WorldWideScience

Sample records for cuprous oxide photovoltaic

  1. Stability of sputter deposited cuprous oxide (Cu2O) subjected to ageing conditions for photovoltaic applications

    Science.gov (United States)

    Camacho-Espinosa, E.; Rimmaudo, I.; Riech, I.; Mis-Fernández, R.; Peña, J. L.

    2018-02-01

    Among various metal oxide p-type semiconductors, cuprous oxide (Cu2O) stands out as a nontoxic and abundant material, which also makes it a suitable candidate as a low-cost absorber for photovoltaic applications. However, the chemical stability of the absorber layer is critical for the solar cell lifetime, in particular, for Cu-based materials, concerning to its oxidation state changes. In this paper, we addressed the Cu2O stability depositing films of 170 nm by reactive radio frequency magnetron sputtering and subsequently ageing them in conditions similar to the typical accelerated life test for the solar module, in a period of time from one to five weeks. The stability of the optical, electrical, and structural properties of the Cu2O thin films was investigated using UV-VIS-near infrared transmittance, 4-probes electrical resistance characterization, high precision profilometry, X-ray photoelectron spectroscopy, and grazing incidence X-ray diffraction. Finally, we demonstrated that the aging tests affected only the surface of the films, while the bulk remained unaltered, making Cu2O a promising candidate for production of stable devices, including solar cells.

  2. Fabrication of zinc oxide-cuprous oxide photovoltaic cell for teaching ...

    African Journals Online (AJOL)

    The light related current - voltage characteristics of the fabricated cell and its open circuit voltage for different illumination levels were comparable to those of conventional solar cells. This indicates that it is possible to produce a functional photovoltaic cell through local improvisation that can be used to stimulate the interest ...

  3. Radiation annealing in cuprous oxide

    DEFF Research Database (Denmark)

    Vajda, P.

    1966-01-01

    Experimental results from high-intensity gamma-irradiation of cuprous oxide are used to investigate the annealing of defects with increasing radiation dose. The results are analysed on the basis of the Balarin and Hauser (1965) statistical model of radiation annealing, giving a square...

  4. Band offsets of n-type electron-selective contacts on cuprous oxide (Cu{sub 2}O) for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Riley E., E-mail: rbrandt@alum.mit.edu, E-mail: buonassisi@mit.edu; Lee, Yun Seog; Buonassisi, Tonio, E-mail: rbrandt@alum.mit.edu, E-mail: buonassisi@mit.edu [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Young, Matthew; Dameron, Arrelaine; Teeter, Glenn [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Park, Helen Hejin; Chua, Danny; Gordon, Roy G. [Harvard University, Cambridge, Massachusetts 02139 (United States)

    2014-12-29

    The development of cuprous oxide (Cu{sub 2}O) photovoltaics (PVs) is limited by low device open-circuit voltages. A strong contributing factor to this underperformance is the conduction-band offset between Cu{sub 2}O and its n-type heterojunction partner or electron-selective contact. In the present work, a broad range of possible n-type materials is surveyed, including ZnO, ZnS, Zn(O,S), (Mg,Zn)O, TiO{sub 2}, CdS, and Ga{sub 2}O{sub 3}. Band offsets are determined through X-ray photoelectron spectroscopy and optical bandgap measurements. A majority of these materials is identified as having a negative conduction-band offset with respect to Cu{sub 2}O; the detrimental impact of this on open-circuit voltage (V{sub OC}) is evaluated through 1-D device simulation. These results suggest that doping density of the n-type material is important as well, and that a poorly optimized heterojunction can easily mask changes in bulk minority carrier lifetime. Promising heterojunction candidates identified here include Zn(O,S) with [S]/[Zn] ratios >70%, and Ga{sub 2}O{sub 3}, which both demonstrate slightly positive conduction-band offsets and high V{sub OC} potential. This experimental protocol and modeling may be generalized to evaluate the efficiency potential of candidate heterojunction partners for other PV absorbers, and the materials identified herein may be promising for other absorbers with low electron affinities.

  5. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Majumder, M.; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-01-01

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu 2 O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  6. Electrochromism of the electroless deposited cuprous oxide films

    International Nuclear Information System (INIS)

    Neskovska, R.; Ristova, M.; Velevska, J.; Ristov, M.

    2007-01-01

    Thin cuprous oxide films were prepared by a low cost, chemical deposition (electroless) method onto glass substrates pre-coated with fluorine doped tin oxide. The X-ray diffraction pattern confirmed the Cu 2 O composition of the films. Visible transmittance spectra of the cuprous oxide films were studied for the as-prepared, colored and bleached films. The cyclic voltammetry study showed that those films exhibited cathode coloring electrochromism, i.e. the films showed change of color from yellowish to black upon application of an electric field. The transmittance across the films for laser light of 670 nm was found to change due to the voltage change for about 50%. The coloration memory of those films was also studied during 6 h, ex-situ. The coloration efficiency at 670 nm was calculated to be 37 cm 2 /C

  7. Green chemistry synthesis of nano-cuprous oxide.

    Science.gov (United States)

    Ceja-Romero, L R; Ortega-Arroyo, L; Ortega Rueda de León, J M; López-Andrade, X; Narayanan, J; Aguilar-Méndez, M A; Castaño, V M

    2016-04-01

    Green chemistry and a central composite design, to evaluate the effect of reducing agent, temperature and pH of the reaction, were employed to produce controlled cuprous oxide (Cu2O) nanoparticles. Response surface method of the ultraviolet-visible spectroscopy is allowed to determine the most relevant factors for the size distribution of the nanoCu2O. X-ray diffraction reflections correspond to a cubic structure, with sizes from 31.9 to 104.3 nm. High-resolution transmission electron microscopy reveals that the different shapes depend strongly on the conditions of the green synthesis.

  8. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Science.gov (United States)

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  9. Cuprous oxide nanoparticles dispersed on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction.

    Science.gov (United States)

    Yan, Xiao-Yan; Tong, Xi-Li; Zhang, Yue-Fei; Han, Xiao-Dong; Wang, Ying-Yong; Jin, Guo-Qiang; Qin, Yong; Guo, Xiang-Yun

    2012-02-11

    Cuprous oxide (Cu(2)O) nanoparticles dispersed on reduced graphene oxide (RGO) were prepared by reducing copper acetate supported on graphite oxide using diethylene glycol as both solvent and reducing agent. The Cu(2)O/RGO composite exhibits excellent catalytic activity and remarkable tolerance to methanol and CO in the oxygen reduction reaction. This journal is © The Royal Society of Chemistry 2012

  10. Directing the Branching Growth of Cuprous Oxide by OH- Ions

    Science.gov (United States)

    Chen, Kunfeng; Si, Yunfei; Xue, Dongfeng

    The effect of OH- ions on the branching growth of cuprous oxide microcrystals was systematically studied by a reduction route, where copper-citrate complexes were reduced by glucose under alkaline conditions. Different copper salts including Cu(NO3)2, CuCl2, CuSO4, and Cu(Ac)2 were used in this work. The results indicate that the Cu2O branching growth habit is closely correlated to the concentration of OH- ions, which plays an important role in directing the diffusion-limited branching growth of Cu2O and influencing the reduction power of glucose. A variety of Cu2O branching patterns including 6-pod, 8-pod and 24-pod branches, have been achieved without using template and surfactant. The current method can provide a good platform for studying the growth mechanism of microcrystal branching patterns.

  11. Microwave-assisted synthesis and optical properties of cuprous oxide micro/nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Dandan [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China); Du, Yi, E-mail: duyi234@126.com [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China); Tian, Xiuying, E-mail: xiuyingt@yahoo.com [Department of Chemistry and Materials Science, Hunan Institute of Humanities Science and Technology, Loudi 417000 (China); Li, Zhongfu; Chen, Zhongtao; Zhu, Chaofeng [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China)

    2014-12-15

    Graphical abstract: Cuprous oxide micro/nanocrystals were fabricated by a facile and green microwave-assisted method using soluble starch as reductant and dispersant. Spheres with the diameter of about 100 and 600 nm, octahedron and truncated octahedron with the edge length of about 0.8–3 μm cuprous oxide micro/nanocrystals were successfully obtained. Microwave heating was proved to be a efficient method and was advantageous to the homogeneous nucleation. Growth mechanism of the prepared Cu{sub 2}O microcrystals were investigated carefully. Furthermore, the optical properties of the prepared cuprous oxide microcrystals were investigated by UV–vis diffuse reflectance spectroscopy, demonstrating that their band gaps of obtained samples were 1.96–2.07 eV, assigned to their different sizes and morphologies. - Abstract: Cuprous oxide micro/nanocrystals were fabricated by a facile and green microwave-assisted method using soluble starch as reductant and dispersant. It was observed that the addition amounts of NaOH had a prominent effect on the morphologies and size of cuprous oxide products, and microwave heating was proved to be a efficient method and was advantageous to the homogeneous nucleation. The as-obtained samples were characterized by X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The results indicated that the samples were pure cuprous oxide. Spheres with the diameter of about 100 and 600 nm, octahedron and truncated octahedron with the edge length of about 0.8–3 μm cuprous oxide micro/nanocrystals were successfully obtained. Furthermore, the UV–vis diffuse reflectance spectroscopy was used to investigate the optical properties of the prepared cuprous oxide microcrystals, demonstrating that their band gaps of obtained samples were 1.96–2.07 eV, assigned to their different sizes and morphologies.

  12. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Directory of Open Access Journals (Sweden)

    Wang Y

    2012-05-01

    Full Text Available Ye Wang,1,2,* Xiao-Yuan Zi,1,* Juan Su,1 Hong-Xia Zhang,1 Xin-Rong Zhang,3 Hai-Ying Zhu,1 Jian-Xiu Li,1 Meng Yin,3 Feng Yang,3 Yi-Ping Hu,11Department of Cell Biology, 2School of Clinical Medicine, 3Department of Pharmaceuticals, Second Military Medical University, Shanghai, People's Republic of China*Authors contributed equally.Abstract: In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy.Keywords: nanomedicine, selective cytotoxicity, apoptosis, cell cycle arrest, mitochondrion-targeted nanomaterials

  13. Correlated lifetimes of free paraexcitons and excitons trapped at oxygen vacancies in cuprous oxide

    International Nuclear Information System (INIS)

    Koirala, Sandhaya; Naka, Nobuko; Tanaka, Koichiro

    2013-01-01

    We have studied transients of luminescence due to free excitons and excitons trapped at oxygen vacancies in cuprous oxide. We find that both trapped and free paraexcitons have lifetime dependent on temperature and on the oxygen concentration. By using samples containing much less copper vacancies relative to oxygen vacancies, we find out the direct correlation between the free paraexciton lifetime and trapped exciton lifetime. - Highlights: ► We have investigated trapping of free excitons at oxygen vacancies in cuprous oxide. ► Lifetimes of free and trapped excitons exhibit correlative temperature dependence. ► Four-level model with the activation energy of 33 meV well explains the observation. ► Comparison is made using the four samples with different vacancy concentrations. ► We clarified the crucial role of the oxygen vacancy in shortening the lifetimes.

  14. Light-Induced Reduction of Cuprous Oxide in an Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Cavalca, Filippo Carlo; Laursen, Anders Bo; Wagner, Jakob Birkedal

    2013-01-01

    Photocatalysts for solar fuel production are subject to intensive investigation as they constitute one viable route for solar energy harvesting. Cuprous oxide (Cu2O) is a working photocatalyst for hydrogen evolution but it photocorrodes upon light illumination in an aqueous environment....... Environmental transmission electron microscopy (ETEM) makes it possible to obtain insight into the local structure, composition and reactivity of catalysts in their working environment, which is of fundamental interest for sustainable energy research and is essential for further material optimization. Herein...

  15. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating.

    Science.gov (United States)

    M El Saeed, Ashraf; Abd El-Fattah, M; Azzam, Ahmed M; Dardir, M M; Bader, Magd M

    2016-08-01

    Cuprous oxide is commonly used as a pigment; paint manufacturers begin to employ cuprous oxide as booster biocides in their formulations, to replace the banned organotins as the principal antifouling compounds. Epoxy coating was reinforced with cuprous oxide nanoparticles (Cu2O NPs). The antibacterial as well as antifungal activity of Cu2O epoxy nanocomposite (Cu2O EN) coating films was investigated. Cu2O NPs were also experimented for antibiofilm and time-kill assay. The thermal stability and the mechanical properties of Cu2O EN coating films were also investigated. The antimicrobial activity results showed slowdown, the growth of organisms on the Cu2O EN coating surface. TGA results showed that incorporating Cu2O NPs into epoxy coating considerably enhanced the thermal stability and increased the char residue. The addition of Cu2O NPs at lower concentration into epoxy coating also led to an improvement in the mechanical resistance such as scratch and abrasion. Cu2O NPs purity was confirmed by XRD. The TEM photograph demonstrated that the synthesized Cu2O NPs were of cubic shape and the average diameter of the crystals was around 25nm. The resulting perfect dispersion of Cu2O NPs in epoxy coating revealed by SEM ensured white particles embedded in the epoxy matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Towards printed perovskite solar cells with cuprous oxide hole transporting layers

    DEFF Research Database (Denmark)

    Wang, Yan; Xia, Zhonggao; Liang, Jun

    2015-01-01

    Solution-processed p-type metal oxide materials have shown great promise in improving the stability of perovskite-based solar cells and offering the feasibility for a low cost printing fabrication process. Herein, we performed a device modeling study on planar perovskite solar cells with cuprous...... oxide (Cu2O) hole transporting layers (HTLs) by using a solar cell simulation program, wxAMPS. The performance of a Cu2O/perovskite solar cell was correlated to the material properties of the Cu2O HTL, such as thickness, carrier mobility, mid-gap defect, and doping...

  17. Multicomponent exciton gas in cuprous oxide: cooling behaviour and the role of Auger decay

    Science.gov (United States)

    Semkat, D.; Sobkowiak, S.; Schöne, F.; Stolz, H.; Koch, Th; Fehske, H.

    2017-10-01

    In this paper we present a hydrodynamic model to describe the dynamics of para- and orthoexcitons in cuprous oxide at ultralow temperatures inside a stress induced potential trap. We take into account the finite lifetime of the excitons, the excitation process and exciton-phonon as well as exciton-exciton interaction. Furthermore, we model the two-body loss mechanism assuming an Auger-like effect and compare it to an alternative explanation which relies on the formation of biexcitons. We discuss in detail the influence on the numerical results and compare the predictions to experimental data.

  18. A Facile One Step Solution Route to Synthesize Cuprous Oxide Nanofluid

    Directory of Open Access Journals (Sweden)

    Shenoy U. Sandhya

    2013-05-01

    Full Text Available A cuprous oxide nanofluid stabilized by sodium lauryl sulfate, synthesized by using the one step method, has been reported. Nanofluids were synthesized by using a well‐ controlled surfactant‐assisted solution phase synthesis. The method involved reduction of copper acetate by glucose in a mixture of water and ethylene glycol serving as the base fluid. The synthesized fluid was characterized by X‐ray and electron diffraction techniques, in addition, transmission and field emission microscopic techniques and Fourier transform infra red spectroscopic analysis was undertaken. The rheological property, as well as the thermal conductivity of the fluid, were measured. The variation of reaction parameters considerably affected the size of the particles as well as the reaction rate. The uniform dispersion of the particles in the base fluid led to a stability period of three months under stationary state, augmenting the thermal conductivity of the nanofluid. The method is found to be simple, reliable and fast for the synthesis of Newtonian nanofluids containing cuprous oxide nanoparticles.

  19. Cuprous Oxide Scale up: Gram Production via Bulk Synthesis using Classic Solvents at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hall, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Han, T. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-07

    Cuprous oxide is a p-type semiconducting material that has been highly researched for its interesting properties. Many small-scale syntheses have exhibited excellent control over size and morphology. As the demand for cuprous oxide grows, the synthesis method need to evolve to facilitate large-scale production. This paper supplies a facile bulk synthesis method for Cu₂O on average, 1-liter reaction volume can produce 1 gram of particles. In order to study the shape and size control mechanisms on such a scale, the reaction volume was diminished to 250 mL producing on average 0.3 grams of nanoparticles per batch. Well-shaped nanoparticles have been synthesized using an aqueous solution of CuCl₂, NaOH, SDS surfactant, and NH₂OH-HCl at mild temperatures. The time allotted between the addition of NaOH and NH₂OH-HCl was determined to be critical for Cu(OH)2 production, an important precursor to the final produce The effects of stirring rates on a large scale was also analyzed during reagent addition and post reagent addition. A morphological change from rhombic dodecahedra to spheres occurred as the stirring speed was increased. The effects of NH₂OH-HCl concentration were also studied to control the etching effects of the final product.

  20. Effect of cuprous oxide with different sizes on thermal and combustion behaviors of unsaturated polyester resin.

    Science.gov (United States)

    Hou, Yanbei; Hu, Weizhao; Gui, Zhou; Hu, Yuan

    2017-07-15

    Cuprous oxide (Cu 2 O) as an effective catalyst has been applied to enhance the fire safety of unsaturated polyester resin (UPR), but the particle size influence on combustion behaviors has not been previously reported. Herein, the UPR/Cu 2 O composites (metal oxide particles with average particle-size of 10, 100, and 200nm) were successfully synthesized by thermosetting process. The effects of Cu 2 O with different sizes on thermostability and combustion behaviors of UPR were characterized by TGA, MCC, TG-IR, FTIR, and SSTF. The results revel that the addition of Cu 2 O contributes to sufficient decomposition of oxygen-containing compounds, which is beneficial to the release of nontoxic compounds. The smallest-sized Cu 2 O performs the excellent catalytic decomposition effect and promotes the complete combustion of UPR, which benefits the enhancement of fire safety. While the other additives retard pyrolysis process and yield more char residue, and thus the flame retardancy of UPR composites was improved. Therefore, catalysis plays a major role for smaller-sized particles during thermal decomposition of matrix, while flame retarded effect became gradual distinctly for the larger-sized additives. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor

    Science.gov (United States)

    Nguyen, Thu-Thuy; Huy, Bui The; Hwang, Seo-Young; Vuong, Nguyen Minh; Pham, Quoc-Thai; Nghia, Nguyen Ngoc; Kirtland, Aaron; Lee, Yong-Ill

    2018-05-01

    Cuprous oxide (Cu2O) nanostructure has been synthesized using an electrochemical method with a two-electrode system. Cu foils were used as electrodes and NH2(OH) was utilized as the reducing agent. The effects of pH and applied voltages on the morphology of the product were investigated. The morphology and optical properties of Cu2O particles were characterized using scanning electron microscopy, x-ray diffraction, and diffuse reflectance spectra. The synthesized Cu2O nanostructures that formed in the vicinity of the anode at 2 V and pH = 11 showed high uniform distribution, small size, and good electrochemical sensing. These Cu2O nanoparticles were coated on an Indium tin oxide substrate and applied to detect non-enzyme glucose as excellent biosensors. The non-enzyme glucose biosensors exhibited good performance with high response, good selectivity, wide linear detection range, and a low detection limit at 0.4 μM. Synthesized Cu2O nanostructures are potential materials for a non-enzyme glucose biosensor.

  2. Observation of confinement effects through liner and nonlinear absorption spectroscopy in cuprous oxide

    Science.gov (United States)

    Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.

    2015-02-01

    Cuprous oxide nano clusters, micro cubes and micro particles were successfully synthesized by reducing copper (II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction studies revealed the formation of pure single phase cubic. Raman spectrum shows the inevitable presence of CuO on the surface of the Cu2O powders which may have an impact on the stability of the phase. Transmission electron microscopy (TEM) data revealed that the morphology evolves from nanoclusters to micro cubes and micro particles by increasing the concentration of NaOH. Linear optical measurements show that the absorption peak maximum shifts towards red with changing morphology from nano clusters to micro cubes and micro particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm, 6 ns laser pulses. Samples exhibited saturable as well as reverse saturable absorption. The results show that the transition from SA to RSA is ascribed to excited-state absorption (ESA) induced by two-photon absorption (TPA) process. Due to confinement effects (enhanced band gap) we observed enhanced nonlinear absorption coefficient (βeff) in the case of nano-clusters compared to their micro-cubes and micro-particles.

  3. Controlling the Optical and Magnetic Properties of Nanostructured Cuprous Oxide Synthesized from Waste Electric Cables

    Science.gov (United States)

    Abdelbasir, S. M.; El-Sheikh, S. M.; Rashad, M. M.; Rayan, D. A.

    2018-03-01

    Cuprous oxide Cu2O nanopowders were purposefully synthesised from waste electric cables (WECs) via a simple precipitation route at room temperature using lactose as a reducing agent. In this regard, dimethyl sulfoxide (DMSO) was first applied as an organic solvent for the dissolution of the cable insulating materials. Several parameters were investigated during dissolution of WECs such as dissolution temperature, time and solid/liquid ratio to determine the dissolution percentage of the insulating materials in DMSO. The morphology and the optical properties of the formed Cu2O particles were investigated using X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy and UV-visible-near IR spectrophotometer. XRD data confirmed the presence of single crystalline phase of Cu2O nanoparticles. FE-SEM and TEM images revealed spherical, cubic and octahedral shapes with the various particle sizes ranged from 16 to 57 nm depending on the synthesis conditions. A possible mechanism explaining the Cu2O nanostructures formation was proposed. The band gap energies of the Cu2O nanostructures were estimated and the values were located between 1.5 and 2.08 eV. Photoluminescence spectroscopy analysis clearly showed a noticeably blue-shifted emission for the synthesized samples compared to spectrum of the bulk. Eventually, magnetic properties of the synthesized nanoparticles have been measured by vibrating sample magnetometer and the attained results implied that the synthesized particles are weakly ferromagnetic in nature at normal temperature.

  4. Cytotoxicity of cuprous oxide nanoparticles to fish blood cells: hemolysis and internalization

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liqiang, E-mail: chenlq@ynu.edu.cn; Kang Bin [Yunnan University, Asian International Rivers Center, Yunnan Key Laboratory of International Rivers and Trans-boundary Eco-security (China); Ling Jian [Yunnan University, College of Chemistry and Chemical Engineering (China)

    2013-03-15

    Cuprous oxide nanoparticles (Cu{sub 2}O NPs) possess unique physical and chemical properties which are employed in a broad variety of applications. However, little is known about the adverse effects of Cu{sub 2}O NPs on organisms. In the current study, in vitro cytotoxicity of Cu{sub 2}O NPs (ca. 60 nm in diameter) to the blood cells of freshwater fish Carassius auratus was evaluated. A concentration-dependent hemolytic activity of Cu{sub 2}O NPs to red blood cells (RBCs) and the phagocytosis of Cu{sub 2}O NPs by leukocytes were revealed. The results showed that dosages of Cu{sub 2}O NPs greater than 40 {mu}g/mL were toxic to blood cells, and could cause serious membrane damage to RBCs. The EC{sub 50} value of Cu{sub 2}O NPs as obtained from RBCs and whole blood exposure was 26 and 63 {mu}g/mL, respectively. The generation of reactive oxygen species and the direct interaction between Cu{sub 2}O NPs and the cell membrane were suggested as the possible mechanism for cytotoxicity, and the intrinsic hemolytic active of Cu{sub 2}O NPs was the main contributor to the toxicity rather than solubilized copper ions. The adsorption of plasma proteins on the surfaces of Cu{sub 2}O NPs led to their aggregation in whole blood, and aggregate formation can significantly alleviate the hemolytic effect and subsequently mediate the phagocytosis of Cu{sub 2}O NPs by leukocytes.

  5. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction

    KAUST Repository

    Zhang, Zhonghai

    2013-02-26

    In this work, we propose a solution-based carbon precursor coating and subsequent carbonization strategy to form a thin protective carbon layer on unstable semiconductor nanostructures as a solution to the commonly occurring photocorrosion problem of many semiconductors. A proof-of-concept is provided by using glucose as the carbon precursor to form a protective carbon coating onto cuprous oxide (Cu2O) nanowire arrays which were synthesized from copper mesh. The carbon-layer-protected Cu2O nanowire arrays exhibited remarkably improved photostability as well as considerably enhanced photocurrent density. The Cu2O nanowire arrays coated with a carbon layer of 20 nm thickness were found to give an optimal water splitting performance, producing a photocurrent density of -3.95 mA cm-2 and an optimal photocathode efficiency of 0.56% under illumination of AM 1.5G (100 mW cm-2). This is the highest value ever reported for a Cu 2O-based electrode coated with a metal/co-catalyst-free protective layer. The photostability, measured as the percentage of the photocurrent density at the end of 20 min measurement period relative to that at the beginning of the measurement, improved from 12.6% on the bare, nonprotected Cu2O nanowire arrays to 80.7% on the continuous carbon coating protected ones, more than a 6-fold increase. We believe that the facile strategy presented in this work is a general approach that can address the stability issue of many nonstable photoelectrodes and thus has the potential to make a meaningful contribution in the general field of energy conversion. © 2013 American Chemical Society.

  6. Reduced graphene oxide–cuprous oxide composite via facial deposition for photocatalytic dye-degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, MingYan, E-mail: mingyanlyg@hotmail.com [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute of Innovative Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Huang, JunRao; Tong, ZhiWei [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Li, WeiHua [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Chen, Jun, E-mail: junc@uow.edu.au [Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute of Innovative Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia)

    2013-08-15

    Highlights: •Cubic Cu{sub 2}O were effectively loaded on n-propylamine (PA) intercalated graphene oxide. •The addition of PA on the carbon sheets supports the stable structure of the composites. •Cu{sub 2}O/PA/rGO showed superior adsorption capacity and photocatalytic activity. -- Abstract: Cubic Cu{sub 2}O nanoparticles have been successfully synthesized on n-propylamine (PA) intercalated graphene oxide (GO) with uniform distribution followed with a subsequent hydrazine hydrate reduction process to generate Cu{sub 2}O/PA/rGO composite. For comparison, Cu{sub 2}O conjugated reduced graphene oxide (Cu{sub 2}O/rGO) composite was also synthesized using the same method. The as-prepared Cu{sub 2}O/PA/rGO and Cu{sub 2}O/rGO nanocomposites are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area analysis, and Electrochemical impedance spectra (EIS) measurements. UV/vis diffuse reflectance spectroscopy was employed to estimate band gap energies of cuprous oxide composites. The results show that the intercalation of PA into the layered GO increases the surface area of the composites and provides an efficient strategy to load Cu{sub 2}O due to the large and uniform distribution of active sites for anchoring copper ions. The surface area of the Cu{sub 2}O/PA/rGO (123 m{sup 2}/g) nanocomposite was found to be almost 2.5 times higher than that of Cu{sub 2}O/rGO (55.7 m{sup 2}/g). The as-prepared Cu{sub 2}O/PA/rGO show significant improvement on both adsorption capacity and photocatalytic activity towards organic pigment pollution compared with Cu{sub 2}O/rGO under identical performance conditions.

  7. Cuprous oxide created on sepiolite: Preparation, characterization, and photocatalytic activity in treatment of red water from 2,4,6-trinitrotoluene manufacturing

    International Nuclear Information System (INIS)

    Zhu, Qingwei; Zhang, Yihe; Lv, Fengzhu; Chu, Paul K.; Ye, Zhengfan; Zhou, Fengshan

    2012-01-01

    Highlights: ► Cu 2 O crystals were firstly created on the natural sepiolite fibers. ► The structures of the sepiolite are altered when acidized, benefiting the immobility of cuprous oxide crystals. ► The carrier sepiolite improves efficiently the photocatalytic activity of cuprous oxide crystals. ► Cu 2 O/sepiolite composites show superior photocatalytic activity for the degradation of red water. - Abstract: Cuprous oxide is firstly created on acidized sepiolite (AS) by a simple deposition method for photocatalytic degradation of the red water produced from 2,4,6-trinitrotoluene (TNT) manufacturing. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), ultraviolet-visible diffuse reflection absorptive spectroscopy (UV–vis/DRS), and Fourier transform infrared (FT-IR) spectroscopy are used to characterize the photocatalyst composites. Gas chromatography/mass spectrometry (GC/MS) is employed to determine the organic constituents in the red water. The results show that the cuprous oxide particles can be immobilized on the surface of the AS fibers and the structure of the AS is altered when cuprous oxide interacts with AS via chemical reactions besides physical adsorption. The AS improves the optical properties of cuprous oxide and red-shifts the band gap thereby enhancing the utilization of visible light. The Cu 2 O/AS composites demonstrate excellent photocatalytic performance in the degradation of red water. 87.0% of red water can be photocatalytically degraded by Cu 2 O/AS after illumined for 5 h and a majority of organic components of red water except 1,3,5-trinitrobenzene were degraded according to GC–MS analysis.

  8. One-step green synthesis of cuprous oxide crystals with truncated octahedra shapes via a high pressure flux approach

    International Nuclear Information System (INIS)

    Li Benxian; Wang Xiaofeng; Xia Dandan; Chu Qingxin; Liu Xiaoyang; Lu Fengguo; Zhao Xudong

    2011-01-01

    Cuprous oxide (Cu 2 O) was synthesized via reactions between cupric oxide (CuO) and copper metal (Cu) at a low temperature of 300 deg. C. This progress is green, environmentally friendly and energy efficient. Cu 2 O crystals with truncated octahedra morphology were grown under high pressure using sodium hydroxide (NaOH) and potassium hydroxide (KOH) with a molar ratio of 1:1 as a flux. The growth mechanism of Cu 2 O polyhedral microcrystals are proposed and discussed. - Graphical Abstract: The Cu 2 O crystals with truncated octahedral shape were one-step synthesized in high yield via high pressure flux method for the first time, which is green and environmentally friendly. The mechanisms of synthesis and crystal growth were discussed in this paper. Highlights: → Cuprous oxide was one-step green synthesized by high pressure flux method. → The approach was based on the reverse dismutation reactions between cupric oxide and copper metal. → This progress is green, environmentally friendly and energy efficient. → The synthesized Cu2O crystals were of truncated octahedra morphology.

  9. Facile synthesis of cuprous oxide nanowires decorated graphene oxide nanosheets nanocomposites and its application in label-free electrochemical immunosensor.

    Science.gov (United States)

    Wang, Huan; Zhang, Yong; Wang, Yulan; Ma, Hongmin; Du, Bin; Wei, Qin

    2017-01-15

    In this work, the assembly between one-dimensional (1D) nanomaterials and two-dimensional (2D) nanomaterials was achieved by a simple method. Cuprous oxide nanowires decorated graphene oxide nanosheets (Cu 2 O@GO) nanocomposites were synthesized for the first time by a simple electrostatic self-assembly process. The nanostructure was well confirmed by scanning electron microscope (SEM) and transmission electron microscope (TEM) images. Taking advantages of good electrocatalytic activity and high specific surface area of Cu 2 O@GO nanocomposites, a label-free electrochemical immunosensor was developed by employing Cu 2 O@GO as signal amplification platform for the quantitative detection of alpha fetoprotein (AFP). In addition, toluidine blue (TB) was used as the electron transfer mediator to provide the electrochemical signal, which was adsorbed on graphene oxide nanosheets (GO NSs) by electrostatic attraction. The detection mechanism was based on the monitoring of the electrochemical current response change of TB by the square wave voltammetry (SWV) when immunoreaction occurred on the surface of electrode. Under optimal conditions, the proposed immunosensor displayed a high sensitivity and a low detection limit. This designed method may provide an effective method in the clinical diagnosis of AFP and other tumor markers. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles.

    Science.gov (United States)

    Robatjazi, Hossein; Zhao, Hangqi; Swearer, Dayne F; Hogan, Nathaniel J; Zhou, Linan; Alabastri, Alessandro; McClain, Michael J; Nordlander, Peter; Halas, Naomi J

    2017-06-21

    The rational combination of plasmonic nanoantennas with active transition metal-based catalysts, known as 'antenna-reactor' nanostructures, holds promise to expand the scope of chemical reactions possible with plasmonic photocatalysis. Here, we report earth-abundant embedded aluminum in cuprous oxide antenna-reactor heterostructures that operate more effectively and selectively for the reverse water-gas shift reaction under milder illumination than in conventional thermal conditions. Through rigorous comparison of the spatial temperature profile, optical absorption, and integrated electric field enhancement of the catalyst, we have been able to distinguish between competing photothermal and hot-carrier driven mechanistic pathways. The antenna-reactor geometry efficiently harnesses the plasmon resonance of aluminum to supply energetic hot-carriers and increases optical absorption in cuprous oxide for selective carbon dioxide conversion to carbon monoxide with visible light. The transition from noble metals to aluminum based antenna-reactor heterostructures in plasmonic photocatalysis provides a sustainable route to high-value chemicals and reaffirms the practical potential of plasmon-mediated chemical transformations.Plasmon-enhanced photocatalysis holds promise for the control of chemical reactions. Here the authors report an Al@Cu 2 O heterostructure based on earth abundant materials to transform CO 2 into CO at significantly milder conditions.

  11. Exciton-polaritons in cuprous oxide: Theory and comparison with experiment

    Science.gov (United States)

    Schweiner, Frank; Ertl, Jan; Main, Jörg; Wunner, Günter; Uihlein, Christoph

    2017-12-01

    The observation of giant Rydberg excitons in cuprous oxide (Cu2O ) up to a principal quantum number of n =25 by T. Kazimierczuk et al. [Nature (London) 514, 343 (2014), 10.1038/nature13832] inevitably raises the question whether these quasiparticles must be described within a multipolariton framework since excitons and photons are always coupled in the solid. In this paper we present the theory of exciton-polaritons in Cu2O . To this end we extend the Hamiltonian which includes the complete valence-band structure, the exchange interaction, and the central-cell corrections effects, and which has been recently deduced by F. Schweiner et al. [Phys. Rev. B 95, 195201 (2017), 10.1103/PhysRevB.95.195201], for finite values of the exciton momentum ℏ K . We derive formulas to calculate not only dipole but also quadrupole oscillator strengths when using the complete basis of F. Schweiner et al., which has recently been proven as a powerful tool to calculate exciton spectra. Very complex polariton spectra for the three orientations of K along the axes [001 ] , [110 ] , and [111 ] of high symmetry are obtained and a strong mixing of exciton states is reported. The main focus is on the 1 S ortho-exciton-polariton, for which pronounced polariton effects have been measured in experiments. We set up a 5 ×5 matrix model, which accounts for both the polariton effect and the K -dependent splitting, and which allows treating the anisotropic polariton dispersion for any direction of K . We especially discuss the dispersions for K being oriented in the planes perpendicular to [1 1 ¯0 ] and [111 ] , for which experimental transmission spectra have been measured. Furthermore, we compare our results with experimental values of the K -dependent splitting, the group velocity, and the oscillator strengths of this exciton-polariton. The results are in good agreement. This proves the validity of the 5 ×5 matrix model as a useful theoretical model for further investigations on the 1 S

  12. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.

    Science.gov (United States)

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan

    2013-03-07

    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.

  13. One-step synthesis and properties of monolithic photoluminescent ruby colored cuprous oxide antimony oxide glass nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Som, Tirtha [Glass Science and Technology Section, Glass Division, Central Glass and Ceramic Research Institute, Council of Scientific and Industrial Research (CSIR, India), 196, Raja S.C. Mullick Road, Kolkata 700032 (India); Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in [Glass Science and Technology Section, Glass Division, Central Glass and Ceramic Research Institute, Council of Scientific and Industrial Research (CSIR, India), 196, Raja S.C. Mullick Road, Kolkata 700032 (India)

    2011-04-14

    Research highlights: > Single-step synthesis of Cu{sub 2}O, Cu{sub y}Sb{sub 2-x}(O,OH){sub 6-7} (y {<=} 2, x {<=} 1) and Cu nanocrystals co-doped novel antimony oxide glass hybrid nanocomposites. > Yellow and orange colored nanocomposites shows size-controlled band gap shift of Cu{sub 2}O. > Red nanocomposite exhibits surface plasmon resonance band due to metallic Cu. > They exhibit broad deep-red photoluminescence emission under various UV excitation wavelengths. - Abstract: Cuprous oxide (Cu{sub 2}O) antimony glass (K{sub 2}O-B{sub 2}O{sub 3}-Sb{sub 2}O{sub 3}) monolithic nanocomposites having brilliant yellow to ruby red color have been synthesized by a single-step melt-quench technique involving in situ thermochemical reduction of Cu{sup 2+} (CuO) by the reducing glass matrix without using any external reducing agent. The X-ray diffraction (XRD), infrared transmission and reflection spectra, and selected area electron diffraction analysis support the reduction of Cu{sup 2+} to Cu{sup +} with the formation of Cu{sub 2}O nanoclusters along with Cu{sub y}Sb{sub 2-x}(O,OH){sub 6-7} (y {<=} 2, x {<=} 1) nanocrystalline phases while Cu{sup 0} nanoclusters are formed at very high Cu concentration. The UV-vis spectra of the yellow and orange colored nanocomposites show size-controlled band gap shift of the semiconductor (Cu{sub 2}O) nanocrystallites embedded in the glasses while the red nanocomposite exhibits surface plasmon resonance band at 529 nm due to metallic Cu. Transmission electron microscopic image advocates the formation of nanocystallites (5-42 nm). Photoluminescence emission studies show broad red emission band around 626 nm under various excitation wavelengths from 210 to 270 nm.

  14. Cuprous oxide thin films prepared by thermal oxidation of copper layer. Morphological and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, Artak, E-mail: karapetyan@cinam.univ-mrs.fr [Aix Marseille Université, CINaM, 13288, Marseille (France); Institute for Physical Research of NAS of Armenia, Ashtarak-2 0203 (Armenia); Reymers, Anna [Russian-Armenian (Slavonic) University, H.Emin st.123, Yerevan 375051 (Armenia); Giorgio, Suzanne; Fauquet, Carole [Aix Marseille Université, CINaM, 13288, Marseille (France); Sajti, Laszlo [Laser Zentrum Hannover e.V. Hollerithallee 8, 30419 Hannover (Germany); Nitsche, Serge [Aix Marseille Université, CINaM, 13288, Marseille (France); Nersesyan, Manuk; Gevorgyan, Vladimir [Russian-Armenian (Slavonic) University, H.Emin st.123, Yerevan 375051 (Armenia); Marine, Wladimir [Aix Marseille Université, CINaM, 13288, Marseille (France)

    2015-03-15

    Structural and optical characterization of crystalline Cu{sub 2}O thin films obtained by thermal oxidation of Cu films at two different temperatures 800 °C and 900 °C are investigated in this work. X-ray diffraction measurements indicate that synthesized films consist of single Cu{sub 2}O phase without any interstitial phase and show a nano-grain structure. Scanning Electron Microscopy observations indicate that the Cu{sub 2}O films have a micro-scale roughness whereas High Resolution Transmission Electron Microscopy highlights that the nanocrystalline structure is formed by superposition of nearly spherical nanocrystals smaller than 30 nm. Photoluminescence spectra of these films exhibit at room temperature two well-resolved emission peaks at 1.34 eV due to defects energy levels and at 1.97 eV due to phonon-assisted recombination of the 1s orthoexciton in both film series. Emission characteristics depending on the laser power is deeply investigated to determine the origin of recorded emissions. Time-integrated spectra of the 1s orthoexciton emission reveals the presence of oxygen defects below the conduction band edge under non-resonant two-photon excitation using a wide range of excitations wavelengths. Optical absorption coefficients at room temperature are obtained from an accurate analysis of their transmission and reflection spectra, whereas the optical band gap energy is estimated at about 2.11 eV. Results obtained are of high relevance especially for potential applications in semiconductor devices such as solar cells, optical sources and detectors. - Highlights: • Nanostructured Cu{sub 2}O thin films were synthesized by thermal oxidation of Cu films. • The PL spectra of nanostructured thin films revealed two well-resolved emission peaks. • The PL properties were investigated under a broad range of experimental conditions. • Inter-band transition in the infrared range has been associated to V{sub Cu} and V{sub O} vacancies. • Absorption

  15. Preparation, characterization and nonlinear absorption studies of cuprous oxide nanoclusters, micro-cubes and micro-particles

    Science.gov (United States)

    Sekhar, H.; Narayana Rao, D.

    2012-07-01

    Cuprous oxide nanoclusters, micro-cubes and micro-particles were successfully synthesized by reducing copper(II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction and FTIR studies revealed that the formation of pure single-phase cubic. Raman and EPR spectral studies show the presence of CuO in as-synthesized powders of Cu2O. Transmission electron microscopy and field emission scanning electron microscopy data revealed that the morphology evolves from nanoclusters to micro-cubes and micro-particles by increasing the concentration of NaOH. Linear optical measurements show absorption peak maximum shifts towards red with changing morphology from nanoclusters to micro-cubes and micro-particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm 6 ns laser pulses. Samples-exhibited both saturable as well as reverse saturable absorption. Due to confinement effects (enhanced band gap), we observed enhanced nonlinear absorption coefficient (β) in the case of nanoclusters compared to their micro-cubes and micro-particles.

  16. A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jie; Xie, Anjian; Li, Shikuo; Huang, Fangzhi; Cao, Juan; Shen, Yuhua, E-mail: yhshen@ahu.edu.cn

    2016-01-01

    Graphical abstract: Excellent photocatalytic activity of the RGO/PANI/Cu{sub 2}O composite hydrogel for CR degradation under UV–vis light irradiation. - Highlights: • The RGO/PANI/Cu{sub 2}O composite hydrogel was first synthesized via a facile method. • Photocatalytic performance was studied under UV–vis light. • The ternary composite hydrogel shows unexpected photocatalytic activity. • A possible photocatalysis mechanism was illustrated. - Abstract: In this work, a novel reducing graphene/polyaniline/cuprous oxide (RGO/PANI/Cu{sub 2}O) composite hydrogel with a 3D porous network has been successfully prepared via a one-pot method in the presence of cubic Cu{sub 2}O nanoparticles. The as-synthesized ternary composites hydrogel shows unexpected photocatalytic activity such that Congo red (CR) degradation efficiency can reaches 97.91% in 20 min under UV–vis light irradiation, which is much higher than that of either the single component (Cu{sub 2}O nanoparticles), or two component systems (RGO/Cu{sub 2}O composite hydrogel and PANI/Cu{sub 2}O nanocomposites). Furthermore, the ternary composite hydrogel exhibits high stability and do not show any significant loss after five recycles. Such outstanding photocatalytic activity of the RGO/PANI/Cu{sub 2}O composite hydrogel was ascribed to the high absorption ability of the product for CR and the synergic effect among RGO, PANI and Cu{sub 2}O in photocatalytic process. The product of this work would provide a new sight for the construction of UV–vis light responsive photocatalyst with high performance.

  17. A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red

    International Nuclear Information System (INIS)

    Miao, Jie; Xie, Anjian; Li, Shikuo; Huang, Fangzhi; Cao, Juan; Shen, Yuhua

    2016-01-01

    Graphical abstract: Excellent photocatalytic activity of the RGO/PANI/Cu_2O composite hydrogel for CR degradation under UV–vis light irradiation. - Highlights: • The RGO/PANI/Cu_2O composite hydrogel was first synthesized via a facile method. • Photocatalytic performance was studied under UV–vis light. • The ternary composite hydrogel shows unexpected photocatalytic activity. • A possible photocatalysis mechanism was illustrated. - Abstract: In this work, a novel reducing graphene/polyaniline/cuprous oxide (RGO/PANI/Cu_2O) composite hydrogel with a 3D porous network has been successfully prepared via a one-pot method in the presence of cubic Cu_2O nanoparticles. The as-synthesized ternary composites hydrogel shows unexpected photocatalytic activity such that Congo red (CR) degradation efficiency can reaches 97.91% in 20 min under UV–vis light irradiation, which is much higher than that of either the single component (Cu_2O nanoparticles), or two component systems (RGO/Cu_2O composite hydrogel and PANI/Cu_2O nanocomposites). Furthermore, the ternary composite hydrogel exhibits high stability and do not show any significant loss after five recycles. Such outstanding photocatalytic activity of the RGO/PANI/Cu_2O composite hydrogel was ascribed to the high absorption ability of the product for CR and the synergic effect among RGO, PANI and Cu_2O in photocatalytic process. The product of this work would provide a new sight for the construction of UV–vis light responsive photocatalyst with high performance.

  18. Novel p-n heterojunction copper phosphide/cuprous oxide photocathode for solar hydrogen production.

    Science.gov (United States)

    Chen, Ying-Chu; Chen, Zhong-Bo; Hsu, Yu-Kuei

    2018-08-01

    A Copper phosphide (Cu 3 P) micro-rod (MR) array, with coverage by an n-Cu 2 O thin layer by electrodeposition as a photocathode, has been directly fabricated on copper foil via simple electro-oxidation and phosphidation for photoelectrochemical (PEC) hydrogen production. The morphology, structure, and composition of the Cu 3 P/Cu 2 O heterostructure are systematically analyzed using a scanning electron microscope (SEM), X-ray diffraction and X-ray photoelectron spectra. The PEC measurements corroborate that the p-Cu 3 P/n-Cu 2 O heterostructural photocathode illustrates efficient charge separation and low charge transfer resistance to achieve the highest photocurrent of 430 μA cm -2 that is greater than other transition metal phosphide materials. In addition, a detailed energy diagram of the p-Cu 3 P/n-Cu 2 O heterostructure was investigated using Mott-Schottky analysis. Our study paves the way to explore phosphide-based materials in a new class for solar energy applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Yifan Dai

    2018-01-01

    Full Text Available A cuprous oxide (Cu2O thin layer served as the base for a non-enzymatic glucose sensor in an alkaline medium, 0.1 NaOH solution, with a linear range of 50–200 mg/dL using differential pulse voltammetry (DPV measurement. An X-ray photoelectron spectroscopy (XPS study confirmed the formation of the cuprous oxide layer on the thin gold film sensor prototype. Quantitative detection of glucose in both phosphate-buffered saline (PBS and undiluted human serum was carried out. Neither ascorbic acid nor uric acid, even at a relatively high concentration level (100 mg/dL in serum, interfered with the glucose detection, demonstrating the excellent selectivity of this non-enzymatic cuprous oxide thin layer-based glucose sensor. Chronoamperometry and single potential amperometric voltammetry were used to verify the measurements obtained by DPV, and the positive results validated that the detection of glucose in a 0.1 M NaOH alkaline medium by DPV measurement was effective. Nickel, platinum, and copper are commonly used metals for non-enzymatic glucose detection. The performance of these metal-based sensors for glucose detection using DPV were also evaluated. The cuprous oxide (Cu2O thin layer-based sensor showed the best sensitivity for glucose detection among the sensors evaluated.

  20. Preparation of silver-cuprous oxide/stearic acid composite coating with superhydrophobicity on copper substrate and evaluation of its friction-reducing and anticorrosion abilities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peipei [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Chen, Xinhua [College of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000 (China); Yang, Guangbin; Yu, Laigui [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhang, Pingyu, E-mail: pingyu@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2014-01-15

    A simple two-step solution immersion process was combined with surface-modification by stearic acid to prepare superhydrophobic coatings on copper substrates so as to reduce friction coefficient, increase wear resistance and improve the anticorrosion ability of copper. Briefly, cuprous oxide (Cu{sub 2}O) crystal coating with uniform and compact tetrahedron structure was firstly created by immersing copper substrate in 2 mol L{sup −1} NaOH solution. As-obtained Cu{sub 2}O coating was then immersed in 0.33 mmol L{sup −1} AgNO{sub 3} solution to incorporate silver nanoparticles, followed by modification with stearic acid (denoted as SA) coating to achieve hydrophobicity. The surface morphology and chemical composition of silver-cuprous oxide/stearic acid (denoted as Ag-Cu{sub 2}O/SA) composite coating were investigated using a scanning electron microscope and an X-ray photoelectron spectroscope (XPS); and its phase structure was examined with an X-ray diffractometer (XRD). Moreover, the contact angle of water on as-prepared Ag-Cu{sub 2}O/SA composite coating was measured, and its friction-reducing and anticorrosion abilities were evaluated. It was found that as-prepared Ag-Cu{sub 2}O/SA composite coating has a water contact angle of as high as 152.4{sup o} and can provide effective friction-reducing, wear protection and anticorrosion protection for copper substrate, showing great potential for surface-modification of copper.

  1. Literature review on the properties of cuprous oxide Cu{sub 2}O and the process of copper oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Korzhavyi, P. A.; Johansson, B. (Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm (Sweden))

    2011-10-15

    The purpose of the present review is to provide a reference guide to the most recent data on the properties of copper(I) oxide as well as on the atomic processes involved in the initial stages of oxidation of copper. The data on the structure of surfaces, as obtained from atomic-resolution microscopy studies (for example, STM) or from first-principles calculations, are reviewed. Information of this kind may be useful for understanding the atomic mechanisms of corrosion and stress-corrosion cracking of copper

  2. Literature review on the properties of cuprous oxide Cu2O and the process of copper oxidation

    International Nuclear Information System (INIS)

    Korzhavyi, P. A.; Johansson, B.

    2011-10-01

    The purpose of the present review is to provide a reference guide to the most recent data on the properties of copper(I) oxide as well as on the atomic processes involved in the initial stages of oxidation of copper. The data on the structure of surfaces, as obtained from atomic-resolution microscopy studies (for example, STM) or from first-principles calculations, are reviewed. Information of this kind may be useful for understanding the atomic mechanisms of corrosion and stress-corrosion cracking of copper

  3. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors

    Science.gov (United States)

    Wan, Caichao; Jiao, Yue; Li, Jian

    2017-09-01

    An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.

  4. Low temperature (< 100 °C) deposited P-type cuprous oxide thin films: Importance of controlled oxygen and deposition energy

    International Nuclear Information System (INIS)

    Li, Flora M.; Waddingham, Rob; Milne, William I.; Flewitt, Andrew J.; Speakman, Stuart; Dutson, James; Wakeham, Steve; Thwaites, Mike

    2011-01-01

    With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p–n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu 2 O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu 2 O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu 2 O films are reported. It is known from previously published work that the formation of pure Cu 2 O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu 2 O thin films (as opposed to CuO or mixed phase CuO/Cu 2 O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu 2 O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a

  5. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    OpenAIRE

    Terence K. S. Wong; Siarhei Zhuk; Saeid Masudy-Panah; Goutam K. Dalapati

    2016-01-01

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O), cupric oxide (CuO) and copper (III) oxide (Cu4O3) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion e...

  6. Ferroelectric BiFeO3as an Oxide Dye in Highly Tunable Mesoporous All-Oxide Photovoltaic Heterojunctions

    KAUST Repository

    Wang, Lingfei; Ma, He; Chang, Lei; Ma, Chun; Yuan, Guoliang; Wang, Junling; Wu, Tao

    2016-01-01

    As potential photovoltaic materials, transition-metal oxides such as BiFeO3 (BFO) are capable of absorbing a substantial portion of solar light and incorporating ferroic orders into solar cells with enhanced performance. But the photovoltaic

  7. Applications of Oxide Coatings in Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Sonya Calnan

    2014-03-01

    Full Text Available Metalloid and metal based oxides are an almost unavoidable component in the majority of solar cell technologies used at the time of writing this review. Numerous studies have shown increases of ≥1% absolute in solar cell efficiency by simply substituting a given layer in the material stack with an oxide. Depending on the stoichiometry and whether other elements are present, oxides can be used for the purpose of light management, passivation of electrical defects, photo-carrier generation, charge separation, and charge transport in a solar cell. In this review, the most commonly used oxides whose benefits for solar cells have been proven both in a laboratory and industrial environment are discussed. Additionally, developing trends in the use of oxides, as well as newer oxide materials, and deposition technologies for solar cells are reported.

  8. 21 CFR 184.1265 - Cuprous iodide.

    Science.gov (United States)

    2010-04-01

    ... the following specific limitations: Category of food Maximum treatment level in food Functional use... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cuprous iodide. 184.1265 Section 184.1265 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  9. A non-enzymatic hydrogen peroxide sensor based on a glassy carbon electrode modified with cuprous oxide and nitrogen-doped graphene in a nafion matrix

    International Nuclear Information System (INIS)

    Jiang, Bin-Bin; Wei, Xian-Wen; Wu, Fang-Hui; Chen, Le; Yuan, Guo-Zan; Wu, Kong-Lin; Dong, Chao; Ye, Yin

    2014-01-01

    We have modified a glassy carbon electrode (GCE) with copper(I) oxide nanoparticles (NPs), nitrogen-doped graphene (N-graphene) and Nafion to obtain a novel sensing platform for the non-enzymatic detection of hydrogen peroxide. The deposition of the Cu 2 O NPs on N-graphene was accomplished by single-step chemical reduction. The nanocomposite was characterized by using X-ray diffraction and scanning electron microscopy which revealed the successful attachment of monodispersed Cu 2 O NPs to the N-graphene. Electrochemical studies revealed that the composite possesses excellent electrocatalytic activity toward the reduction of H 2 O 2 in pH 7.4 phosphate buffer solution at a working potential of −0.60 V. Nafion obviously enhances the stability of the modified GCE and repels any negatively charged species. Compared to a conventional Cu 2 O/Nafion-modified GCE, the modified GCE presented here exhibits (a) a higher catalytic activity for the reduction of H 2 O 2 (1.94 times), (b) a wider linear range (from 5.0 μM to 3.57 mM), (c) a lower detection limit (0.8 μM at an S/N of 3), (d) higher sensitivity (26.67 μA mM −1 ) and (e) a shorter response time (2 s). Moreover, the new GCE exhibits good selectivity and stability. These properties make the new hybrid electrode a promising tool for to the development of electrochemical sensors, molecular bioelectronic devices, biosensors, and biofuel cells. (author)

  10. Memristive Properties of Thin Film Cuprous Oxide

    Science.gov (United States)

    2011-03-01

    changes in the force sensed by the piezo electric crystal. ..................... 9 2. Schematic of the principles of Scanning Tunneling Microscopy (STM...developed the concept of the memristor in the 1970s. The three fundamental two-terminal elements in circuits, namely resistors , conductors, and...off the backside of the cantilever and changes in the force sensed by the piezo electric crystal. The AFM is a powerful tool for studying

  11. Oxides for sustainable photovoltaics with earth-abundant materials

    Science.gov (United States)

    Wagner, Alexander; Stahl, Mathieu; Ehrhardt, Nikolai; Fahl, Andreas; Ledig, Johannes; Waag, Andreas; Bakin, Andrey

    2014-03-01

    Energy conversion technologies are aiming to extremely high power capacities per year. Nontoxicity and abundance of the materials are the key requirements to a sustainable photovoltaic technology. Oxides are among the key materials to reach these goals. We investigate the influence of thin buffer layers on the performance of an ZnO:Al/buffer/Cu2O solar cells. Introduction of a thin ZnO or Al2O3 buffer layer, grown by thermal ALD, between ZnO:Al and Cu2O resulted in 45% increase of the solar cell efficiency. VPE growth of Cu2O employing elemental copper and pure oxygen as precursor materials is presented. The growth is performed on MgO substrates with the (001) orientation. On- and off- oriented substrates have been employed and the growth results are compared. XRD investigations show the growth of the (110) oriented Cu2O for all temperatures, whereas at a high substrate temperature additional (001) Cu2O growth occurs. An increase of the oxygen partial pressure leads to a more pronounced 2D growth mode, whereby pores between the islands still remain. The implementation of off-axis substrates with 3.5° and 5° does not lead to an improvement of the layer quality. The (110) orientation remains predominant, the grain size decreases and the FWHM of the (220) peak increases. From the AFM images it is concluded, that the (110) surface grows with a tilt angle to the substrate surface.

  12. Photovoltaics

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the photovoltaics. It presents the principles and the applications, the issues and the current technology, the challenges and the Group Total commitment in the domain. (A.L.B.)

  13. Fluorinated tin oxide back contact for AZTSSe photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Gershon, Talia S.; Gunawan, Oki; Haight, Richard A.; Lee, Yun Seog

    2017-03-28

    A photovoltaic device includes a substrate, a back contact comprising a stable low-work function material, a photovoltaic absorber material layer comprising Ag.sub.2ZnSn(S,Se).sub.4 (AZTSSe) on a side of the back contact opposite the substrate, wherein the back contact forms an Ohmic contact with the photovoltaic absorber material layer, a buffer layer or Schottky contact layer on a side of the absorber layer opposite the back contact, and a top electrode on a side of the buffer layer opposite the absorber layer.

  14. Transparent indium zinc oxide thin films used in photovoltaic cells based on polymer blends

    International Nuclear Information System (INIS)

    Besleaga, Cristina; Ion, L.; Ghenescu, Veta; Socol, G.; Radu, A.; Arghir, Iulia; Florica, Camelia; Antohe, S.

    2012-01-01

    Indium zinc oxide (IZO) thin films were obtained using pulsed laser deposition. The samples were prepared by ablation of targets with In concentrations, In/(In + Zn), of 80 at.%, at low substrate temperatures under reactive atmosphere. IZO films were used as transparent electrodes in polymer-based – poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 1:1 blend – photovoltaic cells. The action spectra measurements revealed that IZO-based photovoltaic structures have performances comparable with those using indium–tin–oxide as transparent electrode. - Highlights: ► Indium zinc oxide films were grown by pulsed laser deposition at room temperature. ► The films had large free carrier density and reasonably high mobility. ► These films fit for transparent electrodes in polymer-based photovoltaic cells.

  15. Photovoltaics

    International Nuclear Information System (INIS)

    Prince, M.B.

    1994-01-01

    Photovoltaic energy systems have the long range potential for supplying a significant part of the world's need for electricity Even today, such systems offer many benefits compared to other energy systems such as fossil fuel, nuclear and other renewable systems. These include: stability, reliability, require no water, no moving parts, environmentally benign, moderate efficiency, modular, universally usable, easy maintenance, and low power distribution costs. This paper will present information on present costs of the key system components, realistic cost projections and the results of a comparative study of three renewable approaches for a large system. (author), (tabs. 2)

  16. Copper oxide/N-silicon heterojunction photovoltaic device

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1982-01-01

    A photovoltaic device having characteristics of a high efficiency solar cell comprising a Cu.sub.x O/n-Si heterojunction. The Cu.sub.x O layer is formed by heating a deposited copper layer in an oxygen containing ambient.

  17. Photovoltaic

    International Nuclear Information System (INIS)

    Fechner, H.; Heidenreich, M.

    2001-01-01

    In 1993 a wide test for photovoltaic (PV) was carried out in Austria, 110 stations were built and precise measurements were done. At that time the demand of integrating direct current from solar cells into the 50 Hz alternating current network was a weak point. At present four european research projects dealing with security, reliability, network compatibility and its integration in buildings are being developed. The cost development of PVs in Germany from 1983 to 1998 is given. Because of the PV environmental quality, one million of new intallations are demanded (until 2010) by the European commission. In Austria exists ∼5,000 kWp installed capacity and the growth rate average in the last years was 30 %. (nevyjel)

  18. Preparation of porous titanium oxide films onto indium tin oxide for application in organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Andreia G. [Laboratorio de Dispositivos Nanoestruturados, Departamento de Fisica, Universidade Federal do Parana, Curitiba, Parana (Brazil); Mattos, Luana L.; Spada, Edna R.; Serpa, Rafael B.; Campos, Cristiani S. [Laboratorio de Sistemas Nanoestruturados, Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina (Brazil); Grova, Isabel R.; Ackcelrud, Leni [Laboratorio de Polimeros Paulo Scarpa, Departamento de Quimica, Universidade Federal do Parana, Curitiba, Parana (Brazil); Reis, Francoise T.; Sartorelli, Maria L. [Laboratorio de Sistemas Nanoestruturados, Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina (Brazil); Roman, Lucimara S., E-mail: lsroman@fisica.ufpr.br [Laboratorio de Dispositivos Nanoestruturados, Departamento de Fisica, Universidade Federal do Parana, Curitiba, Parana (Brazil)

    2012-05-01

    In this work, porous ordered TiO{sub 2} films were prepared through sol gel route by using a monolayer of polystyrene spheres as template on indium-tin oxide/glass substrate. These films were characterized by SEM, AFM, Raman spectroscopy, UV-vis absorbance and XRD. The UV-vis absorbance spectrum show a pseudo band gap (PBG) with maxima at 460 nm arising from the light scattering and partial or total suppression of the photon density of states, this PBG can be controlled by the size of the pore. We also propose the use of this porous film as electron acceptor electrode in organic photovoltaic cells; we show that devices prepared with porous titania displayed higher efficiencies than devices using compact titania films as electrode. Such behaviour was observed in both bilayer and bulk heterojunction devices.

  19. Preparation of porous titanium oxide films onto indium tin oxide for application in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Macedo, Andreia G.; Mattos, Luana L.; Spada, Edna R.; Serpa, Rafael B.; Campos, Cristiani S.; Grova, Isabel R.; Ackcelrud, Leni; Reis, Françoise T.; Sartorelli, Maria L.; Roman, Lucimara S.

    2012-01-01

    In this work, porous ordered TiO 2 films were prepared through sol gel route by using a monolayer of polystyrene spheres as template on indium-tin oxide/glass substrate. These films were characterized by SEM, AFM, Raman spectroscopy, UV-vis absorbance and XRD. The UV-vis absorbance spectrum show a pseudo band gap (PBG) with maxima at 460 nm arising from the light scattering and partial or total suppression of the photon density of states, this PBG can be controlled by the size of the pore. We also propose the use of this porous film as electron acceptor electrode in organic photovoltaic cells; we show that devices prepared with porous titania displayed higher efficiencies than devices using compact titania films as electrode. Such behaviour was observed in both bilayer and bulk heterojunction devices.

  20. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    Science.gov (United States)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  1. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    Science.gov (United States)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  2. Ferroelectric BiFeO3as an Oxide Dye in Highly Tunable Mesoporous All-Oxide Photovoltaic Heterojunctions

    KAUST Repository

    Wang, Lingfei

    2016-10-12

    As potential photovoltaic materials, transition-metal oxides such as BiFeO3 (BFO) are capable of absorbing a substantial portion of solar light and incorporating ferroic orders into solar cells with enhanced performance. But the photovoltaic application of BFO has been hindered by low energy-conversion efficiency due to poor carrier transport and collection. In this work, a new approach of utilizing BFO as a light-absorbing sensitizer is developed to interface with charge-transporting TiO2 nanoparticles. This mesoporous all-oxide architecture, similar to that of dye-sensitized solar cells, can effectively facilitate the extraction of photocarriers. Under the standard AM1.5 (100 mW cm−2) irradiation, the optimized cell shows an open-circuit voltage of 0.67 V, which can be enhanced to 1.0 V by tailoring the bias history. A fill factor of 55% is achieved, which is much higher than those in previous reports on BFO-based photovoltaic devices. The results provide here a new viable approach toward developing highly tunable and stable photovoltaic devices based on ferroelectric transition-metal oxides.

  3. Ferroelectric BiFeO3 as an Oxide Dye in Highly Tunable Mesoporous All-Oxide Photovoltaic Heterojunctions.

    Science.gov (United States)

    Wang, Lingfei; Ma, He; Chang, Lei; Ma, Chun; Yuan, Guoliang; Wang, Junling; Wu, Tom

    2017-01-01

    As potential photovoltaic materials, transition-metal oxides such as BiFeO 3 (BFO) are capable of absorbing a substantial portion of solar light and incorporating ferroic orders into solar cells with enhanced performance. But the photovoltaic application of BFO has been hindered by low energy-conversion efficiency due to poor carrier transport and collection. In this work, a new approach of utilizing BFO as a light-absorbing sensitizer is developed to interface with charge-transporting TiO 2 nanoparticles. This mesoporous all-oxide architecture, similar to that of dye-sensitized solar cells, can effectively facilitate the extraction of photocarriers. Under the standard AM1.5 (100 mW cm -2 ) irradiation, the optimized cell shows an open-circuit voltage of 0.67 V, which can be enhanced to 1.0 V by tailoring the bias history. A fill factor of 55% is achieved, which is much higher than those in previous reports on BFO-based photovoltaic devices. The results provide here a new viable approach toward developing highly tunable and stable photovoltaic devices based on ferroelectric transition-metal oxides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. An investigation of room temperature ''oxidized'' thin films of A1 for photovoltaic applications

    International Nuclear Information System (INIS)

    Adegboyega, G.A.

    1985-12-01

    Sheet resistance and transmittance changes of thin films of A1 evaporated in high vacuum were measured during sorption of oxygen at room atmosphere. An increase of both sheet resistance and transmittance with a tendency to saturation has been observed. Evaluation of various thicknesses of the films for possible use as transparent electrode material for photovoltaic applications shows that for very thin films ( = 200 A) the ''oxidized'' films are superior. (author)

  5. Polymer Photovoltaic Cells with Rhenium Oxide as Anode Interlayer.

    Science.gov (United States)

    Wei, Jinyu; Bai, Dongdong; Yang, Liying

    2015-01-01

    The effect of a new transition metal oxide, rhenium oxide (ReO3), on the performance of polymer solar cells based on regioregular poly(3-hexylthiophene) (P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend as buffer layer was investigated. The effect of the thickness of ReO3 layer on electrical characteristics of the polymer solar cells was studied. It is found that insertion of ReO3 interfacial layer results in the decreased performance for P3HT: PCBM based solar cells. In order to further explore the mechanism of the decreasing of the open-circuit voltage (Voc), the X-ray photoelectron spectroscopy (XPS) is used to investigate the ReO3 oxidation states. Kelvin Probe method showed that the work function of the ReO3 is estimated to be 5.13eV after thermal evaporation. The results indicated the fact that a portion of ReO3 decomposed during thermal evaporation process, resulting in the formation of a buffer layer with a lower work function. As a consequence, a higher energy barrier was generated between the ITO and the active layer.

  6. Electrochemical behaviour of cuprous complexes of dithia-alkanedicarboxylic acids

    NARCIS (Netherlands)

    Pieterse, M.M.J.; Janssen, L.J.J.

    1972-01-01

    The composition and electrochemical behaviour of the cuprous complexes of dithia-alkanedicarboxylic acids viz., 2,5-dithiahexane-1,6-dicarboxylic acid (I); 3,6 dithiaoctane-1,8-dicarboxylic acid (II); 4,7-dithiadecane-1,10-dicarboxylic acid (III) and 2,2,

  7. Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases

    Science.gov (United States)

    Chakrabartty, Joyprokash; Harnagea, Catalin; Celikin, Mert; Rosei, Federico; Nechache, Riad

    2018-05-01

    Inorganic ferroelectric perovskites are attracting attention for the realization of highly stable photovoltaic cells with large open-circuit voltages. However, the power conversion efficiencies of devices have been limited so far. Here, we report a power conversion efficiency of 4.20% under 1 sun illumination from Bi-Mn-O composite thin films with mixed BiMnO3 and BiMn2O5 crystal phases. We show that the photocurrent density and photovoltage mainly develop across grain boundaries and interfaces rather than within the grains. We also experimentally demonstrate that the open-circuit voltage and short-circuit photocurrent measured in the films are tunable by varying the electrical resistance of the device, which in turn is controlled by externally applying voltage pulses. The exploitation of multifunctional properties of composite oxides provides an alternative route towards achieving highly stable, high-efficiency photovoltaic solar energy conversion.

  8. Photovoltaic cell

    Science.gov (United States)

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  9. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  10. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  11. Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment

    Directory of Open Access Journals (Sweden)

    Diana E. Proffit

    2010-11-01

    Full Text Available Doping limits, band gaps, work functions and energy band alignments of undoped and donor-doped transparent conducting oxides Zn0, In2O3, and SnO2 as accessed by X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS are summarized and compared. The presented collection provides an extensive data set of technologically relevant electronic properties of photovoltaic transparent electrode materials and illustrates how these relate to the underlying defect chemistry, the dependence of surface dipoles on crystallographic orientation and/or surface termination, and Fermi level pinning.

  12. Cathodoluminescence and ion implantation of cadmium sulphide/cuprous sulphide solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Glew, R W; Bryant, F J

    1975-10-01

    By the use of implantation with copper ions or oxygen ions of 50 keV energy, changes in the cathodoluminescence emission spectrum from cadmium sulfide/cuprous sulfide thin film manufactured solar cells have been correlated with changes in the phases of the cuprous sulfide layer. Thus, monitoring the relative intensities of cathodoluminescence emission bands affords a method of assessing the cuprous sulfide layer and possibly predicting the performance of the cells.

  13. Effect of porous silicon layer on the performance of Si/oxide photovoltaic and photoelectrochemical cells

    International Nuclear Information System (INIS)

    Badawy, Waheed A.

    2008-01-01

    Photovoltaic and photoelectrochemical systems were prepared by the formation of a thin porous film on silicon. The porous silicon layer was formed on the top of a clean oxide free silicon wafer surface by anodic etching in HF/H 2 O/C 2 H 5 OH mixture (2:1:1). The silicon was then covered by an oxide film (tin oxide, ITO or titanium oxide). The oxide films were prepared by the spray/pyrolysis technique which enables doping of the oxide film by different atoms like In, Ru or Sb during the spray process. Doping of SnO 2 or TiO 2 films with Ru atoms improves the surface characteristics of the oxide film which improves the solar conversion efficiency. The prepared solar cells are stable against environmental attack due to the presence of the stable oxide film. It gives relatively high short circuit currents (I sc ), due to the presence of the porous silicon layer, which leads to the recorded high conversion efficiency. Although the open-circuit potential (V oc ) and fill factor (FF) were not affected by the thickness of the porous silicon film, the short circuit current was found to be sensitive to this thickness. An optimum thickness of the porous film and also the oxide layer is required to optimize the solar cell efficiency. The results represent a promising system for the application of porous silicon layers in solar energy converters. The use of porous silicon instead of silicon single crystals in solar cell fabrication and the optimization of the solar conversion efficiency will lead to the reduction of the cost as an important factor and also the increase of the solar cell efficiency making use of the large area of the porous structures

  14. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    International Nuclear Information System (INIS)

    Canteli, D.; Fernandez, S.; Molpeceres, C.; Torres, I.; Gandía, J.J.

    2012-01-01

    Highlights: ► A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. ► The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. ► A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 °C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  15. Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Canteli, D., E-mail: david.canteli@ciemat.es [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Fernandez, S. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Molpeceres, C. [Centro Laser, Universidad Politecnica de Madrid, Ctra. de Valencia Km 7.3, 28031 Madrid (Spain); Torres, I.; Gandia, J.J. [Division de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A study of the ablation of AZO thin films deposited at different temperature conditions with nanosecond UV laser light for photovoltaic devices has been performed. Black-Right-Pointing-Pointer The ablation threshold of AZO thin films was measured and related with the absorption coefficient of the films at the laser wavelength, showing a direct correspondence. Black-Right-Pointing-Pointer A change in the material structure in the areas closest to the edges of laser grooves made in samples deposited at temperatures below 100 Degree-Sign C was observed and studied. - Abstract: Aiming to a future use in thin film solar modules, the processing of aluminum doped zinc oxide thin films with good optoelectronic properties with a nanosecond-pulsed ultraviolet laser has been studied. The ablation threshold fluence of the films has been determined and associated with the material properties. The ablation process has been optimized and grooves with good properties for photovoltaic devices have been obtained. The morphology of the ablated surfaces has been observed by confocal microscopy and its structure has been characterized by Raman spectroscopy. The influence of ablation parameters like focus distance, pulse energy and repetition frequency in the groove morphology has been studied with special attention to the thermal effects on the material structure.

  16. Indium-Doped Zinc Oxide Thin Films as Effective Anodes of Organic Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Ziyang Hu

    2011-01-01

    Full Text Available Indium-doped zinc oxide (IZO thin films were prepared by low-cost ultrasonic spray pyrolysis (USP. Both a low resistivity (3.13×10−3 Ω cm and an average direct transmittance (400∼1500 nm about 80% of the IZO films were achieved. The IZO films were investigated as anodes in bulk-heterojunction organic photovoltaic (OPV devices based on poly(3-hexylthiophene and [6,6]-phenyl C61-butyric acid methyl ester. The device fabricated on IZO film-coated glass substrate showed an open circuit voltage of 0.56 V, a short circuit current of 8.49 mA cm-2, a fill factor of 0.40, and a power conversion efficiency of 1.91%, demonstrating that the IZO films prepared by USP technique are promising low In content and transparent electrode candidates of low-cost OPV devices.

  17. Optimisation of the material properties of indium tin oxide layers for use in organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Doggart, P.; Bristow, N.; Kettle, J., E-mail: j.kettle@bangor.ac.uk [School of Electronic Engineering, Bangor University, Dean St., Bangor, Gwynedd, Wales LL57 1UT (United Kingdom)

    2014-09-14

    The influence of indium tin oxide [(In{sub 2}O{sub 3}:Sn), ITO] material properties on the output performance of organic photovoltaic (OPV) devices has been modelled and investigated. In particular, the effect of altering carrier concentration (n), thickness (t), and mobility (μ{sub e}) in ITO films and their impact on the optical performance, parasitic resistances and overall efficiency in OPVs was studied. This enables optimal values of these parameters to be calculated for solar cells made with P3HT:PC{sub 61}BM and PCPDTBT:PC{sub 71}BM active layers. The optimal values of n, t and μ{sub e} are not constant between different OPV active layers and depend on the absorption spectrum of the underlying active layer material system. Consequently, design rules for these optimal values as a function of donor bandgap in bulk-heterojunction active layers have been formulated.

  18. Organic photovoltaics using thin gold film as an alternative anode to indium tin oxide

    International Nuclear Information System (INIS)

    Haldar, Amrita; Yambem, Soniya D.; Liao, Kang-Shyang; Alley, Nigel J.; Dillon, Eoghan P.; Barron, Andrew R.; Curran, Seamus A.

    2011-01-01

    Indium Tin Oxide (ITO) is the most commonly used anode as a transparent electrode and more recently as an anode for organic photovoltaics (OPVs). However, there are significant drawbacks in using ITO which include high material costs, mechanical instability including brittleness and poor electrical properties which limit its use in low-cost flexible devices. We present initial results of poly(3-hexylthiophene): phenyl-C 61 -butyric acid methyl ester OPVs showing that an efficiency of 1.9% (short-circuit current 7.01 mA/cm 2 , open-circuit voltage 0.55 V, fill factor 0.49) can be attained using an ultra thin film of gold coated glass as the device anode. The initial I-V characteristics demonstrate that using high work function metals when the thin film is kept ultra thin can be used as a replacement to ITO due to their greater stability and better morphological control.

  19. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials.

    Science.gov (United States)

    Grinberg, Ilya; West, D Vincent; Torres, Maria; Gou, Gaoyang; Stein, David M; Wu, Liyan; Chen, Guannan; Gallo, Eric M; Akbashev, Andrew R; Davies, Peter K; Spanier, Jonathan E; Rappe, Andrew M

    2013-11-28

    Ferroelectrics have recently attracted attention as a candidate class of materials for use in photovoltaic devices, and for the coupling of light absorption with other functional properties. In these materials, the strong inversion symmetry breaking that is due to spontaneous electric polarization promotes the desirable separation of photo-excited carriers and allows voltages higher than the bandgap, which may enable efficiencies beyond the maximum possible in a conventional p-n junction solar cell. Ferroelectric oxides are also stable in a wide range of mechanical, chemical and thermal conditions and can be fabricated using low-cost methods such as sol-gel thin-film deposition and sputtering. Recent work has shown how a decrease in ferroelectric layer thickness and judicious engineering of domain structures and ferroelectric-electrode interfaces can greatly increase the current harvested from ferroelectric absorber materials, increasing the power conversion efficiency from about 10(-4) to about 0.5 per cent. Further improvements in photovoltaic efficiency have been inhibited by the wide bandgaps (2.7-4 electronvolts) of ferroelectric oxides, which allow the use of only 8-20 per cent of the solar spectrum. Here we describe a family of single-phase solid oxide solutions made from low-cost and non-toxic elements using conventional solid-state methods: [KNbO3]1 - x[BaNi1/2Nb1/2O3 - δ]x (KBNNO). These oxides exhibit both ferroelectricity and a wide variation of direct bandgaps in the range 1.1-3.8 electronvolts. In particular, the x = 0.1 composition is polar at room temperature, has a direct bandgap of 1.39 electronvolts and has a photocurrent density approximately 50 times larger than that of the classic ferroelectric (Pb,La)(Zr,Ti)O3 material. The ability of KBNNO to absorb three to six times more solar energy than the current ferroelectric materials suggests a route to viable ferroelectric semiconductor-based cells for solar energy conversion and

  20. Treatment of transparent conductive oxides by laser processes for the development of Silicon photovoltaic cells

    International Nuclear Information System (INIS)

    Canteli Perez-Caballero, D.

    2015-01-01

    Transparent conductive oxides (TCOs) are heavily doped oxides with high transparency in the visible range of the spectrum and a very low sheet resistance, making them very attractive for applications in optoelectronic devices. TCOs are widely found in many different areas such as low emissivity windows, electric contacts in computers, televisions or portable devices, and, specially, in the photovoltaic (PV) industry. PV industry is mainly based on mono- and multicrystalline silicon, where TCOs are used as anti-reflective coatings, but the search for cheaper, alternative technologies has led to the development of thin film PV technologies, where TCOs are used as transparent contacts. With the maturation of the thin film PV industry, laser sources have become an essential tool, allowing the improvement of some industrial processes and the development of new ones. Because of the interest on a deeper understanding of the interaction processes between laser light and TCOs, the laser ablation of three of the most important TCOs has been studied in depth in the present work. (Author)

  1. Cuprous sulfide as a film insulation for superconductors

    International Nuclear Information System (INIS)

    Wagner, G.R.; Uphoff, J.H.; Vecchio, P.D.

    1982-01-01

    The LCP test coil utilizes a conductor of forced-flow design having 486 strands of multifilametary Nb 3 Sn compacted in a stainless steel sheath. The impetus for the work reported here stemmed from the need for some form of insulation for those strands to prevent sintering during reaction and to reduce ac losses. The work reported here experimented with cuprous sulfide coatings at various coating rates and thicknesses. Two solenoids that were wound with cuprous sulfide-coated wires and heat-treated at 700 degrees C were found to demonstrate that the film is effective in providing turn-to-turn insulation for less than about 0.5V between turns. The sulfide layer provided a metal-semiconductor junction which became conducting at roughly 0.5V. Repeated cycling of the coil voltage in excess of that value produced no damage to the sulfide layer. The junction provided self-protection for the coil as long as the upper allowable current density in the sulfide was not exceeded. No training was apparent up to 6.4 T

  2. Carbon nanotube—cuprous oxide composite based pressure sensors

    International Nuclear Information System (INIS)

    Karimov, Kh. S.; Chani, Muhammad Tariq Saeed; Khalid, Fazal Ahmad; Khan, Adam; Khan, Rahim

    2012-01-01

    In this paper, we present the design, the fabrication, and the experimental results of carbon nanotube (CNT) and Cu 2 O composite based pressure sensors. The pressed tablets of the CNT—Cu 2 O composite are fabricated at a pressure of 353 MPa. The diameters of the multiwalled nanotubes (MWNTs) are between 10 nm and 30 nm. The sizes of the Cu 2 O micro particles are in the range of 3–4 μm. The average diameter and the average thickness of the pressed tablets are 10 mm and 4.0 mm, respectively. In order to make low resistance electric contacts, the two sides of the pressed tablet are covered by silver pastes. The direct current resistance of the pressure sensor decreases by 3.3 times as the pressure increases up to 37 kN/m 2 . The simulation result of the resistance—pressure relationship is in good agreement with the experimental result within a variation of ±2%. (condensed matter: structural, mechanical, and thermal properties)

  3. Defect engineering of the electronic transport through cuprous oxide interlayers

    KAUST Repository

    Fadlallah, Mohamed M.

    2016-06-03

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.

  4. Picosecond nonlinear optical properties of cuprous oxide with ...

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... with a direct band gap of 2.17 eV and can be used in solar cells, ... various important applications in the field of material research. ... of isopropanol dispersed with Cu2O powder on carbon-coated copper grid to determine.

  5. Defect engineering of the electronic transport through cuprous oxide interlayers

    KAUST Repository

    Fadlallah, Mohamed M.; Eckern, Ulrich; Schwingenschlö gl, Udo

    2016-01-01

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects

  6. Improvement in structural and electrical properties of cuprous oxide ...

    Indian Academy of Sciences (India)

    Administrator

    walled carbon nanotubes ... heat transfer applications, electrochemical supercapaci- tors and gas sensor ... They have observed that the thermal expansion coefficient decreased ... many times with ethanol and then with distilled water and dried in ...

  7. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    Science.gov (United States)

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  8. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells.

    Science.gov (United States)

    Wong, Terence K S; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K

    2016-04-07

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu₂O), cupric oxide (CuO) and copper (III) oxide (Cu₄O₃) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu₂O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of Al x Ga 1- x O onto thermal Cu₂O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu₂O nanopowder. CuO/Cu₂O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu₄O₃/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10 -2 %.

  9. Interaction at the silicon/transition metal oxide heterojunction interface and its effect on the photovoltaic performance.

    Science.gov (United States)

    Liang, Zhimin; Su, Mingze; Zhou, Yangyang; Gong, Li; Zhao, Chuanxi; Chen, Keqiu; Xie, Fangyan; Zhang, Weihong; Chen, Jian; Liu, Pengyi; Xie, Weiguang

    2015-11-07

    The interfacial reaction and energy level alignment at the Si/transition metal oxide (TMO, including MoO3-x, V2O5-x, WO3-x) heterojunction are systematically investigated. We confirm that the interfacial reaction appears during the thermal deposition of TMO, with the reaction extent increasing from MoO3-x, to V2O5-x, and to WO3-x. The reaction causes the surface oxidation of silicon for faster electron/hole recombination, and the reduction of TMO for effective hole collection. The photovoltaic performance of the Si/TMO heterojunction devices is affected by the interface reaction. MoO3-x are the best hole selecting materials that induce least surface oxidation but strongest reduction. Compared with H-passivation, methyl group passivation is an effective way to reduce the interface reaction and improve the interfacial energy level alignment for better electron and hole collection.

  10. Interface modification of organic photovoltaics by combining molybdenum oxide (MoO{sub x}) and molecular template layer

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Haichao [Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Yang, Junliang, E-mail: junliang.yang@csu.edu.cn [Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Fu, Lin; Xiong, Jian; Yang, Bingchu; Ouyang, Jun; Zhou, Conghua; Huang, Han [Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Gao, Yongli [Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States)

    2015-01-01

    We report discrete heterojunction small molecular organic photovoltaics (OPVs) with enhanced performance by modifying the interface using molybdenum oxide (MoO{sub x}) and molecular template layer perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA). A large increase in open-circuit voltage was obtained in copper phthalocyanine/fullerene, i.e., CuPc/C{sub 60} and CuPc/PCBM, discrete planar heterojunction photovoltaics with an insertion of 5 nm MoO{sub x} hole transport layer at the interface between the anode electrode and the CuPc donor layer. It results from the band bending at the interface and the pinning of the highest occupied molecular orbital level of CuPc to the Fermi level of MoO{sub x} due to the defect states (oxygen vacancies) in MoO{sub x} thin films. Moreover, the short-circuit current showed an efficient improvement by inserting a 1 nm PTCDA layer at the interface between the MoO{sub x} layer and the CuPc layer. The PTCDA layer induces the growth of CuPc thin film with lying-down molecular arrangement, supporting the charge transports along the vertical direction. The power conversion efficiencies of CuPc/C{sub 60} and CuPc/PCBM discrete planar heterojunction photovoltaic devices were improved from about 0.80% to 1.50% with inserting both MoO{sub x} and PTCDA layers. The results suggest that the performance of organic discrete planar heterojunction photovoltaics could be optimized by interface modification with combining hole transport layer and molecular template layer, which are potentially suitable for other highly efficient OPVs, such as small molecular tandem OPVs. - Highlights: • Organic small molecule photovoltaics were fabricated by interface modification. • An inserted molybdenum oxide layer largely enhances open-circuit voltage. • An inserted molecular template layer dramatically improves short-circuit current. • The power conversion efficiencies are almost doubled with interface modification.

  11. Mesoscopic Oxide Double Layer as Electron Specific Contact for Highly Efficient and UV Stable Perovskite Photovoltaics.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Giordano, Fabrizio; Zakeeruddin, Shaik Mohammed; Grätzel, Michael

    2018-04-11

    The solar to electric power conversion efficiency (PCE) of perovskite solar cells (PSCs) has recently reached 22.7%, exceeding that of competing thin film photovoltaics and the market leader polycrystalline silicon. Further augmentation of the PCE toward the Shockley-Queisser limit of 33.5% warrants suppression of radiationless carrier recombination by judicious engineering of the interface between the light harvesting perovskite and the charge carrier extraction layers. Here, we introduce a mesoscopic oxide double layer as electron selective contact consisting of a scaffold of TiO 2 nanoparticles covered by a thin film of SnO 2 , either in amorphous (a-SnO 2 ), crystalline (c-SnO 2 ), or nanocrystalline (quantum dot) form (SnO 2 -NC). We find that the band gap of a-SnO 2 is larger than that of the crystalline (tetragonal) polymorph leading to a corresponding lift in its conduction band edge energy which aligns it perfectly with the conduction band edge of both the triple cation perovskite and the TiO 2 scaffold. This enables very fast electron extraction from the light perovskite, suppressing the notorious hysteresis in the current-voltage ( J-V) curves and retarding nonradiative charge carrier recombination. As a result, we gain a remarkable 170 mV in open circuit photovoltage ( V oc ) by replacing the crystalline SnO 2 by an amorphous phase. Because of the quantum size effect, the band gap of our SnO 2 -NC particles is larger than that of bulk SnO 2 causing their conduction band edge to shift also to a higher energy thereby increasing the V oc . However, for SnO 2 -NC there remains a barrier for electron injection into the TiO 2 scaffold decreasing the fill factor of the device and lowering the PCE. Introducing the a-SnO 2 coated mp-TiO 2 scaffold as electron extraction layer not only increases the V oc and PEC of the solar cells but also render them resistant to UV light which forebodes well for outdoor deployment of these new PSC architectures.

  12. Hybrid TiO2: polymer photovoltaic cells made from a titanium oxide precursor

    NARCIS (Netherlands)

    Slooff, L.H.; Wienk, M.M.; Kroon, J.M.

    2004-01-01

    Hybrid TiO2:polymer photovoltaic cells were made from mixtures of titanium(IV) isopropoxide and poly[2-methoxy-5-(3',7'-dimethyloctyl)-p-phenylene vinylene] (MDMO-PPV) or poly(3-octyl thiophene) (P3OT) via hydrolysis in air. Cells were made with varying titanium(IV) isopropoxide:polymer ratios.

  13. Fabrication and performance analysis of 4-sq cm indium tin oxide/InP photovoltaic solar cells

    Science.gov (United States)

    Gessert, T. A.; Li, X.; Phelps, P. W.; Coutts, T. J.; Tzafaras, N.

    1991-01-01

    Large-area photovoltaic solar cells based on direct current magnetron sputter deposition of indium tin oxide (ITO) into single-crystal p-InP substrates demonstrated both the radiation hardness and high performance necessary for extraterrestrial applications. A small-scale production project was initiated in which approximately 50 ITO/InP cells are being produced. The procedures used in this small-scale production of 4-sq cm ITO/InP cells are presented and discussed. The discussion includes analyses of performance range of all available production cells, and device performance data of the best cells thus far produced. Additionally, processing experience gained from the production of these cells is discussed, indicating other issues that may be encountered when large-scale productions are begun.

  14. Toward Annealing-Stable Molybdenum-Oxide-Based Hole-Selective Contacts For Silicon Photovoltaics

    KAUST Repository

    Essig, Stephanie; Dré on, Julie; Rucavado, Esteban; Mews, Mathias; Koida, Takashi; Boccard, Mathieu; Werner, Jé ré mie; Geissbü hler, Jonas; Lö per, Philipp; Morales-Masis, Monica; Korte, Lars; De Wolf, Stefaan; Balllif, Christophe

    2018-01-01

    Molybdenum oxide (MoOX) combines a high work function with broadband optical transparency. Sandwiched between a hydrogenated intrinsic amorphous silicon passivation layer and a transparent conductive oxide, this material allows a highly efficient

  15. Magnetic state dependent transient lateral photovoltaic effect in patterned ferromagnetic metal-oxide-semiconductor films

    Directory of Open Access Journals (Sweden)

    Isidoro Martinez

    2015-11-01

    Full Text Available We investigate the influence of an external magnetic field on the magnitude and dephasing of the transient lateral photovoltaic effect (T-LPE in lithographically patterned Co lines of widths of a few microns grown over naturally passivated p-type Si(100. The T-LPE peak-to-peak magnitude and dephasing, measured by lock-in or through the characteristic time of laser OFF exponential relaxation, exhibit a notable influence of the magnetization direction of the ferromagnetic overlayer. We show experimentally and by numerical simulations that the T-LPE magnitude is determined by the Co anisotropic magnetoresistance. On the other hand, the magnetic field dependence of the dephasing could be described by the influence of the Lorentz force acting perpendiculary to both the Co magnetization and the photocarrier drift directions. Our findings could stimulate the development of fast position sensitive detectors with magnetically tuned magnitude and phase responses.

  16. Cuprous halides semiconductors as a new means for highly efficient light-emitting diodes

    Science.gov (United States)

    Ahn, Doyeol; Park, Seoung-Hwan

    2016-01-01

    In group-III nitrides in use for white light-emitting diodes (LEDs), optical gain, measure of luminous efficiency, is very low owing to the built-in electrostatic fields, low exciton binding energy, and high-density misfit dislocations due to lattice-mismatched substrates. Cuprous halides I-VII semiconductors, on the other hand, have negligible built-in field, large exciton binding energies and close lattice matched to silicon substrates. Recent experimental studies have shown that the luminescence of I-VII CuCl grown on Si is three orders larger than that of GaN at room temperature. Here we report yet unexplored potential of cuprous halides systems by investigating the optical gain of CuCl/CuI quantum wells. It is found that the optical gain and the luminescence are much larger than that of group III-nitrides due to large exciton binding energy and vanishing electrostatic fields. We expect that these findings will open up the way toward highly efficient cuprous halides based LEDs compatible to Si technology. PMID:26880097

  17. Oxide p-n Heterojunction of Cu2O/ZnO Nanowires and Their Photovoltaic Performance

    Directory of Open Access Journals (Sweden)

    Seung Ki Baek

    2013-01-01

    Full Text Available Oxide p-n heterojunction devices consisting of p-Cu2O/n-ZnO nanowires were fabricated on ITO/glass substrates and their photovoltaic performances were investigated. The vertically arrayed ZnO nanowires were grown by metal organic chemical vapor deposition, which was followed by the electrodeposition of the p-type Cu2O layer. Prior to the fabrication of solar cells, the effect of bath pH on properties of the absorber layers was studied to determine the optimal condition of the Cu2O electrodeposition process. With the constant pH 11 solution, the Cu2O layer preferred the (111 orientation, which gave low electrical resistivity and high optical absorption. The Cu2O (pH 11/ZnO nanowire-based solar cell exhibited a higher conversion efficiency of 0.27% than the planar structure solar cell (0.13%, because of the effective charge collection in the long wavelength region and because of the enhanced junction area.

  18. Impact on electronic structure of donor/acceptor blend in organic photovoltaics by decontamination of molybdenum-oxide surface

    Science.gov (United States)

    Ito, Yuta; Akaike, Kouki; Fukuda, Takeshi; Sato, Daisuke; Fuse, Takuya; Iwahashi, Takashi; Ouchi, Yukio; Kanai, Kaname

    2018-05-01

    Molybdenum oxide (MoOx) is widely used as the hole-transport layer in bulk-heterojunction organic photovoltaics (BHJ-OPVs). During the fabrication of solution-processed BHJ-OPVs on vacuum-deposited MoOx film, the film must be exposed to N2 atmosphere in a glove box, where the donor/acceptor blends are spin-coated from a mixed solution. Employing photoelectron spectroscopy, we reveal that the exposure of the MoOx film to such atmosphere contaminates the MoOx surface. Annealing the contaminated MoOx film at 160 °C for 5 min, prior to spin-coating the blend film, can partially remove the carbon and oxygen adsorbed on the MoOx surface during the exposure of MoOx. However, the contamination layer on the MoOx surface does not affect the energy-level alignment at the interface between MoOx and the donor/acceptor blend. Hence, significant improvement in the performance of BHJ-OPVs by mildly annealing the MoOx layer, which was previously reported, can be explained by the reduction of undesired contamination.

  19. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system

    Science.gov (United States)

    Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm. PMID:28329015

  20. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system.

    Science.gov (United States)

    Mumtaz, Sidra; Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.

  1. Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition

    NARCIS (Netherlands)

    Doeswijk, L.M.; de Moor, Hugo H.C.; Rogalla, Horst; Blank, David H.A.

    2002-01-01

    Since most commercially available solar cells are still made from silicon, we are exploring the introduction of passivating qualities in oxides, with the potential to serve as an antireflection coating. Pulsed laser deposition (PLD) was used to deposit TiO2 and SrTiO3 coatings on silicon substrates.

  2. Recent progress in the development and understanding of silicon surface passivation by aluminum oxide for photovoltaics

    NARCIS (Netherlands)

    Dingemans, G.; Kessels, W.M.M.

    2010-01-01

    In the recent years, considerable progress has been made in the understanding of the unique silicon surface passivation properties of aluminum oxide (Al2O3) films including its underlying mechanisms. Containing a high fixed negative charge density located close to the Si interface, Al2O3 provides a

  3. Effects of metal oxide as an anode interlayer for organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang-Yen, E-mail: yyyu@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan (China); Center for Thin Film Technologies and Applications, Ming Chi University of Technology, 84 Gunjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan (China); Chan, Si-Han [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan (China)

    2013-11-01

    In this study, polymer:fullerene bulk-heterojunction hybrid solar cells with the structure indium tin oxide (ITO)/nickel oxide (NiO)/poly (3-hexylthiophene) (P3HT):[6, 6]-phenyl C61-butyric(PCBM):titania (TiO2):platinum (Pt) nanoparticles (NPs)/Ca/Al were fabricated. The effects of a p-type NiO thin layer deposited by thermal evaporation between the active layer P3HT:PCBM:TiO{sub 2}:Pt and ITO on cell performance were examined. The results show that the NiO interfacial layer between the ITO and active layer can increase the efficiency and stability of the prepared hybrid solar cells. The optimum cell performance by ITO/NiO(5 nm)/P3HT:PCBM:TiO{sub 2} (15 wt.%):Pt (0.03 wt.%)/Ca/Al (best cell structure) is an open-circuit voltage (Voc) = 0.61 V, short circuit current density (Jsc) = 6.22 mA/cm{sup 2}, fill factor (FF) = 54.8%, and η = 2.1%. - Highlights: • Hybrid solar cell with nickel oxide interlayer was fabricated. • Nickel oxide layer can improve the cell efficiency and stability. • The power conversion efficiency of cell under optimum structure is 2.1%.

  4. Lunar Metal Oxide Electrolysis with Oxygen and Photovoltaic Array Production Applications

    Science.gov (United States)

    Curreri, P. A.; Ethridge, E.; Hudson, S.; Sen, S.

    2006-01-01

    This paper presents the results of a Marshall Space Flight Center funded effort to conduct an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis (MOE) process to produce oxygen and metal from lunar resources to support human exploration of space. Oxygen extracted from lunar materials can be used for life support and propellant, and silicon and metallic elements produced can be used for in situ fabrication of thin-film solar cells for power production. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis, MOE, is chosen for extraction, since the electron is the most practical reducing agent. MOE was also chosen for following reasons. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. In the experiments reported here, melts containing iron oxide were electrolyzed in a low temperature supporting oxide electrolyte (developed by D. Sadoway, MIT). The production of oxygen and reduced iron were observed. Electrolysis was also performed on the supporting electrolyte with JSC-1 Lunar Simulant. The cell current for the supporting electrolyte alone is negligible while the current for the electrolyte with JSC-1 shows significant current and a peak at about -0.6 V indicating reductive reaction in the simulant.

  5. Engineering of the energetic structure of the anode of organic photovoltaic devices utilizing hot-wire deposited transition metal oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Vasilopoulou, M., E-mail: mariva@imel.demokritos.gr [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Stathopoulos, N.A.; Savaidis, S.A. [Department of Electronics, Technological and Educational Institute (TEI) of Piraeus, Petrou Ralli & Thivon, 12244 Aegaleo (Greece); Kostis, I. [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Department of Electronics, Technological and Educational Institute (TEI) of Piraeus, Petrou Ralli & Thivon, 12244 Aegaleo (Greece); Papadimitropoulos, G. [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Davazoglou, D., E-mail: d.davazoglou@imel.demokritos.gr [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece)

    2015-09-30

    Graphical abstract: In this work we perform successful engineering of the anode of organic photovoltaics based on poly(3-hexylthiophene):[6,6]-phenyl butyric acid methyl ester blends by using metal oxide transport layers exhibiting shallow gap states which act as a barrier-free path for hole transport toward the anode. - Highlights: • Interface engineering of the anode. • Organic photovoltaics (OPVs). • Shallow gap states. • Barrier-free hole transport. • Design rules for interface engineering in OPVs. - Abstract: In this work we use hydrogen deposited molybdenum and tungsten oxides (chemically described as H:MO{sub x}x ≤ 3 where M = Mo or W) to control the energetics at the anode of bulk heterojunction (BHJ) organic photovoltaics (OPVs) based on poly(3-hexylthiophene):[6,6]-phenyl butyric acid methyl ester (P3HT:PC{sub 71}BM) blends. Significantly improved current densities and open circuit voltages were achieved as a result of improved hole transport from the P3HT highest occupied molecular orbital (HOMO) toward indium tin oxide (ITO) anode. This was attributed to the formation of shallow gap states in these oxides which are located just below the Fermi level and above the polymer HOMO and thus may act as a barrier-free path for the extraction of holes. Consequently, these states can be used for controlling the energetic structure of the anode of OPVs. By using ultraviolet photoelectron spectroscopy it was found that dependent on the deposition conditions these gap states and work function of the metal oxides may be tailored to contribute to the precise alignment of the HOMO of the organic semiconductor (OSC) with the Fermi level of the anode electrode resulting in further enhancement of the device performance.

  6. Nanopatterning of Crystalline Silicon Using Anodized Aluminum Oxide Templates for Photovoltaics

    Science.gov (United States)

    Chao, Tsu-An

    A novel thin film anodized aluminum oxide templating process was developed and applied to make nanopatterns on crystalline silicon to enhance the optical properties of silicon. The thin film anodized aluminum oxide was created to improve the conventional thick aluminum templating method with the aim for potential large scale fabrication. A unique two-step anodizing method was introduced to create high quality nanopatterns and it was demonstrated that this process is superior over the original one-step approach. Optical characterization of the nanopatterned silicon showed up to 10% reduction in reflection in the short wavelength range. Scanning electron microscopy was also used to analyze the nanopatterned surface structure and it was found that interpore spacing and pore density can be tuned by changing the anodizing potential.

  7. Wide and ultra-wide bandgap oxides: where paradigm-shift photovoltaics meets transparent power electronics

    Science.gov (United States)

    Pérez-Tomás, Amador; Chikoidze, Ekaterine; Jennings, Michael R.; Russell, Stephen A. O.; Teherani, Ferechteh H.; Bove, Philippe; Sandana, Eric V.; Rogers, David J.

    2018-03-01

    Oxides represent the largest family of wide bandgap (WBG) semiconductors and also offer a huge potential range of complementary magnetic and electronic properties, such as ferromagnetism, ferroelectricity, antiferroelectricity and high-temperature superconductivity. Here, we review our integration of WBG and ultra WBG semiconductor oxides into different solar cells architectures where they have the role of transparent conductive electrodes and/or barriers bringing unique functionalities into the structure such above bandgap voltages or switchable interfaces. We also give an overview of the state-of-the-art and perspectives for the emerging semiconductor β- Ga2O3, which is widely forecast to herald the next generation of power electronic converters because of the combination of an UWBG with the capacity to conduct electricity. This opens unprecedented possibilities for the monolithic integration in solar cells of both self-powered logic and power electronics functionalities. Therefore, WBG and UWBG oxides have enormous promise to become key enabling technologies for the zero emissions smart integration of the internet of things.

  8. Toward Annealing-Stable Molybdenum-Oxide-Based Hole-Selective Contacts For Silicon Photovoltaics

    KAUST Repository

    Essig, Stephanie

    2018-02-21

    Molybdenum oxide (MoOX) combines a high work function with broadband optical transparency. Sandwiched between a hydrogenated intrinsic amorphous silicon passivation layer and a transparent conductive oxide, this material allows a highly efficient hole-selective front contact stack for crystalline silicon solar cells. However, hole extraction from the Si wafer and transport through this stack degrades upon annealing at 190 °C, which is needed to cure the screen-printed Ag metallization applied to typical Si solar cells. Here, we show that effusion of hydrogen from the adjacent layers is a likely cause for this degradation, highlighting the need for hydrogen-lean passivation layers when using such metal-oxide-based carrier-selective contacts. Pre-MoOX-deposition annealing of the passivating a-Si:H layer is shown to be a straightforward approach to manufacturing MoOX-based devices with high fill factors using screen-printed metallization cured at 190 °C.

  9. Reflective photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lentine, Anthony L.; Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Goeke, Ronald S.

    2018-03-06

    A photovoltaic module includes colorized reflective photovoltaic cells that act as pixels. The colorized reflective photovoltaic cells are arranged so that reflections from the photovoltaic cells or pixels visually combine into an image on the photovoltaic module. The colorized photovoltaic cell or pixel is composed of a set of 100 to 256 base color sub-pixel reflective segments or sub-pixels. The color of each pixel is determined by the combination of base color sub-pixels forming the pixel. As a result, each pixel can have a wide variety of colors using a set of base colors, which are created, from sub-pixel reflective segments having standard film thicknesses.

  10. Flexible indium zinc oxide/Ag/indium zinc oxide multilayer electrode grown on polyethersulfone substrate by cost-efficient roll-to-roll sputtering for flexible organic photovoltaics

    International Nuclear Information System (INIS)

    Park, Yong-Seok; Kim, Han-Ki

    2010-01-01

    The authors describe the preparation and characteristics of flexible indium zinc oxide (IZO)-Ag-IZO multilayer electrodes grown on flexible polyethersulfone (PES) substrates using a roll-to-roll sputtering system for use in flexible organic photovoltaics. By the continuous roll-to-roll sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, they were able to fabricate a high quality IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 ε/square, optical transmittance of 87.4%, and figure of merit value of 42.03x10 -3 Ω -1 on the PES substrate. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the roll-to-roll sputter grown single ITO electrode due to the existence of a ductile Ag layer between the IZO layers and stable amorphous structure of the IZO film. Furthermore, the flexible organic solar cells (OSCs) fabricated on the roll-to-roll sputter grown IZO-Ag-IZO electrode showed higher power efficiency (3.51%) than the OSCs fabricated on the roll-to-roll sputter grown single ITO electrode (2.67%).

  11. Bis(tri-n-hexylsilyl oxide) silicon phthalocyanine: a unique additive in ternary bulk heterojunction organic photovoltaic devices.

    Science.gov (United States)

    Lessard, Benoît H; Dang, Jeremy D; Grant, Trevor M; Gao, Dong; Seferos, Dwight S; Bender, Timothy P

    2014-09-10

    Previous studies have shown that the use of bis(tri-n-hexylsilyl oxide) silicon phthalocyanine ((3HS)2-SiPc) as an additive in a P3HT:PC61BM cascade ternary bulk heterojunction organic photovoltaic (BHJ OPV) device results in an increase in the short circuit current (J(SC)) and efficiency (η(eff)) of up to 25% and 20%, respectively. The previous studies have attributed the increase in performance to the presence of (3HS)2-SiPc at the BHJ interface. In this study, we explored the molecular characteristics of (3HS)2-SiPc which makes it so effective in increasing the OPV device J(SC) and η(eff. Initially, we synthesized phthalocyanine-based additives using different core elements such as germanium and boron instead of silicon, each having similar frontier orbital energies compared to (3HS)2-SiPc and tested their effect on BHJ OPV device performance. We observed that addition of bis(tri-n-hexylsilyl oxide) germanium phthalocyanine ((3HS)2-GePc) or tri-n-hexylsilyl oxide boron subphthalocyanine (3HS-BsubPc) resulted in a nonstatistically significant increase in JSC and η(eff). Secondly, we kept the silicon phthalocyanine core and substituted the tri-n-hexylsilyl solubilizing groups with pentadecyl phenoxy groups and tested the resulting dye in a BHJ OPV. While an increase in JSC and η(eff) was observed at low (PDP)2-SiPc loadings, the increase was not as significant as (3HS)2-SiPc; therefore, (3HS)2-SiPc is a unique additive. During our study, we observed that (3HS)2-SiPc had an extraordinary tendency to crystallize compared to the other compounds in this study and our general experience. On the basis of this observation, we have offered a hypothesis that when (3HS)2-SiPc migrates to the P3HT:PC61BM interface the reason for its unique performance is not solely due to its frontier orbital energies but also might be due to a high driving force for crystallization.

  12. Data Mining and Machine Learning Tools for Combinatorial Material Science of All-Oxide Photovoltaic Cells.

    Science.gov (United States)

    Yosipof, Abraham; Nahum, Oren E; Anderson, Assaf Y; Barad, Hannah-Noa; Zaban, Arie; Senderowitz, Hanoch

    2015-06-01

    Growth in energy demands, coupled with the need for clean energy, are likely to make solar cells an important part of future energy resources. In particular, cells entirely made of metal oxides (MOs) have the potential to provide clean and affordable energy if their power conversion efficiencies are improved. Such improvements require the development of new MOs which could benefit from combining combinatorial material sciences for producing solar cells libraries with data mining tools to direct synthesis efforts. In this work we developed a data mining workflow and applied it to the analysis of two recently reported solar cell libraries based on Titanium and Copper oxides. Our results demonstrate that QSAR models with good prediction statistics for multiple solar cells properties could be developed and that these models highlight important factors affecting these properties in accord with experimental findings. The resulting models are therefore suitable for designing better solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Asphaltene based photovoltaic devices

    Science.gov (United States)

    Chianelli, Russell R.; Castillo, Karina; Gupta, Vipin; Qudah, Ali M.; Torres, Brenda; Abujnah, Rajib E.

    2016-03-22

    Photovoltaic devices and methods of making the same, are disclosed herein. The cell comprises a photovoltaic device that comprises a first electrically conductive layer comprising a photo-sensitized electrode; at least one photoelectrochemical layer comprising metal-oxide particles, an electrolyte solution comprising at least one asphaltene fraction, wherein the metal-oxide particles are optionally dispersed in a surfactant; and a second electrically conductive layer comprising a counter-electrode, wherein the second electrically conductive layer comprises one or more conductive elements comprising carbon, graphite, soot, carbon allotropes or any combinations thereof.

  14. Control of indium tin oxide anode work function modified using Langmuir-Blodgett monolayer for high-efficiency organic photovoltaics

    Directory of Open Access Journals (Sweden)

    Yuya Yokokura

    2017-08-01

    Full Text Available The use of Langmuir-Blodgett (LB monolayers to modify the indium tin oxide (ITO work function and thus improve the performance of zinc phthalocyanine (ZnPc/fullerene (C60-based and boron subphthalocyanine chloride (SubPc/C60-based small molecule organic photovoltaic devices (OPVs was examined. In general, LB precursor compounds contain one or more long alkyl chain substituents that can act as spacers to prevent electrical contact with adjoining electrode surfaces. As one example of such a compound, arachidic acid (CH3(CH218COOH was inserted in the forms of one-layer, three-layer or five-layer LB films between the anode ITO layer and the p-type layer in ZnPc-C60-based OPVs to investigate the effects of the long alkyl chain group when it acts as an electrically insulating spacer. The short-circuit current density (Jsc values of the OPVs with the three- and five-layer inserts (1.78 mA·cm−2 and 0.61 mA·cm−2, respectively were reduced dramatically, whereas the Jsc value for the OPV with the single-layer insertion (2.88 mA·cm−2 was comparable to that of the OPV without any insert (3.14 mA·cm-2. The ITO work function was shifted positively by LB deposition of a surfactant compound, C9F19C2H4-O-C2H4-COOH (PFECA, which contained a fluorinated head group. This positive effect was maintained even after formation of an upper p-type organic layer. The Jsc and open-circuit voltage (Voc of the SubPc-C60-based OPV with the LB-modified ITO layers were effectively enhanced. As a result, a 42% increase in device efficiency was achieved.

  15. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Terence K. S. Wong

    2016-04-01

    Full Text Available The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O, cupric oxide (CuO and copper (III oxide (Cu4O3 is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu2O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD of AlxGa1−xO onto thermal Cu2O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu2O nanopowder. CuO/Cu2O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu4O3/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10−2%.

  16. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    Science.gov (United States)

    Wong, Terence K. S.; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K.

    2016-01-01

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O), cupric oxide (CuO) and copper (III) oxide (Cu4O3) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu2O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of AlxGa1−xO onto thermal Cu2O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu2O nanopowder. CuO/Cu2O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu4O3/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10−2%. PMID:28773398

  17. Photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  18. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  19. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  20. Synthesis and characterization of zinc oxide thin films prepared by ...

    African Journals Online (AJOL)

    Zinc oxide thin films were prepared with ammonia/ammonium chloride buffer as the reaction moderating agent in the chemical bath deposition technique. An observable color change during the reaction due to variations in the reactants concentration indicated the existence of the cupric (CuO) and cuprous (Cu2O) oxides ...

  1. Influence of sputtering deposition parameters on electrical and optical properties of aluminium-doped zinc oxide thin films for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    Krawczak Ewelina

    2017-01-01

    Full Text Available Transparent Conductive Oxides (TCOs characterized by high visible transmittance and low electrical resistivity play an important role in photovoltaic technology. Aluminum doped zinc oxide (AZO is one of the TCOs that can find its application in thin film solar cells (CIGS or CdTe PV technology as well as in other microelectronic applications. In this paper some optical and electrical properties of ZnO:Al thin films deposited by RF magnetron sputtering method have been investigated. AZO layers have been deposited on the soda lime glass substrates with use of variable technological parameters such as pressure in the deposition chamber, power applied and temperature during the process. The composition of AZO films has been investigated by EDS method. Thickness and refraction index of the deposited layers in dependence on certain technological parameters of sputtering process have been determined by spectroscopic ellipsometry. The measurements of transmittance and sheet resistance were also performed.

  2. Preparation and photovoltaic properties of CdS quantum dot-sensitized solar cell based on zinc tin mixed metal oxides.

    Science.gov (United States)

    Cao, Jiupeng; Zhao, Yifan; Zhu, Yatong; Yang, Xiaoyu; Shi, Peng; Xiao, Hongdi; Du, Na; Hou, Wanguo; Qi, Genggeng; Liu, Jianqiang

    2017-07-15

    The present study reports a new type of quantum dot sensitized solar cells (QDSSCs) using the zinc tin mixed metal oxides (MMO) as the anode materials, which were obtained from the layered double hydroxide (LDH) precursor. The successive ionic layer adsorption and reaction (SILAR) method is applied to deposit CdS quantum dots. The effects of sensitizing cycles on the performance of CdS QDSSC are studied. Scanning electron microscopy (SEM), Transmission electron microscope (TEM) and X-ray diffraction (XRD) are used to identify the surface profile and crystal structure of the mixed metal oxides anode. The photovoltaic performance of the QDSSC is studied by the electrochemical method. The new CdS QDSSC exhibits power conversion efficiency (PCE) up to 0.48% when the anode was sensitized for eight cycles. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Influence of sputtering deposition parameters on electrical and optical properties of aluminium-doped zinc oxide thin films for photovoltaic applications

    Science.gov (United States)

    Krawczak, Ewelina; Agata, Zdyb; Gulkowski, Slawomir; Fave, Alain; Fourmond, Erwann

    2017-11-01

    Transparent Conductive Oxides (TCOs) characterized by high visible transmittance and low electrical resistivity play an important role in photovoltaic technology. Aluminum doped zinc oxide (AZO) is one of the TCOs that can find its application in thin film solar cells (CIGS or CdTe PV technology) as well as in other microelectronic applications. In this paper some optical and electrical properties of ZnO:Al thin films deposited by RF magnetron sputtering method have been investigated. AZO layers have been deposited on the soda lime glass substrates with use of variable technological parameters such as pressure in the deposition chamber, power applied and temperature during the process. The composition of AZO films has been investigated by EDS method. Thickness and refraction index of the deposited layers in dependence on certain technological parameters of sputtering process have been determined by spectroscopic ellipsometry. The measurements of transmittance and sheet resistance were also performed.

  4. Photovoltaic Cells

    OpenAIRE

    Karolis Kiela

    2012-01-01

    The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  5. Effect of thermal annealing in vacuum on the photovoltaic properties of electrodeposited Cu2O-absorber solar cell

    Directory of Open Access Journals (Sweden)

    Dimopoulos T.

    2014-07-01

    Full Text Available Heterojunction solar cells were fabricated by electrochemical deposition of p-type, cuprous oxide (Cu2O absorber on sputtered, n-type ZnO layer. X-ray diffraction measurements revealed that the as-deposited absorber consists mainly of Cu2O, but appreciable amounts of metallic Cu and cupric oxide (CuO are also present. These undesired oxidation states are incorporated during the deposition process and have a detrimental effect on the photovoltaic properties of the cells. The open circuit voltage (VOC, short circuit current density (jSC, fill factor (FF and power conversion efficiency (η of the as-deposited cells are 0.37 V, 3.71 mA/cm2, 35.7% and 0.49%, respectively, under AM1.5G illumination. We show that by thermal annealing in vacuum, at temperatures up to 300 °C, compositional purity of the Cu2O absorber could be obtained. A general improvement of the heterojunction and bulk materials quality is observed, reflected upon the smallest influence of the shunt and series resistance on the transport properties of the cells in dark and under illumination. Independent of the annealing temperature, transport is dominated by the space-charge layer generation-recombination current. After annealing at 300 °C the solar cell parameters could be significantly improved to the values of: VOC = 0.505 V, jSC = 4.67 mA/cm2, FF = 47.1% and η = 1.12%.

  6. Organic photovoltaics

    DEFF Research Database (Denmark)

    Demming, Anna; Krebs, Frederik C; Chen, Hongzheng

    2013-01-01

    's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic...... solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency...... of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating...

  7. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer.

    Science.gov (United States)

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-13

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC 71 BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.

  8. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer

    Science.gov (United States)

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-01

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.

  9. Microwave—enhanced Mannich Condensation of Terminal Alkynes,Primary Amines with Paraformaldehyde on cuprous Iodide Doped Alumina under Solvent Free Conditions

    Institute of Scientific and Technical Information of China (English)

    王磊; 李品华

    2003-01-01

    A microwave-enhanced,solventless Mannich condensation of terminal alkynes,primary amines with paraformaldehyde on cuprous iodide doped alumina has been investigated.The structures of products depend on the ratio of alkyne to amine and paraformaldehyde.

  10. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2014-01-01

    The global solar photovoltaic market enjoyed a strong revival in 2013. Preliminary estimates put it in excess of 37 GWp, compared to 30 GWp in 2012 and 2011. The solar photovoltaic sector led the annual installed capacity ratings for renewable energies, taking worldwide capacity up to 137 GWp by the end of the year which means a 35% year-on-year increase. At global level the high growth markets - China, Japan and America - contrast sharply with the contracting European Union market. The strong recovery of the global photovoltaic market is due to the drop in module prices which in some zones has dropped below the conventional electricity price. In the E.U, in 2013 the photovoltaic electricity reached 80.2 TWh while the capacity connected during this year was 9922.2 MWp. Concerning the capacity connected in 2013 the 2 main contributors in Europe are Germany (3310.0 MWc) and Italy (1462.0 MWc). These 2 countries represent also 68% of the cumulated and connected capacity in Europe. All along the article various charts and tables give the figures of the photovoltaic capacity per inhabitant for each E.U country in 2013, the electricity production from photovoltaic power for each E.U country, and the main photovoltaic module manufacturers in 2013 worldwide reporting production and turnover

  11. Photovoltaic device

    DEFF Research Database (Denmark)

    2011-01-01

    A photovoltaic cell module including a plurality of serially connected photovoltaic cells on a common substrate, each including a first electrode, a printed light-harvesting layer and a printed second electrode, wherein at least one of the electrodes is transparent, and wherein the second electrode...... of a first cell is printed such that it forms an electrical contact with the first electrode of an adjacent second cell without forming an electrical contact with the first electrode of the first cell or the light-harvesting layer of the second cell, and a method of making such photovoltaic cell modules....

  12. Photovoltaic barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The photovoltaic sector is continuing on track, just as the extent of solar energy's electricity-generating potential is dawning on the public mind. The annual global installation figure was up more than twofold in 2010 (rising from just short of 7000 MWp in 2009). It leapt to over 16000 MWp, bringing worldwide installed photovoltaic capacity close to 38000 MWp. The photovoltaic power generated in the European Union at the end of 2010 reached 22.5 TWh which means an additional capacity of 13023 MWp during 2010. Concerning the cumulated installed capacity, Germany and Spain rank first and second in the European Union with respectively 17370 MWp and 3808 MWp

  13. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The european Union photovoltaic market reached the limits of the sector supply capacity for the first time. Meanwhile the prospects of growth in the photovoltaic market are still just as good as before. Silicon producers have finally responded to the expectations of the photovoltaic industry by announcing new production capacities. These extensions led to massively investing in new production capacities, in phase with ever greater demand. This increase in demand remains, however dependent upon the energy policy. (A.L.B.)

  14. Directed self-assembly of hybrid oxide/polymer core/shell nanowires with transport optimized morphology for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shanju; Pelligra, Candice I.; Keskar, Gayatri; Majewski, Pawel W.; Taylor, Andre D.; Pfefferle, Lisa D.; Osuji, Chinedum O. [Department of Chemical and Environmental Engineering, Yale University, New Haven, CT (United States); Jiang, Jie; Ismail-Beigi, Sohrab [Department of Applied Physics, Yale University, New Haven, CT (United States)

    2012-01-03

    An entirely bottom-up approach for the preparation of liquid crystalline suspensions of core-shell nanowires for ordered bulk heterojunction photovoltaics is demonstrated. Side-on attachment of polythiophene derivatives to ZnO nanowires promotes a co-axial polymer backbone-nanowire arrangement which favors high hole mobility. This strategy offers structural control over multiple length scales and a viable means of fabricating ordered films over large areas. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2013-01-01

    After the euphoria of 2011, the European Union's photovoltaic market slowed right down in 2012. EurObserv'ER puts newly connected capacity in 2012 at 16.5 GWp compared to 22 GWp in 2011, which is a 25% drop. At global level the market generally held up, with just over 30 GWp installed, bolstered by the build-up of the American and Asian markets. The photovoltaic electricity generated in the EU reached 68.1 TWh in 2012. The article begins with the description of the worldwide situation of photovoltaic electricity, then details the situation for each EU member with the help of tables and charts and ends with the state of photovoltaic industry at the world scale

  16. Photovoltaic barometer

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    spain and Germany set the pace for the world photovoltaic market in 2008, which grew to more than twice its 2007 size. The European Union continued to drive photocell installation with an additional 4 592.3 MWp in 2008, or 151.6% growth over 2007. However, European growth prospects for the photovoltaic market in 2009 are being dampened by the global financial crisis and the scheduled slow-down of the Spanish market. (author)

  17. Photovoltaic technologies

    OpenAIRE

    Bagnall, Darren M; Boreland, Matt

    2008-01-01

    Photovoltaics is already a billion dollar industry. It is experiencing rapid growth as concerns over fuel supplies and carbon emissions mean that governments and individuals are increasingly prepared to ignore its current high costs. It will become truly mainstream when its costs are comparable to other energy sources. At the moment, it is around four times too expensive for competitive commercial production. Three generations of photovoltaics have been envisaged that will take solar power in...

  18. Photovoltaic applications

    International Nuclear Information System (INIS)

    Sidrach, M.

    1992-01-01

    The most common terrestrial applications of photovoltaic plants are reviewed. Classification of applications can be done considering end-use sectors and load profiles (consumption demand). For those systems with direct coupling the working point is determined by the intersection of the load line with the I-V curve Design guidelines are provided for photovoltaic systems. This lecture focusses on the distribution system and safeguards

  19. Solution-phase epitaxial growth of quasi-monocrystalline cuprous oxide on metal nanowires

    NARCIS (Netherlands)

    Sciacca, Beniamino; Mann, Sander A.; Tichelaar, Frans D.; Zandbergen, Henny W.; Van Huis, Marijn A.; Garnett, Erik C.

    2014-01-01

    The epitaxial growth of monocrystalline semiconductors on metal nanostructures is interesting from both fundamental and applied perspectives. The realization of nanostructures with excellent interfaces and material properties that also have controlled optical resonances can be very challenging. Here

  20. Study of Phonon Dispersion Relations in Cuprous Oxide by Inelastic Neutron Scattering

    DEFF Research Database (Denmark)

    Beg, M. M.; Shapiro, S. M.

    1976-01-01

    Phonon dispersion relations in Cu2O have been studied at 20°C using inelastic neutron scattering. Seven acoustic branches and twelve optical branches have been studied in detail in the three symmetry directions [00ζ], [ζζ0], and [ζζζ] of the cubic lattice. Four of the six zone-center phonons have...... been observed and the assignments and energies are confirmed as Γ25=87±2 cm-1, Γ12′=105±3 cm-1, Γ15=146±1 cm-1, and Γ2′≈347 cm-1. The dispersion relations agree only qualitatively with the rigid-ion-model calculations. It is suggested that more detailed calculations may be performed in the light...

  1. Green synthesis and characterization of cuprous oxide nanoparticles in presence of a bio-surfactant

    Science.gov (United States)

    Behera, M.; Giri, G.

    2014-12-01

    Herein, we report a facile green synthesis of Cu2O nanoparticles (NPs) using copper sulfate as precursor salt and hydrazine hydrate as reducing agent in presence of bio-surfactant (i.e. leaves extract of arka — a perennial shrub) at 60 to 70 °C in an aqueous medium. A broad band centered at 460 nm in absorption spectrum reveals the formation of surfactant stabilized Cu2O NPs. X-ray diffraction pattern of the surfactant stabilized NPs suggests the formation of only Cu2O phase in assistance of a bio-surfactant with the crystallite size of ˜8 nm. A negative zeta potential of -12 mV at 8.0 pH in surfactant stabilized Cu2O NPs hints non-bonding electron transfer from O-atom of saponin to the surface of NP. Red-shift in the vibrational band (Cu-O stretching) of Cu2O from 637 cm-1 to 640 cm-1 in presence of bio-surfactant suggests an interfacial interaction between NPs and O-atoms of -OH groups of saponin present in the plant (i.e. Calotropis gigantean) extract. From X-ray photoelectron spectroscopy spectra, a decrease in binding energy of both 2p3/2 and 2p1/2 bands in Cu2O with saponin molecules as compared to bulk Cu atom reveals a charge transfer interaction between NP and saponin surfactant molecules. Transmission electron microscopy images show crystalline nature of Cu2O NPs with an fcc lattice.

  2. Improvement of the photovoltaic parameters of perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter.

    Science.gov (United States)

    Nouri, Esmaiel; Mohammadi, Mohammad Reza; Xu, Zong-Xiang; Dracopoulos, Vassilios; Lianos, Panagiotis

    2018-01-24

    Functional perovskite solar cells can be made by using a simple, inexpensive and stable soluble tetra-n-butyl-substituted copper phthalocyanine (CuBuPc) as a hole transporter. In the present study, TiO 2 /reduced graphene oxide (T/RGO) hybrids were synthesized via an in situ solvothermal process and used as electron acceptor/transport mediators in mesoscopic perovskite solar cells based on soluble CuBuPc as a hole transporter and on graphene oxide (GO) as a buffer layer. The impact of the RGO content on the optoelectronic properties of T/RGO hybrids and on the solar cell performance was studied, suggesting improved electron transport characteristics and photovoltaic parameters. An enhanced electron lifetime and recombination resistance led to an increase in the short circuit current density, open circuit voltage and fill factor. The device based on a T/RGO mesoporous layer with an optimal RGO content of 0.2 wt% showed 22% higher photoconversion efficiency and higher stability compared with pristine TiO 2 -based devices.

  3. Concentrator Photovoltaics

    CERN Document Server

    Luque, Antonio L

    2007-01-01

    Photovoltaic solar-energy conversion is one of the most promising technologies for generating renewable energy, and conversion of concentrated sunlight can lead to reduced cost for solar electricity. In fact, photovoltaic conversion of concentrated sunlight insures an efficient and cost-effective sustainable power resource. This book gives an overview of all components, e.g. cells, concentrators, modules and systems, for systems of concentrator photovoltaics. The authors report on significant results related to design, technology, and applications, and also cover the fundamental physics and market considerations. Specific contributions include: theory and practice of sunlight concentrators; an overview of concentrator PV activities; a description of concentrator solar cells; design and technology of modules and systems; manufacturing aspects; and a market study.

  4. Organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the International Conference and Exhibition at 16th September,2010 at the Maritim Hotel (Wuerzburg, Federal Republic of Germany) the following lectures were held: (1) History of Organic Photovoltaics (Niyazi Serdar Sariciftci); (2) PV Activities at the ZAE Bayern (Vladimir Dyakonov); (3) Progress in Solid State DSC (Peter Erk); (4) Polymer Semiconductors for OPV (Mats Andersson); (5) Fullerene Derivative N-Types in Organic Solar Cells (David Kronholm); (6) Modelling Charge-Transport in Organic Photovoltaic Materials (Jenny Nelson); (7) Multi Junction Modules R and D Status and Outlook (Paul Blom); (8) Imaging Technologies for Organic Solar Cells (Jonas Bachmann); (9) Production of Multi-junction Organic Photovoltaic Cells and Modules (Martin Pfeiffer); (10) Upscaling of Polymer Solar Cell Fabrication Using Full Roll-to-roll Processing (Frederik Christian Krebs); (11) Industrial Aspects and Large Scale OPV Production (Jens Hauch).

  5. Applied photovoltaics

    CERN Document Server

    Wenham, Stuart R; Watt, Muriel E; Corkish, Richard; Sproul, Alistair

    2013-01-01

    The new edition of this thoroughly considered textbook provides a reliable, accessible and comprehensive guide for students of photovoltaic applications and renewable energy engineering. Written by a group of award-winning authors it is brimming with information and is carefully designed to meet the needs of its readers. Along with exercises and references at the end of each chapter, it features a set of detailed technical appendices that provide essential equations, data sources and standards. The new edition has been fully updated with the latest information on photovoltaic cells,

  6. Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers

    Science.gov (United States)

    Morais, Andreia; Alves, João Paulo C.; Lima, Francisco Anderson S.; Lira-Cantu, Monica; Nogueira, Ana Flavia

    2015-01-01

    In this study, we investigated inverted hybrid bulk-heterojunction solar cells with the following configuration: fluorine-doped tin oxide (FTO) |TiO2/RGO|P3HT:PC61BM|V2O5 or PEDOT:PSS|Ag. The TiO2/GO dispersions were prepared by sol-gel method, employing titanium isopropoxide and graphene oxide (GO) as starting materials. The GO concentration was varied from 0.1 to 4.0 wt%. The corresponding dispersions were spin-coated onto FTO substrates and a thermal treatment was performed to remove organic materials and to reduce GO to reduced graphene oxide (RGO). The TiO2/RGO films were characterized by x-ray diffraction, Raman spectroscopy, and microscopy techniques. Atomic force microscopy (AFM) images showed that the addition of RGO significantly changes the morphology of the TiO2 films, with loss of uniformity and increase in surface roughness. Independent of the use of V2O5 or PEDOT: PSS films as the hole transport layer, the incorporation of 2.0 wt% of RGO into TiO2 films was the optimal concentration for the best organic photovoltaic performance. The solar cells based on TiO2/RGO (2.0 wt%) electrode exhibited a ˜22.3% and ˜28.9% short circuit current density (Jsc) and a power conversion efficiency enhancement, respectively, if compared with the devices based on pure TiO2 films. Kelvin probe force microscopy images suggest that the incorporation of RGO into TiO2 films can promote the appearance of regions with different charge dissipation capacities.

  7. The role of transparent conducting oxides in metal organic chemical vapour deposition of CdTe/CdS Photovoltaic solar cells

    International Nuclear Information System (INIS)

    Irvine, S.J.C.; Lamb, D.A.; Barrioz, V.; Clayton, A.J.; Brooks, W.S.M.; Rugen-Hankey, S.; Kartopu, G.

    2011-01-01

    A systematic study is made between the relationship of Cd 0.9 Zn 0.1 S/CdTe photovoltaic (PV) device properties for three different commercial transparent conducting oxide (TCO) materials and some experimental CdO to determine the role of the TCO in device performance. The resistance contribution from the TCO was measured after depositing the gold contact architectures directly onto the TCOs. These were compared with the Cd 0.9 Zn 0.1 S/CdTe device properties using the same contact arrangements. Series resistance for the commercial TCOs correlated with their sheet resistance and gave good agreement with the PV device series resistance for the indium tin oxide (ITO) and fluorine doped tin oxide (FTO) 15 Ω/Sq. superstrates. The devices on the thicker FTO 7 Ω/sq superstrates were dominated by a low shunt resistance, which was attributed to the rough surface morphology causing micro-shorts. The device layers on the CdO substrate delaminated but devices were successfully made for ultra-thin CdTe (0.8 μm thick) and compared favourably with the comparable device on ITO. From the measurements on these TCOs it was possible to deduce the back contact resistance and gave an average value of 2 Ω.cm 2 . The correlation of fill factor with series resistance has been compared with the predictions of a 1-D device model and shows excellent agreement. For high efficiency devices the combined series resistance from the TCO and back contact need to be less than 1 Ω.cm 2 .

  8. Hybrid polymer-inorganic photovoltaic cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Janssen, R.A.J.; Merhari, L.

    2009-01-01

    Composite materials made from organic conjugated polymers and inorganic semiconductors such as metal oxides attract considerable interest for photovoltaic applications. Hybrid polymer-inorganic solar cells offer the opportunity to combine the beneficial properties of the two materials in charge

  9. Activation of persulfate/copper by hydroxylamine via accelerating the cupric/cuprous redox couple.

    Science.gov (United States)

    Zhou, Peng; Zhang, Jing; Liang, Juan; Zhang, Yongli; Liu, Ya; Liu, Bei

    2016-01-01

    Cuprous copper [Cu(I)] reacts with sodium persulfate (PDS) to generate sulfate radical SO4(-)•, but it has been seldom investigated owing to its instability and difficulty in dissolving it. This study proposes a new method to regenerate Cu(I) from cupric copper [Cu(II)] by addition of hydroxylamine (HA) to induce the continuous production of radicals through active PDS, and investigates the resulting enhanced methyl orange (MO) degradation efficiency and mechanism in the new system. HA accelerated the degradation of MO markedly in the pH range from 6.0 to 8.0 in the HA/Cu(II)/PDS process. Both SO4(-)• and hydroxyl radicals (•OH) were considered as the primary reactive radicals in the process. The MO degradation in the HA/Cu(II)/PDS process can be divided into three stages: the fast stage, the transitory stage, and the low stage. MO degradation was enhanced with increased dosage of PDS. Although high dosage of HA could accelerate the transformation of the Cu(II)/Cu(I) cycle to produce more reactive radicals, excess HA can quench the reactive radicals. This study indicates that through a copper-redox cycling mechanism by HA, the production of SO4(-)• and •OH can be strongly enhanced, and the effective pH range can be expanded to neutral conditions.

  10. Enhancing Photovoltaic Performance of Inverted Planar Perovskite Solar Cells by Cobalt-Doped Nickel Oxide Hole Transport Layer.

    Science.gov (United States)

    Xie, Yulin; Lu, Kai; Duan, Jiashun; Jiang, Youyu; Hu, Lin; Liu, Tiefeng; Zhou, Yinhua; Hu, Bin

    2018-04-25

    Electron and hole transport layers have critical impacts on the overall performance of perovskite solar cells (PSCs). Herein, for the first time, a solution-processed cobalt (Co)-doped NiO X film was fabricated as the hole transport layer in inverted planar PSCs, and the solar cells exhibit 18.6% power conversion efficiency. It has been found that an appropriate Co-doping can significantly adjust the work function and enhance electrical conductivity of the NiO X film. Capacitance-voltage ( C- V) spectra and time-resolved photoluminescence spectra indicate clearly that the charge accumulation becomes more pronounced in the Co-doped NiO X -based photovoltaic devices; it, as a consequence, prevents the nonradiative recombination at the interface between the Co-doped NiO X and the photoactive perovskite layers. Moreover, field-dependent photoluminescence measurements indicate that Co-doped NiO X -based devices can also effectively inhibit the radiative recombination process in the perovskite layer and finally facilitate the generation of photocurrent. Our work indicates that Co-doped NiO X film is an excellent candidate for high-performance inverted planar PSCs.

  11. Electrochemical photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  12. Improved photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  13. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung; Lim, Jong-Wook; Kim, Han-Ki; Alford, T. L.; Jabbour, Ghassan E.

    2012-01-01

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive

  14. Comparison of Poly Aluminum Chloride and Chlorinated Cuprous for Chemical Oxygen Demand and Color Removal from Kashan Textile Industries Company Wastewater

    Directory of Open Access Journals (Sweden)

    Hoseindoost Gh.1 MSPH,

    2016-08-01

    Full Text Available Aims Textile wastewaters are the most important health and environmental problems in Kashan. This research was aimed to compare the poly aluminum chloride and chlorinated cuprous efficiency for removal of Chemical Oxygen Demand (COD and color from Kashan Textile Industries Company wastewater. Materials & Methods This experimental bench scale study in a batch system was conducted on 20 composed wastewater samples collected from Kashan Textile Industries Company raw wastewater. During 5 months, in the beginning of every week a day was selected randomly and in the day a composed sample was taken and studied. PAC at the doses of 10, 20, 30, 40 and 50mg.l-1 and chlorinated cuprous at the doses of 100, 200, 300, 400 and 500mg.l-1 were applied. The optimum pH also optimum concentration of PAC and chlorinated cuprous were determined using Jar test. The data was analyzed by SPSS 16 using descriptive statistics and Fisher Exact test. Findings The average concentration of COD in the raw textile wastewater was 2801.56±1398.29mg.l-1. The average COD concentration has been decreased to 1125.47±797.55mg.l-1. There was a significant difference between the effects of these two coagulants efficiency (p<0.05. The average COD removal efficiency for chlorinated cuprous and PAC was 58.52% and 72.56%, respectively. Also, the average color removal efficiency by chlorinated cuprous and PAC were 17.23 and 64.45%, respectively. Conclusion PAC is more efficient than chlorinated cuprous for both COD and color removal from KTIC wastewater.

  15. Photovoltaic technologies

    International Nuclear Information System (INIS)

    Bagnall, Darren M.; Boreland, Matt

    2008-01-01

    Photovoltaics is already a billion dollar industry. It is experiencing rapid growth as concerns over fuel supplies and carbon emissions mean that governments and individuals are increasingly prepared to ignore its current high costs. It will become truly mainstream when its costs are comparable to other energy sources. At the moment, it is around four times too expensive for competitive commercial production. Three generations of photovoltaics have been envisaged that will take solar power into the mainstream. Currently, photovoltaic production is 90% first-generation and is based on silicon wafers. These devices are reliable and durable, but half of the cost is the silicon wafer and efficiencies are limited to around 20%. A second generation of solar cells would use cheap semiconductor thin films deposited on low-cost substrates to produce devices of slightly lower efficiency. A number of thin-film device technologies account for around 5-6% of the current market. As second-generation technology reduces the cost of active material, the substrate will eventually be the cost limit and higher efficiency will be needed to maintain the cost-reduction trend. Third-generation devices will use new technologies to produce high-efficiency devices. Advances in nanotechnology, photonics, optical metamaterials, plasmonics and semiconducting polymer sciences offer the prospect of cost-competitive photovoltaics. It is reasonable to expect that cost reductions, a move to second-generation technologies and the implementation of new technologies and third-generation concepts can lead to fully cost-competitive solar energy in 10-15 years. (author)

  16. Fabrication of cuprous chloride films on copper substrate by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu-Ting; Ci, Ji-Wei; Tu, Wei-Chen [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Uen, Wu-Yih, E-mail: uenwuyih@ms37.hinet.net [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Lan, Shan-Ming [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Tsun-Neng; Shen, Chin-Chang; Wu, Chih-Hung [Institute of Nuclear Energy Research, P.O. Box 3-11, Lungtan 32500, Taiwan (China)

    2015-09-30

    Polycrystalline CuCl films were fabricated by chemical bath deposition (CBD) on a Cu substrate at a low solution temperature of 90 °C. Continuous CuCl films were prepared using the copper (II) chloride (CuCl{sub 2}) compound as the precursor for both the Cu{sup 2+} and Cl{sup −} sources, together with repeated HCl dip treatments. An HCl dip pretreatment of the substrate favored the nucleation of CuCl crystallites. Further, interrupting the film deposition and including an HCl dip treatment of the film growth surface facilitated the deposition of a full-coverage CuCl film. A dual beam (FIB/SEM) system with energy dispersive spectrometry facilities attached revealed a homogeneous CuCl layer with a flat-top surface and an average thickness of about 1 μm. Both the excitonic and biexcitonic emission lines were well-resolved in the 6.4 K photoluminescence spectra. In particular, the free exciton emission line was observable at room temperature, indicating the good quality of the CuCl films prepared by CBD. - Highlights: • Cuprous chloride (CuCl) was prepared on Cu substrate by chemical bath deposition. • HCl dip treatments facilitated the deposition of a full-coverage CuCl film. • A homogeneous elemental distribution was recognized for the deposited CuCl layer. • Excitonic and biexcitonic photoluminescence lines of CuCl films were well-resolved. • The free exciton emission line of CuCl films was observable at room temperature.

  17. Millimeter- and submillimeter-wave spectrum and molecular constants of cuprous iodide

    International Nuclear Information System (INIS)

    Manson, E.L.; De Lucia, F.C.; Gordy, W.

    1975-01-01

    Monomeric cuprous iodide (CuI) in the vapor state has been produced as an intermediate product of the reaction of copper with iodine vapor at 1100 degreeK in a quasi-free-space microwave absorption cell. Rotational transitions of 63 Cu 127 I and 65 Cu 127 I were measured for J as high as 87→88 and for ν as high as 11. Hyperfine splittings due to 127 I were observed, and eqQ ( 127 I) =-935(15) MHz was derived. Analysis of the rotational frequencies yields the following Dunham and equilibrium coefficients for 63 Cu 127 I: Y 01 =2197.10172(98) MHz, Y 11 =-8.51120(66) MHz, Y 21 =0.00934(14) MHz, Y 31 =-0.0375(88) kHz, Y 02 =-0.67269(10) kHz, Y 12 =0.031(34) Hz, Y 03 =-0.00006858(10) Hz, B/sube/=2197.102(2) MHz, ω/sube/=264.897(18) cm -1 , ω/sube/chi/sube/=0.715(2) cm -1 , r/sube/=2.33831686(104) A; for 65 Cu 127 I: Y 01 =2151.89989(94) MHz, Y 11 =-8.24990(66) MHz, Y 21 =0.00896(14) MHz, Y 31 =-0.0356(88) kHz, Y 02 =-0.64530(10) kHz, Y 12 =0.030(34) Hz, Y 03 =-0.00006443(10) Hz, B/sube/=2151.900(2) MHz, ω/sube/=262.157(18) cm -1 , ω/sube/chi/sube/=0.700(2) cm -1 , r/sube/=2.33831664(102) A. The Dunham potential constants for CuI are a 0 =239 366(34) cm -1 , a 1 =-3.33365(36), a 2 =7.391(16), and a 3 =-13.20(18)

  18. The effect of heat on DNA degradation by the 1, 10-phenanthroline-cuprous ion complex

    International Nuclear Information System (INIS)

    Nagle, W.A.; Henle, K.J.; Willingham, W.M.; Sorenson, J.R.J.; McClellan, J.L.; Moss, A.J.

    1987-01-01

    The 1, 10-phenanthroline-cuprous ion complex (OP)/sub 2/Cu/sup +/ exhibits artificial DNase activity which closely parallels micrococcal nuclease. Using cell-free systems and in situ generated (OP)/sub 2/Cu/sup +/, other studies have shown a requirement for a reducing agent as well as O/sub 2/ or H/sub 2/O/sub 2/ to degrade DNA to acid-soluble fragments. The authors investigated the influence of hyperthermia on the degradation of V79 cell DNA using the (OP)/sub 2/Cu/sup +/-ascorbate system. The (OP)/sub 2/Cu/sup +/ complex was synthesized and characterized prior to cell treatment. Cells were prelabeled with /sup 3/H-TdR (control) or /sup 14/C-TdR (treated) and exposed 10 minutes at 45 0 C, followed by a 30 minute incubation with lμM (OP)/sub 2/Cu/sup +/ and 10μM as corbate in balanced salts solution. Cellular DNA was assayed using the alkaline elution technique. Heated cells incubated with lμM (OP)/sub 2/Cu/sup +/ or 10μM ascorbate exhibited a 300 rad equivalent increase in strand breaks over the unheated control. Incubation of cells with either lμM (OP)/sub 2/Cu/sup +/ or 10μM ascorbate alone did not induce strand breaks. These results suggests that heating initially increases the susceptibility of DNA to attack by the (OP)/sub 2/Cu/sup +/-ascorbate system

  19. Roof Photovoltaic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — In order to accurately predict the annual energy production of photovoltaic systems for any given geographical location, building orientation, and photovoltaic cell...

  20. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  1. Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Jephias Gwamuri

    2016-01-01

    Full Text Available The opportunity for substantial efficiency enhancements of thin film hydrogenated amorphous silicon (a-Si:H solar photovoltaic (PV cells using plasmonic absorbers requires ultra-thin transparent conducting oxide top electrodes with low resistivity and high transmittances in the visible range of the electromagnetic spectrum. Fabricating ultra-thin indium tin oxide (ITO films (sub-50 nm using conventional methods has presented a number of challenges; however, a novel method involving chemical shaving of thicker (greater than 80 nm RF sputter deposited high-quality ITO films has been demonstrated. This study investigates the effect of oxygen concentration on the etch rates of RF sputter deposited ITO films to provide a detailed understanding of the interaction of all critical experimental parameters to help create even thinner layers to allow for more finely tune plasmonic resonances. ITO films were deposited on silicon substrates with a 98-nm, thermally grown oxide using RF magnetron sputtering with oxygen concentrations of 0, 0.4 and 1.0 sccm and annealed at 300 °C air ambient. Then the films were etched using a combination of water and hydrochloric and nitric acids for 1, 3, 5 and 8 min at room temperature. In-between each etching process cycle, the films were characterized by X-ray diffraction, atomic force microscopy, Raman Spectroscopy, 4-point probe (electrical conductivity, and variable angle spectroscopic ellipsometry. All the films were polycrystalline in nature and highly oriented along the (222 reflection. Ultra-thin ITO films with record low resistivity values (as low as 5.83 × 10−4 Ω·cm were obtained and high optical transparency is exhibited in the 300–1000 nm wavelength region for all the ITO films. The etch rate, preferred crystal lattice growth plane, d-spacing and lattice distortion were also observed to be highly dependent on the nature of growth environment for RF sputter deposited ITO films. The structural, electrical

  2. Transparent conductive oxides and alternative transparent electrodes for organic photovoltaics and OLEDs; Transparente leitfaehige Elektroden. Oxide und alternative Materialien fuer die organische Photovoltaik und OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Meskamp, Lars; Sachse, Christoph; Kim, Yong Hyun; Furno, Mauro [Technische Univ. Dresden (DE). Inst. fuer Angewandte Photophysik (IAPP); May, Christian [Fraunhofer Institut fuer Photonische Mikrosysteme (IPMS), Dresden (Germany); Leo, Karl [Technische Univ. Dresden (DE). Inst. fuer Angewandte Photophysik (IAPP); Fraunhofer Institut fuer Photonische Mikrosysteme (IPMS), Dresden (Germany)

    2012-08-15

    Organic, photoactive devices, such as OLEDs or organic solar cells, currently use indium tin oxide (ITO) as transparent electrode. Whereas ITO is industry-proven for many years and shows very good electrical and optical properties, its application for low-cost and flexible devices might not be optimal. For such applications innovative technologies such as network-based metal nanowire or carbon nanotube electrodes, graphene, conductive polymers, metal thin-films and alternative transparent conductive oxides emerge. Although some of these technologies are rather experimental and far from application, some of them have the potential to replace ITO in selected applications. (orig.)

  3. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung

    2012-05-22

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive layer of poly (3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester, a power conversion efficiency of 3.67% was obtained, a value comparable to devices having sputtered ITO electrode. Surface roughness and optical efficiency are improved when using the mixed TiO2−x–ITO electrode. The consumption of less indium allows for lower fabrication cost of such mixed thin filmelectrode.

  4. Photovoltaic module and laminate

    Science.gov (United States)

    Bunea, Gabriela E.; Kim, Sung Dug; Kavulak, David F.J.

    2018-04-10

    A photovoltaic module is disclosed. The photovoltaic module has a first side directed toward the sun during normal operation and a second, lower side. The photovoltaic module comprises a perimeter frame and a photovoltaic laminate at least partially enclosed by and supported by the perimeter frame. The photovoltaic laminate comprises a transparent cover layer positioned toward the first side of the photovoltaic module, an upper encapsulant layer beneath and adhering to the cover layer, a plurality of photovoltaic solar cells beneath the upper encapsulant layer, the photovoltaic solar cells electrically interconnected, a lower encapsulant layer beneath the plurality of photovoltaic solar cells, the upper and lower encapsulant layers enclosing the plurality of photovoltaic solar cells, and a homogenous rear environmental protection layer, the rear environmental protection layer adhering to the lower encapsulant layer, the rear environmental protection layer exposed to the ambient environment on the second side of the photovoltaic module.

  5. Electrochemical synthesis and characterization of copper (I oxide

    Directory of Open Access Journals (Sweden)

    Bugarinović Sanja J.

    2009-01-01

    Full Text Available The quest and need for clean and economical energy sources have increased interest in the development of thin film cells technologies. Electrochemical deposition is an attractive method for synthesis of thin films. It offers the advantages of low synthesis temperature, low cost and high purity. Copper (I oxide or cuprous oxide is an oxide semiconductor which is used as the anodic material in the form of thin film in lithium batteries and solar cells. The cathodic process of synthesis of cuprous oxide thin film is carried out in a potentiostatic mode from the organic electrolyte. The process parameters are chosen in that way to accomplish maximum difference between the potentials at which Cu2O and CuO are obtained. The electrochemical characterization was carried out by cyclic voltammetry. The electrodeposition techniques are particularly well suited for the deposition of single elements but it is also possible to carry out simultaneous depositions of several elements and syntheses of well-defined alternating layers of metals and oxides with thicknesses down to a few nm. Nanomaterials exhibit novel physical properties and play an important role in fundamental research. In addition, cuprous oxide is commonly used as a pigment, a fungicide, and an antifouling agent for marine paints. It is insoluble in water and organic solvents. This work presents the examinations of the influence of bath, temperature, pH and current density on the characteristics of electrochemically synthesized cuprous oxide. In the 'classic' process of synthesis, which is carried out under galvanostatic conditions on the anode, the grain size of the powder decreases with the increase in current density while the grain colour becomes lighter. The best commercial quality of the Cu2O (grain size, colour, content of choride was obtained at the temperature of 80°C, concentration of NaCl of 3 mol/dm3 and current density of 400 A/m2.

  6. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  7. Organic photovoltaics

    Science.gov (United States)

    Demming, Anna; Krebs, Frederik C.; Chen, Hongzheng

    2013-12-01

    Energy inflation, the constant encouragement to economize on energy consumption and the huge investments in developing alternative energy resources might seem to suggest that there is a global shortage of energy. Far from it, the energy the Sun beams on the Earth each hour is equivalent to a year's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating effectively across the electromagnetic spectrum remains a challenge. 'The trend is towards engineering low bandgap polymers with a wide optical absorption range and efficient hole/electron transport materials, so that light harvesting in the red and infrared region is enhanced and as much light of the solar spectrum as possible can be converted into an electrical current', explains Mukundan Thelakkat and colleagues in Germany, the US and UK. In this special issue they report on how charge carrier mobility and morphology of the active blend layer in thin film organic solar cells correlate with device parameters [2]. The work contributes to a better understanding of the solar-cell characteristics of polymer:fullerene blends, which form the material basis for some of the most

  8. The use of cuprous iodide as a precipitation matrix in the radiochemical determination of 131I in milk

    International Nuclear Information System (INIS)

    McCurdy, D.E.; Mellor, R.A.; Lambdin, R.W.; McLain, M.E. Jr.

    1980-01-01

    As a result of the implementation of the As Low As is Reasonably Achievable philosophy to the nuclear power industry, recent U.S. Nuclear Regulatory Commission requirements have prompted high sensitivity radiochemical analysis for the measurement of 131 I in milk. The most recognized and commonly employed technique incorporates costly palladium iodide as the final precipitate in the radiochemical purification of the iodine chemical species. The procedure presented in this paper outlines the many advantages of using cuprous iodide as the final precipitate. These include lower cost per analysis, consistent recoveries, better precipitate matrix and good self absorption characteristics. Typical lower limit of detection values and operating characteristics obtained for high sensitivity β-γ analysis as well as gas proportional counting and a comparison of radiochemical and Ge(Li) spectrometric results for environmental samples collected during a recent Chinese weapons fallout incident are presented. (author)

  9. Electrical bistability and charge-transport mechanisms in cuprous sulfide nanosphere-poly(N-vinylcarbazole) composite films

    International Nuclear Information System (INIS)

    Tang Aiwei; Teng Feng; Liu Jie; Wang Yichao; Peng Hongshang; Hou Yanbing; Wang Yongsheng

    2011-01-01

    In this study, electrically bistable devices were fabricated by incorporating cuprous sulfide (Cu 2 S) nanospheres with mean size less than 10 nm into a poly(N-vinylcarbazole) (PVK) matrix. A remarkable electrical bistability was clearly observed in the current–voltage curves of the devices due to an electric-field-induced charge transfer between the dodecanethiol-capped Cu 2 S nanospheres and PVK. The maximum ON/OFF current ratio reached up to value as large as 10 4 , which was dependent on the mass ratios of Cu 2 S nanospheres to PVK, the amplitude of the scanning voltages, and the film thickness. The charge-transport mechanisms of the electrically bistable devices were described on the basis of the experimental results using different theoretical models of organic electronics.

  10. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  11. Photovoltaic roof construction

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, W.W.

    1980-02-26

    In a batten-seam roof construction employing at least one photovoltaic cell module, the electrical conduits employed with the at least one photovoltaic cell module are disposed primarily under the battens of the roof.

  12. Photovoltaic power generation system with photovoltaic cells as bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna; Cruz-Campa, Jose Luis; Okandan, Murat

    2017-11-28

    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.

  13. Thermionic photovoltaic energy converter

    Science.gov (United States)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  14. Photovoltaic device and method

    Science.gov (United States)

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  15. Structure and Reactivity of Zeolite- and Carbon-Supported Catalysts for the Oxidative Carbonylation of Alcohols

    OpenAIRE

    Briggs, Daniel Neal

    2010-01-01

    AbstractStructure and Reactivity of Zeolite- and Carbon-Supported Catalysts for the Oxidative Carbonylation of AlcoholsbyDaniel Neal BriggsDoctor of Philosophy in Chemical EngineeringUniversity of California, BerkeleyProfessor Alexis T. Bell, Chair The oxidative carbonylation of alcohols to produce dialkyl carbonates is a process that takes place commercially in a slurry of cuprous chloride in the appropriate alcohol. While this process is chemically efficient, it incurs costs in terms of ene...

  16. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  17. Semiconductor electrolyte photovoltaic energy converter

    Science.gov (United States)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  18. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  19. Photovoltaic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational

  20. Auto-combustion Synthesis, Characterization and Photovoltaic

    African Journals Online (AJOL)

    NICOLAAS

    Ag-NiTiO3, sol-gel method, semiconductor, photovoltaic, doping. 1. Introduction ... convenient for synthesis of pure mixed metal oxides nanoparticles. Furthermore .... current density voltage (I-V) curve for Ag-NiTiO3 was carried out under the ...

  1. Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell

    OpenAIRE

    Dong, Feng; Zhang, Peng; Li, Kexun; Liu, Xianhua; Zhang, Pingping

    2016-01-01

    In this work, Cu2O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) results showed that cupric oxide and cuprous oxide coexisted on the ca...

  2. A photovoltaic module

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a photovoltaic module comprising a carrier substrate, said carrier substrate carrying a purely printed structure comprising printed positive and negative module terminals, a plurality of printed photovoltaic cell units each comprising one or more printed...... photovoltaic cells, wherein the plurality of printed photovoltaic cell units are electrically connected in series between the positive and the negative module terminals such that any two neighbouring photovoltaic cell units are electrically connected by a printed interconnecting electrical conductor....... The carrier substrate comprises a foil and the total thickness of the photovoltaic module is below 500 [mu]m. Moreover, the nominal voltage level between the positive and the negative terminals is at least 5 kV DC....

  3. Photovoltaic systems in agriculture

    International Nuclear Information System (INIS)

    Corba, Z.; Katic, V.; Milicevic, D.

    2009-01-01

    This paper presents the possibility of using one of the renewable energy resources in agriculture. Specifically, the paper shows the possibility of converting solar energy into electricity through photovoltaic panels. The paper includes the analysis of the energy potential of solar radiation in the AP Vojvodina (Serbia). The results of the analysis can be used for the design of photovoltaic energy systems. The amount of solar energy on the territory of the province is compared with the same data from some European countries, in order to obtain a clear picture of the possibilities of utilization of this type of renewable sources. Three examples of possible application of photovoltaic systems are presented. The first relates to the consumer who is away from the electric distribution network - photovoltaic system in island mode. The remaining two examples relate to the application of photovoltaic power sources in manufacturing plants, flowers or vegetables. Applying photovoltaic source of electrical energy to power pumps for irrigation is highlighted

  4. Effect of cuprous halide interlayers on the device performance of ZnPc/C{sub 60} organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jinho; Park, Dasom; Heo, Ilsu; Yim, Sanggyu, E-mail: sgyim@kookmin.ac.kr

    2014-10-15

    Highlights: • Effect of CuX interlayers on subsequently deposited films and devices was studied. • CuI is the most effective for the performance of ZnPc/C{sub 60}-based solar cells. • Results were related to the molecular geometry of ZnPc and HOMO level of interlayers. - Abstract: The effect of various cuprous halide (CuX) interlayers introduced between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) layer and zinc phthalocyanine (ZnPc) layer on the physical properties of the ZnPc thin films and device performances of ZnPc/C{sub 60}-based small-molecule organic solar cells was studied. Strong substrate–molecule interaction between the CuX and ZnPc partly converted surface-perpendicular stacking geometry of ZnPc molecules into surface-parallel one. This flat-lying geometry led to an enhancement in electronic absorption and charge transport within the ZnPc films. As a result, the overall power conversion efficiency of the cell with CuI interlayer increased by ∼37%. In the case of the cells with CuBr and CuCl interlayer, however, the enhancement in device performances was limited because of the reduced conversion of the molecular geometry and increased energy barrier for hole extraction due to the low highest occupied molecular orbital level of the interlayer.

  5. Effect of cuprous halide interlayers on the device performance of ZnPc/C60 organic solar cells

    International Nuclear Information System (INIS)

    Lee, Jinho; Park, Dasom; Heo, Ilsu; Yim, Sanggyu

    2014-01-01

    Highlights: • Effect of CuX interlayers on subsequently deposited films and devices was studied. • CuI is the most effective for the performance of ZnPc/C 60 -based solar cells. • Results were related to the molecular geometry of ZnPc and HOMO level of interlayers. - Abstract: The effect of various cuprous halide (CuX) interlayers introduced between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) layer and zinc phthalocyanine (ZnPc) layer on the physical properties of the ZnPc thin films and device performances of ZnPc/C 60 -based small-molecule organic solar cells was studied. Strong substrate–molecule interaction between the CuX and ZnPc partly converted surface-perpendicular stacking geometry of ZnPc molecules into surface-parallel one. This flat-lying geometry led to an enhancement in electronic absorption and charge transport within the ZnPc films. As a result, the overall power conversion efficiency of the cell with CuI interlayer increased by ∼37%. In the case of the cells with CuBr and CuCl interlayer, however, the enhancement in device performances was limited because of the reduced conversion of the molecular geometry and increased energy barrier for hole extraction due to the low highest occupied molecular orbital level of the interlayer

  6. Photovoltaic Solar Energy

    International Nuclear Information System (INIS)

    Gonzalez N, J.C.; Leal C, H.

    1998-01-01

    A short historical review of the technological advances; the current state and the perspectives of the materials for photovoltaic applications is made. Thereinafter, the general aspects of the physical principles and fundamental parameters that govern the operation of the solar cells are described. To way of the example, a methodology for the design and facilities size of a photovoltaic system is applied. Finally, the perspectives of photovoltaic solar energy in relationship to the market and political of development are mentioned

  7. Modeling Photovoltaic Power

    OpenAIRE

    Mavromatakis, F.; Franghiadakis, Y.; Vignola, F.

    2016-01-01

    A robust and reliable model describing the power produced by a photovoltaic system is needed in order to be able to detect module failures, inverter malfunction, shadowing effects and other factors that may result to energy losses. In addition, a reliable model enables an investor to perform accurate estimates of the system energy production, payback times etc. The model utilizes the global irradiance reaching the plane of the photovoltaic modules since in almost all Photovoltaic (PV) facilit...

  8. Photovoltaic energy barometer

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    The european photovoltaic market once again reached the heights in 2006, thanks to the dynamism of the German market. White paper objectives have thus been fulfilled four years ahead of schedule. The european photovoltaic sector remains however very heterogeneous with both an ultra-dominant German market (estimated at 1150 MWp in 2006) and other countries of the European Union that vary from a few kWP to a few dozen MWp. This analysis provides statistical data on the market, the capacity installed during 2005 and 2006, the photovoltaic parks and the evolution of the photovoltaic cell production. (A.L.B.)

  9. Optimized organic photovoltaics with surface plasmons

    Science.gov (United States)

    Omrane, B.; Landrock, C.; Aristizabal, J.; Patel, J. N.; Chuo, Y.; Kaminska, B.

    2010-06-01

    In this work, a new approach for optimizing organic photovoltaics using nanostructure arrays exhibiting surface plasmons is presented. Periodic nanohole arrays were fabricated on gold- and silver-coated flexible substrates, and were thereafter used as light transmitting anodes for solar cells. Transmission measurements on the plasmonic thin film made of gold and silver revealed enhanced transmission at specific wavelengths matching those of the photoactive polymer layer. Compared to the indium tin oxide-based photovoltaic cells, the plasmonic solar cells showed overall improvements in efficiency up to 4.8-fold for gold and 5.1-fold for the silver, respectively.

  10. Octahedral core–shell cuprous oxide/carbon with enhanced electrochemical activity and stability as anode for lithium ion batteries

    International Nuclear Information System (INIS)

    Xiang, Jiayuan; Chen, Zhewei; Wang, Jianming

    2015-01-01

    Highlights: • Core–shell octahedral Cu 2 O/C is prepared by a one-step method. • Carbon shell is amorphous and uniformly decorated at the Cu 2 O octahedral core. • Core–shell Cu 2 O/C exhibits markedly enhanced capability and reversibility. • Carbon shell provides fast ion/electron transfer channel. • Core–shell structure is stable during cycling. - Abstract: Core–shell Cu 2 O/C octahedrons are synthesized by a simple hydrothermal method with the help of carbonization of glucose, which reduces Cu(II) to Cu(I) at low temperature and further forms carbon shell coating at high temperature. SEM and TEM images indicate that the carbon shell is amorphous with thickness of ∼20 nm wrapping the Cu 2 O octahedral core perfectly. As anode of lithium ion batteries, the core–shell Cu 2 O/C composite exhibits high and stable columbic efficiency (98%) as well as a reversible capacity of 400 mAh g −1 after 80 cycles. The improved electrochemical performance is attributed to the novel core–shell structure, in which the carbon shell reduces the electrode polarization and promotes the charge transfer at active material/electrolyte interface, and also acts as a stabilizer to keep the octahedral structure integrity during discharge–charge processes

  11. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoye, Robert L. Z., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk; Ievskaya, Yulia; MacManus-Driscoll, Judith L., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Brandt, Riley E.; Buonassisi, Tonio [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Heffernan, Shane [Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Musselman, Kevin P. [Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2015-02-01

    Electrochemically deposited Cu{sub 2}O solar cells are receiving growing attention owing to a recent doubling in efficiency. This was enabled by the controlled chemical environment used in depositing doped ZnO layers by atomic layer deposition, which is not well suited to large-scale industrial production. While open air fabrication with atmospheric pressure spatial atomic layer deposition overcomes this limitation, we find that this approach is limited by an inability to remove the detrimental CuO layer that forms on the Cu{sub 2}O surface. Herein, we propose strategies for achieving efficiencies in atmospherically processed cells that are equivalent to the high values achieved in vacuum processed cells.

  12. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells

    International Nuclear Information System (INIS)

    Hoye, Robert L. Z.; Ievskaya, Yulia; MacManus-Driscoll, Judith L.; Brandt, Riley E.; Buonassisi, Tonio; Heffernan, Shane; Musselman, Kevin P.

    2015-01-01

    Electrochemically deposited Cu 2 O solar cells are receiving growing attention owing to a recent doubling in efficiency. This was enabled by the controlled chemical environment used in depositing doped ZnO layers by atomic layer deposition, which is not well suited to large-scale industrial production. While open air fabrication with atmospheric pressure spatial atomic layer deposition overcomes this limitation, we find that this approach is limited by an inability to remove the detrimental CuO layer that forms on the Cu 2 O surface. Herein, we propose strategies for achieving efficiencies in atmospherically processed cells that are equivalent to the high values achieved in vacuum processed cells

  13. Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells.

    Science.gov (United States)

    Nejand, Bahram Abdollahi; Ahmadi, Vahid; Gharibzadeh, Saba; Shahverdi, Hamid Reza

    2016-02-08

    Inorganic hole-transport materials are commercially desired to decrease the fabrication cost of perovskite solar cells. Here, Cu2O is introduced as a potential hole-transport material for stable, low-cost devices. Considering that Cu2O formation is highly sensitive to the underlying mixture of perovskite precursors and their solvents, we proposed and engineered a technique for reactive magnetron sputtering. The rotational angular deposition of Cu2O yields high surface coverage of the perovskite layer for high rate of charge extraction. Deposition of this Cu2O layer on the pinhole-free perovskite layer produces devices with power conversion efficiency values of up to 8.93%. The engineered Cu2O layers showed uniform, compact, and crack-free surfaces on the perovskite layer without affecting the perovskite structure, which is desired for deposition of the top metal contact and for surface shielding against moisture and mechanical damages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Thin film photovoltaic devices with a minimally conductive buffer layer

    Science.gov (United States)

    Barnes, Teresa M.; Burst, James

    2016-11-15

    A thin film photovoltaic device (100) with a tunable, minimally conductive buffer (128) layer is provided. The photovoltaic device (100) may include a back contact (150), a transparent front contact stack (120), and an absorber (140) positioned between the front contact stack (120) and the back contact (150). The front contact stack (120) may include a low resistivity transparent conductive oxide (TCO) layer (124) and a buffer layer (128) that is proximate to the absorber layer (140). The photovoltaic device (100) may also include a window layer (130) between the buffer layer (128) and the absorber (140). In some cases, the buffer layer (128) is minimally conductive, with its resistivity being tunable, and the buffer layer (128) may be formed as an alloy from a host oxide and a high-permittivity oxide. The high-permittivity oxide may further be chosen to have a bandgap greater than the host oxide.

  15. Emerging Novel Metal Electrodes for Photovoltaic Applications.

    Science.gov (United States)

    Lu, Haifei; Ren, Xingang; Ouyang, Dan; Choy, Wallace C H

    2018-04-01

    Emerging novel metal electrodes not only serve as the collector of free charge carriers, but also function as light trapping designs in photovoltaics. As a potential alternative to commercial indium tin oxide, transparent electrodes composed of metal nanowire, metal mesh, and ultrathin metal film are intensively investigated and developed for achieving high optical transmittance and electrical conductivity. Moreover, light trapping designs via patterning of the back thick metal electrode into different nanostructures, which can deliver a considerable efficiency improvement of photovoltaic devices, contribute by the plasmon-enhanced light-mattering interactions. Therefore, here the recent works of metal-based transparent electrodes and patterned back electrodes in photovoltaics are reviewed, which may push the future development of this exciting field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Treatment of transparent conductive oxides by laser processes for the development of Silicon photovoltaic cells; Tratamiento de oxidos conductores transparentes por procesos laser para el desarrollo de celulas fotovoltaicas de silicio

    Energy Technology Data Exchange (ETDEWEB)

    Canteli Perez-Caballero, D.

    2015-07-01

    Transparent conductive oxides (TCOs) are heavily doped oxides with high transparency in the visible range of the spectrum and a very low sheet resistance, making them very attractive for applications in optoelectronic devices. TCOs are widely found in many different areas such as low emissivity windows, electric contacts in computers, televisions or portable devices, and, specially, in the photovoltaic (PV) industry. PV industry is mainly based on mono- and multicrystalline silicon, where TCOs are used as anti-reflective coatings, but the search for cheaper, alternative technologies has led to the development of thin film PV technologies, where TCOs are used as transparent contacts. With the maturation of the thin film PV industry, laser sources have become an essential tool, allowing the improvement of some industrial processes and the development of new ones. Because of the interest on a deeper understanding of the interaction processes between laser light and TCOs, the laser ablation of three of the most important TCOs has been studied in depth in the present work. (Author)

  17. Photovoltaic research and development

    CSIR Research Space (South Africa)

    Cummings, F

    2009-09-01

    Full Text Available Photovoltaic (PV) is the direct conversion of sunlight into electrical energy through a solar cell. This presentation consists of an introduction to photovoltaics, the South African PV research roadmap, a look at the CSIR PV research and development...

  18. Characterization of Photovoltaic Generators

    Science.gov (United States)

    Boitier, V.; Cressault, Y.

    2011-01-01

    This paper discusses photovoltaic panel systems and reviews their electrical properties and use in several industrial fields. We explain how different photovoltaic panels may be characterized by undergraduate students at university using simple methods to retrieve their electrical properties (power, current and voltage) and compare these values…

  19. Photovoltaic Bias Generator

    Science.gov (United States)

    2018-02-01

    Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an... Interior view of the photovoltaic bias generator showing wrapped-wire side of circuit board...3 Fig. 4 Interior view of the photovoltaic bias generator showing component side of circuit board

  20. Solar Photovoltaic Energy.

    Science.gov (United States)

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  1. Urban photovoltaic electricity policies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at urban photovoltaic electricity policies. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The goal of the study presented was to evaluate a standardised basis for urban policies regarding photovoltaic integration in a set of cities in the countries participating in the IEA's Task 10, Urban Scale PV. The investigation was focused on three topics: the present state of the policies, the prospects for future policies fostering photovoltaic deployment and the prospects for future policies to cope with large-scale photovoltaic integration. The first section analyses the state of the policies; this analysis is then confirmed in section 2, which deals with present obstacles to PV deployment and solutions to overcome them. The third section investigates future prospects for PV deployment with the question of mastering large scale integration. The report concludes that cities could formulate urban solutions by developing integrated, specific provisions for PV deployment in their urban infrastructure planning.

  2. Photovoltaics in Poland

    International Nuclear Information System (INIS)

    Pietruszko, Stanislaw M.

    2003-01-01

    The legislative framework and financing possibilities for photovoltaics (PV) in Poland are presented. Barriers that exist or can be encountered in implementing PV technology in Poland are identified. This paper also discusses future prospects and possibilities for developing photovoltaics in Poland. Finally, the paper suggests ways to promote, disseminate, and deploy PV technology in Poland. (Author)

  3. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  4. Flexo-photovoltaic effect.

    Science.gov (United States)

    Yang, Ming-Min; Kim, Dong Jik; Alexe, Marin

    2018-04-19

    It is highly desirable to discover photovoltaic mechanisms that enable a higher efficiency of solar cells. Here, we report that the bulk photovoltaic effect, which is free from the thermodynamic Shockley-Queisser limit but usually manifested only in noncentrosymmetric (piezoelectric or ferroelectric) materials, can be realized in any semiconductor, including silicon, by mediation of flexoelectric effect. We introduce strain gradients using either an atomic force microscope or a micron-scale indentation system, creating giant photovoltaic currents from centrosymmetric single crystals of SrTiO 3 , TiO 2 , and Si. This strain-gradient-induced bulk photovoltaic effect, which we call the flexo-photovoltaic effect, functions in the absence of a p - n junction. This finding may extend present solar cell technologies by boosting the solar energy conversion efficiency from a wide pool of established semiconductors. Copyright © 2018, American Association for the Advancement of Science.

  5. Applications of photovoltaics

    International Nuclear Information System (INIS)

    Pearsall, N.

    1999-01-01

    The author points out that although photovoltaics can be used for generating electricity for the same applications as many other means of generation, they really come into their own where disadvantages associated with an intermittent unpredictable supply are not severe. The paper discusses the advantages and disadvantages to be taken into account when considering a photovoltaic power system. Five main applications, based on the system features, are listed and explained. They are: consumer, professional, rural electrification, building-integrated, centralised grid connected and space power. A brief history of the applications of photovoltaics is presented with statistical data on the growth of installed capacity since 1992. The developing market for photovoltaics is discussed together with how environmental issues have become a driver for development of building-integrated photovoltaics

  6. Efficiency Enhancement in Bulk Heterojunction Polymer Photovoltaic Cells Using ZrTiO4/Bi2O3 Metal-Oxide Nanocomposites

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Neppolian, B.; Shim, Hee-Sang

    2010-01-01

    We report the effect of metal-oxide nanocomposites on the performance of bulk heterojunction polymer solar cells. A photoactive layer composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was blended with a newly developed ZrTiO4/Bi2O3 (BITZ) metal-oxide...

  7. Thin Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    1998-11-19

    The motivation to develop thin film technologies dates back to the inception of photovoltaics. It is an idea based on achieving truly low-cost photovoltaics appropriate for mass production and energy significant markets. The key to the idea is the use of pennies worth of active materials. Since sunlight carries relatively little energy in comparison with combustion-based energy sources, photovoltaic (PV) modules must be cheap to produce energy that can be competitive. Thin films are presumed to be the answer to that low-cost requirement. But how cheap do they have to be? The following is an oversimplified analysis that allows some insight into this question.

  8. Survey of photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    In developing this survey of photovoltaic systems, the University of Alabama in Huntsville assembled a task team to perform an extensive telephone survey of all known photovoltaic manufacturers. Three US companies accounted for 77% of the total domestic sales in 1978. They are Solarex Corporation, Solar Power Croporation, and ARCO Solar, Inc. This survey of solar photovoltaic (P/V) manufacturers and suppliers consists of three parts: a catalog of suppliers arranged alphabetically, data sheets on specific products, and typical operating, installation, or maintenance instructions and procedures. This report does not recommend or endorse any company product or information presented within as the results of this survey.

  9. Clean electricity from photovoltaics

    CERN Document Server

    Green, Martin A

    2015-01-01

    The second edition of Clean Electricity from Photovoltaics , first published in 2001, provides an updated account of the underlying science, technology and market prospects for photovoltaics. All areas have advanced considerably in the decade since the first edition was published, which include: multi-crystalline silicon cell efficiencies having made impressive advances, thin-film CdTe cells having established a decisive market presence, and organic photovoltaics holding out the prospect of economical large-scale power production. Contents: The Past and Present (M D Archer); Limits to Photovol

  10. Materials for Photovoltaic Applications

    Science.gov (United States)

    Dimova-Malinovska, Doriana

    Energy priorities are changing nowadays. As mankind will probably have to face energy crisis, factors such as energy independence, energy security, stability of energy supply and the variety of energy sources become much more vital these days. Photovoltaics is exceptional compared to other renewable sources of energy due to its wide opportunity to gain energetic and environmental benefits. An overview of the present state of knowledge of the materials aspects of photovoltaic cells will be given, and new semiconductor materials, including nanomaterials, with potential for application in photovoltaic devices will be identified.

  11. Graphene/semiconductor silicon modified BiFeO{sub 3}/indium tin oxide ferroelectric photovoltaic device for transparent self-powered windows

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi; Medwal, Rohit, E-mail: rohitmedwal@gmail.com; Limbu, Tej B.; Katiyar, Rajesh K.; Pavunny, Shojan P.; Morell, G.; Katiyar, R. S., E-mail: rkatiyar@hpcf.upr.edu [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi 110007 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2015-08-10

    We report photovoltaic response of highly transparent graphene/BiFe{sub 0.95}Si{sub 0.05}O{sub 3} (BFSiO)/ITO/glass derived from bottom-up spin coating technique. The device exhibits short-circuit-current (I{sub SC} 0.75 mA) with 1000 fold upsurge and open-circuit-voltage (V{sub OC} ∼ 0.45 V) under standard AM 1.5 illumination through graphene. In combination, I{sub SC} of 0.63 mA and V{sub OC} of 0.35 V for same illumination through ITO, reveals the prospects of harvesting indoor light. Also, crystallographic structure, red shift in band gap, leakage behavior, and ferroelectric characteristics of BFSiO thin films are reported. Reproducible transient response of I{sub SC} and V{sub OC} with quick switching (<100 ms) for 20 consecutive cycles and stability (95%) over test period of 16 weeks signifies high endurance and retentivity, promising for building integrated self-powered windows.

  12. Graphene/semiconductor silicon modified BiFeO3/indium tin oxide ferroelectric photovoltaic device for transparent self-powered windows

    International Nuclear Information System (INIS)

    Gupta, Surbhi; Medwal, Rohit; Limbu, Tej B.; Katiyar, Rajesh K.; Pavunny, Shojan P.; Morell, G.; Katiyar, R. S.; Tomar, Monika; Gupta, Vinay

    2015-01-01

    We report photovoltaic response of highly transparent graphene/BiFe 0.95 Si 0.05 O 3 (BFSiO)/ITO/glass derived from bottom-up spin coating technique. The device exhibits short-circuit-current (I SC 0.75 mA) with 1000 fold upsurge and open-circuit-voltage (V OC  ∼ 0.45 V) under standard AM 1.5 illumination through graphene. In combination, I SC of 0.63 mA and V OC of 0.35 V for same illumination through ITO, reveals the prospects of harvesting indoor light. Also, crystallographic structure, red shift in band gap, leakage behavior, and ferroelectric characteristics of BFSiO thin films are reported. Reproducible transient response of I SC and V OC with quick switching (<100 ms) for 20 consecutive cycles and stability (95%) over test period of 16 weeks signifies high endurance and retentivity, promising for building integrated self-powered windows

  13. Photovoltaic module and interlocked stack of photovoltaic modules

    Science.gov (United States)

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  14. Photovoltaic engineering handbook

    Energy Technology Data Exchange (ETDEWEB)

    Lasnier, F; Ang, T G [Asian Institute of Technolgoy, Bangkok (TH)

    1990-01-01

    The Photovoltaic Engineering Handbook is a comprehensive 'nuts and bolts' guide to photovoltaic technology and systems engineering aimed at engineers and designers in the field. It is the first book to look closely at the practical problems involved in evaluating and setting up a PV power system. The authors' comprehensive insight into the different procedures and decisions that a designer needs to make. The book is unique in its coverage and the technical information is presented in a concise and simple way to enable engineers from a wide range of backgrounds to initiate, assess, analyse and design a PV system. Energy planners making decisions on the most appropriate system for specific needs will also benefit from reading this book. Topics covered include technological processes, including solar cell technology, the photovoltaic generator, photovoltaic systems engineering; characterization and testing methods, sizing procedure; economic analysis and instrumentation. (author).

  15. Photonic Design for Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  16. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  17. Organic Semiconductor Photovoltaics

    Science.gov (United States)

    Sariciftci, Niyazi Serdar

    2005-03-01

    Recent developments on organic photovoltaic elements are reviewed. Semiconducting conjugated polymers and molecules as well as nanocrystalline inorganic semiconductors are used in composite thin films. The photophysics of such photoactive devices is based on the photoinduced charge transfer from donor type semiconducting molecules onto acceptor type molecules such as Buckminsterfullerene, C60 and/or nanoparticles. Similar to the first steps in natural photosynthesis, this photoinduced electron transfer leads to a number of potentially interesting applications which include sensitization of the photoconductivity and photovoltaic phenomena. Examples of photovoltaic architectures are discussed with their potential in terrestrial solar energy conversion. Several materials are introduced and discussed for their photovoltaic activities. Furthermore, nanomorphology has been investigated with AFM, SEM and TEM. The morphology/property relationship for a given photoactive system is found to be a major effect.

  18. Plastic photovoltaic devices

    OpenAIRE

    Niyazi Serdar Sariciftci

    2004-01-01

    The development of organic, polymer-based photovoltaic elements has introduced the possibility of obtaining cheap and easy-to-produce energy from light. Photoinduced electron transfer from donor-type semiconducting polymers onto acceptor-type polymers or molecules, such as C60, is the basic phenomenon utilized in these photovoltaic devices. This process mimics the early photo-effects in natural photosynthesis. The polymeric semiconductors combine the photoelectrical properties of inorganic se...

  19. Photovoltaic energy barometer

    International Nuclear Information System (INIS)

    Anon

    2006-01-01

    The european market showed all of its strength and soundness in 2005. The 2005 installed cells growth could have been even greater if the market had not been continually curbed by a lack of raw materials. Germany remained the leading photovoltaic market in the world in 2005, positioned far ahead of Japan and the USA. This unabashed success inspired both Spain and Italy, which set up conditions in order to rapidly develop their photovoltaic sectors. (A.L.B.)

  20. Special issue photovoltaic

    International Nuclear Information System (INIS)

    2004-01-01

    In this letter of the INES (french National Institute of the Solar Energy), a special interest is given to photovoltaic realizations in Europe. Many information are provided on different topics: the China future fifth world producer of cells in 2005, batteries and hydrogen to storage the solar energy and a technical sheet on a photovoltaic autonomous site installation for electric power production. (A.L.B.)

  1. Customized color patterning of photovoltaic cells

    Science.gov (United States)

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Okandan, Murat; Lentine, Anthony L.; Resnick, Paul J.; Gupta, Vipin P.

    2016-11-15

    Photovoltaic cells and photovoltaic modules, as well as methods of making and using such photovoltaic cells and photovoltaic modules, are disclosed. More particularly, embodiments of the photovoltaic cells selectively reflect visible light to provide the photovoltaic cells with a colorized appearance. Photovoltaic modules combining colorized photovoltaic cells may be used to harvest solar energy while providing a customized appearance, e.g., an image or pattern.

  2. Enhancing photovoltaic performance of dye-sensitized solar cell by rare-earth doped oxide of Lu2O3:(Tm3+, Yb3+)

    International Nuclear Information System (INIS)

    Li Qingbei; Lin Jianming; Wu Jihuai; Lan Zhang; Wang Yue; Peng Fuguo; Huang Miaoliang

    2011-01-01

    Highlights: → Tm 3+ /Yb 3+ codoped oxide is introduced into the TiO 2 film in dye-sensitized solar cell. → The RE improves light harvest via conversion luminescence and increases photocurrent. → The RE elevates the oxide film energy level and increases the cell photovoltage. → The cell efficiency is increased by 11.1% compared to the cell lacking of RE doping. - Abstract: In order to increase of the photocurrent, photovoltage and energy conversion efficiency of dye-sensitized solar cell (DSSC), rare-earth doped oxide of Lu 2 O 3 :(Tm 3+ , Yb 3+ ) is prepared and introduced into the TiO 2 film in the DSSC. As a luminescence medium, Lu 2 O 3 :(Tm 3+ , Yb 3+ ) improves incident light harvest via a conversion luminescence process and increases photocurrent; as a p-type dopant, the rare-earth ions elevate the energy level of the oxide film and increase the photovoltage. Under a simulated solar light irradiation of 100 mW cm -2 , the light-to-electric energy conversion efficiency of the DSSC with Lu 2 O 3 :(Tm 3+ , Yb 3+ ) doping reaches 6.63%, which is increased by 11.1% compared to the DSSC without Lu 2 O 3 :(Tm 3+ , Yb 3+ ) doping.

  3. Photovoltaic mounting/demounting unit

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a photovoltaic arrangement comprising a photovoltaic assembly comprising a support structure defining a mounting surface onto which a photovoltaic module is detachably mounted; and a mounting/demounting unit comprising at least one mounting/demounting apparatus...... which when the mounting/demounting unit is moved along the mounting surface, causes the photovoltaic module to be mounted or demounted to the support structure; wherein the photovoltaic module comprises a carrier foil and wherein a total thickness of the photo voltaic module is below 500 muiotaeta....... The present invention further relates to an associated method for mounting/demounting photovoltaic modules....

  4. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  5. Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL

    Science.gov (United States)

    Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed

  6. Nanostructured Photovoltaics for Space Power

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA NSTRF proposal entitled Nanostructured Photovoltaics for Space Power is targeted towards research to improve the current state of the art photovoltaic...

  7. Can photovoltaic replace nuclear?

    International Nuclear Information System (INIS)

    2017-01-01

    As the French law on energy transition for a green growth predicts that one third of nuclear energy production is to be replaced by renewable energies (wind and solar) by 2025, and while the ADEME proposes a 100 per cent renewable scenario for 2050, this paper proposes a brief analysis of the replacement of nuclear energy by solar photovoltaic energy. It presents and discusses some characteristics of photovoltaic production: production level during a typical day for each month (a noticeable lower production in December), evolution of monthly production during a year, evolution of the rate between nuclear and photovoltaic production. A cost assessment is then proposed for energy storage and for energy production, and a minimum cost of replacement of nuclear by photovoltaic is assessed. The seasonal effect is outlined, as well as the latitude effect. Finally, the authors outline the huge cost of such a replacement, and consider that public support to new photovoltaic installations without an at least daily storage mean should be cancelled

  8. International Photovoltaic Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-12-01

    The International Photovoltaics Program Plan is in direct response to the Solar Photovoltaic Energy Research, Development, and Demonstration Act of 1978 (PL 95-590). As stated in the Act, the primary objective of the plan is to accelerate the widespread use of photovoltaic systems in international markets. Benefits which could result from increased international sales by US companies include: stabilization and expansion of the US photovoltaic industry, preparing the industry for supplying future domestic needs; contribution to the economic and social advancement of developing countries; reduced world demand for oil; and improvements in the US balance of trade. The plan outlines programs for photovoltaic demonstrations, systems developments, supplier assistance, information dissemination/purchaser assistance, and an informaion clearinghouse. Each program element includes tactical objectives and summaries of approaches. A program management office will be established to coordinate and manage the program plan. Although the US Department of Energy (DOE) had the lead responsibility for preparing and implementing the plan, numerous federal organizations and agencies (US Departments of Commerce, Justice, State, Treasury; Agency for International Development; ACTION; Export/Import Bank; Federal Trade Commission; Small Business Administration) were involved in the plan's preparation and implementation.

  9. Enhanced photovoltaic performance of dye-sensitized solar cells based on nickel oxide supported on nitrogen-doped graphene nanocomposite as a photoanode.

    Science.gov (United States)

    Ranganathan, Palraj; Sasikumar, Ragu; Chen, Shen-Ming; Rwei, Syang-Peng; Sireesha, Pedaballi

    2017-10-15

    We applied the nitrogen-doped graphene@nickel oxide (NGE/NiO) nanocomposite doped TiO 2 as a photo-anode for dye-sensitized solar cells (DSSCs) on fluorine-doped tin oxide (FTO) substrates by screen printing method. Power conversion efficiency (PCE) of 9.75% was achieved for this DSSCs device, which is greater than that of DSSCs devices using GO/TiO 2 , and NiO/TiO 2 based photo-anodes (PCE=8.55, and 9.11%). Also, the fill factor (FF) of the DSSCs devices using the NGE/NiO/TiO 2 nanocomposite photo-anode was better than that of other photo-anodes. The NGE/NiO/TiO 2 short-circuit photocurrent density (J sc ) of 19.04mAcm -2 , open circuit voltage (V oc ) of 0.76V, fill factor (FF) of 0.67 and dye absorption rate 0.21×10 -6 molcm -2 . The obtained results suggest that as-prepared NGE/NiO/TiO 2 nanocomposite is suitable photo-anode for DSSCs application. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Developing the photovoltaic performance of dye-sensitized solar cells (DSSCs) using a SnO2-doped graphene oxide hybrid nanocomposite as a photo-anode

    Science.gov (United States)

    Sasikumar, Ragu; Chen, Tse-Wei; Chen, Shen-Ming; Rwei, Syang-Peng; Ramaraj, Sayee Kannan

    2018-05-01

    Tin(IV) oxide nanoparticles (SnO2 NPs) doped on the surface of graphene oxide (GO) sheets for application in Dye-Sensitized Solar Cells (DSSCs). The effective incorporation of SnO2 on the surface of GO sheets were confirmed by powder X-ray diffraction (PXRD), Fourier transform infra-red spectroscopy (FT-IR), thermogravimetric analysis (TGA), electrochemical impedance spectroscopy (EIS), and Raman spectroscopy. The morphology of the GO/SnO2 hybrid nanocomposite was confirmed by field emission scanning electron microscopy (FE-SEM) analysis. This current study involvement with the effect of different photo-anodes such as GO, SnO2, and GO/SnO2 hybrid nanocomposite on the power conversion efficiency (PCE) of the triiodide electrolyte based DSSCs. Remarkably, GO/SnO2 hybrid nanocomposite based photo-anode for DSSC observed PCE of 8.3% and it is about 12% higher than that of un-doped TiO2 photo-anode. The equivalent short-circuit photocurrent density (Jsc) of 16.67 mA cm-2, open circuit voltage (Voc) of 0.77 V, and fill factor (FF) of 0.65 respectively. The achieved results propose that the hybrid nanocomposite is an appropriate photo-anodic material for DSSCs applications.

  11. Photovoltaic Subcontract Program

    Energy Technology Data Exchange (ETDEWEB)

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  12. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  13. Photovoltaic barometer; Barometre photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-04-15

    The photovoltaic sector is continuing on track, just as the extent of solar energy's electricity-generating potential is dawning on the public mind. The annual global installation figure was up more than twofold in 2010 (rising from just short of 7000 MWp in 2009). It leapt to over 16000 MWp, bringing worldwide installed photovoltaic capacity close to 38000 MWp. The photovoltaic power generated in the European Union at the end of 2010 reached 22.5 TWh which means an additional capacity of 13023 MWp during 2010. Concerning the cumulated installed capacity, Germany and Spain rank first and second in the European Union with respectively 17370 MWp and 3808 MWp

  14. The 2009 photovoltaic barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The global photovoltaic market expanded again in 2009. Germany set a new system installation record while the capacity build-up of the major solar photovoltaic markets contained the fallout generated by the Iberian market derailment. The European Union has the highest photovoltaic plant capacity, with almost 5.5 GWp installed in 2009. Italy is the third European Union country to pass the symbolic 1000 MWp installed mark, following Germany and Spain. France ranks 6 with 185 MWp installed in 2009. The decrease in the price of silicon reached 80% in 2009. The industry is facing a coming-of-age crisis with prices falling and over-production. Most of the major cell manufacturers are located in Asia. The European industry is still well represented with Q-Cells, the German leading cell manufacturer in addition with hefty industry players. (A.C.)

  15. Photovoltaic policy is questioned

    International Nuclear Information System (INIS)

    Piro, P.; Cessac, M.

    2011-01-01

    The French government has decided a freeze and a reassessment of the measures taken to support the photovoltaic sector. Only the installations with a power output over 3 kWc are concerned so the market of solar roofs for homes is spared. The main reasons for this reversal is the quick and chaotic development of photovoltaic projects, a lot of projects are only motivated by the lure of high purchase prices of the electricity produced imposed by the law on EDF. Another reason is that 90% of the solar panels installed in France come from China, the photovoltaic sector retorts that 75% of the price of a complete installation pays for services produced in France. (A.C.)

  16. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  17. Photovoltaic System in Progress

    DEFF Research Database (Denmark)

    Shoro, Ghulam Mustafa; Hussain, Dil Muhammad Akbar; Sera, Dezso

    2013-01-01

    This paper provides a comprehensive update on photovoltaic (PV) technologies and the materials. In recent years, targeted research advancement has been made in the photovoltaic cell technologies to reduce cost and increase efficiency. Presently, several types of PV solar panels are commercially...... falls in the third generation PV technologies. However, Multi-junction Cells are still considered new and have not yet achieved commercialization status. The fundamental change observed among all generations has been how the semiconductor material is employed and the development associated with crystal...

  18. Concentrating photovoltaic solar panel

    Science.gov (United States)

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  19. Photovoltaics and the environment

    International Nuclear Information System (INIS)

    Baumann, A.E.

    1994-01-01

    This paper considers the impact of photovoltaics on the environment and its application and role in the energy supply sector. It discusses the environmental and health impacts associated with photovoltaics by using Life Cycle Analysis as an instrument to determine its environmental effects. Recent Life Cycle studies have shown that PV can be considered an environmentally low risk technology, with its major environmental impacts occurring at the module manufacturing and waste disposal stages. The employment of environmental control mechanisms and statutory health and safety regulations at PV production facilities have helped to further reduce occupational and public health hazards. (author)

  20. Photovoltaic demonstration projects 2

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, W B; Hacker, R J [Halcrow (William) and Partners, Swindon (UK); Kaut, W [eds.

    1989-01-01

    This book, the proceedings of the third Photovoltaic Contractors' Meeting organised by the Commission of the European Communities, Directorate-General for Energy provides an overview of the photovoltaic demonstration projects which have been supported by the Energy Directorate of the Commission of the European Communities since 1983. It includes reports by each of the contractors who submitted proposals in 1983, 1984 and 1985, describing progress with their projects. The different technologies which are being demonstrated concern the modules, the cabling of the array, structure design, storage strategy and power conditioning. The various applications include powering of houses, villages, recreation centres, water desalination, communications, dairy farms, water pumping and warning systems. (author).

  1. Photovoltaic roofing tile systems

    Science.gov (United States)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  2. Distributed photovoltaic grid transformers

    CERN Document Server

    Shertukde, Hemchandra Madhusudan

    2014-01-01

    The demand for alternative energy sources fuels the need for electric power and controls engineers to possess a practical understanding of transformers suitable for solar energy. Meeting that need, Distributed Photovoltaic Grid Transformers begins by explaining the basic theory behind transformers in the solar power arena, and then progresses to describe the development, manufacture, and sale of distributed photovoltaic (PV) grid transformers, which help boost the electric DC voltage (generally at 30 volts) harnessed by a PV panel to a higher level (generally at 115 volts or higher) once it is

  3. Ultrathin TaOx film based photovoltaic device

    International Nuclear Information System (INIS)

    Tyagi, Pawan

    2011-01-01

    Application of the economical metal oxide thin-film photovoltaic devices is hindered by the poor energy efficiency. This paper investigates the photovoltaic effect with an ultrathin tantalum oxide (TaOx) tunnel barrier, formed by the plasma oxidation of a pre-deposited tantalum (Ta) film. These ∼ 3 nm TaOx tunnel barriers showed approximately 160 mV open circuit voltage and 3-5% energy efficiency, for varying light intensity. The ultrathin TaOx (∼ 3 nm) could absorb approximately 12% of the incident light radiation in 400-1000 nm wavelength range; this strong light absorbing capability was found to be associated with the dramatically large extinction coefficient. Spectroscopic ellipsometry revealed that the extinction coefficient of 3 nm TaOx was ∼ 0.2, two orders higher than that of tantalum penta oxide (Ta 2 O 5 ). Interestingly, refractive index of this 3 nm thick TaOx was comparable with that of stochiometeric Ta 2 O 5 . However, heating and prolonged high-intensity light exposure deteriorated the photovoltaic effect in TaOx junctions. This study provides the basis to explore the photovoltaic effect in a highly economical and easily processable ultrathin metal oxide tunnel barrier or analogous systems.

  4. Photovoltaics fundamentals, technology and practice

    CERN Document Server

    Mertens, Konrad

    2013-01-01

    Concise introduction to the basic principles of solar energy, photovoltaic systems, photovoltaic cells, photovoltaic measurement techniques, and grid connected systems, overviewing the potential of photovoltaic electricity for students and engineers new to the topic After a brief introduction to the topic of photovoltaics' history and the most important facts, Chapter 1 presents the subject of radiation, covering properties of solar radiation, radiation offer, and world energy consumption. Chapter 2 looks at the fundamentals of semiconductor physics. It discusses the build-up of semiconducto

  5. Road map for photovoltaic electricity

    International Nuclear Information System (INIS)

    2011-02-01

    This road map aims at highlighting industrial, technological and social challenges, at elaborating comprehensive visions, at highlighting technological locks, and at outlining research needs for the photovoltaic sector. It considers the following sector components: preparation of photo-sensitive materials, manufacturing of photovoltaic cells, manufacturing of photovoltaic arrays, design and manufacturing of electric equipment to control photovoltaic arrays and to connect them to the grid. It highlights the demand for photovoltaic installations, analyzes the value chain, proposes a vision of the sector by 2050 and defines target for 2020, discusses needs for demonstration and experimentation

  6. Wide-angle light-trapping electrode for photovoltaic cells.

    Science.gov (United States)

    Omelyanovich, Mikhail M; Simovski, Constantin R

    2017-10-01

    In this Letter, we experimentally show that a submicron layer of a transparent conducting oxide that may serve a top electrode of a photovoltaic cell based on amorphous silicon when properly patterned by notches becomes an efficient light-trapping structure. This is so for amorphous silicon thin-film solar cells with properly chosen thicknesses of the active layers (p-i-n structure with optimal thicknesses of intrinsic and doped layers). The nanopatterned layer of transparent conducting oxide reduces both the light reflectance from the photovoltaic cell and transmittance through the photovoltaic layers for normal incidence and for all incidence angles. We explain the physical mechanism of our light-trapping effect, prove that this mechanism is realized in our structure, and show that the nanopatterning is achievable in a rather easy and affordable way that makes our method of solar cell enhancement attractive for industrial adaptations.

  7. Thin film silicon photovoltaics: Architectural perspectives and technological issues

    Energy Technology Data Exchange (ETDEWEB)

    Mercaldo, Lucia Vittoria; Addonizio, Maria Luisa; Noce, Marco Della; Veneri, Paola Delli; Scognamiglio, Alessandra; Privato, Carlo [ENEA, Portici Research Center, Piazzale E. Fermi, 80055 Portici (Napoli) (Italy)

    2009-10-15

    Thin film photovoltaics is a particularly attractive technology for building integration. In this paper, we present our analysis on architectural issues and technological developments of thin film silicon photovoltaics. In particular, we focus on our activities related to transparent and conductive oxide (TCO) and thin film amorphous and microcrystalline silicon solar cells. The research on TCO films is mainly dedicated to large-area deposition of zinc oxide (ZnO) by low pressure-metallorganic chemical vapor deposition. ZnO material, with a low sheet resistance (<8 {omega}/sq) and with an excellent transmittance (>82%) in the whole wavelength range of photovoltaic interest, has been obtained. ''Micromorph'' tandem devices, consisting of an amorphous silicon top cell and a microcrystalline silicon bottom cell, are fabricated by using the very high frequency plasma enhanced chemical vapor deposition technique. An initial efficiency of 11.1% (>10% stabilized) has been obtained. (author)

  8. Indium–tin-oxide coatings for applications in photovoltaics and displays deposited using rotary ceramic targets: Recent insights regarding process stability and doping level

    International Nuclear Information System (INIS)

    Lippens, Paul; Büchel, Michal; Chiu, David; Szepesi, Chris

    2013-01-01

    Several aspects related to high power sputtering with industrial scale sintered ceramic rotary indium–tin-oxide (ITO) targets are presented in the first part of this paper. In particular, the process stability and target integrity upon sputtering with ≥ 20 kW/m power load and the influence of the gap size between cylindrical segments are discussed. Results show that, in order to avoid nodule formation and deposition rate fluctuations, direct current (DC) power load needs to be limited well below 20 kW/m over long sputter runs. Additional work demonstrates that at a gap size at or below 0.15 mm, strongly adhering deposits form readily between cylindrical segments which are not observed with standard 0.35 mm gaps. The influence of Sn doping level on electro-optical properties of thin films targeting an application such as hetero-junction c-Si solar cells is also investigated. Again, rotary targets operated at high power (10 kW/m) are used, including standard grade ITO containing 10 wt.% SnO 2 and another composition with only 3 wt.% SnO 2 . The influence of H 2 and different concentrations of O 2 in the sputter gas is analysed for both target materials. Results indicate that although coatings derived from the lower-doped ITO exhibit considerably less absorption in the NIR due to lower carrier concentrations, their resistivity is nearly 30% higher than that from the standard ITO coating

  9. Photovoltaic performance and stability of fullerene/cerium oxide double electron transport layer superior to single one in p-i-n perovskite solar cells

    Science.gov (United States)

    Xing, Zhou; Li, Shu-Hui; Wu, Bao-Shan; Wang, Xin; Wang, Lu-Yao; Wang, Tan; Liu, Hao-Ran; Zhang, Mei-Lin; Yun, Da-Qin; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun

    2018-06-01

    Interface engineering that involves in the metal cathodes and the electron transport layers (ETLs) facilitates the simultaneous improvement of device performances and stability in perovskite solar cells (PSCs). Herein, low-temperature solution-processed cerium oxide (CeOx) films are prepared by a facile sol-gel method and employed as the interface layers between [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) and an Ag back contact to form PC61BM/CeOx double ETLs. The introduction of CeOx enables electron extraction to the Ag electrode and protects the underlying perovskite layer and thus improves the device performance and stability of the p-i-n PSCs. The p-i-n PSCs with double PC61BM/CeOx ETLs demonstrate a maximum power conversion efficiency (PCE) of 17.35%, which is superior to those of the devices with either PC61BM or CeOx single ETLs. Moreover, PC61BM/CeOx devices exhibit excellent stability in light soaking, which is mainly due to the chemically stable CeOx interlayer. The results indicate that CeOx is a promising interface modification layer for stable high-efficiency PSCs.

  10. Autonomous photovoltaic lighting system

    OpenAIRE

    Hafez, Ahmed A. A.; Montesinos Miracle, Daniel; Sudrià Andreu, Antoni

    2012-01-01

    This paper introduces a comparison between the conventional and Photovoltaic (PV) lighting systems. A simple sizing procedure for a PV stand-alone system was advised. The paper also proposes a novel PV lighting system. The proposed system is simple, compact and reliable. The system operation was investigated by thoroughly mathematical and simulation work.

  11. Modelling the Photovoltaic Module

    DEFF Research Database (Denmark)

    Katsanevakis, Markos

    2011-01-01

    This paper refers into various ways in simulation the Photovoltaic (PV) module behaviour under any combination of solar irradiation and ambient temperature. There are three different approaches presented here briefly and one of them is chosen because of its good accuracy and relatively low...

  12. Building integrated photovoltaics

    NARCIS (Netherlands)

    Ritzen, M.J.; Vroon, Z.A.E.P.; Geurts, C.P.W.; Reinders, Angèle; Verlinden, Pierre; Sark, Wilfried; Freundlich, Alexandre

    2017-01-01

    Photovoltaic (PV) installations can be realized in different situations and on different scales, such as at a building level. PV installations at the building level can either be added to the building envelope, which is called building added PV (BAPV), or they can be integrated into the building

  13. Lifetime of organic photovoltaics

    DEFF Research Database (Denmark)

    Corazza, Michael; Krebs, Frederik C; Gevorgyan, Suren A.

    2015-01-01

    tests. Comparison of the indoor and outdoor lifetimes was performed by means of the o-diagram, which constitutes the initial steps towards establishing a method for predicting the lifetime of an organic photovoltaic device under real operational conditions based on a selection of accelerated indoor...

  14. Photovoltaic solar; Solaire photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-01

    This study aims to observe, from european examples, the local governments policies in matter of the photovoltaic development. This approach is very different for each town. The first part evaluates the initiatives, the second part is devoted to the global situation in Europe and the third part brings recommendations. (A.L.B.)

  15. Photovoltaics technology program summary

    Science.gov (United States)

    1985-05-01

    An adequate supply of energy at reasonable price is discussed. Economic efficiency and the following strategies to obtain it are suggested: (1) minimization of federal regulation in energy pricing; and (2) promote a balanced and mixed energy resource system. The development of photovoltaic energy conversion technology is summarized.

  16. Photovoltaic radiation detector element

    International Nuclear Information System (INIS)

    Agouridis, D.C.

    1980-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips

  17. Photovoltaic cell module and method of forming

    Science.gov (United States)

    Howell, Malinda; Juen, Donnie; Ketola, Barry; Tomalia, Mary Kay

    2017-12-12

    A photovoltaic cell module, a photovoltaic array including at least two modules, and a method of forming the module are provided. The module includes a first outermost layer and a photovoltaic cell disposed on the first outermost layer. The module also includes a second outermost layer disposed on the photovoltaic cell and sandwiching the photovoltaic cell between the second outermost layer and the first outermost layer. The method of forming the module includes the steps of disposing the photovoltaic cell on the first outermost layer, disposing a silicone composition on the photovoltaic cell, and compressing the first outermost layer, the photovoltaic cell, and the second layer to form the photovoltaic cell module.

  18. Factors affecting the photovoltaic behavior of inverted polymer solar cells using various indium tin oxide electrodes modified by amines with simple chemical structures

    Energy Technology Data Exchange (ETDEWEB)

    Kusumi, Takuji [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Kuwabara, Takayuki, E-mail: tkuwabar@se.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Research Center for Sustainable Energy and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Yamaguchi, Takahiro [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Taima, Tetsuya [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Research Center for Sustainable Energy and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Takahashi, Kohshin, E-mail: ktakaha@se.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Research Center for Sustainable Energy and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan)

    2015-09-30

    In a glass–indium tin oxide (ITO)/amine/regioregular poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C{sub 61} butyric acid methyl ester (PCBM)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid) (PEDOT:PSS)/Au cell, which uses small molecule amine-modified ITO as the electron collection electrode, a light-soaking effect under irradiation of simulated sunlight was restrained considerably compared with in an ITO/P3HT:PCBM/PEDOT:PSS/Au cell containing bare ITO. That is, the time taken to arrive at a saturated V{sub oc} from the initial V{sub oc} became short when the ionization potential (I{sub P}) of ITO reduced by the amine modification, and consequently both of its saturated V{sub oc} and power conversion efficiency (PCE) improved. The I{sub P} decreased with an increase in the number (N) of amino groups in a single amine molecule, because the basic amino groups can efficiently neutralize any acidic hydroxyl groups on ITO through a multipoint interaction. The superior performance of the cell containing the amine-modified electrode with large N was perhaps because the energy mismatch formed by a contact between ITO and acceptor PCBM reduced, and consequently the rate of electron collection at ITO increased. - Highlights: • Surface-modification of ITO electrode with low molecular weight amines • Ionization potential of ITO was decreased by forming an electrical double layer. • Light-soaking effect has been observed by irradiating white light. • The light-soaking effect mainly improved the open-circuit photovoltage. • Open-circuit photovoltage was limited by ionization potential of amine-modified ITO.

  19. Factors affecting the photovoltaic behavior of inverted polymer solar cells using various indium tin oxide electrodes modified by amines with simple chemical structures

    International Nuclear Information System (INIS)

    Kusumi, Takuji; Kuwabara, Takayuki; Yamaguchi, Takahiro; Taima, Tetsuya; Takahashi, Kohshin

    2015-01-01

    In a glass–indium tin oxide (ITO)/amine/regioregular poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C_6_1 butyric acid methyl ester (PCBM)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid) (PEDOT:PSS)/Au cell, which uses small molecule amine-modified ITO as the electron collection electrode, a light-soaking effect under irradiation of simulated sunlight was restrained considerably compared with in an ITO/P3HT:PCBM/PEDOT:PSS/Au cell containing bare ITO. That is, the time taken to arrive at a saturated V_o_c from the initial V_o_c became short when the ionization potential (I_P) of ITO reduced by the amine modification, and consequently both of its saturated V_o_c and power conversion efficiency (PCE) improved. The I_P decreased with an increase in the number (N) of amino groups in a single amine molecule, because the basic amino groups can efficiently neutralize any acidic hydroxyl groups on ITO through a multipoint interaction. The superior performance of the cell containing the amine-modified electrode with large N was perhaps because the energy mismatch formed by a contact between ITO and acceptor PCBM reduced, and consequently the rate of electron collection at ITO increased. - Highlights: • Surface-modification of ITO electrode with low molecular weight amines • Ionization potential of ITO was decreased by forming an electrical double layer. • Light-soaking effect has been observed by irradiating white light. • The light-soaking effect mainly improved the open-circuit photovoltage. • Open-circuit photovoltage was limited by ionization potential of amine-modified ITO.

  20. Enhancement of Photovoltaic Performance by Utilizing Readily Accessible Hole Transporting Layer of Vanadium(V) Oxide Hydrate in a Polymer-Fullerene Blend Solar Cell.

    Science.gov (United States)

    Jiang, Youyu; Xiao, Shengqiang; Xu, Biao; Zhan, Chun; Mai, Liqiang; Lu, Xinhui; You, Wei

    2016-05-11

    Herein, a successful application of V2O5·nH2O film as hole transporting layer (HTL) instead of PSS in polymer solar cells is demonstrated. The V2O5·nH2O layer was spin-coated from V2O5·nH2O sol made from melting-quenching sol-gel method by directly using vanadium oxide powder, which is readily accessible and cost-effective. V2O5·nH2O (n ≈ 1) HTL is found to have comparable work function and smooth surface to that of PSS. For the solar cell containing V2O5·nH2O HTL and the active layer of the blend of a novel polymer donor (PBDSe-DT2PyT) and the acceptor of PC71BM, the PCE was significantly improved to 5.87% with a 30% increase over 4.55% attained with PSS HTL. Incorporation of V2O5·nH2O as HTL in the polymer solar cell was found to enhance the crystallinity of the active layer, electron-blocking at the anode and the light-harvest in the wavelength range of 400-550 nm in the cell. V2O5·nH2O HTL improves the charge generation and collection and suppress the charge recombination within the PBDSe-DT2PyT:PC71BM solar cell, leading to a simultaneous enhancement in Voc, Jsc, and FF. The V2O5·nH2O HTL proposed in this work is envisioned to be of great potential to fabricate highly efficient PSCs with low-cost and massive production.

  1. Battery effects in organic photovoltaics based on polybithiophene

    DEFF Research Database (Denmark)

    Biancardo, Matteo; Krebs, Frederik C

    2008-01-01

    Homopolymer photovoltaic devices based on thin films of polybithiophene, prepared by direct electrodeposition. onto transparent fluorine-doped tin oxide electrodes followed by evaporation of an aluminium electrode to complete the device, were reported by Leguenza et al. [J. Solid State Electrochem...

  2. Towards low cost, efficient and stable organic photovoltaic modules

    NARCIS (Netherlands)

    Andriessen, H.A.J.M.; Galagan, Y.O.; Rubingh, J.E.J.M.; Grossiord, N.; Blom, P.W.M.; Kroon, J.; Veenstra, S.; Verhees, W.; Slooff, L.; Pex, P.

    2010-01-01

    The presence of a transparent conductive electrode such as indium tin oxide (ITO) limits the reliability and cost price of organic photovoltaic devices as it is brittle and expensive. Moreover, the relative high sheet resistance of an ITO electrode on flexible substrates limits the maximum width of

  3. Photovoltaic module and interlocked stack of photovoltaic modules

    Science.gov (United States)

    Wares, Brian S.

    2012-09-04

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

  4. Three-phase Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Máthé, Lászlo

    2015-01-01

    , detailing the different photovoltaic inverter structures and topologies as well as discussing the different control layers within a grid-connected photovoltaic plant. Modulation schemes for various photovoltaic inverter topologies, grid synchronization, current control, active and reactive power control......Photovoltaic technology has experienced unprecedented growth in the last two decades, transforming from mainly off-grid niche generation to a major renewable energy technology, reaching approximately 180 GW of capacity worldwide at the end of 2014. Large photovoltaic power plants interfacing...... the grid through a three-phase power electronic converter are now well on the way to becoming a major player in the power system in many countries. Therefore, this article gives an overview of photovoltaic systems with a focus on three-phase applications, presenting these both from a hardware point of view...

  5. Photovoltaics: The present presages the future

    International Nuclear Information System (INIS)

    Thornton, J.; Brown, L.

    1992-01-01

    This article is a technical assessment on photovoltaics and what effect new technology has on the ability of photovoltaics to compete in the utility market. The topics of the article include the solar resource, photovoltaic cells and systems, thick and thin film cells, the spherical cell, photovoltaic modules and systems, photovoltaic economics and utility applications, and technology transfer programs in the area of photovoltaic manufacturing

  6. Photovoltaic facilities, legal guidebook

    International Nuclear Information System (INIS)

    Maincent, G.

    2011-01-01

    Important debates about the photovoltaic industry took place in 2009 and 2010 which have led to some evolutions of the French law having an economical impact on the arrangement of photovoltaic projects. The aim of this supplement to 'Droit de l'Environnement' journal is to answer some important questions at a time when the electricity market is not fully structured: the setting up of solar cell panels, town planing and property constraints; connection to the grid; project financing: power generation tariffs, partnership contract; the new legal framework set up in 2011: moratorium and new legal scheme; is 'green fiscality' still green and attractive? Settlement of disputes with the French government; actors reactions: authorities and professionals, opinion of an expert. (J.S.)

  7. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  8. Photovoltaic prospects in Europe

    Science.gov (United States)

    Starr, M. R.

    The economics of solar cells is reviewed with an eye to potential cost reductions in processing, and potential markets are explored. Current solar cell systems costs are noted to be on the road to achieving the U.S. DoE goals of $0.40/kWp by 1990. Continued progress will depend on technical developments in cheaper materials and processes, scaling up production, and the success of sales programs. Various consumer and professional markets are outlined, with a prediction that a 12 MWp deman will be reached as a steady state by 1995. Photovoltaic panels may conceivably replace conventional roofing materials, resulting in the projection that, if grid-supplied power continues to inflate in price, then all new European homes would be equipped with photovoltaics by the year 2000. Further, accomplishment of the cost goals could generate a 1 GWp/yr industrial market at the same time.

  9. Environmental costs of photovoltaics

    International Nuclear Information System (INIS)

    Hill, R.; Baumann, A.E.

    1993-01-01

    Photovoltaic (PV) systems are almost entirely benign in operation, and potential environmental hazards occur at the production and disposal stages. There are well established methods of monitoring and controlling potential hazards caused by the semiconductor materials used in PV modules such as silicon, copper indium diselenide and cadmium telluride. The main environmental hazards of photovoltaics are connected to the production processes. These processes require an input of energy, and this energy is derived from the standard fuel mix of the nation in which production takes place. The production of PV systems therefore has associated with it, emissions of greenhouse and acidic gases. However, as the new thin film PV technologies come into production, and the scale of production increases, the energy input to PV systems will decrease considerably, with consequent reduction in carbon dioxide emissions, to levels below that of other electricity generating technologies. (Author)

  10. Temperature compensated photovoltaic array

    Science.gov (United States)

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  11. Photovoltaic Solar Energy Generation

    CERN Document Server

    Lotsch, H.K.V; U.Hoffmann, Volker; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    This comprehensive description and discussion of photovoltaics (PV) is presented at a level that makes it accessible to the interested academic. Starting with an historical overview, the text outlines the relevance of photovoltaics today and in the future. Then follows an introduction to the physical background of solar cells and the most important materials and technologies, with particular emphasis placed on future developments and prospects. The book goes beyond technology by also describing the path from the cell to the module to the system, proceeding to important applications, such as grid-connected and stand-alone systems. The composition and development of the markets and the role of PV in future energy systems are also considered. Finally, the discussion turns to the future structure of energy supplies, expected to comprise more distributed generation, and addresses synergies and competition from other carbon-free energy sources.

  12. Photovoltaic solar energy

    International Nuclear Information System (INIS)

    Mouratoglou, P.; Therond, P.G.

    2009-01-01

    The most important assets of photovoltaic energy for sustainable development are its simplicity (no need for complicated thermodynamical cycles) and the universal availability of the sun which explains its great popularity. The main restraint to its full development is the high cost of the technologies used. The silicon technology is the historical technology, it has high conversion rates but is expensive because of high fabrication costs. This technology represents 80% of the market. On the other hand the thin film technology with CdTe, CIS or CIGS is promising in terms of costs but requires research works to increase its conversion rate. Japan and Germany are the leader countries in terms of photovoltaic for research, industrial fabrication or state support, they are followed by Spain, Usa, and China. (A.C.)

  13. Photovoltaic systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-12-01

    Each of the Department of Energy's Photovoltaic Systems Program projects funded and/or in existence during fiscal year 1978 (October 1, 1977 through September 30, 1978) are described. The project sheets list the contractor, principal investigator, and contract number and funding and summarize the programs and status. The program is divided into various elements: program assessment and integration, research and advanced development, technology development, system definition and development, system application experiments, and standards and performance criteria. (WHK)

  14. Photovoltaic energy cost limit

    International Nuclear Information System (INIS)

    Coiante, D.

    1992-01-01

    Referring to a photovoltaic system for grid connected applications, a parametric expression of kWh cost is derived. The limit of kWh cost is carried out extrapolating the values of cost components to their lowest figure. The reliability of the forecast is checked by disaggregating kWh cost in direct and indirect costs and by discussing the possible cost reduction of each component

  15. Experimental integrated photovoltaic systems

    International Nuclear Information System (INIS)

    Pop-Jordanov, Jordan; Markovska, Natasha; Dimitrov, D.; Kocev, K.; Dimitrovski, D.

    2000-01-01

    Recently, the interest in building-integrated photovoltaic installations has started to increase within governmental and municipality authorities, as well as some industrial companies. To serve a national public-awareness program of solar electricity promotion and education, the indigenous solar energy potential, optimization of possible PV installation, and three test cases of building-integrated grid-connected experimental facilities have been studied. The results showed the feasibility and performance of the proposed concepts. (Original)

  16. Portable photovoltaic irrigation pumps

    Energy Technology Data Exchange (ETDEWEB)

    Furber, J. D.

    1980-07-01

    Experiences in developing a solar-powered irrigation pump to meet the needs of poor farmers in developing nations are summarized. The design which evolved is small and portable, employing a high-efficiency electric pump, powered by photovoltaic panels. Particular emphasis is placed on how the system works, and on early field problems experienced with the first prototypes. The resolution of these problems and the performance of actual systems in various countries is presented and user responses are noted.

  17. Design of photovoltaic systems

    OpenAIRE

    Laso Martínez, Miguel

    2014-01-01

    Photovoltaic (PV) harvesting of solar energy is based on capturing sunlight and transforming it into electricity. This type of electricity generation does not pollute the environment as much as other types of energy production, that is why nowadays some engineers would like to improve it. To carry out this change we use solar cells made of semiconductor materials (Silicon) in which it is artificially created a permanent electric field. These cells are connected in series or par...

  18. Photovoltaic cell array

    Science.gov (United States)

    Eliason, J. T. (Inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  19. Increased voltage photovoltaic cell

    Science.gov (United States)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  20. Photovoltaic sources modeling

    CERN Document Server

    Petrone, Giovanni; Spagnuolo, Giovanni

    2016-01-01

    This comprehensive guide surveys all available models for simulating a photovoltaic (PV) generator at different levels of granularity, from cell to system level, in uniform as well as in mismatched conditions. Providing a thorough comparison among the models, engineers have all the elements needed to choose the right PV array model for specific applications or environmental conditions matched with the model of the electronic circuit used to maximize the PV power production.

  1. Photovoltaic energy systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The ongoing research, development, and demonstration efforts of the Photovoltaics Program are highlighted and each of the US Department of Energy's current photovoltaics projects initiated or renewed during fiscal year 1981 is described, including its title, directing organization, project engineer, contractor, principal investigator, contract period, funding, and objectives. The Photovoltaics Program is briefly summarized, including the history and organization and highlights of the research and development and of planning, assessment, and integration. Also summarized is the Federal Photovoltaic Utilization Program. An exhaustive bibliography is included. (LEW)

  2. Solar photovoltaics for development applications

    Energy Technology Data Exchange (ETDEWEB)

    Shepperd, L.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States); Richards, E.H. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  3. Modeling Photovoltaic Power

    Directory of Open Access Journals (Sweden)

    F. Mavromatakis

    2016-10-01

    Full Text Available A robust and reliable model describing the power produced by a photovoltaic system is needed in order to be able to detect module failures, inverter malfunction, shadowing effects and other factors that may result to energy losses. In addition, a reliable model enables an investor to perform accurate estimates of the system energy production, payback times etc. The model utilizes the global irradiance reaching the plane of the photovoltaic modules since in almost all Photovoltaic (PV facilities the beam and the diffuse solar irradiances are not recorded. The airmass, the angle of incidence and the efficiency drop due to low values of solar irradiance are taken into account. Currently, the model is validated through the use of high quality data available from the National Renewable Energy Laboratory (USA. The data were acquired with IV tracers while the meteorological conditions were also recorded. Several modules of different technologies were deployed but here we present results from a single crystalline module. The performance of the model is acceptable at a level of 5% despite the assumptions made. The dependence of the residuals upon solar irradiance temperature, airmass and angle of incidence is also explored and future work is described.

  4. Photocurrent of Photovoltaic Cells

    Science.gov (United States)

    Peeler, Seth; McIntyre, Max; Cossel, Raquel; Bowser, Chris; Tzolov, Marian

    Photovoltaic cells can be used to harness clean, renewable energy from light. Examined in this project were photovoltaic cells based on a bulk heterojunction between PCPDTBT and PCBM sandwiched between an ITO anode and an Al cathode. Current-voltage characteristics and impedance spectra for multiple photovoltaic devices were taken under varying DC electrical bias and different level of illumination. This data was interpreted in terms of an equivalent circuit with linear elements, e.g. capacitance, series resistance, and parallel resistance. A physical interpretation of each circuit element will be presented. The spectral response of the devices was characterized by optical transmission and photocurrent spectroscopy using a spectrometer in the spectral range from 300 to 900 nm. The DC measurements confirmed that the devices are electrically rectifying. The AC measurements allowed modeling of the devices as a dielectric between two electrodes with injection current passing through it. The characteristic peaks for both PCBDTBT and PCBM are clearly visible in both the photocurrent and transmission data. The good correlation between the photocurrent and transmission data indicates photocurrent generation due to absorption in both materials constituting the heterojunction.

  5. Recent developments in photovoltaics

    International Nuclear Information System (INIS)

    Green, M.A.

    2004-01-01

    The photovoltaic market is booming with over 30% per annum compounded growth over the last five years. The government-subsidised urban-residential use of photovoltaics, particularly in Germany and Japan, is driving this sustained growth. Most of the solar cells being supplied to this market are 'first generation' devices based on crystalline or multi-crystalline silicon wafers. 'Second generation' thin-film solar cells based on amorphous silicon/hydrogen alloys or polycrystalline compound semiconductors are starting to appear on the market in increasing volume. Australian contributions in this area are the thin-film polycrystalline silicon-on-glass technology developed by Pacific Solar and the dye sensitised nanocrystalline titanium cells developed by Sustainable Technologies International. In these thin-film approaches, the major material cost component is usually the glass sheet onto which the film is deposited. After reviewing the present state of development of both cell and application technologies, the likely future development of photovoltaics is outlined. (author)

  6. Photovoltaics in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bolcso, S L

    1983-06-01

    A literature review was carried out for the purpose of summarizing the current conditions existing and affecting photovoltaics (PV) technology in a Canadian context. Information is presented concerning: PV device materials and efficiencies; PV cell manufacturing techniques; other materials/device designs; photovoltaic costs, markets, and research and development; PV and microelectronics; and Canadian strengths and opportunities. It was concluded that PV's simplicity, amenability to mass production and environmentally benign nature will likely assure it a faster and eventually greater market penetration than any other renewable energy form (and possibly some conventional forms). It is recommended that the Ministry of State, Science and Technology coordinate a joint microelectronics-photovoltaic research effort, by: indentifying areas where joint efforts would be mutually beneficial; identifying the strategic value of PV; identifying a set of goals for Canadian programs; coordinating efforts between government, universities and industry; developing supporting strategies for the mining and smelting of indigenous semiconducting materials; determining the economic support required to develop a silicon processing plant for the production of microelectronic chips and PV cells; developing Canadian expertise in providing complete PV systems competitive in world markets; and developing a marketing strategy for a coordinated PV/microelectronics effort. 60 refs., 17 figs., 12 tabs.

  7. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    Science.gov (United States)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  8. The photovoltaic pathway

    International Nuclear Information System (INIS)

    Jourde, P.; Guerin de Montgareuil, A.; Mattera, F.; Jaussaud, C.; Boulanger, P.; Veriat, G.; Firon, M.

    2004-01-01

    Photovoltaic conversion, the direct transformation of light into electricity, is, of the three pathways for solar energy, the one experiencing most rapid growth, and for which scientific and technological advances are most promising, as regards significant improvements in its economic balance. While the long-term trend, in Europe, is favorable, with annual growth set at 30%, the cost per photovoltaic kilowatt-hour remains some ten times higher than that achieved with natural gas or nuclear energy (after connection to the grid), this being a handicap, at first blush, for high power ratings. For remote locations, where its advantage is unquestionable, in spite of the added cost of storage between insolation periods (this more than compensating for savings in terms of connection costs), this pathway sets its future prospects on marked module cost reductions. Such reduction may only be achieved by way of technological breakthroughs, to which CEA, active as it has been, in this area, for some thirty years, intends making a contribution, as linchpin of French research and technology, and a key protagonist on the European scene. One of the avenues being pursued concerns fabrication of high-efficiency cells from mineral or organic thin films, with particularly strong expectations with respect to the all-polymer path, complementary of the silicon pathway. Concurrently, device reliability needs must be improved, this being another factor making for an improved overall balance. To achieve easier transfer to industry of laboratory outcomes, CEA is relying, in particular, on the new cell fabrication platform set up in Grenoble, this complementing its other R and D resources, including those installed at Cadarache, allowing testing of cells and entire photovoltaic systems in actual operating conditions. Another path for cost reductions being explored by CEA research workers consists in construction of systems integrated into the built environment: this affords new prospects

  9. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance

    Science.gov (United States)

    Nasir, Farah H. M.; Husaini, Yusnira

    2018-03-01

    The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.

  10. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  11. Solar Photovoltaic Technology Basics | NREL

    Science.gov (United States)

    Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Solar cells, also called found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Photo of a large silicon solar

  12. Photovoltaic conversion of laser energy

    Science.gov (United States)

    Stirn, R. J.

    1976-01-01

    The Schottky barrier photovoltaic converter is suggested as an alternative to the p/n junction photovoltaic devices for the conversion of laser energy to electrical energy. The structure, current, output, and voltage output of the Schottky device are summarized. The more advanced concepts of the multilayer Schottky barrier cell and the AMOS solar cell are briefly considered.

  13. Photovoltaic energy generation in Germany

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    An overview is given of the current state of the art regarding photovoltaic research and demonstration programmes in the Federal Republic of Germany. Also attention is paid to the companies and research institutes involved, and the long-term economical and technical prospects of photovoltaic energy. 13 figs., 4 tabs., 10 refs

  14. The photovoltaic ambitious of EDF

    International Nuclear Information System (INIS)

    Houot, G.

    2008-01-01

    Added to the wind energy, EDF develops the photovoltaic by its subsidiaries EDF Energies Nouvelles, for the big power plants and EDF Energies Nouvelles Reparties centralized on the market of small installations for roofs. The author analyzes the society management and project concerning the photovoltaic development. (A.L.B.)

  15. Organic photovoltaics. Technology and market

    International Nuclear Information System (INIS)

    Brabec, Christoph J.

    2004-01-01

    Organic photovoltaics has come into the international research focus during the past three years. Up to now main efforts have focused on the improvement of the solar conversion efficiency, and in recent efforts 5% white light efficiencies on the device level have been realized. Despite this in comparison to inorganic technologies low efficiency, organic photovoltaics is evaluated as one of the future key technologies opening up completely new applications and markets for photovoltaics. The key property which makes organic photovoltaics so attractive is the potential of reel to reel processing on low cost substrates with standard coating and printing processes. In this contribution we discuss the economical and technical production aspects for organic photovoltaics

  16. Room temperature inorganic polycondensation of oxide (Cu2O and ZnO) nanoparticles and thin films preparation by the dip-coating technique

    International Nuclear Information System (INIS)

    Salek, G.; Tenailleau, C.; Dufour, P.; Guillemet-Fritsch, S.

    2015-01-01

    Oxide thin solid films were prepared by dip-coating into colloidal dispersions of oxide nanoparticles stabilized at room temperature without the use of chelating or complex organic dispersing agents. Crystalline oxide nanoparticles were obtained by inorganic polycondensation and characterized by X-ray diffraction and field emission gun scanning electron microscopy. Water and ethanol synthesis and solution stabilization of oxide nanoparticle method was optimized to prepare two different structural and compositional materials, namely Cu 2 O and ZnO. The influence of hydrodynamic parameters over the particle shape and size is discussed. Spherical and rod shape nanoparticles were formed for Cu 2 O and ZnO, respectively. Isoelectric point values of 7.5 and 8.2 were determined for cuprous and zinc oxides, respectively, after zeta potential measurements. A shear thinning and thixotropic behavior was observed in both colloidal sols after peptization at pH ~ 6 with dilute nitric acid. Every colloidal dispersion stabilized in a low cost and environmentally friendly azeotrope solution composed of 96 vol.% of ethanol with water was used for the thin film preparation by the dip-coating technique. Optical properties of the light absorber cuprous oxide and transparent zinc oxide thin solid films were characterized by means of transmittance and reflectance measurements (300–1100 nm). - Highlights: • Room temperature inorganic polycondensation of crystalline oxides • Water and ethanol synthesis and solution stabilization of oxide nanoparticles • Low cost method for thin solid film preparation

  17. Room temperature inorganic polycondensation of oxide (Cu{sub 2}O and ZnO) nanoparticles and thin films preparation by the dip-coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Salek, G.; Tenailleau, C., E-mail: tenailleau@chimie.ups-tlse.fr; Dufour, P.; Guillemet-Fritsch, S.

    2015-08-31

    Oxide thin solid films were prepared by dip-coating into colloidal dispersions of oxide nanoparticles stabilized at room temperature without the use of chelating or complex organic dispersing agents. Crystalline oxide nanoparticles were obtained by inorganic polycondensation and characterized by X-ray diffraction and field emission gun scanning electron microscopy. Water and ethanol synthesis and solution stabilization of oxide nanoparticle method was optimized to prepare two different structural and compositional materials, namely Cu{sub 2}O and ZnO. The influence of hydrodynamic parameters over the particle shape and size is discussed. Spherical and rod shape nanoparticles were formed for Cu{sub 2}O and ZnO, respectively. Isoelectric point values of 7.5 and 8.2 were determined for cuprous and zinc oxides, respectively, after zeta potential measurements. A shear thinning and thixotropic behavior was observed in both colloidal sols after peptization at pH ~ 6 with dilute nitric acid. Every colloidal dispersion stabilized in a low cost and environmentally friendly azeotrope solution composed of 96 vol.% of ethanol with water was used for the thin film preparation by the dip-coating technique. Optical properties of the light absorber cuprous oxide and transparent zinc oxide thin solid films were characterized by means of transmittance and reflectance measurements (300–1100 nm). - Highlights: • Room temperature inorganic polycondensation of crystalline oxides • Water and ethanol synthesis and solution stabilization of oxide nanoparticles • Low cost method for thin solid film preparation.

  18. Photovoltaic systems in Indonesia

    International Nuclear Information System (INIS)

    Tjaroko, T.; Bakker, P. de

    2001-01-01

    The article discusses the reasons for the slow growth of the photovoltaic industry in Indonesia where more than 100 million people have no access to electricity, but there is an abundance of solar power. There should be considerable scope for solar home systems in particular. Barriers to expansion of the PV market have included the devaluation of the rupee and the failure of many government-initiated projects. It is concluded that at present, the purchasing power of individuals is insufficient for the potential PV market to expand

  19. Photovoltaic in Switzerland

    International Nuclear Information System (INIS)

    Nordmann, Thomas

    1995-01-01

    The adoption of a new article in the Swiss Constitution relating to energy and a 10 year moratorium on nuclear energy by Swiss voters on 23rd September 1990 had political consequences. The Swiss government (Federal Council), supported by the ruling parties, launched a 10 year national programme in November 1990, known as 'Energy 2000'. By the turn of the millennium, photovoltaic grid-connected installations generating a total of 50 MWp should be installed and brought into operation within the context of the Swiss national programme 'Energy 2000'. The local/regional utilities are supporting this ambitious objective by reimbursing the marginal costs of the energy supplied and additional accompanying measures

  20. Bracket for photovoltaic modules

    Science.gov (United States)

    Ciasulli, John; Jones, Jason

    2014-06-24

    Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

  1. Photovoltaic panel clamp

    Science.gov (United States)

    Mittan, Margaret Birmingham [Oakland, CA; Miros, Robert H. J. [Fairfax, CA; Brown, Malcolm P [San Francisco, CA; Stancel, Robert [Loss Altos Hills, CA

    2012-06-05

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  2. Canadian photovoltaic industry directory

    International Nuclear Information System (INIS)

    1998-01-01

    This directory has been prepared to help potential photovoltaic (PV) customers identify Canadian-based companies who can meet their needs, and to help product manufacturers and distributors identify potential new clients and/or partners within the PV industry for new and improved technologies. To assist the reader, an information matrix is provided that identifies the product and service types offered by each firm and its primary clients served. A list of companies by province or territory is also included. The main section lists companies in alphabetical order. Information presented for each includes address, contact person, prime activity, geographic area served, languages in which services are offered, and a brief company profile

  3. Photovoltaics: sunshine and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Stirzaker, Mike

    2006-05-15

    Spain's photovoltaic sector grew rapidly in 2004 only to slow down in 2005. While a State-guaranteed feed-in tariff is in place to drive a take-off, some of the smaller administrative cogs are buckling under the pressure. Projects are being further slowed by soaring world silicon prices and module shortages. Nevertheless, market volume is higher than ever before, and bio capital from both home and abroad is betting that the Spanish take-off is around the corner. (Author)

  4. Photovoltaic Product Directory and Buyers Guide

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.; Mazzucchi, R.P.; Lee, V.E.

    1984-04-01

    The directory guide explains photovoltaic systems briefly and shows what products are available off-the-shelf. Information is given to assist in designing a photovoltaic system and on financial incentives. Help is given for determining if photovoltaic products can meet a particular buyer's needs, and information is provided on actual photovoltaic user's experiences. Detailed information is appended on various financial incentives available from state and federal governments, sources of additional information on photovoltaics, sources of various photovoltaic products, and a listing of addresses of photovoltaic products suppliers. (LEW)

  5. The role of oxide structure on copper wire to the rubber adhesion

    Science.gov (United States)

    Su, Yea-Yang; Shemenski, Robert M.

    2000-07-01

    Most metals have an oxide layer on the surface. However, the structure of the oxide varies with the matrix composition, and depends upon the environmental conditions. A bronze coating, nominal composition of 98.5% Cu and balance of Sn, is applied to steel wire for reinforcing pneumatic tire beads and to provide adhesion to rubber. This work studied the influence of copper oxides on the bronze coating on adhesion during vulcanization. To emphasize the oxide structures, electrolytic tough pitch (ETP) copper wire was used instead of the traditional bronze-coated tire bead wire. Experimental results confirmed the hypothesis that cuprous oxide (Cu 2O) could significantly improve bonding between copper wire and rubber, and demonstrated that the interaction between rubber and oxide layer on wire is an electrochemical reaction.

  6. Photovoltaics: systems considerations

    Energy Technology Data Exchange (ETDEWEB)

    Haq, A M

    1982-08-01

    Photovoltaics applications to date and the potential uses and growth of this alternative energy source for the future are examined in the light of present world economic conditions. In addition, a more detailed description is given, illustrating the method by which system sizing and design are calculated and mentioning such factors as local solar radiation and insolation levels, humidity, wind loading and altitude, all of which affect the optimal system size. The role of computer programming in these calculations is also outlined, illustrating the way in which deterioration, battery losses, poor weather etc. can be accounted and compensated for in the systems design process. The elements of the actual systems are also described, including details of the solar cells and arrays, the electronic controls incorporated in the systems and the characteristics of the batteries used. A resume of projected costs and current technological advances in silicon processing techniques is given together with an analysis of present and future growth trends in the photovoltaics industry.

  7. Photovoltaic programme, edition 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This comprehensive publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration areas in Switzerland for the year 2003. Progress in future solar cell technologies as well as in the area of modules, building integration and system technologies is summarised. Also, national and international co-operation and multi-national pilot and demonstration projects are commented on. Associated projects such as eco-balances for PV systems, forecasting and modelling tools as well as system monitoring tools are discussed. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and on facades as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and other PV-related topics are summarised. This volume presents a list of 92 projects in the PV area including the appropriate Internet links and is completed with a collection of project abstracts.

  8. Photovoltaic programme, edition 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This comprehensive publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration areas in Switzerland for the year 2003. Progress in future solar cell technologies as well as in the area of modules, building integration and system technologies is summarised. Also, national and international co-operation and multi-national pilot and demonstration projects are commented on. Associated projects such as eco-balances for PV systems, forecasting and modelling tools as well as system monitoring tools are discussed. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and on facades as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and other PV-related topics are summarised. This volume presents a list of 92 projects in the PV area including the appropriate Internet links and is completed with a collection of project abstracts.

  9. Photovoltaics information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marie, T.L.; Reinhardt, C.L.

    1980-10-01

    The results of a series of telephone interviews with groups of users of information on photovoltaics (PV) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. It covers these technological areas: photovoltaics, passive solar heating and cooling, active solar heating and cooling, biomass energy, solar thermal electric power, solar industrial and agricultural process heat, wind energy, ocean energy, and advanced energy storage. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven PV groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Researchers Working for Manufacturers, Representatives of Other Manufacturers, Representatives of Utilities, Electric Power Engineers, and Educators.

  10. Parametric study of laser photovoltaic energy converters

    Science.gov (United States)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  11. Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell.

    Science.gov (United States)

    Dong, Feng; Zhang, Peng; Li, Kexun; Liu, Xianhua; Zhang, Pingping

    2016-12-09

    In this work, Cu₂O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode.

  12. Double transparent conducting layers for Si photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Ju-Hyung [Department of Electrical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Kim, Joondong, E-mail: joonkim@incheon.ac.kr [Department of Electrical Engineering, Incheon National University, Incheon, 406772 (Korea, Republic of); Park, Yun Chang [Measurement and Analysis Division, National Nanofab Center (NNFC), Daejeon 305806 (Korea, Republic of); Moon, Sang-Jin [Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of); Anderson, Wayne A. [Department of Electrical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States)

    2013-11-29

    Double transparent conductive oxide (TCO) film-embedded Si heterojunction solar cells were fabricated. An intentional doping was not applied for heterojunction solar cells due to the spontaneous Schottky junction formation between TCO films and an n-type Si substrate. Three different TCO coatings were formed by sputtering method for an Al-doped ZnO (AZO) film, an indium-tin-oxide (ITO) film and double stacks of ITO/AZO films. An improved crystalline ITO film was grown on an AZO template upon hetero-epitaxial growth. This double TCO films-embedded Si (ITO/AZO/Si) heterojunction solar cell provided significantly enhanced efficiency of 9.23 % as compared to the single TCO/Si (ITO/Si or AZO/Si) devices due to the optical and the electrical benefits. The effective arrangement of TCO films (ITO/AZO) provides benefits of a lower front contact resistance and a smaller band offset to Si leading enhanced photovoltaic performances. This demonstrates a potential scheme for an effective TCO film-embedded heterojunction Si solar cell. - Highlights: • Double transparent conducting oxide films form a heterojunction to Si. • A quality indium-tin-oxide film was grown above an Al-doped zinc oxide template. • Heterojunction Si solar cell was made without an intentional doping process.

  13. Double transparent conducting layers for Si photovoltaics

    International Nuclear Information System (INIS)

    Yun, Ju-Hyung; Kim, Joondong; Park, Yun Chang; Moon, Sang-Jin; Anderson, Wayne A.

    2013-01-01

    Double transparent conductive oxide (TCO) film-embedded Si heterojunction solar cells were fabricated. An intentional doping was not applied for heterojunction solar cells due to the spontaneous Schottky junction formation between TCO films and an n-type Si substrate. Three different TCO coatings were formed by sputtering method for an Al-doped ZnO (AZO) film, an indium-tin-oxide (ITO) film and double stacks of ITO/AZO films. An improved crystalline ITO film was grown on an AZO template upon hetero-epitaxial growth. This double TCO films-embedded Si (ITO/AZO/Si) heterojunction solar cell provided significantly enhanced efficiency of 9.23 % as compared to the single TCO/Si (ITO/Si or AZO/Si) devices due to the optical and the electrical benefits. The effective arrangement of TCO films (ITO/AZO) provides benefits of a lower front contact resistance and a smaller band offset to Si leading enhanced photovoltaic performances. This demonstrates a potential scheme for an effective TCO film-embedded heterojunction Si solar cell. - Highlights: • Double transparent conducting oxide films form a heterojunction to Si. • A quality indium-tin-oxide film was grown above an Al-doped zinc oxide template. • Heterojunction Si solar cell was made without an intentional doping process

  14. Photovoltaic module with adhesion promoter

    Science.gov (United States)

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  15. Photovoltaics - why this 'religious war'?

    International Nuclear Information System (INIS)

    Nowak, S.

    2005-01-01

    This article examines the possible reasons behind controversies concerning photovoltaics in Switzerland. The author, who considers that no other energy technology awakes such varying opinions, presents ten points that should be considered in this connection. These include aspects concerning research and development, trade and industry as well as markets and applications. The 'enormous' potential of photovoltaics and questions concerning availability and environmental issues are discussed. Costs, developments and the question of economic viability are looked at. The situation in Switzerland is compared with international conditions. Finally, political issues are reviewed and the key role to be played by photovoltaics in the future is stressed

  16. Radioisotope-powered photovoltaic generator

    International Nuclear Information System (INIS)

    McKlveen, J.W.; Uselman, J.

    1979-01-01

    Disposing of radioactive wastes from nuclear power plants has become one of the most important issues facing the nuclear industry. In a new concept, called a radioisotope photovoltaic generator, a portion of this waste would be used in conjunction with a scintillation material to produce light, with subsequent conversion into electricity via photovoltaic cells. Three types of scintillators and two types of silicon cells were tested in six combinations using 32 P as the radioisotope. The highest system efficiency, determined to be 0.5% when the light intensity was normalized to 100 mW/cm 2 , was obtained using a CsI crystal scintillator and a Helios photovoltaic cell

  17. Optimization of photovoltaic power systems

    CERN Document Server

    Rekioua, Djamila

    2012-01-01

    Photovoltaic generation is one of the cleanest forms of energy conversion available. One of the advantages offered by solar energy is its potential to provide sustainable electricity in areas not served by the conventional power grid. Optimisation of Photovoltaic Power Systems details explicit modelling, control and optimisation of the most popular stand-alone applications such as pumping, power supply, and desalination. Each section is concluded by an example using the MATLAB(R) and Simulink(R) packages to help the reader understand and evaluate the performance of different photovoltaic syste

  18. Silicon processing for photovoltaics II

    CERN Document Server

    Khattak, CP

    2012-01-01

    The processing of semiconductor silicon for manufacturing low cost photovoltaic products has been a field of increasing activity over the past decade and a number of papers have been published in the technical literature. This volume presents comprehensive, in-depth reviews on some of the key technologies developed for processing silicon for photovoltaic applications. It is complementary to Volume 5 in this series and together they provide the only collection of reviews in silicon photovoltaics available.The volume contains papers on: the effect of introducing grain boundaries in silicon; the

  19. Photovoltaic building blocks

    DEFF Research Database (Denmark)

    Hanberg, Peter Jesper; Jørgensen, Anders Michael

    2014-01-01

    efficiency of about 15% for commercial Silicon solar cells there is still much to gain. DTU Danchip provides research facilities, equipment and expertise for the building blocks that comprises fabricating the efficient solar cell. In order to get more of the sun light into the device we provide thin film......Photovoltaics (PV), better known as solar cells, are now a common day sight on many rooftops in Denmark.The installed capacity of PV systems worldwide is growing exponentially1 and is the third most importantrenewable energy source today. The cost of PV is decreasing fast with ~10%/year but to make...... it directcompetitive with fossil energy sources a further reduction is needed. By increasing the efficiency of the solar cells one gain an advantage through the whole chain of cost. So that per produced Watt of power less material is spent, installation costs are lower, less area is used etc. With an average...

  20. Photovoltaic module mounting system

    Science.gov (United States)

    Miros, Robert H. J. [Fairfax, CA; Mittan, Margaret Birmingham [Oakland, CA; Seery, Martin N [San Rafael, CA; Holland, Rodney H [Novato, CA

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  1. Photovoltaic static concentrator analysis

    Science.gov (United States)

    Almonacid, G.; Luque, A.; Molledo, A. G.

    1984-12-01

    Ray tracing is the basis of the present analysis of truncated bifacial compound parabolic concentrators filled with a dielectric substance, which are of interest in photovoltaic applications where the bifacial cells allow higher static concentrations to be achieved. Among the figures of merit for this type of concentrator, the directional intercept factor plays a major role and is defined as the ratio of the power of the collector to that at the entry aperture, in a lossless concentrator illuminated by light arriving from a given direction. A procedure for measuring outdoor, full size panels has been developed, and a correction method for avoiding the effect of unwanted diffuse radiation during the measurements is presented.

  2. The photovoltaic industry stunned

    International Nuclear Information System (INIS)

    Piro, P.

    2011-01-01

    In December 2010 the French authorities decided a 3-month moratory on any new project of photovoltaic installation (over 3 KWc) because of the huge number of demands that made the cost of the incentive measures soar in an unexpected manner. In March 2011 the moratory was lifted and the professionals have been stunned by the new conditions imposed to benefit from the preferential purchase tariffs of the electricity produced that are far less favourable than previously. The new tariff grid will be adjusted each term according to the volume of demands. While several thousand jobs are at stake, the professionals hope a reversal of the government position as France enters an electoral period. (A.C.)

  3. The solar photovoltaic

    International Nuclear Information System (INIS)

    2016-02-01

    This publication first outlines challenges and stakes related to the development of renewable energies, and more particularly of photovoltaic solar energy in France and in the World. Principles and applications (connected and autonomous systems) are briefly presented. Some key data regarding installed capacity and its evolution in France and in other countries are briefly commented. The knowledge status of this technology is discussed in terms of strengths (environmental and energetic benefits, modularity, fast decreasing costs, integration into building envelope, local investment and consumer commitment, an added value and job generating sector), and weaknesses (fluctuating production and impact on the supply-demand balance, local impact on the distribution grid, land use, cautions, a sector with some environmental impact, evolutions of the support arrangement in France). Actions undertaken by the ADEME in different areas (support to research and innovation, installation quality, promotion of technologies with less environmental impacts) are reviewed

  4. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  5. Photovoltaics Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-01

    This fact sheet is an overview of the Photovoltaics (PV) subprogram at the U.S. Department of Energy SunShot Initiative. The U.S. Department of Energy (DOE)’s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar PV, which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering manufacturing costs. SunShot’s PV portfolio spans work from early-stage solar cell research through technology commercialization, including work on materials, processes, and device structure and characterization techniques.

  6. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  7. Technology fundamentals: photovoltaic systems

    International Nuclear Information System (INIS)

    Quaschning, V.

    2006-01-01

    The generation of electric power from photovoltaic systems is described in detail. The mechanism of operation of solar cells is described in terms of photons, electrons, charge carriers and charge separation. The various cells, modules, technical terms and related technology are discussed. The chemical elements used in solar cells are mentioned and the manufacturing processes described. The technical advantages of the newer thin-film modules over the traditional silicon cells are given but at present manufacturing cost is limiting their production. Both stand-alone and grid-connected PV systems are described. The potential market for PV systems is discussed. It is suggested that PV could eventually meet the total global electric power demand. (author)

  8. Photovoltaic demonstration projects

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, W B; Hacker, R J; Kaut, W [eds.

    1991-01-01

    This book, the proceedings of the fourth PV-Contractors' Meeting organized by the Commission of the European Communities, Directorate-General for Energy, held at Brussels on 21 and 22 November 1989, provides an overview of the photovoltaic demonstration projects which have been supported in the framework of the Energy Demonstration Program since 1983. It includes reports by each of the contractors who submitted proposals in 1983, 1984, 1985 and 1986, describing progress with their projects. Summaries of the discussions held at the meeting, which included contractors whose projects were submitted in 1987, are also presented. The different technologies which are being demonstrated concern the modules, the cabling of the array, structure design, storage strategy and power conditioning. The various applications include desalination, communications, dairy farms, water pumping, and warning systems. Papers have been processed separately for inclusion on the data base.

  9. Photovoltaic demonstration projects

    Energy Technology Data Exchange (ETDEWEB)

    Kaut, W [Commission of the European Communities, Brussels (Belgium); Gillett, W B; Hacker, R J [Halcrow Gilbert Associates Ltd., Swindon (GB)

    1992-12-31

    This publication, comprising the proceedings of the fifth contractor`s meeting organized by the Commission of the European Communities, Directorate-General for Energy, provides an overview of the photovoltaic demonstration projects which have been supported in the framework of the energy demonstration programme since 1983. It includes reports by each of the contractors who submitted proposals in 1987 and 1988, describing progress within their projects. Projects accepted from earlier calls for proposals and not yet completed were reviewed by a rapporteur and are discussed in the summary section. The results of the performance monitoring of all projects and the lessons drawn from the practical experience of the projects are also presented in the summaries and conclusions. Contractors whose projects were submitted in 1989 were also present at the meeting and contributed to the reported discussions. This proceeding is divided into four sessions (General, Housing, technical presentations, other applications) and 24 papers are offered.

  10. Photovoltaic spectral responsivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  11. Energizing architecture. Design and photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lueling, Claudia (ed.)

    2009-07-01

    Power generation by photovoltaic systems and buildings is much more than just an alternative to traditional electric power generation. As the planning and design of photovoltaics is increasingly shifting to the forefront, it is rapidly becoming a new challenge for architecture. This book describes the whole spectrum of possible applications - from inspiration to detail - of photovoltaics as an integral part of building envelopes and introduces groundbreaking examples and visions for the future, in which photovoltaic elements work as a successful part of exterior facades - combined with highly luminous and economical illuminated wallpaper and curtains inside buildings. Its range extends from early designs by artists such as Daniel Hausig to aspects of material selection to detail drawings of implemented solutions. The enormous variety of possible applications of this new (building) material demonstrates the huge potential it possesses. (orig.)

  12. Photovoltaic sources modeling and emulation

    CERN Document Server

    Piazza, Maria Carmela Di

    2012-01-01

    This book offers an extensive introduction to the modeling of photovoltaic generators and their emulation by means of power electronic converters will aid in understanding and improving design and setup of new PV plants.

  13. Penetration of Photovoltaics in Greece

    Directory of Open Access Journals (Sweden)

    Eugenia Giannini

    2015-06-01

    Full Text Available Recently, an interesting experiment was completed in Greece concerning photovoltaic penetration into the electricity production sector. Based on the relevant laws and in accordance to the related European directives, an explosive penetration process was completed in less than three years, resulting in a 7% share of photovoltaics in electricity production instead of the previous negligible share. The legislation was based on licensing simplification and generous feed-in-tariffs. This approach transformed photovoltaic technology from a prohibitively expensive to a competitive one. This work aims to summarize the relevant legislation and illustrate its effect on the resulting penetration. A sigmoid-shape penetration was observed which was explained by a pulse-type driving force. The return on investment indicator was proposed as an appropriate driving force, which incorporates feed-in-tariffs and turnkey-cost. Furthermore, the resulting surcharge on the electricity price due to photovoltaic penetration was also analyzed.

  14. Study of Photovoltaic Effect in ZnO-SnO2 Epilayers on P-Si (100) by Liquid Phase Epitaxy

    International Nuclear Information System (INIS)

    Myint Thu; Kyaw Aung Win; Yin Maung Maung; Than Than Win; Ko Ko Kyaw Soe

    2004-06-01

    The heterojunction photovoltaic cell, fabricated from the stiochiometric composition film consisting of tin oxide (IV-VI compound) and zinc oxide (II-VI compound) generate exceptionally high short-circuit current and open-circuit voltage at an optimum mixing ratio of the two oxides. The other parameters of photovoltaic cell: series resistance (Rs), conversion efficiency (n ) and quantum yield efficiency (Y) of heterostructure are also examined

  15. The photovoltaic energy in Japan

    International Nuclear Information System (INIS)

    Georgel, O.

    2005-07-01

    Today the Japan is the leader of the photovoltaic energy. The first reason of this success is an action of the government integrating subventions for the installation of photovoltaic systems and a support of the scientific research. To explain this success, the author presents the energy situation in Japan, details the national programs, the industrial sector (market, silicon needs, recycling, manufacturers, building industry) and presents the main actors. (A.L.B.)

  16. Photovoltaic sub-cell interconnects

    Energy Technology Data Exchange (ETDEWEB)

    van Hest, Marinus Franciscus Antonius Maria; Swinger Platt, Heather Anne

    2017-05-09

    Photovoltaic sub-cell interconnect systems and methods are provided. In one embodiment, a photovoltaic device comprises a thin film stack of layers deposited upon a substrate, wherein the thin film stack layers are subdivided into a plurality of sub-cells interconnected in series by a plurality of electrical interconnection structures; and wherein the plurality of electrical interconnection structures each comprise no more than two scribes that penetrate into the thin film stack layers.

  17. Penetration of Photovoltaics in Greece

    OpenAIRE

    Eugenia Giannini; Antonia Moropoulou; Zacharias Maroulis; Glykeria Siouti

    2015-01-01

    Recently, an interesting experiment was completed in Greece concerning photovoltaic penetration into the electricity production sector. Based on the relevant laws and in accordance to the related European directives, an explosive penetration process was completed in less than three years, resulting in a 7% share of photovoltaics in electricity production instead of the previous negligible share. The legislation was based on licensing simplification and generous feed-in-tariffs. This approach ...

  18. Natural Flow Air Cooled Photovoltaics

    Science.gov (United States)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  19. Advances in Photovoltaics at NREL

    Energy Technology Data Exchange (ETDEWEB)

    von Roedern, B.

    1999-09-09

    This paper discusses the critical strategic research and development issues in the development of next-generation photovoltaic technologies, emphasizing thin-film technologies that are believed to ultimately lead to lower production costs. The critical research and development issues for each technology are identified. An attempt is made to identify the strengths and weaknesses of the different technologies, and to identify opportunities for fundamental research activities suited to advance the introduction of improved photovoltaic modules.

  20. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  1. Photovoltaic array mounting apparatus, systems, and methods

    Science.gov (United States)

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2016-01-05

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  2. on THICKNESS OF COPPER (|) OXIDE

    African Journals Online (AJOL)

    2006-12-20

    Dec 20, 2006 ... known materials to be used as semiconductor devices. The oxide is. Observed to be an attractive starting material for the production of solar cells for low cost terrestrial conversion of solar energy to electricity. Copper (I) oxide is one Of the earliest known photovoltaic materials and the first in which the ...

  3. Organic photovoltaic cells with pentacene nanocolumn arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuwen; Schaefer, Peter; Rabe, Juergen P.; Koch, Norbert [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Brook-Taylor-Str. 6, 12489 Berlin (Germany)

    2011-07-01

    Highly ordered pentacene nanocolumn arrays were fabricated by glancing angle deposition (GLAD) on indium tin oxide (ITO) substrates. The nanocolumn diameter was set to 100-150 nm as revealed by scanning electron microscopy and atomic force microscopy. Interdigitated bulk heterojunction photovoltaic cells (OPVCs) were formed by spin-coating [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) as the acceptor material onto the pentacene nanocolumn film. Bathocuproine (BCP) was deposited on top of PCBM as exciton blocking layer. The conversion efficiency of nanocolumn-based OPVCs was significantly higher compared to planar heterojunction OPVCs of the same materials. Further device performance improvement was achieved through employing a thin pentacene seed layer before GLAD, which promoted PCBM solution infiltration between pentacene nanocolumns.

  4. Thin metal electrodes for semitransparent organic photovoltaics

    KAUST Repository

    Lee, Kyusung

    2013-08-01

    We demonstrate semitransparent organic photovoltaics (OPVs) based on thin metal electrodes and polymer photoactive layers consisting of poly(3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester. The power conversion efficiency of a semitransparent OPV device comprising a 15-nm silver (Ag) rear electrode is 1.98% under AM 1.5-G illumination through the indium-tin-oxide side of the front anode at 100 mW/cm2 with 15.6% average transmittance of the entire cell in the visible wavelength range. As its thickness increases, a thin Ag electrode mainly influences the enhancement of the short circuit current density and fill factor. Its relatively low absorption intensity makes a Ag thin film a viable option for semitransparent electrodes compatible with organic layers. © 2013 ETRI.

  5. Photovoltaic product directory and buyers guide

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Smith, S.A.; Mazzucchi, R.P.

    1981-06-01

    Basic information on photovoltaic conversion technology is provided for those unfamiliar with the field. Various types of photovoltaic products and systems currently available off-the-shelf are described. These include products without batteries, battery chargers, power packages, home electric systems, and partial systems. Procedures are given for designing a photovoltaic system from scratch. A few custom photovoltaic systems are described, and a list is compiled of photovoltaic firms which can provide custom systems. Guidance is offered for deciding whether or not to use photovoltaic products. A variety of installations are described and their performance is appraised by the owners. Information is given on various financial incentives available from state and federal governments. Sources of additional information on photovoltaics are listed. A matrix is provided indicating the sources of various types of photovoltaic products. The addresses of suppliers are listed. (LEW)

  6. Mounting support for a photovoltaic module

    Science.gov (United States)

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  7. Development of the French Photovoltaic Program

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, M.

    1980-07-01

    The French photovoltaic research program is reviewed, listing companies involved. Projections of module and system costs are discussed. French industrial experience in photovoltaics is reviewed and several French systems operating in developing countries are mentioned. (MHR)

  8. Highway renewable energy : photovoltaic noise barriers

    Science.gov (United States)

    2017-07-01

    Highway photovoltaic noise barriers (PVNBs) represent the combination of noise barrier systems and photovoltaic systems in order to mitigate traffic noise while simultaneously producing renewable energy. First deployed in Switzerland in 1989, PVNBs a...

  9. Photovoltaic technology diffusion. Contact and interact

    International Nuclear Information System (INIS)

    Kruijsen, J.

    1999-09-01

    How can the diffusion of photovoltaic technologies be advanced? Photovoltaics convert light into electrical energy. They are environmentally friendly, reliable and have minimal maintenance requirements. Up to now, their introduction into the electricity market has been dominated by a technology push perspective. However, this has not yet resulted in a large-scale implementation. This thesis describes a network approach to advance photovoltaic diffusion and presents four guiding principles intended for the parties concerned: those who supply the photovoltaic technologies (e.g., developers of photovoltaic cells); those who integrate photovoltaic technologies into (new) product systems (e.g., engineering firms); the users of photovoltaic systems (e.g., housing corporations); and those who stimulate the use of photovoltaics (e.g., policymakers, subsidisers, branch organisations, financial institutes, and NGOs). refs

  10. Transparent contacts for stacked compound photovoltaic cells

    Science.gov (United States)

    Tauke-Pedretti, Anna; Cederberg, Jeffrey; Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis

    2016-11-29

    A microsystems-enabled multi-junction photovoltaic (MEM-PV) cell includes a first photovoltaic cell having a first junction, the first photovoltaic cell including a first semiconductor material employed to form the first junction, the first semiconductor material having a first bandgap. The MEM-PV cell also includes a second photovoltaic cell comprising a second junction. The second photovoltaic cell comprises a second semiconductor material employed to form the second junction, the second semiconductor material having a second bandgap that is less than the first bandgap, the second photovoltaic cell further comprising a first contact layer disposed between the first junction of the first photovoltaic cell and the second junction of the second photovoltaic cell, the first contact layer composed of a third semiconductor material having a third bandgap, the third bandgap being greater than or equal to the first bandgap.

  11. Optimizing Grid Patterns on Photovoltaic Cells

    Science.gov (United States)

    Burger, D. R.

    1984-01-01

    CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.

  12. Solar spectrum conversion for photovoltaics using nanoparticles

    NARCIS (Netherlands)

    Sark, W.G.J.H.M. van; Meijerink, A.; Schropp, R.E.I.

    2012-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Conventional single-junction

  13. Photovoltaics in the Department of Defense

    International Nuclear Information System (INIS)

    Chapman, R.N.

    1997-01-01

    This paper documents the history of photovoltaic use within the Department of Defense leading up to the installation of 2.1 MW of photovoltaics underway today. This history describes the evolution of the Department of Defense's Tri-Service Photovoltaic Review Committee and the committee's strategic plan to realize photovoltaic's full potential through outreach, conditioning of the federal procurement system, and specific project development. The Photovoltaic Review Committee estimates photovoltaic's potential at nearly 4,000 MW, of which about 700 MW are considered to be cost-effective at today's prices. The paper describes photovoltaic's potential within the Department of Defense, the status and features of the 2.1-MW worth of photovoltaic systems under installation, and how these systems are selected and implemented. The paper also documents support provided to the Department of Defense by the Department of Energy dating back to the late 70s. copyright 1997 American Institute of Physics

  14. Thin film photovoltaic panel and method

    Science.gov (United States)

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  15. Print-Assisted Photovoltaic Assembly (PAPA)

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of an innovative method for the fabrication of thin-film photovoltaic panels. Print-Assisted Photovoltaic Assembly, or PAPA,...

  16. Nanomaterials for photovoltaic conversion

    International Nuclear Information System (INIS)

    Davenas, J.; Ltaief, A.; Barlier, V.; Boiteux, G.; Bouazizi, A.

    2008-01-01

    A promising route for photovoltaic conversion has emerged from the combination of electroactive nanomaterials and small bandgap polymers. The formation of bulk heterojunctions resulting from the extended interfaces leads to efficient dissociation of the charge pairs generated under sunlight shown by the rapid extinction of the polymer photoluminescence for increasing contents of fullerenes or TiO 2 nanoparticles in MEH-PPV or PVK. Unconventional elaboration routes of the blends have been developed to increase the nanofiller dispersion and inhibit phase separation at high concentration. The size reduction of the acceptor domains led to a complete quenching of the radiative recombinations, obtained by specific solvent processing of MEH-PPV / C 60 nanocomposites or sol gel elaboration of TiO 2 nanoparticles in a PVK film. A simultaneous increase of the photocurrents could be achieved by the dispersion and size optimisation of the nanofillers. In situ generation of silver particles in MEH-PPV provides an example of enhanced charge separation induced by the plasmon resonance at the metal/polymer interface. The strong influence of the molecular morphology on the nanocomposite properties emphasizes the large improvements which can still be gained on the performances of organic solar cells

  17. Nanowire Photovoltaic Devices

    Science.gov (United States)

    Forbes, David

    2015-01-01

    Firefly Technologies, in collaboration with the Rochester Institute of Technology and the University of Wisconsin-Madison, developed synthesis methods for highly strained nanowires. Two synthesis routes resulted in successful nanowire epitaxy: direct nucleation and growth on the substrate and a novel selective-epitaxy route based on nanolithography using diblock copolymers. The indium-arsenide (InAs) nanowires are implemented in situ within the epitaxy environment-a significant innovation relative to conventional semiconductor nanowire generation using ex situ gold nanoparticles. The introduction of these nanoscale features may enable an intermediate band solar cell while simultaneously increasing the effective absorption volume that can otherwise limit short-circuit current generated by thin quantized layers. The use of nanowires for photovoltaics decouples the absorption process from the current extraction process by virtue of the high aspect ratio. While no functional solar cells resulted from this effort, considerable fundamental understanding of the nanowire epitaxy kinetics and nanopatterning process was developed. This approach could, in principle, be an enabling technology for heterointegration of dissimilar materials. The technology also is applicable to virtual substrates. Incorporating nanowires onto a recrystallized germanium/metal foil substrate would potentially solve the problem of grain boundary shunting of generated carriers by restricting the cross-sectional area of the nanowire (tens of nanometers in diameter) to sizes smaller than the recrystallized grains (0.5 to 1 micron(exp 2).

  18. Photovoltaic systems engineering

    CERN Document Server

    Messenger, Roger A

    2010-01-01

    BackgroundPopulation and Energy DemandEnergy UnitsCurrent World Energy Use PatternsExponential GrowthHubbert's Gaussian ModelNet Energy, Btu Economics, and the Test for SustainabilityDirect Conversion of Sunlight to Electricity with PhotovoltaicsThe SunThe Solar SpectrumThe Effect of Atmosphere on SunlightSunlight SpecificsCapturing SunlightIntroduction to PV SystemsThe PV CellThe PV ModuleThe PV ArrayEnergy StoragePV System LoadsPV System AvailabilityAssociated System Electronic ComponentsGeneratorsBalance of System (BOS) ComponentsGrid-Connected Utility-Interactive PV SystemsApplicable Codes and StandardsDesign Considerations for Straight Grid-Connected PV SystemsDesign of a System Based on Desired Annual System PerformanceDesign of a System Based on Available Roof SpaceDesign of a Microinverter-Based SystemDesign of a Nominal 21 kW System that Feeds a Three-Phase Distribution PanelDesign of a Nominal 250 kW SystemSystem Performance MonitoringMechanical ConsiderationsImportant Properties of MaterialsEstabli...

  19. Photovoltaic Incentive Design Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, T. E.

    2006-12-01

    Investments in customer-owned grid-connected photovoltaic (PV) energy systems are growing at a steady pace. This is due, in part, to the availability of attractive economic incentives offered by public state agencies and utilities. In the United States, these incentives have largely been upfront lump payments tied to the system capacity rating. While capacity-based ''buydowns'' have stimulated the domestic PV market, they have been criticized for subsidizing systems with potentially poor energy performance. As a result, the industry has been forced to consider alternative incentive structures, particularly ones that pay based on long-term measured performance. The industry, however, lacks consensus in the debate over the tradeoffs between upfront incentive payments versus longer-term payments for energy delivery. This handbook is designed for agencies and utilities that offer or intend to offer incentive programs for customer-owned PV systems. Its purpose is to help select, design, and implement incentive programs that best meet programmatic goals. The handbook begins with a discussion of the various available incentive structures and then provides qualitative and quantitative tools necessary to design the most appropriate incentive structure. It concludes with program administration considerations.

  20. Solar energy developments: photovoltaics

    International Nuclear Information System (INIS)

    Sivoththaman, S.

    2006-01-01

    The annual photovoltaic (PV) energy production crossed the 1 Gigawatt mark a couple of years ago, and continues to grow at rates exceeding 40%. The cost of PV has been continuously dropping due to increased production and also thanks to the technological advances made over the past two decades at the material, device, and system levels. Although PV is still considered expensive, cost-competitiveness is expected to be achieved in the next 5-10 years. With the current PV market 90% dominated by crystalline silicon (Si) material, advances are being made in tackling the Si shortage issue, and new approaches in feedstock refinement are getting shape. On the other hand, progress is being made on thin film-based advanced devices and on novel organic semiconductors. Novel concepts based on quantum physics and nanotechnology do have the ability to improve device performance beyond traditional theoretical limits. The domination of Si is expected to shift when these next generation technologies mature into industry-level scalability. On the system level, advanced back-end electronics provides more efficient power conditioning for modern PV modules. Systems level combinations such as solar thermal/PV hybrids and PV/hydrogen systems are also promising. An overview of recent technology developments will be presented with highlights in the Canadian scenario. (author)

  1. Grounds of two positions photovoltaic panels

    OpenAIRE

    Castán Fortuño, Fernando

    2008-01-01

    The objective of this Master Thesis is to find the optimum positioning for a two positions photovoltaic panel. Hence, it will be implemented a model in order to optimize the energy of the sun that the photovoltaic panel is receiving by its positioning. Likewise this project will include the comparison with other photovoltaic panel systems as the single position photovoltaics panels. Ultimately, it is also going to be designed a system array for the optimized model of two positions photovoltai...

  2. Case Study - Monitoring the Photovoltaic Panels

    OpenAIRE

    PACURAR Ana Talida; TOADER Dumitru; PACURAR Cristian

    2014-01-01

    The photovoltaic cell represents one of the most dynamic and attractive way to converts renewable energy sources in electricity production. That means to convert solar energy into electricity. In this paper is presented a analogy between two types of photovoltaic panels installed, with educational role for students. Also the objective of this paper is to estimate the performance of photovoltaic panels and to provide the best solution for industry. These two types of photovoltaic panels wer...

  3. Photorefraction in crystals with nonstationary photovoltaic current

    International Nuclear Information System (INIS)

    Volk, T.R.; Astaf'ev, S.B.; Razumovskij, N.V.

    1995-01-01

    Effect of photovoltaic current nonstationary components, conditioned by nonstationary character of photovoltaic centers, on photorefractive properties of LiNbO 3 crystals is considered. Analytic expressions describing nonstationary photovoltaic current effect on kinetics of recording and optical erasure of photorefraction are obtained. A possibility of nonstationary photovoltaic current occurrence in crystals with multilevel charge transfer circuit is considered. Recording light pulse duration effect on photorefraction in LiNbO 3 is discussed. 25 refs., 8 figs

  4. Process Development for Nanostructured Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  5. A MARKETING STRATEGY ON PHOTOVOLTAIC MARKET

    Directory of Open Access Journals (Sweden)

    Coita Dorin Cristian

    2008-05-01

    Full Text Available Photovoltaic is an increasingly important energy technology. Deriving energy from the sun offers numerous environmental benefits. It is an extremely clean energy source, and few other power-generating technologies have as little environmental impact as photovoltaic. In this article we explored some dimensions of photovoltaic market and suggested a marketing strategy for solar panels manufacturers

  6. A kick to the photovoltaic industry

    International Nuclear Information System (INIS)

    Deye, M.; Remoue, A.

    2010-01-01

    In order to stop the speculation fever and to stabilize the photovoltaic trade, the French government has decided to lower some of the warranted electricity repurchase tariffs related to photovoltaic power generation. This announcement should have important impacts on the photovoltaic industry which will redirect its means and products towards the residential sector. (J.S.)

  7. International photovoltaic products and manufacturers directory, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Shepperd, L.W. [ed.] [Florida Solar Energy Center, Cocoa, FL (United States)

    1995-11-01

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  8. Photovoltaic Technology and Applications | Othieno | Discovery and ...

    African Journals Online (AJOL)

    Photovoltaic home systems appear to be the most viable alternative source of electricity. The photovoltaic technology is therefore reviewed and recommendations made on their application for rural electrification in the developing nations. Keywords: solar energy, photovoltaic materials, electrification, rural power, cost, ...

  9. Production and Characterization of Novel Photovoltaic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Marvin [North Carolina Central Univ., Durham, NC (United States)

    2016-06-07

    This project has three major objectives: exploring the potential nanostructured materials in photovoltaic applications; providing photovoltaic research experiences to NCCU students, who are largely members of underrepresented minority groups; and enhancing the photovoltaic research infrastructure at NCCU to increase faculty and student competitiveness. Significant progress was achieved in each of these areas during the project period, as summarized in this report.

  10. Photovoltaic is always more profitable

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2016-01-01

    While indicating 31 recommendations made by the ADEME for the development of photovoltaic production, this article outlines a result published in the same report: the cost of solar photovoltaic production keeps on decreasing, and therefore, profitabilities without subsidy might appear before the 2020's in France. The cost of ground-based photovoltaic plant has indeed been decreasing from 6 to 1.5 euro per Watt in less than 10 years, with some regional variations. The connection cost could also be reduced by nearly 30 per cent for individual installations. New business models could then be implemented for a development without subsidy. The new thermal regulation could also have an influence on the development of solar production. These trends can be noticed in the world as well

  11. Production. Which price for photovoltaic?

    International Nuclear Information System (INIS)

    Dupin, L.

    2011-01-01

    As the French government decided to reduce its financial support to photovoltaic energy, a first article identifies and comments the issues to be addressed to have a competitive French photovoltaic industry: to bet on second generation arrays (thin layer arrays), to have higher yearly objectives in terms of installed power (800 MW or 1 GW instead of 500 MW, in order to create a reference market), to redefine the financing and the electricity purchase scheme, to promote self consumption, to support exportation. The second article presents the first French photovoltaic test and certification centre, located near Chambery, where solar arrays are inspected and where their ageing is simulated through thermal fatigue and impact testing

  12. Photovoltaic Subcontract Program, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  13. Photovoltaic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J. [Univ. of Miami, Coral Gables, FL (United States)

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  14. A Photovoltaic System Payback Calculator

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Daniel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fleming, Jeffrey E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallegos, Gerald R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-01

    The Roof Asset Management Program (RAMP) is a DOE NNSA initiative to manage roof repairs and replacement at NNSA facilities. In some cases, installation of a photovoltaic system on new roofs may be possible and desired for financial reasons and to meet federal renewable energy goals. One method to quantify the financial benefits of PV systems is the payback period, or the length of time required for a PV system to generate energy value equivalent to the system's cost. Sandia Laboratories created a simple spreadsheet-based solar energy valuation tool for use by RAMP personnel to quickly evaluate the estimated payback period of prospective or installed photovoltaic systems.

  15. Photovoltaic cell and production thereof

    Science.gov (United States)

    Narayanan, Srinivasamohan [Gaithersburg, MD; Kumar, Bikash [Bangalore, IN

    2008-07-22

    An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.

  16. MOD silver metallization for photovoltaics

    Science.gov (United States)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.

  17. The Harvard organic photovoltaic dataset.

    Science.gov (United States)

    Lopez, Steven A; Pyzer-Knapp, Edward O; Simm, Gregor N; Lutzow, Trevor; Li, Kewei; Seress, Laszlo R; Hachmann, Johannes; Aspuru-Guzik, Alán

    2016-09-27

    The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications.

  18. The Harvard organic photovoltaic dataset

    Science.gov (United States)

    Lopez, Steven A.; Pyzer-Knapp, Edward O.; Simm, Gregor N.; Lutzow, Trevor; Li, Kewei; Seress, Laszlo R.; Hachmann, Johannes; Aspuru-Guzik, Alán

    2016-01-01

    The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications. PMID:27676312

  19. Improved ATIR concentrator photovoltaic module

    Science.gov (United States)

    Adriani, Paul M.; Mao, Erwang

    2013-09-01

    Novel aggregated total internal reflection (ATIR) concentrator photovoltaic module design comprises 2-D shaped primary and secondary optics that effectively combine optical efficiency, low profile, convenient range of acceptance angles, reliability, and manufacturability. This novel optical design builds upon previous investigations by improving the shapes of primary and secondary optics to enable improved long-term reliability and manufacturability. This low profile, low concentration (5x to 10x) design fits well with one-axis trackers that are often used for flat plate crystalline silicon photovoltaic modules in large scale ground mount installations. Standard mounting points, materials, and procedures apply without changes from flat plate modules.

  20. Basic photovoltaic principles and methods

    Energy Technology Data Exchange (ETDEWEB)

    Hersch, P.; Zweibel, K.

    1982-02-01

    This book presents a nonmathematical explanation of the theory and design of photovoltaic (PV) solar cells and systems. The basic elements of PV are introduced: the photovoltaic effect, physical aspects of solar cell efficiency, the typical single-crystal silicon solar cell, advances in single-crystal silicon solar cells. This is followed by the designs of systems constructed from individual cells, including possible constructions for putting cells together and the equipment needed for a practical producer of electrical energy. The future of PV is then discussed. (LEW)

  1. Combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  2. Dependency of the band gap of electrodeposited Copper oxide thin films on the concentration of copper sulfate (CuSO4.5H2O) and pH in bath solution for photovoltaic applications

    KAUST Repository

    Islam, Md. Anisul

    2016-03-10

    In this study, Copper oxide thin films were deposited on copper plate by electrodeposition process in an electrolytic bath containing CuSO4.5H2O, 3M lactic acid and NaOH. Copper oxide films were electrodeposited at different pH and different concentration of CuSO4.5H2O and the optical band gap was determined from their absorption spectrum which was obtained from UV-Vis absorption spectroscopy. It was found that copper oxide films which were deposited at low concentration of CuSO4.5H2O have higher band gap than those deposited at higher bath concentration. The band gap of copper oxide films also significantly changes with pH of the bath solution. It was also observed that with the increase of the pH of bath solution band gap of copper oxide film decreased. © 2015 IEEE.

  3. Charge Trapping in Photovoltaically Active Perovskites and Related Halogenoplumbate Compounds.

    Science.gov (United States)

    Shkrob, Ilya A; Marin, Timothy W

    2014-04-03

    Halogenoplumbate perovskites (MeNH3PbX3, where X is I and/or Br) have emerged as promising solar panel materials. Their limiting photovoltaic efficiency depends on charge localization and trapping processes that are presently insufficiently understood. We demonstrate that in halogenoplumbate materials the holes are trapped by organic cations (that deprotonate from their oxidized state) and Pb(2+) cations (as Pb(3+) centers), whereas the electrons are trapped by several Pb(2+) cations, forming diamagnetic lead clusters that also serve as color centers. In some cases, paramagnetic variants of these clusters can be observed. We suggest that charge separation in the halogenoplumbates resembles latent image formation in silver halide photography. Electron and hole trapping by lead clusters in extended dislocations in the bulk may be responsible for accumulation of trapped charge observed in this photovoltaic material.

  4. Hopes doomed for French photovoltaic

    International Nuclear Information System (INIS)

    Piro, P.

    2013-01-01

    The photovoltaic industry has lost 15000 jobs in 2 years in France and the emergency measures taken by French authorities seem to be not sufficient to curb the trend. Some measures have led to delay or even cancel some projects while what is the most important today is to generate enough activity in small and intermediate enterprises to safeguard jobs

  5. Photovoltaic Subcontract Program, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K.A. (ed.)

    1991-03-01

    This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

  6. Photovoltaic: time for network parity

    International Nuclear Information System (INIS)

    Boulanger, V.

    2013-01-01

    Since 2012 the purchase tariff of photovoltaic power in Germany has been below the price of electricity for households which means that network parity has been reached. New economical schemes combining self-consumption and direct access to the power grid are now possible. (A.C.)

  7. Moteur photovoltaïque

    OpenAIRE

    Queval , Loic; Coty , Alain; Hebert , Baptiste; Vido , Lionel; Multon , Bernard

    2017-01-01

    International audience; Saurea propose un moteur à reluctance variable photovoltaïque de faible puissance, adapté aux étudiants, pour servir de support de cours aux énergies renouvelables et à la conversion d'énergie.

  8. Photovoltaic production and distribution network

    International Nuclear Information System (INIS)

    Fraisse, J.L.

    2010-01-01

    The rapid development of photovoltaics boosted by attractive feed-in tariffs caused a sharp increase in requests for connection to public distribution grids, which were originally designed to serve consumers. ERDF, main distribution network operator in France, is facing a challenge in terms of capacity for handling requests for connection and in terms of public distribution network operation and management. (author)

  9. 2017 NREL Photovoltaic Reliability Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-15

    NREL's Photovoltaic (PV) Reliability Workshop (PVRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology -- both critical goals for moving PV technologies deeper into the electricity marketplace.

  10. Systems Integration | Photovoltaic Research | NREL

    Science.gov (United States)

    Integration Systems Integration The National Center for Photovoltaics (NCPV) at NREL provides grid integration support, system-level testing, and systems analysis for the Department of Energy's solar distributed grid integration projects supported by the SunShot Initiative. These projects address technical

  11. Emissions from photovoltaic life cycles

    NARCIS (Netherlands)

    Fthenakis, V.M.; Kim, H.C.; Alsema, E.A.|info:eu-repo/dai/nl/073416258

    2008-01-01

    Photovoltaic (PV) technologies have shown remarkable progress recently in terms of annual production capacity and life cycle environmental performances, which necessitate timely updates of environmental indicators. Based on PV production data of 2004–2006, this study presents the life-cycle

  12. Photovoltaic cells employing zinc phosphide

    Science.gov (United States)

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  13. Design of Residential Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Mathe, Laszlo

    2017-01-01

    Renewable energy has become very important both worldwide and on the European market, mainly due to the decrease in the photovoltaic (PV) system cost (up to 75%) during the last decade. PV installations worldwide have reached 227 GW at the end of 2015 with a predicted extra 50 GW of new...

  14. Photovoltaic energy in power market

    NARCIS (Netherlands)

    Ho, D.T.; Frunt, J.; Myrzik, J.M.A.

    2009-01-01

    Photovoltaic (PV) penetration in the grid connected power system has been growing. Currently, PV electricity is usually directly sold back to the energy supplier at a fixed price and subsidy. However, subsidies should always be a temporary policy, and will eventually be terminated. A question is

  15. Encapsulation of polymer photovoltaic prototypes

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2006-01-01

    A simple and efficient method for the encapsulation of polymer and organic photovoltaic prototypes is presented. The method employs device preparation on glass substrates with subsequent sealing using glass fiber reinforced thermosetting epoxy (prepreg) against a back plate. The method allows...

  16. SAM Photovoltaic Model Technical Reference

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, P. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-05-27

    This manual describes the photovoltaic performance model in the System Advisor Model (SAM). The U.S. Department of Energy’s National Renewable Energy Laboratory maintains and distributes SAM, which is available as a free download from https://sam.nrel.gov. These descriptions are based on SAM 2015.1.30 (SSC 41).

  17. Performance of Integrated Photovoltaic Roofs

    NARCIS (Netherlands)

    Hendriks, N.A.; Pol, van de N.; Wisse, J.A.; Hendriks, N.A.; Schellen, H.L.; Spoel, van der W.H.

    2000-01-01

    The application of Photovoltaic (PV) systems has been supported strongly by the Dutch Government during the recent years. Several big projects have been heavily subsidised. At first instance this seems surprising, because the costs for PV -systems are very high, specifically in The Netherlands, with

  18. Freeform optics for photovoltaic concentration

    OpenAIRE

    Benitez Gimenez, Pablo; Miñano Dominguez, Juan Carlos

    2012-01-01

    Freeform surfaces are the key of the state-of-the-art nonimaging optics to solve the challenges in concentration photovoltaics. Different families (FK, XR, FRXI) will be presented, based on the SMS 3D design method and Köhler homogenization.

  19. Photovoltaic power generation system free of bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  20. Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping.

    Science.gov (United States)

    Wi, Sungjin; Kim, Hyunsoo; Chen, Mikai; Nam, Hongsuk; Guo, L Jay; Meyhofer, Edgar; Liang, Xiaogan

    2014-05-27

    Layered transition-metal dichalcogenides hold promise for making ultrathin-film photovoltaic devices with a combination of excellent photovoltaic performance, superior flexibility, long lifetime, and low manufacturing cost. Engineering the proper band structures of such layered materials is essential to realize such potential. Here, we present a plasma-assisted doping approach for significantly improving the photovoltaic response in multilayer MoS2. In this work, we fabricated and characterized photovoltaic devices with a vertically stacked indium tin oxide electrode/multilayer MoS2/metal electrode structure. Utilizing a plasma-induced p-doping approach, we are able to form p-n junctions in MoS2 layers that facilitate the collection of photogenerated carriers, enhance the photovoltages, and decrease reverse dark currents. Using plasma-assisted doping processes, we have demonstrated MoS2-based photovoltaic devices exhibiting very high short-circuit photocurrent density values up to 20.9 mA/cm(2) and reasonably good power-conversion efficiencies up to 2.8% under AM1.5G illumination, as well as high external quantum efficiencies. We believe that this work provides important scientific insights for leveraging the optoelectronic properties of emerging atomically layered two-dimensional materials for photovoltaic and other optoelectronic applications.

  1. Photovoltaic solar energy; Photovoltaische Solarenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the 27th symposium of the Ostbayerische Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) from 29th February to 02th March, 2012, at Banz monastery near Bad Staffelstein (Federal Republic of Germany), the following lectures were held: (1) EEG 12: State of the art and impacts (K. Freier); (2) Promising markets - PV market potentials Europe (M. Lohr); (3) Expansion requires restructuring - Research promotion for renewable energy and renewable energy supply systems (K. Deller); (4) Fields of application and potentials of photovoltaics in Germany without an enhanced EEG compensation (V. Quaschning); (5) ''Smart Solar Grid'' - Results of the analysis and solar roof potential of the first test area of the public utility Ulm (H. Ruf); (6) Power limitation at PV plants - Adjustment of modelling methods and comparison of different location (J. von Appen); (7) Exploitations to the power limitation till to 70 % of the module capacity (B. Giesler); (8) Actual procedural results of the clearing house EEG to photovoltaics and modifications at PV by means of the EEG 2012 (M. Winkler); (9) Grid integration of PV plants from a legal point of view (M. von Oppen); (10) EEG 2012 - Abetment or brake? PV and other renewable energies in comparison (M. Reichmuth); (11) On the precision of radiation and photovoltaics component models (J. Schumacher); (12) Impact of global radiation data with different properties on the performance ratio and prognosticated energy efficiency of photovoltaic power plants (M. Egler); (13) Quantification of superelevations of irradiation in high-resolution DWD datasets for different locations in Germany (M. Zehner); (14) Prognosis of the regional PV performance with measuring data of PV plant and satellite pictures (Y.-M. Saint-Drenan); (15) Photovoltaics and wind power: perfectly complementing power technologies using Central Germany as an example (C. Breyer); (16) Which and how much storages are necessary

  2. High-rate reduction of copper oxide using atmospheric-pressure inductively coupled plasma microjets

    International Nuclear Information System (INIS)

    Tajima, Satomi; Tsuchiya, Shouichi; Matsumori, Masashi; Nakatsuka, Shigeki; Ichiki, Takanori

    2011-01-01

    Reduction of copper oxide was performed using an atmospheric-pressure inductively coupled plasma (AP-ICP) microjet while varying the input power P between 15 and 50 W. Cuprous oxide (Cu 2 O) and cupric oxide (CuO) were formed on the sputtered Cu surface by thermal annealing. Dynamic behavior of the microplasma jet, optical emission from H atoms, the substrate temperature, chemical bonding states of the treated surface, and the thickness of the reduced Cu layer were measured to study the fundamental reduction process. Surface composition and the thickness of the reduced Cu layer changed significantly with P. Rapid reduction of CuO and Cu 2 O was achieved at a rate of 493 nm/min at P = 50 W since high-density H atoms were produced by the AP-ICP microjet.

  3. High-rate reduction of copper oxide using atmospheric-pressure inductively coupled plasma microjets

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Satomi; Tsuchiya, Shouichi [Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, 113-8656 (Japan); Matsumori, Masashi; Nakatsuka, Shigeki [Panasonic Factory Solutions Co., Ltd., 2-7 Matsuba-cho, Kadoma-city, Osaka, 571-8502 (Japan); Ichiki, Takanori, E-mail: ichiki@sogo.t.u-tokyo.ac.jp [Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, 113-8656 (Japan); Institute of Engineering Innovation, Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2011-08-01

    Reduction of copper oxide was performed using an atmospheric-pressure inductively coupled plasma (AP-ICP) microjet while varying the input power P between 15 and 50 W. Cuprous oxide (Cu{sub 2}O) and cupric oxide (CuO) were formed on the sputtered Cu surface by thermal annealing. Dynamic behavior of the microplasma jet, optical emission from H atoms, the substrate temperature, chemical bonding states of the treated surface, and the thickness of the reduced Cu layer were measured to study the fundamental reduction process. Surface composition and the thickness of the reduced Cu layer changed significantly with P. Rapid reduction of CuO and Cu{sub 2}O was achieved at a rate of 493 nm/min at P = 50 W since high-density H atoms were produced by the AP-ICP microjet.

  4. Analysis of the failure mechanism for a stable organic photovoltaic during 10 000 h of testing

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Norrman, Kion

    2007-01-01

    The degradation and failure mechanisms of a stable photovoltaic device comprising a bilayer heterojunction formed between poly(3-carboxythiophene-2,5-diyl-co-thiophene-2,5-diyl) (P3CT) and Buckminsterfullerene (C-60) sandwiched between indium tin oxide (ITO) and aluminium (Al) electrodes were...

  5. Novel Approach to Front Contact Passivation for CdTe Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Kephart, Jason

    2018-02-18

    The goal of this project was to study the use of sputter-deposited oxide materials for interface passivation of CdTe-based photovoltaics. Several candidate materials were chosen based on their promise in passivating the CdTe and CdSeTe semiconductor interface, chemical and thermal stability to device processing, and ability to be deposited by sputter deposition.

  6. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.; Peters, Craig; Brongersma, Mark; Cui, Yi; McGehee, Mike

    2010-01-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  7. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  8. Copper-doped silica cuprous sulfate: A highly efficient heterogeneous nano-catalyst for one-pot three-component synthesis of 1-H-2-substituted benzimidazoles from 2-bromoanilines, aldehydes, and [bmim]N3

    Directory of Open Access Journals (Sweden)

    Somayeh Behrouz

    2018-03-01

    Full Text Available A facile and highly efficient one-pot three-component synthesis of 1-H-2-substituted benzimidazole derivatives from readily available substrates catalyzed by copper-doped silica cuprous sulfate (CDSCS is described. In this method, treatment of diverse 2-bromoanilines, aldehydes, and [bmim]N3 in DMF at 110 °C in the presence of CDSCS as a highly efficient heterogeneous nano-catalyst affords the corresponding 1-H-2-substituted benzimidazoles in good to excellent yields. The CDSCS is an inexpensive and stable nano-catalyst that could be simply prepared, recovered and reused for many consecutive reaction runs without significant loss of its activity.

  9. Tailoring oxides of copper-Cu_2O and CuO nanoparticles and evaluation of organic dyes degradation

    International Nuclear Information System (INIS)

    Raghav, Ragini; Aggarwal, Priyanka; Srivastava, Sudha

    2016-01-01

    We report a simple one-pot colloidal synthesis strategy tailoring cuprous or cupric nano-oxides in pure state. NaOH provided alkaline conditions (pH 12.5 -13) for nano-oxides formation, while its concentration regulated the oxidation state of the nano-oxides. The morphological, structural and optical properties of synthesized Cu_2O and CuO nanoparticles were studied by transmission electron microscopy (TEM), X-Ray diffraction (XRD) and UV-vis spectroscopy. Dye degradation capability of CuO and Cu2O nanoparticles was evaluated using four organic dyes - Malachite green, Methylene blue, Methyl orange and Methyl red. The results demonstrate effective degradation of all four dyes employing with almost comparable activity both Cu_2O and CuO nanoparticles.

  10. Photovoltaic Programme Edition 2007. Summary Report, Project List, Annual Project Reports 2006 (Abstracts)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This 2007 edition summary report for the Swiss Federal Office of Energy (SFOE), reports on the work done within the framework of the Swiss Photovoltaics Program in 2006. The document contains 46 abstracts on work done in the photovoltaics area. The subjects reported on in the thin-film photovoltaics sector include advanced processing and characterisation of thin film silicon solar cells, high-rate deposition of micro-crystalline silicon, a new large-area VHF reactor for high-rate deposition of micro-crystalline silicon, the stability of zinc oxide in encapsulated thin film silicon solar cells, spectral photocurrent measurement, roll-to-roll technology for the production of thin film silicon modules, advanced thin film technologies, ultra thin silicon wafer cutting, bifacial thin industrial multi-crystalline silicon solar cells, flexible CIGS solar cells and mini-modules, large-area CIS-based thin-film solar modules and advanced thin-film technologies. In the area of dye-sensitised modules, the following projects are reported on: Dye-sensitised nano-crystalline solar cells, voltage enhancement of dye solar cells and molecular orientation as well as low band-gap and new hybrid device concepts for the improvement of flexible organic solar cells. Other projects reported on include a new PV wave making more efficient use of the solar spectrum, photovoltaic textiles, organic photovoltaic devices, photo-electrochemical and photovoltaic conversion and storage of solar energy, PV modules with antireflex glass, improved integration of PV into existing buildings, the seventh program at the LEEE-TISO, the 'PV enlargement' and 'Performance' programs, efficiency and annual electricity production of PV modules, photovoltaics system technology 2005-2006, an update on photovoltaics in view of the 'ecoinvent' v.2.0 tool and environmental information services for solar energy industries. The contributions to four Swiss IEA PVPS tasks and the Swiss interdepartmental platform for

  11. Exergy analysis of photovoltaic solar collector

    International Nuclear Information System (INIS)

    Sopian, K.; Othman, M.Y.Hj.

    1998-01-01

    The exergy analysis (availability or second law analysis) is applied to the photovoltaic thermal solar collector. Photovoltaic thermal collector is a special type of solar collector where electricity and heat are produced simultaneously. The electricity produced from the photovoltaic thermal collector is all converted into useful work. The available quantity of the heat collected can readily be determined by taking into account both the quantity (heat quantity) and quality ( a function of temperature) of the thermal energy. Therefore, using the concept of exergy allows heat produced from the thermal collector and the electricity generated from the photovoltaic cells to be compared or to be evaluated on the basis of a common measure such as the effectiveness on solar energy collection or the total amount of available energy. In this paper, the effectiveness of solar energy collection is called combined photovoltaic thermal exergy efficiency. An experimental setup of a double pas photovoltaic thermal solar collector has been deigned, fabricated and tested. (author)

  12. US photovoltaic patents: 1991--1993

    Energy Technology Data Exchange (ETDEWEB)

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  13. Characterization of silica quartz as raw material in photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Boussaa, S. Anas, E-mail: sabiha.anas@gmail.com; Kheloufi, A.; Kefaifi, A.; Kerkar, F. [Division croissance cristalline et procédés métallurgiques CCPM Centre de recherche en technologie des semi-conducteurs pour l’énergétique (C.R.T.S.E) 02 Bd Frantz Fanon BP. 140 Alger 7 merveilles, Alger 16200 (Algeria); Zaourar, N. Boutarek [Laboratoire des technologies des matériaux, USTHB, B.P. 32 El Alia, Bab Ezzouar, Alger, Algérie 16111 (Algeria)

    2016-07-25

    Raw materials are essential for the functioning of modern societies, and access to these raw materials is vital to the world economy. Sustainable development, both globally level, raises important new challenges associated with access and efficient use of raw materials. High purity quartz, is consider as a critical raw material and it is a rare commodity that only forms under geological conditions where a narrow set of chemical and physical parameters is fulfilled. When identified and following special beneficiation techniques, high purity quartz obtains very attractive prices and is applied in high technology sectors that currently are under rapid expansion such as photovoltaic solar cells, silicon metal - oxide wafers in the semiconductor industry and long distance optical fibers that are used in communication networks. Crystalline silicon remains the principal material for photovoltaic technology. Metallurgical silicon is produced industrially by the reduction of silica with carbon in an electric arc furnace at temperatures higher than 2000 °C in the hottest parts, by a reaction that can be written ideally as: SiO{sub 2} + 2C = Si + 2CO. The aim of this study has been to test experimental methods for investigating the various physical and chemical proprieties of Hoggar quartz with different techniques: X Ray Fluorescence, infra-red spectroscopy, Scanning Electron Microscopy, Optic Microscopy, Carbon Analyzer and Vickers Hardness. The results show finally that the quartz has got good result in purity but need enrichment for the photovoltaic application.

  14. Photovoltaic electricity applications: history and perspectives

    International Nuclear Information System (INIS)

    Juquois, F.

    2010-01-01

    The photoelectric effect has been characterized in 1839 by Henry Becquerel. More than one hundred years later, in 1958, the first photovoltaic cell is developed for the space exploration. After the first oil shock in 1973, the occidental governments have started considering photovoltaic as one of the potential alternative to fossil in the future. 36 years later, photovoltaic is blossoming on the roof tops of dwellings and commercial buildings, as well as on the poor agricultural value lands. (author)

  15. Press document. Photovoltaic energy: boosting the evolution

    International Nuclear Information System (INIS)

    2009-04-01

    The french potential in the photovoltaic energy is considerable but not very exploited. In this context the CEA, by its function of applied research institute in the domain of the low carbon energies can be a major actor of the sector development. This document presents the research programs in the photovoltaic domain, developed at the CEA, especially on the silicon performance, the photovoltaic solar cells and their integration in the buildings. (A.L.B.)

  16. Photovoltaic energy in Germany: experience feedback

    International Nuclear Information System (INIS)

    Persem, Melanie

    2011-01-01

    This document presents some key information and figures about the development of photovoltaic energy in Germany: resource potential, 2000-2010 development, share in the energy mix, market, legal framework and incentives, market evolution and electricity feed-in tariffs, 2006-2011 evolution of photovoltaic power plant costs, households' contribution, R and D investments, industry development and employment, the German national energy plan after Fukushima, the expectations of the German photovoltaic industry

  17. Overview of new-generation photovoltaic technologies

    International Nuclear Information System (INIS)

    Della Sala, D.; Moro, A.; Fidanza, A.; Di Francia, G.; Giorgi, R.

    2008-01-01

    The number of photovoltaic installation is rising in Italy, but they are all based on imported technologies. This article describes some new types of photovoltaic cells that benefit from powerful synergies with other sectors. ENEA can help speed their development by exploiting its long experience with photovoltaic and the growing body of know-how on the new frontiers of electronics and new materials [it

  18. Advances in photovoltaics part 4

    CERN Document Server

    Willeke, Gerhard P

    2015-01-01

    Advances in Photovoltaics: Part Four provides valuable information on the challenges faced during the transformation of our energy supply system to more efficient, renewable energies. The volume discusses the topic from a global perspective, presenting the latest information on photovoltaics, a cornerstone technology. It covers all aspects of this important semiconductor technology, reflecting on the tremendous and dynamic advances that have been made on this topic since 1975, when the first book on solar cells-written by Harold J. Hovel of IBM-was published as volume 11 in the now famous series on Semiconductors and Semimetals. Readers will gain a behind the scenes look at the continuous and rapid scientific development that leads to the necessary price and cost reductions in global industrial mass-production. Written by leading, internationally known experts on his topic Provides an in-depth overview of the current status and perspectives of thin film PV technologies Discusses the challenges faced during th...

  19. Interference Lithography for Vertical Photovoltaics

    Science.gov (United States)

    Balls, Amy; Pei, Lei; Kvavle, Joshua; Sieler, Andrew; Schultz, Stephen; Linford, Matthew; Vanfleet, Richard; Davis, Robert

    2009-10-01

    We are exploring low cost approaches for fabricating three dimensional nanoscale structures. These vertical structures could significantly improve the efficiency of devices made from low cost photovoltaic materials. The nanoscale vertical structure provides a way to increase optical absorption in thin photovoltaic films without increasing the electronic carrier separation distance. The target structure is a high temperature transparent template with a dense array of holes on a 400 - 600 nm pitch fabricated by a combination of interference lithography and nanoembossing. First a master was fabricated using ultraviolet light interference lithography and the pattern was transferred into a silicon wafer master by silicon reactive ion etching. Embossing studies were performed with the master on several high temperature polymers.

  20. Photovoltaic performance and reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Mrig, L. [ed.

    1993-12-01

    This workshop was the sixth in a series of workshops sponsored by NREL/DOE under the general subject of photovoltaic testing and reliability during the period 1986--1993. PV performance and PV reliability are at least as important as PV cost, if not more. In the US, PV manufacturers, DOE laboratories, electric utilities, and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in the field were brought together to exchange the technical knowledge and field experience as related to current information in this evolving field of PV reliability. The papers presented here reflect this effort since the last workshop held in September, 1992. The topics covered include: cell and module characterization, module and system testing, durability and reliability, system field experience, and standards and codes.

  1. Photovoltaic power. Industries and market

    International Nuclear Information System (INIS)

    Muller, J.C.

    2007-01-01

    Photovoltaic conversion should become competitive with respect to other power generation sources before the second half of the 21. century. This article treats first of the different solar cell technologies (monocrystalline and polycrystalline silicon, thin film silicon, cadmium telluride-based materials, copper-indium selenide-based materials, multi-spectral cells, organic cells) with respect to their conversion efficiency, production and energy cost, and environmental impact. A second part describes the solar cells market, its growth with respect to the different applications (isolated sites, decentralized generation, power plants). A third part deals with the perspectives of photovoltaic conversion with respect to the advance in the development of new cell materials. (J.S.)

  2. Light Harvesting for Organic Photovoltaics

    Science.gov (United States)

    2016-01-01

    The field of organic photovoltaics has developed rapidly over the last 2 decades, and small solar cells with power conversion efficiencies of 13% have been demonstrated. Light absorbed in the organic layers forms tightly bound excitons that are split into free electrons and holes using heterojunctions of electron donor and acceptor materials, which are then extracted at electrodes to give useful electrical power. This review gives a concise description of the fundamental processes in photovoltaic devices, with the main emphasis on the characterization of energy transfer and its role in dictating device architecture, including multilayer planar heterojunctions, and on the factors that impact free carrier generation from dissociated excitons. We briefly discuss harvesting of triplet excitons, which now attracts substantial interest when used in conjunction with singlet fission. Finally, we introduce the techniques used by researchers for characterization and engineering of bulk heterojunctions to realize large photocurrents, and examine the formed morphology in three prototypical blends. PMID:27951633

  3. Photovoltaics at Point Pelee Park

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    Case study of an Ontario Hydro-installed photovoltaic system at Point Pelee Park, a bird sanctuary located on Lake Erie, is described. The system consists of a 1080 W photovoltaic array used to supply electricity to one of the washrooms. The cost for installing the system was $30,000 which was considerably cheaper than the $100,000 estimate for an underground power line. The independent system is the only source of energy for the washroom, therefore it was necessary to reduce the total electrical demand required by the facility. Electricity was used for the water pump, chlorinator and lighting. Motion sensors were installed to further reduce electrical demand. Washroom heaters were converted to propane. 2 figs.

  4. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  5. Action plan for photovoltaic standards

    Energy Technology Data Exchange (ETDEWEB)

    Oldach, R.

    1999-07-01

    This report examines the present situation regarding international standards governing photovoltaic (PV) systems and components, and seeks to identify barriers to the commercialisation of PV systems in the UK due to the absence of standards and codes of practice, and develop an action plan to overcome these barriers. An overview of standardisation bodies and standard generation mechanisms is presented, and the PV cells and modules, stand-alone PV systems, utility interconnection with PV systems, and building integration of PV are reviewed.

  6. Solar photovoltaic: a better tomorrow

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2016-01-01

    This article comments statements and works performed by a professional body (Enerplan) and a think tank (FTS, France Territoire Solaire) which describe a glorious future for solar photovoltaic energy even though the present situation is rather dull. They foresee ground-based solar plants of more than 1 MW, and assess the potential production for very large, medium and small sized roofs, for domestic installations

  7. Encapsulation of polymer photovoltaic prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Frederik C. [The Danish Polymer Centre, RISOE National Laboratory, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2006-12-15

    A simple and efficient method for the encapsulation of polymer and organic photovoltaic prototypes is presented. The method employs device preparation on glass substrates with subsequent sealing using glass fiber reinforced thermosetting epoxy (prepreg) against a back plate. The method allows for transporting oxygen and water sensitive devices outside a glove box environment after sealing and enables sharing of devices between research groups such that efficiency and stability can be evaluated in different laboratories. (author)

  8. Photovoltaic assisted solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ali, M.I.; Ibarahim, Z.

    2006-01-01

    A photovoltaic assisted solar drying system has been constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. This drying system uses a custom designed parallel flow V-groove type collector. A fan powered by photovoltaic source assists the air flow through the drying system. A funnel with increasing diameter towards the top with ventilator turbine is incorporated into the system to facilitate the air flow during the absence of photovoltaic energy source. This drying system is designed with high efficiency and portability in mind so that it can readily be used at plantation sites where the crops are harvested or produced. A daily mean efficiency about 44% with mean air flow rate 0.16 kgs -1 has been achieved at mean daily radiation intensity of 800 Wm -2 . daily mean temperature of air drying chamber under the above conditions is 46 o C. Study has shown that the air flow and air temperature increase with the increase of solar radiation intensity. On a bright sunny day with instantaneous solar intensity about 600 Wm -2 , the temperature of air entering the drying chamber of 45 o C has been measured. In the absence of photovoltaic or in natural convection flow, the instantaneous efficiency decreased when solar radiation increased. The instantaneous efficiency recorded are 35% and 27% respectively at 570 Wm -2 and 745 Wm -2 of solar radiation. The temperature of drying chamber for the same amount of solar radiation are 42 o C and 48 o C respectively. Thus, the solar dryer shows a great potential for application in drying process of agricultural produce

  9. A vision for photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Sinke, W.C. [ECN Solar Energy, Petten (Netherlands); Perezagua, E. [Isofoton, Madrid (Spain); Demarcq, F.; Bal, J.L. [ADEME, Paris (France); Alferov, Z.I.; Andreev, V. [Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); De Segundo, K. [Shell International Renewables, London (United Kingdom); Dimmler, B. [Wuerth Solar GMBH und Co.KG, Marbach am Neckar (Germany); Goetzberger, A. [Fraunhofer Institute for Solar Energy Systems, Freiburg (Germany); Itoiz Beunza, C. [Energia Hidroelectrica de Navarra, Pamplona (Spain); Lojkowski, W. [High Pressure Research Center, Polish Academy of Sciences, Warszawa (Poland); Nowak, S. [NET Nowak nergy and Technology Ltd, St. Ursen (Switzerland); Vleuten, P. van der [Free Energy International, Eindhoven (Netherlands); Van Zolingen, R.J.C. [Shell Solar, Amsterdam (Netherlands)

    2005-02-01

    The report identifies the major technical and non-technical barriers to the uptake of the technology and outlines a strategic research agenda designed to ensure a breakthrough of PV (photovoltaics) and an increase in deployment in the Union and worldwide. The Council proposes the use of a European Technology Platform as a mechanism to implement the strategy and achieve the wider goals defined in the vision.

  10. Towards photovoltaic powered artificial retina

    Directory of Open Access Journals (Sweden)

    Santiago Silvestre

    2011-11-01

    Full Text Available The aim of this article is to provide an overview of current and future concepts in the field of retinal prostheses, and is focused on the power supply based on solar energy conversion; we introduce the possibility of using PV minimodules as power supply for a new concept of retinal prostheses: Photovoltaic Powered Artificial Retina (PVAR. Main characteristics of these PV modules are presented showing its potential for this application.

  11. Dependency of the band gap of electrodeposited Copper oxide thin films on the concentration of copper sulfate (CuSO4.5H2O) and pH in bath solution for photovoltaic applications

    KAUST Repository

    Islam, Md. Anisul; Nurani, Sheikh Jaber; Karim, Md. Adnan; Rahman, Abu Sadat Md. Sayem; Abdul Halim, Md. Md. Ansar Ali

    2016-01-01

    concentration of CuSO4.5H2O and the optical band gap was determined from their absorption spectrum which was obtained from UV-Vis absorption spectroscopy. It was found that copper oxide films which were deposited at low concentration of CuSO4.5H2O have higher

  12. Spectrally-engineered solar thermal photovoltaic devices

    Science.gov (United States)

    Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang

    2018-03-27

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.

  13. International Photovoltaic Program Plan. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-12-01

    This second volume of a two-part report on the International Photovoltaic Program Plan contains appendices summarizing the results of analyses conducted in preparation of the plan. These analyses include compilations of relevant statutes and existing Federal programs; strategies designed to expand the use of photovoltaics abroad; information on the domestic photovoltaic plan and its impact on the proposed international plan; perspectives on foreign competition; industry views on the international photovoltaic market and ideas about how US government actions could affect this market; international financing issues; and information on issues affecting foreign policy and developing countries.

  14. Dynamic Control Based Photovoltaic Illuminating System

    Directory of Open Access Journals (Sweden)

    Zhang Chengkai

    2016-01-01

    Full Text Available Smart LED illumination system can use the power from whether the photovoltaic cell or the power grid automatically based on the SOC (State Of Charge of the photovoltaic cell. This paper proposes a feedback control of the photovoltaic cells and a dynamic control strategy for the Energy system. The dynamic control strategy is used to determine the switching state of the photovoltaic cell based on the illumination load in the past one hour and the battery capacity. These controls are manifested by experimental prototype that the control scheme is correct and effective.

  15. Solar photovoltaic reflective trough collection structure

    Science.gov (United States)

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  16. International photovoltaic program. Volume 2: Appendices

    Science.gov (United States)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-01-01

    The results of analyses conducted in preparation of an international photovoltaic marketing plan are summarized. Included are compilations of relevant statutes and existing Federal programs; strategies designed to expand the use of photovoltaics abroad; information on the domestic photovoltaic plan and its impact on the proposed international plan; perspectives on foreign competition; industry views on the international photovoltaic market and ideas about the how US government actions could affect this market;international financing issues; and information on issues affecting foreign policy and developing countries.

  17. Novel Materials for Photovoltaic Technologies: Preprint

    International Nuclear Information System (INIS)

    Alivisatos, P.; Carter, S.; Ginley, D.; Nozik, A.; Meyer, G.; Rosenthal, S.

    1999-01-01

    While existing photovoltaic technologies continue to advance, there are still many exciting opportunities in the area of novel materials. These opportunities arise because there is a substantial need for reducing the costs associated with the preparation and processing of photovoltaics, and because the theoretically possible photovoltaic efficiencies have yet to be achieved in practical devices. Thus it remains reasonable to continue photovoltaic research activity aimed at entirely new approaches to processing and at entirely new materials as the active media. This group identified three areas for further consideration: (a) Nano/molecular composites and hierarchical structures; (b) Organic semiconductors; and (c) Hot carrier devices

  18. ZnO-based nanocrystalline powders with applications in hybrid photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Damonte, L.C. [Dto. De Fisica, UNLP, IFLP-CCT-CONICET, C.C.67 (1900) La Plata (Argentina); Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Donderis, V. [Dto. De Ingenieria Electrica, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Ferrari, S.; Meyer, M. [Dto. De Fisica, UNLP, IFLP-CCT-CONICET, C.C.67 (1900) La Plata (Argentina); Orozco, J. [Dto. de Ingenieria Mecanica y Materiales, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Hernandez-Fenollosa, M.A. [Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain)

    2010-06-15

    In recent years there has been a growing interest in the development of hybrid photovoltaic cells consisting of new materials, such as devices based on the combination of a wide gap semiconductor and an organic dye (dye-sensitized solar cells, DSSC). In this paper we obtain nano-zinc oxide particles whose optical and electrical properties have been modified by the presence of small amounts of Al or In acting as dopants. The aim of this study is to improve the compatibility of each of the compounds present in the photovoltaic solar cell. The knowledge gained will provide input to guide the processes in the manufacture of hybrid solar cells. (author)

  19. Photovoltaic module parameters acquisition model

    Energy Technology Data Exchange (ETDEWEB)

    Cibira, Gabriel, E-mail: cibira@lm.uniza.sk; Koščová, Marcela, E-mail: mkoscova@lm.uniza.sk

    2014-09-01

    Highlights: • Photovoltaic five-parameter model is proposed using Matlab{sup ®} and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model.

  20. Concentrated photovoltaics, a case study

    Directory of Open Access Journals (Sweden)

    Antonini Piergiorgio

    2014-01-01

    Full Text Available Concentrated Photovoltaics (CPV, once a niche technology, has now reached the maturity and reliability for large scale power generation. Especially in regions where temperatures are very high, the use of high efficiency triple junction solar cells with concentrating optics allows stable energy yield. Thus CPV can be seen as complementary and not in concurrence with silicon photovoltaics. The state of the art, the advantages and limitations of this technology will be shown. Among the main advantages of CPV is the possibility of a much higher energy supply, when compared to silicon photovoltaics, both comparing CPV and silicon with same area or the same installed power. The use of recycled and recyclable materials allows a more environmentally friendly production. The possibility to couple CPV with desalination facilities, energy storage will be analysed. As an example a case study of a CPV installation in Northern Italy is discussed. Here the use of mature technologies, derived from automotive and lighting sectors resulted in a simple and efficient module.

  1. Vacuum-Ultraviolet Photovoltaic Detector.

    Science.gov (United States)

    Zheng, Wei; Lin, Richeng; Ran, Junxue; Zhang, Zhaojun; Ji, Xu; Huang, Feng

    2018-01-23

    Over the past two decades, solar- and astrophysicists and material scientists have been researching and developing new-generation semiconductor-based vacuum ultraviolet (VUV) detectors with low power consumption and small size for replacing traditional heavy and high-energy-consuming microchannel-detection systems, to study the formation and evolution of stars. However, the most desirable semiconductor-based VUV photovoltaic detector capable of achieving zero power consumption has not yet been achieved. With high-crystallinity multistep epitaxial grown AlN as a VUV-absorbing layer for photogenerated carriers and p-type graphene (with unexpected VUV transmittance >96%) as a transparent electrode to collect excited holes, we constructed a heterojunction device with photovoltaic detection for VUV light. The device exhibits an encouraging VUV photoresponse, high external quantum efficiency (EQE) and extremely fast tempera response (80 ns, 10 4 -10 6 times faster than that of the currently reported VUV photoconductive devices). This work has provided an idea for developing zero power consumption and integrated VUV photovoltaic detectors with ultrafast and high-sensitivity VUV detection capability, which not only allows future spacecraft to operate with longer service time and lower launching cost but also ensures an ultrafast evolution of interstellar objects.

  2. UPVG efforts to commercialize photovoltaics

    International Nuclear Information System (INIS)

    Serfass, J.A.; Wills, B.N.

    1995-01-01

    The Utility PhotoVoltaic Group (UPVG) was formed in October of 1992 with a mission to accelerate the use of cost-effective small-scale and emerging grid-connected applications of photovoltaics for the benefit of electric utilities and their customers. The UPVG is now implementing a program to install up to 50 megawatts of photovoltaics in small-scale and grid-connected applications. This program, called TEAM-UP, is a partnership of the US electric utility industry and the US Department of Energy to help develop utility PV markets. TEAM-UP is a utility-directed program to significantly increase utility PV experience by promoting installations of utility PV systems. Two primary program areas are proposed for TEAM-UP: (1) Small-Scale Applications (SSA)--an initiative to aggregate utility purchases of small-scale, grid-independent applications; and (2) Grid-Connected Applications (GCA)--an initiative to identify and competitively award cost-sharing contracts for grid-connected PV systems with high market growth potential, or collective purchase programs involving multiple buyers. This paper describes these programs and outlines the schedule, the procurement status, and the results of the TEAM-UP process

  3. Organic photovoltaic energy in Japan

    International Nuclear Information System (INIS)

    2007-01-01

    Japan finances research programs on photovoltaic conversion since 1974. Research in this domain is one of the 11 priorities of NEDO, the agency of means of the ministry of economy, trade and industry of Japan. The search for an abatement of production costs and of an increase of cells efficiency is mentioned in NEDO's programs as soon as the beginning of the 1990's. A road map has been defined which foresees photovoltaic energy production costs equivalent to the ones of thermal conversion by 2030, i.e. 7 yen/kWh (4.4 cents of euro/kWh). The use of new materials in dye-sensitized solar cells (DSSC) or organic solar cells, and of new structures (multi-junctions) is explored to reach this objective. The organic photovoltaic technology is more particularly considered for small generation units in mobile or domestic technologies. Japan is particularly in advance in the improvement of DSSC cells efficiency, in particular in the domain of the research on solid electrolytes. Europe seems more in advance in the domain of the new generation of organic solar cells. Therefore, a complementarity may be found between Japan and French teams in the domain of organic solar cells improvement through collaboration programs. (J.S.)

  4. Photovoltaic conference on system services

    International Nuclear Information System (INIS)

    Burges, Karsten; Freier, Karin; Vincent, Jeremy; Montigny, Marie; Engel, Bernd; Konstanciak, Wilhelm; Makdessi, Georges; Acres, Adrien; Schlaaff, Torsten; Defaix, Christophe

    2015-01-01

    The French-German office for Renewable energies (OFAEnR) organised a photovoltaic conference on system services and photovoltaic facilities. In the framework of this French-German exchange of experience, about 100 participants have analysed and discussed the regulatory, technical and economical context of system services, their evolution and implementation in the framework of an accelerated development of photovoltaic conversion in both countries. This document brings together the available presentations (slides) made during this event: 1 - Technical Introduction to system services: principles, actors and perspectives (Karsten Burges); 2 - Legal guidelines of EEG (Renewable energy Sources Act) and the System Stability Ordinance as well as future measures for PV grid integration (Karin Freier); 3 - evolution of ancillary services regulation; opening the possibility for new market players to participate in maintaining the system stability (Jeremy Vincent, Marie Montigny); 4 - Paradigm shift for ancillary services: PV as a new stakeholder (Bernd Engel); 5 - Challenges of RES integration (Wilhelm Konstanciak 6 - System services supplied by PV inverters, solutions for frequency and active/reactive power control at the injection point (Georges Makdessi); 7 - Grid disturbance abatement and voltage stability control by monitoring local scale PV production (Adrien Acres); 8 - Flexibly Adaptable Power Plant Controller - The Answer to Various Grid Requirements (Torsten Schlaaff); 9 - ENR-pool project: What kind of business model for ancillary services by PV power plants? (Christophe Defaix)

  5. The European Photovoltaic Technology Platform

    International Nuclear Information System (INIS)

    Nowak, S.; Aulich, H.; Bal, J.L.; Dimmler, B.; Garnier, A.; Jongerden, G.; Luther, J.; Luque, A.; Milner, A.; Nelson, D.; Pataki, I.; Pearsall, N.; Perezagua, E.; Pietruszko, S.; Rehak, J.; Schellekens, E.; Shanker, A.; Silvestrini, G.; Sinke, W.; Willemsen, H.

    2006-05-01

    The European Photovoltaic Technology Platform is one of the European Technology Platforms, a new instrument proposed by the European Commission. European Technology Platforms (ETPs) are a mechanism to bring together all interested stakeholders to develop a long-term vision to address a specific challenge, create a coherent, dynamic strategy to achieve that vision and steer the implementation of an action plan to deliver agreed programmes of activities and optimise the benefits for all parties. The European Photovoltaic Technology Platform has recently been established to define, support and accompany the implementation of a coherent and comprehensive strategic plan for photovoltaics. The platform will mobilise all stakeholders sharing a long-term European vision for PV, helping to ensure that Europe maintains and improves its industrial position. The platform will realise a European Strategic Research Agenda for PV for the next decade(s). Guided by a Steering Committee of 20 high level decision-makers representing all relevant European PV Stakeholders, the European PV Technology Platform comprises 4 Working Groups dealing with the subjects policy and instruments; market deployment; science, technology and applications as well as developing countries and is supported by a secretariat

  6. Photovoltaic module parameters acquisition model

    International Nuclear Information System (INIS)

    Cibira, Gabriel; Koščová, Marcela

    2014-01-01

    Highlights: • Photovoltaic five-parameter model is proposed using Matlab ® and Simulink. • The model acquisits input sparse data matrix from stigmatic measurement. • Computer simulations lead to continuous I–V and P–V characteristics. • Extrapolated I–V and P–V characteristics are in hand. • The model allows us to predict photovoltaics exploitation in different conditions. - Abstract: This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I–V and P–V characteristics for PV module based on equivalent electrical circuit. Then, limited I–V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model

  7. Investigation of ITO layers for application as transparent contacts in flexible photovoltaic cell structures

    Science.gov (United States)

    Znajdek, Katarzyna; Sibiński, Maciej

    2013-07-01

    In this paper authors present the mechanical, optical and electrical parameters of Indium Tin Oxide (ITO) Transparent Conductive Layers (TCL) deposited on flexible substrate. Layers' properties are analyzed and verified. Investigated Transparent Conductive Oxide (TCO) was deposited, using magnetron sputtering method. Flexible polymer PET (polyethylene terephthalate) foil was used as a substrate, in order to photovoltaic (PV) cell's emitter contact application of investigated material. ITO-coated PET foils have been dynamically bent on numerous cylinders of various diameters according to the standard requirements. Resistance changes for each measured sample were measured and recorded during bending cycle. Thermal durability, as well as temperature influence on resistance and optical transmission are verified. Presented results were conducted to verify practical suitability and to evaluate possible applications of Indium Tin Oxide as a front contact in flexible photovoltaic cell structures.

  8. Graded Recombination Layers for Multijunction Photovoltaics

    KAUST Repository

    Koleilat, Ghada I.

    2012-06-13

    Multijunction devices consist of a stack of semiconductor junctions having bandgaps tuned across a broad spectrum. In solar cells this concept is used to increase the efficiency of photovoltaic harvesting, while light emitters and detectors use it to achieve multicolor and spectrally tunable behavior. In series-connected current-matched multijunction devices, the recombination layers must allow the hole current from one cell to recombine, with high efficiency and low voltage loss, with the electron current from the next cell. We recently reported a tandem solar cell in which the recombination layer was implemented using a progression of n-type oxides whose doping densities and work functions serve to connect, with negligible resistive loss at solar current densities, the constituent cells. Here we present the generalized conditions for design of efficient graded recombination layer solar devices. We report the number of interlayers and the requirements on work function and doping of each interlayer, to bridge an work function difference as high as 1.6 eV. We also find solutions that minimize the doping required of the interlayers in order to minimize optical absorption due to free carriers in the graded recombination layer (GRL). We demonstrate a family of new GRL designs experimentally and highlight the benefits of the progression of dopings and work functions in the interlayers. © 2012 American Chemical Society.

  9. Reciprocal carrier collection in organic photovoltaics

    KAUST Repository

    Renshaw, C. Kyle

    2011-07-18

    Buffer layers between the acceptor and cathode can perform several functions in organic photovoltaic devices, such as providing exciton blocking, protection of active layers against damage from cathode deposition, and optical spacing to maximize the electric field in the active device region. Here, we study electron collection by replacing the common buffer layer, bathocuproine, with a series of six, substituted tris(β-diketonato)Ru(III) analogues in the structure: indium-tin-oxide/copper phthalocyanine/C60/buffer/Ag. These buffer layers enable collection of photogenerated electrons by transporting holes from the cathode to the C60/buffer interface, followed by recombination with photogenerated electrons in the acceptor. We use a model for free-polaron and polaron-pair dynamics to describe device operation and the observed inflection in the current-voltage characteristics. The device characteristics are understood in terms of hole transfer from the highest occupied molecular orbital energy levels of several Ru-complexes to the acceptor. © 2011 American Physical Society.

  10. Reciprocal carrier collection in organic photovoltaics

    KAUST Repository

    Renshaw, C. Kyle; Schlenker, Cody W.; Thompson, Mark E.; Forrest, Stephen R.

    2011-01-01

    Buffer layers between the acceptor and cathode can perform several functions in organic photovoltaic devices, such as providing exciton blocking, protection of active layers against damage from cathode deposition, and optical spacing to maximize the electric field in the active device region. Here, we study electron collection by replacing the common buffer layer, bathocuproine, with a series of six, substituted tris(β-diketonato)Ru(III) analogues in the structure: indium-tin-oxide/copper phthalocyanine/C60/buffer/Ag. These buffer layers enable collection of photogenerated electrons by transporting holes from the cathode to the C60/buffer interface, followed by recombination with photogenerated electrons in the acceptor. We use a model for free-polaron and polaron-pair dynamics to describe device operation and the observed inflection in the current-voltage characteristics. The device characteristics are understood in terms of hole transfer from the highest occupied molecular orbital energy levels of several Ru-complexes to the acceptor. © 2011 American Physical Society.

  11. A Wearable All-Solid Photovoltaic Textile.

    Science.gov (United States)

    Zhang, Nannan; Chen, Jun; Huang, Yi; Guo, Wanwan; Yang, Jin; Du, Jun; Fan, Xing; Tao, Changyuan

    2016-01-13

    A solution is developed to power portable electronics in a wearable manner by fabricating an all-solid photovoltaic textile. In a similar way to plants absorbing solar energy for photosynthesis, humans can wear the as-fabricated photovoltaic textile to harness solar energy for powering small electronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Building integrated photovoltaic; Photovaltaique integre aux batiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    Durable, modular and flexible in use, as demonstrated by the different case studies in this publication, photovoltaic can replace diverse building elements, from glass facades to weather proof roofs. This leaflet towards architects describes aesthetic, technical, economic and environmental interest of building integrated photovoltaic. (author)

  13. Charging a Capacitor with a Photovoltaic Module

    Science.gov (United States)

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco; Navarro, Luis Barba

    2017-01-01

    Charging a capacitor with a photovoltaic module is an experiment which reveals a lot about the modules characteristics. It is customary to represent these characteristics with an equivalent circuit whose elements represent its physical parameters. The behavior of a photovoltaic module is very similar to that of a single cell but the electric…

  14. Photovoltaic barometer a 29% remarkable growth

    International Nuclear Information System (INIS)

    Maitrot, J.

    2000-01-01

    Day after day, photovoltaic energy is progressing a bit more both technologically and in terms of its different applications. In 1999, world photovoltaic cells production practically reached the 200 MWp mark and the five first cells producers generated a turnover of 430 million euro. (authors)

  15. Effects of concentrated sunlight on organic photovoltaics

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Katz, Eugene A.; Hirsch, Baruch

    2010-01-01

    We report the effects of concentrated sunlight on key photovoltaic parameters and stability of organic photovoltaics (OPV). Sunlight collected and concentrated outdoors was focused into an optical fiber and delivered onto a 1 cm2 bulk-heterojunction cell. Sunlight concentration C was varied gradu...

  16. APPLICATION OF A PHOTOVOLTAIC SYSTEM IN WATER ...

    African Journals Online (AJOL)

    use of the Photovoltaic system for water pumping is explored. .... employed to advantage for rural Ethiopia are solar energy, wind ... Kwh/sq.m/day and with a yearly average of about .... equator. Well Data : Total head 62m ... Investment return in photovoltaic potable water ... without any considerable change in performance.

  17. Photovoltaic conversion in Austria: Inventory 1994

    International Nuclear Information System (INIS)

    Faninger, G.

    1995-05-01

    On January 1, 1995 photovoltaic systems with a maxiumum capacity of about 1063 kW (peak) were installed in Austria. 48% of the photovoltaic systems are connected with the grid, 24% are stand-alone systems and about 28% are small systems (<200 W) for different applications. (author)

  18. Cost and Performance Model for Photovoltaic Systems

    Science.gov (United States)

    Borden, C. S.; Smith, J. H.; Davisson, M. C.; Reiter, L. J.

    1986-01-01

    Lifetime cost and performance (LCP) model assists in assessment of design options for photovoltaic systems. LCP is simulation of performance, cost, and revenue streams associated with photovoltaic power systems connected to electric-utility grid. LCP provides user with substantial flexibility in specifying technical and economic environment of application.

  19. Recent facts about photovoltaics in Germany

    International Nuclear Information System (INIS)

    Wirth, Harry

    2015-01-01

    Germany is leaving the age of fossil fuel behind. In building a sustainable energy future, photovoltaics is going to have an important role. The following summary consists of the most recent facts, figures and findings and shall assist in forming an overall assessment of the photovoltaic expansion in Germany.

  20. Interplay of Nanoscale, Hybrid P3HT/ZTO Interface on Optoelectronics and Photovoltaic Cells.

    Science.gov (United States)

    Lai, Jian-Jhong; Li, Yu-Hsun; Feng, Bo-Rui; Tang, Shiow-Jing; Jian, Wen-Bin; Fu, Chuan-Min; Chen, Jiun-Tai; Wang, Xu; Lee, Pooi See

    2017-09-27

    Photovoltaic effects in poly(3-hexylthiophene-2,5-diyl) (P3HT) have attracted much attention recently. Here, natively p-type doped P3HT nanofibers and n-type doped zinc tin oxide (ZTO) nanowires are used for making not only field-effect transistors (FETs) but also p-n nanoscale diodes. The hybrid P3HT/ZTO p-n heterojunction shows applications in many directions, and it also facilitates the investigation of photoelectrons and photovoltaic effects on the nanoscale. As for applications, the heterojunction device shows a simultaneously high on/off ratio of n- and p-type FETs, gatable p-n junction diodes, tristate buffer devices, gatable photodetectors, and gatable solar cells. On the other hand, P3HT nanofibers are taken as a photoactive layer and the role played by the p-n heterojunction in the photoelectric and photovoltaic effects is investigated. It is found that the hybrid P3HT/ZTO p-n heterojunction assists in increasing photocurrents and enhancing photovoltaic effects. Through the controllable gating of the heterojunction, we can discuss the background mechanisms of photocurrent generation and photovoltaic energy harvesting.

  1. Trends of Photovoltaic Research, Development and Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Song, J. S.; Yoon, K. H.; Yu, K. J. [Korea Institute of Energy Research (Korea)

    2000-07-01

    The Korean National Photovoltaic Project was initiated on October 1989 to develop technologies for the generation of economically competitive electric power by photovoltaic systems. It consists of four stages through the year 2006 with technical goals and cost targets related with solar cells, balance of systems and system application. The objectives of the project are to utilize photovoltaic technology, to transfer developed technology to industries and end users by research activities and to diffuse photovoltaic systems by demonstration projects. This paper reviews long-term plan and status of technology R and D, and markets of photovoltaic. Some activities designed to promote collaboration with foreign countries are also introduced. (author). 14 refs., 3 figs., 3 tabs.

  2. Low cost and efficient photovoltaic conversion by nanocrystalline solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Graetzel, M. [Institut de Chimie Physique, Ecole Polytechnique Federal de Lausanne (Switzerland)

    1996-09-01

    Solar cells are expected to provide environmentally friendly solutions to the world`s energy supply problem. Learning from the concepts used by green plants we have developed a molecular photovoltaic device whose overall efficiency for AM 1.5 solar light to electricity has already attained 8-11%. The system is based on the sensitization of nanocrystalline oxide films by transition metal charge transfer sensitizers. In analogy to photosynthesis, the new chemical solar cell achieves the separation of the light absorption and charge carrier transport processes. Extraordinary yields for the conversion of incident photons into electric current are obtained, exceeding 90% for transition metal complexes within the wavelength range of their absorption band. The use of molten salt electrolytes together with coordination complexes of ruthenium as sensitizers and adequate sealing technology has endowed these cells with a remarkable stability making practical applications feasible. Seven industrial cooperations are presently involved in the development to bring these cells to the market. The first cells will be applied to supply electric power for consumer electronic devices. The launching of production of several products of this type is imminent and they should be on the market within the next two years. Quite aside from their intrinsic merits as photovoltaic device, the mesoscopic oxide semiconductor films developed in our laboratory offer attractive possibilities for a number of other applications. Thus, the first example of a nanocrystalline rocking chair battery will be demonstrated and its principle briefly discussed.

  3. Three-Phase Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Máthé, Lászlo

    2017-01-01

    Photovoltaic (PV) technology has experienced an unprecedented growth in the last two decades, transforming from mainly an off-grid niche generation to a major renewable energy technology, reaching approximately 227 GW of capacity worldwide at the end of 2015 with a predicted extra 50 GW of new...... a hardware point of view, detailing the different PV inverter structures and topologies and discussing the different control layers within a grid-connected PV plant. Modulation schemes for various PV inverter topologies, grid synchronization, current control, active and reactive power control, maximum power...

  4. Photovoltaic Power for Mars Exploration

    Science.gov (United States)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1997-01-01

    Mars is a challenging environment for the use of solar power. The implications of the low temperatures and low light intensity, solar spectrum modified by dust and changing with time of day and year, indirect sunlight, dust storms, deposited dust, wind, and corrosive peroxide-rich soil are discussed with respect to potential photovoltaic power systems. The power systems addressed include a solar-powered rover vehicle and a human base. High transportation costs dictate high efficiency solar cells or alternatively, a 'thin film' solar cell deposited on a lightweight plastic or thin metal foil.

  5. Photovoltaic electricity production in Japan

    International Nuclear Information System (INIS)

    Destruel, P.

    2009-01-01

    The author first recalls the early investment of Japan in the solar energy which gave a leadership position to this country. However, it has been recently over-taken by Germany and Spain in terms of installed power. The share of the different technologies for the manufacturing of photovoltaic panels (polycrystalline silicon, mono-crystalline silicon, amorphous silicon, copper-indium-selenium cells) of different sizes, is presented, together with the current measures which are aimed at giving a new boost to this sector. The author tries then to foresee the evolutions of this sector during the next years and in a longer term (market prospective evolutions, factory projects, power station projects)

  6. Photovoltaics. System design and practice

    Energy Technology Data Exchange (ETDEWEB)

    Haeberlin, Heinrich [Berne Univ. of Applied Sciences (Switzerland)

    2012-07-01

    ''Photovoltaics'' is the direct conversion of sunlight to electrical energy. This environmentally friendly process is used today worldwide. In the informative and in English available specialist publication the possibilities but also the problems by using the direct conversion of sunlight to electric current and its feeding into the general power grid or isolated networks are described detailed and clearly. Beside solar cells also all other installation components are widely considered, e. g. solar modules, solar panels, secondary cells, charge controller as well as inverter and lightning protection. The book is completed with basic information from around the world and operational experiences for the calculation of profits.

  7. The photovoltaic market in Tunisia

    International Nuclear Information System (INIS)

    Bouazzi, A.S.; Hydri, S.; Sakji, O.

    1997-01-01

    In this article, our aim is to estimate the number of rural houses to be supplied with electricity by photovoltaic systems, using data from the national electric company in Tunisia (STEG) and the 1994 General Census. We also intent to estimate the electric consumption of three categories of houses, depending on the electrical appliances they own and on the annual hours of sunshine of the part of the country where they are situated. The estimated of the needed peak power is 15525 kWp to electrify 114,323 houses. (author)

  8. Advances in photovoltaics pt.3

    CERN Document Server

    Willeke, Gerhard P

    2014-01-01

    This volume is the third of a set of seven on the topic of photovoltaics. Solar cell-related technologies covered here include: ribbon silicon; heterojunction crystalline silicon; wafer equivalent crystalline silicon; and other advanced silicon solar cell structures and processes. Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant v

  9. Photovoltaic power system reliability considerations

    Science.gov (United States)

    Lalli, V. R.

    1980-01-01

    This paper describes an example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems. This particular application was for a solar cell power system demonstration project in Tangaye, Upper Volta, Africa. The techniques involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of a fail-safe and planned spare parts engineering philosophy.

  10. Advanced photovoltaic-trough development

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.; Yasuda, K.; Merson, B.

    1982-04-01

    The scope of the work on photvoltaic troughs includes analytical studies, hardware development, and component testing. Various aspects of the system have been optimized and improvements have been realized, particularly in the receiver and reflecting surface designs. An empirical system performance model has been developed that closely agrees with measured system performance. This in-depth study of single-axis reflecting linear focus photovoltaic concentrators will be very beneficial in the development of improved models for similar systems as well as other phtovoltaic concentrator designs.

  11. Method of making photovoltaic cell

    Science.gov (United States)

    Cruz-Campa, Jose Luis; Zhou, Xiaowang; Zubia, David

    2017-06-20

    A photovoltaic solar cell comprises a nano-patterned substrate layer. A plurality of nano-windows are etched into an intermediate substrate layer to form the nano-patterned substrate layer. The nano-patterned substrate layer is positioned between an n-type semiconductor layer composed of an n-type semiconductor material and a p-type semiconductor layer composed of a p-type semiconductor material. Semiconductor material accumulates in the plurality of nano-windows, causing a plurality of heterojunctions to form between the n-type semiconductor layer and the p-type semiconductor layer.

  12. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    OpenAIRE

    Petru Chioncel; Cristian Paul Chioncel; Nicoleta Gillich

    2013-01-01

    This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  13. Research of the photovoltaic properties of anodized films of Sn

    Science.gov (United States)

    Afanasyev, D. A.; Ibrayev, N. Kh; Omarova, G. S.; Smagulov, Zh K.

    2015-04-01

    The results of studies of photovoltaic properties of solar cells based on porous tin oxide films, sensitized with an organic dye are presented. Porous films were prepared by electrochemical anodization of tin in alkaline electrolytes based on aqueous solution of NaOH and aqueous ammonia NH4OH. It was found that the time of anodizing of the Sn films affects on conversion efficiency of light energy into electrical energy. Increasing of the sorption time leads to an increase of the number of molecules on the surface of the porous film. For the solar cell based on tin oxide there is a strong dark current, which significantly reduces the efficiency of conversion of light energy into electrical energy.

  14. Emissions from photovoltaic life cycles.

    Science.gov (United States)

    Fthenakis, Vasilis M; Kim, Hyung Chul; Alsema, Erik

    2008-03-15

    Photovoltaic (PV) technologies have shown remarkable progress recently in terms of annual production capacity and life cycle environmental performances, which necessitate timely updates of environmental indicators. Based on PV production data of 2004-2006, this study presents the life-cycle greenhouse gas emissions, criteria pollutant emissions, and heavy metal emissions from four types of major commercial PV systems: multicrystalline silicon, monocrystalline silicon, ribbon silicon, and thin-film cadmium telluride. Life-cycle emissions were determined by employing average electricity mixtures in Europe and the United States during the materials and module production for each PV system. Among the current vintage of PV technologies, thin-film cadmium telluride (CdTe) PV emits the least amount of harmful air emissions as it requires the least amount of energy during the module production. However, the differences in the emissions between different PV technologies are very small in comparison to the emissions from conventional energy technologies that PV could displace. As a part of prospective analysis, the effect of PV breeder was investigated. Overall, all PV technologies generate far less life-cycle air emissions per GWh than conventional fossil-fuel-based electricity generation technologies. At least 89% of air emissions associated with electricity generation could be prevented if electricity from photovoltaics displaces electricity from the grid.

  15. Photovoltaic energy potential of Quebec

    International Nuclear Information System (INIS)

    Royer, J.; Thomas, R.

    1993-01-01

    Results are presented from a study concerning the potential of photovoltaic (PV) energy in Quebec to the year 2010. The different PV applications which are or will be economically viable in Quebec for the study period are identified and evaluated in comparison with the conventional energy sources used for these applications. Two penetration scenarios are proposed. One considers little change at the level of policies established for commercialization of PV sources, and the other considers certain measures which accelerate the implementation of PV technology in certain niches. While the off-grid market is already motivated to adopt PV technology for economic reasons, it is forecast that all encouragement from lowering costs would accelerate PV sales, offering a larger purchasing power to all interested parties. Above all, lowered PV costs would open up the network market. Photovoltaics would have access to a much larger market, which will accelerate changes in the very nature of the industry and bring with it new reductions in the costs of producing PV systems. 5 refs., 1 fig., 7 tabs

  16. Information report from the Economic Affairs commission on photovoltaic energy

    International Nuclear Information System (INIS)

    2009-01-01

    Today and for several years to come, photovoltaic energy represents only a minimal part of the world's electric power production. Photovoltaic energy is only at its beginnings, however several countries have already taken opportunities in the business. This report gives a comprehensive information about photovoltaic energy (basic principles, conversion systems, photovoltaic power plants, incentive programs in other developed countries, regulations ...) and arguments for the development of a structured photovoltaic energy policy in France

  17. Added values of photovoltaic power systems

    International Nuclear Information System (INIS)

    2001-03-01

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20 th century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  18. Added values of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-15

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20{sup th} century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  19. Home Photovoltaic System Design in Pangkalpinang City

    Science.gov (United States)

    Sunanda, Wahri

    2018-02-01

    This research aims to obtain the design of home photovoltaic systems in Pangkalpinang and the opportunity of economic savings. The system consists of photovoltaic with batteries. Based on electricity consumption of several houses with installed power of 1300 VA and 2200 VA in Pangkalpinang for one year, the daily load of photovoltaic system is varied to 40%, 30% and 20% of the average value of the daily home electricity consumption. The investment costs, the cost of replacement parts and the cost of electricity consumption accrued to PLN during lifetime of systems (25 years) are also calculated. The result provided that there are no economic saving opportunities for photovoltaic systems with batteries at home with installed power of 1300 VA and 2200 VA in Pangkalpinang. The most economical is the photovoltaic system with the daily load of 20% of the average value of the daily home electricity consumption. The configuration of photovoltaic system for 1300 VA home consists of 10 modules of 200 wattpeak and 4 batteries 150 AH, 12 Volt while photovoltaic system for 2200 VA home consists of 15 modules of 200 wattpeak and 6 batteries 150 AH,12Volt.

  20. Advanced silicon materials for photovoltaic applications

    CERN Document Server

    Pizzini, Sergio

    2012-01-01

    Today, the silicon feedstock for photovoltaic cells comes from processes which were originally developed for the microelectronic industry. It covers almost 90% of the photovoltaic market, with mass production volume at least one order of magnitude larger than those devoted to microelectronics. However, it is hard to imagine that this kind of feedstock (extremely pure but heavily penalized by its high energy cost) could remain the only source of silicon for a photovoltaic market which is in continuous expansion, and which has a cumulative growth rate in excess of 30% in the last few years. Ev

  1. Conjugated polymer photovoltaic devices and materials

    International Nuclear Information System (INIS)

    Mozer, A.J.; Niyazi, Serdar Sariciftci

    2006-01-01

    The science and technology of conjugated polymer-based photovoltaic devices (bulk heterojunction solar cells) is highlighted focusing on three major issues, i.e. (i) nano-morphology optimization, (ii) improving charge carrier mobility, (iii) improving spectral sensitivity. Successful strategies towards improved photovoltaic performance are presented using various novel materials, including double-cable polymers, regioregular polymers and low bandgap polymers. The examples presented herein demonstrate that the bulk heterojunction concept is a viable approach towards developing photovoltaic systems by inexpensive solution-based fabrication technologies. (authors)

  2. Systems and methods for photovoltaic string protection

    Science.gov (United States)

    Krein, Philip T.; Kim, Katherine A.; Pilawa-Podgurski, Robert C. N.

    2017-10-25

    A system and method includes a circuit for protecting a photovoltaic string. A bypass switch connects in parallel to the photovoltaic string and a hot spot protection switch connects in series with the photovoltaic string. A first control signal controls opening and closing of the bypass switch and a second control signal controls opening and closing of the hot spot protection switch. Upon detection of a hot spot condition the first control signal closes the bypass switch and after the bypass switch is closed the second control signal opens the hot spot protection switch.

  3. Solar energy photovoltaic technology: proficiency and performance

    International Nuclear Information System (INIS)

    2006-01-01

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  4. Practical Handbook of Photovoltaics. Fundamentals and Applications

    International Nuclear Information System (INIS)

    Markvart, T.; Castaner, L.

    2003-01-01

    As part of the growing sustainable and renewable energy movement, the design, manufacture and use of photovoltaic devices is increasing in pace and frequency. This Handbook will be a 'benchmark' publication for those involved in the design, manufacture and use of these devices. It covers the principles of solar cell function, the raw materials, photovoltaic systems, standards, calibration, testing, economics and case studies. The editors have assembled a cast of internationally-respected contributors from industry and academia. The report is essential reading for: Physicists, electronic engineers, designers of systems, installers, architects, policy-makers relating to photovoltaics

  5. Facile Hydrothermal Preparation of ZNO/CO3O4 Heterogeneous Nanostructures and its Photovoltaic Effect

    Science.gov (United States)

    Wei, Fanan; Jiang, Minlin; Liu, Lianqing

    2015-07-01

    Photovoltaic technology offers great potential in the replacement of fossil fuel resources, but still suffers from high device fabrication cost. Herein, we attempted to provide a solution to these issues with heterogeneous nanostructures. Firstly, Zinc oxide (ZnO)/cobalt oxide (Co3O4) heterojunction nanowires are prepared through facile fabrication methods. By assembling Co(OH)2 nanoplates on ZnO nanowire arrays, the ZnO/Co3O4 heterogeneous nanostructures are uniformly synthesized on ITO coated glass and wafer. Current (I)-voltage (V) measurement through conductive atomic force microscope shows excellent photovoltaic effect. And, the heterojunction nanostructures shows unprecedented high open circuit voltage. Therefore, the potential application of the heterogeneous nanostructures in solar cells is demonstrated.

  6. Photovoltaic array performance simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, D. F.

    1986-09-15

    The experience of the solar industry confirms that, despite recent cost reductions, the profitability of photovoltaic (PV) systems is often marginal and the configuration and sizing of a system is a critical problem for the design engineer. Construction and evaluation of experimental systems are expensive and seldom justifiable. A mathematical model or computer-simulation program is a desirable alternative, provided reliable results can be obtained. Sandia National Laboratories, Albuquerque (SNLA), has been studying PV-system modeling techniques in an effort to develop an effective tool to be used by engineers and architects in the design of cost-effective PV systems. This paper reviews two of the sources of error found in previous PV modeling programs, presents the remedies developed to correct these errors, and describes a new program that incorporates these improvements.

  7. Photovoltaic demonstration project. Final report

    International Nuclear Information System (INIS)

    Jicarilla Apache Tribe

    2002-01-01

    The Jicarilla Apache Nation is in Rio Arriba County in North Central New Mexico. The photovoltaic project was installed at the Dulce High School in the town of Dulce. Dulce is in the most northern part of the reservation near the New Mexico/Colorado boundary and can be reached from the New Mexico State Capitol in Santa Fe, hence to the town of Chama along U.S. Highway 84 to the junction of U.S. Highway 64. Dulce is about 12 miles west of the junction along U.S. Highway 64. Dulce community is in the mountainous part of the Nation with a population of about 4000. No industry exists in the community, however, a few commercial sites do exist such as a motel, restaurants, gas stations, food and liquor stores

  8. Organic photovoltaics concepts and realization

    CERN Document Server

    Dyakonov, Vladimir; Parisi, Jürgen; Sariciftci, Niyazi

    2003-01-01

    Achieving efficient solar energy conversion at both large scale and low cost is among the most important technological challenges for the near future. The present volume describes and explains the fundamentals of organic/plastic solar cells in a manner accessible to both researchers and students. It provides a comprehensive analysis of the operational principles underlying several types of solar cells that have absorber layers based on polymer materials and small molecules. It addresses competing approaches, such as polymer solar cells and dye-sensitized cells, while considering the thermodynamic principles within the context of these schemes. Organic Photovoltaics also analyzes in detail the charge-transfer processes in the bulk-heterojunction devices corresponding to the relevant mechanism of carrier generation. Emphasized throughout is the concept of interpenetrating polymer-fullerene networks, due to their high potential for improving power efficiency.

  9. Photovoltaic industry, towards a reorganization

    International Nuclear Information System (INIS)

    Houot, G.

    2011-01-01

    During the first semester 2011 the sales of photovoltaic equipment have dropped unexpectedly, certainly due to the harsh winter in Europe and the reduction of the policy of financial incentives in some countries. This drop in demand has triggered such a drop in prices that some manufacturers face financial difficulties, for instance the American Evergreen Solar was declared bankrupt in mid august 2011. Today the production of solar panels exceeds the demand. The third term of 2011 shows an improvement but the sector will not escape a reorganization: there are too many manufacturers, some will disappear, other will merge, the biggest will stay. Some economists see the future market divided into 2 sectors: one sector dedicated to the mass production of classical solar panels at very low cost, this sector will be occupied mainly by Chinese companies and another sector demanding a more specialized know-how will be driven by American, Japanese and European companies. (A.C.)

  10. Snapshot of photovoltaics - February 2018

    Science.gov (United States)

    Jäger-Waldau, Arnulf

    2018-05-01

    Solar photovoltaic electricity generation is the fastest growing power generation source world-wide. The significant cost reduction of solar PV over the last decade, and the zero fuel cost volatility have increased the attractiveness. In 2017, the newly installed solar PV power of over 90 GW was more than all the world-wide cumulative installed PV capacity until the mid of 2012. China was again the main driver behind this strong growth with more than 50 GW of annual installations in 2017. Apart from the electricity sector, renewable energy sources for the generation of heat and environmental friendly synthetic-fuels for the transport sector will become more and more important in the future.

  11. Apparatuses to support photovoltaic modules

    Science.gov (United States)

    Ciasulli, John; Jones, Jason

    2017-08-22

    Methods and apparatuses to support photovoltaic ("PV") modules are described. A saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. A grounding washer has a first portion to couple to a support; and a second portion coupled to the first portion to provide a ground path to a PV module. A PV system has a saddle bracket; a PV module over the saddle bracket; and a grounding washer coupled to the saddle bracket and the PV module. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets.

  12. Dynamic of small photovoltaic systems

    Science.gov (United States)

    Mehrmann, A.; Kleinkauf, W.; Pigorsch, W.; Steeb, H.

    The results of 1.5 yr of field-testing of two photovoltaic (PV) power plants, one equipped with an electrolyzer and H2 storage, are reported. Both systems were interconnected with the grid and featured the PV module, a power conditioning unit, ac and dc load connections, and control units. The rated power of both units was 100 Wp. The system with electrolysis was governed by control laws which maximized the electrolyzer current. The tests underscored the preference for a power conditioning unit, rather than direct output to load connections. A 1 kWp system was developed in a follow-up program and will be tested in concert with electrolysis and interconnection with several grid customers. The program is geared to eventual development of larger units for utility-size applications.

  13. Photovoltaic power systems energy storage

    International Nuclear Information System (INIS)

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  14. Photovoltaic technologies for commercial power generation

    International Nuclear Information System (INIS)

    Carlson, D.E.

    1990-01-01

    Photovoltaic power generation is an attractive source of energy since it involves the direct conversion of sunlight into electricity with no moving parts and no pollution. Following the demonstration of the first solar cell 35 years ago at Bell Laboratories, a steady stream of scientific and commercial progress has led to a rapid increase in applications in recent years. The first commercial application of solar cells occurred more than 20 years ago when they were used to supply power for space satellites, and even today photovoltaic arrays are used to supply electricity for most satellites and space probes. This paper reviews the status of the various photovoltaic technologies as well as present applications. The prospects for both distributed and central station grid-connected systems are discussed. The paper concludes with a discussion of the institutional and political factors that will affect the introduction of grid-connected photovoltaic power systems

  15. Correlation of photovoltaic geographical information system data ...

    African Journals Online (AJOL)

    In this study, a 12-month record of global solar radiation (GSR) data in Niger Delta ... the viewpoint of making a case for renewable energy investment in the region. Keywords: Solar energy, global solar radiation, Photovoltaic GIS, Niger Delta

  16. Voltage Quality Improvement Using Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Denisa Galzina

    2015-06-01

    This paper briefly shows the methods of power quality improvement, and then the results of on-site power quality measurements in the grid before and after the connection of the solar photovoltaic system.

  17. NASA-OAST photovoltaic energy conversion program

    Science.gov (United States)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  18. Central station market development strategies for photovoltaics

    Science.gov (United States)

    1980-01-01

    Federal market development strategies designed to accelerate the market penetration of central station applications of photovoltaic energy system are analyzed. Since no specific goals were set for the commercialization of central station applications, strategic principles are explored which, when coupled with specific objectives for central stations, can produce a market development implementation plan. The study includes (1) background information on the National Photovoltaic Program, photovoltaic technology, and central stations; (2) a brief market assessment; (3) a discussion of the viewpoints of the electric utility industry with respect to solar energy; (4) a discussion of commercialization issues; and (5) strategy principles. It is recommended that a set of specific goals and objectives be defined for the photovoltaic central station program, and that these goals and objectives evolve into an implementation plan that identifies the appropriate federal role.

  19. Photovoltaic technologies for commerical power generation

    International Nuclear Information System (INIS)

    Carlson, D.E.

    1990-01-01

    The author reports photovoltaic power generation is an attractive source of energy since it involves the direct conversion of sunlight into electricity with no moving parts and no pollution. Following the demonstration of the first solar cell 35 years ago at Bell Laboratories, a steady stream of scientific and commercial progress has led to a rapid increase in applications in recent years. The first commercial application of solar cells occurred more than 20 years ago when they were used to supply power for space satellites, and even today photovoltaic arrays are used to supply electricity for most satellites and space probes. This paper reviews the status of the various photovoltaic technologies as well as present applications. The prospects for both distributed and central station grid-connected systems are discussed. The paper concludes with a discussion of the institutional and political factors that will affect the introduction of grid-connected photovoltaic power systems

  20. Colloidal Quantum Dot Photovoltaics: A Path Forward

    KAUST Repository

    Kramer, Illan J.; Sargent, Edward H.

    2011-01-01

    spectrum. CQD materials' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal quantum dot photovoltaic solar power conversion efficiencies of 6% in the latest reports. These achievements