WorldWideScience

Sample records for cuprous sulfide layers

  1. Cuprous Sulfide/Reduced Graphene Oxide Hybrid Nanomaterials: Solvothermal Synthesis and Enhanced Electrochemical Performance

    Science.gov (United States)

    He, Zhanjun; Zhu, Yabo; Xing, Zheng; Wang, Zhengyuan

    2016-01-01

    The cuprous sulfide nanoparticles (CuS NPs)-decorated reduced graphene oxide (rGO) nanocomposites have been successfully prepared via a facile and efficient solvothermal synthesis method. Scanning electron microscopy and transmission electron microscopy images demonstrated that CuS micronspheres composed of nanosheets and distributed on the rGO layer in well-monodispersed form. Fourier-transform infrared spectroscopy analyses and x-ray photoelectron spectroscopy showed that graphene oxide (GO) had been reduced to rGO. The electrochemical performances of CuS/rGO nanocomposites were investigated by cyclic voltammetry and charge/discharge techniques, which showed that the specific capacitance of CuS/rGO nanocomposites was enhanced because of the introduction of rGO.

  2. Enormous excitonic effects in bulk, mono- and bi- layers of cuprous halides using many-body perturbation technique

    Science.gov (United States)

    Azhikodan, Dilna; Nautiyal, Tashi

    2017-10-01

    Cuprous halides (CuX with X = Cl, Br, I), intensely studied about four decades ago by experimentalists for excitons, are again drawing attention of researchers recently. Potential of cuprous halide systems for device applications has not yet been fully explored. We go beyond the one-particle picture to capture the two-particle physics (electron-hole interaction to form excitons). We have deployed the full tool kit of many-body perturbation technique, GW approximation + Bethe Salpeter equation, to unfurl the rich excitonic physics of the bulk as well as layers of CuX. The negative spin-orbit contribution at the valence band top in CuCl, compared to CuBr and CuI, is in good agreement with experiments. We note that CuX have exceptionally strong excitons, defying the linear fit (between the excitonic binding energy and band gap) encompassing many semiconductors. The mono- and bi- layers of cuprous halides are predicted to be rich in excitons, with exceptionally large binding energies and the resonance energies in UV/visible region. Hence this work projects CuX layers as good candidates for optoelectronic applications. With advancement of technology, we look forward to experimental realization of CuX layers and harnessing of their rich excitonic potential.

  3. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction

    KAUST Repository

    Zhang, Zhonghai

    2013-02-26

    In this work, we propose a solution-based carbon precursor coating and subsequent carbonization strategy to form a thin protective carbon layer on unstable semiconductor nanostructures as a solution to the commonly occurring photocorrosion problem of many semiconductors. A proof-of-concept is provided by using glucose as the carbon precursor to form a protective carbon coating onto cuprous oxide (Cu2O) nanowire arrays which were synthesized from copper mesh. The carbon-layer-protected Cu2O nanowire arrays exhibited remarkably improved photostability as well as considerably enhanced photocurrent density. The Cu2O nanowire arrays coated with a carbon layer of 20 nm thickness were found to give an optimal water splitting performance, producing a photocurrent density of -3.95 mA cm-2 and an optimal photocathode efficiency of 0.56% under illumination of AM 1.5G (100 mW cm-2). This is the highest value ever reported for a Cu 2O-based electrode coated with a metal/co-catalyst-free protective layer. The photostability, measured as the percentage of the photocurrent density at the end of 20 min measurement period relative to that at the beginning of the measurement, improved from 12.6% on the bare, nonprotected Cu2O nanowire arrays to 80.7% on the continuous carbon coating protected ones, more than a 6-fold increase. We believe that the facile strategy presented in this work is a general approach that can address the stability issue of many nonstable photoelectrodes and thus has the potential to make a meaningful contribution in the general field of energy conversion. © 2013 American Chemical Society.

  4. Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design

    Science.gov (United States)

    Wang, Yan; Xia, Zhonggao; Liang, Jun; Wang, Xinwei; Liu, Yiming; Liu, Chuan; Zhang, Shengdong; Zhou, Hang

    2015-05-01

    Solution-processed p-type metal oxide materials have shown great promise in improving the stability of perovskite-based solar cells and offering the feasibility for a low cost printing fabrication process. Herein, we performed a device modeling study on planar perovskite solar cells with cuprous oxide (Cu2O) hole transporting layers (HTLs) by using a solar cell simulation program, wxAMPS. The performance of a Cu2O/perovskite solar cell was correlated to the material properties of the Cu2O HTL, such as thickness, carrier mobility, mid-gap defect, and doping concentrations. The effect of interfacial defect densities on the solar cell performance was also investigated. Our simulation indicates that, with an optimized Cu2O HTL, high performance perovskite solar cells with efficiencies above 13% could be achieved, which shows the potential of using Cu2O as an alternative HTL over other inorganic materials, such as NiOx and MoOx. This study provides theoretical guidance for developing perovskite solar cells with inorganic hole transporting materials via a printing process.

  5. Towards printed perovskite solar cells with cuprous oxide hole transporting layers

    DEFF Research Database (Denmark)

    Wang, Yan; Xia, Zhonggao; Liang, Jun

    2015-01-01

    Solution-processed p-type metal oxide materials have shown great promise in improving the stability of perovskite-based solar cells and offering the feasibility for a low cost printing fabrication process. Herein, we performed a device modeling study on planar perovskite solar cells with cuprous ...

  6. Anisotropic Optical Properties of Layered Germanium Sulfide

    CERN Document Server

    Tan, Dezhi; Wang, Feijiu; Mohamed, Nur Baizura; Mouri, Shinichiro; Sandhaya, Koirala; Zhang, Wenjing; Miyauchi, Yuhei; Ohfuchi, Mari; Matsuda, Kazunari

    2016-01-01

    Two-dimensional (2D) layered materials, transition metal dichalcogenides and black phosphorus, have attracted much interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to their remarkable optical properties and prospects for new devices. Here, we report the anisotropic optical properties of layered 2D monochalcogenide of germanium sulfide (GeS). Three Raman scattering peaks corresponding to the B3g, A1g, and A2g modes with strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at around 1.66 eV that originates from the direct optical transition in GeS at room temperature. Moreover, determination of the polarization dependent characteristics of the PL and absorption reveals...

  7. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides

    Directory of Open Access Journals (Sweden)

    Priyanka Jood

    2015-03-01

    Full Text Available Sulfides are promising candidates for environment-friendly and cost-effective thermoelectric materials. In this article, we review the recent progress in all-length-scale hierarchical architecturing for sulfides and chalcogenides, highlighting the key strategies used to enhance their thermoelectric performance. We primarily focus on TiS2-based layered sulfides, misfit layered sulfides, homologous chalcogenides, accordion-like layered Sn chalcogenides, and thermoelectric minerals. CS2 sulfurization is an appropriate method for preparing sulfide thermoelectric materials. At the atomic scale, the intercalation of guest atoms/layers into host crystal layers, crystal-structural evolution enabled by the homologous series, and low-energy atomic vibration effectively scatter phonons, resulting in a reduced lattice thermal conductivity. At the nanoscale, stacking faults further reduce the lattice thermal conductivity. At the microscale, the highly oriented microtexture allows high carrier mobility in the in-plane direction, leading to a high thermoelectric power factor.

  8. Research of the Plasma Sulfide Layer Formed on the Nitrocarburizing Layer

    Institute of Scientific and Technical Information of China (English)

    LI Xin; MA Shi-ning; HU Chun-hua; QIU Ji; HUANG Yuan-lin

    2004-01-01

    Low-temperature sulfurizing after nitrocarburizing are compared with only low-temperature sulfurizing on the surface of CrMoCu alloyed cast iron, the surface morphologies and microstructures are investigated by SEM and EDS.Results show that under proper treatment parameters, there are sulfide layer on both of the surfaces, and can more easily obtain sulfide layers on the surface of nitrocarburizing. Forming mechanism of sulfides were also studied elementarily.

  9. Oxygen-free atomic layer deposition of indium sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.

    2016-07-05

    A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately -30.degree. C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.

  10. Oxygen-free atomic layer deposition of indium sulfide.

    Science.gov (United States)

    McCarthy, Robert F; Weimer, Matthew S; Emery, Jonathan D; Hock, Adam S; Martinson, Alex B F

    2014-08-13

    Atomic layer deposition (ALD) of indium sulfide (In2S3) films was achieved using a newly synthesized indium precursor and hydrogen sulfide. We obtain dense and adherent thin films free from halide and oxygen impurities. Self-limiting half-reactions are demonstrated at temperatures up to 225 °C, where oriented crystalline thin films are obtained without further annealing. Low-temperature growth of 0.89 Å/cycle is observed at 150 °C, while higher growth temperatures gradually reduce the per-cycle growth rate. Rutherford backscattering spectroscopy (RBS) together with depth-profiling Auger electron spectroscopy (AES) reveal a S/In ratio of 1.5 with no detectable carbon, nitrogen, halogen, or oxygen impurities. The resistivity of thin films prior to air exposure decreases with increasing deposition temperature, reaching In2S3 via ALD at temperatures up to 225 °C may allow high quality thin films to be leveraged in optoelectronic devices including photovoltaic absorbers, buffer layers, and intermediate band materials.

  11. An array of layers in silicon sulfides: Chainlike and monolayer

    Science.gov (United States)

    Alonso-Lanza, T.; Ayuela, A.; Aguilera-Granja, F.

    2016-12-01

    While much is known about isoelectronic materials related to carbon nanostructures, such as boron-nitride layers and nanotubes, rather less is known about equivalent silicon-based materials. Following the recent discovery of phosphorene, here we discuss isoelectronic silicon-monosulfide monolayers. We describe a set of anisotropic structures that clearly have a high stability with respect to previously reported silicon-monosulfide monolayers. The source of the layer anisotropy is related to the presence of Si-S double chains linked by some Si-Si covalent bonds together with a remarkable spd hybridization on Si. The increased stability is related to silicon forming four bonds, including an additional double-bond-like Si-Si bond. The involvement of d orbitals brings more variety to silicon-sulfide-based nanostructures that are isoelectronic to phosphorene, which could be relevant for future applications, adding extra degrees of freedom.

  12. Magnetoexcitons in cuprous oxide

    Science.gov (United States)

    Schweiner, Frank; Main, Jörg; Wunner, Günter; Freitag, Marcel; Heckötter, Julian; Uihlein, Christoph; Aßmann, Marc; Fröhlich, Dietmar; Bayer, Manfred

    2017-01-01

    Two of the most striking experimental findings when investigating exciton spectra in cuprous oxide using high-resolution spectroscopy are the observability and the fine structure splitting of F excitons reported by J. Thewes et al. [Phys. Rev. Lett. 115, 027402 (2015), 10.1103/PhysRevLett.115.027402]. These findings show that it is indispensable to account for the complex valence band structure and the cubic symmetry of the solid in the theory of excitons. This is all the more important for magnetoexcitons, where the external magnetic field reduces the symmetry of the system even further. We present the theory of excitons in Cu2O in an external magnetic field and especially discuss the dependence of the spectra on the direction of the external magnetic field, which cannot be understood from a simple hydrogenlike model. Using high-resolution spectroscopy, we also present the corresponding experimental spectra for cuprous oxide in Faraday configuration. The theoretical results and experimental spectra are in excellent agreement as regards not only the energies but also the relative oscillator strengths. Furthermore, this comparison allows for the determination of the fourth Luttinger parameter κ of this semiconductor.

  13. Sythesis of metal sulfide nanomaerials via thermal decomposition of single-source percursors

    Energy Technology Data Exchange (ETDEWEB)

    Jen-La Plante, Ilan; Zeid, Tahani W.; Yang, Peidong; Mokari, Taleb

    2010-06-03

    In this report, we present a synthetic method for the formation of cuprous sulfide (Cu2S) and lead sulfide (PbS) nanomaterials directly on substrates from the thermolysis of single-source precursors. We find that the final morphology and arrangement of the nanomaterials may be controlled through the concentration of the dissolved precursors and choice of solvent. One-dimensional (1-D) morphologies may also be grown onto substrates with the addition of a metal catalyst layer through solution-liquid-solid (SLS) growth. These synthetic techniques may be expanded to other metal sulfide materials.

  14. Radiation annealing in cuprous oxide

    DEFF Research Database (Denmark)

    Vajda, P.

    1966-01-01

    Experimental results from high-intensity gamma-irradiation of cuprous oxide are used to investigate the annealing of defects with increasing radiation dose. The results are analysed on the basis of the Balarin and Hauser (1965) statistical model of radiation annealing, giving a square-root relati......-root relationship between the rate of change of resistivity and the resistivity change. The saturation defect density at room temperature is estimated on the basis of a model for defect creation in cuprous oxide....

  15. Repulsive Interaction of Sulfide Layers on Compressor Impeller Blades Remanufactured Through Plasma Spray Welding

    Science.gov (United States)

    Chang, Y.; Zhou, D.; Wang, Y. L.; Huang, H. H.

    2016-12-01

    This study investigated the repulsive interaction of sulfide layers on compressor impeller blades remanufactured through plasma spray welding (PSW). Sulfide layers on the blades made of FV(520)B steel were prepared through multifarious corrosion experiments, and PSW was utilized to remanufacture blade specimens. The specimens were evaluated through optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, 3D surface topography, x-ray diffraction, ImageJ software analysis, Vicker's micro-hardness test and tensile tests. Results showed a large number of sulfide inclusions in the fusion zone generated by sulfide layers embodied into the molten pool during PSW. These sulfide inclusions seriously degraded the mechanical performance of the blades remanufactured through PSW.

  16. Atomic layer deposition of copper sulfide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Nathanaelle, E-mail: n.schneider@chimie-paristech.fr; Lincot, Daniel; Donsanti, Frédérique

    2016-02-01

    Atomic Layer Deposition (ALD) of copper sulfide (Cu{sub x}S) thin films from Cu(acac){sub 2} (acac = acetylacetonate = 2,4-pentanedionate) and H{sub 2}S as Cu and S precursors is reported. Typical self-saturated reactions (“ALD window”) are obtained in the temperature range T{sub dep} = 130–200 °C for an average growth per cycle (GR) = 0.25 Å/cycle. The morphology, crystallographic structure, chemical composition, electrical properties and optical band gap of thin films were investigated using scanning electronic microscopy (SEM), X-ray diffraction under Grazing Incidence conditions (GI-XRD), X-ray reflectivity (XRR), energy dispersive spectrometry (EDS), Hall effect measurements, and UV–vis spectroscopy. The obtained copper sulfide films are heavily p-doped (charge carrier concentration ~ 10{sup 21} –10{sup 22} cm{sup −3}) with optical band gaps in the range of 2.2–2.5 eV for direct and 1.6–1.8 eV for indirect band gaps. Depending on the number of ALD cycles, multiphase compounds (made of digenite Cu{sub 1.8}S, chalcocite Cu{sub 2}S, djurleite Cu{sub 31}S{sub 16} and covellite CuS) or single-phase digenite Cu{sub 1.8}S films are obtained via a growth mechanism that involves in-situ copper reduction and loss of sulfur by evaporation. - Highlights: • Cu{sub x}S films were synthesized by atomic layer deposition from Cu(acac){sub 2} and H{sub 2}S. • Self-saturated reactions at T{sub dep} = 130–200 °C for growth = 0.25 Å/cycle • Multi- or single- phase films are obtained depending on the number of cycles. • Growth mechanism involves copper reduction and loss of sulfur by evaporation.

  17. 21 CFR 184.1265 - Cuprous iodide.

    Science.gov (United States)

    2010-04-01

    ... with potassium iodide under slightly acidic conditions. (b) The ingredient must be of a purity suitable... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cuprous iodide. 184.1265 Section 184.1265 Food and... Substances Affirmed as GRAS § 184.1265 Cuprous iodide. (a) Cuprous iodide (copper (I) iodide, CuI, CAS...

  18. Disorder and transport of silver in some layered metal sulfides

    NARCIS (Netherlands)

    Gerards, Anthonius Gijsbertus

    1987-01-01

    The chemical and physical properties of compounds with a layered structure are strongly determined by the two-dimensional nature of the bonding, viz. strong bonding within the layers and much weaker bonds between the layers; graphite is an example of such and anisotropic solid. the layered transitio

  19. Comparison of Polythionates as Precursors for the Formation of Thallium Sulfide Layers

    Directory of Open Access Journals (Sweden)

    Vitalijus JANICKIS

    2011-11-01

    Full Text Available The processes of obtaining layers of thallium, sulfides, TlxSy, by the sorption-diffusion method on polyamide 6 using solutions of lower polythionates - sodium trithionate and tetrathionate, Na2S3O6, Na2S4O6, potassium pentathionate, K2S5O6, and of dodecathionic acid, H2S12O6, as precursors of sulfur are compared. The concentration of sorbed sulfur increases with increasing the duration of treatment, the concentration and temperature of precursor solution. It rather significantly also depends on the nature - sulfurity of polythionate, i. e. on the number of sulfur atoms in the polythionate anion: effectiveness of sulfurization using solutions of dodecathionic acid is significantly higher than that of lower polythionates. Thallium sulfide layers are formed on the surface of polyamide after the treatment of sulfurized polymer with Tl(I salt solution. The concentration of thallium in the layer increases with the increase of initial sulfurization duration and in case of H2S12O6 solution used - on the temperature of this process. The results of X-ray diffraction analysis confirmed the formation of thallium sulfide layers in the surface of polyamide 6. The phase composition of layer changes depending on the conditions of initial treatment in a H2S12O6 solution. Five thallium sulfide phases, two forms of TlS, Tl2S2, Tl4S3 and Tl2S5 were identified in the composition of the layers treated for different time with a solution of dodecathionic acid at the temperature of 20 °C and 30 °C and then with Tl(I salt solution by X-ray diffraction but the maxima of TlS and Tl2S5 phases predominate in the diffractograms.http://dx.doi.org/10.5755/j01.ms.17.4.774

  20. Ternary metal-rich sulfide with a layered structure

    Science.gov (United States)

    Franzen, Hugo F.; Yao, Xiaoqiang

    1993-08-17

    A ternary Nb-Ta-S compound is provided having the atomic formula, Nb.sub.1.72 Ta.sub.3.28 S.sub.2, and exhibiting a layered structure in the sequence S-M3-M2-M1-M2-M3-S wherein S represents sulfur layers and M1, M2, and M3 represent Nb/Ta mixed metal layers. This sequence generates seven sheets stacked along the [001] direction of an approximate body centered cubic crystal structure with relatively weak sulfur-to-sulfur van der Waals type interactions between adjacent sulfur sheets and metal-to-metal bonding within and between adjacent mixed metal sheets.

  1. Soft chemical control of the crystal and magnetic structure of a layered mixed valent manganite oxide sulfide

    Directory of Open Access Journals (Sweden)

    Jack N. Blandy

    2015-04-01

    Full Text Available Oxidative deintercalation of copper ions from the sulfide layers of the layered mixed-valent manganite oxide sulfide Sr2MnO2Cu1.5S2 results in control of the copper-vacancy modulated superstructure and the ordered arrangement of magnetic moments carried by the manganese ions. This soft chemistry enables control of the structures and properties of these complex materials which complement mixed-valent perovskite and perovskite-related transition metal oxides.

  2. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses

    Science.gov (United States)

    Lin, X.-J.; Cortus, E. L.; Zhang, R.; Jiang, S.; Heber, A. J.

    2012-01-01

    Ammonia and hydrogen sulfide are hazardous substances that are regulated by the U.S. Environmental Protection Agency through community right-to-know legislation (EPCRA, EPA, 2011). The emissions of ammonia and hydrogen sulfide from large commercial layer facilities are of concern to legislators and nearby neighbors. Particulate matter (PM 10 and PM 2.5) released from layer houses are two of seven criteria pollutants for which EPA has set National Ambient Air Quality Standards as required by the Clean Air Act. Therefore, it is important to quantify the baseline emissions of these pollutants. The emissions of ammonia, hydrogen sulfide, carbon dioxide and PM from two California high-rise layer houses were monitored for two years from October 2007 to October 2009. Each house had 32,500 caged laying hens. The monitoring site was setup in compliance with a U.S. EPA-approved quality assurance project plan. The results showed the average daily mean emission rates of ammonia, hydrogen sulfide and carbon dioxide were 0.95 ± 0.67 (standard deviation) g d -1 bird -1, 1.27 ± 0.78 mg d -1 bird -1 and 91.4 ± 16.5 g d -1 bird -1, respectively. The average daily mean emission rates of PM 2.5, PM 10 and total suspended particulate (TSP) were 5.9 ± 12.6, 33.4 ± 27.4, and 78.0 ± 42.7 mg d -1 bird -1, respectively. It was observed that ammonia emission rates in summer were lower than in winter because the high airflow stabilized the manure by drying it. The reductions due to lower moisture content were greater than the increases due to higher temperature. However, PM 10 emission rates in summer were higher than in winter because the drier conditions coupled with higher internal air velocities increased PM 10 release from feathers, feed and manure.

  3. The formation and potential importance of cemented layers in inactive sulfide mine tailings

    Science.gov (United States)

    Blowes, David W.; Reardon, Eric J.; Jambor, John L.; Cherry, John A.

    1991-04-01

    Investigations of inactive sulfide-rich tailings impoundments at the Heath Steele (New Brunswick) and Waite Amulet (Quebec) minesites have revealed two distinct types of cemented layers or "hardpans." That at Heath Steele is 10-15 cm thick, occurs 20-30 cm below the depth of active oxidation, is continuous throughout the tailings impoundment, and is characterized by cementation of tailings by gypsum and Fe(II) solid phases, principally melanterite. Hardpan at the Waite Amulet site is only 1-5 cm thick, is laterally discontinuous (10-100 cm), occurs at the depth of active oxidation, and is characterized by cementation of tailings by Fe(III) minerals, principally goethite, lepidocrocite, ferrihydrite, and jarosite. At Heath Steele, an accumulation of gas-phase CO 2, of up to 60% of the pore gas, occurs below the hardpan. The calculated diffusivity of the hardpan layer is only about 1/100 that of the overlying, uncemented tailings. The pore-water chemistry at Heath Steele has changed little over a 10-year period, suggesting that the cemented layer restricts the movement of dissolved metals through the tailings and also acts as a zone of metal accumulation. Generation of a cemented layer therefore has significant environmental and economic implications. It is likely that, in sulfide-rich tailings impoundments, the addition of carbonate-rich buffering material during the late stages of tailings deposition would enhance the formation of hardpan layers.

  4. The formation and potential importance of cemented layers in inactive sulfide mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Blowes, D.W.; Reardon, E.J.; Cherry, J.A. (Univ. of Waterloo, Ontario (Canada)); Jambor, J.L. (CANMET, Ontario (Canada))

    1991-04-01

    Investigations of inactive sulfide-rich tailings impoundments at the Heath Steele (New Brunswick) and Waite Amulet (Quebec) minesites have revealed two distinct types of cemented layers or hardpans. That at Heath Steele is 10-15 cm thick, occurs 20-30 cm below the depth of active oxidation, is continuous throughout the tailings impoundment, and is characterized by cementation of tailings by gypsum and Fe(II) solid phases, principally melanterite. Hardpan at the Waite Amulet site is only 1-5 cm thick, is laterally discontinuous (10-100 cm), occurs at the depth of active oxidation, and is characterized by cementation of tailings by Fe(III) minerals, principally goethite, lepidocrocite, ferrihydrite, and jarosite. At Heath Steele, an accumulation of gas-phase CO{sub 2}, of up to 60{percent} of the pore gas, occurs below the hardpan. The calculated diffusivity of the hardpan layer is only about 1/100 that of the overlying, uncemented tailings. The pore-water chemistry at Heath Steele has changed little over a 10-year period, suggesting that the cemented layer restricts the movement of dissolved metals through the tailings and also acts as a zone of metal accumulation. Generation of a cemented layer therefore has significant environmental and economic implications. It is likely that, in sulfide-rich tailings impoundments, the addition of carbonate-rich buffering material during the late stages of tailings deposition would enhance the formation of hardpan layers.

  5. Cover layers to the growth of trees and shrobs over a sulfide spoil from gold mining

    Directory of Open Access Journals (Sweden)

    Igor Rodrigues de Assis

    2011-08-01

    Full Text Available This work was done at a gold mine company in Paracatu, MG, Brazil, and was conducted from March 2000 to November 2005. The substrate (spoil studied was a phillite rock which contains sulfides such as pyrite and arsenopyrite. This study aimed to evaluate the survival and growth of plant species on different combinations of substrate layers over the spoil. These layers were a cover layer and a sealing layer, both deposited over the spoil. The treatment 1 had saprolite (B1 in the sealing layer (SL and B1 with liming (B1L in the cover layer (CL. The treatment 2 had B1 in SL and B1L + soil with liming (SoL in the CL. The treatment 3 had B1 + SoL in the SL and B1L in the CL. The treatment 4 had B1 + SoL in the SL and B1L + SoL in the CL. The plant species used were Acacia farnesiana, A. holosericea, A. polyphylla, Albizia lebbeck, Clitoria fairchildiana, Flemingia sp., Mimosa artemisiana, M. bimucronata e Enterolobium contortisiliquum. Forty and 57 months after planting, collardiameter, height, and living plants were evaluated. The greatest survival rate was oobservedintreatmentwith B horizon of an Oxisoil in both layers, with 80 %. In general, M. bimucronata and A. farnesiana species showed the highest survival rate. The arsenic-content by Mehlich 3 in the cover layer ranged from 0.00 to 14.69 mg dm- 3 among treatments. The experimental results suggest that layers combinations above the sulfide substrate allow the rapid revegetation of the spoil.

  6. Zinc sulfide and terbium-doped zinc sulfide films grown by traveling wave reactor atomic layer epitaxy

    CERN Document Server

    Yun, S J; Nam, K S

    1998-01-01

    Zinc sulfide (ZnS) and terbium-doped ZnS (ZnS:Tb) thin films were grown by traveling wave reactor atomic layer epitaxy (ALE). In the present work, ZnCl sub 2 , H sub 2 S, and tris (2,2,6,6-tetramethyl-3,5-heptandionato) terbium (Tb(tmhd) sub 3) were used as the precursors. The dependence of crystallinity and Cl content of ZnS films was investigated on the growth temperature. ZnS and ZnS:Tb films grown at temperatures ranging from 400 to 500 .deg. C showed a hexagonal-2H crystalline structure. The crystallinity of ZnS film was greatly enhanced as the temperature increased. At growth temperatures higher than 450.deg.C, the films showed preferred orientation with mainly (002) diffraction peak. The Cl content decreased from approximately 9 to 1 at.% with the increase in growth temperature from 400 to 500 .deg. C. The segregation of Cl near the surface region and the incorporation of O from Tb(tmhd) sub 3 during ALE process were also observed using Auger electron spectroscopy. The ALE-grown ZnS and ZnS:Tb films re...

  7. Copper zinc tin sulfide layers prepared from solution processable metal dithiocarbamate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Edler, Michael [Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz (Austria); Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz, Forschungsgesellschaft mbH (Austria); Rath, Thomas, E-mail: thomas.rath@tugraz.at [Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz (Austria); Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz, Forschungsgesellschaft mbH (Austria); Schenk, Alexander [Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz (Austria); Fischereder, Achim [Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz (Austria); Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz, Forschungsgesellschaft mbH (Austria); Haas, Wernfried [Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz, Forschungsgesellschaft mbH (Austria); Institute for Electron Microscopy and Fine Structure Research, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Edler, Matthias [Chair of Chemistry of Polymeric Materials, University of Leoben, Otto Gloeckel-Strasse 2, 8700 Leoben (Austria); Chernev, Boril [Institute for Electron Microscopy and Fine Structure Research, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Kunert, Birgit [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Hofer, Ferdinand [Institute for Electron Microscopy and Fine Structure Research, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); and others

    2012-10-15

    In this contribution we present a solution based route toward copper zinc tin sulfide - CZTS - layers using metal dithiocarbamate precursors. We focus on the synthesis of the precursor materials as well as on the fabrication of thin CZTS layers at low temperatures of 350 Degree-Sign C and their characterization. Powder X-ray diffraction measurements show that a precursor solution containing an excess of the zinc precursor, compared to the Cu and Sn precursors, has to be used to obtain CZTS films without secondary phases. Thus, the prepared films are Zn-rich, which is beneficial for solar cell applications. Raman as well as X-ray photoelectron spectroscopy studies confirm the formation of CTZS. No clear evidence for free ZnS has been found. Electron microscopy shows agglomerates of 10 nm-sized crystallites forming spherical particles with a diameter between 50 nm and 400 nm. The prepared films possess high optical absorption (>1.10{sup 4} cm{sup -1}) and an optical band gap of approximately 1.6 eV. Highlights: Black-Right-Pointing-Pointer CZTS layers are prepared from metal dithiocarbamate precursor solu-tions. Black-Right-Pointing-Pointer No additional sulfur sources or capping agents are necessary. Black-Right-Pointing-Pointer Prepared CZTS layers are zinc rich. Black-Right-Pointing-Pointer CZTS layers show a high absorption coefficient and a band gap of 1.6 eV.

  8. Cu-Ni-PGE fertility of the Yoko-Dovyren layered massif (northern Transbaikalia, Russia): thermodynamic modeling of sulfide compositions in low mineralized dunite based on quantitative sulfide mineralogy

    Science.gov (United States)

    Ariskin, Alexey A.; Kislov, Evgeny V.; Danyushevsky, Leonid V.; Nikolaev, Georgy S.; Fiorentini, Marco L.; Gilbert, Sarah; Goemann, Karsten; Malyshev, Alexey

    2016-12-01

    The geology and major types of sulfide mineralization in the Yoko-Dovyren layered massif (northern Transbaikalia, Russia) are presented. This study focuses on the structure, mineralogy, and geochemistry of poorly mineralized plagiodunite and dunite in the lower part of the intrusion. Assuming these rocks contain key information on the timing of sulfide immiscibility in the original cumulate pile, we apply a novel approach which combines estimates of the average sulfide compositions in each particular rock with thermodynamic modeling of the geochemistry of the original sulfide liquid. To approach the goal, an updated sulfide version of the COMAGMAT-5 model was used. Results of simulations of sulfide immiscibility in initially S-undersaturated olivine cumulates demonstrate a strong effect of the decreasing fraction of the silicate melt, due to crystallization of silicate and oxide minerals, on the composition of the intercumulus sulfide liquid. Comparison of the observed and modeled sulfide compositions indicates that the proposed modeling reproduces well the average concentrations of Cu, Cd, Ag, and Pd in natural sulfides. This suggests the sulfide control on the distribution of these elements in the rocks. Conversely, data for Pt and Au suggest that a significant portion of these elements could present in a native form, thus depleting the intercumulus sulfide melt at an early stage of crystallization.

  9. Resistance switching of electrodeposited cuprous oxide

    Science.gov (United States)

    Yazdanparast, Sanaz

    In this work, the resistance switching behavior of electrodeposited cuprous oxide (Cu2O) thin films in Au/Cu2O/top electrode (Pt, Au-Pd, Al) cells was studied. After an initial FORMING process, the fabricated cells show reversible switching between a low resistance state (16.6 O) and a high resistance state (0.4 x 106 O). Changing the resistance states in cuprous oxide films depends on the magnitude of the applied voltage which corresponds to unipolar resistance switching behavior of this material. The endurance and retention tests indicate a potential application of the fabricated cells for nonvolatile resistance switching random access memory (RRAM). The results suggest formation and rupture of one or several nanoscale copper filaments as the resistance switching mechanism in the cuprous oxide films. At high electric voltage in the as-deposited state of Au/Cu 2O/Au-Pd cell structure, the conduction behavior follows Poole-Frenkel emission. Various parameters, such as the compliance current, the cuprous oxide microstructure, the cuprous oxide thickness, top electrode area, and top electrode material, affect the resistance switching characteristics. The required FORMING voltage is higher for Au/Cu2O/Al cell compared with the Au/Cu2O/Pt which is related to the Schottky behavior of Al contact with Cu2O. Cu2O nanowires in Au-Pt/ Cu 2O/Au-Pt cell also show resistance switching behavior, indicating scalable potential of this cell for usage as RRAM. After an initial FORMING process under an electric field of 3 x 106 V/m, the Cu2O nanowire is switched to the LRS. During the FORMING process physical damages are observed in the cell, which may be caused by Joule heating and gas evolution.

  10. Successive ionic layer adsorption and reaction (SILAR) trend for nanocrystalline mercury sulfide thin films growth

    Energy Technology Data Exchange (ETDEWEB)

    Patil, R.S. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India); Lokhande, C.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India); Mane, R.S. [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang 17, Seoul 133-791 (Korea, Republic of); Pathan, H.M. [Korea Institute of Science and Technology 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Joo, Oh-Shim [Korea Institute of Science and Technology 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Han, Sung-Hwan [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang 17, Seoul 133-791 (Korea, Republic of)]. E-mail: shhan@hanyang.ac.kr

    2006-04-15

    Mercury sulfide (HgS) nanocrystalline thin films have been grown onto amorphous glass substrate by successive ionic layer adsorption and reaction (SILAR) trend at room temperature (27 deg. C). The optimized preparative parameters including ion concentration, number of immersion cycles, and pH of the solution are used for fine nanocrystalline film growth. A further study has been made for the structural, surface morphological, optical and electrical properties of the films by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), optical absorption and dc two point probe method. The as-deposited grown HgS nanocrystalline films exhibited cubic phase, with optical band gap (E {sub g}) of 2.0 eV and electrical resistivity of the order of 10{sup 3} {omega} cm. SEM and TEM images confirmed films of smooth surface morphology and nanocrystaline in nature with fine crystallites of 20-30 nm diameter, respectively.

  11. From front contact to back contact in cadmium telluride/cadmium sulfide solar cells: Buffer layer and interfacial layer

    Science.gov (United States)

    Roussillon, Yann

    Cadmium telluride (CdTe) polycrystalline thin film solar cells, with their near optimum direct band-gap of 1.4 eV matching almost perfectly the sun radiation spectrum, are a strong contender as a less expensive alternative, among photovoltaic materials, than the more commonly used silicon-based cells. Polycrystalline solar cells are usually deposited over large areas. Such devices often exhibit strong fluctuations (nonuniformities) in electronic properties, which originate from deposition and post-deposition processes, and are detrimental to the device performance. Therefore their effects need to be constrained. A new approach in this work was, when a CdS/CdTe solar cell is exposed to light and immersed in a proper electrolyte, fluctuations in surface potential can drive electrochemical reactions which result in a nonuniform interfacial layer that could balance the original nonuniformity. This approach improved the device efficiency for CdS/CdTe photovoltaic devices from 1--3% to 11--12%. Cadmium sulfide (CdS), used as a window layer and heterojunction partner to CdTe, is electrically inactive and absorb light energies above its band-gap of 2.4 eV. Therefore, to maximize the device efficiency, a thin US layer needs to be used. However, more defects, such as pinholes, are likely to be present in the film, leading to shunts. A resistive transparent layer, called buffer layer, is therefore deposited before CdS. A key observation was that the open-circuit voltage (Voc) for cells made using a buffer layer was high, around 800 mV, similar to cells without buffer layer after Cu doping. The standard p-n junction theory cannot explain this phenomena, therefore an alternative junction mechanism, similar to metal-insulator-semiconductor devices, was developed. Furthermore, alternative Cu-free back-contacts were used in conjunction with a buffer layer. The Voc of the devices was found to be dependent of the back contact used. This change occurs as the back-contact junction

  12. Atomic layer deposition of metal sulfide thin films using non-halogenated precursors

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Alex B. F.; Elam, Jeffrey W.; Pellin, Michael J.

    2015-05-26

    A method for preparing a metal sulfide thin film using ALD and structures incorporating the metal sulfide thin film. The method includes providing an ALD reactor, a substrate, a first precursor comprising a metal and a second precursor comprising a sulfur compound. The first and the second precursors are reacted in the ALD precursor to form a metal sulfide thin film on the substrate. In a particular embodiment, the metal compound comprises Bis(N,N'-di-sec-butylacetamidinato)dicopper(I) and the sulfur compound comprises hydrogen sulfide (H.sub.2S) to prepare a Cu.sub.2S film. The resulting metal sulfide thin film may be used in among other devices, photovoltaic devices, including interdigitated photovoltaic devices that may use relatively abundant materials for electrical energy production.

  13. Radiation and atmospheric circulation controls on carbonyl sulfide concentrations in the marine boundary layer

    Science.gov (United States)

    Berkelhammer, M.; Steen-Larsen, H. C.; Cosgrove, A.; Peters, A. J.; Johnson, R.; Hayden, M.; Montzka, S. A.

    2016-11-01

    A potential closure of the global carbonyl sulfide (COS or OCS) budget has recently been attained through a combination of remote sensing, modeling, and extended surface measurements. However, significant uncertainties in the spatial and temporal dynamics of the marine flux still persist. In order to isolate the terrestrial photosynthetic component of the global atmospheric OCS budget, tighter constraints on the marine flux are needed. We present 6 months of nearly continuous in situ OCS concentrations from the North Atlantic during the fall and winter of 2014-2015 using a combination of research vessel and fixed tower measurements. The data are characterized by synoptic-scale ˜100 pmol mol-1 variations in marine boundary layer air during transitions from subtropical to midlatitude source regions. The synoptic OCS variability is shown here to be a linear function of the radiation history along an air parcel's trajectory with no apparent sensitivity to the chlorophyll concentration of the surface waters that the air mass interacted with. This latter observation contradicts expectations and suggests a simple radiation limitation for the combined direct and indirect marine OCS emissions. Because the concentration of OCS in the marine boundary layer is so strongly influenced by an air parcel's history, marine and atmospheric concentrations would rarely be near equilibrium and thus even if marine production rates are held constant at a given location, the ocean-atmosphere flux would be sensitive to changes in atmospheric circulation alone. We hypothesize that changes in atmospheric circulation including latitudinal shifts in the storm tracks could affect the marine flux through this effect.

  14. Influence of Different Annealing Ambients on the Properties of Zinc Sulfide Prepared by Atomic Layer Deposition

    Science.gov (United States)

    Yoo, Dongjun; Heo, Seung Chan; Choi, Moon Suk; Kim, Dohyung; Chung, Chulwon; Choi, Hag Young; Jeon, Hyeongtag; Choi, Changhwan

    2013-10-01

    The effects of different post annealing ambients (vacuum, O2, and H2S gases) on the chemical, structural, and optical properties of zinc sulfide (ZnS) thin films prepared by atomic layer deposition (ALD) were investigated. Diethylzinc [DEZ, Zn(C2H5)2] and H2S gas were used as precursor and reactant gas, respectively. Compared to as-deposited 50-nm-thick ZnS film, the optical energy band gap (Eg) of ZnS annealed under vacuum and H2S conditions increased from 3.73 to 3.85 eV, while it decreased down to 3.23 eV for the O2 annealing case. The change in the Eg of the thicker ZnS is similar to that of the thinner ZnS case. This behavior is related to the change in the Zn to S ratio. The vacuum and H2S anneals increases the Zn/S ratio, leading to higher Zn interstitial defects or S vacancy sites in the films. X-ray diffraction analysis reveals that ZnS thin film has a preferred orientation of hexagonal wurtizte (002) and cubic zinc blend (111) at ˜28.2°, and its grain size changes in a range from 18.79 to 28.14 nm after annealing. However, for O2 annealing, the patterns of both the newly formed ZnO phase and the reduced ZnS phase appear at 34.04°. This result suggests that change in the composition and crystal structure during the process significantly affects the optical properties of ZnS thin film, which should be taken into consideration in searching for an alternative buffer layer for Cu2InGaSe(S)4 (CIGS) thin film solar cell systems.

  15. Immiscibility of Fluid Phases at Magmatic-hydrothermal Transition: Formation of Various PGE-sulfide Mineralization for Layered Basic Intrusions

    Science.gov (United States)

    Zhitova, L.; Borisenko, A.; Morgunov, K.; Zhukova, I.

    2007-12-01

    Fluid inclusions in quartz of the Merensky Reef (Bushveld Complex, South Africa) and the Chineisky Pluton (Transbaikal Region, Russia) were studied using cryometry, microthermometry, Raman-spectroscopy, LA ICP- MS, scanning electronic microscopy, gas-chromatography and isotopic methods. This allowed us to document some examples of fluid phase separation resulting in formation of different types of PGE-sulfide mineralization for layered basic intrusions. The results obtained show at least three generations of fluid separated from boiling residual alumosilicate intercumulus liquid of the Merensky Reef. The earliest fluid phase composed of homogenous high-dense methane and nitrogen gas mixture was identified in primary gas and co-existing anomalous fluid inclusions from symplectitic quartz. The next generation, heterophase fluid, composed of brines containing a free low-dense (mostly of carbon dioxide) gas phase, was observed in primary multiphase and coexisting gas-rich inclusions of miarolitic quartz crystals. The latest generation was also a heterophase fluid (low salinity water-salt solution and free low-dense methane gas phase) found in primary water-salt and syngenetic gas inclusions from peripheral zones of miarolitic quartz crystals. For the Chineisky Pluton reduced endocontact magmatogene fluids changed to oxidized low salinity hydrothermal fluids in exocontact zone. This resulted in formation of sulfide-PGE enrichment marginal zones of intrusion. The results obtained give us a possibility to suggest that: 1) Fluid phase separation is a typical feature of magmatogene fluids for layered basic intrusions. 2) Reduced fluids can extract and transport substantial PGE and sulfide concentrations. 3) Oxidation of reduced fluids is one of the most important geochemical barriers causing abundant PGE minerals and sulfides precipitation. This in turn results in both formation of PGE reefs or enriched contact zones of layered basic intrusions. This work was supported by

  16. Poly(methyl methacrylate)/layered zinc sulfide nanocomposites: Preparation, characterization and the improvements in thermal stability, flame retardant and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao; Zhou, Keqing; Jiang, Saihua [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Shi, Yongqian [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren’ai Road, Suzhou, Jiangsu 215123 (China); Wang, Bibo [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Gui, Zhou, E-mail: zgui@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren’ai Road, Suzhou, Jiangsu 215123 (China)

    2014-08-15

    Highlights: • Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method. • We prepare PMMA/LZnS nanocomposites by in situ bulk polymerization of MMA. • PMMA/LZnS nanocomposites were investigated by TGA, DSC, MCC, UV–vis and PL test. • The thermal stability, flame retardant and optical properties of PMMA are improved. - Abstract: Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method and poly(methyl methacrylate) (PMMA)/layered zinc sulfide nanocomposites were obtained by in situ bulk polymerization of methyl methacrylate (MMA). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the as-synthesized layered zinc sulfide and PMMA/layered zinc sulfide nanocomposites. Microscale combustion calorimeter (MCC), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA) were used to test the thermal properties of the composites. Ultraviolet visible (UV–vis) transmittance spectra and photoluminence (PL) spectra were obtained to investigate the optical properties of the composites. From the results, the thermal degradation temperature is increased by 20–50 °C, the peak of heat release rate (pHRR) and total heat release (THR) are both decreased by above 30%, and the photoluminence intensity is enhanced with the increasing loading of layered zinc sulfide.

  17. Indium sulfide thin films as window layer in chemically deposited solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Loredo, S. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Peña-Méndez, Y., E-mail: yolapm@gmail.com [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Calixto-Rodriguez, M. [Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, C.P. 62760 Emiliano Zapata, Morelos (Mexico); Messina-Fernández, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo” S/N, C.P. 63190 Tepic, Nayarit (Mexico); Alvarez-Gallegos, A. [Universidad Autónoma del Estado de Morelos, Centro de Investigación en Ingeniería y Ciencias Aplicadas, Av. Universidad 1001, C.P. 62209, Cuernavaca Morelos (Mexico); Vázquez-Dimas, A.; Hernández-García, T. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico)

    2014-01-01

    Indium sulfide (In{sub 2}S{sub 3}) thin films have been synthesized by chemical bath deposition technique onto glass substrates using In(NO{sub 3}){sub 3} as indium precursor and thioacetamide as sulfur source. X-ray diffraction studies have shown that the crystalline state of the as-prepared and the annealed films is β-In{sub 2}S{sub 3}. Optical band gap values between 2.27 and 2.41 eV were obtained for these films. The In{sub 2}S{sub 3} thin films are photosensitive with an electrical conductivity value in the range of 10{sup −3}–10{sup −7} (Ω cm){sup −1}, depending on the film preparation conditions. We have demonstrated that the In{sub 2}S{sub 3} thin films obtained in this work are suitable candidates to be used as window layer in thin film solar cells. These films were integrated in SnO{sub 2}:F/In{sub 2}S{sub 3}/Sb{sub 2}S{sub 3}/PbS/C–Ag solar cell structures, which showed an open circuit voltage of 630 mV and a short circuit current density of 0.6 mA/cm{sup 2}. - Highlights: • In{sub 2}S{sub 3} thin films were deposited using the Chemical Bath Deposition technique. • A direct energy band gap between 2.41 to 2.27 eV was evaluated for the In{sub 2}S{sub 3} films. • We made chemically deposited solar cells using the In{sub 2}S{sub 3} thin films.

  18. Preparation and Instability of Nanocrystalline Cuprous Nitride.

    Science.gov (United States)

    Reichert, Malinda D; White, Miles A; Thompson, Michelle J; Miller, Gordon J; Vela, Javier

    2015-07-06

    Low-dimensional cuprous nitride (Cu3N) was synthesized by nitridation (ammonolysis) of cuprous oxide (Cu2O) nanocrystals using either ammonia (NH3) or urea (H2NCONH2) as the nitrogen source. The resulting nanocrystalline Cu3N spontaneously decomposes to nanocrystalline CuO in the presence of both water and oxygen from air at room temperature. Ammonia was produced in 60% chemical yield during Cu3N decomposition, as measured using the colorimetric indophenol method. Because Cu3N decomposition requires H2O and produces substoichiometric amounts of NH3, we conclude that this reaction proceeds through a complex stoichiometry that involves the concomitant release of both N2 and NH3. This is a thermodynamically unfavorable outcome, strongly indicating that H2O (and thus NH3 production) facilitate the kinetics of the reaction by lowering the energy barrier for Cu3N decomposition. The three different Cu2O, Cu3N, and CuO nanocrystalline phases were characterized by a combination of optical absorption, powder X-ray diffraction, transmission electron microscopy, and electronic density of states obtained from electronic structure calculations on the bulk solids. The relative ease of interconversion between these interesting and inexpensive materials bears possible implications for catalytic and optoelectronic applications.

  19. Different distribution of in-situ thin carbon layer in hollow cobalt sulfide nanocages and their application for supercapacitors

    Science.gov (United States)

    Jin, Meng; Lu, Shi-Yu; Ma, Li; Gan, Meng-Yu; Lei, Yao; Zhang, Xiu-Ling; Fu, Gang; Yang, Pei-Shu; Yan, Mao-Fa

    2017-02-01

    Recently, cobalt sulfides emerge as a candidate for energy reserve and conversation. However, the problem of poor stability and low rate capability for cobalt sulfides restrict its practical application. Thin carbon layer (TCL) coated has been regarded as a promising constructing strategy for high performance supercapacitors, because TCL can promote the tremendous properties of bare materials. In this literature, we report a very interesting phenomenon that different distribution of in-situ carbon coated hollow CoS2 nanocages (external and both external and interior) can be synthesized only by adjusting sulfuration time, followed by calcination. Moreover, it is clearly observed that CoS2-C@TCL exhibits significant improvement for specific capacitance and good stability (better than CoS2@TCL and CoS2). These results compel us to design a series of experiments to figure out the reason and the more detailed mechanism is discussed in paper. More importantly, it will provide a new strategy for synthesis of special structure with in-situ carbon coated sulfide for energy conversion.

  20. Deposition of very thin uniform indium sulfide layers over metallic nano-rods by the Spray-Ion Layer Gas Reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Genduso, G. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, Viale delle Scienze, 90100 Palermo (Italy); Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Inguanta, R.; Sunseri, C.; Piazza, S. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, Viale delle Scienze, 90100 Palermo (Italy); Kelch, C.; Sáez-Araoz, R. [Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Zykov, A. [Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); present address: Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15,12489 Berlin (Germany); Fischer, Ch.-H., E-mail: fischer@helmholtz-berlin.de [Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); second affiliation: Free University Berlin, Chemistry Institute, Takustr. 3, D-14195 Berlin (Germany)

    2013-12-02

    Very thin and uniform layers of indium sulfide were deposited on nickel nano-rods using the sequential and cyclical Spray-ILGAR® (Ion Layer Gas Reaction) technique. Substrates were fabricated by electrodeposition of Ni within the pores of polycarbonate membranes and subsequent chemical dissolution of the template. With respect to the depositions on flat substrates, experimental conditions were modified and optimized for the present geometry. Our results show that nano-rods up to a length of 10 μm were covered uniformly along their full length and with an almost constant film growth rate, thus allowing a good control of the coating thickness; the effect of the deposition temperature was also investigated. However, for high numbers of process steps, i.e. thickness, the films became uneven and crusty, especially at higher temperature, mainly owing to the simultaneous side reaction of the metallic Ni forming nickel sulfide at the surface of the rods. However, such a problem occurs only in the case of reactive nano-rod materials, such as less noble metals. It could be strongly reduced by doubling the spray step duration and thereby sealing the metallic surface before the process step of the sulfurization. Thus, quite smooth, about 100 nm thick coatings could be obtained. - Highlights: • Ni nano-rod substrates were grown within polycarbonate membranes. • We can coat nano-rods uniformly by the Ion Layer Gas Reaction method. • As a model we deposited up to about 100 nm In{sub 2}S{sub 3} on Ni nanorods (250 nm × 10 μm). • Element mapping at insulated rods showed homogenous coating over the full length. • Parameter optimization reduced effectively the Ni sulfide formation.

  1. Interfacial effect on the electrochemical properties of the layered graphene/metal sulfide composites as anode materials for Li-ion batteries

    Science.gov (United States)

    Lv, Yagang; Chen, Biao; Zhao, Naiqin; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Liu, Enzuo

    2016-09-01

    The layered graphene/metal sulfide composites exhibit excellent electrochemical properties as anode materials for lithium ion battery, due to the synergistic effect between metal sulfide and graphene which still needs to be further understood. In this study, Li adsorption and diffusion on MoS2 and SnS2 monolayers and Li2S surface, as well as at their interfaces with graphene, are systematically investigated through first-principles calculations. The analysis of charge density difference, Bader charge, and density of states indicates that the adsorbed Li atoms interact with both the S atoms at metal sulfide surfaces and C atoms in graphene, resulting in larger Li adsorption energies at the interfaces compared with that on the corresponding surfaces, but with almost no enhancement of the energy barriers for Li atom diffusion. The enhanced Li adsorption capability at Li2S/G interface contributes to the extra storage capacity of graphene/metal sulfide composites. Furthermore, the synergistic mechanism between metal sulfide and graphene is revealed. Moreover, band structure analysis shows the electronic conductivity is enhanced with the incorporation of graphene. The results corroborate the interfacial pseudocapacity-like Li atom storage mechanism, and are helpful for the design of layered graphene/metal sulfide composites as anode materials for lithium ion batteries.

  2. In Situ Transformation of MOFs into Layered Double Hydroxide Embedded Metal Sulfides for Improved Electrocatalytic and Supercapacitive Performance.

    Science.gov (United States)

    Yilmaz, Gamze; Yam, Kah Meng; Zhang, Chun; Fan, Hong Jin; Ho, Ghim Wei

    2017-07-01

    Direct adoption of metal-organic frameworks (MOFs) as electrode materials shows impoverished electrochemical performance owing to low electrical conductivity and poor chemical stability. In this study, we demonstrate self-templated pseudomorphic transformation of MOF into surface chemistry rich hollow framework that delivers highly reactive, durable, and universal electrochemically active energy conversion and storage functionalities. In situ pseudomorphic transformation of MOF-derived hollow rhombic dodecahedron template and sulfurization of nickel cobalt layered double hydroxides (NiCo-LDHs) lead to the construction of interlayered metal sulfides (NiCo-LDH/Co9 S8 ) system. The embedment of metal sulfide species (Co9 S8 ) at the LDH intergalleries offers optimal interfacing of the hybrid constituent elements and materials stability. The hybrid NiCo-LDH/Co9 S8 system collectively presents an ideal porous structure, rich redox chemistry, and high electrical conductivity matrix. This leads to a significant enhancement in its complementary electrocatalytic hydrogen evolution and supercapacitive energy storage properties. This work establishes the potential of MOF derived scaffold for designing of novel class hybrid inorganic-organic functional materials for electrochemical applications and beyond. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Evaluation of defects in cuprous oxide through exciton luminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, Laszlo, E-mail: jl@laszlofrazer.com [Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Lenferink, Erik J. [Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Chang, Kelvin B. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Poeppelmeier, Kenneth R. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Stern, Nathaniel P. [Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ketterson, John B. [Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2015-03-15

    The various decay mechanisms of excitons in cuprous oxide (Cu{sub 2}O) are highly sensitive to defects which can relax selection rules. Here we report cryogenic hyperspectral imaging of exciton luminescence from cuprous oxide crystals grown via the floating zone method showing that the samples have few defects. Some locations, however, show strain splitting of the 1s orthoexciton triplet polariton luminescence. Strain is reduced by annealing. In addition, annealing causes annihilation of oxygen and copper vacancies, which leads to a negative correlation between luminescence of unlike vacancies. - Highlights: • We use luminescence to observe defects in high quality cuprous oxide crystals. • Strain is reduced by annealing. • Annealing causes annihilation of oxygen and copper vacancies.

  4. Triggers on sulfide saturation in Fe-Ti oxide-bearing, mafic-ultramafic layered intrusions in the Tarim large igneous province, NW China

    Science.gov (United States)

    Cao, Jun; Wang, Christina Yan; Xu, Yi-Gang; Xing, Chang-Ming; Ren, Ming-Hao

    2016-08-01

    Three Fe-Ti oxide-bearing layered intrusions (Mazaertag, Wajilitag, and Piqiang) in the Tarim large igneous province (NW China) have been investigated for understanding the relationship of sulfide saturation, Platinum-group element (PGE) enrichment, and Fe-Ti oxide accumulation in layered intrusions. These mafic-ultramafic layered intrusions have low PGE concentrations (convecting mantle, without appreciable input of lithospheric mantle. The Mazaertag and Wajilitag intrusions have near-chondritic γOs(t) values (+13 to +60) against restricted ɛ Nd(t) values (-0.4 to +2.8), indicating insignificant crustal contamination. Rocks of the Piqiang intrusion have relatively low ɛ Nd(t) values of -3.1 to +1.0, consistent with ˜15 to 25 % assimilation of the upper crust. The rocks of the Mazaertag and Wajilitag intrusions have positive correlation of PGE and S, pointing to the control of PGE by sulfide. Poor correlation of PGE and S for the Piqiang intrusion is attributed to the involvement of multiple sulfide-stage liquids with different PGE compositions or sulfide-oxide reequilibration on cooling. These three layered intrusions have little potential of reef-type PGE mineralization. Four criteria are summarized in this study to help discriminate between PGE-mineralized and PGE-unmineralized mafic-ultramafic intrusions.

  5. The Absorption of Benzotriazole on Copper and Cuprous Oxide

    Science.gov (United States)

    1988-07-01

    Cornell University, Ithaca INY, 14853 Copper surfaces are commonly treated with benzotriazole ( BTA ), 1. to inhibit cor- rosion. H1+ is thought to be...00 00 SIOFFICE OF NAVAL RESEARCH Contract N00014-82-K-0576 Technical Report No. 38 THE ADSORPTION OF BENZOTRIAZOLE ON COPPER AND CUPROUS OXIDE by M... Benzotriazole on Copper and Cuprous Oxide 12 7- `SONAL AUTHOR(S) M. C. Zonnevylle and R. Hoffmann 13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year

  6. Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery.

    Science.gov (United States)

    Sun, Ruimin; Wei, Qiulong; Li, Qidong; Luo, Wen; An, Qinyou; Sheng, Jinzhi; Wang, Di; Chen, Wei; Mai, Liqiang

    2015-09-23

    As an alternative system of rechargeable lithium ion batteries, sodium ion batteries revitalize researchers' interest due to the low cost, abundant sodium resources, and similar storage mechanism to lithium ion batteries. VS4 has emerged as a promising anode material for SIBs due to low cost and its unique linear chains structure that can offer potential sites for sodium storage. Herein, we present the growth of VS4 on reduced graphene oxide (rGO) as SIBs anode for the first time. The VS4/rGO anode exhibits promising performance in SIBs. It delivers a reversible capacity of 362 mAh g(-1) at 100 mA g(-1) and a good rate performance. We also investigate the sodium storage behavior of the VS4/rGO. Different than most transition metal sulfides, the VS4/rGO composite experiences a three-step separation mechanism during the sodiation process (VS4 to metallic V and Na2S, then the electrochemical mechanism is akin to Na-S). The VS4/rGO composite proves to be a promising material for rechargeable SIBs.

  7. Potentiostatic Deposition and Characterization of Cuprous Oxide Thin Films

    OpenAIRE

    2013-01-01

    Electrodeposition technique was employed to deposit cuprous oxide Cu2O thin films. In this work, Cu2O thin films have been grown on fluorine doped tin oxide (FTO) transparent conducting glass as a substrate by potentiostatic deposition of cupric acetate. The effect of deposition time on the morphologies, crystalline, and optical quality of Cu2O thin films was investigated.

  8. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    Science.gov (United States)

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.

  9. Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal-Organic Framework via Atomic Layer Deposition.

    Science.gov (United States)

    Peters, Aaron W; Li, Zhanyong; Farha, Omar K; Hupp, Joseph T

    2015-08-25

    Atomic layer deposition (ALD) has been employed as a new synthetic route to thin films of cobalt sulfide on silicon and fluorine-doped tin oxide platforms. The self-limiting nature of the stepwise synthesis is established through growth rate studies at different pulse times and temperatures. Additionally, characterization of the materials by X-ray diffraction and X-ray photoelectron spectroscopy indicates that the crystalline phase of these films has the composition Co9S8. The nodes of the metal-organic framework (MOF) NU-1000 were then selectively functionalized with cobalt sulfide via ALD in MOFs (AIM). Spectroscopic techniques confirm uniform deposition of cobalt sulfide throughout the crystallites, with no loss in crystallinity or porosity. The resulting material, CoS-AIM, is catalytically active for selective hydrogenation of m-nitrophenol to m-aminophenol, and outperforms the analogous oxide AIM material (CoO-AIM) as well as an amorphous CoSx reference material. These results reveal AIM to be an effective method of incorporating high surface area and catalytically active cobalt sulfide in metal-organic frameworks.

  10. Acetylene black incorporated layered copper sulfide nanosheets for high-performance supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ke-Jing, E-mail: kejinghuang11@163.com; Zhang, Ji-Zong; Jia, Yu-Ling; Xing, Ke; Liu, Yan-Ming

    2015-08-25

    Highlights: • CuS/AB composites were synthesized by a simple solvothermal route. • Supercapacitor electrode based on CuS/AB was fabricated. • Microstructures and electrochemical properties of the electrodes were evaluated. • CuS/AB electrode exhibited ultrahigh specific capacitance and good cycling stability. - Abstract: Two-dimensional transition metal chalcogenides are attracting increasing attention in energy storage due to their unique structures and electronic properties. CuS has been demonstrated with a metal-like electronic conductivity and a high theoretical capacity. In this work, a facile strategy was reported for one-step synthesis of acetylene black (AB) incorporated layered CuS nanosheet via a simple solvothermal route. X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy were used to investigate the morphologies and microstructures of the as-prepared materials. Electrochemical data showed that the CuS/AB composites displayed a high specific capacitance of 2981 F/g at 1.0 A/g and retained 64.6% (1924.5 F/g) at a high current density of 20 A/g, indicative of good rate capability. Furthermore, the composites retained approximately 92% of the initial specific capacitance after 600 cycles at a current density of 1.0 A/g, demonstrating good cycling stability. The outstanding electrochemical properties of the CuS/AB composite suggested that it had great potential for practical applications in high-performance supercapacitors and the present synthesis strategy maybe readily extended to the preparation of other composites based on CuS for potential applications in energy storage and conversion devices.

  11. Sensitivity of cuprous azide towards heat and impact

    Directory of Open Access Journals (Sweden)

    Kartar Singh

    1958-07-01

    Full Text Available "Rates of thermal decomposition of azide at six different temperatures have been measured. The sigmoid shapes of the curves representing increase in pressure with time suggest that a given temperature a fixed number of nuclei are formed at the end of the induction period. The nuclei increase in size in three dimensions. The radius of any nucleus at any instant (tis directly proportional to (t-t/Sub/owhere t/Sub/o is the induction period. The activation energy involved in thermal has been found decomposition to be 26.5K calories. It is suggested that this activation energy corresponds to the energy required for thermal transition of an electron 3 d band to the Fermi level of the metallic copper nuclei. The impact sensitivity and induction period necessary for explosion at various temperatures for crystalline and precipitated samples of cuprous azide have been measured. The results indicate that cuprous azide is more sensitive towards heat and impact than lead azide. The impact sensitivity of cuprous azide is found to increase in crystal size."

  12. Epitaxially aligned cuprous oxide nanowires for all-oxide, single-wire solar cells.

    Science.gov (United States)

    Brittman, Sarah; Yoo, Youngdong; Dasgupta, Neil P; Kim, Si-in; Kim, Bongsoo; Yang, Peidong

    2014-08-13

    As a p-type semiconducting oxide that can absorb visible light, cuprous oxide (Cu2O) is an attractive material for solar energy conversion. This work introduces a high-temperature, vapor-phase synthesis that produces faceted Cu2O nanowires that grow epitaxially along the surface of a lattice-matched, single-crystal MgO substrate. Individual wires were then fabricated into single-wire, all-oxide diodes and solar cells using low-temperature atomic layer deposition (ALD) of TiO2 and ZnO films to form the heterojunction. The performance of devices made from pristine Cu2O wires and chlorine-exposed Cu2O wires was investigated under one-sun and laser illumination. These faceted wires allow the fabrication of well-controlled heterojunctions that can be used to investigate the interfacial properties of all-oxide solar cells.

  13. Optical and photovoltaic properties of zinc sulfide quantum dots fabricated by spin-assisted successive ion layer adsorption and reaction technique

    Science.gov (United States)

    Mehrabian, Masood; Mirabbaszadeh, Kavoos; Afarideh, Hossein; Kim, Yoon Sang

    2014-01-01

    Zinc sulfide (ZnS) quantum dots were prepared by successive ion layer adsorption and reaction (SILAR) technique based on spin coating (spin-SILAR). The effect of the number of SILAR cycle (n) on optical and photovoltaic properties was studied. An optimized ZnS quantum dot sensitized solar cell demonstrated maximum power conversion efficiency of 3.58% with a short-circuit current of 10.53 mA/cm2 and an open-circuit voltage of 0.58 V under one sun illumination (AM1.5). The results showed that a ZnS QD layer with n=10 (thickness ˜80 nm) can be used as a highly efficient sensitizer for solar cells. The ZnS QD layer acts as a light absorber and a recombination blocking layer in the ITO/ZnO film/ZnS QD/P3HT/PCBM/Ag structure.

  14. Growth of zinc sulfide thin films on (100)Si with the successive ionic layer adsorption and reaction method studied by atomic force microscopy

    Science.gov (United States)

    Valkonen, Mika P.; Lindroos, Seppo; Resch, Roland; Leskelä, Markku; Friedbacher, Gernot; Grasserbauer, Manfred

    1998-10-01

    Zinc sulfide (ZnS) thin films were grown on (100)Si substrates from solution with the successive ionic layer adsorption and reaction (SILAR) method. Aqueous solutions of ZnCl 2 and Na 2S were used as precursors. The morphological development of the films with increasing number of SILAR cycles was monitored ex situ by atomic force microscopy (AFM) operated in tapping mode. Their roughness increased vs. the growth cycles. AFM studies on (100)Si substrates treated with Na 2S solution revealed that the dissolution of the silicon substrates is a process competing with the thin film growth and has to be considered when interpreting the AFM images.

  15. Green chemistry synthesis of nano-cuprous oxide.

    Science.gov (United States)

    Ceja-Romero, L R; Ortega-Arroyo, L; Ortega Rueda de León, J M; López-Andrade, X; Narayanan, J; Aguilar-Méndez, M A; Castaño, V M

    2016-04-01

    Green chemistry and a central composite design, to evaluate the effect of reducing agent, temperature and pH of the reaction, were employed to produce controlled cuprous oxide (Cu2O) nanoparticles. Response surface method of the ultraviolet-visible spectroscopy is allowed to determine the most relevant factors for the size distribution of the nanoCu2O. X-ray diffraction reflections correspond to a cubic structure, with sizes from 31.9 to 104.3 nm. High-resolution transmission electron microscopy reveals that the different shapes depend strongly on the conditions of the green synthesis.

  16. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    Science.gov (United States)

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  17. Cuprous oxide photovoltaic cells. Final report, September 1, 1978-November 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Trivich, D.

    1979-01-01

    The research described represents the beginning of a second phase of research on cuprous oxide photovoltaic cells. The first phase was concerned with the development of procedures of making Schottky barriers on isolated films of Cu/sub 2/O, including single crystals. It was found that properties of these Schottky barrier cells, in particular the barrier heights, were limited by chemical changes at the junction especially with metals of low work function which tend to be more active chemically, e.g., Al. The motivation of the present phase of the research was to construct junctions that would avoid this chemical degradation while maintaining electrical contact between the Cu/sub 2/O and a low work function material in order to attain larger barrier heights. Essentially the approach involved placing the Cu/sub 2/O in contact with a stable oxide. When this oxide is used as a thin layer between the Cu/sub 2/O and a top metal contact this gives an MIS structure. As another approach the other oxide can be an n-type semiconductor in thicker layers to form a heterojunction. Results are reported. (WHK)

  18. Nanostructured hybrid polymer-inorganic solar cell active layers formed by controllable in situ growth of semiconducting sulfide networks.

    Science.gov (United States)

    Leventis, Henry C; King, Simon P; Sudlow, Anna; Hill, Michael S; Molloy, Kieran C; Haque, Saif A

    2010-04-14

    Nanostructured composites of inorganic and organic materials are attracting extensive interest for electronic and optoelectronic device applications. In this paper, we introduce a general method for the fabrication of metal sulfide nanoparticle/polymer films employing a low-cost and low temperature route compatible with large-scale device manufacturing. Our approach is based upon the controlled in situ thermal decomposition of a solution processable metal xanthate precursor complex in a semiconducting polymer film. To demonstrate the versatility of our method, we fabricate a CdS/P3HT nanocomposite film and show that the metal sulfide network inside the polymer film assists in the absorption of visible light and enables the achievement of high yields of charge photogeneration at the CdS/P3HT heterojunction. Photovoltaic devices based upon such nanocomposite films show solar light to electrical energy conversion efficiencies of 0.7% under full AM1.5 illumination and 1.2% under 10% incident power, demonstrating the potential of such nanocomposite films for low-cost photovoltaic devices.

  19. Microwave-assisted synthesis and optical properties of cuprous oxide micro/nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Dandan [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China); Du, Yi, E-mail: duyi234@126.com [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China); Tian, Xiuying, E-mail: xiuyingt@yahoo.com [Department of Chemistry and Materials Science, Hunan Institute of Humanities Science and Technology, Loudi 417000 (China); Li, Zhongfu; Chen, Zhongtao; Zhu, Chaofeng [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China)

    2014-12-15

    Graphical abstract: Cuprous oxide micro/nanocrystals were fabricated by a facile and green microwave-assisted method using soluble starch as reductant and dispersant. Spheres with the diameter of about 100 and 600 nm, octahedron and truncated octahedron with the edge length of about 0.8–3 μm cuprous oxide micro/nanocrystals were successfully obtained. Microwave heating was proved to be a efficient method and was advantageous to the homogeneous nucleation. Growth mechanism of the prepared Cu{sub 2}O microcrystals were investigated carefully. Furthermore, the optical properties of the prepared cuprous oxide microcrystals were investigated by UV–vis diffuse reflectance spectroscopy, demonstrating that their band gaps of obtained samples were 1.96–2.07 eV, assigned to their different sizes and morphologies. - Abstract: Cuprous oxide micro/nanocrystals were fabricated by a facile and green microwave-assisted method using soluble starch as reductant and dispersant. It was observed that the addition amounts of NaOH had a prominent effect on the morphologies and size of cuprous oxide products, and microwave heating was proved to be a efficient method and was advantageous to the homogeneous nucleation. The as-obtained samples were characterized by X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The results indicated that the samples were pure cuprous oxide. Spheres with the diameter of about 100 and 600 nm, octahedron and truncated octahedron with the edge length of about 0.8–3 μm cuprous oxide micro/nanocrystals were successfully obtained. Furthermore, the UV–vis diffuse reflectance spectroscopy was used to investigate the optical properties of the prepared cuprous oxide microcrystals, demonstrating that their band gaps of obtained samples were 1.96–2.07 eV, assigned to their different sizes and morphologies.

  20. Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries

    Science.gov (United States)

    Qin, Wei; Chen, Taiqiang; Lu, Ting; Chua, Daniel H. C.; Pan, Likun

    2016-01-01

    Layered nickel sulfide (NS)-reduced graphene oxide (RGO) composites are prepared via a simple microwave-assisted method and subsequent annealing in N2/H2 atmosphere. A detailed array of characterization tools are used to study their morphology, structure and electrochemical performance. It was found that these composites exhibit significantly improved sodium-ion storage ability as compared with pure NS under galvanostatic cycling at a specific current of 100 mA g-1 in a potential limitation of 0.005-3.0 V. Furthermore, the composite with the RGO content of 35 wt.% achieves a high maximum reversible specific capacity of about 391.6 mAh g-1 at a specific current of 100 mA g-1 after 50 cycles. These results prove that NS-RGO composites are highly promising when applied directly as anode materials in sodium-ion batteries.

  1. Rational construction of nickel cobalt sulfide nanoflakes on CoO nanosheets with the help of carbon layer as the battery-like electrode for supercapacitors

    Science.gov (United States)

    Lin, Jinghuang; Liu, Yulin; Wang, Yiheng; Jia, Henan; Chen, Shulin; Qi, Junlei; Qu, Chaoqun; Cao, Jian; Fei, Weidong; Feng, Jicai

    2017-09-01

    Herein, binder-free hierarchically structured nickel cobalt sulfide nanoflakes on CoO nanosheets with the help of carbon layer (Ni-Co-S@C@CoO NAs) are fabricated via hydrothermal synthesis, carbonization treatment and electrodeposition, where three key components (CoO nanosheet arrays, a carbon layer and Ni-Co-S nanoflakes) are strategically combined to construct an efficient electrode for supercapacitors. The highly well-defined CoO nanosheets are utilized as ideal conductive scaffolds, where the conductivity is further improved by coating carbon layer, as well as the large electroactive surface area of Ni-Co-S nanoflakes. Furthermore, self-supported electrodes are directly grown on Ni foam without conductive additives or binders, which can effectively simplify the whole preparation process and achieve excellent electrical contact. Benefiting from the unique structural features, the hierarchically structured Ni-Co-S@C@CoO NAs exhibit high specific capacitance up to 4.97 F cm-2, excellent rate capability, and maintains 93.2% of the initial capacitance after 10000 cycles. Furthermore, an asymmetric supercapacitor using the Ni-Co-S@C@CoO NAs electrode and activated carbon is assembled, which achieves a high energy density (49.7 W h kg-1) with long cycling lifespan. These results demonstrate the as-fabricated Ni-Co-S@C@CoO NAs can be a competitive battery-like electrode for supercapacitors in energy storages.

  2. Removal of TcO4- from Representative Nuclear Waste Streams with Layered Potassium Metal Sulfide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Asmussen, Robert M.; Lawter, Amanda R.; Bowden, Mark E.; Lukens, Wayne W.; Sarma, Debajit; Riley, Brian J.; Kanatzidis, Mercouri G.; Qafoku, Nikolla

    2016-06-01

    Many efforts have focused on the sequestration and immobilization of 99Tc because the radionuclide is highly mobile in oxidizing environments and presents serious health risks due to its radiotoxicity and long half-life (t1/2 = 213 000 a). One of the more common methods for Tc removal from solution and immobilization in solids is based on reducing Tc from highly soluble Tc(VII) to sparingly soluble Tc(IV). In order to remove solution Tc through this reduction process, the Tc-sequestering solid must contain a reducing agent and, ideally, the Tc-sequestering material would function in a large range of chemical environments. For long-term stability, the reduced Tc would preferentially be incorporated into the resulting mineral structure instead of simply being sorbed onto the mineral surface. Here, we report results obtained from batch sorption experiments performed in anoxic and oxic conditions with two sulfide-containing potassium metal sulfide (KMS) materials, known as KMS-2 and KMS-2-SS. In deionized water in anoxic conditions after 15 d of contact, KMS-2 is capable of removing ~45% of Tc and KMS-2-SS is capable of removing ~90% of Tc. The improved performance of KMS-2-SS compared to KMS-2 in deionized water in anoxic conditions appears to be linked both to a higher pH resulting from the batch sorption experiments performed with KMS-2-SS and a higher overall purity of KMS-2-SS. Both materials perform even better in highly caustic (pH~13.5), high ionic strength (8.0 M) simulated Hanford low-activity waste solutions, removing more than 90% Tc after 15 d of contact in anoxic conditions. Post-reaction solids analysis indicate that Tc(VII) is reduced to Tc(IV) and that Tc(IV) is bonded to S atoms in the resulting KMS-2 structure in a Tc2S7 form. In contrast to previous ion exchange experiments with other KMS materials, the batch sorption experiments examining Tc removal cause the initially crystalline KMS materials to lose much of their initial long-range order.

  3. Framework to predict optimal buffer layer pairing for thin film solar cell absorbers: A case study for tin sulfide/zinc oxysulfide

    Energy Technology Data Exchange (ETDEWEB)

    Mangan, Niall M.; Brandt, Riley E.; Steinmann, Vera; Jaramillo, R.; Poindexter, Jeremy R.; Chakraborty, Rupak; Buonassisi, Tonio [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Yang, Chuanxi; Park, Helen Hejin; Zhao, Xizhu; Gordon, Roy G. [Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-09-21

    An outstanding challenge in the development of novel functional materials for optoelectronic devices is identifying suitable charge-carrier contact layers. Herein, we simulate the photovoltaic device performance of various n-type contact material pairings with tin(II) sulfide (SnS), a p-type absorber. The performance of the contacting material, and resulting device efficiency, depend most strongly on two variables: conduction band offset between absorber and contact layer, and doping concentration within the contact layer. By generating a 2D contour plot of device efficiency as a function of these two variables, we create a performance-space plot for contacting layers on a given absorber material. For a simulated high-lifetime SnS absorber, this 2D performance-space illustrates two maxima, one local and one global. The local maximum occurs over a wide range of contact-layer doping concentrations (below 10{sup 16 }cm{sup −3}), but only a narrow range of conduction band offsets (0 to −0.1 eV), and is highly sensitive to interface recombination. This first maximum is ideal for early-stage absorber research because it is more robust to low bulk-minority-carrier lifetime and pinholes (shunts), enabling device efficiencies approaching half the Shockley-Queisser limit, greater than 16%. The global maximum is achieved with contact-layer doping concentrations greater than 10{sup 18 }cm{sup −3}, but for a wider range of band offsets (−0.1 to 0.2 eV), and is insensitive to interface recombination. This second maximum is ideal for high-quality films because it is more robust to interface recombination, enabling device efficiencies approaching the Shockley-Queisser limit, greater than 20%. Band offset measurements using X-ray photoelectron spectroscopy and carrier concentration approximated from resistivity measurements are used to characterize the zinc oxysulfide contacting layers in recent record-efficiency SnS devices. Simulations representative of these

  4. Oxidation of cuprous stellacyanin by aminopolycarboxylatocobaltate(III) complexes.

    Science.gov (United States)

    Yoneda, G S; Mitchel, G L; Blackmer, G L; Holwerda, R A

    1978-01-01

    Rate parameters are reported for the oxidation of cuprous stellacyanin by Co(PDTA)-(k(25.0 degrees) = 17.9 M(-1)sec(-1), deltaH not equal to = 8.5 kcal/mol, deltaH not equal to = 8.5 kcal/mol, deltaS not equal to = -24 cal/mol-deg; pH 7.0, Mu 0.5 M) and Co(CyDTA)-(k(25.1 degrees) = 17.0 M(-1)sec(-1), deltaH not equal to = 8.7 kcal/mol, deltaS not equal to = -24 cal/mol-deg; pH 7.0 mu 0.5 M). The first order Co(PDTA)- and Co(CyDTA)- dependences observed over wide concentration ranges contrast with the saturation behavior reported previously for Co(EDTA)- as the oxidant. It is concluded that the- CH3 and -(CH2)4-substituents of PDTA and CyDTA, respectively, prevent the alkylated derivatives of Co(EDTA)- from hydrogen bonding with the reduced blue protein, causing precursor complex formation constants to fall far below that of 149M(-1) (25.1 degrees) observed for the EDTA complex. The similarity between deltaH not equal to and deltaS not equal to values for the oxidation of stellacyanin by Co(PDTA)- and Co(CyDTA)- indicates that the size of alkyl substituents linked to the carbon atoms of the EDTA ethylenediamine backbone has little influence on activation requirements for Cu(I) to Co(III) electron transfer. The electron transfer reactivity of aminopolycarboxylatocobalt(III) complexes with cuprous stellacyanin therefore appears to be linked to the accessibility of one or more of the ligated acetate groups to outer-sphere contact with the type 1 Cu(I) center. Saturation in kobsd vs. [oxidant] plots found for the reactions of Co(PDTA)- and Co(CyDTA)- with stellacyanin at pH 6 and at pH 7 in the presence of EDTA is attributed to the formation of "dead-end" oxidant-protein complexes.

  5. The Hydrogen Sulfide Donor NaHS Delays Programmed Cell Death in Barley Aleurone Layers by Acting as an Antioxidant.

    Science.gov (United States)

    Zhang, Ying-Xin; Hu, Kang-Di; Lv, Kai; Li, Yan-Hong; Hu, Lan-Ying; Zhang, Xi-Qi; Ruan, Long; Liu, Yong-Sheng; Zhang, Hua

    2015-01-01

    H2S is a signaling molecule in plants and animals. Here we investigated the effects of H2S on programmed cell death (PCD) in barley (Hordeum vulgare L.) aleurone layers. The H2S donor NaHS significantly delayed PCD in aleurone layers isolated from imbibed embryoless barley grain. NaHS at 0.25 mM effectively reduced the accumulation of superoxide anion (·O2 (-)), hydrogen peroxide (H2O2), and malondialdehyde (MDA), promoted the activity of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and decreased those of lipoxygenase (LOX) in isolated aleurone layers. Quantitative-PCR showed that NaHS treatment of aleurone tissue led to enhanced transcript levels of the antioxidant genes HvSOD1, HvAPX, HvCAT1, and HvCAT2 and repressed transcript levels of HvLOX (lipoxygenase gene) and of two cysteine protease genes HvEPA and HvCP3-31. NaHS treatment in gibberellic acid- (GA-) treated aleurone layers also delayed the PCD process, reduced the content of ·O2 (-), and increased POD activity while decreasing LOX activity. Furthermore, α-amylase secretion in barley aleurone layers was enhanced by NaHS treatment regardless of the presence or absence of GA. These data imply that H2S acted as an antioxidant in delaying PCD and enhances α-amylase secretion regardless of the presence of GA in barley aleurone layers.

  6. The Hydrogen Sulfide Donor NaHS Delays Programmed Cell Death in Barley Aleurone Layers by Acting as an Antioxidant

    Directory of Open Access Journals (Sweden)

    Ying-Xin Zhang

    2015-01-01

    Full Text Available H2S is a signaling molecule in plants and animals. Here we investigated the effects of H2S on programmed cell death (PCD in barley (Hordeum vulgare L. aleurone layers. The H2S donor NaHS significantly delayed PCD in aleurone layers isolated from imbibed embryoless barley grain. NaHS at 0.25 mM effectively reduced the accumulation of superoxide anion (·O2-, hydrogen peroxide (H2O2, and malondialdehyde (MDA, promoted the activity of superoxide dismutase (SOD, guaiacol peroxidase (POD, catalase (CAT, and ascorbate peroxidase (APX, and decreased those of lipoxygenase (LOX in isolated aleurone layers. Quantitative-PCR showed that NaHS treatment of aleurone tissue led to enhanced transcript levels of the antioxidant genes HvSOD1, HvAPX, HvCAT1, and HvCAT2 and repressed transcript levels of HvLOX (lipoxygenase gene and of two cysteine protease genes HvEPA and HvCP3-31. NaHS treatment in gibberellic acid- (GA- treated aleurone layers also delayed the PCD process, reduced the content of ·O2-, and increased POD activity while decreasing LOX activity. Furthermore, α-amylase secretion in barley aleurone layers was enhanced by NaHS treatment regardless of the presence or absence of GA. These data imply that H2S acted as an antioxidant in delaying PCD and enhances α-amylase secretion regardless of the presence of GA in barley aleurone layers.

  7. Fabrication of cuprous chloride films on copper substrate by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu-Ting; Ci, Ji-Wei; Tu, Wei-Chen [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Uen, Wu-Yih, E-mail: uenwuyih@ms37.hinet.net [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Lan, Shan-Ming [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Tsun-Neng; Shen, Chin-Chang; Wu, Chih-Hung [Institute of Nuclear Energy Research, P.O. Box 3-11, Lungtan 32500, Taiwan (China)

    2015-09-30

    Polycrystalline CuCl films were fabricated by chemical bath deposition (CBD) on a Cu substrate at a low solution temperature of 90 °C. Continuous CuCl films were prepared using the copper (II) chloride (CuCl{sub 2}) compound as the precursor for both the Cu{sup 2+} and Cl{sup −} sources, together with repeated HCl dip treatments. An HCl dip pretreatment of the substrate favored the nucleation of CuCl crystallites. Further, interrupting the film deposition and including an HCl dip treatment of the film growth surface facilitated the deposition of a full-coverage CuCl film. A dual beam (FIB/SEM) system with energy dispersive spectrometry facilities attached revealed a homogeneous CuCl layer with a flat-top surface and an average thickness of about 1 μm. Both the excitonic and biexcitonic emission lines were well-resolved in the 6.4 K photoluminescence spectra. In particular, the free exciton emission line was observable at room temperature, indicating the good quality of the CuCl films prepared by CBD. - Highlights: • Cuprous chloride (CuCl) was prepared on Cu substrate by chemical bath deposition. • HCl dip treatments facilitated the deposition of a full-coverage CuCl film. • A homogeneous elemental distribution was recognized for the deposited CuCl layer. • Excitonic and biexcitonic photoluminescence lines of CuCl films were well-resolved. • The free exciton emission line of CuCl films was observable at room temperature.

  8. Cadmium sulfide nanowires for the window semiconductor layer in thin film CdS-CdTe solar cells.

    Science.gov (United States)

    Liu, Piao; Singh, Vijay P; Jarro, Carlos A; Rajaputra, Suresh

    2011-04-08

    Thin film CdS/CdTe heterojunction device is a leading technology for the solar cells of the next generation. We report on two novel device configurations for these cells where the traditional CdS window layer is replaced by nanowires (NW) of CdS, embedded in an aluminum oxide matrix or free-standing. An estimated 26.8% improvement in power conversion efficiency over the traditional device structure is expected, primarily because of the enhanced spectral transmission of sunlight through the NW-CdS layer and a reduction in the junction area/optical area ratio. In initial experiments, nanostructured devices of the two designs were fabricated and a power conversion efficiency value of 6.5% was achieved.

  9. Microwave Synthesis of Cuprous Oxide Micro-/Nanocrystals with Different Morphologies and Photocatalytic Activities

    Institute of Scientific and Technical Information of China (English)

    Qingwei Zhu; Yihe Zhang; Jiajun Wang; Fengshan Zhou; Paul K. Chu

    2011-01-01

    Cuprous oxide micro-/nanocrystals were synthesized by using a simple liquid phase reduction process under microwave irradiation. Copper sulfate was used as the starting materials and macromolecule surfactants served as the templates.The morphologies phase and optical properties of them are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet-visible diffuse reflection absorptive spectra (UV-vis/DRS), respectively. The crystals had four different shapes, namely spheres, strips, octahedrons, and dandelions. The photocatalytic behavior of the cuprous oxide particles were investigated by monitoring the degradation of rhodamine B. In spite of the different morphologies, all of the cuprous oxide micro-/nanocrystals exhibited photocatalytic activities under visible light irradiation in the following order: dandelions, strips, spheres, and octahedral crystals. The photocatalytic degradation rates of rhodamine B are 56.37%, 55.68%, 51.83% and 46.16%, respectively. The morphology affects significantly the photocatalytic performance.

  10. Enhancement of convective heat transfer coefficient of ethylene glycol base cuprous oxide (Cu2O) nanofluids

    Science.gov (United States)

    Hassan, Ali; Ramzan, Naveed; Umer, Asim; Ahmad, Ayyaz; Muryam, Hina

    2017-08-01

    The enhancement in the convective heat transfer coefficient of the ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids were investigated. The nanofluids of different volume concentrations i-e 1%, 2.5% and 4.5% were prepared by the two step method. Cuprous oxide (Cu2O) nanoparticles were ultrasonically stirred for four hours in the ethylene glycol (EG). The experimental study has been performed through circular tube geometry in laminar flow regime at average Reynolds numbers 36, 71 and 116. The constant heat flux Q = 4000 (W/m2) was maintained during this work. Substantial enhancement was observed in the convective heat transfer coefficient of ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids than the base fluid. The maximum 74% enhancement was observed in convective heat transfer coefficient at 4.5 vol% concentration and Re = 116.

  11. Factors and characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter emissions from two manure-belt layer hen houses

    Science.gov (United States)

    Ni, Ji-Qin; Diehl, Claude A.; Chai, Lilong; Chen, Yan; Heber, Albert J.; Lim, Teng-Teeh; Bogan, Bill W.

    2017-05-01

    Manure-belt layer hen houses are a relatively newer design and are replacing the old high-rise layer hen houses for egg production in USA. However, reliable aerial pollutant emission data from comprehensive and long-term on-farm monitoring at manure-belt houses are scarce. This paper reports the emission factors and characteristics of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), and particulate matter (PM10) from two 250,000-bird capacity manure-belt layer hen houses (B-A and B-B) in northern Indiana, USA. The 2-year continuous field monitoring followed the Quality Assurance Project Plan of the National Air Emission Monitoring Study (NAEMS). Only days with more than 18 h (or 75%) of valid data were reported to avoid biased emission calculation. The results of 2-year average daily mean (ADM) gas emissions per hen from the two houses, excluding emissions from their manure shed, were 0.280 g for NH3, 1.952 mg for H2S, and 103.2 g for CO2. They were 67% lower for NH3, 77% higher for H2S, and 10% higher for CO2 compared with reported emissions from high-rise layer hen houses. Emissions of NH3 and CO2 exhibited evident seasonal variations. They were higher in winter than in summer and followed the NH3 and CO2 concentration seasonal patterns. Annual emission differences were observed for all the four pollutants. Reduced emissions of the three gases were shown during periods of layer hen molting and flock replacement. The 2-year ADM PM10 emission from B-B was 25.2 mg d-1 hen-1. A unique weekly PM10 emission pattern was identified for both houses. It was characterized with much lower Sunday emissions compared with the other single-day emissions of the week and was related to the weekly schedule of in-house production operations, including maintenance and cleaning.

  12. Copper electrodeposition from cuprous chloride solutions containing lead, zinc or iron ions

    Institute of Scientific and Technical Information of China (English)

    M. Tchoumou; M. Roynette Ehics

    2005-01-01

    Cuprous chloride hydrochloric acid solutions were electrolysed in a two compartments cell without agitation for copper extraction. It is found that the current density affects the colour and the size of copper deposits. During electrodeposition of copper from cuprous solution in the presence of various concentrations of lead, zinc or iron ions at different current densities, it is observed that lead is codeposited with copper by increasing current density.In all experiments, the current efficiency for the copper deposition reaction fluctuates between 88.50% and 95.50%.

  13. Study of atomic layer deposition of indium oxy-sulfide films for Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bugot, Cathy, E-mail: cathy-externe.bugot@edf.fr [Institut de Recherche et Développement sur l' Energie Photovoltaïque (IRDEP, UMR 7174 CNRS-EDF-Chimie Paristech), Chatou (France); Schneider, Nathanaelle [Institut de Recherche et Développement sur l' Energie Photovoltaïque (IRDEP, UMR 7174 CNRS-EDF-Chimie Paristech), Chatou (France); Bouttemy, Muriel; Etcheberry, Arnaud [Institut Lavoisier de Versailles, UMR 8180 (CNRS-UVSQ), Versailles (France); Lincot, Daniel; Donsanti, Frédérique [Institut de Recherche et Développement sur l' Energie Photovoltaïque (IRDEP, UMR 7174 CNRS-EDF-Chimie Paristech), Chatou (France)

    2015-05-01

    This paper explores the growth mechanism of plasma enhanced atomic layer deposition of In{sub 2}(S,O){sub 3} films. The films were deposited using indium acetylacetonate (In(acac){sub 3}), hydrogen sulfide (H{sub 2}S) and Ar/O{sub 2} plasma as oxygen precursor. The films were characterized using X-ray reflectometry, spectrophotometry, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. To understand the growth mechanism and especially the interactions between Ar/O{sub 2} plasma and In{sub 2}(S,O){sub 3} growing film, in-situ analyses were performed using quadrupole mass spectrometry. In-situ qualitative analysis revealed good correlation between the species detected in vapor phase and thin film properties. High concentrations of atomic and molecular oxygen were measured in the vapor phase during O{sub 2} plasma pulses. Significant decrease of these species could be observed by varying the plasma power from 2600 to 300 W, while the optical band gap remained at high values (> 2.6 eV). The analysis of the O{sub 2}-free/Ar plasma process showed that some of these oxygen species originate either from the indium precursor or from the substrate surface. This study explains the high oxygen content of the films, and allows us to reduce and control it. Generally, this report provides keys to understand the effect of plasma reactivity for the elaboration of oxide based materials. - Highlights: • In{sub 2}(S,O){sub 3} films were synthesized by plasma enhanced atomic layer deposition. • Growth mechanism was studied via gas phase analysis by Quadrupole Mass Spectrometry. • Good correlation between the vapor phase species and thin films properties was observed. • The film compositions and band gaps can be controlled by varying the plasma power.

  14. A statistical approach for optimizing parameters for electrodeposition of indium (III) sulfide (In2S3) films, potential low-hazard buffer layers for photovoltaic applications

    Science.gov (United States)

    Mughal, Maqsood Ali

    Clean and environmentally friendly technologies are centralizing industry focus towards obtaining long term solutions to many large-scale problems such as energy demand, pollution, and environmental safety. Thin film solar cell (TFSC) technology has emerged as an impressive photovoltaic (PV) technology to create clean energy from fast production lines with capabilities to reduce material usage and energy required to manufacture large area panels, hence, lowering the costs. Today, cost ($/kWh) and toxicity are the primary challenges for all PV technologies. In that respect, electrodeposited indium sulfide (In2S3) films are proposed as an alternate to hazardous cadmium sulfide (CdS) films, commonly used as buffer layers in solar cells. This dissertation focuses upon the optimization of electrodeposition parameters to synthesize In2S3 films of PV quality. The work describe herein has the potential to reduce the hazardous impact of cadmium (Cd) upon the environment, while reducing the manufacturing cost of TFSCs through efficient utilization of materials. Optimization was performed through use of a statistical approach to study the effect of varying electrodeposition parameters upon the properties of the films. A robust design method referred-to as the "Taguchi Method" helped in engineering the properties of the films, and improved the PV characteristics including optical bandgap, absorption coefficient, stoichiometry, morphology, crystalline structure, thickness, etc. Current density (also a function of deposition voltage) had the most significant impact upon the stoichiometry and morphology of In2S3 films, whereas, deposition temperature and composition of the solution had the least significant impact. The dissertation discusses the film growth mechanism and provides understanding of the regions of low quality (for example, cracks) in films. In2S3 films were systematically and quantitatively investigated by varying electrodeposition parameters including bath

  15. Closing the Dimethyl Sulfide Budget in the Tropical Marine Boundary Layer during the Pacific Atmospheric Sulfur Experiment

    Directory of Open Access Journals (Sweden)

    S. A. Conley

    2009-08-01

    Full Text Available Fourteen research flights were conducted with the National Center for Atmospheric Research (NCAR C-130 near Christmas Island (2° N, 157° W during the summer of 2007 as part of the Pacific Atmospheric Sulfur Experiment (PASE. In order to tightly constrain the scalar budget of DMS, fluxes were measured at various levels in the marine boundary layer (MBL from near the surface (30 m to the top of the mixed layer (500 m providing greater accuracy of the flux divergence calculation in the DMS budget. The observed mean mole fraction of DMS in the MBL exhibited the well known diurnal cycle, ranging from 50 pptv in the daytime to 110 pptv at night. Contributions from horizontal advection are included using a multivariate regression of all DMS flight data from within the MBL to estimate the mean gradients and trends. With this technique we consider the residual term in the DMS budget as an estimate of overall photochemical oxidation. Error analysis of the various terms in the DMS budget indicate that chemical losses acting on time scales of up to 110 h can be inferred with this technique. On average, photochemistry accounted for 7.3 ppt hr−1 loss rate for the seven daytime flights, with an estimated error of 0.6 ppt/hr. The loss rate due to expected OH oxidation is sufficient to explain the net DMS destruction without invoking the action of additional oxidants (e.g. reactive halogens. The observed ocean flux of DMS averaged 3.1 (±1.5μmol m−2 d−1, and generally decreased throughout the sunlit hours. The average entrainment flux at the top of the MBL was 2.5 μmol m−2 d−1; therefore the flux divergence term in the budget equation only contributed an average increase of 1.3 ppt hr−1 to the mean MBL mole fraction. Over the entire mission, the horizontal advection contribution to the overall budget was 0.2 ppt hr−1, indicating a mean atmospheric DMS gradient nearly

  16. Synthesis of indium oxi-sulfide films by atomic layer deposition: The essential role of plasma enhancement.

    Science.gov (United States)

    Bugot, Cathy; Schneider, Nathanaëlle; Lincot, Daniel; Donsanti, Frédérique

    2013-01-01

    This paper describes the atomic layer deposition of In2(S,O)3 films by using In(acac)3 (acac = acetylacetonate), H2S and either H2O or O2 plasma as oxygen sources. First, the growth of pure In2S3 films was studied in order to better understand the influence of the oxygen pulses. X-Ray diffraction measurements, optical analysis and energy dispersive X-ray spectroscopy were performed to characterize the samples. When H2O was used as the oxygen source, the films have structural and optical properties, and the atomic composition of pure In2S3. No pure In2O3 films could be grown by using H2O or O2 plasma. However, In2(S,O)3 films could be successfully grown by using O2 plasma as oxygen source at a deposition temperature of T = 160 °C, because of an exchange reaction between S and O atoms. By adjusting the number of In2O3 growth cycles in relation to the number of In2S3 growth cycles, the optical band gap of the resulting thin films could be tuned.

  17. Synthesis of indium oxi-sulfide films by atomic layer deposition: The essential role of plasma enhancement

    Directory of Open Access Journals (Sweden)

    Cathy Bugot

    2013-11-01

    Full Text Available This paper describes the atomic layer deposition of In2(S,O3 films by using In(acac3 (acac = acetylacetonate, H2S and either H2O or O2 plasma as oxygen sources. First, the growth of pure In2S3 films was studied in order to better understand the influence of the oxygen pulses. X-Ray diffraction measurements, optical analysis and energy dispersive X-ray spectroscopy were performed to characterize the samples. When H2O was used as the oxygen source, the films have structural and optical properties, and the atomic composition of pure In2S3. No pure In2O3 films could be grown by using H2O or O2 plasma. However, In2(S,O3 films could be successfully grown by using O2 plasma as oxygen source at a deposition temperature of T = 160 °C, because of an exchange reaction between S and O atoms. By adjusting the number of In2O3 growth cycles in relation to the number of In2S3 growth cycles, the optical band gap of the resulting thin films could be tuned.

  18. Optical characterization of gold-cuprous oxide interfaces for terahertz emission applications

    NARCIS (Netherlands)

    Ramanandan, G.K.P.; Adam, A.J.L.; Ramakrishnan, G.; Petrik, P.; Hendrikx, R.; Planken, P.C.M.

    2014-01-01

    We show that the interface between gold and thermally formed cuprous oxide, which emits terahertz radiation when illuminated with ultrafast femtosecond lasers, is in fact an AuCu/Cu2O interface due to the formation of the thermal diffusion alloy AuCu. The alloy enables the formation of a Schottky-ba

  19. Hydrogen sulfide delays GA-triggered programmed cell death in wheat aleurone layers by the modulation of glutathione homeostasis and heme oxygenase-1 expression.

    Science.gov (United States)

    Xie, Yanjie; Zhang, Chen; Lai, Diwen; Sun, Ya; Samma, Muhammad Kaleem; Zhang, Jing; Shen, Wenbiao

    2014-01-15

    Hydrogen sulfide (H2S) is considered as a cellular signaling intermediate in higher plants, but corresponding molecular mechanisms and signal transduction pathways in plant biology are still limited. In the present study, a combination of pharmacological and biochemical approaches was used to study the effect of H2S on the alleviation of GA-induced programmed cell death (PCD) in wheat aleurone cells. The results showed that in contrast with the responses of ABA, GA brought about a gradual decrease of l-cysteine desulfhydrase (LCD) activity and H2S production, and thereafter PCD occurred. Exogenous H2S donor sodium hydrosulfide (NaHS) not only effectively blocked the decrease of endogenous H2S release, but also alleviated GA-triggered PCD in wheat aleurone cells. These responses were sensitive to hypotaurine (HT), a H2S scavenger, suggesting that this effect of NaHS was in an H2S-dependent fashion. Further experiment confirmed that H2S, rather than other sodium- or sulphur-containing compounds derived from the decomposing of NaHS, was attributed to the rescuing response. Importantly, the reversing effect was associated with glutathione (GSH) because the NaHS triggered increases of endogenous GSH content and the ratio of GSH/oxidized GSH (GSSG) in GA-treated layers, and the NaHS-mediated alleviation of PCD was markedly eliminated by l-buthionine-sulfoximine (BSO, a selective inhibitor of GSH biosynthesis). The inducible effect of NaHS was also ascribed to the modulation of heme oxygenase-1 (HO-1), because the specific inhibitor of HO-1 zinc protoporphyrin IX (ZnPP) significantly suppressed the NaHS-related responses. By contrast, the above inhibitory effects were reversed partially when carbon monoxide (CO) aqueous solution or bilirubin (BR), two of the by-products of HO-1, was added, respectively. NaHS-triggered HO-1 gene expression in GA-treated layers was also confirmed. Together, the above results clearly suggested that the H2S-delayed PCD in GA-treated wheat

  20. Effect of cuprous halide interlayers on the device performance of ZnPc/C{sub 60} organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jinho; Park, Dasom; Heo, Ilsu; Yim, Sanggyu, E-mail: sgyim@kookmin.ac.kr

    2014-10-15

    Highlights: • Effect of CuX interlayers on subsequently deposited films and devices was studied. • CuI is the most effective for the performance of ZnPc/C{sub 60}-based solar cells. • Results were related to the molecular geometry of ZnPc and HOMO level of interlayers. - Abstract: The effect of various cuprous halide (CuX) interlayers introduced between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) layer and zinc phthalocyanine (ZnPc) layer on the physical properties of the ZnPc thin films and device performances of ZnPc/C{sub 60}-based small-molecule organic solar cells was studied. Strong substrate–molecule interaction between the CuX and ZnPc partly converted surface-perpendicular stacking geometry of ZnPc molecules into surface-parallel one. This flat-lying geometry led to an enhancement in electronic absorption and charge transport within the ZnPc films. As a result, the overall power conversion efficiency of the cell with CuI interlayer increased by ∼37%. In the case of the cells with CuBr and CuCl interlayer, however, the enhancement in device performances was limited because of the reduced conversion of the molecular geometry and increased energy barrier for hole extraction due to the low highest occupied molecular orbital level of the interlayer.

  1. Single-layer MoS2 formation by sulfidation of molybdenum oxides in different oxidation states on Au(111)

    DEFF Research Database (Denmark)

    Salazar Moreira, Norberto José; Beinik, Igor; Lauritsen, Jeppe V.

    2017-01-01

    -dimensional materials. In the present study, we investigate the transformation of MoOx into MoS2 on a model Au(111) surface through sulfidation in H2S gas atmosphere using in situ scanning tunneling microscopy and X-ray photoemission spectroscopy. We find that progressive annealing steps of physical vapor deposited Mo...... for the efficient formation of MoS2 is that Mo stays in the highest Mo6+ state before sulfidation, whereas the presence of the reduced MoOx phase impedes the MoS2 growth. We also find that it is more efficient to form MoS2 by post-sulfidation of MoOx rather than its reactive deposition in H2S gas, which leads...

  2. Indium sulfide buffer/CIGSSe interface engineering: Improved cell performance by the addition of zinc sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Allsop, N.A. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany)]. E-mail: allsop@hmi.de; Camus, C. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Haensel, A. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Gledhill, S.E. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Lauermann, I. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Lux-Steiner, M.C. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Fischer, Ch.-H. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany)

    2007-05-31

    Indium sulfide buffer layers deposited by the spray-ion layer gas reaction (Spray-ILGAR) technique are a viable alternative to the traditional cadmium sulfide buffer layer in thin film solar cells. In the present work we report on the results of manipulating the absorber/buffer interface between the chalcopyrite Cu(In,Ga)(S,Se){sub 2} absorber (CIGSSe) and the indium sulfide buffer. It is shown that the deposition of a small amount of zinc sulfide at the absorber/buffer interface can be used to increase the open circuit voltage. A small but significant increase of 20 mV (up to 580 mV), as compared to the pure indium sulfide buffered cells is possible leading to an increase in the overall efficiency.

  3. Reduced graphene oxide–cuprous oxide composite via facial deposition for photocatalytic dye-degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, MingYan, E-mail: mingyanlyg@hotmail.com [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute of Innovative Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Huang, JunRao; Tong, ZhiWei [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Li, WeiHua [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Chen, Jun, E-mail: junc@uow.edu.au [Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute of Innovative Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia)

    2013-08-15

    Highlights: •Cubic Cu{sub 2}O were effectively loaded on n-propylamine (PA) intercalated graphene oxide. •The addition of PA on the carbon sheets supports the stable structure of the composites. •Cu{sub 2}O/PA/rGO showed superior adsorption capacity and photocatalytic activity. -- Abstract: Cubic Cu{sub 2}O nanoparticles have been successfully synthesized on n-propylamine (PA) intercalated graphene oxide (GO) with uniform distribution followed with a subsequent hydrazine hydrate reduction process to generate Cu{sub 2}O/PA/rGO composite. For comparison, Cu{sub 2}O conjugated reduced graphene oxide (Cu{sub 2}O/rGO) composite was also synthesized using the same method. The as-prepared Cu{sub 2}O/PA/rGO and Cu{sub 2}O/rGO nanocomposites are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area analysis, and Electrochemical impedance spectra (EIS) measurements. UV/vis diffuse reflectance spectroscopy was employed to estimate band gap energies of cuprous oxide composites. The results show that the intercalation of PA into the layered GO increases the surface area of the composites and provides an efficient strategy to load Cu{sub 2}O due to the large and uniform distribution of active sites for anchoring copper ions. The surface area of the Cu{sub 2}O/PA/rGO (123 m{sup 2}/g) nanocomposite was found to be almost 2.5 times higher than that of Cu{sub 2}O/rGO (55.7 m{sup 2}/g). The as-prepared Cu{sub 2}O/PA/rGO show significant improvement on both adsorption capacity and photocatalytic activity towards organic pigment pollution compared with Cu{sub 2}O/rGO under identical performance conditions.

  4. The fictile coordination chemistry of cuprous-thiolate sites in copper chaperones.

    Science.gov (United States)

    Pushie, M Jake; Zhang, Limei; Pickering, Ingrid J; George, Graham N

    2012-06-01

    Copper plays vital roles in the active sites of cytochrome oxidase and in several other enzymes essential for human health. Copper is also highly toxic when dysregulated; because of this an elaborate array of accessory proteins have evolved which act as intracellular carriers or chaperones for the copper ions. In most cases chaperones transport cuprous copper. This review discusses some of the chemistry of these copper sites, with a view to some of the structural factors in copper coordination which are important in the biological function of these chaperones. The coordination chemistry and accessible geometries of the cuprous oxidation state are remarkably plastic and we discuss how this may relate to biological function. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.

  5. Picosecond nonlinear optical properties of cuprous oxide with different nano-morphologies

    Indian Academy of Sciences (India)

    P Harshavardhan Reddy; H Sekhar; D Narayana Rao

    2014-02-01

    Cuprous oxide nanoclusters, microcubes and microparticles were successfully synthesized by a simple co-precipitation method. Phase purity and crystallinity of the samples were studied by using X-ray powder diffraction. Transmission electron microscopy (TEM) images show different morphologies like nanoclusters, microcubes and microparticles. For linear and nonlinear optical measurements, the as-synthesized Cu2O with different morphologies were dispersed in isopropanol solution. The absorption spectrum recorded in the visible regions shows peaks that depend on the morphology of the particles and the peak shifts towards red region as one goes from nanoclusters to microparticles. Simple open-aperture Z-scan technique is used to measure nonlinear optical properties of cuprous oxide at 532 nm, 30 ps excitation at 10 Hz repetition rate. Cuprous oxide nanoclusters show reverse saturable absorption (RSA) behaviour, the microcubes and microparticles at a similar concentration exhibit saturable absorption (SA) type of behaviour at lower peak intensities and exhibit RSA within SA at higher peak intensities. The results show that the transition from SA to RSA can be ascribed to the two-photon absorption (TPA) process.

  6. Sulfide oxidation as a process for the formation of copper-rich magmatic sulfides

    Science.gov (United States)

    Wohlgemuth-Ueberwasser, Cora C.; Fonseca, Raúl O. C.; Ballhaus, Chris; Berndt, Jasper

    2013-01-01

    Typical magmatic sulfides are dominated by pyrrhotite and pentlandite with minor chalcopyrite, and the bulk atomic Cu/Fe ratio of these sulfides is typically less than unity. However, there are rare magmatic sulfide occurrences that are dominated by Cu-rich sulfides (e.g., bornite, digenite, and chalcopyrite, sometimes coexisting with metallic Cu) with atomic Cu/Fe as high as 5. Typically, these types of sulfide assemblages occur in the upper parts of moderately to highly fractionated layered mafic-ultramafic intrusions, a well-known example being the Pd/Au reef in the Upper Middle Zone of the Skaergaard intrusion. Processes proposed to explain why these sulfides are so unusually rich in Cu include fractional crystallization of Fe/(Ni) monosulfide and infiltration of postmagmatic Cu-rich fluids. In this contribution, we explore and experimentally evaluate a third possibility: that Cu-rich magmatic sulfides may be the result of magmatic oxidation. FeS-dominated Ni/Cu-bearing sulfides were equilibrated at variable oxygen fugacities in both open and closed system. Our results show that the Cu/Fe ratio of the sulfide melt increases as a function of oxygen fugacity due to the preferential conversion of FeS into FeO and FeO1.5, and the resistance of Cu2S to being converted into an oxide component even at oxygen fugacities characteristic of the sulfide/sulfate transition (above FMQ + 1). This phenomenon will lead to an increase in the metal/S ratio of a sulfide liquid and will also depress its liquidus temperature. As such, any modeling of the sulfide liquid line of descent in magmatic sulfide complexes needs to address this issue.

  7. Attenuated total reflectance spectroscopy of simultaneous processes: Corrosion inhibition of cuprous oxide by benzotriazole

    Science.gov (United States)

    Bratescu, Maria Antoaneta; Allred, Daniel B.; Saito, Nagahiro; Sarikaya, Mehmet; Takai, Osamu

    2008-03-01

    Attenuated total reflectance (ATR) spectroscopy was used to perform in situ studies of the corrosion inhibition of cuprous oxide (Cu 2O) by benzotriazole (BTA) in aqueous solution at concentrations from 1 to 20 μM. Because two separate processes occur simultaneously, that of Cu 2O corrosion and corrosion inhibition by BTA adsorption, the spectral information was subjected to deconvolution by a conjugate gradient minimization algorithm. Under these conditions, a solution phase concentration of 7-10 μM BTA nearly completely inhibited the corrosion of Cu 2O in deionized water. Using a Langmuir adsorption model, this represented only 25% of the maximally covered surface area.

  8. A photoemission study of benzotriazole on clean copper and cuprous oxide

    Science.gov (United States)

    Fang, Bo-Shung; Olson, Clifford G.; Lynch, David W.

    1986-11-01

    Photoemission spectra of benzotriazole (BTA) chemisorbed on clean Cu and on cuprous oxide were compared with the spectra of condensed- and gas-phase BTA. Chemisorbed BTA bonds to both Cu and Cu 2O via lone-pair orbitais on the nitrogen ring. The lack of a chemical shift for the π- orbitais indicates that BTA does not lie flat on the surface. We propose a model for the geometry and bonding of chemisorbed BTA which accounts for its corrosion inhibition on Cu, and for the corrosion inhibition, or lack of inhibition, by molecules similar to BTA.

  9. Numerical simulation of exciton dynamics in cuprous oxide at ultra low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Som, Sunipa

    2015-06-29

    This thesis is a theoretical investigation of the relaxation behaviour of excitons in Cuprous Oxide at ultra low temperatures when the excitons are confined within a potential trap and also in a homogeneous system. Under the action of deformation potential phonon scattering only, Bose Einstein Condensation (BEC) occurs for all temperatures in the investigated range. In the case of Auger decay, we do not find at any temperature a BEC due to the heating of the exciton gas. In the case of elastic and phonon-scattering together BEC occurs in this case of 0.1 K.

  10. Optical Study of Cuprous Oxide and Ferric Oxide Based Materials for Applications in Low Cost Solar Cells

    Science.gov (United States)

    Than, Thi Cuc; Bui, Bao Thoa; Wegmuller, Benjamin; Nguyen, Minh Hieu; Hoang Ngoc, Lam Huong; Bui, Van Diep; Nguyen, Quoc Hung; Hoang, Chi Hieu; Nguyen-Tran, Thuat

    2016-05-01

    One of the interesting forms of cuprous oxide and ferric oxide based materials is CuFeO2 which can be a delafossite-type compound and is a well known p-type semiconductor. This compound makes up an interesting family of materials for technological applications. CuFeO2 thin films recently gained renewed interest for potential applications in solar cell devices especially as absorption layers. One of the interesting facts is that CuFeO2 is made from cheap materials such as copper and iron. In this study, CuFeO2 thin films are intentionally deposited on corning glass and silicon substrates by the radio-frequency and direct current sputtering method with complicated and well developed co-sputtering recipes. The deposition was performed at room temperature which leads to an amorphous phase with extremely low roughness and high density. The films also were annealed at 500°C in 5% H2 in Ar for the passivation. A detailed optical study was performed on these thin films by spectroscopic ellipsometry and by ultra-violet visible near infrared spectroscopy. Depending on sputtering conditions, the direct band gap was extrapolated to be from 1.96 eV to 2.2 eV and 2.92 eV to 2.96 eV and the indirect band gap is about 1.22 eV to 1.42 eV. A good electrical conduction is also observed which is suitable for solar cell applications. In future more study on the structural properties will be carried out in order to fully understand these materials.

  11. Cuprous Oxide Scale up: Gram Production via Bulk Synthesis using Classic Solvents at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hall, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Han, T. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-07

    Cuprous oxide is a p-type semiconducting material that has been highly researched for its interesting properties. Many small-scale syntheses have exhibited excellent control over size and morphology. As the demand for cuprous oxide grows, the synthesis method need to evolve to facilitate large-scale production. This paper supplies a facile bulk synthesis method for Cu₂O on average, 1-liter reaction volume can produce 1 gram of particles. In order to study the shape and size control mechanisms on such a scale, the reaction volume was diminished to 250 mL producing on average 0.3 grams of nanoparticles per batch. Well-shaped nanoparticles have been synthesized using an aqueous solution of CuCl₂, NaOH, SDS surfactant, and NH₂OH-HCl at mild temperatures. The time allotted between the addition of NaOH and NH₂OH-HCl was determined to be critical for Cu(OH)2 production, an important precursor to the final produce The effects of stirring rates on a large scale was also analyzed during reagent addition and post reagent addition. A morphological change from rhombic dodecahedra to spheres occurred as the stirring speed was increased. The effects of NH₂OH-HCl concentration were also studied to control the etching effects of the final product.

  12. A Facile One Step Solution Route to Synthesize Cuprous Oxide Nanofluid

    Directory of Open Access Journals (Sweden)

    Shenoy U. Sandhya

    2013-05-01

    Full Text Available A cuprous oxide nanofluid stabilized by sodium lauryl sulfate, synthesized by using the one step method, has been reported. Nanofluids were synthesized by using a well‐ controlled surfactant‐assisted solution phase synthesis. The method involved reduction of copper acetate by glucose in a mixture of water and ethylene glycol serving as the base fluid. The synthesized fluid was characterized by X‐ray and electron diffraction techniques, in addition, transmission and field emission microscopic techniques and Fourier transform infra red spectroscopic analysis was undertaken. The rheological property, as well as the thermal conductivity of the fluid, were measured. The variation of reaction parameters considerably affected the size of the particles as well as the reaction rate. The uniform dispersion of the particles in the base fluid led to a stability period of three months under stationary state, augmenting the thermal conductivity of the nanofluid. The method is found to be simple, reliable and fast for the synthesis of Newtonian nanofluids containing cuprous oxide nanoparticles.

  13. Effect of palladium on sulfide tarnishing of noble metal alloys.

    Science.gov (United States)

    Suoninen, E; Herø, H; Minni, E

    1985-10-01

    Electron spectroscopic studies of Au-Ag-Cu alloys of the type used for dental castings show that small additions (less than or equal to 3 wt%) of palladium reduce essentially the thickness of the sulfide layer formed on surfaces of samples treated in aqueous Na2S solutions. Relative to silver, palladium does not enrich in the sulfide, but statistically significant enrichment is found immediately below the sulfide layer. This enrichment probably takes place during the exposure of the substrate surface to atmosphere before the sulfiding treatment. The mechanism of the impeding effect of palladium on sulfiding is assumed to be a decrease in diffusion from the bulk alloy to the surface due to the enriched layer. The effect cannot be explained by changes in the electronic structure of the alloy due to palladium alloying.

  14. Layer-by-layer functionalized porous Zinc sulfide nanospheres-based solid-phase extraction combined with liquid chromatography time-of-flight/mass and gas chromatography-mass spectrometry for the specific enrichment and identification of alkaloids from Crinum asiaticum var. sinicum.

    Science.gov (United States)

    Zhu, Dong; Miao, Zhao Yi; Yang, Rui Xiang; Wen, Hong Mei; Li, Wei; Chen, Jun; Kang, An; Shan, Chen-Xiao; Yu, Sheng; Hu, Yue

    2016-08-17

    The current widely utilized polymer or C8, C18 end-capped material-based sorbents for solid-phase extraction could not capture alkaloids well only based on "like dissolves like" principle. In this paper, a layer-by-layer functionalized porous Zinc sulfide nanospheres-based solid-phase extraction (SPE) combined with liquid chromatography time-of-flight/mass spectrometry (LC-TOF/MS) and gas chromatography-mass spectrometry (GC-MS) was developed for the specific enrichment and identification of alkaloids from complex matrixes, Crinum asiaticum var. sinicum crude extracts. The functionalized porous Zinc sulfide nanospheres were prepared by the amidation reaction of poly-(acrylic acid) (PAA) homopolymer with amino groups onto the porous ZnS nanospheres. Tandem LC-TOF/MS spectrometry presented that the almost all of the twenty-three main peaks in elution fraction from the SPE could be inferred as alkaloids with ion of mass according to the nitrogen rule and hit formula with Peak View1.2@software from AB SCIEX, and seven alkaloids including two new found chemical entities were directly identified from their GC-MS spectra and retention indices. We believe that this SPE protocol can also be utilized in the future to selectively enrich alkaloids from extracts of other plant species.

  15. Intrinsic Defect Engineering of Cuprous Oxide to Enhance Electrical Transport Properties for Photovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, Michael A.; Siah, Sin-Cheng; Brandt, Riley E.; Serdy, James; Johnston, Steve W.; Lee, Yun Seog; Buonassisi, Tonio

    2014-06-08

    Intrinsic point-defect species in cuprous oxide films are manipulated based on their thermodynamic properties via the implementation of a controlled annealing process. A wide range of electrical properties is demonstrated, with a window suitable for high-quality solar cell devices. A variation of carrier concentration over two orders of magnitude is demonstrated. Minority carrier lifetime is investigated by means of microwave photoconductance decay measurements, demonstrating a strong correlation with carrier concentration. Spectrally resolved photoluminescence yields are analyzed to provide insight into lifetime limiting mechanisms as a function of Cu2O processing parameters. Hall measurements of carrier mobility and concentration are taken at room temperature to provide insight into the effect of these processing conditions on net ionized defect concentration.

  16. Investigations of the interaction between cuprous oxide nanoparticles and Staphylococcus aureus

    Institute of Scientific and Technical Information of China (English)

    SHEN ChengLing; LI YuanFang; QI WenJing; HUANG ChengZhi

    2009-01-01

    Cuprous oxide nanoparticles of 30-50 nm in size were prepared in the presence of cetyltrimethylammonium bromide (CTAB).By taking Staphylococcus aureus (S.a),which always causes a variety of suppurative infections and toxinoses in humans,as a model bioparticle,the negative bioeffect of nano-Cu2O on S.a cells was evaluated,and minimal inhibitory concentration (MIC) was determined by imitating the MIC of antibiotics.Cellularity and bactericidal effect were measured by flow cytometry (FCM),dark field light scattering imaging and SEM photography.The results showed that nano-Cu2O particles may,by absorbing on the cell surface,impair the cell wall,damage the cell membrane,and finally increase permeability of the cell membrane,thus leading to a decrease in the viability of bacteria in the nano-Cu2O solution.

  17. Theory and experiment on the cuprous-cupric electron transfer rate at a copper electrode.

    Energy Technology Data Exchange (ETDEWEB)

    Halley, J. W.; Smith, B. B.; Walbran, S.; Curtiss, L. A.; Rigney, R. O.; Sutjianto, A.; Hung, N. C.; Yonco, R. M.; Nagy, Z.; Univ. of Minnesota; NREL

    1999-04-01

    We describe results of experiment and theory of the cuprous-cupric electron transfer rate in an aqueous solution at a copper electrode. The methods are similar to those we reported earlier for the ferrous-ferric rate. The comparison strongly suggests that, in marked distinction to the ferrous-ferric case, the electron transfer reaction is adiabatic. The model shows that the activation barrier is dominated by the energy required for the ion to approach the electrode, rather than by the energy required for rearrangement of the solvation shell, also in sharp distinction to the case of the ferric-ferrous electron transfer at a gold electrode. Calculated activation barriers based on this image agree with the experimental results reported here.

  18. Theory and experiment on the cuprous{endash}cupric electron transfer rate at a copper electrode

    Energy Technology Data Exchange (ETDEWEB)

    Halley, J.W. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Smith, B.B. [National Renewable Energy Laboratory, Golden, Colorado (United States); Walbran, S. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Curtiss, L.A.; Rigney, R.O.; Sutjianto, A.; Hung, N.C.; Yonco, R.M.; Nagy, Z. [Argonne National Laboratory, Divisions of Materials Science, Chemistry and Chemical Technology, Argonne, Illinois 60439-4837 (United States)

    1999-04-01

    We describe results of experiment and theory of the cuprous{endash}cupric electron transfer rate in an aqueous solution at a copper electrode. The methods are similar to those we reported earlier for the ferrous{endash}ferric rate. The comparison strongly suggests that, in marked distinction to the ferrous{endash}ferric case, the electron transfer reaction is adiabatic. The model shows that the activation barrier is dominated by the energy required for the ion to approach the electrode, rather than by the energy required for rearrangement of the solvation shell, also in sharp distinction to the case of the ferric{endash}ferrous electron transfer at a gold electrode. Calculated activation barriers based on this image agree with the experimental results reported here. {copyright} {ital 1999 American Institute of Physics.}

  19. Investigations of the interaction between cuprous oxide nanoparticles and Staphylococcus aureus

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Cuprous oxide nanoparticles of 30-50 nm in size were prepared in the presence of cetyltrimethylam-monium bromide (CTAB). By taking Staphylococcus aureus (S.a), which always causes a variety of suppurative infections and toxinoses in humans, as a model bioparticle, the negative bioeffect of nano-Cu2O on S.a cells was evaluated, and minimal inhibitory concentration (MIC) was determined by imitating the MIC of antibiotics. Cellularity and bactericidal effect were measured by flow cytometry (FCM), dark field light scattering imaging and SEM photography. The results showed that nano-Cu2O particles may, by absorbing on the cell surface, impair the cell wall, damage the cell membrane, and finally increase permeability of the cell membrane, thus leading to a decrease in the viability of bacteria in the nano-Cu2O solution.

  20. Sulfide Mineralogy and Geochemistry

    Science.gov (United States)

    Dilles, John

    2007-02-01

    Reviews in Mineralogy and Geochemistry Series, Volume 61 David J. Vaughan, Editor Geochemical Society and Mineralogical Society of America; ISBN 0-939950-73-1 xiii + 714 pp.; 2006; $40. Sulfide minerals as a class represent important minor rock-forming minerals, but they are generally known as the chief sources of many economic metallic ores. In the past two decades, sulfide research has been extended to include important roles in environmental geology of sulfide weathering and resultant acid mine drainage, as well as in geomicrobiology in which bacteria make use of sulfides for metabolic energy sources. In the latter respect, sulfides played an important role in early evolution of life on Earth and in geochemical cycling of elements in the Earth's crust and hydrosphere.

  1. Kinetic studies of sulfide mineral oxidation and xanthate adsorption

    Science.gov (United States)

    Mendiratta, Neeraj K.

    2000-10-01

    studies have been used to elucidate the depressing action of DETA and SO2. It was observed that DETA and SO2 complement each other in maintaining lower pulp potentials and removing polysulfides. DETA also helps in deactivating pyrrhotite. Therefore, the combined use of DETA and SO2 leads to the inhibition of both the collectorless flotation and the adsorption of xanthate. The adsorption of xanthate on sulfide minerals is a mixed-potential mechanism, i.e., the anodic oxidation of xanthate requires a cathodic counterpart. Normally, the cathodic reaction is provided by the reduction of oxygen. However, oxygen can be replaced by other oxidants. Ferric ions are normally present in the flotation pulp. Their source could be either iron from the grinding circuit or the ore itself. The galvanic studies were carried out to test the possibility of using ferric ions as oxidants and positive results were obtained. Tafel studies were carried out to measure the activation energies for the adsorption of ethylxanthate on several sulfide minerals. Pyrite, pyrrhotite (pure and nickel activated), chalcocite and covellite were studied in 10 -4 M ethylxanthate solution at pH 6.8 at temperatures in the range of 22--30°C. The Tafel studies showed that xanthate adsorbs as dixanthogen (X2) on pyrite and pyrrhotite, nickel dixanthate (NiX2) on nickel-activated pyrrhotite and cuprous xanthate (CuX) on both chalcocite and covellite. However, the mechanism for xanthate adsorption on each mineral is different. The free energy of reaction estimated from the activation energies are in good agreement with thermodynamically calculated ones.

  2. Interstellar hydrogen sulfide.

    Science.gov (United States)

    Thaddeus, P.; Kutner, M. L.; Penzias, A. A.; Wilson, R. W.; Jefferts, K. B.

    1972-01-01

    Hydrogen sulfide has been detected in seven Galactic sources by observation of a single line corresponding to the rotational transition from the 1(sub 10) to the 1(sub 01) levels at 168.7 GHz. The observations show that hydrogen sulfide is only a moderately common interstellar molecule comparable in abundance to H2CO and CS, but somewhat less abundant than HCN and much less abundant than CO.

  3. Efficient and selective heavy metal sequestration from water by using layered sulfide K 2x Sn 4-x S 8-x (x = 0.65–1; KTS-3)

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, Debajit; Islam, Saiful M.; Subrahmanyam, K. S.; Kanatzidis, Mercouri G.

    2016-09-16

    Heavy metal ions (Cd2+, Hg2+, As3+ and Pb2+) are an important contributor to the contamination of groundwater and other water bodies in and around industrial areas. Herein, we demonstrate the rapid and efficient capacity of a layered metal sulfide material, K2xSn4-xS8-x (x = 0.65-1, KTS-3) for heavy metal ion removal from water. The effect of concentration, pH, kinetics, and competitive ions such as Na+/Ca2+ on the heavy metal ion removal capacity of KTS-3 was systematically investigated. X-ray photoelectron spectroscopy (XPS), elemental analyses, and powder X-ray diffraction studies revealed that the heavy metal ion-exchange of KTS-3 is complete (quantitative replacement of all potassium ions) and topotactic. The heavy metal ion-exchange by using KTS-3 follows the Langmuir-Freundlich model with high exchange capacities, q(m) 205(17) mg g-1 for Cd2+, 372(21) mg g-1 for Hg2+ and 391(89) mg g-1 for Pb2+. KTS-3 retains excellent heavy metal ion-exchange capacity even in very high concentration (1 M) of competing ions (Na+/Ca2+) and also over a broad pH range (2-12). KTS-3 also exhibits very good ion-exchange capacity for precious Ag+ and toxic As3+ ions. The kinetics of heavy metal ion adsorption by KTS-3 are rapid (absorbs all ions within a few minutes). These properties and the environmentally friendly character of KTS-3 make it a promising candidate for sequestration of heavy metal ions from water.

  4. Study of the Effect of Sodium Sulfide as a Selective Depressor in the Separation of Chalcopyrite and Molybdenite

    Directory of Open Access Journals (Sweden)

    Huiqing Peng

    2017-03-01

    Full Text Available Two kinds of collectors, sodium butyl xanthate and kerosene, and a depressor, sodium sulfide, were used in this research. The study applied flotation tests, pulp potential measurements, contact angle measurements, adsorption calculations, and Fourier Transform Infrared Spectroscopy (FTIR analyses to demonstrate the correlation between reagents and minerals. For xanthate collectors, the best flotation responses of chalcopyrite and molybdenite were obtained at pH = 8, and, for kerosene, these were obtained at pH = 4. The flotation of molybdenite seemed to be less influenced by xanthate than by kerosene, while that of chalcopyrite showed the opposite. The optimum concentration of sodium sulfide for separation was 0.03 mol/L, which rejected 83% chalcopyrite and recovered 82% molybdenite in the single mineral flotation. Pulp potential measurements revealed that the dixanthogen and xanthate were decomposed and desorbed, respectively, from the mineral surface in a reducing environment. The contact angle measurement and adsorption calculation conformed to the flotation response, indicating that few functions of the xanthate and sodium sulfide on the molybdenite flotation were due to their low adsorption densities. The FTIR results further clarified that the xanthate ion was adsorbed on chalcopyrite by forming cuprous xanthate and dixanthogen; however, on molybdenite the adsorption product was only dixanthogen. After conditioning with sodium sulfide, the chalcopyrite surface became clean, but the molybdenite surface still retained slight peaks of dixanthogen. Meanwhile, the possible mechanism was expounded in this research.

  5. Improvement in structural and electrical properties of cuprous oxide-coated multiwalled carbon nanotubes

    Indian Academy of Sciences (India)

    Shivani Dhall; Neena Jaggi

    2014-10-01

    In the present work, cuprous oxide (Cu2O) nanoparticles are coated on multi-walled carbon nanotubes (MWCNTs) using Fehling’s reaction. The coating of Cu2O nanoparticles on the nanotubes was confirmed by SEM and X-ray diffraction (XRD) spectra. The calculated D/G ratio of Cu2O (using 3% CuSO4 by wt)-coated MWCNTs by Raman spectra is found to decrease to 0.94 as compared to 1.14 for pristine MWCNTs. It shows that the presence of Cu2O nanoparticles on nanotubes decreases the inherent defects present in the form of some pentagons/heptagons in the honeycomb hexagonal carbon atoms in the structure of graphene sheets of MWCNTs and increases the crystalline nature of MWCNTs, which is also confirmed by the XRD peaks. Whereas the value of D/G ratio increases to 1.39 for sample 2 (using 5% CuSO4 by wt), which represents the structural deformation. Moreover, the electrical conductivity of MWCNTs was increased by 3 times after coating the nanotubes with Cu2O (using 3% CuSO4 by wt).

  6. Structural, Optical and Electrical Properties of Nanocrystalline Cuprous Oxide Thin Film Deposited By Chemical Method

    Directory of Open Access Journals (Sweden)

    Prakash Bansilal Ahirrao

    2010-06-01

    Full Text Available Cuprous oxide (Cu2O is an interesting p-type semiconductor material used in solar cell applications.  The Modified Chemical Bath Deposition (M-CBD method is suitable for growing thin multilayer structure due to low deposition temperature. This method does not require any sophisticated instrument and substrate need not to be conductive. The nanocrystalline Cu2O thin films were deposited on glass substrates by M-CBD method. The deposited films were characterized by different characterization techniques to study structural, surface morphological, optical and electrical properties. The structural studies show that, the formation of Cu2O thin films with an average crystallite size of 14 nm. Optical studies show a direct band gap 2.48 eV. The room temperature electrical resistivity is of the order of 1.3 kW-cm and activation energy 0.33 eV. The films exhibit p-type electrical conductivity as seen by thermo-emf measurements.

  7. Parameters controlling microstructures and resistance switching of electrodeposited cuprous oxide thin films

    Science.gov (United States)

    Yazdanparast, Sanaz

    2016-12-01

    Cuprous oxide (Cu2O) thin films were electrodeposited cathodically from a highly alkaline bath using tartrate as complexing agent. Different microstructures for Cu2O thin films were achieved by varying the applied potential from -0.285 to -0.395 V versus a reference electrode of Ag/AgCl at 50 °C in potentiostatic mode, and separately by changing the bath temperature from 25 to 50 °C in galvanostatic mode. Characterization experiments showed that both grain size and orientation of Cu2O can be controlled by changing the applied potential. Applying a high negative potential of -0.395 V resulted in smaller grain size of Cu2O thin films with a preferred orientation in [111] direction. An increase in the bath temperature in galvanostatic electrodeposition increased the grain size of Cu2O thin films. All the films in Au/Cu2O/Au-Pd cell showed unipolar resistance switching behavior after an initial FORMING process. Increasing the grain size of Cu2O thin films and decreasing the top electrode area increased the FORMING voltage and decreased the current level of high resistance state (HRS). The current in low resistance state (LRS) was independent of the top electrode area and the grain size of deposited films, suggesting a filamentary conduction mechanism in unipolar resistance switching of Cu2O.

  8. Cuprous oxide nanoparticle-inhibited melanoma progress by targeting melanoma stem cells.

    Science.gov (United States)

    Yu, Bin; Wang, Ye; Yu, Xinlu; Zhang, Hongxia; Zhu, Ji; Wang, Chen; Chen, Fei; Liu, Changcheng; Wang, Jingqiang; Zhu, Haiying

    2017-01-01

    Recent studies have shown that metal and metal oxide have a potential function in antitumor therapy. Our previous studies demonstrated that cuprous oxide nanoparticles (CONPs) not only selectively induce apoptosis of tumor cells in vitro but also inhibit the growth and metastasis of melanoma by targeting mitochondria with little hepatic and renal toxicities in mice. As a further study, our current research revealed that CONPs induced apoptosis of human melanoma stem cells (CD271(+/high) cells) in A375 and WM266-4 melanoma cell lines and could significantly suppress the expression of MITF, SOX10 and CD271 involved in the stemness maintenance and tumorigenesis of melanoma stem cells. CD271(+/high) cells could accumulate more CONPs than CD271(-/low) through clathrin-mediated endocytosis. In addition, lower dosage of CONPs exhibited good anti-melanoma effect by decreasing the cell viability, stemness and tumorigenesis of A375 and WM266-4 cells through reducing the expression of SOX10, MITF, CD271 and genes in MAPK pathway involved in tumor progression. Finally, CONPs obviously suppressed the growth of human melanoma in tumor-bearing nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice, accompanied with tumors structural necrosis and fibrosis remarkably and decreased expression of CD271, SOX10 and MITF. These results above proved the effectiveness of CONPs in inhibiting melanoma progress through multiple pathways, especially through targeting melanoma stem cells.

  9. Facile fabrication of electrolyte-gated single-crystalline cuprous oxide nanowire field-effect transistors

    Science.gov (United States)

    Stoesser, Anna; von Seggern, Falk; Purohit, Suneeti; Nasr, Babak; Kruk, Robert; Dehm, Simone; Wang, Di; Hahn, Horst; Dasgupta, Subho

    2016-10-01

    Oxide semiconductors are considered to be one of the forefront candidates for the new generation, high-performance electronics. However, one of the major limitations for oxide electronics is the scarcity of an equally good hole-conducting semiconductor, which can provide identical performance for the p-type metal oxide semiconductor field-effect transistors as compared to their electron conducting counterparts. In this quest, here we present a bulk synthesis method for single crystalline cuprous oxide (Cu2O) nanowires, their chemical and morphological characterization and suitability as active channel material in electrolyte-gated, low-power, field-effect transistors (FETs) for portable and flexible logic circuits. The bulk synthesis method used in the present study includes two steps: namely hydrothermal synthesis of the nanowires and the removal of the surface organic contaminants. The surface treated nanowires are then dispersed on a receiver substrate where the passive electrodes are structured, followed by printing of a composite solid polymer electrolyte (CSPE), chosen as the gate insulator. The characteristic electrical properties of individual nanowire FETs are found to be quite interesting including accumulation-mode operation and field-effect mobility of 0.15 cm2 V-1 s-1.

  10. Comparison of Poly Aluminum Chloride and Chlorinated Cuprous for Chemical Oxygen Demand and Color Removal from Kashan Textile Industries Company Wastewater

    Directory of Open Access Journals (Sweden)

    Hoseindoost Gh.1 MSPH,

    2016-08-01

    Full Text Available Aims Textile wastewaters are the most important health and environmental problems in Kashan. This research was aimed to compare the poly aluminum chloride and chlorinated cuprous efficiency for removal of Chemical Oxygen Demand (COD and color from Kashan Textile Industries Company wastewater. Materials & Methods This experimental bench scale study in a batch system was conducted on 20 composed wastewater samples collected from Kashan Textile Industries Company raw wastewater. During 5 months, in the beginning of every week a day was selected randomly and in the day a composed sample was taken and studied. PAC at the doses of 10, 20, 30, 40 and 50mg.l-1 and chlorinated cuprous at the doses of 100, 200, 300, 400 and 500mg.l-1 were applied. The optimum pH also optimum concentration of PAC and chlorinated cuprous were determined using Jar test. The data was analyzed by SPSS 16 using descriptive statistics and Fisher Exact test. Findings The average concentration of COD in the raw textile wastewater was 2801.56±1398.29mg.l-1. The average COD concentration has been decreased to 1125.47±797.55mg.l-1. There was a significant difference between the effects of these two coagulants efficiency (p<0.05. The average COD removal efficiency for chlorinated cuprous and PAC was 58.52% and 72.56%, respectively. Also, the average color removal efficiency by chlorinated cuprous and PAC were 17.23 and 64.45%, respectively. Conclusion PAC is more efficient than chlorinated cuprous for both COD and color removal from KTIC wastewater.

  11. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Dezhao, Liu; Hansen, Michael Jørgen;

    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide o...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  12. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Liu, Dezhao; Hansen, Michael Jørgen;

    2012-01-01

    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide o...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  13. Structural studies in limestone sulfidation

    Energy Technology Data Exchange (ETDEWEB)

    Fenouil, Laurent A. [Univ. of California, Berkeley, CA (United States)

    1993-05-01

    This study investigates the sulfidation of limestone at high temperatures (700--900°C) as the first step in the design of a High-Temperature Coal-Gas Clean-Up system using millimeter-size limestone particles. Several workers have found that the rate of this reaction significantly decreases after an initial 10 to 15% conversion of CaCO3 to CaS. The present work attempts to explain this feature. It is first established that millimeter-size limestone particles do not sinter at temperatures up to the CaCO3 calcination point (899°C at 1.03 bar CO2} partial pressure). It is then shown that CaS sinters rapidly at 750 to 900°C if CO2 is present in the gas phase. Scanning Electron Microscope (SEM) photographs and Electron Dispersive Spectroscopy (EDS) data reveal that the CaS product layer sinters and forms a quasi-impermeable coating around the CaCO3 grains that greatly hinders more H2S from reaching the still unreacted parts of the stone. Moreover, most of the pores initially present within the limestone structure begin to disappear or, at least, are significantly reduced in size. From then on, subsequent conversion is limited by diffusion of H2S through the CaS layer, possibly by S2- ionic diffusion. The kinetics is then adequately described by a shrinking-core model, in which a sharp front of completely converted limestone is assumed to progress toward the center of the pellet. Finally, experimental evidence and computer simulations using simple sintering models suggest that the CaS sintering, responsible for the sharp decrease in the sulfidation rate, is surface-diffusion controlled.

  14. Cytotoxicity of cuprous oxide nanoparticles to fish blood cells: hemolysis and internalization

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liqiang, E-mail: chenlq@ynu.edu.cn; Kang Bin [Yunnan University, Asian International Rivers Center, Yunnan Key Laboratory of International Rivers and Trans-boundary Eco-security (China); Ling Jian [Yunnan University, College of Chemistry and Chemical Engineering (China)

    2013-03-15

    Cuprous oxide nanoparticles (Cu{sub 2}O NPs) possess unique physical and chemical properties which are employed in a broad variety of applications. However, little is known about the adverse effects of Cu{sub 2}O NPs on organisms. In the current study, in vitro cytotoxicity of Cu{sub 2}O NPs (ca. 60 nm in diameter) to the blood cells of freshwater fish Carassius auratus was evaluated. A concentration-dependent hemolytic activity of Cu{sub 2}O NPs to red blood cells (RBCs) and the phagocytosis of Cu{sub 2}O NPs by leukocytes were revealed. The results showed that dosages of Cu{sub 2}O NPs greater than 40 {mu}g/mL were toxic to blood cells, and could cause serious membrane damage to RBCs. The EC{sub 50} value of Cu{sub 2}O NPs as obtained from RBCs and whole blood exposure was 26 and 63 {mu}g/mL, respectively. The generation of reactive oxygen species and the direct interaction between Cu{sub 2}O NPs and the cell membrane were suggested as the possible mechanism for cytotoxicity, and the intrinsic hemolytic active of Cu{sub 2}O NPs was the main contributor to the toxicity rather than solubilized copper ions. The adsorption of plasma proteins on the surfaces of Cu{sub 2}O NPs led to their aggregation in whole blood, and aggregate formation can significantly alleviate the hemolytic effect and subsequently mediate the phagocytosis of Cu{sub 2}O NPs by leukocytes.

  15. Novel doxorubicin loaded PEGylated cuprous telluride nanocrystals for combined photothermal-chemo cancer treatment.

    Science.gov (United States)

    Wang, Xianwen; Ma, Yan; Chen, Huajian; Wu, Xiaoyi; Qian, Haisheng; Yang, Xianzhu; Zha, Zhengbao

    2017-02-06

    Recently, combined photothermal-chemo therapy has attracted great attention due to its enhanced anti-tumor efficiency via synergistic effects. Herein, PEGylated cuprous telluride nanocrystals (PEGylated Cu2Te NCs) were developed as novel drug nanocarriers for combined photothermal-chemo treatment of cancer cells. PEGylated Cu2Te NCs were fabricated through a simple two-step process, comprised of hot injection and thin-film hydration. The as-prepared PEGylated Cu2Te NCs (average diameter of 5.21±1.05nm) showed a noticeable photothermal conversion efficiency of 33.1% and good capacity to load hydrophobic anti-cancer drug. Due to the protonated amine group at low pH, the doxorubicin (DOX)-loaded PEGylated Cu2Te NCs (PEGylated Cu2Te-DOX NCs) exhibited an acidic pH promoted drug release profile. Moreover, a three-parameter model, which considers the effects of drug-carrier interactions on the initial burst release and the sustained release of drug from micro- and nano-sized carriers, was used to gain insight into how pH and laser irradiation affect drug release from PEGylated Cu2Te-DOX NCs. Based on the results from in vitro cell study, PEGylated Cu2Te-DOX NCs revealed remarkably photothermal-chemo synergistic effect to HeLa cells, attributed to both the PEGylated Cu2Te NCs mediated photothermal ablation and enhanced cellular uptake of the drug. Thus, our results encourage the usage of Cu2Te-DOX drug nanocarriers for enhanced treatment of cancer cells by combined photothermal-chemo therapy.

  16. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment

    OpenAIRE

    Rao, A.M.F.; Malkin, S.Y.; Hidalgo-Martinez, S.; Meysman, Filip

    2016-01-01

    Filamentous sulfide oxidizing cable bacteria are capable of linking the oxidation of free sulfide in deep anoxic layers of marine sediments to the reduction of oxygen or nitrate in surface sediments by conducting electrons over centimeter-scale distances. Previous studies have shown that this newly discovered microbial process, referred to as electrogenic sulfide oxidation (e-SOx), may alter elemental cycling in sediments, but the nature and rates of the resulting biogeochemical transformatio...

  17. Influence of sulfide concentration on the corrosion behavior of titanium in a simulated oral environment.

    Science.gov (United States)

    Harada, Rino; Takemoto, Shinji; Kinoshita, Hideaki; Yoshinari, Masao; Kawada, Eiji

    2016-05-01

    This study assessed the corrosion behavior of titanium in response to sulfide by determining the effects of sulfide concentration and pH over immersion period. Corrosion was evaluated through changes in color, glossiness, surface characterization, and titanium release. Sulfide solutions were prepared in 3 different concentrations with Na2S, each in pH unadjusted (sulfide-alkaline) and pH adjusted to 7.5 (sulfide-neutral). Titanium discoloration increased and glossiness decreased as sulfide concentration and immersion period increased in sulfide-alkaline solutions. Coral-like complexes were observed on the surface of these specimens, which became more pronounced as concentration increased. Small amounts of titanium release were detected in sulfide-alkaline solutions; however, this was not affected by immersion periods. Corrosion was indicated through considerable surface oxidation suggesting the formation of a thick oxide layer. No significant changes in color and glossiness, or titanium release were indicated for titanium specimens immersed in sulfide-neutral solutions indicating that pH had a significant effect on corrosion. Our findings suggest that a thick oxide layer on the titanium surface was formed in sulfide-alkaline solutions due to excessive oxidation.

  18. Hydrometallurgical process for the recycling of copper using anodic oxidation of cuprous ammine complexes and flow-through electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, T.; Yaguchi, M.; Koyama, K.; Tanaka, M. [Metals Recycling Group, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Lee, J.-C. [Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), 30 Gajeong-dong, Yuseong-ku, Daejeon 305-350 (Korea)

    2008-01-01

    Flow-through electrolysis for copper electrowinning from cuprous ammine complex was studied in order to develop a hydrometallurgical copper recycling process using an ammoniacal chloride solution, focusing on the anodic oxidation of cuprous to cupric ammine complexes. The current efficiency of this anodic oxidation was 96% at a current density of 200 A m{sup -2} under a batch condition. In a flow-through electrolysis using a sub-liter cell and a carbon felt anode, the anodic current efficiency increased with the flow rate and was typically higher than 97%. This tendency was explained by the backward flow of the cupric ammine complex, which was formed on the anode, through the diaphragm. The anodic overpotential was lower than 0.3 V even at an apparent current density of 1500 A m{sup -2}. A similar current efficiency and overpotential were also achieved in a liter scale cell, which indicates the scale flexibility of this electrolysis. The power consumption requirements for copper electrowinning in this cell were 460 and 770 kWh t{sup -1} at the current densities of 250 and 500 A m{sup -2}, respectively, which were much lower than that of the conventional copper electrowinning despite the longer interpolar distance. (author)

  19. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles.

    Science.gov (United States)

    Robatjazi, Hossein; Zhao, Hangqi; Swearer, Dayne F; Hogan, Nathaniel J; Zhou, Linan; Alabastri, Alessandro; McClain, Michael J; Nordlander, Peter; Halas, Naomi J

    2017-06-21

    The rational combination of plasmonic nanoantennas with active transition metal-based catalysts, known as 'antenna-reactor' nanostructures, holds promise to expand the scope of chemical reactions possible with plasmonic photocatalysis. Here, we report earth-abundant embedded aluminum in cuprous oxide antenna-reactor heterostructures that operate more effectively and selectively for the reverse water-gas shift reaction under milder illumination than in conventional thermal conditions. Through rigorous comparison of the spatial temperature profile, optical absorption, and integrated electric field enhancement of the catalyst, we have been able to distinguish between competing photothermal and hot-carrier driven mechanistic pathways. The antenna-reactor geometry efficiently harnesses the plasmon resonance of aluminum to supply energetic hot-carriers and increases optical absorption in cuprous oxide for selective carbon dioxide conversion to carbon monoxide with visible light. The transition from noble metals to aluminum based antenna-reactor heterostructures in plasmonic photocatalysis provides a sustainable route to high-value chemicals and reaffirms the practical potential of plasmon-mediated chemical transformations.Plasmon-enhanced photocatalysis holds promise for the control of chemical reactions. Here the authors report an Al@Cu2O heterostructure based on earth abundant materials to transform CO2 into CO at significantly milder conditions.

  20. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment

    NARCIS (Netherlands)

    Rao, A.M.F.; Malkin, S.Y.; Hidalgo-Martinez, S.; Meysman, Filip

    2016-01-01

    Filamentous sulfide oxidizing cable bacteria are capable of linking the oxidation of free sulfide in deep anoxic layers of marine sediments to the reduction of oxygen or nitrate in surface sediments by conducting electrons over centimeter-scale distances. Previous studies have shown that this newly

  1. Sulfide detoxification in plant mitochondria.

    Science.gov (United States)

    Birke, Hannah; Hildebrandt, Tatjana M; Wirtz, Markus; Hell, Rüdiger

    2015-01-01

    In contrast to animals, which release the signal molecule sulfide in small amounts from cysteine and its derivates, phototrophic eukaryotes generate sulfide as an essential intermediate of the sulfur assimilation pathway. Additionally, iron-sulfur cluster turnover and cyanide detoxification might contribute to the release of sulfide in mitochondria. However, sulfide is a potent inhibitor of cytochrome c oxidase in mitochondria. Thus, efficient sulfide detoxification mechanisms are required in mitochondria to ensure adequate energy production and consequently survival of the plant cell. Two enzymes have been recently described to catalyze sulfide detoxification in mitochondria of Arabidopsis thaliana, O-acetylserine(thiol)lyase C (OAS-TL C), and the sulfur dioxygenase (SDO) ethylmalonic encephalopathy protein 1 (ETHE1). Biochemical characterization of sulfide producing and consuming enzymes in mitochondria of plants is fundamental to understand the regulatory network that enables mitochondrial sulfide homeostasis under nonstressed and stressed conditions. In this chapter, we provide established protocols to determine the activity of the sulfide releasing enzyme β-cyanoalanine synthase as well as sulfide-consuming enzymes OAS-TL and SDO. Additionally, we describe a reliable and efficient method to purify OAS-TL proteins from plant material.

  2. Multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ken Shuang

    2004-11-01

    This report documents the author's efforts in the deterministic modeling of copper-sulfidation corrosion on non-planar substrates such as diodes and electrical connectors. A new framework based on Goma was developed for multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates. In this framework, the moving sulfidation front is explicitly tracked by treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and repeatedly performing re-meshing using CUBIT and re-mapping using MAPVAR. Three one-dimensional studies were performed for verifying the framework in asymptotic regimes. Limited model validation was also carried out by comparing computed copper-sulfide thickness with experimental data. The framework was first demonstrated in modeling one-dimensional copper sulfidation with charge separation. It was found that both the thickness of the space-charge layers and the electrical potential at the sulfidation surface decrease rapidly as the Cu{sub 2}S layer thickens initially but eventually reach equilibrium values as Cu{sub 2}S layer becomes sufficiently thick; it was also found that electroneutrality is a reasonable approximation and that the electro-migration flux may be estimated by using the equilibrium potential difference between the sulfidation and annihilation surfaces when the Cu{sub 2}S layer is sufficiently thick. The framework was then employed to model copper sulfidation in the solid-state-diffusion controlled regime (i.e. stage II sulfidation) on a prototypical diode until a continuous Cu{sub 2}S film was formed on the diode surface. The framework was also applied to model copper sulfidation on an intermittent electrical contact between a gold-plated copper pin and gold-plated copper pad; the presence of Cu{sub 2}S was found to raise the effective electrical resistance drastically. Lastly, future research needs in modeling atmospheric copper sulfidation are discussed.

  3. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms.

    Directory of Open Access Journals (Sweden)

    Desirée Villahermosa

    Full Text Available Nitrate decreases sulfide release in wastewater treatment plants (WWTP, but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm showed low sulfide production (0.31 μmol cm-3 h-1 and oxygen consumption rates (0.01 μmol cm-3 h-1. The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1. Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB. This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1 an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2 a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR

  4. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms

    Science.gov (United States)

    Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M.; Papaspyrou, Sokratis

    2016-01-01

    Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic

  5. Influence of pipe material and surfaces on sulfide related odor and corrosion in sewers.

    Science.gov (United States)

    Nielsen, Asbjørn Haaning; Vollertsen, Jes; Jensen, Henriette Stokbro; Wium-Andersen, Tove; Hvitved-Jacobsen, Thorkild

    2008-09-01

    Hydrogen sulfide oxidation on sewer pipe surfaces was investigated in a pilot scale experimental setup. The experiments were aimed at replicating conditions in a gravity sewer located immediately downstream of a force main where sulfide related concrete corrosion and odor is often observed. During the experiments, hydrogen sulfide gas was injected intermittently into the headspace of partially filled concrete and plastic (PVC and HDPE) sewer pipes in concentrations of approximately 1,000 ppm(v). Between each injection, the hydrogen sulfide concentration was monitored while it decreased because of adsorption and subsequent oxidation on the pipe surfaces. The experiments showed that the rate of hydrogen sulfide oxidation was approximately two orders of magnitude faster on the concrete pipe surfaces than on the plastic pipe surfaces. Removal of the layer of reaction (corrosion) products from the concrete pipes was found to reduce the rate of hydrogen sulfide oxidation significantly. However, the rate of sulfide oxidation was restored to its background level within 10-20 days. A similar treatment had no observable effect on hydrogen sulfide removal in the plastic pipe reactors. The experimental results were used to model hydrogen sulfide oxidation under field conditions. This showed that the gas-phase hydrogen sulfide concentration in concrete sewers would typically amount to a few percent of the equilibrium concentration calculated from Henry's law. In the plastic pipe sewers, significantly higher concentrations were predicted because of the slower adsorption and oxidation kinetics on such surfaces.

  6. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Liu, Dezhao; Hansen, Michael Jørgen

    2012-01-01

    oxidizing bacteria but several fungal families including Trichocomaceae. A positive correlation was found between the presence of mold and sulfide uptake. However there have been no reports on fungi metabolizing hydrogen sulfide. We hypothesize that the mold increases the air exposed surface, enabling...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  7. Nanometer-Thick Gold on Silicon as a Proxy for Single-Crystal Gold for the Electrodeposition of Epitaxial Cuprous Oxide Thin Films.

    Science.gov (United States)

    Switzer, Jay A; Hill, James C; Mahenderkar, Naveen K; Liu, Ying-Chau

    2016-06-22

    Single-crystal Au is an excellent substrate for electrochemical epitaxial growth due to its chemical inertness, but the high cost of bulk Au single crystals prohibits their use in practical applications. Here, we show that ultrathin epitaxial films of Au electrodeposited onto Si(111), Si(100), and Si(110) wafers can serve as an inexpensive proxy for bulk single-crystal Au for the deposition of epitaxial films of cuprous oxide (Cu2O). The Au films range in thickness from 7.7 nm for a film deposited for 5 min to 28.3 nm for a film deposited for 30 min. The film thicknesses are measured by low-angle X-ray reflectivity and X-ray Laue oscillations. High-resolution TEM shows that there is not an interfacial SiOx layer between the Si and Au. The Au films deposited on the Si(111) substrates are smoother and have lower mosaic spread than those deposited onto Si(100) and Si(110). The mosaic spread of the Au(111) layer on Si(111) is only 0.15° for a 28.3 nm thick film. Au films deposited onto degenerate Si(111) exhibit ohmic behavior, whereas Au films deposited onto n-type Si(111) with a resistivity of 1.15 Ω·cm are rectifying with a barrier height of 0.85 eV. The Au and the Cu2O follow the out-of-plane and in-plane orientations of the Si substrates, as determined by X-ray pole figures. The Au and Cu2O films deposited on Si(100) and Si(110) are both twinned. The films grown on Si(100) have twins with a [221] orientation, and the films grown on Si(110) have twins with a [411] orientation. An interface model is proposed for all Si orientations, in which the -24.9% mismatch for the Au/Si system is reduced to only +0.13% by a coincident site lattice in which 4 unit meshes of Au coincide with 3 unit meshes of Si. Although this study only considers the deposition of epitaxial Cu2O films on electrodeposited Au/Si, the thin Au films should serve as high-quality substrates for the deposition of a wide variety of epitaxial materials.

  8. Cuprous oxide nanoparticles inhibit prostate cancer by attenuating the stemness of cancer cells via inhibition of the Wnt signaling pathway

    Science.gov (United States)

    Wang, Ye; Yang, Qi-Wei; Yang, Qing; Zhou, Tie; Shi, Min-Feng; Sun, Chen-Xia; Gao, Xiu-Xia; Cheng, Yan-Qiong; Cui, Xin-Gang; Sun, Ying-Hao

    2017-01-01

    Disordered copper metabolism plays a critical role in the development of various cancers. As a nanomedicine containing copper, cuprous oxide nanoparticles (CONPs) exert ideal antitumor pharmacological effects in vitro and in vivo. Prostate cancer is a frequently diagnosed male malignancy prone to relapse, and castration resistance is the main reason for endocrine therapy failure. However, whether CONPs have the potential to treat castration-resistant prostate cancer is still unknown. Here, using the castration-resistant PC-3 human prostate cancer cell line as a model, we report that CONPs can selectively induce apoptosis and inhibit the proliferation of cancer cells in vitro and in vivo without affecting normal prostate epithelial cells. CONPs can also attenuate the stemness of cancer cells and inhibit the Wnt signaling pathway, both of which highlight the great potential of CONPs as a new clinical castration-resistant prostate cancer therapy.

  9. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.

    Science.gov (United States)

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan

    2013-03-01

    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.

  10. One-pot synthesis of cuprous oxide-reduced graphene oxide nanocomposite with enhanced photocatalytic and electrocatalytic performance

    Science.gov (United States)

    Han, Fugui; Li, Heping; Yang, Jun; Cai, Xiaodong; Fu, Li

    2016-03-01

    We report on the facile one-step synthesis of porous cuprous oxide nanoparticles on reduced graphene oxide (Cu2O-RGO) by synchronously reducing Cu2+ ions and GO with ethylene glycol. The basic chemical components, crystal structure and surface morphology of prepared nanocomposite was carefully characterized. The photocatalytic activities of the as-prepared nanocomposite was investigated by photodegrading methylene blue (MB) under visible light. The electrocatalytic property of the nanocomposite was investigated by electrocatalytic determination of acetaminophen. The results indicate that the corporation of RGO with Cu2O nanoparticles could high enhance the both photocatalytic and electrocatalytic properties. Moreover, we found that the content of RGO introduced into nanocomposite could highly affect the product properties.

  11. Variable mineralization processes during the formation of the Permian Hulu Ni-Cu sulfide deposit, Xinjiang, Northwestern China

    Science.gov (United States)

    Zhao, Yun; Xue, Chunji; Zhao, Xiaobo; Yang, Yongqiang; Ke, Junjun; Zu, Bo

    2016-08-01

    The Permian Hulu Ni-Cu sulfide deposit is located at the southern margin of the Central Asian Orogenic Belt (CAOB) in Northern Xinjiang, Northwestern China. The host intrusion of the Hulu deposit is composed of a layered mafic-ultramafic sequence and a dike-like unit. The layered sequence is composed of harzburgite, lherzolite, pyroxenite, gabbro, gabbrodiorite and diorite. The dike-like body comprises lherzolite and gabbro. Sulfide orebodies occur mainly within the harzburgite, pyroxenite and lherzolite at the base of the layered sequence and within the lherzolite in the dike-like body. Sulfide mineralization from the Hulu deposit shows significant depletion of PGE relative to Cu and Ni. These elements show good positive correlations with S in the sulfide mineralization from the dike-like unit but relatively weak correlations in the sulfide mineralization from the layered sequence. The sulfide mineralization from the layered unit shows excellent positive correlations between Ir and Os, Ru or Rh, and poor relationships between Ir and Pt or Pd. On the contrary, sulfide mineralization from the dike-like unit shows good correlations in the diagrams of Os, Ru, Rh, Pt and Pd against Ir. Both high Cu/Pd ratios (8855-481,398) and our modeling indicate that PGE depletion resulted from sulfide removal in a deep staging magma chamber. The evolved PGE-depleted magmas then ascended to the shallower magma chamber and became sulfide saturation due to crustal contamination. Both low Se/S ratios (33.5 × 10-6-487.5 × 10-6) and a negative correlation between Se/S and Cu/Pd ratios are consistent with the addition of crustal S. A large number of sulfide liquids segregated with minor crystallization of monosulfide solid solution (MSS) in the shallower magma chamber. When new magma pulses with unfractionated sulfide droplets entered the shallower magma chamber, the sulfide slurry containing crystallized MSS may be disrupted and mixed with the unfractionated sulfide droplets. The

  12. Extreme enrichment of Se, Te, PGE and Au in Cu sulfide microdroplets: evidence from LA-ICP-MS analysis of sulfides in the Skaergaard Intrusion, east Greenland

    Science.gov (United States)

    Holwell, David A.; Keays, Reid R.; McDonald, Iain; Williams, Megan R.

    2015-12-01

    The Platinova Reef, in the Skaergaard Intrusion, east Greenland, is an example of a magmatic Cu-PGE-Au sulfide deposit formed in the latter stages of magmatic differentiation. As is characteristic with such deposits, it contains a low volume of sulfide, displays peak metal offsets and is Cu rich but Ni poor. However, even for such deposits, the Platinova Reef contains extremely low volumes of sulfide and the highest Pd and Au tenor sulfides of any magmatic ore deposit. Here, we present the first LA-ICP-MS analyses of sulfide microdroplets from the Platinova Reef, which show that they have the highest Se concentrations (up to 1200 ppm) and lowest S/Se ratios (190-700) of any known magmatic sulfide deposit and have significant Te enrichment. In addition, where sulfide volume increases, there is a change from high Pd-tenor microdroplets trapped in situ to larger, low tenor sulfides. The transition between these two sulfide regimes is marked by sharp peaks in Au, and then Te concentration, followed by a wider peak in Se, which gradually decreases with height. Mineralogical evidence implies that there is no significant post-magmatic hydrothermal S loss and that the metal profiles are essentially a function of magmatic processes. We propose that to generate these extreme precious and semimetal contents, the sulfides must have formed from an anomalously metal-rich package of magma, possibly formed via the dissolution of a previously PGE-enriched sulfide. Other processes such as kinetic diffusion may have also occurred alongside this to produce the ultra-high tenors. The characteristic metal offset pattern observed is largely controlled by partitioning effects, producing offset peaks in the order Pt+Pd>Au>Te>Se>Cu that are entirely consistent with published D values. This study confirms that extreme enrichment in sulfide droplets can occur in closed-system layered intrusions in situ, but this will characteristically form ore deposits that are so low in sulfide that they do

  13. Sulfide intrusion and detoxification in Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    2014-01-01

    nutrition in general. By a global review of sulfide intrusion, coupled with a series of field studies and in situ experiments we elucidate sulfide intrusion and different strategies of seagrasses to sustain sulfide intrusion. Using stable isotope tracing, scanning electron microscopy with x-ray analysis...... indicating a possible role of sulfide in the sulfur nutrition beside the detoxification function. Our results suggest different adaptations of Z. marina to reduced sediments and sulfide intrusion ranging from bacterial and chemical reoxidation of sulfide to sulfate to incorporation of sulfide into organic...

  14. Carbonyl sulfide: No remedy for global warming

    Science.gov (United States)

    Taubman, Steven J.; Kasting, James F.

    1995-04-01

    The enhancement of the stratospheric aerosol layer caused by the eruption of Mt. Pinatubo (June 15, 1991), and the subsequent cooling of the earth's lower atmosphere [Dutton and Christy, 1992; Minnis et al., 1993] shows that stratospheric aerosols can have a strong effect on the earth's climate. This supports the notion that the intentional enhancement of the stratospheric aerosol layer through increased carbonyl sulfide (OCS) emissions might be an effective means for counteracting global warming. Through the use of a one-dimensional photochemical model, we investigate what effect such a program might have on global average stratospheric ozone. In addition, we consider the impact of enhanced OCS emissions on rainwater acidity and on the overall health of both plants and animals. We find that while the warming produced by a single CO2 doubling (1 to 4°C) might be offset with ozone losses of less than 5%, any attempt to use carbonyl sulfide as a permanent solution to global warming could result in depletion of global average ozone by 30% or more. We estimate that in order to achieve cooling of 4°C rainwater pH would fall to between 3.5 and 3.8. Finally, a 4°C cooling at the surface will require that ambient near ground OCS levels rise to above 10 ppmv which is probably greater than the safe exposure limit for humans. Thus, enhanced OCS emissions do not provide an environmentally acceptable solution to the problem of global warming.

  15. A novel method for improving cerussite sulfidization

    Institute of Scientific and Technical Information of China (English)

    Qi-cheng Feng; Shu-ming Wen; Wen-juan Zhao; Qin-bo Cao; Chao L

    2016-01-01

    Evaluation of flotation behavior, solution measurements, and surface analyses were performed to investigate the effects of chloride ion addition on the sulfidization of cerussite in this study. Micro-flotation tests indicate that the addition of chloride ions prior to sulfidization can significantly increase the flotation recovery of cerussite, which is attributed to the formation of more lead sulfide species on the mineral surface. Solution measurement results suggest that the addition of chloride ions prior to sulfidization induces the transformation of more sul-fide ions from pulp solution onto the mineral surface by the formation of more lead sulfide species. X-ray diffraction and energy-dispersive spectroscopy indicate that more lead sulfide species form on the mineral surface when chloride ions are added prior to sulfidization. These results demonstrate that the addition of chloride ions prior to sulfidization can significantly improve the sulfidization of cerussite, thereby enhancing the flotation performance.

  16. Sulfide Oxidation in the Anoxic Black-Sea Chemocline

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; FOSSING, H.; WIRSEN, CO

    1991-01-01

    -99 m. Oxygen in the water column immediately overlying the sulfide zone was depleted to undetectable levels resulting in a 20-30-m deep intermediate layer of O2- and H2S-free water. Radiotracer studies with S-35-labelled H2S showed that high rates of sulfide oxidation, up to a few micromoles per liter...... per day, occurred in anoxic water at the top of the sulfide zone concurrent with the highest rates of dark CO2 assimilation. The main soluble oxidized products of sulfide were thiosulfate (68-82%) and sulfate. Indirect evidence was presented for the formation of elemental sulfur which accumulated...... that the measured H2S oxidation rates were 4-fold higher than could be explained by the downward flux of organic carbon and too high to balance the availability of electron acceptors such as oxidized iron or manganese. A nitrate maximum at the lower boundary of the O2 zone did not extend down to the sulfide zone....

  17. Prevention of sulfide oxidation in sulfide-rich waste rock

    Science.gov (United States)

    Nyström, Elsa; Alakangas, Lena

    2015-04-01

    The ability to reduce sulfide oxidation in waste rock after mine closure is a widely researched area, but to reduce and/or inhibit the oxidation during operation is less common. Sulfide-rich (ca 30 % sulfur) waste rock, partially oxidized, was leached during unsaturated laboratory condition. Trace elements such as As and Sb were relatively high in the waste rock while other sulfide-associated elements such as Cu, Pb and Zn were low compared to common sulfide-rich waste rock. Leaching of unsaturated waste rock lowered the pH, from around six down to two, resulting in continuously increasing element concentrations during the leaching period of 272 days. The concentrations of As (65 mg/L), Cu (6.9 mg/L), Sb (1.2 mg/L), Zn (149 mg/L) and S (43 g/L) were strongly elevated at the end of the leaching period. Different alkaline industrial residues such as slag, lime kiln dust and cement kiln dust were added as solid or as liquid to the waste rock in an attempt to inhibit sulfide oxidation through neo-formed phases on sulfide surfaces in order to decrease the mobility of metals and metalloids over longer time scale. This will result in a lower cost and efforts of measures after mine closure. Results from the experiments will be presented.

  18. Mechanochemical reduction of copper sulfide

    DEFF Research Database (Denmark)

    Balaz, P.; Takacs, L.; Jiang, Jianzhong

    2002-01-01

    The mechanochemical reduction of copper sulfide with iron was induced in a Fritsch P-6 planetary mill, using WC vial filled with argon and WC balls. Samples milled for specific intervals were analyzed by XRD and Mossbauer spectroscopy. Most of the reaction takes place during the first 10 min...... of milling and only FeS and Cu are found after 60 min. The main chemical process is accompanied by phase transformations of the sulfide phases as a result of milling. Djurleite partially transformed to chalcocite and a tetragonal copper sulfide phase before reduction. The cubic modification of FeS was formed...... first, transforming to hexagonal during the later stages of the process. The formation of off-stoichiometric phases and the release of some elemental sulfur by copper sulfide are also probable....

  19. Hydrogen sulfide in signaling pathways.

    Science.gov (United States)

    Olas, Beata

    2015-01-15

    For a long time hydrogen sulfide (H₂S) was considered a toxic compound, but recently H₂S (at low concentrations) has been found to play an important function in physiological processes. Hydrogen sulfide, like other well-known compounds - nitric oxide (NO) and carbon monoxide (CO) is a gaseous intracellular signal transducer. It regulates the cell cycle, apoptosis and the oxidative stress. Moreover, its functions include neuromodulation, regulation of cardiovascular system and inflammation. In this review, I focus on the metabolism of hydrogen sulfide (including enzymatic pathways of H₂S synthesis from l- and d-cysteine) and its signaling pathways in the cardiovascular system and the nervous system. I also describe how hydrogen sulfide may be used as therapeutic agent, i.e. in the cardiovascular diseases.

  20. The effects of varying humidity on copper sulfide film formation.

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Thomas Michael; Missert, Nancy A.; Barbour, John Charles; Sullivan, John Patrick; Copeland, Robert Guild; Campin, Michael J. (International Sematech, Austin, TX)

    2004-02-01

    rates during Cu sulfidation. The surface reaction rate was measured by creating micropatterned Cu lines of widths ranging from 5 microns to 100 microns. When sulfidized, the edges of the Cu lines show greater sulfidation than the center, an effect known as microloading. Measurement of the sulfidation profile enables an estimate of the ratio of the diffusivity of H2S in the gas phase to the surface reaction rate constant, k. Our measurements indicated that the gas phase diffusivity exceeds k by more than 10, but less than 100. This is consistent with computer simulations of the sulfidation process. Other electrical test structures were developed to measure the electrical conductivity of Cu2S that forms on Cu. This information can be used to determine relative vacancy concentrations in the Cu2S layer as a function of RH. The test structures involved micropatterned Cu disks and thin films, and the initial measurements showed that the electrical approach is feasible for point defect studies in Cu2S.

  1. Magmatic Cu-Ni sulfide mineralization of the Huangshannan mafic-untramafic intrusion, Eastern Tianshan, China

    Science.gov (United States)

    Zhao, Yun; Xue, Chunji; Zhao, Xiaobo; Yang, YongQiang; Ke, Junjun

    2015-06-01

    The Huangshannan Ni-Cu (-PGE) sulfide deposit, a new discovery from geological prospecting in Eastern Tianshan, is in a belt of magmatic Ni-Cu (-PGE) sulfide deposits along the southern margin of the Central Asian Orogenic Belt. The host intrusion of the Huangshannan deposit is composed of a layered ultramafic sequence and a massive gabbro-diorite unit. The major sulfide orebodies occur mainly within websterite and lherzolite in the layered ultramafic sequence. In-situ zircon U-Pb dating analyses yielded a crystallization age of 282.5 ± 1.4 Ma, similar to the ages of the Permian Tarim mantle plume. Samples from the Huangshannan intrusion are characterized by nearly flat rare earth elements patterns, negative Zr, Ti and Nb anomalies, arc-like Th/Yb and Nb/Yb ratios, and significantly lower rare earth element and immobile trace element contents than the Tarim basalts. These characteristics suggest that the Huangshannan intrusion was not generated from the Tarim mantle plume. The primary magma for the Huangshannan intrusion and its associated sulfide mineralization were formed from different pulses of picritic magma with different degrees of crustal contamination. The first pulse underwent an initial removal of 0.016% sulfide in the deep magma chamber. The evolved magma reached sulfide saturation again in the shallow magma chamber and formed sulfide ores in lherzolite. The second pulse of magma reached a level of 0.022% sulfide segregation at staging chamber before ascending up to the shallow magma chamber. In the shallow conduit system, this sulfide-unsaturated magma mixed with the first pulse of magma and with contamination from the country rocks, leading to the formation of sulfide ores in websterite. The third magma pulse from the deep chamber formed the unmineralized massive gabbro-diorite unit of the Huangshannan intrusion.

  2. The susceptibility of 90Cu-10Ni alloy to stress corrosion cracking in seawater polluted by sulfide ions

    Science.gov (United States)

    Domiaty, A. El; Alhajji, J. N.

    1997-08-01

    Electrochemical polarization measurements and slow strain rate tests (SSRT) of a 90Cu-10Ni alloy in highly sulfide polluted seawater were conducted to investigate stress-corrosion cracking (SCC) behavior. The severity of the SCC depends on the sulfide concentration in the seawater. The severity increases as the concentration increases. Because the major time in SCC is spent in the initiation process of the propagating crack, the fracture toughness has only a minor effect in the component life failed by SCC. The SCC behavior of CDA706 is strictly linked to sulfide concentration in the range of 100 to 1000 ppm. The general corrosion of Cu-Ni alloys in low (100 ppm) sulfide polluted seawater increases due to the selective copper dissolution. Cyclic polarization measurements confirmed that the corrosion rate decreases slightly as the sulfide concentration increases. Pitting tendency was high in the low concentration range of sulfide and low in the high concentration range. The presence of stresses in SCC removes the protective layer as it increases during testing of the specimen or during the actual service of a component. The authors propose that film rupture occurred, and two proposed SCC mechanisms were operational, namely sulfide stress cracking associated with the anodic dissolution in the low sulfide concentration range and hydrogen embrittlement, which was dominant in the high sulfide concentration range. It was found that a synergism exists between sulfide and stress that enhances the effect of the latter.

  3. Nonlinear optical properties of bulk cuprous oxide using single beam Z-scan at 790 nm

    Energy Technology Data Exchange (ETDEWEB)

    Serna, J.; Rueda, E. [Grupo de Óptica y Fotónica, Instituto de Física, Universidad de Antioquia U de A, Calle 70 No. 52-21, Medellín (Colombia); García, H., E-mail: hgarcia@siue.edu [Department of Physics, Southern Illinois University, Edwardsville, Illinois 60026 (United States)

    2014-11-10

    The two-photon absorption (TPA) coefficient β and the nonlinear index of refraction n{sub 2} for bulk cuprous oxide (Cu{sub 2}O) direct gap semiconductor single crystal have been measured by using a balance-detection Z-scan single beam technique, with an excellent signal to noise ratio. Both coefficients were measured at 790 nm using a 65 fs laser pulse at a repetition rate of 90.9 MHz, generated by a Ti:Sapphire laser oscillator. The experimental values for β were explained by using a model that includes allowed-allowed, forbidden-allowed, and forbidden-forbidden transitions. It was found that the forbidden-forbidden transition is the dominant mechanism, which is consistent with the band structure of Cu{sub 2}O. The low value for β found in bulk, as compared with respect to thin film, is explained in terms of the structural change in thin films that result in opposite parities of the conduction and valence band. The n{sub 2} is also theoretically calculated by using the TPA dispersion curve and the Kramers-Kronig relations for nonlinear optics.

  4. Novel Facile Technique for Synthesis of Stable Cuprous Oxide (Cu2O Nanoparticles – an Ageing Effect

    Directory of Open Access Journals (Sweden)

    Sachin S. Sawant

    2016-03-01

    Full Text Available A novel facile method to synthesize stable phase of Cuprous Oxide (Cu2O nanoparticles at room temperature is demonstrated. The structural and optical properties of (Cu2O nanoparticles were investigated by using X-ray diffraction (XRD, UV-VIS Spectroscopy. XRD analysis has indexed nanocrystalline nature of cubical phase Cu2O with an average edge length of about 20 nm. The Scanning Electron Microscopy (SEM measurements also ascertain the cubical morphology. The Fourier Transform Infrared Spectroscopy (FTIR affirms the presence of characteristic functional group of Cu2O. The absorbance peak at 485 nm in UV-VIS spectra also confirms the Cu2O synthesis. Furthermore, UV-VIS absorbance spectra at different ageing time substantiate the phase stability of Cu2O nanoparticles. The ageing leads to blue shift of absorbance peak mainly due to decrease in Cu2O particle size with no additional absorbance peak in UV-VIS spectra indicating the formation of secondary phase. The reduction in particle size may be attributed to tiny conversion Cu2O to CuO. The energy band gap measurements from Tauc plots for Cu2O nanoparticles shows the increasing trend (2.5 eV to 2.8 eV with ageing time (2 months, owing to quantum confinement effects.

  5. Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion

    Science.gov (United States)

    Huang, Lei; Peng, Feng; Yu, Hao; Wang, Hongjuan

    2009-01-01

    Cuprous oxide (Cu 2O) nanoparticles and microparticles have been prepared by liquid phase chemical synthesis. The samples were characterized by means of SEM, XRD, UV/DRS and XPS. It was presented that as-prepared Cu 2O nanoparticles are substantially stable in ambient atmosphere and the Cu + as main state exists on the surface of Cu 2O nanoparticles. As-prepared Cu 2O microparticles can exist stably as a Cu 2O/CuO core/shell structure; and the Cu 2+ as main state exists on the surface of Cu 2O microparticles. The behaviors of adsorption, photocatalysis and photocorrosion of Cu 2O particles with different sizes were investigated in detail. The results show that Cu 2O nanoparticles are very easy to photocorrosion during the photocatalytic reaction, which cannot be used as photocatalyst directly to degrade organic compound, although as-prepared Cu 2O nanoparticles exhibit special property of adsorption. Cu 2O microparticles have a higher photocatalytic activity than Cu 2O nanoparticles because of its slower photocorrosion rate, although Cu 2O microparticles have much lower adsorption capacity than Cu 2O nanoparticles. The mechanisms of photocatalysis and photocorrosion for Cu 2O under visible light were also discussed.

  6. Synthesis of furan from allenic sulfide derivatives

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, we report the synthesis of furan derivatives from allenic sulfides. By the reaction with NaH, β-Hydroxyl allenic sulfides were found to generate furan products in excellent yields with the removal of phenylthio group. β-Aldehyde allenic sulfides were found to give similar furan products with one more substituent when treated with additional nucleophilic reagents. β-ketone allenic sulfides can also cyclize to give furan derivatives with the promotion of P2O5.

  7. Synthesis of furan from allenic sulfide derivatives

    Institute of Scientific and Technical Information of China (English)

    PENG LingLing; ZHANG Xiu; MA Jie; ZHONG ZhenZhen; ZHANG Zhe; ZHANG Yan; WANG JianBo

    2009-01-01

    In this paper, we report the synthesis of furan derivatives from allenic sulfides. By the reaction with NaH.,β-Hydroxyl allenic sulfides were found to generate furan products in excellent yields with the removal of phenylthio group.β-Aldehyde allenic sulfides were found to give similar furan products with one more substituent when treated with additional nucleophilic reagents. β-ketone allenic sulfides can also cyclize to give furan derivatives with the promotion of P2O5.

  8. Experimental constraints on gold and silver solubility in iron sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Pal' yanova, Galina [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation); Mikhlin, Yuri [Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk, 660036 (Russian Federation); Kokh, Konstantin, E-mail: k.a.kokh@gmail.com [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation); Siberian Physical–Technical Institute of Tomsk State University, 1, Novosobornaya, Tomsk, 634050 (Russian Federation); Karmanov, Nick [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Seryotkin, Yurii [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation)

    2015-11-15

    Experiments were performed to determine crystallization of Fe,S-melts (pyriti≿ and troilitic with molar ratio S/Fe ratios of 2 and 1, respectively) containing traces of gold and silver at (Ag/Au){sub wt} ratios varying from 10 to 0.1. The solid products were studied by optical microscopy, scanning electron microscopy, X-ray powder diffraction (XRD), microprobe analysis, and X-ray photoelectron spectroscopy (XPS) in order to reveal the concentration limits of “invisible” gold and silver in magmatic iron sulfides, and to determine the influence of sulfur on forms of precious metals in the Fe–S system with different Ag/Au ratios. Au–Ag phases do not form inclusions but instead concentrate on the grain boundaries in the synthetic pyrrhotite and troilite, while pyrite comprises micro- (1–5 μm) and macroinclusions of Au–Ag alloys and Au–Ag sulfides. In “pyriti≿” systems, the fineness of alloys increases from 650 to 970‰ and the composition of sulfides changes from acanthite (Ag{sub 2}S) to uytenbogaardtite (Ag{sub 3}AuS{sub 2}) and petrovskaite (AgAuS) as the Ag/Au ratio decreases. The concentrations of “invisible” precious metals revealed in troilite were 0.040 ± 0.013 wt.% Au and 0.079 ± 0.016 wt.% Ag. Measured concentrations in pyrite and pyrrhotite were <0.024 wt.% Au and <0.030 wt.% Ag. The surface layers of iron sulfides probed with XPS were enriched in the precious metals, and in silver relative to gold, especially in the systems with Fe/S = 1, probably, due to depletion of the metallic alloy surfaces with gold. Au- and Ag-bearing iron sulfides crystallized primarily from melts may be the source of redeposited phases in hydrothermal and hypergene processes. - Highlights: • The samples of Fe–S–Au–Ag system were synthesized. • Coupled solubility of gold and silver in iron sulfides was specified. • Ag–Au inclusions on surfaces of iron sulfides are likely to be enriched in silver. • Au–Ag sulfides can exist along with

  9. 30 CFR 250.604 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  10. 30 CFR 250.504 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  11. 30 CFR 250.808 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of...

  12. Nanostructured metal sulfides for energy storage.

    Science.gov (United States)

    Rui, Xianhong; Tan, Huiteng; Yan, Qingyu

    2014-09-07

    Advanced electrodes with a high energy density at high power are urgently needed for high-performance energy storage devices, including lithium-ion batteries (LIBs) and supercapacitors (SCs), to fulfil the requirements of future electrochemical power sources for applications such as in hybrid electric/plug-in-hybrid (HEV/PHEV) vehicles. Metal sulfides with unique physical and chemical properties, as well as high specific capacity/capacitance, which are typically multiple times higher than that of the carbon/graphite-based materials, are currently studied as promising electrode materials. However, the implementation of these sulfide electrodes in practical applications is hindered by their inferior rate performance and cycling stability. Nanostructures offering the advantages of high surface-to-volume ratios, favourable transport properties, and high freedom for the volume change upon ion insertion/extraction and other reactions, present an opportunity to build next-generation LIBs and SCs. Thus, the development of novel concepts in material research to achieve new nanostructures paves the way for improved electrochemical performance. Herein, we summarize recent advances in nanostructured metal sulfides, such as iron sulfides, copper sulfides, cobalt sulfides, nickel sulfides, manganese sulfides, molybdenum sulfides, tin sulfides, with zero-, one-, two-, and three-dimensional morphologies for LIB and SC applications. In addition, the recently emerged concept of incorporating conductive matrices, especially graphene, with metal sulfide nanomaterials will also be highlighted. Finally, some remarks are made on the challenges and perspectives for the future development of metal sulfide-based LIB and SC devices.

  13. Influence of arsenic on iron sulfide transformations

    NARCIS (Netherlands)

    Wolthers, M.; Butler, I.B.; Rickard, D.

    2007-01-01

    The association of arsenate, As(V), and arsenite, As(III), with disordered mackinawite, FeS, was studied in sulfide-limited (Fe:S = 1:1) and excess-sulfide (Fe:S = 1:2) batch experiments. In the absence of arsenic, the sulfide-limited experiments produce disordered mackinawite while the

  14. Solution processed silver sulfide thin films for filament memory applications

    Science.gov (United States)

    Yin, Shong

    Filament Memories based on resistive switching have been attracting attention in recent years as a potential replacement for flash memory in CMOS technology and as a potential candidate memory for low-cost, large-area electronics. These memories operate at low voltages with fast switching speeds. These devices are based on ionic conduction through an electrolyte layer and differ fundamentally in operation from conventional flash memory, which is based on the field effect transistor. To facilitate development of this technology, effects of film structure on ionic and electronic conducting properties and the filament formation processes must be studied. In this work, silver sulfide, a mixed ionic-electronic conductor, is used as a model material for studying the solution processing of filament memories, and to study the impact of film structure on conducting and switching properties. Three different solution processing methods are investigated for depositing silver sulfide: sulfidation of elemental silver films, and sintering of two types of silver sulfide nanoparticles. Effects of nanoparticle sintering conditions on electrolyte structured and mixed conducting properties are investigated by a combination of X-ray diffraction, electrical impedance spectroscopy and thermo-gravimetric analysis. Impact of forming voltage and time on filament morphology is examined to provide an overall view of the impact of electrical and material parameters on device operation.

  15. A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jie; Xie, Anjian; Li, Shikuo; Huang, Fangzhi; Cao, Juan; Shen, Yuhua, E-mail: yhshen@ahu.edu.cn

    2016-01-01

    Graphical abstract: Excellent photocatalytic activity of the RGO/PANI/Cu{sub 2}O composite hydrogel for CR degradation under UV–vis light irradiation. - Highlights: • The RGO/PANI/Cu{sub 2}O composite hydrogel was first synthesized via a facile method. • Photocatalytic performance was studied under UV–vis light. • The ternary composite hydrogel shows unexpected photocatalytic activity. • A possible photocatalysis mechanism was illustrated. - Abstract: In this work, a novel reducing graphene/polyaniline/cuprous oxide (RGO/PANI/Cu{sub 2}O) composite hydrogel with a 3D porous network has been successfully prepared via a one-pot method in the presence of cubic Cu{sub 2}O nanoparticles. The as-synthesized ternary composites hydrogel shows unexpected photocatalytic activity such that Congo red (CR) degradation efficiency can reaches 97.91% in 20 min under UV–vis light irradiation, which is much higher than that of either the single component (Cu{sub 2}O nanoparticles), or two component systems (RGO/Cu{sub 2}O composite hydrogel and PANI/Cu{sub 2}O nanocomposites). Furthermore, the ternary composite hydrogel exhibits high stability and do not show any significant loss after five recycles. Such outstanding photocatalytic activity of the RGO/PANI/Cu{sub 2}O composite hydrogel was ascribed to the high absorption ability of the product for CR and the synergic effect among RGO, PANI and Cu{sub 2}O in photocatalytic process. The product of this work would provide a new sight for the construction of UV–vis light responsive photocatalyst with high performance.

  16. Chalcophile element (Ni, Cu, PGE, and Au) variations in the Tamarack magmatic sulfide deposit in the Midcontinent Rift System: implications for dynamic ore-forming processes

    Science.gov (United States)

    Taranovic, Valentina; Ripley, Edward M.; Li, Chusi; Rossell, Dean

    2016-10-01

    The Tamarack magmatic sulfide deposit is hosted by the Tamarack Intrusive Complex (1105.6 ± 1.2 Ma) in the Midcontinent Rift System. The most important sulfide mineralization in the Complex occurs in the northern part, which consists of two separate intrusive units: an early funnel-shaped layered peridotite body containing relatively fine-grained olivine (referred to as the FGO Intrusion) at the top, and a late gabbro-troctolite-peridotite dike-like body containing relatively coarse-grained olivine (referred to as the CGO Intrusion) at the bottom. Disseminated, net-textured, and massive sulfides occur in the base of the FGO Intrusion as well as in the upper part of the CGO Intrusion. The widest part of the CGO Intrusion also hosts a large semi-massive (net-textured) sulfide ore body locally surrounded by disseminated sulfide mineralization. Small massive sulfide veins occur in the footwall of the FGO Intrusion and in the wall rocks of the CGO dike. The sulfide mineralization is predominantly composed of pyrrhotite, pentlandite, and chalcopyrite, plus minor magnetite. Pyrrhotite containing the highest Ni and Co contents occurs in the FGO disseminated sulfides and in the CGO semi-massive sulfide ores, respectively. The most important platinum-group minerals associated with the base metal sulfides are sperrylite (PtAs2), sudburyite (PdSb), and michenerite (PdBiTe). Nickel shows a strong positive correlation with S in all types of sulfide mineralization, and Cu shows a strong positive correlation with S in the disseminated sulfide mineralization. At a given S content, the concentrations of Pt, Pd, and Au in the CGO disseminated sulfides are significantly higher than those in the FGO disseminated sulfides. The semi-massive sulfide ores are characterized by significantly higher IPGE (Ir, Os, Ru, and Rh) concentrations than most of the massive sulfide ores. With few exceptions, all of the various textural types of sulfide mineralization collectively show a good positive

  17. Oxygenic and anoxygenic photosynthesis in a microbial mat from an anoxic and sulfidic spring.

    Science.gov (United States)

    de Beer, Dirk; Weber, Miriam; Chennu, Arjun; Hamilton, Trinity; Lott, Christian; Macalady, Jennifer; M Klatt, Judith

    2017-03-01

    Oxygenic and anoxygenic photosynthesis were studied with microsensors in microbial mats found at 9-10 m depth in anoxic and sulfidic water in Little Salt Spring (Florida, USA). The lake sediments were covered with a 1-2 mm thick red mat dominated by filamentous Cyanobacteria, below which Green Sulfur Bacteria (GSB, Chlorobiaceae) were highly abundant. Within 4 mm inside the mats, the incident radiation was attenuated to undetectable levels. In situ microsensor data showed both oxygenic photosynthesis in the red surface layer and light-induced sulfide dynamics up to 1 cm depth. Anoxygenic photosynthesis occurred during all daylight hours, with complete sulfide depletion around midday. Oxygenic photosynthesis was limited to 4 h per day, due to sulfide inhibition in the early morning and late afternoon. Laboratory measurements on retrieved samples showed that oxygenic photosynthesis was fully but reversibly inhibited by sulfide. In patches Fe(III) alleviated the inhibition of oxygenic photosynthesis by sulfide. GSB were resistant to oxygen and showed a low affinity to sulfide. Their light response showed saturation at very low intensities. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. STUDY OF HYDROGEN SULFIDE REMOVAL FROM GROUNDWATER

    Directory of Open Access Journals (Sweden)

    T. Lupascu

    2013-06-01

    Full Text Available The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground water, after its treatment by hydrogen peroxide, proves greater efficiency than in the case of modified carbonic adsorbents. As a result of used treatment, hydrogen sulfide is completely oxidized to sulfates

  19. Hydrogen sulfide poisoning in solid oxide fuel cells under accelerated testing conditions

    Science.gov (United States)

    Li, Ting Shuai; Wang, Wei Guo; Chen, Tao; Miao, He; Xu, Cheng

    This study investigates the 0.2% hydrogen sulfide poisoning of Ni/YSZ anode-supported solid oxide fuel cells (SOFCs). The deterioration degrees and recovery extents of the cell current density, cell voltage and operation temperature are monitored. The results of impedance spectroscopy analysis show that hydrogen sulfide poisoning behavior may affect oxygen ion migration and gas diffusion and conversion on the anode side. Microstructural inspection reveals sulfur or sulfide formed on the anode-active area, which accounts for the immediate and severe cell power drop upon the injection of H 2S. The nickel sulfide in the anodic functional layer cannot be completely removed after long-term regeneration and thus may be a key factor in the permanent degradation of the cell.

  20. Preparation of Cystein from Cysteine Cuprous Mercaptide%由半胱氨酸亚铜制取半胱氨酸

    Institute of Scientific and Technical Information of China (English)

    刘勋; 胡敏; 姚小平

    2015-01-01

    In this paper ,a new preparation method of cysteine hydrochloride monohydrate from cysteine cu‐prous mcercaptide ,which is prepared by the reduction and precipitation of cystine with cuprous oxide has been introduced ,including re‐precipitation of cysteine cuprous mercaptide ,removal of copper using H2 S , decoloration ,crystallization and recrystalization .The yield of the product is up to 12 .4% ,with the quality according with the Japanese AJI standards .%研究了一种用氧化亚铜将胱氨酸还原沉淀为半胱氨酸亚铜,再由此制备半胱氨酸盐酸盐一水物的新方法.该方法包含半胱氨酸亚铜再沉淀,H2 S法脱铜,脱色,产品结晶,重结晶等步骤,半胱氨酸盐酸盐一水物收率达12.4%,产品质量符合日本味之素标准.

  1. [Regulation of hydrogen sulfide level by acidophobic bacteria of Thiobacillus genus in technogenic reservoirs of sulfur mining regions].

    Science.gov (United States)

    Moroz, O M

    2010-01-01

    An increase of acidophobic thione bacteria quantity in Rozdil and Yavoriv reservoirs of sulfur mining regions during 2005-2009 years, which correlates with a decrease of hydrogen sulfide content in water surface layers, was shown. The ability of acidophobic bacteria of Thiobacillus genus, isolated from "Yavorivske" lake, to oxidize effectively hydrogen sulfide added into Beijerinck medium instead of thiosulfate, was discovered. It was established, that hydrogen sulfide oxidizing efficiency by Thiobacillus sp. Yav-8, Yav-11 and Yav-14 strains is the highest (78.48-84.56%) when its content in cultivation medium was increased twice: to 2584 mg/l. An increase of sulfur quantity in sodium sulfide form from to six times as compared with its standard content in sodium thiosulfate form in the Beijerinck medium does not lead to the increase of hydrogen sulfide oxidizing efficiency by cells.

  2. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    Science.gov (United States)

    Johnson, James E.; Bates, Timothy S.

    1993-01-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  3. Subnanometer Thin β-Indium Sulfide Nanosheets.

    Science.gov (United States)

    Acharya, Shinjita; Sarkar, Suresh; Pradhan, Narayan

    2012-12-20

    Nanosheets are a peculiar kind of nanomaterials that are grown two-dimensionally over a micrometer in length and a few nanometers in thickness. Wide varieties of inorganic semiconductor nanosheets are already reported, but controlling the crystal growth and tuning their thickness within few atomic layers have not been yet explored. We investigate here the parameters that determine the thickness and the formation mechanism of subnanometer thin (two atomic layers) cubic indium sulfide (In2S3) nanosheets. Using appropriate reaction condition, the growth kinetics is monitored by controlling the decomposition rate of the single source precursor of In2S3 as a function of nucleation temperature. The variation in the thickness of the nanosheets along the polar [111] direction has been correlated with the rate of evolved H2S gas, which in turn depends on the rate of the precursor decomposition. In addition, it has been observed that the thickness of the In2S3 nanosheets is related to the nucleation temperature.

  4. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: a field evaluation.

    Science.gov (United States)

    Nason, Peter; Johnson, Raymond H; Neuschütz, Clara; Alakangas, Lena; Öhlander, Björn

    2014-02-28

    Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: A field evaluation

    Science.gov (United States)

    Nason, Peter; Johnson, Raymond H.; Neuschutz, Clara; Alakangas, Lena; Ohlander, Bjorn

    2014-01-01

    Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2 m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6 m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3 m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation.

  6. Redox Biochemistry of Hydrogen Sulfide*

    OpenAIRE

    Kabil, Omer; Banerjee, Ruma

    2010-01-01

    H2S, the most recently discovered gasotransmitter, might in fact be the evolutionary matriarch of this family, being both ancient and highly reduced. Disruption of γ-cystathionase in mice leads to cardiovascular dysfunction and marked hypertension, suggesting a key role for this enzyme in H2S production in the vasculature. However, patients with inherited deficiency in γ-cystathionase apparently do not present vascular pathology. A mitochondrial pathway disposes sulfide and couples it to oxid...

  7. Hydrogen sulfide and translational medicine

    OpenAIRE

    Guo, Wei; Cheng, Ze-yu; Zhu, Yi-Zhun

    2013-01-01

    Hydrogen sulfide (H2S) along with carbon monoxide and nitric oxide is an important signaling molecule that has undergone large numbers of fundamental investigations. H2S is involved in various physiological activities associated with the regulation of homeostasis, vascular contractility, pro- and anti-inflammatory activities, as well as pro- and anti-apoptotic activities etc. However, the actions of H2S are influenced by its concentration, reaction time, and cell/disease types. Therefore, H2S...

  8. Sulfide intrusion and detoxification in seagrasses ecosystems

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    strategies of seagrasses to sustain sulfide intrusion. Using stable isotope tracing, scanning electron microscopy with x-ray analysis, tracing sulfur compounds combined with ecosystem parameters we found different spatial, intraspecific and interspecific strategies to cope with sulfidic sediments. 1......) Tolerance, by elimination (eg. Zostera marina); where we found precipitation of sulfide as non-toxic elemental sulfur on the inner wall of the root lacunae. 2) Utilization (eg. Z. marina), where seagrasses detoxify and incorporate sulfides by active uptake and metabolize to sulfate, representing a non...

  9. EQCM Study of Influence of Anion Nature on Electrochemical Reduction of Bismuth Sulfide in Nickel Plating Solution

    OpenAIRE

    Loreta TAMAŠAUSKAITĖ-TAMAŠIŪNAITĖ; Leonas NARUŠKEVIČIUS; Žielienė, Albina; Birutė ŠIMKŪNAITĖ-STANYNIENĖ; Genovaitė VALIULIENĖ; Aloyzas SUDAVIČIUS

    2011-01-01

    The influence of anion nature on the reduction of bismuth sulfide film deposited on gold using the successive ionic layer adsorption and reaction method in solutions containing Ni2+ ions has been investigated by electrochemical quartz crystal microbalance combined with cyclic voltammetry and X-ray photoelectron spectroscopy. It has been determined that the reduction of bismuth sulfide film in the nickel plating solution depends on the anion nature: larger cathodic current and mass changes (Dƒ...

  10. Embedding of colloidal Cadmium sulfide nanoparticles into poly-methylmetacrylate matrix

    OpenAIRE

    M. Bissengaliyeva; M. Zhukush; Irina Irgibayeva

    2012-01-01

    The technique of synthesis of polymethylmethacrylate – cadmium sulfide nanocomposites involving precipitation of CdS nanoparticles from polymethylmethacrylate solution in methylmethacrylate monomer with its subsequent polymerization is presented. A difference between the spectral-luminescent properties of the surface composite layer and the nanomaterial bulk, connected with redistribution of particles with higher degree of imperfection closer to the surface during polymerization is revealed.

  11. Sulfidation properties of Fe-6. 1 at. % Mo alloy at 973-1273 K

    Energy Technology Data Exchange (ETDEWEB)

    Elrefaie, F.A.; Smeltzer, W.W.

    1987-09-01

    Sulfidation of an Fe-6.1 at% Mo alloy was investigated in H/sub 2/S-H/sub 2/ atmospheres, 10/sup -4/ less than or equal to P/sub S2/ less than or equal to 10/sup 2/ Pa, at 973-1273 K. The reaction kinetics are parabolic except at 1273 K as liquid sulfide formation leads to catastrophic corrosion. This solid-liquid transformation between Fe/sub 2/Mo/sub 2/S/sub 4/ and Mo/sub 2/S/sub 3/ occurs at 1214 +- 9 K. At 1073 K and P/sub S2/ = 10/sup -4/ Pa, growth of a duplex Mo/sub 2/S/sub 3//FeMo/sub 2/S/sub 4/ scale offers high resistance to sulfidation. At 973, 1073 and 1173 K, 10/sup -2/ less than or equal to P/sub S2/ less than or equal to 10/sup 2/ Pa, parabolic sulfidation kinetics of the same magnitude as for pure iron describe growth of a duplex scale composed on an inner (FeMo/sub 2/S/sub 4/ + Mo/sub 2/S/sub 3/) layer and at an outer FeS layer. Marker measurements indicated that growth of the inner two-phase layer was supported by inward migration of sulfur and that growth of the outer FeS layer resulted from outward migration of iron.

  12. Characterizations of Cuprous Oxide Thin Films Prepared by Sol-Gel Spin Coating Technique with Different Additives for the Photoelectrochemical Solar Cell

    Directory of Open Access Journals (Sweden)

    D. S. C. Halin

    2014-01-01

    Full Text Available Cuprous oxide (Cu2O thin films were deposited onto indium tin oxide (ITO coated glass substrate by sol-gel spin coating technique using different additives, namely, polyethylene glycol and ethylene glycol. It was found that the organic additives added had a significant influence on the formation of Cu2O films and lead to different microstructures and optical properties. The films were characterized by X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, and ultraviolet-visible spectroscopy (UV-Vis. Based on the FESEM micrographs, the grain size of film prepared using polyethylene glycol additive has smaller grains of about 83 nm with irregular shapes. The highest optical absorbance film was obtained by the addition of polyethylene glycol. The Cu2O thin films were used as a working electrode in the application of photoelectrochemical solar cell (PESC.

  13. A perfectly aligned 63 helical tubular cuprous bromide single crystal for selective photo-catalysis, luminescence and sensing of nitro-explosives.

    Science.gov (United States)

    Yao, Ru-Xin; Hailili, Reshalaiti; Cui, Xin; Wang, Li; Zhang, Xian-Ming

    2015-02-21

    A perfectly aligned 63 helical tubular cuprous bromide single crystal has been synthesized and characterized, which can selectively decompose negatively charged dyes of Methyl Orange (MO) and Kermes Red (KR), and the photocatalytic efficiency is higher than that of nanosized (∼25 nm) TiO2 and ZnO. The direction and magnitude of the dipole moments as well as the band structure were calculated to reveal high photocatalytic efficiency. Moreover, luminescence studies indicate that the CuBr tube materials show very strong yellowish green emissions in the solid state and emulsion even at room temperature, and exhibit extremely high detection sensitivity towards nitro-explosives via fluorescence quenching. Detectable luminescence responses were observed at a very low concentration of 20 ppm with a high quenching efficiency of 94.90%. The results suggest that they may be promising multifunctional materials for photo-catalysis, luminescence and sensing of nitro-explosives.

  14. Hydrogen sulfide and vascular relaxation

    Institute of Scientific and Technical Information of China (English)

    SUN Yan; TANG Chao-shu; DU Jun-bao; JIN Hong-fang

    2011-01-01

    Objective To review the vasorelaxant effects of hydrogen sulfide (H2S) in arterial rings in the cardiovascular system under both physiological and pathophysiological conditions and the possible mechanisms involved.Data sources The data in this review were obtained from Medline and Pubmed sources from 1997 to 2011 using the search terms "hydrogen sulfide" and ""vascular relaxation".Study selection Articles describing the role of hydrogen sulfide in the regulation of vascular activity and its vasorelaxant effects were selected.Results H2S plays an important role in the regulation of cardiovascular tone.The vasomodulatory effects of H2S depend on factors including concentration,species and tissue type.The H2S donor,sodium hydrosulfide (NarS),causes vasorelaxation of rat isolated aortic rings in a dose-dependent manner.This effect was more pronounced than that observed in pulmonary arterial rings.The expression of KATP channel proteins and mRNA in the aortic rings was increased compared with pulmonary artery rings.H2S is involved in the pathogenesis of a variety of cardiovascular diseases.Downregulation of the endogenous H2S pathway is an important factor in the pathogenesis of cardiovascular diseases.The vasorelaxant effects of H2S have been shown to be mediated by activation of KATP channels in vascular smooth muscle cells and via the induction of acidification due to activation of the CI/HCO3 exchanger.It is speculated that the mechanisms underlying the vasoconstrictive function of H2S in the aortic rings involves decreased NO production and inhibition of cAMP accumulation.Conclusion H2S is an important endogenous gasotransmitter in the cardiovascular system and acts as a modulator of vascular tone in the homeostatic regulation of blood pressure.

  15. Molybdenum sulfide/carbide catalysts

    Science.gov (United States)

    Alonso, Gabriel; Chianelli, Russell R.; Fuentes, Sergio; Torres, Brenda

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  16. Medical Functions of Hydrogen Sulfide.

    Science.gov (United States)

    Olas, Beata

    2016-01-01

    Hydrogen sulfide (H(2)S) is a gasomediator synthesized from L- and D-cysteine in various tissues. It is involved in a number of physiological and pathological processes. H(2)S exhibits antiatherosclerotic, vasodilator, and proangiogenic properties, and protects the kidney and heart from damage following ischemia/reperfusion injury. H(2)S donors may be natural or synthetic, and may be used for the safe treatment of a wide range of diseases. This review article summarizes the current state of knowledge of the therapeutic function of H(2)S.

  17. Surface-treatment of Alkaline Earth Sulfides Based Phosphor

    Institute of Scientific and Technical Information of China (English)

    GUO Chong-feng; CHU Ben-li; XU Jian; SU Qiang

    2004-01-01

    A series of alkaline earth sulfides based phosphors Ca0.8Sr0.2S∶Eu2+, Tm3+ were covered with a layer of protective coating with alkaline earth fluorides by heating the mixture of phosphor and NH4HF2 at elevated temperatures. The coatings were characterized by means of XRD and SEM. The optical properties of the coated phosphors and the influences of the coating on their properties have been discussed extensively. The stabilities of the coated and uncoated phosphors have been compared.

  18. Laboratory SIP signatures associated with oxidation of disseminated metal sulfides

    Science.gov (United States)

    Placencia-Gómez, Edmundo; Slater, Lee; Ntarlagiannis, Dimitrios; Binley, Andrew

    2013-05-01

    Oxidation of metal sulfide minerals is responsible for the generation of acidic waters rich in sulfate and metals. When associated with the oxidation of sulfide ore mine waste deposits the resulting pore water is called acid mine drainage (AMD); AMD is a known environmental problem that affects surface and ground waters. Characterization of oxidation processes in-situ is challenging, particularly at the field scale. Geophysical techniques, spectral induced polarization (SIP) in particular, may provide a means of such investigation. We performed laboratory experiments to assess the sensitivity of the SIP method to the oxidation mechanisms of common sulfide minerals found in mine waste deposits, i.e., pyrite and pyrrhotite, when the primary oxidant agent is dissolved oxygen. We found that SIP parameters, e.g., phase shift, the imaginary component of electrical conductivity and total chargeability, decrease as the time of exposure to oxidation and oxidation degree increase. This observation suggests that dissolution-depletion of the mineral surface reduces the capacitive properties and polarizability of the sulfide minerals. However, small increases in the phase shift and imaginary conductivity do occur during oxidation. These transient increases appear to correlate with increases of soluble oxidizing products, e.g., Fe2 + and Fe3 + in solution; precipitation of secondary minerals and the formation of a passivating layer to oxidation coating the mineral surface may also contribute to these increases. In contrast, the real component of electrical conductivity associated with electrolytic, electronic and interfacial conductance is sensitive to changes in the pore fluid chemistry as a result of the soluble oxidation products released (Fe2 + and Fe3 +), particularly for the case of pyrrhotite minerals.

  19. Hollow glass waveguides with multilayer polystyrene and metal sulfide thin film coatings for improved infrared transmission

    Science.gov (United States)

    Johnson, Valencia S.

    2007-12-01

    The overall goal of this project was to improve transmission of infrared radiation in hollow waveguides. First, polystyrene was studied as a new dielectric material for silver-coated hollow glass waveguides. The deposition and performance of polystyrene, as a single dielectric layer, were investigated. The potential of polystyrene as the low index of refraction material in a multilayer coating was also demonstrated. Cadmium sulfide and lead sulfide were each considered as the high index material in the multilayer stack. Multilayer silver coated hollow glass waveguides can be formed using polystyrene and either cadmium sulfide or lead sulfide. These material pairs are interesting because they form a multilayer structure with high index contrast, which can significantly lower the loss of a waveguide. The deposition of lead sulfide was also optimized in this project. Lead sulfide, as a single layer dielectric coating, is an attractive material for transmission of longer wavelength radiation, especially 10.6 mum. It is also of interest for emerging applications such as metals processing by lasers because hollow waveguides with silver and lead sulfide can make a low loss waveguide. Losses as low as 0.1dB/m were achieved. The deposition of zinc sulfide and zinc selenide was also investigated in this project. They are of interest because of their small extinction coefficients at longer wavelengths and potential for use in waveguides used for materials processing. The numerous simultaneous chemical reactions occurring during deposition of these materials makes obtaining pure films difficult. Gold was evaluated as a replacement for silver as the highly reflecting metallic layer. It was considered an attractive alternative because it has greater resistance to degradation in high temperature and corrosive environments. All samples were made using an electroless process. Characterization of the samples was performed using the optical techniques of FTIR and UV

  20. Ammonia and hydrogen sulfide removal using biochar

    Science.gov (United States)

    Reducing ammonia and hydrogen sulfide emissions from livestock facilities is an important issue for many communities and livestock producers. Ammonia has been regarded as odorous, precursor for particulate matter (PM), and contributed to livestock mortality. Hydrogen sulfide is highly toxic at elev...

  1. Micro and nano sulfide solid lubrication

    CERN Document Server

    Wang, Haidou; Liu, Jiajun

    2014-01-01

    Sulfide solid lubrication is a vital field of tribology with the potential to save both energy and materials. This book examines the low-temperature sulfuration technology developed in China, as well as two-step methods for preparing sulfide lubrication films.

  2. Sulfide toxicity kinetics of a uasb reactor

    Directory of Open Access Journals (Sweden)

    D. R. Paula Jr.

    2009-12-01

    Full Text Available The effect of sulfide toxicity on kinetic parameters of anaerobic organic matter removal in a UASB (up-flow anaerobic sludge blanket reactor is presented. Two lab-scale UASB reactors (10.5 L were operated continuously during 12 months. The reactors were fed with synthetic wastes prepared daily using glucose, ammonium acetate, methanol and nutrient solution. One of the reactors also received increasing concentrations of sodium sulfide. For both reactors, the flow rate of 16 L.d-1 was held constant throughout the experiment, corresponding to a hydraulic retention time of 15.6 hours. The classic model for non-competitive sulfide inhibition was applied to the experimental data for determining the overall kinetic parameter of specific substrate utilization (q and the sulfide inhibition coefficient (Ki. The application of the kinetic parameters determined allows prediction of methanogenesis inhibition and thus the adoption of operating parameters to minimize sulfide toxicity in UASB reactors.

  3. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    OpenAIRE

    Klatt, Judith M.; Al-Najjar, Mohammad A. A.; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39,...

  4. 21 CFR 177.2490 - Polyphenylene sulfide resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyphenylene sulfide resins. 177.2490 Section 177... Components of Articles Intended for Repeated Use § 177.2490 Polyphenylene sulfide resins. Polyphenylene sulfide resins (poly(1,4-phenylene sulfide) resins) may be safely used as coatings or components...

  5. Adequate hydrogen sulfide, healthy circulation

    Institute of Scientific and Technical Information of China (English)

    DU Jun-bao; CHEN Stella; JIN Hong-fang; TANG Chao-shu

    2011-01-01

    Previously,hydrogen sulfide (H2S) was considered to be a toxic gas.However,recently it was discovered that it could be produced in mammals and even in plants,throughtheproductionandmetabolismof sulfur-containing amino acids.In mammals,H2S is mainly catalyzed by cystathionine-γ-lyase (CSE),cystathionin-β-lyase (CBS) and 3-mercaptopyruvate sulfurtransferase (MPST) with the substrate of L-cysteine.Endogenous H2S exerts many important physiological and pathophysiological functions,including hypotensive action,vasorelaxation,myocardial dilation,inhibition of smooth muscle cell proliferation,and antioxidatve actions.Importantly,it plays a very important role in the pathogenesis of systemic hypertension,pulmonary hypertension,atherosclerosis,myocardialinjury,angiogenesis,hyperhomocysteinemi aandshock.Therefore,H2S is now being considered to be a novel gasotransmitter after nitric oxide and carbon monoxide in the regulation of circulatory system.

  6. Redox biochemistry of hydrogen sulfide.

    Science.gov (United States)

    Kabil, Omer; Banerjee, Ruma

    2010-07-16

    H(2)S, the most recently discovered gasotransmitter, might in fact be the evolutionary matriarch of this family, being both ancient and highly reduced. Disruption of gamma-cystathionase in mice leads to cardiovascular dysfunction and marked hypertension, suggesting a key role for this enzyme in H(2)S production in the vasculature. However, patients with inherited deficiency in gamma-cystathionase apparently do not present vascular pathology. A mitochondrial pathway disposes sulfide and couples it to oxidative phosphorylation while also exposing cytochrome c oxidase to this metabolic poison. This report focuses on the biochemistry of H(2)S biogenesis and clearance, on the molecular mechanisms of its action, and on its varied biological effects.

  7. Microbial control of hydrogen sulfide production

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J. [Univ. of Oklahoma, Tulsa, OK (United States)] [and others

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  8. Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m.

    OpenAIRE

    Kanagawa, T; Mikami, E.

    1989-01-01

    Methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide were efficiently removed from contaminated air by Thiobacillus thioparus TK-m and oxidized to sulfate stoichiometrically. More than 99.99% of dimethyl sulfide was removed when the load was less than 4.0 g of dimethyl sulfide per g (dry cell weight) per day.

  9. Hydrogen Sulfide Induces Oxidative Damage to RNA and DNA in a Sulfide-Tolerant Marine Invertebrate

    OpenAIRE

    Joyner-Matos, Joanna; Predmore, Benjamin L.; Stein, Jenny R.; Leeuwenburgh, Christiaan; Julian, David

    2010-01-01

    Hydrogen sulfide acts as an environmental toxin across a range of concentrations and as a cellular signaling molecule at very low concentrations. Despite its toxicity, many animals, including the mudflat polychaete Glycera dibranchiata, are periodically or continuously exposed to sulfide in their environment. We tested the hypothesis that a broad range of ecologically relevant sulfide concentrations induces oxidative stress and oxidative damage to RNA and DNA in G. dibranchiata. Coelomocytes ...

  10. Acidic Microenvironments in Waste Rock Characterized by Neutral Drainage: Bacteria–Mineral Interactions at Sulfide Surfaces

    Directory of Open Access Journals (Sweden)

    John W. Dockrey

    2014-03-01

    Full Text Available Microbial populations and microbe-mineral interactions were examined in waste rock characterized by neutral rock drainage (NRD. Samples of three primary sulfide-bearing waste rock types (i.e., marble-hornfels, intrusive, exoskarn were collected from field-scale experiments at the Antamina Cu–Zn–Mo mine, Peru. Microbial communities within all samples were dominated by neutrophilic thiosulfate oxidizing bacteria. However, acidophilic iron and sulfur oxidizers were present within intrusive waste rock characterized by bulk circumneutral pH drainage. The extensive development of microbially colonized porous Fe(III (oxyhydroxide and Fe(III (oxyhydroxysulfate precipitates was observed at sulfide-mineral surfaces during examination by field emission-scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM-EDS. Linear combination fitting of bulk extended X-ray absorption fine structure (EXAFS spectra for these precipitates indicated they were composed of schwertmannite [Fe8O8(OH6–4.5(SO41–1.75], lepidocrocite [γ-FeO(OH] and K-jarosite [KFe3(OH6(SO42]. The presence of schwertmannite and K-jarosite is indicative of the development of localized acidic microenvironments at sulfide-mineral surfaces. Extensive bacterial colonization of this porous layer and pitting of underlying sulfide-mineral surfaces suggests that acidic microenvironments can play an important role in sulfide-mineral oxidation under bulk circumneutral pH conditions. These findings have important implications for water quality management in NRD settings.

  11. Nitrate stimulation of indigenous nitrate-reducing, sulfide-oxidising bacterial community in wastewater anaerobic biofilms.

    Science.gov (United States)

    Garcia-de-Lomas, Juan; Corzo, Alfonso; Carmen Portillo, M; Gonzalez, Juan M; Andrades, Jose A; Saiz-Jimenez, Cesáreo; Garcia-Robledo, Emilio

    2007-07-01

    The role of the nitrate-reducing, sulfide-oxidising bacteria (NR-SOB) in the nitrate-mediated inhibition of sulfide net production by anaerobic wastewater biofilms was analyzed in two experimental bioreactors, continuously fed with the primary effluent of a wastewater treatment plant, one used as control (BRC) and the other one supplemented with nitrate (BRN). This study integrated information from H(2)S and pH microelectrodes, RNA-based molecular techniques, and the time course of biofilm growth and bioreactors water phase. Biofilms were a net source of sulfide for the water phase (2.01 micromol S(2-)(tot)m(-2)s(-1)) in the absence of nitrate dosing. Nitrate addition effectively led to the cessation of sulfide release from biofilms despite which a low rate of net sulfate reduction activity (0.26 micromol S(2-)(tot)m(-2)s(-1)) persisted at a deep layer within the biofilm. Indigenous NR-SOB including Thiomicrospira denitrificans, Arcobacter sp., and Thiobacillus denitrificans were stimulated by nitrate addition resulting in the elimination of most sulfide from the biofilms. Active sulfate reducing bacteria (SRB) represented comparable fractions of total metabolically active bacteria in the libraries obtained from BRN and BRC. However, we detected changes in the taxonomic composition of the SRB community suggesting its adaptation to a higher level of NR-SOB activity in the presence of nitrate.

  12. Nitrate-reducing, sulfide-oxidizing bacteria as microbial oxidants for rapid biological sulfide removal.

    Science.gov (United States)

    De Gusseme, Bart; De Schryver, Peter; De Cooman, Michaël; Verbeken, Kim; Boeckx, Pascal; Verstraete, Willy; Boon, Nico

    2009-01-01

    The emission of hydrogen sulfide into the atmosphere of sewer systems induces the biological production of sulfuric acid, causing severe concrete corrosion. As a possible preventive solution, a microbial consortium of nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) was enriched in a continuously stirred tank reactor in order to develop a biological technique for the removal of dissolved sulfide. The consortium, dominated by Arcobacter sp., was capable of removing 99% of sulfide. Stable isotope fractioning of the sulfide indicated that the oxidation was a biological process. The capacity of the NR-SOB consortium for rapid removal of sulfide was demonstrated by using it as an inoculum in synthetic and real sewage. Removal rates up to 52 mg sulfide-S g VSS(-1) h(-1) were achieved, to our knowledge the highest removal rate reported so far for freshwater species in the absence of molecular oxygen. Further long-term incubation experiments revealed the capacity of the bacteria to oxidize sulfide without the presence of nitrate, suggesting that an oxidized redox reserve is present in the culture.

  13. [Fatal outcome of an hydrogen sulfide poisoning].

    Science.gov (United States)

    Querellou, E; Jaffrelot, M; Savary, D; Savry, C; Perfus, J-P

    2005-10-01

    We report a case of fatal outcome poisoning by massive exposure to hydrogen sulfide of a sewer worker. This rare event was associated with a moderate intoxication of two members of the rescue team. The death was due to asystole and massive lung oedema. Autopsy analysis showed diffuse necrotic lesions in lungs. Hydrogen sulfide is a direct and systemic poison, produced by organic matter decomposition. The direct toxicity mechanism is still unclear. The systemic toxicity is due to an acute toxicity by oxygen depletion at cellular level. It is highly diffusable and potentially very dangerous. At low concentration, rotten egg smell must trigger hydrogen sulfide suspicion since at higher concentration it is undetectable, making intoxication possible. In case of acute intoxication, there is an almost instantaneous cardiovascular failure and a rapid death. Hydrogen sulfide exposure requires prevention measures and more specifically the use of respiratory equipment for members of the rescue team.

  14. Hydrogen sulfide in hemostasis: friend or foe?

    Science.gov (United States)

    Olas, Beata

    2014-06-25

    Hydrogen sulfide (H2S) is a well known toxic gas that is synthesized from the amino acids: cysteine (Cys) and homocysteine (Hcy) by three enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and mercaptopyruvate sulfurtransferase (3-MST). Hydrogen sulfide, like carbon monoxide (CO) or nitric oxide (NO) is a signaling molecule in different biological systems, including the cardiovascular system. Moreover, hydrogen sulfide plays a role in the pathogenesis of various cardiovascular diseases. It modulates different elements of hemostasis (activation of blood platelet, and coagulation process) as well as proliferation and apoptosis of vascular smooth muscle cells. However, the biological role and the therapeutic potential of H2S is not clear. This review summarizes the different functions of hydrogen sulfide in hemostasis.

  15. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells

    Directory of Open Access Journals (Sweden)

    Robert L. Z. Hoye

    2015-02-01

    Full Text Available Electrochemically deposited Cu2O solar cells are receiving growing attention owing to a recent doubling in efficiency. This was enabled by the controlled chemical environment used in depositing doped ZnO layers by atomic layer deposition, which is not well suited to large-scale industrial production. While open air fabrication with atmospheric pressure spatial atomic layer deposition overcomes this limitation, we find that this approach is limited by an inability to remove the detrimental CuO layer that forms on the Cu2O surface. Herein, we propose strategies for achieving efficiencies in atmospherically processed cells that are equivalent to the high values achieved in vacuum processed cells.

  16. Air-water transfer of hydrogen sulfide

    DEFF Research Database (Denmark)

    Yongsiri, C.; Vollertsen, J.; Rasmussen, M. R.

    2004-01-01

    The emissions process of hydrogen sulfide was studied to quantify air–water transfer of hydrogen sulfide in sewer networks. Hydrogen sulfide transfer across the air–water interface was investigated at different turbulence levels (expressed in terms of the Froude number) and pH using batch...... experiments. By means of the overall mass–transfer coefficient (KLa), the transfer coefficient of hydrogen sulfide (KLaH2S), referring to total sulfide, was correlated to that of oxygen (KLaO2) (i.e., the reaeration coefficient). Results demonstrate that both turbulence and pH in the water phase play...... a significant role for KLaH2S. An exponential expression is a suitable representation for the relationship between KLaH2S and the Froude number at all pH values studied (4.5 to 8.0). Because of the dissociation of hydrogen sulfide, KLaH2S increased with decreasing pH at a constant turbulence level. Relative...

  17. Mechanism of mechanical activation for sulfide ores

    Institute of Scientific and Technical Information of China (English)

    HU Hui-ping; CHEN Qi-yuan; YIN Zhou-lan; HE Yue-hui; HUANG Bai-yun

    2007-01-01

    Structural changes for mechanically activated pyrite, sphalerite, galena and molybdenite with or without the exposure to ambient air, were systematically investigated using X-ray diffraction analysis(XRD), particle size analysis, gravimetrical method, X-ray photo-electron spectroscopy(XPS) and scanning electron microscopy(SEM), respectively. Based on the above structural changes for mechanically activated sulfide ores and related reports by other researchers, several qualitative rules of the mechanisms and the effects of mechanical activation for sulfide ores are obtained. For brittle sulfide ores with thermal instability, and incomplete cleavage plane or extremely incomplete cleavage plane, the mechanism of mechanical activation is that a great amount of surface reactive sites are formed during their mechanical activation. The effects of mechanical activation are apparent. For brittle sulfide ores with thermal instability, and complete cleavage plane, the mechanism of mechanical activation is that a great amount of surface reactive sites are formed, and lattice deformation happens during their mechanical activation. The effects of mechanical activation are apparent. For brittle sulfide ores with excellent thermal stability, and complete cleavage plane, the mechanism of mechanical activation is that lattice deformation happens during their mechanical activation. The effects of mechanical activation are apparent. For sulfide ores with high toughness, good thermal stability and very excellent complete cleavage plane, the mechanism of mechanical activation is that lattice deformation happens during their mechanical activation, but the lattice deformation ratio is very small. The effects of mechanical activation are worst.

  18. Sulfide as a soil phytotoxin - A review

    Directory of Open Access Journals (Sweden)

    Leon P M Lamers

    2013-07-01

    Full Text Available In wetland soils and underwater sediments of marine, brackish and freshwater systems, the strong phytotoxin sulfide may accumulate as a result of microbial reduction of sulfate during anaerobiosis, its level depending on prevailing edaphic conditions. In this review, we compare an extensive body of literature on phytotoxic effects of this reduced sulfur compound in different ecosystem types, and review the effects of sulfide at multiple ecosystem levels: the ecophysiological functioning of individual plants, plant-microbe associations, and community effects including competition and facilitation interactions. Recent publications on multi-species interactions in the rhizosphere show even more complex mechanisms explaining sulfide resistance. It is concluded that sulfide is a potent phytotoxin, profoundly affecting plant fitness and ecosystem functioning in the full range of wetland types including coastal systems, and at several levels. Traditional toxicity testing including hydroponic approaches generally neglect rhizospheric effects, which makes it difficult to extrapolate results to real ecosystem processes. To explain the differential effects of sulfide at the different organizational levels, profound knowledge about the biogeochemical, plant physiological and ecological rhizosphere processes is vital. This information is even more important, as anthropogenic inputs of sulfur into freshwater ecosystems and organic loads into freshwater and marine systems are still much higher than natural levels, and are steeply increasing in Asia. In addition, higher temperatures as a result of global climate change may lead to higher sulfide production rates in shallow waters.

  19. Elemental and isotopic compositions of the hydrothermal sulfide on the East Pacific Rise near 13°N

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The mineralogical,elemental,and isotopic characteristics of a hydrothermal sulfide sample from one dredge station (12°42.30’N,103°54.48’W,water depth 2655 m) on the East Pacific Rise near 13°N were analyzed.The hydrothermal sulfide was composed mainly of sphalerite,chalcopyrite,and pyrite and was a Zn-rich sulfide;in layer ep-s-1,goethite formed by secondary oxidation was found.The concentrations of rare elements,such as Li (0.15×10-6-0.30×10-6),Be (0.01×10-6-0.05×10-6),Zr (73.8×10-9-1344×10-9),Nb (8.14×10-9-64.7×10-9),Hf (2.54×10-9-28.0×10-9),and Ta (0.203×10-9-1.21×10-9),were far lower in the hydrothermal sulfide than in the ocean crust,whereas the content of Au was higher and the contents of Co,Ni,Sr,Cs,Ba,Bi,and U were low.The correlations between Zn and Cr,Cd and Ga,Cu and P,P and In (R2 > 0.8) were positive,whereas those between Zn and Fe,Cu,and Ba (R2 > 0.8) were distinctly negative.From low-temperature mineral assemblages to high-temperature mineral assemblages,the spatial distributions of dispersive and rare elements (e.g.In,Li,Cs) in the hydrothermal sulfide displayed corresponding variations.The variations observed in some elements (e.g.,Cd,Cs,P) are controlled by Zn,Fe,and Cu sulfides,respectively.Seafloor weathering accounts for the enrichment of V,Mn,and rare earth elements (REE) in the henna sulfide-oxidation layer that bears the secondary oxide mineral,leading to identical REE patterns for this layer (ep-s-1) and seawater.Seafloor weathering also distinctly affects the correlations between the element ratios of the hydrothermal sulfide.From high-temperature mineral assemblages to low-temperature mineral assemblages,Fe content and δ 34S value of the hydrothermal sulfide increase gradually,and Zn content and lead isotopic ratios decrease gradually on the contrary,which indicate the influences of seawater on elements and the sulfur and lead isotopic compositions enhance gradually during the formation of hydrothermal sulfides.

  20. Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells.

    Science.gov (United States)

    Nejand, Bahram Abdollahi; Ahmadi, Vahid; Gharibzadeh, Saba; Shahverdi, Hamid Reza

    2016-02-08

    Inorganic hole-transport materials are commercially desired to decrease the fabrication cost of perovskite solar cells. Here, Cu2O is introduced as a potential hole-transport material for stable, low-cost devices. Considering that Cu2O formation is highly sensitive to the underlying mixture of perovskite precursors and their solvents, we proposed and engineered a technique for reactive magnetron sputtering. The rotational angular deposition of Cu2O yields high surface coverage of the perovskite layer for high rate of charge extraction. Deposition of this Cu2O layer on the pinhole-free perovskite layer produces devices with power conversion efficiency values of up to 8.93%. The engineered Cu2O layers showed uniform, compact, and crack-free surfaces on the perovskite layer without affecting the perovskite structure, which is desired for deposition of the top metal contact and for surface shielding against moisture and mechanical damages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors.

    Science.gov (United States)

    Villa-Gomez, D K; Cassidy, J; Keesman, K J; Sampaio, R; Lens, P N L

    2014-03-01

    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4(2-) ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing bioreactors. The sulfide was measured using a sulfide ion selective electrode (pS) and the values obtained were used to calculate proportional-integral-derivative (PID) controller parameters. The experiments were performed in an inverse fluidized bed bioreactor with automated operation using the LabVIEW software version 2009(®). A rapid response and high sulfide increment was obtained through a stepwise increase in the CODin concentration, while a stepwise decrease to the HRT exhibited a slower response with smaller sulfide increment. Irrespective of the way the OLR was decreased, the pS response showed a time-varying behavior due to sulfide accumulation (HRT change) or utilization of substrate sources that were not accounted for (CODin change). The pS electrode response, however, showed to be informative for applications in sulfate reducing bioreactors. Nevertheless, the recorded pS values need to be corrected for pH variations and high sulfide concentrations (>200 mg/L). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors

    NARCIS (Netherlands)

    Villa Gomez, D.K.; Cassidy, J.; Keesman, K.J.; Sampaio, R.M.; Lens, P.N.L.

    2014-01-01

    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4 2- ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing

  3. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    Science.gov (United States)

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  4. Hydrogen sulfide induces oxidative damage to RNA and DNA in a sulfide-tolerant marine invertebrate.

    Science.gov (United States)

    Joyner-Matos, Joanna; Predmore, Benjamin L; Stein, Jenny R; Leeuwenburgh, Christiaan; Julian, David

    2010-01-01

    Hydrogen sulfide acts as an environmental toxin across a range of concentrations and as a cellular signaling molecule at very low concentrations. Despite its toxicity, many animals, including the mudflat polychaete Glycera dibranchiata, are periodically or continuously exposed to sulfide in their environment. We tested the hypothesis that a broad range of ecologically relevant sulfide concentrations induces oxidative stress and oxidative damage to RNA and DNA in G. dibranchiata. Coelomocytes exposed in vitro to sulfide (0-3 mmol L(-1) for 1 h) showed dose-dependent increases in oxidative stress (as 2',7'-dichlorofluorescein fluorescence) and superoxide production (as dihydroethidine fluorescence). Coelomocytes exposed in vitro to sulfide (up to 0.73 mmol L(-1) for 2 h) also acquired increased oxidative damage to RNA (detected as 8-oxo-7,8-dihydroguanosine) and DNA (detected as 8-oxo-7,8-dihydro-2'-deoxyguanosine). Worms exposed in vivo to sulfide (0-10 mmol L(-1) for 24 h) acquired elevated oxidative damage to RNA and DNA in both coelomocytes and body wall tissue. While the consequences of RNA and DNA oxidative damage are poorly understood, oxidatively damaged deoxyguanosine bases preferentially bind thymine, causing G-T transversions and potentially causing heritable point mutations. This suggests that sulfide can be an environmental mutagen in sulfide-tolerant invertebrates.

  5. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors

    NARCIS (Netherlands)

    Villa Gomez, D.K.; Cassidy, J.; Keesman, K.J.; Sampaio, R.M.; Lens, P.N.L.

    2014-01-01

    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4 2- ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing

  6. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs

    NARCIS (Netherlands)

    Klatt, Judith M.; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2S: (i) H2S accelerated the recovery of

  7. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs

    NARCIS (Netherlands)

    Klatt, Judith M.; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2S: (i) H2S accelerated the recovery of

  8. sulfide – reality or fantasy?

    Directory of Open Access Journals (Sweden)

    Paulina Brodek

    2016-08-01

    Full Text Available Hydrogen sulfide (H2S is a signaling gasotransmitter, involved in different physiological and pathological processes. H2S regulates apoptosis, the cell cycle and oxidative stress. H2S exerts powerful effects on smooth muscle cells, endothelial cells, inflammatory cells, endoplasmic reticulum, mitochondria and nuclear transcription factors. H2S is known to be produced from L-cysteine, D-cysteine and L-homocysteine in the body. Four enzymes – cystathionine-b synthase (CBS, mercaptopyruvate sulfurtransferase (3-MST, cystathionine-γ lyase (CSE and cysteine aminotransferase (CAT – are involved in H2S synthesis. The biosynthetic pathway for the production of H2S from D-cysteine involves 3-MST and D-amino acid oxidase (DAO. The therapeutic potential of H2S is not clear. However, recently results have demonstrated that H2S has protective action for ischemic heart disease or hypertension, and protects against ischemia of the brain. This review summarizes the negative and the positive roles of H2S in various biological systems, for example the cardiovascular system and nervous system. We also discuss the function of classical, therapeutic and natural (for example garlic donors of H2S in pre-clinical and clinical studies.

  9. Thermal decomposition of mercuric sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Leckey, J.H.; Nulf, L.E.

    1994-10-28

    The rate of thermal decomposition of mercuric sulfide (HgS) has been measured at temperatures from 265 to 345 C. These data have been analyzed using a first-order chemical reaction model for the time dependence of the reaction and the Arrhenius equation for the temperature dependence of the rate constant. Using this information, the activation energy for the reaction was found to be 55 kcal/mol. Significant reaction vessel surface effects obscured the functional form of the time dependence of the initial portion of the reaction. The data and the resulting time-temperature reaction-rate model were used to predict the decomposition rate of HgS as a function of time and temperature in thermal treatment systems. Data from large-scale thermal treatment studies already completed were interpreted in terms of the results of this study. While the data from the large-scale thermal treatment studies were consistent with the data from this report, mass transport effects may have contributed to the residual amount of mercury which remained in the soil after most of the large-scale runs.

  10. Physico-chemical studies of cuprous oxide (Cu{sub 2}O) nanoparticles coated on amorphous carbon nanotubes (α-CNTs)

    Energy Technology Data Exchange (ETDEWEB)

    Johan, Mohd Rafie, E-mail: mrafiej@um.edu.my; Meriam Suhaimy, Syazwan Hanani; Yusof, Yusliza, E-mail: yus_liza@siswa.um.edu.my

    2014-01-15

    Amorphous carbon nanotubes (α-CNTs) were synthesized by a chemical reaction between ferrocene and ammonium chloride at a temperature (∼250 °C) in an air furnace. As- synthesized α-CNTs were purified with deionized water and hydrochloric acid. A purified α-CNTs were hybridized with cuprous oxide nanoparticles (Cu{sub 2}O) through a simple chemical process. Morphology of the samples was analyzed with field emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM). Fourier transform infrared (FTIR) spectra showed the attachment of acidic functional groups onto the surface of α-CNTs and the formation of hybridized α-CNTs-Cu{sub 2}O. Raman spectra reveal the amorphous nature of the carbon. X-ray diffraction (XRD) pattern confirmed the amorphous phase of the carbon and the formation of Cu{sub 2}O crystalline phase. The coating of Cu{sub 2}O was confirmed by FESEM, TEM, and XRD. Optical absorption of the samples has also been investigated and the quantum confinement effect was illustrated in the absorption spectra.

  11. Constructing heterostructure on highly roughened caterpillar-like gold nanotubes with cuprous oxide grains for ultrasensitive and stable nonenzymatic glucose sensor.

    Science.gov (United States)

    Chen, Anran; Ding, Yu; Yang, Zhimao; Yang, Shengchun

    2015-12-15

    In this study, a metal-metal oxide heterostructure was designed and constructed by growing cuprous oxide (Cu2O) grains on highly surface roughened caterpillar-like Au nanotubes (CLGNs) for ultrasensitive, selective and stable nonenzymatic glucose biosensors. The Cu2O grains are tightly anchored to the surface of CLGNs by the spines, resulting in a large increase in the contact area between Cu2O grains and the CLGNs, which facilitates the electron transport between metal and metal oxide and improves the sensitivity and stability of the sensors. The electron transfer coefficient (α) and electron transfer rate constant (ks) for redox reaction of Cu2O-CLGNs/GCE are found to be 0.50114 and 3.24±0.1 s(-1), respectively. The biosensor shows a linear response to glucose over a concentration range of 0.1-5mM and a high sensitivity of 1215.7 µA mM(-1) cm(-2) with a detection limit of 1.83 μM. Furthermore, the Cu2O-CLGNs biosensor exhibited strong anti-interference capability against uric acid (UA), ascorbic acid (AA), potassium chloride (KCl) and sodium ascorbate (SA), as well as a high stability and repeatability. Our current research indicates that the Cu2O-CLGNs hybrid electrode is a promising choice for constructing nonenzyme based electrochemical biosensors.

  12. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors

    Science.gov (United States)

    Wan, Caichao; Jiao, Yue; Li, Jian

    2017-09-01

    An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.

  13. Photocatalytic Degradation of Rhodamine B by Cuprous Oxide%氧化亚铜光催化降解罗丹明 B

    Institute of Scientific and Technical Information of China (English)

    黄涛; 吕重安; 杨水金

    2014-01-01

    Cuprous oxide ( Cu2 O) was successfully prepared by the method of reduction in aqueous at room temperature.All the powders were characterized by X -rays diffraction ( XRD) and scanning electron microscopy ( SEM) .The effect of different factors on the degradation was investigated .The best reaction conditions were found out.The photocatalytic degradation of rhodamine B by Cu 2 O under simulated natural light irradiation was investiga-ted.The results demonstrated that initial concentration of rhodamine B is 10 mg/L, catalyst dosage is 0.38 g/L and the pH is 5.2, the degradation ratio of rhodamine B is as high as 96.5%after 30 minutes simulated natural light ir-radiation .%利用室温液相还原法制备了氧化亚铜,通过XRD、 SEM对其进行了表征,探讨了该催化剂对罗丹明B的光催化降解的活性。在催化剂用量为0.38 g/L,过氧化氢量为1.8 mL,罗丹明B的浓度为10 mg/L, pH为5.2的条件下,光照30 min后罗丹明B的降解率为96.5%。

  14. The Anarraaq Zn-Pb-Ag and barite deposit, northern Alaska: Evidence for replacement of carbonate by barite and sulfides

    Science.gov (United States)

    Kelley, K.D.; Dumoulin, J.A.; Jennings, S.

    2004-01-01

    The Anarraaq deposit in northern Alaska consists of a barite body, estimated to be as much as 1 billion metric tons, and a Zn-Pb-Ag massive sulfide zone with an estimated resource of about 18 Mt at 18 percent Zn, 5.4 percent Pb, and 85 g/t Ag. The barite and sulfide minerals are hosted by the uppermost part of the Mississippian Kuna Formation (Ikalukrok unit) that consists of carbonaceous and siliceous mudstone or shale interbedded with carbonate. The amount of interbedded carbonate in the Anarraaq deposit is atypical of the district as a whole, comprising as much as one third of the section. The total thickness of the Ikalukrok unit is considerably greater in the area of the deposit (210 to almost 350 m) than to the north and south (maximum of 164 m). The mineralized zone at Anarraaq is lens shaped and has a relatively flat top and a convex base. It also ranges greatly in thickness, from a few meters to more than 100 m. Textures of some of the carbonate layers are distinctive, consisting of nodules within siliceous mudstone or layers interbedded with shale. Many of the layers contain calcitized sponge spicules or radiolarians in a carbonate matrix. Textures of barite and sulfide minerals mimic those of carbonate and provide unequivocal evidence that replacement of precursor carbonate was an important process. Barite and sulfide textures include either nodular, bladed grains of various sizes that resemble spicules (observed only with iron sulfides) or well-rounded forms that are replaced radiolarians. Mineralization at Anarraaq probably occurred in a fault-bounded Carboniferous basin during early diagenesis in the shallow subsurface. The shape and size of the mineralized body suggest that barite and sulfides replaced calcareous mass flow deposits in a submarine channel. The distribution of biogenic and/or early diagenetic silica may have served as impermeable barriers to the fluids, thereby focusing and controlling fluid flow through unreplaced carbonate layers

  15. Critical temperature of metallic hydrogen sulfide at 225-GPa pressure

    Science.gov (United States)

    Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A.

    2017-01-01

    The Eliashberg theory generalized for electron—phonon systems with a nonconstant density of electron states and with allowance made for the frequency behavior of the electron mass and chemical potential renormalizations is used to study T c in the SH3 phase of hydrogen sulfide under pressure. The phonon contribution to the anomalous electron Green's function is considered. The pairing within the total width of the electron band and not only in a narrow layer near the Fermi surface is taken into account. The frequency and temperature dependences of the complex mass renormalization Re Z(ω), the density of states N(ɛ) renormalized by the electron—phonon interactions, and the electron—phonon spectral function obtained computationally are used to calculate the anomalous electron Green's function. A generalized Eliashberg equation with a variable density of electron states has been solved. The frequency dependence of the real and imaginary parts of the order parameter in the SH3 phase has been obtained. The value of T c ≈ 177 K in the SH3 phase of hydrogen sulfide at pressure P = 225 GPa has been determined by solving the system of Eliashberg equations.

  16. SELF-ORGANIZATION OF LEAD SULFIDE QUANTUM DOTS INTO SUPERSTRUCTURES

    Directory of Open Access Journals (Sweden)

    Elena V. Ushakova

    2014-11-01

    Full Text Available The method of X-ray structural analysis (X-ray scattering at small angles is used to show that the structures obtained by self-organization on a substrate of lead sulfide (PbS quantum dots are ordered arrays. Self-organization of quantum dots occurs at slow evaporation of solvent from a cuvette. The cuvette is a thin layer of mica with teflon ring on it. The positions of peaks in SAXS pattern are used to calculate crystal lattice of obtained ordered structures. Such structures have a primitive orthorhombic crystal lattice. Calculated lattice parameters are: a = 21,1 (nm; b = 36,2 (nm; c = 62,5 (nm. Dimensions of structures are tens of micrometers. The spectral properties of PbS QDs superstructures and kinetic parameters of their luminescence are investigated. Absorption band of superstructures is broadened as compared to the absorption band of the quantum dots in solution; the luminescence band is slightly shifted to the red region of the spectrum, while its bandwidth is not changed much. Luminescence lifetime of obtained structures has been significantly decreased in comparison with the isolated quantum dots in solution, but remained the same for the lead sulfide quantum dots close-packed ensembles. Such superstructures can be used to produce solar cells with improved characteristics.

  17. A study of the stability of cadmium sulfide/copper sulfide and cadmium sulfide copper-indium-diselenide solar cells

    Science.gov (United States)

    Noel, G.; Richard, N.; Gaines, G.

    1984-08-01

    Groups of high efficiency cadmium sulfide/copper sulfide solar cells were exposed to combinations of stresses designed to isolate and accelerate intrinsic degradation mechanisms. Stresses included elevated temperature, illumination intensity, and cell loading conditions. All stress exposures and tests were conducted in a benign (high purity argon) atmosphere. Two primary intrinsic modes of degradation were identified: degradation of the open circuit voltage under continuous illumination and nonzero loading was found to be self recovering upon interruption of illumination or upon shorting or reverse biasing the cells. It was attributed to traps in the depletion region. Recovery from decay of light generated current was not spontaneous but could be partially accomplished by annealing in a reducing (hydrogen) environment. It was attributed to changes in the stoichiometry of the copper sulfide under the influence of electric fields and currents.

  18. Sulfide capacities of fayalite-base slags

    Science.gov (United States)

    Simeonov, S. R.; Sridhar, R.; Toguri, J. M.

    1995-04-01

    The sulfide capacities of fayalite-base slags were measured by a gas-slag equilibration technique under controlled oxygen and sulfur potentials similar to those encountered in the pyrometallurgical processing of nonferrous metals. The oxygen pressure range was from 10-9.5 to 10-11 MPa and the sulfur pressure range from 10-3 to 10-4.5 MPa, over a temperature range of 1473 to 1623 K. The slags studied were FeO-SiO2 at silica saturation and those with addition of CaO, MgO, and Al2O3 to determine their effect on sulfide capacities. For these slags, the sulfide capacities were found to vary from 10-3.3 to 10-5. The sulfide capacities increased with increasing temperature from 1473 to 1623 K. A comparison of the reported plant data on sulfur content of industrial slags shows good agreement with the present experimental results. The present data will be useful in estimating metal losses in slag due to metal sulfide entrainment in nonferrous smelters.

  19. Hydrogen sulfide: neurochemistry and neurobiology.

    Science.gov (United States)

    Qu, K; Lee, S W; Bian, J S; Low, C-M; Wong, P T-H

    2008-01-01

    Current evidence suggests that hydrogen sulfide (H2S) plays an important role in brain functions, probably acting as a neuromodulator as well as an intracellular messenger. In the mammalian CNS, H2S is formed from the amino acid cysteine by the action of cystathionine beta-synthase (CBS) with serine (Ser) as the by-product. As CBS is a calcium and calmodulin dependent enzyme, the biosynthesis of H2S should be acutely controlled by the intracellular concentration of calcium. In addition, it is also regulated by S-adenosylmethionine which acts as an allosteric activator of CBS. H2S, as a sulfhydryl compound, has similar reducing properties as glutathione. In neurons, H2S stimulates the production of cAMP probably by direct activation of adenylyl cyclase and thus activate cAMP-dependent processes. In astrocytes, H2S increases intracellular calcium to an extent capable of inducing and propagating a "calcium wave", which is a form of calcium signaling among these cells. Possible physiological functions of H2S include potentiating long-term potentials through activation of the NMDA receptors, regulating the redox status, maintaining the excitatory/inhibitory balance in neurotransmission, and inhibiting oxidative damage through scavenging free radicals and reactive species. H2S is also involved in CNS pathologies such as stroke and Alzheimer's disease. In stroke, H2S appears to act as a mediator of ischemic injuries and thus inhibition of its production has been suggested to be a potential treatment approach in stroke therapy.

  20. Hydrogen Production Using a Molybdenum Sulfide Catalyst on a Titanium-Protected n+p-Silicon Photocathode

    DEFF Research Database (Denmark)

    Seger, Brian; Laursen, Anders Bo; Vesborg, Peter Christian Kjærgaard

    2012-01-01

    A low-cost substitute: A titanium protection layer on silicon made it possible to use silicon under highly oxidizing conditions without oxidation of the silicon. Molybdenum sulfide was electrodeposited on the Ti-protected n+p-silicon electrode. This electrode was applied as a photocathode for water...

  1. Sulfide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp

    NARCIS (Netherlands)

    Heijs, S.K.; Azzoni, R.; Giordani, G.; Jonkers, H.M.; Nizzoli, D.; Viaroli, P.; van Gemerden, H.

    2000-01-01

    The production and consumption of sulfide and its influence on phosphorous cycling were studied in a hypertrophic coastal lagoon (Valle Smarlacca, Italy). Oxygen measurements revealed that the water phase was supersaturated except for the layer directly overlying the sediment. This layer was devoid

  2. Sulfide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp.

    NARCIS (Netherlands)

    Heijs, SK; Azzoni, R; Giordani, G; Jonkers, HM; Nizzoli, D; Viaroli, P; van Gemerden, H

    2000-01-01

    The production and consumption of sulfide and its influence on phosphorous cycling were studied in a hypertrophic coastal lagoon (Valle Smarlacca, Italy). Oxygen measurements revealed that the water phase was supersaturated except for the layer directly overlying the sediment. This layer was devoid

  3. Solar thermal extraction of copper from sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Winkel, L.; Guesdon, C.; Sturzenegger, M.

    2003-03-01

    With the aim to develop a solar-driven process for the extraction of copper from sulfide concentrates re-search on the decomposition of copper sulfides under inert atmospheres has been initiated. Thermogravimetric measurements on chalcocite (Cu{sub 2}S) revealed that copper is formed already at 1823 K. Chalcopyrite (CuFeS{sub 2}) also disintegrates at this temperature, although at a lower rate. Copper and iron have been identified in the solid residue. The results confirm the feasibility of copper extraction by direct decomposition of sulfides under atmospheric pressure. The decomposition under inert atmosphere prevents generation of SO{sub 2}, and is beneficial to the removal of volatile impurities. Chemical equilibrium calculations for CuFeS{sub 2} contaminated with enargite (Cu{sub 3}AsS{sub 4}) have shown that the absence of an oxidic slag allows for a complete evaporation of arsenic and subsequent separation. (author)

  4. Changes in Dimethyl Sulfide Oceanic Distribution due to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Cameron-Smith, P; Elliott, S; Maltrud, M; Erickson, D; Wingenter, O

    2011-02-16

    Dimethyl sulfide (DMS) is one of the major precursors for aerosols and cloud condensation nuclei in the marine boundary layer over much of the remote ocean. Here they report on coupled climate simulations with a state-of-the-art global ocean biogeochemical model for DMS distribution and fluxes using present-day and future atmospheric CO{sub 2} concentrations. They find changes in zonal averaged DMS flux to the atmosphere of over 150% in the Southern Ocean. This is due to concurrent sea ice changes and ocean ecosystem composition shifts caused by changes in temperature, mixing, nutrient, and light regimes. The largest changes occur in a region already sensitive to climate change, so any resultant local CLAW/Gaia feedback of DMS on clouds, and thus radiative forcing, will be particularly important. A comparison of these results to prior studies shows that increasing model complexity is associted with reduced DMS emissions at the equator and increased emissions at high latitudes.

  5. Influence of Metal Sulfides as Anode Catalysts on Performance of H2S SOFC

    Institute of Scientific and Technical Information of China (English)

    钟理; 刘曼; 韩国林; CHUANGKar

    2003-01-01

    Two anode catalysts with Pt, MoS2 and composite metal sulfides (MoS2+NiS), are investigated for electrochemical oxidation of hydrogen sulfide in solid oxide fuel cell (SOFC) at temperatures 750-850℃. The catalysts comprising MoS2 and MoS2+NiS exhibited good electrical conductivity and catalytic activity. MoS2 and composite catalysts were found to be more active than Pt, a widely used catalyst for high temperature H2S/O2 fuel cell at 750-850℃. However, MoS2 itself sublimes above 450℃. In contrast, composite catalysts containing both Mo and transition metal (Ni) are shown to be stable and effective in promoting the oxidation of H2S in SOFC up to 850℃. However, electric contact is poor between the platinum current collecting layer and the composite metal sulfide layer, so that the cell performance becomes worse. This problem is overcome by adding conductive Ag powder into the anode layer (forming MoS2+NiS+Ag anode material) to increase anode electrical conductance instead of applying a thin laver of platinum on the top of anode.

  6. Sulfide and methane production in sewer sediments.

    Science.gov (United States)

    Liu, Yiwen; Ni, Bing-Jie; Ganigué, Ramon; Werner, Ursula; Sharma, Keshab R; Yuan, Zhiguo

    2015-03-01

    Recent studies have demonstrated significant sulfide and methane production by sewer biofilms, particularly in rising mains. Sewer sediments in gravity sewers are also biologically active; however, their contribution to biological transformations in sewers is poorly understood at present. In this study, sediments collected from a gravity sewer were cultivated in a laboratory reactor fed with real wastewater for more than one year to obtain intact sediments. Batch test results show significant sulfide production with an average rate of 9.20 ± 0.39 g S/m(2)·d from the sediments, which is significantly higher than the areal rate of sewer biofilms. In contrast, the average methane production rate is 1.56 ± 0.14 g CH4/m(2)·d at 20 °C, which is comparable to the areal rate of sewer biofilms. These results clearly show that the contributions of sewer sediments to sulfide and methane production cannot be ignored when evaluating sewer emissions. Microsensor and pore water measurements of sulfide, sulfate and methane in the sediments, microbial profiling along the depth of the sediments and mathematical modelling reveal that sulfide production takes place near the sediment surface due to the limited penetration of sulfate. In comparison, methane production occurs in a much deeper zone below the surface likely due to the better penetration of soluble organic carbon. Modelling results illustrate the dependency of sulfide and methane productions on the bulk sulfate and soluble organic carbon concentrations can be well described with half-order kinetics.

  7. Microbial Sulfide Filter along a Benthic Redox Gradient in the Eastern Gotland Basin, Baltic Sea

    Science.gov (United States)

    Yücel, Mustafa; Sommer, Stefan; Dale, Andrew W.; Pfannkuche, Olaf

    2017-01-01

    The sediment-water interface is an important site for material exchange in marine systems and harbor unique microbial habitats. The flux of nutrients, metals, and greenhouse gases at this interface may be severely dampened by the activity of microorganisms and abiotic redox processes, leading to the “benthic filter” concept. In this study, we investigate the spatial variability, mechanisms and quantitative importance of a microbially-dominated benthic filter for dissolved sulfide in the Eastern Gotland Basin (Baltic Sea) that is located along a dynamic redox gradient between 65 and 173 m water depth. In August-September 2013, high resolution (0.25 mm minimum) vertical microprofiles of redox-sensitive species were measured in surface sediments with solid-state gold-amalgam voltammetric microelectrodes. The highest sulfide consumption (2.73–3.38 mmol m−2 day−1) occurred within the top 5 mm in sediments beneath a pelagic hypoxic transition zone (HTZ, 80–120 m water depth) covered by conspicuous white bacterial mats of genus Beggiatoa. A distinct voltammetric signal for polysulfides, a transient sulfur oxidation intermediate, was consistently observed within the mats. In sediments under anoxic waters (>140 m depth), signals for Fe(II) and aqueous FeS appeared below a subsurface maximum in dissolved sulfide, indicating a Fe(II) flux originating from older sediments presumably deposited during the freshwater Ancylus Lake that preceded the modern Baltic Sea. Our results point to a dynamic benthic sulfur cycling in Gotland Basin where benthic sulfide accumulation is moderated by microbial sulfide oxidation at the sediment surface and FeS precipitation in deeper sediment layers. Upscaling our fluxes to the Baltic Proper; we find that up to 70% of the sulfide flux (2281 kton yr−1) toward the sediment-seawater interface in the entire basin can be consumed at the microbial mats under the HTZ (80–120 m water depth) while only about 30% the sulfide flux effuses

  8. Acute inhalation toxicity of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Hahn, F.F.; Barr, E.B. [and others

    1995-12-01

    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  9. Modeling of Sulfide Microenvironments on Mars

    Science.gov (United States)

    Schwenzer, S. P.; Bridges, J. C.; McAdam, A.; Steer, E. D.; Conrad, P. G.; Kelley, S. P.; Wiens, R. C.; Mangold, N.; Grotzinger, J.; Eigenbrode, J. L.; Franz, H. B.; Sutter, B.

    2016-01-01

    Yellowknife Bay (YKB; sol 124-198) is the second site that the Mars Science Laboratory Rover Curiosity investigated in detail on its mission in Gale Crater. YKB represents lake bed sediments from an overall neutral pH, low salinity environment, with a mineralogical composition which includes Ca-sulfates, Fe oxide/hydroxides, Fe-sulfides, amorphous material, and trioctahedral phyllosilicates. We investigate whether sulfide alteration could be associated with ancient habitable microenvironments in the Gale mudstones. Some textural evidence for such alteration may be pre-sent in the nodules present in the mudstone.

  10. Iron-sulfide crystals in probe deposits

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming

    1998-01-01

    Iron-sulfides were observed in deposits collected on a probe inserted at the top of the furnace of a coal-fired power station in Denmark. The chemical composition of the iron-sulfides is equivalent to pyrrhotite (FeS). The pyrrhotites are present as crystals and, based on the shape of the crystals......, it was deduced that they were not deposited but instead grew within the deposit. The presence of unburned char particles within the deposits supports the concept that a reducing environment existed in the deposits. Two processes are proposed for explaining the existence of pyrrhotite crystals within a deposit...

  11. Use of biogenic sulfide for ZnS precipitation

    NARCIS (Netherlands)

    Esposito, G.; Veeken, A.; Weijma, J.; Lens, P.N.L.

    2006-01-01

    A 600 ml continuously stirred tank reactor was used to assess the performance of a zinc sulfide precipitation process using a biogenic sulfide solution (the effluent of a sulfate-reducing bioreactor) as sulfide source. In all experiments, a proportional-integral (PI) control algorithm was used to co

  12. A physiologically based kinetic model for bacterial sulfide oxidation

    NARCIS (Netherlands)

    Klok, J.B.; Graaff, M. de; Bosch, P.L. van den; Boelee, N.C.; Keesman, K.J.; Janssen, A.J.W.M.

    2013-01-01

    In the biotechnological process for hydrogen sulfide removal from gas streams, a variety of oxidation products can be formed. Under natron-alkaline conditions, sulfide is oxidized by haloalkaliphilic sulfide oxidizing bacteria via flavocytochrome c oxidoreductase. From previous studies, it was concl

  13. Intercalation of gaseous thiols and sulfides into Ag+ ion-exchanged aluminum dihydrogen triphosphate.

    Science.gov (United States)

    Hayashi, Aki; Saimen, Hiroki; Watanabe, Nobuaki; Kimura, Hitomi; Kobayashi, Ayumi; Nakayama, Hirokazu; Tsuhako, Mitsutomo

    2005-08-02

    Ag(+) ion-exchanged layered aluminum dihydrogen triphosphate (AlP) with the interlayer distance of 0.85 nm was synthesized by the ion-exchange of proton in triphosphate with Ag(+) ion. The amount of exchanged Ag(+) ion depended on the concentration of AgNO(3) aqueous solution. Ag(+) ion-exchanged AlP adsorbed gaseous thiols and sulfides into the interlayer region. The adsorption amounts of thiols were more than those of sulfides, thiols with one mercapto group > thiol with two mercapto groups > sulfides, and depended on the amount of exchanged Ag(+) ion in the interlayer region. The thiols with one mercapto group were intercalated to expand the interlayer distance of Ag(+) ion-exchanged AlP, whereas there was no expansion in the adsorption of sulfide. In the case of thiol with two mercapto groups, there was observed contraction of the interlayer distance through the bridging with Ag(+) ions of the upper and lower sides of the interlayer region.

  14. Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites.

    Science.gov (United States)

    Petit, Camille; Mendoza, Barbara; Bandosz, Teresa J

    2010-12-03

    Composites of a copper-based metal-organic framework (MOF) and graphite oxide (GO) were tested for hydrogen sulfide removal at ambient conditions. In order to understand the mechanisms of adsorption, the initial and exhausted samples were analyzed by various techniques including X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analyses, and sorption of nitrogen. Compared to the parent materials, an enhancement in hydrogen sulfide adsorption was found. It was the result of physical adsorption of water and H(2)S in the pore space formed at the interface between the MOF units and the graphene layers where the dispersive forces are the strongest. Besides physisorption, reactive adsorption was found as the main mechanism of retention. H(2)S molecules bind to the copper centers of the MOF. They progressively react with the MOF units resulting in the formation of copper sulfide. This leads to the collapse of the MOF structure. Water enhances adsorption in the composites as it allows the dissolution of hydrogen sulfide.

  15. Ultrasound promoted mild and facile one-pot, three component synthesis of 2H-indazoles by consecutive condensation, CN and NN bond formations catalysed by copper-doped silica cuprous sulphate (CDSCS) as an efficient heterogeneous nano-catalyst.

    Science.gov (United States)

    Soltani Rad, Mohammad Navid

    2017-01-01

    An ultrasonic promoted facile and convenient one-pot three-component procedure for the synthesis of 2H-indazole derivatives using copper-doped silica cuprous sulphate (CDSCS) as a heterogeneous nano-catalyst has been described. In this approach, ultrasonic mediated reaction of different substituted 2-bromobenzaldehydes, structurally diverse primary amines, and tetrabutylammonium azide (TBAA) as an azide source in the presence of CDSCS in DMSO at room temperature furnishes 2H-indazoles in good to excellent yields. Utilizing ultrasonic irradiation techniques provided the dramatic improvements in terms of higher yields and shorter reaction times compared with conventional heating method.

  16. Back contact buffer layer for thin-film solar cells

    Science.gov (United States)

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  17. Back contact buffer layer for thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  18. Cupric and cuprous oxide by reactive ion beam sputter deposition and the photosensing properties of cupric oxide metal–semiconductor–metal Schottky photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min-Jyun; Lin, Yong-Chen; Chao, Liang-Chiun, E-mail: lcchao@mail.ntust.edu.tw; Lin, Pao-Hung; Huang, Bohr-Ran

    2015-08-15

    Highlights: • CuO and Cu{sub 2}O were deposited by reactive ion beam sputter deposition. • Single phase CuO thin film is obtained with Ar:O{sub 2} = 2:1. • CuO MSM PD shows photoresponse from 400 nm to 1.30 μm. • CuO MSM PD is RC limited with a decay time less than 1 μs. - Abstract: Cupric (CuO) and cuprous (Cu{sub 2}O) oxide thin films have been deposited by reactive ion beam sputter deposition at 400 °C with an Ar:O{sub 2} ratio from 2:1 to 12:1. With an Ar:O{sub 2} ratio of 2:1, single phase polycrystalline CuO thin films were obtained. Decreasing oxygen flow rate results in CuO + Cu{sub 2}O and Cu{sub 2}O + Cu mixed thin films. As Ar:O{sub 2} ratio reaches 12:1, Cu{sub 2}O nanorods with diameter of 250 nm and length longer than 1 μm were found across the sample. Single phase CuO thin film exhibits an indirect band gap of 1.3 eV with a smooth surface morphology. CuO metal–semiconductor–metal (MSM) Schottky photodiodes (PD) were fabricated by depositing Cu interdigitated electrodes on CuO thin films. Photosensing properties of the CuO PD were characterized from 350 to 1300 nm and a maximum responsivity of 43 mA/W was found at λ = 700 nm. The MSM PD is RC limited with a decay time constant less than 1 μs.

  19. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices.

    NARCIS (Netherlands)

    Tangerman, A.

    2009-01-01

    This review deals with the measurement of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices of rats and humans (blood, serum, tissues, urine, breath, feces and flatus). Hydrogen sulfide and methanethiol both contain the active thiol (-SH

  20. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices

    NARCIS (Netherlands)

    Tangerman, Albert

    2009-01-01

    This review deals with the measurement of the volatile Sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices of rats and humans (blood, serum, tissues, urine, breath, feces and flatus). Hydrogen sulfide and methanethiol both contain the active thiol (-SH

  1. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices

    NARCIS (Netherlands)

    Tangerman, Albert

    2009-01-01

    This review deals with the measurement of the volatile Sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices of rats and humans (blood, serum, tissues, urine, breath, feces and flatus). Hydrogen sulfide and methanethiol both contain the active thiol

  2. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices.

    NARCIS (Netherlands)

    Tangerman, A.

    2009-01-01

    This review deals with the measurement of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices of rats and humans (blood, serum, tissues, urine, breath, feces and flatus). Hydrogen sulfide and methanethiol both contain the active thiol

  3. Modeling Sulfides, pH and Hydrogen Sulfide Gas in the Sewers of San Francisco

    DEFF Research Database (Denmark)

    Vollertsen, Jes; Revilla, Nohemy; Hvitved-Jacobsen, Thorkild

    2015-01-01

    An extensive measuring campaign targeted on sewer odor problems was undertaken in San Francisco. It was assessed whether a conceptual sewer process model could reproduce the measured concentrations of total sulfide in the wastewater and H2S gas in the sewer atmosphere, and to which degree...... such simulations have potential for further improving odor and sulfide management. The campaign covered measurement of wastewater sulfide by grab sampling and diurnal sampling, and H2S gas in the sewer atmosphere was logged. The tested model was based on the Wastewater Aerobic/Anaerobic Transformations in Sewers...... (WATS) sewer process concept, which never had been calibrated to such an extensive dataset. The study showed that the model was capable of reproducing the general levels of wastewater sulfide, wastewater pH, and sewer H2S gas. It could also reproduce the general variability of these parameters, albeit...

  4. Auger electron spectroscopic study of mechanism of sulfide-accelerated corrosion of copper-nickel alloy in seawater

    Science.gov (United States)

    Schrader, Malcolm E.

    The mechanism of sulfide-induced accelerated corrosion of 90-10 copper-nickel(iron) alloy is investigated. Samples of the alloy are exposed to flowing (2.4 m/s) seawater, with and without 0 01 mg/l sulfide, for various periods of time. The resulting surfaces are examined by means of Auger electron spectroscopy coupled with inert-ion-homoardment. A detailed depth profile is thereby obtained of concentrations in the surface region of a total of nine elements. The results are consistent with the hypothesis that iron hydroxide segregates at the surface to form a protective gelatinous layer against the normal chloride-induced corrosion process. Trace sulfide interferes with formation of a good protective layer and leaves the iron hydroxide vulnerable to ultimate partial or complete debonding. When the alloy is first exposed to "pure" seawater for a prolonged period of time, however, subsequent exposure to sulfide is no longer deleterious. This is apparently due to a layer of copper-nickel salt that slowly forms over the iron hydroxide.

  5. Monitoring sulfide and sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  6. Platinum metals in magmatic sulfide ores

    Science.gov (United States)

    Naldrett, A.J.; Duke, J.M.

    1980-01-01

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example. Copyright ?? 1980 AAAS.

  7. Hydrogen Sulfide in Preeclampsia : Potential Therapeutic Implications

    NARCIS (Netherlands)

    Holwerda, Kim

    2015-01-01

    The thesis provide insights into the production and possible therapeutic effect of the gaseous molecule hydrogen sulfide (H2S) in preeclampsia (PE). H2S is an important molecule in the (human) body. It is among others involved in blood pressure regulation, stimulation of vascular growth and

  8. Nucleation of mercury sulfide by dealkylation

    Science.gov (United States)

    Enescu, Mironel; Nagy, Kathryn L.; Manceau, Alain

    2016-12-01

    Metal sulfide minerals are assumed to form naturally at ambient conditions via reaction of a metallic element with (poly)sulfide ions, usually produced by microbes in oxygen-depleted environments. Recently, the formation of mercury sulfide (β-HgS) directly from linear Hg(II)-thiolate complexes (Hg(SR)2) in natural organic matter and in cysteine solutions was demonstrated under aerated conditions. Here, a detailed description of this non-sulfidic reaction is provided by computations at a high level of molecular-orbital theory. The HgS stoichiometry is obtained through the cleavage of the S-C bond in one thiolate, transfer of the resulting alkyl group (R’) to another thiolate, and subsequent elimination of a sulfur atom from the second thiolate as a thioether (RSR’). Repetition of this mechanism leads to the formation of RS-(HgS)n-R chains which may self-assemble in parallel arrays to form cinnabar (α-HgS), or more commonly, quickly condense to four-coordinate metacinnabar (β-HgS). The mechanistic pathway is thermodynamically favorable and its predicted kinetics agrees with experiment. The results provide robust theoretical support for the abiotic natural formation of nanoparticulate HgS under oxic conditions and in the absence of a catalyst, and suggest a new route for the (bio)synthesis of HgS nanoparticles with improved technological properties.

  9. 30 CFR 250.490 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... been confirmed. Well-control fluid means drilling mud and completion or workover fluid as appropriate... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Hydrogen Sulfide § 250.490 Hydrogen... section when conducting drilling, well-completion/well-workover, and production operations in zones...

  10. Microaeration reduces hydrogen sulfide in biogas

    Science.gov (United States)

    Although there are a variety of biological and chemical treatments for removal of hydrogen sulfide (H2S) from biogas, all require some level of chemical or water inputs and maintenance. In practice, managing biogas H2S remains a significant challenge for agricultural digesters where labor and opera...

  11. Microbial Fuel Cells for Sulfide Removal

    NARCIS (Netherlands)

    Rabaey, K.; Sompel, van de S.; Maignien, L.; Boon, N.; Aelterman, P.; Clauwaert, P.; Schamphelaire, de L.; The Pham, H.; Vermeulen, J.; Verhaege, M.; Lens, P.N.L.; Verstraete, W.

    2006-01-01

    Thus far, microbial fuel cells (MFCs) have been used to convert carbon-based substrates to electricity. However, sulfur compounds are ubiquitously present in organic waste and wastewater. In this study, a MFC with a hexacyanoferrate cathodic electrolyte was used to convert dissolved sulfide to eleme

  12. Acid volatile sulfide (AVS)- a comment

    NARCIS (Netherlands)

    Meysman, F.J.R.; Middelburg, J.J.

    2005-01-01

    The review by Rickard and Morse (this volume) adequately summarizes our current understanding with respect to acid-volatile sulfides (AVS). At the same time, this review addresses some of the misunderstandings with regard to measurements and dynamics of this important sedimentary sulfur pool. In

  13. Comparison of Hydrogen Sulfide Analysis Techniques

    Science.gov (United States)

    Bethea, Robert M.

    1973-01-01

    A summary and critique of common methods of hydrogen sulfide analysis is presented. Procedures described are: reflectance from silver plates and lead acetate-coated tiles, lead acetate and mercuric chloride paper tapes, sodium nitroprusside and methylene blue wet chemical methods, infrared spectrophotometry, and gas chromatography. (BL)

  14. Hydrogen Sulfide in Preeclampsia : Potential Therapeutic Implications

    NARCIS (Netherlands)

    Holwerda, Kim

    2015-01-01

    The thesis provide insights into the production and possible therapeutic effect of the gaseous molecule hydrogen sulfide (H2S) in preeclampsia (PE). H2S is an important molecule in the (human) body. It is among others involved in blood pressure regulation, stimulation of vascular growth and modulati

  15. Sulfide Precipitation in Wastewater at Short Timescales

    DEFF Research Database (Denmark)

    Kiilerich, Bruno; van de Ven, Wilbert; Nielsen, Asbjørn Haaning

    2017-01-01

    that this is not the case for sulfide precipitation by ferric iron. Instead, the reaction time was found to be on a timescale where it must be considered when performing end-of-pipe treatment. For real wastewaters at pH 7, a stoichiometric ratio around 14 mol Fe(II) (mol S(−II))−1 was obtained after 1.5 s, while the ratio......Abatement of sulfides in sewer systems using iron salts is a widely used strategy. When dosing at the end of a pumping main, the reaction kinetics of sulfide precipitation becomes important. Traditionally the reaction has been assumed to be rapid or even instantaneous. This work shows...... dropped to about 5 mol Fe(II) (mol S(−II))−1 after 30 s. Equilibrium calculations yielded a theoretic ratio of 2 mol Fe(II) (mol S(−II))−1, indicating that the process had not equilibrated within the span of the experiment. Correspondingly, the highest sulfide conversion only reached 60%. These findings...

  16. Oxidation and Precipitation of Sulfide in Sewer Networks

    DEFF Research Database (Denmark)

    Nielsen, A. H.

    were studied in both wastewater and biofilms. Particular emphasis was on the importance of iron in the sulfur cycle. Iron is typically among the dominant metals in wastewater. The experiments showed that, ferric iron (Fe(III)) that was added to anaerobic wastewater was rapidly reduced to ferrous iron...... (Fe(II)) and precipitated subsequently with dissolved sulfide as ferrous sulfide (FeS). The ferrous sulfide precipitation was relatively fast, but not immediate. Despite the very low solubility of ferrous sulfide, initially present iron did not react completely with sulfide. This observation...

  17. Lithological and geochemical constraints on the magma conduit systems of the Huangshan Ni-Cu sulfide deposit, NW China

    Science.gov (United States)

    Deng, Yu-Feng; Song, Xie-Yan; Hollings, Pete; Chen, Lie-Meng; Zhou, Taofa; Yuan, Feng; Xie, Wei; Zhang, Dayu; Zhao, Bingbing

    2017-08-01

    Magmatic Ni-Cu sulfide deposits in northern Xinjiang, China, are associated with small mafic-ultramafic complexes, with the sulfide ores generally occurring in ultramafic rocks. The Huangshan deposit (up to 65 Mt of ore at 0.49% Ni and 0.31% Cu), one of the largest magmatic Ni-Cu deposits in northern Xinjiang, is composed of a layered sequence of lower websterite, lower lherzolite, websterite, norite-gabbro, gabbro, diorite, and gabbronorite, with sulfide mineralization mainly found in the lower lherzolite, lower websterite, and websterite. Systematic variations of the major oxides and trace elements suggest that the rocks of the Huangshan deposit are fractionated from the same parental magma, with the sharp contact and discontinuous trends of major oxide contents between different lithologies implying intrusion of four distinct stages of magma from a single deep-seated staging chamber. The reversals in olivine Fo contents and major oxides in the lower lherzolite were the result of inhomogeneity in olivine within the lower chamber. The Se/S ratios (63.1˜150 × 10-6) and the negative correlation between Se/S and δ34S (0.63˜2.42‰) of the sulfide ores suggest that a large contribution of crustal S caused the sulfide segregation. The sulfides in the lower lherzolite have lower Cu contents (1386-2200 ppm) and Cu/Pd ratios (2.31 × 105-1.36 × 106) relative to those in the mineralized lower websterite (Cu = 2300 to 18,700 ppm, and Cu/Pd = 6.65 × 105 to 2.73 × 106). A positive correlation between Pd/Ir and Ni/Ir for the vein-textured sulfides in the lower websterite likely reflects fractionated sulfides picked up by a new pulse of magma. In contrast, the restricted range of Pd/Ir ratios indicates that the PGE contents of the disseminated sulfides in the lower lherzolite resulted from reaction between the sulfides and new pulses of S-undersaturated magma.

  18. Sulfide removal by moderate oxygenation of anaerobic sludge environments

    Energy Technology Data Exchange (ETDEWEB)

    Van der Zee, F.P.; Villaverde, S.; Polanco, F. [Valladolid Univ., Valladolid (Spain). Dept. of Chemical Engineering; Garcia, P.A.

    2004-07-01

    Treating wastewater through anaerobic bioreactors results in the formation of hydrogen sulfide. The sulfide can be removed from the biogas by introducing air directly into the anaerobic bioreactor system. This study presents the results of batch experiments that provided a better insight into the fate of sulfur compounds and oxygen during microaerobic sulfide oxidation in granular sludge. It was shown that sulfide could be removed rapidly upon introduction of low amounts of oxygen to the sulfide-amended batch vials with granular sludge treating vinasse. Initially, the sulfide was oxidized to elemental sulfur, thiosulfate and polysulfide. Significant production of sulfate did not occur. The introduction of oxygen, however, could result in the growth of aerobic organic-chemical oxygen demand-oxidizing bacteria that compete with sulfide oxidation for oxygen. 6 refs., 1 tab., 1 fig.

  19. Language extraction from zinc sulfide

    Science.gov (United States)

    Varn, Dowman Parks

    2001-09-01

    Recent advances in the analysis of one-dimensional temporal and spacial series allow for detailed characterization of disorder and computation in physical systems. One such system that has defied theoretical understanding since its discovery in 1912 is polytypism. Polytypes are layered compounds, exhibiting crystallinity in two dimensions, yet having complicated stacking sequences in the third direction. They can show both ordered and disordered sequences, sometimes each in the same specimen. We demonstrate a method for extracting two-layer correlation information from ZnS diffraction patterns and employ a novel technique for epsilon-machine reconstruction. We solve a long-standing problem---that of determining structural information for disordered materials from their diffraction patterns---for this special class of disorder. Our solution offers the most complete possible statistical description of the disorder. Furthermore, from our reconstructed epsilon-machines we find the effective range of the interlayer interaction in these materials, as well as the configurational energy of both ordered and disordered specimens. Finally, we can determine the 'language' (in terms of the Chomsky Hierarchy) these small rocks speak, and we find that regular languages are sufficient to describe them.

  20. DFT study on the interaction between hydrogen sulfide ions and cerussite (110) surface

    Science.gov (United States)

    Feng, Qicheng; Wen, Shuming; Deng, Jiushuai; Zhao, Wenjuan

    2017-02-01

    The interaction between hydrogen sulfide ions (HS-) and the cerussite surface was simulated using density functional theory (DFT) calculations. The calculated results show that Pb atoms are the dominating active sites for the subsequent reaction on the cerussite (110) surface. The S atom in HS- ions can readily interact with the Pb atoms at the cerussite surface layers with the interaction energy of -5.19 eV, resulting in the formation of lead sulfide species. An obvious difference occurs when HS- ions interact with the various Pb atoms on the cerussite surface. The density of state analysis reveals that the Pb 6p orbital at the mineral surface layers and S 3p orbital from HS- ions are overlapped between -1.5 and 0.5 eV near the Fermi level, indicating a stable chemical adsorption. The Mulliken population result suggests that the electron transfer exists between the bonding atoms and the oxidation of the HS- ions is involved in the adsorption process. This study provides an insight into the sulfidization mechanism at an atomic level, and further confirms the experimental phenomenon proposed in our previous work.

  1. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement

    Science.gov (United States)

    Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc

    2017-02-01

    Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.

  2. STUDY ON EVOLUTION REGULARITIES AND ABSORPTION CHARACTERISTICS OF SULFIDE DURING BITUMINOUS BRIQUETTE HORIZONTAL COMBUSTION

    Institute of Scientific and Technical Information of China (English)

    路春美; 王永征

    1999-01-01

    This paper discusses the evolution regularity and the absorption characters of sulfide for bituminous briquette burned in a horizontal burning furnace. The evolution rate of sulphur is affected by some factors, such as the sulphur content in the burning coal, burning time and the meane excess air coefficient in the furnace. With processing the experimental result, the calculation related expression has been obtained to predict the evolution rate of sulfide. The sulphur absorption efficiency of briquette is affected by the factors such as the character of the sulphur sorbent, the type of the coal and the operating parameters. "By means of appropriately adjusting the calciumsulphur mole ratio, the mean excess air coefficient and the time-interval between pushing two layer briquettes, a high sulphur absorption efficiency (>74%) can be obtained.

  3. Tribological Performance of Green Lubricant Enhanced by Sulfidation IF-MoS2

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2016-10-01

    Full Text Available Biopolymers reinforced with nanoparticle (NP additives are widely used in tribological applications. In this study, the effect of NP additives on the tribological properties of a green lubricant hydroxypropyl methylcellulose (HPMC composite was investigated. The IF-MoS2 NPs were prepared using the newly developed gas phase sulfidation method to form a multilayered, polyhedral structure. The number of layers and crystallinity of IF-MoS2 increased with sulfidation time and temperature. The dispersity of NPs in the HPMC was investigated using Raman and EDS mapping and showed great uniformity. The use of NPs with HPMC enhanced the tribological performance of the composites as expected. The analysis of the worn surface shows that the friction behavior of the HPMC composite with added NPs is very sensitive to the NP structure. The wear mechanisms vary with NP structure and depend on their lubricating behaviors.

  4. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides

    Science.gov (United States)

    Hébert, S.; Berthebaud, D.; Daou, R.; Bréard, Y.; Pelloquin, D.; Guilmeau, E.; Gascoin, F.; Lebedev, O.; Maignan, A.

    2016-01-01

    Different families of thermoelectric materials have been investigated since the discovery of thermoelectric effects in the mid-19th century, materials mostly belonging to the family of degenerate semi-conductors. In the last 20 years, new thermoelectric materials have been investigated following different theoretical proposals, showing that nanostructuration, electronic correlations and complex crystallographic structures (low dimensional structures, large number of atoms per lattice, presence of ‘rattlers’…) could enhance the thermoelectric properties by enhancing the Seebeck coefficient and/or reducing the thermal conductivity. In this review, the different strategies used to optimize the thermoelectric properties of oxides and chalcogenides will be presented, starting with a review on thermoelectric oxides. The thermoelectric properties of sulfides and selenides will then be discussed, focusing on layered materials and low dimensional structures (TiS2 and pseudo-hollandites). Some sulfides with promising ZT values will also be presented (tetrahedrites and chalcopyrites).

  5. Searching for new thermoelectric materials: some examples among oxides, sulfides and selenides.

    Science.gov (United States)

    Hébert, S; Berthebaud, D; Daou, R; Bréard, Y; Pelloquin, D; Guilmeau, E; Gascoin, F; Lebedev, O; Maignan, A

    2016-01-13

    Different families of thermoelectric materials have been investigated since the discovery of thermoelectric effects in the mid-19th century, materials mostly belonging to the family of degenerate semi-conductors. In the last 20 years, new thermoelectric materials have been investigated following different theoretical proposals, showing that nanostructuration, electronic correlations and complex crystallographic structures (low dimensional structures, large number of atoms per lattice, presence of 'rattlers'…) could enhance the thermoelectric properties by enhancing the Seebeck coefficient and/or reducing the thermal conductivity. In this review, the different strategies used to optimize the thermoelectric properties of oxides and chalcogenides will be presented, starting with a review on thermoelectric oxides. The thermoelectric properties of sulfides and selenides will then be discussed, focusing on layered materials and low dimensional structures (TiS2 and pseudo-hollandites). Some sulfides with promising ZT values will also be presented (tetrahedrites and chalcopyrites).

  6. Assessment of Hybrid Organic-Inorganic Antimony Sulfides for Earth-Abundant Photovoltaic Applications.

    Science.gov (United States)

    Yang, Ruo Xi; Butler, Keith T; Walsh, Aron

    2015-12-17

    Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s(2) lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications.

  7. Combined effects of graphite and sulfide on the tribological properties of bronze under dry conditions

    Directory of Open Access Journals (Sweden)

    Yoshimasa Hirai

    2016-12-01

    Full Text Available The present study describes the tribological properties of penetrated-graphite bronze containing micro-sized sulfide under dry conditions. The graphite penetration was carried out by means of roller burnishing. Micro shot peening was also applied in order to fabricate micro dimples in the penetrated graphite. The graphite area fraction was approximately 50%. The tribological properties were evaluated using a face-to-face type testing apparatus under dry conditions. The results showed that the friction coefficient of the sulfide-containing bronze decreased and the seizure resistance properties significantly increased. The friction distance until seizure occurrence was improved to more than 2.5 times. Furthermore, the friction coefficient was low and stable until the end of the experiment. It was inferred that the friction resistance was decreased and stabilized when the transfer layer was without Fe content.

  8. Sulfide, the first inorganic substrate for human cells.

    Science.gov (United States)

    Goubern, Marc; Andriamihaja, Mireille; Nübel, Tobias; Blachier, François; Bouillaud, Frédéric

    2007-06-01

    Hydrogen sulfide (H2S) is produced inside the intestine and is known as a poison that inhibits cellular respiration at the level of cytochrome oxidase. However, sulfide is used as an energetic substrate by many photo- and chemoautotrophic bacteria and by animals such as the lugworm Arenicola marina. The concentrations of sulfide present in their habitats are comparable with those present in the human colon. Using permeabilized colonic cells to which sulfide was added by an infusion pump we show that the maximal respiratory rate of colonocyte mitochondria in presence of sulfide compares with that obtained with succinate or L-alpha-glycerophosphate. This oxidation is accompanied by mitochondrial energization. In contrast, other cell types not naturally exposed to high concentration of sulfide showed much lower oxidation rates. Mitochondria showed a very high affinity for sulfide that permits its use as an energetic substrate at low micromolar concentrations, hence, below the toxic level. However, if the supply of sulfide exceeds the oxidation rate, poisoning renders mitochondria inefficient and our data suggest that an anaerobic mechanism involving partial reversion of Krebs cycle already known in invertebrates takes place. In conclusion, this work provides additional and compelling evidence that sulfide is not only a toxic compound. According to our study, sulfide appears to be the first inorganic substrate for mammalian cells characterized thus far.

  9. The Evolution of Sulfide Tolerance in the Cyanobacteria

    Science.gov (United States)

    Miller, Scott R.; Bebout, Brad M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Understanding how the function of extant microorganisms has recorded both their evolutionary histories and their past interactions with the environment is a stated goal of astrobiology. We are taking a multidisciplinary approach to investigate the diversification of sulfide tolerance mechanisms in the cyanobacteria, which vary both in their degree of exposure to sulfide and in their capacity to tolerate this inhibitor of photosynthetic electron transport. Since conditions were very reducing during the first part of Earth's history and detrital sulfides have been found in Archean sediments, mechanisms conferring sulfide tolerance may have been important for the evolutionary success of the ancestors of extant cyanobacteria. Two tolerance mechanisms have been identified in this group: (1) resistance of photosystem II, the principal target of sulfide toxicity; and (2) maintenance of the ability to fix carbon despite photosystem II inhibition by utilizing sulfide as an electron donor in photosystem I - dependent, anoxygenic photosynthesis. We are presently collecting comparative data on aspects of sulfide physiology for laboratory clones isolated from a variety of habitats. These data will be analyzed within a phylogenetic framework inferred from molecular sequence data collected for these clones to test how frequently different mechanisms of tolerance have evolved and which tolerance mechanism evolved first. In addition, by analyzing these physiological data together with environmental sulfide data collected from our research sites using microelectrodes, we can also test whether the breadth of an organism's sulfide tolerance can be predicted from the magnitude of variation in environmental sulfide concentration it has experienced in its recent evolutionary past and whether greater average sulfide concentration and/or temporal variability in sulfide favors the evolution of a particular mechanism of sulfide tolerance.

  10. Iron-sulfide redox flow batteries

    Science.gov (United States)

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  11. Oxidation of Reduced Sulfur Species: Carbonyl Sulfide

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2013-01-01

    A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts satisfact......A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts...... by the competition between chain‐branching and ‐propagating steps; modeling predictions are particularly sensitive to the branching fraction for the OCS + O reaction to form CO + SO or CO2 + S....

  12. Speciation of arsenic in sulfidic waters

    Directory of Open Access Journals (Sweden)

    Ford Robert G

    2003-03-01

    Full Text Available Formation constants for thioarsenite species have been determined in dilute solutions at 25°C, ΣH2S from 10-7.5 to 10-3.0 M, ΣAs from 10-5.6 to 10-4.8 M, and pH 7 and 10. The principal inorganic arsenic species in anoxic aquatic systems are arsenite, As(OH30, and a mononuclear thioarsenite with an S/As ratio of 3:1. Thioarsenic species with S/As ratios of 1 : 1,2 : 1, and 4 : 1 are lesser components in sulfidic solutions that might be encountered in natural aquatic environments. Thioarsenites dominate arsenic speciation at sulfide concentrations > 10-4.3 M at neutral pH. Conversion from neutral As(OH30 to anionic thioarsenite species may regulate the transport and fate of arsenic in sulfate-reducing environments by governing sorption and mineral precipitation reactions.

  13. Iron-sulfide redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Guanguang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2016-06-14

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  14. Subsurface heaters with low sulfidation rates

    Energy Technology Data Exchange (ETDEWEB)

    John, Randy Carl; Vinegar, Harold J

    2013-12-10

    A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

  15. Hydrogen sulfide prodrugs—a review

    Directory of Open Access Journals (Sweden)

    Yueqin Zheng

    2015-09-01

    Full Text Available Hydrogen sulfide (H2S is recognized as one of three gasotransmitters together with nitric oxide (NO and carbon monoxide (CO. As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications.

  16. Hydrogen sulfide prodrugs—a review

    Science.gov (United States)

    Zheng, Yueqin; Ji, Xingyue; Ji, Kaili; Wang, Binghe

    2015-01-01

    Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications. PMID:26579468

  17. Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction.

    Science.gov (United States)

    Seo, Bora; Jung, Gwan Yeong; Sa, Young Jin; Jeong, Hu Young; Cheon, Jae Yeong; Lee, Jeong Hyeon; Kim, Ho Young; Kim, Jin Chul; Shin, Hyeon Suk; Kwak, Sang Kyu; Joo, Sang Hoon

    2015-04-28

    Metal sulfide-based nanostructured materials have emerged as promising catalysts for hydrogen evolution reaction (HER), and significant progress has been achieved in enhancing their activity and durability for the HER. The understanding of nanoscale size-dependent catalytic activities can suggest critical information regarding catalytic reactivity, providing the scientific basis for the design of advanced catalysts. However, nanoscale size effects in metal sulfide-based HER catalysts have not yet been established fully, due to the synthetic difficulty in precisely size-controlled metal sulfide nanoparticles. Here we report the preparation of molybdenum sulfide (MoS2) nanoparticles with monolayer precision from one to four layers with the nearly constant basal plane size of 5 nm, and their size-dependent catalytic activity in the HER. Using density functional theory (DFT) calculations, we identified the most favorable single-, double-, and triple-layer MoS2 model structures for the HER, and calculated elementary step energetics of the HER over these three model structures. Combining HER activity measurements and the DFT calculation results, we establish that the turnover frequency of MoS2 nanoparticles in the HER increases in a quasi-linear manner with decreased layer numbers. Cobalt-promoted MoS2 nanoparticles also exhibited similar HER activity trend. We attribute the higher HER activity of smaller metal sulfide nanoparticles to the higher degree of oxidation, higher Mo-S coordination number, formation of the 1T phase, and lower activation energy required to overcome transition state. This insight into the nanoscale size-dependent HER activity trend will facilitate the design of advanced HER catalysts as well as other hydrotreating catalysts.

  18. Redetermination of piperidinium hydrogen sulfide structure

    Science.gov (United States)

    Andras, Maria T.; Hepp, Aloysius F.; Fanwick, Phillip E.; Duraj, Stan A.; Gordon, Edward M.

    1994-01-01

    The presence of adventitious water in a reaction between dicyclopentamethylene thiuram-disulfide (C5H10NCS2)(sub 2) and a picoline solution of tricyclopentadienyl indium(III) (C5H5)(sub 3). It resulted in the formation of piperidinium hydrogen sulfide (C5H13NS). The piperidinium hydrogen sulfide produced in this way was unambiguously characterized by X-ray crystallography. The structure determination showed that the piperidinium hydrogen sulfide crystal (MW = 119.23 g/mol) has an orthorhombic (Pbcm) unit cell whose parameters are: a = 9.818(2), b = 7.3720(1), c = 9.754(1) A, V = 706.0(3) A(exp 3), Z=4. D(sub chi) = 1.122 g cm(exp -3), Mo K(alpha) (lamda = 0.71073), mu= 3.36 cm(exp -1), F(000) = 264.0, T =293 K, R = 0.036 for 343 reflections with F(sub O)(sup 2) greater than 3 sigma (F(sub O)(sup 2)) and 65 variables. The compound consists of (C5H10NH2)(+) cations and (SH)(-) anions with both species residing on crystallographic mirror planes. N-H -- S hydrogen bonding contributes to the interconnection of neighboring piperidinium components of the compound.

  19. Air-water transfer of hydrogen sulfide

    DEFF Research Database (Denmark)

    Yongsiri, C.; Vollertsen, J.; Rasmussen, M. R.

    2004-01-01

    experiments. By means of the overall mass–transfer coefficient (KLa), the transfer coefficient of hydrogen sulfide (KLaH2S), referring to total sulfide, was correlated to that of oxygen (KLaO2) (i.e., the reaeration coefficient). Results demonstrate that both turbulence and pH in the water phase play...... a significant role for KLaH2S. An exponential expression is a suitable representation for the relationship between KLaH2S and the Froude number at all pH values studied (4.5 to 8.0). Because of the dissociation of hydrogen sulfide, KLaH2S increased with decreasing pH at a constant turbulence level. Relative...... differences in KLaH2S at pH values between 4.5 and 8.0 became larger as the turbulence level increased, whereas those at pH between 4.5 and 7.0 did not statistically show any change. At constant pH, KLaH2S/KLaO2 was observed not to be dependent on the turbulence range studied. KLaH2S/KLaO2 ratio was 0...

  20. Organization of the human mitochondrial hydrogen sulfide oxidation pathway.

    Science.gov (United States)

    Libiad, Marouane; Yadav, Pramod Kumar; Vitvitsky, Victor; Martinov, Michael; Banerjee, Ruma

    2014-11-07

    Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed.

  1. Sulfide scaling in low enthalpy geothermal environments; A survey

    Energy Technology Data Exchange (ETDEWEB)

    Criaud, A.; Fouillac, C. (Bureau de Recherches Geologiques et Minieres (BRGM), 45 - Orleans (France))

    1989-01-01

    A review of the sulfide scaling phenomena in low-temperature environments is presented. While high-temperature fluids tend to deposit metal sulfides because of their high concentrations of dissolved metals and variations of temperature, pressure and fluid chemistry, low temperature media are characterized by very low metal content but much higher dissolved sulfide. In the case of the goethermal wells of the Paris Basin, detailed studies demonstrate that the relatively large concentrations of chloride and dissolved sulfide are responsible for corrosion and consequent formation of iron sulfide scale composed of mackinawite, pyrite and pyrrhotite. The effects of the exploitation schemes are far less important than the corrosion of the casings. The low-enthalpy fluids that do not originate from sedimentary aquifers (such as in Iceland and Bulgaria), have a limited corrosion potential, and the thin sulfide film that appears may prevent the progress of corrosion.

  2. In situ sulfiding of Ni-W hydrocracking catalysts : differentiation of different preparation procedures using EXAFS and HRTEM.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, S. D.; Yang, N.; Mickelson, G. E.; Greenlay, N.; Karapetrova, E.; Sinkler, W.; Bare, S. R.; UOP LLC; EXAFS Analysis

    2009-01-01

    The detailed structural characterization of the metal function of two fully formulated Ni-W hydrocracking catalysts was investigated by time resolved in situ X-ray absorption spectroscopy (EXAFS and XANES) at both the Ni K-edge and W L{sub 3}-edge, and by high resolution transmission electron microscopy. These two hydrocracking catalysts (designated as HCA and HCB) contained the same wt% of Ni and W, the same wt% of the other constituents ({gamma}-Al{sub 2}O{sub 3}/silico-aluminate), and were calcined at the same temperature, but were prepared by different methods in order to highlight the sensitivity of the characterization techniques to the structural differences. The morphology of the WS{sub 2} particles in the sulfided catalyst is substantially different between the two catalysts: in the HCA catalyst there are many more particles with multiple WS{sub 2} layers whereas in HCB there are more single layers. The average diameter of the WS{sub 2} plates is similar in both. The catalysts show a difference in the amount of W sulfidation after the 410 C sulfidation treatment in 10% H{sub 2}S/H{sub 2}. The W of HCA catalyst was completely sulfided whereas 16% W of HCB catalyst was unsulfided. Similarly there is a difference in the amount of sulfided Ni: 16% Ni in HCA and 60% Ni in HCB remain unsulfided. In the sulfided form of both catalysts the Ni exists in three different morphologies: oxidized Ni (six-fold coordinate as a nickel aluminate), nanoparticulate Ni{sub 3}S{sub 2}, and Ni decorating the edge sites of the WS{sub 2}. In both the Ni{sub 3}S{sub 2}, and Ni decorating the edge sites of the WS{sub 2}, the Ni is in a tetrahedral coordination with sulfur. In both catalysts the sulfidation of the Ni and W occurs essentially simultaneously over most of the temperature range and the sulfidation of the W proceeds through the same tungsten oxysulfide in both samples. The characterization methodology presented here is a powerful one for elucidating the structural

  3. Formation of CuxS Layers on Polypropylene Sulfurized by Molten Sulfur

    Directory of Open Access Journals (Sweden)

    Rasa ALABURDAITĖ

    2011-11-01

    Full Text Available The processes of formation of electrically conductive layers of copper sulfides CuxS by the sorption-diffusion method on polypropylene (PP using molten sulfur as sulfurizing agent was investigated. The amount of sorbed sulfur increased with the increase of the duration of treatment. Copper sulfide layers were formed on the surface of polypropylene after the treatment of sulfurized polymer with Cu(II/I salt solution. The amount of copper sulfide in layer increased with the increase of treatment duration in copper salt solution. XRD spectra of PP films treated for 3 min with molten sulfur and then with Cu(II/I salt solution for the different time showed that the copper sulfide phases, mostly digenite, Cu2-xS and a-chalcocite, Cu2S were formed in the layers. Electromotive force measurement results confirmed the composition of formed CuxS layers on PP. The phase composition of layers also changed after the annealing. The value of electrical resistance of copper sulfide layers on PP varied from 20 W/cm2 to 80 W/cm2 and after annealing at 80 °C - in the interval of 10 W/cm2 - 60 W/cm2.http://dx.doi.org/10.5755/j01.ms.17.4.776

  4. Formation of CuxS Layers on Polypropylene Sulfurized by Molten Sulfur

    Directory of Open Access Journals (Sweden)

    Rasa ALABURDAITĖ

    2011-11-01

    Full Text Available The processes of formation of electrically conductive layers of copper sulfides CuxS by the sorption-diffusion method on polypropylene (PP using molten sulfur as sulfurizing agent was investigated. The amount of sorbed sulfur increased with the increase of the duration of treatment. Copper sulfide layers were formed on the surface of polypropylene after the treatment of sulfurized polymer with Cu(II/I salt solution. The amount of copper sulfide in layer increased with the increase of treatment duration in copper salt solution. XRD spectra of PP films treated for 3 min with molten sulfur and then with Cu(II/I salt solution for the different time showed that the copper sulfide phases, mostly digenite, Cu2-xS and a-chalcocite, Cu2S were formed in the layers. Electromotive force measurement results confirmed the composition of formed CuxS layers on PP. The phase composition of layers also changed after the annealing. The value of electrical resistance of copper sulfide layers on PP varied from 20 W/cm2 to 80 W/cm2 and after annealing at 80 °C - in the interval of 10 W/cm2 - 60 W/cm2.http://dx.doi.org/10.5755/j01.ms.17.4.776

  5. Measurement of plasma hydrogen sulfide in vivo and in vitro

    OpenAIRE

    Shen, Xinggui; Pattillo, Christopher B.; Pardue, Sibile; Bir, Shyamal C.; Wang, Rui; Kevil, Christopher G.

    2011-01-01

    The gasotransmitter hydrogen sulfide is known to regulate multiple cellular functions during normal and pathophysiological states. However, a paucity of concise information exists regarding quantitative amounts of hydrogen sulfide involved in physiological and pathological responses. This is primarily due to disagreement among various methods employed to measure free hydrogen sulfide. In this article, we describe a very sensitive method of measuring the presence of H2S in plasma down to nanom...

  6. Limitation of Sulfide Capacity Concept for Molten Slags

    Science.gov (United States)

    Jung, In-Ho; Moosavi-Khoonsari, Elmira

    2016-04-01

    The sulfide capacity concept has been widely used in pyrometallurgy to define sulfur removal capacities of slags. Typically, the sulfide capacity is considered to be a unique slag property depending only on temperature regardless of partial pressures of oxygen and sulfur. In the present study, it is demonstrated that sulfide capacities of slags in particular those of Na2O-containing slags can vary with partial pressures of oxygen and sulfur due to large solubility of sulfide in Na2O-containing slag systems.

  7. Hydrogen sulfide inhibits the renal fibrosis of obstructive nephropathy.

    Science.gov (United States)

    Song, Kai; Wang, Fen; Li, Qian; Shi, Yong-Bing; Zheng, Hui-Fen; Peng, Hanjing; Shen, Hua-Ying; Liu, Chun-Feng; Hu, Li-Fang

    2014-06-01

    Hydrogen sulfide has recently been found decreased in chronic kidney disease. Here we determined the effect and underlying mechanisms of hydrogen sulfide on a rat model of unilateral ureteral obstruction. Compared with normal rats, obstructive injury decreased the plasma hydrogen sulfide level. Cystathionine-β-synthase, a hydrogen sulfide-producing enzyme, was dramatically reduced in the ureteral obstructed kidney, but another enzyme cystathionine-γ-lyase was increased. A hydrogen sulfide donor (sodium hydrogen sulfide) inhibited renal fibrosis by attenuating the production of collagen, extracellular matrix, and the expression of α-smooth muscle actin. Meanwhile, the infiltration of macrophages and the expression of inflammatory cytokines including interleukin-1β, tumor necrosis factor-α, and monocyte chemoattractant protein-1 in the kidney were also decreased. In cultured kidney fibroblasts, a hydrogen sulfide donor inhibited the cell proliferation by reducing DNA synthesis and downregulating the expressions of proliferation-related proteins including proliferating cell nuclear antigen and c-Myc. Further, the hydrogen sulfide donor blocked the differentiation of quiescent renal fibroblasts to myofibroblasts by inhibiting the transforming growth factor-β1-Smad and mitogen-activated protein kinase signaling pathways. Thus, low doses of hydrogen sulfide or its releasing compounds may have therapeutic potentials in treating chronic kidney disease.

  8. INVESTIGATION OF THIN FILM CADMIUM SULFIDE SOLAR CELLS.

    Science.gov (United States)

    SOLAR CELLS , *CADMIUM COMPOUNDS, FILMS, SULFIDES, VAPOR PLATING, VACUUM APPARATUS, SINGLE CRYSTALS, TITANIUM, COPPER COMPOUNDS, CHLORIDES, INDIUM, MOLYBDENUM, SILICON COMPOUNDS, MONOXIDES, SURFACE PROPERTIES, ENERGY CONVERSION.

  9. Influence of iron on sulfide inhibition in dark biohydrogen fermentation.

    Science.gov (United States)

    Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Nakhla, George

    2012-12-01

    Sulfide impact on biohydrogen production using dark fermentation of glucose at 37 °C was investigated. Dissolved sulfide (S(2-)) at a low concentration (25mg/L) increased biohydrogen production by 54% relative to the control (without iron addition). Whereas on initial dissolved S(2-) concentration of 500 mg/L significantly inhibited the biohydrogen production with total cumulative biohydrogen decreasing by 90% compared to the control (without iron addition). At sulfide concentrations of 500 mg S(2-)/L, addition of Fe(2+) at 3-4 times the theoretical requirement to precipitate 100% of the dissolved S(2-) entirely eliminated the inhibitory effect of sulfide.

  10. MEASURING METAL SULFIDE COMPLEXES IN OXIC RIVER WATERS WITH SQUARE WAVE VOLTAMMETRY. (R825395)

    Science.gov (United States)

    A sulfide identification protocol was developed to quantify specific metal sulfides that could exist in river water. Using a series of acid additions, nitrogen purges, and voltammetric analyses, metal sulfides were identified and semiquantified in three specific gr...

  11. Toxicological analysis of 17 autopsy cases of hydrogen sulfide poisoning resulting from the inhalation of intentionally generated hydrogen sulfide gas.

    Science.gov (United States)

    Maebashi, Kyoko; Iwadate, Kimiharu; Sakai, Kentaro; Takatsu, Akihiro; Fukui, Kenji; Aoyagi, Miwako; Ochiai, Eriko; Nagai, Tomonori

    2011-04-15

    Although many cases of fatal hydrogen sulfide poisoning have been reported, in most of these cases, it resulted from the accidental inhalation of hydrogen sulfide gas. In recent years, we experienced 17 autopsy cases of fatal hydrogen sulfide poisoning due to the inhalation of intentionally generated hydrogen sulfide gas. In this study, the concentrations of sulfide and thiosulfate in blood, urine, cerebrospinal fluid and pleural effusion were examined using GC/MS. The sulfide concentrations were blood: 0.11-31.84, urine: 0.01-1.28, cerebrospinal fluid: 0.02-1.59 and pleural effusion: 2.00-8.59 (μg/ml), while the thiosulfate concentrations were blood: 0-0.648, urine: 0-2.669, cerebrospinal fluid: 0.004-0.314 and pleural effusion: 0.019-0.140 (μmol/ml). In previous reports, the blood concentration of thiosulfate was said to be higher than that of sulfide in hydrogen sulfide poisoning cases, although the latter was higher than the former in 8 of the 14 cases examined in this study. These results are believed to be strongly influenced by the atmospheric concentration of hydrogen sulfide the victims were exposed to and the time interval between exposure and death.

  12. Cupriavidus necator H16 uses flavocytochrome c-sulfide dehydrogenase to oxidize self-produced and spiked sulfide.

    Science.gov (United States)

    Lü, Chuanjuan; Xia, Yongzhen; Liu, Daixi; Zhao, Rui; Gao, Rui; Liu, Honglei; Xun, Luying

    2017-09-01

    Heterotrophic bacteria producing sulfide (H2S, HS(-), and S(2-)) during aerobic growth is a common phenomenon. Some with sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO) can oxidize self-produced sulfide to sulfite and thiosulfate, but others without these enzymes will release sulfide into the medium, from which H2S can volatilize into the gas phase. Here, we report Cupriavidus necator H16 with the fccAB genes, encoding flavocytochrome c-sulfide dehydrogenases (FCSDs), also oxidized self-produced H2S. The mutant with fccAB being deleted accumulated and released H2S. When fccAB were expressed in a Pseudomonas aeruginosa strain Pa3K with deletions of its sqr and pdo genes, the recombinant rapidly oxidized sulfide to sulfane sulfur. When PDO was also cloned into the recombinant, the recombinant with both FCSD and PDO oxidized sulfide to sulfite and thiosulfate. Thus, the proposed pathway is similar to the pathway catalyzed by SQR and PDO, in which FCSD oxidizes sulfide to polysulfide, polysulfide spontaneously reacts with GSH to produce GSSH, and PDO oxidizes GSSH to sulfite, which chemically reacts with polysulfide to produce thiosulfate. About 20.6% of sequenced bacterial genomes contain SQR, and only 3.9% contain FCSD. This is not a surprise since SQR is more efficient in conserving energy because it passes electrons from sulfide oxidation into the electron transport chain at the quinone level, while FCSD passes electrons to cytochrome c The transport of electrons from the latter to O2 conserves less energy. FCSDs are grouped into three subgroups, well conserved at taxonomic levels. Thus, our data show the diversity in sulfide oxidation by heterotrophic bacteria.Importance Heterotrophic bacteria with SQR and PDO can oxidize self-produced sulfide and do not release H2S into the gas phase. C. necator H16 has FCSD but not SQR, and it does not release H2S. We confirmed that the bacterium used FCSD for the oxidation of self-produced sulfide. The

  13. Evidence supporting biologically mediated sulfide oxidation in hot spring ecosystems

    Science.gov (United States)

    Cox, A. D.; Shock, E.

    2011-12-01

    The sulfide concentration of fluids in hydrothermal ecosystems is one of several factors determining the transition to microbial photosynthesis (Cox et al., 2011, Chem. Geol. 280, 344-351). To investigate the loss of sulfide in Yellowstone hot spring systems, measurements of total dissolved sulfide with respect to time were made in incubation experiments conducted on 0.2-micron filtered (killed controls) vs. unfiltered hot spring water at locations with three different pH:sulfide combinations (pH 2.5 with 50 μM sulfide, 5.2 with 5.6 μM sulfide, and 8.3 with 86 μM sulfide). At the higher pH values, the experiments yielded similar rates of sulfide loss in filtered and unfiltered water of approximately 0.8 (pH 5.2) and 7.6 nmol sulfide L-1s-1 (pH 8.3). At the acidic spring, the unfiltered water lost sulfide at a rate 1.6 times that of the filtered water (8.2 vs. 5 nmol sulfide L-1s-1). These results suggest that the pelagic biomass at the pH 5.2 and 8.3 springs may not affect sulfide loss, whereas in the pH 2.5 spring there appears to be an effect. In addition, the incubation of filamentous biomass with unfiltered water increased the rate of sulfide loss by approximately two-fold at a pH of 2.5 (59 vs. 31 nmol L-1s-1; Cox et al., 2011), five-fold at a pH of 5.2 (3.9 vs. 0.8 nmol sulfide L-1s-1), and barely increased the rate of sulfide loss at a pH of 8.3 (9.1 vs. 8.4 nmol sulfide L-1s-1). Sulfide is predominately present as HS- at a pH of 8.3, which may not be taken up as easily by microorganisms as the H2S (aq) that dominates sulfide speciation at pH 2.5 and 5.2. That the loss of sulfide at acidic pH is due to biotic rather than abiotic factors is further supported by studies with whole mat samples that show greater sulfide consumption than killed controls (D'Imperio et al., 2008, AEM 74, 5802-5808). Taken together, the results of these experiments suggest that the majority of sulfide oxidation occurs in the filamentous biomass of hot spring ecosystems, although

  14. Electrochemical properties of tungsten sulfide-carbon composite microspheres prepared by spray pyrolysis.

    Science.gov (United States)

    Choi, Seung Ho; Boo, Sung Jin; Lee, Jong-Heun; Kang, Yun Chan

    2014-01-01

    Tungsten sulfide (WS2)-carbon composite powders with superior electrochemical properties are prepared by a two-step process. WO3-carbon composite powders were first prepared by conventional spray pyrolysis, and they were then sulfidated to form WS2-carbon powders. Bare WS2 powders are also prepared by sulfidation of bare WO3 powders obtained by spray pyrolysis. Stacked graphitic layers could not be found in the bare WS2 and WS2-carbon composite powders. The amorphous bare WS2 and WS2-carbon composite powders have Brunauer-Emmett-Teller (BET) surface areas of 2.8 and 4 m(2) g(-1), respectively. The initial discharge and charge capacities of the WS2-carbon composite powders at a current density of 100 mA g(-1) are 1055 and 714 mA h g(-1), respectively, and the corresponding initial Coulombic efficiency is 68%. On the other hand, the initial discharge and charge capacities of the bare WS2 powders are 514 and 346 mA h g(-1), respectively. The discharge capacities of the WS2-carbon composite powders for the 2(nd) and 50(th) cycles are 716 and 555 mA h g(-1), respectively, and the corresponding capacity retention measured after first cycle is 78%.

  15. Cerro de Pasco and other massive sulfide deposits of central Peru

    Energy Technology Data Exchange (ETDEWEB)

    Cheney, E.S.

    1985-01-01

    The famous Cerro de Pasco Pb-Zn-Ag deposit historically has been considered to be hydrothermally derived from an adjacent Tertiary volcanic vent. However, texturally massive pyrite-chert and pyrite-sphalerite-galena in the deposit have the same strike and cross folds as the adjacent pre-Tertiary strata. Both the deposit and the strata are cut by one of the large Longitudinal Faults. Both dikes and pyrite-enargite veins associated with the vent cut the massive sulfides; fragments of massive pyrite occur in the vent. A few examples of laminated pyrite and chert, banded pyrite and chert, banded pyrite and sphalerite, and banded pyrite, sphalerite, and galena are preserved in the massive sulfide portion of the deposit. The deposit has the composition and zoning patterns typical of shale-hosted massive sulfides. Cerro de Pasco probably in part of the pelitic Devonian Excelsior formation. The Colquijirca deposit 8 km to the south and the San Cristobal district 110 km to the south likewise have been considered to be Tertiary volcanic hydrothermal deposits. Colquijirca consists of stratigraphically controlled mantos of layered pyrite, chert and tuff in the Tertiary Calera formation. The mantos of the San Cristobal district are along the upper contact of the pyritic, Permian, Catalina felsic volcanic rocks; some ore consists of laminated pyrite and sphalerite. Tertiary plutons are conspicuously absent at San Cristobal, and the ores are brecciated by Tertiary folding.

  16. Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea : a biogeochemical model of the whole water column coupling the oxic and anoxic parts

    NARCIS (Netherlands)

    Grégoire, M.; Soetaert, K.E.R.

    2010-01-01

    Carbon, nitrogen, oxygen and sulfide budgets are derived for the Black Sea water column from a coupled physical–biogeochemical model. The model is applied in the deep part of the sea and simulates processes over the whole water column including the anoxic layer that extends from similar, equals115 m

  17. Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea : a biogeochemical model of the whole water column coupling the oxic and anoxic parts

    NARCIS (Netherlands)

    Grégoire, M.; Soetaert, K.E.R.

    2010-01-01

    Carbon, nitrogen, oxygen and sulfide budgets are derived for the Black Sea water column from a coupled physical–biogeochemical model. The model is applied in the deep part of the sea and simulates processes over the whole water column including the anoxic layer that extends from similar, equals115 m

  18. Modeling Sulfides, pH and Hydrogen Sulfide Gas in the Sewers of San Francisco.

    Science.gov (United States)

    Vollertsen, Jes; Revilla, Nohemy; Hvitved-Jacobsen, Thorkild; Nielsen, Asbjørn Haaning

    2015-11-01

    An extensive measuring campaign targeted on sewer odor problems was undertaken in San Francisco. It was assessed whether a conceptual sewer process model could reproduce the measured concentrations of total sulfide in the wastewater and H2S gas in the sewer atmosphere, and to which degree such simulations have potential for further improving odor and sulfide management. The campaign covered measurement of wastewater sulfide by grab sampling and diurnal sampling, and H2S gas in the sewer atmosphere was logged. The tested model was based on the Wastewater Aerobic/Anaerobic Transformations in Sewers (WATS) sewer process concept, which never had been calibrated to such an extensive dataset. The study showed that the model was capable of reproducing the general levels of wastewater sulfide, wastewater pH, and sewer H2S gas. It could also reproduce the general variability of these parameters, albeit with some uncertainty. It was concluded that the model could be applied for the purpose in mind.

  19. Treatment of port-wine stains by photodynamic therapy of cuprous bromide laser%溴化亚铜激光光动力学疗法治疗鲜红斑痣

    Institute of Scientific and Technical Information of China (English)

    唐建民; 刘爱琴; 陈祖林; 杨名娟

    2000-01-01

    运用溴化亚铜激光光动力学疗法治疗鲜红斑痣296例,红斑完全消退185例(62.5%),部分消退111例(37.5%),无效0,并发疤痕15例,证实该疗法疗效确切同时仍需完善。%296 Cases of port-wine stains(PWS) were treated by photodynamic therapy(PDT) of cuprous bromide laser,including which 185 cases (62.5%)gained the result of thorough remission,111 cases (37.5%)gained the result of partial remission and 15 cases complicated with scar formation.PDT is proved to be an effective therapy for PWS while it also needs improving.

  20. Adsorption immobilization of sulfide-oxidizing bacteria in the mass of the support medium made of phosphogypsum

    OpenAIRE

    Черныш, Елизавета Юрьевна; Пляцук, Леонид Дмитриевич

    2015-01-01

    The basic patterns and mechanisms of adsorption immobilization of sulfide-oxidizing bacteria in the mass of mineral support medium made of phosphogypsum were determined for gas purification system. The advantage of the adsorption method on the granulated support medium of phosphogypsum is that it allows to bind the bacteria in the granules with the bioactive layer formation. Granules based on phosphogypsum are characterized by permeability to Thiobacillus sp. and contain useful minerals for b...

  1. Effect of Microstructure and Sulfide on Corrosion of Cu-Ni Alloys in Seawater

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The microstructure and the corrosion product films have been investigated on Cu-Ni alloys by TEM, SEM, AES and electrochemical technique as well as natural seawater exposure tests. Experimental results showed that the alloys had two kinds of microstructure, I.e. Recrystallization and incomplete recrystallization. In synthetic seawater containing 2×10-6 S2-, the stability of the alloy increased with the increase of deformation and annealing temperature, I.e., the degree of recrystallization. After exposure to natural seawater for different periods of time, the corrosion product films of the recrystallized alloy were rich in Ni and compact, and there were cracks in the outer layer which contained a small amount of S; the films of the alloy of incomplete recrystallization became thick, loose and porous, and obviously of layered structure. And the intergranular corrosion took place in the underlying substrate. Besides, a great amount of seawater substance existed in the outer layer and some sulfur was found within the grain boundaries that prefer to corrode. The accelerating effect of sulfides in corrosion of Cu-Ni alloys in seawater is attributed to the coexistence and absorption of sulfides and carbides promoting the preference of corrosion where they absorb, and the formation of dissolvable Cu2S results in keeping the surface of the alloys in the active state.

  2. Transparent zinc sulfide processed from nanocrystalline powders

    Science.gov (United States)

    Gao, De; Stefanik, Todd S.

    2013-06-01

    Nanocerox produces oxide nanopowders via flame spray pyrolysis that have proven effective in the processing of a host of high quality optical ceramic materials. In order to produce LWIR windows to compete with ZnS, however, oxide materials are not suitable. Nanocerox has therefore developed aqueous synthesis techniques for the production of zinc sulfide nanopowders. The proprietary processing technique allows control of primary particle size, high purity, low levels of agglomeration, and cost effective synthesis. Crystallinity, particle size, and purity of the powders will be presented. Characterization of parts fabricated from these powders via sinter/HIP processing will also be discussed, including optical performance and microstructural characterization.

  3. Iron Sulfide Minerals in Black Sea Sediments

    Science.gov (United States)

    Franke, Christine; Robin, Eric; Henkel, Susann; Courtin-Nomade, Alexandra; Bleil, Ulrich

    2010-05-01

    This study presents a mutidisciplinary geochemical and environmental magnetic approach, integrating advanced mineralogical techniques to better understand the physicochemical syn-sedimentary and post-depositional processes in the anoxic sediments from the northwestern Black Sea. The investigated gravity core GC 214 was retrieved in 2007 during RV METEOR cruise M72/1 west of the Crimean Peninsula in a water depth of 1686 mbsf. Geochemical analyses of the pore water and solid phase indicate non-steady state sedimentation. The oxygen-depleted water column conditions, anaerobic oxidation of methane (AOM), and related microbial-driven sulfate reduction favor a highly complex iron sulfide mineral assemblage in the sediment column. The detailed magnetic susceptibility and remanence measurements indicate an irregularly stratified depth profile showing intervals of particularly high values. Further environmental magnetic analyses of hysteresis loops depict strongly elevated coercivity values for those depth horizons, suggesting metastable ferrimagnetic greigite (Fe3S4) as the main magnetic carrier phase. Automated chemical classification (ACC), using electron dispersive spectrometer (EDS) attached to a JEOL 840 scanning electron microscope (SEM) on dispersed particle samples permitted the absolutequantification of the various present iron mineral phases with depth, identified as greigite (Fe3S4), pyrrhotite (Fe7S8), pyrite (FeS2), and monosulfides (FeS), such as troilite or markasite. The statistically stable ACC analyses were carried out on magnetic extracts and density separates to be able to calculate budgets between the different present iron sulfides. We also obtained excellent correlations between the different iron sulfide concentrations and the magnetic signal, which open the possibility to link the absolute particle concentrations to the magnetic signal. Additional synchrotron based micro-XRD analyses on polished sections yield inside into the details of the

  4. Mercury Sulfide Dimorphism in Thioarsenate Glasses

    OpenAIRE

    KASSEM, Mohammad; Sokolov, Anton; Cuisset, Arnaud,; Usuki, Takeshi; Khaoulani, Sohayb; Masselin, Pascal; Le Coq, David,; Feygenson, M.; Benmore, C. J.; Hannon, Alex,; Neuefeind, J. C.; Bychkov, Eugene

    2016-01-01

    International audience; Crystalline mercury sulfide exists in two drastically different polymorphic forms in different domains of the P,T-diagram: red chain-like insulator α-HgS, stable below 344 °C, and black tetrahedral narrow-band semiconductor β-HgS, stable at higher temperatures. Using pulsed neutron and high-energy X-ray diffraction, we show that these two mercury bonding pattern are present simultaneously in mercury thioarsenate glasses HgS-As2S3. The population and interconnectivity o...

  5. Device Engineering Towards Improved Tin Sulfide Solar Cell Performance and Performance Reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Vera; Chakraborty, Rupak; Rekemeyer, Paul; Siol, Sebastian; Martinot, Loic; Polizzotti, Alex; Yang, Chuanxi; Hartman, Katy; Gradecak, Silvija; Zakutayev, Andriy; Gordon, Roy G.; Buonassisi, Tonio

    2016-11-21

    As novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to rapidly test promising candidates in high-performing PV devices. There is a need to engineer new compatible device architectures, including the development of novel transparent conductive oxides and buffer layers. Here, we consider the two approaches of a substrate-style and a superstrate-style device architecture for novel thin-film solar cells. We use tin sulfide as a test absorber material. Upon device engineering, we demonstrate new approaches to improve device performance and performance reproducibility.

  6. Diurnal changes in pore water sulfide concentrations in the seagrass Thalassia testudinum beds: the effects of seagrasses on sulfide dynamics.

    Science.gov (United States)

    Lee; Dunton

    2000-12-20

    The dynamics of the seagrass-sulfide interaction were examined in relation to diel changes in sediment pore water sulfide concentrations in Thalassia testudinum beds and adjacent bare areas in Corpus Christi Bay and lower Laguna Madre, Texas, USA, during July 1996. Pore water sulfide concentrations in seagrass beds were significantly higher than in adjacent bare areas and showed strong diurnal variations; levels significantly decreased during mid-day at shallow sediment depths (0-10 cm) containing high below-ground tissue biomass and surface area. In contrast, diurnal variations in sediment sulfide concentrations were absent in adjacent bare patches, and at deeper (>10 cm) sediment depths characterized by low below-ground plant biomass or when the grasses were experimentally shaded. These observations suggest that the mid-day depressions in sulfide levels are linked to the transport of photosynthetically produced oxygen to seagrass below-ground tissues that fuels sediment sulfide oxidation. Lower sulfide concentrations in bare areas are likely a result of low sulfate reduction rates due to low organic matter available for remineralization. Further, high reoxidation rates due to rapid exchange between anoxic pore water and oxic overlying water are probably stimulated in bare areas by higher current velocity on the sediment surface than in seagrass beds. The dynamics of pore water sulfides in seagrass beds suggest no toxic sulfide intrusion into below-ground tissues during photosynthetic periods and demonstrate that the sediment chemical environment is considerably modified by seagrasses. The reduced sediment sulfide levels in seagrass beds during photosynthetic periods will enhance seagrass production through reduced sulfide toxicity to seagrasses and sediment microorganisms related to the nutrient cycling.

  7. Recent findings on sinks for sulfide in gravity sewer networks

    DEFF Research Database (Denmark)

    Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2006-01-01

    summarizes this newly obtained knowledge and emphasizes important implications of the findings. Model simulations of the in-sewer processes important for the sulfur cycle showed that sulfide oxidation in the wetted biofilm is typically the most important sink for dissolved sulfide in gravity sewers. However...

  8. Hydrogen sulfide: physiological properties and therapeutic potential in ischaemia.

    Science.gov (United States)

    Bos, Eelke M; van Goor, Harry; Joles, Jaap A; Whiteman, Matthew; Leuvenink, Henri G D

    2015-03-01

    Hydrogen sulfide (H2 S) has become a molecule of high interest in recent years, and it is now recognized as the third gasotransmitter in addition to nitric oxide and carbon monoxide. In this review, we discuss the recent literature on the physiology of endogenous and exogenous H2 S, focusing upon the protective effects of hydrogen sulfide in models of hypoxia and ischaemia.

  9. A study on the mechanism of stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solution

    Science.gov (United States)

    Chasse, Kevin Robert

    . Environments having different ionic concentrations of inorganic salts, i.e. sodium hydroxide, sodium sulfide, and sodium chloride, were used to understand the effect of liquor alkalinity, percent sulfidity, and chloride content on the corrosion and SCC behavior. Hydrogen embrittlement of S32205 was studied to understand the electrochemical conditions and fracture features associated with this failure mode. The results showed that there is an appreciable increase in the susceptibility of DSS to SCC in the presence of sulfide and chloride in hot alkaline environments. Sulfide and chloride adsorption at active sites on the metal surface caused unstable passivity and defective film formation. Chloride and sulfide available at the electrolyte/film surface reduced the charge transfer resistance and shifted the response of the films to lower frequencies indicating the films became more defective. The surface films had an outer, discontinuous layer, and an inner, barrier layer. Fe, Mo, and Mn were selectively dissolved in hot alkaline environments. The onset of SCC was related to the extent of selective dissolution and was consistent with a slip-step dissolution mechanism. Selective corrosion of the austenite phase depended on percent sulfidity and liquor alkalinity. Chlorides enhanced crack initiation and coalescence along the austenite/ferrite boundaries. Crack initiation and transgranular growth strongly depended on the phase distribution in the banded microstructure of DSS. These findings will augment understanding of SCC in this alloy-environment combination and facilitate materials selection in hot alkaline-sulfide environments, particularly in the petrochemical, nuclear, chemical processing, and pulp and paper industries.

  10. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Directory of Open Access Journals (Sweden)

    Christopher S. Williams

    1999-06-01

    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.

  11. Influence of Water Salinity on Air Purification from Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Leybovych L.I.

    2015-12-01

    Full Text Available Mathematical modeling of «sliding» water drop motion in the air flow was performed in software package FlowVision. The result of mathematical modeling of water motion in a droplet with diameter 100 microns at the «sliding» velocity of 15 m/s is shown. It is established that hydrogen sulfide oxidation occurs at the surface of phases contact. The schematic diagram of the experimental setup for studying air purification from hydrogen sulfide is shown. The results of the experimental research of hydrogen sulfide oxidation by tap and distilled water are presented. The dependence determining the share of hydrogen sulfide oxidized at the surface of phases contact from the dimensionless initial concentration of hydrogen sulfide in the air has been obtained.

  12. Mechanical properties of gutta-percha sulfide modified asphalt

    Science.gov (United States)

    Zou, X. Y.; Gu, X. Y.; Wang, X. W.

    2017-01-01

    Gutta-percha is the isomer of caoutchouc and can be used to enhance the performance of asphalt. In this paper, the produce proceedings of gutta-percha sulfide and gutta-percha sulfide modified asphalt are introduced. The performance indices of gutta-percha sulfide modified asphalt samples with different proportions are examined based on laboratory tests and the optimum ratio of gutta-percha and sulfur is decided.The micromechanism, temperature sensitivity, high and low temperature properties and viscoelasticity of the polymer modified asphalt are analyzed to discuss the modified mechanism and to decide the optimal polymer content. Low temperature bending tests are carried out to verify the low temperature performance of gutta-percha sulfide modified asphalt mixture. Research results showed that gutta-percha sulfide modified asphalt has good low temperature performance and a promising application prospect in the cold regions.

  13. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone

    DEFF Research Database (Denmark)

    Bruchert, V.; Jørgensen, BB; Neumann, K.;

    2003-01-01

    and the low capacity to oxidize and trap sulfide. The inner shelf break marks the seaward border of sulfidic bottom waters, and separates two different regimes of bacterial sulfate reduction. In the sulfidic bottom waters on the shelf, up to 55% of sulfide oxidation is mediated by the large nitrate...... to the sediment-water interface and reduce the hydrogen sulfide flux to the water column. Modeling of pore water sulfide concentration profiles indicates that sulfide produced by bacterial sulfate reduction in the uppermost 16 cm of sediment is sufficient to account for the total flux of hydrogen sulfide...... to the water column. However, the total pool of hydrogen sulfide in the water column is too large to be explained by steady state diffusion across the sediment-water interface. Episodic advection of hydrogen sulfide, possibly triggered by methane eruptions, may contribute to hydrogen sulfide in the water...

  14. Calculation of sulfide capacities of multicomponent slags

    Science.gov (United States)

    Pelton, Arthur D.; Eriksson, Gunnar; Romero-Serrano, Antonio

    1993-10-01

    The Reddy-Blander model for the sulfide capacities of slags has been modified for the case of acid slags and to include A12O3 and TiO2 as components. The model has been extended to calculate a priori sulfide capacities of multicomponent slags, from a knowledge of the thermodynamic activities of the component oxides, with no adjustable parameters. Agreement with measurements is obtained within experimental uncertainty for binary, ternary, and quinary slags involving the components SiO2-Al2O3-TiO2-CaO-MgO-FeO-MnO over wide ranges of composition. The oxide activities used in the computations are calculated from a database of model parameters obtained by optimizing thermodynamic and phase equilibrium data for oxide systems. Sulfur has now been included in this database. A computing system with automatic access to this and other databases has been developed to permit the calculation of the sulfur content of slags in multicomponent slag/metal/gas/solid equilibria.

  15. Hydrogen sulfide and polysulfides as biological mediators.

    Science.gov (United States)

    Kimura, Hideo

    2014-10-09

    Hydrogen sulfide (H2S) is recognized as a biological mediator with various roles such as neuromodulation, regulation of the vascular tone, cytoprotection, anti-inflammation, oxygen sensing, angiogenesis, and generation of mitochondrial energy. It is produced by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST). The activity of CBS is enhanced by S-adenosyl methionine (SAM) and glutathionylation, while it is inhibited by nitric oxide (NO) and carbon monoxide (CO). The activity of CSE and cysteine aminotransferase (CAT), which produces the 3MST substrate 3-mercaptopyruvate (3MP), is regulated by Ca2+. H2S is oxidized to thiosulfate in mitochondria through the sequential action of sulfide quinone oxidoreductase (SQR), sulfur dioxygenase, and rhodanese. The rates of the production and clearance of H2S determine its cellular concentration. Polysulfides (H2Sn) have been found to occur in the brain and activate transient receptor potential ankyrin 1 (TRPA1) channels, facilitate the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus, and suppress the activity of phosphatase and tensin homolog (PTEN) by sulfurating (sulfhydrating) the target cysteine residues. A cross talk between H2S and NO also plays an important role in cardioprotection as well as regulation of the vascular tone. H2S, polysulfides, and their cross talk with NO may mediate various physiological and pathophysiological responses.

  16. First detection of doubly deuterated hydrogen sulfide

    CERN Document Server

    Vastel, C; Ceccarelli, C; Pearson, J

    2003-01-01

    This work was carried out with using the Caltech Submillimeter Observatory and presents the observational study of HDS and D2S towards a sample of Class 0 sources, and dense cores. We report the first detection of doubly deuterated hydrogen sulfide (D2S) in two dense cores and analyze the chemistry of these molecules aiming to help understand the deuteration processes in the interstellar medium. The observed values of the D2S/HDS ratio, and upper limits, require an atomic D/H ratio in the accreting gas of 0.1-1. The study presented in this Letter supports the hypothesis that formaldehyde, methanol and hydrogen sulfide are formed on the grain surfaces, during the cold pre-stellar core phase, where the CO depleted gas has large atomic D/H ratios. The high values for the D/H ratios are consistent with the predictions of a recent gas-phase chemical model that includes H3+ and its deuterated isotopomers, H2D+, D2H+ and D3+ (Roberts et al. 2003).

  17. Hydrogen Sulfide and Polysulfides as Biological Mediators

    Directory of Open Access Journals (Sweden)

    Hideo Kimura

    2014-10-01

    Full Text Available Hydrogen sulfide (H2S is recognized as a biological mediator with various roles such as neuromodulation, regulation of the vascular tone, cytoprotection, anti-inflammation, oxygen sensing, angiogenesis, and generation of mitochondrial energy. It is produced by cystathionine β-synthase (CBS, cystathionine γ-lyase (CSE, and 3-mercaptopyruvate sulfurtransferase (3MST. The activity of CBS is enhanced by S-adenosyl methionine (SAM and glutathionylation, while it is inhibited by nitric oxide (NO and carbon monoxide (CO. The activity of CSE and cysteine aminotransferase (CAT, which produces the 3MST substrate 3-mercaptopyruvate (3MP, is regulated by Ca2+. H2S is oxidized to thiosulfate in mitochondria through the sequential action of sulfide quinone oxidoreductase (SQR, sulfur dioxygenase, and rhodanese. The rates of the production and clearance of H2S determine its cellular concentration. Polysulfides (H2Sn have been found to occur in the brain and activate transient receptor potential ankyrin 1 (TRPA1 channels, facilitate the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2 to the nucleus, and suppress the activity of phosphatase and tensin homolog (PTEN by sulfurating (sulfhydrating the target cysteine residues. A cross talk between H2S and NO also plays an important role in cardioprotection as well as regulation of the vascular tone. H2S, polysulfides, and their cross talk with NO may mediate various physiological and pathophysiological responses.

  18. Normal state of metallic hydrogen sulfide

    Science.gov (United States)

    Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A.

    2017-02-01

    A generalized theory of the normal properties of metals in the case of electron-phonon (EP) systems with a nonconstant density of electron states has been used to study the normal state of the SH3 and SH2 phases of hydrogen sulfide at different pressures. The frequency dependence of the real Re Σ (ω) and imaginary ImΣ (ω) parts of the self-energy Σ (ω) part (SEP) of the Green's function of the electron Σ (ω), real part Re Z (ω), and imaginary part Im Z (ω) of the complex renormalization of the mass of the electron; the real part Re χ (ω) and the imaginary part Imχ (ω) of the complex renormalization of the chemical potential; and the density of electron states N (ɛ) renormalized by strong electron-phonon interaction have been calculated. Calculations have been carried out for the stable orthorhombic structure (space group Im3¯ m) of the hydrogen sulfide SH3 for three values of the pressure P = 170, 180, and 225 GPa; and for an SH2 structure with a symmetry of I4/ mmm ( D4 h1¯7) for three values of pressure P = 150, 180, and 225 GP at temperature T = 200 K.

  19. Cherts from the Yangla copper deposit, western Yunnan Province: geochemical characteristics and relationship with massive sulfide mineralization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Four layers of cherts were found for the first time in the Yanglacopper deposit, western Yunnan Province. The cherts possessed the following geochemical characteristics: ① Low TiO2 and Al2O3 contents, but high ore-forming element (e.g. Cu, Au, Ag) contents; ② low total REE contents and clear negative Eu anomalies when normalized to chondrite similar to the REE contents and distribution patterns of associated massive sulfide ores; ③ silicon isotopic compositions of cherts in the Yangla deposit being the same as cherts and geyserite of hot-water sedimentary origin; ④ lead and sulfur isotopic compositions of cherts in the Yangla deposit being similar to those of the massive sulfide ores in the Yangla deposit; ⑤ Rb-Sr isochron age of cherts from the Yangla deposit being identical with that of host strata. Hence, we conclude that the cherts in the Yangla deposit are of hot-water sedimentary origin, which have a close relationship with the massive sulfide ores. The discovery of hydrothermal cherts from the Yangla copper deposit provides further evidence for the hydrothermal exhalative origin of the massive sulfide deposits.

  20. EQCM Study of Influence of Anion Nature on Electrochemical Reduction of Bismuth Sulfide in Nickel Plating Solution

    Directory of Open Access Journals (Sweden)

    Loreta TAMAŠAUSKAITĖ-TAMAŠIŪNAITĖ

    2011-03-01

    Full Text Available The influence of anion nature on the reduction of bismuth sulfide film deposited on gold using the successive ionic layer adsorption and reaction method in solutions containing Ni2+ ions has been investigated by electrochemical quartz crystal microbalance combined with cyclic voltammetry and X-ray photoelectron spectroscopy. It has been determined that the reduction of bismuth sulfide film in the nickel plating solution depends on the anion nature: larger cathodic current and mass changes (Dƒ are observed in the solution containing acetate anion as compared to those in the solution containing sulfate anion. As the reduction of bismuth sulfide film in the background solutions depends on the nature of anion, it influences the cathodic reduction of Ni2+ ions prior to OPD of Ni. A greater current and mass change (Dƒ is conditioned by simultaneously occurring reduction of bismuth sulfide film when the film is reduced in the acetate nickel plating electrolyte in contrast to that in the sulfate one.http://dx.doi.org/10.5755/j01.ms.17.1.244

  1. EQCM Study of Influence of Anion Nature on Electrochemical Reduction of Bismuth Sulfide in Nickel Plating Solution

    Directory of Open Access Journals (Sweden)

    Loreta TAMAŠAUSKAITĖ-TAMAŠIŪNAITĖ

    2011-03-01

    Full Text Available The influence of anion nature on the reduction of bismuth sulfide film deposited on gold using the successive ionic layer adsorption and reaction method in solutions containing Ni2+ ions has been investigated by electrochemical quartz crystal microbalance combined with cyclic voltammetry and X-ray photoelectron spectroscopy. It has been determined that the reduction of bismuth sulfide film in the nickel plating solution depends on the anion nature: larger cathodic current and mass changes (Dƒ are observed in the solution containing acetate anion as compared to those in the solution containing sulfate anion. As the reduction of bismuth sulfide film in the background solutions depends on the nature of anion, it influences the cathodic reduction of Ni2+ ions prior to OPD of Ni. A greater current and mass change (Dƒ is conditioned by simultaneously occurring reduction of bismuth sulfide film when the film is reduced in the acetate nickel plating electrolyte in contrast to that in the sulfate one.http://dx.doi.org/10.5755/j01.ms.17.1.244

  2. CALCULATION OF CONDITIONAL EQUILIBRIUM IN SERIAL MULTIPLE PRECIPITATION OF METAL SULFIDES WITH HYDROGEN SULFIDE STREAM GENERATED FROM SODIUM SULFIDE: A DIDACTIC TOOL FOR CHEMISTRY TEACHING

    Directory of Open Access Journals (Sweden)

    Renata Bellová

    2016-07-01

    Full Text Available Hydrogen sulfide is presented in textbooks as toxic, environmentally unacceptable species, however some positive effects in human metabolism were discovered in the last decades. It is important to offer students also some new information about this compound. As didactic tool in this case may serve serial precipitation of Cd2+, Cu2+, Zn2+, Mn2+ and Pb2+ ions forming various colored sulfides in bubblers with chemically generated hydrogen sulfide stream. This experiment has strong and diverse color effect for enhancing the visual perception to motivate students to understand more abstract and complex information about hydrogen sulfide. It also may be helpful in analytical chemistry courses for conditional precipitation equilibrium teaching and calculations.

  3. Positive trends in Southern Hemisphere observations of carbonyl sulfide

    Science.gov (United States)

    Kremser, Stefanie; Jones, Nicholas; Smale, Dan; Palm, Mathias; Lejeune, Bernard; Wang, Yuting; Deutscher, Nicholas

    2016-04-01

    Carbonyl sulfide (OCS; lifetime of about 5.7 years) is the longest lived reduced sulfur-containing gas in the atmosphere. The primary source of OCS is the ocean, which is both a direct source (through OCS emission) and an indirect source (due to oxidation of carbon disulfide, CS2, and dimethyl sulfide). Other natural sources of OCS include volcanic outgassing and direct fluxes from wetland regions. The removal of OCS from the atmosphere is dominated by soil and vegetation uptake, with minor contributions from reactions with the hydroxyl radical. Small anthropogenic sources of OCS are coal combustion, biomass burning, and aluminum production. A dominant indirect source results from CS2 emissions from the rayon industry. Transport of tropospheric OCS to the stratosphere during volcanically quiescent periods has been suggested to contribute sulfur to the stratospheric aerosol layer which affects atmospheric radiative balance. If, however, production of stratospheric aerosols from OCS oxidation is smaller than typical estimates, this OCS contribution would be overestimated. The magnitude of the OCS flux to the stratosphere is currently not well quantified as is the relative contribution of OCS to background aerosol loading. While earlier model simulations indicate OCS fluxes into the atmosphere exceeding removal, past total column observations of OCS show no significant trend. Analysis of tropospheric OCS columns at Arrival Heights (Antarctica) and Lauder (New Zealand) show strong positive trends from 2001-2008 followed by weaker trends to 2015, with unexpected temporal coherence. Since trends in ocean and land sources/sinks at these two sites, respectively, are unlikely to be similar, the coherence in trend structure likely results from changes in transport of OCS from the tropics to middle and high latitudes. Potential causes for OCS increases are (i) increases in tropical lower stratospheric OCS and/or (ii) strengthening of the large-scale circulation which

  4. Fabrication and Properties of Organic-Inorganic Nanolaminates Using Molecular and Atomic Layer Deposition Techniques

    Science.gov (United States)

    2012-02-01

    55, 1030-1039 (2009).* 2. B.B. Burton, D.N. Goldstein and S.M. George, "Atomic Layer Deposition of MgO Using Bis(ethylcyclopentadienyl) magnesium ...Atomic Layer Deposition Using Tin 2,4-Pentanedionate and Hydrogen Sulfide , J. Phys. Chem. C 114, 17597-17603 (2010).* 28. L.A. Riley, A.S

  5. Synthesis of Diaryl Ethers, Diaryl Sulfides, Heteroaryl Ethers and Heteroaryl Sulfides under Microwave Heating

    Institute of Scientific and Technical Information of China (English)

    LI,Feng; ZOU,Jiong; WANG,Quan-Rui; TAO,Feng-Gang

    2004-01-01

    @@ Diaryl ether moiety is found in a pool of naturally occurring and medicinally important compounds.[1] As a consequent, considerable efforts have been devoted to the assembly of this framework.[2] Recently, we have developed a microwave heating version of the synthesis of diaryl ethers as well as aryl sulfides. Under our conditions, even the extremely electron-poor 4-nitrophenol works well and its reaction with 1-halo-4-nitrobenzenes produces 4-(nitrophenoxy)-benzonitriles in satisfactory yield. The scope of the present protocol has been expanded to hydroxylated six-membered heterocycles as well as 2-pyrimidinethiol with mildly activated aryl halides, affording heteroaryl ethers and respectively sulfides. The advantages of the present method include the wide substrate scope, no use of any metal catalysts, the ease of product isolation and high yields.

  6. Flower-Like Beta-Cobalt Sulfide Microsphere and Activated Carbon/Cobalt Sulfide Composites for Capacitive Deionization

    Science.gov (United States)

    Wu, Xuechen

    Capacitive deionization (CDI) is an emerging technology for water desalination via facile removal of charged ionic species from aqueous solutions. The mechanism of CDI is based on ion adsorption by forming electric double layers at the electrode/electrolyte interface or conducting the reversible faradaic reaction at/near the electrode surface. Thus, electrode materials can significantly affect the CDI performance. Cobalt sulfide with demonstrated supercapacitor performance shows great potential for CDI electrode. In this thesis, flower-like beta-cobalt sulfide (CoS1.097) were successfully synthesized through hydrothermal reaction. It has been demonstrated that the morphology and structure of CoS 1.097 are greatly influenced by hydrothermal temperature. The sample of CoS1.097 synthesized at 140°C for 8 h exhibited the best electrochemical performance with a maximum specific capacity of 121 F/g at the current density of 0.2 A/g in 1M NaCl aqueous solution. However, further improvement of electrosorption capacity was constricted by poor conductivity and low surface area of CoS1.097. Therefore, the combination of activated carbon (AC) and CoS1.097 seems to be a feasible strategy by utilizing the high electrochemical activity of CoS1.097 and the high conductivity and the large surface area of AC. Herein, AC/CoS 1.097 composites were constructed by hydrothermal method and hot plate method, respectively. Hot plate AC/CoS1.097 possessed a specific capacity of 260 F/g at 0.2 A/g in 1M NaCl solution, which was higher than that of hydrothermal AC/CoS1.097 (197 F/g). It may be attributed to the excellent synergistic combination and the smaller size CoS1.097 particles of hot plate AC/CoS1.097. In addition, hot plate AC/CoS1.097 can reach a maximum electrosorption capacity of 3.1 mg/g at 1.2 V in 28 ml of 100 mg/l NaCl solution in flow-type CDI cell, which makes it a suitable electrode material for large-scale CDI application.

  7. Synthesis, Deposition, and Microstructure Development of Thin Films Formed by Sulfidation and Selenization of Copper Zinc Tin Sulfide Nanocrystals

    Science.gov (United States)

    Chernomordik, Boris David

    required to grow the same size grains on quartz (700 °C and 500 Torr). Moreover, carbon is removed by volatilization from films where normal crystal growth is fast. There are significant differences in the chemistry and in the thermodynamics involved during selenization and sulfidation of CZTS colloidal nanocrystal coatings to form CZTSSe or CZTS thin films, respectively. To understand these differences, the roles of vapor pressure, annealing temperature, and heating rate in the formation of different microstructures of CZTSSe films were investigated. Selenization produced a bi-layer microstructure where a large CZTSSe-crystal layer grew on top of a nanocrystalline carbon-rich bottom layer. Differences in the chemistry of carbon and selenium and that of carbon and sulfur account for this segregation of carbon during selenization. For example, CSe 2 and CS2, both volatile species, may form as a result of chalcogen interactions with carbon during annealing. Unlike CS2, however, CSe2 may readily polymerize at room temperature and one atmosphere. Carbon segregation may be occurring only during selenization due to the formation of a Cu-Se polymer [i.e., (CSe 2-x)] within the nanocrystal film. The (CSe2-x) inhibits sintering of nanocrystals in the bottom layer. Additionally, a fast heating rate results in temperature variations that lead to transient condensation of selenium on the film. This is observed only during selenization because the equilibrium vapor pressure of selenium is lower than that of sulfur. The presence of liquid selenium during sintering accelerates coarsening and densification of the normal crystal layer (no abnormal crystal layer) by liquid phase sintering. Carbon segregation does not occur where liquid selenium was present.

  8. Azo dye decolorization assisted by chemical and biogenic sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Prato-Garcia, Dorian [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, San Luis Potosí 78216 (Mexico); Buitrón, Germán, E-mail: gbuitronm@ii.unam.mx [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico)

    2013-04-15

    Highlights: ► Azo dyes were reduced efficiently by chemical and biogenic sulfide. ► Biogenic sulfide was more efficient than chemical sulfide. ► There was no competition between dyes and sulfate for reducing equivalents. ► Aromatic amines barely affected the sulfate-reducing process. -- Abstract: The effectiveness of chemical and biogenic sulfide in decolorizing three sulfonated azo dyes and the robustness of a sulfate-reducing process for simultaneous decolorization and sulfate removal were evaluated. The results demonstrated that decolorization of azo dyes assisted by chemical sulfide and anthraquinone-2,6-disulfonate (AQDS) was effective. In the absence of AQDS, biogenic sulfide was more efficient than chemical sulfide for decolorizing the azo dyes. The performance of sulfate-reducing bacteria in attached-growth sequencing batch reactors suggested the absence of competition between the studied azo dyes and the sulfate-reducing process for the reducing equivalents. Additionally, the presence of chemical reduction by-products had an almost negligible effect on the sulfate removal rate, which was nearly constant (94%) after azo dye injection.

  9. Measurement of plasma hydrogen sulfide in vivo and in vitro.

    Science.gov (United States)

    Shen, Xinggui; Pattillo, Christopher B; Pardue, Sibile; Bir, Shyamal C; Wang, Rui; Kevil, Christopher G

    2011-05-01

    The gasotransmitter hydrogen sulfide is known to regulate multiple cellular functions during normal and pathophysiological states. However, a paucity of concise information exists regarding quantitative amounts of hydrogen sulfide involved in physiological and pathological responses. This is primarily due to disagreement among various methods employed to measure free hydrogen sulfide. In this article, we describe a very sensitive method of measuring the presence of H₂S in plasma down to nanomolar levels, using monobromobimane (MBB). The current standard assay using methylene blue provides erroneous results that do not actually measure H₂S. The method presented herein involves derivatization of sulfide with excess MBB in 100 mM Tris-HCl buffer (pH 9.5, 0.1 mM DTPA) for 30 min in 1% oxygen at room temperature. The fluorescent product sulfide-dibimane (SDB) is analyzed by RP-HPLC using an eclipse XDB-C18 (4.6 × 250 mm) column with gradient elution by 0.1% (v/v) trifluoroacetic acid in acetonitrile. The limit of detection for sulfide-dibimane is 2 nM and the SDB product is very stable over time, allowing batch storage and analysis. In summary, our MBB method is suitable for sensitive quantitative measurement of free hydrogen sulfide in multiple biological samples such as plasma, tissue and cell culture lysates, or media.

  10. Sulfide elimination by intermittent nitrate dosing in sewer sediments

    Institute of Scientific and Technical Information of China (English)

    Yanchen Liu; Chen Wu; Xiaohong Zhou; David Z.Zhu; Hanchang Shi

    2015-01-01

    The formation of hydrogen sulfide in biofilms and sediments in sewer systems can cause severe pipe corrosions and health hazards,and requires expensive programs for its prevention.The aim of this study is to propose a new control strategy and the optimal condition for sulfide elimination by intermittent nitrate dosing in sewer sediments.The study was carried out based on lab-scale experiments and batch tests using real sewer sediments.The intermittent nitrate dosing mode and the optimal control condition were investigated.The results indicated that the sulfide-intermittent-elimination strategy by nitrate dosing is advantageous for controlling sulfide accumulation in sewer sediment.The oxidation-reduction potential is a sensitive indicator parameter that can reflect the control effect and the minimum N/S (nitrate/sulfide)ratio with slight excess nitrate is necessary for optimal conditions ofefficient sulfide control with lower carbon source loss.The opth-nal control condition is feasible for the sulfide elimination in sewer systems.

  11. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China

    Science.gov (United States)

    Mao, Ya-Jing; Qin, Ke-Zhang; Li, Chusi; Xue, Sheng-Chao; Ripley, Edward M.

    2014-07-01

    The Permian Huangshanxi mafic-ultramafic intrusion hosts one of the two largest magmatic sulfide deposits in the Eastern Tianshan which is situated in the southern margin of the Central Asian Orogenic Belt. In this paper we use mineral compositions and whole-rock geochemical data to decipher the genetic relationship between magma evolution and sulfide mineralization. The Huangshanxi intrusion consists of three separate intrusive units. Important sulfide mineralization occurs in the base of the last intrusive unit, an elongated, layered ultramafic body composed of lherzolite at the bottom, olivine websterite in the middle and websterite at the top. Based on olivine-liquid equilibria and mass balance, the MgO and FeO contents in the parental magma for a lherzolite sample are estimated to be 8.71 and 8.36 wt.%, respectively. The Huangshanxi mafic-ultramafic intrusive rocks and the estimated "trapped liquids" for several olivine-orthopyroxene cumulate rocks all show light rare earth element enrichments relative to heavy rare earth elements and significant Nb depletions relative to Th and La, which are similar to the characteristics of coeval basalts in the region. The arc-like geochemical features are attributed to pre-Permian mantle metasomatism by slab-derived fluids. Partial melting of the previously-modified mantle is thought to have resulted from heating by upwelling asthenosphere associated with post-subduction lithosphere delamination or by mantle plume activity. The relationship between the Fo and Ni contents of olivine crystals from the Huangshanxi sulfide-poor ultramafic rocks (source mantle. Stratigraphic reversals in olivine Fo contents and bulk sulfide PGE tenors suggest that multiple magma replenishments occurred during the development of the Huangshanxi magmatic Ni-Cu sulfide deposit. The sulfide ore formation can be divided into two stages: a conduit stage during which immiscible sulfide droplets and olivine crystals were brought up by ascending magma

  12. Gallium sulfide and indium sulfide nanoparticles from complex precursors: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, D.P. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)]. E-mail: duttadimple@yahoo.co.in; Sharma, G. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kulshreshtha, S.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2007-03-15

    Nanocrystalline gallium sulfide (Ga{sub 2}S{sub 3}) and indium sulfide (In{sub 2}S{sub 3}) have been prepared by a two-step process. The first step involves metathesis reaction of trimethyl gallium/indium ether adduct (Me{sub 3}Ga/In.OEt{sub 2}) with 1,2-ethanedithiol (HSCH{sub 2}CH{sub 2}SH) resulting in the formation of a polymeric precursor. The precursor complex has been characterized using Ga/In analysis, IR, proton NMR and mass spectroscopy. The thermal behavior of both complexes has been studied using thermogravimetric (TG) analysis. In the second step, these precursor complexes have been pyrolysed in furnace under flowing nitrogen atmosphere whereupon they undergo thermodestruction to yield nanometer-sized particles of gallium/indium sulfide. The nanoparticles obtained were characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and energy dispersive X-ray spectroscopy (EDS). The average size of the nanoparticles ranged from 10 to 12 nm for Ga{sub 2}S{sub 3} and 20 to 22 nm for In{sub 2}S{sub 3}, respectively. This is the first report on use of a binary single source precursor to synthesize {beta}-Ga{sub 2}S{sub 3} nanoparticles.

  13. Removals of aqueous sulfur dioxide and hydrogen sulfide using CeO2-NiAl-LDHs coating activated carbon and its mix with carbon nano-tubes

    KAUST Repository

    Li, Jing

    2015-07-01

    Ce-doped NiAl/layered double hydroxide was coated at activated carbon by urea hydrolysis method (CeO2-NiAl-LDHs/AC) in one pot, which was characterized by X-ray diffraction, infrared spectra, field emission scanning electron microscope and electrochemical techniques. CeO2-NiAl-LDHs/AC shows good uptake for aqueous sulfur dioxide (483.09mg/g) and hydrogen sulfide (181.15mg/g), respectively at 25°C. Meanwhile, the electrochemical removals of aqueous sulfur dioxide and hydrogen sulfide were respectively investigated at the mix of CeO2-NiAl-LDHs/AC and carbon nano-tubes modified homed paraffin-impregnated electrode. Both sulfur dioxide and hydrogen sulfide could be effectively oxidized to sulfuric acid at 1.0V in alkaline aqueous solution. © 2015 Elsevier B.V.

  14. Signaling of hydrogen sulfide and polysulfides.

    Science.gov (United States)

    Kimura, Hideo

    2015-02-10

    It has been almost two decades since the first demonstration of hydrogen sulfide (H2S) as a physiological mediator of cognitive function and vascular tone. H2S is physiologically important because it protects various organs from ischemia-reperfusion injury besides regulating inflammation, oxygen sensing, cell growth, and senescence. The production, metabolism, and regulation of H2S have been studied extensively. H2S modulates target proteins through sulfhydration (or sulfuration) or by the reduction of cysteine disulfide bonds. A large number of novel H2S-donating compounds are being developed owing to the therapeutic potential of H2S. Recently, polysulfides, rather than H2S, have been identified as molecules that sulfhydrate (or sulfurate) their target proteins.

  15. Structure of 4-methylpyridinium Hydrogen Sulfide

    Science.gov (United States)

    Andras, Maria T.; Hepp, Aloysius F.; Fanwick, Phillip E.; Martuch, Robert A.; Duraj, Stan A.; Gordon, Edward M.

    1994-01-01

    4-Methylpyridinium hydrogen sulfide, (C6H7NH)HS, M(sub r) = 127.21, consists of C6H7NH(+) cations and HS(-) anions. Z = 2 for the crystal with monoclinic space group Cm (#8), dimensions of a = 8.679(2) A, b = 7.964(1) A, and c = 4.860(2) A, an angle beta of 101.10(2) degrees, and a volume of V = 329.6(3) A(exp 3). R = 0.039 and R(sub w) = 0.048 for 385 reflections with F(sub o)(exp 2) greater than 3 sigma(F(sub o)(exp 2)) and 59 variables. Both the C6H7NH(+) cation and the HS(-) anion lie on crystallographic mirror planes with the N,S, two carbon atoms, and two hydrogen atoms positioned in the planes. The hydrogen atom of the HS(-) anion was not located.

  16. Hydrogen sulfide in a circumstellar envelope

    Science.gov (United States)

    Ukita, N.; Morris, M.

    1983-01-01

    A search for hydrogen sulfide in the cool circumstellar envelopes of 25 stars was made using the 1(10)-1(01) rotational line at 1.8 mm. It was detected in the bipolar nebula/OH maser OH231.8+4.2, an object having a high rate of mass loss. An approximate analysis indicates that 1/60 of the sulfur in this outflowing envelope is in the form of H2S, a fraction which may be similar to that in the atmosphere of the central star. In addition, the shape of the observed line profile is discussed in terms of a possible variation of the outflow velocity with latitude above the system's equatorial plane.

  17. Hydrogen sulfide in gastrointestinal and liver physiopathology.

    Science.gov (United States)

    Cipriani, Sabrina; Mencarelli, Andrea

    2011-04-01

    Hydrogen sulfide (H(2)S) is a gas that can be formed by the action of two enzymes, cystathionine gamma lyase (CSE) and cystathionine beta synthase (CBS). H(2)S has been known for hundreds of years for its poisoning effect, however the idea that H(2)S is not only a poison, but can exert a physiological role in mammalian organisms, originates from the evidence that this gaseous mediator is produced endogenously. In addition to H(2)S synthesis by gastrointestinal tissue, the intestinal mucosa, particularly in the large intestine, is regularly exposed to high concentrations of H(2)S that are generated by some species of bacteria and through the reduction of unabsorbed intestinal inorganic sulphate. This review reports on the effects of H(2)S in the gastrointestinal tract and liver and provides information on the therapeutic applications of H(2)S-donating drugs.

  18. Modulation of hydrogen sulfide by vascular hypoxia

    Directory of Open Access Journals (Sweden)

    Osmond JM

    2014-08-01

    Full Text Available Jessica M Osmond, Nancy L KanagyVascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USAAbstract: Hydrogen sulfide (H2S has emerged as a key regulator of cardiovascular function. This gasotransmitter is produced in the vasculature and is involved in numerous processes that promote vascular homeostasis, including vasodilation and endothelial cell proliferation. Although H2S plays a role under physiological conditions, it has become clear in recent years that hypoxia modulates the production and action of H2S. Furthermore, there is growing evidence that H2S is cytoprotective in the face of hypoxic insults. This review focuses on the synthesis and signaling of H2S in hypoxic conditions in the vasculature, and highlights recent studies providing evidence that H2S is a potential therapy for preventing tissue damage in hypoxic conditions.Keywords: H2S, cystathionine γ-lyase, vascular smooth muscle, endothelium

  19. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment

    Science.gov (United States)

    Rao, Alexandra M. F.; Malkin, Sairah Y.; Hidalgo-Martinez, Silvia; Meysman, Filip J. R.

    2016-01-01

    Filamentous sulfide oxidizing cable bacteria are capable of linking the oxidation of free sulfide in deep anoxic layers of marine sediments to the reduction of oxygen or nitrate in surface sediments by conducting electrons over centimeter-scale distances. Previous studies have shown that this newly discovered microbial process, referred to as electrogenic sulfide oxidation (e-SOx), may alter elemental cycling in sediments, but the nature and rates of the resulting biogeochemical transformations and their influence on benthic-pelagic coupling remain largely unknown. Here we quantify changes in sediment geochemistry and solute fluxes at the sediment-water interface as e-SOx develops and declines over time in laboratory incubations of organic-rich sediments from a seasonally hypoxic coastal basin (Marine Lake Grevelingen, The Netherlands). Our results show that e-SOx enhanced sediment O2 consumption and acidified subsurface sediment, resulting in the dissolution of calcium carbonate and iron sulfide minerals in deeper sediment horizons and the associated accumulation of dissolved iron, manganese, and calcium in porewater. Remobilized Fe diffusing upward was reoxidized at the sediment-water interface, producing an amorphous Fe oxide crust, while dissolved Fe diffusing downward was reprecipitated in the form of FeS as it encountered the free sulfide horizon. The development of e-SOx enhanced the diffusive release of dissolved Mn at the sediment-water interface, capped the phosphate efflux, generated a buildup of organic matter in surface sediments, and strongly stimulated the release of alkalinity from the sediment. About 75% of this alkalinity production was associated with net CaCO3 dissolution, while the remaining 25% was attributed to a pumping mechanism that transfers alkalinity from anodic H2S oxidation (an alkalinity sink) in deeper sediments to cathodic O2 reduction (an alkalinity source) near the sediment-water interface. The resulting sediment alkalinity

  20. Effect of radiation on wettability and floatability of sulfide minerals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The feasibility for modifying the wettability and floatability of sulfide minerals by electron beam irradiation has been studied experimentally. The wettability of crystalline pyrite and floatability of some sulfide as pyrite, arsenopyrite, chalcopyrite and marmatite after irradiation were examined by flotation in a modified Hallimond tube. Experimental results show that the hydrophobicity of crystalline pyrite enhances with the increase of irradiation dose in a low dose range. And the flotation responses of sulfide minerals on irradiation dosevary with the mineral species and particle size. The floatability of minerals can be regulated by altering irradiation dose. An explanationfor the mechanism has been suggested based on the principle of radiation chemistry.

  1. Sulfide capacities of MnO-SiO2 slags

    Science.gov (United States)

    Reddy, Ramana G.; Blander, Milton

    1989-04-01

    Sulfide capacities of binary MnO-SiO2 slags at 1773 and 1923 K were calculated thermodynamically. Only known data, such as the standard free energy of formation of MnO and MnS and activities of MnO in the melt, are used in making calculations based on fundamental concepts. Excellent agreement is found between our calculations and published experimental data. Correlations of sulfide capacities, based on optical basicity using Pauling electronegativities or empirically deduced optical basicities, differ from the experimental data in both magnitude and concentration dependence. Our method provides useful predictions of sulfide capacities a priori.

  2. Nanomaterials for the Selective Detection of Hydrogen Sulfide in Air

    Science.gov (United States)

    Llobet, Eduard; Brunet, Jérôme; Pauly, Alain; Ndiaye, Amadou; Varenne, Christelle

    2017-01-01

    This paper presents a focused review on the nanomaterials and associated transduction schemes that have been developed for the selective detection of hydrogen sulfide. It presents a quite comprehensive overview of the latest developments, briefly discusses the hydrogen sulfide detection mechanisms, identifying the reasons for the selectivity (or lack of) observed experimentally. It critically reviews performance, shortcomings, and identifies missing or overlooked important aspects. It identifies the most mature/promising materials and approaches for achieving inexpensive hydrogen sulfide sensors that could be employed in widespread, miniaturized, and inexpensive detectors and, suggests what research should be undertaken for ensuring that requirements are met. PMID:28218674

  3. Micellar-mediated extractive spectrophotometric determination of hydrogen sulfide/sulfide through Prussian Blue reaction: application to environmental samples.

    Science.gov (United States)

    Pandurangappa, Malingappa; Samrat, Devaramani

    2010-01-01

    A sensitive surfactant-mediated extractive spectrophotometric method has been developed, based on the reaction of ferric iron with sulfide to form ferrous iron and its subsequent reaction with ferricyanide to form Prussian Blue, to quantify trace levels of hydrogen sulfide/sulfide in environmental samples. The method obeys Beer's law in the concentration range 2-10 microg of sulfide in 25 mL of aqueous phase with molar absorptivity (epsilon) of 3.92 x 10(4) L mol(-1) cm(-1). The colored species has been extracted into isoamyl acetate in the presence of a cationic surfactant i.e. cetylpyridinium chloride, to enhance the sensitivity of the method with epsilon value 5.2 x 10(4) L mol(-1) cm(-1). The relative standard deviation has been found to be 0.69% for 10 determinations at 4 microg of sulfide and the limit of detection was 0.009 microg mL(-1). The interference from common anions and cations has been studied. The proposed method has been applied to the determination of residual hydrogen sulfide in the laboratory fume hood as well as ambient atmospheric hydrogen sulfide in the vicinity of open sewer lines after fixing the analyte in ionic form using suitable trapping medium.

  4. Micro-aeration for hydrogen sulfide removal from biogas

    Science.gov (United States)

    Duangmanee, Thanapong

    The presence of sulfur compounds (e.g. protein, sulfate, thiosulfate, sulfite, etc.) in the feed stream generates highly corrosive and odorous hydrogen sulfide during anaerobic digestion. The high sulfide level in the biogas stream is not only poisonous to many novel metal catalysts employed in thermo-catalytic processes but also reduces the quality of methane to produce renewable energy. This study used an innovative, low-maintenance, low-cost biological sulfide removal technology to remove sulfides simultaneously from both gas and liquid phase. ORP (Oxidation-Reduction-Potential) was used as the controlling parameter to precisely regulate air injection to the sulfide oxidizing unit (SOU). The microaeration technique provided just enough oxygen to partially oxidize sulfides to elemental sulfur without inhibiting methanogenesis. The SOU was equipped with a diffuser at the bottom for the dispersion of sulfide-laden biogas and injected air throughout the column. The SOU can be operated as a standalone unit or coupled with an anaerobic digester to simultaneously remove sulfide from the biogas and effluent. The integrated system was capable of reducing hydrogen sulfide in biogas from 2,450 to less than 2 ppmV with minimal sulfate production at the highest available sulfide loading rate of 0.24 kg/m3-day. More than 98% of sulfide removed was recovered as elemental sulfur. However, the standalone SOU was able to operate at high hydrogen sulfide loading of 1.46 kg/m 3-day at inlet sulfide concentration of 3000 ppmV and reduce the off-gas hydrogen sulfide concentrations to less than 10 ppmV. The experiment also revealed that the ORP controlled aeration was sensitive enough to prevent oxygen overdosing (dampening effect) during unexpected surges of aeration. Using generalized linear regression, a model predicting output H2S concentration based on input H2S concentrations, SOU medium heights, and biogas flow rates, was derived. With 95% confidence, output H2S concentration

  5. Different methods of forming multicomponent metal sulfide by SILAR-techniques

    Science.gov (United States)

    Gavrilov, S.; Zheleznyakova, A.; Dronov, A.; Presnukhina, A.; Popova, E.

    2014-12-01

    The features of the formation of multi-component metal sulfide films (Cu2ZnSnS4 and Cu2SnS3) formed by various methods SILAR technology were studied. Using different investigate methods the comparative analysis of the properties and composition of the films were carry out. The formation of a multi-component film in the mixed cationic solution is accompanied by additional processes in the solution and by the appearance of complex compounds. This factors has a strong influence on the composition and purity of the formed films. The characteristics of the solar cell test structures with ultrathin absorbing layer based on Cu2ZnSnS4 and Cu2SnS3 were obtained. It's necessity to introduce an interlayer and make more carefully study of the composition and interface of the absorber layer.

  6. Textural, mineralogical and stable isotope studies of hydrothermal alteration in the main sulfide zone of the Great Dyke, Zimbabwe and the precious metals zone of the Sonju Lake Intrusion, Minnesota, USA

    Science.gov (United States)

    Li, C.; Ripley, E.M.; Oberthur, T.; Miller, J.D.; Joslin, G.D.

    2008-01-01

    Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type. ?? Springer-Verlag 2007.

  7. An Experiment in Autotrophic Fermentation: Microbial Oxidation of Hydrogen Sulfide.

    Science.gov (United States)

    Sublette, Kerry L.

    1989-01-01

    Described is an experiment which uses an autotrophic bacterium to anaerobically oxidize hydrogen sulfide to sulfate in a batch-stirred tank reactor. Discusses background information, experimental procedure, and sample results of this activity. (CW)

  8. Hydrogen Sulfide Micro-Sensor for Biomass Fouling Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hydrogen Sulfide (H2S)is the leading chemical agent causing human fatalities following inhalation exposures. The overall aim of this project is to develop and...

  9. Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Liu, Xue; Huang, Jia-Qi; Zhang, Qiang; Mai, Liqiang

    2017-02-03

    Lithium-sulfur (Li-S) batteries with high energy density and long cycle life are considered to be one of the most promising next-generation energy-storage systems beyond routine lithium-ion batteries. Various approaches have been proposed to break down technical barriers in Li-S battery systems. The use of nanostructured metal oxides and sulfides for high sulfur utilization and long life span of Li-S batteries is reviewed here. The relationships between the intrinsic properties of metal oxide/sulfide hosts and electrochemical performances of Li-S batteries are discussed. Nanostructured metal oxides/sulfides hosts used in solid sulfur cathodes, separators/interlayers, lithium-metal-anode protection, and lithium polysulfides batteries are discussed respectively. Prospects for the future developments of Li-S batteries with nanostructured metal oxides/sulfides are also discussed.

  10. Selective adsorption of bacteria on sulfide minerals surface

    Institute of Scientific and Technical Information of China (English)

    JIA Chun-yun; WEI De-zhou; LIU Wen-gang; HAN Cong; GAO Shu-ling; WANG Yu-juan

    2008-01-01

    The adsorption of bacteria on sulfide minerals surface was studied, and the selective adsorption mechanism of cells on the sulfide minerals was investigated by means of FTIR, UVS and XPS. The results show that the three strains of bacteria adsorbed more preferentially on pyrite than on other two sulfide minerals surface at neutral and alkaline pH conditions. FTIR and UVS of three strains of bacteria indicate that there are more functional groups on their surface, such as O-H, C=O, N-H, C-O, and the content of saccharide is more than that of protein. The state of every element on sulfide minerals surface was analyzed by XPS. The empty orbital number of electronic shell of metal ions on minerals surface is important in selective adsorption process, and some stable constants of metal coordinates can be used to explain the contribution of some groups in saccharide of cell wall to the selective adsorption.

  11. Oxidation and Precipitation of Sulfide in Sewer Networks

    DEFF Research Database (Denmark)

    Nielsen, A. H.

    wastewater and biofilms of sewer networks was studied in detail with emphasis on determination of process kinetics and stoichiometry. In the water phase, sulfide oxidation may be both chemical and biological and the investigations showed that both processes were of significant importance in the sulfur cycle...... transformations. The experiments indicated that biological sulfide oxidation in the water phase and sulfide oxidation by sewer biofilms produce elemental sulfur under the conditions investigated. The stoichiometry of chemical sulfide oxidation was apparently more complex producing both thiosulfate and sulfate......-workers at Aalborg University for more than a decade. In the basic version, the WATS model simulates changes in dissolved oxygen (DO) and organic fractions of different biodegradability under both aerobic and anaerobic conditions. Evaluation of the model concept has demonstrated that it can be successfully...

  12. Optimization of biological sulfide removal in a CSTR bioreactor.

    Science.gov (United States)

    Roosta, Aliakbar; Jahanmiri, Abdolhossein; Mowla, Dariush; Niazi, Ali; Sotoodeh, Hamidreza

    2012-08-01

    In this study, biological sulfide removal from natural gas in a continuous bioreactor is investigated for estimation of the optimal operational parameters. According to the carried out reactions, sulfide can be converted to elemental sulfur, sulfate, thiosulfate, and polysulfide, of which elemental sulfur is the desired product. A mathematical model is developed and was used for investigation of the effect of various parameters on elemental sulfur selectivity. The results of the simulation show that elemental sulfur selectivity is a function of dissolved oxygen, sulfide load, pH, and concentration of bacteria. Optimal parameter values are calculated for maximum elemental sulfur selectivity by using genetic algorithm as an adaptive heuristic search. In the optimal conditions, 87.76% of sulfide loaded to the bioreactor is converted to elemental sulfur.

  13. An eco-friendly oxidation of sulfide compounds

    Indian Academy of Sciences (India)

    RAVINDRA B WAGH; SITARAM H GUND; JAYASHREE M NAGARKAR

    2016-08-01

    An improved green route has been developed for the oxidation of sulfide compounds. Albendazole is converted to ricobendazole or albendazole sulfone using H₂O₂ as an oxidant and H₂O as the solvent. High yields of the corresponding products were obtained by carrying out the reaction at room temperature. This synthetic method is environmentally clean and safe, operationally simple for the oxidation of other benzimidazole anthelmintics and various sulfide compounds.

  14. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  15. LUMINESCENCE OF CADMIUM SULFIDE QUANTUM DOTS IN FLUOROPHOSPHATE GLASSES

    OpenAIRE

    Z. O. Lipatova; E. V. Kolobkova; V. A. Aseev

    2015-01-01

    Cadmium sulfide quantum dots are perspective materials in optics, medicine, biology and optoelectronics. Fluorophosphate glasses, doped with cadmium sulfide quantum dots, were examined in the paper. Heat treatment led to the formation of quantum dots with diameters equal to 2.8 nm, 3.0 nm and 3.8 nm. In view of such changes in the quantum dots size the fundamental absorption edge shift and the luminescence band are being displaced to the long wavelengths. Luminescence lifetime has been fou...

  16. Bioavailability and Methylation Potential of Mercury Sulfides in Sediments

    Science.gov (United States)

    2014-08-01

    the aquatic environment is a critical step towards accumulation of this toxic metal in the aquatic food chain. MeHg is produced in the environment...much more abundant than mercury (e.g. iron, aluminum, manganese , titanium, zinc). Nanoparticles and polynuclear clusters of metal sulfides such as...trace metal bioavailability and toxicity has yet to be fully realized. Our findings provide a new approach that may be applied to other metal-sulfide

  17. Soil fluxes of carbonyl sulfide (COS) across four distinct ecosystems

    Science.gov (United States)

    Sun, W.; Maseyk, K. S.; Lett, C.; Juarez, S.; Kooijmans, L.; Mammarella, I.; Vesala, T.; Chen, H.; Seibt, U.

    2015-12-01

    Soils are additional but poorly resolved sinks of carbonyl sulfide (COS) in terrestrial ecosystems. COS has been proposed as a tracer for quantifying gross photosynthesis based on the coupled stomatal uptake of COS and CO2. But applying this tracer requires the soil COS flux to be subtracted from the ecosystem flux to obtain the actual plant flux. To simulate soil COS fluxes, we have built a 1-D diffusion-reaction model accounting for vertical transport in the soil, microbial sinks and sources, and a litter layer. Uptake and production of COS in the soil column are linked with soil temperature and moisture through empirical functions adapted from enzyme kinetics and lab incubations. We have measured soil COS fluxes and the related soil variables in four distinct ecosystems: a wheat field (Southern Great Plains, OK, USA), an oak woodland (Santa Monica Mountains, CA, USA), a tropical rainforest (La Selva Biological Station, Costa Rica) and a boreal pine forest (Hyytiälä, Finland). Across all sites, a lower soil temperature and a humid climate are generally favorable to soil COS uptake. Strong COS emissions were observed in the wheat field at high soil temperatures after harvesting but were absent in other ecosystems, indicating that COS exchange may behave differently in agricultural soils. We simulated the soil fluxes in all ecosystems using the diffusion-reaction model, and optimized the source/sink strength parameters with field data. The optimized model provides insights that are not attainable from data analysis alone: For example, the wheat field soil must have continued uptake activity even when it showed net emissions, and leaf litter contributed dominantly to the COS sink after rain in the oak woodland. We expect the new model to be useful for simulating global soil COS fluxes as field data on soil fluxes from a broader range of ecosystems become available.

  18. 水相中金属铜表面生成亚铜-邻菲罗啉配合物的反应%FORMATION OF BIS ( 1 , 10-PHENANTHROLINE) CUPROUS COMPLEXES ON METALLIC COPPER SURFACE IN AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    聂崇实; 顾亦君; 孙杰

    1996-01-01

    本文研究了零价铜在邻菲罗啉水溶液中的反应.当溶液敞露于空气并存在有机阴离子X-时,例如苯甲酸盐(Bz)、对甲基苯磺酸盐(Ts)等,铜的表面生成了致密的反应产物的薄层,经IR、UV/VIS、MS和元素分析证明了该薄层为相当纯的亚铜的邻菲罗啉配位化合物,结构为[Cu(phen)2]+X-.在乙醇/甲苯混合溶剂中得到了表面反应产物的晶体[Cu(phen)2](CH3C4H6SO3)C2HsOH,并用X-ray测得了结构.本工作表明溶液中的Cu1离子抑制Cu0氧化成Cu1而影响反应层的形成,同时又促进Cu1氧化成Cu1的过程.%The formation of cuprous complex on metallic copper surface in 1,10-phenanthroline (phen) aqueous solution has been investigated as exposed in air and in the presence of common organic anions (X-) such as benzoate (Bz-) and toluene sulphonate (Ts-). The complexes deposited on the surface of metallic copper have been proved to be rather pure cuprous phenanthroline complexes having the structure [Cu(phen)2]X based on the elemental analysis, IR, UV/C2H5OH was determined by X-ray diffraction analysis. The work demonstrated that the Cu1 ion in the reaction solution hindered the process of Cu0 to Cu1 and in the meanwhile accelerated the process of Cu 1 to Cu 1.

  19. Sulfide capacity of high alumina blast furnace slags

    Science.gov (United States)

    Shankar, Amitabh; Görnerup, Märten; Seetharaman, S.; Lahiri, A. K.

    2006-12-01

    Sulfide capacities of high alumina blast furnace slags were experimentally determined using the gas-slag equilibration technique. Two different slag systems were considered for the current study, namely, CaO-SiO2-MgO-Al2O3 quaternary and CaO-SiO2-MgO-Al2O3-TiO2 quinary system. The liquid slag was equilibrated with the Ar-CO-CO2-SO2 gas mixture. Experiments were conducted in the temperature range of 1773 to 1873 K. The effects of temperature, basicity, and the MgO and TiO2 contents of slags on sulfide capacity were studied. As expected, sulfide capacity was found to increase with the increase in temperature and basicity. At the higher experimental temperature, titania decreases the sulfide capacity of slag. However, at the lower temperature, there was no significant effect of titania on the sulfide capacity of slag. Sulfide capacity increases with the increase in MgO content of slag if the MgO content is more than 5 pct.

  20. Sulfide oxidation in fluidized bed bioreactor using nylon support material

    Institute of Scientific and Technical Information of China (English)

    Varsha Midha; M K Jha; Apurba Dey

    2012-01-01

    A continuous fluidized bed bioreactor(FBBR)with nylon support particles was used to treat synthetic sulfide wastewater at different hydraulic retention time of 25,50 and 75 min and upflow velocity of 14,17 and 20 m/hr.The effects of upflow velocity,hydraulic retention time and reactor operation time on sulfide oxidation rate were studied using statistical model.Mixed culture obtained from the activated sludge,taken from tannery effluent treatment plant,was used as a source for microorganisms.The diameter and density of the nylon particles were 2-3 mm and 1140 kg/m3,respectively.Experiments were carried out in the reactor at a temperature of(30± 2)℃,at a fixed bed height of 16 cm after the formation of biofilm on the surface of support particles.Biofilm thickness reached(42±3)μm after 15 days from reactor start-up.The sulfide oxidation,sulfate and sulfur formation is examined at all hydraulic retention times and upflow velocities.The results indicated that almost 90%-92% sulfide oxidation was achieved at all hydraulic retention times.Statistical model could explain 94% of the variability and analysis of variance showed that upflow velocity and hydraulic retention time slightly affected the sulfide oxidation rate.The highest sulfide oxidation of 92% with 70% sulfur was obtained at hydraulic retention time of 75 min and upflow velocity of 14 m/hr.

  1. Sulfide oxidation in fluidized bed bioreactor using nylon support material.

    Science.gov (United States)

    Midha, Varsha; Jha, M K; Dey, Apurba

    2012-01-01

    A continuous fluidized bed bioreactor (FBBR) with nylon support particles was used to treat synthetic sulfide wastewater at different hydraulic retention time of 25, 50 and 75 min and upflow velocity of 14, 17 and 20 m/hr. The effects of upflow velocity, hydraulic retention time and reactor operation time on sulfide oxidation rate were studied using statistical model. Mixed culture obtained from the activated sludge, taken from tannery effluent treatment plant, was used as a source for microorganisms. The diameter and density of the nylon particles were 2-3 mm and 1140 kg/m3, respectively. Experiments were carried out in the reactor at a temperature of (30 +/- 2) degrees C, at a fixed bed height of 16 cm after the formation of biofilm on the surface of support particles. Biofilm thickness reached (42 +/- 3) microm after 15 days from reactor start-up. The sulfide oxidation, sulfate and sulfur formation is examined at all hydraulic retention times and upflow velocities. The results indicated that almost 90%-92% sulfide oxidation was achieved at all hydraulic retention times. Statistical model could explain 94% of the variability and analysis of variance showed that upflow velocity and hydraulic retention time slightly affected the sulfide oxidation rate. The highest sulfide oxidation of 92% with 70% sulfur was obtained at hydraulic retention time of 75 min and upflow velocity of 14 m/hr.

  2. Morphological and Electrochemical Study of Sulfide/Nitride Nanostructure Deposited Through Pulsed Plasma Electrolysis

    Science.gov (United States)

    Tavakoli, H.; Sobhani, M.

    2017-04-01

    This study investigated the feasibility of coating a steel St12 substrate with a sulfide/nitride layer. The coating process was conducted through a plasma electrolysis technique with a pulsed regime applied at frequencies of 100, 500, and 1000 Hz. It was found that the use of higher frequencies in the mentioned process provides better control over workpiece surface temperature and leads to reduced extent of voltage variations required to achieve a fixed temperature. The coating deposited at the frequency of 1000 Hz and voltage of about 235 V exhibited a nanostructure composed of 50 nm particles. The deposited coating consisted of an outer porous layer and an inner relatively dense layer. The x-ray studies identified the phases of the coating as γ'-Fe4N, Fe2-3N and FeS. The presence of FeS phase reduces the friction coefficient of the surface to about half the value obtainable in its absence. Studying the electrochemical impedance of the layer revealed that using a higher frequency in the deposition process increases the stability of resulting layer against seven days of immersion in the corrosive solution.

  3. Tribology properties of composite layer of CrMoCu alloy cast iron by combined treatment of ion nitrocarburizing and sulphurizing

    Institute of Scientific and Technical Information of China (English)

    MA Shi-ning; HU Chun-hua; LI Xin; QIU Ji

    2004-01-01

    Composite layer with nitrocarbonide and sulfide was made on the surface of CrMoCu alloy cast iron by combined treatment of ion nitrocarburizing and sulphurizing. The composite layer is composed of sulfide layer, nitrocarbonide hypo-surface layer and its diffusing layer, the size of sulfide globular grains distributing equably on the surface is in nano-micron-scale, and the phase structure of the composite layer is composed of FeS, FeS1-x, Fe2C and Fe3N. Under oil lubrication, sulphurized surface shows good scuffing-resistance only under low velocity, and nitrocarburized and sulphurized surface greatly improves the scuffing-resistance and wear-resistance of CrMoCu alloy cast iron, its integrated friction and wear properties are better than those of the plain and sulphurized surfaces under all the velocities.

  4. Dihydrogen Activation by Titanium Sulfide Complexes

    Science.gov (United States)

    Sweeney, Zachary K.; Polse, Jennifer L.; Bergman*, Robert G.; Andersen*, Richard A.

    2005-01-01

    The titanocene sulfido complex Cp*2Ti(S)py (1, Cp* = pentamethylcyclopentadienyl; py = pyridine) is synthesized by addition of a suspension of S8 to a toluene solution of Cp*2Ti-(CH2CH2) (2) and py. The rate of rotation of the pyridine ligand in solution was determined by 1H NMR spectroscopy, and the structure of 1 was determined by X-ray crystallography. Complex 1 reacts reversibly with dihydrogen to give Cp*2Ti(H)SH (6) and py. Reaction of 1 with HD gives an equilibrium mixture of Cp*2Ti(D)SH and Cp*2Ti(H)SD; H2 and D2 are not formed in this reaction. 1D 1H NMR magnetization transfer spectra and 2D EXSY 1H NMR spectra of 6 in the presence of H2 show that in solution the H2, hydride, and hydrosulfido hydrogen atoms exchange. A four-center mechanism for this exchange is proposed. The EXSY studies show that the Ti–H and S–H hydrogens exchange with each other more rapidly than either of those hydrogens exchanges with external H2. A transient dihydrogen complex intermediate is proposed to explain this observation. The infrared spectrum of 6 shows an absorption assigned to the Ti–H stretching mode at 1591 cm−1 that shifts upon deuteration to 1154 cm−1. Reaction of 1 with trimethylsilane, diethylsilane, or dimethylsilane gives Cp*2-Ti(H)SSiMe3 (7), Cp*2Ti(H)SSiHEt2 (8), or Cp*2Ti(H)SSiHMe2 (9), respectively. The isotope effect for the reaction producing 7 has been measured, and a mechanism is proposed. Treatment of 1 with an additional equivalent of S8 results in the formation of the disulfide Cp*2Ti(S2) (4). Acetylene inserts into the Ti–S bond of 4 to produce the vinyl disulfide complex 5. The structures of 4 and 5 have been determined by X-ray diffraction. Compound 4 reacts with 2 in the presence of py to produce 1. Phosphines react with 4 in the presence of H2 to provide 6 and the corresponding phosphine sulfide. Reaction of hydrogen with 4 gives Cp*2-Ti(SH)2 (3). The reactions of 1 and 4 with dihydrogen provide a model for possible mechanisms of H2

  5. Geology and Metal Contents of the Ruttan volcanogenic massive sulfide deposit, northern Manitoba, Canada

    Science.gov (United States)

    Barrie, C. Tucker.; Taylor, Craig; Ames, Doreen E.

    2005-03-01

    hanging wall rocks are characterized by sericite ± gahnite alteration, which is restricted to within approximately 75 m of the uppermost lenses. Additional gangue minerals are anhydrite and carbonate minerals (siderite, dolomite, ankerite, and calcite), as well as chlorite, sericite, biotite, talc, and quartz. Carbonate (excluding siderite), potassium feldspar, silicification and epidotization are common distal alteration zones in the footwall to the Mine Sequence several kilometers to the northeast. There are three principal groups of massive sulfide lenses; the East lenses, the West lenses, and the Western Anomaly lenses to the far west. In general, Cu is relatively enriched at the stratigraphic base and in the center of the deposit, whereas Zn is enriched upsection and at the outer margins. Some of the Zn-rich ore exhibits primary mineralogical layering. Parts of the West and Western Anomaly lenses show two layers with Cu-rich bases and Zn-rich tops. The massive sulfide is typically 10-40-m thick; one area along the margin of the main lenses is over 130-m thick and may represent deposition adjacent to a syn-depositional fault. The main sulfide phases are pyrite, pyrrhotite, chalcopyrite, sphalerite, and galena, with tetrahedrite as the most abundant trace phase. Gahnite is ubiquitous in the chlorite-rich assemblages adjacent to the ore lenses. The average base, precious and trace metal contents estimated from Cu and Zn concentrates, and from millhead grades and recoveries. Metals easily transported as chloride and bisulfide complexes in hydrothermal fluids including: Pb, Ag, In, Cu, Cd, Au, and Zn are enriched by 1.5-2.5 orders of magnitude in comparison to the bulk continental crust. Other elements such as Sn, Mo, and As are at near-crustal concentrations, whereas Mn, Ga, and Co are significantly depleted in comparison to the crust. Calculated metal concentrations in the average hydrothermal fluid based on the average metal contents are comparable to, or higher than

  6. Bio-orthogonal "click-and-release" donation of caged carbonyl sulfide (COS) and hydrogen sulfide (H2S).

    Science.gov (United States)

    Steiger, Andrea K; Yang, Yang; Royzen, Maksim; Pluth, Michael D

    2017-01-24

    Hydrogen sulfide (H2S) is an important biomolecule with high therapeutic potential. Here we leverage the inverse-electron demand Diels-Alder (IEDDA) click reaction between a thiocarbamate-functionalized trans-cyclooctene and a tetrazine to deliver carbonyl sulfide (COS), which is quickly converted to H2S by the uniquitous enzyme carbonic anhydrase (CA), thus providing a new strategy for bio-orthogonal COS/H2S donation.

  7. Hydrogen Sulfide--Mechanisms of Toxicity and Development of an Antidote.

    Science.gov (United States)

    Jiang, Jingjing; Chan, Adriano; Ali, Sameh; Saha, Arindam; Haushalter, Kristofer J; Lam, Wai-Ling Macrina; Glasheen, Megan; Parker, James; Brenner, Matthew; Mahon, Sari B; Patel, Hemal H; Ambasudhan, Rajesh; Lipton, Stuart A; Pilz, Renate B; Boss, Gerry R

    2016-02-15

    Hydrogen sulfide is a highly toxic gas-second only to carbon monoxide as a cause of inhalational deaths. Its mechanism of toxicity is only partially known, and no specific therapy exists for sulfide poisoning. We show in several cell types, including human inducible pluripotent stem cell (hiPSC)-derived neurons, that sulfide inhibited complex IV of the mitochondrial respiratory chain and induced apoptosis. Sulfide increased hydroxyl radical production in isolated mouse heart mitochondria and F2-isoprostanes in brains and hearts of mice. The vitamin B12 analog cobinamide reversed the cellular toxicity of sulfide, and rescued Drosophila melanogaster and mice from lethal exposures of hydrogen sulfide gas. Cobinamide worked through two distinct mechanisms: direct reversal of complex IV inhibition and neutralization of sulfide-generated reactive oxygen species. We conclude that sulfide produces a high degree of oxidative stress in cells and tissues, and that cobinamide has promise as a first specific treatment for sulfide poisoning.

  8. Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling?

    Science.gov (United States)

    Bouillaud, Frédéric; Blachier, François

    2011-07-15

    Sulfide is a molecule with toxicity comparable to that of cyanide. It inhibits mitochondrial cytochrome oxidase at submicromolar concentrations. However, at even lower concentrations, sulfide is a substrate for the mitochondrial electron transport chain in mammals, and is comparable to succinate. This oxidation involves a sulfide quinone reductase. Sulfide is thus oxidized before reaching a toxic concentration, which explains why free sulfide concentrations are very low in mammals, even though sulfide is constantly released as a result of cellular metabolism. It has been suggested that sulfide has signaling properties in mammals like two other gases, NO and CO, which are also cytochrome oxidase inhibitors. The oxidation of sulfide by mitochondria creates further complexity in the description/use of sulfide signaling in mammals. In fact, in the many studies reported in the literature, the sulfide concentrations that have been used were well within the range that affects mitochondrial activity. This review focuses on the relevance of sulfide bioenergetics to sulfide biology and discusses the case of colonocytes, which are routinely exposed to higher sulfide concentrations. Finally, we offer perspectives for future studies on the relationship between the two opposing aspects of this Janus-type molecule, sulfide.

  9. H2S exposure elicits differential expression of candidate genes in fish adapted to sulfidic and non-sulfidic environments.

    Science.gov (United States)

    Tobler, Michael; Henpita, Chathurika; Bassett, Brandon; Kelley, Joanna L; Shaw, Jennifer H

    2014-09-01

    Disentangling the effects of plasticity, genetic variation, and their interactions on organismal responses to environmental stressors is a key objective in ecological physiology. We quantified the expression of five candidate genes in response to hydrogen sulfide (H2S) exposure in fish (Poecilia mexicana, Poeciliidae) from a naturally sulfide-rich environment as well as an ancestral, non-sulfidic population to test for constitutive and environmentally dependent population differences in gene expression patterns. Common garden raised individuals that had never encountered environmental H2S during their lifetime were subjected to short or long term H2S exposure treatments or respective non-sulfidic controls. The expression of genes involved in responses to H2S toxicity (cytochrome c oxidase, vascular endothelial growth factor, and cytochrome P450-2J6), H2S detoxification (sulfide:quinone oxidoreductase), and endogenous H2S production (cystathionine γ lyase) was determined in both gill and liver tissues by real time PCR. The results indicated complex changes in expression patterns that--depending on the gene--not only differed between organs and populations, but also on the type of H2S exposure. Populations differences, both constitutive and H2S exposure dependent (i.e., plastic), in gene expression were particularly evident for sulfide:quinone oxidoreductase, vascular endothelial growth factor, and to a lesser degree for cytochrome P450-2J6. Our study uncovered putatively adaptive modifications in gene regulation that parallel previously documented adaptive changes in phenotypic traits.

  10. Detection of thiol modifications by hydrogen sulfide.

    Science.gov (United States)

    Williams, E; Pead, S; Whiteman, M; Wood, M E; Wilson, I D; Ladomery, M R; Teklic, T; Lisjak, M; Hancock, J T

    2015-01-01

    Hydrogen sulfide (H2S) is an important gasotransmitter in both animals and plants. Many physiological events, including responses to stress, have been suggested to involve H2S, at least in part. On the other hand, numerous responses have been reported following treatment with H2S, including changes in the levels of antioxidants and the activities of transcription factors. Therefore, it is important to understand and unravel the events that are taking place downstream of H2S in signaling pathways. H2S is known to interact with other reactive signaling molecules such as reactive oxygen species (ROS) and nitric oxide (NO). One of the mechanisms by which ROS and NO have effects in a cell is the modification of thiol groups on proteins, by oxidation or S-nitrosylation, respectively. Recently, it has been reported that H2S can also modify thiols. Here we report a method for the determination of thiol modifications on proteins following the treatment with biological samples with H2S donors. Here, the nematode Caenorhabditis elegans is used as a model system but this method can be used for samples from other animals or plants.

  11. Hydrogen Sulfide and Cellular Redox Homeostasis

    Directory of Open Access Journals (Sweden)

    Zhi-Zhong Xie

    2016-01-01

    Full Text Available Intracellular redox imbalance is mainly caused by overproduction of reactive oxygen species (ROS or weakness of the natural antioxidant defense system. It is involved in the pathophysiology of a wide array of human diseases. Hydrogen sulfide (H2S is now recognized as the third “gasotransmitters” and proved to exert a wide range of physiological and cytoprotective functions in the biological systems. Among these functions, the role of H2S in oxidative stress has been one of the main focuses over years. However, the underlying mechanisms for the antioxidant effect of H2S are still poorly comprehended. This review presents an overview of the current understanding of H2S specially focusing on the new understanding and mechanisms of the antioxidant effects of H2S based on recent reports. Both inhibition of ROS generation and stimulation of antioxidants are discussed. H2S-induced S-sulfhydration of key proteins (e.g., p66Shc and Keap1 is also one of the focuses of this review.

  12. Hydrogen Sulfide and Cellular Redox Homeostasis

    Science.gov (United States)

    Xie, Zhi-Zhong; Liu, Yang; Bian, Jin-Song

    2016-01-01

    Intracellular redox imbalance is mainly caused by overproduction of reactive oxygen species (ROS) or weakness of the natural antioxidant defense system. It is involved in the pathophysiology of a wide array of human diseases. Hydrogen sulfide (H2S) is now recognized as the third “gasotransmitters” and proved to exert a wide range of physiological and cytoprotective functions in the biological systems. Among these functions, the role of H2S in oxidative stress has been one of the main focuses over years. However, the underlying mechanisms for the antioxidant effect of H2S are still poorly comprehended. This review presents an overview of the current understanding of H2S specially focusing on the new understanding and mechanisms of the antioxidant effects of H2S based on recent reports. Both inhibition of ROS generation and stimulation of antioxidants are discussed. H2S-induced S-sulfhydration of key proteins (e.g., p66Shc and Keap1) is also one of the focuses of this review. PMID:26881033

  13. Mercury Sulfide Dimorphism in Thioarsenate Glasses.

    Science.gov (United States)

    Kassem, M; Sokolov, A; Cuisset, A; Usuki, T; Khaoulani, S; Masselin, P; Le Coq, D; Neuefeind, J C; Feygenson, M; Hannon, A C; Benmore, C J; Bychkov, E

    2016-06-16

    Crystalline mercury sulfide exists in two drastically different polymorphic forms in different domains of the P,T-diagram: red chain-like insulator α-HgS, stable below 344 °C, and black tetrahedral narrow-band semiconductor β-HgS, stable at higher temperatures. Using pulsed neutron and high-energy X-ray diffraction, we show that these two mercury bonding patterns are present simultaneously in mercury thioarsenate glasses HgS-As2S3. The population and interconnectivity of chain-like and tetrahedral dimorphous forms determine both the structural features and fundamental glass properties (thermal, electronic, etc.). DFT simulations of mercury species and RMC modeling of high-resolution diffraction data provide additional details on local Hg environment and connectivity implying the (HgS2/2)m oligomeric chains (1 ≤ m ≤ 6) are acting as a network former while the HgS4/4-related mixed agglomerated units behave as a modifier.

  14. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs.

    Science.gov (United States)

    Klatt, Judith M; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    2015-09-01

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2 S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2 S: (i) H2 S accelerated the recovery of photosynthesis after prolonged exposure to darkness and anoxia. We suggest that this is possibly due to regulatory effects of H2 S on photosystem I components and/or on the Calvin cycle. (ii) H2 S concentrations of up to 210 μM temporarily enhanced the photosynthetic rates at low irradiance. Modelling showed that this enhancement is plausibly based on changes in the light-harvesting efficiency. (iii) Above a certain light-dependent concentration threshold H2 S also acted as an inhibitor. Intriguingly, this inhibition was not instant but occurred only after a specific time interval that decreased with increasing light intensity. That photosynthesis is most sensitive to inhibition at high light intensities suggests that H2 S inactivates an intermediate of the oxygen evolving complex that accumulates with increasing light intensity. We discuss the implications of these three effects of H2 S in the context of cyanobacterial photosynthesis under conditions with diurnally fluctuating light and H2 S concentrations, such as those occurring in microbial mats and biofilms. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Carbonyl sulfide and dimethyl sulfide exchange between lawn and the atmosphere

    Science.gov (United States)

    Geng, Chunmei; Mu, Yujing

    2004-06-01

    The exchange of carbonyl sulfide (COS) between lawn and the atmosphere was investigated by using a static enclosure under natural field conditions. The results indicated that the lawn acted as a sink for atmospheric COS and a source of dimethyl sulfide (DMS). The exchange fluxes of COS and DMS ranged between -3.24 pmol m-2 s-1 and -94.52 pmol m-2 s-1, and between 0 and 3.14 pmol m-2 s-1, respectively. The lawn was capable of continuously absorbing COS in nighttime as well as in daytime. The COS fluxes depended strongly on the ambient COS mixing ratios. The dependency of DMS emission fluxes on temperature was observed in November 2002. Soil also acted as a sink for COS during our study. However, the COS exchange fluxes of the lawn were much higher than that of the soil. The average COS and DMS fluxes were much higher in spring than in autumn and in summer. The daytime vertical profiles of COS also indicated that the lawn acted as a net sink for COS.

  16. Nonmixing layers

    Science.gov (United States)

    Gaillard, Pierre; Giovangigli, Vincent; Matuszewski, Lionel

    2016-12-01

    We investigate the impact of nonideal diffusion on the structure of supercritical cryogenic binary mixing layers. This situation is typical of liquid fuel injection in high-pressure rocket engines. Nonideal diffusion has a dramatic impact in the neighborhood of chemical thermodynamic stability limits where the components become quasi-immiscible and ultimately form a nonmixing layer. Numerical simulations are performed for mixing layers of H2 and N2 at a pressure of 100 atm and temperature around 120-150 K near chemical thermodynamic stability limits.

  17. Direct Growth of MoS₂/h-BN Heterostructures via a Sulfide-Resistant Alloy.

    Science.gov (United States)

    Fu, Lei; Sun, Yangyong; Wu, Nian; Mendes, Rafael G; Chen, Linfeng; Xu, Zhen; Zhang, Tao; Rümmeli, Mark H; Rellinghaus, Bernd; Pohl, Darius; Zhuang, Lin; Fu, Lei

    2016-02-23

    Improved properties arise in transition metal dichalcogenide (TMDC) materials when they are stacked onto insulating hexagonal boron nitride (h-BN). Therefore, the scalable fabrication of TMDCs/h-BN heterostructures by direct chemical vapor deposition (CVD) growth is highly desirable. Unfortunately, to achieve this experimentally is challenging. Ideal substrates for h-BN growth, such as Ni, become sulfides during the synthesis process. This leads to the decomposition of the pregrown h-BN film, and thus no TMDCs/h-BN heterostructure forms. Here, we report a thoroughly direct CVD approach to obtain TMDCs/h-BN vertical heterostructures without any intermediate transfer steps. This is attributed to the use of a nickel-based alloy with excellent sulfide-resistant properties and a high catalytic activity for h-BN growth. The strategy enables the direct growth of single-crystal MoS2 grains of up to 200 μm(2) on h-BN, which is approximately 1 order of magnitude larger than that in previous reports. The direct band gap of our grown single-layer MoS2 on h-BN is 1.85 eV, which is quite close to that for free-standing exfoliated equivalents. This strategy is not limited to MoS2-based heterostructures and so allows the fabrication of a variety of TMDCs/h-BN heterostructures, suggesting the technique has promise for nanoelectronics and optoelectronic applications.

  18. Environmental factors controlling fluxes of dimethyl sulfide in a New Hampshire fen

    Science.gov (United States)

    Demello, William Zamboni; Hines, Mark E.

    1992-01-01

    The major environmental factors controlling fluxes of dimethyl sulfide (DMS) in a Sphagnum-dominated peatland were investigated in a poor fen in New Hampshire. DMS emissions from the surface of the peatland varied greatly over 24 hours and seasonally. Maximum DMS emissions occurred in summer with minima in the late fall. Temperature was the major environmental factor controlling these variabilities. There was also some evidence that the changes in water table height might have contributed to the seasonable variability in DMS emission. The influence of the water table was greater during periods of elevated temperature. DMS and MSH were the most abundant dissolved volatile sulfur compound (VSC) in the surface of the water table. Concentrations of dissolved VSC's varied with time and space throughout the fen. Dissolved MDS, MSH, and OCS in the surface of the water table were supersaturated with respect to their concentrations in the atmosphere suggesting that the peat surface was a source of VSC's in the peatland. VCS in peatlands seemed to be produced primarily by microbial processes in the anoxic surface layers of the peat rich in organic matter and inorganic sulfide. Sphagnum mosses were not a direct source of VSC's. However, they increased transport of DMS from the peat surface to the atmosphere.

  19. Sulfide anion interaction with Cu(100) and Cu modified Au(100): An electrochemical STM study

    Energy Technology Data Exchange (ETDEWEB)

    Schlaup, Christian; Spaenig, Alexander; Wandelt, Klaus [Institute of Physical and Theoretical Chemistry, University of Bonn (Germany); Broekmann, Peter [Department of Chemistry and Biochemistry, University of Berne Berne (Switzerland)

    2010-02-15

    We describe the formation of thin copper sulfide semiconductor films under electrochemical conditions. In a first step we investigated the fundamental interaction of the Cu(100) surface with a sulfide anions containing electrolyte. Beside the classical p(2 x 2)-S and c(2 x 6)-S adlayer phases we found the formation of a closer packed ''pseudo-c(2 x 2)''-S phase accompanied by an expansion of the topmost copper layer. For a further investigation of this ''pseudo-c(2 x 2)''-S phase, we switched from the bulk Cu(100) electrode to a copper monolayer on a Au(100) electrode, which can be easily prepared using copper underpotential deposition. Since such a copper monolayer is pseudomorphic to the Au(100) surface and therefore expanded by 12.5% with respect to the bulk Cu(100)-plane, exclusively a commensurate c(2 x 2)-S structure is instantaneously formed and remains stable over a wide potential range. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Zinc sulfide thin films deposited by RF reactive sputtering for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Shao Lexi; Chang, K.-H.; Hwang, H.-L

    2003-05-15

    Zinc sulfide (ZnS) thin films with nano-scale grains of about 50 nm were deposited on glass substrates at a substrate temperature of 200 deg. C via RF reactive sputtering by using zinc plate target and hydrogen sulfide gas. The structure, compositions, electrical and optical characteristics of the deposited films were investigated for the photovoltaic device applications. All films showed a near stoichiometric composition as indicated in their AES data. Distinct single crystalline phase with preferential orientation along the (0 0 0 1) plane of wurtzite or the (1 1 1) plane of zinc blende (ZB) was revealed in their X-ray diffraction (XRD) patterns, and the spacing of the planes are well matched to those of (1 1 2) plane of the chalcopyrite CuInS{sub 2} (CIS). UV-Vis measurement showed that the films had more than 65% transmittance in the wavelength larger than 350 nm, and the fundamental absorption edge shifted to shorter wavelength with the increase of sulfur incorporated in the films, which corresponds to an increase in the energy band gap ranging from 3.59 to 3.72 eV. It was found that ZnS films are suitable for use as the buffer layer of the CIS solar cells, and it is the viable alternative for replacing CdS in the photovoltaic cell structure.

  1. Microbial control of hydrogen sulfide production in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M.J.; Wofford, N.Q. [Univ. of Oklahoma, Norman, OK (United States); Sublette, K.L. [Univ. of Tulsa, OK (United States)

    1996-12-31

    The ability of a sulfide- and glutaraldehyde-tolerant strain of Thiobacillus denitrificans (strain F) to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa natural gas storage facility was investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F, and the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200-460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70-110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate, and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3800 pM, and then decreased to about 1100 {mu}M after 5 wk. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160-330 {mu}M. Nitrate consumption (5 mM) and high concentrations (101-1011 cells/mL) of strain F were detected in the test core system. An accumulation of biomass occurred in the influent lines during 2 mo of continuous operation, but only a small increase in injection pressure was observed. These studies showed that inoculation with strain F was needed for effective control of sulfide production, and that significant plugging or loss of injectivity owing to microbial inoculation did not occur. 7 refs., 3 figs., 1 tab.

  2. Species-specific enzymatic tolerance of sulfide toxicity in plant roots.

    Science.gov (United States)

    Martin, Nicole M; Maricle, Brian R

    2015-03-01

    Toxic effects of sulfide come from a poisoning of a number of enzymes, especially cytochrome c oxidase, which catalyzes the terminal step in mitochondrial aerobic respiration. Despite this, some estuarine plants live in sulfide-rich sediments. We hypothesized estuarine and flooding-tolerant species might be more tolerant of sulfide compared to upland species, and this was tested by measures of root cytochrome c oxidase and alcohol dehydrogenase activities in extracts exposed to sulfide. Enzyme activities were measured in 0, 5, 10, 15, and 20 μM sodium sulfide, and compared among 17 species of plants. Activities of alcohol dehydrogenase and cytochrome c oxidase were both reduced by increasing sulfide concentration, but cytochrome c oxidase was more sensitive to sulfide compared to alcohol dehydrogenase. Activities of cytochrome c oxidase were reduced to near zero at 5-10 μM sulfide whereas alcohol dehydrogenase activities were only reduced by about 50% at 10 μM sulfide. All species were sensitive to increasing sulfide, but to different degrees. Cytochrome c oxidase in flooding-sensitive species was decreased to near zero activity at 5 μM sulfide, whereas activities in some flooding-tolerant species were still detectable until 15 μM sulfide. Cytochrome c oxidase activities in some estuarine species were low even in the absence of sulfide, perhaps an adaptation to avoid sulfide vulnerability in their native, sulfide-rich habitat. This illustrates the potent metabolic effects of sulfide, and this is the first demonstration of varying sensitivities of cytochrome c oxidase to sulfide across organisms, making these data of novel importance.

  3. Influence of dissolved organic matter on the complexation of mercury under sulfidic conditions.

    Science.gov (United States)

    Miller, Carrie L; Mason, Robert P; Gilmour, Cynthia C; Heyes, Andrew

    2007-04-01

    The complexation of Hg under sulfidic conditions influences its bioavailability for microbial methylation. Neutral dissolved Hg-sulfide complexes are readily available to Hg-methylating bacteria in culture, and thermodynamic models predict that inorganic Hg-sulfide complexes dominate dissolved Hg speciation under natural sulfidic conditions. However, these models have not been validated in the field. To examine the complexation of Hg in natural sulfidic waters, octanol/water partitioning methods were modified for use under environmentally relevant conditions, and a centrifuge ultrafiltration technique was developed. These techniques demonstrated much lower concentrations of dissolved Hg-sulfide complexes than predicted. Furthermore, the study revealed an interaction between Hg, dissolved organic matter (DOM), and sulfide that is not captured by current thermodynamic models. Whereas Hg forms strong complexes with DOM under oxic conditions, these complexes had not been expected to form in the presence of sulfide because of the stronger affinity of Hg for sulfide relative to its affinity for DOM. The observed interaction between Hg and DOM in the presence of sulfide likely involves the formation of a DOM-Hg-sulfide complex or results from the hydrophobic partitioning of neutral Hg-sulfide complexes into the higher-molecular-weight DOM. An understanding of the mechanism of this interaction and determination of complexation coefficients for the Hg-sulfide-DOM complex are needed to adequately assess how our new finding affects Hg bioavailability, sorption, and flux.

  4. Volcanic-hosted massive sulfide deposits in the Murchison greenstone belt, South Africa

    Science.gov (United States)

    Schwarz-Schampera, Ulrich; Terblanche, Hennie; Oberthür, Thomas

    2010-02-01

    The Archean Murchison greenstone belt, Limpopo Province, South Africa, represents a rifted epicontinental arc sequence containing the largest volcanic-hosted massive sulfide (VMS) district in Southern Africa. The so-called Cu-Zn line is host to 12 deposits of massive sulfide mineralization including: Maranda J, LCZ, Romotshidi, Mon Desir, Solomons, and Mashawa with a total tonnage of three million metric tons of very high grade Zn, subordinate Cu, and variable Pb and Au ore. The deposits developed during initial phases of highly evolved felsic volcanism between 2,974.8 ± 3.6 and 2,963.2 ± 6.4 Ma and are closely associated with quartz porphyritic rhyolite domes. Elevated heat supply ensured regional hydrothermal convection along the entire rift. Recurrent volcanism resulted in frequent disruption of hydrothermal discharge and relative short-lived episodes of hydrothermal activity, probably responsible for the small size of the deposits. Stable thermal conditions led to the development of mature hydrothermal vent fields from focused fluid discharge and sulfide precipitation within thin layers of felsic volcaniclastic rocks. Two main ore suites occur in the massive sulfide deposits of the “Cu-Zn line”: (1) a low-temperature venting, polymetallic assemblage of Zn, Pb, Sb, As, Cd, Te, Bi, Sn, ±In, ±Au, ±Mo occurring in the pyrite- and sphalerite-dominated ore types and (2) a higher temperature suite of Cu, Ag, Au, Se, In, Co, Ni is associated with chalcopyrite-bearing ores. Sphalerite ore, mineralogy, and geochemical composition attest to hydrothermal activity at relatively low temperatures of ≤250 °C for the entire rift, with short-lived pulses of higher temperature upflow, reflected by proportions of Zn-rich versus Cu-rich deposits. Major- and trace-metal composition of the deposits and Pb isotope signatures reflect the highly evolved felsic source rock composition. Geological setting, host rock composition, and metallogenesis share many similarities not

  5. Solubility and permeation of hydrogen sulfide in lipid membranes.

    Directory of Open Access Journals (Sweden)

    Ernesto Cuevasanta

    Full Text Available Hydrogen sulfide (H(2S is mainly known for its toxicity but has recently been shown to be produced endogenously in mammalian tissues and to be associated with physiological regulatory functions. To better understand the role of biomembranes in modulating its biological distribution and effects; we measured the partition coefficient of H(2S in models of biological membranes. The partition coefficients were found to be 2.1±0.2, 1.9±0.5 and 2.0±0.6 in n-octanol, hexane and dilauroylphosphatidylcholine liposome membranes relative to water, respectively (25°C. This two-fold higher concentration of H(2S in the membrane translates into a rapid membrane permeability, P(m = 3 cm s(-1. We used a mathematical model in three dimensions to gain insight into the diffusion of total sulfide in tissues. This model shows that the sphere of action of sulfide produced by a single cell expands to involve more than 200 neighboring cells, and that the resistance imposed by lipid membranes has a significant effect on the diffusional spread of sulfide at pH 7.4, increasing local concentrations. These results support the role of hydrogen sulfide as a paracrine signaling molecule and reveal advantageous pharmacokinetic properties for its therapeutic applications.

  6. Solubility and permeation of hydrogen sulfide in lipid membranes.

    Science.gov (United States)

    Cuevasanta, Ernesto; Denicola, Ana; Alvarez, Beatriz; Möller, Matías N

    2012-01-01

    Hydrogen sulfide (H(2)S) is mainly known for its toxicity but has recently been shown to be produced endogenously in mammalian tissues and to be associated with physiological regulatory functions. To better understand the role of biomembranes in modulating its biological distribution and effects; we measured the partition coefficient of H(2)S in models of biological membranes. The partition coefficients were found to be 2.1±0.2, 1.9±0.5 and 2.0±0.6 in n-octanol, hexane and dilauroylphosphatidylcholine liposome membranes relative to water, respectively (25°C). This two-fold higher concentration of H(2)S in the membrane translates into a rapid membrane permeability, P(m) = 3 cm s(-1). We used a mathematical model in three dimensions to gain insight into the diffusion of total sulfide in tissues. This model shows that the sphere of action of sulfide produced by a single cell expands to involve more than 200 neighboring cells, and that the resistance imposed by lipid membranes has a significant effect on the diffusional spread of sulfide at pH 7.4, increasing local concentrations. These results support the role of hydrogen sulfide as a paracrine signaling molecule and reveal advantageous pharmacokinetic properties for its therapeutic applications.

  7. Chemical dosing for sulfide control in Australia: An industry survey.

    Science.gov (United States)

    Ganigue, Ramon; Gutierrez, Oriol; Rootsey, Ray; Yuan, Zhiguo

    2011-12-01

    Controlling sulfide (H(2)S) production and emission in sewer systems is critical due to the corrosion and malodour problems that sulfide causes. Chemical dosing is one of the most commonly used measures to mitigate these problems. Many chemicals have been reported to be effective for sulfide control, but the extent of success varies between chemicals and is also dependent on how they are applied. This industry survey aims to summarise the current practice in Australia with the view to assist the water industry to further improve their practices and to identify new research questions. Results showed that dosing is mainly undertaken in pressure mains. Magnesium hydroxide, sodium hydroxide and nitrate are the most commonly used chemicals for sewers with low flows. In comparison, iron salts are preferentially used for sulfide control in large systems. The use of oxygen injection has declined dramatically in the past few years. Chemical dosing is mainly conducted at wet wells and pumping stations, except for oxygen, which is injected into the pipe. The dosing rates are normally linked to the control mechanisms of the chemicals and the dosing locations, with constant or profiled dosing rates usually applied. Finally, key opportunities for improvement are the use of mathematical models for the selection of chemicals and dosing locations, on-line dynamic control of the dosing rates and the development of more cost-effective chemicals for sulfide control.

  8. Do garlic-derived allyl sulfides scavenge peroxyl radicals?

    Science.gov (United States)

    Amorati, Riccardo; Pedulli, Gian Franco

    2008-03-21

    The chain-breaking antioxidant activities of two garlic-derived allyl sulfides, i.e. diallyl disulfide (1), the main component of steam-distilled garlic oil, and allyl methyl sulfide (3) were evaluated by studying the thermally initiated autoxidation of cumene or styrene in their presence. Although the rate of cumene oxidation was reduced by addition of both 1 and 3, the dependence on the concentration of the two sulfides could not be explained on the basis of the classic antioxidant mechanism as with phenolic antioxidants. The rate of oxidation of styrene, on the other hand, did not show significant changes upon addition of either 1 or 3. This unusual behaviour was explained in terms of the co-oxidant effect, consisting in the decrease of the autoxidation rate of a substrate forming tertiary peroxyl radicals (i.e. cumene) upon addition of little amounts of a second oxidizable substrate giving rise instead to secondary peroxyl radicals. The relevant rate constants for the reaction of ROO(.) with 1 and 3 were measured as 1.6 and 1.0 M(-1) s(-1), respectively, fully consistent with the H-atom abstraction from substituted sulfides. It is therefore concluded that sulfides 1 and 3 do not scavenge peroxyl radicals and therefore cannot be considered chain-breaking antioxidants.

  9. Metal sulfide coated multiwalled carbon nanotubes synthesized by an in situ method and their optical limiting properties

    Science.gov (United States)

    Wu, Hui-Xia; Cao, Wei-Man; Chen, Qiang; Liu, Miao-Miao; Qian, Shi-Xiong; Jia, Neng-Qin; Yang, Hong; Yang, Shi-Ping

    2009-05-01

    A metal sulfide such as ZnS, CdS, Ag2S or PbS was coated on the sidewall of multiwalled carbon nanotubes (MWCNTs) by an in situ wet chemical synthesis approach via noncovalent functionalization of MWCNTs with a polyelectrolyte (polyethylenimine or poly(diallyldimethylammonium chloride)) without causing significant electronic and structural modification of the carbon nanotubes. Extensive characterizations of the fabricated nanocomposites have been performed using x-ray diffraction, transmission electron microscopy (TEM), high resolution TEM, energy dispersive x-ray spectroscopy, selected area electron diffraction, thermal gravimetric analysis, Fourier transform IR spectra, UV-vis spectra and x-ray photoelectron spectroscopy. The coating layers were composed of metal sulfide nanoparticles with a mean size of less than 10 nm. The optical limiting property measurements for some metal sulfide coated MWCNTs were carried out by the open-aperture z-scan technique. The results demonstrate that the samples suspended in water showed optical limiting behavior better than that of purified MWCNTs.

  10. Electrical properties of seafloor massive sulfides

    Science.gov (United States)

    Spagnoli, Giovanni; Hannington, Mark; Bairlein, Katharina; Hördt, Andreas; Jegen, Marion; Petersen, Sven; Laurila, Tea

    2016-06-01

    Seafloor massive sulfide (SMS) deposits are increasingly seen as important marine metal resources for the future. A growing number of industrialized nations are involved in the surveying and sampling of such deposits by drilling. Drill ships are expensive and their availability can be limited; seabed drill rigs are a cost-effective alternative and more suitable for obtaining cores for resource evaluation. In order to achieve the objectives of resource evaluations, details are required of the geological, mineralogical, and physical properties of the polymetallic deposits and their host rocks. Electrical properties of the deposits and their ore minerals are distinct from their unmineralized host rocks. Therefore, the use of electrical methods to detect SMS while drilling and recovering drill cores could decrease the costs and accelerate offshore operations by limiting the amount of drilling in unmineralized material. This paper presents new data regarding the electrical properties of SMS cores that can be used in that assessment. Frequency-dependent complex electrical resistivity in the frequency range between 0.002 and 100 Hz was examined in order to potentially discriminate between different types of fresh rocks, alteration and mineralization. Forty mini-cores of SMS and unmineralized host rocks were tested in the laboratory, originating from different tectonic settings such as the intermediate-spreading ridges of the Galapagos and Axial Seamount, and the Pacmanus back-arc basin. The results indicate that there is a clear potential to distinguish between mineralized and non-mineralized samples, with some evidence that even different types of mineralization can be discriminated. This could be achieved using resistivity magnitude alone with appropriate rig-mounted electrical sensors. Exploiting the frequency-dependent behavior of resistivity might amplify the differences and further improve the rock characterization.

  11. Hydrogen sulfide and nervous system regulation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Cheng-fang; TANG Xiao-qing

    2011-01-01

    Objective This review discusses the current status and progress in studies on the roles of hydrogen sulfide (H2S) in regulation of neurotoxicity,neuroprotection,and neuromodulator,as well as its therapeutic potential for neurodegenerative disorders.Data sources The data used in this review were mainly from Medline and PubMed published in English from 2001 to August 2011.The search terms were “hydrogen sulfide”,“neuron”,and “neurodegenerative disorders”.Study selection Articles regarding the regulation of neuronal function,the protection against neuronal damage and neurological diseases,and their possible cellular and molecular mechanisms associated with H2S were selected.Results The inhibited generation of endogenous H2S is implicated in 1-methy-4-phenylpyridinium ion,6-OHDA,and homocysteine-triggered neurotoxicity.H2S elicits neuroprotection in Alzheimer's disease and Parkinson's disease models as well as protecting neurons against oxidative stress,ischemia,and hypoxia-induced neuronal death.H2S offers anti-oxidant,anti-inflammatory and anti-apoptotic effects,as well as activates ATP-sensitive potassium channels and cystic fibrosis transmembrane conductance regulator Cl- channels.H2S regulates the long-term potentiation (LTP) and GABAB receptors in the hippocampus,as well as intracellular calcium and pH homeostasis in neurons and glia cells.Conclusions These articles suggest that endogenous H2S may regulate the toxicity of neurotoxin.H2S not only acts as a neuroprotectant but also serves as a novel neuromodulator.

  12. Interaction of hydrogen sulfide with ion channels.

    Science.gov (United States)

    Tang, Guanghua; Wu, Lingyun; Wang, Rui

    2010-07-01

    1. Hydrogen sulfide (H(2)S) is a signalling gasotransmitter. It targets different ion channels and receptors, and fulfils its various roles in modulating the functions of different systems. However, the interaction of H(2)S with different types of ion channels and underlying molecular mechanisms has not been reviewed systematically. 2. H(2)S is the first identified endogenous gaseous opener of ATP-sensitive K(+) channels in vascular smooth muscle cells. Through the activation of ATP-sensitive K(+) channels, H(2)S lowers blood pressure, protects the heart from ischemia and reperfusion injury, inhibits insulin secretion in pancreatic beta cells, and exerts anti-inflammatory, anti-nociceptive and anti-apoptotic effects. 3. H(2)S inhibited L-type Ca(2+) channels in cardiomyocytes but stimulated the same channels in neurons, thus regulating intracellular Ca(2+) levels. H(2)S activated small and medium conductance K(Ca) channels but its effect on BK(Ca) channels has not been consistent. 4. H(2)S-induced hyperalgesia and pro-nociception seems to be related to the sensitization of both T-type Ca(2+) channels and TRPV(1) channels. The activation of TRPV(1) and TRPA(1) by H(2)S is believed to result in contraction of nonvascular smooth muscles and increased colonic mucosal Cl(-) secretion. 5. The activation of Cl(-) channel by H(2)S has been shown as a protective mechanism for neurons from oxytosis. H(2)S also potentiates N-methyl-d-aspartic acid receptor-mediated currents that are involved in regulating synaptic plasticity for learning and memory. 6. Given the important modulatory effects of H(2)S on different ion channels, many cellular functions and disease conditions related to homeostatic control of ion fluxes across cell membrane should be re-evaluated.

  13. Hydrogen sulfide: metabolism, biological and medical role

    Directory of Open Access Journals (Sweden)

    N. V. Zaichko

    2014-10-01

    Full Text Available Hydrogen sulfide (H2S is a signaling molecule that is actively synthesized in the tissues and is involved in the regulation of vascular tone, neuromodulation, cytoprotection, inflammation and apoptosis. In recent years, new data on animal and human H2S metabolism and function under the effect of various endogenous and exogenous factors, including drugs were collected. This review is provided to introduce generalized information about the main and alternative H2S metabolism and regulation, peculiarities of transport, signaling, biological role and participation in pathogenesis. Submitted data describe H2S content and activity of H2S-synthesizing enzymes in different organs, H2S effect on blood coagulation and platelet aggregation based on our research results. The working classification of H2S metabolism modulators, which are used in biology and medicine, is proposed: 1 agents that increase H2S content in tissues (inorganic and organic H2S donors; H2S-synthesizing enzymes substrates and their derivatives, H2S-releasing drugs; agents that contain H2S-synthesizing enzymes cofactors and activators, agents that inhibit H2S utilization; 2 agents that reduce H2S content in tissues (specific and nonspecific inhibitors of H2S-synthesizing enzymes, 3 agents with uncertain impact on H2S metabolism (some medicines. It was demonstrated that vitamin-microelement and microelement complexes with H2S-synthesizing enzymes cofactors and activators represent a promising approach for H2S content correction in tissues.

  14. Simultaneous removal of sulfide, nitrate and acetate under denitrifying sulfide removal condition: Modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xijun; Chen, Chuan; Wang, Aijie; Guo, Wanqian; Zhou, Xu [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Lee, Duu-Jong, E-mail: djlee@ntu.edu.tw [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Ren, Nanqi, E-mail: rnq@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Chang, Jo-Shu [Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2014-01-15

    Graphical abstract: Model evaluation applied to case study 1: (A-G) S{sup 2−}, NO{sub 3}{sup −}-N, NO{sub 2}{sup −}-N, and Ac{sup −}-C profiles under initial sulfide concentrations of 156.2 (A), 539 (B), 964 (C), 1490 (D), 342.7 (E), 718 (F), and 1140.7 (G) mg L{sup −1}. The solid line represents simulated result and scatter represents experimental result. -- Highlights: • This work developed a mathematical model for DSR process. • Kinetics of sulfur–nitrogen–carbon and interactions between denitrifiers were studied. • Kinetic parameters of the model were estimated via data fitting. • The model described kinetic behaviors of DSR processes over wide parametric range. -- Abstract: Simultaneous removal of sulfide (S{sup 2−}), nitrate (NO{sub 3}{sup −}) and acetate (Ac{sup −}) under denitrifying sulfide removal process (DSR) is a novel biological wastewater treatment process. This work developed a mathematical model to describe the kinetic behavior of sulfur–nitrogen–carbon and interactions between autotrophic denitrifiers and heterotrophic denitrifiers. The kinetic parameters of the model were estimated via data fitting considering the effects of initial S{sup 2−} concentration, S{sup 2−}/NO{sub 3}{sup −}-N ratio and Ac{sup −}-C/NO{sub 3}{sup −}-N ratio. Simulation supported that the heterotrophic denitratation step (NO{sub 3}{sup −} reduction to NO{sub 2}{sup −}) was inhibited by S{sup 2−} compared with the denitritation step (NO{sub 2}{sup −} reduction to N{sub 2}). Also, the S{sup 2−} oxidation by autotrophic denitrifiers was shown two times lower in rate with NO{sub 2}{sup −} as electron acceptor than that with NO{sub 3}{sup −} as electron acceptor. NO{sub 3}{sup −} reduction by autotrophic denitrifiers occurs 3–10 times slower when S{sup 0} participates as final electron donor compared to the S{sup 2−}-driven pathway. Model simulation on continuous-flow DSR reactor suggested that the adjustment of

  15. Hybrid SnO₂/TiO₂ Nanocomposites for Selective Detection of Ultra-Low Hydrogen Sulfide Concentrations in Complex Backgrounds.

    Science.gov (United States)

    Larin, Alexander; Womble, Phillip C; Dobrokhotov, Vladimir

    2016-08-27

    In this paper, we present a chemiresistive metal oxide (MOX) sensor for detection of hydrogen sulfide. Compared to the previous reports, the overall sensor performance was improved in multiple characteristics, including: sensitivity, selectivity, stability, activation time, response time, recovery time, and activation temperature. The superior sensor performance was attributed to the utilization of hybrid SnO₂/TiO₂ oxides as interactive catalytic layers deposited using a magnetron radio frequency (RF) sputtering technique. The unique advantage of the RF sputtering for sensor fabrication is the ability to create ultra-thin films with precise control of geometry, morphology and chemical composition of the product of synthesis. Chemiresistive films down to several nanometers can be fabricated as sensing elements. The RF sputtering technique was found to be very robust for bilayer and multilayer oxide structure fabrication. The geometry, morphology, chemical composition and electronic structure of interactive layers were evaluated in relation to their gas sensing performance, using scanning electron microscopy (SEM), X-ray diffraction technique (XRD), atomic force microscopy (AFM), Energy Dispersive X-ray Spectroscopy (EDAX), UV visible spectroscopy, and Kelvin probe measurements. A sensor based on multilayer SnO₂/TiO₂ catalytic layer with 10% vol. content of TiO₂ demonstrated the best gas sensing performance in all characteristics. Based on the pattern relating material's characteristics to gas sensing performance, the optimization strategy for hydrogen sulfide sensor fabrication was suggested.

  16. Thermodynamics of Complex Sulfide Inclusion Formation in Ca-Treated Al-Killed Structural Steel

    Science.gov (United States)

    Guo, Yin-tao; He, Sheng-ping; Chen, Gu-jun; Wang, Qian

    2016-08-01

    Controlling the morphology of the sulfide inclusion is of vital importance in enhancing the properties of structural steel. Long strip-shaped sulfides in hot-rolled steel can spherize when, instead of the inclusion of pure single-phase MnS, the guest is a complex sulfide, such as an oxide-sulfide duplex and a solid-solution sulfide particle. In this study, the inclusions in a commercial rolled structural steel were investigated. Spherical and elongated oxide-sulfide duplex as well as single-phase (Mn,Ca)S solid solution inclusions were observed in the steel. A thermodynamic equilibrium between the oxide and sulfide inclusions was proposed to understand the oxide-sulfide duplex inclusion formation. Based on the equilibrium solidification principle, thermodynamic discussions on inclusion precipitation during the solidification process were performed for both general and resulfurized structural steel. The predicted results of the present study agreed well with the experimental ones.

  17. Comprehensive Investigation of Silver Nanoparticle/Aluminum Electrodes for Copper Indium Sulfide/Polymer Hybrid Solar Cells

    DEFF Research Database (Denmark)

    Arar, Mario; Pein, Andreas; Haas, Wernfried

    2012-01-01

    Electrode materials are primarily chosen based on their work function to suit the energy levels of the absorber materials. In this paper, we focus on the modification of aluminum cathodes with a thin silver interlayer (2 nm) in copper indium sulfide/poly[(2,7-silafluorene)-alt-(4,7-di-2-thienyl-2...... nanoparticles in an aluminum oxide matrix between the absorber layer and the aluminum cathode. In combination with complementary optical investigations, the origin of the improvement is ascribed to a facilitated charge extraction....

  18. Diffused vs. Focused Flow - Metaproteogenomic Insights into Effects of Hydrothermal Fluid Flow on Metal-Sulfide Chimney Colonizing Biofilms

    Science.gov (United States)

    Pjevac, P.; Markert, S.; Richter, M.; Gruber-Vodicka, H.; Schweder, T.; Amann, R.; Meyerdierks, A.

    2014-12-01

    At many sites of hydrothermal discharge in the deep-sea, the deposition of metal sulfides from hydrothermal fluids leads to the formation of geological structures known as hydrothermal chimneys. The mixing of reduced hydrothermal fluids with oxygenated seawater leads to the formation of steep redox gradients within the chimney walls. These gradients facilitate the co-existence of metabolically diverse microorganisms in the narrow habitable zone of hydrothermal chimney walls. However, the overall composition of chimney-associated microbial community is usually of low complexity and represents an environment suitable for metaomic-based studies. We used metagenomic and metaproteomic tools to compare microbial communities colonizing two metal-sulfide chimneys from the Manus Basin back-arc spreading center in the Bismarck Sea off Papua New Guinea. These chimneys were supplied by the same source hydrothermal fluids, but exhibited different fluid flow regimes. One chimney (RMR5) had a focused venting edifice, while the other (RMR-D) displayed diffuse fluid efflux on its entire outer surface. Although the microbial diversity of both chimneys is similar and dominated by mesophilic Epsilonproteobacteria, our results indicate a strong structuring effect of hydrothermal fluid flow regime on chimney-associated biofilms. The microbial community composition indicates a homogeneous colonization of the diffuse chimney walls. In contrast, the walls of the focused venting chimney appear to be colonized in layers reflecting different temperature tolerances of the dominant microorganisms. Sulfide-oxidation is likely the key metabolism in both chimneys, which is in line with the high sulfide content of the source hydrothermal fluid. However, preliminary metaproteome analysis indicates high activity of low-abundant methanotrophic Bacteria in the diffuser chimney walls. This finding is particularly interesting in light of the very low methane content of the source hydrothermal fluid

  19. Mechanism of sulfide effect on viscosity of HPAM polymer solution

    Institute of Scientific and Technical Information of China (English)

    康万利; 周阳; 王志伟; 孟令伟; 刘述忍; 白宝君

    2008-01-01

    The effect of sulfide on HPAM solution viscosity was studied using BROOKFIELD DV-II viscometer,and the interaction mechanism was discussed.The HPAM solution viscosity was investigated through fully reducing sulfide by the addition of hydrogen peroxide oxidation,and the mechanism of increasing polymer viscosity was investigated.The experimental results also show that there is a critical concentration of 15 mg/L.Below it,the loss rate of HPAM solution viscosity increases more rapidly,but becomes slowly above the critical concentration.A theoretical guidance for oilfields to prepare polymer solution using sewage-water by eliminating sulfide,and it is also importance to prepare polymer solution using sewage-water and save fresh water.

  20. Metal sulfide electrodes and energy storage devices thereof

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Woodford, William Henry; Li, Zheng; Carter, W. Craig

    2017-02-28

    The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.

  1. Altered Sulfide (H2S) Metabolism in Ethylmalonic Encephalopathy

    Science.gov (United States)

    Tiranti, Valeria; Zeviani, Massimo

    2013-01-01

    Hydrogen sulfide (sulfide, H2S) is a colorless, water-soluble gas with a typical smell of rotten eggs. In the past, it has been investigated for its role as a potent toxic gas emanating from sewers and swamps or as a by-product of industrial processes. At high concentrations, H2S is a powerful inhibitor of cytochrome c oxidase; in trace amounts, it is an important signaling molecule, like nitric oxide (NO) and carbon monoxide (CO), together termed “gasotransmitters.” This review will cover the physiological role and the pathogenic effects of H2S, focusing on ethylmalonic encephalopathy, a human mitochondrial disorder caused by genetic abnormalities of sulfide metabolism. We will also discuss the options that are now conceivable for preventing genetically driven chronic H2S toxicity, taking into account that a complete understanding of the physiopathology of H2S has still to be achieved. PMID:23284046

  2. Altered sulfide (H(2)S) metabolism in ethylmalonic encephalopathy.

    Science.gov (United States)

    Tiranti, Valeria; Zeviani, Massimo

    2013-01-01

    Hydrogen sulfide (sulfide, H(2)S) is a colorless, water-soluble gas with a typical smell of rotten eggs. In the past, it has been investigated for its role as a potent toxic gas emanating from sewers and swamps or as a by-product of industrial processes. At high concentrations, H(2)S is a powerful inhibitor of cytochrome c oxidase; in trace amounts, it is an important signaling molecule, like nitric oxide (NO) and carbon monoxide (CO), together termed "gasotransmitters." This review will cover the physiological role and the pathogenic effects of H(2)S, focusing on ethylmalonic encephalopathy, a human mitochondrial disorder caused by genetic abnormalities of sulfide metabolism. We will also discuss the options that are now conceivable for preventing genetically driven chronic H(2)S toxicity, taking into account that a complete understanding of the physiopathology of H(2)S has still to be achieved.

  3. Investigation of chemical suppressants for inactivation of sulfide ores

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to investigate the effective control method of spontaneous combustion in the mining of sulfide ore deposits, This paper presents the testing results of several selected chemicals (water glass, calcium chloride, calcium oxide, magnesium oxide and their composites) as oxidation suppressants for sulfide ores. A weight increment scaling method was used to measure suppressant performance, and this method proved to be accurate, simple and convenient. Based on a large number of experiments, the test results show that four types of chemical mixtures demonstrate a good performance in reducing the oxidation rate of seven active sulfide ore samples by up to 27% to 100% during an initial 76 d period. The mixtures of water glass mixed with calcium chloride and magnesium oxide mixed with calcium chloride can also act as fire suppressants when used with fire sprinkling systems.

  4. Conspicuous veils formed by vibrioid bacteria on sulfidic marine sediment

    DEFF Research Database (Denmark)

    Thar, Roland Matthias; Kühl, Michael

    2002-01-01

    We describe the morphology and behavior of a hitherto unknown bacterial species that forms conspicuous veils (typical dimensions, 30 by 30 mm) on sulfidic marine sediment. The new bacteria were enriched on complex sulfidic medium within a benthic gradient chamber in oxygen-sulfide countergradients......, but the bacteria have so far not been isolated in pure culture, and a detailed characterization of their metabolism is still lacking. The bacteria are colorless, gram-negative, and vibrioid-shaped (1.3- to 2.5- by 4- to 10-µm) cells that multiply by binary division and contain several spherical inclusions of poly......, forming a cohesive whitish veil at the oxic-anoxic interface. Bacteria attached to the veil kept rotating and adapted their stalk lengths dynamically to changing oxygen concentrations. The joint action of rotating bacteria on the veil induced a homogeneous water flow from the oxic water region toward...

  5. Extraction of Nanosized Cobalt Sulfide from Spent Hydrocracking Catalyst

    Directory of Open Access Journals (Sweden)

    Samia A. Kosa

    2013-01-01

    Full Text Available The processes used for the extraction of metals (Co, Mo, and Al from spent hydrotreating catalysts were investigated in this study. A detailed mechanism of the metal extraction process is described. Additionally, a simulation study was performed to understand the sulfidizing mechanism. The suggested separation procedure was effective and achieved an extraction of approximately 80–90%. In addition, the sulfidization mechanism was identified. This sulfidizing process for Co was found to involve an intermediate, the structure of which was proposed. This proposed intermediate was confirmed through simulations. Moreover, the activities of the spent and the regenerated catalyst were examined in the cracking of toluene. The modification of the spent catalyst through the use of different iron oxide loadings improved the catalytic activity.

  6. Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

    2007-09-30

    The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

  7. Weak antilocalization and universal conductance fluctuations in bismuth telluro-sulfide topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Tanuj, E-mail: tanuj@utexas.edu; Sonde, Sushant; Movva, Hema C. P.; Banerjee, Sanjay K., E-mail: banerjee@ece.utexas.edu [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States)

    2016-02-07

    We report on van der Waals epitaxial growth, materials characterization, and magnetotransport experiments in crystalline nanosheets of Bismuth Telluro-Sulfide (BTS). Highly layered, good-quality crystalline nanosheets of BTS are obtained on SiO{sub 2} and muscovite mica. Weak-antilocalization (WAL), electron-electron interaction-driven insulating ground state and universal conductance fluctuations are observed in magnetotransport experiments on BTS devices. Temperature, thickness, and magnetic field dependence of the transport data indicate the presence of two-dimensional surface states along with bulk conduction, in agreement with theoretical models. An extended-WAL model is proposed and utilized in conjunction with a two-channel conduction model to analyze the data, revealing a surface component and evidence of multiple conducting channels. A facile growth method and detailed magnetotransport results indicating BTS as an alternative topological insulator material system are presented.

  8. Electrical bistable characteristics of poly (phenylene sulfide) thin film deposited by thermal evaporation

    Institute of Scientific and Technical Information of China (English)

    GUO XiaoChun; DONG GuiFang; QIU Yong

    2007-01-01

    Poly(phenylene sulfide) (PPS) is a well-known organic insulator. However, the PPS thin film, deposited by thermal evaporation in vacuum, showed electrical bistable characteristics. The structure of the PPS thin-film device was glass/ITO/PPS (300 nm)/Au. The thin film can be converted to a high conductance state by applying a pulse of 80 V (5 s), and brought back to a low conductance state by applying a pulse of 100 V (5 s). This kind of thin film is potential for active layer of a memory device. The critical voltage of the device is about 40 V, while the read-out voltage is 5 V. We tentatively ascribe the bistable phenomenon to the charge transfer from S to C atoms in the PPS molecule chains.

  9. A metal sulfide photocatalyst composed of ubiquitous elements for solar hydrogen production.

    Science.gov (United States)

    Shiga, Y; Umezawa, N; Srinivasan, N; Koyasu, S; Sakai, E; Miyauchi, M

    2016-06-14

    A visible-light-sensitive tin sulfide photocatalyst was designed based on a ubiquitous element strategy and density functional theory (DFT) calculations. Computational analysis suggested that tin monosulfide (SnS) would be more efficient than SnS2 as a photocathode for hydrogen production because of the low ionization potential and weak ionic character of SnS. To test this experimentally, nanoparticles of SnS were loaded onto a mesoporous electrode using a wet chemical method, and the bandgap of the synthesized SnS quantum dots was found to be tunable by adjusting the number of successive ionic layer adsorption and reaction (SILAR) cycles, which controls the magnitude of the quantum confinement effect. Efficient hydrogen production was achieved when the bandgap of SnS was wider than that of the bulk form.

  10. Metal Nanoparticle-Decorated Two-Dimensional Molybdenum Sulfide for Plasmonic-Enhanced Polymer Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Ming-Kai Chuang

    2015-08-01

    Full Text Available Atomically thin two-dimensional (2D transition metal dichalcogenides have also attracted immense interest because they exhibit appealing electronic, optical and mechanical properties. In this work, we prepared gold nanoparticle-decorated molybdenum sulfide (AuNP@MoS2 through a simple spontaneous redox reaction. Transmission electron microscopy, UV-Vis spectroscopy, and Raman spectroscopy were used to characterize the properties of the AuNP@MoS2 nanomaterials. Then we employed such nanocomposites as the cathode buffer layers of organic photovoltaic devices (OPVs to trigger surface plasmonic resonance, leading to noticeable enhancements in overall device efficiencies. We attribute the primary origin of the improvement in device performance to local field enhancement induced by the effects of localized surface plasmonic resonance. Our results suggest that the metal nanoparticle-decorated two-dimensional materials appear to have great potential for use in high-performance OPVs.

  11. Carbonyl sulfide as an inverse tracer for biogenic organic carbon in gas and aerosol phases

    Science.gov (United States)

    de Gouw, J. A.; Warneke, C.; Montzka, S. A.; Holloway, J. S.; Parrish, D. D.; Fehsenfeld, F. C.; Atlas, E. L.; Weber, R. J.; Flocke, F. M.

    2009-03-01

    Carbonyl sulfide (COS) is a long-lived trace gas in the atmosphere with an oceanic source and a surface sink through the uptake by vegetation and soils. We demonstrate the use of COS as an inverse tracer for the impact of biogenic emissions on an air mass including the formation of secondary organic aerosol (SOA). Using airborne data from the summer of 2004 over the northeastern U.S., we find that air masses with reduced COS in the continental boundary layer had on average higher mixing ratios of biogenic VOCs (isoprene, monoterpenes, methanol) and their photo-oxidation products (methacrolein, methyl vinyl ketone, methyl furan and MPAN, a peroxyacyl nitrate derived from isoprene). Measurements of water-soluble organic carbon were only weakly correlated with COS, indicating that SOA formation from biogenic precursors was a small contribution to the total.

  12. Field observations of carbonyl sulfide deficit near the ground: Possible implication of vegetation

    Science.gov (United States)

    Mihalopoulos, N.; Bonsang, B.; Nguyen, B. C.; Kanakidou, M.; Belviso, S.

    In order to study carbonyl sulfide sources and sinks at ground level, two experiments were conducted in 1986 during temperature inversion events. In the first experiment, the samples were collected in a coastal area during land-breeze events. In the second experiment, COS vertical profiles were carried out in an agricultural area, within and above an inversion layer near the ground. Both stable atmospheric situations resulted in a deficit of COS near the ground which is attributed to the existence of a sink of COS at this level. Deposition onto vegetation seems to be the most likely mechanism for this COS uptake, a conclusion in agreement with the results of laboratory and soil flux chambers experiments.

  13. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.

    Science.gov (United States)

    Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-07-15

    The oxidization of metal sulfide in tailings causes acid mine drainage. However, it remains unclear whether vegetation prevents the oxidization of metal sulfides. The oxidization characteristics and microbial indices of the tailings in the presence of various plant species were investigated to explore the effects of vegetation on the oxidization of sulfide minerals in tailings. The pH, reducing sulfur, free iron oxides (Fed), chemical oxygen consumption (COC) and biological oxygen consumption (BOC) were measured. Key iron- and sulfur-oxidizing bacteria (Acidithiobacillus spp., Leptospirillum spp. and Thiobacillus spp.) were quantified using real-time PCR. The results indicate that vegetation growing on tailings can effectively prevent the oxidization of sulfide minerals in tailings. A higher pH and reducing-sulfur content and lower Fed were observed in the 0-30 cm depth interval in the presence of vegetation compared to bare tailings (BT). The COC gradually decreased with depth in all of the soil profiles; specifically, the COC rapidly decreased in the 10-20 cm interval in the presence of vegetation but gradually decreased in the BT profiles. Imperata cylindrica (IC) and Chrysopogon zizanoides (CZ) profiles contained the highest BOC in the 10-20 cm interval. The abundance of key iron- and sulfur-oxidizing bacteria in the vegetated tailings were significantly lower than in the BT; in particular, IC was associated with the lowest iron- and sulfur-oxidizing bacterial abundance. In conclusion, vegetation successfully prevented the oxidization of sulfide minerals in the tailings, and Imperata cylindrica is the most effective in reducing the number of iron- and sulfur-oxidizing bacteria and helped to prevent the oxidization of sulfide minerals in the long term. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Local Structure Analysis of Materials for Solar Cell Absorber Layer

    OpenAIRE

    Jewell, Leila Elizabeth

    2016-01-01

    This dissertation examines solar cell absorber materials that have the potential to replace silicon in solar cells, including several copper-based sulfides and perovskites. Earth-abundant absorbers such as these become even more cost-effective when used in a nanostructured solar cell. Atomic layer deposition (ALD) and chemical vapor deposition (CVD) deposit highly conformal films and hence are important tools for developing extremely thin absorber solar cells with scalability. Thus, the prima...

  15. Morphology and thermal studies of zinc sulfide and cadmium sulfide nanoparticles in polyvinyl alcohol matrix

    Energy Technology Data Exchange (ETDEWEB)

    Osuntokun, Jejenija; Ajibade, Peter A., E-mail: pajibade@ufh.ac.za

    2016-09-01

    Zn(II) and Cd(II) metal complexes of 1-cyano-1-carboethoxyethylene-2,2-dithiolato–κS,S’–bis (N,N-dimethylthiourea–κS) have been synthesized and characterized with analytical and spectroscopic techniques. The complexes were thermolysed in hexadecylamine at 200 °C to prepare ZnS and CdS nanoparticles. The nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM), and powder X-ray diffraction (p-XRD). TEM images showed spherically shaped nanoparticles, whose sizes are in the range 4.33–7.21 nm for ZnS and 4.95–7.7 nm CdS respectively and XRD confirmed cubic crystalline phases for the nanoparticles. The optical band gap energy evaluated from the absorption spectra are 2.88 eV (430 nm) and 2.81 eV (440 nm) for the ZnS and CdS nanoparticles respectively. The as-prepared metal sulfide nanoparticles were further incorporated into polyvinyl alcohol (PVA) to give ZnS/PVA and CdS/PVA composites. The polymer nanocomposites were studied to investigate their morphology and thermal properties relative to the pure PVA. XRD diffractions indicated that the crystalline phases of the nanoparticles and the sizes in PVA matrices remained unaltered. Infra-red spectra studies revealed interactions between the PVA and the metal sulfide nanoparticles and TGA studies show that the ZnS/PVA and CdS/PVA nanocomposites exhibit better thermal stability than the pure PVA.

  16. Morphology and thermal studies of zinc sulfide and cadmium sulfide nanoparticles in polyvinyl alcohol matrix

    Science.gov (United States)

    Osuntokun, Jejenija; Ajibade, Peter A.

    2016-09-01

    Zn(II) and Cd(II) metal complexes of 1-cyano-1-carboethoxyethylene-2,2-dithiolato-κS,S'-bis(N,N-dimethylthiourea-κS) have been synthesized and characterized with analytical and spectroscopic techniques. The complexes were thermolysed in hexadecylamine at 200 °C to prepare ZnS and CdS nanoparticles. The nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM), and powder X-ray diffraction (p-XRD). TEM images showed spherically shaped nanoparticles, whose sizes are in the range 4.33-7.21 nm for ZnS and 4.95-7.7 nm CdS respectively and XRD confirmed cubic crystalline phases for the nanoparticles. The optical band gap energy evaluated from the absorption spectra are 2.88 eV (430 nm) and 2.81 eV (440 nm) for the ZnS and CdS nanoparticles respectively. The as-prepared metal sulfide nanoparticles were further incorporated into polyvinyl alcohol (PVA) to give ZnS/PVA and CdS/PVA composites. The polymer nanocomposites were studied to investigate their morphology and thermal properties relative to the pure PVA. XRD diffractions indicated that the crystalline phases of the nanoparticles and the sizes in PVA matrices remained unaltered. Infra-red spectra studies revealed interactions between the PVA and the metal sulfide nanoparticles and TGA studies show that the ZnS/PVA and CdS/PVA nanocomposites exhibit better thermal stability than the pure PVA.

  17. The Sulfide Capacity of Iron Oxide-Rich Slags

    Science.gov (United States)

    Motlagh, M.

    1988-03-01

    The relationship between the sulfide capacity of slags rich in iron oxide and the sulfur partition ratio between the metal and slag is strongly related to the slag's iron oxide concentration. For slags containing little or no lime, this relationship is linear for a constant concentration of iron oxide in the slag. The effect of silica on changes in the sulfide capacity of slags rich in iron oxide is similar to that of basic steel-making slags, particularly at low activity of silica in slag.

  18. Carbonyl Sulfides as Possible Intermediates in the Photolysis of Oxathiiranes

    DEFF Research Database (Denmark)

    Carlsen, Lars; Snyder, J. P.; Holm, A.

    1981-01-01

    of sulfine to ketone via the oxathiirane and the subsequent blue intermediate implies the absence of triplet and biradical singlet transients. The unknown carbonyl sulfide functionality, R2C&z.dbnd;O&z.dbnd;S, thereby emerges as a strong candidate for producing the visible absorption. Comparison of the wave...... functions for CH2&z.dbnd;S&z.dbnd;O and CH2&z.dbnd;O&z.dbnd;S arising from MNDO limited CI geometry optimizations leads to the conclusion that the carbonyl sulfide structure is best described as a zwitterion rather than as a singlet biradical. The failure to observe cycloaddition products between the blue...

  19. Altered Sulfide (H2S) Metabolism in Ethylmalonic Encephalopathy

    OpenAIRE

    2013-01-01

    Hydrogen sulfide (sulfide, H2S) is a colorless, water-soluble gas with a typical smell of rotten eggs. In the past, it has been investigated for its role as a potent toxic gas emanating from sewers and swamps or as a by-product of industrial processes. At high concentrations, H2S is a powerful inhibitor of cytochrome c oxidase; in trace amounts, it is an important signaling molecule, like nitric oxide (NO) and carbon monoxide (CO), together termed “gasotransmitters.” This review will cover th...

  20. A FRET enzyme-based probe for monitoring hydrogen sulfide.

    Science.gov (United States)

    Strianese, Maria; Palm, Gottfried J; Milione, Stefano; Kühl, Olaf; Hinrichs, Winfried; Pellecchia, Claudio

    2012-11-05

    Fluorescently labeled cobalt peptide deformylase (Co-PDF) can be efficiently used as a fluorescence-resonance-energy-transfer-based sensing device for hydrogen sulfide (H(2)S). The proof of concept of our sensor system is substantiated by spectroscopic, structural, and theoretical results. Monohydrogen sulfide coordination to Co-PDF and Ni-PDF was verified by X-ray crystallography. Density functional theory calculations were performed to gain insight into the characteristics of the coordination adduct between H(2)S and the cobalt cofactor in Co-PDF.

  1. Carbonyl Sulfides as Possible Intermediates in the Photolysis of Oxathiiranes

    DEFF Research Database (Denmark)

    Carlsen, Lars; Snyder, J. P.; Holm, A.

    1981-01-01

    of sulfine to ketone via the oxathiirane and the subsequent blue intermediate implies the absence of triplet and biradical singlet transients. The unknown carbonyl sulfide functionality, R2C&z.dbnd;O&z.dbnd;S, thereby emerges as a strong candidate for producing the visible absorption. Comparison of the wave...... functions for CH2&z.dbnd;S&z.dbnd;O and CH2&z.dbnd;O&z.dbnd;S arising from MNDO limited CI geometry optimizations leads to the conclusion that the carbonyl sulfide structure is best described as a zwitterion rather than as a singlet biradical. The failure to observe cycloaddition products between the blue...

  2. High conducting oxide--sulfide composite lithium superionic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin

    2017-01-17

    A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.

  3. Binary Oxide p-n Heterojunction Piezoelectric Nanogenerators with an Electrochemically Deposited High p-Type Cu2O Layer.

    Science.gov (United States)

    Baek, Seung Ki; Kwak, Sung Soo; Kim, Joo Sung; Kim, Sang Woo; Cho, Hyung Koun

    2016-08-31

    The high performance of ZnO-based piezoelectric nanogenerators (NGs) has been limited due to the potential screening from intrinsic electron carriers in ZnO. We have demonstrated a novel approach to greatly improve piezoelectric power generation by electrodepositing a high-quality p-type Cu2O layer between the piezoelectric semiconducting film and the metal electrode. The p-n heterojunction using only oxides suppresses the screening effect by forming an intrinsic depletion region, and thus sufficiently enhances the piezoelectric potential, compared to the pristine ZnO piezoelectric NG. Interestingly, a Sb-doped Cu2O layer has high mobility and low surface trap states. Thus, this doped layer is an attractive p-type material to significantly improve piezoelectric performance. Our results revealed that p-n junction NGs consisting of Au/ZnO/Cu2O/indium tin oxide with a Cu2O:Sb (cuprous oxide with a small amount of antimony) layer of sufficient thickness (3 μm) exhibit an extraordinarily high piezoelectric potential of 0.9 V and a maximum output current density of 3.1 μA/cm(2).

  4. Identifying the Prospective Area of Sulfide Groundwater within the Area of Palvantash Oil and Gas Deposit

    Directory of Open Access Journals (Sweden)

    M. R. Zhurayev

    2014-03-01

    Full Text Available This paper describes the methodology of prospecting for sulfide groundwater in the area of Palvantash oil fields. In result of study allowed determining the favorable conditions for the sulfide waters formation, and mapping the areas of different sulfide water concentration. The relatively permeable areas were established and the water borehole positions were recommended.

  5. 76 FR 69136 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Science.gov (United States)

    2011-11-08

    ... AGENCY 40 CFR Part 372 RIN 2025-AA27 Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release... hydrogen sulfide and methyl mercaptan found at 40 CFR 372.65. The document published in the Federal... requirements for only hydrogen sulfide. The Office of the Federal Register mistakenly lifted the stay of...

  6. Sulfide-iron interactions in domestic wastewater from a gravity sewer

    NARCIS (Netherlands)

    Nielsen, A.H.; Lens, P.N.L.; Vollertsen, J.; Hvitved-Jacobsen, Th.

    2005-01-01

    Interactions between iron and sulfide in domestic wastewater from a gravity sewer were investigated with particular emphasis on redox cycling of iron and iron sulfide formation. The concentration ranges of iron and total sulfide in the experiments were 0.4-5.4 mg Fe L-1 and 0-5.1 mg S L-1, respectiv

  7. SULFIDE OXIDATION UNDER OXYGEN LIMITATION BY A THIOBACILLUS-THIOPARUS ISOLATED FROM A MARINE MICROBIAL MAT

    NARCIS (Netherlands)

    VANDENENDE, FP; VANGEMERDEN, H

    1993-01-01

    The colorless sulfur bacterium Thiobacillus thioparus T5, isolated from a marine microbial mat, was grown in continuous culture under conditions ranging from sulfide limitation to oxygen limitation. Under sulfide-limiting conditions, sulfide was virtually completely oxidized to sulfate. Under oxygen

  8. The Sulfidation of gamma-Alumina and Titania Supported (Cobalt) Molybdenum Oxide Catalysts Monitored by EXAFS.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Leliveld, R.G.; Dillen, A.J. van; Geus, John W.

    1997-01-01

    The sulfidation of @c-alumina- and titania-supported(cobalt)molybdenum oxide catalysts has been studied with X-rayabsorption spectroscopy and temperature programmed sulfidation (TPS).The catalysts were stepwise sulfided at temperatures between 298 and673 K and their structure was determined with EXA

  9. Selective precipitation of heavy metals as controlled by a sulfide-selective electrode

    NARCIS (Netherlands)

    Veeken, A.H.M.; Vries, S.; Mark, van der A.

    2003-01-01

    Sulfide precipitation is superior to hydroxide precipitation for removal of heavy metals from wastewaters as it results in lower effluent concentrations and less interference from chelating agents. However, sulfide precipitation is not widely applied in practice because the dosing of sulfide cannot

  10. Sulfide-iron interactions in domestic wastewater from a gravity sewer

    NARCIS (Netherlands)

    Nielsen, A.H.; Lens, P.N.L.; Vollertsen, J.; Hvitved-Jacobsen, Th.

    2005-01-01

    Interactions between iron and sulfide in domestic wastewater from a gravity sewer were investigated with particular emphasis on redox cycling of iron and iron sulfide formation. The concentration ranges of iron and total sulfide in the experiments were 0.4-5.4 mg Fe L-1 and 0-5.1 mg S L-1, respectiv

  11. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    Science.gov (United States)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  12. S/Se In Sulfide Inclusion In Diamond

    Science.gov (United States)

    Thomassot, E.; Couffignal, F.; Lorand, J.; Bureau, H.; Cartigny, P.; Harris, J. W.

    2009-05-01

    Sulfides are among the most common minerals found as inclusions in diamonds. Being protected from any alteration after diamond formation, they likely represent the most pristine sulfide sample of mantle rocks. Their chemical composition in major and minor elements (mainly Ni, Cu and Cr), as determined using Electron Probe Micro Analyse (EPMA), is commonly used to determine the rock type in which the diamond formed. Here we propose to apply the same technique to the trace element abundance determination. We performed selenium (Se) on sulfide inclusion in diamonds. The S/Se value could help understanding whether the diamond formed in an eclogitic or peridotitic environment and may also constrain on the magmatic differentiation of diamonds host rock as well as provide a potential surface (hydrothermal) signature in diamond inclusions. A trace element measurement scheme has been developed by EPMA at the CAMPARIS centre (Paris). Se-abundance was obtained using a 30 kV accelerating voltage and 100nA probe current. Total counting time was 800s for peak (1.1 Å ) and 400s for background on both side of peak. Analyses were duplicated by μPIXE using the LPS nuclear microprobe facility (SIS2M CEA Saclay, France). Maps from 30x30 μm2 to 70x70 μm2 were obtained by scanning a 4x4 μm2 proton beam of 3MeV, 600 pA, (0.4 to 2 μC). The two techniques show good agreement and we conclude that EPMA is well suited for accurate and precise Se measurements. We analysed five samples; two monosulfide solid solution (MSS) (Ni>22wt%) typical of the peridotitic paragenesis (P-type), and three Ni-poor sulfides (Ni<7wt%) typical of the eclogitic paragenesis (E-type). In P-type sulfides, Se-content (260 ppm) is significantly higher than previously reported in sulfides from mantle-derived lherzolites (40-160 ppm), pyroxenites (25-45 ppm) or harzburgite. The value of S/Se in MSS is low (˜1400) compared to those of the primitive mantle reservoir (3,300; McDounough et al., 1995 Chemical Geology

  13. Nanostructured Oxides and Sulfides for Thermoelectrics

    Science.gov (United States)

    Koumoto, Kunihito

    2011-03-01

    Thermoelectric power generation can be applied to various heat sources, both waste heat and renewable energy, to harvest electricity. Even though each heat source is of a small scale, it would lead to a great deal of energy saving if they are combined and collected, and it would greatly contribute to reducing carbon dioxide emission. We have been engaged in developing novel thermoelectric materials to be used for energy saving and environmental protection and are currently developing nanostructured ceramics for thermoelectric conversion. We have demonstrated a quantum confinement effect giving rise to two dimensional electron gas (2DEG) in a 2D superlattice, STO/STO:Nb (STO: strontium titanate), which could generate giant thermopower while keeping high electrical conductivity. One unit-cell thick Nb-doped well layer was estimated to show ZT=2.4 at 300K. Then, a ``synergistic nanostructuring'' concept incorporating 2DEG grain boundaries as well as nanosizing of grains has been applied to our STO material and 3D superlattice ceramics was designed and proposed. It was verified by numerical simulation that this 3D superlattice ceramics should be capable of showing ZT=1.0 at 300K which is comparable to or even higher than that of conventional bismuth telluride-based thermoelectrics. We have recently proposed titanium disulfide-based misfit-layered compounds as novel TE materials. Insertion of misfit-layers into the van der Waals gaps in layer-structured titanium disulfide thus forming a natural superlattice gives rise to internal nanointerfaces and dramatically reduces its lattice thermal conductivity. ZT value reaches 0.37 at 673 K even without optimization of electronic properties. Our challenge to further increase ZT by controlling their electronic system and superlattice structures will be presented.

  14. A facile one-pot oxidation-assisted dealloying protocol to massively synthesize monolithic core-shell architectured nanoporous copper@cuprous oxide nanonetworks for photodegradation of methyl orange

    Science.gov (United States)

    Liu, Wenbo; Chen, Long; Dong, Xin; Yan, Jiazhen; Li, Ning; Shi, Sanqiang; Zhang, Shichao

    2016-11-01

    In this report, a facile and effective one-pot oxidation-assisted dealloying protocol has been developed to massively synthesize monolithic core-shell architectured nanoporous copper@cuprous oxide nanonetworks (C-S NPC@Cu2O NNs) by chemical dealloying of melt-spun Al 37 at.% Cu alloy in an oxygen-rich alkaline solution at room temperature, which possesses superior photocatalytic activity towards photodegradation of methyl orange (MO). The experimental results show that the as-prepared nanocomposite exhibits an open, bicontinuous interpenetrating ligament-pore structure with length scales of 20 ± 5 nm, in which the ligaments comprising Cu and Cu2O are typical of core-shell architecture with uniform shell thickness of ca. 3.5 nm. The photodegradation experiments of C-S NPC@Cu2O NNs show their superior photocatalytic activities for the MO degradation under visible light irradiation with degradation rate as high as 6.67 mg min-1 gcat-1, which is a diffusion-controlled kinetic process in essence in light of the good linear correlation between photodegradation ratio and square root of irradiation time. The excellent photocatalytic activity can be ascribed to the synergistic effects between unique core-shell architecture and 3D nanoporous network with high specific surface area and fast mass transfer channel, indicating that the C-S NPC@Cu2O NNs will be a promising candidate for photocatalysts of MO degradation.

  15. Preparation of poly(butyl methacrylate-co-ethyleneglyceldimethacrylate) monolithic column modified with β-cyclodextrin and nano-cuprous oxide and its application in polymer monolithic microextraction of polychlorinated biphenyls.

    Science.gov (United States)

    Zheng, Haijiao; Liu, Qingwen; Jia, Qiong

    2014-05-23

    A poly(butyl methacrylate-co-ethyleneglyceldimethacrylate) (poly(BMA-EDMA)) monolithic column was prepared with in situ polymerization method and modified with allylamine-β-cyclodextrin (ALA-β-CD) and nano-cuprous oxide (Cu2O). A polymer monolith microextraction method was developed with the modified monolithic column for the preconcentration of polychlorinated biphenyls combined with gas chromatography-electron capture detector. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. Because of the hydrophobic properties of β-CD and the porous nano structure of Cu2O, the enrichment capacity of the poly(BMA-EDMA) monolithic column was significantly improved. The extraction efficiency followed the order: poly(BMA-EDMA-ALA-β-CD-Cu2O)>poly(BMA-EDMA-ALA-β-CD)>poly(BMA-EDMA)>direct GC analysis. When applied to the determination of polychlorinated biphenyls in wine samples, low limits of detection (0.09ngmL(-1)) were obtained under the preoptimized conditions (sample volume 1.0mL, sample flow rate 0.1mLmin(-1), eluent volume 0.1mL, and eluent flow rate 0.05mLmin(-1)). In addition, the present method was employed to determine polychlorinated biphenyls in red wine samples and the accuracy was assessed through recovery experiments. The obtained recovery values were in the range of 78.8-104.1% with relative standard deviations less than 9.0%.

  16. Large-scale experiments for microbiological evaluation of measures for safeguarding sulfidic mine waste.

    Science.gov (United States)

    Schippers, A; Jozsa, P G; Kovacs, Z M; Jelea, M; Sand, W

    2001-01-01

    In the framework of a German-Romanian scientific cooperation, experiments were performed to evaluate feasible and cheap techniques for the safe storage of mine waste to prevent acid rock drainage (ARD). A large four-chamber percolator (4CP) was installed in a waste heap at Ilba Mine, Romania, to test the effect of biocides and alkaline layers on the bacteria causing acid rock drainage (ARD). The 4CP consisted of four chambers each containing 65 m3 of sulfidic waste material. The 4CP enabled the transfer of laboratory results to a technical scale. The detergent sodiumdodecylsulfate (SDS) was proved to be active against the leaching bacteria. Organotrophic micro-organisms were not effected by the SDS application. The alkaline layers caused an increase of pH, however, a decrease of cell numbers was measured only in adjacent ore layers, but not in the whole ore body. A rapid evaluation of the effects of these countermeasures on ARD formation became possible by microcalorimetric activity measurements for bioleaching.

  17. Controls on Weathering of Pyrrhotite in a Low-Sulfide, Granitic Mine-Waste Rock in the Canadian Arctic

    Science.gov (United States)

    Langman, J. B.; Holland, S.; Sinclair, S.; Blowes, D.

    2013-12-01

    -thaw cycle. Such rate factors are necessary to predict acid rock drainage and implement best management practices to minimize environmental impacts. To better understand the early geochemical evolution of the waste rock, sulfide minerals from different periods in the experiments were analyzed for discrete mineral characteristics indicative of a weathered state. Element transfer from the mineral to aqueous phase is transport limited because of the formation of Fe-(oxy)hydroxide weathered rims that can be an inhibitor of dissolution. Application of various x-ray spectroscopy techniques indicated that pyrrhotite transforms to marcasite [FeS2] prior to formation of Fe(II)-(oxy)hydroxides and further to Fe(III)-hydroxide/oxides. Iron appears to migrate through the weathered rims leaving the S-rich layer behind, and oxygen likely is retarded from migrating inward with formation of Fe(III) species. As these Fe-mineral transformations occur, they influence the retention of the secondary metals such as Co and Ni that preferentially remain in the +2 oxidation state and may leave the system as hydroxides, oxides, and sulfates. Understanding mineral evolution in this climate assists in adjusting appropriate rate factors for temporal changes in element release from the weathering of the pyrrhotite.

  18. Electrogenerative leaching of nickel sulfide concentrate with ferric chloride

    Institute of Scientific and Technical Information of China (English)

    王少芬; 方正; 王云燕; 陈阳国

    2004-01-01

    In order to utilize the chemical energy in hydrometallurgical process of sulfide minerals reasonably and to simplify the purifying process, the electrogenerative process was applied and a dual cell system was introduced to investigate FeCl3 leaching of nickel sulfide concentrate. Some factors influencing the electrogenerative leaching, such as electrode structure, temperature and solution concentration were studied. The results show that a certain quantity of electrical energy accompanied with the leached products can be acquired in the electrogenerative leaching process.The output current and power increase with the addition of acetylene black to the electrode. Varying the components of electrode just affects the polarization degree of anode. Increasing FeCl3 concentration results in a sharp increase in the output of the leaching cell when c(FeCl3) is less than 0.1 mol/L. The optimum value of NaCl concentration for electrogenerative leaching nickel sulfide concentrate with FeCl3 is 3.0 mol/L. Temperature influences electrogenerative leaching by affecting anodic and cathodic polarization simultaneously. The apparent activation energy is determined to be 34.63 kJ/mol in the range of 298 K to 322 K. The leaching rate of Ni2+ is 29.3% after FeCl3 electrogenerative leaching of nickel sulfide concentrate for 620 min with a filter bag electrode.

  19. Selective Sulfidation of Lead Smelter Slag with Sulfur

    Science.gov (United States)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  20. Magmatic sulfides in the porphyritic chondrules of EH enstatite chondrites

    CERN Document Server

    Piani, Laurette; Libourel, Guy; Tissandier, Laurent

    2016-01-01

    The nature and distribution of sulfides within 17 porphyritic chondrules of the Sahara 97096 EH3 enstatite chondrite have been studied by backscattered electron microscopy and electron microprobe in order to investigate the role of gas-melt interactions in the chondrule sulfide formation. Troilite (FeS) is systematically present and is the most abundant sulfide within the EH3 chondrite chondrules. It is found either poikilitically enclosed in low-Ca pyroxenes or scattered within the glassy mesostasis. Oldhamite (CaS) and niningerite [(Mg,Fe,Mn)S] are present in about 60% of the chondrules studied. While oldhamite is preferentially present in the mesostasis, niningerite associated with silica is generally observed in contact with troilite and low-Ca pyroxene. The chondrule mesostases contain high abundances of alkali and volatile elements as well as silica. Our data suggest that most of the sulfides found in EH3 chondrite chondrules are magmatic minerals that formed after the dissolution of S from a volatile-r...

  1. Hydrogen sulfide release from dairy manure storages containing gypsum bedding

    Science.gov (United States)

    Recycled gypsum products can provide a cost-effective bedding alternative for dairy producers. Manufacturers report reduced odors, moisture and bacteria in the stall environment when compared to traditional bedding. Gypsum provides a sulfate source that can be converted to hydrogen sulfide under ana...

  2. Bio-reduction of sulfide minerals to recover invisible gold

    NARCIS (Netherlands)

    Hol, A.

    2011-01-01

      Sulfide minerals, like pyrite and arsenopyrite, are of economical interest due to the presence of invisible gold locked inside these minerals. As fine grinding is often not sufficient to liberate the gold from these minerals, additional destruction techniques, based on chemical and biologica

  3. A coumarin-based colorimetric fluorescent probe for hydrogen sulfide

    Indian Academy of Sciences (India)

    Yanqiu Yang; Yu Liu; Liang Yang; Jun Liu; Kun Li; Shunzhong Luo

    2015-03-01

    A coumarin-based fluorescent probe for selective detection of hydrogen sulfide (H2S) is presented. This `off–on’ probe exhibited high selectivity towards H2S in aqueous solution with a detection limit of 30 nM. Notably, because of its dual nucleophilicity, the probe could avoid the interference of thiols and other sulfur containing compounds.

  4. Adsorption of hydrogen sulfide on montmorillonites modified with iron.

    Science.gov (United States)

    Nguyen-Thanh, Danh; Block, Karin; Bandosz, Teresa J

    2005-04-01

    Sodium-rich montmorillonite was modified with iron in order to introduce active centers for hydrogen sulfide adsorption. In the first modification, interlayer sodium cations were exchanged with iron. In another modification, iron oxocations were introduced to the clay surface. The most elaborated modification was based on doping of iron within the interlayer space of aluminum-pillared clay. The modified clay samples were tested as hydrogen sulfide adsorbents. Iron-doped samples showed a significant improvement in the capacity for H2S removal, despite of a noticeable decrease in microporosity compared to the initial pillared clay. The smallest capacity was obtained for the clay modified with iron oxocations. Variations in adsorption capacity are likely due to differences in the chemistry of iron species, degree of their dispersion on the surface, and accessibility of small pores for H2S molecule. The results suggest that on the surface of iron-modified clay hydrogen sulfide reacts with Fe(+3) forming sulfides or it is catalytically oxidized to SO2 on iron (hydro)oxides. Subsequent oxidation may lead to sulfate formation.

  5. Synthesis and photovoltaic application of coper (I) sulfide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue; Wadia, Cyrus; Ma, Wanli; Sadtler, Bryce; Alivisatos, A.Paul

    2008-06-24

    We present the rational synthesis of colloidal copper(I) sulfide nanocrystals and demonstrate their application as an active light absorbing component in combination with CdS nanorods to make a solution-processed solar cell with 1.6percent power conversion efficiency on both conventional glass substrates and flexible plastic substrates with stability over a 4 month testing period.

  6. Estimation of bacterial hydrogen sulfide production in vitro

    Directory of Open Access Journals (Sweden)

    Amina Basic

    2015-06-01

    Full Text Available Oral bacterial hydrogen sulfide (H2S production was estimated comparing two different colorimetric methods in microtiter plate format. High H2S production was seen for Fusobacterium spp., Treponema denticola, and Prevotella tannerae, associated with periodontal disease. The production differed between the methods indicating that H2S production may follow different pathways.

  7. Hydrogen sulfide : role in vascular physiology and pathology

    NARCIS (Netherlands)

    Holwerda, Kim M.; Karumanchi, S. Ananth; Lely, A. Titia

    2015-01-01

    Purpose of reviewHydrogen sulfide (H2S), a colorless gas that is endogenously generated in mammals from cysteine, has important biological functions. Within the vasculature it regulates vessel tone and outgrowth of new vessels. This review summarizes recent literature on H2S signaling in the vascula

  8. 21 CFR 872.1870 - Sulfide detection device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sulfide detection device. 872.1870 Section 872.1870 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... periodontal pocket probing depths, detect the presence or absence of bleeding on probing, and detect...

  9. Hydrogen sulfide producing enzymes in pregnancy and preeclampsia

    NARCIS (Netherlands)

    Holwerda, K M; Bos, E M; Rajakumar, A; Ris-Stalpers, C; van Pampus, M G; Timmer, Albertus; Erwich, J J H M; Faas, M M; van Goor, H; Lely, A T

    Preeclampsia, a human pregnancy specific disorder is characterized by an anti-angiogenic state. As hydrogen sulfide (H(2)S) has pro-angiogenic and anti-oxidative characteristics, we hypothesized that H(2)S levels could play a role in the pathogenesis of preeclampsia and studied the placental

  10. Sulfide Formation And Its Impacts On A Developing Country

    DEFF Research Database (Denmark)

    Matias, Natércia; Mutuvúie, Raúl; Vollertsen, Jes;

    2014-01-01

    is expected in the near future, with the associated longer wastewater travel times and increasing problems of septicity and hydrogen sulfide gas impacts. In order to better understand the in-sewer processes under local conditions, evaluate risks and exemplify how to support general drainage systems planning...

  11. Hydrogen sulfide : physiological properties and therapeutic potential in ischaemia

    NARCIS (Netherlands)

    Bos, Eelke M.; van Goor, Harry; Joles, Jaap A.; Whiteman, Matthew; Leuvenink, Henri G. D.

    2015-01-01

    Hydrogen sulfide (H2S) has become a molecule of high interest in recent years, and it is now recognized as the third gasotransmitter in addition to nitric oxide and carbon monoxide. In this review, we discuss the recent literature on the physiology of endogenous and exogenous H2S, focusing upon the

  12. Luminescence in Sulfides: A Rich History and a Bright Future

    Directory of Open Access Journals (Sweden)

    Philippe F. Smet

    2010-04-01

    Full Text Available Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs. The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles.

  13. Potential Applications of Hydrogen Sulfide-Induced Suspended Animation

    NARCIS (Netherlands)

    H. Aslami; M.J. Schultz; N.P. Juffermans

    2009-01-01

    A suspended animation-like state has been induced in rodents with the use of hydrogen sulfide, resulting in hypothermia with a concomitant reduction in metabolic rate. Also oxygen demand was reduced, thereby protecting against hypoxia. Several therapeutic applications of induction of a hibernation-l

  14. Micelle Mediated Trace Level Sulfide Quantification through Cloud Point Extraction

    Directory of Open Access Journals (Sweden)

    Samrat Devaramani

    2012-01-01

    Full Text Available A simple cloud point extraction protocol has been proposed for the quantification of sulfide at trace level. The method is based on the reduction of iron (III to iron (II by the sulfide and the subsequent complexation of metal ion with nitroso-R salt in alkaline medium. The resulting green-colored complex was extracted through cloud point formation using cationic surfactant, that is, cetylpyridinium chloride, and the obtained surfactant phase was homogenized by ethanol before its absorbance measurement at 710 nm. The reaction variables like metal ion, ligand, surfactant concentration, and medium pH on the cloud point extraction of the metal-ligand complex have been optimized. The interference effect of the common anions and cations was studied. The proposed method has been successfully applied to quantify the trace level sulfide in the leachate samples of the landfill and water samples from bore wells and ponds. The validity of the proposed method has been studied by spiking the samples with known quantities of sulfide as well as comparing with the results obtained by the standard method.

  15. Improvements in the manufacture of sulfur from hydrogen sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, A.

    1968-12-23

    In this process for the manufacture of sulfur from hydrogen sulfide and sulfur dioxide, the sulfur is separated from the gas after reaction by direct contact by cooling with a cooling liquid. The sulfur is carried away by the cooling liquid.

  16. EXAMINATION OF CHANGES IN AS SPECIATION IN SULFIDIC SOLUTIONS

    Science.gov (United States)

    The fate of arsenic (As) in the environment, its bioavailability and toxicity is fundamentally linked to its speciation. As in aerobic environments is predominantly arsenate (As(V)), however under reducing conditions arsenite (As(III)) species dominate. In sulfidic environments t...

  17. Thermochemical hydrogen production via a cycle using barium and sulfur: reaction between barium sulfide and water

    Energy Technology Data Exchange (ETDEWEB)

    Ota, K.; Conger, W.L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653 to 866/sup 0/C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. The rate of formation of hydrogen can be expressed as: RH2 = 1.07 x 10/sup -2/ exp (-3180/RT) (mol H/sub 2//mol BaS s). Hydrogen sulfide was produced during the initial period of reaction and the quantity of hydrogen sulfide formed during this period decreased as the temperature of reaction was increased.

  18. Volcanogenic massive sulfide occurrence model: Chapter C in Mineral deposit models for resource assessment

    Science.gov (United States)

    Shanks, W.C. Pat; Koski, Randolph A.; Mosier, Dan L.; Schulz, Klaus J.; Morgan, Lisa A.; Slack, John F.; Ridley, W. Ian; Dusel-Bacon, Cynthia; Seal, Robert R., II; Piatak, Nadine M.; Shanks, W.C. Pat; Thurston, Roland

    2012-01-01

    Volcanogenic massive sulfide deposits, also known as volcanic-hosted massive sulfide, volcanic-associated massive sulfide, or seafloor massive sulfide deposits, are important sources of copper, zinc, lead, gold, and silver (Cu, Zn, Pb, Au, and Ag). These deposits form at or near the seafloor where circulating hydrothermal fluids driven by magmatic heat are quenched through mixing with bottom waters or porewaters in near-seafloor lithologies. Massive sulfide lenses vary widely in shape and size and may be podlike or sheetlike. They are generally stratiform and may occur as multiple lenses.

  19. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples.

    Science.gov (United States)

    Thorson, Megan K; Ung, Phuc; Leaver, Franklin M; Corbin, Teresa S; Tuck, Kellie L; Graham, Bim; Barrios, Amy M

    2015-10-08

    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil.

  20. Magmatic sulfides in the porphyritic chondrules of EH enstatite chondrites

    Science.gov (United States)

    Piani, Laurette; Marrocchi, Yves; Libourel, Guy; Tissandier, Laurent

    2016-12-01

    The nature and distribution of sulfides within 17 porphyritic chondrules of the Sahara 97096 EH3 enstatite chondrite have been studied by backscattered electron microscopy and electron microprobe in order to investigate the role of gas-melt interactions in the chondrule sulfide formation. Troilite (FeS) is systematically present and is the most abundant sulfide within the EH3 chondrite chondrules. It is found either poikilitically enclosed in low-Ca pyroxenes or scattered within the glassy mesostasis. Oldhamite (CaS) and niningerite [(Mg,Fe,Mn)S] are present in ≈60% of the chondrules studied. While oldhamite is preferentially present in the mesostasis, niningerite associated with silica is generally observed in contact with troilite and low-Ca pyroxene. The Sahara 97096 chondrule mesostases contain high abundances of alkali and volatile elements (average Na2O = 8.7 wt.%, K2O = 0.8 wt.%, Cl = 7100 ppm and S = 3700 ppm) as well as silica (average SiO2 = 62.8 wt.%). Our data suggest that most of the sulfides found in EH3 chondrite chondrules are magmatic minerals that formed after the dissolution of S from a volatile-rich gaseous environment into the molten chondrules. Troilite formation occurred via sulfur solubility within Fe-poor chondrule melts followed by sulfide saturation, which causes an immiscible iron sulfide liquid to separate from the silicate melt. The FeS saturation started at the same time as or prior to the crystallization of low-Ca pyroxene during the high temperature chondrule forming event(s). Protracted gas-melt interactions under high partial pressures of S and SiO led to the formation of niningerite-silica associations via destabilization of the previously formed FeS and low-Ca pyroxene. We also propose that formation of the oldhamite occurred via the sulfide saturation of Fe-poor chondrule melts at moderate S concentration due to the high degree of polymerization and the high Na-content of the chondrule melts, which allowed the activity of Ca

  1. Formation of nanocolloidal metacinnabar in mercury-DOM-sulfide systems

    Science.gov (United States)

    Gerbig, Chase A.; Kim, Christopher S.; Stegemeier, John P.; Ryan, Joseph N.; Aiken, George R.

    2011-01-01

    Direct determination of mercury (Hg) speciation in sulfide-containing environments is confounded by low mercury concentrations and poor analytical sensitivity. Here we report the results of experiments designed to assess mercury speciation at environmentally relevant ratios of mercury to dissolved organic matter (DOM) (i.e., -1) by combining solid phase extraction using C18 resin with extended X-ray absorption fine structure (EXAFS) spectroscopy. Aqueous Hg(II) and a DOM isolate were equilibrated in the presence and absence of 100 μM total sulfide. In the absence of sulfide, mercury adsorption to the resin increased as the Hg:DOM ratio decreased and as the strength of Hg-DOM binding increased. EXAFS analysis indicated that in the absence of sulfide, mercury bonds with an average of 2.4 ± 0.2 sulfur atoms with a bond length typical of mercury-organic thiol ligands (2.35 Å). In the presence of sulfide, mercury showed greater affinity for the C18 resin, and its chromatographic behavior was independent of Hg:DOM ratio. EXAFS analysis showed mercury–sulfur bonds with a longer interatomic distance (2.51–2.53 Å) similar to the mercury–sulfur bond distance in metacinnabar (2.53 Å) regardless of the Hg:DOM ratio. For all samples containing sulfide, the sulfur coordination number was below the ideal four-coordinate structure of metacinnabar. At a low Hg:DOM ratio where strong binding DOM sites may control mercury speciation (1.9 nmol mg-1) mercury was coordinated by 2.3 ± 0.2 sulfur atoms, and the coordination number rose with increasing Hg:DOM ratio. The less-than-ideal coordination numbers indicate metacinnabar-like species on the nanometer scale, and the positive correlation between Hg:DOM ratio and sulfur coordination number suggests progressively increasing particle size or crystalline order with increasing abundance of mercury with respect to DOM. In DOM-containing sulfidic systems nanocolloidal metacinnabar-like species may form, and these species need to

  2. Induction of a geochemical barrier for As, Fe and S immobilization in a sulfide substrate

    Directory of Open Access Journals (Sweden)

    Igor Rodrigues de Assis

    2012-04-01

    Full Text Available Acid mine drainage (AMD is an environmental concern due to the risk of element mobilization, including toxic elements, and inclusion in the food chain. In this study, three cover layers were tested to minimize As, Fe and S mobilization from a substrate from former gold mining, containing pyrite and arsenopyrite. For this purpose, different layers (capillary break, sealant and cover layer above the substrate and the induction of a geochemical barrier (GB were used to provide suitable conditions for adsorption and co-precipitation of the mobilized As. Thirteen treatments were established to evaluate the leaching of As, Fe and S from a substrate in lysimeters. The pH, As, Fe, S, Na, and K concentrations and total volume of the leachates were determined. Mineralogical analyses were realized in the substrate at the end of the experimental period. Lowest amounts of As, Fe and S (average values of 5.47, 48.59 and 132.89 g/lysimeter were leached in the treatments that received Na and K to induce GB formation. Mineralogical analyses indicated jarosite formation in the control treatment and in treatments that received Na and K salts. However, the jarosite amounts in these treatments were higher than in the control, suggesting that these salts accelerated the GB formation. High amounts of As, Fe and S (average values of 11.7, 103.94 and 201.13 g/lysimeter were observed in the leachate from treatments without capillary break layer. The formation of geochemical barrier and the use of different layers over the sulfide substrate proved to be efficient techniques to decrease As, Fe and S mobilization and mitigate the impact of acid mine drainage.

  3. Nanomaterials made of non-toxic metallic sulfides: A systematic review of their potential biomedical applications.

    Science.gov (United States)

    Argueta-Figueroa, Liliana; Martínez-Alvarez, O; Santos-Cruz, J; Garcia-Contreras, R; Acosta-Torres, L S; de la Fuente-Hernández, J; Arenas-Arrocena, M C

    2017-07-01

    Metallic sulfides involve the chemical bonding of one or more sulfur atoms to a metal. Metallic sulfides are cheap, abundant semiconductor materials that can be used for several applications. However, an important and emerging use for non-toxic metallic sulfides in biomedical applications has arisen quickly in the medical field. In this systematic review, the available data from electronic databases were collected according to PRISMA alignments for systematic reviews. This review shows that these metallic sulfides could be promising for biomedical uses and applications. This systematic review is focused primarily on the following compounds: silver sulfide, copper sulfide, and iron sulfide. The aim of this review was to provide a quick reference on synthesis methods, biocompatibility, recent advances and perspectives, with remarks on future improvements. The toxicity of metallic sulfides depends directly on the cytotoxicity of their interactions with cells and tissues. Metallic sulfides have potential biomedical applications due to their antibacterial properties, uses in imaging and diagnostics, therapies such as photothermal therapy and chemotherapy in tumors and cancer cells, drug delivery and the fabrication of biosensors for the sensitive and selective detection of moieties, among others. Although current evidence about metallic sulfide NPs is promising, there are still several issues to be addressed before these NPs can be used in biomedicine. The current review is a brief but significant guide to metallic sulfides and their potential uses in the biomedical field. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Hydrogen sulfide waste treatment by microwave plasma-chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, J.B.L.; Doctor, R.D.

    1994-03-01

    A waste-treatment process that recovers both hydrogen and sulfur from industrial acid-gas waste streams is being developed to replace the Claus technology, which recovers only sulfur. The proposed process is derived from research reported in the Soviet technical literature and uses microwave (or radio-frequency) energy to initiate plasma-chemical reactions that dissociate hydrogen sulfide into elemental hydrogen and sulfur. This process has several advantages over the current Claus-plus-tail-gas-cleanup technology, which burns the hydrogen to water. The primary advantage of the proposal process is its potential for recovering and recycling hydrogen more cheaply than the direct production of hydrogen. Since unconverted hydrogen sulfide is recycled to the plasma reactor, the plasma-chemical process has the potential for sulfur recoveries in excess of 99% without the additional complexity of the tail-gas-cleanup processes associated with the Claus technology. There may also be some environmental advantages to the plasma-chemical process, because the process purge stream would primarily be the carbon dioxide and water contained in the acid-gas waste stream. Laboratory experiments with pure hydrogen sulfide have demonstrated the ability of the process to operate at or above atmospheric pressure with an acceptable hydrogen sulfide dissociation energy. Experiments with a wide range of acid-gas compositions have demonstrated that carbon dioxide and water are compatible with the plasma-chemical dissociation process and that they do not appear to create new waste-treatment problems. However, carbon dioxide does have negative impacts on the overall process. First, it decreases the hydrogen production, and second, it increases the hydrogen sulfide dissociation energy.

  5. Direct rapid determination of traces of sulfide in environment samples

    Institute of Scientific and Technical Information of China (English)

    郭方遒; 黄兰芳; 梁逸曾

    2002-01-01

    An improved ethylene blue method for determination of sulfide is developed. It has been adapted to a direct determination of sulfide by both common spectrophotometric method and total differential spectrophotometric method. In common spectrophotometric method, the calibration curve is A=1.69ρ+0.006 and the correlation coefficient is 0.9994.The apparent molar absorptivity is 5.42×104 L*mol-1*cm-1 and calibration curve is liner when ρ is in the range of 0-0.9 mg*L-1. In total differential spectrophotometric method, the calibration curve is A=9.25ρ+0.004 and the correlation coefficient is 0.9996. The apparent molar absorptivity is 2.96×105 L*mol-1*cm-1and calibration curve is liner when ρ is in the range of 0-0.10 mg*L-1. The sensitivity of this method is increased significantly compared with the former ethylene blue method. The speed of reaction is also faster than the former one. The limit of detection is found to be 1.0 ng*mL-1 by both common spectrophotometric method and total differential spectrophotometric method. Ten replicate analyses of a sample solution containing 100 ng*mL-1sulfide give a relative standard deviation of 1.8%. The effects of various cations and anions on the determination of sulfide are studied and procedures for removal of interference is described. The method is used for the determination of sulfide in environment samples with satisfactory results.

  6. Biogeographic Congruency among Bacterial Communities from Terrestrial Sulfidic Springs

    Directory of Open Access Journals (Sweden)

    Brendan eHeadd

    2014-09-01

    Full Text Available Terrestrial sulfidic springs support diverse microbial communities by serving as stable conduits for geochemically diverse and nutrient-rich subsurface waters. Microorganisms that colonize terrestrial springs likely originate from groundwater, but may also be sourced from the surface. As such, the biogeographic distribution of microbial communities inhabiting sulfidic springs should be controlled by a combination of spring geochemistry and surface and subsurface transport mechanisms, and not necessarily geographic proximity to other springs. We examined the bacterial diversity of seven springs to test the hypothesis that occurrence of taxonomically similar microbes, important to the sulfur cycle, at each spring is controlled by geochemistry. Complementary Sanger sequencing and 454 pyrosequencing of 16S rRNA genes retrieved five proteobacterial classes, and Bacteroidetes, Chlorobi, Chloroflexi, and Firmicutes phyla from all springs, which suggested the potential for a core sulfidic spring microbiome. Among the putative sulfide-oxidizing groups (Epsilonproteobacteria and Gammaproteobacteria, up to 83% of the sequences from geochemically similar springs clustered together. Abundant populations of Hydrogenimonas-like or Sulfurovum-like spp. (Epsilonproteobacteria occurred with abundant Thiothrix and Thiofaba spp. (Gammaproteobacteria, but Arcobacter-like and Sulfurimonas spp. (Epsilonproteobacteria occurred with less abundant gammaproteobacterial populations. These distribution patterns confirmed that geochemistry rather than biogeography regulates bacterial dominance at each spring. Potential biogeographic controls were related to paleogeologic sedimentation patterns that could control long-term microbial transport mechanisms that link surface and subsurface environments. Knowing the composition of a core sulfidic spring microbial community could provide a way to monitor diversity changes if a system is threatened by anthropogenic processes or

  7. Blood Components Prevent Sulfide Poisoning of Respiration of the Hydrothermal Vent Tube Worm Riftia pachyptila

    Science.gov (United States)

    Powell, Mar A.; Somero, George N.

    1983-01-01

    Respiration of plume tissue of the hydrothermal vent tube worm Riftia pachyptila is insensitive to sulfide poisoning in contrast to tissues of animals that do not inhabit vents. Permeability barriers may not be responsible for this insensitivity since plume homogenates are also resistant to sulfide poisoning. Cytochrome c oxidase of plume, however, is strongly inhibited by sulfide at concentrations less than 10 μ M. Factors present in blood, but not in cytosol, prevent sulfide from inhibiting cytochrome c oxidase. Avoidance of sulfide poisoning of respiration in Riftia pachyptila thus appears to involve a blood-borne factor having a higher sulfide affinity than that of cytochrome c oxidase, with the result that appreciable amounts of free sulfide are prevented from accumulating in the blood and entering the intracellular compartment.

  8. Sulfide and ammonium oxidation, acetate mineralization by denitrification in a multipurpose UASB reactor.

    Science.gov (United States)

    Beristain-Cardoso, Ricardo; Gómez, Jorge; Méndez-Pampín, Ramón

    2011-02-01

    The physiological and kinetic behavior of a denitrifying granular sludge exposed to different sulfide loading rates (55-295 mg/L d) were evaluated in a UASB reactor fed with acetate, ammonium and nitrate. At any sulfide loading rates, the consumption efficiencies of sulfide, acetate and ammonium were above 95%, while nitrate consumption efficiencies were around 62-72%. At the highest sulfide loading rate the ammonium was used as electron donor for N(2) production. The increase of sulfide loading rate also affected the fate of sulfide oxidation, since elemental sulfur was the main end product instead of sulfate. However, the lithotrophic denitrifying kinetic was not affected. FISH oligonucleotide probes for Thiobacillus denitrificans, Thiomiscropira denitrificans, genus Paracoccus and Pseudomonas spp. were used to follow the microbial ecology. The results of this work have shown that four pollutants could simultaneously be removed, namely, sulfide, ammonium, acetate and nitrate under well defined denitrifying conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Hydrogen sulfide and resolution of acute inflammation: A comparative study utilizing a novel fluorescent probe.

    Science.gov (United States)

    Dufton, Neil; Natividad, Jane; Verdu, Elena F; Wallace, John L

    2012-01-01

    Hydrogen sulfide is an essential gasotransmitter associated with numerous pathologies. We assert that hydrogen sulfide plays an important role in regulating macrophage function in response to subsequent inflammatory stimuli, promoting clearance of leukocyte infiltrate and reducing TNF-α levels in vivo following zymosan-challenge. We describe two distinct methods of measuring leukocyte hydrogen sulfide synthesis; methylene blue formation following zinc acetate capture and a novel fluorescent sulfidefluor probe. Comparison of these methods, using pharmacological tools, revealed they were complimentary in vitro and in vivo. We demonstrate the application of sulfidefluor probe to spectrofluorimetry, flow cytometry and whole animal imaging, to monitor the regulation of hydrogen sulfide synthesis in vivo during dynamic inflammatory processes. Both methodologies revealed that granulocyte infiltration negatively affects hydrogen sulfide synthesis. Our report offers an insight into the profile of hydrogen sulfide synthesis during inflammation and highlight opportunities raised by the development of novel fluorescent hydrogen sulfide probes.

  10. Simulation of sulfide buildup in wastewater and atmosphere of sewer networks.

    Science.gov (United States)

    Nielsen, A H; Yongsiri, C; Hvitved-Jacobsen, T; Vollertsen, J

    2005-01-01

    A model concept for prediction of sulfide buildup in sewer networks is presented. The model concept is an extension to--and a further development of--the WATS model (Wastewater Aerobic-anaerobic Transformations in Sewers), which has been developed by Hvitved-Jacobsen and co-workers at Aalborg University. In addition to the sulfur cycle, the WATS model simulates changes in dissolved oxygen and carbon fractions of different biodegradability. The sulfur cycle was introduced via six processes: 1. sulfide production taking place in the biofilm covering the permanently wetted sewer walls; 2. biological sulfide oxidation in the permanently wetted biofilm; 3. chemical and biological sulfide oxidation in the water phase; 4. sulfide precipitation with metals present in the wastewater; 5. emission of hydrogen sulfide to the sewer atmosphere and 6. adsorption and oxidation of hydrogen sulfide on the moist sewer walls where concrete corrosion may take place.

  11. Galvanic coupling and its effect on origin potential flotation system of sulfide minerals

    Institute of Scientific and Technical Information of China (English)

    顾帼华; 戴晶平; 王晖; 邱冠周

    2004-01-01

    The galvanic coupling formed in origin potential flotation systems of sulfide minerals can be divided into three types: sulfide mineral-sulfide mineral-water system; sulfide mineral-steel ball-water system; and sulfide mineral-sulfide mineral-collector system. In this paper, taking lead, zinc, iron sulfide mineral systems for examples,several models of galvanic coupling were proposed and the effects of galvanic coupling on flotation were discussed. A galvanic contact between galena (or sphalerite) and pyrite contributes to decreasing the content of zinc in lead concentrate, and enhances remarkably the absorption of collector on the galena surface. During grinding, due to galvanic interactions between minerals and steel medium, Fe(OH)3 formed covers on the cathodic mineral surface, affecting its floatability.

  12. Trace element composition of olivine - implications for the evolution of the olivine gabbro-troctolite-hosted Voisey's Bay Ni-Cu-Co sulfide deposit, Labrador

    Science.gov (United States)

    Bulle, F.; Layne, G. D.

    2011-12-01

    compositional data establish the presence of "reef-like" horizons with, for instance, elevated Ni concentrations (up to 2,500 ppm), versus surrounding horizons where values of ≤ 1,500 ppm are predominant. These horizons correspond with deflections in the whole-rock MgO, Fe2O3 and MnO contents. If these horizons are widespread and traceable laterally within the intrusion it would imply that: (1) a "cryptic-layering" might be preserved in olivines from the otherwise homogenous NT - indicating either crystallization from an input of fresh, undepleted mafic magma, or an interaction of those olivines with a Ni-rich sulfide liquid [1, 2], (2) the high Mn and Zn concentrations, coupled with lower forsterite values, are probably a result of crystallization from a country rock-contaminated mafic magma, and therefore, might act as a mineral-based indicator for the assimilation of upper crustal material. These observations may assist in developing a signature for olivines that have been in contact with highly contaminated (and thus potentially sulfide saturated) magmas. [1] Li et al. (2000) Econ. Geol. 95, 771-799. [2] Li and Naldrett (1999) Lithos 47, 1-31. [3] Lightfoot and Naldrett (1999) GAC Vol. 13, 1-30.

  13. Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration

    NARCIS (Netherlands)

    Peiffer, Stefan; Behrends, Thilo; Hellige, Katrin; Larese-Casanova, Philip; Wan, Moli; Pollok, Kilian

    2015-01-01

    The reaction of ferric (hydr)oxides with dissolved sulfide does not lead to the instantaneous production of thermodynamically stable products but can induce a variety of mineral transformations including the formation of metastable intermediates. The importance of the various transformation pathways

  14. Electrochemical Behavior of Sulfide at the Silver Rotating Disc Electrode. I. Polarization Behavior of Silver Sulfide Films.

    Science.gov (United States)

    1981-05-01

    from Reporf) C IS. SUPPLEMENTARY NOTES Prepared for publication in The Journal of Electroanalytical Chemistry 19. KEY WORDS (Continue on reverse aide it...SULFIDE FILMS by KUNIO SHIMIZU, KOICH AOKI AND ROBERT A. OSFERYOUNG Accepted for Publication in The Journal of Electroanalytical Chemistry Department

  15. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur

    NARCIS (Netherlands)

    Steijns, M.; Derks, F.; Verloop, A.; Mars, P.

    1976-01-01

    The kinetics of the catalytic oxidation of hydrogen sulfide by molecular oxygen have been studied in the temperature range 20–250 °C. The primary reaction product is sulfur which may undergo further oxidation to SO2 at temperatures above 200 °C. From the kinetics of this autocatalytic reaction we

  16. Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration

    NARCIS (Netherlands)

    Peiffer, Stefan; Behrends, Thilo; Hellige, Katrin; Larese-Casanova, Philip; Wan, Moli; Pollok, Kilian

    2015-01-01

    The reaction of ferric (hydr)oxides with dissolved sulfide does not lead to the instantaneous production of thermodynamically stable products but can induce a variety of mineral transformations including the formation of metastable intermediates. The importance of the various transformation pathways

  17. Properties of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions through photoelectron spectroscopy and density functional theory calculations

    Science.gov (United States)

    Yin, Shi; Bernstein, Elliot R.

    2016-10-01

    A new magnetic-bottle time-of-flight photoelectron spectroscopy (PES) apparatus is constructed in our laboratory. The PES spectra of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide [FeSm(SH)n-; m, n = 0-3, 0 theory. The most probable structures and ground state spin multiplicity for these cluster anions are tentatively assigned by comparing their theoretical first vertical detachment energies (VDEs) with their respective experiment values. The behavior of S and (SH) as ligands in these iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions is investigated and compared. The experimental first VDEs for Fe(SH)1-3- cluster anions are lower than those found for their respective FeS1-3- cluster anions. The experimental first VDEs for FeS1-3- clusters are observed to increase for the first two S atoms bound to Fe-; however, due to the formation of an S-S bond for the FeS3- cluster, its first VDE is found to be ˜0.41 eV lower than the first VDE for the FeS2- cluster. The first VDEs of Fe(SH)1-3- cluster anions are observed to increase with the increasing numbers of SH groups. The calculated partial charges of the Fe atom for ground state FeS1-3- and Fe(SH)1-3- clusters are apparently related to and correlated with their determined first VDEs. The higher first VDE is correlated with a higher, more positive partial charge for the Fe atom of these cluster anions. Iron sulfide/hydrosulfide mixed cluster anions are also explored in this work: the first VDE for FeS(SH)- is lower than that for FeS2-, but higher than that for Fe(SH)2-; the first VDEs for FeS2(SH)- and FeS(SH)2- are close to that for FeS3-, but higher than that for Fe(SH)3-. The first VDEs of general iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide clusters [FeSm(SH)n-; m, n = 0-3, 0 < (m + n) ≤ 3] are dependent on three properties of these anions: 1. the partial charge on the Fe atom, 2. disulfide bond formation (S-S) in the cluster, and 3. the number of hydrosulfide

  18. Properties of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions through photoelectron spectroscopy and density functional theory calculations.

    Science.gov (United States)

    Yin, Shi; Bernstein, Elliot R

    2016-10-21

    A new magnetic-bottle time-of-flight photoelectron spectroscopy (PES) apparatus is constructed in our laboratory. The PES spectra of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide [FeSm(SH)n(-); m, n = 0-3, 0 density functional theory. The most probable structures and ground state spin multiplicity for these cluster anions are tentatively assigned by comparing their theoretical first vertical detachment energies (VDEs) with their respective experiment values. The behavior of S and (SH) as ligands in these iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions is investigated and compared. The experimental first VDEs for Fe(SH)1-3(-) cluster anions are lower than those found for their respective FeS1-3(-) cluster anions. The experimental first VDEs for FeS1-3(-) clusters are observed to increase for the first two S atoms bound to Fe(-); however, due to the formation of an S-S bond for the FeS3(-) cluster, its first VDE is found to be ∼0.41 eV lower than the first VDE for the FeS2(-) cluster. The first VDEs of Fe(SH)1-3(-) cluster anions are observed to increase with the increasing numbers of SH groups. The calculated partial charges of the Fe atom for ground state FeS1-3(-) and Fe(SH)1-3(-) clusters are apparently related to and correlated with their determined first VDEs. The higher first VDE is correlated with a higher, more positive partial charge for the Fe atom of these cluster anions. Iron sulfide/hydrosulfide mixed cluster anions are also explored in this work: the first VDE for FeS(SH)(-) is lower than that for FeS2(-), but higher than that for Fe(SH)2(-); the first VDEs for FeS2(SH)(-) and FeS(SH)2(-) are close to that for FeS3(-), but higher than that for Fe(SH)3(-). The first VDEs of general iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide clusters [FeSm(SH)n(-); m, n = 0-3, 0 number of hydrosulfide ligands in the cluster. The higher the partial charge on the Fe atom of these clusters, the larger the first VDE

  19. In situ solvothermal growth of metal-organic framework-5 supported on porous copper foam for noninvasive sampling of plant volatile sulfides.

    Science.gov (United States)

    Hu, Yuling; Lian, Haixian; Zhou, Langjun; Li, Gongke

    2015-01-06

    The present study reported on an in situ solvothermal growth method for immobilization of metal-organic framework MOF-5 on porous copper foam support for enrichment of plant volatile sulfides. The porous copper support impregnated with mother liquor of MOF-5 anchors the nucleation and growth of MOF crystallites at its surface, and its architecture of the three-dimensional channel enables accommodation of the MOF-5 crystallite seed. A continuous and well-intergrown MOF-5 layer, evidenced from scanning electron microscope imaging and X-ray diffraction, was successfully immobilized on the porous metal bar with good adhesion and high stability. Results show that the resultant MOF-5 coating was thermally stable up to 420 °C and robust enough for replicate extraction for at least 200 times. The MOF-5 bar was then applied to the headspace sorptive extraction of the volatile organic sulfur compounds in Chinese chive and garlic sprout in combination with thermal desorption-gas chromatography/mass spectrometry. It showed high extraction sensitivity and good selectivity to these plant volatile sulfides owing to the extraordinary porosity of the metal-organic framework as well as the interaction between the S-donor sites and the surface cations at the crystal edges. Several primary sulfur volatiles containing allyl methyl sulfide, dimethyl disulfide, diallyl sulfide, methyl allyl disulfide, and diallyl disulfide were quantified. Their limits of detection were found to be in the range of 0.2-1.7 μg/L. The organic sulfides were detected in the range of 6.0-23.8 μg/g with recoveries of 76.6-100.2% in Chinese chive and 11.4-54.6 μg/g with recoveries of 77.1-99.8% in garlic sprout. The results indicate the immobilization of MOF-5 on copper foam provides an efficient enrichment formats for noninvasive sampling of plant volatiles.

  20. Microbial Diversity and Lipid Abundance in Microbial Mats from a Sulfidic, Saline, Warm Spring in Utah, USA

    Science.gov (United States)

    Gong, J.; Edwardson, C.; Mackey, T. J.; Dzaugis, M.; Ibarra, Y.; Course 2012, G.; Frantz, C. M.; Osburn, M. R.; Hirst, M.; Williamson, C.; Hanselmann, K.; Caporaso, J.; Sessions, A. L.; Spear, J. R.

    2012-12-01

    The microbial diversity of Stinking Springs, a sulfidic, saline, warm spring northeast of the Great Salt Lake was investigated. The measured pH, temperature, salinity, and sulfide concentration along the flow path ranged from 6.64-7.77, 40-28° C, 2.9-2.2%, and 250 μM to negligible, respectively. Five sites were selected along the flow path and within each site microbial mats were dissected into depth profiles based on the color and texture of the mat layers. Genomic DNA was extracted from each layer, and the 16S rRNA gene was amplified and sequenced on the Roche 454 Titanium platform. Fatty acids were also extracted from the mat layers and analyzed by liquid chromatography and mass spectrometry. The mats at Stinking Springs were classified into roughly two morphologies with respect to their spatial distribution: loose, sometimes floating mats proximal to the spring source; and thicker, well-laminated mats distal to the spring source. Loosely-laminated mats were found in turbulent stream flow environments, whereas well-laminated mats were common in less turbulent sheet flows. Phototrophs, sulfur oxidizers, sulfate reducers, methanogens, other bacteria and archaea were identified by 16S rRNA gene sequences. Diatoms, identified by microscopy and lipid analysis were found to increase in abundance with distance from the source. Methanogens were generally more abundant in deeper mat laminae. Photoheterotrophs were found in all mat layers. Microbial diversity increased significantly with depth at most sites. In addition, two distinct microbial streamers were identified and characterized at the two fast flowing sites. These two streamer varieties were dominated by either cyanobacteria or flavobacteria. Overall, our genomic and lipid analysis suggest that the physical and chemical environment is more predictive of the community composition than mat morphology. Site Map

  1. Trace elements in sulfide inclusions from Yakutian diamonds

    Science.gov (United States)

    Bulanova, G. P.; Griffin, W. L.; Ryan, C. G.; Shestakova, O. Y.; Barnes, S.-J.

    1996-07-01

    Sulfide inclusions in diamonds may provide the only pristine samples of mantle sulfides, and they carry important information on the distribution and abundances of chalcophile elements in the deep lithosphere. Trace-element abundances were measured by proton microprobe in >50 sulfide inclusions (SDI) from Yakutian diamonds; about half of these were measured in situ in polished plates of diamonds, providing information on the spatial distribution of compositional variations. Many of the diamonds were identified as peridotitic or eclogitic from the nature of coexisting silicate or oxide inclusions. Known peridotitic diamonds contain SDIs with Ni contents of 22 36%, consistent with equilibration between olivine, monosulfide solid solution (MSS) and sulfide melt, whereas SDIs in eclogitic diamonds contain 0 12% Ni. A group of diamonds without silicate or oxide inclusions has SDIs with 11 18% Ni, and may be derived from pyroxenitic parageneses. Eclogitic SDIs have lower Ni, Cu and Te than peridotitic SDIs; the ranges of the two parageneses overlap for Se, As and Mo. The Mo and Se contents range up to 700 and 300 ppm, respectively; the highest levels are found in peridotitic diamonds. Among the in-situ SDIs, significant Zn and Pb levels are found in those connected by cracks to diamond surfaces, and these elements reflect interaction with kimberlitic melt. Significant levels of Ru (30 1300 ppm) and Rh (10 170 ppm) are found in many peridotitic SDIs; SDIs in one diamond with wustite and olivine inclusions and complex internal structures have high levels of other platinum-group elements (PGEs) as well, and high chondrite-normalized Ir/Pd. Comparison with experimental data on element partitioning between crystals of monosulfide solid solution (MSS) and sulfide melts suggests that most of the inclusions in both parageneses were trapped as MSS, while some high-Cu SDIs with high Pd±Rh may represent fractionated sulfide melts. Spatial variations of SDI composition within

  2. Hydrogen sulfide inhalation ameliorates allergen induced airway hypereactivity by modulating mast cell activation.

    Science.gov (United States)

    Roviezzo, Fiorentina; Bertolino, Antonio; Sorrentino, Rosalinda; Terlizzi, Michela; Matteis, Maria; Calderone, Vincenzo; Mattera, Valentina; Martelli, Alma; Spaziano, Giuseppe; Pinto, Aldo; D'Agostino, Bruno; Cirino, Giuseppe

    2015-10-01

    Compelling evidence suggests that hydrogen sulfide represents an important gaseous transmitter in the mammalian respiratory system. In the present study, we have evaluated the role of mast cells in hydrogen sulfide-induced effects on airways in a mouse model of asthma. Mice were sensitized to ovalbumin and received aerosol of a hydrogen sulfide donor (NaHS; 100 ppm) starting at day 7 after ovalbumin challenge. Exposure to hydrogen sulfide abrogated ovalbumin-induced bronchial hypereactivity as well as the increase in lung resistance. Concomitantly, hydrogen sulfide prevented mast cell activity as well as FGF-2 and IL-13 upregulation. Conversely, pulmonary inflammation and the increase in plasmatic IgE levels were not affected by hydrogen sulfide. A lack of hydrogen sulfide effects in mast cell deficient mice occurred. Primary fibroblasts harvested from ovalbumin-sensitized mice showed an increased proliferation rate that was inhibited by hydrogen sulfide aerosol. Furthermore, ovalbumin-induced transdifferentiation of pulmonary fibroblasts into myofibroblasts was reversed. Finally, hydrogen sulfide did abrogate in vitro the degranulation of the mast cell-like RBL-2H3 cell line. Similarly to the in vivo experiments the inhibitory effect was present only when the cells were activated by antigen exposure. In conclusion, inhaled hydrogen sulfide improves lung function and inhibits bronchial hyper-reactivity by modulating mast cells and in turn fibroblast activation.

  3. Elemental mobility in sulfidic mine tailings reclaimed with paper mill by-products as sealing materials.

    Science.gov (United States)

    Jia, Yu; Stahre, Nanna; Mäkitalo, Maria; Maurice, Christian; Öhlander, Björn

    2017-07-13

    Sealing layers made of two alkaline paper mill by-products, fly ash and green liquor dregs, were placed on top of 50-year-old sulfide-containing tailings as a full-scale remediation approach. The performance and effectiveness of the sealing layers with high water content for an oxygen barrier and low hydraulic conductivity for a sealing layer in preventing the formation of acid rock drainage were evaluated 5 years after the remediation. The leaching behavior of the covered tailings was studied using batch leaching tests (L/S ratio 10 L/kg). The leaching results revealed that, in general, the dregs- and ash-covered tailings released relatively lower concentrations of many elements contained in acid rock drainage compared to those from the uncovered tailings. A change in the chemical composition and mineralogical state of the tailings was observed for the tailings beneath the covers. The increase in pH caused by the alkaline materials promoted metal precipitation. Geochemical modeling using PHREEQC confirmed most of the geochemical changes of the covered tailings. Both the ash and dregs showed potential to function as sealing materials in terms of their geochemical properties. However, mobilization of Zn and Ni from the lower part of the dregs-covered tailings was observed. The same phenomenon was observed for the lower part of the ash-covered tailings. Ash showed advantages over dregs as a cover material; based on geochemical studies, the ash immobilized more elements than the dregs did. Lysimeters were installed below the sealing layers, and infiltrating water chemistry and hydrology were studied to monitor the amount and quality of the leachate percolating through.

  4. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent. Part 2. The regeneration of copper sulfide to copper oxide - An experimental study

    NARCIS (Netherlands)

    ter Maat, Hendrik; ter Maat, H.; Hogendoorn, Kees; Versteeg, Geert

    2005-01-01

    Aim of this study was to investigate the possibilities for a selective and efficient method to convert copper(II) sulfide (CuS) into copper(II) oxide (CuO). The oxidation of copper sulfide has been studied experimentally using a thermogravimetric analyzer (TGA) at temperatures ranging from 450 to

  5. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent : Part II. the regeneration of copper sulfide to copper oxide - An experimental study

    NARCIS (Netherlands)

    Ter Maat, H.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    Aim of this study was to investigate the possibilities for a selective and efficient method to convert copper(II) sulfide (CuS) into copper(II) oxide (CuO). The oxidation of copper sulfide has been studied experimentally using a thermogravimetric analyzer (TGA) at temperatures ranging from 450 to 75

  6. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent: Part II. The regeneration of copper sulfide to copper oxide—an experimental study

    NARCIS (Netherlands)

    Maat, ter H.; Hogendoorn, J.A.; Versteeg, G.F.

    2005-01-01

    Aim of this study was to investigate the possibilities for a selective and efficient method to convert copper(II) sulfide (CuS) into copper(II) oxide (CuO). The oxidation of copper sulfide has been studied experimentally using a thermogravimetric analyzer (TGA) at temperatures ranging from 450 to 75

  7. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent : Part II. the regeneration of copper sulfide to copper oxide - An experimental study

    NARCIS (Netherlands)

    Ter Maat, H.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    Aim of this study was to investigate the possibilities for a selective and efficient method to convert copper(II) sulfide (CuS) into copper(II) oxide (CuO). The oxidation of copper sulfide has been studied experimentally using a thermogravimetric analyzer (TGA) at temperatures ranging from 450 to

  8. An amperometric chloramphenicol immunosensor based on cadmium sulfide nanoparticles modified-dendrimer bonded conducting polymer.

    Science.gov (United States)

    Kim, Dong-Min; Rahman, Md Aminur; Do, Minh Hien; Ban, Changill; Shim, Yoon-Bo

    2010-03-15

    An amperometric chloramphenicol (CAP) immunosensor was fabricated by covalently immobilizing anti-chloramphenicol acetyl transferase (anti-CAT) antibody on cadmium sulfide nanoparticles (CdS) modified-dendrimer that was bonded to the conducting polymer (poly 5, 2': 5', 2''-terthiophene-3'-carboxyl acid (poly-TTCA)) layer. The AuNPs, dendrimers, and CdS nanoparticles were deposited onto the polymer layer in order to enhance the sensitivity of the sensor probes. The particle sizes were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The immobilization of dendrimers, CdS, and anti-CAT were confirmed using energy disruptive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and quartz crystal microbalance (QCM) techniques. The detection of CAP was based on the competitive immuno-interaction between the free- and labeled-CAP for active sites of the anti-CAT. Hydrazine was used as the label for CAP, and it electrochemically catalyzed the reduction of H(2)O(2) at -0.35 V vs. Ag/AgCl. Under optimized conditions, the proposed immunosensor exhibited a linear range of CAP detection between 50 pg/mL and 950 pg/mL, and the detection limit was 45 pg/mL. The immunosensor was examined in real meat samples for the analysis of CAP.

  9. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.

    2015-03-15

    Before the Earth\\'s complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism\\'s affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  10. Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring.

    Science.gov (United States)

    Klatt, Judith M; Al-Najjar, Mohammad A A; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-03-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 (-) during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  11. Geochemical changes in sulfidic mine tailings stored under a shallow water cover.

    Science.gov (United States)

    Vigneault, B; Campbell, P G; Tessier, A; De Vitre, R

    2001-03-01

    The objective of this study was to assess the effectiveness of an engineered shallow water cover in reducing the oxidation of sulfidic mine tailings and thus preventing the development of acid rock drainage. Fresh tailings were submerged under a 0.3-m water cover in experimental field cells. From 1996 to 1998, we followed the chemistry of the interstitial water near the tailings-overlying water interface using in situ dialysis, and determined pH and dissolved oxygen (DO) profiles across the tailing water interface using micro-electrodes. Penetration of DO into the tailings was limited to <7 mm, even in the presence of DO produced by benthic periphyton. Anoxia in the tailings was further demonstrated by the appearance of dissolved sigmaH2S, Fe and Mn in pore water at depths -1.5 cm below the interface. However, there was clear evidence of surface oxidation of the mine tailings at the mm scale (i.e., DO depletion, coupled with localized increases in [H+] and [SO4(2-)]). Mobilization of Cd and Zn from this surface layer was indicated by the presence of sub-surface peaks in the concentrations of these two metals in the tailings interstitial water and by a change in their solid phase partitioning from refractory to more labile fractions. In contrast, mobilization of Cu from tailings was less evident. Unlike previous reports, which suggested that submerged tailings were effectively inert, our results show alteration of the superficial layer over time.

  12. Generalized equivalent circuits for mixed conductors: silver sulfide as a model system.

    Science.gov (United States)

    Lee, Jong-Sook; Jamnik, Janez; Maier, Joachim

    The generalized equivalent circuit for Hebb-Wagner polarization in the frequency domain proposed by Jamnik and Maier (J Electrochem Soc 146:4183, 1999) includes the space-charge polarization that was previously neglected. In the present work, using a self-coded Fortran program, the completely generalized equivalent circuit is successfully applied to a mixed conducting silver sulfide with an AgI electrode that suppresses the electronic flow. A whole set of fit parameters, such as geometric capacitance, partial conductivities, chemical capacitance or diffusivity, and the blocking and shunting characteristics of electrodes are independently but self-consistently obtained over a range of silver activities, as controlled by a galvanic cell. The interfacial capacitance was found to be much larger than the diffuse space-charge double-layer capacitance and was thus ascribed to the adsorption capacitance at the core of the interface, which should be connected in parallel with the space-charge double-layer polarization. Two simplified equivalent circuits were shown to be good approximations for the spectra at the extreme low and high silver activity, respectively.

  13. Dehydrogenase activity and quality of leachates in Technosols with gossan and sulfide materials from the São Domingos mine

    Science.gov (United States)

    Santos, Erika; Abreu, Manuela; Macías, Felipe; de Varennes, Amarílis

    2014-05-01

    Wastes produced by mining activity in São Domingos (Portuguese Iberian Pyrite Belt) were disposed over a large area. To speed up the ecological rehabilitation in this mine, an integrative strategy using different amendments+mine wastes was used to produce Technosols with enhanced soil functions. To evaluate the efficiency of these Technosols the dehydrogenase activity and chemical quality of leachates were monitored. Technosols were composed of different mine wastes (gossan and sulfide materials), collected at the São Domingos mine, and mixtures of amendments applied at 30 and 75 Mg/ha (rockwool+agriculture wastes+wastes from liquors distillation of strawberry tree fruits (Arbutus unedo L.) and/or carobs (Ceratonia siliqua L. fruits)). Three assays, under controlled conditions, were carried out: (1 and 2) Sulfide or gossan materials with/without amendments; (3) Sulfide wastes, with/without amendments, incubated during four months and then with application of an overlayer of gossan (~3 cm thick) with/without the same amendments. Dehydrogenase activity (DHA) and chemical characteristics of leachates (multielemental concentration, pH, and electric conductivity) were determined after four/seven/thirteen months of incubation. Sulfide wastes had more hazardous characteristics (pH~2 and total concentrations (g/kg) of Al (58.1), As (1.1), Cu (2.1), Fe (107.3), Pb (11.7), S (65.3) and Zn (1.1) than the gossan materials (pH=4.3; g/kg, Al: 24.8, As: 3.0, Cu: 0.2, Fe: 129, Pb: 9.2, S: 13.7, Zn: 0.04). Amendments application to gossan (assay 2) enhanced DHA in both sampling periods (µg TPF g dry weight 16 h-1, Control: 0,72-1,78; Amended treatments: 2.49-16.36 depending on mixture/application rate/sampling period). Greater application rates stimulated DHA (more than 1.5-fold with 75 Mg/ha). No differences were observed in DHA in the gossan layer with/without amendments (assay 3) suggesting a negative impact on gossan microrganisms from sulfide materials located below. In

  14. Crustal contamination and sulfide immiscibility history of the Permian Huangshannan magmatic Ni-Cu sulfide deposit, East Tianshan, NW China

    Science.gov (United States)

    Mao, Ya-Jing; Qin, Ke-Zhang; Tang, Dong-Mei; Feng, Hong-Ye; Xue, Sheng-Chao

    2016-11-01

    The Huangshannan mafic-ultramafic intrusion is a Permian Ni-Cu sulfide-bearing intrusion in the southern margin of the Central Asian Orogenic Belt. The intrusion consists of an ultramafic unit, which is composed of lherzolite and olivine websterite, and a mafic unit, which is composed of olivine gabbronorite, gabbronorite and leuco-gabbronorite. This intrusion was formed by two separate pulses of magma: a more primitive magma for the early ultramafic unit and a more evolved magma for the late mafic unit. U-Pb isotope geochronology of zircon from the mafic unit yields an age of 278 ± 2 Ma. According to its olivine and Cr-rich spinel compositions, the estimated parental magma of lherzolite for the Huangshannan intrusion has 12.4 wt.% MgO, indicating picritic affinity. Fractional crystallization modeling results and the presence of rounded sulfide inclusions in an olivine crystal (Fo 86.7) indicate that sulfide immiscibility was achieved at the beginning of olivine fractionation. Co-magmatic zircon crystals from gabbronorite have a δ18O value close to 6.5‰, which is 1.2‰ higher than the typical mantle value and suggests significant crustal contamination (∼20%). The positive εHf(t) values of co-magmatic zircon (which vary from +9.2 to +15.3) and positive whole rock εNd(t) values (which vary from +4.7 to +7.8) also indicate that the parental magma was derived from a depleted mantle source and contaminated by 5-20% juvenile arc crust and then by ∼5% upper crustal materials. However, modeling results of sulfur content at sulfide saturation reveal that such a large amount of crustal contamination is not sufficient to trigger sulfide saturation in the parental magma, which strongly suggests that external sulfur addition, probably during contamination, has played a critical role in causing sulfide immiscibility. Furthermore, the arc magmatism geochemical signatures of the Huangshannan intrusion, such as significant Nb and Ta depletion relative to La and low Ca

  15. Fabrication and applications of copper sulfide (CuS) nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Shamraiz, Umair, E-mail: umairshamraiz@gmail.com; Hussain, Raja Azadar, E-mail: hussainazadar@gamil.com; Badshah, Amin, E-mail: aminbadshah@yahoo.com

    2016-06-15

    This review article presents different fabrication procedures (under the headlines of solvothermal routes, aerosol methods, solution methods and thermolysis), and applications (photocatalytic degradation, ablation of cancer cells, electrode material in lithium ion batteries and in gas sensing, organic solar cells, field emission properties, super capacitor applications, photoelectrochemical performance of QDSCs, photocatalytic reduction of organic pollutants, electrochemical bio sensing, enhanced PEC characteristics of pre-annealed CuS film electrodes) of copper sulfide (Covellite). - Highlights: • This review article presents the synthesis and applications of copper sulfide. • CuS has been used over the years for different applications in nanoscience. • Different synthetic protocols are followed for their preparation which help in the possible modifications in the morphology of CuS.

  16. Hydrogen sulfide determines HNO-induced stimulation of trigeminal afferents.

    Science.gov (United States)

    Wild, Vanessa; Messlinger, Karl; Fischer, Michael J M

    2015-08-18

    Endogenous NO and hydrogen sulfide form HNO, which causes CGRP release via TRPA1 channel activation in sensory nerves. In the present study, stimulation of intact trigeminal afferent neuron preparations with NO donors, Na2S or both was analyzed by measuring CGRP release as an index of mass activation. Combined stimulation was able to activate all parts of the trigeminal system and acted synergistic compared to stimulation with both substances alone. To investigate the contribution of both substances, we varied their ratio and tracked intracellular calcium in isolated neurons. Our results demonstrate that hydrogen sulfide is the rate-limiting factor for HNO formation. CGRP has a key role in migraine pathophysiology and HNO formation at all sites of the trigeminal system should be considered for this novel means of activation.

  17. Fractal characteristics of nanocrystalline indium and gallium sulfide particles

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, P.U., E-mail: psastry@barc.gov.i [Solid State Physics Division, Mumbai 400085 (India); Dutta, Dimple P. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-11-13

    The structure of nano-sized powders of indium sulfide (In{sub 2}S{sub 3}) and gallium sulfide (Ga{sub 2}S{sub 3}), prepared by single source precursor route has been investigated by small angle X-ray scattering technique. The particle morphology shows interesting fractal nature. For In{sub 2}S{sub 3}, the nanoparticle aggregates show a mass fractal with fractal dimension 2.0 that increases with longer time of thermal treatment. Below the length scale of about 20 nm, the particles have a rough surface with a surface fractal dimension of 2.8. Unlike In{sub 2}S{sub 3}, structure of Ga{sub 2}S{sub 3} exhibits a single surface fractal over whole q-range of study. The estimated particle sizes are in range of 5-15 nm and the results are supported by transmission electron microscope.

  18. L-Cysteine-assisted Synthesis of Copper Gallium Sulfide Microspheres

    Institute of Scientific and Technical Information of China (English)

    LIANG Xiao-juan; ZHONG Jia-song; CAI Qian; HUANG Hai-yu; LIU Hai-tao; XIANG Wei-dong; SUN Jun-cai

    2012-01-01

    An effective L-cysteine-assisted synthetic route has been successfully developed to prepare copper gallium sulfide(CuGaS2) microspheres under solvothermal conditions with CuCI2-2H2O,GaCl3 and L-cysteine as source materials,in which L-cysteine was used as the sulfide source and eomplexing molecule.The experiments revealed that the synthesized sample was of a typical CuGaS2 tetragonal structure.Moreover,the prepared CuGaS2 crystals consisting of microspheres made up of nanoflakes,and the diameter of the nanoflakes was about 20 nm.Raman spectrum of the obtained CuGaS2 exhibits a high-intensity peak of the A1 mode at 306 cm-1.Meanwhile,a possible growth mechanism was proposed based on the investigations.

  19. LUMINESCENCE OF CADMIUM SULFIDE QUANTUM DOTS IN FLUOROPHOSPHATE GLASSES

    Directory of Open Access Journals (Sweden)

    Z. O. Lipatova

    2015-03-01

    Full Text Available Cadmium sulfide quantum dots are perspective materials in optics, medicine, biology and optoelectronics. Fluorophosphate glasses, doped with cadmium sulfide quantum dots, were examined in the paper. Heat treatment led to the formation of quantum dots with diameters equal to 2.8 nm, 3.0 nm and 3.8 nm. In view of such changes in the quantum dots size the fundamental absorption edge shift and the luminescence band are being displaced to the long wavelengths. Luminescence lifetime has been found to be dependent on the registration wavelength in the range from 450 to 700 nm. Obtained fluorophosphate glasses with CdS quantum dots can find their application as fluorescent materials with intensive luminescence band and long excited-state natural lifetime.

  20. Effect of hydrogen sulfide emissions on cement mortar specimens

    Energy Technology Data Exchange (ETDEWEB)

    Idriss, A. F. [Alberta Environment, Science and Technology Branch, Edmonton, AB (Canada); Negi, S. C.; Jofriet, J. C.; Haywoard, G. L. [Guelph Univ., Guelph, ON (Canada)

    2001-07-01

    Six different cement mortar specimens used in animal buildings, where they were exposed to hydrogen sulfide generated from anaerobic fermentation of manure during a period of one year, were investigated. Primary interest was on comparing the corrosion resistance of different cement mortar specimens under long term exposure to hydrogen sulfide. The impressed voltage technique was used to test the specimens in the laboratory. Results revealed that test specimens made with eight per cent silica fume cement replacement performed best and similar Portland cement mortar specimens with a water-cement ratio of 0.55 (PC55) the poorest. All other treatments, (Portland cement with a water to cement ratio of 045, Portland cement Type 50, Portland cement with fibre mesh and Portland cement Type 10 coated with linseed oil) all with water-cement ratios of 0.45, were less effective in preventing corrosion than silica fume replacement.