WorldWideScience

Sample records for cuprous oxide first-principles

  1. Radiation annealing in cuprous oxide

    DEFF Research Database (Denmark)

    Vajda, P.

    1966-01-01

    Experimental results from high-intensity gamma-irradiation of cuprous oxide are used to investigate the annealing of defects with increasing radiation dose. The results are analysed on the basis of the Balarin and Hauser (1965) statistical model of radiation annealing, giving a square...

  2. Electronic structure and ionicity of actinide oxides from first principles

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2010-01-01

    The ground-state electronic structures of the actinide oxides AO, A2O3, and AO2 (A=U, Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f-electron localization, whi...

  3. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Majumder, M.; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-01-01

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu 2 O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  4. Electrochromism of the electroless deposited cuprous oxide films

    International Nuclear Information System (INIS)

    Neskovska, R.; Ristova, M.; Velevska, J.; Ristov, M.

    2007-01-01

    Thin cuprous oxide films were prepared by a low cost, chemical deposition (electroless) method onto glass substrates pre-coated with fluorine doped tin oxide. The X-ray diffraction pattern confirmed the Cu 2 O composition of the films. Visible transmittance spectra of the cuprous oxide films were studied for the as-prepared, colored and bleached films. The cyclic voltammetry study showed that those films exhibited cathode coloring electrochromism, i.e. the films showed change of color from yellowish to black upon application of an electric field. The transmittance across the films for laser light of 670 nm was found to change due to the voltage change for about 50%. The coloration memory of those films was also studied during 6 h, ex-situ. The coloration efficiency at 670 nm was calculated to be 37 cm 2 /C

  5. First principles studies of complex oxide surfaces and interfaces

    International Nuclear Information System (INIS)

    Noguera, Claudine; Finocchi, Fabio; Goniakowski, Jacek

    2004-01-01

    Oxides enter our everyday life and exhibit an impressive variety of physical and chemical properties. The understanding of their behaviour, which is often determined by the electronic and atomic structures of their surfaces and interfaces, is a key question in many fields, such as geology, environmental chemistry, catalysis, thermal coatings, microelectronics, and bioengineering. In the last decade, first principles methods, mainly those based on the density functional theory, have been frequently applied to study complex oxide surfaces and interfaces, complementing the experimental observations. In this work, we discuss some of these contributions, with emphasis on several issues that are especially important when dealing with oxides: the local electronic structure at interfaces, and its connection with chemical reactivity; the charge redistribution and the bonding variations, in relation to screening properties; and the possibility of bridging the gap between model and real systems by taking into account the chemical environments and the effect of finite temperatures, and by performing simulations on systems of an adequate (large) size

  6. Green chemistry synthesis of nano-cuprous oxide.

    Science.gov (United States)

    Ceja-Romero, L R; Ortega-Arroyo, L; Ortega Rueda de León, J M; López-Andrade, X; Narayanan, J; Aguilar-Méndez, M A; Castaño, V M

    2016-04-01

    Green chemistry and a central composite design, to evaluate the effect of reducing agent, temperature and pH of the reaction, were employed to produce controlled cuprous oxide (Cu2O) nanoparticles. Response surface method of the ultraviolet-visible spectroscopy is allowed to determine the most relevant factors for the size distribution of the nanoCu2O. X-ray diffraction reflections correspond to a cubic structure, with sizes from 31.9 to 104.3 nm. High-resolution transmission electron microscopy reveals that the different shapes depend strongly on the conditions of the green synthesis.

  7. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Science.gov (United States)

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  8. Cuprous oxide nanoparticles dispersed on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction.

    Science.gov (United States)

    Yan, Xiao-Yan; Tong, Xi-Li; Zhang, Yue-Fei; Han, Xiao-Dong; Wang, Ying-Yong; Jin, Guo-Qiang; Qin, Yong; Guo, Xiang-Yun

    2012-02-11

    Cuprous oxide (Cu(2)O) nanoparticles dispersed on reduced graphene oxide (RGO) were prepared by reducing copper acetate supported on graphite oxide using diethylene glycol as both solvent and reducing agent. The Cu(2)O/RGO composite exhibits excellent catalytic activity and remarkable tolerance to methanol and CO in the oxygen reduction reaction. This journal is © The Royal Society of Chemistry 2012

  9. Directing the Branching Growth of Cuprous Oxide by OH- Ions

    Science.gov (United States)

    Chen, Kunfeng; Si, Yunfei; Xue, Dongfeng

    The effect of OH- ions on the branching growth of cuprous oxide microcrystals was systematically studied by a reduction route, where copper-citrate complexes were reduced by glucose under alkaline conditions. Different copper salts including Cu(NO3)2, CuCl2, CuSO4, and Cu(Ac)2 were used in this work. The results indicate that the Cu2O branching growth habit is closely correlated to the concentration of OH- ions, which plays an important role in directing the diffusion-limited branching growth of Cu2O and influencing the reduction power of glucose. A variety of Cu2O branching patterns including 6-pod, 8-pod and 24-pod branches, have been achieved without using template and surfactant. The current method can provide a good platform for studying the growth mechanism of microcrystal branching patterns.

  10. First-principles study of dielectric properties of cerium oxide

    International Nuclear Information System (INIS)

    Yamamoto, Takenori; Momida, Hiroyoshi; Hamada, Tomoyuki; Uda, Tsuyoshi; Ohno, Takahisa

    2005-01-01

    We have theoretically investigated the dielectric properties of fluorite CeO 2 as well as hexagonal and cubic Ce 2 O 3 by using first-principles pseudopotentials techniques within the local density approximation. Calculated electronic and lattice dielectric constants of CeO 2 are in good agreement with previous theoretical and experimental results. For Ce 2 O 3 , the hexagonal phase has a lattice dielectric constant comparable to that of CeO 2 , whereas the cubic phase has a much smaller one. We have concluded that the enhancement of the dielectric constant in CeO 2 epitaxially grown on Si is not due to its lattice expansion experimentally observed nor regular formation of oxygen vacancies in CeO 2

  11. Microwave-assisted synthesis and optical properties of cuprous oxide micro/nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Dandan [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China); Du, Yi, E-mail: duyi234@126.com [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China); Tian, Xiuying, E-mail: xiuyingt@yahoo.com [Department of Chemistry and Materials Science, Hunan Institute of Humanities Science and Technology, Loudi 417000 (China); Li, Zhongfu; Chen, Zhongtao; Zhu, Chaofeng [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China)

    2014-12-15

    Graphical abstract: Cuprous oxide micro/nanocrystals were fabricated by a facile and green microwave-assisted method using soluble starch as reductant and dispersant. Spheres with the diameter of about 100 and 600 nm, octahedron and truncated octahedron with the edge length of about 0.8–3 μm cuprous oxide micro/nanocrystals were successfully obtained. Microwave heating was proved to be a efficient method and was advantageous to the homogeneous nucleation. Growth mechanism of the prepared Cu{sub 2}O microcrystals were investigated carefully. Furthermore, the optical properties of the prepared cuprous oxide microcrystals were investigated by UV–vis diffuse reflectance spectroscopy, demonstrating that their band gaps of obtained samples were 1.96–2.07 eV, assigned to their different sizes and morphologies. - Abstract: Cuprous oxide micro/nanocrystals were fabricated by a facile and green microwave-assisted method using soluble starch as reductant and dispersant. It was observed that the addition amounts of NaOH had a prominent effect on the morphologies and size of cuprous oxide products, and microwave heating was proved to be a efficient method and was advantageous to the homogeneous nucleation. The as-obtained samples were characterized by X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The results indicated that the samples were pure cuprous oxide. Spheres with the diameter of about 100 and 600 nm, octahedron and truncated octahedron with the edge length of about 0.8–3 μm cuprous oxide micro/nanocrystals were successfully obtained. Furthermore, the UV–vis diffuse reflectance spectroscopy was used to investigate the optical properties of the prepared cuprous oxide microcrystals, demonstrating that their band gaps of obtained samples were 1.96–2.07 eV, assigned to their different sizes and morphologies.

  12. First principle active neutron coincidence counting measurements of uranium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, Braden, E-mail: goddard.braden@gmail.com [Nuclear Security Science and Policy Institute, Texas A and M University, College Station, Texas 77843 (United States); Charlton, William [Nuclear Security Science and Policy Institute, Texas A and M University, College Station, Texas 77843 (United States); Peerani, Paolo [European Commission, EC-JRC-ITU, Ispra (Italy)

    2014-03-01

    Uranium is present in most nuclear fuel cycle facilities ranging from uranium mines, enrichment plants, fuel fabrication facilities, nuclear reactors, and reprocessing plants. The isotopic, chemical, and geometric composition of uranium can vary significantly between these facilities, depending on the application and type of facility. Examples of this variation are: enrichments varying from depleted (∼0.2 wt% {sup 235}U) to high enriched (>20 wt% {sup 235}U); compositions consisting of U{sub 3}O{sub 8}, UO{sub 2}, UF{sub 6}, metallic, and ceramic forms; geometries ranging from plates, cans, and rods; and masses which can range from a 500 kg fuel assembly down to a few grams fuel pellet. Since {sup 235}U is a fissile material, it is routinely safeguarded in these facilities. Current techniques for quantifying the {sup 235}U mass in a sample include neutron coincidence counting. One of the main disadvantages of this technique is that it requires a known standard of representative geometry and composition for calibration, which opens up a pathway for potential erroneous declarations by the State and reduces the effectiveness of safeguards. In order to address this weakness, the authors have developed a neutron coincidence counting technique which uses the first principle point-model developed by Boehnel instead of the “known standard” method. This technique was primarily tested through simulations of 1000 g U{sub 3}O{sub 8} samples using the Monte Carlo N-Particle eXtended (MCNPX) code. The results of these simulations showed good agreement between the simulated and exact {sup 235}U sample masses.

  13. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors

    DEFF Research Database (Denmark)

    Lee, Yueh-Lin; Kleis, Jesper; Rossmeisl, Jan

    2011-01-01

    In this work we demonstrate that the experimentally measured area specific resistance and oxygen surface exchange of solid oxide fuel cell cathode perovskites are strongly correlated with the first-principles calculated oxygen p-band center and vacancy formation energy. These quantities...... are therefore descriptors of catalytic activity that can be used in the first-principles design of new SOFC cathodes....

  14. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Directory of Open Access Journals (Sweden)

    Wang Y

    2012-05-01

    Full Text Available Ye Wang,1,2,* Xiao-Yuan Zi,1,* Juan Su,1 Hong-Xia Zhang,1 Xin-Rong Zhang,3 Hai-Ying Zhu,1 Jian-Xiu Li,1 Meng Yin,3 Feng Yang,3 Yi-Ping Hu,11Department of Cell Biology, 2School of Clinical Medicine, 3Department of Pharmaceuticals, Second Military Medical University, Shanghai, People's Republic of China*Authors contributed equally.Abstract: In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy.Keywords: nanomedicine, selective cytotoxicity, apoptosis, cell cycle arrest, mitochondrion-targeted nanomaterials

  15. A first principles investigation of the electronic structure of actinide oxides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Zdzislawa

    2010-01-01

    The ground state electronic structures of the actinide oxides AO, A2O3 and AO2 (A=U, Np, Pu, Am, Cm, Bk, Cf) are determined from first-principles calculations using the selfinteraction corrected local spin-density approximation. Our study reveals a strong link between preferred oxidation number...... and degree of localization. The ionic nature of the actinide oxides emerges from the fact that those oxides where the ground state is calculated to be metallic do not exist in nature, as the corresponding delocalized f-states favour the accommodation of additional O atoms into the crystal lattice....

  16. Correlated lifetimes of free paraexcitons and excitons trapped at oxygen vacancies in cuprous oxide

    International Nuclear Information System (INIS)

    Koirala, Sandhaya; Naka, Nobuko; Tanaka, Koichiro

    2013-01-01

    We have studied transients of luminescence due to free excitons and excitons trapped at oxygen vacancies in cuprous oxide. We find that both trapped and free paraexcitons have lifetime dependent on temperature and on the oxygen concentration. By using samples containing much less copper vacancies relative to oxygen vacancies, we find out the direct correlation between the free paraexciton lifetime and trapped exciton lifetime. - Highlights: ► We have investigated trapping of free excitons at oxygen vacancies in cuprous oxide. ► Lifetimes of free and trapped excitons exhibit correlative temperature dependence. ► Four-level model with the activation energy of 33 meV well explains the observation. ► Comparison is made using the four samples with different vacancy concentrations. ► We clarified the crucial role of the oxygen vacancy in shortening the lifetimes.

  17. Defect engineering of the electronic transport through cuprous oxide interlayers

    KAUST Repository

    Fadlallah, Mohamed M.; Eckern, Ulrich; Schwingenschlö gl, Udo

    2016-01-01

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects

  18. Light-Induced Reduction of Cuprous Oxide in an Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Cavalca, Filippo Carlo; Laursen, Anders Bo; Wagner, Jakob Birkedal

    2013-01-01

    Photocatalysts for solar fuel production are subject to intensive investigation as they constitute one viable route for solar energy harvesting. Cuprous oxide (Cu2O) is a working photocatalyst for hydrogen evolution but it photocorrodes upon light illumination in an aqueous environment....... Environmental transmission electron microscopy (ETEM) makes it possible to obtain insight into the local structure, composition and reactivity of catalysts in their working environment, which is of fundamental interest for sustainable energy research and is essential for further material optimization. Herein...

  19. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating.

    Science.gov (United States)

    M El Saeed, Ashraf; Abd El-Fattah, M; Azzam, Ahmed M; Dardir, M M; Bader, Magd M

    2016-08-01

    Cuprous oxide is commonly used as a pigment; paint manufacturers begin to employ cuprous oxide as booster biocides in their formulations, to replace the banned organotins as the principal antifouling compounds. Epoxy coating was reinforced with cuprous oxide nanoparticles (Cu2O NPs). The antibacterial as well as antifungal activity of Cu2O epoxy nanocomposite (Cu2O EN) coating films was investigated. Cu2O NPs were also experimented for antibiofilm and time-kill assay. The thermal stability and the mechanical properties of Cu2O EN coating films were also investigated. The antimicrobial activity results showed slowdown, the growth of organisms on the Cu2O EN coating surface. TGA results showed that incorporating Cu2O NPs into epoxy coating considerably enhanced the thermal stability and increased the char residue. The addition of Cu2O NPs at lower concentration into epoxy coating also led to an improvement in the mechanical resistance such as scratch and abrasion. Cu2O NPs purity was confirmed by XRD. The TEM photograph demonstrated that the synthesized Cu2O NPs were of cubic shape and the average diameter of the crystals was around 25nm. The resulting perfect dispersion of Cu2O NPs in epoxy coating revealed by SEM ensured white particles embedded in the epoxy matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Oxidation of InP nanowires: a first principles molecular dynamics study.

    Science.gov (United States)

    Berwanger, Mailing; Schoenhalz, Aline L; Dos Santos, Cláudia L; Piquini, Paulo

    2016-11-16

    InP nanowires are candidates for optoelectronic applications, and as protective capping layers of III-V core-shell nanowires. Their surfaces are oxidized under ambient conditions which affects the nanowire physical properties. The majority of theoretical studies of InP nanowires, however, do not take into account the oxide layer at their surfaces. In this work we use first principles molecular dynamics electronic structure calculations to study the first steps in the oxidation process of a non-saturated InP nanowire surface as well as the properties of an already oxidized surface of an InP nanowire. Our calculations show that the O 2 molecules dissociate through several mechanisms, resulting in incorporation of O atoms into the surface layers. The results confirm the experimental observation that the oxidized layers become amorphous but the non-oxidized core layers remain crystalline. Oxygen related bonds at the oxidized layers introduce defective levels at the band gap region, with greater contributions from defects involving In-O and P-O bonds.

  1. Towards printed perovskite solar cells with cuprous oxide hole transporting layers

    DEFF Research Database (Denmark)

    Wang, Yan; Xia, Zhonggao; Liang, Jun

    2015-01-01

    Solution-processed p-type metal oxide materials have shown great promise in improving the stability of perovskite-based solar cells and offering the feasibility for a low cost printing fabrication process. Herein, we performed a device modeling study on planar perovskite solar cells with cuprous...... oxide (Cu2O) hole transporting layers (HTLs) by using a solar cell simulation program, wxAMPS. The performance of a Cu2O/perovskite solar cell was correlated to the material properties of the Cu2O HTL, such as thickness, carrier mobility, mid-gap defect, and doping...

  2. First-principles calculations of orientation dependence of Si thermal oxidation based on Si emission model

    Science.gov (United States)

    Nagura, Takuya; Kawachi, Shingo; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Kageshima, Hiroyuki; Endoh, Tetsuo; Shiraishi, Kenji

    2018-04-01

    It is expected that the off-state leakage current of MOSFETs can be reduced by employing vertical body channel MOSFETs (V-MOSFETs). However, in fabricating these devices, the structure of the Si pillars sometimes cannot be maintained during oxidation, since Si atoms sometimes disappear from the Si/oxide interface (Si missing). Thus, in this study, we used first-principles calculations based on the density functional theory, and investigated the Si emission behavior at the various interfaces on the basis of the Si emission model including its atomistic structure and dependence on Si crystal orientation. The results show that the order in which Si atoms are more likely to be emitted during thermal oxidation is (111) > (110) > (310) > (100). Moreover, the emission of Si atoms is enhanced as the compressive strain increases. Therefore, the emission of Si atoms occurs more easily in V-MOSFETs than in planar MOSFETs. To reduce Si missing in V-MOSFETs, oxidation processes that induce less strain, such as wet or pyrogenic oxidation, are necessary.

  3. Defect engineering of the electronic transport through cuprous oxide interlayers

    KAUST Repository

    Fadlallah, Mohamed M.

    2016-06-03

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.

  4. First-Principles Modeling of ThO2 Solid Solutions with Oxides of Trivalent Cations

    Science.gov (United States)

    Alexandrov, Vitaly; Asta, Mark; Gronbech-Jensen, Niels

    2010-03-01

    Solid solutions formed by doping ThO2 with oxides of trivalent cations, such as Y2O3 and La2O3, are suitable for solid electrolyte applications, similar to doped zirconia and ceria. ThO2 has also been gaining much attention as an alternative to UO2 in nuclear energy applications, the aforementioned trivalent cations being important fission products. In both cases the mixing energetics and short-range ordering/clustering are key to understanding structural and transport properties. Using first-principles atomistic calculations, we address intra- and intersublattice interactions for both cation and anion sublattices in ThO2-based fluorite-type solid solutions and compare the results with similar modeling studies for related trivalent-doped zirconia systems.

  5. Optoelectronic and magnetic properties of Mn-doped indium tin oxide: A first-principles study

    Science.gov (United States)

    Nath Tripathi, Madhvendra; Saeed Bahramy, Mohammad; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-10-01

    The manganese doped indium tin oxide (ITO) has integrated magnetics, electronics, and optical properties for next generation multifunctional devices. Our first-principles density functional theory (DFT) calculations show that the manganese atom replaces b-site indium atom, located at the second coordination shell of the interstitial oxygen in ITO. It is also found that both anti-ferromagnetic and ferromagnetic behaviors are realizable. The calculated magnetic moment of 3.95μB/Mn as well as the high transmittance of ˜80% for a 150 nm thin film of Mn doped ITO is in good agreement with the experimental data. The inclusion of on-site Coulomb repulsion corrections via DFT + U methods turns out to improve the optical behavior of the system. The optical behaviors of this system reveal its suitability for the magneto-opto-electronic applications.

  6. First-principles data-driven discovery of transition metal oxides for artificial photosynthesis

    Science.gov (United States)

    Yan, Qimin

    We develop a first-principles data-driven approach for rapid identification of transition metal oxide (TMO) light absorbers and photocatalysts for artificial photosynthesis using the Materials Project. Initially focusing on Cr, V, and Mn-based ternary TMOs in the database, we design a broadly-applicable multiple-layer screening workflow automating density functional theory (DFT) and hybrid functional calculations of bulk and surface electronic and magnetic structures. We further assess the electrochemical stability of TMOs in aqueous environments from computed Pourbaix diagrams. Several promising earth-abundant low band-gap TMO compounds with desirable band edge energies and electrochemical stability are identified by our computational efforts and then synergistically evaluated using high-throughput synthesis and photoelectrochemical screening techniques by our experimental collaborators at Caltech. Our joint theory-experiment effort has successfully identified new earth-abundant copper and manganese vanadate complex oxides that meet highly demanding requirements for photoanodes, substantially expanding the known space of such materials. By integrating theory and experiment, we validate our approach and develop important new insights into structure-property relationships for TMOs for oxygen evolution photocatalysts, paving the way for use of first-principles data-driven techniques in future applications. This work is supported by the Materials Project Predictive Modeling Center and the Joint Center for Artificial Photosynthesis through the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. Computational resources also provided by the Department of Energy through the National Energy Supercomputing Center.

  7. Multicomponent exciton gas in cuprous oxide: cooling behaviour and the role of Auger decay

    Science.gov (United States)

    Semkat, D.; Sobkowiak, S.; Schöne, F.; Stolz, H.; Koch, Th; Fehske, H.

    2017-10-01

    In this paper we present a hydrodynamic model to describe the dynamics of para- and orthoexcitons in cuprous oxide at ultralow temperatures inside a stress induced potential trap. We take into account the finite lifetime of the excitons, the excitation process and exciton-phonon as well as exciton-exciton interaction. Furthermore, we model the two-body loss mechanism assuming an Auger-like effect and compare it to an alternative explanation which relies on the formation of biexcitons. We discuss in detail the influence on the numerical results and compare the predictions to experimental data.

  8. CO oxidation catalyzed by Pt-embedded graphene: A first-principles investigation

    KAUST Repository

    Liu, Xin; Sui, Yanhui; Duan, Ting; Meng, Changong; Han, Yu

    2014-01-01

    We addressed the potential catalytic role of Pt-embedded graphene in CO oxidation by first-principles-based calculations. We showed that the combination of highly reactive Pt atoms and defects over graphene makes the Pt-embedded graphene a superior mono-dispersed atomic catalyst for CO oxidation. The binding energy of a single Pt atom onto monovacancy defects is up to -7.10 eV, which not only ensures the high stability of the embedded Pt atom, but also vigorously excludes the possibility of diffusion and aggregation of embedded Pt atoms. This strong interfacial interaction also tunes the energy level of Pt-d states for the activation of O2, and promotes the formation and dissociation of the peroxide-like intermediate. The catalytic cycle of CO oxidation is initiated through the Langmuir-Hinshelwood mechanism, with the formation of a peroxide-like intermediate by the coadsorbed CO and O2, by the dissociation of which the CO2 molecule and an adsorbed O atom are formed. Then, another gaseous CO will react with the remnant O atom and make the embedded Pt atom available for the subsequent reaction. The calculated energy barriers for the formation and dissociation of the peroxide-like intermediate are as low as 0.33 and 0.15 eV, respectively, while that for the regeneration of the embedded Pt atom is 0.46 eV, indicating the potential high catalytic performance of Pt-embedded graphene for low temperature CO oxidation.

  9. A Facile One Step Solution Route to Synthesize Cuprous Oxide Nanofluid

    Directory of Open Access Journals (Sweden)

    Shenoy U. Sandhya

    2013-05-01

    Full Text Available A cuprous oxide nanofluid stabilized by sodium lauryl sulfate, synthesized by using the one step method, has been reported. Nanofluids were synthesized by using a well‐ controlled surfactant‐assisted solution phase synthesis. The method involved reduction of copper acetate by glucose in a mixture of water and ethylene glycol serving as the base fluid. The synthesized fluid was characterized by X‐ray and electron diffraction techniques, in addition, transmission and field emission microscopic techniques and Fourier transform infra red spectroscopic analysis was undertaken. The rheological property, as well as the thermal conductivity of the fluid, were measured. The variation of reaction parameters considerably affected the size of the particles as well as the reaction rate. The uniform dispersion of the particles in the base fluid led to a stability period of three months under stationary state, augmenting the thermal conductivity of the nanofluid. The method is found to be simple, reliable and fast for the synthesis of Newtonian nanofluids containing cuprous oxide nanoparticles.

  10. Cuprous Oxide Scale up: Gram Production via Bulk Synthesis using Classic Solvents at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hall, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Han, T. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-07

    Cuprous oxide is a p-type semiconducting material that has been highly researched for its interesting properties. Many small-scale syntheses have exhibited excellent control over size and morphology. As the demand for cuprous oxide grows, the synthesis method need to evolve to facilitate large-scale production. This paper supplies a facile bulk synthesis method for Cu₂O on average, 1-liter reaction volume can produce 1 gram of particles. In order to study the shape and size control mechanisms on such a scale, the reaction volume was diminished to 250 mL producing on average 0.3 grams of nanoparticles per batch. Well-shaped nanoparticles have been synthesized using an aqueous solution of CuCl₂, NaOH, SDS surfactant, and NH₂OH-HCl at mild temperatures. The time allotted between the addition of NaOH and NH₂OH-HCl was determined to be critical for Cu(OH)2 production, an important precursor to the final produce The effects of stirring rates on a large scale was also analyzed during reagent addition and post reagent addition. A morphological change from rhombic dodecahedra to spheres occurred as the stirring speed was increased. The effects of NH₂OH-HCl concentration were also studied to control the etching effects of the final product.

  11. Transition metal decorated graphene-like zinc oxide monolayer: A first-principles investigation

    Science.gov (United States)

    Lei, Jie; Xu, Ming-Chun; Hu, Shu-Jun

    2015-09-01

    Transition metal (TM) atoms have been extensively employed to decorate the two-dimensional materials, endowing them with promising physical properties. Here, we have studied the adsorption of TM atoms (V, Cr, Mn, Fe, and Co) on graphene-like zinc oxide monolayer (g-ZnO) and the substitution of Zn by TM using first-principles calculations to search for the most likely configurations when TM atoms are deposited on g-ZnO. We found that when a V atom is initially placed on the top of Zn atom, V will squeeze out Zn from the two-dimensional plane then substitute it, which is a no barrier substitution process. For heavier elements (Cr to Co), although the substitution configurations are more stable than the adsorption ones, there is an energy barrier for the adsorption-substitution transition with the height of tens to hundreds meV. Therefore, Cr to Co prefers to be adsorbed on the hollow site or the top of oxygen, which is further verified by the molecular dynamics simulations. The decoration of TM is revealed to be a promising approach in terms of tuning the work function of g-ZnO in a large energy range.

  12. First-principles calculation on electronic properties of zinc oxide by zinc–air system

    Directory of Open Access Journals (Sweden)

    Ahmad Azmin Mohamad

    2017-07-01

    Full Text Available First-principles calculations are performed to study the electronic properties of zinc oxide (ZnO formed on an anode after discharging a Zn–air system. Prior to calculation, the ZnO is characterised by X-ray diffraction using Rietveld refinement. Diffracted patterns proved the formation of single phase ZnO, while Rietveld analysis shows that the ZnO has a hexagonal wurtzite structure with lattice parameters, a = 3.244 and c = 5.199 Å. Geometry optimisation of the hexagonal wurtzite structure of the ZnO is performed using various exchange–correlation energy functionals. The local density approximation functional method is used to explain the structure, electronic band structure and density of state properties of hexagonal ZnO. The calculated energy band gap was 0.75 eV while the density of states reveals that the O 2p (the top valence band and Zn 4s (the bottom conduction band states domination.

  13. Structural, elastic, mechanical and thermodynamic properties of Terbium oxide: First-principles investigations

    Directory of Open Access Journals (Sweden)

    Samah Al-Qaisi

    Full Text Available First-principles investigations of the Terbium oxide TbO are performed on structural, elastic, mechanical and thermodynamic properties. The investigations are accomplished by employing full potential augmented plane wave FP-LAPW method framed within density functional theory DFT as implemented in the WIEN2k package. The exchange-correlation energy functional, a part of the total energy functional, is treated through Perdew Burke Ernzerhof scheme of the Generalized Gradient Approximation PBEGGA. The calculations of the ground state structural parameters, like lattice constants a0, bulk moduli B and their pressure derivative B′ values, are done for the rock-salt RS, zinc-blende ZB, cesium chloride CsCl, wurtzite WZ and nickel arsenide NiAs polymorphs of the TbO compound. The elastic constants (C11, C12, C13, C33, and C44 and mechanical properties (Young’s modulus Y, Shear modulus S, Poisson’s ratio σ, Anisotropic ratio A and compressibility β, were also calculated to comprehend its potential for valuable applications. From our calculations, the RS phase of TbO compound was found strongest one mechanically amongst the studied cubic structures whereas from hexagonal phases, the NiAs type structure was found stronger than WZ phase of the TbO. To analyze the ductility of the different structures of the TbO, Pugh’s rule (B/SH and Cauchy pressure (C12–C44 approaches are used. It was found that ZB, CsCl and WZ type structures of the TbO were of ductile nature with the obvious dominance of the ionic bonding while RS and NiAs structures exhibited brittle nature with the covalent bonding dominance. Moreover, Debye temperature was calculated for both cubic and hexagonal structures of TbO in question by averaging the computed sound velocities. Keywords: DFT, TbO, Elastic properties, Thermodynamic properties

  14. A first principles study of the oxidation energetics and kinetics of realgar

    Science.gov (United States)

    Renock, Devon; Becker, Udo

    2010-08-01

    Quantum-mechanical calculations allow resolving and quantifying in detail important aspects of reaction mechanisms such as spin transitions and oxygen dissociation that can be the major rate-limiting steps in redox processes on sulfide and oxide surfaces. In addition, this knowledge can help experimentalists in setting up the framework of rate equations that can be used to describe the kinetics of, e.g., oxidation processes. The unique molecular crystal structure of realgar, As 4S 4 clusters held together by van der Waals bonds, allows for a convenient quantum-mechanical (q.m.) cluster approach to investigate the thermodynamics and kinetic pathways of oxidation. The interaction of As 4S 4 clusters with oxygen and co-adsorbed ions provides a model system for understanding the molecular-scale processes that underpin empirically-derived rate expressions, and provides clues to the oxidation mechanisms of other sulfides and oxides. Two activated processes are shown to dominate the kinetics of oxidation by molecular oxygen: (i) a paramagnetic 3O to diamagnetic 1O spin transition and (ii) oxygen dissociation on the surface, in that order. The activation energies for the spin transition and O 2 dissociation step were determined to be 1.1 eV (106 kJ/mol) and 0.9 eV (87 kJ/mol), respectively, if molecular oxygen is the only reactant on the surface. In the case of As 4S 4, q.m. calculations reveal that 3O transfers its spin to the cluster and forms a low-spin, peroxo intermediate on the surface before dissociating. The adsorption of a hydroxide ion on the surface proximate to the 3O adsorption site changes the adsorption mechanism by lowering the activation energy barriers for both the spin transition (0.30 eV/29 kJ/mol) and the O 2 dissociation step (0.72 eV/69 kJ/mol). Thus, while spin transition is rate limiting for oxidation with O 2 alone, dissociation becomes the rate-limiting step for oxidation with co-adsorption of OH -. First-principles, periodic calculations of the

  15. Copper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin; Duan, Ting; Sui, Yanhui; Meng, Changgong; Han, Yu

    2014-01-01

    We addressed the electronic structure of Cu atoms embedded in hexagonal boron nitride (h-BN) and their catalytic role in CO oxidation by first-principles-based calculations. We showed that Cu atoms prefer to bind directly with the localized defects

  16. First Principles Studies of Perovskites for Intermediate Temperature Solid Oxide Fuel Cell Cathodes

    KAUST Repository

    Salawu, Omotayo Akande

    2017-05-15

    Fundamental advances in cathode materials are key to lowering the operating temperature of solid oxide fuel cells (SOFCs). Detailed understanding of the structural, electronic and defect formation characteristics are essential for rational design of cathode materials. In this thesis we employ first principles methods to study La(Mn/Co)O3 and LnBaCo2O5+δ (Ln = Pr, Gd; δ = 0.5, 1) as cathode for SOFCs. Specifically, factors affecting the O vacancy formation and migration are investigated. We demonstrate that for LaMnO3 the anisotropy effects often neglected at high operating temperatures become relevant when the temperature is lowered. We show that this fact has consequences for the material properties and can be further enhanced by strain and Sr doping. Tensile strain promotes both the O vacancy formation and migration in pristine and Sr doped LaMnO3, while Sr doping enhances the O vacancy formation but not the migration. The effect of A-site hole doping (Mg2+, Ca2+ or Ba2+) on the electronic and magnetic properties as well as the O vacancy formation and migration in LaCoO3 are studied. All three dopants are found to facilitate O vacancy formation. Substitution of La3+ with Ba2+/Mg2+ yields the lowest O vacancy formation energy for low/intermediate spin Co, implying that not only the structure, but also the spin state of Co is a key parameter. Only for low spin Co the ionic radius is correlated with the O migration barrier. Enhanced migration for intermediate spin Co is ascribed to the availability of additional space at the transition state. For LnBaCo2O5+δ we compare the O vacancy formation in GdBaCo2O5.5 (Pmmm symmetry) and GdBaCo2O6 (P4/mmm symmetry), and the influence of Sr doping. The O vacancy formation energy is demonstrated to be smaller in the already O deficient compound. This relation is maintained under Sr doping. It turns out that Sr doping can be utilized to significantly enhance the O vacancy formation in both compounds. The observed trends are

  17. First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo, Ryan Lacdao [Department of Precision Science and Technology and Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Escaño, Mary Clare Sison [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507 (Japan); Kasai, Hideaki, E-mail: kasai@dyn.ap.eng.osaka-u.ac.jp [Department of Precision Science and Technology and Applied Physics, Center for Atomic and Molecular Technologies, and Center for Continuing Professional Development, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-03-15

    Catalytic oxidation of NO to NO{sub 2} is a significant research interest for improving the quality of air through exhaust gas purification systems. In this paper, the authors studied this reaction on pure Pt and Pt overlayer on 3d transition metals using kinetic Monte Carlo simulations coupled with density functional theory based first principles calculations. The authors found that on the Pt(111) surface, NO oxidation proceeds via the Eley–Rideal mechanism, with O{sub 2} dissociative adsorption as the rate-determining step. The oxidation path via the Langmuir–Hinshelwood mechanism is very slow and does not significantly contribute to the overall reaction. However, in the Pt overlayer systems, the oxidation of NO on the surface is more thermodynamically and kinetically favorable compared to pure Pt. These findings are attributed to the weaker binding of O and NO on the Pt overlayer systems and the binding configuration of NO{sub 2} that promotes easier N-O bond formation. These results present insights for designing affordable and efficient catalysts for NO oxidation.

  18. Fraction of boroxol rings in vitreous boron oxide from a first-principles analysis of Raman and NMR spectra.

    Science.gov (United States)

    Umari, P; Pasquarello, Alfredo

    2005-09-23

    We determine the fraction f of B atoms belonging to boroxol rings in vitreous boron oxide through a first-principles analysis. After generating a model structure of vitreous B2O3 by first-principles molecular dynamics, we address a large set of properties, including the neutron structure factor, the neutron density of vibrational states, the infrared spectra, the Raman spectra, and the 11B NMR spectra, and find overall good agreement with corresponding experimental data. From the analysis of Raman and 11B NMR spectra, we yield consistently for both probes a fraction f of approximately 0.75. This result indicates that the structure of vitreous boron oxide is largely dominated by boroxol rings.

  19. Stability of sputter deposited cuprous oxide (Cu2O) subjected to ageing conditions for photovoltaic applications

    Science.gov (United States)

    Camacho-Espinosa, E.; Rimmaudo, I.; Riech, I.; Mis-Fernández, R.; Peña, J. L.

    2018-02-01

    Among various metal oxide p-type semiconductors, cuprous oxide (Cu2O) stands out as a nontoxic and abundant material, which also makes it a suitable candidate as a low-cost absorber for photovoltaic applications. However, the chemical stability of the absorber layer is critical for the solar cell lifetime, in particular, for Cu-based materials, concerning to its oxidation state changes. In this paper, we addressed the Cu2O stability depositing films of 170 nm by reactive radio frequency magnetron sputtering and subsequently ageing them in conditions similar to the typical accelerated life test for the solar module, in a period of time from one to five weeks. The stability of the optical, electrical, and structural properties of the Cu2O thin films was investigated using UV-VIS-near infrared transmittance, 4-probes electrical resistance characterization, high precision profilometry, X-ray photoelectron spectroscopy, and grazing incidence X-ray diffraction. Finally, we demonstrated that the aging tests affected only the surface of the films, while the bulk remained unaltered, making Cu2O a promising candidate for production of stable devices, including solar cells.

  20. Effect of cuprous oxide with different sizes on thermal and combustion behaviors of unsaturated polyester resin.

    Science.gov (United States)

    Hou, Yanbei; Hu, Weizhao; Gui, Zhou; Hu, Yuan

    2017-07-15

    Cuprous oxide (Cu 2 O) as an effective catalyst has been applied to enhance the fire safety of unsaturated polyester resin (UPR), but the particle size influence on combustion behaviors has not been previously reported. Herein, the UPR/Cu 2 O composites (metal oxide particles with average particle-size of 10, 100, and 200nm) were successfully synthesized by thermosetting process. The effects of Cu 2 O with different sizes on thermostability and combustion behaviors of UPR were characterized by TGA, MCC, TG-IR, FTIR, and SSTF. The results revel that the addition of Cu 2 O contributes to sufficient decomposition of oxygen-containing compounds, which is beneficial to the release of nontoxic compounds. The smallest-sized Cu 2 O performs the excellent catalytic decomposition effect and promotes the complete combustion of UPR, which benefits the enhancement of fire safety. While the other additives retard pyrolysis process and yield more char residue, and thus the flame retardancy of UPR composites was improved. Therefore, catalysis plays a major role for smaller-sized particles during thermal decomposition of matrix, while flame retarded effect became gradual distinctly for the larger-sized additives. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor

    Science.gov (United States)

    Nguyen, Thu-Thuy; Huy, Bui The; Hwang, Seo-Young; Vuong, Nguyen Minh; Pham, Quoc-Thai; Nghia, Nguyen Ngoc; Kirtland, Aaron; Lee, Yong-Ill

    2018-05-01

    Cuprous oxide (Cu2O) nanostructure has been synthesized using an electrochemical method with a two-electrode system. Cu foils were used as electrodes and NH2(OH) was utilized as the reducing agent. The effects of pH and applied voltages on the morphology of the product were investigated. The morphology and optical properties of Cu2O particles were characterized using scanning electron microscopy, x-ray diffraction, and diffuse reflectance spectra. The synthesized Cu2O nanostructures that formed in the vicinity of the anode at 2 V and pH = 11 showed high uniform distribution, small size, and good electrochemical sensing. These Cu2O nanoparticles were coated on an Indium tin oxide substrate and applied to detect non-enzyme glucose as excellent biosensors. The non-enzyme glucose biosensors exhibited good performance with high response, good selectivity, wide linear detection range, and a low detection limit at 0.4 μM. Synthesized Cu2O nanostructures are potential materials for a non-enzyme glucose biosensor.

  2. Study on the intrinsic defects in tin oxide with first-principles method

    Science.gov (United States)

    Sun, Yu; Liu, Tingyu; Chang, Qiuxiang; Ma, Changmin

    2018-04-01

    First-principles and thermodynamic methods are used to study the contribution of vibrational entropy to defect formation energy and the stability of the intrinsic point defects in SnO2 crystal. According to thermodynamic calculation results, the contribution of vibrational entropy to defect formation energy is significant and should not be neglected, especially at high temperatures. The calculated results indicate that the oxygen vacancy is the major point defect in undoped SnO2 crystal, which has a higher concentration than that of the other point defect. The property of negative-U is put forward in SnO2 crystal. In order to determine the most stable defects much clearer under different conditions, the most stable intrinsic defect as a function of Fermi level, oxygen partial pressure and temperature are described in the three-dimensional defect formation enthalpy diagrams. The diagram visually provides the most stable point defects under different conditions.

  3. Observation of confinement effects through liner and nonlinear absorption spectroscopy in cuprous oxide

    Science.gov (United States)

    Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.

    2015-02-01

    Cuprous oxide nano clusters, micro cubes and micro particles were successfully synthesized by reducing copper (II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction studies revealed the formation of pure single phase cubic. Raman spectrum shows the inevitable presence of CuO on the surface of the Cu2O powders which may have an impact on the stability of the phase. Transmission electron microscopy (TEM) data revealed that the morphology evolves from nanoclusters to micro cubes and micro particles by increasing the concentration of NaOH. Linear optical measurements show that the absorption peak maximum shifts towards red with changing morphology from nano clusters to micro cubes and micro particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm, 6 ns laser pulses. Samples exhibited saturable as well as reverse saturable absorption. The results show that the transition from SA to RSA is ascribed to excited-state absorption (ESA) induced by two-photon absorption (TPA) process. Due to confinement effects (enhanced band gap) we observed enhanced nonlinear absorption coefficient (βeff) in the case of nano-clusters compared to their micro-cubes and micro-particles.

  4. Controlling the Optical and Magnetic Properties of Nanostructured Cuprous Oxide Synthesized from Waste Electric Cables

    Science.gov (United States)

    Abdelbasir, S. M.; El-Sheikh, S. M.; Rashad, M. M.; Rayan, D. A.

    2018-03-01

    Cuprous oxide Cu2O nanopowders were purposefully synthesised from waste electric cables (WECs) via a simple precipitation route at room temperature using lactose as a reducing agent. In this regard, dimethyl sulfoxide (DMSO) was first applied as an organic solvent for the dissolution of the cable insulating materials. Several parameters were investigated during dissolution of WECs such as dissolution temperature, time and solid/liquid ratio to determine the dissolution percentage of the insulating materials in DMSO. The morphology and the optical properties of the formed Cu2O particles were investigated using X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy and UV-visible-near IR spectrophotometer. XRD data confirmed the presence of single crystalline phase of Cu2O nanoparticles. FE-SEM and TEM images revealed spherical, cubic and octahedral shapes with the various particle sizes ranged from 16 to 57 nm depending on the synthesis conditions. A possible mechanism explaining the Cu2O nanostructures formation was proposed. The band gap energies of the Cu2O nanostructures were estimated and the values were located between 1.5 and 2.08 eV. Photoluminescence spectroscopy analysis clearly showed a noticeably blue-shifted emission for the synthesized samples compared to spectrum of the bulk. Eventually, magnetic properties of the synthesized nanoparticles have been measured by vibrating sample magnetometer and the attained results implied that the synthesized particles are weakly ferromagnetic in nature at normal temperature.

  5. A first principles study of the mechanical, electronic, and vibrational properties of lead oxide

    Science.gov (United States)

    Zhuravlev, Yu. N.; Korabel'nikov, D. V.

    2017-11-01

    The first principles study of the crystal structure, chemical bonds, elastic and mechanical properties, electron energy band structure and density, and normal long-wave vibrations of nine phases of lead monoxide, dioxide, and tetraoxide has been performed under normal and external pressure within the framework of density functional theory (DFT) with the Perdew-Becke-Ernzerhof (PBE) gradient exchange-correlation functional and its hybrid version with a 25-% Hartree-Fock (HF) exchange contribution in the basis of localized atom orbitals. The behavior of physical parameters has been studied using the cold four- and threeparameter equations of state. The parameters of the crystal structures are in satisfactory agreement with experimental data, and elastic constants indicate their mechanical stability and anisotropy in the elastic properties. The elasticity, shear, and Young moduli, hardness, acoustic velocities, and Debye temperature of dioxide on the one hand and monoxide and tetraoxide on the other hand appreciably differ from each other. The difference between electron properties may be explained by the character of hybridization in the upper filled and lower empty energy bands as evident from the density of states. In monoxide, the indirect band gap width decreases with increasing pressure at a rate of 0.16 eV/GPa, and the direct band gap width increases at a rate of 0.13 eV/GPa. To identify crystalline phases, the frequencies and intensities of long-wave modes active in IR and Raman spectra have been calculated.

  6. On the transparent conducting oxide Al doped ZnO: First Principles and Boltzmann equations study

    Energy Technology Data Exchange (ETDEWEB)

    Slassi, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Naji, S. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Department of Physics, Faculty of Science, Ibb University, Ibb (Yemen); Benyoussef, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Hamedoun, M., E-mail: hamedoun@hotmail.com [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); El Kenz, A. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco)

    2014-08-25

    Highlights: • The incorporation of Al in ZnO increases the optical band edge absorption. • Incorporated Al creates shallow donor states of Al-3s around Fermi level. • Transmittance decreases in the visible and IR regions, while it increases in the UV region. • Electrical conductivity increases and reaches almost the saturation for high concentration of Al. - Abstract: We report, in this work, a theoretical study on the electronic, optical and electrical properties of pure and Al doped ZnO with different concentrations. In fact, we investigate these properties using both First Principles calculations within TB-mBJ approximation and Boltzmann equations under the constant relaxation time approximation for charge carriers. It is found out that, the calculated lattice parameters and the optical band gap of pure ZnO are close to the experimental values and in a good agreement with the other theoretical studies. It is also observed that, the incorporations of Al in ZnO increase the optical band edge absorption which leads to a blue shift and no deep impurities levels are induced in the band gap as well. More precisely, these incorporations create shallow donor states around Fermi level in the conduction band minimum from mainly Al-3s orbital. Beside this, it is found that, the transmittance is decreased in the visible and IR regions, while it is significantly improved in UV region. Finally, our calculations show that the electrical conductivity is enhanced as a result of Al doping and it reaches almost the saturation for high concentration of Al. These features make Al doped ZnO a transparent conducting electrode for optoelectronic device applications.

  7. First-Principles Study of Structure Property Relationships of Monolayer (Hydroxy)Oxide-Metal Bifunctional Electrocatalysts

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Kubal, Joseph; Greeley, Jeffrey Philip

    2015-01-01

    step towards accurate identification and prediction of a variety of oxide/electrode interfacial structure-properties relationships, but also provides the foundation for rational design and control of ‘targeted active phases’ at catalytic interfaces. The successful design of bifunctional......In the present study, on the basis of detailed density functional theory (DFT) calculations, and using Ni hydroxy(oxide) films on Pt(111) and Au(111) electrodes as model systems, we describe a detailed structural and electrocatalytic analysis of hydrogen evolution (HER) at three-phase boundaries...... under alkaline electrochemical conditions. We demonstrate that the structure and oxidation state of the films can be systematically tuned by changing the applied electrode potential and/or the nature of substrates. Structural features determined from the theoretical calculations provide a wealth...

  8. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    International Nuclear Information System (INIS)

    Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K.

    2014-01-01

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  9. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364001 (India); Gupta, Sanjay D. [V. B. Institute of Science, Department of Physics, C. U. Shah University, Wadhwan City - 363030, Surendranagar (India); Jha, Prafulla K., E-mail: prafullaj@yahoo.com [Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002 (India)

    2014-05-28

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  10. First-principles analysis of structural and opto-electronic properties of indium tin oxide

    Science.gov (United States)

    Tripathi, Madhvendra Nath; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-05-01

    Density functional theory (DFT) and DFT + U (DFT with on-site Coulomb repulsion corrections) calculations have been carried out to study the structural and opto-electronic properties of indium tin oxide (ITO) for both the oxidized and reduced environment conditions. Some of the results obtained by DFT calculations differ from the experimental observations, such as uncertain indication for the site preference of tin atom to replace indium atom at b-site or d-site, underestimation of local inward relaxation in the first oxygen polyhedra around tin atom, and also the improper estimation of electronic density of states and hence resulting in an inappropriate optical spectra of ITO. These discrepancies of theoretical outcomes with experimental observations in ITO arise mainly due to the underestimation of the cationic 4d levels within standard DFT calculations. Henceforth, the inclusion of on-site corrections within DFT + U framework significantly modifies the theoretical results in better agreement to the experimental observations. Within this framework, our calculations show that the indium b-site is preferential site over d-site for tin atom substitution in indium oxide under both the oxidized and reduced conditions. Moreover, the calculated average inward relaxation value of 0.16 Å around tin atom is in good agreement with the experimental value of 0.18 Å. Furthermore, DFT + U significantly modify the electronic structure and consequently induce modifications in the calculated optical spectra of ITO.

  11. Revealing a room temperature ferromagnetism in cadmium oxide nanoparticles: An experimental and first-principles study

    KAUST Repository

    Bououdina, Mohamed; Dakhel, A; El-Hilo, : Mohammad; Anjum, Dalaver H.; Kanoun, Mohammed Benali; Goumri-Said, Souraya

    2015-01-01

    We obtain a single cadmium oxide phase from powder synthesized by a thermal decomposition method of cadmium acetate dehydrate. The yielded powder is annealed in air, vacuum, and H2 gas in order to create point defects. Magnetization-field curves

  12. Cytotoxicity of cuprous oxide nanoparticles to fish blood cells: hemolysis and internalization

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liqiang, E-mail: chenlq@ynu.edu.cn; Kang Bin [Yunnan University, Asian International Rivers Center, Yunnan Key Laboratory of International Rivers and Trans-boundary Eco-security (China); Ling Jian [Yunnan University, College of Chemistry and Chemical Engineering (China)

    2013-03-15

    Cuprous oxide nanoparticles (Cu{sub 2}O NPs) possess unique physical and chemical properties which are employed in a broad variety of applications. However, little is known about the adverse effects of Cu{sub 2}O NPs on organisms. In the current study, in vitro cytotoxicity of Cu{sub 2}O NPs (ca. 60 nm in diameter) to the blood cells of freshwater fish Carassius auratus was evaluated. A concentration-dependent hemolytic activity of Cu{sub 2}O NPs to red blood cells (RBCs) and the phagocytosis of Cu{sub 2}O NPs by leukocytes were revealed. The results showed that dosages of Cu{sub 2}O NPs greater than 40 {mu}g/mL were toxic to blood cells, and could cause serious membrane damage to RBCs. The EC{sub 50} value of Cu{sub 2}O NPs as obtained from RBCs and whole blood exposure was 26 and 63 {mu}g/mL, respectively. The generation of reactive oxygen species and the direct interaction between Cu{sub 2}O NPs and the cell membrane were suggested as the possible mechanism for cytotoxicity, and the intrinsic hemolytic active of Cu{sub 2}O NPs was the main contributor to the toxicity rather than solubilized copper ions. The adsorption of plasma proteins on the surfaces of Cu{sub 2}O NPs led to their aggregation in whole blood, and aggregate formation can significantly alleviate the hemolytic effect and subsequently mediate the phagocytosis of Cu{sub 2}O NPs by leukocytes.

  13. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction

    KAUST Repository

    Zhang, Zhonghai

    2013-02-26

    In this work, we propose a solution-based carbon precursor coating and subsequent carbonization strategy to form a thin protective carbon layer on unstable semiconductor nanostructures as a solution to the commonly occurring photocorrosion problem of many semiconductors. A proof-of-concept is provided by using glucose as the carbon precursor to form a protective carbon coating onto cuprous oxide (Cu2O) nanowire arrays which were synthesized from copper mesh. The carbon-layer-protected Cu2O nanowire arrays exhibited remarkably improved photostability as well as considerably enhanced photocurrent density. The Cu2O nanowire arrays coated with a carbon layer of 20 nm thickness were found to give an optimal water splitting performance, producing a photocurrent density of -3.95 mA cm-2 and an optimal photocathode efficiency of 0.56% under illumination of AM 1.5G (100 mW cm-2). This is the highest value ever reported for a Cu 2O-based electrode coated with a metal/co-catalyst-free protective layer. The photostability, measured as the percentage of the photocurrent density at the end of 20 min measurement period relative to that at the beginning of the measurement, improved from 12.6% on the bare, nonprotected Cu2O nanowire arrays to 80.7% on the continuous carbon coating protected ones, more than a 6-fold increase. We believe that the facile strategy presented in this work is a general approach that can address the stability issue of many nonstable photoelectrodes and thus has the potential to make a meaningful contribution in the general field of energy conversion. © 2013 American Chemical Society.

  14. The role of metallic impurities in oxide semiconductors: first-principles calculations and PAC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Errico, L.A.; Fabricius, G.; Renteria, M. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina)

    2004-08-01

    We report an ab-initio comparative study of the electric-field-gradient tensor (EFG) and structural relaxations introduced by acceptor (Cd) and donor (Ta) impurities when they replace cations in a series of binary oxides: TiO{sub 2}, SnO{sub 2}, and In{sub 2}O{sub 3}. Calculations were performed with the Full-Potential Linearized-Augmented Plane Waves method that allows us to treat the electronic structure and the atomic relaxations in a fully self-consistent way. We considered different charge states for each impurity and studied the dependence on these charge states of the electronic properties and the structural relaxations. Our results are compared with available data coming from PAC experiments and previous calculations, allowing us to obtain a new insight on the role that metal impurities play in oxide semiconductors. It is clear from our results that simple models can not describe the measured EFGs at impurities in oxides even approximately. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Reduced graphene oxide–cuprous oxide composite via facial deposition for photocatalytic dye-degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, MingYan, E-mail: mingyanlyg@hotmail.com [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute of Innovative Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Huang, JunRao; Tong, ZhiWei [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Li, WeiHua [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Chen, Jun, E-mail: junc@uow.edu.au [Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute of Innovative Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia)

    2013-08-15

    Highlights: •Cubic Cu{sub 2}O were effectively loaded on n-propylamine (PA) intercalated graphene oxide. •The addition of PA on the carbon sheets supports the stable structure of the composites. •Cu{sub 2}O/PA/rGO showed superior adsorption capacity and photocatalytic activity. -- Abstract: Cubic Cu{sub 2}O nanoparticles have been successfully synthesized on n-propylamine (PA) intercalated graphene oxide (GO) with uniform distribution followed with a subsequent hydrazine hydrate reduction process to generate Cu{sub 2}O/PA/rGO composite. For comparison, Cu{sub 2}O conjugated reduced graphene oxide (Cu{sub 2}O/rGO) composite was also synthesized using the same method. The as-prepared Cu{sub 2}O/PA/rGO and Cu{sub 2}O/rGO nanocomposites are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area analysis, and Electrochemical impedance spectra (EIS) measurements. UV/vis diffuse reflectance spectroscopy was employed to estimate band gap energies of cuprous oxide composites. The results show that the intercalation of PA into the layered GO increases the surface area of the composites and provides an efficient strategy to load Cu{sub 2}O due to the large and uniform distribution of active sites for anchoring copper ions. The surface area of the Cu{sub 2}O/PA/rGO (123 m{sup 2}/g) nanocomposite was found to be almost 2.5 times higher than that of Cu{sub 2}O/rGO (55.7 m{sup 2}/g). The as-prepared Cu{sub 2}O/PA/rGO show significant improvement on both adsorption capacity and photocatalytic activity towards organic pigment pollution compared with Cu{sub 2}O/rGO under identical performance conditions.

  16. Cuprous oxide created on sepiolite: Preparation, characterization, and photocatalytic activity in treatment of red water from 2,4,6-trinitrotoluene manufacturing

    International Nuclear Information System (INIS)

    Zhu, Qingwei; Zhang, Yihe; Lv, Fengzhu; Chu, Paul K.; Ye, Zhengfan; Zhou, Fengshan

    2012-01-01

    Highlights: ► Cu 2 O crystals were firstly created on the natural sepiolite fibers. ► The structures of the sepiolite are altered when acidized, benefiting the immobility of cuprous oxide crystals. ► The carrier sepiolite improves efficiently the photocatalytic activity of cuprous oxide crystals. ► Cu 2 O/sepiolite composites show superior photocatalytic activity for the degradation of red water. - Abstract: Cuprous oxide is firstly created on acidized sepiolite (AS) by a simple deposition method for photocatalytic degradation of the red water produced from 2,4,6-trinitrotoluene (TNT) manufacturing. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), ultraviolet-visible diffuse reflection absorptive spectroscopy (UV–vis/DRS), and Fourier transform infrared (FT-IR) spectroscopy are used to characterize the photocatalyst composites. Gas chromatography/mass spectrometry (GC/MS) is employed to determine the organic constituents in the red water. The results show that the cuprous oxide particles can be immobilized on the surface of the AS fibers and the structure of the AS is altered when cuprous oxide interacts with AS via chemical reactions besides physical adsorption. The AS improves the optical properties of cuprous oxide and red-shifts the band gap thereby enhancing the utilization of visible light. The Cu 2 O/AS composites demonstrate excellent photocatalytic performance in the degradation of red water. 87.0% of red water can be photocatalytically degraded by Cu 2 O/AS after illumined for 5 h and a majority of organic components of red water except 1,3,5-trinitrobenzene were degraded according to GC–MS analysis.

  17. One-step green synthesis of cuprous oxide crystals with truncated octahedra shapes via a high pressure flux approach

    International Nuclear Information System (INIS)

    Li Benxian; Wang Xiaofeng; Xia Dandan; Chu Qingxin; Liu Xiaoyang; Lu Fengguo; Zhao Xudong

    2011-01-01

    Cuprous oxide (Cu 2 O) was synthesized via reactions between cupric oxide (CuO) and copper metal (Cu) at a low temperature of 300 deg. C. This progress is green, environmentally friendly and energy efficient. Cu 2 O crystals with truncated octahedra morphology were grown under high pressure using sodium hydroxide (NaOH) and potassium hydroxide (KOH) with a molar ratio of 1:1 as a flux. The growth mechanism of Cu 2 O polyhedral microcrystals are proposed and discussed. - Graphical Abstract: The Cu 2 O crystals with truncated octahedral shape were one-step synthesized in high yield via high pressure flux method for the first time, which is green and environmentally friendly. The mechanisms of synthesis and crystal growth were discussed in this paper. Highlights: → Cuprous oxide was one-step green synthesized by high pressure flux method. → The approach was based on the reverse dismutation reactions between cupric oxide and copper metal. → This progress is green, environmentally friendly and energy efficient. → The synthesized Cu2O crystals were of truncated octahedra morphology.

  18. A first-principles investigation of the optical spectra of oxidized graphene

    KAUST Repository

    Singh, Nirpendra

    2013-01-14

    The electronic and optical properties of mono, di, tri, and tetravacancies in graphene are studied in comparison to each other, using density functional theory. In addition, oxidized monovacancies are considered for different oxygen concentrations. Pristine graphene is found to be more absorptive than any defect configuration at low energy. We demonstrate characteristic differences in the optical spectra of the various defects for energies up to 3 eV. This makes it possible to quantify by optical spectroscopy the ratios of the defect species present in a sample.

  19. A first-principles investigation of the optical spectra of oxidized graphene

    KAUST Repository

    Singh, Nirpendra; Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo

    2013-01-01

    The electronic and optical properties of mono, di, tri, and tetravacancies in graphene are studied in comparison to each other, using density functional theory. In addition, oxidized monovacancies are considered for different oxygen concentrations. Pristine graphene is found to be more absorptive than any defect configuration at low energy. We demonstrate characteristic differences in the optical spectra of the various defects for energies up to 3 eV. This makes it possible to quantify by optical spectroscopy the ratios of the defect species present in a sample.

  20. Detection of 2,4-dinitrotoluene by graphene oxide: first principles study

    Science.gov (United States)

    Abdollahi, Hassan; Kari, Akbar; Samaeifar, Fatemeh

    2018-05-01

    The surface of graphene oxide (GO) with different oxidation level is widely used in gas sensing applications. Otherwise, detection of 2,4-dinitrotoluene (DNT) have been extensively attend as a high explosive and environmental sources by various methods. Atomic level modelling are widely employed to explain the sensing mechanism at a microscopic level. The present work is an attempt to apply density functional theory (DFT) to investigate the structural and electronic properties of GO and adsorption of oxygen atom and hydroxyl on graphene surface. The focus is on the adsorption mechanisms of DNT molecule on the GO monolayer surface to detect DNT molecule. The calculated adsorption energy of DNT molecule on the GO surface indicates physisorption mechanism with ‑0.7 eV adsorption energy. Moreover, basis-set superposition errors correction based on off site orbitals consideration leads to ‑0.4 eV adsorption energy which it is more in the physisorption regime. Consequently, the results could shed more light to design and fabrication an efficient DNT sensor based on GO layers.

  1. Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations

    Science.gov (United States)

    Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun

    2017-02-01

    Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.

  2. Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations.

    Science.gov (United States)

    Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun

    2017-02-06

    Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.

  3. Revealing a room temperature ferromagnetism in cadmium oxide nanoparticles: An experimental and first-principles study

    KAUST Repository

    Bououdina, Mohamed

    2015-03-26

    We obtain a single cadmium oxide phase from powder synthesized by a thermal decomposition method of cadmium acetate dehydrate. The yielded powder is annealed in air, vacuum, and H2 gas in order to create point defects. Magnetization-field curves reveal the appearance of diamagnetic behavior with a ferromagnetic component for all the powders. Powder annealing under vacuum and H2 atmosphere leads to a saturation magnetization 1.15 memu g-1 and 1.2 memu g-1 respectively with an increase by 45% and 16% compared to the one annealed in air. We show that annealing in vacuum produces mainly oxygen vacancies while annealing in H2 gas creates mainly Cd vacancy leading to room temperature ferromagnetic (RTFM) component together with known diamagnetic properties. Ab initio calculations performed on the CdO nanoparticles show that the magnetism is governed by polarized hybrid states of the Cd d and O p orbitals together with the vacancy. © The Royal Society of Chemistry 2015.

  4. BN and BN oxide nanosheets based nanosensor for paracetamol adsorption: a first principles simulation

    Directory of Open Access Journals (Sweden)

    Miguel Castro

    2014-04-01

    Full Text Available The effects that the adsorption of the paracetamol molecule produce on the structural and electronic properties of boron nitride (hBNNs; B27N27H18 and boron nitride oxide (hBNONs; B27N27H17 + O + (OH3 + COOH hexagonal symmetry nanosheets were studied by means of Density Functional Theory. The generalized gradient approximation proposed by Heyd—Scuseria—Ernzerhof ((HSEh1PBE―GGA was used in concert with 6-31G(d basis sets. Several candidate structures, 9 and 13 for the hBNNs―Paracetamol and BNONs―Paracetamol interactions, respectively, were used for the geometry optimization procedure. The results show that in the lowest energy absorption site the paracetamol molecule reaches a parallel orientation to the surface of the nanosheets, producing physisorption for hBNNs―Paracetamol and chemisorption for BNONs―Paracetamol. Besides, the adsorption process yields an increase of the polarity opening the possibility for the solubility and dispersion of these compounds. The paracetamol molecule promotes also a decrease of the reactivity parameter, which is crucial for biological applications of these systems. Referred to pristine hBNNs and BNONs, the work functions of hBNNs-Paracetamol and BNONs―Paracetamol are diminished. That is, these functionalized 2D systems yields appropriate conditions for field emission and they may be used as sensors of such pharmaceutical compound.

  5. Facile synthesis of cuprous oxide nanowires decorated graphene oxide nanosheets nanocomposites and its application in label-free electrochemical immunosensor.

    Science.gov (United States)

    Wang, Huan; Zhang, Yong; Wang, Yulan; Ma, Hongmin; Du, Bin; Wei, Qin

    2017-01-15

    In this work, the assembly between one-dimensional (1D) nanomaterials and two-dimensional (2D) nanomaterials was achieved by a simple method. Cuprous oxide nanowires decorated graphene oxide nanosheets (Cu 2 O@GO) nanocomposites were synthesized for the first time by a simple electrostatic self-assembly process. The nanostructure was well confirmed by scanning electron microscope (SEM) and transmission electron microscope (TEM) images. Taking advantages of good electrocatalytic activity and high specific surface area of Cu 2 O@GO nanocomposites, a label-free electrochemical immunosensor was developed by employing Cu 2 O@GO as signal amplification platform for the quantitative detection of alpha fetoprotein (AFP). In addition, toluidine blue (TB) was used as the electron transfer mediator to provide the electrochemical signal, which was adsorbed on graphene oxide nanosheets (GO NSs) by electrostatic attraction. The detection mechanism was based on the monitoring of the electrochemical current response change of TB by the square wave voltammetry (SWV) when immunoreaction occurred on the surface of electrode. Under optimal conditions, the proposed immunosensor displayed a high sensitivity and a low detection limit. This designed method may provide an effective method in the clinical diagnosis of AFP and other tumor markers. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Structural, electronic and optical properties of silver delafossite oxides: A first-principles study with hybrid functional

    International Nuclear Information System (INIS)

    Kumar, Mukesh; Persson, Clas

    2013-01-01

    Ternary delafossite compounds are potential materials for optoelectronic devices. Employing a first-principles method, we calculate the structural, electronic, and optical properties of the silver based compounds AgMO 2 (M=Al, Ga or In), which crystallize in delafossite structure. Our calculations show that these AgMO 2 oxides have indirect band gaps and the gap energies are in the region of 1.6–3.0 eV whereas, the lowest direct band gap energies are estimated in the range of 2.6–4.3 eV. Furthermore, we find that AgMO 2 compounds exhibit a strong anisotropy for the dielectric function and absorption spectra. The absorption onset for these compounds occurs well above the band gap energies. Overall, we show that the hybrid functional improves the lattice parameters and band gap energies and the calculated values are in good agreement with the experimental values

  7. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles.

    Science.gov (United States)

    Robatjazi, Hossein; Zhao, Hangqi; Swearer, Dayne F; Hogan, Nathaniel J; Zhou, Linan; Alabastri, Alessandro; McClain, Michael J; Nordlander, Peter; Halas, Naomi J

    2017-06-21

    The rational combination of plasmonic nanoantennas with active transition metal-based catalysts, known as 'antenna-reactor' nanostructures, holds promise to expand the scope of chemical reactions possible with plasmonic photocatalysis. Here, we report earth-abundant embedded aluminum in cuprous oxide antenna-reactor heterostructures that operate more effectively and selectively for the reverse water-gas shift reaction under milder illumination than in conventional thermal conditions. Through rigorous comparison of the spatial temperature profile, optical absorption, and integrated electric field enhancement of the catalyst, we have been able to distinguish between competing photothermal and hot-carrier driven mechanistic pathways. The antenna-reactor geometry efficiently harnesses the plasmon resonance of aluminum to supply energetic hot-carriers and increases optical absorption in cuprous oxide for selective carbon dioxide conversion to carbon monoxide with visible light. The transition from noble metals to aluminum based antenna-reactor heterostructures in plasmonic photocatalysis provides a sustainable route to high-value chemicals and reaffirms the practical potential of plasmon-mediated chemical transformations.Plasmon-enhanced photocatalysis holds promise for the control of chemical reactions. Here the authors report an Al@Cu 2 O heterostructure based on earth abundant materials to transform CO 2 into CO at significantly milder conditions.

  8. Exciton-polaritons in cuprous oxide: Theory and comparison with experiment

    Science.gov (United States)

    Schweiner, Frank; Ertl, Jan; Main, Jörg; Wunner, Günter; Uihlein, Christoph

    2017-12-01

    The observation of giant Rydberg excitons in cuprous oxide (Cu2O ) up to a principal quantum number of n =25 by T. Kazimierczuk et al. [Nature (London) 514, 343 (2014), 10.1038/nature13832] inevitably raises the question whether these quasiparticles must be described within a multipolariton framework since excitons and photons are always coupled in the solid. In this paper we present the theory of exciton-polaritons in Cu2O . To this end we extend the Hamiltonian which includes the complete valence-band structure, the exchange interaction, and the central-cell corrections effects, and which has been recently deduced by F. Schweiner et al. [Phys. Rev. B 95, 195201 (2017), 10.1103/PhysRevB.95.195201], for finite values of the exciton momentum ℏ K . We derive formulas to calculate not only dipole but also quadrupole oscillator strengths when using the complete basis of F. Schweiner et al., which has recently been proven as a powerful tool to calculate exciton spectra. Very complex polariton spectra for the three orientations of K along the axes [001 ] , [110 ] , and [111 ] of high symmetry are obtained and a strong mixing of exciton states is reported. The main focus is on the 1 S ortho-exciton-polariton, for which pronounced polariton effects have been measured in experiments. We set up a 5 ×5 matrix model, which accounts for both the polariton effect and the K -dependent splitting, and which allows treating the anisotropic polariton dispersion for any direction of K . We especially discuss the dispersions for K being oriented in the planes perpendicular to [1 1 ¯0 ] and [111 ] , for which experimental transmission spectra have been measured. Furthermore, we compare our results with experimental values of the K -dependent splitting, the group velocity, and the oscillator strengths of this exciton-polariton. The results are in good agreement. This proves the validity of the 5 ×5 matrix model as a useful theoretical model for further investigations on the 1 S

  9. Monodisperse Pt atoms anchored on N-doped graphene as efficient catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin; Sui, Yanhui; Duan, Ting; Meng, Changgong; Han, Yu

    2015-01-01

    We performed first-principles based calculations to investigate the electronic structure and the potential catalytic performance of Pt atoms monodispersed on N-doped graphene in CO oxidation. We showed that N-doping can introduce localized defect states in the vicinity of the Fermi level of graphene which will effectively stabilize the deposited Pt atoms. The binding energy of a single Pt atom onto a stable cluster of 3 pyridinic N (PtN3) is up to -4.47 eV, making the diffusion and aggregation of anchored Pt atoms difficult. Both the reaction thermodynamics and kinetics suggest that CO oxidation over PtN3 would proceed through the Langmuir-Hinshelwood mechanism. The reaction barriers for the formation and dissociation of the peroxide-like intermediate are determined to be as low as 0.01 and 0.08 eV, respectively, while that for the regeneration is only 0.15 eV, proving the potential high catalytic performance of PtN3 in CO oxidation, especially at low temperatures. The Pt-d states that are up-shifted by the Pt-N interaction account for the enhanced activation of O2 and the efficient formation and dissociation of the peroxide-like intermediate.

  10. Copper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin

    2014-01-01

    We addressed the electronic structure of Cu atoms embedded in hexagonal boron nitride (h-BN) and their catalytic role in CO oxidation by first-principles-based calculations. We showed that Cu atoms prefer to bind directly with the localized defects on h-BN, which act as strong trapping sites for Cu atoms and inhibit their clustering. The strong binding of Cu atoms at boron vacancy also up-shifts the energy level of Cu-d states to the Fermi level and promotes the formation of peroxide-like intermediate. CO oxidation over Cu atoms embedded in h-BN would proceed through the Langmuir-Hinshelwood mechanism with the formation of a peroxide-like complex by reaction of coadsorbed CO and O2, with the dissociation of which the a CO2 molecule and an adsorbed O atom are formed. Then, the embedded Cu atom is regenerated by the reaction of another gaseous CO with the remnant O atom. The calculated energy barriers for the formation and dissociation of peroxide complex and regeneration of embedded Cu atoms are as low as 0.26, 0.11 and 0.03 eV, respectively, indicating the potential high catalytic performance of Cu atoms embedded in h-BN for low temperature CO oxidation. © the Partner Organisations 2014.

  11. Literature review on the properties of cuprous oxide Cu{sub 2}O and the process of copper oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Korzhavyi, P. A.; Johansson, B. (Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm (Sweden))

    2011-10-15

    The purpose of the present review is to provide a reference guide to the most recent data on the properties of copper(I) oxide as well as on the atomic processes involved in the initial stages of oxidation of copper. The data on the structure of surfaces, as obtained from atomic-resolution microscopy studies (for example, STM) or from first-principles calculations, are reviewed. Information of this kind may be useful for understanding the atomic mechanisms of corrosion and stress-corrosion cracking of copper

  12. Literature review on the properties of cuprous oxide Cu2O and the process of copper oxidation

    International Nuclear Information System (INIS)

    Korzhavyi, P. A.; Johansson, B.

    2011-10-01

    The purpose of the present review is to provide a reference guide to the most recent data on the properties of copper(I) oxide as well as on the atomic processes involved in the initial stages of oxidation of copper. The data on the structure of surfaces, as obtained from atomic-resolution microscopy studies (for example, STM) or from first-principles calculations, are reviewed. Information of this kind may be useful for understanding the atomic mechanisms of corrosion and stress-corrosion cracking of copper

  13. Tilts, dopants, vacancies and non-stoichiometry: Understanding and designing the properties of complex solid oxide perovskites from first principles

    Science.gov (United States)

    Bennett, Joseph W.

    Perovskite oxides of formula ABO3 have a wide range of structural, electrical and mechanical properties, making them vital materials for many applications, such as catalysis, ultrasound machines and communication devices. Perovskite solid solutions with high piezoelectric response, such as ferroelectrics, are of particular interest as they can be employed as sensors in SONAR devices. Ferroelectric materials are unique in that their chemical and electrical properties can be non-invasively and reversibly changed, by switching the bulk polarization. This makes ferroelectrics useful for applications in non-volatile random access memory (NVRAM) devices. Perovskite solid solutions with a lower piezoelectric response than ferroelectrics are important for communication technology, as they function well as electroceramic capacitors. Also of interest is how these materials act as a component in a solid oxide fuel cell, as they can function as an efficient source of energy. Altering the chemical composition of these solid oxide materials offers an opportunity to change the desired properties of the final ceramic, adding a degree of flexibility that is advantageous for a variety of applications. These solid oxides are complex, sometimes disordered systems that are a challenge to study experimentally. However, as it is their complexity which produces favorable properties, highly accurate modeling which captures the essential features of the disordered structure is necessary to explain the behavior of current materials and predict favorable compositions for new materials. Methodological improvements and faster computer speeds have made first-principles and atomistic calculations a viable tool for understanding these complex systems. Offering a combination of accuracy and computational speed, the density functional theory (DFT) approach can reveal details about the microscopic structure and interactions of complex systems. Using DFT and a combination of principles from both

  14. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.

    Science.gov (United States)

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan

    2013-03-07

    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.

  15. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides.

    Science.gov (United States)

    Wojdeł, Jacek C; Hermet, Patrick; Ljungberg, Mathias P; Ghosez, Philippe; Íñiguez, Jorge

    2013-07-31

    We present a scheme to construct model potentials, with parameters computed from first principles, for large-scale lattice-dynamical simulations of materials. We mimic the traditional solid-state approach to the investigation of vibrational spectra, i.e., we start from a suitably chosen reference configuration of the compound and describe its energy as a function of arbitrary atomic distortions by means of a Taylor series. Such a form of the potential-energy surface is general, trivial to formulate for any material, and physically transparent. Further, such models involve clear-cut approximations, their precision can be improved in a systematic fashion, and their simplicity allows for convenient and practical strategies to compute/fit the potential parameters. We illustrate our scheme with two challenging cases in which the model potential is strongly anharmonic, namely, the ferroic perovskite oxides PbTiO3 and SrTiO3. Studying these compounds allows us to better describe the connection between the so-called effective-Hamiltonian method and ours (which may be seen as an extension of the former), and to show the physical insight and predictive power provided by our approach-e.g., we present new results regarding the factors controlling phase-transition temperatures, novel phase transitions under elastic constraints, an improved treatment of thermal expansion, etc.

  16. Effects of surface stability on the morphological transformation of metals and metal oxides as investigated by first-principles calculations.

    Science.gov (United States)

    Andrés, Juan; Gracia, Lourdes; Gouveia, Amanda Fernandes; Ferrer, Mateus Meneghetti; Longo, Elson

    2015-10-09

    Morphology is a key property of materials. Owing to their precise structure and morphology, crystals and nanocrystals provide excellent model systems for joint experimental and theoretical investigations into surface-related properties. Faceted polyhedral crystals and nanocrystals expose well-defined crystallographic planes depending on the synthesis method, which allow for thoughtful investigations into structure-reactivity relationships under practical conditions. This feature article introduces recent work, based on the combined use of experimental findings and first-principles calculations, to provide deeper knowledge of the electronic, structural, and energetic properties controlling the morphology and the transformation mechanisms of different metals and metal oxides: Ag, anatase TiO2, BaZrO3, and α-Ag2WO4. According to the Wulff theorem, the equilibrium shapes of these systems are obtained from the values of their respective surface energies. These investigations are useful to gain further understanding of how to achieve morphological control of complex three-dimensional crystals by tuning the ratio of the surface energy values of the different facets. This strategy allows the prediction of possible morphologies for a crystal and/or nanocrystal by controlling the relative values of surface energies.

  17. One-step synthesis and properties of monolithic photoluminescent ruby colored cuprous oxide antimony oxide glass nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Som, Tirtha [Glass Science and Technology Section, Glass Division, Central Glass and Ceramic Research Institute, Council of Scientific and Industrial Research (CSIR, India), 196, Raja S.C. Mullick Road, Kolkata 700032 (India); Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in [Glass Science and Technology Section, Glass Division, Central Glass and Ceramic Research Institute, Council of Scientific and Industrial Research (CSIR, India), 196, Raja S.C. Mullick Road, Kolkata 700032 (India)

    2011-04-14

    Research highlights: > Single-step synthesis of Cu{sub 2}O, Cu{sub y}Sb{sub 2-x}(O,OH){sub 6-7} (y {<=} 2, x {<=} 1) and Cu nanocrystals co-doped novel antimony oxide glass hybrid nanocomposites. > Yellow and orange colored nanocomposites shows size-controlled band gap shift of Cu{sub 2}O. > Red nanocomposite exhibits surface plasmon resonance band due to metallic Cu. > They exhibit broad deep-red photoluminescence emission under various UV excitation wavelengths. - Abstract: Cuprous oxide (Cu{sub 2}O) antimony glass (K{sub 2}O-B{sub 2}O{sub 3}-Sb{sub 2}O{sub 3}) monolithic nanocomposites having brilliant yellow to ruby red color have been synthesized by a single-step melt-quench technique involving in situ thermochemical reduction of Cu{sup 2+} (CuO) by the reducing glass matrix without using any external reducing agent. The X-ray diffraction (XRD), infrared transmission and reflection spectra, and selected area electron diffraction analysis support the reduction of Cu{sup 2+} to Cu{sup +} with the formation of Cu{sub 2}O nanoclusters along with Cu{sub y}Sb{sub 2-x}(O,OH){sub 6-7} (y {<=} 2, x {<=} 1) nanocrystalline phases while Cu{sup 0} nanoclusters are formed at very high Cu concentration. The UV-vis spectra of the yellow and orange colored nanocomposites show size-controlled band gap shift of the semiconductor (Cu{sub 2}O) nanocrystallites embedded in the glasses while the red nanocomposite exhibits surface plasmon resonance band at 529 nm due to metallic Cu. Transmission electron microscopic image advocates the formation of nanocystallites (5-42 nm). Photoluminescence emission studies show broad red emission band around 626 nm under various excitation wavelengths from 210 to 270 nm.

  18. Hydrogen Oxidation Reaction at the Ni/YSZ Anode of Solid Oxide Fuel Cells from First Principles

    Science.gov (United States)

    Cucinotta, Clotilde S.; Bernasconi, Marco; Parrinello, Michele

    2011-11-01

    By means of ab initio simulations we here provide a comprehensive scenario for hydrogen oxidation reactions at the Ni/zirconia anode of solid oxide fuel cells. The simulations have also revealed that in the presence of water chemisorbed at the oxide surface, the active region for H oxidation actually extends beyond the metal/zirconia interface unraveling the role of water partial pressure in the decrease of the polarization resistance observed experimentally.

  19. First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides.

    Science.gov (United States)

    Nakayama, Masanobu; Kotobuki, Masashi; Munakata, Hirokazu; Nogami, Masayuki; Kanamura, Kiyoshi

    2012-07-28

    The research and development of rechargeable all-ceramic lithium batteries are vital to realize their considerable advantages over existing commercial lithium ion batteries in terms of size, energy density, and safety. A key part of such effort is the development of solid-state electrolyte materials with high Li(+) conductivity and good electrochemical stability; lithium-containing oxides with a garnet-type structure are known to satisfy the requirements to achieve both features. Using first-principles density functional theory (DFT), we investigated the electrochemical stability of garnet-type Li(x)La(3)M(2)O(12) (M = Ti, Zr, Nb, Ta, Sb, Bi; x = 5 or 7) materials against Li metal. We found that the electrochemical stability of such materials depends on their composition and structure. The electrochemical stability against Li metal was improved when a cation M was chosen with a low effective nuclear charge, that is, with a high screening constant for an unoccupied orbital. In fact, both our computational and experimental results show that Li(7)La(3)Zr(2)O(12) and Li(5)La(3)Ta(2)O(12) are inert to Li metal. In addition, the linkage of MO(6) octahedra in the crystal structure affects the electrochemical stability. For example, perovskite-type La(1/3)TaO(3) was found, both experimentally and computationally, to react with Li metal owing to the corner-sharing MO(6) octahedral network of La(1/3)TaO(3), even though it has the same constituent elements as garnet-type Li(5)La(3)Ta(2)O(12) (which is inert to Li metal and features isolated TaO(6) octahedra).

  20. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics – a Comparative Study with Gallium Nitride

    Science.gov (United States)

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L.; Roy, Ajit K.; Luo, Tengfei

    2016-01-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN) – another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics. PMID:26928396

  1. Pt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin; Duan, Ting; Meng, Changgong; Han, Yu

    2015-01-01

    Taking CO oxidation as a probe, we investigated the electronic structure and reactivity of Pt atoms stabilized by vacancy defects on hexagonal boron nitride (h-BN) by first-principles-based calculations. As a joint effect of the high reactivity

  2. Electro-oxidation of water on hematite: Effects of surface termination and oxygen vacancies investigated by first-principles

    DEFF Research Database (Denmark)

    Hellman, Anders; Iandolo, Beniamino; Wickman, Bjorn

    2015-01-01

    The oxygen evolution reaction on hydroxyl- and oxygen-terminated hematite was investigated using first-principle calculations within a theoretical electrochemical framework. Both pristine hematite and hematite containing oxygen vacancies were considered. The onset potential was determined to be 1...... on hematite occurs on the oxygen-terminated hematite, containing oxygen vacancies. (C) 2015 Elsevier B.V. All rights reserved....

  3. Cuprous oxide thin films prepared by thermal oxidation of copper layer. Morphological and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, Artak, E-mail: karapetyan@cinam.univ-mrs.fr [Aix Marseille Université, CINaM, 13288, Marseille (France); Institute for Physical Research of NAS of Armenia, Ashtarak-2 0203 (Armenia); Reymers, Anna [Russian-Armenian (Slavonic) University, H.Emin st.123, Yerevan 375051 (Armenia); Giorgio, Suzanne; Fauquet, Carole [Aix Marseille Université, CINaM, 13288, Marseille (France); Sajti, Laszlo [Laser Zentrum Hannover e.V. Hollerithallee 8, 30419 Hannover (Germany); Nitsche, Serge [Aix Marseille Université, CINaM, 13288, Marseille (France); Nersesyan, Manuk; Gevorgyan, Vladimir [Russian-Armenian (Slavonic) University, H.Emin st.123, Yerevan 375051 (Armenia); Marine, Wladimir [Aix Marseille Université, CINaM, 13288, Marseille (France)

    2015-03-15

    Structural and optical characterization of crystalline Cu{sub 2}O thin films obtained by thermal oxidation of Cu films at two different temperatures 800 °C and 900 °C are investigated in this work. X-ray diffraction measurements indicate that synthesized films consist of single Cu{sub 2}O phase without any interstitial phase and show a nano-grain structure. Scanning Electron Microscopy observations indicate that the Cu{sub 2}O films have a micro-scale roughness whereas High Resolution Transmission Electron Microscopy highlights that the nanocrystalline structure is formed by superposition of nearly spherical nanocrystals smaller than 30 nm. Photoluminescence spectra of these films exhibit at room temperature two well-resolved emission peaks at 1.34 eV due to defects energy levels and at 1.97 eV due to phonon-assisted recombination of the 1s orthoexciton in both film series. Emission characteristics depending on the laser power is deeply investigated to determine the origin of recorded emissions. Time-integrated spectra of the 1s orthoexciton emission reveals the presence of oxygen defects below the conduction band edge under non-resonant two-photon excitation using a wide range of excitations wavelengths. Optical absorption coefficients at room temperature are obtained from an accurate analysis of their transmission and reflection spectra, whereas the optical band gap energy is estimated at about 2.11 eV. Results obtained are of high relevance especially for potential applications in semiconductor devices such as solar cells, optical sources and detectors. - Highlights: • Nanostructured Cu{sub 2}O thin films were synthesized by thermal oxidation of Cu films. • The PL spectra of nanostructured thin films revealed two well-resolved emission peaks. • The PL properties were investigated under a broad range of experimental conditions. • Inter-band transition in the infrared range has been associated to V{sub Cu} and V{sub O} vacancies. • Absorption

  4. Preparation, characterization and nonlinear absorption studies of cuprous oxide nanoclusters, micro-cubes and micro-particles

    Science.gov (United States)

    Sekhar, H.; Narayana Rao, D.

    2012-07-01

    Cuprous oxide nanoclusters, micro-cubes and micro-particles were successfully synthesized by reducing copper(II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction and FTIR studies revealed that the formation of pure single-phase cubic. Raman and EPR spectral studies show the presence of CuO in as-synthesized powders of Cu2O. Transmission electron microscopy and field emission scanning electron microscopy data revealed that the morphology evolves from nanoclusters to micro-cubes and micro-particles by increasing the concentration of NaOH. Linear optical measurements show absorption peak maximum shifts towards red with changing morphology from nanoclusters to micro-cubes and micro-particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm 6 ns laser pulses. Samples-exhibited both saturable as well as reverse saturable absorption. Due to confinement effects (enhanced band gap), we observed enhanced nonlinear absorption coefficient (β) in the case of nanoclusters compared to their micro-cubes and micro-particles.

  5. First-principles study on the effect of SiO{sub 2} layers during oxidation of 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Tomoya, E-mail: ono@ccs.tsukuba.ac.jp [Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); JST-PRESTO, Kawaguchi, Saitama 332-0012 (Japan); Saito, Shoichiro [Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)

    2015-02-23

    The effect of SiO{sub 2} layers during the thermal oxidation of a 4H-SiC(0001) substrate is examined by performing the first-principles total-energy calculations. Although it is expected that a CO molecule is the most preferable product during the oxidation, CO{sub 2} molecules are mainly emitted from the SiC surface at the initial stage of the oxidation. As the oxidation proceeds, CO{sub 2} emission becomes less favorable and CO molecules are emitted from the interface. We conclude that the interface stress due to the lattice constant mismatch between 4H-SiC(0001) and SiO{sub 2} is responsible for the removal of C during the oxidation, resulting in the characteristic electronic property of the interface fabricated by the thermal oxidation.

  6. First-principles simulations of the leakage current in metal-oxide-semiconductor structures caused by oxygen vacancies in HfO2 high-K gate dielectric

    International Nuclear Information System (INIS)

    Mao, L.F.; Wang, Z.O.

    2008-01-01

    HfO 2 high-K gate dielectric has been used as a new gate dielectric in metal-oxide-semiconductor structures. First-principles simulations are used to study the effects of oxygen vacancies on the tunneling current through the oxide. A level which is nearly 1.25 eV from the bottom of the conduction band is introduced into the bandgap due to the oxygen vacancies. The tunneling current calculations show that the tunneling currents through the gate oxide with different defect density possess the typical characteristic of stress-induced leakage current. Further analysis shows that the location of oxygen vacancies will have a marked effect on the tunneling current. The largest increase in the tunneling current caused by oxygen vacancies comes about at the middle oxide field when defects are located at the middle of the oxide. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Pressure induced structural phase transition in solid oxidizer KClO3: A first-principles study

    Science.gov (United States)

    Yedukondalu, N.; Ghule, Vikas D.; Vaitheeswaran, G.

    2013-05-01

    High pressure behavior of potassium chlorate (KClO3) has been investigated from 0 to 10 GPa by means of first principles density functional theory calculations. The calculated ground state parameters, transition pressure, and phonon frequencies using semiempirical dispersion correction scheme are in excellent agreement with experiment. It is found that KClO3 undergoes a pressure induced first order phase transition with an associated volume collapse of 6.4% from monoclinic (P21/m) → rhombohedral (R3m) structure at 2.26 GPa, which is in good accord with experimental observation. However, the transition pressure was found to underestimate (0.11 GPa) and overestimate (3.57 GPa) using local density approximation and generalized gradient approximation functionals, respectively. Mechanical stability of both the phases is explained from the calculated single crystal elastic constants. In addition, the zone center phonon frequencies have been calculated using density functional perturbation theory at ambient as well as at high pressure and the lattice modes are found to soften under pressure between 0.6 and 1.2 GPa. The present study reveals that the observed structural phase transition leads to changes in the decomposition mechanism of KClO3 which corroborates with the experimental results.

  8. First-principles study on oxidation effects in uranium oxides and high-pressure high-temperature behavior of point defects in uranium dioxide

    Science.gov (United States)

    Geng, Hua Y.; Song, Hong X.; Jin, K.; Xiang, S. K.; Wu, Q.

    2011-11-01

    Formation Gibbs free energy of point defects and oxygen clusters in uranium dioxide at high-pressure high-temperature conditions are calculated from first principles, using the LSDA+U approach for the electronic structure and the Debye model for the lattice vibrations. The phonon contribution on Frenkel pairs is found to be notable, whereas it is negligible for the Schottky defect. Hydrostatic compression changes the formation energies drastically, making defect concentrations depend more sensitively on pressure. Calculations show that, if no oxygen clusters are considered, uranium vacancy becomes predominant in overstoichiometric UO2 with the aid of the contribution from lattice vibrations, while compression favors oxygen defects and suppresses uranium vacancy greatly. At ambient pressure, however, the experimental observation of predominant oxygen defects in this regime can be reproduced only in a form of cuboctahedral clusters, underlining the importance of defect clustering in UO2+x. Making use of the point defect model, an equation of state for nonstoichiometric oxides is established, which is then applied to describe the shock Hugoniot of UO2+x. Furthermore, the oxidization and compression behavior of uranium monoxide, triuranium octoxide, uranium trioxide, and a series of defective UO2 at 0 K are investigated. The evolution of mechanical properties and electronic structures with an increase of the oxidation degree are analyzed, revealing the transition of the ground state of uranium oxides from metallic to Mott insulator and then to charge-transfer insulator due to the interplay of strongly correlated effects of 5f orbitals and the shift of electrons from uranium to oxygen atoms.

  9. Band offsets of n-type electron-selective contacts on cuprous oxide (Cu{sub 2}O) for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Riley E., E-mail: rbrandt@alum.mit.edu, E-mail: buonassisi@mit.edu; Lee, Yun Seog; Buonassisi, Tonio, E-mail: rbrandt@alum.mit.edu, E-mail: buonassisi@mit.edu [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Young, Matthew; Dameron, Arrelaine; Teeter, Glenn [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Park, Helen Hejin; Chua, Danny; Gordon, Roy G. [Harvard University, Cambridge, Massachusetts 02139 (United States)

    2014-12-29

    The development of cuprous oxide (Cu{sub 2}O) photovoltaics (PVs) is limited by low device open-circuit voltages. A strong contributing factor to this underperformance is the conduction-band offset between Cu{sub 2}O and its n-type heterojunction partner or electron-selective contact. In the present work, a broad range of possible n-type materials is surveyed, including ZnO, ZnS, Zn(O,S), (Mg,Zn)O, TiO{sub 2}, CdS, and Ga{sub 2}O{sub 3}. Band offsets are determined through X-ray photoelectron spectroscopy and optical bandgap measurements. A majority of these materials is identified as having a negative conduction-band offset with respect to Cu{sub 2}O; the detrimental impact of this on open-circuit voltage (V{sub OC}) is evaluated through 1-D device simulation. These results suggest that doping density of the n-type material is important as well, and that a poorly optimized heterojunction can easily mask changes in bulk minority carrier lifetime. Promising heterojunction candidates identified here include Zn(O,S) with [S]/[Zn] ratios >70%, and Ga{sub 2}O{sub 3}, which both demonstrate slightly positive conduction-band offsets and high V{sub OC} potential. This experimental protocol and modeling may be generalized to evaluate the efficiency potential of candidate heterojunction partners for other PV absorbers, and the materials identified herein may be promising for other absorbers with low electron affinities.

  10. A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jie; Xie, Anjian; Li, Shikuo; Huang, Fangzhi; Cao, Juan; Shen, Yuhua, E-mail: yhshen@ahu.edu.cn

    2016-01-01

    Graphical abstract: Excellent photocatalytic activity of the RGO/PANI/Cu{sub 2}O composite hydrogel for CR degradation under UV–vis light irradiation. - Highlights: • The RGO/PANI/Cu{sub 2}O composite hydrogel was first synthesized via a facile method. • Photocatalytic performance was studied under UV–vis light. • The ternary composite hydrogel shows unexpected photocatalytic activity. • A possible photocatalysis mechanism was illustrated. - Abstract: In this work, a novel reducing graphene/polyaniline/cuprous oxide (RGO/PANI/Cu{sub 2}O) composite hydrogel with a 3D porous network has been successfully prepared via a one-pot method in the presence of cubic Cu{sub 2}O nanoparticles. The as-synthesized ternary composites hydrogel shows unexpected photocatalytic activity such that Congo red (CR) degradation efficiency can reaches 97.91% in 20 min under UV–vis light irradiation, which is much higher than that of either the single component (Cu{sub 2}O nanoparticles), or two component systems (RGO/Cu{sub 2}O composite hydrogel and PANI/Cu{sub 2}O nanocomposites). Furthermore, the ternary composite hydrogel exhibits high stability and do not show any significant loss after five recycles. Such outstanding photocatalytic activity of the RGO/PANI/Cu{sub 2}O composite hydrogel was ascribed to the high absorption ability of the product for CR and the synergic effect among RGO, PANI and Cu{sub 2}O in photocatalytic process. The product of this work would provide a new sight for the construction of UV–vis light responsive photocatalyst with high performance.

  11. A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red

    International Nuclear Information System (INIS)

    Miao, Jie; Xie, Anjian; Li, Shikuo; Huang, Fangzhi; Cao, Juan; Shen, Yuhua

    2016-01-01

    Graphical abstract: Excellent photocatalytic activity of the RGO/PANI/Cu_2O composite hydrogel for CR degradation under UV–vis light irradiation. - Highlights: • The RGO/PANI/Cu_2O composite hydrogel was first synthesized via a facile method. • Photocatalytic performance was studied under UV–vis light. • The ternary composite hydrogel shows unexpected photocatalytic activity. • A possible photocatalysis mechanism was illustrated. - Abstract: In this work, a novel reducing graphene/polyaniline/cuprous oxide (RGO/PANI/Cu_2O) composite hydrogel with a 3D porous network has been successfully prepared via a one-pot method in the presence of cubic Cu_2O nanoparticles. The as-synthesized ternary composites hydrogel shows unexpected photocatalytic activity such that Congo red (CR) degradation efficiency can reaches 97.91% in 20 min under UV–vis light irradiation, which is much higher than that of either the single component (Cu_2O nanoparticles), or two component systems (RGO/Cu_2O composite hydrogel and PANI/Cu_2O nanocomposites). Furthermore, the ternary composite hydrogel exhibits high stability and do not show any significant loss after five recycles. Such outstanding photocatalytic activity of the RGO/PANI/Cu_2O composite hydrogel was ascribed to the high absorption ability of the product for CR and the synergic effect among RGO, PANI and Cu_2O in photocatalytic process. The product of this work would provide a new sight for the construction of UV–vis light responsive photocatalyst with high performance.

  12. Pt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin

    2015-01-01

    Taking CO oxidation as a probe, we investigated the electronic structure and reactivity of Pt atoms stabilized by vacancy defects on hexagonal boron nitride (h-BN) by first-principles-based calculations. As a joint effect of the high reactivity of both a single Pt atom and a boron vacancy defect (PtBV), the Pt-N interaction is -4.40 eV and is already strong enough to prohibit the diffusion and aggregation of the stabilized Pt atom. Facilitated by the upshifted Pt-d states originated from the Pt-N interaction, the barriers for CO oxidation through the Langmuir-Hinshelwood mechanism for formation and dissociation of peroxide-like intermediate and the regeneration are as low as 0.38, 0.10 and 0.04 eV, respectively, suggesting the superiority of PtBV as a catalyst for low temperature CO oxidation.

  13. A first-principles investigation of the effect of Pt cluster size on CO and NO oxidation intermediates and energetics

    International Nuclear Information System (INIS)

    Xu, Ye; Getman, Rachel B; Shelton, William Allison Jr.; Schneider, William F

    2008-01-01

    As catalysis research strives toward designing structurally and functionally well-defined catalytic centers containing as few active metal atoms as possible, the importance of understanding the reactivity of small metal clusters, and in particular of systematic comparisons of reaction types and cluster sizes, has grown concomitantly. Here we report density functional theory calculations (GGA-PW91) that probe the relationship between particle size, intermediate structures, and energetics of CO and NO oxidation by molecular and atomic oxygen on Ptx clusters (x = 1-5 and 10). The preferred structures, charge distributions, vibrational spectra, and energetics are systematically examined for oxygen (O2, 2O, and O), CO, CO2, NO, and NO2, for CO/NO co-adsorbed with O2, 2O, and O, and for CO2/NO2 co-adsorbed with O. The binding energies of oxygen, CO, NO, and the oxidation products CO2 and NO2 are all markedly enhanced on Ptx compared to Pt(111), and they trend toward the Pt(111) levels as cluster size increases. Because of the strong interaction of both the reactants and products with the Ptx clusters, deep energy sinks develop on the potential energy surfaces of the respective oxidation processes, indicating worse reaction energetics than on Pt(111). Thus the smallest Pt clusters are less effective for catalyzing CO and NO oxidation in their original state than bulk Pt. Our results further suggests that oxidation by molecular O2 is thermodynamically more facile than oxidation by atomic O on Ptx. Conditions and applications in which the Ptx clusters may be effective catalysts are discussed

  14. Hydrogen release at metal-oxide interfaces: A first principle study of hydrogenated Al/SiO{sub 2} interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianqiu, E-mail: jianqiu@vt.edu [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Tea, Eric; Li, Guanchen [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Hin, Celine [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Department of Material Science and Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road-MC 0238, Blacksburg, VA 24061 (United States)

    2017-06-01

    Highlights: • Hydrogen release process at the Al/SiO{sub 2} metal-oxide interface has been investigated. • A mathematical model that estimates the hydrogen release potential has been proposed. • Al atoms, Al−O bonds, and Si−Al bonds are the major hydrogen traps at the Al/SiO{sub 2} interface. • Hydrogen atoms are primarily release from Al−H and O−H bonds at the Al/SiO{sub 2} metal-oxide interface. - Abstract: The Anode Hydrogen Release (AHR) mechanism at interfaces is responsible for the generation of defects, that traps charge carriers and can induce dielectric breakdown in Metal-Oxide-Semiconductor Field Effect Transistors. The AHR has been extensively studied at Si/SiO{sub 2} interfaces but its characteristics at metal-silica interfaces remain unclear. In this study, we performed Density Functional Theory (DFT) calculations to study the hydrogen release mechanism at the typical Al/SiO{sub 2} metal-oxide interface. We found that interstitial hydrogen atoms can break interfacial Al−Si bonds, passivating a Si sp{sup 3} orbital. Interstitial hydrogen atoms can also break interfacial Al−O bonds, or be adsorbed at the interface on aluminum, forming stable Al−H−Al bridges. We showed that hydrogenated O−H, Si−H and Al−H bonds at the Al/SiO{sub 2} interfaces are polarized. The resulting bond dipole weakens the O−H and Si−H bonds, but strengthens the Al−H bond under the application of a positive bias at the metal gate. Our calculations indicate that Al−H bonds and O−H bonds are more important than Si−H bonds for the hydrogen release process.

  15. Dynamic modeling and predictive control in solid oxide fuel cells first principle and data-based approaches

    CERN Document Server

    Huang, Biao; Murshed, A K M Monjur

    2012-01-01

    The high temperature solid oxide fuel cell (SOFC) is identified as one of the leading fuel cell technology contenders to capture the energy market in years to come. However, in order to operate as an efficient energy generating system, the SOFC requires an appropriate control system which in turn requires a detailed modelling of process dynamics. Introducting state-of-the-art dynamic modelling, estimation, and control of SOFC systems, this book presents original modelling methods and brand new results as developed by the authors. With comprehensive coverage and bringing together many

  16. Effect of oxygen vacancies on the electronic and optical properties of tungsten oxide from first principles calculations

    Science.gov (United States)

    Mehmood, Faisal; Pachter, Ruth; Murphy, Neil R.; Johnson, Walter E.; Ramana, Chintalapalle V.

    2016-12-01

    In this work, we investigated theoretically the role of oxygen vacancies on the electronic and optical properties of cubic, γ-monoclinic, and tetragonal phases of tungsten oxide (WO3) thin films. Following the examination of structural properties and stability of the bulk tungsten oxide polymorphs, we analyzed band structures and optical properties, applying density functional theory (DFT) and GW (Green's (G) function approximation with screened Coulomb interaction (W)) methods. Careful benchmarking of calculated band gaps demonstrated the importance of using a range-separated functional, where results for the pristine room temperature γ-monoclinic structure indicated agreement with experiment. Further, modulation of the band gap for WO3 structures with oxygen vacancies was quantified. Dielectric functions for cubic WO3, calculated at both the single-particle, essentially time-dependent DFT, as well as many-body GW-Bethe-Salpeter equation levels, indicated agreement with experimental data for pristine WO3. Interestingly, we found that introducing oxygen vacancies caused appearance of lower energy absorptions. A smaller refractive index was indicated in the defective WO3 structures. These predictions could lead to further experiments aimed at tuning the optical properties of WO3 by introducing oxygen vacancies, particularly for the lower energy spectral region.

  17. Semiconductor growth on an oxide using a metallic surfactant and interface studies for potential gate stacks from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Huamantinco, Andrei

    2008-05-09

    In this work the epitaxial growth of germanium on SrHfO{sub 3}(001), and the La{sub 2}Hf{sub 2}O{sub 7}/Si(001) and SrTiO{sub 3}/GaAs(001) interfaces were studied theoretically using the Projector-Augmented Wave (PAW) method. The PAW method is based on Density Functional Theory and it is implemented in the Car-Parrinello Ab-Initio Molecular Dynamics. The goal of the germanium growth on SrHfO{sub 3}(001) is to form a germanium film with low density of defects and smooth morphology, to be used as channel in a transistor. The feasibility of using a third material to achieve germanium layer-by-layer growth was investigated. The formation of an ordered strontium film on a SrO-terminated oxide substrate, to be used as template for germanium overgrowth, was studied. Deposition of germanium on the strontium 1ML template results in wetting and thus a change of the growth mode to layer-by-layer. The germanium surface is then passivated and a germanium compound is initially formed with strontium at the surface and interface. The interfacial structure and valence band offsets of the La{sub 2}Hf{sub 2}O{sub 7}/Si(001) crystalline system were studied. The SrTiO{sub 3}/GaAs(001) crystalline interfaces with unpinned Fermi level were investigated. (orig.)

  18. Novel p-n heterojunction copper phosphide/cuprous oxide photocathode for solar hydrogen production.

    Science.gov (United States)

    Chen, Ying-Chu; Chen, Zhong-Bo; Hsu, Yu-Kuei

    2018-08-01

    A Copper phosphide (Cu 3 P) micro-rod (MR) array, with coverage by an n-Cu 2 O thin layer by electrodeposition as a photocathode, has been directly fabricated on copper foil via simple electro-oxidation and phosphidation for photoelectrochemical (PEC) hydrogen production. The morphology, structure, and composition of the Cu 3 P/Cu 2 O heterostructure are systematically analyzed using a scanning electron microscope (SEM), X-ray diffraction and X-ray photoelectron spectra. The PEC measurements corroborate that the p-Cu 3 P/n-Cu 2 O heterostructural photocathode illustrates efficient charge separation and low charge transfer resistance to achieve the highest photocurrent of 430 μA cm -2 that is greater than other transition metal phosphide materials. In addition, a detailed energy diagram of the p-Cu 3 P/n-Cu 2 O heterostructure was investigated using Mott-Schottky analysis. Our study paves the way to explore phosphide-based materials in a new class for solar energy applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Yifan Dai

    2018-01-01

    Full Text Available A cuprous oxide (Cu2O thin layer served as the base for a non-enzymatic glucose sensor in an alkaline medium, 0.1 NaOH solution, with a linear range of 50–200 mg/dL using differential pulse voltammetry (DPV measurement. An X-ray photoelectron spectroscopy (XPS study confirmed the formation of the cuprous oxide layer on the thin gold film sensor prototype. Quantitative detection of glucose in both phosphate-buffered saline (PBS and undiluted human serum was carried out. Neither ascorbic acid nor uric acid, even at a relatively high concentration level (100 mg/dL in serum, interfered with the glucose detection, demonstrating the excellent selectivity of this non-enzymatic cuprous oxide thin layer-based glucose sensor. Chronoamperometry and single potential amperometric voltammetry were used to verify the measurements obtained by DPV, and the positive results validated that the detection of glucose in a 0.1 M NaOH alkaline medium by DPV measurement was effective. Nickel, platinum, and copper are commonly used metals for non-enzymatic glucose detection. The performance of these metal-based sensors for glucose detection using DPV were also evaluated. The cuprous oxide (Cu2O thin layer-based sensor showed the best sensitivity for glucose detection among the sensors evaluated.

  20. First-principles study of doping effect on the phase transition of zinc oxide with transition metal doped

    International Nuclear Information System (INIS)

    Wu, Liang; Hou, Tingjun; Wang, Yi; Zhao, Yanfei; Guo, Zhenyu; Li, Youyong; Lee, Shuit-Tong

    2012-01-01

    Highlights: ► We study the doping effect on B4, B1 structures and phase transition of ZnO. ► We calculate the phase transition barrier and phase transition path of doped ZnO. ► The transition metal doping decreases the bulk modulus and phase transition pressure. ► The magnetic properties are influenced by the phase transition process. - Abstract: Zinc oxide (ZnO) is a promising material for its wide application in solid-state devices. With the pressure raised from an ambient condition, ZnO transforms from fourfold wurtzite (B4) to sixfold coordinated rocksalt (B1) structure. Doping is an efficient approach to improve the structures and properties of materials. Here we use density-functional theory (DFT) to study doped ZnO and find that the transition pressure from B4 phase to B1 phase of ZnO always decreases with different types of transition metal (V, Cr, Mn, Fe, Co, or Ni) doped, but the phase transition path is not affected by doping. This is consistent with the available experimental results for Mn-doped ZnO and Co-doped ZnO. Doping in ZnO causes the lattice distortion, which leads to the decrease of the bulk modulus and accelerates the phase transition. Mn-doped ZnO shows the strongest magnetic moment due to its half filled d orbital. For V-doped ZnO and Cr-doped ZnO, the magnetism is enhanced by phase transition from B4 to B1. But for Mn-doped ZnO, Fe-doped ZnO, Co-doped ZnO, and Ni-doped ZnO, B1 phase shows weaker magnetic moment than B4 phase. These results can be explained by the amount of charge transferred from the doped atom to O atom. Our results provide a theoretical basis for the doping approach to change the structures and properties of ZnO.

  1. Fe atoms trapped on graphene as a potential efficient catalyst for room-temperature complete oxidation of formaldehyde: a first-principles investigation

    KAUST Repository

    Guo, Huimin; Li, Min; Liu, Xin; Meng, Changgong; Linguerri, Roberto; Han, Yu; Chambaud, Gilberte

    2017-01-01

    We investigated the oxidation of formaldehyde, one of the major indoor air pollutants, into CO2 and H2O over Fe atoms trapped in defects on graphene by first-principles based calculations. These trapped Fe atoms are not only stable to withstand interference from the reaction environments but are also efficient in catalyzing the reactions between coadsorbed O-2 and formaldehyde. The oxidation of formaldehyde starts with the formation of a peroxide-like intermediate and continues by its dissociation into. eta(1)-OCHO coadsorbed with an OH radical. Then, the adsorbed OCHO undergoes conformational changes and hydride transfer, leading to the formation of H2O and CO2. Subsequent adsorption of O2 or formaldehyde facilitates desorption of H2O and a new reaction cycle initiates. The calculated barriers for formation and dissociation of the peroxide-like intermediate are 0.43 and 0.40 eV, respectively, and those for conformation changes and hydride transfer are 0.47 and 0.13 eV, respectively. These relatively low barriers along the reaction path suggest the potential high catalytic performance of trapped Fe atoms for formaldehyde oxidation.

  2. Fe atoms trapped on graphene as a potential efficient catalyst for room-temperature complete oxidation of formaldehyde: a first-principles investigation

    KAUST Repository

    Guo, Huimin

    2017-03-24

    We investigated the oxidation of formaldehyde, one of the major indoor air pollutants, into CO2 and H2O over Fe atoms trapped in defects on graphene by first-principles based calculations. These trapped Fe atoms are not only stable to withstand interference from the reaction environments but are also efficient in catalyzing the reactions between coadsorbed O-2 and formaldehyde. The oxidation of formaldehyde starts with the formation of a peroxide-like intermediate and continues by its dissociation into. eta(1)-OCHO coadsorbed with an OH radical. Then, the adsorbed OCHO undergoes conformational changes and hydride transfer, leading to the formation of H2O and CO2. Subsequent adsorption of O2 or formaldehyde facilitates desorption of H2O and a new reaction cycle initiates. The calculated barriers for formation and dissociation of the peroxide-like intermediate are 0.43 and 0.40 eV, respectively, and those for conformation changes and hydride transfer are 0.47 and 0.13 eV, respectively. These relatively low barriers along the reaction path suggest the potential high catalytic performance of trapped Fe atoms for formaldehyde oxidation.

  3. Shape and catalytic mechanism of RuO{sub 2} particles at CO oxidation reaction conditions. First-principles based multi-scale modeling

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, Karsten [TU Muenchen (Germany). Lehrstuhl fuer Theoretische Chemie

    2016-11-01

    For model catalyst studies on low-index single-crystal surfaces close agreement between detailed measurements and quantitative microkinetic modeling can increasingly be achieved. However, for 'real' catalyst particles, such structure-morphology-activity relationships are only scarcely established. This is prototypically reflected by the situation for RuO{sub 2}, as a most active catalyst for CO oxidation. Here, existing first-principles kinetic modeling is restricted to just one facet, namely the RuO{sub 2}(110) surface, which is not able to fully account for activity data obtained from polycrystalline RuO{sub 2} powder catalysts. The overarching objective of this project was correspondingly to close this gap and demonstrate that similarly close agreement as for individual single-crystal model catalysts can also be achieved for catalyst particles. Specifically, we addressed experiments where an intact RuO{sub 2} bulk structure is conserved, and establish the atomic-scale structure and reactivity of other RuO{sub 2} low-index facets under the gas-phase conditions characteristic for catalytic CO oxidation.

  4. Preparation of silver-cuprous oxide/stearic acid composite coating with superhydrophobicity on copper substrate and evaluation of its friction-reducing and anticorrosion abilities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peipei [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Chen, Xinhua [College of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000 (China); Yang, Guangbin; Yu, Laigui [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhang, Pingyu, E-mail: pingyu@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2014-01-15

    A simple two-step solution immersion process was combined with surface-modification by stearic acid to prepare superhydrophobic coatings on copper substrates so as to reduce friction coefficient, increase wear resistance and improve the anticorrosion ability of copper. Briefly, cuprous oxide (Cu{sub 2}O) crystal coating with uniform and compact tetrahedron structure was firstly created by immersing copper substrate in 2 mol L{sup −1} NaOH solution. As-obtained Cu{sub 2}O coating was then immersed in 0.33 mmol L{sup −1} AgNO{sub 3} solution to incorporate silver nanoparticles, followed by modification with stearic acid (denoted as SA) coating to achieve hydrophobicity. The surface morphology and chemical composition of silver-cuprous oxide/stearic acid (denoted as Ag-Cu{sub 2}O/SA) composite coating were investigated using a scanning electron microscope and an X-ray photoelectron spectroscope (XPS); and its phase structure was examined with an X-ray diffractometer (XRD). Moreover, the contact angle of water on as-prepared Ag-Cu{sub 2}O/SA composite coating was measured, and its friction-reducing and anticorrosion abilities were evaluated. It was found that as-prepared Ag-Cu{sub 2}O/SA composite coating has a water contact angle of as high as 152.4{sup o} and can provide effective friction-reducing, wear protection and anticorrosion protection for copper substrate, showing great potential for surface-modification of copper.

  5. Redox functionality mediated by adsorbed oxygen on a Pd oxide film over a Pd(100) thin structure: a first-principles study

    International Nuclear Information System (INIS)

    Kusakabe, K; Ikuno, Y k; Nagara, H; Harada, K

    2009-01-01

    Stable oxygen sites on a PdO film over a Pd(100) thin structure with a (√5x√5)R27 o surface unit cell are determined using the first-principles electronic structure calculations with the generalized gradient approximation. The adsorbed monatomic oxygen goes to a site bridging two twofold-coordinated Pd atoms or to a site bridging a twofold-coordinated Pd atom and a fourfold-coordinated Pd atom. Estimated reaction energies of CO oxidation by reduction of the oxidized PdO film and N 2 O reduction mediated by oxidation of the PdO film are both exothermic. Motion of the adsorbed oxygen atom between the two stable sites is evaluated using the nudged elastic band method, where an energy barrier for a translational motion of the adsorbed oxygen may become ∼0.45 eV, which is low enough to allow fluxionality of the surface oxygen at high temperatures. The oxygen fluxionality is allowed by the existence of twofold-coordinated Pd atoms on the PdO film, whose local structure has a similarity to that of Pd catalysts for the Suzuki-Miyaura cross-coupling. Although NO x (including NO 2 and NO) reduction is not always catalyzed by the PdO film only, we conclude that continual redox reactions may happen mediated by oxygen-adsorbed PdO films over a Pd surface structure, when the influx of NO x and CO continues, and when the reaction cycle is kept on a well-designed oxygen surface.

  6. Enhanced photocatalytic performance of KNbO3(100)/reduced graphene oxide nanocomposites investigated using first-principles calculations: RGO reductivity effect

    Science.gov (United States)

    Zhang, Pan; Shen, Yanqing; Wu, Wenjing; Li, Jun; Zhou, Zhongxiang

    2018-03-01

    Although a number of various reduced graphene oxide (RGO)-based nanomaterials with enhanced photocatalytic performance have recently been characterized, the effect of RGO reductivity on their performance is still not clear. Herein, KNbO3(100) surface modification with three RGO sheets of different reductivity is investigated using first-principles calculations, revealing that increasing RGO reductivity enhances the photocatalytic performance of KNbO3(100)/RGO nanocomposites. In contrast to CeO2/RGO nanocomposites, the O atoms of RGO inhibit the photoactivity of KNbO3/RGO nanocomposites by restraining the effect of inducing a red shift of the corresponding photocatalytic absorption spectra by C 2p states. Increased RGO reductivity extends its absorption edge to the visible light region of the optical absorption and also promotes charge transfer from the KNbO3(100) surface to RGO sheets, in contrast to the behavior observed for g-C3N4/RGO composites. Overall, this work provides a reasonable explanation of controversial experimental results obtained previously, paving the way to the development of highly efficient RGO-based photocatalysts and promoting further photocatalytic applications of KNbO3/RGO nanocomposites.

  7. Structural phases arising from reconstructive and isostructural transitions in high-melting-point oxides under hydrostatic pressure: A first-principles study

    Science.gov (United States)

    Tian, Hao; Kuang, Xiao-Yu; Mao, Ai-Jie; Yang, Yurong; Xu, Changsong; Sayedaghaee, S. Omid; Bellaiche, L.

    2018-01-01

    High-melting-point oxides of chemical formula A B O3 with A =Ca , Sr, Ba and B =Zr , Hf are investigated as a function of hydrostatic pressure up to 200 GPa by combining first-principles calculations with a particle swarm optimization method. Ca- and Sr-based systems: (1) first undergo a reconstructive phase transition from a perovskite state to a novel structure that belongs to the post-post-perovskite family and (2) then experience an isostructural transition to a second, also new post-post-perovskite state at higher pressures, via the sudden formation of a specific out-of-plane B -O bond. In contrast, the studied Ba compounds evolve from a perovskite phase to a third novel post-post-perovskite structure via another reconstructive phase transition. The original characteristics of these three different post-post-perovskite states are emphasized. Unusual electronic properties, including significant piezochromic effects and an insulator-metal transition, are also reported and explained.

  8. Thermodynamic properties of copper compounds with oxygen and hydrogen from first principles

    International Nuclear Information System (INIS)

    Korzhavyi, P.A.; Johansson, B.

    2010-02-01

    We employ quantum-mechanical calculations (based on density functional theory and linear response theory) in order to test the mechanical and chemical stability of several solid-state configurations of Cu 1+ , Cu 2+ , O 2- , H 1- , and H 1+ ions. We begin our analysis with cuprous oxide (Cu 2 O, cuprite structure), cupric oxide (CuO, tenorite structure), and cuprous hydride (CuH, wurtzite and sphalerite structures) whose thermodynamic properties have been studied experimentally. In our calculations, all these compounds are found to be mechanically stable configurations. Their formation energies calculated at T = 0 K (including the energy of zero-point and thermal motion of the ions) and at room temperature are in good agreement with existing thermodynamic data. A search for other possible solid-state conformations of copper, hydrogen, and oxygen ions is then performed. Several candidate structures for solid phases of cuprous oxy-hydride (Cu 4 H 2 O) and cupric hydride (CuH 2 ) have been considered but found to be dynamically unstable. Cuprous oxy-hydride is found to be energetically unstable with respect to decomposition onto cuprous oxide and cuprous hydride. Metastability of cuprous hydroxide (CuOH) is established in our calculations. The free energy of CuOH is calculated to be some 50 kJ/mol higher than the average of the free energies of Cu 2 O and water. Thus, cuprite Cu 2 O is the most stable of the examined Cu(I) compounds

  9. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors

    Science.gov (United States)

    Wan, Caichao; Jiao, Yue; Li, Jian

    2017-09-01

    An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.

  10. Thermodynamic properties of copper compounds with oxygen and hydrogen from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Korzhavyi, P.A.; Johansson, B. (Applied Materials Physics, Dept. of Materials Science and Engineering, Royal Inst. of Technology, Stockholm (Sweden))

    2010-02-15

    We employ quantum-mechanical calculations (based on density functional theory and linear response theory) in order to test the mechanical and chemical stability of several solid-state configurations of Cu1+, Cu2+, O2-, H1-, and H1+ ions. We begin our analysis with cuprous oxide (Cu{sub 2}O, cuprite structure), cupric oxide (CuO, tenorite structure), and cuprous hydride (CuH, wurtzite and sphalerite structures) whose thermodynamic properties have been studied experimentally. In our calculations, all these compounds are found to be mechanically stable configurations. Their formation energies calculated at T = 0 K (including the energy of zero-point and thermal motion of the ions) and at room temperature are in good agreement with existing thermodynamic data. A search for other possible solid-state conformations of copper, hydrogen, and oxygen ions is then performed. Several candidate structures for solid phases of cuprous oxy-hydride (Cu{sub 4}H{sub 2}O) and cupric hydride (CuH{sub 2}) have been considered but found to be dynamically unstable. Cuprous oxy-hydride is found to be energetically unstable with respect to decomposition onto cuprous oxide and cuprous hydride. Metastability of cuprous hydroxide (CuOH) is established in our calculations. The free energy of CuOH is calculated to be some 50 kJ/mol higher than the average of the free energies of Cu{sub 2}O and water. Thus, cuprite Cu{sub 2}O is the most stable of the examined Cu(I) compounds

  11. The Impact of Iron Adsorption on the Electronic and Photocatalytic Properties of the Zinc Oxide (0001 Surface: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Jingsi Cheng

    2018-03-01

    Full Text Available The structural stability, electronic structure, and optical properties of an iron-adsorbed ZnO (0001 surface with three high-symmetry adsorption sites are investigated with first-principle calculations on the basis of density functional theory and the Hubbard-U method. It is found that the iron adatom in the H3 adsorption site of ZnO (0001 surface has the lowest adsorption energy of −5.665 eV compared with T4 and Top sites. For the Top site, compared with the pristine ZnO (0001 surface, the absorption peak located at 1.17 eV has a red shift, and the elevation of the absorption coefficient is more pronounced in the visible-light region, because the Fe-related levels are introduced in the forbidden band and near the Fermi level. The electrostatic potential computation reveals that the work function of the ZnO (0001 surface is significantly decreased from 2.340 to 1.768 eV when iron is adsorbed on the Top site. Furthermore, the degradation mechanism based on the band structure is analyzed. It can be concluded that the adsorption of iron will promote the separation of photoinduced carriers, thus improving the photocatalytic activity of ZnO (0001 surface. Our study benefits research on the photocatalytic activity of ZnO and the utilization rate of solar energy.

  12. The Impact of Iron Adsorption on the Electronic and Photocatalytic Properties of the Zinc Oxide (0001) Surface: A First-Principles Study.

    Science.gov (United States)

    Cheng, Jingsi; Wang, Ping; Hua, Chao; Yang, Yintang; Zhang, Zhiyong

    2018-03-12

    The structural stability, electronic structure, and optical properties of an iron-adsorbed ZnO (0001) surface with three high-symmetry adsorption sites are investigated with first-principle calculations on the basis of density functional theory and the Hubbard-U method. It is found that the iron adatom in the H₃ adsorption site of ZnO (0001) surface has the lowest adsorption energy of -5.665 eV compared with T₄ and Top sites. For the Top site, compared with the pristine ZnO (0001) surface, the absorption peak located at 1.17 eV has a red shift, and the elevation of the absorption coefficient is more pronounced in the visible-light region, because the Fe-related levels are introduced in the forbidden band and near the Fermi level. The electrostatic potential computation reveals that the work function of the ZnO (0001) surface is significantly decreased from 2.340 to 1.768 eV when iron is adsorbed on the Top site. Furthermore, the degradation mechanism based on the band structure is analyzed. It can be concluded that the adsorption of iron will promote the separation of photoinduced carriers, thus improving the photocatalytic activity of ZnO (0001) surface. Our study benefits research on the photocatalytic activity of ZnO and the utilization rate of solar energy.

  13. Low temperature (< 100 °C) deposited P-type cuprous oxide thin films: Importance of controlled oxygen and deposition energy

    International Nuclear Information System (INIS)

    Li, Flora M.; Waddingham, Rob; Milne, William I.; Flewitt, Andrew J.; Speakman, Stuart; Dutson, James; Wakeham, Steve; Thwaites, Mike

    2011-01-01

    With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p–n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu 2 O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu 2 O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu 2 O films are reported. It is known from previously published work that the formation of pure Cu 2 O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu 2 O thin films (as opposed to CuO or mixed phase CuO/Cu 2 O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu 2 O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a

  14. Surface anisotropy of iron oxide nanoparticles and slabs from first principles: Influence of coatings and ligands as a test of the Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Brymora, Katarzyna; Calvayrac, Florent, E-mail: Florent.Calvayrac@univ-lemans.fr

    2017-07-15

    Highlights: • A new method is given to extract surface anisotropies from ab initio calculations. • Heisenberg model for magnetic clusters and surfaces is validated in simple cases. • Ligands, metallic clusters, or coatings degrade the validity of the Heisenberg model. • Values for surface anisotropies, volume anisotropies, exchange constants are computed. • Results are in agreement with experimental data, previous theoretical findings. - Abstract: We performed ab initio computations of the magnetic properties of simple iron oxide clusters and slabs. We considered an iron oxide cluster functionalized by a molecule or glued to a gold cluster of the same size. We also considered a magnetite slab coated by cobalt oxide or a mixture of iron oxide and cobalt oxide. The changes in magnetic behavior were explored using constrained magnetic calculations. A possible value for the surface anisotropy was estimated from the fit of a classical Heisenberg model on ab initio results. The value was found to be compatible with estimations obtained by other means, or inferred from experimental results. The addition of a ligand, coating, or of a metallic nanoparticle to the systems degraded the quality of the description by the Heisenberg Hamiltonian. Proposing a change in the anisotropies allowing for the proportion of each transition atom we could get a much better description of the magnetism of series of hybrid cobalt and iron oxide systems.

  15. First-principles investigation of the effect of oxidation on the electronic structure and magnetic properties at the FeRh/MgO (0 0 1) interface

    Energy Technology Data Exchange (ETDEWEB)

    Sakhraoui, T., E-mail: tsakhrawi@yahoo.com [Laboratoire de la Matière Condensée et des Nanosciences, Département de Physique, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg (France); Said, M. [Laboratoire de la Matière Condensée et des Nanosciences, Département de Physique, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Alouani, M. [Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg (France)

    2017-06-15

    Highlights: • Density functional theory is used to study the interface between the FeRh alloy and MgO. • We focus on the effect of the oxidation on the electronic structure and magnetic properties of the FeRh/MgO (0 0 1) interface. • We show the change on the structure of the Fe-d states. • We examine the charge transfer and the local spin density modification after interface oxidation. - Abstract: The effect of interfacial oxidation on electronic structure and magnetic properties at the FeRh/MgO (0 0 1) interface is studied by ab initio methods. The results show the formation of an interfacial FeO-like layer between the FeRh and the MgO barrier, which has a direct impact on Fe e{sub g} states at the interface. It is shown that these e{sub g} states are more affected than that the t{sub 2g} states at the Fermi level due to the strong hybridization of these states with the p-states of oxygen. Thus, the oxidation modifies crucially the electronic structure and the magnetic properties as compared to those of an ideal interface. In particular, it was found that spin polarization of the ferromagnetic state is substantially enhanced. A simple two-current Julliere model shows that the TMR increases with oxidation.

  16. Credibility is the first principle

    International Nuclear Information System (INIS)

    Beecher, William

    2002-01-01

    The first principle of an effective public affairs program on nuclear energy is credibility. If credibility is lacking, no matter how artful the message, it will not be persuasive. There has long been a problem in the United States. For years much of the industry followed the practice, when there was an event at a nuclear power plant that resulted in an unplanned release of radioactivity, to tell the public there was 'no release' if in fact the release was below the technical specifications of what the NRC mandates as being safe. The NRC is a safety regulator. It can tell nuclear power plant operators what to do, or not do, when it comes to safety, but doesn't have the right to tell them what to say to the public. The example of an emergency exercise and the NRC press release on that occasion showed the direction how companies could be influenced to behave in order to prevent such avoidably negative news coverage, i.e. attaining credibility when public anxiety is concerned

  17. Simulating Linear Sweep Voltammetry from First-Principles: Application to Electrochemical Oxidation of Water on Pt(111) and Pt3Ni(111)

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan

    2012-01-01

    Cyclic voltammetry is a fundamental experimental method for characterizing adsorbates on electrochemical surfaces. We present a model for the electrochemical solid–liquid interface, and we simulate the linear sweep voltammogram of the electrochemical oxidation of H2O on Pt(111) and Pt3Ni(111...

  18. First-Principles Fe L 2,3 -Edge and O K-Edge XANES and XMCD Spectra for Iron Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Sassi, Michel [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Pearce, Carolyn I. [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Bagus, Paul S. [Department; Arenholz, Elke [Advanced; Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, Washington 99352, United States

    2017-10-02

    X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectroscopies are tools in widespread use for providing detailed local atomic structure, oxidation state, and magnetic structure information for materials and organometallic complexes. The analysis of these spectra for transition-metal L-edges is routinely performed on the basis of ligand-field multiplet theory because one- and two-particle mean-field ab initio methods typically cannot describe the multiplet structure. Here we show that multireference configuration interaction (MRCI) calculations can satisfactorily reproduce measured XANES spectra for a range of complex iron oxide materials including hematite and magnetite. MRCI Fe L2,3-edge XANES and XMCD spectra of Fe(II)O6, Fe(III)O6, and Fe(III)O4 in magnetite are found to be in very good qualitative agreement with experiment and multiplet calculations. Point-charge embedding and small distortions of the first-shell oxygen ligands have only small effects. Oxygen K-edge XANES/XMCD spectra for magnetite investigated by a real-space Green’s function approach complete the very good qualitative agreement with experiment. Material-specific differences in local coordination and site symmetry are well reproduced, making the approach useful for assigning spectral features to specific oxidation states and coordination environments.

  19. First-principles simulations of heat transport

    Science.gov (United States)

    Puligheddu, Marcello; Gygi, Francois; Galli, Giulia

    2017-11-01

    Advances in understanding heat transport in solids were recently reported by both experiment and theory. However an efficient and predictive quantum simulation framework to investigate thermal properties of solids, with the same complexity as classical simulations, has not yet been developed. Here we present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at close to equilibrium conditions, which only requires calculations of first-principles trajectories and atomic forces, thus avoiding direct computation of heat currents and energy densities. In addition the method requires much shorter sequential simulation times than ordinary molecular dynamics techniques, making it applicable within density functional theory. We discuss results for a representative oxide, MgO, at different temperatures and for ordered and nanostructured morphologies, showing the performance of the method in different conditions.

  20. Investigation of Iron-based double perovskite oxides on the magnetic phase stability, mechanical, electronic and optical properties via first-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Rached, H., E-mail: habib_rached@yahoo.fr [Laboratoire des Matériaux Magnétiques, Faculté des Sciences Exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès, 22000 (Algeria); Département de Physique, Faculté des Sciences Exactes et Informatique, Université Hassiba BenBouali de Chlef, Chlef, 02000 (Algeria); Bendaoudia, S. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences Exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès, 22000 (Algeria); Rached, D., E-mail: rachdj@yahoo.fr [Laboratoire des Matériaux Magnétiques, Faculté des Sciences Exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès, 22000 (Algeria)

    2017-06-01

    The main goal of the present work is to obtain report on the magnetic phase stability, mechanical, electronic and optical properties of double perovskite oxides Pb{sub 2}FeMO{sub 6} (M = Mo, Re and W) by employing the ab-initio plane-wave method, based on the density functional theory (DFT). The exchange-correlation (XC) energy of electrons was treated using the Perdew–Burke–Ernzerhof parametrization. The ground-state electronic properties for different magnetic configurations were calculated. The formation enthalpies has been evaluated in order to determinate the stability of our compounds. The independent elastic constants and the related mechanical properties are investigated. The electronic structure calculation reveal the half-metallic ferrimagnets (FiM-HM) for all investigated compounds. The optical constants as the dielectric function, refractive index, optical reflectivity and absorption coefficient were calculated and discussed in detail. Therefore, our compounds are identified as potential candidates for spintronic applications and high performance electronic devices. - Highlights: • Based on the DFT calculation, the Pb{sub 2}FeMO{sub 6} (M = Mo, Re and W) compounds have been investigated. • The ground-state properties are predicted. • The mechanical properties reveals that these compounds are stable against any elastic deformations. • The electronic structures reveals the half-metallic ferrimagnets (FiM-HM) for all investigated compounds.

  1. First-principles kinetic Monte Carlo simulations of ammonia oxidation at RuO{sub 2}(110): Selectivity vs. semi-local DFT

    Energy Technology Data Exchange (ETDEWEB)

    Mangold, Claudia [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany); Reuter, Karsten [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany); Technische Universitaet, Muenchen (Germany)

    2011-07-01

    Reaching a detailed mechanistic understanding of high selectivity in surface catalytic processes is one of the central goals in present-day catalysis research. The Surface Science approach to this problem focuses on the investigation of well-defined model systems that reduce the complexity but still capture the relevant aspects. In this respect, the almost 100% selectivity reported in detailed experiments for the oxidation of NH{sub 3} to NO at RuO{sub 2}(110) presents an ideal benchmark for a quantitative theoretical analysis. To this end we perform detailed kinetic Monte Carlo simulations based on kinetic parameters derived from density-functional theory (DFT). The obtained turnover frequency for molecular nitrogen is in rather good agreement with the experimental data. However, even with an extended set of elementary processes we are not able to reproduce the experimental findings for the production of NO and therewith the selectivity. The central quantities that decisively determine the latter are the binding energy of NO and the N diffusion barrier. Suspecting the approximate energetics obtained with the employed semi-local DFT functional as reason for the discrepancy, we recalculate the kinetic parameters with different functionals and discuss the resulting effects in the kMC simulations.

  2. Effect of (Mn,Cr) co-doping on structural, electronic and magnetic properties of zinc oxide by first-principles studies

    Science.gov (United States)

    Aimouch, D. E.; Meskine, S.; Boukortt, A.; Zaoui, A.

    2018-04-01

    In this study, structural, electronic and magnetic properties of Mn doped (ZnO:Mn) and (Mn,Cr) co-doped zinc oxide (ZnO:(Mn,Cr)) have been calculated with the FP-LAPW method by using the LSDA and LSDA+U approximations. Going through three configurations of Mn,Cr co-doped ZnO corresponding to three different distances between manganese and chromium, we have analyzed that ZnO:(Mn,Cr) system is more stable in its preferred configuration2. The lattice constant of undoped ZnO that has been calculated in this study is in a good agreement with the experimental and theoretical values. It was found to be increased by doping with Mn or (Mn,Cr) impurities. The band structure calculations showed the metallic character of Mn doped and Mn,Cr co-doped ZnO. As results, by using LSDA+U (U = 6eV), we show the half-metallic character of ZnO:Mn and ZnO:Mn,Cr. We present the calculated exchange couplings d-d of Mn doped ZnO which is in a good agreement with the former FPLO calculation data and the magnetization step measurement of the experimental work. The magnetic coupling between neighboring Mn impurities in ZnO is found to be antiferromagnetic. In the case of (Mn,Cr) co-doped ZnO, the magnetic coupling between Mn and Cr impurities is found to be antiferromagnetic for configuration1 and 3, and ferromagnetic for configuration2. Thus, the ferromagnetic coupling is weak in ZnO:Mn. Chromium co-doping greatly enhance the ferromagnetism, especially when using configuration2. At last, we present the 2D and 3D spin-density distribution of ZnO:Mn and ZnO:(Mn,Cr) where the ferromagnetic state in ZnO:(Mn,Cr) comes from the strong p-d and d-d interactions between 2p-O, 3d-Mn and 3d-Cr electrons. The results of our calculations suggest that the co-doping ZnO(Mn, Cr) can be among DMS behavior for spintronic applications.

  3. GPU based acceleration of first principles calculation

    International Nuclear Information System (INIS)

    Tomono, H; Tsumuraya, K; Aoki, M; Iitaka, T

    2010-01-01

    We present a Graphics Processing Unit (GPU) accelerated simulations of first principles electronic structure calculations. The FFT, which is the most time-consuming part, is about 10 times accelerated. As the result, the total computation time of a first principles calculation is reduced to 15 percent of that of the CPU.

  4. First-principles calculations of mobility

    Science.gov (United States)

    Krishnaswamy, Karthik

    First-principles calculations can be a powerful predictive tool for studying, modeling and understanding the fundamental scattering mechanisms impacting carrier transport in materials. In the past, calculations have provided important qualitative insights, but numerical accuracy has been limited due to computational challenges. In this talk, we will discuss some of the challenges involved in calculating electron-phonon scattering and carrier mobility, and outline approaches to overcome them. Topics will include the limitations of models for electron-phonon interaction, the importance of grid sampling, and the use of Gaussian smearing to replace energy-conserving delta functions. Using prototypical examples of oxides that are of technological importance-SrTiO3, BaSnO3, Ga2O3, and WO3-we will demonstrate computational approaches to overcome these challenges and improve the accuracy. One approach that leads to a distinct improvement in the accuracy is the use of analytic functions for the band dispersion, which allows for an exact solution of the energy-conserving delta function. For select cases, we also discuss direct quantitative comparisons with experimental results. The computational approaches and methodologies discussed in the talk are general and applicable to other materials, and greatly improve the numerical accuracy of the calculated transport properties, such as carrier mobility, conductivity and Seebeck coefficient. This work was performed in collaboration with B. Himmetoglu, Y. Kang, W. Wang, A. Janotti and C. G. Van de Walle, and supported by the LEAST Center, the ONR EXEDE MURI, and NSF.

  5. First principles studies of multiferroic materials

    International Nuclear Information System (INIS)

    Picozzi, Silvia; Ederer, Claude

    2009-01-01

    Multiferroics, materials where spontaneous long-range magnetic and dipolar orders coexist, represent an attractive class of compounds, which combine rich and fascinating fundamental physics with a technologically appealing potential for applications in the general area of spintronics. Ab initio calculations have significantly contributed to recent progress in this area, by elucidating different mechanisms for multiferroicity and providing essential information on various compounds where these effects are manifestly at play. In particular, here we present examples of density-functional theory investigations for two main classes of materials: (a) multiferroics where ferroelectricity is driven by hybridization or purely structural effects, with BiFeO 3 as the prototype material, and (b) multiferroics where ferroelectricity is driven by correlation effects and is strongly linked to electronic degrees of freedom such as spin-, charge-, or orbital-ordering, with rare-earth manganites as prototypes. As for the first class of multiferroics, first principles calculations are shown to provide an accurate qualitative and quantitative description of the physics in BiFeO 3 , ranging from the prediction of large ferroelectric polarization and weak ferromagnetism, over the effect of epitaxial strain, to the identification of possible scenarios for coupling between ferroelectric and magnetic order. For the second class of multiferroics, ab initio calculations have shown that, in those cases where spin-ordering breaks inversion symmetry (e.g. in antiferromagnetic E-type HoMnO 3 ), the magnetically induced ferroelectric polarization can be as large as a few μC cm -2 . The examples presented point the way to several possible avenues for future research: on the technological side, first principles simulations can contribute to a rational materials design, aimed at identifying spintronic materials that exhibit ferromagnetism and ferroelectricity at or above room temperature. On the

  6. First-principles calculations of novel materials

    Science.gov (United States)

    Sun, Jifeng

    Computational material simulation is becoming more and more important as a branch of material science. Depending on the scale of the systems, there are many simulation methods, i.e. first-principles calculation (or ab-initio), molecular dynamics, mesoscale methods and continuum methods. Among them, first-principles calculation, which involves density functional theory (DFT) and based on quantum mechanics, has become to be a reliable tool in condensed matter physics. DFT is a single-electron approximation in solving the many-body problems. Intrinsically speaking, both DFT and ab-initio belong to the first-principles calculation since the theoretical background of ab-initio is Hartree-Fock (HF) approximation and both are aimed at solving the Schrodinger equation of the many-body system using the self-consistent field (SCF) method and calculating the ground state properties. The difference is that DFT introduces parameters either from experiments or from other molecular dynamic (MD) calculations to approximate the expressions of the exchange-correlation terms. The exchange term is accurately calculated but the correlation term is neglected in HF. In this dissertation, DFT based first-principles calculations were performed for all the novel materials and interesting materials introduced. Specifically, the DFT theory together with the rationale behind related properties (e.g. electronic, optical, defect, thermoelectric, magnetic) are introduced in Chapter 2. Starting from Chapter 3 to Chapter 5, several representative materials were studied. In particular, a new semiconducting oxytelluride, Ba2TeO is studied in Chapter 3. Our calculations indicate a direct semiconducting character with a band gap value of 2.43 eV, which agrees well with the optical experiment (˜ 2.93 eV). Moreover, the optical and defects properties of Ba2TeO are also systematically investigated with a view to understanding its potential as an optoelectronic or transparent conducting material. We find

  7. Analytic representation for first-principles pseudopotentials

    International Nuclear Information System (INIS)

    Lam, P.K.; Cohen, M.L.; Zunger, A.

    1980-01-01

    The first-principles pseudopotentials developed by Zunger and Cohen are fit with a simple analytic form chosen to model the main physical properties of the potentials. The fitting parameters for the first three rows of the Periodic Table are presented, and the quality of the fit is discussed. The parameters reflect chemical trends of the elements. We find that a minimum of three parameters is required to reproduce the regularities of the Periodic Table. Application of these analytic potentials is also discussed

  8. First principles study of AlBi

    International Nuclear Information System (INIS)

    Amrani, B.; Achour, H.; Louhibi, S.; Tebboune, A.; Sekkal, N.

    2008-05-01

    Using the first principles method of the full potential linear augmented plane waves (FPLAPW), the structural and the electronic properties of AlBi are investigated. It is found that this compound has a small and direct semiconducting gap at Γ. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the dependences of the volume, the bulk modulus, the variation of the thermal expansion α, as well as the Debye temperature θ D and the heat capacity C v are successfully obtained in the whole range from 0 to 30 GPa and temperature range from 0 to 1200 K. (author)

  9. First-principles molecular dynamics for metals

    International Nuclear Information System (INIS)

    Fernando, G.W.; Qian, G.; Weinert, M.; Davenport, J.W.

    1989-01-01

    A Car-Parrinello-type first-principles molecular-dynamics approach capable of treating the partial occupancy of electronic states that occurs at the Fermi level in a metal is presented. The algorithms used to study metals are both simple and computationally efficient. We also discuss the connection between ordinary electronic-structure calculations and molecular-dynamics simulations as well as the role of Brillouin-zone sampling. This extension should be useful not only for metallic solids but also for solids that become metals in their liquid and/or amorphous phases

  10. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  11. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.

    2014-07-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  12. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.; Yoon, S.; Wentzcovitch, R. M.; Monteiro, P. J. M.

    2014-01-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  13. Obtaining the electrostatic screening from first principles

    International Nuclear Information System (INIS)

    Shaviv, N.J.; Shaviv, G.

    2003-01-01

    We derive the electrostatic screening effect from first principles and show the basic properties of the screening process. We in particular show that under the conditions prevailing in the Sun the number of particles in the Debye sphere is of the order of unity. Consequently; fluctuations play a dominant role in the screening process. The fluctuations lead to an effective time dependent potential. Particles with low kinetic energy lose on the average energy to the plasma and vice versa with high energy particles. We derive general conditions on the screening energy and show under what conditions the Salpeter approximation is obtained. The connection between the screening and relaxation processes in the plasma is exposed

  14. Primordial Black Holes from First Principles (Overview)

    Science.gov (United States)

    Lam, Casey; Bloomfield, Jolyon; Moss, Zander; Russell, Megan; Face, Stephen; Guth, Alan

    2017-01-01

    Given a power spectrum from inflation, our goal is to calculate, from first principles, the number density and mass spectrum of primordial black holes that form in the early universe. Previously, these have been calculated using the Press- Schechter formalism and some demonstrably dubious rules of thumb regarding predictions of black hole collapse. Instead, we use Monte Carlo integration methods to sample field configurations from a power spectrum combined with numerical relativity simulations to obtain a more accurate picture of primordial black hole formation. We demonstrate how this can be applied for both Gaussian perturbations and the more interesting (for primordial black holes) theory of hybrid inflation. One of the tools that we employ is a variant of the BBKS formalism for computing the statistics of density peaks in the early universe. We discuss the issue of overcounting due to subpeaks that can arise from this approach (the ``cloud-in-cloud'' problem). MIT UROP Office- Paul E. Gray (1954) Endowed Fund.

  15. 21 CFR 184.1265 - Cuprous iodide.

    Science.gov (United States)

    2010-04-01

    ... the following specific limitations: Category of food Maximum treatment level in food Functional use... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cuprous iodide. 184.1265 Section 184.1265 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN...

  16. First principle study of sodium decorated graphyne

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Utpal, E-mail: utpalchemiitkgp@yahoo.com [Assam University, Silchar (India); Bhattacharya, Barnali [Assam University, Silchar (India); Seriani, Nicola [The Abdus Salam ICTP, Trieste (Italy)

    2015-11-05

    Highlights: • Presence of Na decreases the stability of the system. • Na-decorated graphyne compounds are metallic and might be used in electronics. • The sodium-adsorbed graphyne can be used as electrodes in Na-ion battery. - Abstract: We present first-principles calculations of the electronic properties of Na-decorated graphyne. This structure of the graphyne family is a direct band gap semiconductor with a band gap of 0.44 eV in absence of sodium, but Na-decorated graphyne compounds are metallic, and can then be employed as carbon-based conductors. Metallization is due to charge donation from sodium to carbon. Pristine graphyne is more stable than Na-decorated graphyne, therefore is seems probable that, if this material should be employed as electrode in Na-ion batteries, it would lead to the formation of metallic sodium rather than well dispersed sodium ions. On the other side, this property might be useful if graphyne is employed in water desalination. Finally, the abrupt change from a semiconducting to a metallic state in presence of a small amount of sodium might be exploited in electronics, e.g. for the production of smooth metal–semiconductor interfaces through spatially selective deposition of sodium.

  17. THERMODYNAMIC MODELING AND FIRST-PRINCIPLES CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P; Abrikosov, I; Burton, B; Fries, S; Grimvall, G; Kaufman, L; Korzhavyi, P; Manga, R; Ohno, M; Pisch, A; Scott, A; Zhang, W

    2005-12-15

    The increased application of quantum mechanical-based methodologies to the study of alloy stability has required a re-assessment of the field. The focus is mainly on inorganic materials in the solid state. In a first part, after a brief overview of the so-called ab initio methods with their approximations, constraints, and limitations, recommendations are made for a good usage of first-principles codes with a set of qualifiers. Examples are given to illustrate the power and the limitations of ab initio codes. However, despite the ''success'' of these methodologies, thermodynamics of complex multi-component alloys, as used in engineering applications, requires a more versatile approach presently afforded within CALPHAD. Hence, in a second part, the links that presently exist between ab initio methodologies, experiments, and CALPHAD approach are examined with illustrations. Finally, the issues of dynamical instability and of the role of lattice vibrations that still constitute the subject of ample discussions within the CALPHAD community are revisited in the light of the current knowledge with a set of recommendations.

  18. Phases of Ca from first principles

    International Nuclear Information System (INIS)

    Qiu, S L; Marcus, P M

    2009-01-01

    Structures and properties of many of the phases of Ca under pressure are calculated from first principles by a systematic procedure that minimizes total energy E with respect to structure under the constraint of constant volume V. The minima of E are followed on successive sweeps of lattice parameters for 11 of 14 Bravais symmetries for one-atom-per-cell structures. The structures include the four orthorhombic phases. Also included are the hexagonal close-packed and cubic diamond phases with two atoms per primitive cell. No uniquely orthorhombic phases are found; all one-atom orthorhombic phases over a mega-bar pressure range are identical to higher-symmetry phases. The simple cubic phase is shown to be stable where it is the ground state. The number of distinct one-atom phases reduces to five plus the two two-atom phases. For each of these phases the Gibbs free energy at pressure p, G(p), is calculated for a non-vibrating lattice; the functions G(p) give the ground state at each p, the relative stabilities of all phases and the thermodynamic phase transition pressures for all phase transitions over a several-megabar range.

  19. Safeguards First Principle Initiative (SFPI) Cost Model

    International Nuclear Information System (INIS)

    Price, Mary Alice

    2010-01-01

    The Nevada Test Site (NTS) began operating Material Control and Accountability (MC and A) under the Safeguards First Principle Initiative (SFPI), a risk-based and cost-effective program, in December 2006. The NTS SFPI Comprehensive Assessment of Safeguards Systems (COMPASS) Model is made up of specific elements (MC and A plan, graded safeguards, accounting systems, measurements, containment, surveillance, physical inventories, shipper/receiver differences, assessments/performance tests) and various sub-elements, which are each assigned effectiveness and contribution factors that when weighted and rated reflect the health of the MC and A program. The MC and A Cost Model, using an Excel workbook, calculates budget and/or actual costs using these same elements/sub-elements resulting in total costs and effectiveness costs per element/sub-element. These calculations allow management to identify how costs are distributed for each element/sub-element. The Cost Model, as part of the SFPI program review process, enables management to determine if spending is appropriate for each element/sub-element.

  20. Novel Natural Convection Heat Sink Design Concepts From First Principles

    Science.gov (United States)

    2016-06-01

    CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES by Derek E. Fletcher June 2016 Thesis Advisor: Garth Hobson Second Reader...COVERED Master’s Thesis 4. TITLE AND SUBTITLE NOVEL NATURAL CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES 5. FUNDING NUMBERS 6...CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES Derek E. Fletcher Lieutenant Commander, United States Navy B.S., Southwestern

  1. A non-enzymatic hydrogen peroxide sensor based on a glassy carbon electrode modified with cuprous oxide and nitrogen-doped graphene in a nafion matrix

    International Nuclear Information System (INIS)

    Jiang, Bin-Bin; Wei, Xian-Wen; Wu, Fang-Hui; Chen, Le; Yuan, Guo-Zan; Wu, Kong-Lin; Dong, Chao; Ye, Yin

    2014-01-01

    We have modified a glassy carbon electrode (GCE) with copper(I) oxide nanoparticles (NPs), nitrogen-doped graphene (N-graphene) and Nafion to obtain a novel sensing platform for the non-enzymatic detection of hydrogen peroxide. The deposition of the Cu 2 O NPs on N-graphene was accomplished by single-step chemical reduction. The nanocomposite was characterized by using X-ray diffraction and scanning electron microscopy which revealed the successful attachment of monodispersed Cu 2 O NPs to the N-graphene. Electrochemical studies revealed that the composite possesses excellent electrocatalytic activity toward the reduction of H 2 O 2 in pH 7.4 phosphate buffer solution at a working potential of −0.60 V. Nafion obviously enhances the stability of the modified GCE and repels any negatively charged species. Compared to a conventional Cu 2 O/Nafion-modified GCE, the modified GCE presented here exhibits (a) a higher catalytic activity for the reduction of H 2 O 2 (1.94 times), (b) a wider linear range (from 5.0 μM to 3.57 mM), (c) a lower detection limit (0.8 μM at an S/N of 3), (d) higher sensitivity (26.67 μA mM −1 ) and (e) a shorter response time (2 s). Moreover, the new GCE exhibits good selectivity and stability. These properties make the new hybrid electrode a promising tool for to the development of electrochemical sensors, molecular bioelectronic devices, biosensors, and biofuel cells. (author)

  2. First-principle investigations of K{sub 2}NiF{sub 4}-type double perovskite oxides La{sub 4}B′B″O{sub 8} (B′B″ = Fe, Co, Ni)

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Hejie; Wei, Yingfen; Gui, Hong; Li, Xin; Zhao, Zhenjie, E-mail: zjzhao@phy.ecnu.edu.cn; Xie, Wenhui, E-mail: whxie@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Department of Physics, East China Normal University, Shanghai 200062 (China)

    2014-06-07

    The K{sub 2}NiF{sub 4}-type structure La{sub 4}CoNiO{sub 8} (LCNO), La{sub 4}FeCoO{sub 8} (LFCO), and La{sub 4}FeNiO{sub 8} (LFNO) are studied by using the first-principle electronic structure calculations. Our results indicate that the ground state of LCNO is a ferrimagnetism (FiM) with a large energy gap about 1.9 eV, LFCO and LFNO are antiferromagnetism with energy gaps about 1.3 and 1.4 eV, respectively. Their orthorhombic distortions, out-of-plane elongation, and tilting of octahedron are discussed. It is indicated that LFCO and LFNO have stronger crystal distortion than LCNO. Our calculations indicate that the in-plane magnetic exchange interaction of LCNO is much stronger than LFCO and LFNO, thus LCNO should have much higher magnetic ordering temperature than LFCO and LFNO.

  3. Creating Two-Dimensional Electron Gas in Nonpolar/Nonpolar Oxide Interface via Polarization Discontinuity: First-Principles Analysis of CaZrO3/SrTiO3 Heterostructure.

    Science.gov (United States)

    Nazir, Safdar; Cheng, Jianli; Yang, Kesong

    2016-01-13

    We studied strain-induced polarization and resulting conductivity in the nonpolar/nonpolar CaZrO3/SrTiO3 (CZO/STO) heterostructure (HS) system by means of first-principles electronic structure calculations. By modeling four types of CZO/STO HS-based slab systems, i.e., TiO2/CaO and SrO/ZrO2 interface models with CaO and ZrO2 surface terminations in each model separately, we found that the lattice-mismatch-induced compressive strain leads to a strong polarization in the CZO film and that as the CZO film thickness increases there exists an insulator-to-metal transition. The polarization direction and critical thickness of the CZO film for forming interfacial metallic states depend on the surface termination of CZO film in both types of interface models. In the TiO2/CaO and SrO/ZrO2 interface models with CaO surface termination, the strong polarization drives the charge transfer from the CZO film to the first few TiO2 layers in the STO substrate, leading to the formation of two-dimensional electron gas (2DEG) at the interface. In the HS models with ZrO2 surface termination, two polarization domains with opposite directions are in the CZO film, which results in the charge transfer from the middle CZO layer to the interface and surface, respectively, leading to the coexistence of the 2DEG on the interface and the two-dimensional hole gas (2DHG) at the middle CZO layer. These findings open a new avenue to achieve 2DEG (2DHG) in perovskite-based HS systems via polarization discontinuity.

  4. Memristive Properties of Thin Film Cuprous Oxide

    Science.gov (United States)

    2011-03-01

    changes in the force sensed by the piezo electric crystal. ..................... 9 2. Schematic of the principles of Scanning Tunneling Microscopy (STM...developed the concept of the memristor in the 1970s. The three fundamental two-terminal elements in circuits, namely resistors , conductors, and...off the backside of the cantilever and changes in the force sensed by the piezo electric crystal. The AFM is a powerful tool for studying

  5. Defect ordering in aliovalently doped cubic zirconia from first principles

    International Nuclear Information System (INIS)

    Bogicevic, A.; Wolverton, C.; Crosbie, G.M.; Stechel, E.B.

    2001-01-01

    Defect ordering in aliovalently doped cubic-stabilized zirconia is studied using gradient corrected density-functional calculations. Intra- and intersublattice ordering interactions are investigated for both cation (Zr and dopant ions) and anion (oxygen ions and vacancies) species. For yttria-stabilized zirconia, the crystal structure of the experimentally identified, ordered compound δ-Zr 3 Y 4 O 12 is established, and we predict metastable zirconia-rich ordered phases. Anion vacancies repel each other at short separations, but show an energetic tendency to align as third-nearest neighbors along directions. Calculations with divalent (Be, Mg, Ca, Sr, Ba) and trivalent (Y, Sc, B, Al, Ga, In) oxides show that anion vacancies prefer to be close to the smaller of the cations (Zr or dopant ion). When the dopant cation is close in size to Zr, the vacancies show no particular preference, and are thus less prone to be bound preferentially to any particular cation type when the vacancies traverse such oxides. This ordering tendency offers insight into the observed high conductivity of Y 2 O 3 - and Sc 2 O 3 -stabilized zirconia, as well as recent results using, e.g., lanthanide oxides. The calculations point to In 2 O 3 as a particularly promising stabilizer for high ionic conductivity. Thus we are able to directly link (thermodynamic) defect ordering to (kinetic) ionic conductivity in cubic-stabilized zirconia using first-principles atomistic calculations

  6. Origin of the performances degradation of two-dimensional-based metal-oxide-semiconductor field effect transistors in the sub-10 nm regime: A first-principles study

    International Nuclear Information System (INIS)

    Lu, Anh Khoa Augustin; Pourtois, Geoffrey; Agarwal, Tarun; Afzalian, Aryan; Radu, Iuliana P.; Houssa, Michel

    2016-01-01

    The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10 nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs

  7. Origin of the performances degradation of two-dimensional-based metal-oxide-semiconductor field effect transistors in the sub-10 nm regime: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Anh Khoa Augustin [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Pourtois, Geoffrey [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Department of Chemistry, Plasmant Research Group, University of Antwerp, B-2610 Wilrijk-Antwerp (Belgium); Agarwal, Tarun [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Department of Electrical Engineering, University of Leuven, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Afzalian, Aryan [TSMC, Kapeldreef 75, B-3001 Leuven (Belgium); Radu, Iuliana P. [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Houssa, Michel [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium)

    2016-01-25

    The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10 nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs.

  8. Realization of the Switching Mechanism in Resistance Random Access Memory™ Devices: Structural and Electronic Properties Affecting Electron Conductivity in a Hafnium Oxide-Electrode System Through First-Principles Calculations

    Science.gov (United States)

    Aspera, Susan Meñez; Kasai, Hideaki; Kishi, Hirofumi; Awaya, Nobuyoshi; Ohnishi, Shigeo; Tamai, Yukio

    2013-01-01

    The resistance random access memory (RRAM™) device, with its electrically induced nanoscale resistive switching capacity, has attracted considerable attention as a future nonvolatile memory device. Here, we propose a mechanism of switching based on an oxygen vacancy migration-driven change in the electronic properties of the transition-metal oxide film stimulated by set pulse voltages. We used density functional theory-based calculations to account for the effect of oxygen vacancies and their migration on the electronic properties of HfO2 and Ta/HfO2 systems, thereby providing a complete explanation of the RRAM™ switching mechanism. Furthermore, computational results on the activation energy barrier for oxygen vacancy migration were found to be consistent with the set and reset pulse voltage obtained from experiments. Understanding this mechanism will be beneficial to effectively realizing the materials design in these devices.

  9. A first-principles approach to finite temperature elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Wang, J J; Zhang, H; Manga, V R; Shang, S L; Chen, L-Q; Liu, Z-K [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-06-09

    A first-principles approach to calculating the elastic stiffness coefficients at finite temperatures was proposed. It is based on the assumption that the temperature dependence of elastic stiffness coefficients mainly results from volume change as a function of temperature; it combines the first-principles calculations of elastic constants at 0 K and the first-principles phonon theory of thermal expansion. Its applications to elastic constants of Al, Cu, Ni, Mo, Ta, NiAl, and Ni{sub 3}Al from 0 K up to their respective melting points show excellent agreement between the predicted values and existing experimental measurements.

  10. A first-principles approach to finite temperature elastic constants

    International Nuclear Information System (INIS)

    Wang, Y; Wang, J J; Zhang, H; Manga, V R; Shang, S L; Chen, L-Q; Liu, Z-K

    2010-01-01

    A first-principles approach to calculating the elastic stiffness coefficients at finite temperatures was proposed. It is based on the assumption that the temperature dependence of elastic stiffness coefficients mainly results from volume change as a function of temperature; it combines the first-principles calculations of elastic constants at 0 K and the first-principles phonon theory of thermal expansion. Its applications to elastic constants of Al, Cu, Ni, Mo, Ta, NiAl, and Ni 3 Al from 0 K up to their respective melting points show excellent agreement between the predicted values and existing experimental measurements.

  11. TOPICAL REVIEW: First principles studies of multiferroic materials

    Science.gov (United States)

    Picozzi, Silvia; Ederer, Claude

    2009-07-01

    Multiferroics, materials where spontaneous long-range magnetic and dipolar orders coexist, represent an attractive class of compounds, which combine rich and fascinating fundamental physics with a technologically appealing potential for applications in the general area of spintronics. Ab initio calculations have significantly contributed to recent progress in this area, by elucidating different mechanisms for multiferroicity and providing essential information on various compounds where these effects are manifestly at play. In particular, here we present examples of density-functional theory investigations for two main classes of materials: (a) multiferroics where ferroelectricity is driven by hybridization or purely structural effects, with BiFeO3 as the prototype material, and (b) multiferroics where ferroelectricity is driven by correlation effects and is strongly linked to electronic degrees of freedom such as spin-, charge-, or orbital-ordering, with rare-earth manganites as prototypes. As for the first class of multiferroics, first principles calculations are shown to provide an accurate qualitative and quantitative description of the physics in BiFeO3, ranging from the prediction of large ferroelectric polarization and weak ferromagnetism, over the effect of epitaxial strain, to the identification of possible scenarios for coupling between ferroelectric and magnetic order. For the second class of multiferroics, ab initio calculations have shown that, in those cases where spin-ordering breaks inversion symmetry (e.g. in antiferromagnetic E-type HoMnO3), the magnetically induced ferroelectric polarization can be as large as a few µC cm-2. The examples presented point the way to several possible avenues for future research: on the technological side, first principles simulations can contribute to a rational materials design, aimed at identifying spintronic materials that exhibit ferromagnetism and ferroelectricity at or above room temperature. On the

  12. First-principle calculations of structural, electronic, optical, elastic ...

    Indian Academy of Sciences (India)

    S CHEDDADI

    2017-11-28

    Nov 28, 2017 ... First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite ... The Kohn–Sham equations were solved using the ... RMTKmax = 7 was used for all the investigated systems,.

  13. First Principle simulations of electrochemical interfaces - a DFT study

    DEFF Research Database (Denmark)

    Ahmed, Rizwan

    for the whole system to qualify as a proper electrochemical interface. I have also contributed to the model, which accounts for pH in the first principle electrode-electrolyte interface simulations. This is an important step forward, since electrochemical reaction rate and barrier for charge transfer can......In this thesis, I have looked beyond the computational hydrogen electrode (CHE) model, and focused on the first principle simulations which treats the electrode-electrolyte interfaces explicitly. Since obtaining a realistic electrode-electrolyte interface was difficult, I aimed to address various...... challenges regarding first principle electrochemical interface modeling in order to bridge the gap between the model interface used in simulations and real catalyst at operating conditions. Atomic scale insight for the processes and reactions that occur at the electrochemical interface presents a challenge...

  14. Reliability evaluation of thermophysical properties from first-principles calculations.

    Science.gov (United States)

    Palumbo, Mauro; Fries, Suzana G; Dal Corso, Andrea; Kürmann, Fritz; Hickel, Tilmann; Neugebauer, Jürg

    2014-08-20

    Thermophysical properties, such as heat capacity, bulk modulus and thermal expansion, are of great importance for many technological applications and are traditionally determined experimentally. With the rapid development of computational methods, however, first-principles computed temperature-dependent data are nowadays accessible. We evaluate various computational realizations of such data in comparison to the experimental scatter. The work is focussed on the impact of different first-principles codes (QUANTUM ESPRESSO and VASP), pseudopotentials (ultrasoft and projector augmented wave) as well as phonon determination methods (linear response and direct force constant method) on these properties. Based on the analysis of data for two pure elements, Cr and Ni, consequences for the reliability of temperature-dependent first-principles data in computational thermodynamics are discussed.

  15. First-principles modeling of titanate/ruthenate superlattices

    Science.gov (United States)

    Junquera, Javier

    2013-03-01

    The possibility to create highly confined two-dimensional electron gases (2DEG) at oxide interfaces has generated much excitement during the last few years. The most widely studied system is the 2DEG formed at the LaO/TiO2 polar interface between LaAlO3 and SrTiO3, where the polar catastrophe at the interface has been invoked as the driving force. More recently, partial or complete delta doping of the Sr or Ti cations at a single layer of a SrTiO3 matrix has also been used to generate 2DEG. Following this recipe, we report first principles characterization of the structural and electronic properties of (SrTiO3)5/(SrRuO3)1 superlattices, where all the Ti of a given layer have been replaced by Ru. We show that the system exhibits a spin-polarized two-dimensional electron gas extremely confined to the 4 d orbitals of Ru in the SrRuO3 layer, a fact that is independent of the level of correlation included in the simulations. For hybrid functionals or LDA+U, every interface in the superlattice behaves as minority-spin half-metal ferromagnet, with a magnetic moment of μ = 2.0 μB/SrRuO3 unit. The shape of the electronic density of states, half metallicity and magnetism are explained in terms of a simplified tight-binding model, considering only the t2 g orbitals plus (i) the bi-dimensionality of the system, and (ii) strong electron correlations. Possible applications are discussed, from their eventual role in thermoelectric applications to the possible tuning of ferromagnetic properties of the 2DEG with the polarization of the dielectric. Work done in collaboration with P. García, M. Verissimo-Alves, D. I. Bilc, and Ph. Ghosez. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes.'' The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the BSC/RES.

  16. Insights into the ammonia synthesis from first-principles

    DEFF Research Database (Denmark)

    Hellmann, A.; Honkala, Johanna Karoliina; Remediakis, Ioannis

    2006-01-01

    -properties, such as apparent activation energies and reaction orders, are calculated from the first-principles model. Our analysis shows that the reaction order of N-2 is unity under all considered conditions, whereas the reaction orders of H-2 and NH3 depend on reaction conditions. (c) 2006 Elsevier B.V. All rights reserved.......A new set of measurements is used to further test a recently published first-principles model for the ammonia (NH3) synthesis on an unpromoted Ru-based catalyst. A direct comparison shows an overall good agreement in NH3 productivity between the model and the experiment. In addition, macro...

  17. Designing Next Generation Rechargeable Battery Materials from First-Principles

    Science.gov (United States)

    Kim, Soo

    Technology has advanced rapidly, especially in the twenty-first century, influencing our day-to-day life on unprecedented levels. Most such advances in technology are closely linked to, and often driven by, the discovery and design of new materials. It follows that the discovery of new materials can not only improve existing technologies but also lead to revolutionary ones. In particular, there is a growing need to develop new energy materials that are reliable, clean, and affordable for emerging applications such as portable electronics, electric vehicles, and power grid systems. Many researchers have been actively searching for more cost-effective and clean electrode materials for lithium-ion batteries (LIBs) during the last few decades. These new electrode materials are also required to achieve higher electrochemical performance, compared to the already commercialized electrodes. Unfortunately, discovering the next sustainable energy materials based on a traditional 'trial-and-error' method via experiment would be extremely slow and difficult. In the last two decades, computational compilations of battery material properties such as voltage, diffusivity, and phase stability against irreversible phase transformation(s) using first-principles density functional theory (DFT) calculations have helped researchers to understand the underlying mechanism in many oxide materials that are used as LIB electrodes. Here, we have examined the (001) and (111) surface structures of LiMn2O4 (LMO) spinel cathode materials using DFT calculations within the generalized gradient approximation (GGA) + U approach. Our theoretical results explain the observation of a wide spectrum of polyhedral shapes between (001)- and (111)-dominated LMO particles in experiments, which can be described by the narrow range of surface energies and their sensitivity to synthesis conditions. We further show that single-layer graphene coatings help suppress manganese dissolution in LMO by chemically

  18. Thermopower switching by magnetic field: first-principles calculations

    DEFF Research Database (Denmark)

    Maslyuk, Volodymyr V.; Achilles, Steven; Sandratskii, Leonid

    2013-01-01

    We present first-principles studies of the thermopower of the organometallic V4Bz5 molecule attached between Co electrodes with noncollinear magnetization directions. Different regimes in the formation of the noncollinear magnetic state of the molecule lead to a remarkable nonmonotonous dependence...

  19. First principles calculation of two dimensional antimony and antimony arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Sharad Babu, E-mail: sbpillai001@gmail.com; Narayan, Som; Jha, Prafulla K. [Department. of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 (India); Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)

    2016-05-23

    This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.

  20. First principles study of lithium insertion in bulk silicon

    KAUST Repository

    Wan, Wenhui; Zhang, Qianfan; Cui, Yi; Wang, Enge

    2010-01-01

    Si is an important anode material for the next generation of Li ion batteries. Here the energetics and dynamics of Li atoms in bulk Si have been studied at different Li concentrations on the basis of first principles calculations. It is found

  1. Towards first principles modeling of electrochemical electrode-electrolyte interfaces

    DEFF Research Database (Denmark)

    Nielsen, Malte; Björketun, Mårten; Hansen, Martin Hangaard

    2015-01-01

    We present a mini-perspective on the development of first principles modeling of electrochemical interfaces. We show that none of the existing methods deal with all the thermodynamic constraints that the electrochemical environment imposes on the structure of the interface. We present two...

  2. First principles calculations of structural, electronic and thermal ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 5. First principles calculations of structural, electronic and thermal properties of lead chalcogenides PbS, PbSe and PbTe compounds. N Boukhris H Meradji S Amara Korba S Drablia S Ghemid F El Haj Hassan. Volume 37 Issue 5 August 2014 pp 1159-1166 ...

  3. First-principle calculations of the structural, electronic ...

    Indian Academy of Sciences (India)

    First-principle calculations were performed to study the structural, electronic, thermodynamic and thermal properties of ... functional theory (DFT) combined with the quasi-harmonic .... is consistent with Vegard's law which assumes that the lat- tice constant varies .... reflects a charge-transfer effect which is due to the different.

  4. First-principles prediction of liquid/liquid interfacial tension

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Bennetzen, M.V.; Klamt, A.

    2014-01-01

    of groundwater aquifers contaminated by chlorinated solvents to drug delivery and a host of industrial processes. Here, we present a model for predicting interfacial tension from first principles using density functional theory calculations. Our model requires no experimental input and is applicable to liquid...

  5. First-principle study of nanostructures of functionalized graphene

    Indian Academy of Sciences (India)

    We present first-principle calculations of 2D nanostructures of graphene functionalized with hydrogen and fluorine, respectively, in chair conformation. The partial density of states, band structure, binding energy and transverse displacement of C atoms due to functionalization (buckling) have been calculated within the ...

  6. Molecular Electronics: Insight from First-Principles Transport Simulations

    DEFF Research Database (Denmark)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2010-01-01

    Conduction properties of nanoscale contacts can be studied using first-principles simulations. Such calculations give insight into details behind the conductance that is not readily available in experiments. For example, we may learn how the bonding conditions of a molecule to the electrodes affect...

  7. Electrical properties of improper ferroelectrics from first principles

    Science.gov (United States)

    Stengel, Massimiliano; Fennie, Craig J.; Ghosez, Philippe

    2012-09-01

    We study the interplay of structural and polar distortions in hexagonal YMnO3 and short-period PbTiO3/SrTiO3 (PTO/STO) superlattices by means of first-principles calculations at constrained electric displacement field D. We find that in YMnO3 the tilts of the oxygen polyhedra produce a robustly polar ground state, which persists at any choice of the electrical boundary conditions. Conversely, in PTO/STO the antiferrodistortive instabilities alone do not break inversion symmetry, and open-circuit boundary conditions restore a nonpolar state. We suggest that this qualitative difference naturally provides a route to rationalizing the concept of “improper ferroelectricity” from the point of view of first-principles theory. We discuss the implications of our arguments for the design of novel multiferroic materials with enhanced functionalities and for the symmetry analysis of the phase transitions.

  8. Diffusion in thorium carbide: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1025, Buenos Aires (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1025, Buenos Aires (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM–CNEA, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina)

    2015-12-15

    The prediction of the behavior of Th compounds under irradiation is an important issue for the upcoming Generation-IV nuclear reactors. The study of self-diffusion and hetero-diffusion is a central key to fulfill this goal. As a first approach, we obtained, by means of first-principles methods, migration and activation energies of Th and C atoms self-diffusion and diffusion of He atoms in ThC. We also calculate diffusion coefficients as a function of temperature. - Highlights: • Diffusion in thorium carbide by means of first-principles calculations is studied. • The most favorable migration event is a C atom moving through a C-vacancy aided path. • Calculated C atoms diffusion coefficients agree very well with the experimental data. • For He, the energetically most favorable migration path is through Th-vacancies.

  9. Can the Tafel equation be derived from first principles?

    International Nuclear Information System (INIS)

    Gutman, E.M.

    2005-01-01

    A century ago, Tafel disapproved the attempts to derive the empirical equation named after him by thermodynamic methods. He noted that his observations referred to irreversible electrochemical reactions, where thermodynamics is inapplicable. This statement seems to remain valid until today. Indeed, it is impossible as yet to predict the kinetic parameters for chemical processes by determining rate constants and reaction orders from 'first principles', unless strictly specialized and, to a great extent, artificial models are developed. Nevertheless, in this paper an attempt to derive the kinetic law of mass action from 'first principles' is made in macroscopic formulation. It has turned out to be possible owing to the methods of thermodynamics of irreversible processes that were unknown in Tafel's time

  10. A first-principle for the nervous system

    OpenAIRE

    Vadakkan, Kunjumon

    2016-01-01

    Higher brain functions such as perception and memory are first-person internal sensations whose mechanisms can have options to concurrently activate motor neurons for behavioral action. By setting up all the required constraints using available information from different levels, a theoretical examination from a first-person frame of reference led to the derivation of a first-principle of the structure-function units. These units operate in synchrony with the synaptically-connected neural circ...

  11. First-principles study of complex material systems

    Science.gov (United States)

    He, Lixin

    This thesis covers several topics concerning the study of complex materials systems by first-principles methods. It contains four chapters. A brief, introductory motivation of this work will be given in Chapter 1. In Chapter 2, I will give a short overview of the first-principles methods, including density-functional theory (DFT), planewave pseudopotential methods, and the Berry-phase theory of polarization in crystallines insulators. I then discuss in detail the locality and exponential decay properties of Wannier functions and of related quantities such as the density matrix, and their application in linear-scaling algorithms. In Chapter 3, I investigate the interaction of oxygen vacancies and 180° domain walls in tetragonal PbTiO3 using first-principles methods. Our calculations indicate that the oxygen vacancies have a lower formation energy in the domain wall than in the bulk, thereby confirming the tendency of these defects to migrate to, and pin, the domain walls. The pinning energies are reported for each of the three possible orientations of the original Ti--O--Ti bonds, and attempts to model the results with simple continuum models are discussed. CaCu3Ti4O12 (CCTO) has attracted a lot of attention recently because it was found to have an enormous dielectric response over a very wide temperature range. In Chapter 4, I study the electronic and lattice structure, and the lattice dynamical properties, of this system. Our first-principles calculations together with experimental results point towards an extrinsic mechanism as the origin of the unusual dielectric response.

  12. First-Principles View on Photoelectrochemistry: Water-Splitting as Case Study

    Directory of Open Access Journals (Sweden)

    Anders Hellman

    2017-06-01

    Full Text Available Photoelectrochemistry is truly an interdisciplinary field; a natural nexus between chemistry and physics. In short, photoelectrochemistry can be divided into three sub-processes, namely (i the creation of electron-hole pairs by light absorption; (ii separation/transport on the charge carriers and finally (iii the water splitting reaction. The challenge is to understand all three processes on a microscopic scale and, perhaps even more importantly, how to combine the processes in an optimal way. This review will highlight some first-principles insights to the above sub-processes, in~particular as they occur using metal oxides. Based on these insights, challenges and future directions of first-principles methods in the field of photoelectrochemistry will be discussed.

  13. Disordered crystals from first principles I: Quantifying the configuration space

    Science.gov (United States)

    Kühne, Thomas D.; Prodan, Emil

    2018-04-01

    This work represents the first chapter of a project on the foundations of first-principle calculations of the electron transport in crystals at finite temperatures. We are interested in the range of temperatures, where most electronic components operate, that is, room temperature and above. The aim is a predictive first-principle formalism that combines ab-initio molecular dynamics and a finite-temperature Kubo-formula for homogeneous thermodynamic phases. The input for this formula is the ergodic dynamical system (Ω , G , dP) defining the thermodynamic crystalline phase, where Ω is the configuration space for the atomic degrees of freedom, G is the space group acting on Ω and dP is the ergodic Gibbs measure relative to the G-action. The present work develops an algorithmic method for quantifying (Ω , G , dP) from first principles. Using the silicon crystal as a working example, we find the Gibbs measure to be extremely well characterized by a multivariate normal distribution, which can be quantified using a small number of parameters. The latter are computed at various temperatures and communicated in the form of a table. Using this table, one can generate large and accurate thermally-disordered atomic configurations to serve, for example, as input for subsequent simulations of the electronic degrees of freedom.

  14. Electrochemical behaviour of cuprous complexes of dithia-alkanedicarboxylic acids

    NARCIS (Netherlands)

    Pieterse, M.M.J.; Janssen, L.J.J.

    1972-01-01

    The composition and electrochemical behaviour of the cuprous complexes of dithia-alkanedicarboxylic acids viz., 2,5-dithiahexane-1,6-dicarboxylic acid (I); 3,6 dithiaoctane-1,8-dicarboxylic acid (II); 4,7-dithiadecane-1,10-dicarboxylic acid (III) and 2,2,

  15. Engineering drawing from first principles using AutoCAD

    CERN Document Server

    Maguire, Dennis E

    1998-01-01

    Engineering Drawing From First Principles is a guide to good draughting for students of engineering who need to learn how to produce technically accurate and detailed designs to British and International Standards. Written by Dennis Maguire, an experienced author and City and Guilds chief examiner, this text is designed for use on Further Education and University courses where a basic understanding of draughtsmanship and CAD is necessary. Although not written as an AutoCAD tutor, the book will be a useful introduction to good CAD practice.Part of the Revision and Self-Assessmen

  16. First-principles study of Frenkel pair recombination in tungsten

    International Nuclear Information System (INIS)

    Qin, Shi-Yao; Jin, Shuo; Li, Yu-Hao; Zhou, Hong-Bo; Zhang, Ying; Lu, Guang-Hong

    2017-01-01

    The recombination of one Frenkel pair in tungsten has been investigated through first-principles simulation. Two different recombination types have been identified: instantaneous and thermally activated. The small recombination barriers for thermally activated recombination cases indicate that recombination can occur easily with a slightly increased temperature. For both of the two recombination types, recombination occurs through the self-interstitial atom moving towards the vacancy. The recombination process can be direct or through replacement sequences, depending on the vertical distance between the vacancy and the 〈1 1 1〉 line of self-interstitial atom pair.

  17. First principles pharmacokinetic modeling: A quantitative study on Cyclosporin

    DEFF Research Database (Denmark)

    Mošat', Andrej; Lueshen, Eric; Heitzig, Martina

    2013-01-01

    renal and hepatic clearances, elimination half-life, and mass transfer coefficients, to establish drug biodistribution dynamics in all organs and tissues. This multi-scale model satisfies first principles and conservation of mass, species and momentum.Prediction of organ drug bioaccumulation...... as a function of cardiac output, physiology, pathology or administration route may be possible with the proposed PBPK framework. Successful application of our model-based drug development method may lead to more efficient preclinical trials, accelerated knowledge gain from animal experiments, and shortened time-to-market...

  18. First Principles Simulation of a Ceramic/ Metal Interface with Misfit

    International Nuclear Information System (INIS)

    Benedek, R.; Alavi, A.; Seidman, D. N.; Yang, L. H.; Muller, D. A.; Woodward, C.

    2000-01-01

    The relaxed atomic structure of a model ceramic/metal interface, {222}MgO/Cu , is simulated, including lattice constant mismatch, using first principles local-density functional theory plane wave pseudopotential methods. The 399-atom computational unit cell contains 36 O and 49 Cu atoms per layer in accordance with the 7/6 ratio of MgO to Cu lattice constants. The atomic layers on both sides of the interface warp to optimize the local bonding. The interface adhesive energy is calculated. The interface electronic structure is found to vary appreciably with the local environment. (c) 2000 The American Physical Society

  19. First principle study of cubic ScGaN ternaries

    International Nuclear Information System (INIS)

    Adli, W.; Mecheref, R.; Sekkal, N.; Tair, F.; Amrani, B.

    2008-08-01

    The electronic properties of the Sc x Ga1- x N ternary alloy are investigated. The transition from rocksalt (B1) to zinc blende (B3) structure is found to occur rapidly after incorporating just a small fraction (less than 1%) of Ga. In the present paper, the first principles method the full potential linear muffin-tin orbitals method (FPLMTO) in its atomic sphere approximation (ASA) coupled to the technique of the empty spheres is employed. Our results concerning the electronic properties are different from those reported in literature. (author)

  20. Parallelization for first principles electronic state calculation program

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Oguchi, Tamio.

    1997-03-01

    In this report we study the parallelization for First principles electronic state calculation program. The target machines are NEC SX-4 for shared memory type parallelization and FUJITSU VPP300 for distributed memory type parallelization. The features of each parallel machine are surveyed, and the parallelization methods suitable for each are proposed. It is shown that 1.60 times acceleration is achieved with 2 CPU parallelization by SX-4 and 4.97 times acceleration is achieved with 12 PE parallelization by VPP 300. (author)

  1. First Principles Calculations of Oxygen Adsorption on the UN(001) Surface

    International Nuclear Information System (INIS)

    Zhukovskii, Yuri F.; Bocharov, Dmitry; Kotomin, Eugene Alexej; Evarestov, Robert; Bandura, A.V.

    2009-01-01

    Fabrication, handling and disposal of nuclear fuel materials require comprehensive knowledge of their surface morphology and reactivity. Due to unavoidable contact with air components (even at low partial pressures), UN samples contain considerable amount of oxygen impurities affecting fuel properties. In this study we focus on reactivity of the energetically most stable (001) substrate of uranium nitride towards the atomic oxygen as one of initial stages for further UN oxidation. The basic properties of O atoms adsorbed on the UN(001) surface are simulated here combining the two first principles calculation methods based on the plane wave basis set and that of the localized orbitals.

  2. Calculations of thermodynamic properties of PuO{sub 2} by the first-principles and lattice vibration

    Energy Technology Data Exchange (ETDEWEB)

    Minamoto, Satoshi [Energy and Industrial Systems Department, ITOCHU Techno-Solutions Corporation, Kasumigaseki 3-chome, Chiyoda-ku, Tokyo 100-6080 (Japan)], E-mail: satoshi.minamoto@ctc-g.co.jp; Kato, Masato [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan); Konashi, Kenji [Institute for Materials Research, Tohoku University, 2145-2 Narita-chou, Oarai-chou, Ibaraki 311-1313 (Japan); Kawazoe, Yoshiyuki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2009-03-15

    Plutonium dioxide (PuO{sub 2}) is a key compound of mixed oxide fuel (MOX fuel). To predict the thermal properties of PuO{sub 2} at high temperature, it is important to understand the properties of MOX fuel. In this study, thermodynamic properties of PuO{sub 2} were evaluated by coupling of first-principles and lattice dynamics calculation. Cohesive energy was estimated from first-principles calculations, and the contribution of lattice vibration to total energy was evaluated by phonon calculations. Thermodynamic properties such as volume thermal expansion, bulk modulus and specific heat of PuO{sub 2} were investigated up to 1500 K.

  3. Calculations of thermodynamic properties of PuO2 by the first-principles and lattice vibration

    International Nuclear Information System (INIS)

    Minamoto, Satoshi; Kato, Masato; Konashi, Kenji; Kawazoe, Yoshiyuki

    2009-01-01

    Plutonium dioxide (PuO 2 ) is a key compound of mixed oxide fuel (MOX fuel). To predict the thermal properties of PuO 2 at high temperature, it is important to understand the properties of MOX fuel. In this study, thermodynamic properties of PuO 2 were evaluated by coupling of first-principles and lattice dynamics calculation. Cohesive energy was estimated from first-principles calculations, and the contribution of lattice vibration to total energy was evaluated by phonon calculations. Thermodynamic properties such as volume thermal expansion, bulk modulus and specific heat of PuO 2 were investigated up to 1500 K

  4. Cathodoluminescence and ion implantation of cadmium sulphide/cuprous sulphide solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Glew, R W; Bryant, F J

    1975-10-01

    By the use of implantation with copper ions or oxygen ions of 50 keV energy, changes in the cathodoluminescence emission spectrum from cadmium sulfide/cuprous sulfide thin film manufactured solar cells have been correlated with changes in the phases of the cuprous sulfide layer. Thus, monitoring the relative intensities of cathodoluminescence emission bands affords a method of assessing the cuprous sulfide layer and possibly predicting the performance of the cells.

  5. Prospects for first-principle calculations of scintillator properties

    International Nuclear Information System (INIS)

    Derenzo, Stephen E.; Weber, Marvin J.

    1999-01-01

    Several scintillation processes can be modeled from first principles using quantum chemistry cluster calculations and recently available high-performance computers. These processes include the formation of excitons and trapping centers, the diffusion of ionization energy (electrons and holes) through a host crystal, and the efficient capture of these carriers by an activator atom to form a luminous, non-quenched excited state. As examples of such calculations, results are presented for (1) hole transport in the known scintillator host crystal CsI, (2) hole trapping in the non-scintillator PbF 2 , (3) hole transport in the experimentally unexplored PbF 4 , and (4) the electronic nature of excited states of CsI : Tl and CsI : Na

  6. Multiphysics modeling using COMSOL a first principles approach

    CERN Document Server

    Pryor, Roger W

    2011-01-01

    Multiphysics Modeling Using COMSOL rapidly introduces the senior level undergraduate, graduate or professional scientist or engineer to the art and science of computerized modeling for physical systems and devices. It offers a step-by-step modeling methodology through examples that are linked to the Fundamental Laws of Physics through a First Principles Analysis approach. The text explores a breadth of multiphysics models in coordinate systems that range from 1D to 3D and introduces the readers to the numerical analysis modeling techniques employed in the COMSOL Multiphysics software. After readers have built and run the examples, they will have a much firmer understanding of the concepts, skills, and benefits acquired from the use of computerized modeling techniques to solve their current technological problems and to explore new areas of application for their particular technological areas of interest.

  7. Heating electrons with ion irradiation: A first-principles approach

    International Nuclear Information System (INIS)

    Pruneda, J.M.; Sanchez-Portal, D.; Arnau, A.; Juaristi, J.I.; Artacho, E.

    2009-01-01

    Using time-dependent density functional theory we calculate from first-principles the rate of energy transfer from a moving charged particle to the electrons in an insulating material. The behavior of the electronic stopping power in LiF (a wide band gap insulator) versus projectile velocity displays an effective threshold velocity of 8.2 Bohr/asec for the proton, consistent with recent experimental observations. The calculated proton/antiproton stopping power ratio is 2.4 at velocities slightly above the threshold (16.5 Bohr/asec) as compared to the experimental value of 2.1. The approximations introduced in this new non-perturbative methodology are discussed, and results on the velocity dependence of the stopping power, the locality of the energy transfer, and other characteristics of the host material are presented.

  8. Electronic Stopping Power in LiF from First Principles

    International Nuclear Information System (INIS)

    Pruneda, J. M.; Sanchez-Portal, D.; Arnau, A.; Juaristi, J. I.; Artacho, Emilio

    2007-01-01

    Using time-dependent density-functional theory we calculate from first principles the rate of energy transfer from a moving proton or antiproton to the electrons of an insulating material, LiF. The behavior of the electronic stopping power versus projectile velocity displays an effective threshold velocity of ∼0.2 a.u. for the proton, consistent with recent experimental observations, and also for the antiproton. The calculated proton/antiproton stopping-power ratio is ∼2.4 at velocities slightly above the threshold (v∼0.4 a.u.), as compared to the experimental value of 2.1. The projectile energy loss mechanism is observed to be extremely local

  9. The first principle calculation of two-dimensional Dirac materials

    Science.gov (United States)

    Lu, Jin

    2017-12-01

    As the size of integrated device becoming increasingly small, from the last century, semiconductor industry is facing the enormous challenge to break the Moore’s law. The development of calculation, communication and automatic control have emergent expectation of new materials at the aspect of semiconductor industrial technology and science. In spite of silicon device, searching the alternative material with outstanding electronic properties has always been a research point. As the discovery of graphene, the research of two-dimensional Dirac material starts to express new vitality. This essay studied the development calculation of 2D material’s mobility and introduce some detailed information of some approximation method of the first principle calculation.

  10. Molecular electronics: insight from first-principles transport simulations.

    Science.gov (United States)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2010-01-01

    Conduction properties of nanoscale contacts can be studied using first-principles simulations. Such calculations give insight into details behind the conductance that is not readily available in experiments. For example, we may learn how the bonding conditions of a molecule to the electrodes affect the electronic transport. Here we describe key computational ingredients and discuss these in relation to simulations for scanning tunneling microscopy (STM) experiments with C60 molecules where the experimental geometry is well characterized. We then show how molecular dynamics simulations may be combined with transport calculations to study more irregular situations, such as the evolution of a nanoscale contact with the mechanically controllable break-junction technique. Finally we discuss calculations of inelastic electron tunnelling spectroscopy as a characterization technique that reveals information about the atomic arrangement and transport channels.

  11. Point defects in thorium nitride: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina)

    2016-11-15

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  12. First-principles study of point defects in thorium carbide

    International Nuclear Information System (INIS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A.M.; Mosca, H.O.

    2014-01-01

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors’ knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure

  13. Point defects in thorium nitride: A first-principles study

    International Nuclear Information System (INIS)

    Pérez Daroca, D.; Llois, A.M.; Mosca, H.O.

    2016-01-01

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  14. Exploring the nucleon structure from first principles of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Universidad Nacional Autonoma de Mexico (Mexico). Inst. de Ciencias Nucleares; Cundy, N.; Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2010-04-15

    Quantum Chromodynamics (QCD) is generally assumed to be the fundamental theory underlying nuclear physics. In recent years there is progress towards investigating the nucleon structure from first principles of QCD. Although this structure is best revealed in Deep Inelastic Scattering, a consistent analysis has to be performed in a fully non-perturbative scheme. The only known method for this purpose are lattice simulations. We first sketch the ideas of Monte Carlo simulations in lattice gauge theory. Then we comment in particular on the issues of chiral symmetry and operator mixing. Finally we present our results for the Bjorken variable of a single quark, and for the second Nachtmann moment of the nucleon structure functions. (orig.)

  15. First-principles study of point defects in thorium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, (1033) Buenos Aires (Argentina); Jaroszewicz, S. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, (1033) Buenos Aires (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina)

    2014-11-15

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors’ knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure.

  16. First principles study of α and δ-Pu

    International Nuclear Information System (INIS)

    Chattaraj, Debabrata; Dash, Smruti

    2017-01-01

    The structural and electronic properties of α-and δ-Pu has been investigated using state of the art first principles method. All the calculations have been performed using a plane wave based pseudopotential method under the framework of spin polarized density functional theory. The effect of relativistic spin-orbit interactions on these properties has been investigated. The calculated lattice parameters are found to be within ±1% of the experimental data. The cohesive energy of α-and δ-Pu are calculated to be -3.125 and -3.126 eV/atom. The nature of chemical bonding present in those phases of Pu is depicted by calculated density of states spectra. (author)

  17. First principles studies of electron tunneling in proteins

    Science.gov (United States)

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.

    2014-01-01

    A first principles study of electronic tunneling along the chain of seven Fe/S clusters in respiratory complex I, a key enzyme in the respiratory electron transport chain, is described. The broken-symmetry states of the Fe/S metal clusters calculated at both DFT and semi-empirical ZINDO levels were utilized to examine both the extremely weak electronic couplings between Fe/S clusters and the tunneling pathways, which provide a detailed atomistic-level description of the charge transfer process in the protein. One-electron tunneling approximation was found to hold within a reasonable accuracy, with only a moderate induced polarization of the core electrons. The method is demonstrated to be able to calculate accurately the coupling matrix elements as small as 10−4 cm−1. A distinct signature of the wave properties of electrons is observed as quantum interferences of multiple tunneling pathways. PMID:25383312

  18. First Principles Modelling of Shape Memory Alloys Molecular Dynamics Simulations

    CERN Document Server

    Kastner, Oliver

    2012-01-01

    Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices. The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties. The work is rooted in the materials sciences of shape memory alloys and  covers  thermodynamical, micro-mechanical  and crystallographical aspects. It addresses scientists in these research fields and thei...

  19. First-Principles Lattice Dynamics Method for Strongly Anharmonic Crystals

    Science.gov (United States)

    Tadano, Terumasa; Tsuneyuki, Shinji

    2018-04-01

    We review our recent development of a first-principles lattice dynamics method that can treat anharmonic effects nonperturbatively. The method is based on the self-consistent phonon theory, and temperature-dependent phonon frequencies can be calculated efficiently by incorporating recent numerical techniques to estimate anharmonic force constants. The validity of our approach is demonstrated through applications to cubic strontium titanate, where overall good agreement with experimental data is obtained for phonon frequencies and lattice thermal conductivity. We also show the feasibility of highly accurate calculations based on a hybrid exchange-correlation functional within the present framework. Our method provides a new way of studying lattice dynamics in severely anharmonic materials where the standard harmonic approximation and the perturbative approach break down.

  20. First-principles modeling of magnetic misfit interfaces

    KAUST Repository

    Grytsyuk, Sergiy; Schwingenschlö gl, Udo

    2013-01-01

    We investigate the structural and magnetic properties of interfaces with large lattice mismatch, choosing Pt/Co and Au/Co as prototypes. For our first-principles calculations, we reduce the lattice mismatch to 0.2% by constructing Moiré supercells. Our results show that the roughness and atomic density, and thus the magnetic properties, depend strongly on the substrate and thickness of the Co slab. An increasing thickness leads to the formation of a Co transition layer at the interface, especially for Pt/Co due to strong Pt-Co interaction. A Moiré supercell with a transition layer is found to reproduce the main experimental findings and thus turns out to be the appropriate model for simulating magnetic misfit interfaces.

  1. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations

    DEFF Research Database (Denmark)

    Hellmann, A.; Baerends, E.J.; Biczysko, M.

    2006-01-01

    . Furthermore, our studies provide new insight into several related fields, for instance, gas-phase and electrochemical ammonia synthesis. The success of predicting the outcome of a catalytic reaction from first-principles calculations supports our point of view that, in the future, theory will be a fully......Here, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state...... for any given point along an industrial reactor, and the kinetic results can be integrated over the catalyst bed to determine the industrial reactor yield. We find that, given the present uncertainties, the rate of ammonia production is well-determined directly from our atomic-scale calculations...

  2. Exploring the nucleon structure from first principles of QCD

    International Nuclear Information System (INIS)

    Bietenholz, W.; Cundy, N.; Goeckeler, M.

    2010-04-01

    Quantum Chromodynamics (QCD) is generally assumed to be the fundamental theory underlying nuclear physics. In recent years there is progress towards investigating the nucleon structure from first principles of QCD. Although this structure is best revealed in Deep Inelastic Scattering, a consistent analysis has to be performed in a fully non-perturbative scheme. The only known method for this purpose are lattice simulations. We first sketch the ideas of Monte Carlo simulations in lattice gauge theory. Then we comment in particular on the issues of chiral symmetry and operator mixing. Finally we present our results for the Bjorken variable of a single quark, and for the second Nachtmann moment of the nucleon structure functions. (orig.)

  3. First-principles modeling of magnetic misfit interfaces

    KAUST Repository

    Grytsiuk, Sergii

    2013-08-16

    We investigate the structural and magnetic properties of interfaces with large lattice mismatch, choosing Pt/Co and Au/Co as prototypes. For our first-principles calculations, we reduce the lattice mismatch to 0.2% by constructing Moiré supercells. Our results show that the roughness and atomic density, and thus the magnetic properties, depend strongly on the substrate and thickness of the Co slab. An increasing thickness leads to the formation of a Co transition layer at the interface, especially for Pt/Co due to strong Pt-Co interaction. A Moiré supercell with a transition layer is found to reproduce the main experimental findings and thus turns out to be the appropriate model for simulating magnetic misfit interfaces.

  4. Quantum theory from first principles an informational approach

    CERN Document Server

    D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2017-01-01

    Quantum theory is the soul of theoretical physics. It is not just a theory of specific physical systems, but rather a new framework with universal applicability. This book shows how we can reconstruct the theory from six information-theoretical principles, by rebuilding the quantum rules from the bottom up. Step by step, the reader will learn how to master the counterintuitive aspects of the quantum world, and how to efficiently reconstruct quantum information protocols from first principles. Using intuitive graphical notation to represent equations, and with shorter and more efficient derivations, the theory can be understood and assimilated with exceptional ease. Offering a radically new perspective on the field, the book contains an efficient course of quantum theory and quantum information for undergraduates. The book is aimed at researchers, professionals, and students in physics, computer science and philosophy, as well as the curious outsider seeking a deeper understanding of the theory.

  5. First principles calculations of interstitial and lamellar rhenium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Soto, G., E-mail: gerardo@cnyn.unam.mx [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico); Tiznado, H.; Reyes, A.; Cruz, W. de la [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The possible structures of rhenium nitride as a function of composition are analyzed. Black-Right-Pointing-Pointer The alloying energy is favorable for rhenium nitride in lamellar arrangements. Black-Right-Pointing-Pointer The structures produced by magnetron sputtering are metastable variations. Black-Right-Pointing-Pointer The structures produced by high-pressure high-temperature are stable configurations. Black-Right-Pointing-Pointer The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re{sub 3}N and Re{sub 2}N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials

  6. First principles calculations of interstitial and lamellar rhenium nitrides

    International Nuclear Information System (INIS)

    Soto, G.; Tiznado, H.; Reyes, A.; Cruz, W. de la

    2012-01-01

    Highlights: ► The possible structures of rhenium nitride as a function of composition are analyzed. ► The alloying energy is favorable for rhenium nitride in lamellar arrangements. ► The structures produced by magnetron sputtering are metastable variations. ► The structures produced by high-pressure high-temperature are stable configurations. ► The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re 3 N and Re 2 N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials within binary nitride chemistry.

  7. Intrinsic and extrinsic spin-orbit torques from first principles

    International Nuclear Information System (INIS)

    Geranton, Guillaume

    2017-01-01

    This thesis attempts to shed light on the microscopic mechanisms underlying the current-induced magnetic torques in ferromagnetic heterostructures. We have developed first principles methods aiming at the accurate and effcient calculation of the so-called spin-orbit torques (SOTs) in magnetic thin films. The emphasis of this work is on the impurity-driven extrinsic SOTs. The main part of this thesis is dedicated to the development of a formalism for the calculation of the SOTs within the Korringa-Kohn-Rostoker (KKR) method. The impurity-induced transitions rates are obtained from first principles and their effect on transport properties is treated within the Boltzmann formalism. The developed formalism provides a mean to compute the SOTs beyond the conventional constant relaxation time approximation. We first apply our formalism to the investigation of FePt/Pt and Co/Cu bilayers in the presence of defects and impurities. Our results hint at a crucial dependence of the torque on the type of disorder present in the films, which we explain by a complex interplay of several competing Fermi surface contributions to the SOT. Astonishingly, specific defect distributions or doping elements lead respectively to an increase or a sign change of the torque, which can not be explained on the basis of simple models. We also compute the intrinsic SOT induced by electrical and thermal currents within the full potential linearized augmented plane-wave method. Motivated by recent experimental works, we then investigate the microscopic origin of the SOT in a Ag_2Bi-terminated Ag film grown on ferromagnetic Fe(110). We find that the torque in that system can not be explained solely by the spin-orbit coupling in the Ag_2Bi alloy, and instead results from the spin-orbit coupling in all regions of the film.Finally, we predict a large SOT in Fe/Ge bilayers and suggest that semiconductor substrates might be a promising alternative to heavy metals for the development of SOT-based magnetic

  8. Exact results and open questions in first principle functional RG

    International Nuclear Information System (INIS)

    Le Doussal, Pierre

    2010-01-01

    Some aspects of the functional RG (FRG) approach to pinned elastic manifolds (of internal dimension d) at finite temperature T > 0 are reviewed and reexamined in this much expanded version of Le Doussal (2006) . The particle limit d = 0 provides a test for the theory: there the FRG is equivalent to the decaying Burgers equation, with viscosity ν ∼ T-both being formally irrelevant. An outstanding question in FRG, i.e. how temperature regularizes the otherwise singular flow of T = 0 FRG, maps to the viscous layer regularization of inertial range Burgers turbulence (i.e. to the construction of the inviscid limit). Analogy between Kolmogorov scaling and FRG cumulant scaling is discussed. First, multi-loop FRG corrections are examined and the direct loop expansion at T > 0 is shown to fail already in d = 0, a hierarchy of ERG equations being then required (introduced in Balents and Le Doussal (2005) ). Next we prove that the FRG function R(u) and higher cumulants defined from the field theory can be obtained for any d from moments of a renormalized potential defined in an sliding harmonic well. This allows to measure the fixed point function R(u) in numerics and experiments. In d = 0 the beta function (of the inviscid limit) is obtained from first principles to four loop. For Sinai model (uncorrelated Burgers initial velocities) the ERG hierarchy can be solved and the exact function R(u) is obtained. Connections to exact solutions for the statistics of shocks in Burgers and to ballistic aggregation are detailed. A relation is established between the size distribution of shocks and the one for droplets. A droplet solution to the ERG functional hierarchy is found for any d, and the form of R(u) in the thermal boundary layer is related to droplet probabilities. These being known for the d = 0 Sinai model the function R(u) is obtained there at any T. Consistency of the ε=4-d expansion in one and two loop FRG is studied from first principles, and connected to shock and

  9. Intrinsic and extrinsic spin-orbit torques from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Geranton, Guillaume

    2017-09-01

    This thesis attempts to shed light on the microscopic mechanisms underlying the current-induced magnetic torques in ferromagnetic heterostructures. We have developed first principles methods aiming at the accurate and effcient calculation of the so-called spin-orbit torques (SOTs) in magnetic thin films. The emphasis of this work is on the impurity-driven extrinsic SOTs. The main part of this thesis is dedicated to the development of a formalism for the calculation of the SOTs within the Korringa-Kohn-Rostoker (KKR) method. The impurity-induced transitions rates are obtained from first principles and their effect on transport properties is treated within the Boltzmann formalism. The developed formalism provides a mean to compute the SOTs beyond the conventional constant relaxation time approximation. We first apply our formalism to the investigation of FePt/Pt and Co/Cu bilayers in the presence of defects and impurities. Our results hint at a crucial dependence of the torque on the type of disorder present in the films, which we explain by a complex interplay of several competing Fermi surface contributions to the SOT. Astonishingly, specific defect distributions or doping elements lead respectively to an increase or a sign change of the torque, which can not be explained on the basis of simple models. We also compute the intrinsic SOT induced by electrical and thermal currents within the full potential linearized augmented plane-wave method. Motivated by recent experimental works, we then investigate the microscopic origin of the SOT in a Ag{sub 2}Bi-terminated Ag film grown on ferromagnetic Fe(110). We find that the torque in that system can not be explained solely by the spin-orbit coupling in the Ag{sub 2}Bi alloy, and instead results from the spin-orbit coupling in all regions of the film.Finally, we predict a large SOT in Fe/Ge bilayers and suggest that semiconductor substrates might be a promising alternative to heavy metals for the development of SOT

  10. First-Principle Characterization for Singlet Fission Couplings.

    Science.gov (United States)

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2015-05-21

    The electronic coupling for singlet fission, an important parameter for determining the rate, has been found to be too small unless charge-transfer (CT) components were introduced in the diabatic states, mostly through perturbation or a model Hamiltonian. In the present work, the fragment spin difference (FSD) scheme was generalized to calculate the singlet fission coupling. The largest coupling strength obtained was 14.8 meV for two pentacenes in a crystal structure, or 33.7 meV for a transition-state structure, which yielded a singlet fission lifetime of 239 or 37 fs, generally consistent with experimental results (80 fs). Test results with other polyacene molecules are similar. We found that the charge on one fragment in the S1 diabatic state correlates well with FSD coupling, indicating the importance of the CT component. The FSD approach is a useful first-principle method for singlet fission coupling, without the need to include the CT component explicitly.

  11. A first principle approach for encapsulated type composite detectors

    International Nuclear Information System (INIS)

    Kshetri, R

    2012-01-01

    A first principle approach is presented for modeling a composite detector consisting of several high-purity germanium detector modules. Without making assumptions, if we consider the full energy peak counts from single and multiple detector module interactions, and the decomposition of background counts to counts corresponding to the escaping γ-rays and counts for γ-rays which could be recovered in addback mode, it is observed that the addback mode of a composite detector could be described in terms of four probability amplitudes only. Expressions for peak-to-total and peak-to-background ratios are obtained. Considering details of the scattering and absorption processes in a composite detector, a formalism is introduced for understanding the probability amplitudes. Detailed investigation has been performed on the effect of shape and size of composite detectors on peak-to-total and peak-to-background ratios. In accordance with isoperimetric inequality for hexagonal shapes, we have discussed about the optimal design of detector layout for extremely large values of detector modules. Using experimental data on relative single crystal efficiency, addback factor and peak-to-total ratio at 1332 keV for cluster detector, the peak-to-total and peak-to-background ratios have been calculated for several composite detectors.

  12. First principles molecular dynamics without self-consistent field optimization

    International Nuclear Information System (INIS)

    Souvatzis, Petros; Niklasson, Anders M. N.

    2014-01-01

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations

  13. Safeguards First Principles Initiative at the Nevada Test Site

    International Nuclear Information System (INIS)

    Johnson, Geneva

    2007-01-01

    The Material Control and Accountability (MC and A) program at the Nevada Test Site (NTS) was selected as a test bed for the Safeguards First Principles Initiative (SFPI). The implementation of the SFPI is evaluated using the system effectiveness model and the program is managed under an approved MC and A Plan. The effectiveness model consists of an evaluation of the critical elements necessary to detect, deter, and/or prevent the theft or diversion of Special Nuclear Material (SNM). The modeled results indicate that the MC and A program established under this variance is still effective, without creating unacceptable risk. Extensive performance testing is conducted through the duration of the pilot to ensure the protection system is effective and no material is at an unacceptable risk. The pilot was conducted from January 1, 2007, through May 30, 2007. This paper will discuss the following activities in association with SFPI: (1) Development of Timeline; (2) Crosswalk of DOE Order and SFPI; (3) Peer Review; (4) Deviation; (5) MC and A Plan and Procedure changes; (6) Changes implemented at NTS; (7) Training; and (8) Performance Test

  14. Thermophysical properties of paramagnetic Fe from first principles

    Science.gov (United States)

    Ehteshami, Hossein; Korzhavyi, Pavel A.

    2017-12-01

    A computationally efficient, yet general, free-energy modeling scheme is developed based on first-principles calculations. Finite-temperature disorder associated with the fast (electronic and magnetic) degrees of freedom is directly included in the electronic structure calculations, whereas the vibrational free energy is evaluated by a proposed model that uses elastic constants to calculate average sound velocity of the quasiharmonic Debye model. The proposed scheme is tested by calculating the lattice parameter, heat capacity, and single-crystal elastic constants of α -, γ -, and δ -iron as functions of temperature in the range 1000-1800 K. The calculations accurately reproduce the well-established experimental data on thermal expansion and heat capacity of γ - and δ -iron. Electronic and magnetic excitations are shown to account for about 20% of the heat capacity for the two phases. Nonphonon contributions to thermal expansion are 12% and 10% for α - and δ -Fe and about 30% for γ -Fe. The elastic properties predicted by the model are in good agreement with those obtained in previous theoretical treatments of paramagnetic phases of iron, as well as with the bulk moduli derived from isothermal compressibility measurements [N. Tsujino et al., Earth Planet. Sci. Lett. 375, 244 (2013), 10.1016/j.epsl.2013.05.040]. Less agreement is found between theoretically calculated and experimentally derived single-crystal elastic constants of γ - and δ -iron.

  15. Automated first-principles mapping for phase-change materials.

    Science.gov (United States)

    Esser, Marc; Maintz, Stefan; Dronskowski, Richard

    2017-04-05

    Plotting materials on bi-coordinate maps according to physically meaningful descriptors has a successful tradition in computational solid-state science spanning more than four decades. Equipped with new ab initio techniques introduced in this work, we generate an improved version of the treasure map for phase-change materials (PCMs) as introduced previously by Lencer et al. which, other than before, charts all industrially used PCMs correctly. Furthermore, we suggest seven new PCM candidates, namely SiSb 4 Te 7 , Si 2 Sb 2 Te 5 , SiAs 2 Te 4 , PbAs 2 Te 4 , SiSb 2 Te 4 , Sn 2 As 2 Te 5 , and PbAs 4 Te 7 , to be used as synthetic targets. To realize aforementioned maps based on orbital mixing (or "hybridization") and ionicity coordinates, structural information was first included into an ab initio numerical descriptor for sp 3 orbital mixing and then generalized beyond high-symmetry structures. In addition, a simple, yet powerful quantum-mechanical ionization measure also including structural information was introduced. Taken together, these tools allow for (automatically) generating materials maps solely relying on first-principles calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. First principles study of lithium insertion in bulk silicon

    KAUST Repository

    Wan, Wenhui

    2010-09-23

    Si is an important anode material for the next generation of Li ion batteries. Here the energetics and dynamics of Li atoms in bulk Si have been studied at different Li concentrations on the basis of first principles calculations. It is found that Li prefers to occupy an interstitial site as a shallow donor rather than a substitutional site. The most stable position is the tetrahedral (Td) site. The diffusion of a Li atom in the Si lattice is through a Td-Hex-Td trajectory, where the Hex site is the hexagonal transition site with an energy barrier of 0.58 eV. We have also systematically studied the local structural transition of a LixSi alloy with x varying from 0 to 0.25. At low doping concentration (x = 0-0.125), Li atoms prefer to be separated from each other, resulting in a homogeneous doping distribution. Starting from x = 0.125, Li atoms tend to form clusters induced by a lattice distortion with frequent breaking and reforming of Si-Si bonds. When x ≥ 0.1875, Li atoms will break some Si-Si bonds permanently, which results in dangling bonds. These dangling bonds create negatively charged zones, which is the main driving force for Li atom clustering at high doping concentration. © 2010 IOP Publishing Ltd.

  17. Monolayer II-VI semiconductors: A first-principles prediction

    Science.gov (United States)

    Zheng, Hui; Chen, Nian-Ke; Zhang, S. B.; Li, Xian-Bin

    A systematic study of 32 honeycomb monolayer II-VI semiconductors is carried out by first-principles methods. It appears that BeO, MgO, CaO, ZnO, CdO, CaS, SrS, SrSe, BaTe, and HgTe honeycomb monolayers have a good dynamic stability which is revealed by phonon calculations. In addition, from the molecular dynamic (MD) simulation of other unstable candidates, we also find two extra monolayers dynamically stable, which are tetragonal BaS and orthorhombic HgS. The honeycomb monolayers exist in form of either a planar perfect honeycomb or a low-buckled 2D layer, all of which possess a band gap and most of them are in the ultraviolet region. Interestingly, the dynamically stable SrSe has a gap near visible light, and displays exotic electronic properties with a flat top of the valence band, and hence has a strong spin polarization upon hole doping. The honeycomb HgTe has been reported to achieve a topological nontrivial phase under appropriate in-plane tensile strain and spin-orbital coupling (SOC). Some II-VI partners with less than 5% lattice mismatch may be used to design novel 2D heterojunction devices. If synthesized, potential applications of these 2D II-VI families could include optoelectronics, spintronics, and strong correlated electronics. Distinguished Student (DS) Program of APS FIP travel funds.

  18. Leptogenesis from first principles in the resonant regime

    International Nuclear Information System (INIS)

    Garny, Mathias; Kartavtsev, Alexander; Hohenegger, Andreas

    2011-12-01

    The lepton asymmetry generated by the out-of-equilibrium decays of heavy Majorana neutrinos with a quasi-degenerate mass spectrum is resonantly enhanced. In this work, we study this scenario within a first-principle approach. The quantum field theoretical treatment is applicable for mass splittings of the order of the width of the Majorana neutrinos, for which the enhancement is maximally large. The non-equilibrium evolution of the mixing Majorana neutrino fields is described by a formal analytical solution of the Kadanoff-Baym equations, that is obtained by neglecting the back-reaction. Based on this solution, we derive approximate analytical expressions for the generated asymmetry and compare them to the Boltzmann result. We find that the resonant enhancement obtained from the Kadanoff-Baym approach is smaller compared to the Boltzmann approach, due to additional contributions that describe coherent transitions between the Majorana neutrino species. We also discuss corrections to the masses and widths of the degenerate pair of Majorana neutrinos that are relevant for very small mass splitting, and compare the approximate analytical result for the lepton asymmetry with numerical results. (orig.)

  19. Leptogenesis from first principles in the resonant regime

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Mathias [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kartavtsev, Alexander [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Hohenegger, Andreas [Ecole Polytechnique Federale de Lausanne (Switzerland)

    2011-12-15

    The lepton asymmetry generated by the out-of-equilibrium decays of heavy Majorana neutrinos with a quasi-degenerate mass spectrum is resonantly enhanced. In this work, we study this scenario within a first-principle approach. The quantum field theoretical treatment is applicable for mass splittings of the order of the width of the Majorana neutrinos, for which the enhancement is maximally large. The non-equilibrium evolution of the mixing Majorana neutrino fields is described by a formal analytical solution of the Kadanoff-Baym equations, that is obtained by neglecting the back-reaction. Based on this solution, we derive approximate analytical expressions for the generated asymmetry and compare them to the Boltzmann result. We find that the resonant enhancement obtained from the Kadanoff-Baym approach is smaller compared to the Boltzmann approach, due to additional contributions that describe coherent transitions between the Majorana neutrino species. We also discuss corrections to the masses and widths of the degenerate pair of Majorana neutrinos that are relevant for very small mass splitting, and compare the approximate analytical result for the lepton asymmetry with numerical results. (orig.)

  20. Accurate line intensities of methane from first-principles calculations

    Science.gov (United States)

    Nikitin, Andrei V.; Rey, Michael; Tyuterev, Vladimir G.

    2017-10-01

    In this work, we report first-principle theoretical predictions of methane spectral line intensities that are competitive with (and complementary to) the best laboratory measurements. A detailed comparison with the most accurate data shows that discrepancies in integrated polyad intensities are in the range of 0.4%-2.3%. This corresponds to estimations of the best available accuracy in laboratory Fourier Transform spectra measurements for this quantity. For relatively isolated strong lines the individual intensity deviations are in the same range. A comparison with the most precise laser measurements of the multiplet intensities in the 2ν3 band gives an agreement within the experimental error margins (about 1%). This is achieved for the first time for five-atomic molecules. In the Supplementary Material we provide the lists of theoretical intensities at 269 K for over 5000 strongest transitions in the range below 6166 cm-1. The advantage of the described method is that this offers a possibility to generate fully assigned exhaustive line lists at various temperature conditions. Extensive calculations up to 12,000 cm-1 including high-T predictions will be made freely available through the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru) that contains ab initio born line lists and provides a user-friendly graphical interface for a fast simulation of the absorption cross-sections and radiance.

  1. Quasiballistic heat removal from small sources studied from first principles

    Science.gov (United States)

    Vermeersch, Bjorn; Mingo, Natalio

    2018-01-01

    Heat sources whose characteristic dimension R is comparable to phonon mean free paths display thermal resistances that exceed conventional diffusive predictions. This has direct implications to (opto)electronics thermal management and phonon spectroscopy. Theoretical analyses have so far limited themselves to particular experimental configurations. Here, we build upon the multidimensional Boltzmann transport equation (BTE) to derive universal expressions for the apparent conductivity suppression S (R ) =κeff(R ) /κbulk experienced by radially symmetric 2D and 3D sources. In striking analogy to cross-plane heat conduction in thin films, a distinct quasiballistic regime emerges between ballistic (κeff˜R ) and diffusive (κeff≃κbulk ) asymptotes that displays a logarithmic dependence κeff˜ln(R ) in single crystals and fractional power dependence κeff˜R2 -α in alloys (with α the Lévy superdiffusion exponent). Analytical solutions and Monte Carlo simulations for spherical and circular heat sources in Si, GaAs, Si0.99Ge0.01 , and Si0.82Ge0.18 , all carried out from first principles, confirm the predicted generic tendencies. Contrary to the thin film case, common approximations like kinetic theory estimates κeff≃∑Sωgreyκω and modified Fourier temperature curves perform relatively poorly. Up to threefold deviations from the BTE solutions for sub-100 nm sources underline the need for rigorous treatment of multidimensional nondiffusive transport.

  2. Liquid Water from First Principles: Validation of Different Sampling Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, C J; Kuo, W; Siepmann, J; McGrath, M J; Vondevondele, J; Sprik, M; Hutter, J; Parrinello, M; Mohamed, F; Krack, M; Chen, B; Klein, M

    2004-05-20

    A series of first principles molecular dynamics and Monte Carlo simulations were carried out for liquid water to assess the validity and reproducibility of different sampling approaches. These simulations include Car-Parrinello molecular dynamics simulations using the program CPMD with different values of the fictitious electron mass in the microcanonical and canonical ensembles, Born-Oppenheimer molecular dynamics using the programs CPMD and CP2K in the microcanonical ensemble, and Metropolis Monte Carlo using CP2K in the canonical ensemble. With the exception of one simulation for 128 water molecules, all other simulations were carried out for systems consisting of 64 molecules. It is found that the structural and thermodynamic properties of these simulations are in excellent agreement with each other as long as adiabatic sampling is maintained in the Car-Parrinello molecular dynamics simulations either by choosing a sufficiently small fictitious mass in the microcanonical ensemble or by Nos{acute e}-Hoover thermostats in the canonical ensemble. Using the Becke-Lee-Yang-Parr exchange and correlation energy functionals and norm-conserving Troullier-Martins or Goedecker-Teter-Hutter pseudopotentials, simulations at a fixed density of 1.0 g/cm{sup 3} and a temperature close to 315 K yield a height of the first peak in the oxygen-oxygen radial distribution function of about 3.0, a classical constant-volume heat capacity of about 70 J K{sup -1} mol{sup -1}, and a self-diffusion constant of about 0.1 Angstroms{sup 2}/ps.

  3. Risk reduction and the privatization option: First principles

    International Nuclear Information System (INIS)

    Bjornstad, D.J.; Jones, D.W.; Russell, M.; Cummings, R.C.; Valdez, G.; Duemmer, C.L.

    1997-01-01

    The Department of Energy's Office of Environmental Restoration and Waste Management (EM) faces a challenging mission. To increase efficiency, EM is undertaking a number of highly innovative initiatives--two of which are of particular importance to the present study. One is the 2006 Plan, a planning and budgeting process that seeks to convert the clean-up program from a temporally and fiscally open-ended endeavor to a strictly bounded one, with firm commitments over a decade-long horizon. The second is a major overhauling of the management and contracting practices that define the relationship between the Department and the private sector, aimed at cost reduction by increasing firms' responsibilities and profit opportunities and reducing DOE's direct participation in management practices and decisions. The goal of this paper is to provide an independent perspective on how EM should create new management practices to deal with private sector partners that are motivated by financial incentives. It seeks to ground this perspective in real world concerns--the background of the clean-up effort, the very difficult technical challenges it faces, the very real threats to environment, health and safety that have now been juxtaposed with financial drivers, and the constraints imposed by government's unique business practices and public responsibilities. The approach is to raise issues through application of first principles. The paper is targeted at the EM policy officer who must implement the joint visions of the 2006 plan and privatization within the context of the tradeoff between terminal risk reduction and interim risk management

  4. Risk reduction and the privatization option: First principles

    Energy Technology Data Exchange (ETDEWEB)

    Bjornstad, D.J.; Jones, D.W.; Russell, M. [Joint Inst. for Energy and Environment, Knoxville, TN (United States); Cummings, R.C.; Valdez, G. [Georgia State Univ., Atlanta, GA (United States); Duemmer, C.L. [Hull, Duemmer and Garland (United States)

    1997-06-25

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) faces a challenging mission. To increase efficiency, EM is undertaking a number of highly innovative initiatives--two of which are of particular importance to the present study. One is the 2006 Plan, a planning and budgeting process that seeks to convert the clean-up program from a temporally and fiscally open-ended endeavor to a strictly bounded one, with firm commitments over a decade-long horizon. The second is a major overhauling of the management and contracting practices that define the relationship between the Department and the private sector, aimed at cost reduction by increasing firms` responsibilities and profit opportunities and reducing DOE`s direct participation in management practices and decisions. The goal of this paper is to provide an independent perspective on how EM should create new management practices to deal with private sector partners that are motivated by financial incentives. It seeks to ground this perspective in real world concerns--the background of the clean-up effort, the very difficult technical challenges it faces, the very real threats to environment, health and safety that have now been juxtaposed with financial drivers, and the constraints imposed by government`s unique business practices and public responsibilities. The approach is to raise issues through application of first principles. The paper is targeted at the EM policy officer who must implement the joint visions of the 2006 plan and privatization within the context of the tradeoff between terminal risk reduction and interim risk management.

  5. Next generation extended Lagrangian first principles molecular dynamics.

    Science.gov (United States)

    Niklasson, Anders M N

    2017-08-07

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  6. Surface Reactivity of Li2MnO3: First-Principles and Experimental Study.

    Science.gov (United States)

    Quesne-Turin, Ambroise; Flahaut, Delphine; Croguennec, Laurence; Vallverdu, Germain; Allouche, Joachim; Charles-Blin, Youn; Chotard, Jean-Noël; Ménétrier, Michel; Baraille, Isabelle

    2017-12-20

    This article deals with the surface reactivity of (001)-oriented Li 2 MnO 3 crystals investigated from a multitechnique approach combining material synthesis, X-ray photoemission spectroscopy (XPS), scanning electron microscopy, Auger electron spectroscopy, and first-principles calculations. Li 2 MnO 3 is considered as a model compound suitable to go further in the understanding of the role of tetravalent manganese atoms in the surface reactivity of layered lithium oxides. The knowledge of the surface properties of such materials is essential to understand the mechanisms involved in parasitic phenomena responsible for early aging or poor storage performances of lithium-ion batteries. The surface reactivity was probed through the adsorption of SO 2 gas molecules on large Li 2 MnO 3 crystals to be able to focus the XPS beam on the top of the (001) surface. A chemical mapping and XPS characterization of the material before and after SO 2 adsorption show in particular that the adsorption is homogeneous at the micro- and nanoscale and involves Mn reduction, whereas first-principles calculations on a slab model of the surface allow us to conclude that the most energetically favorable species formed is a sulfate with charge transfer implying reduction of Mn.

  7. Towards Rational Design of Functional Fluoride and Oxyfluoride Materials from First Principles

    Science.gov (United States)

    Charles, Nenian

    Complex transition metal compounds (TMCs) research has produced functional materials with a range of properties, including ferroelectricity, colossal magnetoresistance, nonlinear optical activity and high-temperature superconductivity. Conventional routes to tune properties in transition metal oxides, for example, have relied primarily on cation chemical substitution and interfacial effects in thin film heterostructures. In heteroanionic TMCs, exhibiting two chemically distinct anions coordinating the same or different cations, engineering of the anion sub-lattice for property control is a promising alternative approach. The presence of multiple anions provides additional design variables, such as anion order, that are absent in homoanionic counterparts. The more complex structural and chemical phase space of heteroanionic materials provides a unique opportunity to realize enhanced or unanticipated electronic, optical, and magnetic responses. Although there is growing interest in heteroanionic materials, and synthetic and characterization advances are occurring for these materials, the crystal-chemistry principles for realizing structural and property control are only slowing emerging. This dissertation employs anion engineering to investigate phenomena in transition metal fluorides and oxyfluorides compounds using first principles density functional theory calculations. Oxyfluorides are particularly intriguing owing their tendency to stabilize highly ordered anion sublattices as well as the potential to combine the advantageous properties of transition metal oxides and fluorides. This work 1) addresses the challenges of studying fluorides and oxyfluorides using first principles calculations; 2) evaluates the feasibility of using external stimuli, such as epitaxial strain and hydrostatic pressure, to control properties of fluorides and oxyfluorides; and 3) formulates a computational workflow based on multiple levels of theory and computation to elucidate structure

  8. Transport and first-principles study of novel thermoelectric materials

    Science.gov (United States)

    Chi, Hang

    Thermoelectric materials can recover waste industrial heat and convert it to electricity as well as provide efficient local cooling of electronic devices. The efficiency of such environmentally responsible and exceptionally reliable solid state energy conversion is determined by the dimensionless figure-of-merit ZT = alpha2 sigmaT/kappa, where alpha is the Seebeck coefficient, sigma is the electrical conductivity, kappa is the thermal conductivity, and T is the absolute temperature. The goal of the thesis is to (i) illustrate the physics to achieve high ZT of advanced thermoelectric materials and (ii) explore fundamental structure and transport properties in novel condensed matter systems, via an approach combining comprehensive experimental techniques and state-of-the-art first-principles simulation methods. Thermo-galvanomagnetic transport coefficients are derived from Onsager's reciprocal relations and evaluated via solving Boltzmann transport equation using Fermi-Dirac statistics, under the relaxation time approximation. Such understanding provides insights on enhancing ZT through two physically intuitive and very effective routes: (i) improving power factor PF = alpha2sigma; and (ii) reducing thermal conductivity kappa, as demonstrated in the cases of Mg2Si1-xSnx solid solution and Ge/Te double substituted skutterudites CoSb3(1-x)Ge1.5x Te1.5x, respectively. Motivated by recent theoretical predictions of enhanced thermoelectric performance in highly mismatched alloys, ZnTe:N molecular beam epitaxy (MBE) films deposited on GaAs (100) substrates are carefully examined, which leads to a surprising discovery of significant phonon-drag thermopower (reaching 1-2 mV/K-1) at ~13 K. Further systematic study in Bi2Te3 MBE thin films grown on sapphire (0001) and/or BaF2 (111) substrates, reveal that the peak of phonon drag can be tuned by the choice of substrates with different Debye temperatures. Moreover, the detailed transport and structure studies of Bi2-xTl xTe3

  9. Aqueous Stability of Alkali Superionic Conductors from First-Principles Calculations

    International Nuclear Information System (INIS)

    Radhakrishnan, Balachandran; Ong, Shyue Ping

    2016-01-01

    Ceramic alkali superionic conductor solid electrolytes (SICEs) play a prominent role in the development of rechargeable alkali-ion batteries, ranging from replacement of organic electrolytes to being used as separators in aqueous batteries. The aqueous stability of SICEs is an important property in determining their applicability in various roles. In this work, we analyze the aqueous stability of twelve well-known Li-ion and Na-ion SICEs using Pourbaix diagrams constructed from first-principles calculations. We also introduce a quantitative free-energy measure to compare the aqueous stability of SICEs under different environments. Our results show that though oxides are, in general, more stable in aqueous environments than sulfides and halide-containing chemistries, the cations present play a crucial role in determining whether solid phases are formed within the voltage and pH ranges of interest.

  10. First principles calculations of thermal conductivity with out of equilibrium molecular dynamics simulations

    Science.gov (United States)

    Puligheddu, Marcello; Gygi, Francois; Galli, Giulia

    The prediction of the thermal properties of solids and liquids is central to numerous problems in condensed matter physics and materials science, including the study of thermal management of opto-electronic and energy conversion devices. We present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at non equilibrium conditions. Our formulation is based on a generalization of the approach to equilibrium technique, using sinusoidal temperature gradients, and it only requires calculations of first principles trajectories and atomic forces. We discuss results and computational requirements for a representative, simple oxide, MgO, and compare with experiments and data obtained with classical potentials. This work was supported by MICCoM as part of the Computational Materials Science Program funded by the U.S. Department of Energy (DOE), Office of Science , Basic Energy Sciences (BES), Materials Sciences and Engineering Division under Grant DOE/BES 5J-30.

  11. The interaction of oxygen with TiC(001): Photoemission and first-principles studies

    International Nuclear Information System (INIS)

    Rodriguez, J.A.; Liu, P.; Dvorak, J.; Jirsak, T.; Gomes, J.; Takahashi, Y.; Nakamura, K.

    2004-01-01

    High-resolution photoemission and first-principles density-functional slab calculations were used to study the interaction of oxygen with a TiC(001) surface. Atomic oxygen is present on the TiC(001) substrate after small doses of O 2 at room temperature. A big positive shift (1.5-1.8 eV) was detected for the C 1s core level. These photoemission studies suggest the existence of strong O↔C interactions. A phenomenon corroborated by the results of first-principles calculations, which show a CTiTi hollow as the most stable site for the adsorption of O. Ti and C atoms are involved in the adsorption and dissociation of the O 2 molecule. In general, the bond between O and the TiC(001) surface contains a large degree of ionic character. The carbide→O charge transfer is substantial even at high coverages (>0.5 ML) of oxygen. At 500 K and large doses of O 2 , oxidation of the carbide surface occurs with the removal of C and formation of titanium oxides. There is an activation barrier for the exchange of Ti-C and Ti-O bonds which is overcome only by the formation of C-C or C-O bonds on the surface. The mechanism for the removal of a C atom as CO gas involves a minimum of two O adatoms, and three O adatoms are required for the formation of CO 2 gas. Due to the high stability of TiC, an O adatom alone cannot induce the generation of a C vacancy in a flat TiC(001) surface

  12. First-Principles Investigations of Defects in Minerals

    Science.gov (United States)

    Verma, Ashok K.

    2011-07-01

    The ideal crystal has an infinite 3-dimensional repetition of identical units which may be atoms or molecules. But real crystals are limited in size and they have disorder in stacking which as called defects. Basically three types of defects exist in solids: 1) point defects, 2) line defects, and 3) surface defects. Common point defects are vacant lattice sites, interstitial atoms and impurities and these are known to influence strongly many solid-state transport properties such as diffusion, electrical conduction, creep, etc. In thermal equilibrium point defects concentrations are determined by their formation enthalpies and their movement by their migration barriers. Line and surface defects are though absent from the ideal crystal in thermal equilibrium due to higher energy costs but they are invariably present in all real crystals. Line defects include edge-, screw- and mixed-dislocations and their presence is essential in explaining the mechanical strength and deformation of real crystals. Surface defects may arise at the boundary between two grains, or small crystals, within a larger crystal. A wide variety of grain boundaries can form in a polycrystal depending on factors such growth conditions and thermal treatment. In this talk we will present our first-principles density functional theory based defect studies of SiO2 polymorphs (stishovite, CaCl2-, α-PbO2-, and pyrite-type), Mg2SiO4 polymorphs (forsterite, wadsleyite and ringwoodite) and MgO [1-3]. Briefly, several native point defects including vacancies, interstitials, and their complexes were studied in silica polymorphs upto 200 GPa. Their values increase by a factor of 2 over the entire pressure range studied with large differences in some cases between different phases. The Schottky defects are energetically most favorable at zero pressure whereas O-Frenkel pairs become systematically more favorable at pressures higher than 20 GPa. The geometric and electronic structures of defects and migrating

  13. Design and exploration of semiconductors from first principles: A review of recent advances

    Science.gov (United States)

    Oba, Fumiyasu; Kumagai, Yu

    2018-06-01

    Recent first-principles approaches to semiconductors are reviewed, with an emphasis on theoretical insight into emerging materials and in silico exploration of as-yet-unreported materials. As relevant theory and methodologies have developed, along with computer performance, it is now feasible to predict a variety of material properties ab initio at the practical level of accuracy required for detailed understanding and elaborate design of semiconductors; these material properties include (i) fundamental bulk properties such as band gaps, effective masses, dielectric constants, and optical absorption coefficients; (ii) the properties of point defects, including native defects, residual impurities, and dopants, such as donor, acceptor, and deep-trap levels, and formation energies, which determine the carrier type and density; and (iii) absolute and relative band positions, including ionization potentials and electron affinities at semiconductor surfaces, band offsets at heterointerfaces between dissimilar semiconductors, and Schottky barrier heights at metal–semiconductor interfaces, which are often discussed systematically using band alignment or lineup diagrams. These predictions from first principles have made it possible to elucidate the characteristics of semiconductors used in industry, including group III–V compounds such as GaN, GaP, and GaAs and their alloys with related Al and In compounds; amorphous oxides, represented by In–Ga–Zn–O transparent conductive oxides (TCOs), represented by In2O3, SnO2, and ZnO; and photovoltaic absorber and buffer layer materials such as CdTe and CdS among group II–VI compounds and chalcopyrite CuInSe2, CuGaSe2, and CuIn1‑ x Ga x Se2 (CIGS) alloys, in addition to the prototypical elemental semiconductors Si and Ge. Semiconductors attracting renewed or emerging interest have also been investigated, for instance, divalent tin compounds, including SnO and SnS; wurtzite-derived ternary compounds such as ZnSnN2 and Cu

  14. Cuprous sulfide as a film insulation for superconductors

    International Nuclear Information System (INIS)

    Wagner, G.R.; Uphoff, J.H.; Vecchio, P.D.

    1982-01-01

    The LCP test coil utilizes a conductor of forced-flow design having 486 strands of multifilametary Nb 3 Sn compacted in a stainless steel sheath. The impetus for the work reported here stemmed from the need for some form of insulation for those strands to prevent sintering during reaction and to reduce ac losses. The work reported here experimented with cuprous sulfide coatings at various coating rates and thicknesses. Two solenoids that were wound with cuprous sulfide-coated wires and heat-treated at 700 degrees C were found to demonstrate that the film is effective in providing turn-to-turn insulation for less than about 0.5V between turns. The sulfide layer provided a metal-semiconductor junction which became conducting at roughly 0.5V. Repeated cycling of the coil voltage in excess of that value produced no damage to the sulfide layer. The junction provided self-protection for the coil as long as the upper allowable current density in the sulfide was not exceeded. No training was apparent up to 6.4 T

  15. Carbon nanotube—cuprous oxide composite based pressure sensors

    International Nuclear Information System (INIS)

    Karimov, Kh. S.; Chani, Muhammad Tariq Saeed; Khalid, Fazal Ahmad; Khan, Adam; Khan, Rahim

    2012-01-01

    In this paper, we present the design, the fabrication, and the experimental results of carbon nanotube (CNT) and Cu 2 O composite based pressure sensors. The pressed tablets of the CNT—Cu 2 O composite are fabricated at a pressure of 353 MPa. The diameters of the multiwalled nanotubes (MWNTs) are between 10 nm and 30 nm. The sizes of the Cu 2 O micro particles are in the range of 3–4 μm. The average diameter and the average thickness of the pressed tablets are 10 mm and 4.0 mm, respectively. In order to make low resistance electric contacts, the two sides of the pressed tablet are covered by silver pastes. The direct current resistance of the pressure sensor decreases by 3.3 times as the pressure increases up to 37 kN/m 2 . The simulation result of the resistance—pressure relationship is in good agreement with the experimental result within a variation of ±2%. (condensed matter: structural, mechanical, and thermal properties)

  16. Picosecond nonlinear optical properties of cuprous oxide with ...

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... with a direct band gap of 2.17 eV and can be used in solar cells, ... various important applications in the field of material research. ... of isopropanol dispersed with Cu2O powder on carbon-coated copper grid to determine.

  17. Improvement in structural and electrical properties of cuprous oxide ...

    Indian Academy of Sciences (India)

    Administrator

    walled carbon nanotubes ... heat transfer applications, electrochemical supercapaci- tors and gas sensor ... They have observed that the thermal expansion coefficient decreased ... many times with ethanol and then with distilled water and dried in ...

  18. Electrical conductivity in oxygen-deficient phases of tantalum pentoxide from first-principles calculations

    International Nuclear Information System (INIS)

    Bondi, Robert J.; Desjarlais, Michael P.; Thompson, Aidan P.; Brennecka, Geoff L.; Marinella, Matthew J.

    2013-01-01

    We apply first-principles density-functional theory (DFT) calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula to predict electrical conductivity in Ta 2 O x (0 ≤ x ≤ 5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (V O n ; n = 0,1+,2+). In the crystalline phase, our DFT calculations suggest that V O 0 prefers equatorial O sites, while V O 1+ and V O 2+ are energetically preferred in the O cap sites of TaO 7 polyhedra. Our calculations of DC conductivity at 300 K agree well with experimental measurements taken on Ta 2 O x thin films (0.18 ≤ x ≤ 4.72) and bulk Ta 2 O 5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta 2 O 5 electronic structure provide further theoretical basis to substantiate V O 0 as a donor dopant in Ta 2 O 5 . Furthermore, this dopant-like behavior is specific to the neutral case and not observed in either the 1+ or 2+ oxidation states, which suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for V O n in Ta 2 O 5

  19. Non-metallic dopant modulation of conductivity in substoichiometric tantalum pentoxide: A first-principles study

    Science.gov (United States)

    Bondi, Robert J.; Fox, Brian P.; Marinella, Matthew J.

    2017-06-01

    We apply density-functional theory calculations to predict dopant modulation of electrical conductivity (σo) for seven dopants (C, Si, Ge, H, F, N, and B) sampled at 18 quantum molecular dynamics configurations of five independent insertion sites into two (high/low) baseline references of σo in amorphous Ta2O5, where each reference contains a single, neutral O vacancy center (VO0). From this statistical population (n = 1260), we analyze defect levels, physical structure, and valence charge distributions to characterize nanoscale modification of the atomistic structure in local dopant neighborhoods. C is the most effective dopant at lowering Ta2Ox σo, while also exhibiting an amphoteric doping behavior by either donating or accepting charge depending on the host oxide matrix. Both B and F robustly increase Ta2Ox σo, although F does so through elimination of Ta high charge outliers, while B insertion conversely creates high charge O outliers through favorable BO3 group formation, especially in the low σo reference. While N applications to dope and passivate oxides are prevalent, we found that N exacerbates the stochasticity of σo we sought to mitigate; sensitivity to the N insertion site and some propensity to form N-O bond chemistries appear responsible. We use direct first-principles predictions of σo to explore feasible Ta2O5 dopants to engineer improved oxides with lower variance and greater repeatability to advance the manufacturability of resistive memory technologies.

  20. Epoxide reduction with hydrazine on graphene: a first principles study.

    Science.gov (United States)

    Kim, Min Chan; Hwang, Gyeong S; Ruoff, Rodney S

    2009-08-14

    Mechanisms for epoxide reduction with hydrazine on a single-layer graphene sheet are examined using quantum mechanical calculations within the framework of gradient-corrected spin-polarized density-functional theory. We find that the reduction reaction is mainly governed by epoxide ring opening which is initiated by H transfer from hydrazine or its derivatives. In addition, our calculations suggest that the epoxide reduction by hydrazine may predominantly follow a direct Eley-Rideal mechanism rather than a Langmuir-Hinshelwood mechanism. We also discuss the generation of various hydrazine derivatives during the reduction of graphene oxide with hydrazine and their potential contribution to lowering the barrier height of epoxide ring opening.

  1. Phase stability in yttria-stabilized zirconia from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Carbogno, Christian; Scheffler, Matthias [Materials Department, University of California, Santa Barbara, CA (United States); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany); Levi, Carlos G.; Van de Walle, Chris G. [Materials Department, University of California, Santa Barbara, CA (United States)

    2012-07-01

    Zirconia based ceramics are of pivotal importance for a variety of industrial technologies, e.g., for thermal barrier coatings in gas and airplane turbines. Naturally, the stability of such coatings at elevated temperatures plays a critical role in these applications. It is well known that an aliovalent doping of tetragonal ZrO{sub 2} with yttria, which induces oxygen vacancies due to charge conservation, increases its thermodynamic stability. However, the atomistic mechanisms that determine the phase stability of such yttria-stabilized Zirconia (YSZ) coatings are not yet fully understood. In this work, we use density functional theory calculations to assess the electronic structure of the different YSZ polymorphs at various levels of doping. With the help of population analysis schemes, we are able to unravel the intrinsic mechanisms that govern the interaction in YSZ and that can so explain the relative stabilities of the various polymorphs. We critically compare our results to experimental measurements and discuss the implications of our findings with respect to other oxides.

  2. A first-principles approach to total-dose hardness assurance

    International Nuclear Information System (INIS)

    Fleetwood, D.M.

    1995-01-01

    A first-principles approach to radiation hardness assurance was described that provides the technical background to the present US and European total-dose radiation hardness assurance test methods for MOS technologies, TM 1019.4 and BS 22900. These test methods could not have been developed otherwise, as their existence depends not on a wealth of empirical comparisons of IC data from ground and space testing, but on a fundamental understanding of MOS defect growth and annealing processes. Rebound testing should become less of a problem for advanced MOS small-signal electronics technologies for systems with total dose requirements below 50--100 krad(SiO 2 ) because of trends toward much thinner gate oxides. For older technologies with thicker gate oxides and for power devices, rebound testing is unavoidable without detailed characterization studies to assess the impact of interface traps on devices response in space. The QML approach is promising for future hardened technologies. A sufficient understanding of process effects on radiation hardness has been developed that should be able to reduce testing costs in the future for hardened parts. Finally, it is hoped that the above discussions have demonstrated that the foundation for cost-effective hardness assurance tests is laid with studies of the basic mechanisms of radiation effects. Without a diligent assessment of new radiation effects mechanisms in future technologies, one cannot be assured that the present generation of radiation test standards will continue to apply

  3. First-principles thermodynamics and defect kinetics guidelines for engineering a tailored RRAM device

    Energy Technology Data Exchange (ETDEWEB)

    Clima, Sergiu, E-mail: clima@imec.be; Chen, Yang Yin; Goux, Ludovic; Govoreanu, Bogdan; Degraeve, Robin; Fantini, Andrea; Jurczak, Malgorzata [imec, Kapeldreef 75, 3001 Leuven (Belgium); Chen, Chao Yang [imec, Kapeldreef 75, 3001 Leuven (Belgium); Katholieke Universiteit Leuven, 3001 Leuven (Belgium); Pourtois, Geoffrey [imec, Kapeldreef 75, 3001 Leuven (Belgium); PLASMANT, University of Antwerp, 2610 Antwerpen (Belgium)

    2016-06-14

    Resistive Random Access Memories are among the most promising candidates for the next generation of non-volatile memory. Transition metal oxides such as HfOx and TaOx attracted a lot of attention due to their CMOS compatibility. Furthermore, these materials do not require the inclusion of extrinsic conducting defects since their operation is based on intrinsic ones (oxygen vacancies). Using Density Functional Theory, we evaluated the thermodynamics of the defects formation and the kinetics of diffusion of the conducting species active in transition metal oxide RRAM materials. The gained insights based on the thermodynamics in the Top Electrode, Insulating Matrix and Bottom Electrode and at the interfaces are used to design a proper defect reservoir, which is needed for a low-energy reliable switching device. The defect reservoir has also a direct impact on the retention of the Low Resistance State due to the resulting thermodynamic driving forces. The kinetics of the diffusing conducting defects in the Insulating Matrix determine the switching dynamics and resistance retention. The interface at the Bottom Electrode has a significant impact on the low-current operation and long endurance of the memory cell. Our first-principles findings are confirmed by experimental measurements on fabricated RRAM devices.

  4. First-principles thermodynamics and defect kinetics guidelines for engineering a tailored RRAM device

    International Nuclear Information System (INIS)

    Clima, Sergiu; Chen, Yang Yin; Goux, Ludovic; Govoreanu, Bogdan; Degraeve, Robin; Fantini, Andrea; Jurczak, Malgorzata; Chen, Chao Yang; Pourtois, Geoffrey

    2016-01-01

    Resistive Random Access Memories are among the most promising candidates for the next generation of non-volatile memory. Transition metal oxides such as HfOx and TaOx attracted a lot of attention due to their CMOS compatibility. Furthermore, these materials do not require the inclusion of extrinsic conducting defects since their operation is based on intrinsic ones (oxygen vacancies). Using Density Functional Theory, we evaluated the thermodynamics of the defects formation and the kinetics of diffusion of the conducting species active in transition metal oxide RRAM materials. The gained insights based on the thermodynamics in the Top Electrode, Insulating Matrix and Bottom Electrode and at the interfaces are used to design a proper defect reservoir, which is needed for a low-energy reliable switching device. The defect reservoir has also a direct impact on the retention of the Low Resistance State due to the resulting thermodynamic driving forces. The kinetics of the diffusing conducting defects in the Insulating Matrix determine the switching dynamics and resistance retention. The interface at the Bottom Electrode has a significant impact on the low-current operation and long endurance of the memory cell. Our first-principles findings are confirmed by experimental measurements on fabricated RRAM devices.

  5. Chemical modifications and stability of phosphorene with impurities: a first principles study.

    Science.gov (United States)

    Boukhvalov, D W; Rudenko, A N; Prishchenko, D A; Mazurenko, V G; Katsnelson, M I

    2015-06-21

    We perform a systematic first-principles study of phosphorene in the presence of typical monovalent (hydrogen and fluorine) and divalent (oxygen) impurities. The results of our modeling suggest a decomposition of phosphorene into weakly bonded one-dimensional (1D) chains upon single- and double-side hydrogenation and fluorination. In spite of a sizable quasiparticle band gap (2.29 eV), fully hydrogenated phosphorene was found to be dynamically unstable. In contrast, complete fluorination of phosphorene gives rise to a stable structure, which is an indirect gap semiconductor with a band gap of 2.27 eV. We also show that fluorination of phosphorene from the gas phase is significantly more likely than hydrogenation due to the relatively low energy barrier for the dissociative adsorption of F2 (0.19 eV) compared to H2 (2.54 eV). At low concentrations, monovalent impurities tend to form regular atomic rows of phosphorene, though such patterns do not seem to be easily achievable due to high migration barriers (1.09 and 2.81 eV for H2 and F2, respectively). Oxidation of phosphorene is shown to be a qualitatively different process. Particularly, we observe instability of phosphorene upon oxidation, leading to the formation of disordered amorphous-like structures at high concentrations of impurities.

  6. First principles based multiparadigm modeling of electronic structures and dynamics

    Science.gov (United States)

    Xiao, Hai

    enabling the tunability of CBO. We predict that Na further improves the CBO through electrostatically elevating the valence levels to decrease the CBO, explaining the observed essential role of Na for high performance. Moreover we find that K leads to a dramatic decrease in the CBO to 0.05 eV, much better than Na. We suggest that the efficiency of CIGS devices might be improved substantially by tuning the ratio of Na to K, with the improved phase stability of Na balancing phase instability from K. All these defects reduce interfacial stability slightly, but not significantly. A number of exotic structures have been formed through high pressure chemistry, but applications have been hindered by difficulties in recovering the high pressure phase to ambient conditions (i.e., one atmosphere and room temperature). Here we use dispersion-corrected DFT (PBE-ulg flavor) to predict that above 60 GPa the most stable form of N2O (the laughing gas in its molecular form) is a 1D polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03-0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions both polymers relax below 14 GPa to the same stable non-planar trans-polymer, accompanied by possible electronic structure transitions. The predicted phonon spectrum and dissociation kinetics validate the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a new type of conducting polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions. Modeling non-adiabatic electron dynamics has been a long-standing challenge for computational chemistry and materials science, and the eFF method presents a cost-efficient alternative. However, due to the deficiency of FSG representation, eFF is limited to low-Z elements with

  7. Electrical conductivity in oxygen-deficient phases of tantalum pentoxide from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bondi, Robert J., E-mail: rjbondi@sandia.gov; Desjarlais, Michael P.; Thompson, Aidan P.; Brennecka, Geoff L.; Marinella, Matthew J. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2013-11-28

    We apply first-principles density-functional theory (DFT) calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula to predict electrical conductivity in Ta{sub 2}O{sub x} (0 ≤ x ≤ 5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (V{sub O}{sup n}; n = 0,1+,2+). In the crystalline phase, our DFT calculations suggest that V{sub O}{sup 0} prefers equatorial O sites, while V{sub O}{sup 1+} and V{sub O}{sup 2+} are energetically preferred in the O cap sites of TaO{sub 7} polyhedra. Our calculations of DC conductivity at 300 K agree well with experimental measurements taken on Ta{sub 2}O{sub x} thin films (0.18 ≤ x ≤ 4.72) and bulk Ta{sub 2}O{sub 5} powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta{sub 2}O{sub 5} electronic structure provide further theoretical basis to substantiate V{sub O}{sup 0} as a donor dopant in Ta{sub 2}O{sub 5}. Furthermore, this dopant-like behavior is specific to the neutral case and not observed in either the 1+ or 2+ oxidation states, which suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for V{sub O}{sup n} in Ta{sub 2}O{sub 5}.

  8. First-principles study for the enhanced sulfur tolerance of Ni(1 1 1) surface alloyed with Pb

    Science.gov (United States)

    Zhang, Yanxing; Yang, Zongxian

    2018-04-01

    The adsorption of H2S, HS, S, H and the dissociation of H2S on the Ni2Pb/Ni (1 1 1) are systematically studied using the first-principles method based on density functional theory. It is found that H2S dissociation barriers are greatly increased by alloying with Pb atoms in the Ni(1 1 1) surface, while the barrier for H2S formation is greatly reduced. In addition, the adsorption of sulfur atom is weakened a lot. The results indicate that alloying with Pb may be a good way to increase the sulfur tolerance of Ni based anode catalysts of solid oxide fuel cells.

  9. First Principles Investigations of Technologically and Environmentally Important Nano-structured Materials and Devices

    Science.gov (United States)

    Paul, Sujata

    In the course of my PhD I have worked on a broad range of problems using simulations from first principles: from catalysis and chemical reactions at surfaces and on nanostructures, characterization of carbon-based systems and devices, and surface and interface physics. My research activities focused on the application of ab-initio electronic structure techniques to the theoretical study of important aspects of the physics and chemistry of materials for energy and environmental applications and nano-electronic devices. A common theme of my research is the computational study of chemical reactions of environmentally important molecules (CO, CO2) using high performance simulations. In particular, my principal aim was to design novel nano-structured functional catalytic surfaces and interfaces for environmentally relevant remediation and recycling reactions, with particular attention to the management of carbon dioxide. We have studied the carbon-mediated partial sequestration and selective oxidation of carbon monoxide (CO), both in the presence and absence of hydrogen, on graphitic edges. Using first-principles calculations we have studied several reactions of CO with carbon nanostructures, where the active sites can be regenerated by the deposition of carbon decomposed from the reactant (CO) to make the reactions self-sustained. Using statistical mechanics, we have also studied the conditions under which the conversion of CO to graphene and carbon dioxide is thermodynamically favorable, both in the presence and in the absence of hydrogen. These results are a first step toward the development of processes for the carbon-mediated partial sequestration and selective oxidation of CO in a hydrogen atmosphere. We have elucidated the atomic scale mechanisms of activation and reduction of carbon dioxide on specifically designed catalytic surfaces via the rational manipulation of the surface properties that can be achieved by combining transition metal thin films on oxide

  10. First Principles Prediction of Structure, Structure Selectivity, and Thermodynamic Stability under Realistic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ceder, Gerbrand [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials and Engineering

    2018-01-28

    Novel materials are often the enabler for new energy technologies. In ab-initio computational materials science, method are developed to predict the behavior of materials starting from the laws of physics, so that properties can be predicted before compounds have to be synthesized and tested. As such, a virtual materials laboratory can be constructed, saving time and money. The objectives of this program were to develop first-principles theory to predict the structure and thermodynamic stability of materials. Since its inception the program focused on the development of the cluster expansion to deal with the increased complexity of complex oxides. This research led to the incorporation of vibrational degrees of freedom in ab-initio thermodynamics, developed methods for multi-component cluster expansions, included the explicit configurational degrees of freedom of localized electrons, developed the formalism for stability in aqueous environments, and culminated in the first ever approach to produce exact ground state predictions of the cluster expansion. Many of these methods have been disseminated to the larger theory community through the Materials Project, pymatgen software, or individual codes. We summarize three of the main accomplishments.

  11. Adsorption of organic molecules on mineral surfaces studied by first-principle calculations: A review.

    Science.gov (United States)

    Zhao, Hongxia; Yang, Yong; Shu, Xin; Wang, Yanwei; Ran, Qianping

    2018-04-09

    First-principle calculations, especially by the density functional theory (DFT) methods, are becoming a power technique to study molecular structure and properties of organic/inorganic interfaces. This review introduces some recent examples on the study of adsorption models of organic molecules or oligomers on mineral surfaces and interfacial properties obtained from first-principles calculations. The aim of this contribution is to inspire scientists to benefit from first-principle calculations and to apply the similar strategies when studying and tailoring interfacial properties at the atomistic scale, especially for those interested in the design and development of new molecules and new products. Copyright © 2017. Published by Elsevier B.V.

  12. Structural and electronic phase transitions of ThS2 from first-principles calculations

    International Nuclear Information System (INIS)

    Guo, Yongliang; Wang, Changying; Qiu, Wujie; Ke, Xuezhi

    2016-01-01

    Performed a systematic study using first-principles methods of the pressure-induced structural and electronic phase transitions in ThS_2, which may play an important role in the next generation nuclear energy fuel technology.

  13. First principles study of electronic, elastic and thermal properties of lutetium intermetallics

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Chouhan, Sunil Singh; Soni, Pooja; Sanyal, S.P.; Rajagopalan, M.

    2011-01-01

    In the present work, the electronic, elastic and thermal properties of lutetium intermetallics LuX have been studied theoretically by using first principles calculations based on density functional theory (DFT) with the generalized gradient approximation (GCA)

  14. Graphene substrate-mediated catalytic performance enhancement of Ru nanoparticles: A first-principles study

    KAUST Repository

    Liu, Xin; Yao, Kexin; Meng, Changgong; Han, Yu

    2012-01-01

    The structural, energetic and magnetic properties of Ru nanoparticles deposited on pristine and defective graphene have been thoroughly studied by first-principles based calculations. The calculated binding energy of a Ru 13 nanoparticle on a single

  15. Quantum Well States in Fe/Nb(001) Multilayers: First Principles Study

    National Research Council Canada - National Science Library

    Sliukia, Nitya N; Sen, A; Prasad, R

    2007-01-01

    A first principle study to understand the phenomena of interlayer exchange coupling in Fe/Nb multilayers using the linearized-muffin-tin-orbitals method within the generalized gradient approximation was performed...

  16. Investigating the Thermochemical Response of Avcoat TPS from First Principles for Comparison with EFT-1 Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of our work is to develop improved thermal response models of the AVCOAT thermal protection system (TPS) from first principles, and to validate the...

  17. First-principles investigation of the electronic states at perovskite and pyrite hetero-interfaces

    KAUST Repository

    Nazir, Safdar

    2012-09-01

    Oxide heterostructures are attracting huge interest in recent years due to the special functionalities of quasi two-dimensional quantum gases. In this thesis, the electronic states at the interface between perovskite oxides and pyrite compounds have been studied by first-principles calculations based on density functional theory. Optimization of the atomic positions are taken into account, which is considered very important at interfaces, as observed in the case of LaAlO3/SrTiO3. The creation of metallic states at the interfaces thus is explained in terms of charge transfer between the transition metal and oxygen atoms near the interface. It is observed that with typical thicknesses of at least 10-12 °A the gases still extend considerably in the third dimension, which essentially determines the magnitude of quantum mechanical effects. To overcome this problem, we propose incorporation of highly electronegative cations (such as Ag) in the oxides. A fundamental interest is also the thermodynamic stability of the interfaces due to the possibility of atomic intermixing in the interface region. Therefore, different cation intermixed configurations are taken into account for the interfaces aiming at the energetically stable state. The effect of O vacancies is also discussed for both polar and non-polar heterostructures. The interface metallicity is enhanced for the polar system with the creation of O vacancies, while the clean interface at the non-polar heterostructure exhibits an insulating state and becomes metallic in presence of O vacancy. The O vacancy formation energies are calculated and explained in terms of the increasing electronegativity and effective volume of A the side cation. Along with these, the electronic and magnetic properties of an interface between the ferromagnetic metal CoS2 and the non-magnetic semiconductor FeS2 is investigated. We find that this contact shows a metallic character. The CoS2 stays quasi half metallic at the interface, while the

  18. First-principles study of direct and narrow band gap semiconducting β-CuGaO2

    International Nuclear Information System (INIS)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-01-01

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. The optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment. (paper)

  19. Thermodynamic assessment of the Sn–Sr system supported by first-principles calculations

    International Nuclear Information System (INIS)

    Zhao, Jingrui; Du, Yong; Zhang, Lijun; Wang, Aijun; Zhou, Liangcai; Zhao, Dongdong; Liang, Jianlie

    2012-01-01

    Highlights: ► All the literature data of Sn–Sr system is critically reviewed. ► First-principles calculation of enthalpy of formation is carried out for each compound. ► Thermodynamic parameters for Sn–Sr system are obtained by CALPHAD method. ► A hybrid approach of CALPHAD and first-principles calculations is recommended. - Abstract: A hybrid approach of CALPHAD and first-principles calculations was employed to perform a thermodynamic modeling of the Sn–Sr system. The experimental phase diagram and thermodynamic data available in the literature were critically reviewed. The enthalpies of formation for the 6 stoichiometric compounds (i.e. Sr 2 Sn, Sr 5 Sn 3 , SrSn, Sr 3 Sn 5 , SrSn 3 and SrSn 4 ) at 0 K were computed by means of first-principles calculations. These data were used as the experimental values in the optimization module PARROT in the subsequent CALPHAD assessment to provide thermodynamic parameters with sound physical meaning. A set of self-consistent thermodynamic parameters was finally obtained by considering reliable literature data and the first-principles computed results. Comprehensive comparisons between the calculated and measured quantities indicate that all the reliable experimental information can be satisfactorily accounted for by the present thermodynamic description.

  20. First principles, thermal stability and thermodynamic assessment of the binary Ni-W system

    Energy Technology Data Exchange (ETDEWEB)

    Isomaeki, Iikka; Haemaelaeinen, Marko; Gasik, Michael [Aalto Univ., Espoo (Finland). School of Chemical Engineering; Braga, Maria H. [Porto Univ. (Portugal). CEMUC, Physics Engineering Dept.

    2017-12-15

    The Ni-W binary system was assessed using critically evaluated experimental data with assistance from first principles analysis and the CALPHAD method. The solution phases (liquid, fcc-A1 and bcc-A2) were modeled using the substitutional regular solution model. The recently discovered Ni{sub 8}W metastable phase was evaluated as Fe{sub 16}C{sub 2}- like martensite with three sublattices, and shown to be possibly stable according to first principles calculations. Ni{sub 8}W was also modeled as an interstitial compound, but the model is not good because the solubility of tungsten in nickel is very low, especially at low temperatures. There is no experimental evidence for such low solubility. The other binary compounds Ni{sub 4}W and Ni{sub 3}W were assessed as stoichiometric ones. Compared independent experimental and first principles data agree well with the calculated phase diagram using updated thermodynamic parameters.

  1. Temperature-dependent dielectric function of germanium in the UV–vis spectral range: A first-principles study

    International Nuclear Information System (INIS)

    Yang, J.Y.; Liu, L.H.; Tan, J.Y.

    2014-01-01

    The study of temperature dependence of thermophysical parameter dielectric function is key to understanding thermal radiative transfer in high-temperature environments. Limited by self-radiation and thermal oxidation, however, it is difficult to directly measure the high-temperature dielectric function of solids with present experimental technologies. In this work, we implement two first-principles methods, the ab initio molecular dynamics (AIMD) and density functional perturbation theory (DFPT), to study the temperature dependence of dielectric function of germanium (Ge) in the UV–vis spectral range in order to provide data of high-temperature dielectric function for radiative transfer study in high-temperature environments. Both the two methods successfully predict the temperature dependence of dielectric function of Ge. Moreover, the good agreement between the calculated results of the AIMD approach and experimental data at 825 K enables us to predict the high-temperature dielectric function of Ge with the AIMD method in the UV–vis spectral range. - Highlights: • The temperature dependence of dielectric function of germanium (Ge) is investigated with two first-principles methods. • The temperature effect on dielectric function of Ge is discussed. • The high-temperature dielectric function of Ge is predicted

  2. First-principles modeling of localized d states with the GW@LDA+U approach

    Science.gov (United States)

    Jiang, Hong; Gomez-Abal, Ricardo I.; Rinke, Patrick; Scheffler, Matthias

    2010-07-01

    First-principles modeling of systems with localized d states is currently a great challenge in condensed-matter physics. Density-functional theory in the standard local-density approximation (LDA) proves to be problematic. This can be partly overcome by including local Hubbard U corrections (LDA+U) but itinerant states are still treated on the LDA level. Many-body perturbation theory in the GW approach offers both a quasiparticle perspective (appropriate for itinerant states) and an exact treatment of exchange (appropriate for localized states), and is therefore promising for these systems. LDA+U has previously been viewed as an approximate GW scheme. We present here a derivation that is simpler and more general, starting from the static Coulomb-hole and screened exchange approximation to the GW self-energy. Following our previous work for f -electron systems [H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 102, 126403 (2009)10.1103/PhysRevLett.102.126403] we conduct a systematic investigation of the GW method based on LDA+U(GW@LDA+U) , as implemented in our recently developed all-electron GW code FHI-gap (Green’s function with augmented plane waves) for a series of prototypical d -electron systems: (1) ScN with empty d states, (2) ZnS with semicore d states, and (3) late transition-metal oxides (MnO, FeO, CoO, and NiO) with partially occupied d states. We show that for ZnS and ScN, the GW band gaps only weakly depend on U but for the other transition-metal oxides the dependence on U is as strong as in LDA+U . These different trends can be understood in terms of changes in the hybridization and screening. Our work demonstrates that GW@LDA+U with “physical” values of U provides a balanced and accurate description of both localized and itinerant states.

  3. First-principles study of electron transport through monatomic Al and Na wires

    DEFF Research Database (Denmark)

    Kobayashi, Nobuhiko; Brandbyge, Mads; Tsukada, Masaru

    2000-01-01

    We present first-principles calculations of electron transport, in particular, the conduction channels of monatomic Al and Na atom wires bridged between metallic jellium electrodes. The electronic structures are calculated by the first-principles recursion-transfer matrix method, and the conduction...... channels are investigated using the eigenchannel decomposition (ECD) of the conductance, the local density of states (LDOS), and the current density. The ECD is different from the conventional decomposition of atomic orbitals, and the study of decomposed electronic structures is shown to be effective...

  4. Using continuous time stochastic modelling and nonparametric statistics to improve the quality of first principles models

    DEFF Research Database (Denmark)

    A methodology is presented that combines modelling based on first principles and data based modelling into a modelling cycle that facilitates fast decision-making based on statistical methods. A strong feature of this methodology is that given a first principles model along with process data......, the corresponding modelling cycle model of the given system for a given purpose. A computer-aided tool, which integrates the elements of the modelling cycle, is also presented, and an example is given of modelling a fed-batch bioreactor....

  5. A first-principles study of short range order in Cu-Zn

    International Nuclear Information System (INIS)

    Slutter, M.; Turchi, P.E.A.; Johnson, D.D.; Nicholson, D.M.; Stocks, G.M.; Pinski, F.J.

    1990-01-01

    Recently, measurements of short-range order (SRO) diffuse neutron scattering intensity have been performed on quenched Cu-Zn alloys with 22.4 to 31.1 atomic percent (a/o) Zn, and pair interactions were obtained by inverse Monte Carlo simulation. These results are compared to SRO intensities and effective pair interactions obtained from first-principles electronic structure calculations. The theoretical SRO intensities were calculated with the cluster variation method (CVM) in the tetrahedron-octahedron approximation with first-principles pain interactions as input. More generally, phase stability in the Cu-Zn alloy system is discussed, using ab-initio energetic properties

  6. Thermodynamic modeling of the Sc-Zn system coupled with first-principles calculation

    Directory of Open Access Journals (Sweden)

    Tang C.

    2012-01-01

    Full Text Available The Sc-Zn system has been critically reviewed and assessed by means of CALPHAD (CALculation of PHAse Diagram approach. By means of first-principles calculation, the enthalpies of formation at 0 K for the ScZn, ScZn2, Sc17Zn58, Sc3Zn17 and ScZn12 have been computed with the desire to assist thermodynamic modeling. A set of self-consistent thermodynamic parameters for the Sc-Zn system is then obtained. The calculated phase diagram and thermodynamic properties agree well with the experimental data and first-principles calculations, respectively.

  7. Accelerating the discovery of hidden two-dimensional magnets using machine learning and first principle calculations

    Science.gov (United States)

    Miyazato, Itsuki; Tanaka, Yuzuru; Takahashi, Keisuke

    2018-02-01

    Two-dimensional (2D) magnets are explored in terms of data science and first principle calculations. Machine learning determines four descriptors for predicting the magnetic moments of 2D materials within reported 216 2D materials data. With the trained machine, 254 2D materials are predicted to have high magnetic moments. First principle calculations are performed to evaluate the predicted 254 2D materials where eight undiscovered stable 2D materials with high magnetic moments are revealed. The approach taken in this work indicates that undiscovered materials can be surfaced by utilizing data science and materials data, leading to an innovative way of discovering hidden materials.

  8. Forecast of Piezoelectric Properties of Crystalline Materials from First Principles Calculation

    International Nuclear Information System (INIS)

    Zheng Yanqing; Shi Erwei; Chen Jianjun; Zhang Tao; Song Lixin

    2006-01-01

    In this paper, forecast of piezoelectric tensors are presented. Piezo crystals including quartz, quartz-like crystals, known and novel crystals of langasite-type structure are treated with density-functional perturb theory (DFPT) using plane-wave pseudopotentials method, within the local density approximation (LDA) to the exchange-correlation functional. Compared with experimental results, the ab initio calculation results have quantitative or semi-quantitative accuracy. It is shown that first principles calculation opens a door to the search and design of new piezoelectric material. Further application of first principles calculation to forecast the whole piezoelectric properties are also discussed

  9. Research on regularized mean-variance portfolio selection strategy with modified Roy safety-first principle.

    Science.gov (United States)

    Atta Mills, Ebenezer Fiifi Emire; Yan, Dawen; Yu, Bo; Wei, Xinyuan

    2016-01-01

    We propose a consolidated risk measure based on variance and the safety-first principle in a mean-risk portfolio optimization framework. The safety-first principle to financial portfolio selection strategy is modified and improved. Our proposed models are subjected to norm regularization to seek near-optimal stable and sparse portfolios. We compare the cumulative wealth of our preferred proposed model to a benchmark, S&P 500 index for the same period. Our proposed portfolio strategies have better out-of-sample performance than the selected alternative portfolio rules in literature and control the downside risk of the portfolio returns.

  10. First Principles Calculations for X-ray Resonant Spectra and Elastic Properties

    International Nuclear Information System (INIS)

    Yongbin Lee

    2006-01-01

    In this thesis, we discuss applications of first principles methods to x-ray resonant spectra and elastic properties calculation. We start with brief reviews about theoretical background of first principles methods, such as density functional theory, local density approximation (LDA), LDA+U, and the linear augmented plane wave (LAPW) method to solve Kohn-Sham equations. After that we discuss x-ray resonant scattering (XRMS), x-ray magnetic circular dichroism (XMCD) and the branching problem in the heavy rare earths Ledges. In the last chapter we discuss the elastic properties of the second hardest material AlMgB 14

  11. Tunable redox potential of nonmetal doped monolayer MoS{sub 2}: First principle calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S. [Center for Coordination Bond Engineering, China Jiliang University (China); Li, C., E-mail: canli1983@gmail.com [Center for Coordination Bond Engineering, China Jiliang University (China); School of Materials Science and Engineering, China Jiliang University (China); Zhao, Y.F.; Gong, Y.Y.; Niu, L.Y.; Liu, X.J. [Center for Coordination Bond Engineering, China Jiliang University (China)

    2016-10-30

    Graphical abstract: Both E{sub CBM} and E{sub VBM} values are affected by the chemical valences of dopants, which also affect the redox potentials of specimens. Compared to the pristine monolayer MoS{sub 2}, the nonmetal ions with odd chemical valences [monovalent (H{sup +}, F{sup –}, Cl{sup –}, Br{sup –} and I{sup –}), trivalent (N{sup 3–}, P{sup 3–} and As{sup 3–}) and pentavalence (B{sup 5–})] enhance the oxidation potential and reduce the reduction potential of specimens, but the nonmetal ions with even chemical valences [divalent (O{sup 2–}, Se{sup 2–} and Te{sup 2–}) and quadravalent (C{sup 4–} and Si{sup 4–})] have the opposite effects on the redox potentials. Display Omitted - Highlights: • The newly formed chemical bonds affect the electronic distribution around the dopants and the nearby Mo atoms. • Compared to pristine monolayer MoS{sub 2}, the nonmetal ions with odd (even) chemical valences enhance (reduce) the oxidation potential and reduce (enhance) the reduction potential of specimens. • The lone pair electrons in nonmetal ions with odd chemical valences extra interact with the Mo ions which reduces the E{sub CBM} and E{sub VBM} values of specimens. - Abstract: Doping is an effective method to alter the electronic behavior of materials by forming new chemical bonds and bringing bond relaxation. With this aid of first principle calculations, the crystal configuration and electronic properties of monolayer MoS{sub 2} have been modulated by the nonmetal (NM) dopants (H, B, C, N, O, F, Si, P, Cl, As, Se, Br, Te and I), and the thermodynamic stability depending on the preparation conditions (Mo-rich and S-rich conditions) were discussed. Results shown that, the NM dopants substituted preferentially for S under Mo-rich condition, the electronic distribution around the dopants and the nearby Mo atoms are changed by the new formed Mo-NM bonds and bands relaxation. Compared to pristine monolayer MoS{sub 2}, the NM ions with odd

  12. Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations

    International Nuclear Information System (INIS)

    Bennett, Joseph W.; Rabe, Karin M.

    2012-01-01

    In this concept paper, the development of strategies for the integration of first-principles methods with crystallographic database mining for the discovery and design of novel ferroelectric materials is discussed, drawing on the results and experience derived from exploratory investigations on three different systems: (1) the double perovskite Sr(Sb 1/2 Mn 1/2 )O 3 as a candidate semiconducting ferroelectric; (2) polar derivatives of schafarzikite MSb 2 O 4 ; and (3) ferroelectric semiconductors with formula M 2 P 2 (S,Se) 6 . A variety of avenues for further research and investigation are suggested, including automated structure type classification, low-symmetry improper ferroelectrics, and high-throughput first-principles searches for additional representatives of structural families with desirable functional properties. - Graphical abstract: Integration of first-principles methods with crystallographic database mining, for the discovery and design of novel ferroelectric materials, could potentially lead to new classes of multifunctional materials. Highlights: ► Integration of first-principles methods and database mining. ► Minor structural families with desirable functional properties. ► Survey of polar entries in the Inorganic Crystal Structural Database.

  13. First-principles study of point-defect production in Si and SiC

    International Nuclear Information System (INIS)

    Windl, W.; Lenosky, T.J.; Kress, J.D.; Voter, A.F.

    1998-03-01

    The authors have calculated the displacement-threshold energy E(d) for point-defect production in Si and SiC using empirical potentials, tight-binding, and first-principles methods. They show that -- depending on the knock-on direction -- 64-atom simulation cells can be sufficient to allow a nearly finite-size-effect-free calculation, thus making the use of first-principles methods possible. They use molecular dynamics (MD) techniques and propose the use of a sudden approximation which agrees reasonably well with the MD results for selected directions and which allows estimates of Ed without employing an MD simulation and the use of computationally demanding first-principles methods. Comparing the results with experiment, the authors find the full self-consistent first-principles method in conjunction with the sudden approximation to be a reliable and easy method to predict E d . Furthermore, they have examined the temperature dependence of E d for C in SiC and found it to be negligible

  14. Electronic and optical properties of new multifunctional materials via half-substituted hematite: First principles calculations

    KAUST Repository

    Yang, Hua; Mi, Wenbo; Bai, Haili; Cheng, Yingchun

    2012-01-01

    Electronic structure and optical properties of α-FeMO 3 systems (M = Sc, Ti, V, Cr, Cu, Cd or In) have been investigated using first principles calculations. All of the FeMO 3 systems have a large net magnetic moment. The ground state of pure α-Fe 2

  15. Origin of current-induced forces in an atomic gold wire: A first-principles study

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Stokbro, Kurt; Taylor, Jeremy Philip

    2003-01-01

    We address the microscopic origin of the current-induced forces by analyzing results of first principles density functional calculations of atomic gold wires connected to two gold electrodes with different electrochemical potentials. We find that current induced forces are closely related...

  16. First-principles and classical molecular dynamics study of threshold displacement energy in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Vladimirov, P.V. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Borodin, V.A., E-mail: Borodin_VA@nrcki.ru [National Research Center “Kurchatov Institute”, 123182 Moscow (Russian Federation); NRNU MEPhI, 115409 Moscow (Russian Federation)

    2017-02-15

    Highlights: • Beryllium is a functional material of future fusion reactors. • The threshold displacement energy by fast particles is studied. • Classical and first principles simulations are used. - Abstract: Beryllium selected as a neutron multiplier material for the tritium breeding blanket of fusion reactor should withstand high doses of fast neutron irradiation. The damage produced by irradiation is usually evaluated assuming that the number of atomic displacements to the threshold displacement energy, E{sub d}, which is considered as an intrinsic material parameter. In this work the value of E{sub d} for hcp beryllium is estimated simultaneously from classical and first-principles molecular dynamics simulations. Quite similar quantitative pictures of defect production are observed in both simulation types, though the predicted displacement threshold values seem to be approximately two times higher in the first-principles approach. We expect that, after more detailed first-principles investigations, this approach can be used for scaling the damage prediction predictions by classical molecular dynamics, opening a way for more consistent calculations of displacement damage in materials.

  17. First-principles study of the interaction and charge transfer between graphene and metals

    NARCIS (Netherlands)

    Khomyakov, Petr; Giovannetti, G.; Rusu, P.C.; Brocks, G.; van den Brink, J.; Kelly, Paul J.

    2009-01-01

    Measuring the transport of electrons through a graphene sheet necessarily involves contacting it with metal electrodes. We study the adsorption of graphene on metal substrates using first-principles calculations at the level of density-functional theory. The bonding of graphene to Al, Ag, Cu, Au,

  18. First-Principles Petascale Simulations for Predicting Deflagration to Detonation Transition in Hydrogen-Oxygen Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Khokhlov, Alexei [Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics. Enrico Fermi Inst.; Austin, Joanna [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility; Bacon, C. [Univ. of Illinois, Urbana, IL (United States). Dept. of Aerospace Engineering

    2015-03-02

    Hydrogen has emerged as an important fuel across a range of industries as a means of achieving energy independence and to reduce emissions. DDT and the resulting detonation waves in hydrogen-oxygen can have especially catastrophic consequences in a variety of industrial and energy producing settings related to hydrogen. First-principles numerical simulations of flame acceleration and DDT are required for an in-depth understanding of the phenomena and facilitating design of safe hydrogen systems. The goals of this project were (1) to develop first-principles petascale reactive flow Navier-Stokes simulation code for predicting gaseous high-speed combustion and detonation (HSCD) phenomena and (2) demonstrate feasibility of first-principles simulations of rapid flame acceleration and deflagration-to-detonation transition (DDT) in stoichiometric hydrogen-oxygen mixture (2H2 + O2). The goals of the project have been accomplished. We have developed a novel numerical simulation code, named HSCD, for performing first-principles direct numerical simulations of high-speed hydrogen combustion. We carried out a series of validating numerical simulations of inert and reactive shock reflection experiments in shock tubes. We then performed a pilot numerical simulation of flame acceleration in a long pipe. The simulation showed the transition of the rapidly accelerating flame into a detonation. The DDT simulations were performed using BG/Q Mira at the Argonne National Laboratory, currently the fourth fastest super-computer in the world.

  19. First principles studies of extrinsic and intrinsic defects in boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-10-01

    Full Text Available -1 Journal of Nanoscience and Nanotechnology 2012/ Vol. 12, 7807?7814 First Principles Studies of Extrinsic and Intrinsic Defects in Boron Nitride Nanotubes M. G. Mashapa 1, 2, ?, N. Chetty1, and S. Sinha Ray2, 3 1Physics Department, University...

  20. The Interface between Gd and Monolayer MoS2: A First-Principles Study

    KAUST Repository

    Zhang, Xuejing; Mi, Wenbo; Wang, Xiaocha; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    We analyze the electronic structure of interfaces between two-, four- and six-layer Gd(0001) and monolayer MoS2 by first-principles calculations. Strong chemical bonds shift the Fermi energy of MoS2 upwards into the conduction band. At the surface

  1. First-principles study of high-conductance DNA sequencing with carbon nanotube electrodes

    KAUST Repository

    Chen, X.; Rungger, I.; Pemmaraju, C. D.; Schwingenschlö gl, Udo; Sanvito, S.

    2012-01-01

    such electrodes by using first-principles quantum transport theory. In particular, we consider the extreme case where the separation between the electrodes is the smallest possible that still allows the DNA translocation. The benzene-like ring at the end cap

  2. Valley Hall effect in disordered monolayer MoS2 from first principles

    DEFF Research Database (Denmark)

    Olsen, Thomas; Souza, Ivo

    2015-01-01

    ("unfolding") the Berry curvature from the folded Brillouin zone of the disordered supercell onto the normal Brillouin zone of the pristine crystal, and then averaging over several realizations of disorder. We use this scheme to study from first principles the effect of sulfur vacancies on the valley Hall...

  3. A first-principles model for the freezing step in ice cream manufacture

    NARCIS (Netherlands)

    Dorneanu, B.; Bildea, C.S.; Girievink, J.; Bongers, P.M.M.; Jezowski, J.; Thullie, J.

    2009-01-01

    This contribution deals with the development of a first-principles model for ice cream formation in the freezing unit to support product design and plant operation. Conservation equations for the mass, energy and momentum, considering axial flow assumptions are taken into account. The distributed

  4. Interplay of oxygen octahedral rotations and electronic instabilities in strontium ruthenate Ruddlesden-Poppers from first principles

    Science.gov (United States)

    Voss, Johannes; Fennie, Craig J.

    2011-03-01

    The Ruddlesden-Popper ruthenates Sr n+1 Ru n O3 n + 1 display a broad range of electronic phases including p -wave superconductivity, electronic nematicity, and ferromagnetism. Elucidating the role of the number of perovskite blocks, n , in the realization of these differently ordered electronic states remains a challenge. Additionally dramatic experimental advances now enable the atomic scale growth of these complex oxide thin films on a variety of substrates coherently, allowing for the application of tunable epitaxial strain and subsequently the ability to control structural distortions such as oxygen octahedral rotations. Here we investigate from first principles the effect of oxygen octahedral rotations on the electronic structure of Sr 2 Ru O4 and Sr 3 Ru 2 O7 . We discuss possible implications for the physics of the bulk systems and point towards new effects in thin films.

  5. Ultrafast optically induced ferromagnetic/anti-ferromagnetic phase transition in GdTiO3 from first principles

    Science.gov (United States)

    Khalsa, Guru; Benedek, Nicole A.

    2018-03-01

    Epitaxial strain and chemical substitution have been the workhorses of functional materials design. These static techniques have shown immense success in controlling properties in complex oxides through the tuning of subtle structural distortions. Recently, an approach based on the excitation of an infrared active phonon with intense midinfrared light has created an opportunity for dynamical control of structure through special nonlinear coupling to Raman phonons. We use first-principles techniques to show that this approach can dynamically induce a magnetic phase transition from the ferromagnetic ground state to a hidden antiferromagnetic phase in the rare earth titanate GdTiO3 for realistic experimental parameters. We show that a combination of a Jahn-Teller distortion, Gd displacement, and infrared phonon motion dominate this phase transition with little effect from the octahedral rotations, contrary to conventional wisdom.

  6. Modeling of Semiconductors and Correlated Oxides with Point Defects by First Principles Methods

    KAUST Repository

    Wang, Hao

    2014-06-15

    Point defects in silicon, vanadium dioxide, and doped ceria are investigated by density functional theory. Defects involving vacancies and interstitial oxygen and carbon in silicon are after formed in outer space and significantly affect device performances. The screened hybrid functional by Heyd-Scuseria-Ernzerhof is used to calculate formation energies, binding energies, and electronic structures of the defective systems because standard density functional theory underestimates the bang gap of silicon. The results indicate for the A-center a −2 charge state. Tin is proposed to be an effective dopant to suppress the formation of A-centers. For the total energy difference between the A- and B-type carbon related G-centers we find close agreement with the experiment. The results indicate that the C-type G-center is more stable than both the A- and B-types. The electronic structures of the monoclinic and rutile phases of vanadium dioxide are also studied using the Heyd-Scuseria-Ernzerhof functional. The ground states of the pure phases obtained by calculations including spin polarization disagree with the experimental observations that the monoclinic phase should not be magnetic, the rutile phase should be metallic, and the monoclinic phase should have a lower total energy than the rutile phase. By tuning the Hartree-Fock fraction α to 10% the agreement with experiments is improved in terms of band gaps and relative energies of the phases. A calculation scheme is proposed to simulate the relationship between the transition temperature of the metal-insulator transition and the dopant concentration in tungsten doped vanadium dioxide. We achieve good agreement with the experimental situation. 18.75% and 25% yttrium, lanthanum, praseodymium, samarium, and gadolinium doped ceria supercells generated by the special quasirandom structure approach are employed to investigate the impact of doping on the O diffusion. The experimental behavior of the conductivity for the different dopants is understood in terms of the calculated lattice constants and the O migration barriers obtained from nudged elastic band calculations.

  7. Modeling of Semiconductors and Correlated Oxides with Point Defects by First Principles Methods

    KAUST Repository

    Wang, Hao

    2014-01-01

    Point defects in silicon, vanadium dioxide, and doped ceria are investigated by density functional theory. Defects involving vacancies and interstitial oxygen and carbon in silicon are after formed in outer space and significantly affect device performances. The screened hybrid functional by Heyd-Scuseria-Ernzerhof is used to calculate formation energies, binding energies, and electronic structures of the defective systems because standard density functional theory underestimates the bang gap of silicon. The results indicate for the A-center a −2 charge state. Tin is proposed to be an effective dopant to suppress the formation of A-centers. For the total energy difference between the A- and B-type carbon related G-centers we find close agreement with the experiment. The results indicate that the C-type G-center is more stable than both the A- and B-types. The electronic structures of the monoclinic and rutile phases of vanadium dioxide are also studied using the Heyd-Scuseria-Ernzerhof functional. The ground states of the pure phases obtained by calculations including spin polarization disagree with the experimental observations that the monoclinic phase should not be magnetic, the rutile phase should be metallic, and the monoclinic phase should have a lower total energy than the rutile phase. By tuning the Hartree-Fock fraction α to 10% the agreement with experiments is improved in terms of band gaps and relative energies of the phases. A calculation scheme is proposed to simulate the relationship between the transition temperature of the metal-insulator transition and the dopant concentration in tungsten doped vanadium dioxide. We achieve good agreement with the experimental situation. 18.75% and 25% yttrium, lanthanum, praseodymium, samarium, and gadolinium doped ceria supercells generated by the special quasirandom structure approach are employed to investigate the impact of doping on the O diffusion. The experimental behavior of the conductivity for the different dopants is understood in terms of the calculated lattice constants and the O migration barriers obtained from nudged elastic band calculations.

  8. First Principles Studies of Perovskites for Intermediate Temperature Solid Oxide Fuel Cell Cathodes

    KAUST Repository

    Salawu, Omotayo Akande

    2017-01-01

    O5.5, the difference in formation energy being hardly modified by antisite defects. Finally, having established that the O vacancy formation energy is significantly lower in PrBaCo2O5.5 than in GdBaCo2O5.5, we study the O Frenkel energy and migration

  9. Issues in first-principles calculations for defects in semiconductors and oxides

    International Nuclear Information System (INIS)

    Nieminen, Risto M

    2009-01-01

    Recent advances in density-functional theory (DFT) calculations of defect electronic properties in semiconductors and insulators are discussed. In particular, two issues are addressed: the band-gap underestimation of standard density-functional methods with its harmful consequences for the positioning of defect-related levels in the band-gap region, and the slow convergence of calculated defect properties when the periodic supercell approach is used. Systematic remedies for both of these deficiencies are now available, and are being implemented in the context of popular DFT codes. This should help in improving the parameter-free accuracy and thus the predictive power of the methods to enable unambiguous explanation of defect-related experimental observations. These include not only the various fingerprint spectroscopies for defects but also their thermochemistry and dynamics, i.e. the temperature-dependent concentration and diffusivities of defects under various doping conditions and in different stoichiometries

  10. Strontium ruthenate–anatase titanium dioxide heterojunctions from first-principles: Electronic structure, spin, and interface dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, Naheed; Ertekin, Elif, E-mail: ertekin@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W Green Street, Urbana, Illinois 61801 (United States)

    2016-07-21

    The epitaxial integration of functional oxides with wide band gap semiconductors offers the possibility of new material systems for electronics and energy conversion applications. We use first principles to consider an epitaxial interface between the correlated metal oxide SrRuO{sub 3} and the wide band gap semiconductor TiO{sub 2}, and assess energy level alignment, interfacial chemistry, and interfacial dipole formation. Due to the ferromagnetic, half-metallic character of SrRuO{sub 3}, according to which only one spin is present at the Fermi level, we demonstrate the existence of a spin dependent band alignment across the interface. For two different terminations of SrRuO{sub 3}, the interface is found to be rectifying with a Schottky barrier of ≈1.3–1.6 eV, in good agreement with experiment. In the minority spin, SrRuO{sub 3} exhibits a Schottky barrier alignment with TiO{sub 2} and our calculated Schottky barrier height is in excellent agreement with previous experimental measurements. For majority spin carriers, we find that SrRuO{sub 3} recovers its exchange splitting gap and bulk-like properties within a few monolayers of the interface. These results demonstrate a possible approach to achieve spin-dependent transport across a heteroepitaxial interface between a functional oxide material and a conventional wide band gap semiconductor.

  11. Absolute Hydration Free Energy of Proton from First Principles Electronic Structure Calculations

    International Nuclear Information System (INIS)

    Zhan, Chang-Guo; Dixon, David A.

    2001-01-01

    The absolute hydration free energy of the proton, DGhyd298(H+), is one of the fundamental quantities for the thermodynamics of aqueous systems. Its exact value remains unknown despite extensive experimental and computational efforts. We report a first-principles determination of DGhyd298(H+) by using the latest developments in electronic structure theory and massively parallel computers. DGhyd298(H+) is accurately predicted to be -262.4 kcal/mol based on high-level, first-principles solvation-included electronic structure calculations. The absolute hydration free energies of other cations can be obtained by using appropriate available thermodynamic data in combination with this value. The high accuracy of the predicted absolute hydration free energy of proton is confirmed by applying the same protocol to predict DGhyd298(Li+)

  12. First-principle optimal local pseudopotentials construction via optimized effective potential method

    International Nuclear Information System (INIS)

    Mi, Wenhui; Zhang, Shoutao; Wang, Yanchao; Ma, Yanming; Miao, Maosheng

    2016-01-01

    The local pseudopotential (LPP) is an important component of orbital-free density functional theory, a promising large-scale simulation method that can maintain information on a material’s electron state. The LPP is usually extracted from solid-state density functional theory calculations, thereby it is difficult to assess its transferability to cases involving very different chemical environments. Here, we reveal a fundamental relation between the first-principles norm-conserving pseudopotential (NCPP) and the LPP. On the basis of this relationship, we demonstrate that the LPP can be constructed optimally from the NCPP for a large number of elements using the optimized effective potential method. Specially, our method provides a unified scheme for constructing and assessing the LPP within the framework of first-principles pseudopotentials. Our practice reveals that the existence of a valid LPP with high transferability may strongly depend on the element.

  13. First-principles investigation of mechanical properties of silicene, germanene and stanene

    Science.gov (United States)

    Mortazavi, Bohayra; Rahaman, Obaidur; Makaremi, Meysam; Dianat, Arezoo; Cuniberti, Gianaurelio; Rabczuk, Timon

    2017-03-01

    Two-dimensional allotropes of group-IV substrates including silicene, germanene and stanene have recently attracted considerable attention in nanodevice fabrication industry. These materials involving the buckled structure have been experimentally fabricated lately. In this study, first-principles density functional theory calculations were utilized to investigate the mechanical properties of single-layer and free-standing silicene, germanene and stanene. Uniaxial tensile and compressive simulations were carried out to probe and compare stress-strain properties; such as the Young's modulus, Poisson's ratio and ultimate strength. We evaluated the chirality effect on the mechanical response and bond structure of the 2D substrates. Our first-principles simulations suggest that in all studied samples application of uniaxial loading can alter the electronic nature of the buckled structures into the metallic character. Our investigation provides a general but also useful viewpoint with respect to the mechanical properties of silicene, germanene and stanene.

  14. Negative thermal expansion in TiF{sub 3} from the first-principles prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei [International Laboratory for Quantum Functional Materials of Henan, Zhengzhou University, Zhengzhou 450001 (China); Yuan, Peng-Fei; Wang, Fei; Sun, Qiang; Liang, Er-Jun [International Laboratory for Quantum Functional Materials of Henan, Zhengzhou University, Zhengzhou 450001 (China); Center for Clean Energy and Quantum Structures, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China); Jia, Yu, E-mail: jiayu@zzu.edu.cn [International Laboratory for Quantum Functional Materials of Henan, Zhengzhou University, Zhengzhou 450001 (China); Center for Clean Energy and Quantum Structures, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China); Guo, Zheng-Xiao, E-mail: z.x.guo@ucl.ac.uk [Deparment of Chemistry, University College London, London WC1H 0AJ (United Kingdom)

    2014-08-01

    Highlights: • Rhombohedral TiF{sub 3} as a new NTE material is predicted from first-principles calculation. • The NTE mechanism is proposed based on the analysis of vibrational properties. • The rotation coupling of TiF{sub 6} octahedra at low frequencies is most responsible for NTE. - Abstract: In negative thermal expansion (NTE) materials, rhombohedral TiF{sub 3} as a new member is predicted from first-principles calculation. The NTE behavior of rhombohedral TiF{sub 3} occurs at low temperatures. In our work, the NTE mechanism is elaborated in accordance with vibrational modes. It is confirmed that the rigid unit mode (RUM) of internal TiF{sub 6} octahedra in low-frequency optical range is most responsible for the NTE properties.

  15. A first principle study of band structure of III-nitride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rashid [Centre for High Energy Physics University of the Punjab, Lahore-54590 (Pakistan)]. E-mail: rasofi@hotmail.com; Akbarzadeh, H. [Department of Physics, Isfahan University of Technology, 841546 Isfahan (Iran, Islamic Republic of); Fazal-e-Aleem [Centre for High Energy Physics University of the Punjab, Lahore-54590 (Pakistan)

    2005-12-15

    The band structure of both phases, zinc-blende and wurtzite, of aluminum nitride, indium nitride and gallium nitride has been studied using computational methods. The study has been done using first principle full-potential linearized augmented plane wave (FP-LAPW) method, within the framework of density functional theory (DFT). For the exchange correlation potential, generalized gradient approximation (GGA) and an alternative form of GGA proposed by Engel and Vosko (GGA-EV) have been used. Results obtained for band structure of these compounds have been compared with experimental results as well as other first principle computations. Our results show a significant improvement over other theoretical work and are closer to the experimental data.

  16. First-principles momentum-dependent local ansatz wavefunction and momentum distribution function bands of iron

    International Nuclear Information System (INIS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-01-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi–Dirac function for the d electrons with e g symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data. (author)

  17. First-Principles Momentum-Dependent Local Ansatz Wavefunction and Momentum Distribution Function Bands of Iron

    Science.gov (United States)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-04-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi-Dirac function for the d electrons with eg symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data.

  18. Dispersion correction derived from first principles for density functional theory and Hartree-Fock theory.

    Science.gov (United States)

    Guidez, Emilie B; Gordon, Mark S

    2015-03-12

    The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost.

  19. Defects in boron carbide: First-principles calculations and CALPHAD modeling

    International Nuclear Information System (INIS)

    Saengdeejing, Arkapol; Saal, James E.; Manga, Venkateswara Rao; Liu Zikui

    2012-01-01

    The energetics of defects in B 4+x C boron carbide and β-boron are studied through first-principles calculations, the supercell phonon approach and the Debye–Grüneisen model. It is found that suitable sublattice models for β-boron and B 4+x C are B 101 (B,C) 4 and B 11 (B,C) (B,C,Va) (B,Va) (B,C,Va), respectively. The thermodynamic properties of B 4+x C, β-boron, liquid and graphite are modeled using the CALPHAD approach based on the thermochemical data from first-principles calculations and experimental phase equilibrium data in the literature. The concentrations of various defects are then predicted as a function of carbon composition and temperature.

  20. Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method

    International Nuclear Information System (INIS)

    Wang, Hanfu; Jin, Hao; Chu, Weiguo; Guo, Yanjun

    2010-01-01

    The lattice dynamics and thermodynamic properties of Mg 2 Si and Mg 2 Ge are studied based on the first principles calculations. We obtain the phonon dispersion curves and phonon density of states spectra using the density functional perturbation theory with local density approximations. By employing the quasi-harmonic approximation, we calculate the temperature dependent Helmholtz free energy, bulk modulus, thermal expansion coefficient, specific heat, Debye temperature and overall Grueneisen coefficient. The results are in good agreement with available experimental data and previous theoretical studies. The thermal conductivities of both compounds are then estimated with the Slack's equation. By carefully choosing input parameters, especially the acoustic Debye temperature, we find that the calculated thermal conductivities agree fairly well with the experimental values above 80 K for both compounds. This demonstrates that the lattice thermal conductivity of simple cubic semiconductors may be estimated with satisfactory accuracy by combining the Slack's equation with the necessary thermodynamics parameters derived completely from the first principles calculations.

  1. Thermodynamics of the hexagonal close-packed iron-nitrogen system from first-principles

    DEFF Research Database (Denmark)

    Bakkedal, Morten Bjørn

    to hexagonal systems and a numerically tractable extended equation of state is developed to describe thermody-namic equilibrium properties at finite temperature.The model is applied to ε-Fe3N specifically. Through the versatility of the model, equi-librium lattice parameters, the bulk modulus, and the thermal......First-principles thermodynamic models are developed for the hexagonal close-packed ε-Fe-N system. The system can be considered as a hexagonal close-packed host lattice of iron atoms and with the nitrogen atoms residing on a sublattice formed by the octahedral interstices. The iron host lattice...... is assumed fixed.The models are developed entirely from first-principles calculations based on fundamen-tal quantum mechanical calculation through the density functional theory approach with the atomic numbers and crystal structures as the only input parameters. A complete thermody-namic description should...

  2. Ordered Phases in Cu2NiZn: A First-Principles Monte Carlo Study

    DEFF Research Database (Denmark)

    Simak, S.I.; Ruban, Andrei; Abrikosov, I.A.

    1998-01-01

    Monte Carlo simulations based on effective interactions obtained from first-principles calculations reveal the existence of three ordered phases in ternary Cu2NiZn: (i) "modified"-L1(0) (0-600 K), (ii) L1(2) (600-850 K), and (iii) L1(0) (850-1200 K). This is in contrast to the generally accepted...

  3. A first-principles linear response description of the spin Nernst effect

    OpenAIRE

    Wimmer, S.; Ködderitzsch, D.; Chadova, K.; Ebert, H.

    2013-01-01

    A first-principles description of the spin Nernst effect, denoting the occurrence of a transverse spin current due to a temperature gradient, is presented. The approach, based on an extension to the Kubo-Streda equation for spin transport, supplies in particular the formal basis for investigations of diluted as well as concentrated alloys. Results for corresponding applications to the alloy system Au-Cu give the intrinsic and extrinsic contributions to the relevant transport coefficients. Usi...

  4. First-principles Electronic Structure Calculations for Scintillation Phosphor Nuclear Detector Materials

    Science.gov (United States)

    Canning, Andrew

    2013-03-01

    Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

  5. First-principles investigations of solid solution strengthening in Al alloys

    OpenAIRE

    Ma, Duancheng

    2012-01-01

    Any material properties, in principle, can be reproduced or predicted by performing firstprinciples calculations. Nowadays, however, we are dealing with complex alloy compositions and processes. The complexities cannot be fully described by first-principles, because of the limited computational power. The primary objective of this study is to investigate an important engineering problem, solid solution strengthening, in a simplified manner. The simplified scheme should allow fast and reliable...

  6. First-Principles Calculation of Lithium Adsorption and Diffusion on Silicene

    International Nuclear Information System (INIS)

    Huang Juan; Chen Hong-Jin; Wu Mu-Sheng; Liu Gang; Ouyang Chu-Ying; Xu Bo

    2013-01-01

    The adsorption and diffusion of lithium on silicene are studied by using the first-principles method. It is found that the adsorption energy of Li adsorbing on silicene is significantly larger than that of Li adsorbing on graphene. With the increasing concentration of adsorbed Li atoms, the adsorption energy also increases. The diffusion barrier of Li on silicene is relatively low, which is insensitive to the concentration of adsorbed atoms

  7. Audio interfaces should be designed based on data visualisation first principles

    OpenAIRE

    Dewey, Christopher; Wakefield, Jonathan P.

    2016-01-01

    Audio mixing interfaces (AMIs) commonly conform to a small number of paradigms. These paradigms have\\ud significant shortcomings. Data visualisation first principles should be employed to consider alternatives. Existing AMI\\ud paradigms are discussed and concepts of image theory and elementary perceptual elements outlined. AMIs should be evaluated by usability experiments however performing these properly is time-consuming. There are many data visualisation options and combinations. Collabora...

  8. First-principles lattice-gas Hamiltonian revisited: O-Pd(100)

    OpenAIRE

    Kappus, Wolfgang

    2016-01-01

    The methodology of deriving an adatom lattice-gas Hamiltonian (LGH) from first principles (FP) calculations is revisited. Such LGH cluster expansions compute a large set of lateral pair-, trio-, quarto interactions by solving a set of linear equations modelling regular adatom configurations and their FP energies. The basic assumption of truncating interaction terms beyond fifth nearest neighbors does not hold when adatoms show longer range interactions, e.g. substrate mediated elastic interac...

  9. First-principles calculation of the magnetic properties of paramagnetic fcc iron

    International Nuclear Information System (INIS)

    Johnson, D.D.; Gyorffy, B.L.; Pinski, F.J.; Staunton, J.; Stocks, G.M.

    1985-01-01

    Using the disordered local moment picture of itinerant magnetism, we present calculations of the temperature and volume dependence of the magnetic moment and spin-spin correlations for fcc Fe in the paramagnetic state. These calculations are based on the parameter-free, first principles approach of local spin density functional theory and the coherent potential approximation is used to treat the disorder associated with the random orientation of the local moments

  10. First-principles-based study of transport properties of Fe thin films on Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Tomoya [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Kasai, Hideaki [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Nakanishi, Hiroshi [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Dino, Wilson Agerico [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Komori, Fumio [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8587 (Japan)

    2004-12-08

    We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties.

  11. First-principles-based study of transport properties of Fe thin films on Cu surfaces

    International Nuclear Information System (INIS)

    Kishi, Tomoya; Kasai, Hideaki; Nakanishi, Hiroshi; Dino, Wilson Agerico; Komori, Fumio

    2004-01-01

    We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties

  12. First principle study of structural, electronic and fermi surface properties of aluminum praseodymium

    Science.gov (United States)

    Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.

    2018-05-01

    We present a structural, Electronic and Fermi surface properties of Aluminum Praseodymium (AlPr) using First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The ground state properties along with electronic and Fermi surface properties are studied. It is found that AlPr is metallic and the bonding between Al and Pr is covalent.

  13. Dynamical coupling in Pb(Zr,Ti)O.sub.3./sub. solid solutions from first principles

    Czech Academy of Sciences Publication Activity Database

    Wang, D.; Weerasinghe, J.; Bellaiche, L.; Hlinka, Jiří

    2011-01-01

    Roč. 83, č. 2 (2011), "020301-1"-"020301-4" ISSN 1098-0121 R&D Projects: GA MŠk ME08109 Institutional research plan: CEZ:AV0Z10100520 Keywords : first-principles * ferroelectric * PZT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011 http://link.aps.org/doi/10.1103/PhysRevB.83.020301

  14. Thermal conductivities of phosphorene allotropes from first-principles calculations: a comparative study

    OpenAIRE

    Zhang, J.; Liu, H. J.; Cheng, L.; Wei, J.; Liang, J. H.; Fan, D. D.; Jiang, P. H.; Shi, J.

    2017-01-01

    Phosphorene has attracted tremendous interest recently due to its intriguing electronic properties. However, the thermal transport properties of phosphorene, especially for its allotropes, are still not well-understood. In this work, we calculate the thermal conductivities of five phosphorene allotropes ({\\alpha}-, \\b{eta}-, {\\gamma}-, {\\delta}- and {\\zeta}-phase) by using phonon Boltzmann transport theory combined with first-principles calculations. It is found that the {\\alpha}-phosphorene ...

  15. Anomalous doping effect in black phosphorene from first-principles calculations

    OpenAIRE

    Yu, Weiyang; Zhu, Zhili; Niu, Chun-Yao; Li, Chong; Cho, Jun-Hyung; Jia, Yu

    2014-01-01

    Using first-principles density functional theory calculations, we investigate the geometries, electronic structures, and thermodynamic stabilities of substitutionally doped phosphorene sheets with group III, IV, V, and VI elements. We find that the electronic properties of phosphorene are drastically modified by the number of valence electrons in dopant atoms. The dopants with even number of valence electrons enable the doped phosphorenes to have a metallic feature, while the dopants with odd...

  16. First-principles molecular dynamics simulation study on electrolytes for use in redox flow battery

    Science.gov (United States)

    Choe, Yoong-Kee; Tsuchida, Eiji; Tokuda, Kazuya; Ootsuka, Jun; Saito, Yoshihiro; Masuno, Atsunobu; Inoue, Hiroyuki

    2017-11-01

    Results of first-principles molecular dynamics simulations carried out to investigate structural aspects of electrolytes for use in a redox flow battery are reported. The electrolytes studied here are aqueous sulfuric acid solutions where its property is of importance for dissolving redox couples in redox flow battery. The simulation results indicate that structural features of the acid solutions depend on the concentration of sulfuric acid. Such dependency arises from increase of proton dissociation from sulfuric acid.

  17. Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study

    International Nuclear Information System (INIS)

    Zhou, Bi-Cheng; Shang, Shun-Li; Wang, Yi; Liu, Zi-Kui

    2016-01-01

    First-principles calculations based on density functional theory have been used to calculate the temperature-dependent dilute tracer diffusion coefficients for 47 substitutional alloying elements in hexagonal closed packed (hcp) Mg by combining transition state theory and an 8-frequency model. The minimum energy pathways and the saddle point configurations during solute migration are calculated with the climbing image nudged elastic band method. Vibrational properties are obtained using the quasi-harmonic Debye model with inputs from first-principles calculations. An improved generalized gradient approximation of PBEsol is used in the present first-principles calculations, which is able to well describe both vacancy formation energies and vibrational properties. It is found that the solute diffusion coefficients in hcp Mg are roughly inversely proportional to the bulk modulus of the dilute alloys, which reflects the solutes' bonding to Mg. Transition metal elements with d electrons show strong interactions with Mg and have large diffusion activation energies. Correlation effects are not negligible for solutes Ca, Na, Sr, Se, Te, and Y, in which the direct solute migration barriers are much smaller than the solvent (Mg) migration barriers. Calculated diffusion coefficients are in remarkable agreement with available experimental data in the literature.

  18. Study on atomic and electronic structures of ceramic materials using spectroscopy, microscopy, and first principles calculation

    International Nuclear Information System (INIS)

    Mizoguchi, Teruyasu

    2011-01-01

    In this review, following two topics are introduced: 1) experimental and theoretical electron energy loss (EEL) near edge structures (ELNES) and X-ray absorption near edge structures (XANES), and 2) atomic and electronic structure analysis of ceramic interface by combing spectroscopy, microscopy, and first principles calculation. In the ELNES/XANES calculation, it is concluded that inclusion of core-hole effect in the calculation is essential. By combining high energy resolution observation and theoretical calculation, detailed analysis of the electronic structure is achieved. In addition, overlap population (OP) diagram is used to interpret the spectrum. In the case of AlN, sharp and intense first peak of N-K edge is found to reflect narrow dispersion of the conduction band bottom. By applying ELNES and the OP diagram to Cu/Al 2 O 3 heterointerface, it is revealed that intensity of prepeak in O-K edge is inverse proportional to interface strength. The relationships between atomic structure and defect energetics at SrTiO 3 grain boundary are also investigated, and reveal that the formation behavior of Ti vacancy is sensitive to the structural distortion. In addition, by using state-of-the-art spectroscopy, microscopy, and first principles calculations, atomic scale visualization of fluorine dopant in LaFeOAs and first principles calculation of HfO 2 phase transformation are demonstrated. (author)

  19. Hierarchical Coupling of First-Principles Molecular Dynamics with Advanced Sampling Methods.

    Science.gov (United States)

    Sevgen, Emre; Giberti, Federico; Sidky, Hythem; Whitmer, Jonathan K; Galli, Giulia; Gygi, Francois; de Pablo, Juan J

    2018-05-14

    We present a seamless coupling of a suite of codes designed to perform advanced sampling simulations, with a first-principles molecular dynamics (MD) engine. As an illustrative example, we discuss results for the free energy and potential surfaces of the alanine dipeptide obtained using both local and hybrid density functionals (DFT), and we compare them with those of a widely used classical force field, Amber99sb. In our calculations, the efficiency of first-principles MD using hybrid functionals is augmented by hierarchical sampling, where hybrid free energy calculations are initiated using estimates obtained with local functionals. We find that the free energy surfaces obtained from classical and first-principles calculations differ. Compared to DFT results, the classical force field overestimates the internal energy contribution of high free energy states, and it underestimates the entropic contribution along the entire free energy profile. Using the string method, we illustrate how these differences lead to different transition pathways connecting the metastable minima of the alanine dipeptide. In larger peptides, those differences would lead to qualitatively different results for the equilibrium structure and conformation of these molecules.

  20. Ammonia synthesis and decomposition on a Ru-based catalyst modeled by first-principles

    DEFF Research Database (Denmark)

    Hellman, A.; Honkala, Johanna Karoliina; Remediakis, Ioannis

    2009-01-01

    A recently published first-principles model for the ammonia synthesis on an unpromoted Ru-based catalyst is extended to also describe ammonia decomposition. In addition, further analysis concerning trends in ammonia productivity, surface conditions during the reaction, and macro-properties, such ......A recently published first-principles model for the ammonia synthesis on an unpromoted Ru-based catalyst is extended to also describe ammonia decomposition. In addition, further analysis concerning trends in ammonia productivity, surface conditions during the reaction, and macro......-properties, such as apparent activation energies and reaction orders are provided. All observed trends in activity are captured by the model and the absolute value of ammonia synthesis/decomposition productivity is predicted to within a factor of 1-100 depending on the experimental conditions. Moreover it is shown: (i......) that small changes in the relative adsorption potential energies are sufficient to get a quantitative agreement between theory and experiment (Appendix A) and (ii) that it is possible to reproduce results from the first-principles model by a simple micro-kinetic model (Appendix B)....

  1. Foundations of Quantum Mechanics: Derivation of a dissipative Schrödinger equation from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, L.A.; Olavo, L.S.F., E-mail: olavolsf@gmail.com

    2017-05-15

    Dissipation in Quantum Mechanics took some time to become a robust field of investigation after the birth of the field. The main issue hindering developments in the field is that the Quantization process was always tightly connected to the Hamiltonian formulation of Classical Mechanics. In this paper we present a quantization process that does not depend upon the Hamiltonian formulation of Classical Mechanics (although still departs from Classical Mechanics) and thus overcome the problem of finding, from first principles, a completely general Schrödinger equation encompassing dissipation. This generalized process of quantization is shown to be nothing but an extension of a more restricted version that is shown to produce the Schrödinger equation for Hamiltonian systems from first principles (even for Hamiltonian velocity dependent potential). - Highlights: • A Quantization process independent of the Hamiltonian formulation of quantum Mechanics is proposed. • This quantization method is applied to dissipative or absorptive systems. • A Dissipative Schrödinger equation is derived from first principles.

  2. Development of a Knowledge Base of Ti-Alloys From First-Principles and Thermodynamic Modeling

    Science.gov (United States)

    Marker, Cassie

    An aging population with an active lifestyle requires the development of better load-bearing implants, which have high levels of biocompatibility and a low elastic modulus. Titanium alloys, in the body centered cubic phase, are great implant candidates, due to their mechanical properties and biocompatibility. The present work aims at investigating the thermodynamic and elastic properties of bcc Tialloys, using the integrated first-principles based on Density Functional Theory (DFT) and the CALculation of PHAse Diagrams (CALPHAD) method. The use of integrated first-principles calculations based on DFT and CALPHAD modeling has greatly reduced the need for trial and error metallurgy, which is ineffective and costly. The phase stability of Ti-alloys has been shown to greatly affect their elastic properties. Traditionally, CALPHAD modeling has been used to predict the equilibrium phase formation, but in the case of Ti-alloys, predicting the formation of two metastable phases o and alpha" is of great importance as these phases also drastically effect the elastic properties. To build a knowledge base of Ti-alloys, for biomedical load-bearing implants, the Ti-Mo-Nb-Sn-Ta-Zr system was studied because of the biocompatibility and the bcc stabilizing effects of some of the elements. With the focus on bcc Ti-rich alloys, a database of thermodynamic descriptions of each phase for the pure elements, binary and Ti-rich ternary alloys was developed in the present work. Previous thermodynamic descriptions for the pure elements were adopted from the widely used SGTE database for global compatibility. The previous binary and ternary models from the literature were evaluated for accuracy and new thermodynamic descriptions were developed when necessary. The models were evaluated using available experimental data, as well as the enthalpy of formation of the bcc phase obtained from first-principles calculations based on DFT. The thermodynamic descriptions were combined into a database

  3. A first-principles study of As doping at a disordered Si-SiO2 interface.

    Science.gov (United States)

    Corsetti, Fabiano; Mostofi, Arash A

    2014-02-05

    Understanding the interaction between dopants and semiconductor-oxide interfaces is an increasingly important concern in the drive to further miniaturize modern transistors. To this end, using a combination of first-principles density-functional theory and a continuous random network Monte Carlo method, we investigate electrically active arsenic donors at the interface between silicon and its oxide. Using a realistic model of the disordered interface, we find that a small percentage (on the order of ∼10%) of the atomic sites in the first few monolayers on the silicon side of the interface are energetically favourable for segregation, and that this is controlled by the local bonding and local strain of the defect centre. We also find that there is a long-range quantum confinement effect due to the interface, which results in an energy barrier for dopant segregation, but that this barrier is small in comparison to the effect of the local environment. Finally, we consider the extent to which the energetics of segregation can be controlled by the application of strain to the interface.

  4. Interfacial bonding and electronic structure of GaN/GaAs interface: A first-principles study

    International Nuclear Information System (INIS)

    Cao, Ruyue; Zhang, Zhaofu; Wang, Changhong; Li, Haobo; Dong, Hong; Liu, Hui; Wang, Weichao; Xie, Xinjian

    2015-01-01

    Understanding of GaN interfacing with GaAs is crucial for GaN to be an effective interfacial layer between high-k oxides and III-V materials with the application in high-mobility metal-oxide-semiconductor field effect transistor (MOSFET) devices. Utilizing first principles calculations, here, we investigate the structural and electronic properties of the GaN/GaAs interface with respect to the interfacial nitrogen contents. The decrease of interfacial N contents leads to more Ga dangling bonds and As-As dimers. At the N-rich limit, the interface with N concentration of 87.5% shows the most stability. Furthermore, a strong band offsets dependence on the interfacial N concentration is also observed. The valance band offset of N7 with hybrid functional calculation is 0.51 eV. The electronic structure analysis shows that significant interface states exist in all the GaN/GaAs models with various N contents, which originate from the interfacial dangling bonds and some unsaturated Ga and N atoms. These large amounts of gap states result in Fermi level pinning and essentially degrade the device performance

  5. Cuprous halides semiconductors as a new means for highly efficient light-emitting diodes

    Science.gov (United States)

    Ahn, Doyeol; Park, Seoung-Hwan

    2016-01-01

    In group-III nitrides in use for white light-emitting diodes (LEDs), optical gain, measure of luminous efficiency, is very low owing to the built-in electrostatic fields, low exciton binding energy, and high-density misfit dislocations due to lattice-mismatched substrates. Cuprous halides I-VII semiconductors, on the other hand, have negligible built-in field, large exciton binding energies and close lattice matched to silicon substrates. Recent experimental studies have shown that the luminescence of I-VII CuCl grown on Si is three orders larger than that of GaN at room temperature. Here we report yet unexplored potential of cuprous halides systems by investigating the optical gain of CuCl/CuI quantum wells. It is found that the optical gain and the luminescence are much larger than that of group III-nitrides due to large exciton binding energy and vanishing electrostatic fields. We expect that these findings will open up the way toward highly efficient cuprous halides based LEDs compatible to Si technology. PMID:26880097

  6. First-principles simulation of Raman spectra and structural properties of quartz up to 5 GPa

    International Nuclear Information System (INIS)

    Liu Lei; Lv Chao-Jia; Yi Li; Liu Hong; Du Jian-Guo; Zhuang Chun-Qiang

    2015-01-01

    The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants (a, c, and V) decrease with increasing pressure and the a-axis is more compressible than the c axis. The Si–O bond distance decreases with increasing pressure, which is in contrast to experimental results reported by Hazen et al. [Hazen R M, Finger L W, Hemley R J and Mao H K 1989 Solid State Communications 725 507–511], and Glinnemann et al. [Glinnemann J, King H E Jr, Schulz H, Hahn T, La Placa S J and Dacol F 1992 Z. Kristallogr. 198 177–212]. The most striking changes are of inter-tetrahedral O–O distances and Si–O–Si angles. The volume of the tetrahedron decreased by 0.9% (from 0 to 5 GPa), which suggests that it is relatively rigid. Vibrational models of the quartz modes are identified by visualizing the associated atomic motions. Raman vibrations are mainly controlled by the deformation of the tetrahedron and the changes in the Si–O–Si bonds. Vibrational directions and intensities of atoms in all Raman modes just show little deviations when pressure increases from 0 to 5 GPa. The pressure derivatives (dν i /dP) of the 12 Raman frequencies are obtained at 0 GPa–5 GPa. The calculated results show that first-principles methods can well describe the high-pressure structural properties and Raman spectra of quartz. The combination of first-principles simulations of the Raman frequencies of minerals and Raman spectroscopy experiments is a useful tool for exploring the stress conditions within the Earth. (paper)

  7. Thermodynamic modeling of the Ca-Sn system based on finite temperature quantities from first-principles and experiment

    International Nuclear Information System (INIS)

    Ohno, M.; Kozlov, A.; Arroyave, R.; Liu, Z.K.; Schmid-Fetzer, R.

    2006-01-01

    The thermodynamic model of the Ca-Sn system was obtained, utilizing the first-principles total energies and heat capacities calculated from 0 K to the melting points of the major phases. Since the first-principles result for the formation energy of the dominating Ca 2 Sn intermetallic phase is drastically different from the reported experimental data, we performed two types of thermodynamic modeling: one based on the first-principles output and the other based on the experimental data. In the former modeling, the Gibbs energies of the intermetallic compounds were fully quantified from the first-principles finite temperature properties and the superiority of the former thermodynamic description is demonstrated. It is shown that it is the combination of finite temperature first-principle calculations and the Calphad modeling tool that provides a sound basis for identifying and deciding on conflicting key thermodynamic data in the Ca-Sn system

  8. Electronic structure of B-doped diamond: A first-principles study

    Directory of Open Access Journals (Sweden)

    T. Oguchi

    2006-01-01

    Full Text Available Electronic structure of B-doped diamond is studied based on first-principles calculations with supercell models for substitutional and interstitial doping at 1.5–3.1 at.% B concentrations. Substitutional doping induces holes around the valence-band maximum in a rigid-band fashion. The nearest neighbor C site to B shows a large energy shift of 1s core state, which may explain reasonably experimental features in recent photoemission and X-ray absorption spectra. Doping at interstitial Td site is found to be unstable compared with that at the substitutional site

  9. Stability, electronic and thermodynamic properties of aluminene from first-principles calculations

    International Nuclear Information System (INIS)

    Yuan, Junhui; Yu, Niannian; Xue, Kanhao; Miao, Xiangshui

    2017-01-01

    Highlights: • We have predicted two NEW stable phases of atomic layer aluminum, buckled and 8-Pmmn aluminene. • We have revealed the electronic structures and bonding characteristics of aluminene. • Thermodynamic properties of aluminene were investigated based on phonon properties. - Abstract: Using first-principles calculations based on density functional theory (DFT), we have investigated the structure stability and electronic properties of both buckled and 8-Pmmn phase aluminene. Phonon dispersion analysis reveals that the buckled and 8-Pmmn aluminene are dynamically stable. The band structure shows that both the buckled and 8-Pmmn aluminene exhibit metallic behavior. Finally, the thermodynamic properties are investigated based on phonon properties.

  10. First principles calculation on the adsorption of water on lithium-montmorillonite (Li-MMT)

    International Nuclear Information System (INIS)

    Wungu, Triati Dewi Kencana; Agusta, Mohammad Kemal; Saputro, Adhitya Gandaryus; Kasai, Hideaki; Dipojono, Hermawan Kresno

    2012-01-01

    The interaction of water molecules and lithium-montmorillonite (Li-MMT) is theoretically investigated using density functional theory (DFT) based first principles calculation. The mechanism of water adsorption at two different water concentrations on Li-MMT as well as their structural and electronic properties are investigated. It is found that the adsorption stability in Li-MMT is higher in higher water concentration. It is also found that an adsorbed water molecule on Li-MMT causes the Li to protrude from the MMT surface, so it is expected that Li may be mobile on H 2 O/Li-MMT.

  11. First principles calculation on the adsorption of water on lithium-montmorillonite (Li-MMT).

    Science.gov (United States)

    Wungu, Triati Dewi Kencana; Agusta, Mohammad Kemal; Saputro, Adhitya Gandaryus; Dipojono, Hermawan Kresno; Kasai, Hideaki

    2012-11-28

    The interaction of water molecules and lithium-montmorillonite (Li-MMT) is theoretically investigated using density functional theory (DFT) based first principles calculation. The mechanism of water adsorption at two different water concentrations on Li-MMT as well as their structural and electronic properties are investigated. It is found that the adsorption stability in Li-MMT is higher in higher water concentration. It is also found that an adsorbed water molecule on Li-MMT causes the Li to protrude from the MMT surface, so it is expected that Li may be mobile on H(2)O/Li-MMT.

  12. Novel Designs for the Audio Mixing Interface Based on Data Visualisation First Principles

    OpenAIRE

    Dewey, Christopher; Wakefield, Jonathan P.

    2016-01-01

    Given the shortcomings of current audio mixing interfaces (AMIs) this study focuses on the development of alternative AMIs based on data visualisation first principles. The elementary perceptual tasks defined by Cleveland informed the design process. Two design ideas were considered for pan: using the elementary perceptual tasks ‘scale’ to display pan on either a single or multiple horizontal lines. Four design ideas were considered for level:\\ud using ‘length’, ‘area’, ‘saturation’ or ‘scala...

  13. Site-specific electronic structure analysis by channeling EELS and first-principles calculations.

    Science.gov (United States)

    Tatsumi, Kazuyoshi; Muto, Shunsuke; Yamamoto, Yu; Ikeno, Hirokazu; Yoshioka, Satoru; Tanaka, Isao

    2006-01-01

    Site-specific electronic structures were investigated by electron energy loss spectroscopy (EELS) under electron channeling conditions. The Al-K and Mn-L(2,3) electron energy loss near-edge structure (ELNES) of, respectively, NiAl2O4 and Mn3O4 were measured. Deconvolution of the raw spectra with the instrumental resolution function restored the blunt and hidden fine features, which allowed us to interpret the experimental spectral features by comparing with theoretical spectra obtained by first-principles calculations. The present method successfully revealed the electronic structures specific to the differently coordinated cationic sites.

  14. Substitutional Co dopant on the GaAs(110) surface: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhou; Yi, Zhijun, E-mail: zhijunyi@cumt.edu.cn

    2016-12-01

    Using the first principles ground state method, the electronic properties of single Co dopant replacing one Ga atom on the GaAs(110) surface are studied. Our calculated local density of states (LDOS) at Co site presents several distinct peaks above the valence band maximum (VBM), and this agrees with recent experiments. Moreover, the calculated STM images at bias voltages of 2 eV and −2 eV also agree with experiments. We discussed the origin of Co impurity induced distinct peaks, which can be characterized with the hybridization between Co d orbitals and p-like orbitals of surface As and Ga atoms.

  15. Elastic properties of cubic perovskite BaRuO{sub 3} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Han Deming; Liu Xiaojuan; Lv Shuhui; Li Hongping [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng Jian, E-mail: jmeng@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-08-01

    We present first-principles investigations on the structural and elastic properties of the cubic perovskite BaRuO{sub 3} using density-functional theory within both local density approximation (LDA) and generalized gradient approximation (GGA). Basic physical properties, such as lattice constant, shear modulus, elastic constants (C{sub ij}) are calculated. The calculated energy band structures show that the cubic perovskite BaRuO{sub 3} is metallic. We have also predicted the Young's modulus (Y), Poisson's ratio ({upsilon}), and Anisotropy factor (A).

  16. First-principles calculation of the structural stability of 6d transition metals

    International Nuclear Information System (INIS)

    Oestlin, A.; Vitos, L.

    2011-01-01

    The phase stability of the 6d transition metals (elements 103-111) is investigated using first-principles electronic-structure calculations. Comparison with the lighter transition metals reveals that the structural sequence trend is broken at the end of the 6d series. To account for this anomalous behavior, the effect of relativity on the lattice stability is scrutinized, taking different approximations into consideration. It is found that the mass-velocity and Darwin terms give important contributions to the electronic structure, leading to changes in the interstitial charge density and, thus, in the structural energy difference.

  17. First-principles study of lithium adsorption and diffusion on graphene: the effects of strain

    International Nuclear Information System (INIS)

    Hao, Feng; Chen, Xi

    2015-01-01

    Large strain is produced within graphene sheets, which serve as a critical component in lithium-ion batteries, due to the expansion of the electrodes. First-principles calculations are therefore employed to investigate the interaction of Li with strained single-layer graphene. It is found that tensile strain enhances Li binding on graphene and significantly reduces the formation energy of divacancies. In addition, Li diffusion through graphene with defects is facilitated by tensile strain, whereas diffusion parallel to the plane of pristine graphene is slightly hindered. (paper)

  18. Tailoring spin injection and magnetoresistance in ferromagnet/graphene junctions from first principles

    Science.gov (United States)

    Lazic, Predrag; Sipahi, Guilherme; Kawakami, Roland; Zutic, Igor

    2013-03-01

    Recent experimental advances in graphene suggest intriguing opportunities for novel spintronic applications which could significantly exceed the state-of-the art performance of their conventional charge-based counterparts. However, for reliable operation of such spintronic devices it is important to achieve an efficient spin injection and large magnetoresistive effects. We use the first principles calculations to guide the choice of a ferromagnetic region and its relative orientation to optimize the desired effects. We propose structures which could enable uniform spin injection, one of the key factors in implementing scalable spintronic circuits. Supported by NSF-NRI, SRC, ONR, Croatian Ministry of Science, Education, and Sports, and CCR at SUNY UB.

  19. First-principle study of Mg adsorption on Si(111) surfaces

    International Nuclear Information System (INIS)

    Min-Ju, Ying; Ping, Zhang; Xiao-Long, Du

    2009-01-01

    We have carried out first-principle calculations of Mg adsorption on Si(111) surfaces. Different adsorption sites and coverage effects have been considered. We found that the threefold hollow adsorption is energy-favoured in each coverage considered, while for the clean Si(111) surface of metallic feature, we found that 0.25 and 0.5 ML Mg adsorption leads to a semiconducting surface. The results for the electronic behaviour suggest a polarized covalent bonding between the Mg adatom and Si(111) surface. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Stability, electronic and thermodynamic properties of aluminene from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Junhui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Yu, Niannian [School of Science, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Xue, Kanhao, E-mail: xkh@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Miao, Xiangshui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2017-07-01

    Highlights: • We have predicted two NEW stable phases of atomic layer aluminum, buckled and 8-Pmmn aluminene. • We have revealed the electronic structures and bonding characteristics of aluminene. • Thermodynamic properties of aluminene were investigated based on phonon properties. - Abstract: Using first-principles calculations based on density functional theory (DFT), we have investigated the structure stability and electronic properties of both buckled and 8-Pmmn phase aluminene. Phonon dispersion analysis reveals that the buckled and 8-Pmmn aluminene are dynamically stable. The band structure shows that both the buckled and 8-Pmmn aluminene exhibit metallic behavior. Finally, the thermodynamic properties are investigated based on phonon properties.

  1. First-Principles Vibrational Electron Energy Loss Spectroscopy of β -Guanine

    Science.gov (United States)

    Radtke, G.; Taverna, D.; Lazzeri, M.; Balan, E.

    2017-07-01

    A general approach to model vibrational electron energy loss spectra obtained using an electron beam positioned away from the specimen is presented. The energy-loss probability of the fast electron is evaluated using first-principles quantum mechanical calculations (density functional theory) of the dielectric response of the specimen. The validity of the method is assessed using recently measured anhydrous β -guanine, an important molecular solid used by animals to produce structural colors. The good agreement between theory and experiments lays the basis for a quantitative interpretation of this spectroscopy in complex systems.

  2. First-principles study on the creation of holes in high Tc cuprates

    International Nuclear Information System (INIS)

    Ambrosch-Draxl, C.; Sherman, E.Ya.; Auer, H.; Thonhauser, T.

    2004-01-01

    We investigate the charge redistribution in high T c cuprates as a function of pressure, composition, and doping. To this extent we have performed first-principles calculations based on density functional theory for several representatives of the Hg based cuprates. In particular, we focus on the creation of holes in the copper-oxygen planes. Conclusions are drawn about the similarities and differences between the three parameters influencing the superconducting transition temperature. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. First-principle calculation of refractive indices of BAlN and BGaN

    KAUST Repository

    Alqatari, Feras; Li, Kuang-Hui; Liu, Kaikai; Li, Xiaohang

    2018-01-01

    The refractive indices of BAlN and BGaN ternary alloys are being investigated using first-principle calculation. The hybrid density functional theory is applied to determine the refractive indices of different alloys. A peculiar bowing effect in the static refractive indices and crossovers of different refractive index curves are found. We speculate that the explanation to these phenomena lies in the interband transitions of electrons where each band bows at a different rate from the other. An average of these bowing effects may result in the bowing of refractive indices.

  4. A first principle study for the comparison of phonon dispersion of armchair carbon and silicon nanotubes

    International Nuclear Information System (INIS)

    Chandel, Surjeet Kumar; Kumar, Arun; Bharti, Ankush; Sharma, Raman

    2015-01-01

    Using first principles density functional theoretical calculations, the present paper reports a systematic study of phonon dispersion curves in pristine carbon (CNT) and silicon nanotubes (SiNT) having chirality (6,6) in the armchair configuration. Some of the phonon modes are found to have negative frequencies which leads to instability of the systems under study. The number of phonon branches has been found to be thrice as much as the number of atoms. The frequency of the higher optical bands varies from 1690 to 1957 cm −1 for CNT(6,6) while it is 596 to 658 cm −1 for SiNT

  5. First-principles study of thermoelectric properties of CuI

    International Nuclear Information System (INIS)

    Yadav, Manoj K; Sanyal, Biplab

    2014-01-01

    Theoretical investigations of the thermoelectric properties of CuI have been carried out employing first-principles calculations followed by the calculations of transport coefficients based on Boltzmann transport theory. Among the three different phases of CuI, viz. zinc-blende, wurtzite and rock salt, the thermoelectric power factor is found to be the maximum for the rock salt phase. We have analysed the variations of Seebeck coefficients and thermoelectric power factors on the basis of calculated electronic structures near the valence band maxima of these phases. (papers)

  6. First principles study of CaTIO3 crystal in paraelectric and ferroelectric phases

    International Nuclear Information System (INIS)

    Hashemi, H.; Kompany, A.; Hosseini, M.

    2005-01-01

    Electronic properties of CaTiO 3 crystal in paraelectric and ferroelectric phases have been studied by first principles, using Hohenberg-kohn-sham density functional theory. In paraelectric phase the results show an indirect band gap of about at 2eV at Γ-R direction in the Brillouin zone and a strong hybridization between Ti-3d an O-2P orbital. In ferroelectric phase a direct band gap of about 1 eV is seen at ***Γ point. Up to our knowledge no data has been reported on the ferroelectric phase so far, therefore our results might be useful for the future works

  7. Physical properties of the tetragonal CuMnAs: A first-principles study

    Czech Academy of Sciences Publication Activity Database

    Máca, František; Kudrnovský, Josef; Drchal, Václav; Carva, K.; Baláž, P.; Turek, I.

    2017-01-01

    Roč. 96, č. 9 (2017), s. 1-8, č. článku 094406. ISSN 2469-9950 R&D Projects: GA ČR GB14-37427G Grant - others:GA MŠk(CZ) LM2015042 Institutional support: RVO:68378271 Keywords : first-principles calculations * defects * CuMnAs * transport properties Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  8. Piezoelectric, Mechanical and Acoustic Properties of KNaNbOF5 from First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Han Han

    2015-12-01

    Full Text Available Recently, a noncentrosymmetric crystal, KNaNbOF5, has attracted attention due to its potential to present piezoelectric properties. Although α- and β-KNaNbOF5 are similar in their stoichiometries, their structural frameworks, and their synthetic routes, the two phases exhibit very different properties. This paper presents, from first-principles calculations, comparative studies of the structural, electronic, piezoelectric, and elastic properties of the α and the β phase of the material. Based on the Christoffel equation, the slowness surface of the acoustic waves is obtained to describe its acoustic prosperities. These results may benefit further applications of KNaNbOF5.

  9. First principles investigation of structural, vibrational and thermal properties of black and blue phosphorene

    Science.gov (United States)

    Arif Khalil, R. M.; Ahmad, Javed; Rana, Anwar Manzoor; Bukhari, Syed Hamad; Tufiq Jamil, M.; Tehreem, Tuba; Nissar, Umair

    2018-05-01

    In this investigation, structural, dynamical and thermal properties of black and blue phosphorene (P) are presented through the first principles calculations based on the density functional theory (DFT). These DFT calculations depict that due to the approximately same values of ground state energy at zero Kelvin and Helmholtz free energy at room-temperature, it is expected that both structures can coexist at transition temperature. Lattice dynamics of both phases were investigated by using the finite displacement supercell approach. It is noticed on the basis of harmonic approximation thermodynamic calculations that the blue phase is thermodynamically more stable than the black phase above 155 K.

  10. A first-principles study of group IV and VI atoms doped blue phosphorene

    Science.gov (United States)

    Bai, Ruimin; Chen, Zheng; Gou, Manman; Zhang, Yixin

    2018-02-01

    Using first-principles calculations, we have systematically investigated the structural, electronic and magnetic properties of blue phosphorene doped by group IV and VI atoms, including C, Si, Ge, Sn, O, S, Se and Te. All the doped systems are energetically stable. Only C, Si, Ge and O-substituted systems show the characteristics of spin polarization and the magnetic moments are all 1.0 μB. Moreover, we found that C, Si, Ge and O doped systems are indirect bandgap semiconductors, while Sn, S, Se and Te doped systems present metallic property. These results show that blue phosphorene can be used prospectively in optoelectronic and spintronic devices.

  11. First-principles studies on the adsorption of molecular oxygen on Ba(110) surface

    International Nuclear Information System (INIS)

    Li, S.F.; Xue Xinlian; Li Pinglin; Li Xinjian; Jia Yu

    2006-01-01

    The adsorption of O 2 on Ba(110) surface is studied with first-principles calculations based on density functional theory. Our calculations predict that O 2 may prefer to dissociative adsorption on Ba(110) surface without obvious barrier. Also our results do not support the model of charge transfer from the surface to the molecule as a bond breaking mechanism. Instead, the increasing hybridization between O 2 orbitals and the d states of Ba(110) surface may play an important role in the dissociation adsorption

  12. Effect of contact deformation on contact electrification: a first-principles calculation

    International Nuclear Information System (INIS)

    Zhang, Yuanyue; Shao, Tianmin

    2013-01-01

    The effect of contact deformation on contact electrification of metallic materials was studied by the first-principles method. The results of charge population and the densities of states of the deformed contact models demonstrated that the magnitude of the transferred charge increased with deformation. The mechanism of the effect of deformation was investigated by studying the electronic properties of the deformed surface slabs. The results showed that crystal deformation led to a change in the electrostatic potential of the metal, where the number of nearly free electrons and unoccupied orbitals for charge transfer increased, and their energy barrier decreased. (paper)

  13. First-principles study of the electronic transport properties of the anthraquinone-based molecular switch

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P., E-mail: ss_zhaop@ujn.edu.c [School of Science, University of Jinan, Jinan 250022 (China); Liu, D.S. [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Department of Physics, Jining University, Qufu 273155 (China); Wang, P.J.; Zhang, Z. [School of Science, University of Jinan, Jinan 250022 (China); Fang, C.F.; Ji, G.M. [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2011-02-15

    By applying non-equilibrium Green's function (NEGF) formalism combined with first-principles density functional theory (DFT), we have investigated the electronic transport properties of the anthraquinone-based molecular switch. The molecule that comprises the switch can be converted between the hydroquinone (HQ) and anthraquinone (AQ) forms via redox reactions. The transmission spectra of these two forms are remarkably distinctive. Our results show that the current through the HQ form is significantly larger than that through the AQ form, which suggests that this system has attractive potential application in future molecular switch technology.

  14. First-principles study of the electronic transport properties of the anthraquinone-based molecular switch

    International Nuclear Information System (INIS)

    Zhao, P.; Liu, D.S.; Wang, P.J.; Zhang, Z.; Fang, C.F.; Ji, G.M.

    2011-01-01

    By applying non-equilibrium Green's function (NEGF) formalism combined with first-principles density functional theory (DFT), we have investigated the electronic transport properties of the anthraquinone-based molecular switch. The molecule that comprises the switch can be converted between the hydroquinone (HQ) and anthraquinone (AQ) forms via redox reactions. The transmission spectra of these two forms are remarkably distinctive. Our results show that the current through the HQ form is significantly larger than that through the AQ form, which suggests that this system has attractive potential application in future molecular switch technology.

  15. Multiferroic BiFeO3-BiMnO3 Nanocheckerboard From First Principles

    OpenAIRE

    Palova, L.; Chandra, P.; Rabe, K. M.

    2010-01-01

    We present a first principles study of an unusual heterostructure, an atomic-scale checkerboard of BiFeO3-BiMnO3, and compare its properties to the two bulk constituent materials, BiFeO3 and BiMnO3. The "nanocheckerboard" is found to have a multiferroic ground state with the desired properties of each constituent: polar and ferrimagnetic due to BiFeO3 and BiMnO3, respectively. The effect of B-site cation ordering on magnetic ordering in the BiFeO3-BiMnO3 system is studied. The checkerboard ge...

  16. First-principles theory of inelastic currents in a scanning tunneling microscope

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Hu, Ben Yu-Kuang; Thirstrup, C.

    1998-01-01

    A first-principles theory of inelastic tunneling between a model probe tip and an atom adsorbed on a surface is presented, extending the elastic tunneling theory of Tersoff and Hamann. The inelastic current is proportional to the change in the local density of states at the center of the tip due...... to the addition of the adsorbate. We use the theory to investigate the vibrational heating of an adsorbate below a scanning tunneling microscopy tip. We calculate the desorption rate of PI from Si(100)-H(2 X 1) as a function of the sample bias and tunnel current, and find excellent a,agreement with recent...

  17. First-principles-based Landau-Devonshire potential for BiFeO.sub.3./sub.

    Czech Academy of Sciences Publication Activity Database

    Márton, Pavel; Klíč, Antonín; Pasciak, Marek; Hlinka, Jiří

    2017-01-01

    Roč. 96, č. 17 (2017), s. 1-5, č. článku 174110. ISSN 2469-9950 R&D Projects: GA ČR GA15-04121S Grant - others:GA MŠk(CZ) LM2015042 Institutional support: RVO:68378271 Keywords : Landau-Devonshire potential * first-principles calculations * BiFeO3 * Energy-sampling technique Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  18. From First Principles: The Application of Quantum Mechanics to Complex Molecules and Solvated Systems

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Mark A. [Iowa State Univ., Ames, IA (United States)

    2001-12-31

    The major title of this dissertation, 'From first principles,' is a phase often heard in the study of thermodynamics and quantum mechanics. These words embody a powerful idea in the physical sciences; namely, that it is possible to distill the complexities of nature into a set of simple, well defined mathematical laws from which specific relations can then be derived . In thermodynamics, these fundamental laws are immediately familiar to the physical scientist by their numerical order: the First, Second and Third Laws. However, the subject of the present volume is quantum mechanics-specifically, non-relativistic quantum mechanics, which is appropriate for most systems of chemical interest.

  19. First principles calculations for interaction of tyrosine with (ZnO)3 cluster

    Science.gov (United States)

    Singh, Satvinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-04-01

    First Principles Calculations have been performed to study interactions of Phenol ring of Tyrosine (C6H5OH) with (ZnO)3 atomic cluster. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/C6H5OH have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations. The compatibility of the results with previous studies has been presented here.

  20. Control-Oriented First Principles-Based Model of a Diesel Generator

    DEFF Research Database (Denmark)

    Knudsen, Jesper Viese; Bendtsen, Jan Dimon; Andersen, Palle

    2016-01-01

    This paper presents the development of a control-oriented tenth-order nonlinear model of a diesel driven generator set, using first principles modeling. The model provides physical system insight, while keeping the complexity at a level where it can be a tool for future design of improved automatic...... generation control (AGC), by including important nonlinearities of the machine. The nonlinearities are, as would be expected for a generator, primarily of bilinear nature. Validation of the model is done with measurements on a 60 kVA/48 kW diesel driven generator set in island operation during steps...

  1. First-principles study of the diffusion mechanisms of the self-interstitial in germanium

    International Nuclear Information System (INIS)

    Carvalho, A; Jones, R; Janke, C; Goss, J P; Briddon, P R; Oeberg, S

    2008-01-01

    The self-interstitial in germanium can assume multiple configurations depending on the temperature and charge state. Here, we employ a first-principles density functional method to investigate the diffusion mechanisms of this defect. The energy barriers associated with the transformation between different structures are determined by the climbing nudged elastic band method, as a function of the charge state. The relation between the thermodynamic properties of the self-interstitial and the temperature evolution of electron radiation damage in germanium are discussed

  2. First-principles calculations of a high-pressure synthesized compound PtC

    International Nuclear Information System (INIS)

    Li Linyan; Yu Wen; Jin Changqing

    2005-01-01

    The first-principles density-functional method is used to study the recently high-pressure synthesized compound PtC. It is confirmed by our calculations that platinum carbide has a zinc-blende ground-state phase at zero pressure and that the rock-salt structure is a high-pressure phase. The theoretical transition pressure from zinc-blende to rock-salt structure is determined to be 52 GPa. Furthermore, our calculation shows the possibility that the PtC experimentally synthesized under high pressure conditions might undergo a transition from rock-salt to zinc-blende structure after a pressure quench to ambient conditions

  3. Hydrogen interactions with ZrCo nanoclusters: a first-principles study

    International Nuclear Information System (INIS)

    Chattaraj, D.; Parida, S.C.; Dash, Smruti; Bhattacharya, Saswata; Majumder, C.

    2014-01-01

    Tritium is one of the fuels going to be used in fusion reactor program. But, this radioactive isotope should be stored safely. ZrCo intermetallic has been chosen as a tritium storage material in ITER program. It is important to study how hydrogen interacts with ZrCo in its different dimensions. In this study we have investigated the hydrogen interaction with the Zr m Co n (m+n = 2, 4 and 6) nanoclusters using the state-of-the-art first principles method

  4. First-principle calculation of refractive indices of BAlN and BGaN

    KAUST Repository

    Alqatari, Feras

    2018-03-27

    The refractive indices of BAlN and BGaN ternary alloys are being investigated using first-principle calculation. The hybrid density functional theory is applied to determine the refractive indices of different alloys. A peculiar bowing effect in the static refractive indices and crossovers of different refractive index curves are found. We speculate that the explanation to these phenomena lies in the interband transitions of electrons where each band bows at a different rate from the other. An average of these bowing effects may result in the bowing of refractive indices.

  5. First principles molecular dynamics of metal/water interfaces under bias potential

    Science.gov (United States)

    Pedroza, Luana; Brandimarte, Pedro; Rocha, Alexandre; Fernandez-Serra, Marivi

    2014-03-01

    Understanding the interaction of the water-metal system at an atomic level is extremely important in electrocatalysts for fuel cells, photocatalysis among other systems. The question of the interface energetics involves a detailed study of the nature of the interactions between water-water and water-substrate. A first principles description of all components of the system is the most appropriate methodology in order to advance understanding of electrochemically processes. In this work we describe, using first principles molecular dynamics simulations, the dynamics of a combined surface(Au and Pd)/water system both in the presence and absence of an external bias potential applied to the electrodes, as one would come across in electrochemistry. This is accomplished using a combination of density functional theory (DFT) and non-equilibrium Green's functions methods (NEGF), thus accounting for the fact that one is dealing with an out-of-equilibrium open system, with and without van der Waals interactions. DOE Early Career Award No. DE-SC0003871.

  6. Introduction to First-Principles Electronic Structure Methods: Application to Actinide Materials

    International Nuclear Information System (INIS)

    Klepeis, J E

    2005-01-01

    The purpose of this paper is to provide an introduction for non-experts to first-principles electronic structure methods that are widely used in the field of condensed-matter physics, including applications to actinide materials. The methods I describe are based on density functional theory (DFT) within the local density approximation (LDA) and the generalized gradient approximation (GGA). In addition to explaining the meaning of this terminology I also describe the underlying theory itself in some detail in order to enable a better understanding of the relative strengths and weaknesses of the methods. I briefly mention some particular numerical implementations of DFT, including the linear muffin-tin orbital (LMTO), linear augmented plane wave (LAPW), and pseudopotential methods, as well as general methodologies that go beyond DFT and specifically address some of the weaknesses of the theory. The last third of the paper is devoted to a few selected applications that illustrate the ideas discussed in the first two-thirds. In particular, I conclude by addressing the current controversy regarding magnetic DFT calculations for actinide materials. Throughout this paper particular emphasis is placed on providing the appropriate background to enable the non-expert to gain a better appreciation of the application of first-principles electronic structure methods to the study of actinide and other materials

  7. Isobaric-isothermal Monte Carlo simulations from first principles: Application to liquid water at ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M; Siepmann, J I; Kuo, I W; Mundy, C J; VandeVondele, J; Hutter, J; Mohamed, F; Krack, M

    2004-12-02

    A series of first principles Monte Carlo simulations in the isobaric-isothermal ensemble were carried out for liquid water at ambient conditions (T = 298 K and p = 1 atm). The Becke-Lee-Yang-Parr (BLYP) exchange and correlation energy functionals and norm-conserving Goedecker-Teter-Hutter (GTH) pseudopotentials were employed with the CP2K simulation package to examine systems consisting of 64 water molecules. The fluctuations in the system volume encountered in simulations in the isobaric-isothermal ensemble requires a reconsideration of the suitability of the typical charge density cutoff and the regular grid generation method previously used for the computation of the electrostatic energy in first principles simulations in the microcanonical or canonical ensembles. In particular, it is noted that a much higher cutoff is needed and that the most computationally efficient method of creating grids can result in poor simulations. Analysis of the simulation trajectories using a very large charge density cutoff at 1200 Ry and four different grid generation methods point to a substantially underestimated liquid density of about 0.85 g/cm{sup 3} resulting in a somewhat understructured liquid (with a value of about 2.7 for the height of the first peak in the oxygen/oxygen radial distribution function) for BLYP-GTH water at ambient conditions.

  8. Anisotropic elastic and thermal properties of titanium borides by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Liang; Gao, Yimin [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Xiao, Bing [Department of Physics and Quantum Theory Group, School of Science and Engineering, Tulane University, New Orleans, LA 70118 (United States); Li, Yefei, E-mail: yefeili@126.com [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Guoliang [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China)

    2013-12-05

    Highlights: •Elastic properties of titanium borides are calculated by first principles calculation. •Thermodynamical stability of titanium borides is analyzed. •Heat capacity and thermal expansion coefficient for titanium borides are calculated and compared. •Grüneisen parameters of titanium borides are calculated. -- Abstract: The anisotropic elastic and thermal expansions of the titanium borides (TiB{sub 2}, Ti{sub 3}B{sub 4}, TiB{sub P}nma and TiB{sub F}m3{sup ¯}m) are calculated from first-principles using density functional theory. All borides show different anisotropic elastic properties; the bulk, shear and Young’s moduli are consistent with those determined experimentally. The temperature dependence of thermal expansions is mainly caused by the restoration of thermal energy due to phonon excitations at low temperature. When the temperature is higher than 500 K, the volumetric coefficient is increased linearly by increasing temperature. Meanwhile, the heat capacities of titanium borides are obtained based on the knowledge of thermal expansion coefficient and the elasticity, the calculations are in good agreement with the experiments.

  9. Thermodynamics and elastic properties of Ir from first-principle calculations

    International Nuclear Information System (INIS)

    Li Qiang; Huang Duohui; Cao Qilong; Wang Fanhou

    2013-01-01

    Within the framework of the quasiharmonic approximation, the thermodynamics and elastic properties, including phonon dispersion curves, equation of state, linear thermal expansion coefficient and temperature-dependent entropy, enthalpy, heat capacity, elastic constants, bulk modulus, shear modulus, Young's modulus of Ir have been studied using first-principles projector-augmented wave method. The results revealed that the predicted phonon dispersion curves of Ir are in agreement with the experimental measurements by neutron diffractions. Considering the thermal electronic contribution to Helmholtz free energy, the calculated entropy, enthalpy, heat capacity and linear thermal expansion co- efficient from the first-principle are consistent well with the experimental data. At 2600 K, the electronic heat capacity accounts for 17% of the total heat capacity at constant pressure, thus the thermal electronic contribution to Helmholtz free energy is very important. The predicted elastic constants, bulk modulus, shear modulus and Young's modulus at room temperature are also in agreement with the available measurements and increase with the increasing temperature. (authors)

  10. First-principles calculations, experimental study, and thermodynamic modeling of the Al-Co-Cr system.

    Directory of Open Access Journals (Sweden)

    Xuan L Liu

    Full Text Available The phase relations and thermodynamic properties of the condensed Al-Co-Cr ternary alloy system are investigated using first-principles calculations based on density functional theory (DFT and phase-equilibria experiments that led to X-ray diffraction (XRD and electron probe micro-analysis (EPMA measurements. A thermodynamic description is developed by means of the calculations of phase diagrams (CALPHAD method using experimental and computational data from the present work and the literature. Emphasis is placed on modeling the bcc-A2, B2, fcc-γ, and tetragonal-σ phases in the temperature range of 1173 to 1623 K. Liquid, bcc-A2 and fcc-γ phases are modeled using substitutional solution descriptions. First-principles special quasirandom structures (SQS calculations predict a large bcc-A2 (disordered/B2 (ordered miscibility gap, in agreement with experiments. A partitioning model is then used for the A2/B2 phase to effectively describe the order-disorder transitions. The critically assessed thermodynamic description describes all phase equilibria data well. A2/B2 transitions are also shown to agree well with previous experimental findings.

  11. Quantitative analysis by X-ray fluorescence using first principles for matrix correction

    International Nuclear Information System (INIS)

    Hulett, L.D.; Dunn, H.W.; Tarter, J.G.

    1978-01-01

    The quantitative interpretation of X-ray fluorescence (XRF) data is often difficult because of matrix effects. The intensity of fluorescence measured for a given element is not only dependent on the element's concentration, but also on the mass absorption coefficients of the sample for the excitation and fluorescence radiation. Also, there are interelement effects in which high-energy fluorescence from heavier elements is absorbed by lighter elements with a resulting enhancement of their fluorescence. Recent theoretical treatments of this problem have shown that X-ray fluorescence data can be corrected for these matrix effects by calculations based on first principles. Fundamental constants, available in atomic physics data tables, are the only parameters needed. It is not necessary to make empirical calibrations. The application of this correctional procedure to alloys and alumina-supported catalysts is described. A description is given of a low-background spectrometer which uses monochromatic Ag Ksub(α) radiation for excitation. Matrix corrections by first principles can be easily applied to data from instruments of this type because fluorescence excitation cross-sections and mass absorption coefficients can be accurately defined for monochromatic radiation. (author)

  12. Photostriction and elasto-optic response in multiferroics and ferroelectrics from first principles

    Science.gov (United States)

    Yang, Yurong; Paillard, Charles; Xu, Bin; Bellaiche, L.

    2018-02-01

    The present work reviews a series of recent first-principles studies devoted to the description of the interaction of light and strain in ferroelectric and multiferroic materials. Specifically, the modelling schemes used in these works to describe the so-called photostriction and elasto-optic effects are presented, in addition to the results and analysis provided by these ab initio calculations. In particular, the large importance of the piezoelectric effect in the polar direction in the photostriction of ferroelectric materials is stressed. Similarly, the occurrence of low-symmetry phases in lead titanate thin films under tensile strain is demonstrated to result in large elasto-optic constants. In addition, first-principle calculations allow to gain microscopic knowledge of subtle effects, for instance in the case of photostriction, where the deformation potential effect in directions perpendicular to the polar axis is shown to be almost as significant as the piezoelectric effect. As a result, the numerical methods presented here could propel the design of efficient opto-mechanical devices.

  13. Mechanical properties of layered oxysulfide CaZnOS from first principle calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhi-Jun [Department of Physics, Dongguk University, Pildong-ro, Choong-gu, Seoul, 100-715 (Korea, Republic of); Feng, Ang [Key Laboratory of Transparent Opto-Functional Inorganic Materials of Chinese Academy of Sciences, Shanghai Institute of Ceramics, Shanghai, 200050 (China); Zhang, Shao-Lin; Zhang, Wei-Bin [Department of Physics, Dongguk University, Pildong-ro, Choong-gu, Seoul, 100-715 (Korea, Republic of); Yang, Woochul, E-mail: wyang@dongguk.edu [Department of Physics, Dongguk University, Pildong-ro, Choong-gu, Seoul, 100-715 (Korea, Republic of)

    2016-06-15

    Elastic and tensile properties of mixed-anion oxysulfide CaZnOS have been theoretically investigated by first principle method of density functional theory (DFT). Elastic constants were obtained by stress–strain relationships, and bulk structure parameters including bulk modulus, shear modulus, as well as Poisson's ratio were then calculated using Voigt-Reuses-Hill (VRH) approximation. The results of shear anisotropic factors, compressibility anisotropic factor and directional Young's modulus showed that CaZnOS is almost elastically isotropic in {001} planes and maintains elastic anisotropy in {100} or {010} planes. Chemical bond anisotropy shown by Mulliken atomic charges and bond overlap populations is responsible for the elastic anisotropy behavior aforementioned. Moreover, theoretical uniaxial and biaxial tensile results showed the crystal collapsed at strain more than 12%, except in the biaxial extension where CaZnOS collapsed at strain of 7%. - Highlights: • Elastic and theoretical tensile properties of CaZnOS have been investigated by first principle method. • CaZnOS is elastically isotropic in {001} planes and maintains elastic anisotropy in {100} or {010} planes. • Mulliken atomic charges and bond overlap populations are responsible for the elastic anisotropy behavior.

  14. Whether FeTe is superconductor: Insights from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Huang, GuiQin, E-mail: huangguiqin@njnu.edu.cn; Zhu, XingFeng

    2013-09-15

    Highlights: • The ground state of FeTe is in the double stripe antiferromagnetic phase. • The nesting of electron and hole at the Fermi surface is not present in FeTe. • The spin–lattice interaction can lead to the phonon softening. • The electron–phonon coupling constant λ is enhanced due to spin–phonon coupling. • Whether FeTe can be superconductor? Some discussions are made. -- Abstract: We present a first-principles pseudopotential study on the electronic structure, phonon structure and the electron–phonon interaction of stoichiometric FeTe in both the nonmagnetic and double stripe antiferromagnetic phases. Our electronic structure calculations show that the nesting effect of Fermi surface is not present in stoichiometric FeTe after considering the magnetic interaction. Comparing the phonon behavior in the double stripe antiferromagnetic phase with that in the nonmagnetic phase, we find that the spin–lattice interaction can lead to the phonon softening and increase electron–phonon coupling constant λ by about 33%, which is similar to other iron-based superconductors in the single stripe antiferromagnetic phase. We suggest that the phonon softening may have no clear contact with the specific magnetic order in the ground state. Finally, we make some discussion about whether FeTe can be superconductor combining our first-principles calculations.

  15. First-principles-based analysis of the influence of Cu on CdTe electronic properties

    International Nuclear Information System (INIS)

    Krasikov, D.; Knizhnik, A.; Potapkin, B.; Selezneva, S.; Sommerer, T.

    2013-01-01

    The maximum voltage of CdTe solar cells is limited by low majority carrier concentration and doping difficulty. Copper that enters from the back contact can form both donors and acceptors in CdTe. It is empirically known that the free carrier concentration is several orders lower than the total Cu concentration. Simplified thermodynamic models of defect compensation after Cu introduction can be found in literature. We present a first-principles-based analysis of kinetics of defect formation upon Cu introduction, and show that Cu i is mobile at room temperature. Calculations of properties of Cu i –V Cd and Cu i –Cu Cd complexes show that the neutral Cu i –Cu Cd complex is mobile at elevated temperatures, while formation of the V Cd –Cu i complex is unlikely because it transforms into the Cu Cd defect. - Highlights: ► First-principles calculations of copper defects in CdTe are performed. ► Formation of Cd vacancy + Cu interstitial(Cu i ) complex is unlikely. ► Cu i defect is mobile at room temperature. ► Cu i + Cu on Cd-site (Cu Cd ) complex is mobile at elevated temperature. ► Cu Cd defect forms by kicking-out of the regular lattice Cd by Cu i

  16. Pressure induced structural phase transition of OsB2: First-principles calculations

    International Nuclear Information System (INIS)

    Ren Fengzhu; Wang Yuanxu; Lo, V.C.

    2010-01-01

    Orthorhombic OsB 2 was synthesized at 1000 deg. C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2 . An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3 /mmc structure (high-pressure phase) is stable for OsB 2 . We expect the phase transition can be further confirmed by the experimental work. - Abstract: Graphical Abstract Legend (TOC Figure): Table of Contents Figure Pressure induced structural phase transition from the orthorhombic structure to the hexagonal one for OsB 2 takes place under 10.8 GPa (0 K), 10.35 GPa (300, 1000 K) by the first-principles predictions.

  17. Improving accuracy of electrochemical capacitance and solvation energetics in first-principles calculations

    Science.gov (United States)

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.

    2018-04-01

    Reliable first-principles calculations of electrochemical processes require accurate prediction of the interfacial capacitance, a challenge for current computationally efficient continuum solvation methodologies. We develop a model for the double layer of a metallic electrode that reproduces the features of the experimental capacitance of Ag(100) in a non-adsorbing, aqueous electrolyte, including a broad hump in the capacitance near the potential of zero charge and a dip in the capacitance under conditions of low ionic strength. Using this model, we identify the necessary characteristics of a solvation model suitable for first-principles electrochemistry of metal surfaces in non-adsorbing, aqueous electrolytes: dielectric and ionic nonlinearity, and a dielectric-only region at the interface. The dielectric nonlinearity, caused by the saturation of dipole rotational response in water, creates the capacitance hump, while ionic nonlinearity, caused by the compactness of the diffuse layer, generates the capacitance dip seen at low ionic strength. We show that none of the previously developed solvation models simultaneously meet all these criteria. We design the nonlinear electrochemical soft-sphere solvation model which both captures the capacitance features observed experimentally and serves as a general-purpose continuum solvation model.

  18. Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.

    Science.gov (United States)

    Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V

    2014-09-24

    We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.

  19. Magnetism, microstructure and First Principles calculations of atomized and annealed Ni3Al

    International Nuclear Information System (INIS)

    García-Escorial, A.; Crespo, P.; Hernando, A.; Lieblich, M.; Marín, P.; Velasco, V.; Ynduráin, F.

    2014-01-01

    Highlights: • The microstructure and order of as-atomized Ni 3 Al powder change with annealing. • The change of the magnetic properties shows the influence of the chemical order. • First Principles calculations show the effect of the density of states to the order. - Abstract: In this work Ni 3 Al powder particles obtained by atomization were characterized magnetically and microstructurally in as-atomized state and after annealing. Upon annealing the X-ray diffraction patterns show a noticeable increase of the signal of the ordered phase γ′-Ni 3 Al, L1 2 , phase and the microstructure evolves from a lamellar and dendrite to a large grain microstructure. The Curie temperature of the as-atomized powder particles is 85 K and decreases after annealing down to 50 K. First Principles calculations were carried out to correlate the experimental observations with local order of Ni and Al atoms and illustrate the importance of the local order in the density of states at the Fermi level, showing how the magnetic moment depends on the Ni and Al atomic position

  20. Magnetism, microstructure and First Principles calculations of atomized and annealed Ni{sub 3}Al

    Energy Technology Data Exchange (ETDEWEB)

    García-Escorial, A., E-mail: age@cenim.csic.es [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Crespo, P.; Hernando, A. [Instituto de Magnetismo Aplicado, IMA-UCM, P.O. Box 155, 28230 Madrid (Spain); Lieblich, M. [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Marín, P.; Velasco, V. [Instituto de Magnetismo Aplicado, IMA-UCM, P.O. Box 155, 28230 Madrid (Spain); Ynduráin, F. [Dpto. de Física de la Materia Condensada, UAM, Cantoblanco, 28049 Madrid (Spain)

    2014-12-05

    Highlights: • The microstructure and order of as-atomized Ni{sub 3}Al powder change with annealing. • The change of the magnetic properties shows the influence of the chemical order. • First Principles calculations show the effect of the density of states to the order. - Abstract: In this work Ni{sub 3}Al powder particles obtained by atomization were characterized magnetically and microstructurally in as-atomized state and after annealing. Upon annealing the X-ray diffraction patterns show a noticeable increase of the signal of the ordered phase γ′-Ni{sub 3}Al, L1{sub 2}, phase and the microstructure evolves from a lamellar and dendrite to a large grain microstructure. The Curie temperature of the as-atomized powder particles is 85 K and decreases after annealing down to 50 K. First Principles calculations were carried out to correlate the experimental observations with local order of Ni and Al atoms and illustrate the importance of the local order in the density of states at the Fermi level, showing how the magnetic moment depends on the Ni and Al atomic position.

  1. First-principles study on lithium removal from Li{sub 2}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Yukinori; Tanaka, Isao [Department of Materials Science and Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606-8501 (Japan); Nagao, Miki; Kanno, Ryoji [Department of Electronic Chemistry, Tokyo Institute of Technology, Nagatsuda, Midori, Yokohama 226-8502 (Japan)

    2009-04-01

    A systematic first-principles calculation based on density functional theory is carried out to discuss the redox mechanism of Li{sub 2}MnO{sub 3}. The lattices of structural models having C2/m- and C2/c-type stacking sequences can be regarded as hexagonal, while their symmetry is monoclinic. Different stacking sequences of [Mn{sub 2/3}Li{sub 1/3}] layers do not cause differences in the energy or crystallographic structure, suggesting a disordered stacking sequence. A calculation for Li{sub 2-x}MnO{sub 3} assuming topotactic lithium removal indicates that lithium removal can occur at a potential of about 4.6 V with a wide potential plateau. The electronic structure of Li{sub 2-x}MnO{sub 3} shows that the manganese ions remain in the charge state of Mn{sup 4+} and the charge of the removed lithium ions is compensated by the oxidation of oxygen. (author)

  2. First-principles investigation of diffusion and defect properties of Fe and Ni in Cr2O3

    Science.gov (United States)

    Rak, Zs.; Brenner, D. W.

    2018-04-01

    Diffusion of Fe and Ni and the energetics of Fe- and Ni-related defects in chromium oxide (α-Cr2O3) are investigated using first-principles Density Functional Theory calculations in combination with the climbing-image nudged elastic band method. The orientations of the spin magnetic moments of the migrating ions are taken into account and their effects on migration barriers are examined. Several possible diffusion pathways were explored through interstitial and vacancy mechanisms, and it was found that the principal mode of ion transport in Cr2O3 is via vacancies. Both interstitial- and vacancy-mediated diffusions are anisotropic, with diffusion being faster in the z-direction. The energetics of defect formation indicates that the Ni-related defects are less stable than the Fe-related ones. This is consistent with Ni-diffusion being faster than Fe-diffusion. The results are compared with previous theoretical and experimental data and possible implications in corrosion control are discussed.

  3. Oxygen adsorption on the Al9Co2(001) surface: first-principles and STM study

    International Nuclear Information System (INIS)

    Villaseca, S Alarcón; Loli, L N Serkovic; Ledieu, J; Fournée, V; Dubois, J-M; Gaudry, É; Gille, P

    2013-01-01

    Atomic oxygen adsorption on a pure aluminum terminated Al 9 Co 2 (001) surface is studied by first-principle calculations coupled with STM measurements. Relative adsorption energies of oxygen atoms have been calculated on different surface sites along with the associated STM images. The local electronic structure of the most favourable adsorption site is described. The preferential adsorption site is identified as a ‘bridge’ type site between the cluster entities exposed at the (001) surface termination. The Al–O bonding between the adsorbate and the substrate presents a covalent character, with s–p hybridization occurring between the states of the adsorbed oxygen atom and the aluminum atoms of the surface. The simulated STM image of the preferential adsorption site is in agreement with experimental observations. This work shows that oxygen adsorption generates important atomic relaxations of the topmost surface layer and that sub-surface cobalt atoms strongly influence the values of the adsorption energies. The calculated Al–O distances are in agreement with those reported in Al 2 O and Al 2 O 3 oxides and for oxygen adsorption on Al(111). (paper)

  4. Interaction of Pd single atoms with different CeO2 crystal planes: A first-principles study

    Science.gov (United States)

    He, Bingling; Wang, Jinlong; Ma, Dongwei; Tian, Zhixue; Jiang, Lijuan; Xu, Yan; Cheng, Sujun

    2018-03-01

    The adsorption of single Pd atoms on the various CeO2 surfaces, including (111), (110), and (100), has been studied based on the first-principles calculations. It is found that, according to the calculated adsorption energy, interaction strength between Pd and the three CeO2 surfaces follows the order of (100) > (110) > (111). Interestingly, the effect of the electron localization on the surface Ce ions due to the Pd adsorption on its adsorption stability is more significant for the (110) surface than that for the (111) and (100) surfaces. We also find that the formal oxidation states of Pd0, Pdδ+ (δ < 1) and Pd1+ may appear on the CeO2 (111) surface, and Pdδ+ (δ < 1) and Pd1+ could coexist on the CeO2 (100) surfaces. However, under suitable conditions the CeO2 (110) surface may be covered with Pd2+ ions. Present theoretical results clearly suggest that the interaction between Pd and CeO2 nanocrystals significantly depends on the crystal planes of CeO2. It is expected that our study will give useful insights into the effect of CeO2 crystal plane on the physicochemical and catalytic properties of CeO2 supported Pd catalyst.

  5. First principles calculation of material properties of group IV elements and III-V compounds

    Science.gov (United States)

    Malone, Brad Dean

    This thesis presents first principles calculations on the properties of group IV elements and group III-V compounds. It includes investigations into what structure a material is likely to form in, and given that structure, what are its electronic, optical, and lattice dynamical properties as well as what are the properties of defects that might be introduced into the sample. The thesis is divided as follows: • Chapter 1 contains some of the conceptual foundations used in the present work. These involve the major approximations which allow us to approach the problem of systems with huge numbers of interacting electrons and atomic cores. • Then, in Chapter 2, we discuss one of the major limitations to the DFT formalism introduced in Chapter 1, namely its inability to predict the quasiparticle spectra of materials and in particular the band gap of a semiconductor. We introduce a Green's function approach to the electron self-energy Sigma known as the GW approximation and use it to compute the quasiparticle band structures of a number of group IV and III-V semiconductors. • In Chapter 3 we present a first-principles study of a number of high-pressure metastable phases of Si with tetrahedral bonding. The phases studied include all experimentally determined phases that result from decompression from the metallic beta-Sn phase, specifically the BC8 (Si-III), hexagonal diamond (Si-IV), and R8 (Si-XII). In addition to these, we also study the hypothetical ST12 structure found upon decompression from beta-Sn in germanium. • Our attention is then turned to the first principles calculations of optical properties in Chapter 4. The Bethe-Salpeter equation is then solved to obtain the optical spectrum of this material including electron-hole interactions. The calculated optical spectrum is compared with experimental data for other forms of silicon commonly used in photovoltaic devices, namely the cubic, polycrystalline, and amorphous forms. • In Chapter 5 we present

  6. Crystal structure of Earth's inner core: A first-principles study

    Science.gov (United States)

    Moustafa, S. G.; Schultz, A. J.; Zurek, E.; Kofke, D. A.

    2017-12-01

    Since the detection of the Earth's solid inner core (IC) by Lehmann in 1936, its composition and crystal structure (which are essential to understand Earth's evolution) have been controversial. While seismological measurements (e.g. PREM) can give a robust estimation of the density, pressure, and elasticity of the IC, they cannot be directly used to determine its composition and/or crystal structure. Experimentally, reaching the extreme IC conditions ( 330 GPa and 6000 K) and getting reliable measurements is very challenging. First-principles calculations provide a viable alternative that can work as a powerful investigative tool. Although several attempts have been made to assess phase stability at IC conditions computationally, they often use a low level of theory for electronic structure (e.g., classical force-field), adopt approximate methods (e.g., quasiharmonic approximation, fixed hcp-c/a), or do not consider finite-size effects. The study of phase stability using accurate first-principles methods is hampered in part by the difficulty of computing the free energy (FE), the central thermodynamic quantity that determines stability, while including anharmonic and finite-size effects. Additional difficulty related to the IC in particular is introduced by the dynamical instability of one of the IC candidate structures (bcc) at low temperature. Recently [1-3], we introduced a novel method (denoted as "harmonically mapped averaging", or HMA) to efficiently measure anharmonic properties (e.g. FE, pressure, elastic modulus) by molecular simulation, yielding orders of magnitude CPU speedup compared to conventional methods. We have applied this method to the hcp candidate phase of iron at the IC conditions, obtaining first-principles anharmonic FE values with unprecedented accuracy and precision [4]. We have now completed and report HMA calculations to assess the phase stability of all IC candidate phases (fcc/hcp/bcc). This knowledge is the prerequisite for

  7. AELAS: Automatic ELAStic property derivations via high-throughput first-principles computation

    Science.gov (United States)

    Zhang, S. H.; Zhang, R. F.

    2017-11-01

    The elastic properties are fundamental and important for crystalline materials as they relate to other mechanical properties, various thermodynamic qualities as well as some critical physical properties. However, a complete set of experimentally determined elastic properties is only available for a small subset of known materials, and an automatic scheme for the derivations of elastic properties that is adapted to high-throughput computation is much demanding. In this paper, we present the AELAS code, an automated program for calculating second-order elastic constants of both two-dimensional and three-dimensional single crystal materials with any symmetry, which is designed mainly for high-throughput first-principles computation. Other derivations of general elastic properties such as Young's, bulk and shear moduli as well as Poisson's ratio of polycrystal materials, Pugh ratio, Cauchy pressure, elastic anisotropy and elastic stability criterion, are also implemented in this code. The implementation of the code has been critically validated by a lot of evaluations and tests on a broad class of materials including two-dimensional and three-dimensional materials, providing its efficiency and capability for high-throughput screening of specific materials with targeted mechanical properties. Program Files doi:http://dx.doi.org/10.17632/f8fwg4j9tw.1 Licensing provisions: BSD 3-Clause Programming language: Fortran Nature of problem: To automate the calculations of second-order elastic constants and the derivations of other elastic properties for two-dimensional and three-dimensional materials with any symmetry via high-throughput first-principles computation. Solution method: The space-group number is firstly determined by the SPGLIB code [1] and the structure is then redefined to unit cell with IEEE-format [2]. Secondly, based on the determined space group number, a set of distortion modes is automatically specified and the distorted structure files are generated

  8. Electronic and optical properties of new multifunctional materials via half-substituted hematite: First principles calculations

    KAUST Repository

    Yang, Hua

    2012-01-01

    Electronic structure and optical properties of α-FeMO 3 systems (M = Sc, Ti, V, Cr, Cu, Cd or In) have been investigated using first principles calculations. All of the FeMO 3 systems have a large net magnetic moment. The ground state of pure α-Fe 2O 3 is an antiferromagnetic insulator. For M = Cu or Cd, the systems are half-metallic. Strong absorption in the visible region can be observed in the Cu and Cd-doped systems. Systems with M = Sc, Ti, V, Cr or In are not half-metallic and are insulators. The strongest peaks shift toward shorter wavelengths in the absorption spectra. It is concluded that transition metal doping can modify the electronic structure and optical properties of α-FeMO 3 systems. This journal is © 2012 The Royal Society of Chemistry.

  9. Jump rates for surface diffusion of large molecules from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2015-04-21

    We apply a recently developed stochastic model for the surface diffusion of large molecules to calculate jump rates for 9,10-dithioanthracene on a Cu(111) surface. The necessary input parameters for the stochastic model are calculated from first principles using density functional theory (DFT). We find that the inclusion of van der Waals corrections to the DFT energies is critical to obtain good agreement with experimental results for the adsorption geometry and energy barrier for diffusion. The predictions for jump rates in our model are in excellent agreement with measured values and show a marked improvement over transition state theory (TST). We find that the jump rate prefactor is reduced by an order of magnitude from the TST estimate due to frictional damping resulting from energy exchange with surface phonons, as well as a rotational mode of the diffusing molecule.

  10. First-principles calculations on thermodynamic properties of BaTiO3 rhombohedral phase.

    Science.gov (United States)

    Bandura, Andrei V; Evarestov, Robert A

    2012-07-05

    The calculations based on the linear combination of atomic orbitals have been performed for the low-temperature phase of BaTiO(3) crystal. Structural and electronic properties, as well as phonon frequencies were obtained using hybrid PBE0 exchange-correlation functional. The calculated frequencies and total energies at different volumes have been used to determine the equation of state and thermal contribution to the Helmholtz free energy within the quasiharmonic approximation. For the first time, the bulk modulus, volume thermal expansion coefficient, heat capacity, and Grüneisen parameters in BaTiO(3) rhombohedral phase have been estimated at zero pressure and temperatures form 0 to 200 K, based on the results of first-principles calculations. Empirical equation has been proposed to reproduce the temperature dependence of the calculated quantities. The agreement between the theoretical and experimental thermodynamic properties was found to be satisfactory. Copyright © 2012 Wiley Periodicals, Inc.

  11. Machine Learning methods in fitting first-principles total energies for substitutionally disordered solid

    Science.gov (United States)

    Gao, Qin; Yao, Sanxi; Widom, Michael

    2015-03-01

    Density functional theory (DFT) provides an accurate and first-principles description of solid structures and total energies. However, it is highly time-consuming to calculate structures with hundreds of atoms in the unit cell and almost not possible to calculate thousands of atoms. We apply and adapt machine learning algorithms, including compressive sensing, support vector regression and artificial neural networks to fit the DFT total energies of substitutionally disordered boron carbide. The nonparametric kernel method is also included in our models. Our fitted total energy model reproduces the DFT energies with prediction error of around 1 meV/atom. The assumptions of these machine learning models and applications of the fitted total energies will also be discussed. Financial support from McWilliams Fellowship and the ONR-MURI under the Grant No. N00014-11-1-0678 is gratefully acknowledged.

  12. Energy band modulation of graphane by hydrogen-vacancy chains: A first-principles study

    Directory of Open Access Journals (Sweden)

    Bi-Ru Wu

    2014-08-01

    Full Text Available We investigated a variety of configurations of hydrogen-vacancy chains in graphane by first-principles density functional calculation. We found that graphane with two zigzag H-vacancy chains segregated by one or more H chain is generally a nonmagnetic conductor or has a negligible band gap. However, the same structure is turned into a semiconductor and generates a magnetic moment if either one or both of the vacancy chains are blocked by isolated H atoms. If H-vacancy chains are continuously distributed, the structure is similar to a zigzag graphene nanoribbon embedded in graphane. It was also found that the embedded zigzag graphene nanoribbon is antiferromagnetic, and isolated H atoms left in the 2-chain nanoribbon can tune the band gap and generate net magnetic moments. Similar effects are also obtained if bare carbon atoms are present outside the nanoribbon. These results are useful for designing graphene-based nanoelectronic circuits.

  13. Band gap of β-PtO2 from first-principles

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2012-06-01

    Full Text Available We studied the band gap of β-PtO2 using first-principles calculations based on density functional theory (DFT. The results are obtained within the framework of the generalized gradient approximation (GGA, GGA+U, GW, and the hybrid functional methods. For the different types of calculations, the calculated band gap increases from ∼0.46 eV to 1.80 eV. In particular, the band gap by GW (conventional and self-consistent calculation shows a tendency of converging to ∼1.25 ± 0.05 eV. The effect of on-site Coulomb interaction on the bonding characteristics is also analyzed.

  14. Insight into point defects and impurities in titanium from first principles

    Science.gov (United States)

    Nayak, Sanjeev K.; Hung, Cain J.; Sharma, Vinit; Alpay, S. Pamir; Dongare, Avinash M.; Brindley, William J.; Hebert, Rainer J.

    2018-03-01

    Titanium alloys find extensive use in the aerospace and biomedical industries due to a unique combination of strength, density, and corrosion resistance. Decades of mostly experimental research has led to a large body of knowledge of the processing-microstructure-properties linkages. But much of the existing understanding of point defects that play a significant role in the mechanical properties of titanium is based on semi-empirical rules. In this work, we present the results of a detailed self-consistent first-principles study that was developed to determine formation energies of intrinsic point defects including vacancies, self-interstitials, and extrinsic point defects, such as, interstitial and substitutional impurities/dopants. We find that most elements, regardless of size, prefer substitutional positions, but highly electronegative elements, such as C, N, O, F, S, and Cl, some of which are common impurities in Ti, occupy interstitial positions.

  15. Recent Progress in First-Principles Methods for Computing the Electronic Structure of Correlated Materials

    Directory of Open Access Journals (Sweden)

    Fredrik Nilsson

    2018-03-01

    Full Text Available Substantial progress has been achieved in the last couple of decades in computing the electronic structure of correlated materials from first principles. This progress has been driven by parallel development in theory and numerical algorithms. Theoretical development in combining ab initio approaches and many-body methods is particularly promising. A crucial role is also played by a systematic method for deriving a low-energy model, which bridges the gap between real and model systems. In this article, an overview is given tracing the development from the LDA+U to the latest progress in combining the G W method and (extended dynamical mean-field theory ( G W +EDMFT. The emphasis is on conceptual and theoretical aspects rather than technical ones.

  16. Prediction of thermodynamic properties of solute elements in Si solutions using first-principles calculations

    International Nuclear Information System (INIS)

    Iwata, K.; Matsumiya, T.; Sawada, H.; Kawakami, K.

    2003-01-01

    The method is presented to predict the activity coefficients and the interaction parameters of the solute elements in infinite dilute Si solutions by the use of first-principles calculations based on density functional theory. In this method, the regular solution model is assumed. The calculated activity coefficients in solid Si are converted to those in molten Si by the use of the solid-liquid partition coefficients. Furthermore, the interaction parameters in solid Si solutions are calculated and compared with reported experimental values of those in liquid Si solutions. The results show that the calculated activity coefficients and interaction parameters of Al, Fe, Ti and Pb in Si solutions are in good agreement with the tendency of the experiments. However, the calculations have some quantitative discrepancy from the experiments. It is expected that consideration of the excess entropy would reduce this discrepancy

  17. A method of orbital analysis for large-scale first-principles simulations

    International Nuclear Information System (INIS)

    Ohwaki, Tsukuru; Otani, Minoru; Ozaki, Taisuke

    2014-01-01

    An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF 4 )

  18. First-principles study of ternary fcc solution phases from special quasirandom structures

    International Nuclear Information System (INIS)

    Shin Dongwon; Wang Yi; Liu Zikui; Walle, Axel van de

    2007-01-01

    In the present work, ternary special quasirandom structures (SQSs) for a fcc solid solution phase are generated at different compositions, x A =x B =x C =(1/3) and x A =(1/2), x B =x C =(1/4), whose correlation functions are satisfactorily close to those of a random fcc solution. The generated SQSs are used to calculate the mixing enthalpy of the fcc phase in the Ca-Sr-Yb system. It is observed that first-principles calculations of all the binary and ternary SQSs in the Ca-Sr-Yb system exhibit very small local relaxation. It is concluded that the fcc ternary SQSs can provide valuable information about the mixing behavior of the fcc ternary solid solution phase. The SQSs presented in this work can be widely used to study the behavior of ternary fcc solid solutions

  19. The structural, electronic and phonon behavior of CsPbI_3: A first principles study

    International Nuclear Information System (INIS)

    Bano, Amreen; Khare, Preeti; Parey, Vanshree; Shukla, Aarti; Gaur, N. K.

    2016-01-01

    Metal halide perovskites are optoelectronic materials that have attracted enormous attention as solar cells with power conversion efficiencies reaching 20%. The benefit of using hybrid compounds resides in their ability to combine the advantage of these two classes of compounds: the high mobility of inorganic materials and the ease of processing of organic materials. In spite of the growing attention of this new material, very little is known about the electronic and phonon properties of the inorganic part of this compounds. A theoretical study of structural, electronic and phonon properties of metal-halide cubic perovskite, CsPbI_3 is presented, using first-principles calculations with planewave pseudopotential method as personified in PWSCF code. In this approach local density approximation (LDA) is used for exchange-correlation potential.

  20. First-principles study on band structures and electrical transports of doped-SnTe

    Directory of Open Access Journals (Sweden)

    Xiao Dong

    2016-06-01

    Full Text Available Tin telluride is a thermoelectric material that enables the conversion of thermal energy to electricity. SnTe demonstrates a great potential for large-scale applications due to its lead-free nature and the similar crystal structure to PbTe. In this paper, the effect of dopants (i.e., Mg, Ca, Sr, Ba, Eu, Yb, Zn, Cd, Hg, and In on the band structures and electrical transport properties of SnTe was investigated based on the first-principles density functional theory including spin–orbit coupling. The results show that Zn and Cd have a dominant effect of band convergence, leading to power factor enhancement. Indium induces obvious resonant states, while Hg-doped SnTe exhibits a different behavior with defect states locating slightly above the Fermi level.

  1. First-Principles Study of Lithium and Sodium Atoms Intercalation in Fluorinated Graphite

    Directory of Open Access Journals (Sweden)

    Fengya Rao

    2015-06-01

    Full Text Available The structure evolution of fluorinated graphite (CFx upon the Li/Na intercalation has been studied by first-principles calculations. The Li/Na adsorption on single CF layer and intercalated into bulk CF have been calculated. The better cycling performance of Na intercalation into the CF cathode, comparing to that of Li intercalation, is attributed to the different strength and characteristics of the Li-F and Na-F interactions. The interactions between Li and F are stronger and more localized than those between Na and F. The strong and localized Coulomb attraction between Li and F atoms breaks the C−F bonds and pulls the F atoms away, and graphene sheets are formed upon Li intercalation.

  2. First principles study of the optical contrast in phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Caravati, S; Parrinello, M [Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Via Giuseppe Buffi 13, 6900 Lugano (Switzerland); Bernasconi, M, E-mail: marco.bernasconi@mater.unimib.i [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via R Cozzi 53, I-20125, Milano (Italy)

    2010-08-11

    We study from first principles the optical properties of the phase change materials Ge{sub 2}Sb{sub 2}Te{sub 5} (GST), GeTe and Sb{sub 2}Te{sub 3} in the crystalline phase and in realistic models of the amorphous phase generated by quenching from the melt in ab initio molecular dynamics simulations. The calculations reproduce the strong optical contrast between the crystalline and amorphous phases measured experimentally and exploited in optical data storage. It is demonstrated that the optical contrast is due to a change in the optical matrix elements across the phase change in all the compounds. It is concluded that the reduction of the optical matrix elements in the amorphous phases is due to angular disorder in p-bonding which dominates the amorphous network in agreement with previous proposals (Huang and Robertson 2010 Phys. Rev. B 81 081204) based on calculations on crystalline models.

  3. Near-infrared radiation absorption properties of covellite (CuS using first-principles calculations

    Directory of Open Access Journals (Sweden)

    Lihua Xiao

    2016-08-01

    Full Text Available First-principles density functional theory was used to investigate the electronic structure, optical properties and the origin of the near-infrared (NIR absorption of covellite (CuS. The calculated lattice constant and optical properties are found to be in reasonable agreement with experimental and theoretical findings. The electronic structure reveals that the valence and conduction bands of covellite are determined by the Cu 3d and S 3p states. By analyzing its optical properties, we can fully understand the potential of covellite (CuS as a NIR absorbing material. Our results show that covellite (CuS exhibits NIR absorption due to its metal-like plasma oscillation in the NIR range.

  4. Adsorption of methanol molecule on graphene: Experimental results and first-principles calculations

    Science.gov (United States)

    Zhao, X. W.; Tian, Y. L.; Yue, W. W.; Chen, M. N.; Hu, G. C.; Ren, J. F.; Yuan, X. B.

    2018-04-01

    Adsorption properties of methanol molecule on graphene surface are studied both theoretically and experimentally. The adsorption geometrical structures, adsorption energies, band structures, density of states and the effective masses are obtained by means of first-principles calculations. It is found that the electronic characteristics and conductivity of graphene are sensitive to the methanol molecule adsorption. After adsorption of methanol molecule, bandgap appears. With the increasing of the adsorption distance, the bandgap, adsorption energy and effective mass of the adsorption system decreased, hence the resistivity of the system decreases gradually, these results are consistent with the experimental results. All these calculations and experiments indicate that the graphene-based sensors have a wide range of applications in detecting particular molecules.

  5. First-principles electronic functionalization of silicene and germanene by adatom chemisorption

    Energy Technology Data Exchange (ETDEWEB)

    Broek, B. van den; Houssa, M.; Scalise, E. [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Pourtois, G. [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Department of Chemistry, Plasmant Research Group, University of Antwerp, B-2610 Wilrijk-Antwerp (Belgium); Afanas‘ev, V.V.; Stesmans, A. [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium)

    2014-02-01

    This study presents first-principles results on the electronic functionalization of silicene and germanene monolayers by means of chemisorption of adatom species H, Li, F, Sc, Ti, V. Three general adatom-monolayer configurations are considered, each having its distinct effect on the electronic structure, yielding metallic or semiconducting dispersions depending on the adatom species and configuration. The induced bandgap is a (in)direct Γ gap ranging from 0.2 to 2.3 eV for both silicene and germanene. In general the alternating configuration was found to be the most energetically stable. The boatlike and chairlike conformers are degenerate with the former having anisotropic effective carrier masses. The top configuration leads to the planar monolayer and predominately to a gapped dispersion. The hollow configuration with V adatoms retains the Dirac cone, but with strong orbital planar hybridization at the Fermi level. We also observe a planar surface state the Fermi level for the latter systems.

  6. First-principles determination of the Raman fingerprint of rhombohedral graphite

    Science.gov (United States)

    Torche, Abderrezak; Mauri, Francesco; Charlier, Jean-Christophe; Calandra, Matteo

    2017-09-01

    Multilayer graphene with rhombohedral stacking is a promising carbon phase possibly displaying correlated states like magnetism or superconductivity due to the occurrence of a flat surface band at the Fermi level. Recently, flakes of thickness up to 17 layers were tentatively attributed to ABC sequences although the Raman fingerprint of rhombohedral multilayer graphene is currently unknown and the 2D resonant Raman spectrum of Bernal graphite is not understood. We provide a first principles description of the 2D Raman peak in three and four layers graphene (all stackings) as well as in Bernal, rhombohedral, and an alternation of Bernal and rhombohedral graphite. We give practical prescriptions to identify long range sequences of ABC multilayer graphene. Our work is a prerequisite to experimental nondestructive identification and synthesis of rhombohedral graphite.

  7. Effects of hydrogen on Mn-doped GaN: A first principles calculation

    International Nuclear Information System (INIS)

    Wu, M.S.; Xu, B.; Liu, G.; Lei, X.L.; Ouyang, C.Y.

    2013-01-01

    First-principles calculations based on spin density functional theory are performed to study the effects of H on the structural, electronic and magnetic properties of the Mn-doped GaN dilute magnetic semiconductors. Our results show that the interstitial H atom prefers to bond with N atom rather than Mn atom, which means that H favors to form the N–H complex rather than Mn–H complex in the Mn-doped GaN. After introducing one H atom in the system, the total magnetic moment of the Mn-doped GaN increases by 25%, from 4.0μ B to 5.0μ B . The physics mechanism of the increase of magnetic moment after hydrogenation in Mn-doped GaN is discussed

  8. First-principles investigation of strain effects on the energy gaps in silicon nanoclusters

    International Nuclear Information System (INIS)

    Peng, X-H; Alizadeh, A; Bhate, N; Varanasi, K K; Kumar, S K; Nayak, S K

    2007-01-01

    First-principles density functional calculations were performed to study strain effects on the energy gaps in silicon nanoclusters with diameter ranging from 0.6 to 2 nm. Hydrostatic and non-hydrostatic strains have been found to affect the energy gaps differently. For the same strain energy density, non-hydrostatic strain leads to a significantly larger change in the energy gap of silicon clusters compared to that of the hydrostatic strain case. In contrast, hydrostatic and non-hydrostatic strain effects on the energy gaps of bulk Si or larger size Si quantum dots are comparable. Non-hydrostatic strains break the tetrahedral bonding symmetry in silicon, resulting in significant variation in the energy gaps due to the splitting of the degenerate orbitals in the clusters. Our results suggest that the combination of energy gaps and strains permits the engineering of photoluminescence in silicon nanoclusters and offers the possibility of designing novel optical devices and chemical sensors

  9. Tailoring graphene magnetism by zigzag triangular holes: A first-principles thermodynamics study

    Directory of Open Access Journals (Sweden)

    Muhammad Ejaz Khan

    2016-03-01

    Full Text Available We discuss the thermodynamic stability and magnetic property of zigzag triangular holes (ZTHs in graphene based on the results of first-principles density functional theory calculations. We find that ZTHs with hydrogen-passivated edges in mixed sp2/sp3 configurations (z211 could be readily available at experimental thermodynamic conditions, but ZTHs with 100% sp2 hydrogen-passivation (z1 could be limitedly available at high temperature and ultra-high vacuum conditions. Graphene magnetization near the ZTHs strongly depends on the type and the size of the triangles. While metallic z1 ZTHs exhibit characteristic edge magnetism due to the same-sublattice engineering, semiconducting z211 ZTHs do show characteristic corner magnetism when the size is small <2 nm. Our findings could be useful for experimentally tailoring metal-free carbon magnetism by simply fabricating triangular holes in graphene.

  10. Thermodynamic description of the Al-Cu-Yb ternary system supported by first-principles calculations

    Directory of Open Access Journals (Sweden)

    Huang G.

    2016-01-01

    Full Text Available Phase relationships of the ternary Al-Cu-Yb system have been assessed using a combination of CALPHAD method and first principles calculations. A self-consistent thermodynamic parameter was established based on the experimental and theoretical information. Most of the binary intermetallic phases, except Al3Yb, Al2Yb, Cu2Yb and Cu5Yb, were assumed to be zero solubility in the ternary system. Based on the experimental data, eight ternary intermetallic compounds were taken into consideration in this system. Among them, three were treated as line compounds with large homogeneity ranges for Al and Cu. The others were treated as stoichiometric compounds. The calculated phase diagrams were in agreement with available experimental and theoretical data.

  11. Structural, Mechanical and Thermodynamic Properties under Pressure Effect of Rubidium Telluride: First Principle Calculations

    Directory of Open Access Journals (Sweden)

    Bidai K.

    2017-06-01

    Full Text Available First-principles density functional theory calculations have been performed to investigate the structural, elastic and thermodynamic properties of rubidium telluride in cubic anti-fluorite (anti-CaF2-type structure. The calculated ground-state properties of Rb2Te compound such as equilibrium lattice parameter and bulk moduli are investigated by generalized gradient approximation (GGA-PBE that are based on the optimization of total energy. The elastic constants, Young’s and shear modulus, Poisson ratio, have also been calculated. Our results are in reasonable agreement with the available theoretical and experimental data. The pressure dependence of elastic constant and thermodynamic quantities under high pressure are also calculated and discussed.

  12. First-principles study of helium clustering at initial stage in ThO2

    International Nuclear Information System (INIS)

    Shao Kuan; Han Han; Zhang Wei; Wang Chang-Ying; Guo Yong-Liang; Ren Cui-Lan; Huai Ping

    2017-01-01

    The clustering behavior of helium atoms in thorium dioxide has been investigated by first-principles calculations. The results show that He atoms tend to form a cluster around an octahedral interstitial site (OIS). As the concentration of He atoms in ThO 2 increases, the strain induced by the He atoms increases and the octahedral interstitial site is not large enough to accommodate a large cluster, such as a He hexamer. We considered three different Schottky defect (SD) configurations (SD 1 , SD 2 , and SD 3 . When He atoms are located in the SD sites, the strain induced by the He atoms is released and the incorporation and binding energies decrease. The He trimer is the most stable cluster in SD 1 . Large He clusters, such as a He hexamer, are also stable in the SDs. (paper)

  13. First Principles Study of Electronic and Magnetic Properties of Co-Doped Armchair Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Biao Li

    2015-01-01

    Full Text Available Using the first principles calculations, we have studied the atomic and electronic structures of single Co atom incorporated with divacancy in armchair graphene nanoribbon (AGNR. Our calculated results show that the Co atom embedded in AGNR gives rise to significant impacts on the band structures and the FM spin configuration is the ground state. The presence of the Co doping could introduce magnetic properties. The calculated results revealed the arising of spin gapless semiconductor characteristics with doping near the edge in both ferromagnetic (FM and antiferromagnetic (AFM magnetic configurations, suggesting the robustness for potential application of spintronics. Moreover, the electronic structures of the Co-doped AGNRs are strongly dependent on the doping sites and the edge configurations.

  14. Nonlinear Elasticity of Borocarbide Superconductor YNi2B2C: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Lili Liu

    2017-01-01

    Full Text Available First-principles calculations combined with homogeneous deformation methods are used to investigate the second- and third-order elastic constants of YNi2B2C with tetragonal structure. The predicted lattice constants and second-order elastic constants of YNi2B2C agree well with the available data. The effective second-order elastic constants are obtained from the second- and third-order elastic constants for YNi2B2C. Based on the effective second-order elastic constants, Pugh’s modulus ratio, Poisson’s ratio, and Vickers hardness of YNi2B2C under high pressure are further investigated. It is shown that the ductility of YNi2B2C increases with increasing pressure.

  15. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts

    DEFF Research Database (Denmark)

    Jones, Glenn; Jakobsen, Jon Geest; Shim, Signe Sarah

    2008-01-01

    This paper presents a detailed analysis of the steam reforming process front first-principles calculations, supported by insight from experimental investigations. In the present work we employ recently recognised scaling relationships for adsorption energies of simple molecules adsorbed at pure...... metal Surfaces to develop an overview of the steam reforming process catalyzed by a range of transition metal surfaces. By combining scaling relationships with thermodynamic and kinetic analysis, we show that it is possible to determine the reactivity trends of the pure metals for methane steam...... in situ TEM measurements under a hydrogen atmosphere. The overall agreement between theory and experiment (at 773 K, 1 bar pressure and 10% conversion) is found to be excellent with Ru and Rh being the most active pure transition metals for methane steam reforming, while Ni, Ir, Pt, and Pd...

  16. Polytypism in ZnS, ZnSe, and ZnTe: First-principles study

    KAUST Repository

    Boutaiba, F.; Belabbes, Abderrezak; Ferhat, M.; Bechstedt, F.

    2014-01-01

    We report results of first-principles calculations based on the projector augmented wave (PAW) method to explore the structural, thermodynamic, and electronic properties of cubic (3C) and hexagonal (6H, 4H, and 2H) polytypes of II-VI compounds: ZnS, ZnSe, and ZnTe. We find that the different bond stacking in II-VI polytypes remarkably influences the resulting physical properties. Furthermore, the degree of hexagonality is found to be useful to understand both the ground-state properties and the electronic structure of these compounds. The resulting lattice parameters, energetic stability, and characteristic band energies are in good agreement with available experimental data. Trends with hexagonality of the polytype are investigated.

  17. Polytypism in ZnS, ZnSe, and ZnTe: First-principles study

    KAUST Repository

    Boutaiba, F.

    2014-06-23

    We report results of first-principles calculations based on the projector augmented wave (PAW) method to explore the structural, thermodynamic, and electronic properties of cubic (3C) and hexagonal (6H, 4H, and 2H) polytypes of II-VI compounds: ZnS, ZnSe, and ZnTe. We find that the different bond stacking in II-VI polytypes remarkably influences the resulting physical properties. Furthermore, the degree of hexagonality is found to be useful to understand both the ground-state properties and the electronic structure of these compounds. The resulting lattice parameters, energetic stability, and characteristic band energies are in good agreement with available experimental data. Trends with hexagonality of the polytype are investigated.

  18. Lattice dynamics and thermal conductivity of lithium fluoride via first-principles calculations

    Science.gov (United States)

    Liang, Ting; Chen, Wen-Qi; Hu, Cui-E.; Chen, Xiang-Rong; Chen, Qi-Feng

    2018-04-01

    The lattice thermal conductivity of lithium fluoride (LiF) is accurately computed from a first-principles approach based on an iterative solution of the Boltzmann transport equation. Real-space finite-difference supercell approach is employed to generate the second- and third-order interatomic force constants. The related physical quantities of LiF are calculated by the second- and third- order potential interactions at 30 K-1000 K. The calculated lattice thermal conductivity 13.89 W/(m K) for LiF at room temperature agrees well with the experimental value, demonstrating that the parameter-free approach can furnish precise descriptions of the lattice thermal conductivity for this material. Besides, the Born effective charges, dielectric constants and phonon spectrum of LiF accord well with the existing data. The lattice thermal conductivities for the iterative solution of BTE are also presented.

  19. First-principle calculations on the structural and electronic properties of hard C11N4

    International Nuclear Information System (INIS)

    Li, Dongxu; Shi, Jiancheng; Lai, Mengling; Li, Rongkai; Yu, Dongli

    2014-01-01

    A graphite-like C 11 N 4 model was built by stacking graphene and a C 3 N 4 triazine layer and simulated by first principle calculations, which transfers to a diamond-like structure under high pressure. The structural, mechanical, and electronic properties of both materials were calculated. The elastic constants of both materials satisfy the Born-criterion. Furthermore, no imaginary frequencies were observed in phonon calculations. The diamond-like C 11 N 4 is semiconducting and consists of polyhedral and hollow C–N cages. The Vickers hardness of diamond-like C 11 N 4 was calculated to be 58 GPa. The phase transformation from graphite-like to diamond-like C 11 N 4 is proposed to occur at approximately 27.2 GPa based on the pressure-dependent enthalpy

  20. First-Principles Propagation of Geoelectric Fields from Ionosphere to Ground using LANLGeoRad

    Science.gov (United States)

    Jeffery, C. A.; Woodroffe, J. R.; Henderson, M. G.

    2017-12-01

    A notable deficiency in the current SW forecasting chain is the propagation of geoelectric fields from ionosphere to ground using Biot-Savart integrals, which ignore the localized complexity of lithospheric electrical conductivity and the relatively high conductivity of ocean water compared to the lithosphere. Three-dimensional models of Earth conductivity with mesoscale spatial resolution are being developed, but a new approach is needed to incorporate this information into the SW forecast chain. We present initial results from a first-principles geoelectric propagation model call LANLGeoRad, which solves Maxwell's equations on an unstructured geodesic grid. Challenges associated with the disparate response times of millisecond electromagnetic propagation and 10-second geomagnetic fluctuations are highlighted, and a novel rescaling of the ionosphere/ground system is presented that renders this geoelectric system computationally tractable.

  1. Electronic structures of N- and C-doped NiO from first-principles calculations

    International Nuclear Information System (INIS)

    Long, Run; English, Niall J.; Mooney, Damian A.

    2010-01-01

    The large intrinsic band gap of NiO has hindered severely its potential application under visible-light irradiation. In this Letter, we have performed first-principles calculations on the electronic properties of N- and C-doped NiO to ascertain if its band gap may be narrowed theoretically. It was found that impurity bands driven by N 2p or C 2p states appear in the band gap of NiO and that some of these locate at the conduction band minimum, which leads to a significant band gap narrowing. Our results show that N-doped NiO may serve as a potential photocatalyst relative to C-doped NiO, due to the presence of some recombination centres in C-doped NiO.

  2. Towards a mulitphase equation of state of Carbon from first principles

    Science.gov (United States)

    Correa, Alfredo; Benedict, Lorin; Schwegler, Eric

    2007-03-01

    Ab initio molecular dynamics and electronic structure calculation had become one of the most useful tools to investigate properties of materials. Unfortunately these atomistic detailed results are rarely reused in calculations at a higher level of description, such as fluid dynamics and finite elements calculations. In this talk we present a concrete example showing the way that first principles results can be expressed in a way that is useful for hydrodynamics calculations, in particular we show how to build a analytic equation of state for Carbon that involves solid (diamond and BC8) and liquid phases. Applications of this newly obtained equation of state will be presented. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.

  3. Elastic and thermal properties of silicon compounds from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Haijun; Zhu, H.J. [Yancheng Institute of Technology (China). School of Materials Engineering; Cheng, W.H. [Yancheng Institute of Technology (China). Dept. of Light Chemical Engineering; Xie, L.H. [Sichuan Normal Univ., Chengdu (China). Inst. of Solid State Physics and School of Physics and Electronic Engineering

    2016-11-01

    The structural and elastic properties of V-Si (V{sub 3}Si, VSi{sub 2}, V{sub 5}Si{sub 3}, and V{sub 6}Si{sub 5}) compounds are studied by using first-principles method. The calculated equilibrium lattice parameters and formation enthalpy are in good agreement with the available experimental data and other theoretical results. The calculated results indicate that the V-Si compounds are mechanically stable. Elastic properties including bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also obtained. The elastic anisotropies of V-Si compounds are investigated via the three-dimensional (3D) figures of directional dependences of reciprocals of Young's modulus. Finally, based on the quasi-harmonic Debye model, the internal energy, Helmholtz free energy, entropy, heat capacity, thermal expansion coefficient, Grueneisen parameter, and Debye temperature of V-Si compounds have been calculated.

  4. First-principles studies of PETN molecular crystal vibrational frequencies under high pressure

    Science.gov (United States)

    Perger, Warren; Zhao, Jijun

    2005-07-01

    The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The pressure-induced shift of the vibrational frequencies will be presented and compared with experiment. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used.

  5. A first-principles study of the electronic structure of the sulvanite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Osorio-Guillen, J.M., E-mail: jorge.osorio@fisica.udea.edu.co [Instituto de Fisica, Universidad de Antioquia, Medellin A.A. 1226 (Colombia); Espinosa-Garcia, W.F. [Instituto de Fisica, Universidad de Antioquia, Medellin A.A. 1226 (Colombia)

    2012-03-15

    We have investigated by means of first-principles total energy calculations the electronic structure of the sulvanite compounds: Cu{sub 3}VS{sub 4}, Cu{sub 3}NbS{sub 4} and Cu{sub 3}TaS{sub 4}; the later is a possible candidate as a p-type transparent conductor with potential applications in solar cells and electrochromic devices. The calculated electronic structure shows that these compounds are indirect band gap semiconductors, with the valence band maximum located at the R-point and the conduction band minimum located at the X-point. The character of the valence band maximum is dominated by Cu d-states and the character of the conduction band minimum is due to the d-states of the group five elements. From the calculated charge density and electron localisation function we can conclude that the sulvanite compounds are polar covalent semiconductors.

  6. First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals

    KAUST Repository

    Mei, Jun; Wu, Ying; Chan, C. T.; Zhang, Zhao-Qing

    2012-01-01

    By using the k•p method, we propose a first-principles theory to study the linear dispersions in phononic and photonic crystals. The theory reveals that only those linear dispersions created by doubly degenerate states can be described by a reduced Hamiltonian that can be mapped into the Dirac Hamiltonian and possess a Berry phase of -π. Linear dispersions created by triply degenerate states cannot be mapped into the Dirac Hamiltonian and carry no Berry phase, and, therefore should be called Dirac-like cones. Our theory is capable of predicting accurately the linear slopes of Dirac and Dirac-like cones at various symmetry points in a Brillouin zone, independent of frequency and lattice structure. © 2012 American Physical Society.

  7. Properties of half-Heusler compounds TaIrGe by using first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wei, JunHong [Henan Normal University, College of Physics and Information Engineering, Xinxiang, Henan (China); Henan Institute of Science and Technology, School of Mechanical and Electrical Engineering, Xinxiang, Henan (China); Wang, Guangtao [Henan Normal University, College of Physics and Information Engineering, Xinxiang, Henan (China)

    2017-05-15

    The electronic structures, optical and thermoelectric properties of ternary half-Heusler compound TaIrGe were investigated by using the first-principles and Boltzmann transport theory. Spin-orbit coupling (SOC) removed the degeneracy of VBM, and then decreased the Seebeck coefficients and power factor. From the compressive to tensile strain, the band gap gradually increases from 0.96 to 1.11 eV, accompanied by the absorption coefficient peak red-shift. The effective mass (m{sup *}{sub DOS}) of VBM and CBM gradually increases from the compressive to tensile strain, which enhances the Seebeck coefficient and power factor. Our results indicate that the electronic structures, optical and thermoelectric properties of TaIrGe can be effectively tuned by the strain and TaIrGe can be used as an important photoelectric and thermoelectric material in the future. (orig.)

  8. First-principles atomistic Wulff constructions for an equilibrium rutile TiO2 shape modeling

    Science.gov (United States)

    Jiang, Fengzhou; Yang, Lei; Zhou, Dali; He, Gang; Zhou, Jiabei; Wang, Fanhou; Chen, Zhi-Gang

    2018-04-01

    Identifying the exposed surfaces of rutile TiO2 crystal is crucial for its industry application and surface engineering. In this study, the shape of the rutile TiO2 was constructed by applying equilibrium thermodynamics of TiO2 crystals via first-principles density functional theory (DFT) and Wulff principles. From the DFT calculations, the surface energies of six low-index stoichiometric facets of TiO2 are determined after the calibrations of crystal structure. And then, combined surface energy calculations and Wulff principles, a geometric model of equilibrium rutile TiO2 is built up, which is coherent with the typical morphology of fully-developed equilibrium TiO2 crystal. This study provides fundamental theoretical guidance for the surface analysis and surface modification of the rutile TiO2-based materials from experimental research to industry manufacturing.

  9. First-principles study on electron transport properties of carbon-silicon mixed chains

    Science.gov (United States)

    Hu, Wei; Zhou, Qinghua; Liang, Yan; Liu, Wenhua; Wang, Tao; Wan, Haiqing

    2018-03-01

    In this paper, the transport properties of carbon-silicon mixed chains are studied by using the first-principles. We studied five atomic chain models. In these studies, we found that the equilibrium conductances of atomic chains appear to oscillate, the maximum conductance and the minimum conductance are more than twice the difference. Their I-V curves are linear and show the behavior of metal resistance, M5 system and M2 system current ratio is the largest in 0.9 V, which is 3.3, showing a good molecular switch behavior. In the case of bias, while the bias voltage increases, the transmission peaks move from the Fermi level. The resonance transmission peak height is reduced near the Fermi level. In the higher energy range, a large resonance transmission peak reappears, there is still no energy cut-off range.

  10. Novel phases of lithium-aluminum binaries from first-principles structural search

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento-Pérez, Rafael; Cerqueira, Tiago F. T.; Botti, Silvana; Marques, Miguel A. L., E-mail: marques@tddft.org [Institut Lumière Matière (UMR5306) and ETSF, Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex (France); Valencia-Jaime, Irais [Institut Lumière Matière (UMR5306) and ETSF, Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex (France); Centro de Investigación y Estudios Avanzados del IPN, MX-76230 Querétaro (Mexico); Amsler, Maximilian; Goedecker, Stefan [Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel (Switzerland); Romero, Aldo H. [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2015-01-14

    Intermetallic Li–Al compounds are on the one hand key materials for light-weight engineering, and on the other hand, they have been proposed for high-capacity electrodes for Li batteries. We determine from first-principles the phase diagram of Li–Al binary crystals using the minima hopping structural prediction method. Beside reproducing the experimentally reported phases (LiAl, Li{sub 3}Al{sub 2}, Li{sub 9}Al{sub 4}, LiAl{sub 3}, and Li{sub 2}Al), we unveil a structural variety larger than expected by discovering six unreported binary phases likely to be thermodynamically stable. Finally, we discuss the behavior of the elastic constants and of the electric potential profile of all Li–Al stable compounds as a function of their stoichiometry.

  11. A first-principles study on hydrogen in ZnS: Structure, stability and diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Xie, Sheng-Yi, E-mail: ayikongjian@gmail.com [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Meng, Xing, E-mail: mengxingjlu@163.com [College of Physics, Jilin University, Changchun 130012 (China)

    2015-02-20

    Based on first-principles calculations, the local structures and their energetic stability for impurity hydrogen (H) in semiconductor ZnS are investigated. H is most favorable to dwell in the bond center (BC) site in ZnS. The antibonding site of Zn (AB{sub Zn}) has close energy with BC. The antibonding site of S (AB{sub S}) and interstitial (I{sub H}) site have 0.19 eV and 0.44 eV energy cost, separately. The bond strength with S and Zn determines the stability of impurity H in ZnS. Meanwhile, H is highly moveable in ZnS. At the room temperature, H can overcome the barrier to diffuse through the neighboring BC site. - Highlights: • Local structures for hydrogen in ZnS are investigated. • Impurity level of hydrogen is modulated by bonding with S or Zn. • Hydrogen is highly moveable in ZnS.

  12. First-principles investigations of the physical properties of binary uranium silicide alloys

    International Nuclear Information System (INIS)

    Yang, Jin; Long, Jianping; Yang, Lijun; Li, Dongmei

    2013-01-01

    Graphical abstract: Total density of states for USi 2 . Display Omitted -- Abstract: The structural, elastic properties and the Debye temperature of binary Uranium Silicide (U-Si) alloys are investigated by using the first-principles plane-wave pseudopotential density function theory within the generalized gradient approximation (GGA). The ground states properties are found to agree with the available experimental data. The mechanical properties like shear modulus, Young’s modulus, Poisson’s ratio σ and ratio B/G are also calculated. Finally, The averaged sound velocity (v m ), the longitudinal sound velocity (v l ), transverse sound velocity (v t ) and the Debye temperature (θ D ) are obtained. However, the theoretical values are slightly different from few existed experiment data because the latter was obtained at room temperature while the former one at 0 K

  13. The Interface between Gd and Monolayer MoS2: A First-Principles Study

    KAUST Repository

    Zhang, Xuejing

    2014-12-08

    We analyze the electronic structure of interfaces between two-, four- and six-layer Gd(0001) and monolayer MoS2 by first-principles calculations. Strong chemical bonds shift the Fermi energy of MoS2 upwards into the conduction band. At the surface and interface the Gd f states shift to lower energy and new surface/interface Gd d states appear at the Fermi energy, which are strongly hybridized with the Mo 4d states and thus lead to a high spin-polarization (ferromagnetically ordered Mo magnetic moments of 0.15 μB). Gd therefore is an interesting candidate for spin injection into monolayer MoS2.

  14. Rectification effect about vacuum separating carbon nanotube bundle predicted by first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Min, Y., E-mail: minshiyi@gmail.com [School of Science, Nantong University, Nantong, Jiangsu, 226007 (China); Fang, J.H.; Zhong, C.G. [School of Science, Nantong University, Nantong, Jiangsu, 226007 (China); Yao, K.L. [School of Physics, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2012-05-07

    For the molecular spintronics transport systems, we propose that the spin current rectifier can be constructed using the nonmagnetic lead. The proposal is confirmed according to the first-principles study of the transport characteristics of a vacuum separating (15,0) carbon nanotube bundle where only one zigzag edge is hydrogenated. The strong rectification effect for spin (charge) current is obtained in the case of the magnetic parallel (anti-parallel) configuration of two zigzag edges. Our investigations indicate that such device can be used as the spin filter and the counterpart of the p–n junction in the field of molecular electronics. -- Highlights: ► We propose that nonmagnetic leads can construct spin current rectifier. ► We propose a spin diode and a filter using CNT. ► The spin and charge current all have the rectification effect in the one-dimensional spin diode.

  15. First-Principles Study of the Polar TiC/Ti Interface

    Institute of Scientific and Technical Information of China (English)

    Limin LIU; Shaoqing WANG; Hengqiang YE

    2003-01-01

    The interface structure, work of adhesion, and bonding character of the polar TiC/Ti interface have been examined by the first-principles density functional plane-wave pseudopotential calculations. Both Ti- and C-terminated interfaces including six different interface structures were calculated, which present quite different features. For the Ti-terminated interface, the interfacial Ti-Ti bond has a strong metallic and weak covalent character; while for the C-terminated interface, the interfacial bond is a strong polar covalent interaction between the Ti-3d and C-2p orbital.The work of adhesion of C-terminated interface is nearly 9 J/m2 stronger than that of the Ti-terminated. It is found that each termination has relatively large work of adhesion, which is consistent with other polar interfaces.

  16. First-principles study of Cu adsorption on vacancy-defected/Au-doped graphene

    Science.gov (United States)

    Liu, Yang; An, Libao; Gong, Liang

    2018-04-01

    To enhance the interaction between Cu and graphene in graphene reinforced Cu matrix composites, the first principles calculation was carried out to study the adsorption of Cu atoms on graphene. P-type doping and n-type doping were formed, respectively, on vacancy-defected and Au-doped graphene based on band structure analysis, and this was verified by subsequent investigation on density of states. A computation on charge transfer confirmed that p-type doping could promote the electron transport between Cu and graphene, while n-type doping would prevent it. In addition, adsorption energy and Mulliken population analysis revealed that both vacancy defects and Au doping could improve the stability of the Cu-graphene system. The research conducted in this paper provides useful guidance for the preparation of Cu/graphene composites.

  17. First-principles study of the effects of segregated Ga on an Al grain boundary

    International Nuclear Information System (INIS)

    Zhang Ying; Lu Guanghong; Wang Tianmin; Deng Shenghua; Shu Xiaolin; Kohyama, Masanori; Yamamoto, Ryoichi

    2006-01-01

    The effects of different amounts of segregated Ga (substitutional) on an Al grain boundary have been investigated by using a first-principles pseudopotential method. The segregated Ga is found to draw charge from the surrounding Al due to the electronegativity difference between Ga and Al, leading to a charge density reduction between Ga and Al as well as along the Al grain boundary. Such an effect can be enhanced by increasing the Ga segregation amount. With further Ga segregated, in addition to the charge-drawing effect that occurs in the Al-Ga interface, a heterogeneous α-Ga-like phase can form in the grain boundary, which greatly alters the boundary structure. These effects are suggested to be responsible for Ga-induced Al intergranular embrittlement

  18. First-principles studies of doped InTaO4 for photo catalytic applications

    International Nuclear Information System (INIS)

    Hyunju, Chang; Kijeong, Kong; Yong, Soo Choi; Youngmin, Choi; Jin-Ook, Baeg; Sang-Jin, Moon

    2006-01-01

    We have calculated electronic structure of InTaO 4 using first-principle method, in order to investigate the relationship between its electronic structures and visible light absorption. We have calculated densities of states (DOS) for various states of InTaO 4 , such as pristine, oxygen vacancy, Ni-doped, and A-doped (A = C, N, and S) states. We have found that oxygen vacancy can induce the gap states and Ni-doping can narrow the band gap by generating additional states on the top of the valence band as well as on the top of the gap states. For A-doped states, it was found that N-doping and S-doping could narrow the pristine band gap inducing the additional states above the pristine valence band, while C-doping can generate the gap states in the middle of the pristine band gap. (authors)

  19. First-principles studies of doped InTaO{sub 4} for photo catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Hyunju, Chang; Kijeong, Kong; Yong, Soo Choi; Youngmin, Choi; Jin-Ook, Baeg; Sang-Jin, Moon [Korea Research Institute of Chemical Technology, Daejeon, (Korea, Republic of)

    2006-05-15

    We have calculated electronic structure of InTaO{sub 4} using first-principle method, in order to investigate the relationship between its electronic structures and visible light absorption. We have calculated densities of states (DOS) for various states of InTaO{sub 4}, such as pristine, oxygen vacancy, Ni-doped, and A-doped (A = C, N, and S) states. We have found that oxygen vacancy can induce the gap states and Ni-doping can narrow the band gap by generating additional states on the top of the valence band as well as on the top of the gap states. For A-doped states, it was found that N-doping and S-doping could narrow the pristine band gap inducing the additional states above the pristine valence band, while C-doping can generate the gap states in the middle of the pristine band gap. (authors)

  20. Structural and electronic properties of LaPd2As2 superconductor: First-principle calculations

    Science.gov (United States)

    Singh, Birender; Kumar, Pradeep

    2017-05-01

    In present work we have studied electronic and structural properties of superconducting LaPd2As2 compound having collapsed tetragonal structure using first-principle calculations. The band structure calculations show that the LaPd2As2 is metallic consistent with the reported experimental observation, and the density of states plots clearly shows that at the Fermi level major contribution to density of states arises from Pd 4d and As 4p states, unlike the Fe-based superconductors where major contribution at the Fermi level comes from Fe 3d states. The estimated value of electron-phonon coupling is found to be 0.37, which gives the upper bound of superconducting transition temperature of 5K, suggesting the conventional nature of this superconductor.

  1. Nanoparticle shapes by using Wulff constructions and first-principles calculations

    Directory of Open Access Journals (Sweden)

    Georgios D. Barmparis

    2015-02-01

    Full Text Available Background: The majority of complex and advanced materials contain nanoparticles. The properties of these materials depend crucially on the size and shape of these nanoparticles. Wulff construction offers a simple method of predicting the equilibrium shape of nanoparticles given the surface energies of the material.Results: We review the mathematical formulation and the main applications of Wulff construction during the last two decades. We then focus to three recent extensions: active sites of metal nanoparticles for heterogeneous catalysis, ligand-protected nanoparticles generated as colloidal suspensions and nanoparticles of complex metal hydrides for hydrogen storage.Conclusion: Wulff construction, in particular when linked to first-principles calculations, is a powerful tool for the analysis and prediction of the shapes of nanoparticles and tailor the properties of shape-inducing species.

  2. Nano-sized graphene flakes: insights from experimental synthesis and first principles calculations.

    Science.gov (United States)

    Lin, Pin-Chun; Chen, Yi-Rui; Hsu, Kuei-Ting; Lin, Tzu-Neng; Tung, Kuo-Lun; Shen, Ji-Lin; Liu, Wei-Ren

    2017-03-01

    In this study, we proposed a cost-effective method for preparing graphene nano-flakes (GNFs) derived from carbon nanotubes (CNTs) via three steps (pressing, homogenization and sonication exfoliation processes). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), laser scattering, as well as ultraviolet-visible and photoluminescence (PL) measurements were carried out. The results indicated that the size of as-synthesized GNFs was approximately 40-50 nm. Furthermore, we also used first principles calculations to understand the transformation from CNTs to GNFs from the viewpoints of the edge formation energies of GNFs in different shapes and sizes. The corresponding photoluminescence measurements of GNFs were carried out in this work.

  3. First Principles Modeling and Interpretation of Ionization-Triggered Charge Migration in Molecules

    Science.gov (United States)

    Bruner, Adam; Hernandez, Sam; Mauger, Francois; Abanador, Paul; Gaarde, Mette; Schafer, Ken; Lopata, Ken

    Modeling attosecond coherent charge migration in molecules is important for understanding initial steps of photochemistry and light harvesting processes. Ionization triggered hole migration can be difficult to characterize and interpret as the dynamics can be convoluted with excited states. Here, we introduce a real-time time-dependent density functional theory (RT-TDDFT) approach for modeling such dynamics from first principles. To isolate the specific hole dynamics from excited states, Fourier transform analysis and orbital occupations are used to provide a spatial hole representation in the frequency domain. These techniques are applied to hole transfer across a thiophene dimer as well as core-hole triggered valence motion in nitrosobenzene. This work was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award No. DE-SC0012462.

  4. Promising half-metallicity in ductile NbF3: a first-principles prediction.

    Science.gov (United States)

    Yang, Bo; Wang, Junru; Liu, Xiaobiao; Zhao, Mingwen

    2018-02-14

    Materials with half-metallicity are long desired in spintronics. Using first-principles calculations, we predicted that the already-synthesized NbF 3 crystal is a promising half-metal with a large exchange splitting and stable ferromagnetism. The mechanical stability, ductility and softness of the NbF 3 crystal were confirmed by its elastic constants and moduli. The Curie temperature (T C = 120 K) estimated from the Monte Carlo simulations based on the 3D Ising model is above the liquid nitrogen temperature (78 K). The ferromagnetism and half-metallicity can be preserved on the surfaces of NbF 3 . The NbOF 2 formed by substituting F with O atoms, however, has an antiferromagnetic ground state and a normal metallic band structure. This work opens an avenue for half-metallic materials and may find applications in spintronic devices.

  5. First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals

    KAUST Repository

    Mei, Jun

    2012-07-24

    By using the k•p method, we propose a first-principles theory to study the linear dispersions in phononic and photonic crystals. The theory reveals that only those linear dispersions created by doubly degenerate states can be described by a reduced Hamiltonian that can be mapped into the Dirac Hamiltonian and possess a Berry phase of -π. Linear dispersions created by triply degenerate states cannot be mapped into the Dirac Hamiltonian and carry no Berry phase, and, therefore should be called Dirac-like cones. Our theory is capable of predicting accurately the linear slopes of Dirac and Dirac-like cones at various symmetry points in a Brillouin zone, independent of frequency and lattice structure. © 2012 American Physical Society.

  6. Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires

    KAUST Repository

    Deng, Rui; Zhou, Hang; Li, Yong-Feng; Wu, Tao; Yao, Bin; Qin, Jie-Ming; Wan, Yu-Chun; Jiang, Da-Yong; Liang, Qing-Cheng; Liu, Lei

    2013-01-01

    Room temperature ferromagnetism was observed in Mn-doped zinc stannate (ZTO:Mn) nanowires, which were prepared by chemical vapor transport. Structural and magnetic properties and Mn chemical states of ZTO:Mn nanowires were investigated by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometry and X-ray photoelectron spectroscopy. Manganese predominantly existed as Mn2+ and substituted for Zn (Mn Zn) in ZTO:Mn. This conclusion was supported by first-principles calculations. MnZn in ZTO:Mn had a lower formation energy than that of Mn substituted for Sn (MnSn). The nearest neighbor MnZn in ZTO stabilized ferromagnetic coupling. This observation supported the experimental results. © 2013 AIP Publishing LLC.

  7. Detection of nucleic acids by graphene-based devices: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hua [School of Physics and Electronics, Central South University, Changsha 410083 (China); School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Xu, Hui, E-mail: xuhui@csu.edu.cn, E-mail: ouyangfp06@tsinghua.org.cn; Ni, Xiang; Lin Peng, Sheng; Liu, Qi; Ping OuYang, Fang, E-mail: xuhui@csu.edu.cn, E-mail: ouyangfp06@tsinghua.org.cn [School of Physics and Electronics, Central South University, Changsha 410083 (China)

    2014-04-07

    Based on first-principles quantum transport calculations, we design a graphene-based biosensor device, which is composed of graphene nanoribbons electrodes and a biomolecule. It is found that when different nucleobases or poly nucleobase chains are located in the nanogap, the device presents completely different transport properties, showing different current informations. And the change of currents from 2 to 5 orders of magnitude for four different nucleobases suggests a great ability of discrimination by utilizing such a device. The physical mechanism of this phenomenon originates from their different chemical composition and structure. Moreover, we also explore the coupling effect of several neighboring bases and the size effect of the nanogap on transport properties. Our results show the possibility of rapid sequencing DNA by measuring such a transverse-current of the device, and provide a new idea for sequencing DNA.

  8. Glass polymorphism in amorphous germanium probed by first-principles computer simulations

    Science.gov (United States)

    Mancini, G.; Celino, M.; Iesari, F.; Di Cicco, A.

    2016-01-01

    The low-density (LDA) to high-density (HDA) transformation in amorphous Ge at high pressure is studied by first-principles molecular dynamics simulations in the framework of density functional theory. Previous experiments are accurately reproduced, including the presence of a well-defined LDA-HDA transition above 8 GPa. The LDA-HDA density increase is found to be about 14%. Pair and bond-angle distributions are obtained in the 0-16 GPa pressure range and allowed us a detailed analysis of the transition. The local fourfold coordination is transformed in an average HDA sixfold coordination associated with different local geometries as confirmed by coordination number analysis and shape of the bond-angle distributions.

  9. First principles design of a core bioenergetic transmembrane electron-transfer protein

    Energy Technology Data Exchange (ETDEWEB)

    Goparaju, Geetha; Fry, Bryan A.; Chobot, Sarah E.; Wiedman, Gregory; Moser, Christopher C.; Leslie Dutton, P.; Discher, Bohdana M.

    2016-05-01

    Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics — the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  10. Corrosion Thermodynamics of Magnesium and Alloys from First Principles as a Function of Solvation

    Science.gov (United States)

    Limmer, Krista; Williams, Kristen; Andzelm, Jan

    Thermodynamics of corrosion processes occurring on magnesium surfaces, such as hydrogen evolution and water dissociation, have been examined with density functional theory (DFT) to evaluate the effect of impurities and dilute alloying additions. The modeling of corrosion thermodynamics requires examination of species in a variety of chemical and electronic states in order to accurately represent the complex electrochemical corrosion process. In this study, DFT calculations for magnesium corrosion thermodynamics were performed with two DFT codes (VASP and DMol3), with multiple exchange-correlation functionals for chemical accuracy, as well as with various levels of implicit and explicit solvation for surfaces and solvated ions. The accuracy of the first principles calculations has been validated against Pourbaix diagrams constructed from solid, gas and solvated charged ion calculations. For aqueous corrosion, it is shown that a well parameterized implicit solvent is capable of accurately representing all but the first coordinating layer of explicit water for charged ions.

  11. Phase Transition and Thermodynamics of Ruthenium Diboride via First-Principles Calculations

    International Nuclear Information System (INIS)

    Fen, Luo; Yan, Cheng; Xiang-Rong, Chen; Guang-Fu, Ji

    2009-01-01

    The pressure induced phase transitions of RuB 2 from the OsB 2 -type structure to the ReB 2 -type structure are investigated by first-principles calculations based on the plane-wave basis set with the generalized gradient approximation for exchange and correlation. It is found that the phase transition occurs at 18.6 GPa. We predict the phase transition from the OsB 2 -type RuB 2 to the ReB 2 -type RuB 2 at high temperatures for the first time. The dependences of the heat capacity, thermal expansion coefficient, and the Grüneisen parameter on pressure and temperature for OsB 2 -type RuB 2 and ReB 2 -type RuB 2 are also investigated

  12. Pressure induced structural phase transition of OsB 2: First-principles calculations

    Science.gov (United States)

    Ren, Fengzhu; Wang, Yuanxu; Lo, V. C.

    2010-04-01

    Orthorhombic OsB 2 was synthesized at 1000 °C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2. An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3/ mmc structure (high-pressure phase) is stable for OsB 2. We expect the phase transition can be further confirmed by the experimental work.

  13. First-principles study of hydrogen diffusion in transition metal Rhodium

    International Nuclear Information System (INIS)

    Bao, Wulijibilige; Cui, Xin; Wang, Zhi-Ping

    2015-01-01

    In this study, the diffuse pattern and path of hydrogen in transition metal rhodium are investigated by the first-principles calculations. Density functional theory is used to calculate the system energies of hydrogen atom occupying different positions in rhodium crystal lattice. The results indicate that the most stable position of hydrogen atom in rhodium crystal lattice locates at the octahedral interstice, and the tetrahedral interstice is the second stable site. The activation barrier energy for the diffusion of atomic hydrogen in transition metal rhodium is quantified by determining the most favorable path, i.e., the minimum-energy pathway for diffusion, that is the indirect octahedral-tetrahedral-octahedral (O-T-O) pathway, and the activation energy is 0.8345eV

  14. Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation

    Science.gov (United States)

    Yorulmaz, Uğur; Özden, Ayberk; Perkgöz, Nihan K.; Ay, Feridun; Sevik, Cem

    2016-08-01

    MXenes, carbides, nitrides and carbonitrides of early transition metals are the new members of two dimensional materials family given with a formula of {{{M}}}n+1 X n . Recent advances in chemical exfoliation and CVD growth of these crystals together with their promising performance in electrochemical energy storage systems have triggered the interest in these two dimensional structures. In this work, we employ first principles calculations for n = 1 structures of Sc, Ti, Zr, Mo and Hf pristine MXenes and their fully surface terminated forms with F and O. We systematically investigated the dynamical and mechanical stability of both pristine and fully terminated MXene structures to determine the possible MXene candidates for experimental realization. In conjunction with an extensive stability analysis, we report Raman and infrared active mode frequencies for the first time, providing indispensable information for the experimental elaboration of MXene field. After determining dynamically stable MXenes, we provide their phonon dispersion relations, electronic and mechanical properties.

  15. Elasticity, electronic properties and hardness of MoC investigated by first principles calculations

    International Nuclear Information System (INIS)

    Liu, YangZhen; Jiang, YeHua; Feng, Jing; Zhou, Rong

    2013-01-01

    The crystal structure, cohesive energy, formation enthalpy, mechanical anisotropy, electronic properties and hardness of α−MoC, β−MoC and γ−MoC are investigated by the first-principles calculations. The elastic constants and the bulk moduli, shear moduli, Young's moduli are calculated. The Young's modulus values of α−MoC, β−MoC and γ−MoC are 395.6 GPa, 551.2 GPa and 399.5 GPa, respectively. The surface constructions of Young's moduli identify the mechanical anisotropy of molybdenum carbide, and the results show that anisotropy of α−MoC is stronger than others. The electronic structure indicates that the bonding behaviors of MoC are the combinations of covalent and metallic bonds. The hardness of β−MoC is obviously higher than those of α−MoC and γ−MoC

  16. Thermal conductivities of phosphorene allotropes from first-principles calculations: a comparative study.

    Science.gov (United States)

    Zhang, J; Liu, H J; Cheng, L; Wei, J; Liang, J H; Fan, D D; Jiang, P H; Shi, J

    2017-07-04

    Phosphorene has attracted tremendous interest recently due to its intriguing electronic properties. However, the thermal transport properties of phosphorene, especially for its allotropes, are still not well-understood. In this work, we calculate the thermal conductivities of five phosphorene allotropes (α-, β-, γ-, δ- and ζ-phase) by using phonon Boltzmann transport theory combined with first-principles calculations. It is found that the α-phosphorene exhibits considerable anisotropic thermal transport, while it is less obvious in the other four phosphorene allotropes. The highest thermal conductivity is found in the β-phosphorene, followed by the δ-, γ- and ζ-phase. The much lower thermal conductivity of the ζ-phase can be attributed to its relatively complex atomic configuration. It is expected that the rich thermal transport properties of phosphorene allotropes can have potential applications in the thermoelectrics and thermal management.

  17. First-principles study on electronic structures and magnetic properties of Eu-doped phosphorene

    Science.gov (United States)

    Luan, Zhaohui; Zhao, Lei; Chang, Hao; Sun, Dan; Tan, Changlong; Huang, Yuewu

    2017-11-01

    The structural, electronic and magnetic properties of Eu-doped phosphorene with different doping concentrations were investigated by first-principles calculations for the first time. The calculations show that Eu-doped phosphorene systems are stable and have the large magnetic moments of more than 6 μB by 2.7, 6.25 and 12.5 at.% doping concentrations. The major contribution to the magnetic moment stems from the 4f states of Eu-doped atom. Meanwhile, Eu-doped atom introduces the impurity bands which can be changed by different doping concentrations. In order to determine the magnetic interaction, the different configurations for two Eu atoms doping in 3 × 3 × 1 phosphorene supercell were studied, which reveals that all of the configurations tend to form ferromagnetic. These results can provide references for inducing large magnetism of two-dimensional phosphorene, which are valuable for their applications in spintronic devices and novel semiconductor materials.

  18. Anomalous doping effect in black phosphorene using first-principles calculations.

    Science.gov (United States)

    Yu, Weiyang; Zhu, Zhili; Niu, Chun-Yao; Li, Chong; Cho, Jun-Hyung; Jia, Yu

    2015-07-07

    Using first-principles density functional theory calculations, we investigate the geometries, electronic structures, and thermodynamic stabilities of substitutionally doped phosphorene sheets with group III, IV, V, and VI elements. We find that the electronic properties of phosphorene are drastically modified by the number of valence electrons in dopant atoms. The dopants with an even number of valence electrons enable the doped phosphorenes to have a metallic feature, while the dopants with an odd number of valence electrons retain a semiconducting feature. This even-odd oscillating behavior is attributed to the peculiar bonding characteristics of phosphorene and the strong hybridization of sp orbitals between dopants and phosphorene. Furthermore, the calculated formation energies of various substitutional dopants in phosphorene show that such doped systems can be thermodynamically stable. These results propose an intriguing route to tune the transport properties of electronic and photoelectronic devices based on phosphorene.

  19. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation

    Science.gov (United States)

    Hu, Xue-Rong; Zheng, Ji-Ming; Ren, Zhao-Yu

    2018-04-01

    Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.

  20. A theoretical study of blue phosphorene nanoribbons based on first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jiafeng; Si, M. S., E-mail: sims@lzu.edu.cn; Yang, D. Z.; Zhang, Z. Y.; Xue, D. S. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2014-08-21

    Based on first-principles calculations, we present a quantum confinement mechanism for the band gaps of blue phosphorene nanoribbons (BPNRs) as a function of their widths. The BPNRs considered have either armchair or zigzag shaped edges on both sides with hydrogen saturation. Both the two types of nanoribbons are shown to be indirect semiconductors. An enhanced energy gap of around 1 eV can be realized when the ribbon's width decreases to ∼10 Å. The underlying physics is ascribed to the quantum confinement effect. More importantly, the parameters to describe quantum confinement are obtained by fitting the calculated band gaps with respect to their widths. The results show that the quantum confinement in armchair nanoribbons is stronger than that in zigzag ones. This study provides an efficient approach to tune the band gap in BPNRs.

  1. A first-principles study of sodium adsorption and diffusion on phosphorene.

    Science.gov (United States)

    Liu, Xiao; Wen, Yanwei; Chen, Zhengzheng; Shan, Bin; Chen, Rong

    2015-07-07

    The structural, electronic, electrochemical as well as diffusion properties of Na doped phosphorene have been investigated based on first-principles calculations. The strong binding energy between Na and phosphorene indicates that Na could be stabilized on the surface of phosphorene without clustering. By comparing the adsorption of Na atoms on one side and on both sides of phosphorene, it has been found that Na-Na exhibits strong repulsion at the Na-Na distance of less than 4.35 Å. The Na intercalation capacity is estimated to be 324 mA h g(-1) and the calculated discharge curve indicates quite a low Na(+)/Na voltage of phosphorene. Moreover, the diffusion energy barrier of Na atoms on the phosphorene surface at both low and high Na concentrations is as low as 40-63 meV, which implies the high mobility of Na during the charge/discharge process.

  2. Effect of stacking faults on the magnetocrystalline anisotropy of hcp Co: a first-principles study.

    Science.gov (United States)

    Aas, C J; Szunyogh, L; Evans, R F L; Chantrell, R W

    2013-07-24

    In terms of the fully relativistic screened Korringa-Kohn-Rostoker method we investigate the effect of stacking faults on the magnetic properties of hexagonal close-packed (hcp) cobalt. In particular, we consider the formation energy and the effect on the magnetocrystalline anisotropy energy (MAE) of four different stacking faults in hcp cobalt-an intrinsic growth fault, an intrinsic deformation fault, an extrinsic fault and a twin-like fault. We find that the intrinsic growth fault has the lowest formation energy, in good agreement with previous first-principles calculations. With the exception of the intrinsic deformation fault which has a positive impact on the MAE, we find that the presence of a stacking fault generally reduces the MAE of bulk Co. Finally, we consider a pair of intrinsic growth faults and find that their effect on the MAE is not additive, but synergic.

  3. Introduction to First-Principles Electronic Structure Methods: Application to Actinide Materials

    International Nuclear Information System (INIS)

    Klepeis, J E

    2006-01-01

    This paper provides an introduction for non-experts to first-principles electronic structure methods that are widely used in condensed-matter physics. Particular emphasis is placed on giving the appropriate background information needed to better appreciate the use of these methods to study actinide and other materials. Specifically, I describe the underlying theory sufficiently to enable an understanding of the relative strengths and weaknesses of the methods. I also explain the meaning of commonly used terminology, including density functional theory (DFT), local density approximation (LDA), and generalized gradient approximation (GGA), as well as linear muffin-tin orbital (LMTO), linear augmented plane wave (LAPW), and pseudopotential methods. I also briefly discuss methodologies that extend the basic theory to address specific limitations. Finally, I describe a few illustrative applications, including quantum molecular dynamics (QMD) simulations and studies of surfaces, impurities, and defects. I conclude by addressing the current controversy regarding magnetic calculations for actinide materials

  4. Thermal conductivity of hexagonal Si and hexagonal Si nanowires from first-principles

    Science.gov (United States)

    Raya-Moreno, Martí; Aramberri, Hugo; Seijas-Bellido, Juan Antonio; Cartoixà, Xavier; Rurali, Riccardo

    2017-07-01

    We calculate the thermal conductivity, κ, of the recently synthesized hexagonal diamond (lonsdaleite) Si using first-principles calculations and solving the Boltzmann Transport Equation. We find values of κ which are around 40% lower than in the common cubic diamond polytype of Si. The trend is similar for [111] Si nanowires, with reductions of the thermal conductivity that are even larger than in the bulk in some diameter range. The Raman active modes are identified, and the role of mid-frequency optical phonons that arise as a consequence of the reduced symmetry of the hexagonal lattice is discussed. We also show briefly that popular classic potentials used in molecular dynamics might not be suited to describe hexagonal polytypes, discussing the case of the Tersoff potential.

  5. First-Principles Definition and Measurement of Planetary Electromagnetic-Energy Budget

    Science.gov (United States)

    Mishchenko, Michael I.; Lock, James A.; Lacis, Andrew A.; Travis, Larry D.; Cairns, Brian

    2016-01-01

    The imperative to quantify the Earths electromagnetic-energy budget with an extremely high accuracy has been widely recognized but has never been formulated in the framework of fundamental physics. In this paper we give a first-principles definition of the planetary electromagnetic-energy budget using the Poynting- vector formalism and discuss how it can, in principle, be measured. Our derivation is based on an absolute minimum of theoretical assumptions, is free of outdated notions of phenomenological radiometry, and naturally leads to the conceptual formulation of an instrument called the double hemispherical cavity radiometer (DHCR). The practical measurement of the planetary energy budget would require flying a constellation of several dozen planet-orbiting satellites hosting identical well-calibrated DHCRs.

  6. Point defect thermodynamics and diffusion in Fe3C: A first-principles study

    International Nuclear Information System (INIS)

    Chao Jiang; Uberuaga, B.P.; Srinivasan, S.G.

    2008-01-01

    The point defect structure of cementite (Fe 3 C) is investigated using a combination of the statistical mechanical Wagner-Schottky model and first-principles calculations within the generalized gradient approximation. Large 128-atom supercells are employed to obtain fully converged point defect formation energies. The present study unambiguously shows that carbon vacancies and octahedral carbon interstitials are the structural defects in C-depleted and C-rich cementite, respectively. The dominant thermal defects in C-depleted and stoichiometric cementite are found to be carbon Frenkel pairs. In C-rich cementite, however, the primary thermal excitations are strongly temperature-dependent: interbranch, Schottky and Frenkel defects dominate successively with increasing temperature. Using the nudged elastic band technique, the migration barriers of major point defects in cementite are also determined and compared with available experiments in the literature

  7. First-principles method for electron-phonon coupling and electron mobility

    DEFF Research Database (Denmark)

    Gunst, Tue; Markussen, Troels; Stokbro, Kurt

    2016-01-01

    We present density functional theory calculations of the phonon-limited mobility in n-type monolayer graphene, silicene, and MoS2. The material properties, including the electron-phonon interaction, are calculated from first principles. We provide a detailed description of the normalized full......-band relaxation time approximation for the linearized Boltzmann transport equation (BTE) that includes inelastic scattering processes. The bulk electron-phonon coupling is evaluated by a supercell method. The method employed is fully numerical and does therefore not require a semianalytic treatment of part...... of the problem and, importantly, it keeps the anisotropy information stored in the coupling as well as the band structure. In addition, we perform calculations of the low-field mobility and its dependence on carrier density and temperature to obtain a better understanding of transport in graphene, silicene...

  8. First-principles calculations of the thermodynamic properties of transuranium elements in a molten salt medium

    International Nuclear Information System (INIS)

    Noh, Seunghyo; Kwak, Dohyun; Lee, Juseung; Kang, Joonhee; Han, Byungchan

    2014-01-01

    We utilized first-principles density-functional-theory (DFT) calculations to evaluate the thermodynamic feasibility of a pyroprocessing methodology for reducing the volume of high-level radioactive materials and recycling spent nuclear fuels. The thermodynamic properties of transuranium elements (Pu, Np and Cm) were obtained in electrochemical equilibrium with a LiCl-KCl molten salt as ionic phases and as adsorbates on a W(110) surface. To accomplish the goal, we rigorously calculated the double layer interface structures on an atomic resolution, on the thermodynamically most stable configurations on W(110) surfaces and the chemical activities of the transuranium elements for various coverages of those elements. Our results indicated that the electrodeposition process was very sensitive to the atomic level structures of Cl ions at the double-layer interface. Our studies are easily expandable to general electrochemical applications involving strong redox reactions of transition metals in non-aqueous solutions.

  9. All-phosphorus flexible devices with non-collinear electrodes: a first principles study.

    Science.gov (United States)

    Li, Junjun; Ruan, Lufeng; Wu, Zewen; Zhang, Guiling; Wang, Yin

    2018-03-07

    With the continuous expansion of the family of two-dimensional (2D) materials, flexible electronics based on 2D materials have quickly emerged. Theoretically, predicting the transport properties of the flexible devices made up of 2D materials using first principles is of great importance. Using density functional theory combined with the non-equilibrium Green's function formalism, we calculated the transport properties of all-phosphorus flexible devices with non-collinear electrodes, and the results predicted that the device with compressed metallic phosphorene electrodes sandwiching a P-type semiconducting phosphorene shows a better and robust conducting behavior against the bending of the semiconducting region when the angle between the two electrodes is less than 45°, which indicates that this system is very promising for flexible electronics. The calculation of a quantum transport system with non-collinear electrodes demonstrated in this work will provide more interesting information on mesoscopic material systems and related devices.

  10. Core structure of screw dislocations in Fe from first-principles

    International Nuclear Information System (INIS)

    Ventelon, L.

    2008-11-01

    The various methods appropriate for the simulation of dislocations within first-principles calculations have been set up, improved and compared between them. They have been applied to study screw dislocations in body-centered cubic iron using the SIESTA code. A non-degenerate core structure is obtained; its detailed analysis reveals a dilatation effect. Taking it into account in an anisotropic elasticity model, allows explaining the cell-size dependence of the energetics, obtained within the dipole approach. The Peierls potential obtained in ab initio suggests that the metastable core configuration at halfway position in the Peierls barrier, predicted by empirical potential, does not exist. We show how to construct tri-periodic cells optimized to study kinked dislocations. Using empirical potential, we demonstrate the feasibility of ab initio calculations of Peierls stress and kink formation. (author)

  11. Adsorption configuration of magnesium on wurtzite gallium nitride surface using first-principles calculations

    International Nuclear Information System (INIS)

    Yan Han; Gan Zhiyin; Song Xiaohui; Chen Zhaohui; Xu Jingping; Liu Sheng

    2009-01-01

    First-principles calculations of magnesium adsorption at the Ga-terminated and N-terminated {0 0 0 1} basal plane wurtzite gallium nitride surfaces have been carried out to explain the atomic-scale insight into the initial adsorption processes of magnesium doping in gallium nitride. The results reveal that magnesium adsorption on N-terminated surfaces is preferred than that on Ga-terminated surfaces. Furthermore, the surface diffusivity of magnesium atom on the N-terminated surface is much lower than that on the Ga-terminated surface, which is due to both the larger average adsorption energies and the lower adsorption distance on N-terminated surface than that on Ga-terminated surface. The results indicate that the p-type doping on the Ga-terminated surface will be better distributed than that on the N-terminated surface.

  12. First-principles prediction of shape memory behavior and ferrimagnetism in Mn2NiSn

    International Nuclear Information System (INIS)

    Paul, Souvik; Ghosh, Subhradip

    2011-01-01

    Using first-principles density functional theory, we show that, in Mn 2 NiSn, an energy lowering phase transition from the cubic to tetragonal phase occurs which indicates a martensitic phase transition. This structural phase transition is nearly volume-conserving, implying that this alloy can exhibit shape memory behavior. The magnetic ground state is a ferrimagnetic one with antiparallel Mn spin moments. The calculated moments with different electronic structure methods in the cubic phase compare well with each other but differ from the experimental values by more than 1 μ B . The reason behind this discrepancy is explored by considering antisite disorder in our calculations, which indicates that the site ordering in this alloy can be quite complex.

  13. Pushing the frontiers of first-principles based computer simulations of chemical and biological systems.

    Science.gov (United States)

    Brunk, Elizabeth; Ashari, Negar; Athri, Prashanth; Campomanes, Pablo; de Carvalho, F Franco; Curchod, Basile F E; Diamantis, Polydefkis; Doemer, Manuel; Garrec, Julian; Laktionov, Andrey; Micciarelli, Marco; Neri, Marilisa; Palermo, Giulia; Penfold, Thomas J; Vanni, Stefano; Tavernelli, Ivano; Rothlisberger, Ursula

    2011-01-01

    The Laboratory of Computational Chemistry and Biochemistry is active in the development and application of first-principles based simulations of complex chemical and biochemical phenomena. Here, we review some of our recent efforts in extending these methods to larger systems, longer time scales and increased accuracies. Their versatility is illustrated with a diverse range of applications, ranging from the determination of the gas phase structure of the cyclic decapeptide gramicidin S, to the study of G protein coupled receptors, the interaction of transition metal based anti-cancer agents with protein targets, the mechanism of action of DNA repair enzymes, the role of metal ions in neurodegenerative diseases and the computational design of dye-sensitized solar cells. Many of these projects are done in collaboration with experimental groups from the Institute of Chemical Sciences and Engineering (ISIC) at the EPFL.

  14. Quantum Chemistry of Solids The LCAO First Principles Treatment of Crystals

    CERN Document Server

    Evarestov, Robert A

    2007-01-01

    Quantum Chemistry of Solids delivers a comprehensive account of the main features and possibilities of LCAO methods for the first principles calculations of electronic structure of periodic systems. The first part describes the basic theory underlying the LCAO methods applied to periodic systems and the use of wave-function-based (Hartree-Fock), density-based (DFT) and hybrid hamiltonians. The translation and site symmetry consideration is included to establish connection between k-space solid-state physics and real-space quantum chemistry methods in the framework of cyclic model of an infinite crystal. The inclusion of electron correlation effects for periodic systems is considered on the basis of localized crystalline orbitals. The possibilities of LCAO methods for chemical bonding analysis in periodic systems are discussed. The second part deals with the applications of LCAO methods for calculations of bulk crystal properties, including magnetic ordering and crystal structure optimization. The discussion o...

  15. Wobbled electronic properties of lithium clusters: Deterministic approach through first principles

    Science.gov (United States)

    Kushwaha, Anoop Kumar; Nayak, Saroj Kumar

    2018-03-01

    The innate tendency to form dendritic growth promoted through cluster formation leading to the failure of a Li-ion battery system have drawn significant attention of the researchers towards the effective destabilization of the cluster growth through selective implementation of electrolytic media such as acetonitrile (MeCN). In the present work, using first principles density functional theory and continuum dielectric model, we have investigated the origin of oscillatory nature of binding energy per atom of Lin (n ≤ 8) under the influence of MeCN. In the gas phase, we found that static mean polarizability is strongly correlated with binding energy and shows oscillatory nature with cluster size due to the open shell of Lin cluster. However, in acetonitrile medium, the binding energy has been correlated with electrostatic Lin -MeCN interaction and it has been found that both of them possess wobbled behavior characterized by the cluster size.

  16. First principles and phonon calculations of ZrCo and ZrCo-H systems

    International Nuclear Information System (INIS)

    Chattaraj, D.; Parida, S.C.; Dash, Smruti; Majumder, C.

    2012-01-01

    The intermetallic ZrCo is a potential material for the storage and release of hydrogen isotopes because of its high gravimetric capacity and its low hydrogen equilibrium pressure. This intermetallic is a proposed material for the safe storage, supply and delivery of hydrogen isotope in the ITER project. To investigate the suitability of ZrCo as a getter material for the storage of hydrogen isotope it is essential to know in detail the structure-property relationships in both ZrCo and its hydride. Hence, in this study, we have investigated the structural, electronic, vibrational and thermodynamic properties of ZrCo and ZrCoH 3 using the first principles and phonon calculations

  17. Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires

    KAUST Repository

    Deng, Rui

    2013-07-17

    Room temperature ferromagnetism was observed in Mn-doped zinc stannate (ZTO:Mn) nanowires, which were prepared by chemical vapor transport. Structural and magnetic properties and Mn chemical states of ZTO:Mn nanowires were investigated by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometry and X-ray photoelectron spectroscopy. Manganese predominantly existed as Mn2+ and substituted for Zn (Mn Zn) in ZTO:Mn. This conclusion was supported by first-principles calculations. MnZn in ZTO:Mn had a lower formation energy than that of Mn substituted for Sn (MnSn). The nearest neighbor MnZn in ZTO stabilized ferromagnetic coupling. This observation supported the experimental results. © 2013 AIP Publishing LLC.

  18. The elastic and thermodynamic properties of ZrMo2 from first principles calculations

    International Nuclear Information System (INIS)

    Liu, Xian-Kun; Zhou, Wei; Zheng, Zhou; Peng, Shu-Ming

    2014-01-01

    Highlights: • Elastic and thermodynamic properties of ZrMo 2 under high temperature and pressure are calculated by first principles. • Mechanical stability is testified from elastic constants at zero pressure. • Phonon scattering of ZrMo 2 under different temperature are obtained. - Abstract: The elastic and thermodynamic properties of ZrMo 2 under high temperature and pressure are investigated by first-principles calculations based on pseudopotential plane-wave density functional theory (DFT) within the generalized gradient approximation (GGA) and quasi-harmonic Debye model. The calculated lattice parameters are in good agreement with the available experimental data. The calculated elastic constants of ZrMo 2 increase monotonically with increasing pressure, and the relationship between the elastic constants and pressure show that ZrMo 2 satisfies the mechanical stability criteria under applied pressure (0–65 GPa). The related mechanical properties such as bulk modulus (B), shear modulus (G), Young’s modulus (E), and Poisson’s ratio (v) are also studied for polycrystalline of ZrMo 2 . The calculated B/G value shows that ZrMo 2 behaves in a ductile manner, and higher pressure can significantly improve the ductility of ZrMo 2 . The pressure and temperature dependencies of the relative volume, the bulk modulus, the elastic constants, the heat capacity and the thermal expansion coefficient, as well as the Grüneisen parameters are obtained and discussed by the quasi-harmonic Debye model in the ranges of 0–1800 K and 0–65 GPa

  19. SU-E-T-191: First Principle Calculation of Quantum Yield in Photodynamic Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Abolfath, R; Guo, F; Chen, Z; Nath, R [Yale New Haven Hospital, New Haven, CT (United States)

    2014-06-01

    Purpose: We present a first-principle method to calculate the spin transfer efficiency in oxygen induced by any photon fields especially in MeV energy range. The optical pumping is mediated through photosensitizers, e.g., porphyrin and/or ensemble of quantum dots. Methods: Under normal conditions, oxygen molecules are in the relatively non-reactive triplet state. In the presence of certain photosensitizer compounds such as porphyrins, electromagnetic radiation of specific wavelengths can excite oxygen to highly reactive singlet state. With selective uptake of photosensitizers by certain malignant cells, photon irradiation of phosensitized tumors can lead to selective killing of cancer cells. This is the basis of photodynamic therapy (PDT). Despite several attempts, PDT has not been clinically successful except in limited superficial cancers. Many parameters such as photon energy, conjugation with quantum dots etc. can be potentially combined with PDT in order to extend the role of PDT in cancer management. The key quantity for this optimization is the spin transfer efficiency in oxygen by any photon field. The first principle calculation model presented here, is an attempt to fill this need. We employ stochastic density matrix description of the quantum jumps and the rate equation methods in quantum optics based on Markov/Poisson processes and calculate time evolution of the population of the optically pumped singlet oxygen. Results: The results demonstrate the feasibility of our model in showing the dependence of the optical yield in generating spin-singlet oxygen on the experimental conditions. The adjustable variables can be tuned to maximize the population of the singlet oxygen hence the efficacy of the photodynamic therapy. Conclusion: The present model can be employed to fit and analyze the experimental data and possibly to assist researchers in optimizing the experimental conditions in photodynamic therapy.

  20. First-principles assessment of potential ultrafast laser-induced structural transition in Ni

    Energy Technology Data Exchange (ETDEWEB)

    Bévillon, E.; Colombier, J.P., E-mail: jean.philippe.colombier@univ-st-etienne.fr; Stoian, R.

    2016-06-30

    Highlights: • First-principles theory calculations in nonequilibrium conditions. • Electronic temperatures fully and consistently taken into account. • Evaluation of an ultrafast laser-induced solid-to-solid transition in Ni. • Relative energies, phonon spectra and energy path are evaluated. • Discussion on the generation of non-thermal forces in metals. - Abstract: The possibility to trigger ultrafast solid-to-solid transitions in transition metals under femtosecond laser irradiation is investigated by means of first-principles calculations. Electronic heating can drastically modify screening, charge distribution and atomic binding features, potentially determining new structural relaxation paths in the solid phase, before thermodynamic solid-to-liquid transformations set in. Consequently, we evaluate here the effect of electronic excitation on structural stability and conditions for structural transitions. Ni is chosen as a case study for the probability of a solid transition, and the stability of its FCC phase is compared to the non-standard HCP structure while accounting for the heating of the electronic subsystem. From a phonon spectra analysis, we show that the thermodynamic stability order reverses at an electronic temperature of around 10{sup 4} K. Both structures exhibit a dynamic stability, indicating they present a metastability depending on the heating. However, the general hardening of phonon modes with the increase of the electronic temperature points out that no transformation will occur, as confirmed by the study of a typical FCC to HCP diffusionless transformation path, showing an increasing energy barrier. Finally, based on electronic density of states interpretation, the tendency of different metal categories to undergo or not an ultrafast laser-induced structural transition is discussed.

  1. Novel structures of oxygen adsorbed on a Zr(0001) surface predicted from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bo [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China); Wang, Jianyun [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Lv, Jian [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); College of Materials Science and Engineering, Jilin University, Changchun, 130012 (China); Gao, Xingyu [Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China); CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Zhao, Yafan [CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Wang, Yanchao, E-mail: wyc@calypso.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China); College of Materials Science and Engineering, Jilin University, Changchun, 130012 (China); Song, Haifeng, E-mail: song_haifeng@iapcm.ac.cn [Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China); CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Ma, Yanming [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China)

    2017-01-30

    Highlights: • Two stable structures of O adsorbed on a Zr(0001) surface are predicted with SLAM. • A stable structure of O adsorbed on a Zr(0001) surface is proposed with MLAM. • The calculated work function change is agreement with experimental value. - Abstract: The structures of O atoms adsorbed on a metal surface influence the metal properties significantly. Thus, studying O chemisorption on a Zr surface is of great interest. We investigated O adsorption on a Zr(0001) surface using our newly developed structure-searching method combined with first-principles calculations. A novel structural prototype with a unique combination of surface face-centered cubic (SFCC) and surface hexagonal close-packed (SHCP) O adsorption sites was predicted using a single-layer adsorption model (SLAM) for a 0.5 and 1.0 monolayer (ML) O coverage. First-principles calculations based on the SLAM revealed that the new predicted structures are energetically favorable compared with the well-known SFCC structures for a low O coverage (0.5 and 1.0 ML). Furthermore, on basis of our predicted SFCC + SHCP structures, a new structure within multi-layer adsorption model (MLAM) was proposed to be more stable at the O coverage of 1.0 ML, in which adsorbed O atoms occupy the SFCC + SHCP sites and the substitutional octahedral sites. The calculated work functions indicate that the SFCC + SHCP configuration has the lowest work function of all known structures at an O coverage of 0.5 ML within the SLAM, which agrees with the experimental trend of work function with variation in O coverage.

  2. First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene

    International Nuclear Information System (INIS)

    Gu, Xiaokun; Yang, Ronggui

    2015-01-01

    There has been great interest in two-dimensional materials, beyond graphene, for both fundamental sciences and technological applications. Silicene, a silicon counterpart of graphene, has been shown to possess some better electronic properties than graphene. However, its thermal transport properties have not been fully studied. In this paper, we apply the first-principles-based phonon Boltzmann transport equation to investigate the thermal conductivity of silicene as well as the phonon scattering mechanisms. Although both graphene and silicene are two-dimensional crystals with similar crystal structure, we find that phonon transport in silicene is quite different from that in graphene. The thermal conductivity of silicene shows a logarithmic increase with respect to the sample size due to the small scattering rates of acoustic in-plane phonon modes, while that of graphene is finite. Detailed analysis of phonon scattering channels shows that the linear dispersion of the acoustic out-of-plane (ZA) phonon modes, which is induced by the buckled structure, makes the long-wavelength longitudinal acoustic phonon modes in silicene not as efficiently scattered as that in graphene. Compared with graphene, where most of the heat is carried by the acoustic out-of-plane (ZA) phonon modes, the ZA phonon modes in silicene only have ∼10% contribution to the total thermal conductivity, which can also be attributed to the buckled structure. This systematic comparison of phonon transport and thermal conductivity of silicene and graphene using the first-principle-based calculations shed some light on other two-dimensional materials, such as two-dimensional transition metal dichalcogenides

  3. Equilibration and analysis of first-principles molecular dynamics simulations of water

    Science.gov (United States)

    Dawson, William; Gygi, François

    2018-03-01

    First-principles molecular dynamics (FPMD) simulations based on density functional theory are becoming increasingly popular for the description of liquids. In view of the high computational cost of these simulations, the choice of an appropriate equilibration protocol is critical. We assess two methods of estimation of equilibration times using a large dataset of first-principles molecular dynamics simulations of water. The Gelman-Rubin potential scale reduction factor [A. Gelman and D. B. Rubin, Stat. Sci. 7, 457 (1992)] and the marginal standard error rule heuristic proposed by White [Simulation 69, 323 (1997)] are evaluated on a set of 32 independent 64-molecule simulations of 58 ps each, amounting to a combined cumulative time of 1.85 ns. The availability of multiple independent simulations also allows for an estimation of the variance of averaged quantities, both within MD runs and between runs. We analyze atomic trajectories, focusing on correlations of the Kohn-Sham energy, pair correlation functions, number of hydrogen bonds, and diffusion coefficient. The observed variability across samples provides a measure of the uncertainty associated with these quantities, thus facilitating meaningful comparisons of different approximations used in the simulations. We find that the computed diffusion coefficient and average number of hydrogen bonds are affected by a significant uncertainty in spite of the large size of the dataset used. A comparison with classical simulations using the TIP4P/2005 model confirms that the variability of the diffusivity is also observed after long equilibration times. Complete atomic trajectories and simulation output files are available online for further analysis.

  4. Fabrication of zinc oxide-cuprous oxide photovoltaic cell for teaching ...

    African Journals Online (AJOL)

    The light related current - voltage characteristics of the fabricated cell and its open circuit voltage for different illumination levels were comparable to those of conventional solar cells. This indicates that it is possible to produce a functional photovoltaic cell through local improvisation that can be used to stimulate the interest ...

  5. First-principles investigation of optoelectronic and redox properties of (Ta1-xNbx)ON compounds for photocatalysis

    KAUST Repository

    Harb, Moussab

    2015-01-01

    We investigate essential fundamental properties of monoclinic (Ta1-xNbx)ON (x = 0.0625, 0.125, 0.25, and 0.5) solid solution semiconductor materials for water splitting using first-principles computations on the basis of density functional theory (DFT) and density functional perturbation theory (DFPT) using the PBE and HSE06 functionals. The formation energies, band gaps, UV-vis optical absorption coefficients, dielectric constants, charge carrier effective masses, and band edge energy positions of these compounds are evaluated. Similarly to TaON, our calculations reveal strongly 3D delocalized characters of the band edge electronic states through the crystal lattices, high dielectric constants, small hole effective masses along the [001] direction, and small electron effective masses along the [100] direction. This leads to good exciton dissociation ability into free charge carriers, good hole mobility along the [001] direction, and good electron mobility along the [100] direction. The main difference, however, is related to their band edge positions with respect to water redox potentials. TaON with a calculated band gap energy of 3.0 eV is predicted as a good candidate for water oxidation and O2 evolution while the (Ta1-xNbx)ON materials (for 0.25 ≤ x ≤ 0.5) with calculated band gap energies between 2.8 and 2.9 eV reveal suitable band edge positions for water oxidation and H+ reduction. These results offer a grand opportunity for these compounds to be properly synthesized and tested for solar-driven overall water-splitting reactions.

  6. First-principles investigation of optoelectronic and redox properties of (Ta1-xNbx)ON compounds for photocatalysis

    KAUST Repository

    Harb, Moussab

    2015-03-05

    We investigate essential fundamental properties of monoclinic (Ta1-xNbx)ON (x = 0.0625, 0.125, 0.25, and 0.5) solid solution semiconductor materials for water splitting using first-principles computations on the basis of density functional theory (DFT) and density functional perturbation theory (DFPT) using the PBE and HSE06 functionals. The formation energies, band gaps, UV-vis optical absorption coefficients, dielectric constants, charge carrier effective masses, and band edge energy positions of these compounds are evaluated. Similarly to TaON, our calculations reveal strongly 3D delocalized characters of the band edge electronic states through the crystal lattices, high dielectric constants, small hole effective masses along the [001] direction, and small electron effective masses along the [100] direction. This leads to good exciton dissociation ability into free charge carriers, good hole mobility along the [001] direction, and good electron mobility along the [100] direction. The main difference, however, is related to their band edge positions with respect to water redox potentials. TaON with a calculated band gap energy of 3.0 eV is predicted as a good candidate for water oxidation and O2 evolution while the (Ta1-xNbx)ON materials (for 0.25 ≤ x ≤ 0.5) with calculated band gap energies between 2.8 and 2.9 eV reveal suitable band edge positions for water oxidation and H+ reduction. These results offer a grand opportunity for these compounds to be properly synthesized and tested for solar-driven overall water-splitting reactions.

  7. Determination of structure and properties of molecular crystals from first principles.

    Science.gov (United States)

    Szalewicz, Krzysztof

    2014-11-18

    CONSPECTUS: Until recently, it had been impossible to predict structures of molecular crystals just from the knowledge of the chemical formula for the constituent molecule(s). A solution of this problem has been achieved using intermolecular force fields computed from first principles. These fields were developed by calculating interaction energies of molecular dimers and trimers using an ab initio method called symmetry-adapted perturbation theory (SAPT) based on density-functional theory (DFT) description of monomers [SAPT(DFT)]. For clusters containing up to a dozen or so atoms, interaction energies computed using SAPT(DFT) are comparable in accuracy to the results of the best wave function-based methods, whereas the former approach can be applied to systems an order of magnitude larger than the latter. In fact, for monomers with a couple dozen atoms, SAPT(DFT) is about equally time-consuming as the supermolecular DFT approach. To develop a force field, SAPT(DFT) calculations are performed for a large number of dimer and possibly also trimer configurations (grid points in intermolecular coordinates), and the interaction energies are then fitted by analytic functions. The resulting force fields can be used to determine crystal structures and properties by applying them in molecular packing, lattice energy minimization, and molecular dynamics calculations. In this way, some of the first successful determinations of crystal structures were achieved from first principles, with crystal densities and lattice parameters agreeing with experimental values to within about 1%. Crystal properties obtained using similar procedures but empirical force fields fitted to crystal data have typical errors of several percent due to low sensitivity of empirical fits to interactions beyond those of the nearest neighbors. The first-principles approach has additional advantages over the empirical approach for notional crystals and cocrystals since empirical force fields can only be

  8. [A therapeutic effect analysis of femur first principle and combined anteversion technique during total hip arthroplasty].

    Science.gov (United States)

    Wang, X Q; Wu, C S; Sun, S; Wang, J; Li, W; Zhang, W

    2018-04-01

    Objective: To investigate the situation of hip dislocation with the application of "femur first" principle and "combined anteversion technique" during total hip arthroplasty. Methods: A retrospective analysis has been done on the clinical data about 104 patients(133 hips)who were diagnosed as hip disease and were treated with total hip arthroplasty by the doctors from the Department of Joint Orthorpaedics of Shandong Provincial Hospital Affiliated to Shandong University from June 2014 to June 2016, and all the prostheses applied in the operation were cementless ones.Among them, 65 patients were males, 39 females and their age was 46.6 years (ranging from 23 to 76 years) .And 29 of them underwent bilateral hip operations and 75 unilateral ones.Seventy-six cases of aseptic necrosis of the femoral head in the terminal stage, 28 cases of hip dysplasia and osteoarthritis.Surgical approach: of all the operations, 103 hips were operated on with hardinge approach, 30 with posterolateral approach.During the operation, first of all, the femoral medullary cavity was broached and then the anteversion of intramedullary broacher was measured.After that, the anteversion of the acetabular cup was calculated as 37° minus the anteversion of the broacher, and the acetabular cup was implanted at that angle.The patients' prosthesis combined anteversion, range of motion of the hip joint, operation time, hemorrhage amount, and complications had been kept record.One, three, and six months respectively after the operation, all the patients received outpatient review, and took anteroposterior and lateral position X-ray examination.Harris hip score had been applied to evaluate their hip function before the operation and six months after the operation. Results: All the patients had been operated on smoothly, with the operation time of(57.6±14.5)minutes(36-115 minutes)and hemorrhage amount of (336.5±50.8)ml(180-620 ml). The operation finding showed that the combined anteversion by employing

  9. Xenon Defects in Uranium Dioxide From First Principles and Interatomic Potentials

    Science.gov (United States)

    Thompson, Alexander

    In this thesis, we examine the defect energetics and migration energies of xenon atoms in uranium dioxide (UO2) from first principles and interatomic potentials. We also parameterize new, accurate interatomic potentials for xenon and uranium dioxide. To achieve accurate energetics and provide a foundation for subsequent calculations, we address difficulties in finding consistent energetics within Hubbard U corrected density functional theory (DFT+U). We propose a method of slowly ramping the U parameter in order to guide the calculation into low energy orbital occupations. We find that this method is successful for a variety of materials. We then examine the defect energetics of several noble gas atoms in UO2 for several different defect sites. We show that the energy to incorporate large noble gas atoms into interstitial sites is so large that it is energetically favorable for a Schottky defect cluster to be created to relieve the strain. We find that, thermodynamically, xenon will rarely ever be in the interstitial site of UO2. To study larger defects associated with the migration of xenon in UO 2, we turn to interatomic potentials. We benchmark several previously published potentials against DFT+U defect energetics and migration barriers. Using a combination of molecular dynamics and nudged elastic band calculations, we find a new, low energy migration pathway for xenon in UO2. We create a new potential for xenon that yields accurate defect energetics. We fit this new potential with a method we call Iterative Potential Refinement that parameterizes potentials to first principles data via a genetic algorithm. The potential finds accurate energetics for defects with relatively low amounts of strain (xenon in defect clusters). It is important to find accurate energetics for these sorts of low-strain defects because they essentially represent small xenon bubbles. Finally, we parameterize a new UO2 potential that simultaneously yields accurate vibrational properties

  10. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2016-01-01

    of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.

  11. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    Science.gov (United States)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2018-01-01

    of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies. PMID:29657355

  12. First principle calculations of effective exchange integrals: Comparison between SR (BS) and MR computational results

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Kizashi [Institute for Nano Science Design Center, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan and TOYOTA Physical and Chemical Research Institute, Nagakute, Aichi, 480-1192 (Japan); Nishihara, Satomichi; Saito, Toru; Yamanaka, Shusuke; Kitagawa, Yasutaka; Kawakami, Takashi; Yamada, Satoru; Isobe, Hiroshi; Okumura, Mitsutaka [Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)

    2015-01-22

    First principle calculations of effective exchange integrals (J) in the Heisenberg model for diradical species were performed by both symmetry-adapted (SA) multi-reference (MR) and broken-symmetry (BS) single reference (SR) methods. Mukherjee-type (Mk) state specific (SS) MR coupled-cluster (CC) calculations by the use of natural orbital (NO) references of ROHF, UHF, UDFT and CASSCF solutions were carried out to elucidate J values for di- and poly-radical species. Spin-unrestricted Hartree Fock (UHF) based coupled-cluster (CC) computations were also performed to these species. Comparison between UHF-NO(UNO)-MkMRCC and BS UHF-CC computational results indicated that spin-contamination of UHF-CC solutions still remains at the SD level. In order to eliminate the spin contamination, approximate spin-projection (AP) scheme was applied for UCC, and the AP procedure indeed corrected the error to yield good agreement with MkMRCC in energy. The CC double with spin-unrestricted Brueckner's orbital (UBD) was furthermore employed for these species, showing that spin-contamination involved in UHF solutions is largely suppressed, and therefore AP scheme for UBCCD removed easily the rest of spin-contamination. We also performed spin-unrestricted pure- and hybrid-density functional theory (UDFT) calculations of diradical and polyradical species. Three different computational schemes for total spin angular momentums were examined for the AP correction of the hybrid (H) UDFT. HUDFT calculations followed by AP, HUDFT(AP), yielded the S-T gaps that were qualitatively in good agreement with those of MkMRCCSD, UHF-CC(AP) and UB-CC(AP). Thus a systematic comparison among MkMRCCSD, UCC(AP) UBD(AP) and UDFT(AP) was performed concerning with the first principle calculations of J values in di- and poly-radical species. It was found that BS (AP) methods reproduce MkMRCCSD results, indicating their applicability to large exchange coupled systems.

  13. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Michael I., E-mail: michael.i.mishchenko@nasa.gov [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Dlugach, Janna M. [Main Astronomical Observatory of the National Academy of Sciences of Ukraine, 27 Zabolotny Str., 03680, Kyiv (Ukraine); Yurkin, Maxim A. [Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, Institutskaya str. 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova 2, 630090 Novosibirsk (Russian Federation); Bi, Lei [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Cairns, Brian [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Liu, Li [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Columbia University, 2880 Broadway, New York, NY 10025 (United States); Panetta, R. Lee [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Travis, Larry D. [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Yang, Ping [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Zakharova, Nadezhda T. [Trinnovim LLC, 2880 Broadway, New York, NY 10025 (United States)

    2016-05-16

    of the first-principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.

  14. First-Principles Modeling Of Electromagnetic Scattering By Discrete and Discretely Heterogeneous Random Media

    Science.gov (United States)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2016-01-01

    the first principles formalism enabling accurate calculations of monochromatic and quasi-monochromatic scattering by static and randomly varying multiparticle groups. We illustrate how this general framework can be coupled with state-of-the-art computer solvers of the Maxwell equations and applied to direct modeling of electromagnetic scattering by representative random multi-particle groups with arbitrary packing densities. This first-principles modeling yields general physical insights unavailable with phenomenological approaches. We discuss how the first-order-scattering approximation, the radiative transfer theory, and the theory of weak localization of electromagnetic waves can be derived as immediate corollaries of the Maxwell equations for very specific and well-defined kinds of particulate medium. These recent developments confirm the mesoscopic origin of the radiative transfer, weak localization, and effective-medium regimes and help evaluate the numerical accuracy of widely used approximate modeling methodologies.

  15. Synthesis and characterization of zinc oxide thin films prepared by ...

    African Journals Online (AJOL)

    Zinc oxide thin films were prepared with ammonia/ammonium chloride buffer as the reaction moderating agent in the chemical bath deposition technique. An observable color change during the reaction due to variations in the reactants concentration indicated the existence of the cupric (CuO) and cuprous (Cu2O) oxides ...

  16. First principles study of inert-gas (helium, neon, and argon) interactions with hydrogen in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiang-Shan [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Hou, Jie [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Li, Xiang-Yan [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Wu, Xuebang, E-mail: xbwu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Liu, C.S., E-mail: csliu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Chen, Jun-Ling; Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-15

    We have systematically evaluated binding energies of hydrogen with inert-gas (helium, neon, and argon) defects, including interstitial clusters and vacancy-inert-gas complexes, and their stable configurations using first-principles calculations. Our calculations show that these inert-gas defects have large positive binding energies with hydrogen, 0.4–1.1 eV, 0.7–1.0 eV, and 0.6–0.8 eV for helium, neon, and argon, respectively. This indicates that these inert-gas defects can act as traps for hydrogen in tungsten, and impede or interrupt the diffusion of hydrogen in tungsten, which supports the discussion on the influence of inert-gas on hydrogen retention in recent experimental literature. The interaction between these inert-gas defects and hydrogen can be understood by the attractive interaction due to the distortion of the lattice structure induced by inert-gas defects, the intrinsic repulsive interaction between inert-gas atoms and hydrogen, and the hydrogen-hydrogen repelling in tungsten lattice.

  17. First-principles interatomic potentials for transition-metal aluminides. III. Extension to ternary phase diagrams

    International Nuclear Information System (INIS)

    Widom, Mike; Al-Lehyani, Ibrahim; Moriarty, John A.

    2000-01-01

    Modeling structural and mechanical properties of intermetallic compounds and alloys requires detailed knowledge of their interatomic interactions. The first two papers of this series [Phys. Rev. B 56, 7905 (1997); 58, 8967 (1998)] derived first-principles interatomic potentials for transition-metal (TM) aluminides using generalized pseudopotential theory (GPT). Those papers focused on binary alloys of aluminum with first-row transition metals and assessed the ability of GPT potentials to reproduce and elucidate the alloy phase diagrams of Al-Co and Al-Ni. This paper addresses the phase diagrams of the binary alloy Al-Cu and the ternary systems Al-Co-Cu and Al-Co-Ni, using GPT pair potentials calculated in the limit of vanishing transition-metal concentration. Despite this highly simplifying approximation, we find rough agreement with the known low-temperature phase diagrams, up to 50% total TM concentration provided the Co fraction is below 25%. Full composition-dependent potentials and many-body interactions would be required to correct deficiencies at higher Co concentration. Outside this troublesome region, the experimentally determined stable and metastable phases all lie on or near the convex hull of a scatter plot of energy versus composition. We verify, qualitatively, reported solubility ranges extending binary alloys into the ternary diagram in both Al-Co-Cu and Al-Co-Ni. Finally, we reproduce previously conjectured transition-metal positions in the decagonal quasicrystal phase. (c) 2000 The American Physical Society

  18. First-principles studies of electronic, transport and bulk properties of pyrite FeS2

    Directory of Open Access Journals (Sweden)

    Dipendra Banjara

    2018-02-01

    Full Text Available We present results from first principle, local density approximation (LDA calculations of electronic, transport, and bulk properties of iron pyrite (FeS2. Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams (BZW method, as enhanced by Ekuma and Franklin (BZW-EF. We discuss the electronic energy bands, total and partial densities of states, electron effective masses, and the bulk modulus. Our calculated indirect band gap of 0.959 eV (0.96, using an experimental lattice constant of 5.4166 Å, at room temperature, is in agreement with the measured indirect values, for bulk samples, ranging from 0.84 eV to 1.03 ± 0.05 eV. Our calculated bulk modulus of 147 GPa is practically in agreement with the experimental value of 145 GPa. The calculated, partial densities of states reproduced the splitting of the Fe d bands to constitute the dominant upper most valence and lower most conduction bands, separated by the generally accepted, indirect, experimental band gap of 0.95 eV.

  19. On possibility of superconductivity in SnSb: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta D. [Department of Physics, M. K. Bhavnagar University, Bhavnagar 364001 (India); Shrivastava, Deepika [Department of Physics, Barkatullah University, Bhopal 462026 (India); Jha, Prafulla K., E-mail: prafullaj@yahoo.com [Department of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara 390002 (India); Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal 462026 (India)

    2016-09-15

    Highlights: • Superconducting property of SnSb is predicted by ab-initio calculations. • Electronic properties of SnSb in RS phase shows metallic behaviour similar to SnAs. • Phonon dispersion confirms the dynamical stability of SnSb in RS phase. • Superconducting transition temperature is 3.1 K, slightly lower than that of SnAs. • Calculated thermodynamic properties are also reported. - Abstract: The electronic, phonon structure and superconducting properties of tin antimonide (SnSb) in rock-salt (RS) structure are calculated using first-principles density functional theory. The electronic band structure and density of states show metallic behavior. The phonon frequencies are positive throughout the Brillouin zone in rock-salt structure indicating its stability in that phase. Superconductivity of SnSb in RS phase is discussed in detail by calculating phonon linewidths, Eliashberg spectral function, electron-phonon coupling constant and superconducting transition temperature. SnSb is found to have a slightly lower T{sub C} (3.1 K), as compared to SnAs.

  20. First-principles study of the stability and diffusion properties of hydrogen in zirconium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiao-Yong [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Lu, Yong [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Zhang, Ping, E-mail: zhang_ping@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2016-10-15

    The stability and diffusion properties of interstitial hydrogen atom in bulk ZrC have been investigated by first-principles calculations. In energy, hydrogen atoms prefer to occupy the carbon substitutional site (C-SS) with a negative formation energy, consistent with the experimental observations. In the C-SS, the hydrogen atom obtains 0.702 electrons from its 1 NN Zr atoms, tending to achieve the most stable 1s{sup 2} electronic state. Two hydrogen atoms in the same tetrahedral interstitial site are able to form a pairing cluster along the 〈110〉 direction with the H−H pair equilibrium distance of 1.30 Å, nearly twice the length of H{sub 2} bond, suggesting a relatively weak interaction between the H−H pair. The diffusion energy barriers of hydrogen in pure and vacancy pre-existing ZrC matrix are calculated. It is found that the presence of native vacancies will capture the hydrogen atoms due to the large energy barrier to jump out the vacancy. Furthermore, the temperature-dependent diffusion coefficients of interstitial hydrogen, deuterium, and tritium in ZrC are predicted using the transition state theory.