory.

    Science.gov (United States)

    Singh, Betsy; Song, Howin; Liu, Xiao-Dong; Hardy, Mary; Liu, Gan-Zhong; Vinjamury, Sivarama P; Martirosian, Claudia Der

    2004-01-01

    An exploration of the usefulness of several common Chinese herbs used for Acquisition and Retention singly or in combination is required. To test (1) whether Gingko biloba (Bai guo) in combination with Codonopsis pilosula (Dangshen) or Gingko biloba (GB) alone could enhance memory acquisition and retention of normal human subjects, better than a placebo and (2) to investigate whether the overall health status can be affected by these supplements. A double blind randomized placebo controlled trial design was used to determine the efficacy of these two products compared to placebo. Sixty participants, aged 21- 60 years, who were either students or faculty of the Southern California University of Health Sciences. Each combination capsule was made up of 75mg of Codonopsis pilosula total glycosides and 40mg GB extract. Each GB capsule consisted of 40mg of Gingko biloba as an aqueous extract and. The placebo pill was similar in shape and color to that of the other two capsules. All the participants regardless of the group were instructed to take one pill twice a day with food. The primary outcome measure was a computerized, standardized acquisition and retention test provided by Digital Acumen, Inc. The secondary outcome measures were the SF-12 and the Medical Symptom Questionnaire ( 1997 healthcomm International, Inc. And Immuno Laboratories, Inc.) Mean age was 28 years; almost two thirds of the sample were males. The study adopted repeated measure analysis using data from three measurement points for between group analysis. GB group was compared to placebo, and CPG/GB group was also compared to placebo. These individual comparisons were made to determine whether the active products produced better results than chance. The between groups findings indicate that both products are better than placebo at producing improvements in acquisition and retention and overall health status. In our participant population, the combination product seems to be better than GB alone in

  10. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles

    International Nuclear Information System (INIS)

    Ha, Phuong Thu; Tran, Dai Lam; Nguyen, Xuan Phuc; Le, Mai Huong; Ha Tran, Thi Hong; Hoang, Thi My Nhung; Huong Le, Thi Thu; Duong, Tuan Quang

    2012-01-01

    Curcumin (Cur) is a yellow compound isolated from rhizome of the herb curcuma longa. Curcumin possesses antioxidant, anti-inflammatory, anti-carcinogenic and antimicrobial properties, and suppresses proliferation of many tumor cells. However, the clinical application of curcumin in cancer treatment is considerably limited due to its serious poor delivery characteristics. In order to increase the hydrophilicity and drug delivery capability, we encapsulated curcumin into copolymer PLA-TPGS, 1,3-beta-glucan (Glu), O-carboxymethyl chitosan (OCMCs) and folate-conjugated OCMCs (OCMCs-Fol). These polymer-encapsulated curcumin nanoparticles (Cur-PLA-TPGS, Cur-Glu, Cur-OCMCs and Cur-OCMCs-Fol) were characterized by infrared (IR), fluorescence (FL), photoluminescence (PL) spectra, field emission scanning electron microscopy (FE-SEM), and found to be spherical particles with an average size of 50–100 nm, being suitable for drug delivery applications. They were much more soluble in water than not only free curcumin but also other biodegradable polymer-encapsulated curcumin nanoparticles. The anti-tumor promoting assay was carried out, showing the positive effects of Cur-Glu and Cur-PLA-TPGS on tumor promotion of Hep-G2 cell line in vitro. Confocal microscopy revealed that the nano-sized curcumin encapsulated by polymers OCMCs and OCMCs-Fol significantly enhanced the cellular uptake (cancer cell HT29 and HeLa). (paper)

  11. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles

    Science.gov (United States)

    Thu Ha, Phuong; Huong Le, Mai; Nhung Hoang, Thi My; Thu Huong Le, Thi; Quang Duong, Tuan; Tran, Thi Hong Ha; Tran, Dai Lam; Phuc Nguyen, Xuan

    2012-09-01

    Curcumin (Cur) is a yellow compound isolated from rhizome of the herb curcuma longa. Curcumin possesses antioxidant, anti-inflammatory, anti-carcinogenic and antimicrobial properties, and suppresses proliferation of many tumor cells. However, the clinical application of curcumin in cancer treatment is considerably limited due to its serious poor delivery characteristics. In order to increase the hydrophilicity and drug delivery capability, we encapsulated curcumin into copolymer PLA-TPGS, 1,3-beta-glucan (Glu), O-carboxymethyl chitosan (OCMCs) and folate-conjugated OCMCs (OCMCs-Fol). These polymer-encapsulated curcumin nanoparticles (Cur-PLA-TPGS, Cur-Glu, Cur-OCMCs and Cur-OCMCs-Fol) were characterized by infrared (IR), fluorescence (FL), photoluminescence (PL) spectra, field emission scanning electron microscopy (FE-SEM), and found to be spherical particles with an average size of 50-100 nm, being suitable for drug delivery applications. They were much more soluble in water than not only free curcumin but also other biodegradable polymer-encapsulated curcumin nanoparticles. The anti-tumor promoting assay was carried out, showing the positive effects of Cur-Glu and Cur-PLA-TPGS on tumor promotion of Hep-G2 cell line in vitro. Confocal microscopy revealed that the nano-sized curcumin encapsulated by polymers OCMCs and OCMCs-Fol significantly enhanced the cellular uptake (cancer cell HT29 and HeLa).

  12. Antibacterial Action of Curcumin against Staphylococcus aureus: A Brief Review

    Directory of Open Access Journals (Sweden)

    Sin-Yeang Teow

    2016-01-01

    Full Text Available Curcumin, the major constituent of Curcuma longa L. (Zingiberaceae family or turmeric, commonly used for cooking in Asian cuisine, is known to possess a broad range of pharmacological properties at relatively nontoxic doses. Curcumin is found to be effective against Staphylococcus aureus (S. aureus. As demonstrated by in vitro experiment, curcumin exerts even more potent effects when used in combination with various other antibacterial agents. Hence, curcumin which is a natural product derived from plant is believed to have profound medicinal benefits and could be potentially developed into a naturally derived antibiotic in the future. However, there are several noteworthy challenges in the development of curcumin as a medicine. S. aureus infections, particularly those caused by the multidrug-resistant strains, have emerged as a global health issue and urgent action is needed. This review focuses on the antibacterial activities of curcumin against both methicillin-sensitive S. aureus (MSSA and methicillin-resistant S. aureus (MRSA. We also attempt to highlight the potential challenges in the effort of developing curcumin into a therapeutic antibacterial agent.

  13. Curcumin-Loaded Chitosan/Gelatin Composite Sponge for Wound Healing Application

    Directory of Open Access Journals (Sweden)

    Van Cuong Nguyen

    2013-01-01

    Full Text Available Three composite sponges were made with 10% of curcumin and by using polymers, namely, chitosan and gelatin with various ratios. The chemical structure and morphology were evaluated by FTIR and SEM. These sponges were evaluated for water absorption capacity, antibacterial activity, in vitro drug release, and in vivo wound healing studies by excision wound model using rabbits. The in vivo study presented a greater wound closure in wounds treated with curcumin-composite sponge than those with composite sponge without curcumin and untreated group. These obtained results showed that combination of curcumin, chitosan and gelatin could improve the wound healing activity in comparison to chitosan, and gelatin without curcumin.

  14. Curcumin homing to the nucleolus: mechanism for initiation of an apoptotic program.

    Science.gov (United States)

    Ghosh, Mistuni; Ryan, Robert O

    2014-11-01

    Curcumin is a plant-derived polyphenol that displays antitumor properties. Incubation of cultured SF-767 glioma cells with curcumin gave rise to intense intranuclear foci of curcumin fluorescence. In vitro studies revealed that nuclear homing by curcumin is not a result of DNA/chromatin binding. On the other hand, curcumin fluorescence colocalized with nucleophosmin, a nucleolus marker protein. To determine the temporal relationship between curcumin-induced apoptosis and nucleolar homing, confocal live cell imaging was performed. The data show that curcumin localization to the nucleolus occurs prior to cell surface exposure of phosphatidylserine. In studies of the mechanism of curcumin-induced apoptosis in SF-767 cells, its effect on the subcellular location of p14(ARF) was determined. Whereas p14(ARF) was confined to the nucleolus in untreated cells, 2 h following incubation with curcumin, it displayed a diffuse nuclear distribution. Given the role of nuclear p14(ARF) in binding the E3 ubiquitin ligase, mouse double minute 2 homolog (MDM2), the effect of curcumin treatment on cellular levels of the tumor suppressor protein, p53, was examined. Between 2 and 4 h following curcumin treatment, p53 levels increased with maximum levels reached by 8 h. Thus, curcumin homing to the nucleolus induces redistribution of p14(ARF) to the nucleoplasm where interaction with MDM2 leads to stabilization of p53, with subsequent initiation of apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Facile Synthesis of Curcumin-Loaded Starch-Maleate Nanoparticles

    OpenAIRE

    Suh Cem Pang; Soon Hiang Tay; Suk Fun Chin

    2014-01-01

    We have demonstrated the loading of curcumin onto starch maleate (SM) under mild conditions by mixing dissolved curcumin and SM nanoparticles separately in absolute ethanol and ethanol/aqueous (40 : 60 v/v), respectively. Curcumin-loaded starch-maleate (CurSM) nanoparticles were subsequently precipitated from a homogeneous mixture of these solutions in absolute ethanol based on the solvent exchange method. TEM analysis indicated that the diameters of CurSM nanoparticles were ranged between 30...

  16. Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye

    Science.gov (United States)

    Patra, Digambara; Barakat, Christelle

    2011-09-01

    Curcumin, the main yellow bioactive component of turmeric, has recently acquired attention by chemists due its wide range of potential biological applications as an antioxidant, an anti-inflammatory, and an anti-carcinogenic agent. This molecule fluoresces weakly and poorly soluble in water. In this detailed study of curcumin in thirteen different solvents, both the absorption and fluorescence spectra of curcumin was found to be broad, however, a narrower and simple synchronous fluorescence spectrum of curcumin was obtained at Δ λ = 10-20 nm. Lippert-Mataga plot of curcumin in different solvents illustrated two sets of linearity which is consistent with the plot of Stokes' shift vs. the ET30. When Stokes's shift in wavenumber scale was replaced by synchronous fluorescence maximum in nanometer scale, the solvent polarity dependency measured by λSFSmax vs. Lippert-Mataga plot or ET30 values offered similar trends as measured via Stokes' shift for protic and aprotic solvents for curcumin. Better linear correlation of λSFSmax vs. π* scale of solvent polarity was found compared to λabsmax or λemmax or Stokes' shift measurements. In Stokes' shift measurement both absorption/excitation as well as emission (fluorescence) spectra are required to compute the Stokes' shift in wavenumber scale, but measurement could be done in a very fast and simple way by taking a single scan of SFS avoiding calculation and obtain information about polarity of the solvent. Curcumin decay properties in all the solvents could be fitted well to a double-exponential decay function.

  17. Drug-Drug/Drug-Excipient Compatibility Studies on Curcumin using Non-Thermal Methods

    OpenAIRE

    Moorthi Chidambaram; Kathiresan Krishnasamy

    2014-01-01

    Purpose: Curcumin is a hydrophobic polyphenol isolated from dried rhizome of turmeric. Clinical usefulness of curcumin in the treatment of cancer is limited due to poor aqueous solubility, hydrolytic degradation, metabolism, and poor oral bioavailability. To overcome these limitations, we proposed to fabricate curcumin-piperine, curcumin-quercetin and curcumin-silibinin loaded polymeric nanoformulation. However, unfavourable combinations of drug-drug and drug-excipient may result in interacti...

  18. Separation and purification of curcumin preparation of morphology controlled micro particles

    Directory of Open Access Journals (Sweden)

    Ts Tsedendorj

    2014-12-01

    Full Text Available Curcumin was extracted from turmeric plants which is the most commonly used natural pigments, and possess a variety of pharmacological functions except for using pigment. The morphology and particle size of curcumin are main factors affecting the application. Therefore, the morphology and particle size distribution of curcumin were effectively controlled by advanced technology, which is significant for expanding the application and added value of curcumin. The curcumin crystal was obtained from curcumin pigments by using column chromatography and recrystallization techniques. The composition and structure of curcumin were characterized by elementary analysis, UV-Vis, IR and NMR. Micronization of curcumin was carried out the Solution Enhanced Dispersion by Supercritical Fluids (SEDS technology. In the process, supercritical carbon dioxide was used as anti-solvent and acetone/dichloromethane (1:4, v:v was used as solvent. The curcumin crystals with PSs of about 378 μm were successfully micronized by the SEDS process to micro particles with PSs of about 2.6-10 μm. The acicular, leaves, dendritic and tubular micro particles were obtained through controlling parameters such as pressure, temperature, solution concentration and solution flow rate.DOI: http://doi.dx.org/10.5564/mjc.v15i0.314 Mongolian Journal of Chemistry  15 (41, 2014, p11-14

  19. Curcumin is a potent modulator of microglial gene expression and migration

    Directory of Open Access Journals (Sweden)

    Aslanidis Alexander

    2011-09-01

    Full Text Available Abstract Background Microglial cells are important effectors of the neuronal innate immune system with a major role in chronic neurodegenerative diseases. Curcumin, a major component of tumeric, alleviates pro-inflammatory activities of these cells by inhibiting nuclear factor kappa B (NFkB signaling. To study the immuno-modulatory effects of curcumin on a transcriptomic level, DNA-microarray analyses were performed with resting and LPS-challenged microglial cells after short-term treatment with curcumin. Methods Resting and LPS-activated BV-2 cells were stimulated with curcumin and genome-wide mRNA expression patterns were determined using DNA-microarrays. Selected qRT-PCR analyses were performed to confirm newly identified curcumin-regulated genes. The migration potential of microglial cells was determined with wound healing assays and transwell migration assays. Microglial neurotoxicity was estimated by morphological analyses and quantification of caspase 3/7 levels in 661W photoreceptors cultured in the presence of microglia-conditioned medium. Results Curcumin treatment markedly changed the microglial transcriptome with 49 differentially expressed transcripts in a combined analysis of resting and activated microglial cells. Curcumin effectively triggered anti-inflammatory signals as shown by induced expression of Interleukin 4 and Peroxisome proliferator activated receptor α. Several novel curcumin-induced genes including Netrin G1, Delta-like 1, Platelet endothelial cell adhesion molecule 1, and Plasma cell endoplasmic reticulum protein 1, have been previously associated with adhesion and cell migration. Consequently, curcumin treatment significantly inhibited basal and activation-induced migration of BV-2 microglia. Curcumin also potently blocked gene expression related to pro-inflammatory activation of resting cells including Toll-like receptor 2 and Prostaglandin-endoperoxide synthase 2. Moreover, transcription of NO synthase 2 and

  20. Curcumin is a potent modulator of microglial gene expression and migration

    Science.gov (United States)

    2011-01-01

    Background Microglial cells are important effectors of the neuronal innate immune system with a major role in chronic neurodegenerative diseases. Curcumin, a major component of tumeric, alleviates pro-inflammatory activities of these cells by inhibiting nuclear factor kappa B (NFkB) signaling. To study the immuno-modulatory effects of curcumin on a transcriptomic level, DNA-microarray analyses were performed with resting and LPS-challenged microglial cells after short-term treatment with curcumin. Methods Resting and LPS-activated BV-2 cells were stimulated with curcumin and genome-wide mRNA expression patterns were determined using DNA-microarrays. Selected qRT-PCR analyses were performed to confirm newly identified curcumin-regulated genes. The migration potential of microglial cells was determined with wound healing assays and transwell migration assays. Microglial neurotoxicity was estimated by morphological analyses and quantification of caspase 3/7 levels in 661W photoreceptors cultured in the presence of microglia-conditioned medium. Results Curcumin treatment markedly changed the microglial transcriptome with 49 differentially expressed transcripts in a combined analysis of resting and activated microglial cells. Curcumin effectively triggered anti-inflammatory signals as shown by induced expression of Interleukin 4 and Peroxisome proliferator activated receptor α. Several novel curcumin-induced genes including Netrin G1, Delta-like 1, Platelet endothelial cell adhesion molecule 1, and Plasma cell endoplasmic reticulum protein 1, have been previously associated with adhesion and cell migration. Consequently, curcumin treatment significantly inhibited basal and activation-induced migration of BV-2 microglia. Curcumin also potently blocked gene expression related to pro-inflammatory activation of resting cells including Toll-like receptor 2 and Prostaglandin-endoperoxide synthase 2. Moreover, transcription of NO synthase 2 and Signal transducer and activator

  1. PLGA-Curcumin Attenuates Opioid-Induced Hyperalgesia and Inhibits Spinal CaMKIIα

    Science.gov (United States)

    Hu, Xiaoyu; Huang, Fang; Szymusiak, Magdalena; Tian, Xuebi; Liu, Ying; Wang, Zaijie Jim

    2016-01-01

    Opioid-induced hyperalgesia (OIH) is one of the major problems associated with prolonged use of opioids for the treatment of chronic pain. Effective treatment for OIH is lacking. In this study, we examined the efficacy and preliminary mechanism of curcumin in attenuating OIH. We employed a newly developed PLGA-curcumin nanoformulation (PLGA-curcumin) in order to improve the solubility of curcumin, which has been a major obstacle in properly characterizing curcumin’s mechanism of action and efficacy. We found that curcumin administered intrathecally or orally significantly attenuated hyperalgesia in mice with morphine-induced OIH. Furthermore, we demonstrated that the effects of curcumin on OIH correlated with the suppression of chronic morphine-induced CaMKIIα activation in the superficial laminae of the spinal dorsal horn. These data suggest that PLGA-curcumin may reverse OIH possibly by inhibiting CaMKIIα and its downstream signaling. PMID:26744842

  2. Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sarika, P.R., E-mail: sarikapaithal@gmail.com; Nirmala, Rachel James, E-mail: nirmala@iist.ac.in

    2016-08-01

    Curcumin, a widely studied hydrophobic polyphenol with anticancer potential is loaded in gum arabic aldehyde-gelatin (GA Ald-Gel) nanogels to improve its bioavailability and therapeutic efficacy towards cancer cells. Physicochemical properties of the curcumin loaded GA Ald-Gel nanogels are investigated by different techniques including dynamic light scattering (DLS), NMR spectroscopy and scanning electron microscopy (SEM). These nanogels exhibit hydrodynamic diameter of 452 ± 8 nm with a zeta potential of − 27 mV. The nanogels possess an encapsulation efficiency of 65 ± 3%. Potential of the nanogels for controlled release of curcumin is illustrated by in vitro drug release studies. Hemocompatibility and cytocompatibility of the drug loaded nanogels are evaluated. In vitro cytotoxicity of the bare and curcumin loaded nanogels are analyzed by MTT assay towards MCF-7 cells. The results manifest that curcumin loaded nanogels induce toxicity in MCF-7 cells. Confocal laser scanning microscopy (CLSM) studies indicate in vitro cellular uptake of the nanogels in MCF-7 cells. All these results prove the suitability of the curcumin loaded GA Ald-Gel nanogels for cancer therapy. - Highlights: • Curcumin loaded gum arabic aldehyde-gelatin nanogels were prepared. • Nanogels maintained negative zeta potential after curcumin loading. • Curcumin release is higher at acidic pH compared to neutral pH. • Curcumin loaded GA Ald-Gel nanogels shows toxicity towards MCF-7 cells. • Green fluorescence in MCF-7 cells confirmed the intracellular uptake.

  3. Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy

    International Nuclear Information System (INIS)

    Sarika, P.R.; Nirmala, Rachel James

    2016-01-01

    Curcumin, a widely studied hydrophobic polyphenol with anticancer potential is loaded in gum arabic aldehyde-gelatin (GA Ald-Gel) nanogels to improve its bioavailability and therapeutic efficacy towards cancer cells. Physicochemical properties of the curcumin loaded GA Ald-Gel nanogels are investigated by different techniques including dynamic light scattering (DLS), NMR spectroscopy and scanning electron microscopy (SEM). These nanogels exhibit hydrodynamic diameter of 452 ± 8 nm with a zeta potential of − 27 mV. The nanogels possess an encapsulation efficiency of 65 ± 3%. Potential of the nanogels for controlled release of curcumin is illustrated by in vitro drug release studies. Hemocompatibility and cytocompatibility of the drug loaded nanogels are evaluated. In vitro cytotoxicity of the bare and curcumin loaded nanogels are analyzed by MTT assay towards MCF-7 cells. The results manifest that curcumin loaded nanogels induce toxicity in MCF-7 cells. Confocal laser scanning microscopy (CLSM) studies indicate in vitro cellular uptake of the nanogels in MCF-7 cells. All these results prove the suitability of the curcumin loaded GA Ald-Gel nanogels for cancer therapy. - Highlights: • Curcumin loaded gum arabic aldehyde-gelatin nanogels were prepared. • Nanogels maintained negative zeta potential after curcumin loading. • Curcumin release is higher at acidic pH compared to neutral pH. • Curcumin loaded GA Ald-Gel nanogels shows toxicity towards MCF-7 cells. • Green fluorescence in MCF-7 cells confirmed the intracellular uptake.

  4. Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity.

    Science.gov (United States)

    Hu, Ping; Huang, Ping; Chen, Min Wei

    2013-10-01

    Sortase A is an enzyme responsible for the covalent attachment of Pac proteins to the cell wall in Streptococcus mutans. It has been shown to play a role in modulating the surface properties and the biofilm formation and influence the cariogenicity of S. mutans. Curcumin, an active ingredient of turmeric, was reported to be an inhibitor for Staphylococcus aureus sortase A. The aim of this study was to investigate the inhibitory ability of curcumin against S. mutans sortase A and the effect of curcumin for biofilm formation. The antimicrobial activity of the curcumin to the S. mutans and inhibitory ability of the curcumin against the purified sortase A in vitro were detected. Western-blot and real-time PCR were used to analysis the sortase A mediated Pac protein changes when the S. mutans was cultured with curcumin. The curcumin on the S. mutans biofilm formation was determined by biofilm formation analysis. Curcumin can inhibit purified S. mutans sortase A with a half-maximal inhibitory concentration (IC50) of (10.2±0.7)μmol/l, which is lower than minimum inhibitory concentration (MIC) of 175μmol/l. Curcumin (15μmol/l) was found to release the Pac protein to the supernatant and reduce S. mutans biofilm formation. These results indicated that curcumin is an S. mutans sortase A inhibitor and has promising anti-caries characteristics through an anti-adhesion-mediated mechanism. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Curcumin inhibits bladder cancer progression via regulation of β-catenin expression.

    Science.gov (United States)

    Shi, Jing; Wang, Yunpeng; Jia, Zhuomin; Gao, Yu; Zhao, Chaofei; Yao, Yuanxin

    2017-07-01

    Bladder cancer has a considerable morbidity and mortality impact with particularly poor prognosis. Curcumin has been recently noticed as a polyphenolic compound separated from turmeric to regulate tumor progression. However, the precise molecular mechanism by which curcumin inhibits the invasion and metastasis of bladder cancer cells is not fully elucidated. In this study, we investigate the effect of curcumin on the bladder cancer as well as possible mechanisms of curcumin. The expression of β-catenin was detected by quantitative real-time polymerase chain reaction and immunohistochemical analysis in a series of bladder cancer tissues. In addition, bladder cancer cell lines T24 and 5637 cells were treated with different concentrations of curcumin. The cytotoxic effect of curcumin on cell proliferation of T24 and 5637 cells was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The migration and invasion capacity of T24 and 5637 cells were measured by transwell assay. The effects of curcumin on expression levels of β-catenin and epithelial-mesenchymal transition marker were determined by western blotting. The β-catenin expression was significantly upregulated in bladder cancer tissues when compared with corresponding peri-tumor tissues. Furthermore, curcumin inhibited the cell proliferation of T24 and 5637 cells, and curcumin reduced the migration and invasive ability of T24 and 5637 cells via regulating β-catenin expression and reversing epithelial-mesenchymal transition. Curcumin may be a new drug for bladder cancer.

  6. Modification of radiation-induced murine thymic lymphoma incidence by curcumin

    International Nuclear Information System (INIS)

    Dange, P.S.; Yadav, H.D.; Kumar, Vimalesh; Bhilwade, H.N.; Pandey, B.N.; Sarma, H.D.

    2017-01-01

    Curcumin is a known antioxidant, preventing radiation damage including carcinogenesis. However, concentration and feeding schedule of curcumin in modification of radiation induced thymic lymphoma incidence in vivo model has not been studied. We report here modification of incidence of γ-radiation-induced thymic lymphoma in mice fed with different doses of curcumin (0.05 to 1 %) in diet. Results: Female Swiss mice (6-8 weeks) fed with normal diet and exposed to 3 Gy whole body "6"0Co γ-irradiation (WBI) showed 85 % incidence of thymic lymphoma (TL) at 120 days post-irradiation. A concentration of 1 % curcumin was found the most effective in TL incidence prevention than other fed concentrations. The TL incidence was remarkably reduced when curcumin was fed to the mice before than after the radiation exposure. These results suggest modification of TL incidence by curcumin in irradiated mice involving DNA damage and apoptotic death mechanisms

  7. Hepatoprotective effect of Phytosome Curcumin against paracetamol-induced liver toxicity in mice

    Directory of Open Access Journals (Sweden)

    Bui Thanh Tung

    2017-04-01

    Full Text Available Abstract Curcuma longa, which contains curcumin as a major constituent, has been shown many pharmacological effects, but it is limited using in clinical due to low bioavailability. In this study, we developed a phytosome curcumin formulation and evaluated the hepatoprotective effect of phytosome curcumin on paracetamol induced liver damage in mice. Phytosome curcumin (equivalent to curcumin 100 and 200 mg/kg body weight and curcumin (200 mg/kg body weight were given by gastrically and toxicity was induced by paracetamol (500 mg/kg during 7 days. On the final day animals were sacrificed and liver function markers (ALT, AST, hepatic antioxidants (SOD, CAT and GPx and lipid peroxidation in liver homogenate were estimated. Our data showed that phytosome has stronger hepatoprotective effect compared to curcumin-free. Administration of phytosome curcumin effectively suppressed paracetamol-induced liver injury evidenced by a reduction of lipid peroxidation level, and elevated enzymatic antioxidant activities of superoxide dismutase, catalase, glutathione peroxidase in mice liver tissue. Our study suggests that phytosome curcumin has strong antioxidant activity and potential hepatoprotective effects.

  8. Curcumin as a natural regulator of monocyte chemoattractant protein-1.

    Science.gov (United States)

    Karimian, Maryam Saberi; Pirro, Matteo; Majeed, Muhammed; Sahebkar, Amirhossein

    2017-02-01

    Monocyte chemoattractant/chemotactic protein-1 (MCP-1), a member of the CC chemokine family, is one of the key chemokines that regulate migration and tissue infiltration of monocytes/macrophages. Its role in the pathophysiology of several inflammatory diseases has been widely recognized, thus making MCP-1 a possible target for anti-inflammatory treatments. Curcumin (diferuloylmethane) is a natural polyphenol derived from the rhizomes of Curcuma Longa L. (turmeric). Anti-inflammatory action underlies numerous pharmacological effects of curcumin in the control and prevention of several diseases. The purpose of this review is to evaluate the effects of curcumin on the regulation of MCP-1 as a key mediator of chemotaxis and inflammation, and the biological consequences thereof. In vitro studies have shown that curcumin can decrease MCP-1 production in various cell lines. Animal studies have also revealed that curcumin can attenuate MCP-1 expression and improve a range of inflammatory diseases through multiple molecular targets and mechanisms of action. There is limited data from human clinical trials showing the decreasing effect of curcumin on MCP-1 concentrations and improvement of the course of inflammatory diseases. Most of the in vitro and animal studies confirm that curcumin exert its MCP-1-lowering and anti-inflammatory effects by down-regulating the mitogen-activated protein kinase (MAPK) and NF-κB signaling pathway. As yet, there is limited data from human clinical trials showing the effect of curcumin on MCP-1 levels and improvement of the course of inflammatory diseases. More evidence, especially from human studies, is needed to better assess the effects of curcumin on circulating MCP-1 in different human diseases and the role of this modulatory effect in the putative anti-inflammatory properties of curcumin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Curcumin exerts its antitumor effects in a context dependent fashion.

    Science.gov (United States)

    Kreutz, Dominique; Sinthuvanich, Chomdao; Bileck, Andrea; Janker, Lukas; Muqaku, Besnik; Slany, Astrid; Gerner, Christopher

    2018-06-30

    Proteome profiling profoundly contributes to the understanding of cell response mechanisms to drug actions. Such knowledge may become a key to improve personalized medicine. In the present study, the effects of the natural remedy curcumin on breast cancer model systems were investigated. MCF-7, ZR-75-1 and TGF-β1 pretreated fibroblasts, mimicking cancer-associated fibroblasts (CAFs), were treated independently as well as in tumor cell/CAF co-cultures. Remarkably, co-culturing with CAF-like cells (CLCs) induced different proteome alterations in MCF-7 and ZR-75-1 cells, respectively. Curcumin significantly induced HMOX1 in single cell type models and co-cultures. However, other curcumin effects differed. In the MCF-7/CLC co-culture, curcumin significantly down-regulated RC3H1, a repressor of inflammatory signaling. In the ZR-75-1/CLC co-culture, curcumin significantly down-regulated PEG10, an anti-apoptotic protein, and induced RRAGA, a pro-apoptotic protein involved in TNF-alpha signaling. Furthermore, curcumin induced AKR1C2, an important enzyme for progesterone metabolism. None of these specific curcumin effects were observed in single cell type cultures. All high-resolution mass spectrometry data are available via ProteomeXchange with the identifier PXD008719. The present data demonstrate that curcumin induces proteome alterations, potentially accounting for its known antitumor effects, in a strongly context-dependent fashion. Better means to understand and potentially predict individual variations of drug effects are urgently required. The present proteome profiling study of curcumin effects demonstrates the massive impact of the cell microenvironment on cell responses to drug action. Co-culture models apparently provide more biologically relevant information regarding curcumin effects than single cell type cultures. Copyright © 2018. Published by Elsevier B.V.

  10. Formulation of nanotized curcumin and demonstration of its antimalarial efficacy

    Directory of Open Access Journals (Sweden)

    Ghosh A

    2014-11-01

    Full Text Available Aparajita Ghosh,1 Tanushree Banerjee,2 Suman Bhandary,1 Avadhesha Surolia31Division of Molecular Medicine, Bose Institute, Centenary Campus, Kolkata, West Bengal, India; 2Department of Biotechnology, University of Pune, Pune, India; 3Molecular Biophysics Unit, Indian Institute of Science, Bangalore, IndiaAim: The present study was conducted to overcome the disadvantages associated with the poor water solubility and low bioavailability of curcumin by synthesizing nanotized curcumin and demonstrating its efficacy in treating malaria. Materials and methods: Nanotized curcumin was prepared by a modified emulsion-diffusion-evaporation method and was characterized by means of transmission electron microscopy, atomic force microscopy, dynamic light scattering, Zetasizer, Fourier transform infrared spectroscopy, and differential thermal analysis. The novelty of the prepared nanoformulation lies in the fact that it was devoid of any polymeric matrices used in conventional carriers. The antimalarial efficacy of the prepared nanotized curcumin was then checked both in vitro and in vivo. Results: The nanopreparation was found to be non-toxic and had a particle size distribution of 20–50 nm along with improved aqueous dispersibility and an entrapment efficiency of 45%. Nanotized curcumin (half maximal inhibitory concentration [IC50]: 0.5 µM was also found to be ten-fold more effective for growth inhibition of Plasmodium falciparum in vitro as compared to its native counterpart (IC50: 5 µM. Oral bioavailability of nanotized curcumin was found to be superior to that of its native counterpart. Moreover, when Plasmodium berghei-infected mice were orally treated with nanotized curcumin, it prolonged their survival by more than 2 months with complete clearance of parasites in comparison to the untreated animals, which survived for 8 days only. Conclusion: Nanotized curcumin holds a considerable promise in therapeutics as demonstrated here for treating malaria

  11. Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats.

    Science.gov (United States)

    Akinyemi, Ayodele Jacob; Oboh, Ganiyu; Fadaka, Adewale Oluwaseun; Olatunji, Babawale Peter; Akomolafe, Seun

    2017-09-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes have been reported to exert anticholinesterase potential with limited information on how they regulate acetylcholinesterase (AChE) gene expression. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) activity and their mRNA gene expression level in cadmium (Cd)-treated rats. Furthermore, in vitro effect of different concentrations of curcumin (1-5μg/mL) on rat cerebral cortex AChE activity was assessed. Animals were divided into six groups (n=6): group 1 serve as control (without Cd) and receive saline/vehicle, group 2 receive saline plus curcumin at 25mg/kg, group 3 receive saline plus curcumin 50mg/kg, group 4 receive Cd plus vehicle, group 5 receive Cd plus curcumin at 25mg/kg and group 6 receive Cd plus curcumin at 50mg/kg. Rats received Cd (2.5mg/kg) and curcumin (25 and 50mg/kg, respectively) by oral gavage for 7days. Acetylcholinesterase activity was measured by Ellman's method and AChE expression was carried out by a quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assay. We observed that acute administration of Cd increased acetylcholinesterase activity and in addition caused a significant (Pcurcumin inhibited AChE activity and alters AChE mRNA levels when compared to Cd-treated group. In addition, curcumin inhibits rat cerebral cortex AChE activity in vitro. In conclusion, curcumin exhibit anti-acetylcholinesterase activity and suppressed AChE mRNA gene expression level in Cd exposed rats, thus providing some biochemical and molecular evidence on the therapeutic effect of this turmeric-derived compound in treating neurological disorders including Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Synergistic radical scavenging potency of curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes

    Energy Technology Data Exchange (ETDEWEB)

    Aadinath, W.; Bhushani, Anu; Anandharamakrishnan, C., E-mail: anandhram@cftri.res.in

    2016-07-01

    Curcumin is a highly potent nutraceutical associated with various health benefits. However, its hydrophobic nature affects its bioavailability and bioactivity, and limits nutraceutical applications. Drug-in-cyclodextrin-in-liposome has the ability to mask the hydrophobic nature of drug and achieve better encapsulation. Also, encapsulating iron oxide nanoparticles (IONPs) within liposomes endow additional beneficial functionalities of IONPs. In the present study, curcumin-β-cyclodextrin inclusion complex (IC) and IONPs were co-encapsulated within liposomes (curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes) to achieve the synergistic antioxidant potential of curcumin and IONPs. IC of curcumin-β-cyclodextrin was prepared by a simple rapid method and successful inclusion was confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Mean diameter of IONPs was found to be 180 nm and X-ray diffraction pattern confirmed the formation of hematite nanoparticles. Band gap energy calculated using absorption spectra was 2.25 eV, which falls in close proximity with the theoretically calculated values of hematite. Mean diameter of curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes was 67 nm and encapsulation efficiency of curcumin was found to be 71%. Further, the co-encapsulated particles possessed significantly low IC{sub 50} value (64.7791 μg/ml, p < 0.01) compared to conventional curcumin liposome and IONPs, indicating its synergistically enhanced radical scavenging property. - Highlights: • Curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes (mean diameter, 67 nm) has been prepared. • Encapsulation efficiency of curcumin was found to be 71%. • IONPs in the nano-carrier play dual role of targeted delivery and radical scavenging activities. • Conjunction of IONPs and curcumin into the liposomes increases the radical scavenging activity.

  13. Cellular effects of curcumin on Plasmodium falciparum include disruption of microtubules.

    Directory of Open Access Journals (Sweden)

    Rimi Chakrabarti

    Full Text Available Curcumin has been widely investigated for its myriad cellular effects resulting in reduced proliferation of various eukaryotic cells including cancer cells and the human malaria parasite Plasmodium falciparum. Studies with human cancer cell lines HT-29, Caco-2, and MCF-7 suggest that curcumin can bind to tubulin and induce alterations in microtubule structure. Based on this finding, we investigated whether curcumin has any effect on P. falciparum microtubules, considering that mammalian and parasite tubulin are 83% identical. IC50 of curcumin was found to be 5 µM as compared to 20 µM reported before. Immunofluorescence images of parasites treated with 5 or 20 µM curcumin showed a concentration-dependent effect on parasite microtubules resulting in diffuse staining contrasting with the discrete hemispindles and subpellicular microtubules observed in untreated parasites. The effect on P. falciparum microtubules was evident only in the second cycle for both concentrations tested. This diffuse pattern of tubulin fluorescence in curcumin treated parasites was similar to the effect of a microtubule destabilizing drug vinblastine on P. falciparum. Molecular docking predicted the binding site of curcumin at the interface of alpha and beta tubulin, similar to another destabilizing drug colchicine. Data from predicted drug binding is supported by results from drug combination assays showing antagonistic interactions between curcumin and colchicine, sharing a similar binding site, and additive/synergistic interactions of curcumin with paclitaxel and vinblastine, having different binding sites. This evidence suggests that cellular effects of curcumin are at least, in part, due to its perturbing effect on P. falciparum microtubules. The action of curcumin, both direct and indirect, on P. falciparum microtubules is discussed.

  14. The Chemistry of Curcumin: From Extraction to Therapeutic Agent

    Directory of Open Access Journals (Sweden)

    Kavirayani Indira Priyadarsini

    2014-12-01

    Full Text Available Curcumin, a pigment from turmeric, is one of the very few promising natural products that has been extensively investigated by researchers from both the biological and chemical point of view. While there are several reviews on the biological and pharmacological effects of curcumin, chemistry reviews are comparatively scarcer. In this article, an overview of different aspects of the unique chemistry research on curcumin will be discussed. These include methods for the extraction from turmeric, laboratory synthesis methods, chemical and photochemical degradation and the chemistry behind its metabolism. Additionally other chemical reactions that have biological relevance like nucleophilic addition reactions, and metal chelation will be discussed. Recent advances in the preparation of new curcumin nanoconjugates with metal and metal oxide nanoparticles will also be mentioned. Directions for future investigations to be undertaken in the chemistry of curcumin have also been suggested.

  15. Curcumin Inhibits Growth of Saccharomyces cerevisiae through Iron Chelation ▿ ††

    OpenAIRE

    Minear, Steven; O'Donnell, Allyson F.; Ballew, Anna; Giaever, Guri; Nislow, Corey; Stearns, Tim; Cyert, Martha S.

    2011-01-01

    Curcumin, a polyphenol derived from turmeric, is an ancient therapeutic used in India for centuries to treat a wide array of ailments. Interest in curcumin has increased recently, with ongoing clinical trials exploring curcumin as an anticancer therapy and as a protectant against neurodegenerative diseases. In vitro, curcumin chelates metal ions. However, although diverse physiological effects have been documented for this compound, curcumin's mechanism of action on mammalian cells remains un...

  16. Curcumin: a potential candidate for matrix metalloproteinase inhibitors.

    Science.gov (United States)

    Kumar, Dileep; Kumar, Manish; Saravanan, Chinnadurai; Singh, Sushil Kumar

    2012-10-01

    Curcumin, a natural yellow pigment of turmeric, has become focus of interest with regard to its role in regulation of matrix metalloproteinases (MMPs). MMPs are metal-dependent endopeptidases capable of degrading components of the extracellular matrix. MMPs are involved in chronic diseases such as arthritis, Alzheimer's disease, psoriasis, chronic obstructive pulmonary disease, asthma, cancer, neuropathic pain, and atherosclerosis. Curcumin regulates the expression and secretion of various MMPs. This review documents the matrix metalloproteinase inhibitory activity of curcumin on various diseases viz., cancer, arthritis, and ulcer. Finally, the steps to be taken for getting potent curcuminoids have also been discussed in the structure-activity relationship (SAR) section. From this review, readers can get answer to the question: Is curcumin a potential MMPI candidate? Numerous approaches have been taken to beget a molecule with specificity restricted to a particular MMP as well as good oral bioavailability; however, nearly all the molecules lack these criteria. Using quantitative structure-activity relationship (QSAR) modeling and virtual screening, new analogs of curcumin can be designed which will be selectively inhibiting different MMPs.

  17. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.

    Science.gov (United States)

    Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B

    2017-08-01

    Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. The effect of gamma irradiation on curcumin component of Curcuma domestica

    Science.gov (United States)

    Chosdu, R.; Erizal; Iriawan, T.; Hilmy, N.

    1995-02-01

    The effect of gamma irradiation on curcumin component of Curcuma domestica rhizome were investigated. Pure curcumin, sliced and powdered rhizome with 10% of moisture content were irradiated at 0, 10, 30 and 50 kGy (dose rate of 6 kGy/h). Curcumin content was analysed using HPLC method and ESR spectra. Results show that free radicals are already present in unirradiated rhizome. Gamma irradiation at the doses of 10, 30 and 50 kGy induced the free radicals formation of pure curcumin and Curcuma domestica rhizome. The ESR spectra of irradiated rhizome gave a very similar spectra to the signal of irradiated pure curcumin. The percentage of free radicals intensity from pure curcumin was very stable at room temperature up to 670 hours of storage. However, the percentage intensity of free radicals in the irradiated rhizome were decay during storage. Irradiation treatment and storage time did not give a significant change on curcumin content, water activity, pH and moisture content of rhizome investigated.

  19. The effect of gamma irradiation on curcumin component of Curcuma domestica

    Energy Technology Data Exchange (ETDEWEB)

    Chosdu, R.E.; Erizal; Iriawan, T.; Hilmy, N. [National Atomic Energy Agency, Jakarta (Indonesia). Center for Applications of Isotopes and Radiation

    1995-10-01

    The effect of gamma irradiation on curcumin component of Curcuma domestica rhizome were investigated. Pure curcumin, sliced and powdered rhizome with 10% of moisture content were irradiated at 0, 10, 30 and 50 kGy (dose rate of 6 kGy/h). Curcumin content was analysed using HPLC method and ESR spectra. Results show that free radicals are already present in unirradiated rhizome. Gamma irradiation at the doses of 10, 30 and 50 kGy induced the free radicals formation of pure curcumin and curcuma domestica rhizome. The ESR spectra of irradiated rhizome gave a very similar spectra to the signal of irradiated pure curcumin. The percentage of free radicals intensity from pure curcumin was very stable at room temperature up to 670 hours of storage. However, the percentage intensity of free radicals in the irradiated rhizome were decay during storage. Irradiation treatment and storage time did not give a significant change on curcumin content, water activity, pH and moisture content of rhizome investigated. (Author).

  20. The effect of gamma irradiation on curcumin component of Curcuma domestica

    International Nuclear Information System (INIS)

    Chosdu, R.E.; Erizal; Iriawan, T.; Hilmy, N.

    1995-01-01

    The effect of gamma irradiation on curcumin component of Curcuma domestica rhizome were investigated. Pure curcumin, sliced and powdered rhizome with 10% of moisture content were irradiated at 0, 10, 30 and 50 kGy (dose rate of 6 kGy/h). Curcumin content was analysed using HPLC method and ESR spectra. Results show that free radicals are already present in unirradiated rhizome. Gamma irradiation at the doses of 10, 30 and 50 kGy induced the free radicals formation of pure curcumin and curcuma domestica rhizome. The ESR spectra of irradiated rhizome gave a very similar spectra to the signal of irradiated pure curcumin. The percentage of free radicals intensity from pure curcumin was very stable at room temperature up to 670 hours of storage. However, the percentage intensity of free radicals in the irradiated rhizome were decay during storage. Irradiation treatment and storage time did not give a significant change on curcumin content, water activity, pH and moisture content of rhizome investigated. (Author)

  1. Affinity of nat/68Ga-Labelled Curcumin and Curcuminoid Complexes for β-Amyloid Plaques: Towards the Development of New Metal-Curcumin Based Radiotracers

    Directory of Open Access Journals (Sweden)

    Sara Rubagotti

    2016-09-01

    Full Text Available Curcumin derivatives labelled with fluorine-18 or technetium-99m have recently shown their potential as diagnostic tools for Alzheimer’s disease. Nevertheless, no study by exploiting the labelling with gallium-68 has been performed so far, in spite of its suitable properties (positron emitter, generator produced radionuclide. Herein, an evaluation of the affinity for synthetic β-amyloid fibrils and for amyloid plaques of three nat/68Ga-labelled curcumin analogues, namely curcumin curcumin (CUR, bis-dehydroxy-curcumin (bDHC and diacetyl-curcumin (DAC, was performed. Affinity and specificity were tested in vitro on amyloid synthetic fibrils by using gallium-68 labelled compounds. Post-mortem brain cryosections from Tg2576 mice were used for the ex vivo visualization of amyloid plaques. The affinity of 68Ga(CUR2+, 68Ga(DAC2+, and 68Ga(bDHC2+ for synthetic β-amyloid fibrils was moderate and their uptake could be observed in vitro. On the other hand, amyloid plaques could not be visualized on brain sections of Tg2576 mice after injection, probably due to the low stability of the complexes in vivo and of a hampered passage through the blood–brain barrier. Like curcumin, all nat/68Ga-curcuminoid complexes maintain a high affinity for β-amyloid plaques. However, structural modifications are still needed to improve their applicability as radiotracers in vivo.

  2. Curcumin: Synthesis optimization and in silico interaction with cyclin dependent kinase.

    Science.gov (United States)

    Ahmed, Mahmood; Abdul Qadir, Muhammad; Imtiaz Shafiq, Muhammad; Muddassar, Muhammad; Hameed, Abdul; Nadeem Arshad, Muhammad; Asiri, Abdullah M

    2017-09-01

    Curcumin is a natural product with enormous biological potential. In this study, curcumin synthesis was revisited using different reaction solvents, a catalyst (n-butylamine) and a water scavenger [(n-BuO)3B], to develop the optimal procedure for its rapid acquisition. During synthesis, solvent choice was found to be an important parameter for better curcumin yield and high purity. In a typical reaction, acetyl acetone was treated with boron trioxide, followed by condensation with vanillin in the presence of tri-n-butyl borate as water scavenger and n-butylamine as catalyst at 80 °C in ethyl acetate to afford curcumin. Moreover, curcumin was also extracted from turmeric powder and spectroscopic properties such as IR, MS, 1H NMR and 13C NMR with synthetic curcumin were established to identify any impurity. The purity of synthetic and extracted curcumin was also checked by TLC and HPLC-DAD. To computationally assess its therapeutic potential against cyclin dependent kinases (CDKs), curcumin was docked in different isoforms of CDKs. It was observed that it did not dock at the active sites of CDK2 and CDK6. However, it could enter into weak interactions with CDK4 protein.

  3. Retinal Protection and Distribution of Curcumin in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Chiara B. M. Platania

    2018-06-01

    Full Text Available Diabetic retinopathy (DR, a secondary complication of diabetes, is a leading cause of irreversible blindness accounting for 5% of world blindness cases in working age. Oxidative stress and inflammation are considered causes of DR. Curcumin, a product with anti-oxidant and anti-inflammatory properties, is currently proposed as oral supplementation therapy for retinal degenerative diseases, including DR. In this study we predicted the pharmacodynamic profile of curcumin through an in silico approach. Furthermore, we tested the anti-oxidant and anti-inflammatory activity of curcumin on human retinal pigmented epithelial cells exposed to oxidative stress, human retinal endothelial and human retinal pericytes (HRPCs cultured with high glucose. Because currently marketed curcumin nutraceutical products have not been so far evaluated for their ocular bioavailability; we assessed retinal distribution of curcumin, following oral administration, in rabbit eye. Curcumin (10 μM decreased significantly (p < 0.01 ROS concentration and TNF-α release in retinal pigmented epithelial cells and retinal endothelial cells, respectively. The same curcumin concentration significantly (p < 0.01 protected retinal pericytes from high glucose damage as assessed by cell viability and LDH release. Among the tested formulations, only that containing a hydrophilic carrier provided therapeutic levels of curcumin in rabbit retina. In conclusion, our data suggest that curcumin, when properly formulated, may be of value in clinical practice to manage retinal diseases.

  4. Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin.

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegar

    Full Text Available Curcumin has many pharmaceutical applications, many of which arise from its potent antioxidant properties. The present research examined the antioxidant activities of curcumin in polar solvents by a comparative study using ESR, reduction of ferric iron in aqueous medium and intracellular ROS/toxicity assays. ESR data indicated that the steric hindrance among adjacent big size groups within a galvinoxyl molecule limited the curcumin to scavenge galvinoxyl radicals effectively, while curcumin showed a powerful capacity for scavenging intracellular smaller oxidative molecules such as H₂O₂, HO•, ROO•. Cell viability and ROS assays demonstrated that curcumin was able to penetrate into the polar medium inside the cells and to protect them against the highly toxic and lethal effects of cumene hydroperoxide. Curcumin also showed good electron-transfer capability, with greater activity than trolox in aqueous solution. Curcumin can readily transfer electron or easily donate H-atom from two phenolic sites to scavenge free radicals. The excellent electron transfer capability of curcumin is because of its unique structure and different functional groups, including a β-diketone and several π electrons that have the capacity to conjugate between two phenyl rings. Therfore, since curcumin is inherently a lipophilic compound, because of its superb intracellular ROS scavenging activity, it can be used as an effective antioxidant for ROS protection within the polar cytoplasm.

  5. Effect of curcumin on galactose-induced cataractogenesis in rats.

    Science.gov (United States)

    Suryanarayana, Palla; Krishnaswamy, Kamala; Reddy, Geereddy Bhanuprakash

    2003-06-09

    Curcumin, the active principle of turmeric, has been shown to have both antioxidant and hypoglycemic activity in vitro and in vivo. The purpose of this study was to investigate the effect of curcumin on the onset and maturation of galactose induced cataract. Sprague-Dawley rats (21 days old) were divided into 5 groups. The control group (A) received an AIN-93 diet, the galactose group (B) received 30% galactose in the diet, the test groups (C and D) received the B group diet plus 0.002% and 0.01% curcumin respectively, and group (E) received the control diet plus 0.01% curcumin, all for a period of 4 weeks. Cataract progression due to galactose feeding was monitored by slit lamp microscope and classified into 4 stages. At the end of the experiment biochemical parameters such as lipid peroxidation, aldose reductase (AR), sorbitol dehydrogenase (SDH), reduced glutathione, protein content, and protein carbonyls were measured in the lens. Advanced glycated end products (AGE) and protein oxidation were measured by AGE and tryptophon fluorescence respectively. Crystallin profile was analyzed by size exclusion chromatography (HPLC). Slit lamp microscope observations indicated that curcumin at 0.002% (group C) delayed the onset and maturation of cataract. In contrast even though there was a slight delay in the onset of cataract at the 0.01% level (group D), maturation of cataract was faster when compared to group B. Biochemical analysis showed that curcumin at the 0.002% level appeared to exert antioxidant and antiglycating effects, as it inhibited lipid peroxidation, AGE-fluorescence, and protein aggregation. Though the reasons for faster onset and maturation of cataract in group D rats was not clear, the data suggested that under hyperglycemic conditions higher levels of curcumin (0.01%) in the diet may increase oxidative stress, AGE formation, and protein aggregation. However, feeding of curcumin to normal rats up to a 0.01% level did not result in any changes in lens

  6. Preparation, characterization and biological evaluation of curcumin loaded alginate aldehyde–gelatin nanogels

    Energy Technology Data Exchange (ETDEWEB)

    Sarika, P.R., E-mail: sarikapaithal@gmail.com [Department of Chemistry, Indian Institute of Space Science and Technology (IIST), Valiamala, Thiruvananthapuram, Kerala 695 547 (India); James, Nirmala Rachel, E-mail: nirmala@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology (IIST), Valiamala, Thiruvananthapuram, Kerala 695 547 (India); Anil Kumar, P.R., E-mail: anilkumarpr@sctimst.ac.in [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); Raj, Deepa K., E-mail: kdeeps3@gmail.com [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India)

    2016-11-01

    Curcumin, a natural polyphenol exhibits chemopreventive and chemotherapeutic activities towards cancer. In order to improve the bioavailability and therapeutic efficacy, curcumin is encapsulated in alginate aldehyde–gelatin (Alg Ald-Gel) nanogels. Alginate aldehyde–gelatin nanogels are prepared by inverse miniemulsion technique. Physicochemical properties of the curcumin loaded nanogels are evaluated by, Dynamic light scattering (DLS), NMR spectroscopy and Scanning electron microscopy (SEM). Curcumin loaded nanogels show hydrodynamic diameter of 431 ± 8 nm and a zeta potential of − 36 ± 4 mV. The prepared nanogels exhibit an encapsulation efficiency of 72 ± 2%. In vitro drug release studies show a controlled release of curcumin from nanogels over a period of 48 h. Hemocompatibility and cytocompatibility of the nanogels are evaluated. Bare nanogels are cytocompatible and curcumin loaded nanogels induce anticancer activity towards MCF-7 cells. In vitro cellular uptake of the curcumin loaded nanogels using confocal laser scanning microscopy (CLSM) confirms the uptake of nanogels in MCF-7 cells. Hence, the developed nanogel system can be a suitable candidate for curcumin delivery to cancer cells. - Highlights: • Curcumin loaded alginate aldehyde–gelatin nanogels are prepared. • Alg Ald-Gel nanogels maintained spherical morphology after curcumin loading. • Curcumin release is higher at acidic pH compared to neutral pH. • Cytotoxicity analysis proved the toxicity of the nanogels in MCF-7 cells. • Green fluorescence in MCF-7 cells confirmed the intra cellular uptake.

  7. Flow Linear Dichroism Spectroscopic Studies of the Natural Product Curcumin and Double Stranded DNA

    DEFF Research Database (Denmark)

    Leth, Rasmus; Thulstrup, Peter Waaben

    2011-01-01

    Curcumin is a polyphenol found in the rhizomes of the plant Curcuma Longa, commonly known as turmeric. Curcumin has a bright yellow color, and in turmeric, curcumin exists along with two other curcuminoids: desmethoxy curcumin and bisdesmethoxy curcumin [1]. Curcumin has shown multiple biological...... effect, including antibacterial effects [2], antioxidant activities [1], antidepressant effects [3] and anticarcinogenic effects among others as reviewed by [4]. Importantly, it is known that curcumin can bind to and cross cellular membranes [5]....

  8. Hydroquinone; A Novel Bioactive Compound from Plant-Derived Smoke Can Cue Seed Germination of Lettuce

    Science.gov (United States)

    Kamran, Muhammad; Khan, Abdul L.; Ali, Liaqat; Hussain, Javid; Waqas, Muhammad; Al-Harrasi, Ahmed; Imran, Qari M.; Kim, Yoon-Ha; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-01-01

    Plant-derived smoke has been known to play an important role in distribution and growth of vegetation. Using a proficiently designed furnace, we extracted smoke from the leaves of four plant viz. Helianthus annuus,Aloe vera,Ginkgo biloba, and Cymbopogon jwarancusa. Smoke dilutions obtained from these plants were obtained in different concentrations to identify potential lettuce growth promoting smoke solution. Results revealed that smoke obtained from G. biloba significantly enhanced the lettuce seed germination. This solution was then partitioned into ethyl acetate, dichloromethane, n-hexane, chloroform and ether fractions. Ethyl acetate fraction was found to be potent to enhance seed germination. This fraction was subjected to column chromatography and spectroscopic techniques to obtain compound 1. This compound was identified as hydroquinone using 1D and 2D NMR techniques. At low concentrations (5, 10, and 20 ppm), compound 1 enhanced the lettuce seed germination; however, higher concentrations inhibited its growth as compared to control. PMID:28553632

  9. Novel delivery system for natural products: Nano-curcumin formulations

    OpenAIRE

    Hamid Reza Rahimi; Reza Nedaeinia; Alireza Sepehri Shamloo; Shima Nikdoust; Reza Kazemi Oskuee

    2016-01-01

    Objective: Curcumin is extracted from Curcuma longa and regulates the intracellular signal pathways which control the growth of cancerous cell, inflammation, invasion and apoptosis. Curcumin molecules have special intrinsic features that can target the intracellular enzymes, genome (DNA) and messengers (RNA). A wide range of studies have been conducted on the physicochemical traits and pharmacological effects of curcumin on different diseases like cardiovascular diseases, diabetes, cancer, rh...

  10. Antidepressant activity of curcumin: involvement of serotonin and dopamine system.

    Science.gov (United States)

    Kulkarni, Shrinivas K; Bhutani, Mohit Kumar; Bishnoi, Mahendra

    2008-12-01

    Curcumin is a major active principle of Curcuma longa, one of the widely used preparations in the Indian system of medicine. It is known for its diverse biological actions. The present study was designed to investigate the involvement of monoaminergic system(s) in the antidepressant activity of curcumin and the effect of piperine, a bioavailability enhancer, on the bioavailability and biological effects of curcumin. Behavioral (forced swim test), biochemical (monoamine oxidase (MAO) enzyme inhibitory activity), and neurochemical (neurotransmitter levels estimation) tests were carried out. Curcumin (10-80 mg/kg, i.p.) dose dependently inhibited the immobility period, increased serotonin (5-hydroxytryptamine, 5-HT) as well as dopamine levels (at higher doses), and inhibited the monoamine oxidase enzymes (both MAO-A and MAO-B, higher doses) in mice. Curcumin (20 mg/kg, i.p.) enhanced the anti-immobility effect of subthreshold doses of various antidepressant drugs like fluoxetine, venlafaxine, or bupropion. However, no significant change in the anti-immobility effect of imipramine and desipramine was observed. Furthermore, combination of subthreshold dose of curcumin and various antidepressant drugs resulted in synergistic increase in serotonin (5-HT) levels as compared to their effect per se. There was no change in the norepinephrine levels. The coadministration of piperine (2.5 mg/kg, i.p.), a bioavailability enhancing agent, with curcumin (20 and 40 mg/kg, i.p.) resulted in potentiation of pharmacological, biochemical, and neurochemical activities. The study provides evidences for mechanism-based antidepressant actions of curcumin. The coadministration of curcumin along with piperine may prove to be a useful and potent natural antidepressant approach in the management of depression.

  11. The effects of Curcuma longa and curcumin on reproductive systems.

    Science.gov (United States)

    Mohebbati, R; Anaeigoudari, A; Khazdair, M R

    2017-10-26

    Curcuma longa (C. longa) was used in some countries such as China and India for various medicinal purposes. Curcumin, the active component of C. longa, is commonly used as a coloring agent in foods, drugs, and cosmetics. C. longa and curcumin have been known to act as antioxidant, anti-inflammatory, anti-mutagen, and anti-carcinogenic agents. Th e attempt of the present review was to give an effort on a detailed literature survey concentrated on the protective effects of C. longa and curcumin on the reproductive organs activity. The databases such as, PubMed, Web of Science, Google Scholar, Scopus, and Iran- Medex, were considered. The search terms were "testis" or "ovary" and "Curcuma longa", "curcumin", "antioxidant effect", "anti-inflammatory effect" and "anti-cancer effect". C. longa and curcumin inhibited the production of the tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2) and increased the caspases (3, 8 and 9) activities in HL-60 prostate cancer. Furthermore, C. longa and curcumin suppressed the vascular endothelial growth factor (VEGF), phosphorylated signal transducers and activators of the transcription 3 (STAT) and matrix metalloproteinase-9 (MMP-9) in ovarian cancer cell line. C. longa and curcumin might decrease the risk of cancer and other malignant diseases in the reproductive system. C. longa and curcumin have a protective effect on the reproductive organs activity such as, anti-inflammatory, anti-apoptotic, and antioxidant effects in normal cells but showed pro-apoptotic effects in the malignant cells. Therefore, different effects of C. longa and curcumin are dependent on the doses and the type of cells used in various models studied.

  12. Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy

    Science.gov (United States)

    Coburn, Jeannine M.; Cenis, José L.; Víllora, Gloria; Kaplan, David L.

    2018-01-01

    Curcumin, extracted from the rhizome of Curcuma longa, has been widely used in medicine for centuries due to its anti-inflammatory, anti-cancer, anti-oxidant and anti-microbial effects. However, its bioavailability during treatments is poor because of its low solubility in water, slow dissolution rate and rapid intestinal metabolism. For these reasons, improving the therapeutic efficiency of curcumin using nanocarriers (e.g., biopolymer nanoparticles) has been a research focus, to foster delivery of the curcumin inside cells due to their small size and large surface area. Silk fibroin from the Bombyx mori silkworm is a biopolymer characterized by its biocompatibility, biodegradability, amphiphilic chemistry, and excellent mechanical properties in various material formats. These features make silk fibroin nanoparticles useful vehicles for delivering therapeutic drugs, such as curcumin. Curcumin-loaded silk fibroin nanoparticles were synthesized using two procedures (physical adsorption and coprecipitation) more scalable than methods previously described using ionic liquids. The results showed that nanoparticle formulations were 155 to 170 nm in diameter with a zeta potential of approximately −45 mV. The curcumin-loaded silk fibroin nanoparticles obtained by both processing methods were cytotoxic to carcinogenic cells, while not decreasing viability of healthy cells. In the case of tumor cells, curcumin-loaded silk fibroin nanoparticles presented higher efficacy in cytotoxicity against neuroblastoma cells than hepatocarcinoma cells. In conclusion, curcumin-loaded silk fibroin nanoparticles constitute a biodegradable and biocompatible delivery system with the potential to treat tumors by local, long-term sustained drug delivery. PMID:29495296

  13. Synthesis of [diene-"1"4C] curcumin at high specific activity

    International Nuclear Information System (INIS)

    Filer, Crist N.; Lacy, James M.; Wright, Christopher

    2016-01-01

    An efficient method is described to label curcumin with "1"4C at high specific activity. - Highlights: • This paper describes the synthesis of ["1"4C] Curcumin at the highest specific activity and total activity amount yet reported. • The "1"4C label was installed in the diene framework of Curcumin. • This paper also describes the characterization of ["1"4C] Curcumin by HPLC and mass spectrometry.

  14. Evaluation of curcumin acetates and amino acid conjugates as proteasome inhibitors

    OpenAIRE

    Wan, Sheng Biao; Yang, Huanjie; Zhou, Zhongyuan; Cui, Qiuzhi Cindy; Chen, Di; Kanwar, Jyoti; Mohammad, Imthiyaz; Dou, Q. Ping; Chan, Tak Hang

    2010-01-01

    Curcumin (diferuloylmethane) is the main active ingredient of turmeric, a traditional herbal medicine and food of south Asia. Curcumin has been found to have a wide range of biological activities, including antioxidant, anti-inflammatory, chemopreventive and chemotherapeutic activities. Curcumin is currently being tested in clinical trials for treatment of various types of cancers, including multiple myeloma, pancreatic cancer and colon cancer. Although no toxicity associated with curcumin (e...

  15. Curcumin in chemoprevention of breast cancer

    Directory of Open Access Journals (Sweden)

    Katarzyna Terlikowska

    2014-01-01

    Full Text Available Breast cancer is the most common malignant cancer among women, both in Poland and worldwide. Due to the constantly increasing number of breast cancer cases, it is vital to develop effective activities in primary and secondary prevention. One of the promising methods of best value, connecting both types of cancer prevention, appears to be chemoprevention. Chemoprevention uses natural or synthetic compounds to inhibit, delay or reverse the process of carcinogenesis. Among ingredients of natural origin, great attention is paid to curcumin – a broad-spectrum anti-cancer polyphenol derivative, extracted from the rhizome of Curcuma longa L. Curcumin has a number of chemopreventive properties such as anti-inflammatory activity, induction of apoptosis, inhibition of angiogenesis as well as tumor metastasis. Numerous in vitro and in vivo studies have demonstrated the mentioned anti-cancer effect in the epithelial breast cell line MCF-10A and in the epithelial breast cell lines MCF-7, BT-474, SK-BR-3-hr and MDA-MB-231. The main problem associated with the use of curcumin as a chemopreventive agent in humans is its low absorption from the gastrointestinal tract, poor solubility in body fluids and low bioavailability. Current studies are underway to increase the bioavailability and effectiveness of curcumin in vivo. Good results in the prevention and the treatment of breast cancer could be ensured by curcumin nanoparticles coated with albumin, known as nanocurcumin. The studies using nanocurcumin, however, are still in the preclinical stage, which is why there is a need to conduct extensive long-term randomized clinical trials to determine its effectiveness.

  16. Curcumin as fluorescent probe for directly monitoring in vitro uptake of curcumin combined paclitaxel loaded PLA-TPGS nanoparticles

    Science.gov (United States)

    Nguyen, Hoai Nam; Thu Ha, Phuong; Sao Nguyen, Anh; Nguyen, Dac Tu; Doan Do, Hai; Nguyen Thi, Quy; Nhung Hoang Thi, My

    2016-06-01

    Theranostics, which is the combination of both therapeutic and diagnostic capacities in one dose, is a promising tool for both clinical application and research. Although there are many chromophores available for optical imaging, their applications are limited due to the photobleaching property or intrinsic toxicity. Curcumin, a natural compound extracted from the rhizome of curcuma longa, is well known thanks to its bio-pharmaceutical activities and strong fluorescence as biocompatible probe for bio-imaging. In this study, we aimed to fabricate a system with dual functions: diagnostic and therapeutic, based on poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) micelles co-loaded curcumin (Cur) and paclitaxel (PTX). Two kinds of curcumin nanoparticle (NP) were fabricated and characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy and dynamic light scattering methods. The cellular uptake and fluorescent activities of curcumin in these systems were also tested by bioassay studies, and were compared with paclitaxe-oregon. The results showed that (Cur + PTX)-PLA-TPGS NPs is a potential system for cancer theranostics.

  17. Curcumin as fluorescent probe for directly monitoring in vitro uptake of curcumin combined paclitaxel loaded PLA-TPGS nanoparticles

    International Nuclear Information System (INIS)

    Nguyen, Hoai Nam; Ha, Phuong Thu; Do, Hai Doan; Nguyen, Anh Sao; Nguyen, Dac Tu; Thi, Quy Nguyen; Thi, My Nhung Hoang

    2016-01-01

    Theranostics, which is the combination of both therapeutic and diagnostic capacities in one dose, is a promising tool for both clinical application and research. Although there are many chromophores available for optical imaging, their applications are limited due to the photobleaching property or intrinsic toxicity. Curcumin, a natural compound extracted from the rhizome of curcuma longa, is well known thanks to its bio-pharmaceutical activities and strong fluorescence as biocompatible probe for bio-imaging. In this study, we aimed to fabricate a system with dual functions: diagnostic and therapeutic, based on poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) micelles co-loaded curcumin (Cur) and paclitaxel (PTX). Two kinds of curcumin nanoparticle (NP) were fabricated and characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy and dynamic light scattering methods. The cellular uptake and fluorescent activities of curcumin in these systems were also tested by bioassay studies, and were compared with paclitaxe-oregon. The results showed that (Cur + PTX)-PLA-TPGS NPs is a potential system for cancer theranostics. (paper)

  18. Curcumin loaded in bovine serum albumin–chitosan derived ...

    Indian Academy of Sciences (India)

    study proved that BSA–chitosan based nanoparticles can be used as an efficient vehicle for effective curcumin ... tions in treating cerebral ischaemia by delivering Tanshinone. ∗ ... curcumin is its poor water solubility, which in turn reduces.

  19. [Curcumin inhibited rat colorectal carcinogenesis by activating PPAR-γ: an experimental study].

    Science.gov (United States)

    Liu, Liu-bin; Duan, Chang-nong; Ma, Zeng-yi; Xu, Gang

    2015-04-01

    To explore the chemopreventive effect of curcumin on DMH induced colorectal carcinogenesis and the underlining mechanism. Totally 40 Wistar rats were divided into the model group and the curcumin group by random digit table, 20 in each group. Meanwhile, a normal control group was set up (n =10). A colorectal cancer model was induced by subcutaneously injecting 20 mg/kg DMH. The tumor incidence and the inhibition rate were calculated. The effect of curcumin on the expression of peroxisome proliferator-activated receptor gamma (PPARγ) in rat colon mucosal tissues was observed using immunohistochemistry and Western blot. HT 29 cell line were cultured and divided into a control group, the curcumin + GW9662 (2-chloro-5-nitro-N-4-phenylbenzamide) intervention group, and the curcumin group. The inhibition of different concentrations curcumin on HT29 cell line was detected using MTT. The expression of curcumin on PPARy was also detected using Western blot. The tumor incidence was 80. 00% (12/15 cases) in the model group, obviously higher than that of the curcumin group (58. 82%, 10/17 cases, P manners. The expression of PPARy protein was significantly increased in the GW9662 group and the curcumin group, showing statistical difference when compared with the normal control group (P <0. 01). Compared with the GW9662 group, the expression of PPARγ protein was significantly increased in the curcumin group (P <0. 01). Curcumin could inhibit DMH-induced rat colorectal carcinogenesis and the growth of in vitro cultured HT 29 cell line, which might be achieved by activating PPARy signal transduction pathway.

  20. Characteristics of curcumin using cyclic voltammetry, UV–vis, fluorescence and thermogravimetric analysis

    International Nuclear Information System (INIS)

    Masek, Anna; Chrzescijanska, Ewa; Zaborski, Marian

    2013-01-01

    Highlights: • Electrooxidation of curcumin was investigated with cyclic voltammetry. • The curcumin is irreversibly oxidized at the platinum electrode in anhydrous media. • Absorbance, fluorescence and thermogravimetric analysis of curcumin was studied. • The HOMO and Mapped Electron Densities were calculated using HyperChem. • Oxidation mechanism for curcumin proposed. -- Abstract: Curcumin, the yellow, primary bioactive component of turmeric, has recently received attention from chemists due its wide range of potential biological applications as an antioxidant, anti-inflammatory, and anti-carcinogenic agent. The electrochemical behaviour of curcumin at a platinum electrode has been studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The oxidation of curcumin is an irreversible process that proceeds in two steps in 0.1 M (C 4 H 9 ) 4 NClO 4 in acetonitrile. The process of oxidation and its kinetics have been investigated. The rate constant, electron transfer coefficient and diffusion coefficients for the electrochemical oxidation of curcumin were determined. A mechanism for the oxidation of curcumin is proposed. The data obtained are consistent with the current literature and suggest that voltammetric studies on mechanically transferred solids may be a convenient method for elucidating the electrochemical oxidation mechanisms of compounds in anhydrous media. Theoretical calculations regarding the optimization of curcumin, electronic properties like highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were calculated using with HyperChem software by AM1 semi-empirical method. The properties of curcumin in a homogeneous environment were investigated using spectroscopic techniques and thermogravimetric analysis

  1. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    Directory of Open Access Journals (Sweden)

    Prabhakar Singh

    2016-01-01

    Full Text Available Plasma membrane redox system (PMRS is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD. Effects of curcumin were also evaluated on level of glutathione (GSH and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP. Results show that curcumin significantly (p<0.01 downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects.

  2. Encapsulation of Curcumin in Self-Assembling Peptide Hydrogels as Injectable Drug Delivery Vehicles

    Science.gov (United States)

    Altunbas, Aysegul; Lee, Seung Joon; Rajasekaran, Sigrid A.; Schneider, Joel P.; Pochan, Darrin J.

    2011-01-01

    Curcumin, a hydrophobic polyphenol, is an extract of turmeric root with antioxidant, anti-inflammatory and anti-tumorigenic properties. Its lack of water solubility and relatively low bioavailability set major limitations for its therapeutic use. In this study, a self-assembling peptide hydrogel is demonstrated to be an effective vehicle for the localized delivery of curcumin over sustained periods of time. The curcumin-hydrogel is prepared in-situ where curcumin encapsulation within the hydrogel network is accomplished concurrently with peptide self-assembly. Physical and in vitro biological studies were used to demonstrate the effectiveness of curcumin-loaded β-hairpin hydrogels as injectable agents for localized curcumin delivery. Notably, rheological characterization of the curcumin loaded hydrogel before and after shear flow have indicated solid-like properties even at high curcumin payloads. In vitro experiments with a medulloblastoma cell line confirm that the encapsulation of the curcumin within the hydrogel does not have an adverse effect on its bioactivity. Most importantly, the rate of curcumin release and its consequent therapeutic efficacy can be conveniently modulated as a function of the concentration of the MAX8 peptide. PMID:21601921

  3. Synthesis and exploration of novel curcumin analogues as anti-malarial agents.

    Science.gov (United States)

    Mishra, Satyendra; Karmodiya, Krishanpal; Surolia, Namita; Surolia, Avadhesha

    2008-03-15

    Curcumin, a major yellow pigment and active component of turmeric, has been shown to possess anti-inflammatory and anti-cancer activities. Recent studies have indicated that curcumin inhibits chloroquine-sensitive (CQ-S) and chloroquine-resistant (CQ-R) Plasmodium falciparum growth in culture with an IC(50) of approximately 3.25 microM (MIC=13.2 microM) and IC(50) 4.21 microM (MIC=14.4 microM), respectively. In order to expand their potential as anti-malarials a series of novel curcumin derivatives were synthesized and evaluated for their ability to inhibit P. falciparum growth in culture. Several curcumin analogues examined show more effective inhibition of P. falciparum growth than curcumin. The most potent curcumin compounds 3, 6, and 11 were inhibitory for CQ-S P. falciparum at IC(50) of 0.48, 0.87, 0.92 microM and CQ-R P. falciparum at IC(50) of 0.45 microM, 0.89, 0.75 microM, respectively. Pyrazole analogue of curcumin (3) exhibited sevenfold higher anti-malarial potency against CQ-S and ninefold higher anti-malarial potency against CQ-R. Curcumin analogues described here represent a novel class of highly selective P. falciparum inhibitors and promising candidates for the design of novel anti-malarial agents.

  4. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding.

    Science.gov (United States)

    Mounce, Bryan C; Cesaro, Teresa; Carrau, Lucia; Vallet, Thomas; Vignuzzi, Marco

    2017-06-01

    Several compounds extracted from spices and herbs exhibit antiviral effects in vitro, suggesting potential pharmacological uses. Curcumin, a component of turmeric, has been used as a food additive and herbal supplement due to its potential medicinal properties. Previously, curcumin exhibited antiviral properties against several viruses, including dengue virus and hepatitis C virus, among others. Here, we describe the antiviral effect of curcumin on Zika and chikungunya viruses, two mosquito-borne outbreak viruses. Both viruses responded to treatment of cells with up to 5 μM curumin without impacting cellular viability. We observed that direct treatment of virus with curcumin reduced infectivity of virus in a dose- and time-dependent manner for these enveloped viruses, as well as vesicular stomatitis virus. In contrast, we found no change in infectivity for Coxsackievirus B3, a non-enveloped virus. Derivatives of curcumin also exhibited antiviral activity against enveloped viruses. Further examination revealed that curcumin interfered with the binding of the enveloped viruses to cells in a dose-dependent manner, though the integrity of the viral RNA was maintained. Together, these results expand the family of viruses sensitive to curcumin and provide a mechanism of action for curcumin's effect on these enveloped viruses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Comparative evaluation of curcumin and curcumin loaded- dendrosome nanoparticle effects on the viability of SW480 colon carcinoma and Huh7 hepatoma cells

    Directory of Open Access Journals (Sweden)

    M.J. Dehghan Esmatabadi

    2015-06-01

    Full Text Available Background and objectives: Colorectal cancer is the third most common cancer and a major cause of morbidity globally. Hepatocellular carcinoma is a leading cause of death in the world. About 80% of all anticancer drugs are somehow related to natural products. One of the most important of these natural compounds is curcumin, the main component of turmeric that has a wide range of pharmacological activities. Curcumin has been found to suppress cell proliferation and decrease cell viability in various types of cancer cells; however, owing to lack of aqueous solubility, curcumin has shown reduced bioavailability in studies. Recent studies have shown that new 400th generation of dendrosome nanoparticle can increase bioavailability of curcumin and thus enhance the cytotoxic properties.  The aim of this study was to determine effectiveness of curcumin alone and in combination with 400th generation dendrosome nanoparticles (DNC on cell viability rate in SW480 and Huh7 cells. Methods: SW480 and Huh7 cells were incubated with different concentrations of curcumin and DNC (0-50μM for 24, 48 and 72 h. Then cytotoxicity was assessed by MTT assay and IC50 was determined. Results: The results suggested that the concentration-dependent inhibitory effect of DNC was stronger than curcumin on SW480 and Huh7 cells. Conclusion: The results suggest DNC as a more effective herbal anticancer agent for colorectal and hepatocellular tumors.

  6. Study on Hot-wire Method for Measuring the Thermal Conductivity of food Materials%银杏淀粉的分离和纯化

    Institute of Scientific and Technical Information of China (English)

    敖自华; 王璋; 许时婴

    2001-01-01

    High ly purified amylopectin and amylose from ginkgo biloba L.starch could be obtained by recrystallization. Results of gel permeation chromatography (GPC) on sepharose 2B showed that molecular weight of ginkgo amylose appeared to be smaller than that of corn amylose,whereas the amylopectin molecular weight had a wide distribution in the GPC profile. For ginkgo amylose and amylopectin,iodine affinity values were 19.19% and 0.13% ,blue values 0.85 and 0.12.and λ max of I2-KI blue colour 626nm and 564nm ,respectively. Amylose content of ginkgo starch was 33%.%用重结晶法可以得到纯度较高的银杏直链淀粉和支链淀粉。凝胶过滤色谱表明:银杏直链淀粉的分子量比玉米直链淀粉的小,而支链淀粉的分子量则具有较宽的分布。银杏直、支链淀粉的碘亲和力分别为19.19%和0.1 3%,蓝值分别是0.85和0.12,λmax为626nm和564nm;银杏淀粉中直链淀粉含量为33%。

  7. The modulation of erythrocyte Na+/K+-ATPase activity by curcumin

    Directory of Open Access Journals (Sweden)

    Prabhakar Singh

    2015-11-01

    Full Text Available Curcumin, an active biphenolic molecule present in turmeric (Curcuma longa, has been reported to elicit plethora of health protective effects. The present study was carried out in vitro, in vivo and in silico to investigate the modulatory effects of curcumin on erythrocyte membrane Na+/K+-ATPase activity. In vitro curcumin (10−5 M to 10−8 M was incubated with human erythrocytes membrane. In vivo curcumin (340 mg/kg b.w. and 170 mg/kg b.w. was supplemented to wistar rats for 21 days. In silico, catalytic unit α of Na+/K+-ATPase (3b8e.pdb protein was used as a receptor for the natural ligand ATP to study curcumin-mediated docking simulation using AutoDock4. The in vitro effect of curcumin on the Na+/K+-ATPase activity in human erythrocytes was biphasic. An inhibitory response was observed at 10−5 M (p < 0.001. An activation of the Na+/K+-ATPase activity was observed at 10−7 and 10−8 M (p < 0.001 and p < 0.01. In vivo, curcumin supplementation to rats increased the Na+/K+-ATPase activity at doses 340 mg/kg b.w. (p < 0.001 as well as at 170 mg/kg b.w., (p < 0.01. AutoDock4 docking simulation study showed that both ligands curcumin and ATP actively interacted with amino acids Glu214, Ser215, Glu216, Thr371, Asn377, Arg378, Met379, Arg438, Val440, Ala444, Lys451 and Asp586 at the catalytic cavity of Na+/K+-ATPase. ATP had more H bonding and hydrophobic interaction with active site amino acid residues compared to curcumin. These finding may explain some of the health beneficial properties of curcumin associated with deregulated Na+/K+-ATPase activity or ions homeostasis.

  8. Neuroprotective effect of curcumin on transient focal cerebral ischemia in rats.

    Science.gov (United States)

    Zhao, Jing; Zhao, Yong; Zheng, Weiping; Lu, Yuyu; Feng, Gang; Yu, Shanshan

    2008-09-10

    Curcumin, a member of the curcuminoid family of compounds, is a yellow colored phenolic pigment obtained from the powdered rhizome of C. longa Linn. Recent studies have demonstrated that curcumin has protective effects against cerebral ischemia/reperfusion injury. However, little is known about its mechanism. Hence, in the present study the neuroprotective potential of curcumin was investigated in middle cerebral artery occlusion (MCAO) induced focal cerebral IR injury. Administration of curcumin 100 and 300 mg/kg i.p. 60 min after MCAO significantly diminished infarct volume, and improved neurological deficit in a dose-dependent manner. Nissl staining showed that the neuronal injury was significantly improved after being treated with curcumin. Curcumin significantly decreased the expression of caspase-3 protein. A higher number of TUNEL-positive cells were found in the vehicle group, but they were significantly decreased in the treated group. Taken together, these results suggest that the neuroprotective potentials of curcumin against focal cerebral ischemic injury are, at least in part, ascribed to its anti-apoptotic effects.

  9. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin.

    Science.gov (United States)

    Mohanty, Chandana; Das, Manasi; Sahoo, Sanjeeb K

    2012-11-01

    Curcumin is a safe, affordable and natural bioactive molecule of turmeric (Curcuma longa). It has gained considerable attention in recent years for its multiple pharmacological activities. However, its optimum pharmaceutical potential has been limited by its lack of aqueous solubility and poor bioavailability. To mitigate the above limitations, recently various nanostructured water-soluble delivery systems were developed to increase the solubility and bioavailability of curcumin. Major reasons contributing to the low bioavailability of curcumin appear to be owing to its poor solubility, low absorption, rapid metabolism and rapid systemic elimination. The present review summarizes the strategies using curcumin in various nanocarrier delivery systems to overcome poor solubility and inconsistent bioavailability of curcumin and describes the current status and challenges for the future. The development of various drug delivery systems to deliver curcumin will certainly provide a step up towards augmenting the therapeutic activity of curcumin thereby increasing the solubility and bioavailability of curcumin. However, the future of such delivery technology will be highly dependent on the development of safe, non-toxic and non-immunogenic nanocarriers.

  10. Curcumin ameliorates cardiac dysfunction induced by mechanical trauma.

    Science.gov (United States)

    Li, Xintao; Cao, Tingting; Ma, Shuo; Jing, Zehao; Bi, Yue; Zhou, Jicheng; Chen, Chong; Yu, Deqin; Zhu, Liang; Li, Shuzhuang

    2017-11-05

    Curcumin, a phytochemical component derived from turmeric (Carcuma longa), has been extensively investigated because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play critical roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This research was designed to identify the protective effect of curcumin on posttraumatic cardiac dysfunction and investigate its underlying mechanism. Noble-Collip drum was used to prepare a mechanical trauma (MT) model of rats, and the hemodynamic responses of traumatized rats were observed by ventricular intubation 12h after trauma. Myocardial apoptosis was determined through terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and caspase-3 activity assay. Tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) generated by monocytes and myocardial cells were identified through enzyme-linked immunosorbent assay (ELISA), and the intracellular alteration of Ca 2+ in cardiomyocytes was examined through confocal microscopy. In vivo, curcumin effectively ameliorated MT-induced secondary cardiac dysfunction and significantly decreased the apoptotic indices of the traumatized myocardial cells. In vitro, curcumin inhibited TNF-α production by monocytes and reduced the circulating TNF-α levels. With curcumin pretreatment, ROS production and Ca 2+ overload in H9c2 cells were attenuated when these cells were incubated with traumatic plasma. Therefore, curcumin can effectively ameliorate MT-induced cardiac dysfunction mainly by inhibiting systemic inflammatory responses and by weakening oxidative stress reaction and Ca 2+ overload in cardiomyocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Imprinted-like biopolymeric micelles as efficient nanovehicles for curcumin delivery.

    Science.gov (United States)

    Zhang, Lili; Qi, Zeyou; Huang, Qiyu; Zeng, Ke; Sun, Xiaoyi; Li, Juan; Liu, You-Nian

    2014-11-01

    To enhance the solubility and improve the bioavailability of hydrophobic curcumin, a new kind of imprinted-like biopolymeric micelles (IBMs) was designed. The IBMs were prepared via co-assembly of gelatin-dextran conjugates with hydrophilic tea polyphenol, then crosslinking the assembled micelles and finally removing the template tea polyphenol by dialysis. The obtained IBMs show selective binding for polyphenol analogous drugs over other drugs. Furthermore, curcumin can be effectively encapsulated into the IBMs with 5×10(4)-fold enhancement of aqueous solubility. We observed the sustained drug release behavior from the curcumin-loaded IBMs (CUR@IBMs) in typical biological buffers. In addition, we found the cell uptake of CUR@IBMs is much higher than that of free curcumin. The cell cytotoxicity results illustrated that CUR@IBMs can improve the growth inhibition of HeLa cells compared with free curcumin, while the blank IBMs have little cytotoxicity. The in vivo animal study demonstrated that the IBMs could significantly improve the oral bioavailability of curcumin. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effect of curcumin analogs onα-synuclein aggregation and cytotoxicity

    Science.gov (United States)

    Jha, Narendra Nath; Ghosh, Dhiman; Das, Subhadeep; Anoop, Arunagiri; Jacob, Reeba S.; Singh, Pradeep K.; Ayyagari, Narasimham; Namboothiri, Irishi N. N.; Maji, Samir K.

    2016-01-01

    Alpha-synuclein (α-Syn) aggregation into oligomers and fibrils is associated with dopaminergic neuron loss occurring in Parkinson’s disease (PD) pathogenesis. Compounds that modulate α-Syn aggregation and interact with preformed fibrils/oligomers and convert them to less toxic species could have promising applications in the drug development efforts against PD. Curcumin is one of the Asian food ingredient which showed promising role as therapeutic agent against many neurological disorders including PD. However, the instability and low solubility makes it less attractive for the drug development. In this work, we selected various curcumin analogs and studied their toxicity, stability and efficacy to interact with different α-Syn species and modulation of their toxicity. We found a subset of curcumin analogs with higher stability and showed that curcumin and its various analogs interact with preformed fibrils and oligomers and accelerate α-Syn aggregation to produce morphologically different amyloid fibrils in vitro. Furthermore, these curcumin analogs showed differential binding with the preformed α-Syn aggregates. The present data suggest the potential role of curcumin analogs in modulating α-Syn aggregation. PMID:27338805

  13. Effect of curcumin in mice model of vincristine-induced neuropathy.

    Science.gov (United States)

    Babu, Anand; Prasanth, K G; Balaji, Bhaskar

    2015-06-01

    Curcumin exhibits a wide spectrum of biological activities which include neuroprotective, antinociceptive, anti-inflammatory, and antioxidant activity. The present study evaluates the effect of curcumin in vincristine-induced neuropathy in a mice model. Vincristine sulfate (0.1 mg/kg, i.p. for 10 consecutive days) was administered to mice to induce neuropathy. Pain behavior was assessed at different days, i.e., 0, 7, 10, and 14 d. Sciatic nerve total calcium, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), nitric oxide (NO), and lipid peroxidation (LPO) were also estimated after the 14th day of study. Pregabalin (10 mg/kg, p.o.) and curcumin (15, 30, and 60 mg/kg, p.o.) were administered for 14 consecutive days. Curcumin at 60 mg/kg significantly attenuated the vincristine-induced neuropathic pain manifestations in terms of thermal hyperalgesia (p Curcumin at 30 and 60 mg/kg exhibited significant changes (p Curcumin at 30 and 60 mg/kg dose levels significantly attenuated vincristine-induced neuropathy which may be due to its multiple actions including antinociceptive, calcium inhibitory, and antioxidant effect.

  14. In vitro evaluation of antioxidant and neuroprotective effects of curcumin loaded in Pluronic micelles

    Directory of Open Access Journals (Sweden)

    Cvetelina Gorinova

    2016-09-01

    Full Text Available Curcumin is a polyphenolic substance with attractive pharmacological activities (e.g. antioxidant, anti-inflammatory, anticancer. Incorporation of curcumin in polymeric micelles could overcome the problems associated with its instability and low aqueous solubility. The aim of this study was to load curcumin in polymeric micelles based on Pluronic® P 123 or Pluronic® F 127 triblock copolymers and evaluate the antioxidant and neuroprotective effects after micellization. The micelles were prepared and loaded with curcumin by applying the dissolution method. Higher encapsulation efficiency was observed in the micelles formulated with Pluronic® P 123. These micelles were characterized with small size and narrow size distribution. The effects of micellar curcumin were investigated in two in vitro models. First, the capacity of micellar curcumin to inhibit iron/ascorbic acid-induced lipid peroxidation in rat liver microsomes was evaluated. Micellar curcumin and free drug showed similar inhibition of lipid peroxidation. Second, micellar curcumin and free curcumin showed protective potential in a model of 6-hydroxydopamine induced neurotoxicity in rat brain synaptosomes. The results from both methods indicated preservation of antioxidant and neuroprotective activity of curcumin in micelles. The small micellar size, high loading capacity and preservation of antioxidant activity of curcumin into Pluronic micelles, suggested their further evaluation as a curcumin delivery system.

  15. Hybrid Curcumin Compounds: A New Strategy for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Marie-Hélène Teiten

    2014-12-01

    Full Text Available Cancer is a multifactorial disease that requires treatments able to target multiple intracellular components and signaling pathways. The natural compound, curcumin, was already described as a promising anticancer agent due to its multipotent properties and huge amount of molecular targets in vitro. Its translation to the clinic is, however, limited by its reduced solubility and bioavailability in patients. In order to overcome these pharmacokinetic deficits of curcumin, several strategies, such as the design of synthetic analogs, the combination with specific adjuvants or nano-formulations, have been developed. By taking into account the risk-benefit profile of drug combinations, as well as the knowledge about curcumin’s structure-activity relationship, a new concept for the combination of curcumin with scaffolds from different natural products or components has emerged. The concept of a hybrid curcumin molecule is based on the incorporation or combination of curcumin with specific antibodies, adjuvants or other natural products already used or not in conventional chemotherapy, in one single molecule. The high diversity of such conjugations enhances the selectivity and inherent biological activities and properties, as well as the efficacy of the parental compound, with particular emphasis on improving the efficacy of curcumin for future clinical treatments.

  16. Solubility enhancement and delivery systems of curcumin a herbal medicine: a review.

    Science.gov (United States)

    Hani, Umme; Shivakumar, H G

    2014-01-01

    Curcumin diferuloylmethane is a main yellow bioactive component of turmeric, possess wide spectrum of biological actions. It was found to have anti-inflammatory, antioxidant, anticarcinogenic, antimutagenic, anticoagulant, antifertility, antidiabetic, antibacterial, antifungal, antiprotozoal, antiviral, antifibrotic, antivenom, antiulcer, hypotensive and hypocholesteremic activities. However, the benefits are curtailed by its extremely poor aqueous solubility, which subsequently limits the bioavailability and therapeutic effects of curcumin. Nanotechnology is the available approach in solving these issues. Therapeutic efficacy of curcumin can be utilized effectively by doing improvement in formulation properties or delivery systems. Numerous attempts have been made to design a delivery system of curcumin. Currently, nanosuspensions, micelles, nanoparticles, nano-emulsions, etc. are used to improve the in vitro dissolution velocity and in vivo efficiency of curcumin. This review focuses on the methods to increase solubility of curcumin and various nanotechnologies based delivery systems and other delivery systems of curcumin.

  17. Phosphoproteomic Analysis Identifies Signaling Pathways Regulated by Curcumin in Human Colon Cancer Cells.

    Science.gov (United States)

    Sato, Tatsuhiro; Higuchi, Yutaka; Shibagaki, Yoshio; Hattori, Seisuke

    2017-09-01

    Curcumin, a major polyphenol of the spice turmeric, acts as a potent chemopreventive and chemotherapeutic agent in several cancer types, including colon cancer. Although various proteins have been shown to be affected by curcumin, how curcumin exerts its anticancer activity is not fully understood. Phosphoproteomic analyses were performed using SW480 and SW620 human colon cancer cells to identify curcumin-affected signaling pathways. Curcumin inhibited the growth of the two cell lines in a dose-dependent manner. Thirty-nine curcumin-regulated phosphoproteins were identified, five of which are involved in cancer signaling pathways. Detailed analyses revealed that the mTORC1 and p53 signaling pathways are main targets of curcumin. Our results provide insight into the molecular mechanisms of the anticancer activities of curcumin and future molecular targets for its clinical application. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Formulation of nanotized curcumin and demonstration of its antimalarial efficacy

    Science.gov (United States)

    Ghosh, Aparajita; Banerjee, Tanushree; Bhandary, Suman; Surolia, Avadhesha

    2014-01-01

    Aim The present study was conducted to overcome the disadvantages associated with the poor water solubility and low bioavailability of curcumin by synthesizing nanotized curcumin and demonstrating its efficacy in treating malaria. Materials and methods Nanotized curcumin was prepared by a modified emulsion-diffusion-evaporation method and was characterized by means of transmission electron microscopy, atomic force microscopy, dynamic light scattering, Zetasizer, Fourier transform infrared spectroscopy, and differential thermal analysis. The novelty of the prepared nanoformulation lies in the fact that it was devoid of any polymeric matrices used in conventional carriers. The antimalarial efficacy of the prepared nanotized curcumin was then checked both in vitro and in vivo. Results The nanopreparation was found to be non-toxic and had a particle size distribution of 20–50 nm along with improved aqueous dispersibility and an entrapment efficiency of 45%. Nanotized curcumin (half maximal inhibitory concentration [IC50]: 0.5 μM) was also found to be ten-fold more effective for growth inhibition of Plasmodium falciparum in vitro as compared to its native counterpart (IC50: 5 μM). Oral bioavailability of nanotized curcumin was found to be superior to that of its native counterpart. Moreover, when Plasmodium berghei-infected mice were orally treated with nanotized curcumin, it prolonged their survival by more than 2 months with complete clearance of parasites in comparison to the untreated animals, which survived for 8 days only. Conclusion Nanotized curcumin holds a considerable promise in therapeutics as demonstrated here for treating malaria as a test system. PMID:25484584

  19. Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Mercedes G. Montalbán

    2018-02-01

    Full Text Available Curcumin, extracted from the rhizome of Curcuma longa, has been widely used in medicine for centuries due to its anti-inflammatory, anti-cancer, anti-oxidant and anti-microbial effects. However, its bioavailability during treatments is poor because of its low solubility in water, slow dissolution rate and rapid intestinal metabolism. For these reasons, improving the therapeutic efficiency of curcumin using nanocarriers (e.g., biopolymer nanoparticles has been a research focus, to foster delivery of the curcumin inside cells due to their small size and large surface area. Silk fibroin from the Bombyx mori silkworm is a biopolymer characterized by its biocompatibility, biodegradability, amphiphilic chemistry, and excellent mechanical properties in various material formats. These features make silk fibroin nanoparticles useful vehicles for delivering therapeutic drugs, such as curcumin. Curcumin-loaded silk fibroin nanoparticles were synthesized using two procedures (physical adsorption and coprecipitation more scalable than methods previously described using ionic liquids. The results showed that nanoparticle formulations were 155 to 170 nm in diameter with a zeta potential of approximately −45 mV. The curcumin-loaded silk fibroin nanoparticles obtained by both processing methods were cytotoxic to carcinogenic cells, while not decreasing viability of healthy cells. In the case of tumor cells, curcumin-loaded silk fibroin nanoparticles presented higher efficacy in cytotoxicity against neuroblastoma cells than hepatocarcinoma cells. In conclusion, curcumin-loaded silk fibroin nanoparticles constitute a biodegradable and biocompatible delivery system with the potential to treat tumors by local, long-term sustained drug delivery.

  20. Curcumin for maintenance of remission in ulcerative colitis.

    Science.gov (United States)

    Kumar, Sushil; Ahuja, Vineet; Sankar, Mari Jeeva; Kumar, Atul; Moss, Alan C

    2012-10-17

    Ulcerative colitis (UC) is a chronic inflammatory condition of the colon characterized by episodes of disease activity and symptom-free remission.There is paucity of evidence regarding the efficacy and safety of complementary or alternative medicines for the management of UC. Curcumin, an anti-inflammatory agent, has been used in many chronic inflammatory conditions such as rheumatoid arthritis, esophagitis and post-surgical inflammation. The efficacy of this agent for maintenance of remission in patients with UC has not been systematically evaluated. The primary objective was to systematically review the efficacy and safety of curcumin for maintenance of remission in UC. A computer-assisted literature search of MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, and the Cochrane Inflammatory Bowel Disease Specialized Trial Register was performed on July 11, 2012 to identify relevant publications. Proceedings from major gastroenterology meetings and references from published articles were also searched to identify additional studies. Randomized placebo-controlled trials (RCT) of curcumin for maintenance of remission in UC were included. Studies included patients (of any age) who were in remission at the time of recruitment. Co-interventions were allowed. Two authors independently extracted data and assessed the methodological quality of the included studies using the Cochrane risk of bias tool. Data were analyzed using Review Manager (RevMan 5.1). We calculated the relative risk (RR) and 95% confidence interval (95% CI) for each dichotomous outcome. For continuous outcomes we calculated the mean difference (MD) and 95% CI. Only one trial (89 patients) fulfilled the inclusion criteria. This trial randomized 45 patients to curcumin and 44 patients to placebo. All patients received treatment with sulfasalazine or mesalamine. The study was rated as low risk of bias. Curcumin was administered orally in a dose of 2 g/day for six months. Fewer patients

  1. Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases

    Science.gov (United States)

    Sarkar, Avijit; De, Ronita; Mukhopadhyay, Asish K

    2016-01-01

    Curcumin, a yellow pigment and principal polyphenolic Curcuminoid obtained from the turmeric rhizome Curcuma longa, is commonly used as a food-coloring agent. Studies suggest that curcumin has a wide range of beneficial properties e.g., anti-inflammatory, anti-oxidant, anti-cancer, anti-proliferative, anti-fungal and anti-microbial. These pleiotropic activities prompted several research groups to elucidate the role of curcumin in Helicobacter pylori (H. pylori) infection. This is the first review with this heading where we discussed regarding the role of curcumin as an anti-H. pylori agent along with its potential in other gastrointestinal diseases. Based on several in vitro, early cell culture, animal research and few pre-clinical trials, curcumin projected as a potential therapeutic candidate against H. pylori mediated gastric pathogenesis. This review sheds light on the anti-H. pylori effects of curcumin in different models with meticulous emphasis on its anti-oxidant, anti-inflammatory and anti-carcinogenic effects as well as some critical signaling and effecter molecules. Remarkably, non-toxic molecule curcumin fulfills the characteristics for an ideal chemopreventive agent against H. pylori mediated gastric carcinogenesis but the foremost challenge is to obtain the optimum therapeutic levels of curcumin, due to its low solubility and poor bioavailability. Further, we have discussed about the possibilities for improving its efficacy and bioavailability. Lastly, we concluded with the anticipation that in near future curcumin may be used to develop a therapeutic drug against H. pylori mediated gastric ailments through improved formulation or delivery systems, facilitating its enhanced absorption and cellular uptake. PMID:26973412

  2. PROSPECTS OF CURCUMIN USE IN NANOBIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    M. I. Kaniuk

    2016-06-01

    Full Text Available The aim of the work was a generalization of literature data on the prospects for curcumin usage in biotechnology as a component for biologically active nanocomplexes with anti-inflammatory and antioxidant activity creation. It is emphasized that their effectiveness depends on the solubility in aqueous medium and on the metabolism rate decreasing in the body. Current trend is the development of creation methods of hydrophilic curcumin-based nanostructures to increase the time of its biological action. Its nanostructures with silicium, polylysine, copolymers of lactic and glycolic acids and metal ions are the most promising in this respect. For multicomponent hybrid nanoparticles effective usage the substantiation of their component combined use features is necessary. The practical task is to create and to study the functional properties of such combined nanocomplexes. Curcumin complex with metal ions creation contributes to its water solubility and to increase the efficiency of biological action. These complexes have specific characteristics depending on the nature of metal ion. The creation of curcumin-based biocompatible nanocomposites with amplifiers of its action that are known pharmaceuticals is perspective. Such multifunctional nanocomplexes will facilitate the targeted medicines delivery to the places of pathological processes localization and the reduction of their side effects.

  3. Chemotherapeutic potential of curcumin-bearing microcells against hepatocellular carcinoma in model animals

    Science.gov (United States)

    Farazuddin, Mohammad; Dua, Bhavyata; Zia, Qamar; Khan, Aijaz Ahmad; Joshi, Beenu; Owais, Mohammad

    2014-01-01

    Curcumin (diferuloylmethane) is found in large quantities in the roots of Curcuma longa. It possesses strong antioxidant and anti-inflammatory properties, and inhibits chemically-induced carcinogenesis in the skin, forestomach, colon, and liver. Unfortunately, the poor bioavailability and hydrophobicity of curcumin pose a major hurdle to its use as a potent anticancer agent. To circumvent some of these problems, we developed a novel, dual-core microcell formulation of curcumin. The encapsulation of curcumin in microcells increases its solubility and bioavailability, and facilitates slow release kinetics over extended periods. Besides being safe, these formulations do not bear any toxicity constraints, as revealed by in vitro and in vivo studies. Histopathological analysis revealed that curcumin-bearing microcells helped in regression of hepatocellular carcinoma and the maintenance of cellular architecture in liver tissue. Free curcumin had a very mild effect on cancer suppression. Empty (sham) microcells and microparticles failed to inhibit cancer cells. The novel curcumin formulation was found to suppress hepatocellular carcinoma efficiently in Swiss albino mice. PMID:24627632

  4. Photodynamic action of curcumin derived polymer modified ZnO nanocomposites

    International Nuclear Information System (INIS)

    Hariharan, R.; Senthilkumar, S.; Suganthi, A.; Rajarajan, M.

    2012-01-01

    Highlights: ► ZnO/PVA nano sensitized with curcumin and its metal complex were synthesized by vacuum evaporation method. ► M/cur sensitized on ZnO/PVA nanocomposites were characterized. ► Generation of 1 O 2 and ROS were detected by optical and EPR-spin trapping method. ► It was found that photoinduced cleavage of DNA using Zn/cur–ZnO/PVA was superior. ► Photodegradation of MB in water catalyzed by ZnO/PVA–Zn/cur was also superior under visible light. -- Abstract: The photodynamic action of ZnO nano can be improved by modifying the surface by PVA and encapsulating the natural product, curcumin. The synthesized ZnO/PVA nanocomposites have been characterized using XRD, SEM, TEM, FTIR, TG–DTA, etc. Here we are reporting the photodynamic effect of ZnO nanocomposites on pUC18 DNA. Based on optical and EPR measurements, singlet oxygen and other ROS were responsible for photocleavage of DNA. Most importantly, derived curcumin modified ZnO/PVA nanocomposites were comparatively more effective than derived curcumin complex against HeLa cell lines under in vitro condition. In addition, photodegradation of methylene blue (MB) in water catalyzed by nano ZnO/PVA–curcumin derivative was investigated at room temperature. Under visible irradiation photocatalytic activity of ZnO nanomaterial sensitized curcumin was higher than those of curcumin and nano ZnO.

  5. Emu oil based nano-emulgel for topical delivery of curcumin.

    Science.gov (United States)

    Jeengar, Manish Kumar; Rompicharla, Sri Vishnu Kiran; Shrivastava, Shweta; Chella, Naveen; Shastri, Nalini R; Naidu, V G M; Sistla, Ramakrishna

    2016-06-15

    Curcumin and emu oil derived from emu bird (Dromaius novaehollandiae) has shown promising results against inflammation. However, the delivery of curcumin is hindered due to low solubility and poor permeation. In addition, till date the role of emu oil in drug delivery has not been explored systemically. Hence, the current investigation was designed to evaluate the anti-inflammatory potential of curcumin in combination with emu oil from a nanoemulgel formulation in experimental inflammation and arthritic in vivo models. Nanoemulsion was prepared using emu oil, Cremophor RH 40 and Labrafil M2125CS as oil phase, surfactant and co-surfactant. The optimized curcumin loaded nanoemulsion with emu oil was incorporated into carbopol gel for convenient application by topical route. The anti-inflammatory efficacy was evaluated in carrageenan induced paw edema and FCA induced arthritic rat model in terms of paw swelling, weight indices of the liver and spleen, pathological changes in nuclear factor kappa B, iNOS, COX-2 expression and inflammatory cytokines. Arthritic scoring, paw volume, biochemical, molecular, radiological and histological examinations indicated significant improvement in anti-inflammatory activity with formulations containing curcumin in combination with emu oil compared to pure curcumin. These encouraging results demonstrate the potential of formulations containing curcumin and emu oil combination in rheumatoid arthritis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Physico-chemical state influences in vitro release profile of curcumin from pectin beads.

    Science.gov (United States)

    Nguyen, An Thi-Binh; Winckler, Pascale; Loison, Pauline; Wache, Yves; Chambin, Odile

    2014-09-01

    Curcumin is a polyphenolic compound with diverse effects interesting to develop health benefit products but its formulation in functional foods or in food supplement is hampered by its poor water solubility and susceptibility to alkaline conditions, light, oxidation and heat. Encapsulation of curcumin could be a mean to overcome these difficulties. In this paper, curcumin was encapsulated by ionotropic gelation method in low methoxyl pectin beads associated with different surfactants: Solutol(®), Transcutol(®) and sodium caseinate. After encapsulation, physico-chemical properties of encapsulated curcumin such as its solubility, physical state, tautomeric forms and encapsulation efficiency as well as encapsulation yield were characterized. In vitro dissolution of curcumin from beads displayed different kinetic profiles according to bead composition due to different matrix network. As Solutol(®) was a good solvent for curcumin, the drug was present into amorphous form in these beads inducing a rapid release of curcumin in the simulated digestive fluids. In contrast, drug release was slower from sodium caseinate beads since curcumin was not totally dissolved during the manufacturing process. Moreover, the FLIM studies showed that a part of curcumin was encapsulated in caseinate micelles and that 34% of this drug was in keto form which may delay the curcumin release. The Transcutol beads showed also a slow drug release because of the low curcumin solubility and the high density of the matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Amorphous nano-curcumin stabilized oil in water emulsion: Physico chemical characterization.

    Science.gov (United States)

    Aditya, N P; Hamilton, Ian E; Norton, Ian T

    2017-06-01

    Particle characteristics e.g. size and polymorphism are known to significantly affect the Pickering ability of the solid particles by influencing their interaction at the oil and water (O/W) interface. In this study, nano-sized amorphous curcumin particles were fabricated using nanonization technology to use them as Pickering particles. After nanonization, native crystalline curcumin particles were converted into amorphous, nanosized particles of ∼220nm. Amorphous nature of the particle was evident from the decreased melting point from 177±1°C (native curcumin) to 146±3°C (nanonized curcumin) and enthalpy from 27±2J/g to 3.5±1J/g. Interfacial tension (IFT) studies have shown a decrease in IFT at the O/W interface from ∼27mN/m to ∼15mN/m in the presence of amorphous curcumin particles in water phase compared to crystalline curcumin particles. Curcumin stabilized O/W emulsion has an initial droplet size of ∼1.2μm and they were stable for 30days at 4°C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  9. Curcumin alters the cytoskeleton and microtubule organization on trophozoites of Giardia lamblia.

    Science.gov (United States)

    Gutiérrez-Gutiérrez, Filiberto; Palomo-Ligas, Lissethe; Hernández-Hernández, José Manuel; Pérez-Rangel, Armando; Aguayo-Ortiz, Rodrigo; Hernández-Campos, Alicia; Castillo, Rafael; González-Pozos, Sirenia; Cortés-Zárate, Rafael; Ramírez-Herrera, Mario Alberto; Mendoza-Magaña, María Luisa; Castillo-Romero, Araceli

    2017-08-01

    Giardia lamblia is a worldwide protozoan responsible for a significant number of intestinal infections. There are several drugs for the treatment of giardiasis, but they often cause side effects. Curcumin, a component of turmeric, has antigiardial activity; however, the molecular target and mechanism of antiproliferative activity are not clear. The effects of curcumin on cellular microtubules have been widely investigated. Since tubulin is the most abundant protein in the cytoskeleton of Giardia, to elucidate whether curcumin has activity against the microtubules of this parasite, we treated trophozoites with curcumin and the cells were analyzed by scanning electron microscopy and confocal microscopy. Curcumin inhibited Giardia proliferation and adhesion in a time-concentration-dependent mode. The higher inhibitory concentrations of curcumin (3 and 15μM) disrupted the cytoskeletal structures of trophozoites; the damage was evident on the ventral disk, flagella and in the caudal region, also the membrane was affected. The immunofluorescence images showed altered distribution of tubulin staining on ventral disk and flagella. Additionally, we found that curcumin caused a clear reduction of tubulin expression. By docking analysis and molecular dynamics we showed that curcumin has a high probability to bind at the interface of the tubulin dimer close to the vinblastine binding site. All the data presented indicate that curcumin may inhibit Giardia proliferation by perturbing microtubules. Copyright © 2017. Published by Elsevier B.V.

  10. Recent progress on curcumin-based therapeutics: a patent review (2012-2016). Part II: curcumin derivatives in cancer and neurodegeneration.

    Science.gov (United States)

    Di Martino, Rita Maria Concetta; Bisi, Alessandra; Rampa, Angela; Gobbi, Silvia; Belluti, Federica

    2017-08-01

    Curcumin, the main bioactive compound found in the rhizome of Curcuma longa L., is considered a 'privileged structure', due to its ability to modulate different signaling pathways involved in the pathogenesis of several diseases. Unfortunately, its poor pharmacodynamic and pharmacokinetic properties, mainly related to chemical instability, low solubility and rapid metabolism, greatly reduce its therapeutic potential. In the last years a number of derivatives were developed and patented, aimed both at improving its multifaceted biological profile and overcoming its undesired effects. Areas covered: This review summarizes the patent literature of the last five years dealing with synthetic curcumin-related compounds in cancer and neurodegeneration, properly designed in order to avoid the so-called 'dark side of curcumin', and to take advantage of the beneficial properties of this molecule, worth to be further exploited to obtain effective therapeutics. Expert opinion: Due to the synergistic binding to several networked targets, curcumin turned out to be suitable for polypharmacological approaches, and its 'privileged structure' could also provide the key scaffold to develop novel multipotent drugs useful for treating multifactiorial pathologic conditions such as cancer and neurodegeneration.

  11. Curcumin use in pulmonary diseases: State of the art and future perspectives.

    Science.gov (United States)

    Lelli, Diana; Sahebkar, Amirhossein; Johnston, Thomas P; Pedone, Claudio

    2017-01-01

    Curcumin (diferuloylmethane) is a yellow pigment present in the spice turmeric (Curcuma longa). It has been used for centuries in Ayurveda (Indian traditional medicine) for the treatment of several diseases. Over the last several decades, the therapeutic properties of curcumin have slowly been elucidated. It has been shown that curcumin has pleiotropic effects, regulating transcription factors (e.g., NF-kB), cytokines (e.g., IL6, TNF-alpha), adhesion molecules (e.g., ICAM-1), and enzymes (e.g., MMPs) that play a major role in inflammation and cancerogenesis. These effects may be relevant for several pulmonary diseases that are characterized by abnormal inflammatory responses, such as asthma or chronic obstructive pulmonary disease, acute respiratory distress syndrome, pulmonary fibrosis, and acute lung injury. Furthermore, some preliminary evidence suggests that curcumin may have a role in the treatment of lung cancer. The evidence for the use of curcumin in pulmonary disease is still sparse and has mostly been obtained using either in vitro or animal models. The most important issue with the use of curcumin in humans is its poor bioavailability, which makes it necessary to use adjuvants or curcumin nanoparticles or liposomes. The aim of this review is to summarize the available evidence on curcumin's effectiveness in pulmonary diseases, including lung cancer, and to provide our perspective on future research with curcumin so as to improve its pharmacological effects, as well as provide additional evidence of curcumin's efficacy in the treatment of pulmonary diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A Study on Neuroprotective Effects of Curcumin on the Diabetic Rat Brain.

    Science.gov (United States)

    Zhang, L; Kong, X-J; Wang, Z-Q; Xu, F-S; Zhu, Y-T

    2016-01-01

    The present study was aimed to study the neuroprotective therapeutic effect of curcumin on the male albino rat brain. Subarachnoid hemorrhage leads to severe mortality rate and morbidity, and oxidative stress is a crucial factor in subarachnoid hemorrhage. Therefore, we investigated the effect of curcumin on oxidative stress and glutamate and glutamate transporter-1 on a subarachnoid hemorrhage-induced male albino rats. The curcumin commonly used for the treatment and saline used for the control. Curcumin (10 mg/kg bwt) dissolved in saline and administered orally to the rats for one week. Glutamate, glutamate transporter-1, malondialdehyde (MDA), superoxide dismutase (SOD), catalase, glutathione reductase and lactate dehydrogenase (LDH) activities were determined. Glutamate level was lower in the curcumin-treated rats compared to their respective controls. Glutamate transporter-1 did not alter in the curcumin-treated rats compared to their controls. Glutamate transporter-1 protein expression is significantly reduced in the curcumin-treated rats. MDA levels decreased 18 and 29 % in the hippocampus and the cortex region respectively. SOD (17% and 32%), and catalase (19% and 24%) activities were increased in the curcumin-treated hippocampus and the cortex region respectively. Glutathione reductase (13% and 19%) and LDH (21% and 30%) activities were increased in the treated hippocampus and the cortex region respectively. The mRNA expression of NK-kB and TLR4 was significantly reduced following curcumin treatment. Taking all these data together, the curcumin found to be effective against oxidative stress and glutamate neurotoxicity in the male albino rats.

  13. Efficacy of Biodegradable Curcumin Nanoparticles in Delaying Cataract in Diabetic Rat Model

    OpenAIRE

    Grama, Charitra N.; Suryanarayana, Palla; Patil, Madhoosudan A.; Raghu, Ganugula; Balakrishna, Nagalla; Kumar, M. N. V. Ravi; Reddy, Geereddy Bhanuprakash

    2013-01-01

    Curcumin, the active principle present in the yellow spice turmeric, has been shown to exhibit various pharmacological actions such as antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic activities. Previously we have reported that dietary curcumin delays diabetes-induced cataract in rats. However, low peroral bioavailability is a major limiting factor for the success of clinical utilization of curcumin. In this study, we have administered curcumin encapsulated nanoparticles ...

  14. Curcumin-Loaded Blood-Stable Polymeric Micelles for Enhancing Therapeutic Effect on Erythroleukemia.

    Science.gov (United States)

    Gong, Feirong; Chen, Dan; Teng, Xin; Ge, Junhua; Ning, Xianfeng; Shen, Ya-Ling; Li, Jian; Wang, Shanfeng

    2017-08-07

    Curcumin has high potential in suppressing many types of cancer and overcoming multidrug resistance in a multifaceted manner by targeting diverse molecular targets. However, the rather low systemic bioavailability resulted from its poor solubility in water and fast metabolism/excretion in vivo has hampered its applications in cancer therapy. To increase the aqueous solubility of curcumin while retaining the stability in blood circulation, here we report curcumin-loaded copolymer micelles with excellent in vitro and in vivo stability and antitumor efficacy. The two copolymers used for comparison were methoxy-poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) and N-(tert-butoxycarbonyl)-l-phenylalanine end-capped mPEG-PCL (mPEG-PCL-Phe(Boc)). In vitro cytotoxicity evaluation against human pancreatic SW1990 cell line showed that the delivery of curcumin in mPEG-PCL-Phe(Boc) micelles to cancer cells was efficient and dosage-dependent. The pharmacokinetics in ICR mice indicated that intravenous (i.v.) administration of curcumin/mPEG-PCL-Phe(Boc) micelles could retain curcumin in plasma much better than curcumin/mPEG-PCL micelles. Biodistribution results in Sprague-Dawley rats also showed higher uptake and slower elimination of curcumin into liver, lung, kidney, and brain, and lower uptake into heart and spleen of mPEG-PCL-Phe(Boc) micelles, as compared with mPEG-PCL micelles. Further in vivo efficacy evaluation in multidrug-resistant human erythroleukemia K562/ADR xenograft model revealed that i.v. administration of curcumin-loaded mPEG-PCL-Phe(Boc) micelles significantly delayed tumor growth, which was attributed to the improved stability of curcumin in the bloodstream and increased systemic bioavailability. The mPEG-PCL-Phe(Boc) micellar system is promising in overcoming the key challenge of curcumin's to promote its applications in cancer therapy.

  15. Antiparasitic efficacy of curcumin from Curcuma longa against Ichthyophthirius multifiliis in grass carp.

    Science.gov (United States)

    Liu, Yan-Meng; Zhang, Qi-Zhong; Xu, De-Hai; Fu, Yao-Wu; Lin, De-Jie; Zhou, Sheng-Yu; Li, Jian-Pei

    2017-03-15

    Ichthyophthirius multifiliis is a ciliated parasite that elicits great economic losses in aquaculture. In the present study, a polyphenol compound, curcumin, was obtained from the rhizome of Curcuma longa by bioassay-guided isolation based on the efficacy of anti-I. multifiliis theronts. Anti-I. multifiliis efficacy of curcumin was evaluated in vitro and in vivo. Curcumin resulted in 100% mortality of I. multifiliis theronts at a concentration of 1mg/L within 21.7±1.2min and killed all tomonts at 8mg/L within 31.0±1.0min. Curcumin at 4mg/L for 16h exposure can completely terminate the reproduction of tomonts. The pretreatment with curcumin at concentrations of 0.5, 0.25, and 0.125mg/L for 2h significantly reduced the infectivity of I. multifiliis theronts. Curcumin at 4mg/L completely cured the infected grass carp and protected naive fish from I. multifiliis infection after 10days exposure. The 4h median effective concentration (EC 50 ) of curcumin to I. multifiliis theronts and the 5h EC 50 of curcumin to I. multifiliis tomonts were 0.303mg/L and 2.891mg/L, respectively. The 96h median lethal concentration (LC 50 ) of curcumin to grass carp was 56.8mg/L, which was approximately 187.4 times EC 50 of curcumin to theronts and 19.6 times EC 50 of curcumin to tomonts. The results demonstrated that curcumin has the potential to be a safe and effective therapeutant for controlling ichthyophthiriasis in aquaculture. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Curcumin induces apoptosis of upper aerodigestive tract cancer cells by targeting multiple pathways.

    Directory of Open Access Journals (Sweden)

    A R M Ruhul Amin

    Full Text Available Curcumin, a natural compound isolated from the Indian spice "Haldi" or "curry powder", has been used for centuries as a traditional remedy for many ailments. Recently, the potential use of curcumin in cancer prevention and therapy urges studies to uncover the molecular mechanisms associated with its anti-tumor effects. In the current manuscript, we investigated the mechanism of curcumin-induced apoptosis in upper aerodigestive tract cancer cell lines and showed that curcumin-induced apoptosis is mediated by the modulation of multiple pathways such as induction of p73, and inhibition of p-AKT and Bcl-2. Treatment of cells with curcumin induced both p53 and the related protein p73 in head and neck and lung cancer cell lines. Inactivation of p73 by dominant negative p73 significantly protected cells from curcumin-induced apoptosis, whereas ablation of p53 by shRNA had no effect. Curcumin treatment also strongly inhibited p-AKT and Bcl-2 and overexpression of constitutively active AKT or Bcl-2 significantly inhibited curcumin-induced apoptosis. Taken together, our findings suggest that curcumin-induced apoptosis is mediated via activating tumor suppressor p73 and inhibiting p-AKT and Bcl-2.

  17. Curcumin synergizes with resveratrol to inhibit colon cancer.

    Science.gov (United States)

    Majumdar, Adhip P N; Banerjee, Sanjeev; Nautiyal, Jyoti; Patel, Bhaumik B; Patel, Vaishali; Du, Jianhua; Yu, Yingjie; Elliott, Althea A; Levi, Edi; Sarkar, Fazlul H

    2009-01-01

    Development and progression of many malignancies, including colorectal cancer, are associated with activation of multiple signaling pathways. Therefore, inhibition of these signaling pathways with noncytotoxic natural products represents a logical preventive and/or therapeutic approach for colon cancer. Curcumin and resveratrol, both of which inhibit the growth of transformed cells and colon carcinogenesis, were selected to examine whether combining them would be an effective preventive and/or therapeutic strategy for colon cancer. Indeed, the combination of curcumin and resveratrol was found to be more effective in inhibiting growth of p53-positive (wt) and p53-negative colon cancer HCT-116 cells in vitro and in vivo in SCID xenografts of colon cancer HCT-116 (wt) cells than either agent alone. Analysis by Calcusyn software showed synergism between curcumin and resveratrol. The inhibition of tumors in response to curcumin and/or resveratrol was associated with the reduction in proliferation and stimulation of apoptosis accompanied by attenuation of NF-kappaB activity. In vitro studies have further demonstrated that the combinatorial treatment caused a greater inhibition of constitutive activation of EGFR and its family members as well as IGF-1R. Our current data suggest that the combination of curcumin and resveratrol could be an effective preventive/therapeutic strategy for colon cancer.

  18. Curcumin and insulin resistance-Molecular targets and clinical evidences.

    Science.gov (United States)

    Jiménez-Osorio, Angélica Saraí; Monroy, Adriana; Alavez, Silvestre

    2016-11-12

    Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), the main component of the Indian spice turmeric, has been used in traditional medicine to improve diabetes and its comorbidities. Since the last two decades, scientific research has shown that in addition to its antioxidant properties, curcumin could also work as protein homeostasis regulator and it is able to modulate other intracellular pathways. Curcumin supplementation has been proposed to improve insulin resistance (IR) through the activation of the insulin receptor and its downstream pathways in several experimental models, pointing out that its clinical use may be a good and innocuous strategy to improve IR-related diseases. IR is associated with many diseases and syndromes like carbohydrate intolerance, diabetes, metabolic syndrome, and cardiovascular disease. Therefore, it is imperative to identify safe therapeutic interventions aimed to reduce side effects that could lead the patient to leave the treatment. To date, many clinical trials have been carried out using turmeric and curcumin to improve metabolic syndrome, carbohydrate intolerance, diabetes, and obesity in individuals with IR. Results so far are inconclusive because dose, time of treatment, and type of curcumin can change the study outcome significantly. However, there is some clinical evidence suggesting a beneficial effect of curcumin on IR. In this review, we discuss the factors that could influence curcumin effects in clinical trials aimed to improve IR and related diseases, and the conclusions that can be drawn from results obtained so far. © 2016 BioFactors, 42(6):561-580, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  19. Therapeutic roles of curcumin: lessons learned from clinical trials.

    Science.gov (United States)

    Gupta, Subash C; Patchva, Sridevi; Aggarwal, Bharat B

    2013-01-01

    Extensive research over the past half century has shown that curcumin (diferuloylmethane), a component of the golden spice turmeric (Curcuma longa), can modulate multiple cell signaling pathways. Extensive clinical trials over the past quarter century have addressed the pharmacokinetics, safety, and efficacy of this nutraceutical against numerous diseases in humans. Some promising effects have been observed in patients with various pro-inflammatory diseases including cancer, cardiovascular disease, arthritis, uveitis, ulcerative proctitis, Crohn's disease, ulcerative colitis, irritable bowel disease, tropical pancreatitis, peptic ulcer, gastric ulcer, idiopathic orbital inflammatory pseudotumor, oral lichen planus, gastric inflammation, vitiligo, psoriasis, acute coronary syndrome, atherosclerosis, diabetes, diabetic nephropathy, diabetic microangiopathy, lupus nephritis, renal conditions, acquired immunodeficiency syndrome, β-thalassemia, biliary dyskinesia, Dejerine-Sottas disease, cholecystitis, and chronic bacterial prostatitis. Curcumin has also shown protection against hepatic conditions, chronic arsenic exposure, and alcohol intoxication. Dose-escalating studies have indicated the safety of curcumin at doses as high as 12 g/day over 3 months. Curcumin's pleiotropic activities emanate from its ability to modulate numerous signaling molecules such as pro-inflammatory cytokines, apoptotic proteins, NF-κB, cyclooxygenase-2, 5-LOX, STAT3, C-reactive protein, prostaglandin E(2), prostate-specific antigen, adhesion molecules, phosphorylase kinase, transforming growth factor-β, triglyceride, ET-1, creatinine, HO-1, AST, and ALT in human participants. In clinical trials, curcumin has been used either alone or in combination with other agents. Various formulations of curcumin, including nanoparticles, liposomal encapsulation, emulsions, capsules, tablets, and powder, have been examined. In this review, we discuss in detail the various human diseases in which the

  20. Curcumin-Combretastatin Nanocells as Breast Cancer Cytotoxic and Antiangiogenic Agent

    Science.gov (United States)

    2008-09-01

    encapsulation of curcumin to increase its solubility and cytotoxicity. 5 ImageStream multispectral imaging flow cytometry and a real-time cell...easily soluble in water and most of consumed curcumin does not reach the bloodstream. In several Phase I clinical trials where patients were...that can render this hydrophobic polyphenol soluble in an aqueous phase medium. Recently, two liposomal formulations of curcumin have been reported

  1. Curcumin: a novel therapeutic for burn pain and wound healing

    Science.gov (United States)

    2013-08-01

    given as an adjuvant with the nonsteroidal antiinflammatory drug (NSAID) diclofenac, reduces spontaneous pain behaviors in a formalin-induced orofacial ...R, Hota D, Chakrabarti A. Evaluation of antihyperalgesic effect of curcumin on formalin-induced orofacial pain in rat. Phytother Res 2009;23:507-12...bioavailability 5. Curcumin delivery vehicles 6. Conclusion 7. Expert opinion Review Curcumin: a novel therapeutic for burn pain and wound healing Bopaiah

  2. Synthesis of Curcumin Glycosides with Enhanced Anticancer Properties Using One-Pot Multienzyme Glycosylation Technique.

    Science.gov (United States)

    Gurung, Rit Bahadur; Gong, So Youn; Dhakal, Dipesh; Le, Tuoi Thi; Jung, Na Rae; Jung, Hye Jin; Oh, Tae Jin; Sohng, Jae Kyung

    2017-09-28

    Curcumin is a natural polyphenolic compound, widely acclaimed for its antioxidant, antiinflammatory, antibacterial, and anticancerous properties. However, its use has been limited due to its low-aqueous solubility and poor bioavailability, rapid clearance, and low cellular uptake. In order to assess the effect of glycosylation on the pharmacological properties of curcumin, one-pot multienzyme (OPME) chemoenzymatic glycosylation reactions with UDP- α-D-glucose or UDP-α-D-2-deoxyglucose as donor substrate were employed. The result indicated significant conversion of curcumin to its glycosylated derivatives: curcumin 4'- O -β- glucoside, curcumin 4',4''-di- O -β-glucoside, curcumin 4'- O -β-2-deoxyglucoside, and curcumin 4',4''-di- O -β-2-deoxyglucoside. The products were characterized by ultra-fast performance liquid chromatography, high-resolution quadruple-time-of-flight electrospray ionization-mass spectrometry, and NMR analyses. All the products showed improved water solubility and comparable antibacterial activities. Additionally, the curcumin 4'- O -β-glucoside and curcumin 4'- O -β-2-deoxyglucoside showed enhanced anticancer activities compared with the parent aglycone and diglycoside derivatives. This result indicates that glycosylation can be an effective approach for enhancing the pharmaceutical properties of different natural products, such as curcumin.

  3. Anti-tumor bioactivities of curcumin on mice loaded with gastric carcinoma.

    Science.gov (United States)

    Wang, Xiao-Ping; Wang, Qiao-Xia; Lin, Huan-Ping; Chang, Na

    2017-09-20

    Curcumin, a derivative from the dried rhizome of curcuma longa, has been proven to possess anti-tumor effects. However, the detailed molecular mechanisms have not been fully elucidated. In this study, we aimed to explore the anti-tumor mechanisms of curcumin in treating gastric cancer. BALB/C mice grafted with a mouse gastric adenocarcinoma cell line (MFC) were used as the experimental model. Mice received different doses of curcumin after grafting. Tumor size was measured and tumor weight was determined after tumor inoculation. TUNEL assay and flow cytometric analysis were applied to evaluate the apoptosis of the cancer cells. Serum cytokines IFN-γ, TNF-α, granzyme B and perforin were detected by ELISA assay. The anti-tumor effect was determined using cytotoxic T-lymphocyte (CTL) assays and in vivo tumor prevention tests. The expression of DEC1, HIF-1α, STAT3 and VEGF in tumor tissues was examined by immunostaining and analyzed using an Image J analysis system. Compared with controls, tumor growth (size and weight) was significantly inhibited by curcumin treatment (P curcumin treatment group. Splenocyte cells from mice treated with curcumin exhibited higher cytolytic effects on MFC cancer cells than those from mice treated with saline (P curcumin treatment. Our results indicate that curcumin inhibits the proliferation of gastric carcinoma by inducing the apoptosis of tumor cells, activating immune cells to secrete a large amount of cytokines, and down-regulating the DEC1, HIF-1α, VEGF and STAT3 signal transduction pathways.

  4. The protective effect of curcumin against lithium-induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Mohammad Shaterpour

    2017-08-01

    Full Text Available Lithium is an element which has been used as salts of chloride or carbonate for many years in the treatment of some psychological disorders such as mania, bipolar or schizophrenic diseases. Chronic application of lithium may induce some serious nephropathies such as natriuresis, renal tubular acidosis, tubulointerstitial nephritis progression to progressive chronic kidney disease and hypercalcemia and, most commonly, nephrogenic diabetes insipidus. Curcumin is an antioxidant derived from Curcuma longa (turmeric or curcuma which has the ability to react directly with reactive species and up-regulation of many cytoprotective and antioxidant proteins. The preventive roles of curcumin in nephropathies were reported, but there was little information on the protective effect of curcumin against lithium-induced nephrotoxicity. In this study, male Wistar rats divided into five groups of six each and were treated as follows: group1; animals were received lithium chloride as 2 mmol/kg, group 2; animals were received normal saline (0, 5%, group 3; animals were received curcumin (200 mg/kg, group 4 animals were received curcumin plus lithium and group 5; animals were received solvent intraperitoneally for three weeks. Then the animals were killed and biochemical parameters of blood were assayed and histopathological assessment was performed. The results have shown that curcumin significantly improved the biochemicals (BUN, creatinine, malondialdehyde. Curcumin prevented significantly the histological parameters that were changed by lithium administration in rats. Our results provide new insights into beneficial usages of curcumin in chronic nephrotoxicity induced by lithium salts.

  5. Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats.

    Science.gov (United States)

    Suryanarayana, Palla; Saraswat, Megha; Mrudula, Tiruvalluru; Krishna, T Prasanna; Krishnaswamy, Kamala; Reddy, G Bhanuprakash

    2005-06-01

    The purpose of this study was to investigate the effect of curcumin and its source, turmeric, on streptozotocin-induced diabetic cataract in rats. Wistar-NIN rats were selected and diabetes was induced by streptozotocin (35 mg/kg body weight, intraperitoneally) and divided into four groups (group II-V). The control (group I) rats received only vehicle. Group I and II animals received an unsupplemented AIN-93 diet, and those in groups III, IV, and V received 0.002% and 0.01% curcumin and 0.5% turmeric, respectively, in an AIN-93 diet for a period of 8 weeks. Cataract progression due to hyperglycemia was monitored by slit lamp biomicroscope and classified into four stages. At the end of 8 weeks, the animals were killed and the biochemical pathways involved in the pathogenesis of cataract such as oxidative stress, polyol pathway, alterations in protein content and crystallin profile in the lens were investigated, to understand the possible mechanism of action of curcumin and turmeric. Blood glucose and insulin levels were also determined. Although, both curcumin and turmeric did not prevent streptozotocin-induced hyperglycemia, as assessed by blood glucose and insulin levels, slit lamp microscope observations indicated that these supplements delayed the progression and maturation of cataract. The present studies suggest that curcumin and turmeric treatment appear to have countered the hyperglycemia-induced oxidative stress, because there was a reversal of changes with respect to lipid peroxidation, reduced glutathione, protein carbonyl content and activities of antioxidant enzymes in a significant manner. Also, treatment with turmeric or curcumin appears to have minimized osmotic stress, as assessed by polyol pathway enzymes. Most important, aggregation and insolubilization of lens proteins due to hyperglycemia was prevented by turmeric and curcumin. Turmeric was more effective than its corresponding levels of curcumin. The results indicate that turmeric and curcumin

  6. Anti-inflammation performance of curcumin-loaded mesoporous calcium silicate cement.

    Science.gov (United States)

    Chen, Yuan-Chien; Shie, Ming-You; Wu, Yuan-Haw Andrew; Lee, Kai-Xing Alvin; Wei, Li-Ju; Shen, Yu-Fang

    2017-09-01

    Calcium silicate (CS) cements have excellent bioactivity and can induce the bone-like apatite formation. They are good biomaterials for bone tissue engineering and bone regenerative medicine. However, they have degradability and the dissolved CS can cause the inflammatory response at the early post-implantation stage. The purpose of this study was to design and prepare the curcumin-loaded mesoporous CS (MesoCS/curcumin) cements as a strategy to reduce the inflammatory reaction after implantation. The MesoCS/curcumin cements were designed and prepared. The characteristics of MesoCS/curcumin specimens were examined by transmission electron microscopy (TEM), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their physical properties, biocompatibility, and anti-inflammatory ability were also evaluated. The MesoCS/curcumin cements displayed excellent biocompatibility and physical properties. Their crystalline characterizations were very similar with MesoCS cements. After soaking in simulated body fluid, the bone-like apatite layer of the MesoCS/curcumin cements could be formed. In addition, it could inhibit the expression of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1) after inflammation reaction induced by lipopolysaccharides and had good anti-inflammatory ability. Adding curcumin in MesoCS cements can reduce the inflammatory reaction, but does not affect the original biological activity and properties of MesoCS cements. It can provide a good strategy to inhibit the inflammatory reaction after implantation for bone tissue engineering and bone regenerative medicine. Copyright © 2017. Published by Elsevier B.V.

  7. Photodynamic action of curcumin derived polymer modified ZnO nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hariharan, R.; Senthilkumar, S. [P.G. Department of Chemistry, Cardamom Planters’ Association College, Bodinayakanur 625513, Tamil Nadu (India); Suganthi, A., E-mail: suganthiphd09@gmail.com [P.G. and Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamil Nadu (India); Rajarajan, M., E-mail: rajarajan_1962@yahoo.com [P.G. Department of Chemistry, Cardamom Planters’ Association College, Bodinayakanur 625513, Tamil Nadu (India)

    2012-11-15

    Highlights: ► ZnO/PVA nano sensitized with curcumin and its metal complex were synthesized by vacuum evaporation method. ► M/cur sensitized on ZnO/PVA nanocomposites were characterized. ► Generation of {sup 1}O{sub 2} and ROS were detected by optical and EPR-spin trapping method. ► It was found that photoinduced cleavage of DNA using Zn/cur–ZnO/PVA was superior. ► Photodegradation of MB in water catalyzed by ZnO/PVA–Zn/cur was also superior under visible light. -- Abstract: The photodynamic action of ZnO nano can be improved by modifying the surface by PVA and encapsulating the natural product, curcumin. The synthesized ZnO/PVA nanocomposites have been characterized using XRD, SEM, TEM, FTIR, TG–DTA, etc. Here we are reporting the photodynamic effect of ZnO nanocomposites on pUC18 DNA. Based on optical and EPR measurements, singlet oxygen and other ROS were responsible for photocleavage of DNA. Most importantly, derived curcumin modified ZnO/PVA nanocomposites were comparatively more effective than derived curcumin complex against HeLa cell lines under in vitro condition. In addition, photodegradation of methylene blue (MB) in water catalyzed by nano ZnO/PVA–curcumin derivative was investigated at room temperature. Under visible irradiation photocatalytic activity of ZnO nanomaterial sensitized curcumin was higher than those of curcumin and nano ZnO.

  8. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin.

    Science.gov (United States)

    Jin, Hong-Hao; Lu, Qun; Jiang, Jian-Guo

    2016-03-01

    Using thin film ultrasonic dispersion method, the curcumin liposomes were prepared with milk fat globule membrane (MFGM) phospholipids and soybean lecithins, respectively, to compare the characteristics and stability of the 2 curcumin liposomes. The processing parameters of curcumin liposomes were investigated to evaluate their effects on the encapsulation efficiency. Curcumin liposomes were characterized in terms of size distribution, ζ-potential, and in vitro release behavior, and then their storage stability under various conditions was evaluated. The curcumin liposomes prepared with MFGM phospholipids had an encapsulation efficiency of about 74%, an average particle size of 212.3 nm, and a ζ-potential of -48.60 mV. The MFGM liposomes showed higher encapsulation efficiency, smaller particle size, higher absolute value of ζ-potential, and slower in vitro release than soybean liposomes. The retention rate of liposomal curcumin was significantly higher than that of free curcumin. The stability of the 2 liposomes under different pH was almost the same, but MFGM liposomes displayed a slightly higher stability than soybean liposomes under the conditions of Fe(3+), light, temperature, oxygen, and relative humidity. In conclusion, MFGM phospholipids have potential advantages in the manufacture of curcumin liposomes used in food systems. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Curcumin Anti-Apoptotic Action in a Model of Intestinal Epithelial Inflammatory Damage.

    Science.gov (United States)

    Loganes, Claudia; Lega, Sara; Bramuzzo, Matteo; Vecchi Brumatti, Liza; Piscianz, Elisa; Valencic, Erica; Tommasini, Alberto; Marcuzzi, Annalisa

    2017-06-06

    The purpose of this study is to determine if a preventive treatment with curcumin can protect intestinal epithelial cells from inflammatory damage induced by IFNγ. To achieve this goal we have used a human intestinal epithelial cell line (HT29) treated with IFNγ to undergo apoptotic changes that can reproduce the damage of intestinal epithelia exposed to inflammatory cytokines. In this model, we measured the effect of curcumin (curcuminoid from Curcuma Longa ) added as a pre-treatment at different time intervals before stimulation with IFNγ. Curcumin administration to HT29 culture before the inflammatory stimulus IFNγ reduced the cell apoptosis rate. This effect gradually declined with the reduction of the curcumin pre-incubation time. This anti-apoptotic action by curcumin pre-treatment was paralleled by a reduction of secreted IL7 in the HT29 culture media, while there was no relevant change in the other cytokine levels. Even though curcumin pre-administration did not impact the activation of the NF-κB pathway, a slight effect on the phosphorylation of proteins in this inflammatory signaling pathway was observed. In conclusion, curcumin pre-treatment can protect intestinal cells from inflammatory damage. These results can be the basis for studying the preventive role of curcumin in inflammatory bowel diseases.

  10. Curcumin Promotes A-beta Fibrillation and Reduces Neurotoxicity in Transgenic Drosophila

    Science.gov (United States)

    Caesar, Ina; Jonson, Maria; Nilsson, K. Peter R.; Thor, Stefan; Hammarström, Per

    2012-01-01

    The pathology of Alzheimer's disease (AD) is characterized by the presence of extracellular deposits of misfolded and aggregated amyloid-β (Aβ) peptide and intraneuronal accumulation of tangles comprised of hyperphosphorylated Tau protein. For several years, the natural compound curcumin has been proposed to be a candidate for enhanced clearance of toxic Aβ amyloid. In this study we have studied the potency of feeding curcumin as a drug candidate to alleviate Aβ toxicity in transgenic Drosophila. The longevity as well as the locomotor activity of five different AD model genotypes, measured relative to a control line, showed up to 75% improved lifespan and activity for curcumin fed flies. In contrast to the majority of studies of curcumin effects on amyloid we did not observe any decrease in the amount of Aβ deposition following curcumin treatment. Conformation-dependent spectra from p-FTAA, a luminescent conjugated oligothiophene bound to Aβ deposits in different Drosophila genotypes over time, indicated accelerated pre-fibrillar to fibril conversion of Aβ1–42 in curcumin treated flies. This finding was supported by in vitro fibrillation assays of recombinant Aβ1–42. Our study shows that curcumin promotes amyloid fibril conversion by reducing the pre-fibrillar/oligomeric species of Aβ, resulting in a reduced neurotoxicity in Drosophila. PMID:22348084

  11. High performance curcumin subcritical water extraction from turmeric (Curcuma longa L.).

    Science.gov (United States)

    Valizadeh Kiamahalleh, Mohammad; Najafpour-Darzi, Ghasem; Rahimnejad, Mostafa; Moghadamnia, Ali Akbar; Valizadeh Kiamahalleh, Meisam

    2016-06-01

    Curcumin is a hydrophobic polyphenolic compound derived from turmeric rhizome, which consists about 2-5% of the total rhizome content and is a more valuable component of turmeric. For reducing the drawbacks of conventional extraction (using organic solvents) of curcumin, the water as a clean solvent was used for extracting curcumin. Subcritical water extraction (SWE) experimental setup was fabricated in a laboratory scale and the influences of some parameters (e.g. extraction temperature, particle size, retention time and pressure) on the yield of extraction were investigated. Optimum extraction conditions such as SWE pressure of 10bar, extractive temperature of 140°C, particle size of 0.71mm and retention time of 14min were defined. The maximum amount of curcumin extracted at the optimum condition was 3.8wt%. The yield of curcumin extraction was more than 76wt% with regards to the maximum possible curcumin content of turmeric, as known to be 5%. The scanning electron microscope (SEM) images from the outer surface of turmeric, before and after extraction, clearly demonstrated the effect of each parameter; changes in porosity and hardness of turmeric that is directly related to the amount of extracted curcumin in process optimization of the extraction parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice.

    Science.gov (United States)

    Yuan, Jichao; Liu, Wei; Zhu, Haitao; Zhang, Xuan; Feng, Yang; Chen, Yaxing; Feng, Hua; Lin, Jiangkai

    2017-01-01

    Early brain injury, one of the most important mechanisms underlying subarachnoid hemorrhage (SAH), comprises edema formation and blood-brain barrier (BBB) disruption. Curcumin, an active extract from the rhizomes of Curcuma longa, alleviates neuroinflammation by as yet unknown neuroprotective mechanisms. In this study, we examined whether curcumin treatment ameliorates SAH-induced brain edema and BBB permeability changes, as well as the mechanisms underlying this phenomenon. We induced SAH in mice via endovascular perforation, administered curcumin 15 min after surgery and evaluated neurologic scores, brain water content, Evans blue extravasation, Western blot assay results, and immunohistochemical analysis results 24 h after surgery. Curcumin significantly improved neurologic scores and reduced brain water content in treated mice compared with SAH mice. Furthermore, curcumin decreased Evans blue extravasation, matrix metallopeptidase-9 expression, and the number of Iba-1-positive microglia in treated mice compared with SAH mice. At last, curcumin treatment increased the expression of the tight junction proteins zonula occludens-1 and occludin in treated mice compared with vehicle-treated and sample SAH mice. We demonstrated that curcumin inhibits microglial activation and matrix metallopeptidase-9 expression, thereby reducing brain edema and attenuating post-SAH BBB disruption in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Comparison of pharmaceutical nanoformulations for curcumin: Enhancement of aqueous solubility and carrier retention.

    Science.gov (United States)

    Allijn, Iris E; Schiffelers, Raymond M; Storm, Gert

    2016-06-15

    Curcumin, originally used in traditional medicine and as a spice, is one of the most studied and most popular natural products of the past decade. It has been described to be an effective anti-inflammatory and anti-cancer drug and protects against chronic diseases such as rheumatoid arthritis and atherosclerosis. Despite these promising pharmacological properties, curcumin is also very lipophilic, which makes its formulation challenging. Ideally the nanocarrier should additionally also retain the encapsulated curcumin to provide target tissue accumulation. In this study we aimed to tackle this aqueous solubility and carrier retention challenge of curcumin by encapsulating curcumin in different nanoparticles. We successfully loaded LDL (30nm), polymeric micelles (80nm), liposomes (180nm) and Intralipid (280nm) with curcumin. The relative loading capacity was inversely related to the size of the particle. The stability for all formulations was determined in fetal bovine serum over a course of 24h. Although all curcumin-nanoparticles were stable in buffer solution, all leaked more than 70% of curcumin under physiological conditions. Altogether, tested nanoparticles do solve the aqueous insolubility problem of curcumin, however, because of their leaky nature, the challenge of carrier retention remains. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Curcumin Protects Neuron against Cerebral Ischemia-Induced Inflammation through Improving PPAR-Gamma Function

    Directory of Open Access Journals (Sweden)

    Zun-Jing Liu

    2013-01-01

    Full Text Available Cerebral ischemia is the most common cerebrovascular disease worldwide. Recent studies have demonstrated that curcumin had beneficial effect to attenuate cerebral ischemic injury. However, it is unclear how curcumin protects against cerebral ischemic injury. In the present study, using rat middle cerebral artery occlusion model, we found that curcumin was a potent PPARγ agonist in that it upregulated PPARγ expression and PPARγ-PPRE binding activity. Administration of curcumin markedly decreased the infarct volume, improved neurological deficits, and reduced neuronal damage of rats. In addition, curcumin suppressed neuroinflammatory response by decreasing inflammatory mediators, such as IL-1β, TNF-α, PGE2, NO, COX-2, and iNOS induced by cerebral ischemia of rats. Furthermore, curcumin suppressed IκB degradation that was caused by cerebral ischemia. The present data also showed that PPARγ interacted with NF-κB-p65 and thus inhibited NF-κB activation. All the above protective effects of curcumin on cerebral ischemic injury were markedly attenuated by GW9662, an inhibitor of PPARγ. Our results as described above suggested that PPARγ induced by curcumin may play a critical role in protecting against brain injury through suppression of inflammatory response. It also highlights the potential of curcumin as a therapeutic agent against cerebral ischemia.

  15. Antibacterial activity of indium curcumin and indium diacetylcurcumin

    African Journals Online (AJOL)

    Studies on curcumin, the principal element of turmeric powder, have demonstrated several biological actions such as antibacterial activity. Evaluation of new analogs or new compounds of curcumin for their antibacterial effect is interesting for researchers. In this in vitro study, we attempted to test the antibacterial activity of ...

  16. Effect of curcumin on Helicobacter pylori biofilm formation ...

    African Journals Online (AJOL)

    Three-dimensional structure of biofilm was imaged by scanning electron microscopy. The effect of curcumin on H. pylori adherence to HEp-2 cells was also investigated. Subinhibitory concentrations of curcumin inhibited the biofilm in dose dependent manner. However, H.pylori could restore ability to form biofilm during ...

  17. Inhibitory Effect of Curcumin on Candida-albicans compared with Nystatin: an in-vitro Study

    Directory of Open Access Journals (Sweden)

    Neda Babaii

    2016-10-01

    Full Text Available Introduction: Curcumin is the active ingredient in the traditional herbal remedy and dietary spice turmeric (Curcuma longa. Curcumin has a surprisingly wide range of beneficial properties, including anti-inflammatory, antioxidant, chemopreventive and chemotherapeutic activity. on basis of recent studies; it has antifungal and antibacterial effects. The aim of this study was in-vitro evaluation of antifungal effect of curcumin on candida albicans and comparing it with nystatin. Methods: after preparing curcumin powder, 3 laboratory methods were used to evaluate antifungal effect. The first method was cell count technique, used to evaluate the amount of candida albicans after time, in different concentrations of curcumin in Dimethyl sulfoxide (DMSO. The second was cup bioassay, in which inhibitory a zone of curcumin in DMSO was evaluated in sabouraud culture plates; and in third method, inhibitory zones of dried disks; which contained curcumin in DMSO were evaluated. Results: the result of all three methods showed that curcumin has antifungal effect and this effect increases in more concentrations. Conclusion: curcumin has apparent and dose dependent antifungal effect on candida albicans.

  18. Stabilisation of Laryngeal AL Amyloidosis with Long Term Curcumin Therapy

    Directory of Open Access Journals (Sweden)

    Terry Golombick

    2015-01-01

    Full Text Available Multiple myeloma (MM, smoldering myeloma (SMM, and monoclonal gammopathy of undetermined significance (MGUS represent a spectrum of plasma cell dyscrasias (PCDs. Immunoglobulin light chain amyloidosis (AL falls within the spectrum of these diseases and has a mortality rate of more than 80% within 2 years of diagnosis. Curcumin, derived from turmeric, has been shown to have a clinical benefit in some patients with PCDs. In addition to a clinical benefit in these patients, curcumin has been found to have a strong affinity for fibrillar amyloid proteins. We thus administered curcumin to a patient with laryngeal amyloidosis and smoldering myeloma and found that the patient has shown a lack of progression of his disease for a period of five years. This is in keeping with our previous findings of clinical benefits of curcumin in patients with plasma cell dyscrasias. We recommend further evaluation of curcumin in patients with primary AL amyloidosis.

  19. Role of H-bond formation in the photoreactivity of curcumin

    OpenAIRE

    Nardo, Luca; Paderno, Roberta; Andreoni, Alessandra; Másson, Már; Haukvik, Tone; TØnnesen, Hanne Hjorth

    2008-01-01

    Curcumin is the main constituent of curry. In its ground state it shows chemo-preventive, chemo-therapeutic and anti-inflammatory effects. For its immunostimulating action it has been considered for the development of drugs suitable for treating AIDS and cystic fibrosis. Further biological action is induced in curcumin by photoactivation: in suitable environmental conditions electronically excited curcumin can act as a singlet oxygen generator. Moreover, cytotoxicity is enhanced by light expo...

  20. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    OpenAIRE

    Zorofchian Moghadamtousi, Soheil; Abdul Kadir, Habsah; Hassandarvish, Pouya; Tajik, Hassan; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agen...

  1. Research on curcumin: A meta-analysis of potentially malignant disorders.

    Science.gov (United States)

    Ara, Syeda Arshiya; Mudda, Jayashree A; Lingappa, Ashok; Rao, Purushottam

    2016-01-01

    Turmeric has been described in ayurveda, and is referred by different names in different cultures, the active principle called curcumin or diferuloylmethane, has been shown to exhibit numerous activities. Extensive research over the last half century has revealed several important functions of curcumin. It binds to a variety of proteins and inhibits the activity of various kinases. By modulating the activation of various transcription factors, curcumin regulates the expression of inflammatory enzymes, cytokines, adhesion molecules, and cell survival proteins. Various preclinical, clinical, and animal studies suggest that curcumin has potential as an antiproliferative, anti-invasive, and antiangiogenic, as a mediator of chemoresistance, chemopreventive, and as a therapeutic agent. Thus, curcumin a spice once relegated to the kitchen shelf has moved into the clinic and may prove to be "Curecumin." Methodology and Objectives: The focus of this publication is to provide research on curcumin with scientific publications on curcumin indexed in PubMed, Google J-Gate including systematic reviews, randomized controlled trials (RCT's), observational studies, or case series reports for various potentially malignant disorders (PMD's) with special attention to studies on oral submucous fibrosis. This research will be valuable in terms of identifying opportunities to provide recommendations for future research, in terms of the populations to research, the types of interventions needed, the types of outcomes to be measured, the study designs needed, to initiate a pathway for a low-cost research plan for future clinical trials in this field with an emphasis on conducting studies in regions of the world where PMD's are prevalent. There is a lacunae for scientific review of curcumin for PMDs specially on OSMF. Appropriate therapeutic interventions are needed for the initial, intermediate, and advanced stages of the disease. High-quality RCTs should be initiated.

  2. Curcumin modulates endothelial permeability and monocyte transendothelial migration by affecting endothelial cell dynamics.

    Science.gov (United States)

    Monfoulet, Laurent-Emmanuel; Mercier, Sylvie; Bayle, Dominique; Tamaian, Radu; Barber-Chamoux, Nicolas; Morand, Christine; Milenkovic, Dragan

    2017-11-01

    Curcumin is a phenolic compound that exhibits beneficial properties for cardiometabolic health. We previously showed that curcumin reduced the infiltration of immune cells into the vascular wall and prevented atherosclerosis development in mice. This study aimed to investigate the effect of curcumin on monocyte adhesion and transendothelial migration (TEM) and to decipher the underlying mechanisms of these actions. Human umbilical vein endothelial cells (HUVECs) were exposed to curcumin (0.5-1μM) for 3h prior to their activation by Tumor Necrosis Factor alpha (TNF-α). Endothelial permeability, monocyte adhesion and transendothelial migration assays were conducted under static condition and shear stress that mimics blood flow. We further investigated the impact of curcumin on signaling pathways and on the expression of genes using macroarrays. Pre-exposure of endothelial cells to curcumin reduced monocyte adhesion and their transendothelial migration in both static and shear stress conditions. Curcumin also prevented changes in both endothelial permeability and the area of HUVECs when induced by TNF-α. We showed that curcumin modulated the expression of 15 genes involved in the control of cytoskeleton and endothelial junction dynamic. Finally, we showed that curcumin inhibited NF-κB signaling likely through an antagonist interplay with several kinases as suggested by molecular docking analysis. Our findings demonstrate the ability of curcumin to reduce monocyte TEM through a multimodal regulation of the endothelial cell dynamics with a potential benefit on the vascular endothelial function barrier. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Dudás, József; Fullár, Alexandra; Romani, Angela; Pritz, Christian; Kovalszky, Ilona; Hans Schartinger, Volker; Mathias Sprinzl, Georg; Riechelmann, Herbert

    2013-01-01

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells

  4. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Dudás, József, E-mail: jozsef.dudas@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Fullár, Alexandra, E-mail: fullarsz@gmail.com [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest (Hungary); Romani, Angela, E-mail: angela.romani@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Pritz, Christian, E-mail: christian.pritz@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Kovalszky, Ilona, E-mail: koval@korb1.sote.hu [1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest (Hungary); Hans Schartinger, Volker, E-mail: volker.schartinger@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Mathias Sprinzl, Georg, E-mail: georg.sprinzl@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Riechelmann, Herbert, E-mail: herbert.riechelmann@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria)

    2013-04-01

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.

  5. Enhanced colon cancer chemoprevention of curcumin by nanoencapsulation with whey protein.

    Science.gov (United States)

    Jayaprakasha, Guddadarangavvanahally K; Chidambara Murthy, Kotamballi N; Patil, Bhimanagouda S

    2016-10-15

    To improve bioavailability and enhance colon cancer prevention ability of curcumin, whey protein was used to nanoencapsulate at three different ratios such as 70:30, 50:50 and 35:65 for the first time. The drug loading, entrapment efficiency and structural changes of curcumin was confirmed by quantitative NMR spectroscopy. The nanoparticles prepared using the three ratios had an average diameters of 236.5±8.8, 212±3.4, and 187±11.4nm, as well as zeta (ζ) potentials of -13.1,-9.26, and -4.63mV, respectively, at pH 7.0. The cytotoxicity assay was performed for human colon and prostate cancer (SW480 and LNCap) by MTT assay and results showed significantly higher cytotoxicity of nanoencapsulated curcumin (NEC) (equivalent to 30.91, 20.70 and 16.86µM of NEC-1, 2 and 3 respectively), as compared to plain curcumin at 50µM after 72h of treatment. Cytotoxicity was also confirmed by microscopy of treated cells stained with acridine orange and propidium iodide. The cells treated with 50µM of curcumin, 30.91µM (NEC-1), 20.70µM (NEC-2) and 16.86µM (NEC-3) showed enhanced activation of p53 and elevated bax/Bcl2 expression (NEC-3), increased cytochrome-c in cytosol (NEC-2) confirming the enhanced cytotoxicity. To confirm the increased bioavailability, the intracellular curcumin was measured using fluorescence intensity. The fluorescent signal for intracellular curcumin was increased by 12, 30, and 21% for NEC-1, NEC-2, and NEC-3 respectively as compared to plain curcumin at 4h. Based on these results, we conclude that nanoencapsulated curcumin with whey protein will have potential to be considered for clinical applications for future studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Microparticles Containing Curcumin Solid Dispersion: Stability, Bioavailability and Anti-Inflammatory Activity.

    Science.gov (United States)

    Teixeira, C C C; Mendonça, L M; Bergamaschi, M M; Queiroz, R H C; Souza, G E P; Antunes, L M G; Freitas, L A P

    2016-04-01

    This work aimed at improving the solubility of curcumin by the preparation of spray-dried ternary solid dispersions containing Gelucire®50/13-Aerosil® and quantifying the resulting in vivo oral bioavailability and anti-inflammatory activity. The solid dispersion containing 40% of curcumin was characterised by calorimetry, infrared spectroscopy and X-ray powder diffraction. The solubility and dissolution rate of curcumin in aqueous HCl or phosphate buffer improved up to 3600- and 7.3-fold, respectively. Accelerated stability test demonstrated that the solid dispersion was stable for 9 months. The pharmacokinetic study showed a 5.5-fold increase in curcumin in rat blood plasma when compared to unprocessed curcumin. The solid dispersion also provided enhanced anti-inflammatory activity in rat paw oedema. Finally, the solid dispersion proposed here is a promising way to enhance curcumin bioavailability at an industrial pharmaceutical perspective, since its preparation applies the spray drying, which is an easy to scale up technique. The findings herein stimulate further in vivo evaluations and clinical tests as a cancer and Alzheimer chemoprevention agent.

  7. Use of Novel Polyurethane Microspheres in a Curcumin Delivery System

    Directory of Open Access Journals (Sweden)

    Yongmei Hu

    2014-01-01

    Full Text Available Despite having a wide range of beneficial pharmacological effects, curcumin is characterized by poor water solubility and absorption. In this study, novel polyurethane microspheres containing curcumin (Cur-PUMs were prepared using carboxymethyl cellulose sodium to improve the bioavailability and prolong the retention time of curcumin. The prepared Cur-PUMs were characterized by Fourier transform infrared spectroscopy, scanning electron microscope, and ultraviolet spectrophotometer. The sustained-release effects of Cur-PUMs were demonstrated using stability tests in vitro and in vivo pharmacokinetic studies following oral administration. We found that the stability of Cur-PUMs was strongly affected by pH variation. Further, compared with free curcumin, Cur-PUMs showed significantly improved maximum concentration and half-life.

  8. Absorption and fluorescence studies of curcumin bound to liposomes and lymphocytes: effect of γ- irradiation

    International Nuclear Information System (INIS)

    Kunwar, Amit; Barik, A.; Indira Priyadarsini, K.; Pandey, R.

    2006-01-01

    Absorption and fluorescence spectral changes in curcumin were employed to follow its binding to liposomes and lymphocytes. The association constants indicated high affinity of curcumin to liposomes. Tumor lymphocytes show mere intense fluorescence of curcumin over the normal lymphocytes. The loss of curcumin in cells after γ-irradiation could be followed by reduction in curcumin fluorescence. The studies indicate that such fluorescence changes can be used as markers to understand the preferential loading of curcumin to cells. (author)

  9. Absorption and fluorescence studies of curcumin bound to liposomes and lymphocytes: effect of {gamma}- irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kunwar, Amit; Barik, A; Indira Priyadarsini, K [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai (India); Pandey, R [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai (India)

    2006-01-15

    Absorption and fluorescence spectral changes in curcumin were employed to follow its binding to liposomes and lymphocytes. The association constants indicated high affinity of curcumin to liposomes. Tumor lymphocytes show mere intense fluorescence of curcumin over the normal lymphocytes. The loss of curcumin in cells after {gamma}-irradiation could be followed by reduction in curcumin fluorescence. The studies indicate that such fluorescence changes can be used as markers to understand the preferential loading of curcumin to cells. (author)

  10. Curcumin Nanomedicine: A Road to Cancer Therapeutics

    Science.gov (United States)

    Yallapu, Murali M.; Jaggi, Meena; Chauhan, Subhash C.

    2013-01-01

    Cancer is the second leading cause of death in the United States. Conventional therapies cause widespread systemic toxicity and lead to serious side effects which prohibit their long term use. Additionally, in many circumstances tumor resistance and recurrence is commonly observed. Therefore, there is an urgent need to identify suitable anticancer therapies that are highly precise with minimal side effects. Curcumin is a natural polyphenol molecule derived from the Curcuma longa plant which exhibits anticancer, chemo-preventive, chemo- and radio-sensitization properties. Curcumin’s widespread availability, safety, low cost and multiple cancer fighting functions justify its development as a drug for cancer treatment. However, various basic and clinical studies elucidate curcumin’s limited efficacy due to its low solubility, high rate of metabolism, poor bioavailability and pharmacokinetics. A growing list of nanomedicine(s) using first line therapeutic drugs have been approved or are under consideration by the Food and Drug Administration (FDA) to improve human health. These nanotechnology strategies may help to overcome challenges and ease the translation of curcumin from bench to clinical application. Prominent research is reviewed which shows that advanced drug delivery of curcumin (curcumin nanoformulations or curcumin nanomedicine) is able to leverage therapeutic benefits by improving bioavailability and pharmacokinetics which in turn improves binding, internalization and targeting of tumor(s). Outcomes using these novel drug delivery systems have been discussed in detail. This review also describes the tumor-specific drug delivery system(s) that can be highly effective in destroying tumors. Such new approaches are expected to lead to clinical trials and to improve cancer therapeutics. PMID:23116309

  11. Curcumin induces autophagic cell death in Spodoptera frugiperda cells.

    Science.gov (United States)

    Veeran, Sethuraman; Shu, Benshui; Cui, Gaofeng; Fu, Shengjiao; Zhong, Guohua

    2017-06-01

    The increasing interest in the role of autophagy (type II cell death) in the regulation of insect toxicology has propelled study of investigating autophagic cell death pathways. Turmeric, the rhizome of the herb Curcuma longa (Mañjaḷ in Tamil, India and Jiānghuáng in Chinese) have been traditionally used for the pest control either alone or combination with other botanical pesticides. However, the mechanisms by which Curcuma longa or curcumin exerts cytotoxicity in pests are not well understood. In this study, we investigated the potency of Curcuma longa (curcumin) as a natural pesticide employing Sf9 insect line. Autophagy induction effect of curcumin on Spodoptera frugiperda (Sf9) cells was investigated using various techniques including cell proliferation assay, morphology analysis with inverted phase contrast microscope and Transmission Electron Microscope (TEM) analysis. Autophagy was evaluated using the fluorescent dye monodansylcadaverine (MDC). Cell death measurement was examined using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) within the concentrations of 5-15μg/mL. Curcumin inhibited the growth of the Sf9 cells and induced autophagic cell death in a time and dose dependent manner. Staining the cells with MDC showed the presence of autophagic vacuoles while increased in a dose and time dependent manner. At the ultrastructural level transmission electron microscopy, cells revealed massive autophagy vacuole accumulation and absence of chromatin condensation. Protein expression levels of ATG8-I and ATG8-II, well-established markers of autophagy related protein were elevated in a time dependent manner after curcumin treatment. The present study proves that curcumin induces autophagic cell death in Sf9 insect cell line and this is the first report of cytotoxic effect of curcumin in insect cells and that will be utilized as natural pesticides in future. Copyright © 2017. Published by Elsevier Inc.

  12. Epigenetic impact of curcumin on stroke prevention

    OpenAIRE

    Kalani, Anuradha; Kamat, Pradip K; Kalani, Komal; Tyagi, Neetu

    2014-01-01

    The epigenetic impact of curcumin in stroke and neurodegenerative disorders is curiosity-arousing. It is derived from Curcuma longa (spice), possesses anti-oxidative, anti-inflammatory, anti-lipidemic, neuro-protective and recently shown to exhibit epigenetic modulatory properties. Epigenetic studies include DNA methylation, histone modifications and RNA-based mechanisms which regulate gene expression without altering nucleotide sequences. Curcumin has been shown to affect cancer by altering ...

  13. Curcumin – A Potent Inhibitor of Galectin-3 Expression

    Directory of Open Access Journals (Sweden)

    Jerka Dumić

    2002-01-01

    Full Text Available The expression of galectin-3, a b-galactoside binding lectin, was found to be affected by different kinds of stressors, and is strongly modified in numerous physiological and pathophysiological conditions. Although no precise regulatory mechanisms of galectin-3 expression are unraveled, transcription factors AP-1 (activator protein 1 and NF-kB (nuclear factor kappa B play an important role in these processes. Activities of both transcription factors are affected by curcumin, a biologically active compound extracted from rhizomes of Curcuma species. We have analyzed the impact of curcumin on the expression of galectin-3 in glioblastoma cells under basal conditions and under stress invoked by the cell exposure to alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG and ultraviolet C (UV-C light. Galectin-3 level was measured by western-blot technique using M3/38 monoclonal antibody. Curcumin has decreased the basal level of galectin-3, while the pretreatment of cells with curcumin has considerably reduced the inducible effect of UV-C radiation and abolished the inducible effect of alkylating agent. Thus, curcumin has been identified as a potent inhibitor of galectin-3 expression.

  14. Effects of curcumin on the gastric emptying of albino rats.

    Science.gov (United States)

    Purwar, Brijesh; Shrivastava, Abha; Arora, Neetu; Kumar, Anil; Saxena, Yogesh

    2012-01-01

    Curcumin (diferuloylmethane), a polyphenol, is an active principle of the perennial herb Curcuma longa commonly known as turmeric. Turmeric (CURCUMA LONGA L.) is a medicinal plant extensively used in Ayurveda, Unani, and Siddha medicine as a home remedy for various diseases including biliary diseases, cough, hepatic diseases, wound healing. However studies on the effect of curcumin on the gastric emptying are nearly nonexistent. It is hypothesized that curcumin may have an effect on gastric emptying. For this reason the present study was aimed to study the effect of curcumin on gastric emptying. Rats were divided into 5 groups (Group I - Group V), based on the time interval between administration of curcumin/vehicular fluid to administration of barium sulphate (Group I - 1 hr, Group II - 8 hrs, Group III - 16 hrs, Group IV - 24 hrs, Group V - 48 hrs). Each group was further divided into two subgroups, Group A (control) and Group B (experimental), containing 6 rats each. Rats in experimental group were administered curcumin intragastrically, in the dose of 1 gm/kg body weight, suspended in normal saline (0.9% NaCl). The controls were given vehicular fluid intragastrically, in volume equal to the experimental animals. It was observed that there was a decrease in the gastric emptying in all the experimental groups.

  15. Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues.

    Science.gov (United States)

    Zhang, Haisong; Yu, Meng; Zhang, Hailei; Bai, Libin; Wu, Yonggang; Wang, Sujuan; Ba, Xinwu

    2016-08-01

    Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine.

  16. Cardioactive effects of diphenhydramine and curcumin in Daphnia magna

    Directory of Open Access Journals (Sweden)

    Noelle Erin Romero

    2009-01-01

    Full Text Available Although used as a model for examining the cardioactive effects of various compounds, the neuromuscular regulation of the heart of the crustacean Daphnia magna (D. magna is not well understood. In the present study, we sought to determine how the heart rate of D. magna was affected by two previously untested compounds: curcumin and diphenhydramine (DPHM. DPHM produces a number of cardiotoxic side effects in vertebrates, particularly sinus tachycardia. Curcumin acts as a monoamine oxidase inhibitor (MAOI and was expected toincrease the heart rate of D. magna. DPHM was found unexpectedly to lower the heart rate of D. magna with time. Curcumin increased heart rate when administered in higher concentrations. However, co-administration of curcumin with DPHM negated this effect. These findings may be explained by the potential role of histamine as a sympathetic cardiac neurotransmitter in D. magna.

  17. Curcumin inhibits bladder cancer stem cells by suppressing Sonic Hedgehog pathway.

    Science.gov (United States)

    Wang, Dengdian; Kong, Xiaochuan; Li, Yuan; Qian, Weiwei; Ma, Jiaxing; Wang, Daming; Yu, Dexin; Zhong, Caiyun

    2017-11-04

    Cancer stem cells (CSCs) is responsible for the recurrence of human cancers. Thus, targeting CSCs is considered to be a valid way for human cancer treatment. Curcumin is a major component of phytochemicals that exerts potent anticancer activities. However, the effect of curcumin on bladder cancer stem cells (BCSCs) remains to be elucidated. In this study, we investigated the mechanism of curcumin suppressing bladder cancer stem cells. In this study, UM-UC-3 and EJ cells were cultured in serum-free medium (SFM) to form cell spheres that was characterized as BCSCs. Then cell spheres were separately treated with different concentrations of curcumin and purmorphamine. Cell cycle analysis were used to determine the percentage of cells in different phases. Western blot and quantitative real-time PCR analysis were used to detect the expression of relative molecules. Immunofluorescence staining analysis were also utilized to measure the protein level of CD44. We found that CSC markers, including CD44, CD133, ALDH1-A1, OCT-4 and Nanog, were obviously highly expressed in cell spheres. Moreover, we observed that curcumin reduced the cell spheres formation, decreased the expression of CSC markers, suppressed cell proliferation and induced cell apoptosis. We also found that curcumin inhibited the activation of Shh pathway, while the inhibitory effects of curcumin on BCSCs could be weakened by upregulation of Sonic Hedgehog (Shh) pathway. Altogether, these data suggested that curcumin inhibited the activities of BCSCs through suppressing Shh pathway, which might be an effective chemopreventive agent for bladder cancer intervention. Copyright © 2017. Published by Elsevier Inc.

  18. Curcumin protects against collagen-induced arthritis via suppression of BAFF production.

    Science.gov (United States)

    Huang, Gang; Xu, Zhizhen; Huang, Yan; Duan, Xiaojun; Gong, Wei; Zhang, Yan; Fan, Jishan; He, Fengtian

    2013-04-01

    The aim of the present study was to evaluate whether the anti-Rheumatoid arthritis (RA) effect of curcumin is associated with the regulation of B cell-activating factor belonging to the TNF family (BAFF) production. Collagen-induced arthritis (CIA) was induced in DBA/1 J mice by immunization with bovine type II collagen. To investigate the anti-arthritic effect of curcumin in the CIA model, mice were injected intraperitoneally with curcumin (50 mg/kg) on every other day either from day 1 or from day 28 after the first immunization. The clinical severity of arthritis was monitored. BAFF, interleukin-6 (IL-6) and interferon-γ (IFNγ) production in serum were measured. Furthermore, the effect of curcumin on IFNγ-induced BAFF expression and transcriptional activation in B lymphocytes was determined by qPCR, Western Blot, and luciferase assay. Finally, IFNγ related signal transducers and activators of transcription 1 (STAT1) signaling in B lymphocytes were studied using Western Blot. Curcumin dramatically attenuated the progression and severity of CIA in DBA/1 J mice, accompanied with decrease of BAFF production in serum and spleen cells as well as decrease of serum IFNγ and IL-6. Treatment of B lymphocytes with curcumin suppressed IFNγ-induced BAFF expression, STAT1 phosphorylation and nuclear translocation, suggesting that curcumin may repress IFNγ-induced BAFF expression via negatively interfering with STAT1 signaling. The results of the present study suggest that suppression of BAFF production may be a novel mechanism by which curcumin improves RA.

  19. Porous silica nanoparticles as carrier for curcumin delivery

    Science.gov (United States)

    Hartono, Sandy Budi; Hadisoewignyo, Lannie; Irawaty, Wenny; Trisna, Luciana; Wijaya, Robby

    2018-04-01

    Mesoporous silica nanoparticles (MSN) with large surface areas and pore volumes show great potential as drug and gene carriers. However, there are still some challenging issues hinders their clinical application. Many types of research in the use of mesoporous silica material for drug and gene delivery involving complex and rigorous procedures. A facile and reproducible procedure to prepare combined drug carrier is required. We investigated the effect of physiochemical parameters of mesoporous silica, including structural symmetry (cubic and hexagonal), particles size (micro size: 1-2 µm and nano size: 100 -300 nm), on the solubility and release profile of curcumin. Transmission Electron Microscopy, X-Ray Powder Diffraction, and Nitrogen sorption were used to confirm the synthesis of the mesoporous silica materials. Mesoporous silica materials with different mesostructures and size have been synthesized successfully. Curcumin has anti-oxidant, anti-inflammation and anti-virus properties which are beneficial to fight various diseases such as diabetic, cancer, allergic, arthritis and Alzheimer. Curcumin has low solubility which minimizes its therapeutic effect. The use of nanoporous material to carry and release the loaded molecules is expected to enhance curcumin solubility. Mesoporous silica materials with a cubic mesostructure had a higher release profile and curcumin solubility, while mesoporous silica materials with a particle size in the range of nano meter (100-300) nm also show better release profile and solubility.

  20. Curcumin (Extracted from Tumeric and its Therapeutic Effects

    Directory of Open Access Journals (Sweden)

    Arezou khosrojerdi

    2017-01-01

    Full Text Available Background and Objectives:  The application of herbal medicine has been rising in recent years. Therefore, it is logical to revise and revive these traditional drugs while identifying their mechanisms of action can result in developing new treatments for many diseases. Curcumin is the most important component of Turmeric with numerous therapeutic properties. We aimed to review the anti-inflammatory and anti-microbial properties of Curcumin and introduce it as a therapeutic molecule in the present article. Methods: In this review, 121 articles were selected from authenticated electronic resources and scientific library databases such as Pubmed, Medline, Sciencedirect, WOS, DOAJ, SID, Iranmedex, Magiran and Google Scholar search engine in which Curcumin (Turmeric had been evaluated as a therapeutic molecule from differeny aspects. Results: Our findings from the literature revealed that immune responses against infectious and inflammatory factors could be fascilitated by Curcumin. However, the low solubility in water and minimal bioavailability which may lead to poor absorbance from gastrointestinal tract, quick metabolization and elimination from blood circulation are the most important problems during oral consumption. Conclusion: According to the results of the present review article, Curcumin possesses efficient anti-inflammatory, anti-microbial, anti-viral and anti-parasitic properties. However, the low bioavailability of this substance has limited its treatment properties. Nowadays, several mechanisms have been proposed to increase the bioavailability which can improve its absorption.

  1. Reconstructing Atmospheric CO2 Through The Paleocene-Eocene Thermal Maximum Using Stomatal Index and Stomatal Density Values From Ginkgo adiantoides

    Science.gov (United States)

    Barclay, R. S.; Wing, S. L.

    2013-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was a geologically brief interval of intense global warming 56 million years ago. It is arguably the best geological analog for a worst-case scenario of anthropogenic carbon emissions. The PETM is marked by a ~4-6‰ negative carbon isotope excursion (CIE) and extensive marine carbonate dissolution, which together are powerful evidence for a massive addition of carbon to the oceans and atmosphere. In spite of broad agreement that the PETM reflects a large carbon cycle perturbation, atmospheric concentrations of CO2 (pCO2) during the event are not well constrained. The goal of this study is to produce a high resolution reconstruction of pCO2 using stomatal frequency proxies (both stomatal index and stomatal density) before, during, and after the PETM. These proxies rely upon a genetically controlled mechanism whereby plants decrease the proportion of gas-exchange pores (stomata) in response to increased pCO2. Terrestrial sections in the Bighorn Basin, Wyoming, contain macrofossil plants with cuticle immediately bracketing the PETM, as well as dispersed plant cuticle from within the body of the CIE. These fossils allow for the first stomatal-based reconstruction of pCO2 near the Paleocene-Eocene boundary; we also use them to determine the relative timing of pCO2 change in relation to the CIE that defines the PETM. Preliminary results come from macrofossil specimens of Ginkgo adiantoides, collected from an ~200ka interval prior to the onset of the CIE (~230-30ka before), and just after the 'recovery interval' of the CIE. Stomatal index values decreased by 37% within an ~70ka time interval at least 100ka prior to the onset of the CIE. The decrease in stomatal index is interpreted as a significant increase in pCO2, and has a magnitude equivalent to the entire range of stomatal index adjustment observed in modern Ginkgo biloba during the anthropogenic CO2 rise during the last 150 years. The inferred CO2 increase prior to the

  2. Discovery of a new function of curcumin which enhances its anticancer therapeutic potency

    Science.gov (United States)

    Nagahama, Koji; Utsumi, Tomoya; Kumano, Takayuki; Maekawa, Saeko; Oyama, Naho; Kawakami, Junji

    2016-08-01

    Curcumin has received immense attention over the past decades because of its diverse biological activities and recognized as a promising drug candidate in a large number of diseases. However, its clinical application has been hindered due to extremely low aqueous solubility, chemical stability, and cellular uptake. In this study, we discovered quite a new function of curcumin, i.e. pH-responsive endosomal disrupting activity, derived from curcumin’s self-assembly. We selected anticancer activity as an example of biological activities of curcumin, and investigated the contribution of pH-responsive property to its anticancer activity. As a result, we demonstrated that the pH-responsive property significantly enhances the anticancer activity of curcumin. Furthermore, we demonstrated a utility of the pH-responsive property of curcumin as delivery nanocarriers for doxorubicin toward combination cancer therapy. These results clearly indicate that the smart curcumin assemblies act as promising nanoplatform for development of curcumin-based therapeutics.

  3. Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects.

    Science.gov (United States)

    Ghosh, Siddhartha S; He, Hongliang; Wang, Jing; Gehr, Todd W; Ghosh, Shobha

    2018-01-02

    Curcumin has anti-inflammatory, anti-oxidant and anti-proliferative properties established largely by in vitro studies. Accordingly, oral administration of curcumin beneficially modulates many diseases including diabetes, fatty-liver disease, atherosclerosis, arthritis, cancer and neurological disorders such as depression, Alzheimer's or Parkinson's disease. However, limited bioavailability and inability to detect curcumin in circulation or target tissues has hindered the validation of a causal role. We established curcumin-mediated decrease in the release of gut bacteria-derived lipopolysaccharide (LPS) into circulation by maintaining the integrity of the intestinal barrier function as the mechanism underlying the attenuation of metabolic diseases (diabetes, atherosclerosis, kidney disease) by curcumin supplementation precluding the need for curcumin absorption. In view of the causative role of circulating LPS and resulting chronic inflammation in the development of diseases listed above, this review summarizes the mechanism by which curcumin affects the several layers of the intestinal barrier and, despite negligible absorption, can beneficially modulate these diseases.

  4. Preparation of curcumin-loaded pluronic F127/chitosan nanoparticles for cancer therapy

    International Nuclear Information System (INIS)

    Phuc Le, Thi Minh; Pham, Van Phuc; Lua Dang, Thi Minh; Huyen La, Thi; Le, Thi Hanh; Le, Quang Huan

    2013-01-01

    Nanoparticles (NPs) have been proven to be an effective delivery system with few side effects for anticancer drugs. In this study, curcumin-loaded NPs have been prepared by an ionic gelation method using chitosan (Chi) and pluronic ® F-127 (PF) as carriers to deliver curcumin to the target cancer cells. Prepared NPs were characterized using Zetasizer, fluorescence microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Our results showed that the encapsulation efficiency of curcumin was approximately 50%. The average size of curcumin-loaded PF/Chi NPs was 150.9 nm, while the zeta potential was 5.09 mV. Cellular uptake of curcumin-loaded NPs into HEK293 cells was confirmed by fluorescence microscopy. (paper)

  5. Curcumin and diabetes: a systematic review.

    Science.gov (United States)

    Zhang, Dong-Wei; Fu, Min; Gao, Si-Hua; Liu, Jun-Li

    2013-01-01

    Turmeric (Curcuma longa), a rhizomatous herbaceous perennial plant of the ginger family, has been used for the treatment of diabetes in Ayurvedic and traditional Chinese medicine. The active component of turmeric, curcumin, has caught attention as a potential treatment for diabetes and its complications primarily because it is a relatively safe and inexpensive drug that reduces glycemia and hyperlipidemia in rodent models of diabetes. Here, we review the recent literature on the applications of curcumin for glycemia and diabetes-related liver disorders, adipocyte dysfunction, neuropathy, nephropathy, vascular diseases, pancreatic disorders, and other complications, and we also discuss its antioxidant and anti-inflammatory properties. The applications of additional curcuminoid compounds for diabetes prevention and treatment are also included in this paper. Finally, we mention the approaches that are currently being sought to generate a "super curcumin" through improvement of the bioavailability to bring this promising natural product to the forefront of diabetes therapeutics.

  6. Solubility and stability enhancement of curcumin: Improving drug properties of natural pigment

    Directory of Open Access Journals (Sweden)

    M J Ansari

    2016-01-01

    Full Text Available Aim: Water insolubility, low potency, and instability are inherent problems of several herbal medicines. Identity, strength, quality, and purity of herbal products are further compromised during manufacturing and storage. The aim of present work was to evaluate solubility and stability of curcumin, a pigment obtained from dried rhizomes of plant Cucrcuma longa. Materials and Methods: The stoichiometric ratios for inclusion complexation of curcumin with various cyclodextrins (CDs were determined by phase solubility analysis. Grinding, kneading, and freeze-drying were employed to determine optimum complexation. Complexes were evaluated for drug inclusion, solubility, and stability. Results: Stability constants were 11200 M−1 , 1557 M−1 , 2858 M−1 , and 2206 M−1 for α-, β-, γ-CD, and dimethyl β-CD (DIMEB, respectively, thus indicating good complex formation. Theoretical amounts of curcumin in binary products were between 80% and 97% with a maximum of 96.8% in curcumin-β-CD freeze-dried product. The complexation resulted in a marked improvement in the solubility of curcumin up to 60, 55, 56, and 1500 folds by α-, β-, γ-CD, and DIMEB, respectively. Inclusion complexation protected the drug from hydrolytic degradations as only 20-40% degradation was observed at the end of 8 h as opposed to >70% for pure curcumin. Conclusion: A significant improvement in the solubility and stability was observed with curcumin-CD complex as compared to pure curcumin.

  7. Combination of Erythromycin and Curcumin Alleviates Staphylococcus aureus Induced Osteomyelitis in Rats

    Directory of Open Access Journals (Sweden)

    Zubin Zhou

    2017-08-01

    Full Text Available Osteomyelitis is commonly caused by Staphylococcus aureus. Both erythromycin and curcumin can suppress S. aureus growth, but their roles in osteomyelitis are barely studied. We aim to explore the activities of erythromycin and curcumin against chronical osteomyelitis induced by methicillin-resistant S. aureus (MRSA. Chronicle implant-induced osteomyelitis was established by MRSA infection in male Wistar rats. Four weeks after bacterial inoculation, rats received no treatment, erythromycin monotherapy, curcumin monotherapy, or erythromycin plus curcumin twice daily for 2 weeks. Bacterial levels, bone infection status, inflammatory signals and side effects were evaluated. Rats tolerated all treatments well, with no death or side effects such as, diarrhea and weight loss. Two days after treatment completion, erythromycin monotherapy did not suppress bacterial growth and had no effect in bone infection, although it reduced serum pro-inflammatory cytokines tumor necrosis factor (TNF-α and interleukin (IL-6. Curcumin monotherapy slightly suppressed bacterial growth, alleviated bone infection and reduced TNF-α and IL-6. Erythromycin and curcumin combined treatment markedly suppressed bacterial growth, substantially alleviated bone infection and reduced TNF-α and IL-6. Combination of erythromycin and curcumin lead a much stronger efficiency against MRSA induced osteomyelitis in rats than monotherapy. Our study suggests that erythromycin and curcumin could be a new combination for treating MRSA induced osteomyelitis.

  8. Curcumin increases the pathogenicity of Salmonella enterica serovar Typhimurium in murine model.

    Directory of Open Access Journals (Sweden)

    Sandhya A Marathe

    Full Text Available Curcumin has gained immense importance for its vast therapeutic and prophylactic applications. Contrary to this, our study reveals that it regulates the defense pathways of Salmonella enterica serovar Typhimurium (S. Typhimurium to enhance its pathogenicity. In a murine model of typhoid fever, we observed higher bacterial load in Peyer's patches, mesenteric lymph node, spleen and liver, when infected with curcumin-treated Salmonella. Curcumin increased the resistance of S. Typhimurium against antimicrobial agents like antimicrobial peptides, reactive oxygen and nitrogen species. This increased tolerance might be attributed to the up-regulation of genes involved in resistance against antimicrobial peptides--pmrD and pmrHFIJKLM and genes with antioxidant function--mntH, sodA and sitA. We implicate that iron chelation property of curcumin have a role in regulating mntH and sitA. Interestingly, we see that the curcumin-mediated modulation of pmr genes is through the PhoPQ regulatory system. Curcumin downregulates SPI1 genes, required for entry into epithelial cells and upregulates SPI2 genes required to intracellular survival. Since it is known that the SPI1 and SPI2 system can be regulated by the PhoPQ system, this common regulator could explain curcumin's mode of action. This data urges us to rethink the indiscriminate use of curcumin especially during Salmonella outbreaks.

  9. Enhancing Antidepressant Effect of Poloxamer/Chitosan Thermosensitive Gel Containing Curcumin-Cyclodextrin Inclusion Complex

    Directory of Open Access Journals (Sweden)

    Ye Zhang

    2018-01-01

    Full Text Available Poor solubility and bioavailability are limiting factors for the clinical application of curcumin. This study seeks to develop poloxamer/chitosan thermosensitive gel containing curcumin-cyclodextrin inclusion complex with enhanced brain bioavailability and antidepressant effect. The optimized gel had shorter gelation time and produced sustained release in vitro characterized with non-Fickian diffusion. Pharmacokinetics of gel were evaluated using male Sprague-Dawley rats receiving 240 μg/kg of curcumin and curcumin-cyclodextrin inclusion complex through intranasal administration, compared against a control group receiving intravenous curcumin (240 μg/kg. The intranasal administration of gel provided sustained release by maintaining plasma concentrations of curcumin above 21.27 ± 3.26 ng/mL for up to 8 h. Compared to intranasal administration of the inclusion complex, AUC0–8 h of curcumin from thermoreversible gel in plasma and hippocampus was increased 1.62- and 1.28-fold, respectively. The gel exhibited superior antidepressant activity in mice. The findings reported here suggested that the clinical application of curcumin can be better exploited through an intranasal administration of the thermosensitive gel.

  10. Inhibition of EV71 by curcumin in intestinal epithelial cells

    Science.gov (United States)

    Chio, Chi-Chong; Lin, Jhao-Yin

    2018-01-01

    EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6), an active ingredient of turmeric (Curcuma longa Linn) with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES) activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK) signaling pathways is not involved. We found that protein kinase C delta (PKCδ) plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections. PMID:29370243

  11. Inhibition of EV71 by curcumin in intestinal epithelial cells.

    Science.gov (United States)

    Huang, Hsing-I; Chio, Chi-Chong; Lin, Jhao-Yin

    2018-01-01

    EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6), an active ingredient of turmeric (Curcuma longa Linn) with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES) activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK) signaling pathways is not involved. We found that protein kinase C delta (PKCδ) plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections.

  12. Inhibition of EV71 by curcumin in intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hsing-I Huang

    Full Text Available EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6, an active ingredient of turmeric (Curcuma longa Linn with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK signaling pathways is not involved. We found that protein kinase C delta (PKCδ plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections.

  13. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity

    Science.gov (United States)

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-01

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  14. Curcumin Induces Autophagy, Apoptosis, and Cell Cycle Arrest in Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yaping Zhu

    2017-01-01

    Full Text Available Objective. Curcumin is an active extract from turmeric. The aim of this study was to identify the underlying mechanism of curcumin on PCa cells and the role of autophagy in this process. Methods. The inhibitory effect of curcumin on the growth of PANC1 and BxPC3 cell lines was detected by CCK-8 assay. Cell cycle distribution and apoptosis were tested by flow cytometry. Autophagosomes were tested by cell immunofluorescence assay. The protein expression was detected by Western blot. The correlation between LC3II/Bax and cell viability was analyzed. Results. Curcumin inhibited the cell proliferation in a dose- and time-dependent manner. Curcumin could induce cell cycle arrest at G2/M phase and apoptosis of PCa cells. The autophagosomes were detected in the dosing groups. Protein expression of Bax and LC3II was upregulated, while Bcl2 was downregulated in the high dosing groups of curcumin. There was a significant negative correlation between LC3II/Bax and cell viability. Conclusions. Autophagy could be triggered by curcumin in the treatment of PCa. Apoptosis and cell cycle arrest also participated in this process. These findings imply that curcumin is a multitargeted agent for PCa cells. In addition, autophagic cell death may predominate in the high concentration groups of curcumin.

  15. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo

    Science.gov (United States)

    Gou, Maling; Men, Ke; Shi, Huashan; Xiang, Mingli; Zhang, Juan; Song, Jia; Long, Jianlin; Wan, Yang; Luo, Feng; Zhao, Xia; Qian, Zhiyong

    2011-04-01

    Curcumin is an effective and safe anticancer agent, but its hydrophobicity inhibits its clinical application. Nanotechnology provides an effective method to improve the water solubility of hydrophobic drug. In this work, curcumin was encapsulated into monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles through a single-step nano-precipitation method, creating curcumin-loaded MPEG-PCL (Cur/MPEG-PCL) micelles. These Cur/MPEG-PCL micelles were monodisperse (PDI = 0.097 +/- 0.011) with a mean particle size of 27.3 +/- 1.3 nm, good re-solubility after freeze-drying, an encapsulation efficiency of 99.16 +/- 1.02%, and drug loading of 12.95 +/- 0.15%. Moreover, these micelles were prepared by a simple and reproducible procedure, making them potentially suitable for scale-up. Curcumin was molecularly dispersed in the PCL core of MPEG-PCL micelles, and could be slow-released in vitro. Encapsulation of curcumin in MPEG-PCL micelles improved the t1/2 and AUC of curcuminin vivo. As well as free curcumin, Cur/MPEG-PCL micelles efficiently inhibited the angiogenesis on transgenic zebrafish model. In an alginate-encapsulated cancer cell assay, intravenous application of Cur/MPEG-PCL micelles more efficiently inhibited the tumor cell-induced angiogenesisin vivo than that of free curcumin. MPEG-PCL micelle-encapsulated curcumin maintained the cytotoxicity of curcumin on C-26 colon carcinoma cellsin vitro. Intravenous application of Cur/MPEG-PCL micelle (25 mg kg-1curcumin) inhibited the growth of subcutaneous C-26 colon carcinoma in vivo (p curcumin (p curcumin; this formulation can inhibit the growth of colon carcinoma through inhibiting angiogenesis and directly killing cancer cells.

  16. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels

    Science.gov (United States)

    Hei, Hongya; Li, Fangping; Wang, Yunman; Peng, Wen; Zhang, Xuemei

    2015-01-01

    Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms. PMID:26672753

  17. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels.

    Directory of Open Access Journals (Sweden)

    Qijing Chen

    Full Text Available Large conductance Ca2+-activated potassium channels (BK are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α and BK (α+β1 currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1. Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms.

  18. Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila

    Science.gov (United States)

    Curcumin is an antioxidant extracted from the root of the turmeric plant. We examined the antioxidant effect and lifespan extension of curcumin in Drosophila. To ascertain the antioxidant effects of curcumin with regard to lifespan extension and the response to reactive oxygen species, female and ma...

  19. The effect of curcumin on insulin release in rat-isolated pancreatic islets.

    Science.gov (United States)

    Abdel Aziz, Mohamed T; El-Asmar, Mohamed F; El Nadi, Essam G; Wassef, Mohamed A; Ahmed, Hanan H; Rashed, Laila A; Obaia, Eman M; Sabry, Dina; Hassouna, Amira A; Abdel Aziz, Ahmed T

    2010-08-01

    Curcumin exerts a hypoglycemic action and induces heme-oxygenase-1 (HO-1). We evaluated the effect of curcumin on isolated islets of Langerhans and studied whether its action on insulin secretion is mediated by inducible HO-1. Islets were isolated from rats and divided into control islets, islets incubated in different curcumin concentrations, islets incubated in hemin, islets incubated in curcumin and HO inhibitor, stannous mesoporphyrin (SnMP), islets incubated in hemin and SnMP, islets incubated in SnMP only, and islets incubated in 16.7 mmol/L glucose. Heme-oxygenase activity, HO-1 expression, and insulin estimation was assessed. Insulin secretion, HO-1 gene expression and HO activity were significantly increased in islets incubated in curcumin, hemin, and glucose compared with controls. This increase in insulin secretion was significantly decreased by incubation of islets in SnMP. The action of curcumin on insulin secretion from the isolated islets may be, in part, mediated through increased HO-1 gene expression.

  20. A comprehensive approach to ascertain the binding mode of curcumin with DNA

    Science.gov (United States)

    Haris, P.; Mary, Varughese; Aparna, P.; Dileep, K. V.; Sudarsanakumar, C.

    2017-03-01

    Curcumin is a natural phytochemical from the rhizoma of Curcuma longa, the popular Indian spice that exhibits a wide range of pharmacological properties like antioxidant, anticancer, anti-inflammatory, antitumor, and antiviral activities. In the published literatures we can see different studies and arguments on the interaction of curcumin with DNA. The intercalative binding, groove binding and no binding of curcumin with DNA were reported. In this context, we conducted a detailed study to understand the mechanism of recognition of dimethylsulfoxide-solubilized curcumin by DNA. The interaction of curcumin with calf thymus DNA (ctDNA) was confirmed by agarose gel electrophoresis. The nature of binding and energetics of interaction were studied by Isothermal Titration Calorimetry (ITC), Differential Scanning Calorimetry (DSC), UV-visible, fluorescence and melting temperature (Tm) analysis. The experimental data were compared with molecular modeling studies. Our investigation confirmed that dimethylsulfoxide-solubilized curcumin binds in the minor groove of the ctDNA without causing significant structural alteration to the DNA.