Sample records for cuprous oxidase activity

  1. Microwave Synthesis of Cuprous Oxide Micro-/Nanocrystals with Different Morphologies and Photocatalytic Activities

    Institute of Scientific and Technical Information of China (English)

    Qingwei Zhu; Yihe Zhang; Jiajun Wang; Fengshan Zhou; Paul K. Chu


    Cuprous oxide micro-/nanocrystals were synthesized by using a simple liquid phase reduction process under microwave irradiation. Copper sulfate was used as the starting materials and macromolecule surfactants served as the templates.The morphologies phase and optical properties of them are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet-visible diffuse reflection absorptive spectra (UV-vis/DRS), respectively. The crystals had four different shapes, namely spheres, strips, octahedrons, and dandelions. The photocatalytic behavior of the cuprous oxide particles were investigated by monitoring the degradation of rhodamine B. In spite of the different morphologies, all of the cuprous oxide micro-/nanocrystals exhibited photocatalytic activities under visible light irradiation in the following order: dandelions, strips, spheres, and octahedral crystals. The photocatalytic degradation rates of rhodamine B are 56.37%, 55.68%, 51.83% and 46.16%, respectively. The morphology affects significantly the photocatalytic performance.

  2. The fictile coordination chemistry of cuprous-thiolate sites in copper chaperones. (United States)

    Pushie, M Jake; Zhang, Limei; Pickering, Ingrid J; George, Graham N


    Copper plays vital roles in the active sites of cytochrome oxidase and in several other enzymes essential for human health. Copper is also highly toxic when dysregulated; because of this an elaborate array of accessory proteins have evolved which act as intracellular carriers or chaperones for the copper ions. In most cases chaperones transport cuprous copper. This review discusses some of the chemistry of these copper sites, with a view to some of the structural factors in copper coordination which are important in the biological function of these chaperones. The coordination chemistry and accessible geometries of the cuprous oxidation state are remarkably plastic and we discuss how this may relate to biological function. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.

  3. A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jie; Xie, Anjian; Li, Shikuo; Huang, Fangzhi; Cao, Juan; Shen, Yuhua, E-mail:


    Graphical abstract: Excellent photocatalytic activity of the RGO/PANI/Cu{sub 2}O composite hydrogel for CR degradation under UV–vis light irradiation. - Highlights: • The RGO/PANI/Cu{sub 2}O composite hydrogel was first synthesized via a facile method. • Photocatalytic performance was studied under UV–vis light. • The ternary composite hydrogel shows unexpected photocatalytic activity. • A possible photocatalysis mechanism was illustrated. - Abstract: In this work, a novel reducing graphene/polyaniline/cuprous oxide (RGO/PANI/Cu{sub 2}O) composite hydrogel with a 3D porous network has been successfully prepared via a one-pot method in the presence of cubic Cu{sub 2}O nanoparticles. The as-synthesized ternary composites hydrogel shows unexpected photocatalytic activity such that Congo red (CR) degradation efficiency can reaches 97.91% in 20 min under UV–vis light irradiation, which is much higher than that of either the single component (Cu{sub 2}O nanoparticles), or two component systems (RGO/Cu{sub 2}O composite hydrogel and PANI/Cu{sub 2}O nanocomposites). Furthermore, the ternary composite hydrogel exhibits high stability and do not show any significant loss after five recycles. Such outstanding photocatalytic activity of the RGO/PANI/Cu{sub 2}O composite hydrogel was ascribed to the high absorption ability of the product for CR and the synergic effect among RGO, PANI and Cu{sub 2}O in photocatalytic process. The product of this work would provide a new sight for the construction of UV–vis light responsive photocatalyst with high performance.

  4. Plasma diamine oxidase activity in asthmatic children

    Directory of Open Access Journals (Sweden)

    Kyoichiro Toyoshima


    Full Text Available Histamine plays an important role in the development of asthmatic symptoms. Diamine oxidase (DAO histaminase, which inactivates histamine, is located in the intestine and kidney and is released into plasma. Plasma DAO activity in asthmatic children was measured by a recently developed high performance liquid chromatographic method using histamine as the DAO substrate. Diamine oxidase activity was higher in severely asthmatic children than in those with mild asthma. A time course study during the acute exacerbation phase revealed that DAO activity rose during acute asthmatic attacks and then decreased gradually over several days. Although the mechanisms of plasma DAO activity increase during acute asthmatic attacks could not be explained, data showed that plasma DAO activity is an important index of histamine metabolism in asthmatics and may relate to some mechanisms of acute exacerbation of airway inflammation. Consequently, fluctuations in plasma DAO can be used as one of various indices of instability in management of asthma.

  5. Bilirubin Oxidase Activity of Bacillus subtilis CotA


    Sakasegawa, S; Ishikawa, H.; Imamura, S.; Sakuraba, H.; Goda, S.; Ohshima, T.


    The spore coat protein CotA from Bacillus subtilis was previously identified as a laccase. We have now found that CotA also shows strong bilirubin oxidase activity and markedly higher affinity for bilirubin than conventional bilirubin oxidase. This is the first characterization of bilirubin oxidase activity in a bacterial protein.

  6. Magnetoexcitons in cuprous oxide (United States)

    Schweiner, Frank; Main, Jörg; Wunner, Günter; Freitag, Marcel; Heckötter, Julian; Uihlein, Christoph; Aßmann, Marc; Fröhlich, Dietmar; Bayer, Manfred


    Two of the most striking experimental findings when investigating exciton spectra in cuprous oxide using high-resolution spectroscopy are the observability and the fine structure splitting of F excitons reported by J. Thewes et al. [Phys. Rev. Lett. 115, 027402 (2015), 10.1103/PhysRevLett.115.027402]. These findings show that it is indispensable to account for the complex valence band structure and the cubic symmetry of the solid in the theory of excitons. This is all the more important for magnetoexcitons, where the external magnetic field reduces the symmetry of the system even further. We present the theory of excitons in Cu2O in an external magnetic field and especially discuss the dependence of the spectra on the direction of the external magnetic field, which cannot be understood from a simple hydrogenlike model. Using high-resolution spectroscopy, we also present the corresponding experimental spectra for cuprous oxide in Faraday configuration. The theoretical results and experimental spectra are in excellent agreement as regards not only the energies but also the relative oscillator strengths. Furthermore, this comparison allows for the determination of the fourth Luttinger parameter κ of this semiconductor.

  7. Radiation annealing in cuprous oxide

    DEFF Research Database (Denmark)

    Vajda, P.


    Experimental results from high-intensity gamma-irradiation of cuprous oxide are used to investigate the annealing of defects with increasing radiation dose. The results are analysed on the basis of the Balarin and Hauser (1965) statistical model of radiation annealing, giving a square-root relati......-root relationship between the rate of change of resistivity and the resistivity change. The saturation defect density at room temperature is estimated on the basis of a model for defect creation in cuprous oxide....

  8. Modulation of NADPH oxidase activity by known uraemic retention solutes

    DEFF Research Database (Denmark)

    Schulz, Anna Marta; Terne, Cindy; Jankowski, Vera


    as the strongest inhibitor of NADPH oxidase (90% of DPI inhibition). Surprisingly, none of the uraemic retention solutes we investigated was found to increase NADPH oxidase activity. Furthermore, plasma from patients with CKD-5D before dialysis caused significantly higher inhibitory effect on NADPH oxidase...... inhibitory effect on NADPH oxidase activity in the presence of plasma from patients with CKD-5D after dialysis compared with before dialysis, we investigated the effect of 48 known and commercially available uraemic retention solutes on the enzymatic activity of NADPH oxidase. METHODS: Mononuclear leucocytes...... isolated from buffy coats of healthy volunteers were isolated, lysed and incubated with NADH in the presence of plasma from healthy controls and patients with CKD-5D. Furthermore, the leucocytes were lysed and incubated in the presence of uraemic retention solute of interest and diphenyleneiodonium...

  9. Monoamine oxidase inhibitory activities of heterocyclic chalcones. (United States)

    Minders, Corné; Petzer, Jacobus P; Petzer, Anél; Lourens, Anna C U


    Studies have shown that natural and synthetic chalcones (1,3-diphenyl-2-propen-1-ones) possess monoamine oxidase (MAO) inhibition activities. Of particular importance to the present study is a report that a series of furanochalcones acts as MAO-B selective inhibitors. Since the effect of heterocyclic substitution, other than furan (and more recently thiophene, piperidine and quinoline) on the MAO inhibitory properties of the chalcone scaffold remains unexplored, the aim of this study was to synthesise and evaluate further heterocyclic chalcone analogues as inhibitors of the human MAOs. For this purpose, heterocyclic chalcone analogues that incorporate pyrrole, 5-methylthiophene, 5-chlorothiophene and 6-methoxypyridine substitution were examined. Seven of the nine synthesised compounds exhibited IC50 values chalcones are reversible and competitive MAO inhibitors. 4h, however, may exhibit tight-binding to MAO-B, a property linked to its thiophene moiety. We conclude that high potency chalcones such as 4h represent suitable leads for the development of MAO-B inhibitors for the treatment of Parkinson's disease and possibly other neurodegenerative disorders.

  10. 21 CFR 184.1265 - Cuprous iodide. (United States)


    ... with potassium iodide under slightly acidic conditions. (b) The ingredient must be of a purity suitable... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cuprous iodide. 184.1265 Section 184.1265 Food and... Substances Affirmed as GRAS § 184.1265 Cuprous iodide. (a) Cuprous iodide (copper (I) iodide, CuI, CAS...

  11. Aldehyde-induced xanthine oxidase activity in raw milk. (United States)

    Steffensen, Charlotte L; Andersen, Henrik J; Nielsen, Jacob H


    In the present study, the aldehyde-induced pro-oxidative activity of xanthine oxidase was followed in an accelerated raw milk system using spin-trap electron spin resonance (ESR) spectroscopy. The aldehydes acetaldehyde, propanal, hexanal, trans-2-hexenal, trans-2-heptenal, trans-2-nonenal, and 3-methyl-2-butenal were all found to initiate radical reactions when added to milk. Formation of superoxide through aldehyde-induced xanthine oxidase activity is suggested as the initial reaction, as all tested aldehydes were shown to trigger superoxide formation in an ultrahigh temperature (UHT) milk model system with added xanthine oxidase. It was found that addition of aldehydes to milk initially increased the ascorbyl radical concentration with a subsequent decay due to ascorbate depletion, which renders the formation of superoxide in milk with added aldehyde. The present study shows for the first time potential acceleration of oxidative events in milk through aldehyde-induced xanthine oxidase activity.

  12. Activation of the neutrophil NADPH oxidase by Aspergillus fumigatus. (United States)

    Boyle, Keith B; Stephens, Len R; Hawkins, Phillip T


    Upon infection of the respiratory system with the fungus Aspergillus fumigatus various leukoctytes, in particular neutrophils, are recruited to the lung to mount an immune response. Neutrophils respond by both phagocytosing conidia and mediating extracellular killing of germinated, invasive hyphae. Of paramount importance to an appropriate immune response is the neutrophil NADPH oxidase enzyme, which mediates the production of various reactive oxygen species (ROS). This is evidenced by the acute sensitivity of both oxidase-deficient humans and mice to invasive aspergillosis. Herein we briefly review the mechanisms and functions of oxidase activation and discuss our recent work identifying at least some of the important players in hyphal-induced oxidase activation and neutrophil function. Among these we define the phosphoinositide 3-kinase enzyme and the regulatory protein Vav to be of critical importance and allude to a kinase-independent role for Syk.

  13. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity. (United States)

    Peng, Zeyu; Dittmer, Neal T; Lang, Minglin; Brummett, Lisa M; Braun, Caroline L; Davis, Lawrence C; Kanost, Michael R; Gorman, Maureen J


    Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surprising because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism.

  14. Some properties of active and latent catechol oxidase of mushroom

    Directory of Open Access Journals (Sweden)

    Janusz Czapski


    Full Text Available Latent form of mushroom catechol oxidase was activated by O,1% sodium dodecyl sulfate (SDS. Catalytic power of the latent form, calculated from the kinetic parameters was 1,8 times higher than that of active one. Salicyl hydroxamic acid (SHAM appeared as a powerful inhibitor for both active and latent forms of catechol oxidase. However, in the range of 150-250 μM SHAM the inhibitory effect for active catechol oxidase was significantly higher than that for the latent one. Non-competitive and irreversible characteristics of inhibition of latent and active catechol oxidase was calculated from kinetic data. Electrophoretic analysis followed by scanning of the gels was used. The spots' absorbance was determined from a computer image of the isoenzyme band patterns. It allowed us to estimate gels quantitatively. Presence of one additional clearly defined slow moving isoform of SDS-activated catechol oxidase, differed in the respect of 3 bands for the active and 4 bands for the total.

  15. CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity.

    Directory of Open Access Journals (Sweden)

    Jianmei Su

    Full Text Available Multicopper oxidases (MCOs are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II oxidation, the cotA gene from a highly active Mn(II-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0 supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II-oxidizing activity. The specific activity of purified CotA towards Mn(II was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II were 14.85±1.17 mM, 3.01×10(-6±0.21 M·min(-1 and 0.32±0.02 s(-1, respectively. Moreover, the Mn(II-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II oxidation mechanisms, but also offers

  16. HIF-1α activation by intermittent hypoxia requires NADPH oxidase stimulation by xanthine oxidase. (United States)

    Nanduri, Jayasri; Vaddi, Damodara Reddy; Khan, Shakil A; Wang, Ning; Makarenko, Vladislav; Semenza, Gregg L; Prabhakar, Nanduri R


    Hypoxia-inducible factor 1 (HIF-1) mediates many of the systemic and cellular responses to intermittent hypoxia (IH), which is an experimental model that simulates O2 saturation profiles occurring with recurrent apnea. IH-evoked HIF-1α synthesis and stability are due to increased reactive oxygen species (ROS) generated by NADPH oxidases, especially Nox2. However, the mechanisms by which IH activates Nox2 are not known. We recently reported that IH activates xanthine oxidase (XO) and the resulting increase in ROS elevates intracellular calcium levels. Since Nox2 activation requires increased intracellular calcium levels, we hypothesized XO-mediated calcium signaling contributes to Nox activation by IH. We tested this possibility in rat pheochromocytoma PC12 cells subjected to IH consisting alternating cycles of hypoxia (1.5% O2 for 30 sec) and normoxia (21% O2 for 5 min). Kinetic analysis revealed that IH-induced XO preceded Nox activation. Inhibition of XO activity either by allopurinol or by siRNA prevented IH-induced Nox activation, translocation of the cytosolic subunits p47phox and p67phox to the plasma membrane and their interaction with gp91phox. ROS generated by XO also contribute to IH-evoked Nox activation via calcium-dependent protein kinase C stimulation. More importantly, silencing XO blocked IH-induced upregulation of HIF-1α demonstrating that HIF-1α activation by IH requires Nox2 activation by XO.

  17. Phenol oxidase activity in secondary transformed peat-moorsh soils (United States)

    Styła, K.; Szajdak, L.


    The chemical composition of peat depends on the geobotanical conditions of its formation and on the depth of sampling. The evolution of hydrogenic peat soils is closely related to the genesis of peat and to the changes in water conditions. Due to a number of factors including oscillation of ground water level, different redox potential, changes of aerobic conditions, different plant communities, and root exudes, and products of the degradation of plant remains, peat-moorsh soils may undergo a process of secondary transformation conditions (Sokolowska et al. 2005; Szajdak et al. 2007). Phenol oxidase is one of the few enzymes able to degrade recalcitrant phenolic materials as lignin (Freeman et al. 2004). Phenol oxidase enzymes catalyze polyphenol oxidation in the presence of oxygen (O2) by removing phenolic hydrogen or hydrogenes to from radicals or quinines. These products undergo nucleophilic addition reactions in the presence or absence of free - NH2 group with the eventual production of humic acid-like polymers. The presence of phenol oxidase in soil environments is important in the formation of humic substances a desirable process because the carbon is stored in a stable form (Matocha et al. 2004). The investigations were carried out on the transect of peatland 4.5 km long, located in the Agroecological Landscape Park host D. Chlapowski in Turew (40 km South-West of Poznań, West Polish Lowland). The sites of investigation were located along Wyskoć ditch. The following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo in two layers: cartel (0-50cm) and cattle (50-100cm). The object of this study was to characterize the biochemical properties by the determination of the phenol oxidize activity in two layers of the four different peat-moors soils used as meadow. The phenol oxidase activity was determined spectrophotometrically by measuring quinone formation at λmax=525 nm with catechol as substrate by method of Perucci

  18. Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity (United States)

    Guo, Leilei; Huang, Kaixun; Liu, Hongmei


    Selenium nanoparticles (SeNPs) are considered to be the new selenium supplement forms with high biological activity and low toxicity; however, the molecular mechanism by which SeNPs exert the biological function is unclear. Here, we reported that biocompatibility SeNPs possessed intrinsic oxidase-like activity. Using Na2SeO3 as a precursor and glutathione as a reductant, biocompatibility SeNPs were synthesized by the wet chemical reduction method in the presence of bovine serum albumin (BSA). The results of structure characterization revealed that synthesized SeNPs were amorphous red elementary selenium with spherical morphology, and ranged in size from 25 to 70 nm size with a narrow distribution (41.4 ± 6.7 nm). The oxidase-like activity of the as-synthesized SeNPs was tested with 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. The results indicated that SeNPs could catalyze the oxidization of TMB by dissolved oxygen. These SeNPs showed an optimum catalytic activity at pH 4 and 30 °C, and the oxidase-like activity was higher as the concentration of SeNPs increased and the size of SeNPs decreased. The Michaelis constant ( K m) values and maximal reaction velocity ( V max) of the SeNPs for TMB oxidation were 0.0083 mol/L and 3.042 μmol/L min, respectively.

  19. Inhibitory activity of xanthine oxidase by fractions Crateva adansonii

    Institute of Scientific and Technical Information of China (English)

    Abdullahi A; Kolo MZ; Hamzah RU; Jigam AA; Yahya A; Kabiru AY; Muhammad H; Sakpe S; Adefolalu FS; Isah MC


    Objective: To study the inhibitory effect of various extracts from Crateva adansonii (C. adansonii) used traditionally against several inflammatory diseases such as rheumatism, arthritis, and gout, was investigated on purified bovine milk xanthine oxidase (XO) activity. Methods:Xanthine oxidase inhibitory activity was assayed spectrophotometrically and the degree of enzyme inhibition was determined by measuring the increase in absorbance at 295 nm associated with uric acid formation. Enzyme kinetics was carried out using Lineweaver-Burk plots using xanthine as the substrate. Results: Among the fractions tested, the chloroform fraction exhibited highest potency (IC50 20.2±1.6 μg/mL) followed by the petroleum ether (IC50 30.1±2.2 μg/mL), ethyl acetate (IC50 43.9±1.4 μg/mL) and residual (IC50 98.0±3.3 μg/mL) fractions. The IC50 value of allopurinol used, as the standard was 5.7±0.3 μg/mL. Conclusions: Enzyme inhibition mechanism indicated that the mode of inhibition was of a mixed type. Our findings suggest that the therapeutic use of these plants may be due to the observed Xanthine oxidase inhibition, thereby supporting their use in traditional folk medicine against inflammatory-related diseases, in particular, gout.

  20. Regulation of NADPH oxidase activity in phagocytes: relationship between FAD/NADPH binding and oxidase complex assembly. (United States)

    Debeurme, Franck; Picciocchi, Antoine; Dagher, Marie-Claire; Grunwald, Didier; Beaumel, Sylvain; Fieschi, Franck; Stasia, Marie-José


    The X(+)-linked chronic granulomatous disease (X(+)-CGD) variants are natural mutants characterized by defective NADPH oxidase activity but with normal Nox2 expression. According to the three-dimensional model of the cytosolic Nox2 domain, most of the X(+)-CGD mutations are located in/or close to the FAD/NADPH binding regions. A structure/function study of this domain was conducted in X(+)-CGD PLB-985 cells exactly mimicking 10 human variants: T341K, C369R, G408E, G408R, P415H, P415L, Δ507QKT509-HIWAinsert, C537R, L546P, and E568K. Diaphorase activity is defective in all these mutants. NADPH oxidase assembly is normal for P415H/P415L and T341K mutants where mutation occurs in the consensus sequences of NADPH- and FAD-binding sites, respectively. This is in accordance with their buried position in the three-dimensional model of the cytosolic Nox2 domain. FAD incorporation is abolished only in the T341K mutant explaining its absence of diaphorase activity. This demonstrates that NADPH oxidase assembly can occur without FAD incorporation. In addition, a defect of NADPH binding is a plausible explanation for the diaphorase activity inhibition in the P415H, P415L, and C537R mutants. In contrast, Cys-369, Gly-408, Leu-546, and Glu-568 are essential for NADPH oxidase complex assembly. However, according to their position in the three-dimensional model of the cytosolic domain of Nox2, only Cys-369 could be in direct contact with cytosolic factors during oxidase assembly. In addition, the defect in oxidase assembly observed in the C369R, G408E, G408R, and E568K mutants correlates with the lack of FAD incorporation. Thus, the NADPH oxidase assembly process and FAD incorporation are closely related events essential for the diaphorase activity of Nox2.

  1. Partial characterization of polyphenol oxidase activity in raspberry fruits. (United States)

    González, E M; de Ancos, B; Cano, M P


    A partial characterization of polyphenol oxidase (PPO) activity in raspberry fruits is described. Two early cultivars harvested in May/June (Heritage and Autumm Bliss) and two late cultivars harvested in October-November (Ceva and Rubi) were analyzed for PPO activity. Stable and highly active PPO extracts were obtained using insoluble poly(vinylpyrrolidone) (PVP) and Triton X-100 in sodium phosphate, pH 7.0 buffer. Polyacrylamide gel electrophoresis of raspberry extracts under nondenaturing conditions resolved in one band (R(f)()(1) = 0.25). Raspberry PPO activity has pH optima of 8.0 and 5.5, both with catechol (0.1 M). Maximum activity was with D-catechin (catecholase activity), followed by p-coumaric acid (cresolase activity). Heritage raspberry also showed PPO activity toward 4-methylcatechol. Ceva and Autumm Bliss raspberries showed the higher PPO activity using catechol as substrate.

  2. The HIV-1 Nef protein and phagocyte NADPH oxidase activation

    DEFF Research Database (Denmark)

    Vilhardt, Frederik; Plastre, Olivier; Sawada, Makoto;


    -regulation of phagocyte NADPH oxidase subunits. Nef mutants lacking motifs involved in the interaction with Vav and PAK failed to reproduce the effects of wild type Nef, suggesting a role for the Vav/Rac/PAK signaling pathway. The following results suggest a key role for Rac in the priming effect of Nef. (i) Inactivation...... of Rac by Clostridium difficile toxin B abolished the Nef effect. (ii) The fraction of activated Rac1 was increased in Nef-transduced cells, and (iii) the dominant positive Rac1(V12) mutant mimicked the effect of Nef. These results are to our knowledge the first analysis of the effect of Rac activation...

  3. Sensitivity of cuprous azide towards heat and impact

    Directory of Open Access Journals (Sweden)

    Kartar Singh


    Full Text Available "Rates of thermal decomposition of azide at six different temperatures have been measured. The sigmoid shapes of the curves representing increase in pressure with time suggest that a given temperature a fixed number of nuclei are formed at the end of the induction period. The nuclei increase in size in three dimensions. The radius of any nucleus at any instant (tis directly proportional to (t-t/Sub/owhere t/Sub/o is the induction period. The activation energy involved in thermal has been found decomposition to be 26.5K calories. It is suggested that this activation energy corresponds to the energy required for thermal transition of an electron 3 d band to the Fermi level of the metallic copper nuclei. The impact sensitivity and induction period necessary for explosion at various temperatures for crystalline and precipitated samples of cuprous azide have been measured. The results indicate that cuprous azide is more sensitive towards heat and impact than lead azide. The impact sensitivity of cuprous azide is found to increase in crystal size."

  4. Xanthine oxidase inhibitory activity of Hungarian wild-growing mushrooms. (United States)

    Ványolós, Attila; Orbán-Gyapai, Orsolya; Hohmann, Judit


    Mushrooms represent a remarkable and yet largely unexplored source of new, biologically active natural products. In this work, we report on the xanthine oxidase (XO) inhibitory activity of 47 wild-growing mushrooms native to Hungary. Aqueous and organic (n-hexane, chloroform, and 50% methanol) extracts of selected mushrooms from different families were screened for their XO inhibitory activities. Among the 188 extracts investigated, the chloroform and 50% methanol fractions proved to be the most effective. Some species exhibited high inhibitory activity, e.g., Hypholoma fasciculare (IC50  =67.76 ± 11.05 µg/mL), Suillus grevillei (IC50  =13.28 ± 1.58 µg/mL), and Tricholoma populinum (IC50  =85.08 ± 15.02 µg/mL); others demonstrated moderate or weak activity. Additional studies are warranted to characterize the compounds responsible for the XO inhibitory activity of mushroom extracts.

  5. Low platelet monoamine oxidase activity in pathological gambling

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, J.L. [Department of Psychiatry, Centro de Salud Mental, Parla Madrid (Spain); Saiz-Ruiz, J. [Department of Psychiatry and Haematology, Hospital Ramon y Cajal, Madrid (Spain); Hollander, E. [Department of Psychiatry, Mount Sinai School of Medicine, Queens Hospital Center, New York (United States); Cesar, J. [Department of Haematology, Hospital Ramon y Cajal, Madrid (Spain); Lopez-Ibor, J.J. Jr. [Department of Psychiatry, Hospital San Carlos, Complutense University, Madrid (Spain)


    Decreased platelet monoamine oxidase (MAO) activity has been reported in association with sensation-seeking personality type and in some mental disorders associated with a lack of impulse control. Pathological gambling itself has been related with both sensation-seeking and reduced impulse control. Platelet MAO activity was investigated in 15 DSM-III-R pathological gamblers from our outpatient clinic. Gamblers had a significantly lower platelet MAO activity than a group of 25 healthy controls. The range of MAO levels in gamblers was also significantly shorter than in controls. In controls, platelet MAO levels showed the previously described negative correlations with sensation-seeking scores but not in gamblers. The findings are consistent with previous studies showing an association of low platelet MAO activity with impulse control disorders and raise some interesting therapeutic alternatives for pathological gambling. (au) (40 refs.).

  6. Inhibition of Xanthine Oxidase Activity by Gnaphalium Affine Extract

    Institute of Scientific and Technical Information of China (English)

    Wei-qing Lin; Jian-xiang Xie; Xiao-mu Wu; Lin Yang; Hai-dong Wang


    Objective To evaluate the inhibitory effect of Gnaphalium affine extracts on xanthine oxidase (XO) activity in vitro and to analyze the mechanism of this effect. Methods In this in vitro study, Kinetic measurements were performed in 4 different inhibitor concentrations and 5 different xanthine concentrations (60, 100, 200, 300, 400 μmol/L). Dixon and Lineweaver-Burk plot analysis were used to determine Ki values and the inhibition mode for the compounds isolated from Gnaphalium affine extract. Results Four potent xanthine oxidase inhibitors were found in 95% ethanolic (v/v) Gnaphalium affine extract. Among them, the flavone Eupatilin exhibited the strongest inhibitory effect on XO with a inhibition constant (Ki) of 0.37μmol/L, lower than the Ki of allopurinol (4.56 mol/L), a known synthetic XO inhibitor. Apigenin (Ki of 0.56μmol/L, a proportion of 0.0053‰in Gnaphalium affine), luteolin (Ki of 2.63 μmol/L, 0.0032‰ in Gnaphalium affine) and 5-hydroxy-6,7,3’,4’-tetramethoxyflavone (Ki of 3.15μmol/L, 0.0043‰ in Gnaphalium affine) also contributed to the inhibitory effect of Gnaphalium affine extract on XO activity. Conclusions These results suggest that the use of Gnaphalium affine in the treatment of gout could be attributed to its inhibitory effect on XO. This study provides a rational basis for the traditional use of Gnaphalium affine against gout.

  7. Melatonin activates the peroxidase-oxidase reaction and promotes oscillations. (United States)

    Olsen, L F; Lunding, A; Lauritsen, F R; Allegra, M


    We have studied the peroxidase-oxidase reaction with NADH and O2 as substrates and melatonin as a cofactor in a semibatch reactor. We show for the first time that melatonin is an activator of the reaction catalyzed by enzymes from both plant and animal sources. Furthermore, melatonin promotes oscillatory dynamics in the pH range from 5 to 6. The frequency of the oscillations depends on the pH such that an increase in pH was accompanied by a decrease in frequency. Conversely, an increase in the flow rate of NADH or an increase in the average concentration of NADH resulted in an increase in oscillation frequency. Complex dynamics were not observed with melatonin as a cofactor. These results are discussed in relation to observations of oscillatory dynamics and the function of melatonin and peroxidase in activated neutrophils.

  8. Priming and activation of NADPH oxidases in plants and animals. (United States)

    Canton, Johnathan; Grinstein, Sergio


    In mammals, engagement of Toll-like receptors by microbe-associated molecular patterns enhances the responsiveness of NADPH oxidases. Two recent papers report a similar 'priming' mechanism for the plant oxidase RbohD. Despite lacking structural homology, the functional parallels between plants and animals reveal that a common regulatory logic arose by convergent evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Inhibition of apple polyphenol oxidase activity by sodium chlorite. (United States)

    Lu, Shengmin; Luo, Yaguang; Feng, Hao


    Sodium chlorite (SC) was shown to have strong efficacy both as a sanitizer to reduce microbial growth on produce and as a browning inhibitor on fresh-cut apples in previous experiments. This study was undertaken to investigate the inhibitory effect of SC on polyphenol oxidase (PPO) and the associated mechanisms. The experiment showed that SC had a strong inhibition of apple PPO. The extent of inhibition was influenced by SC concentration and pH. Inhibition was most prominent at pH 4.5, at which approximately 30% of enzyme activity was lost in the presence of 10 mM SC, followed closely by that at pH 4.0 with a 26% reduction in PPO activity. The inhibition mode was determined using Dixon and Lineweaver-Burk plots, which established SC to be a mixed inhibitor of apple PPO for the oxidation of catechol. Preincubation of PPO with 8 mM SC for 8 min caused a maximum of 46% activity reduction compared to noninhibited control. However, preincubation of SC with catechol for 8 min resulted in no additional loss of PPO activity. These findings provide further evidence that the inhibition of PPO activity by SC is due to the inhibition of the enzyme itself rather than removal of the substrate.

  10. Xanthine oxidase inhibitory activity of extracts prepared from Polygonaceae species. (United States)

    Orbán-Gyapai, Orsolya; Lajter, Ildikó; Hohmann, Judit; Jakab, Gusztáv; Vasas, Andrea


    The xanthine oxidase (XO) inhibitory activity of aqueous and organic extracts of 27 selected species belonging in five genera (Fallopia, Oxyria, Persicaria, Polygonum and Rumex) of the family Polygonaceae occurring in the Carpathian Basin were tested in vitro. From different plant parts (aerial parts, leaves, flowers, fruits and roots), a total of 196 extracts were prepared by subsequent extraction with methanol and hot H2O and solvent-solvent partition of the MeOH extract yielding n-hexane, chloroform and 50% MeOH subextracts. It was found that the chloroform subextracts and/or the remaining 50% MeOH extracts of Fallopia species (F. bohemica, F. japonica and F. sachalinensis), Rumex species (R. acetosa, R. acetosella, R. alpinus, R. conglomeratus, R. crispus, R. hydrolapathus, R. pulcher, R. stenophyllus, R. thyrsiflorus, R. obtusifolius subsp. subalpinus, R. patientia) and Polygonum bistorta, Polygonum hydropiper, Polygonum lapathifolium and Polygonum viviparum demonstrated the highest XO inhibitory activity (>85% inhibition) at 400 µg/mL. The IC50 values of the active extracts were also determined. On the basis of the results, these plants, and especially P. hydropiper and R. acetosella, are considered worthy of activity-guided phytochemical investigations. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Resistance switching of electrodeposited cuprous oxide (United States)

    Yazdanparast, Sanaz

    In this work, the resistance switching behavior of electrodeposited cuprous oxide (Cu2O) thin films in Au/Cu2O/top electrode (Pt, Au-Pd, Al) cells was studied. After an initial FORMING process, the fabricated cells show reversible switching between a low resistance state (16.6 O) and a high resistance state (0.4 x 106 O). Changing the resistance states in cuprous oxide films depends on the magnitude of the applied voltage which corresponds to unipolar resistance switching behavior of this material. The endurance and retention tests indicate a potential application of the fabricated cells for nonvolatile resistance switching random access memory (RRAM). The results suggest formation and rupture of one or several nanoscale copper filaments as the resistance switching mechanism in the cuprous oxide films. At high electric voltage in the as-deposited state of Au/Cu 2O/Au-Pd cell structure, the conduction behavior follows Poole-Frenkel emission. Various parameters, such as the compliance current, the cuprous oxide microstructure, the cuprous oxide thickness, top electrode area, and top electrode material, affect the resistance switching characteristics. The required FORMING voltage is higher for Au/Cu2O/Al cell compared with the Au/Cu2O/Pt which is related to the Schottky behavior of Al contact with Cu2O. Cu2O nanowires in Au-Pt/ Cu 2O/Au-Pt cell also show resistance switching behavior, indicating scalable potential of this cell for usage as RRAM. After an initial FORMING process under an electric field of 3 x 106 V/m, the Cu2O nanowire is switched to the LRS. During the FORMING process physical damages are observed in the cell, which may be caused by Joule heating and gas evolution.

  12. Xanthine oxidase inhibitory activity of compounds from Chythrantus claneianus

    Directory of Open Access Journals (Sweden)

    Anar Sahib Gojayev


    Full Text Available Phytochemical investigation of the stem bark and the trunk of Chythrantus claneianus led to the isolation of six known compounds named β-sitosterol (1, umbelliferone (2, scopoletin (3, benjaminamide (4, β-sitosterol-3-O-β-D-glucopyranoside (5 and Panconoside B (6. All these compounds were isolated for the first time from this plant species. The chemical structures of isolates were elucidated on the basis of 1 and 2 D-NMR spectra and other spectroscopic techniques including UV–vis, FT-IR, HR-ESIMS and HR-FABMS. The isolates were tested in vitro for their inhibitory properties towards xanthine oxidase enzyme. Compounds 2, 3 and 6 showed weak inhibi-tory activities on the enzyme with IC50 values ranging from 307 µM for com-pound 6 to 475 µM for compound 3, while the extract and compounds 1, 4 and 5 showed extremely weak activities with inhibition percentage less than 50%.

  13. Xanthine oxidase activity regulates human embryonic brain cells growth

    Directory of Open Access Journals (Sweden)

    Kevorkian G. A.


    Full Text Available Aim. Involvement of Xanthine Oxidase (XO; EC1.1.3.22 in cellular proliferation and differentiation has been suggested by the numerous investigations. We have proposed that XO might have undoubtedly important role during the development, maturation as well as the death of human embryos brain cells. Methods. Human abortion material was utilized for the cultivation of brain cells (E90. XO activity was measured by the formation of uric acid in tissue. Cell death was detected by the utility of Trypan Blue dye. Results. Allopurinol suppressed the XO activity in the brain tissue (0.12 ± 0.02; 0.20 ± 0.03 resp., p < 0.05. On day 12th the number of cells in the culture treated with the Allopurinol at the early stage of development was higher in comparison with the Control (2350.1 ± 199.0 vs 2123 ± 96 and higher in comparison with the late period of treatment (1479.6 ± 103.8, p < < 0.05. In all groups, the number of the dead cells was less than in Control, indicating the protective nature of Allopurinol as an inhibitor of XO. Conclusions. Allopurinol initiates cells proliferation in case of the early treatment of the human brain derived cell culture whereas at the late stages it has an opposite effect.

  14. Brain Monoamine Oxidase-A Activity Predicts Trait Aggression (United States)

    Alia-Klein, Nelly; Goldstein, Rita Z.; Kriplani, Aarti; Logan, Jean; Tomasi, Dardo; Williams, Benjamin; Telang, Frank; Shumay, Elena; Biegon, Anat; Craig, Ian W.; Henn, Fritz; Wang, Gene-Jack; Volkow, Nora D.; Fowler, Joanna S.


    The genetic deletion of monoamine oxidase A (MAO A, an enzyme which breaks down the monoamine neurotransmitters norepinephrine, serotonin and dopamine) produces aggressive phenotypes across species. Therefore, a common polymorphism in the MAO A gene (MAOA, MIM 309850, referred to as high or low based on transcription in non-neuronal cells) has been investigated in a number of externalizing behavioral and clinical phenotypes. These studies provide evidence linking the low MAOA genotype and violent behavior but only through interaction with severe environmental stressors during childhood. Here, we hypothesized that in healthy adult males the gene product of MAO A in the brain, rather than the gene per se, would be associated with regulating the concentration of brain amines involved in trait aggression. Brain MAO A activity was measured in-vivo in healthy non-smoking men with positron emission tomography using a radioligand specific for MAO A (clorgyline labeled with carbon 11). Trait aggression was measured with the Multidimensional Personality Questionnaire (MPQ). Here we report for the first time that brain MAO A correlates inversely with the MPQ trait measure of aggression (but not with other personality traits) such that the lower the MAO A activity in cortical and subcortical brain regions the higher the self-reported aggression (in both MAOA genotype groups) contributing to more than a third of the variability. Since trait aggression is a measure used to predict antisocial behavior, these results underscore the relevance of MAO A as a neurochemical substrate of aberrant aggression. PMID:18463263

  15. Xanthine Oxidase Inhibitory Activity of a Plectranthus saccatus aqueous extract

    Directory of Open Access Journals (Sweden)

    Caldeira F


    Full Text Available Gout is a disease with high prevalence in developed countries, resulting from the deposition of uric acid crystals in various locations, particularly at the joints. The pharmacotherapeutic approach to chronic gout essentially consists of administration of uric acid-lowering agents. The main mechanism of action of these agents is the inhibition of xanthine oxidase (XO, the enzyme responsible for the formation of uric acid. The therapeutic alternatives available for this purpose are limited, thus justifying the interest of the discovery of potential new uric acidlowering drugs. In this regard, an aqueous extract of the plant Plectranthus saccatus has been studied for its ability to inhibit XO. The composition of the extract was determined by HPLC and rosmarinic acid was identified as the major constituent. Both the extract and rosmarinic acid have demonstrated the ability to inhibit the production of uric acid by interfering with XO activity. The results obtained herein support the continuation of the study of their uric acid-lowering properties in cell-based and in vivo models to further explore their potential in gout therapy.

  16. Inhibition of polyphenol oxidases activity by various dipeptides. (United States)

    Girelli, Anna M; Mattei, Enrico; Messina, Antonella; Tarola, Anna M


    In an effort to develop natural and nontoxic inhibitors on the activity of mushroom polyphenol oxidase (PPO) the effect of various glycyl-dipeptides (GlyAsp, GlyGly, GlyHis, GlyLeu, GlyLys, GlyPhe, GlyPro, GlyTyr) was investigated. The inhibition study with dihydroxyphenylalanine (DOPA) as substrate is based on separation of the enzymatic reaction components by reversed phase HPLC and the UV detection of the dopachrome formed. The results have evidenced that several of tested dipeptides inhibited PPO activity in the range of 20-40% while GlyPro and GlyLeu had no effect. The study has also permitted the characterization of the following kinetic pattern: a linear-mixed-type mechanism for GlyAsp, GlyGly, GlyLys, and GlyPhe and a hyperbolic-mixed-type for GlyTyr. It was not possible to identify the inhibition mechanism for GlyHis, although it affects PPO activity. In addition the effects of GlyAsp, GlyLys and GlyHis were evaluated for lessening the browning of fresh Golden Delicious apple and Irish White Skinned potato. The effectiveness of such inhibitors was determined by the difference between the colors observed in the dipeptide-treated sample and the controls using the color space CIE-Lab system. The % browning inhibition on potato (20-50%) was greater than of apple (20-30%) by the all tested dipeptides. Only GlyLys presented the significant value of 50%.

  17. Allosteric modulation of semicarbazide-sensitive amine oxidase activities in vitro by imidazoline receptor ligands



    Evidence indicates that imidazoline I2 binding sites (I2BSs) are present on monoamine oxidase (MAO) and on soluble (plasma) semicarbazide-sensitive amine oxidase enzymes. The binding site on MAO has been described as a modulatory site, although no effects on activity are thought to have been observed as a result of ligands binding to these sites.We examined the effects in vitro of several imidazoline binding site ligands on activities of bovine plasma amine oxidase (BPAO) and porcine kidney d...

  18. Fluorescent Probes for Analysis and Imaging of Monoamine Oxidase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dokyoung; Jun, Yong Woong; Ahn, Kyo Han [POSTECH, Pohang (Korea, Republic of)


    Monoamine oxidases catalyze the oxidative deamination of dietary amines and amine neurotransmitters, and assist in maintaining the homeostasis of the amine neurotransmitters in the brain. Dysfunctions of these enzymes can cause neurological and behavioral disorders including Parkinson's and Alzheimer's diseases. To understand their physiological roles, efficient assay methods for monoamine oxidases are essential. Reviewed in this Perspective are the recent progress in the development of fluorescent probes for monoamine oxidases and their applications to enzyme assays in cells and tissues. It is evident that still there is strong need for a fluorescent probe with desirable substrate selectivity and photophysical properties to challenge the much unsolved issues associated with the enzymes and the diseases.

  19. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Koji Sode


    Full Text Available Mutagenesis studies on glucose oxidases (GOxs were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe and Aspergillus niger GOx (PDB ID; 1cf3. We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  20. Inhibitory activity of xanthine oxidase by fractions Crateva adansonii

    Directory of Open Access Journals (Sweden)

    A Abdullahi


    Conclusions: Enzyme inhibition mechanism indicated that the mode of inhibition was of a mixed type. Our findings suggest that the therapeutic use of these plants may be due to the observed Xanthine oxidase inhibition, thereby supporting their use in traditional folk medicine against inflammatory-related diseases, in particular, gout.

  1. Low activation barriers characterize intramolecular electron transfer in ascorbate oxidase

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I


    Anaerobic reduction kinetics of the zucchini squash ascorbate oxidase (AO; L-ascorbate:oxygen oxidoreductase, EC by pulse radiolytically produced CO2- radical ions were investigated. Changes in the absorption bands of type 1 [Cu(II)] (610 nm) and type 3 [Cu(II)] (330 nm) were monitored...

  2. Sulfite oxidase activity of cytochrome c: Role of hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Murugesan Velayutham


    Full Text Available In humans, sulfite is generated endogenously by the metabolism of sulfur containing amino acids such as methionine and cysteine. Sulfite is also formed from exposure to sulfur dioxide, one of the major environmental pollutants. Sulfite is used as an antioxidant and preservative in dried fruits, vegetables, and beverages such as wine. Sulfite is also used as a stabilizer in many drugs. Sulfite toxicity has been associated with allergic reactions characterized by sulfite sensitivity, asthma, and anaphylactic shock. Sulfite is also toxic to neurons and cardiovascular cells. Recent studies suggest that the cytotoxicity of sulfite is mediated by free radicals; however, molecular mechanisms involved in sulfite toxicity are not fully understood. Cytochrome c (cyt c is known to participate in mitochondrial respiration and has antioxidant and peroxidase activities. Studies were performed to understand the related mechanism of oxidation of sulfite and radical generation by ferric cytochrome c (Fe3+cyt c in the absence and presence of H2O2. Electron paramagnetic resonance (EPR spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO were performed with sulfite, Fe3+cyt c, and H2O2. An EPR spectrum corresponding to the sulfite radical adducts of DMPO (DMPO-SO3- was obtained. The amount of DMPO-SO3- formed from the oxidation of sulfite by the Fe3+cyt c increased with sulfite concentration. In addition, the amount of DMPO-SO3- formed by the peroxidase activity of Fe3+cyt c also increased with sulfite and H2O2 concentration. From these results, we propose a mechanism in which the Fe3+cyt c and its peroxidase activity oxidizes sulfite to sulfite radical. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of sulfite in biological systems due to increased production of sulfite radical. It also shows that the increased production of sulfite radical may be responsible for neurotoxicity and some of the injuries which

  3. Hippocampal mitochondrial cytochrome C oxidase activity and gene expression in a rat model of chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Qing Zhao; Yingli Zhang; Mingming Zhao; Yu Wang; Ming Ma; Xinquan Gu; Xia Cao


    The present study established a rat model of chronic cerebral ischemia using bilateral common carotid artery permanent ligation to analyze cytochrome C oxidase activity and mRNA expression in hippocampal mitochondria.Results showed significantly decreased cytochrome C oxidase activity and cytochrome C oxidase II mRNA expression with prolonged ischemia time.Further analysis revealed five mitochondrial cytochrome C oxidase II gene mutations, two newly generated mutations, and four absent mutational sites at 1 month after cerebral ischemia, as well as three mitochondrial cytochrome C oxidase III gene mutations, including two newly generating mutations, and one disappeared mutational site at 1 month after cerebral ischemia.Results demonstrated that decreased cytochrome C oxidase gene expression and mutations, as well as decreased cytochrome C oxidase activity, resulting in energy dysmetabolism, which has been shown to be involved in the pathological process of ischemic brain injury.

  4. Cholesterol: A modulator of the phagocyte NADPH oxidase activity - A cell-free study

    Directory of Open Access Journals (Sweden)

    Rawand Masoud


    Full Text Available The NADPH oxidase Nox2, a multi-subunit enzyme complex comprising membrane and cytosolic proteins, catalyzes a very intense production of superoxide ions O2•−, which are transformed into other reactive oxygen species (ROS. In vitro, it has to be activated by addition of amphiphiles like arachidonic acid (AA. It has been shown that the membrane part of phagocyte NADPH oxidase is present in lipid rafts rich in cholesterol. Cholesterol plays a significant role in the development of cardio-vascular diseases that are always accompanied by oxidative stress. Our aim was to investigate the influence of cholesterol on the activation process of NADPH oxidase. Our results clearly show that, in a cell-free system, cholesterol is not an efficient activator of NADPH oxidase like arachidonic acid (AA, however it triggers a basal low superoxide production at concentrations similar to what found in neutrophile. A higher concentration, if present during the assembly process of the enzyme, has an inhibitory role on the production of O2•−. Added cholesterol acts on both cytosolic and membrane components, leading to imperfect assembly and decreasing the affinity of cytosolic subunits to the membrane ones. Added to the cytosolic proteins, it retains their conformations but still allows some conformational change induced by AA addition, indispensable to activation of NADPH oxidase.

  5. 1-Aminocyclopropane-1-Carboxylate Oxidase Activity Limits Ethylene Biosynthesis in Rumex palustris during Submergence (United States)

    Vriezen, Wim H.; Hulzink, Raymond; Mariani, Celestina; Voesenek, Laurentius A.C.J.


    Submergence strongly stimulates petiole elongation in Rumex palustris, and ethylene accumulation initiates and maintains this response in submerged tissues. cDNAs from R. palustris corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene (RP-ACO1) were isolated from elongating petioles and used to study the expression of the corresponding gene. An increase in RP-ACO1 messenger was observed in the petioles and lamina of elongating leaves 2 h after the start of submergence. ACC oxidase enzyme activity was measured in homogenates of R. palustris shoots, and a relevant increase was observed within 12 h under water with a maximum after 24 h. We have shown previously that the ethylene production rate of submerged shoots does not increase significantly during the first 24 h of submergence (L.A.C.J. Voesenek, M. Banga, R.H. Thier, C.M. Mudde, F.M. Harren, G.W.M. Barendse, C.W.P.M. Blom [1993] Plant Physiol 103: 783–791), suggesting that under these conditions ACC oxidase activity is inhibited in vivo. We found evidence that this inhibition is caused by a reduction of oxygen levels. We hypothesize that an increased ACC oxidase enzyme concentration counterbalances the reduced enzyme activity caused by low oxygen concentration during submergence, thus sustaining ethylene production under these conditions. Therefore, ethylene biosynthesis seems to be limited at the level of ACC oxidase activity rather than by ACC synthase in R. palustris during submergence. PMID:10482674

  6. Spinach thylakoid polyphenol oxidase isolation, activation, and properties of the native chloroplast enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Golbeck, J.H.; Cammarata, K.V.


    Polyphenol oxidase activity (E.C. 1.14,18.1) has been found in two enzyme species isolated from thylakoid membranes of spinach chloroplasts. The proteins were released from the membrane by sonication and purified >900-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography. The enzymes appear to be the tetramer and monomer of a subunit with a molecular weight of 42,500 as determined by lithium dodecyl sulfate gel electrophoresis. Sonication releases polyphenol oxidase from the membrane largely in the latent state. In the absence of added fatty acids, the isolated enzyme spontaneously, but slowly, activates with time. Purified polyphenol oxidase utilizes o-diphenols as substrates and shows no detectable levels of monophenol or p-diphenol oxidase activities. Suitable substrates include chlorogenic acid, catechol, caffeic acid, pyrogallol, and dopamine; however, the enzyme is substrate-inhibited by the last four at concentrations near their K/sub m/. A large seasonal variation in polyphenol oxidase activity may result from a decrease in enzyme content rather than inhibition of the enzyme present.

  7. Xanthine oxidase activity and free radical generation in patients with sepsis syndrome

    DEFF Research Database (Denmark)

    Galley, H F; Davies, Michael Jonathan; Webster, N R


    OBJECTIVE: To determine xanthine oxidase activity, free radical concentrations, and lipid peroxidation in patients with sepsis syndrome compared with noninfected critically ill patients. DESIGN: A prospective observational study. SETTING: A nine-bed intensive care unit in a university teaching......). CONCLUSIONS: Patients with sepsis have xanthine oxidase activation, high free-radical concentrations, and evidence of free radical damage. The finding that xanthine oxidase activity was lower in those patients who died, coupled with increased lactate concentrations implies more severe ischemia with incomplete...... to the Acute Physiology and Chronic Health Evaluation (APACHE) II score or to the presence of organ dysfunction. The mean ascorbyl radical concentration (arbitrary units) determined by electron paramagnetic resonance following spin trapping was increased in patients compared with healthy subjects (p

  8. Structure-Based Alteration of Substrate Specificity and Catalytic Activity of Sulfite Oxidase from Sulfite Oxidation to Nitrate Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, James A.; Wilson, Heather L.; Rajagopalan, K.V. (Duke)


    Eukaryotic sulfite oxidase is a dimeric protein that contains the molybdenum cofactor and catalyzes the metabolically essential conversion of sulfite to sulfate as the terminal step in the metabolism of cysteine and methionine. Nitrate reductase is an evolutionarily related molybdoprotein in lower organisms that is essential for growth on nitrate. In this study, we describe human and chicken sulfite oxidase variants in which the active site has been modified to alter substrate specificity and activity from sulfite oxidation to nitrate reduction. On the basis of sequence alignments and the known crystal structure of chicken sulfite oxidase, two residues are conserved in nitrate reductases that align with residues in the active site of sulfite oxidase. On the basis of the crystal structure of yeast nitrate reductase, both positions were mutated in human sulfite oxidase and chicken sulfite oxidase. The resulting double-mutant variants demonstrated a marked decrease in sulfite oxidase activity but gained nitrate reductase activity. An additional methionine residue in the active site was proposed to be important in nitrate catalysis, and therefore, the triple variant was also produced. The nitrate reducing ability of the human sulfite oxidase triple mutant was nearly 3-fold greater than that of the double mutant. To obtain detailed structural data for the active site of these variants, we introduced the analogous mutations into chicken sulfite oxidase to perform crystallographic analysis. The crystal structures of the Mo domains of the double and triple mutants were determined to 2.4 and 2.1 {angstrom} resolution, respectively.

  9. Preparation and Instability of Nanocrystalline Cuprous Nitride. (United States)

    Reichert, Malinda D; White, Miles A; Thompson, Michelle J; Miller, Gordon J; Vela, Javier


    Low-dimensional cuprous nitride (Cu3N) was synthesized by nitridation (ammonolysis) of cuprous oxide (Cu2O) nanocrystals using either ammonia (NH3) or urea (H2NCONH2) as the nitrogen source. The resulting nanocrystalline Cu3N spontaneously decomposes to nanocrystalline CuO in the presence of both water and oxygen from air at room temperature. Ammonia was produced in 60% chemical yield during Cu3N decomposition, as measured using the colorimetric indophenol method. Because Cu3N decomposition requires H2O and produces substoichiometric amounts of NH3, we conclude that this reaction proceeds through a complex stoichiometry that involves the concomitant release of both N2 and NH3. This is a thermodynamically unfavorable outcome, strongly indicating that H2O (and thus NH3 production) facilitate the kinetics of the reaction by lowering the energy barrier for Cu3N decomposition. The three different Cu2O, Cu3N, and CuO nanocrystalline phases were characterized by a combination of optical absorption, powder X-ray diffraction, transmission electron microscopy, and electronic density of states obtained from electronic structure calculations on the bulk solids. The relative ease of interconversion between these interesting and inexpensive materials bears possible implications for catalytic and optoelectronic applications.

  10. Are colorimetric assays appropriate for measuring phenol oxidase activity in peat soils? (United States)

    Magdalena M. Wiedermann; Evan S. Kane; Timothy J. Veverica; Erik A. Lilleskov


    The activity of extracellular phenol oxidases is believed to play a critical role in decomposition processes in peatlands. The water logged, acidic conditions, and recalcitrant litter from the peatland vegetation, lead to exceptionally high phenolics in the peat. In order to quantify the activity of oxidative enzymes involved in the modification and break down of...

  11. Rapid deactivation of NADPH oxidase in neutrophils: continuous replacement by newly activated enzyme sustains the respiratory burst. (United States)

    Akard, L P; English, D; Gabig, T G


    The cell-free system for activation of the neutrophil NADPH oxidase allowed us to examine activation of the oxidase in the absence of its NADPH-dependent turnover. The covalent sulfhydryl-modifying reagent N-ethylmaleimide completely inhibited the activation step (Ki = 40 mumol/L) in the cell-free system but had no effect on turnover of the preactivated particulate NADPH oxidase (up to 1 mmol/L). When N-ethylmaleimide was added to intact neutrophils during the period of maximal O2 generation in response to stimuli that activate the respiratory burst (phorbol myristate acetate, f-Met-Leu-Phe, opsonized zymosan, arachidonic acid), O2- generation ceased within seconds. Study of components of the cell-free activation system indicated that the cytosolic cofactor was irreversibly inhibited by N-ethylmaleimide whereas the N-ethylmaleimide-treated, membrane-associated oxidase could be activated by arachidonate and control cytosolic cofactor. Likewise, the cell-free system prepared from intact neutrophils that had been briefly exposed to N-ethylmaleimide and then washed reflected the effects of N-ethylmaleimide on the isolated cell-free components: cytosolic cofactor activity was absent, but the membrane oxidase remained fully activatable. Thus inhibition of oxidase activation by N-ethylamaleimide unmasked a rapid deactivation step that was operative in intact neutrophils but not in isolated particulate NADPH oxidase preparations. The demonstrated specificity of N-ethylmaleimide for oxidase activation and lack of effect on turnover of the NADPH oxidase suggested that sustained O2- generation by intact neutrophils was a result of continued replenishment of a small pool of active oxidase. The existence of an inactive pool of NADPH oxidase molecules in particulate preparations from stimulated neutrophils was supported more directly by activating these preparations again in the cell-free system.

  12. In vitro anti-inflammatory and xanthine oxidase inhibitory activity of Tephrosia purpurea shoot extract. (United States)

    Nile, Shivraj H; Khobragade, Chandrahasy N


    The methanolic extract of Tephrosia purpurea (Leguminosae) shoots was evaluated in-vitro for its anti-inflammatory and xanthine oxidase inhibitory activity. Anti-inflammatory activity was measured by the Diene-conjugate, HET-CAM and beta-glucuronidase methods. The enzyme inhibitory activity was tested against isolated cow milk xanthine oxidase. The average anti-inflammatory activity of T. purpurea shoot extract in the concentration range of 1-2 microg/mL in the reacting system revealed significant anti-inflammatory activities, which, as recorded by the Diene-conjugate, HET-CAM and beta-glucuronidase assay methods, were 45.4, 10.5, and 70.5%, respectively. Screening of the xanthine oxidase inhibitory activity of the extract in terms of kinetic parameters revealed a mixed type of inhibition, wherein the Km and Vmax values in the presence of 25 to 100 microg/mL shoot extract was 0.20 mM/mL and 0.035, 0.026, 0.023 and 0.020 microg/min, while, for the positive control, the Km and Vmax values were 0.21 mM/mL and 0.043 microg/min, respectively. These findings suggest that T. purpurea shoot extract may possess constituents with good medicinal properties that could be exploited to treat the diseases associated with oxidative stress, xanthine oxidase enzyme activity and inflammation.

  13. In silico docking studies and in vitro xanthine oxidase inhibitory activity of commercially available terpenoids

    Directory of Open Access Journals (Sweden)



    Full Text Available Objective Xanthine oxidase is a highly versatile enzyme that is widely distributed among different species. The hydroxylation of purines is catalysed by xanthine oxidase and especially the conversion of xanthine to uric acid. Xanthine oxidase inhibitors are much useful, since they possess lesser side effects compared to uricosuric and anti-inflammatory agents. The present study deals with in silico and in vitro xanthine oxidase inhibitory analysis of commercially available terpenoids (bisabolol, β-caryophyllene, limonene, and α- terpinene. Methods Molecular docking studies were performed using AutoDock 4.2 and in vitro xanthine oxidase inhibitory activity was carried out using xanthine as the substrate. In addition, enzyme kinetics was performed using Lineweaver Burkplot analysis. Allopurinol, a known xanthine oxidase inhibitor was used as the standard. Results The results revealed that bisabolol exhibited a lowest binding energy value of about -7.33 kcal/mol. All other compounds showed binding energy values ranging between -7.33 to -5.87 kcal/mol which was less than the standard (-4.78 kcal/mol. In the xanthine oxidase assay, IC50 value of bisabolol was found to be 34.70 µg/ml, whereas that of allopurinol was 8.48 µg/ml. All the remaining compounds exhibited IC50 values ranging between 34.70 to 68.45 µg/ml.  In the enzyme kinetic studies, bisabolol, β-caryophyllene showed non competitive and Limonene, α- terpinene and allopurinol showed competitive type of enzyme inhibition. Conclusion It can be concluded that terpenoids could be a promising remedy for the treatment of gout and related inflammatory disorders. Further in vivo studies are required to develop potential compounds with lesser side effects.

  14. Hypouricaemic action of mangiferin results from metabolite norathyriol via inhibiting xanthine oxidase activity. (United States)

    Niu, Yanfen; Liu, Jia; Liu, Hai-Yang; Gao, Li-Hui; Feng, Guo-Hua; Liu, Xu; Li, Ling


    Context Mangiferin has been reported to possess a potential hypouricaemic effect. However, the pharmacokinetic studies in rats showed that its oral bioavailability was only 1.2%, suggesting that mangiferin metabolites might exert the action. Objective The hypouricaemic effect and the xanthine oxidase inhibition of mangiferin and norathyriol, a mangiferin metabolite, were investigated. Inhibition of norathyriol analogues (compounds 3-9) toward xanthine oxidase was also evaluated. Materials and methods For a dose-dependent study, mangiferin (1.5-6.0 mg/kg) and norathyriol (0.92-3.7 mg/kg) were administered intragastrically to mice twice daily for five times. For a time-course study, mice received mangiferin and norathyriol both at a single dose of 7.1 μmol/kg. In vitro, inhibition of test compounds (2.4-2.4 mM) against xanthine oxidase activity was evaluated by the spectrophotometrical method. The inhibition type was identified from Lineweaver-Burk plots. Results Norathyriol (0.92, 1.85 and 3.7 mg/kg) dose dependently decreased the serum urate levels by 27.0, 33.6 and 37.4%, respectively. The action was more potent than that of mangiferin at the low dose, but was equivalent at the higher doses. Additionally, the hypouricaemic action of them exhibited a time dependence. In vitro, norathyriol markedly inhibited the xanthine oxidase activities, with the IC50 value of 44.6 μM, but mangiferin did not. The kinetic studies showed that norathyriol was an uncompetitive inhibitor by Lineweaver-Burk plots. The structure-activity relationships exhibited that three hydroxyl groups in norathyriol at the C-1, C-3 and C-6 positions were essential for maintaining xanthine oxidase inhibition. Discussion and conclusion Norathyriol was responsible for the hypouricaemic effect of mangiferin via inhibiting xanthine oxidase activity.

  15. Residual NADPH Oxidase Activity and Isolated Lung Involvement in X-Linked Chronic Granulomatous Disease

    Directory of Open Access Journals (Sweden)

    Maria J. Gutierrez


    Full Text Available Chronic granulomatous disease (CGD is characterized by inherited immune defects resulting from mutations in the NADPH oxidase complex genes. The X-linked type of CGD is caused by defects in the CYBB gene that encodes gp91-phox, a fundamental component of the NADPH oxidase complex. This mutation originates the most common and severe form of CGD, which typically has absence of NADPH oxidase function and aggressive multisystemic infections. We present the case of a 9-year-old child with a rare CYBB mutation that preserves some NADPH oxidase activity, resulting in an atypical mild form of X-linked CGD with isolated lung involvement. Although the clinical picture and partially preserved oxidase function suggested an autosomal recessive form of CGD, genetic testing demonstrated a mutation in the exon 3 of CYBB gene (c.252 G>A, p.Ala84Ala, an uncommon X-linked CGD variant that affects splicing. Atypical presentation and diagnostic difficulties are discussed. This case highlights that the diagnosis of mild forms of X-linked CGD caused by rare CYBB mutations and partially preserved NADPH function should be considered early in the evaluation of atypical and recurrent lung infections.

  16. Dynamics of indole-3-acetic acid oxidase activity in suspension culture of sunflower crown-gall

    Directory of Open Access Journals (Sweden)

    Zofia Chirek


    Full Text Available IAA oxidase activity was determined in several growth phases of a suspension culture of sunflower crown-gall. During the short phase of intensive growth (zero passage - PO a negative correlation was noted between enzymatic activity and the rate of growth. IAA oxidase activity increased to a certain level is not a factor limiting cell division. For protraction of the phase of intensive growth (first passage - P1, however, a decrease in the activity of this enzyme seems indispensable. IAA oxidase activity in the tested culture is under the control of inhibitors present in the cells and medium. High enzyme inhibition was observed in PO cells during the phase, of intensive growth and in P1 at the beginning and in the middle part of this phase. These results suggest' that the -auxin level determined in earlier studies in sunflower crown-gall culture is controlled by the IAA oxidase set. During the long phase of intensive growth (P1 this control is of negative feedback type.

  17. H2O2-Forming NADH Oxidase with Diaphorase (Cytochrome) Activity from Archaeoglobus fulgidus


    Reed, David W.; Millstein, Jack; Hartzell, Patricia L.


    An enzyme exhibiting NADH oxidase (diaphorase) activity was isolated from the hyperthermophilic sulfate-reducing anaerobe Archaeoglobus fulgidus. N-terminal sequence of the protein indicates that it is coded for by open reading frame AF0395 in the A. fulgidus genome. The gene AF0395 was cloned and its product was purified from Escherichia coli. Like the native NADH oxidase (NoxA2), the recombinant NoxA2 (rNoxA2) has an apparent molecular mass of 47 kDa, requires flavin adenine dinucleotide fo...

  18. Cytochrome c oxidase loses catalytic activity and structural integrity during the aging process in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jian-Ching; Rebrin, Igor [Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033 (United States); Klichko, Vladimir; Orr, William C. [Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275 (United States); Sohal, Rajindar S., E-mail: [Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033 (United States)


    Research highlights: {yields} Cytochrome c oxidase loses catalytic activity during the aging process. {yields} Abundance of seven nuclear-encoded subunits of cytochrome c oxidase decreased with age in Drosophila. {yields} Cytochrome c oxidase is specific intra-mitochondrial site of age-related deterioration. -- Abstract: The hypothesis, that structural deterioration of cytochrome c oxidase (CcO) is a causal factor in the age-related decline in mitochondrial respiratory activity and an increase in H{sub 2}O{sub 2} generation, was tested in Drosophila melanogaster. CcO activity and the levels of seven different nuclear DNA-encoded CcO subunits were determined at three different stages of adult life, namely, young-, middle-, and old-age. CcO activity declined progressively with age by 33%. Western blot analysis, using antibodies specific to Drosophila CcO subunits IV, Va, Vb, VIb, VIc, VIIc, and VIII, indicated that the abundance these polypeptides decreased, ranging from 11% to 40%, during aging. These and previous results suggest that CcO is a specific intra-mitochondrial site of age-related deterioration, which may have a broad impact on mitochondrial physiology.

  19. Cloning and expression of DNA encoding a ripening from a polypeptide having sulfhydryl oxidase activity.

    NARCIS (Netherlands)

    Maat, J.; Musters, W.; Stam, H.; Schaap, P.J.; Vondervoort, van de P.J.J.; Visser, J.; Verbakel, J.M.A.


    The invention relates to recombinant DNA technology for the production of an enzyme having sulfhydryl oxidase ("SOX") activity. This SOX-enzyme can be used where the oxidation of free sulfhydryl groups (thio compounds) to the corresponding disulfides is desirable. SOX enzyme may be used for treatmen

  20. Season-controlled changes in biochemical constituents and oxidase enzyme activities in tomato (Lycopersicon esculentum Mill.). (United States)

    Sen, Supatra; Mukherji, S


    Season-controlled changes in biochemical constituents viz. carotenoids (carotene and xanthophyll) and pectic substances along with IAA-oxidase and polyphenol oxidase (PPO) enzyme activities were estimated/assayed in leaves of Lycopersicon esculentum Mill. (tomato) in two developmental stages--pre-flowering (35 days after sowing) and post-flowering (75 days after sowing) in three different seasons--summer rainy and winter Carotenoid content along with pectic substances were highest in winter and declined significantly in summer followed by rainy i.e. winter > summer > rainy. Carotenoid content was significantly higher in the pre-flowering as compared to post-flowering in all three seasons while pectic substances increased in the post-flowering as compared to pre-flowering throughout the annual cycle. IAA oxidase and PPO enzyme activities were enhanced in rainy and decreased sharply in summer and winter i.e. rainy > summer > winter. Both the enzymes exhibited higher activity in the post-flowering stage as compared to pre-flowering in all three seasons. These results indicate winter to be the most favourable season for tomato plants while rainy season environmental conditions prove to be unfavourable (stressful) with diminished content of carotenoid and pectic substances and low activities of IAA oxidase and PPO, ultimately leading to poor growth and productivity.

  1. Molecular basis of reduced pyridoxine 5'-phosphate oxidase catalytic activity in neonatal epileptic encephalopathy disorder. (United States)

    Musayev, Faik N; Di Salvo, Martino L; Saavedra, Mario A; Contestabile, Roberto; Ghatge, Mohini S; Haynes, Alexina; Schirch, Verne; Safo, Martin K


    Mutations in pyridoxine 5'-phosphate oxidase are known to cause neonatal epileptic encephalopathy. This disorder has no cure or effective treatment and is often fatal. Pyridoxine 5'-phosphate oxidase catalyzes the oxidation of pyridoxine 5'-phosphate to pyridoxal 5'-phosphate, the active cofactor form of vitamin B(6) required by more than 140 different catalytic activities, including enzymes involved in amino acid metabolism and biosynthesis of neurotransmitters. Our aim is to elucidate the mechanism by which a homozygous missense mutation (R229W) in the oxidase, linked to neonatal epileptic encephalopathy, leads to reduced oxidase activity. The R229W variant is approximately 850-fold less efficient than the wild-type enzyme due to an approximately 192-fold decrease in pyridoxine 5'-phosphate affinity and an approximately 4.5-fold decrease in catalytic activity. There is also an approximately 50-fold reduction in the affinity of the R229W variant for the FMN cofactor. A 2.5 A crystal structure of the R229W variant shows that the substitution of Arg-229 at the FMN binding site has led to a loss of hydrogen-bond and/or salt-bridge interactions between FMN and Arg-229 and Ser-175. Additionally, the mutation has led to an alteration of the configuration of a beta-strand-loop-beta-strand structure at the active site, resulting in loss of two critical hydrogen-bond interactions involving residues His-227 and Arg-225, which are important for substrate binding and orientation for catalysis. These results provide a molecular basis for the phenotype associated with the R229W mutation, as well as providing a foundation for understanding the pathophysiological consequences of pyridoxine 5'-phosphate oxidase mutations.

  2. Activity of indolyl-3-acetic acid oxidase and peroxidase in roots of carrot infested with Meloidogyne hapla Chiuu.

    Directory of Open Access Journals (Sweden)

    Krystyna M. Janas


    Full Text Available IAA-oxidase and peroxidase activity was measured in storage and side roots of healthy and M. hapla infested carrots of two sultivars. Cultivar 'Perfekcja' is sensitive whereas cv. 'Slendero' is tolerant to the northern root-knot ne-matode. 3-, 4-, and 5-month-old plants were subjected to analyses. In M. hapla infested plants of both cultivars IAA-oxidase inhibitors accumulated. Kinetics of IAA oxidation in vivo were the same in healthy and infested plants. IAA-oxidase activity in vitro was inhibited in crude extracts of the infested tissues, the inhibition being prevented by PVP. Peroxidase activity increased in secondary phloem and decreased in galled side roots of both cultivars when compared with healthy controls. In galled side roots of the youngest 3-month-old plants peroxidase activity was not decreased. IAA-oxidase inhibitors accumulated in the infested roots.It is concluded that M. hapla has no direct effect on IAA-oxidase. Degree of tolerance to nematodes is correlated with the ratio of IAA-oxidase inhibitors to IAA-oxidase rather than with the absolute activity of IAA-oxidase.

  3. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Quan-Guang Zhang

    Full Text Available BACKGROUND: Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O(2(-, and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI. METHODOLOGY/PRINCIPAL FINDINGS: The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24-96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O(2(- induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer's disease proteins β-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI. CONCLUSIONS/SIGNIFICANCE: As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI.

  4. Auxin-activated NADH oxidase activity of soybean plasma membranes is distinct from the constitutive plasma membrane NADH oxidase and exhibits prion-like properties (United States)

    Morre, D. James; Morre, Dorothy M.; Ternes, Philipp


    The hormone-stimulated and growth-related cell surface hydroquinone (NADH) oxidase activity of etiolated hypocotyls of soybeans oscillates with a period of about 24 min or 60 times per 24-h day. Plasma membranes of soybean hypocotyls contain two such NADH oxidase activities that have been resolved by purification on concanavalin A columns. One in the apparent molecular weight range of 14-17 kDa is stimulated by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The other is larger and unaffected by 2,4-D. The 2,4-D-stimulated activity absolutely requires 2,4-D for activity and exhibits a period length of about 24 min. Also exhibiting 24-min oscillations is the rate of cell enlargement induced by the addition of 2,4-D or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D or IAA addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges at the expense of the constitutive activity. A recruitment process analogous to that exhibited by prions is postulated to explain this behavior.

  5. NADPH oxidase mediates β-amyloid peptide-induced activation of ERK in hippocampal organotypic cultures (United States)

    Serrano, Faridis; Chang, Angela; Hernandez, Caterina; Pautler, Robia G; Sweatt, J David; Klann, Eric


    Background Previous studies have shown that beta amyloid (Aβ) peptide triggers the activation of several signal transduction cascades in the hippocampus, including the extracellular signal-regulated kinase (ERK) cascade. In this study we sought to characterize the cellular localization of phosphorylated, active ERK in organotypic hippocampal cultures after acute exposure to either Aβ (1-42) or nicotine. Results We observed that Aβ and nicotine increased the levels of active ERK in distinct cellular localizations. We also examined whether phospho-ERK was regulated by redox signaling mechanisms and found that increases in active ERK induced by Aβ and nicotine were blocked by inhibitors of NADPH oxidase. Conclusion Our findings indicate that NADPH oxidase-dependent redox signaling is required for Aβ-induced activation of ERK, and suggest a similar mechanism may occur during early stages of Alzheimer's disease. PMID:19804648

  6. Studies on the quantitative structure-activity relationship of the inhibition of xanthine oxidase by azaheterocyclic compounds.

    NARCIS (Netherlands)

    Naeff, H.S.D.


    This thesis contains the results of a QSAR analysis of the interaction of bovine milk xanthine oxidase with two azaheterocyclic compounds, namely the 6-arylpteridin- 4-ones and the 8-arylhypoxanthines. Xanthine oxidase has active sites for various substrates. The studies done for this thesis were of

  7. ANNALS EXPRESS: Caeruloplasmin oxidase activity- measurement in serum by use of o- dianisidine dihydrochloride on a microplate reader. (United States)

    Stepien, Karolina Maria; Guy, Mark


    Background The enzymatic method of caeruloplasmin measurement is based on copper-dependent oxidase activity. The advantage of the oxidase determination is that it has a much lower detection limit compared to immunoassay-based methods. It has found its application in both the diagnosis of Wilson's disease and also in the monitoring of patients' response to treatment.

  8. Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase. (United States)

    Zhang, Jingfei; Malik, Aqsa; Choi, Hyun B; Ko, Rebecca W Y; Dissing-Olesen, Lasse; MacVicar, Brian A


    Complement receptor 3 (CR3) activation in microglia is involved in neuroinflammation-related brain disorders and pruning of neuronal synapses. Hypoxia, often observed together with neuroinflammation in brain trauma, stroke, and neurodegenerative diseases, is thought to exacerbate inflammatory responses and synergistically enhance brain damage. Here we show that when hypoxia and an inflammatory stimulus (lipopolysaccharide [LPS]) are combined, they act synergistically to trigger long-term synaptic depression (LTD) that requires microglial CR3, activation of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), and GluA2-mediated A-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization. Microglial CR3-triggered LTD is independent of N-methyl-D-aspartate receptors (NMDARs), metabotropic glutamate receptors (mGluRs), or patterned synaptic activity. This type of LTD may contribute to memory impairments and synaptic disruptions in neuroinflammation-related brain disorders.

  9. Improving Glyphosate Oxidation Activity of Glycine Oxidase from Bacillus cereus by Directed Evolution (United States)

    Zhan, Tao; Zhang, Kai; Chen, Yangyan; Lin, Yongjun; Wu, Gaobing; Zhang, Lili; Yao, Pei; Shao, Zongze; Liu, Ziduo


    Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO) has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO), we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops. PMID:24223901

  10. Persistent activation of microglia and NADPH oxidase [corrected] drive hippocampal dysfunction in experimental multiple sclerosis. (United States)

    Di Filippo, Massimiliano; de Iure, Antonio; Giampà, Carmela; Chiasserini, Davide; Tozzi, Alessandro; Orvietani, Pier Luigi; Ghiglieri, Veronica; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Mancini, Andrea; Costa, Cinzia; Sarchielli, Paola; Fusco, Francesca Romana; Calabresi, Paolo


    Cognitive impairment is common in multiple sclerosis (MS). Unfortunately, the synaptic and molecular mechanisms underlying MS-associated cognitive dysfunction are largely unknown. We explored the presence and the underlying mechanism of cognitive and synaptic hippocampal dysfunction during the remission phase of experimental MS. Experiments were performed in a chronic-relapsing experimental autoimmune encephalomyelitis (EAE) model of MS, after the resolution of motor deficits. Immunohistochemistry and patch-clamp recordings were performed in the CA1 hippocampal area. The hole-board was utilized as cognitive/behavioural test. In the remission phase of experimental MS, hippocampal microglial cells showed signs of activation, CA1 hippocampal synapses presented an impaired long-term potentiation (LTP) and an alteration of spatial tests became evident. The activation of hippocampal microglia mediated synaptic and cognitive/behavioural alterations during EAE. Specifically, LTP blockade was found to be caused by the reactive oxygen species (ROS)-producing enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. We suggest that in the remission phase of experimental MS microglia remains activated, causing synaptic dysfunctions mediated by NADPH oxidase. Inhibition of microglial activation and NADPH oxidase may represent a promising strategy to prevent neuroplasticity impairment associated with active neuro-inflammation, with the aim to improve cognition and counteract MS disease progression.

  11. Extracellular ATP induces spikes in cytosolic free Ca2+ but not in NADH oxidase activity in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Olsen, Lars Folke; Hallett, Maurice B.


    In order to establish whether non-mitochondrial oxidase activity in human neutrophils is tightly related to cytosolic Ca2+ concentration, we simultaneously measured Ca2+ oscillations induced by ATP and oxidant production in single adherent neutrophils using confocal microscopy. ATP induced fast...... that the generation of reactive oxygen species by neutrophils adherent to glass was accelerated by ATP. The step-up in NADPH oxidase activity followed the first elevation of cytosolic Ca2+ but, despite subsequent spikes in Ca2+ concentration, no oscillations in oxidase activity could be detected. ATP induced spikes...

  12. Xanthine oxidase activity during transition period and its association ...

    African Journals Online (AJOL)

    Dr BC Mili


    Aug 7, 2013 ... 3Division of Dairy Cattle Nutrition, National Dairy Research Institute, Karnal, Haryana, India. Accepted 3 .... day of calving in relation to the pre-partum day 21 value ... by activated immune cells includes inflammatory media-.

  13. Evaluation of Antimicrobial Activity of Glucose Oxidase from Aspergillus niger EBL-A and Penicillium notatum

    Directory of Open Access Journals (Sweden)

    Muhammad Anjum Zia


    Full Text Available This work aimed to study the production and purification of glucose oxidase by Aspergillus niger and Penicillium notatum using corn steep liquor as the substrate and evaluate its antimicrobial activity for use in pharmaceutical and food industries. The enzyme was purified by ammonium sulfate precipitation (60-85%, DEAE-cellulose ion exchange and Sephadex G-200 size exclusion chromatography. The crude enzyme extracts of A. niger and P. notatum showed 2.32 and 5.53 U mg-1 specific activities, respectively, which after desalting was 15.52 and 12.05 U mg-1, and after ion exchange and gel filtration chromatography was 29.09 - 62 and 25.72 - 59.37 U mg-1 for A. niger and P. notatum, respectively. The antimicrobial activity was determined by disc diffusion method against selected microbial strains where glucose oxidase from A. niger showed anti-bacterial activity, while no fungicidal effects were shown by both A. niger and P. notatum glucose oxidases.

  14. Extraction optimization of polyphenols, antioxidant and xanthine oxidase inhibitory activities from Prunus salicina Lindl.

    Directory of Open Access Journals (Sweden)

    Yibin LI


    Full Text Available Abstract Optimization of polyphenols extraction from plum (Prunus salicina Lindl. was evaluated using response surface methodology. The Box-Behnken experimental results showed the optimal conditions involved an extraction temperature of 59 °C, a sonication time of 47 min, and an ethanol concentration of 61% respectively. The maximum extraction yield of total polyphenols was 44.74 mg gallic acid equivalents per gram of dried plum at optimal conditions. Polyphenol extracts exhibited stronger antioxidant activities than Vc by evaluating of 1,1-diphenyl-2-picrylhydrazyl (DPPH and hydroxyl radical scavenging activity. Furthermore, polyphenol extracts (IC50 = 179 g/mL showed obvious inhibitory effects on xanthine oxidase. These findings suggest that polyphenol extracts from P. salicina can be potentially used as natural antioxidant and xanthine oxidase inhibitory agents.

  15. [Effect of lectins from Azospirillum brasilense to peroxidase and oxalate oxidase activity regulation in wheat roots]. (United States)

    Alen'kina, S A; Nikitina, V E


    Lectins were extracted from the surface of nitrogen-fixing soil bacteria Azospirillum brasilense Sp7 and from its mutant A. brasilense Sp7.2.3 defective in lectin activity. The ability oflectins to stimulate the rapid formation of hydrogen peroxide related to increase of oxalate oxidase and peroxidase activity in the roots of wheat seedlings has been demonstrated. The most rapid induced pathway of hydrogen peroxide formation in the roots of wheat seedlings was the oxalic acid oxidation by oxalate oxidase which is the effect oflectin in under 10 min in a concentration of 10 microg/ml. The obtained results show that lectins from Azospirillum are capable of inducing the adaptation processes in the roots of wheat seedlings.

  16. RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes. (United States)

    Filina, Julia V; Gabdoulkhakova, Aida G; Safronova, Valentina G


    Polymorphonuclear neutrophils (PMNs) express the high and low affinity receptors to formylated peptides (mFPR1 and mFPR2 in mice, accordingly). RhoA/ROCK (Rho activated kinase) pathway is crucial for cell motility and oxidase activity regulated via FPRs. There are contradictory data on RhoA-mediated regulation of NADPH oxidase activity in phagocytes. We have shown divergent Rho GTPases signaling via mFPR1 and mFPR2 to NADPH oxidase in PMNs from inflammatory site. The present study was aimed to find out the role of RhoA/ROCK in the respiratory burst activated via mFPR1 and mFPR2 in the bone marrow PMNs. Different kinetics of RhoA activation were detected with 0.1μM fMLF and 1μM WKYMVM operating via mFPR1 and mFPR2, accordingly. RhoA was translocated in fMLF-activated cells towards the cell center and juxtamembrane space versus uniform allocation in the resting cells. Specific inhibition of RhoA by CT04, Rho inhibitor I, weakly depressed the respiratory burst induced via mFPR1, but significantly increased the one induced via mFPR2. Inhibition of ROCK, the main effector of RhoA, by Y27632 led to the same effect on the respiratory burst. Regulation of mFPR2-induced respiratory response by ROCK was impossible under the cytoskeleton disruption by cytochalasin D, whereas it persisted in the case of mFPR1 activation. Thus we suggest RhoA to be one of the regulatory and signal transduction components in the respiratory burst through FPRs in the mouse bone marrow PMNs. Both mFPR1 and mFPR2 binding with a ligand trigger the activation of RhoA. FPR1 signaling through RhoA/ROCK increases NADPH-oxidase activity. But in FPR2 action RhoA/ROCK together with cytoskeleton-linked systems down-regulates NADPH-oxidase. This mechanism could restrain the reactive oxygen species dependent damage of own tissues during the chemotaxis of PMNs and in the resting cells.

  17. Catalytically active bovine serum amine oxidase bound to fluorescent and magnetically drivable nanoparticles

    Directory of Open Access Journals (Sweden)

    Bidollari E


    Full Text Available Giulietta Sinigaglia1, Massimiliano Magro1, Giovanni Miotto1, Sara Cardillo1, Enzo Agostinelli2,3, Radek Zboril4, Eris Bidollari2,3, Fabio Vianello11Department of Biological Chemistry, University of Padua, Padua, Italy; 2Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", SAPIENZA University of Rome, Rome, Italy; 3CNR, Institute Biology and Molecular Pathology, Rome, Italy; 4Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, Olomouc, Czech RepublicAbstract: Novel superparamagnetic surface-active maghemite nanoparticles (SAMNs characterized by a diameter of 10 ± 2 nm were modified with bovine serum amine oxidase, which used rhodamine B isothiocyanate (RITC adduct as a fluorescent spacer-arm. A fluorescent and magnetically drivable adduct comprised of bovine serum copper-containing amine oxidase (SAMN–RITC–BSAO that immobilized on the surface of specifically functionalized magnetic nanoparticles was developed. The multifunctional nanomaterial was characterized using transmission electron microscopy, infrared spectroscopy, mass spectrometry, and activity measurements. The results of this study demonstrated that bare magnetic nanoparticles form stable colloidal suspensions in aqueous solutions. The maximum binding capacity of bovine serum amine oxidase was approximately 6.4 mg g-1 nanoparticles. The immobilization procedure reduced the catalytic activity of the native enzyme to 30% ± 10% and the Michaelis constant was increased by a factor of 2. We suggest that the SAMN–RITC–BSAO complex, characterized by a specific activity of 0.81 IU g-1, could be used in the presence of polyamines to create a fluorescent magnetically drivable H2O2 and aldehydes-producing system. Selective tumor cell destruction is suggested as a potential future application of this system.Keywords: amine oxidase, hydrogen peroxide production, superparamagnetic

  18. Activation of thiamin diphosphate and FAD in the phosphatedependent pyruvate oxidase from Lactobacillus plantarum


    Tittmann, Kai; Proske, Daniela; Spinka, Michael; Ghisla, Sandro; Rudolph, Rainer; Hübner, Gerhard; Kern, Gunther


    The phosphate- and oxygen-dependent pyruvate oxidase from Lactobacillus plantarum is a homotetrameric enzyme that binds 1 FAD and 1 thiamine diphosphate per subunit. A kinetic analysis of the partial reactions in the overall oxidative conversion of pyruvate to acetyl phosphate and CO2 shows an indirect activation of the thiamine diphosphate by FAD that is mediated by the protein moiety. The rate constant of the initial step, the deprotonation of C2-H of thiamine diphosphate, increases 10-fold...

  19. Genetic studies of two inherited human phenotypes : Hearing loss and monoamine oxidase activity


    Balciuniene, Jorune


    This thesis focuses on the identification of genetic factors underlying two inherited human phenotypes: hearing loss and monoamine oxidase activity. Non-syndromic hearing loss segregating in a Swedish family was tested for linkage to 13 previously reported candidate loci for hearing disabilities. Linkage was found to two loci: DFNA12 (llq22-q24) and DFNA2 (lp32). A detailed analysis of the phenotypes and haplotypes shared by the affected individuals supported the hypothesis of digenic inheri...

  20. Oxidation of cuprous stellacyanin by aminopolycarboxylatocobaltate(III) complexes. (United States)

    Yoneda, G S; Mitchel, G L; Blackmer, G L; Holwerda, R A


    Rate parameters are reported for the oxidation of cuprous stellacyanin by Co(PDTA)-(k(25.0 degrees) = 17.9 M(-1)sec(-1), deltaH not equal to = 8.5 kcal/mol, deltaH not equal to = 8.5 kcal/mol, deltaS not equal to = -24 cal/mol-deg; pH 7.0, Mu 0.5 M) and Co(CyDTA)-(k(25.1 degrees) = 17.0 M(-1)sec(-1), deltaH not equal to = 8.7 kcal/mol, deltaS not equal to = -24 cal/mol-deg; pH 7.0 mu 0.5 M). The first order Co(PDTA)- and Co(CyDTA)- dependences observed over wide concentration ranges contrast with the saturation behavior reported previously for Co(EDTA)- as the oxidant. It is concluded that the- CH3 and -(CH2)4-substituents of PDTA and CyDTA, respectively, prevent the alkylated derivatives of Co(EDTA)- from hydrogen bonding with the reduced blue protein, causing precursor complex formation constants to fall far below that of 149M(-1) (25.1 degrees) observed for the EDTA complex. The similarity between deltaH not equal to and deltaS not equal to values for the oxidation of stellacyanin by Co(PDTA)- and Co(CyDTA)- indicates that the size of alkyl substituents linked to the carbon atoms of the EDTA ethylenediamine backbone has little influence on activation requirements for Cu(I) to Co(III) electron transfer. The electron transfer reactivity of aminopolycarboxylatocobalt(III) complexes with cuprous stellacyanin therefore appears to be linked to the accessibility of one or more of the ligated acetate groups to outer-sphere contact with the type 1 Cu(I) center. Saturation in kobsd vs. [oxidant] plots found for the reactions of Co(PDTA)- and Co(CyDTA)- with stellacyanin at pH 6 and at pH 7 in the presence of EDTA is attributed to the formation of "dead-end" oxidant-protein complexes.

  1. Assessing gibberellins oxidase activity by anion exchange/hydrophobic polymer monolithic capillary liquid chromatography-mass spectrometry. (United States)

    Chen, Ming-Luan; Su, Xin; Xiong, Wei; Liu, Jiu-Feng; Wu, Yan; Feng, Yu-Qi; Yuan, Bi-Feng


    Bioactive gibberellins (GAs) play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography--mass spectrometry (cLC-MS) method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20). An anion exchange/hydrophobic poly([2-(methacryloyloxy)ethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate)(META-co-DVB-co-EDMA) monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3) of GAs were in the range of 0.62-0.90 fmol. We determined the kinetic parameters (K m) of recombinant GA3-oxidase in Escherichia coli (E. coli) cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology.

  2. Assessing gibberellins oxidase activity by anion exchange/hydrophobic polymer monolithic capillary liquid chromatography-mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Ming-Luan Chen

    Full Text Available Bioactive gibberellins (GAs play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography--mass spectrometry (cLC-MS method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20. An anion exchange/hydrophobic poly([2-(methacryloyloxyethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate(META-co-DVB-co-EDMA monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3 of GAs were in the range of 0.62-0.90 fmol. We determined the kinetic parameters (K m of recombinant GA3-oxidase in Escherichia coli (E. coli cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology.

  3. Metalloproteinase activity secreted by fibrogenic cells in the processing of prolysyl oxidase. Potential role of procollagen C-proteinase. (United States)

    Panchenko, M V; Stetler-Stevenson, W G; Trubetskoy, O V; Gacheru, S N; Kagan, H M


    Lysyl oxidase is secreted from fibrogenic cells as a 50-kDa proenzyme that is proteolytically processed to the mature enzyme in the extracellular space. To characterize the secreted proteinase activity, a truncated, recombinant form of lysyl oxidase was prepared as a proteinase substrate containing the sequence of the propeptide cleavage region. The processing proteinase activity secreted by cultured fibrogenic cells resists inhibitors of serine or aspartyl proteinases as well as tissue inhibitor of matrix metalloproteinases-2 (MMP-2) but is completely inhibited by metal ion chelators. Known metalloproteinases were tested for their activity toward this substrate. Carboxyl-terminal procollagen proteinase (C-proteinase), MMP-2, and conditioned fibrogenic cell culture medium cleave the lysyl oxidase substrate to the size of the mature enzyme. The NH2-terminal sequence generated by arterial smooth muscle conditioned medium and the C-proteinase but not by MMP-2, i.e. Asp-Asp-Pro-Tyr, was identical to that previously identified in mature lysyl oxidase isolated from connective tissue. The C-proteinase activity against the model substrate was inhibited by a synthetic oligopeptide mimic of the cleavage sequence (Ac-Met-Val-Gly-Asp-Asp-Pro-Tyr-Asn-amide), whereas this peptide also inhibited the generation of lysyl oxidase activity in the medium of fetal rat lung fibroblasts in culture. In toto, these results identify a secreted metalloproteinase activity participating in the activation of prolysyl oxidase, identify inhibitors of the processing activity, and implicate procollagen C-proteinase in this role.

  4. Cell-free activation of phagocyte NADPH-oxidase: tissue and differentiation-specific expression of cytosolic cofactor activity. (United States)

    Parkinson, J F; Akard, L P; Schell, M J; Gabig, T G


    We examined a variety of tissues for the presence of cytosolic cofactor activity that would support arachidonate-dependent cell-free activation of NADPH-oxidase in isolated human neutrophil membranes. Cofactor activity was not found in cytosol isolated from erythrocytes, lymphocytes, placenta, brain, liver, or the human promyelocytic leukemic cell line HL-60. Induction of differentiation in HL-60 cells led to expression of cytosolic cofactor activity. In dimethylsulphoxide-induced HL-60 cells the level of cytosolic cofactor activity was closely correlated with phorbol myristate acetate-stimulated whole cell superoxide production. These results strongly suggest that the cytosolic cofactor is a phagocyte-specific regulatory protein of physiologic importance in NADPH-oxidase activation.

  5. Molecular Basis of Reduced Pyridoxine 5′-Phosphate Oxidase Catalytic Activity in Neonatal Epileptic Encephalopathy Disorder*



    Mutations in pyridoxine 5′-phosphate oxidase are known to cause neonatal epileptic encephalopathy. This disorder has no cure or effective treatment and is often fatal. Pyridoxine 5′-phosphate oxidase catalyzes the oxidation of pyridoxine 5′-phosphate to pyridoxal 5′-phosphate, the active cofactor form of vitamin B6 required by more than 140 different catalytic activities, including enzymes involved in amino acid metabolism and biosynthesis of neurotransmitters. Our aim is to elucidate the mec...

  6. Evaluation of defects in cuprous oxide through exciton luminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, Laszlo, E-mail: [Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Lenferink, Erik J. [Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Chang, Kelvin B. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Poeppelmeier, Kenneth R. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Stern, Nathaniel P. [Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ketterson, John B. [Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)


    The various decay mechanisms of excitons in cuprous oxide (Cu{sub 2}O) are highly sensitive to defects which can relax selection rules. Here we report cryogenic hyperspectral imaging of exciton luminescence from cuprous oxide crystals grown via the floating zone method showing that the samples have few defects. Some locations, however, show strain splitting of the 1s orthoexciton triplet polariton luminescence. Strain is reduced by annealing. In addition, annealing causes annihilation of oxygen and copper vacancies, which leads to a negative correlation between luminescence of unlike vacancies. - Highlights: • We use luminescence to observe defects in high quality cuprous oxide crystals. • Strain is reduced by annealing. • Annealing causes annihilation of oxygen and copper vacancies.

  7. Differential activation of RAGE by HMGB1 modulates neutrophil-associated NADPH oxidase activity and bacterial killing. (United States)

    Tadié, Jean-Marc; Bae, Hong-Beom; Banerjee, Sami; Zmijewski, Jaroslaw W; Abraham, Edward


    The receptor for advanced glycation end products (RAGE) plays an important role in host defense against bacterial infection. In the present experiments, we investigated the mechanisms by which RAGE contributes to the ability of neutrophils to eradicate bacteria. Wild-type (RAGE(+/+)) neutrophils demonstrated significantly greater ability to kill Escherichia coli compared with RAGE(-/-) neutrophils. After intraperitoneal injection of E. coli, increased numbers of bacteria were found in the peritoneal fluid from RAGE(-/-) as compared with RAGE(+/+) mice. Exposure of neutrophils to the protypical RAGE ligand AGE resulted in activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and enhanced killing of E. coli, and intraperitoneal injection of AGE enhanced bacterial clearance during peritonitis. However, incubation of neutrophils with high mobility group box 1 protein (HMGB1), which also binds to RAGE, diminished E. coli-induced activation of NADPH oxidase in neutrophils and bacterial killing both in vitro and in vivo. Deletion of the COOH-terminal tail of HMGB1, a region necessary for binding to RAGE, abrogated the ability of HMGB1 to inhibit bacterial killing. Incubation of neutrophils with HMGB1 diminished bacterial or AGE-dependent activation of NADPH oxidase. The increase in phosphorylation of the p40(phox) subunit of NADPH oxidase that occurred after culture of neutrophils with E. coli was inhibited by exposure of the cells to HMGB1. These results showing that HMGB1, through RAGE-dependent mechanisms, diminishes bacterial killing by neutrophils as well as NADPH oxidase activation provide a novel mechanism by which HMGB1 can potentiate sepsis-associated organ dysfunction and mortality.

  8. In vitro xanthine oxidase inhibitory activity of methanol extracts of Erythrina indica Lam. leaves and stem bark

    Institute of Scientific and Technical Information of China (English)

    Kandhasamy Sowndhararajan; Jince Mary Joseph; Dharmar Rajendrakumaran


    Objective: To determine the total phenolic content and in vitro xanthine oxidase inhibitory activity of methanol extracts of leaves and stem bark of Erythrina indica. Methods: Folin-ciocalteu method was used to determine the total phenolic content. Xanthine oxidase inhibitory activity was assayed spectrophotometrically and the degree of enzyme inhibition was determined by measuring the increase in absorbance at 295nm associated with uric acid formation. Results:The methanol extract of stem bark of E. indica contains higher level of total phenolic content (412.8 mg GAE/g extract) and also exhibited higher xanthine oxidase inhibition activity (IC50 52.75μg/mL) than the leaves. Conclusions: It could be concluded that the stem bark of E. indica was highly effective in xanthine oxidase inhibition and might be used for the gout related disorders.

  9. Differential Expression of the Three Multicopper Oxidases from Myxococcus xanthus▿ (United States)

    Sánchez-Sutil, María Celestina; Gómez-Santos, Nuria; Moraleda-Muñoz, Aurelio; Martins, Lígia O.; Pérez, Juana; Muñoz-Dorado, José


    Myxococcus xanthus is a soil bacterium that undergoes a unique life cycle among the prokaryotes upon starvation, which includes the formation of macroscopic structures, the fruiting bodies, and the differentiation of vegetative rods into coccoid myxospores. This peculiarity offers the opportunity to study the copper response in this bacterium in two different stages. In fact, M. xanthus vegetative rods exhibit 15-fold-greater resistance against copper than developing cells. However, cells preadapted to this metal reach the same levels of resistance during both stages. Analysis of the M. xanthus genome reveals that many of the genes involved in copper resistance are redundant, three of which encode proteins of the multicopper oxidase family (MCO). Each MCO gene exhibits a different expression profile in response to external copper addition. Promoters of cuoA and cuoB respond to Cu(II) ions during growth and development; however, they show a 10-fold-increased copper sensitivity during development. The promoter of cuoC shows copper-independent induction upon starvation, but it is copper up-regulated during growth. Phenotypic analyses of deletion mutants reveal that CuoB is involved in the primary copper-adaptive response; CuoA and CuoC are necessary for the maintenance of copper tolerance; and CuoC is required for normal development. These roles seem to be carried out through cuprous oxidase activity. PMID:17483223

  10. The Absorption of Benzotriazole on Copper and Cuprous Oxide (United States)


    Cornell University, Ithaca INY, 14853 Copper surfaces are commonly treated with benzotriazole ( BTA ), 1. to inhibit cor- rosion. H1+ is thought to be...00 00 SIOFFICE OF NAVAL RESEARCH Contract N00014-82-K-0576 Technical Report No. 38 THE ADSORPTION OF BENZOTRIAZOLE ON COPPER AND CUPROUS OXIDE by M... Benzotriazole on Copper and Cuprous Oxide 12 7- `SONAL AUTHOR(S) M. C. Zonnevylle and R. Hoffmann 13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year

  11. Activation of Rap1 inhibits NADPH oxidase-dependent ROS generation in retinal pigment epithelium and reduces choroidal neovascularization (United States)

    Wang, Haibo; Jiang, Yanchao; Shi, Dallas; Quilliam, Lawrence A.; Chrzanowska-Wodnicka, Magdalena; Wittchen, Erika S.; Li, Dean Y.; Hartnett, M. Elizabeth


    Activation of Rap1 GTPase can improve the integrity of the barrier of the retina pigment epithelium (RPE) and reduce choroidal neovascularization (CNV). Inhibition of NADPH oxidase activation also reduces CNV. We hypothesize that Rap1 inhibits NADPH oxidase-generated ROS and thereby reduces CNV formation. Using a murine model of laser-induced CNV, we determined that reduced Rap1 activity in RPE/choroid occurred with CNV formation and that activation of Rap1 by 2′-O-Me-cAMP (8CPT)-reduced laser-induced CNV via inhibiting NADPH oxidase-generated ROS. In RPE, inhibition of Rap1 by Rap1 GTPase-activating protein (Rap1GAP) increased ROS generation, whereas activation of Rap1 by 8CPT reduced ROS by interfering with the assembly of NADPH oxidase membrane subunit p22phox with NOX4 or cytoplasmic subunit p47phox. Activation of NADPH oxidase with Rap1GAP reduced RPE barrier integrity via cadherin phosphorylation and facilitated choroidal EC migration across the RPE monolayer. Rap1GAP-induced ROS generation was inhibited by active Rap1a, but not Rap1b, and activation of Rap1a by 8CPT in Rap1b−/− mice reduced laser-induced CNV, in correlation with decreased ROS generation in RPE/choroid. These findings provide evidence that active Rap1 reduces CNV by interfering with the assembly of NADPH oxidase subunits and increasing the integrity of the RPE barrier.—Wang, H., Jiang, Y., Shi, D., Quilliam, L. A., Chrzanowska-Wodnicka, M., Wittchen, E. S., Li, D. Y., Hartnett, M. E. Activation of Rap1 inhibits NADPH oxidase-dependent ROS generation in retinal pigment epithelium and reduces choroidal neovascularization. PMID:24043260

  12. Size-selective QD@MOF core-shell nanocomposites for the highly sensitive monitoring of oxidase activities. (United States)

    Wang, Ke; Li, Nan; Zhang, Jing; Zhang, Zhiqi; Dang, Fuquan


    In this work, we proposed a novel and facile method to monitor oxidase activities based on size-selective fluorescent quantum dot (QD)@metal-organic framework (MOF) core-shell nanocomposites (CSNCPs). The CSNCPs were synthesized from ZIF-8 and CdTe QDs in aqueous solution in 40min at room temperature with stirring. The prepared CdTe@ZIF-8 CSNCPs , which have excellent water dispersibility and stability, displays distinct fluorescence responses to hole scavengers of different molecular sizes (e.g., H2O2, substrate, and oxidase) due to the aperture limitation of the ZIF-8 shell. H2O2 can efficiently quench the fluorescence of CdTe@ZIF-8 CSNCPs over a linearity range of 1-100nM with a detection limit of 0.29nM, whereas large molecules such as substrate and oxidase have very little effect on its fluorescence. Therefore, the highly sensitive detection of oxidase activities was achieved by monitoring the fluorescence quenching of CdTe@ZIF-8 CSNCPs by H2O2 produced in the presence of substrate and oxidase, which is proportional to the oxidase activities. The linearity ranges of the uricase and glucose oxidase activity are 0.1-50U/L and 1-100U/L, respectively, and their detection limits are 0.024U/L and 0.26U/L, respectively. Therefore, the current QD@MOF CSNCPs based sensing system is a promising, widely applicable means of monitoring oxidase activities in biochemical research.

  13. Comparison of brain mitochondrial cytochrome c oxidase activity with cyanide LD(50) yields insight into the efficacy of prophylactics. (United States)

    Marziaz, Mandy L; Frazier, Kathryn; Guidry, Paul B; Ruiz, Robyn A; Petrikovics, Ilona; Haines, Donovan C


    Cyanide inhibits cytochrome c oxidase, the terminal oxidase of the mitochondrial respiratory pathway, therefore inhibiting the cell oxygen utilization and resulting in the condition of histotoxic anoxia. The enzyme rhodanese detoxifies cyanide by utilizing sulfur donors to convert cyanide to thiocyanate, and new and improved sulfur donors are actively sought as researchers seek to improve cyanide prophylactics. We have determined brain cytochrome c oxidase activity as a marker for cyanide exposure for mice pre-treated with various cyanide poisoning prophylactics, including sulfur donors thiosulfate (TS) and thiotaurine (TT3). Brain mitochondria were isolated by differential centrifugation, the outer mitochondrial membrane was disrupted by a maltoside detergent, and the decrease in absorbance at 550 nm as horse heart ferrocytochrome c (generated by the dithiothreitol reduction of ferricytochrome c) was oxidized was monitored. Overall, the TS control prophylactic treatment provided significant protection of the cytochrome c oxidase activity. The TT3-treated mice showed reduced cytochrome c oxidase activity even in the absence of cyanide. In both treatment series, addition of exogenous Rh did not significantly enhance the prevention of cytochrome c oxidase inhibition, but the addition of sodium nitrite did. These findings can lead to a better understanding of the protection mechanism by various cyanide antidotal systems. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Acute Ethanol Intake Induces NAD(P)H Oxidase Activation and Rhoa Translocation in Resistance Arteries (United States)

    Simplicio, Janaina A.; Hipólito, Ulisses Vilela; do Vale, Gabriel Tavares; Callera, Glaucia Elena; Pereira, Camila André; Touyz, Rhian M; Tostes, Rita de Cássia; Tirapelli, Carlos R.


    Background The mechanism underlying the vascular dysfunction induced by ethanol is not totally understood. Identification of biochemical/molecular mechanisms that could explain such effects is warranted. Objective To investigate whether acute ethanol intake activates the vascular RhoA/Rho kinase pathway in resistance arteries and the role of NAD(P)H oxidase-derived reactive oxygen species (ROS) on such response. We also evaluated the requirement of p47phox translocation for ethanol-induced NAD(P)H oxidase activation. Methods Male Wistar rats were orally treated with ethanol (1g/kg, p.o. gavage) or water (control). Some rats were treated with vitamin C (250 mg/kg, p.o. gavage, 5 days) before administration of water or ethanol. The mesenteric arterial bed (MAB) was collected 30 min after ethanol administration. Results Vitamin C prevented ethanol-induced increase in superoxide anion (O2-) generation and lipoperoxidation in the MAB. Catalase and superoxide dismutase activities and the reduced glutathione, nitrate and hydrogen peroxide (H2O2) levels were not affected by ethanol. Vitamin C and 4-methylpyrazole prevented the increase on O2- generation induced by ethanol in cultured MAB vascular smooth muscle cells. Ethanol had no effect on phosphorylation levels of protein kinase B (Akt) and eNOS (Ser1177 or Thr495 residues) or MAB vascular reactivity. Vitamin C prevented ethanol-induced increase in the membrane: cytosol fraction ratio of p47phox and RhoA expression in the rat MAB. Conclusion Acute ethanol intake induces activation of the RhoA/Rho kinase pathway by a mechanism that involves ROS generation. In resistance arteries, ethanol activates NAD(P)H oxidase by inducing p47phox translocation by a redox-sensitive mechanism. PMID:27812679

  15. Catalase, carbonic anhydrase and xanthine oxidase activities in patients with mycosis fungoides. (United States)

    Cengiz, Fatma Pelin; Beyaztas, Serap; Gokce, Basak; Arslan, Oktay; Guler, Ozen Ozensoy


    Mycosis fungoides (MF) is the most common form of cutaneous T-cell lymphoma. In several studies the relationship between catalase (CAT), human cytosolic carbonic anhydrases (CA; hCA-I and hCA-II) and xanthine oxidase (XO) enzyme activities have been investigated in various types of cancers but carbonic anhydrase, catalase and xanthine oxidase activities in patients with MF have not been previously reported. Therefore, in this preliminary study we aim to investigate CAT, CA and XO activities in patients with MF. This study enrolled 32 patients with MF and 26 healthy controls. According to the results, CA and CAT activities were significantly lower in patients with mycosis fungoides than controls (p < 0.001) (p < 0.001). There was no significant difference in XO activity between patient and control group (p = 0.601). Within these findings, we believe these enzyme activity levels might be a potentially important finding as an additional diagnostic biochemical tool for MF.

  16. Regulation of cytochrome c- and quinol oxidases, and piezotolerance of their activities in the deep-sea piezophile Shewanella violacea DSS12 in response to growth conditions. (United States)

    Ohke, Yoshie; Sakoda, Ayaka; Kato, Chiaki; Sambongi, Yoshihiro; Kawamoto, Jun; Kurihara, Tatsuo; Tamegai, Hideyuki


    The facultative piezophile Shewanella violacea DSS12 is known to have respiratory components that alter under the influence of hydrostatic pressure during growth, suggesting that its respiratory system is adapted to high pressure. We analyzed the expression of the genes encoding terminal oxidases and some respiratory components of DSS12 under various growth conditions. The expression of some of the genes during growth was regulated by both the O2 concentration and hydrostatic pressure. Additionally, the activities of cytochrome c oxidase and quinol oxidase of the membrane fraction of DSS12 grown under various conditions were measured under high pressure. The piezotolerance of cytochrome c oxidase activity was dependent on the O2 concentration during growth, while that of quinol oxidase was influenced by pressure during growth. The activity of quinol oxidase was more piezotolerant than that of cytochrome c oxidase under all growth conditions. Even in the membranes of the non-piezophile Shewanella amazonensis, quinol oxidase was more piezotolerant than cytochrome c oxidase, although both were highly piezosensitive as compared to the activities in DSS12. By phylogenetic analysis, piezophile-specific cytochrome c oxidase, which is also found in the genome of DSS12, was identified in piezophilic Shewanella and related genera. Our observations suggest that DSS12 constitutively expresses piezotolerant respiratory terminal oxidases, and that lower O2 concentrations and higher hydrostatic pressures induce higher piezotolerance in both types of terminal oxidases. Quinol oxidase might be the dominant terminal oxidase in high-pressure environments, while cytochrome c oxidase might also contribute. These features should contribute to adaptation of DSS12 in deep-sea environments.

  17. Direct calorimetric analysis of the enzymatic activity of yeast cytochrome c oxidase. (United States)

    Morin, P E; Freire, E


    The kinetic and thermodynamic parameters associated with the enzymatic reaction of yeast cytochrome c oxidase with its biological substrate, ferrocytochrome c, have been measured by using a titration microcalorimeter to monitor directly the rate of heat production or absorption as a function of time. This technique has allowed determination of both the energetics and the kinetics of the reaction under a variety of conditions within a single experiment. Experiments performed in buffer systems of varying ionization enthalpies allow determination of the net number of protons absorbed or released during the course of the reaction. For cytochrome c oxidase the intrinsic enthalpy of reaction was determined to be -16.5 kcal/mol with one (0.96) proton consumed for each ferrocytochrome c molecule oxidized. Activity measurements at salt concentrations ranging from 0 to 200 mM KCl in the presence of 10 mM potassium phosphate, pH 7.40, and 0.5 mM EDTA display a biphasic dependence of the electron transferase activity upon ionic strength with a peak activity observed near 50 mM KCl. The ionic strength dependence was similar for both detergent-solubilized and membrane-reconstituted cytochrome c oxidase. Despite the large ionic strength dependence of the kinetic parameters, the enthalpy measured for the reaction was found to be independent of ionic strength. Additional experiments involving direct transfer of the enzyme from low to high salt conditions produced negligible enthalpy changes that remained constant within experimental error throughout the salt concentrations studied (0-200 mM KCl). These results indicate that the salt effect on the enzyme activity is of entropic origin and further suggest the absence of a major conformational change in the enzyme due to changes in ionic strength.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Thermostable Xanthine Oxidase Activity from Bacillus pumilus RL-2d Isolated from Manikaran Thermal Spring: Production and Characterization. (United States)

    Sharma, Nirmal Kant; Thakur, Shikha; Thakur, Neerja; Savitri; Bhalla, Tek Chand


    Xanthine oxidase is an important enzyme of purine metabolism that catalyzes the hydroxylation of hypoxanthine to xanthine and then xanthine to uric acid. A thermostable xanthine oxidase is being reported from a thermophilic organism RL-2d isolated from the Manikaran (Kullu) hot spring of Himachal Pradesh (India). Based on the morphology, physiological tests, and 16S rDNA gene sequence, RL-2d was identified as Bacillus pumilus. Optimization of physiochemical parameters resulted into 4.1-fold increase in the xanthine oxidase activity from 0.051 U/mg dcw (dry cell weight) to 0.209 U/mg dcw. The xanthine oxidase of B. pumilus RL-2d has exhibited very good thermostability and its t1/2 at 70 and 80 °C were 5 and 1 h, respectively. Activity of this enzyme was strongly inhibited by Hg(2+), Ag(+) and allopurinol. The investigation showed that B. pumilus RL-2d exhibited highest xanthine oxidase activity and remarkable thermostability among the other xanthine oxidases reported so far.

  19. Potentiostatic Deposition and Characterization of Cuprous Oxide Thin Films



    Electrodeposition technique was employed to deposit cuprous oxide Cu2O thin films. In this work, Cu2O thin films have been grown on fluorine doped tin oxide (FTO) transparent conducting glass as a substrate by potentiostatic deposition of cupric acetate. The effect of deposition time on the morphologies, crystalline, and optical quality of Cu2O thin films was investigated.

  20. Screening of Bothrops snake venoms for L-amino acid oxidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Pessati, M.L.; Fontana, J.D.; Guimaraes, M.F. [Federal Univ. of Parana, Curitiba (Brazil)


    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venom LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use in biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom.

  1. Activity and functional interaction of alternative oxidase and uncoupling protein in mitochondria from tomato fruit

    Directory of Open Access Journals (Sweden)

    F.E. Sluse


    Full Text Available Cyanide-resistant alternative oxidase (AOX is not limited to plant mitochondria and is widespread among several types of protists. The uncoupling protein (UCP is much more widespread than previously believed, not only in tissues of higher animals but also in plants and in an amoeboid protozoan. The redox energy-dissipating pathway (AOX and the proton electrochemical gradient energy-dissipating pathway (UCP lead to the same final effect, i.e., a decrease in ATP synthesis and an increase in heat production. Studies with green tomato fruit mitochondria show that both proteins are present simultaneously in the membrane. This raises the question of a specific physiological role for each energy-dissipating system and of a possible functional connection between them (shared regulation. Linoleic acid, an abundant free fatty acid in plants which activates UCP, strongly inhibits cyanide-resistant respiration mediated by AOX. Moreover, studies of the evolution of AOX and UCP protein expression and of their activities during post-harvest ripening of tomato fruit show that AOX and plant UCP work sequentially: AOX activity decreases in early post-growing stages and UCP activity is decreased in late ripening stages. Electron partitioning between the alternative oxidase and the cytochrome pathway as well as H+ gradient partitioning between ATP synthase and UCP can be evaluated by the ADP/O method. This method facilitates description of the kinetics of energy-dissipating pathways and of ATP synthase when state 3 respiration is decreased by limitation of oxidizable substrate.

  2. Suppression of NADPH Oxidase Activity May Slow the Expansion of Osteolytic Bone Metastases

    Directory of Open Access Journals (Sweden)

    Mark F. McCarty


    Full Text Available Lysophosphatidic acid (LPA, generated in the microenvironment of cancer cells, can drive the proliferation, invasion, and migration of cancer cells by activating G protein-coupled LPA receptors. Moreover, in cancer cells that have metastasized to bone, LPA signaling can promote osteolysis by inducing cancer cell production of cytokines, such as IL-6 and IL-8, which can stimulate osteoblasts to secrete RANKL, a key promoter of osteoclastogenesis. Indeed, in cancers prone to metastasize to bone, LPA appears to be a major driver of the expansion of osteolytic bone metastases. Activation of NADPH oxidase has been shown to play a mediating role in the signaling pathways by which LPA, as well as RANKL, promote osteolysis. In addition, there is reason to suspect that Nox4 activation is a mediator of the feed-forward mechanism whereby release of TGF-beta from bone matrix by osteolysis promotes expression of PTHrP in cancer cells, and thereby induces further osteolysis. Hence, measures which can down-regulate NADPH oxidase activity may have potential for slowing the expansion of osteolytic bone metastases in cancer patients. Phycocyanin and high-dose statins may have utility in this regard, and could be contemplated as complements to bisphosphonates or denosumab for the prevention and control of osteolytic lesions. Ingestion of omega-3-rich flaxseed or fish oil may also have potential for controlling osteolysis in cancer patients.

  3. A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficit. (United States)

    Garchery, Cécile; Gest, Noé; Do, Phuc T; Alhagdow, Moftah; Baldet, Pierre; Menard, Guillaume; Rothan, Christophe; Massot, Capucine; Gautier, Hélène; Aarrouf, Jawad; Fernie, Alisdair R; Stevens, Rebecca


    The regulation of carbon allocation between photosynthetic source leaves and sink tissues in response to stress is an important factor controlling plant yield. Ascorbate oxidase is an apoplastic enzyme, which controls the redox state of the apoplastic ascorbate pool. RNA interference was used to decrease ascorbate oxidase activity in tomato (Solanum lycopersicum L.). Fruit yield was increased in these lines under three conditions where assimilate became limiting for wild-type plants: when fruit trusses were left unpruned, when leaves were removed or when water supply was limited. Several alterations in the transgenic lines could contribute to the improved yield and favour transport of assimilate from leaves to fruits in the ascorbate oxidase lines. Ascorbate oxidase plants showed increases in stomatal conductance and leaf and fruit sugar content, as well as an altered apoplastic hexose:sucrose ratio. Modifications in gene expression, enzyme activity and the fruit metabolome were coherent with the notion of the ascorbate oxidase RNAi lines showing altered sink strength. Ascorbate oxidase may therefore be a target for strategies aimed at improving water productivity in crop species.

  4. Modified Active Site Coordination in a Clinical Mutant of Sulfite Oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Doonan, C.J.; Wilson, H.L.; Rajagopalan, K.V.; Garrett, R.M.; Bennett, B.; Prince, R.C.; George, G.N.


    The molybdenum site of the Arginine 160 {yields} Glutamine clinical mutant of the physiologically vital enzyme sulfite oxidase has been investigated by a combination of X-ray absorption spectroscopy and density functional theory calculations. We conclude that the mutant enzyme has a six-coordinate pseudo-octahedral active site with coordination of Glutamine O{sup {epsilon}} to molybdenum. This contrasts with the wild-type enzyme which is five-coordinate with approximately square-based pyramidal geometry. This difference in the structure of the molybdenum site explains many of the properties of the mutant enzyme which have previously been reported.

  5. Phosphatidylinositol 3-kinase plays a vital role in regulation of rice seed vigor via altering NADPH oxidase activity. (United States)

    Liu, Jian; Zhou, Jun; Xing, Da


    Phosphatidylinositol 3-kinase (PI3K) has been reported to be important in normal plant growth and stress responses. In this study, it was verified that PI3K played a vital role in rice seed germination through regulating NADPH oxidase activity. Suppression of PI3K activity by inhibitors wortmannin or LY294002 could abate the reactive oxygen species (ROS) formation, which resulted in disturbance to the seed germination. And then, the signal cascades that PI3K promoted the ROS liberation was also evaluated. Diphenylene iodonium (DPI), an NADPH oxidase inhibitor, suppressed most of ROS generation in rice seed germination, which suggested that NADPH oxidase was the main source of ROS in this process. Pharmacological experiment and RT-PCR demonstrated that PI3K promoted the expression of Os rboh9. Moreover, functional analysis by native PAGE and the measurement of the 2, 3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazo-lium-5- carboxanilide (XTT) formazan concentration both showed that PI3K promoted the activity of NADPH oxidase. Furthermore, the western blot analysis of OsRac-1 demonstrated that the translocation of Rac-1 from cytoplasm to plasma membrane, which was known as a key factor in the assembly of NADPH oxidase, was suppressed by treatment with PI3K inhibitors, resulting in the decreased activity of NADPH oxidase. Taken together, these data favored the novel conclusion that PI3K regulated NADPH oxidase activity through modulating the recruitment of Rac-1 to plasma membrane and accelerated the process of rice seed germination.

  6. Phosphatidylinositol 3-kinase plays a vital role in regulation of rice seed vigor via altering NADPH oxidase activity.

    Directory of Open Access Journals (Sweden)

    Jian Liu

    Full Text Available Phosphatidylinositol 3-kinase (PI3K has been reported to be important in normal plant growth and stress responses. In this study, it was verified that PI3K played a vital role in rice seed germination through regulating NADPH oxidase activity. Suppression of PI3K activity by inhibitors wortmannin or LY294002 could abate the reactive oxygen species (ROS formation, which resulted in disturbance to the seed germination. And then, the signal cascades that PI3K promoted the ROS liberation was also evaluated. Diphenylene iodonium (DPI, an NADPH oxidase inhibitor, suppressed most of ROS generation in rice seed germination, which suggested that NADPH oxidase was the main source of ROS in this process. Pharmacological experiment and RT-PCR demonstrated that PI3K promoted the expression of Os rboh9. Moreover, functional analysis by native PAGE and the measurement of the 2, 3-bis-(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazo-lium-5- carboxanilide (XTT formazan concentration both showed that PI3K promoted the activity of NADPH oxidase. Furthermore, the western blot analysis of OsRac-1 demonstrated that the translocation of Rac-1 from cytoplasm to plasma membrane, which was known as a key factor in the assembly of NADPH oxidase, was suppressed by treatment with PI3K inhibitors, resulting in the decreased activity of NADPH oxidase. Taken together, these data favored the novel conclusion that PI3K regulated NADPH oxidase activity through modulating the recruitment of Rac-1 to plasma membrane and accelerated the process of rice seed germination.

  7. Dinuclear copper complexes with imidazole derivative ligands: a theoretical study related to catechol oxidase activity. (United States)

    Martínez, Ana; Membrillo, Ingrid; Ugalde-Saldívar, Victor M; Gasque, Laura


    Catechol oxidase is a very important and interesting metalloprotein. In spite of the efforts to understand the reaction mechanism of this protein, there are important questions that remain unanswered concerning the catalytic mechanism of this enzyme. In this article, dinuclear copper compounds are used as biomimetic models of catechol oxidase to study plausible reaction paths. These dinuclear copper(II) complexes have distant metal centers (of 7.5 Å approximately) and superior catalytic activity to that of many dicopper complexes with shorter Cu-Cu distances. One mononuclear copper(II) complex is also analyzed in this investigation in order to see the influence of the two metal centers in the catalytic activity. Density functional theory calculations were performed to obtain optimized structures, vertical ionization energies, vertical electron affinities, the electrodonating power (ω(-)), the electroaccepting power (ω(+)) and the energy difference of several reaction paths. The K(M) experimental results that were previously reported compare well with the electroaccepting power (ω(+)) of the copper compounds that are included in this article, indicating that this index is useful for the interpretation of the electron transfer capacity and therefore the catalytic activity. The catechol moiety coordinates to only one Cu ion, but two metal atoms are needed in order to have a good electron acceptor capacity of the biomimetic models.

  8. Inhibition of acetylcholinesterase and cytochrome oxidase activity in Fasciola gigantica cercaria by phytoconstituents. (United States)

    Sunita, Kumari; Habib, Maria; Kumar, P; Singh, Vinay Kumar; Husain, Syed Akhtar; Singh, D K


    Fasciolosis is an important cattle and human disease caused by Fasciola hepatica and Fasciola gigantica. One of the possible methods to control this problem is to interrupt the life cycle of Fasciola by killing its larva (redia and cercaria) in host snail. Molecular identification of cercaria larva of F. gigantica was done by comparing the nucleotide sequencing with adult F. gigantica. It was noted that nucleotide sequencing of cercaria larva and adult F. gigantica were 99% same. Every month during the year 2011-2012, in vivo treatment with 60% of 4 h LC50 of phyto cercaricides citral, ferulic acid, umbelliferone, azadirachtin and allicin caused significant inhibition of acetylcholinesterase (AChE) and cytochrome oxidase activity in the treated cercaria larva of F. gigantica. Whereas, activity of both enzymes were not significantly altered in the nervous tissues of vector snail Lymnaea acuminata exposed to same treatments. Maximum reduction in AChE (1.35% of control in month of June) and cytochrome oxidase (3.71% of control in the month of July) activity were noted in the cercaria exposed to 60% of 4 h LC50 of azadirachtin and allicin, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Activity-stability relationships revisited in blue oxidases catalyzing electron transfer at extreme temperatures. (United States)

    Roulling, Frédéric; Godin, Amandine; Cipolla, Alexandre; Collins, Tony; Miyazaki, Kentaro; Feller, Georges


    Cuproxidases are a subset of the blue multicopper oxidases that catalyze the oxidation of toxic Cu(I) ions into less harmful Cu(II) in the bacterial periplasm. Cuproxidases from psychrophilic, mesophilic, and thermophilic bacteria display the canonical features of temperature adaptation, such as increases in structural stability and apparent optimal temperature for activity with environmental temperature as well as increases in the binding affinity for catalytic and substrate copper ions. In contrast, the oxidative activities at 25 °C for both the psychrophilic and thermophilic enzymes are similar, suggesting that the nearly temperature-independent electron transfer rate does not require peculiar adjustments. Furthermore, the structural flexibilities of both the psychrophilic and thermophilic enzymes are also similar, indicating that the firm and precise bindings of the four catalytic copper ions are essential for the oxidase function. These results show that the requirements for enzymatic electron transfer, in the absence of the selective pressure of temperature on electron transfer rates, produce a specific adaptive pattern, which is distinct from that observed in enzymes possessing a well-defined active site and relying on conformational changes such as for the induced fit mechanism.

  10. Regulation of Glucose Oxidase Activity through Interaction with Fullerene Derivatives%Regulation of Glucose Oxidase Activity through Interaction with Fullerene Derivatives

    Institute of Scientific and Technical Information of China (English)

    Gao, Yunyan; Wang, Zhongli; Ou, Zhize; Li, Yi; Wang, Xuesong; Yang, Guoqiang


    The 2-(hydroxymethyl)pyridine modified C60 (PY-C60) and methoxydiglycol modified C60 (MDG-C60) are synthesized using Bingel-Hirsch reaction and characterized by nuclear magnetic resonance (NMR) and mass spectra. PY-C60 and MDG-C60 can bind to glucose oxidase (GOx) and quench the fluorescence of tryptophan (Trp) residue in GOx through static mechanism. The conformation of GOx is disturbed after formation of complex with these fullerene derivatives. Kinetic analysis indicates that PY-C60 and MDG-C60 may affect the catalytic activity of GOx with a partial mixed-type inhibition mechanism. In the plasma glucose concentration range (3.6--5.2 mmol·L-1), PY-C60 may significantly accelerate the catalytic velocity of GOx, however, MDG-C60 exerts almost no obvious change to the initial velocity of GOx, suggesting that elaborate design of molecular structure of fullerene derivative is very important for regulating the biological activity of fullerene-enzyme complex.

  11. Listeriolysin O suppresses phospholipase C-mediated activation of the microbicidal NADPH oxidase to promote Listeria monocytogenes infection. (United States)

    Lam, Grace Y; Fattouh, Ramzi; Muise, Aleixo M; Grinstein, Sergio; Higgins, Darren E; Brumell, John H


    The intracellular bacterial pathogen Listeria monocytogenes produces phospholipases C (PI-PLC and PC-PLC) and the pore-forming cytolysin listeriolysin O (LLO) to escape the phagosome and replicate within the host cytosol. We found that PLCs can also activate the phagocyte NADPH oxidase during L. monocytogenes infection, a response that would adversely affect pathogen survival. However, secretion of LLO inhibits the NADPH oxidase by preventing its localization to phagosomes. LLO-deficient bacteria can be complemented by perfringolysin O, a related cytolysin, suggesting that other pathogens may also use pore-forming cytolysins to inhibit the NADPH oxidase. Our studies demonstrate that while the PLCs induce antimicrobial NADPH oxidase activity, this effect is alleviated by the pore-forming activity of LLO. Therefore, the combined activities of PLCs and LLO on membrane lysis and the inhibitory effects of LLO on NADPH oxidase activity allow L. monocytogenes to efficiently escape the phagosome while avoiding the microbicidal respiratory burst. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Thiolactomycin inhibits D-aspartate oxidase: a novel approach to probing the active site environment. (United States)

    Katane, Masumi; Saitoh, Yasuaki; Hanai, Toshihiko; Sekine, Masae; Furuchi, Takemitsu; Koyama, Nobuhiro; Nakagome, Izumi; Tomoda, Hiroshi; Hirono, Shuichi; Homma, Hiroshi


    D-Aspartate oxidase (DDO) and D-amino acid oxidase (DAO) are flavin adenine dinucleotide (FAD)-containing flavoproteins that catalyze the oxidative deamination of D-amino acids. While several functionally and structurally important amino acid residues have been identified in the DAO protein, little is known about the structure-function relationships of DDO. In the search for a potent DDO inhibitor as a novel tool for investigating its structure-function relationships, a large number of biologically active compounds of microbial origin were screened for their ability to inhibit the enzymatic activity of mouse DDO. We discovered several compounds that inhibited the activity of mouse DDO, and one of the compounds identified, thiolactomycin (TLM), was then characterized and evaluated as a novel DDO inhibitor. TLM reversibly inhibited the activity of mouse DDO with a mixed type of inhibition more efficiently than meso-tartrate and malonate, known competitive inhibitors of mammalian DDOs. The selectivity of TLM was investigated using various DDOs and DAOs, and it was found that TLM inhibits not only DDO, but also DAO. Further experiments with apoenzymes of DDO and DAO revealed that TLM is most likely to inhibit the activities of DDO and DAO by competition with both the substrate and the coenzyme, FAD. Structural models of mouse DDO/TLM complexes supported this finding. The binding mode of TLM to DDO was validated further by site-directed mutagenesis of an active site residue, Arg-237. Collectively, our findings show that TLM is a novel, active site-directed DDO inhibitor that will be useful for elucidating the molecular details of the active site environment of DDO. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  13. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F(-) detection. (United States)

    Liu, Biwu; Huang, Zhicheng; Liu, Juewen


    Nanomaterial-based enzyme mimics (nanozymes) are currently a new forefront of chemical research. However, the application of nanozymes is limited by their low catalytic activity and low turnover numbers. Cerium dioxide nanoparticles (nanoceria) are among the few with oxidase activity. Herein, we report an interesting finding addressing their limitations. The oxidase activity of nanoceria is improved by over 100-fold by fluoride capping, making it more close to real oxidases. The turnover number reached 700 in 15 min, drastically improved from ∼15 turnovers for the naked particles. The mechanism is attributed to surface charge modulation and facilitated electron transfer by F(-) capping based on ζ-potential and free radical measurements. Ultrasensitive sensing of fluoride was achieved with a detection limit of 0.64 μM F(-) in water and in toothpastes, while no other tested anions can achieve the activity enhancement.

  14. Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity. (United States)

    Avalbaev, Azamat; Yuldashev, Ruslan; Fedorova, Kristina; Somov, Kirill; Vysotskaya, Lidiya; Allagulova, Chulpan; Shakirova, Farida


    The treatment of 4-days-old wheat seedlings with methyl jasmonate (MeJA) in concentration optimal for their growth (0.1 μM) resulted in a rapid transient almost two-fold increase in the level of cytokinins (CKs). MeJA-induced accumulation of CKs was due to inhibition of both cytokinin oxidase (CKX) (cytokinin oxidase/dehydrogenase, EC gene expression and activity of this enzyme. Pretreatment of wheat seedlings with MeJA decreased the growth-retarding effect of sodium chloride salinity and accelerated growth recovery after withdrawal of NaCl from the incubation medium. We speculate that this protective effect of the hormone might be due to MeJA's ability to prevent the salinity-induced decline in CK concentration that was caused by inhibition of gene expression and activity of CKX in wheat seedlings. The data might indicate an important role for endogenous cytokinins in the implementation of growth-promoting and protective effects of exogenous MeJA application on wheat plants.

  15. Heterologous expression of two FAD-dependent oxidases with (S)-tetrahydroprotoberberine oxidase activity from Arge mone mexicana and Berberis wilsoniae in insect cells. (United States)

    Gesell, Andreas; Chávez, Maria Luisa Díaz; Kramell, Robert; Piotrowski, Markus; Macheroux, Peter; Kutchan, Toni M


    Berberine, palmatine and dehydrocoreximine are end products of protoberberine biosynthesis. These quaternary protoberberines are elicitor inducible and, like other phytoalexins, are highly oxidized. The oxidative potential of these compounds is derived from a diverse array of biosynthetic steps involving hydroxylation, intra-molecular C-C coupling, methylenedioxy bridge formation and a dehydrogenation reaction as the final step in the biosynthesis. For the berberine biosynthetic pathway, the identification of the dehydrogenase gene is the last remaining uncharacterized step in the elucidation of the biosynthesis at the gene level. An enzyme able to catalyze these reactions, (S)-tetrahydroprotoberberine oxidase (STOX, EC, was originally purified in the 1980s from suspension cells of Berberis wilsoniae and identified as a flavoprotein (Amann et al. 1984). We report enzymatic activity from recombinant STOX expressed in Spodoptera frugiperda Sf9 insect cells. The coding sequence was derived successively from peptide sequences of purified STOX protein. Furthermore, a recombinant oxidase with protoberberine dehydrogenase activity was obtained from a cDNA library of Argemone mexicana, a traditional medicinal plant that contains protoberberine alkaloids. The relationship of the two enzymes is discussed regarding their enzymatic activity, phylogeny and the alkaloid occurrence in the plants. Potential substrate binding and STOX-specific amino acid residues were identified based on sequence analysis and homology modeling.

  16. The insert region of the Rac GTPases is dispensable for activation of superoxide-producing NADPH oxidases. (United States)

    Miyano, Kei; Koga, Hirofumi; Minakami, Reiko; Sumimoto, Hideki


    Rac1 and Rac2, which belong to the Rho subfamily of Ras-related GTPases, play an essential role in activation of gp91phox/Nox2 (cytochrome b-245, beta polypeptide; also known as Cybb), the catalytic core of the superoxide-producing NADPH oxidase in phagocytes. Rac1 also contributes to activation of the non-phagocytic oxidases Nox1 (NADPH oxidase 1) and Nox3 (NADPH oxidase 3), each related closely to gp91phox/Nox2. It has remained controversial whether the insert region of Rac (amino acids 123-135), unique to the Rho subfamily proteins, is involved in gp91phox/Nox2 activation. In the present study we show that removal of the insert region from Rac1 neither affects activation of gp91phox/Nox2, which is reconstituted under cell-free and whole-cell conditions, nor blocks its localization to phagosomes during ingestion of IgG-coated beads by macrophage-like RAW264.7 cells. The insert region of Rac2 is also dispensable for gp91phox/Nox2 activation at the cellular level. Although Rac2, as well as Rac1, is capable of enhancing superoxide production by Nox1 and Nox3, the enhancements by the two GTPases are both independent of the insert region. We also demonstrate that Rac3, a third member of the Rac family in mammals, has an ability to activate the three oxidases and that the activation does not require the insert region. Thus the insert region of the Rac GTPases does not participate in regulation of the Nox family NADPH oxidases.

  17. (/sup 11/C)clorgyline and (/sup 11/C)-L-deprenyl and their use in measuring functional monoamine oxidase activity in the brain using positron emission tomography (United States)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.


    This invention involves a new strategy for imaging the activity of the enzyme monoamine oxidase in the living body by using /sup 11/C-labeled enzyme inhibitors which bind irreversibly to an enzyme as a result of catalysis. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  18. Ovarian dual oxidase (Duox) activity is essential for insect eggshell hardening and waterproofing. (United States)

    Dias, Felipe A; Gandara, Ana Caroline P; Queiroz-Barros, Fernanda G; Oliveira, Raquel L L; Sorgine, Marcos H F; Braz, Glória R C; Oliveira, Pedro L


    In insects, eggshell hardening involves cross-linking of chorion proteins via their tyrosine residues. This process is catalyzed by peroxidases at the expense of H2O2 and confers physical and biological protection to the developing embryo. Here, working with Rhodnius prolixus, the insect vector of Chagas disease, we show that an ovary dual oxidase (Duox), a NADPH oxidase, is the source of the H2O2 that supports dityrosine-mediated protein cross-linking and eggshell hardening. RNAi silencing of Duox activity decreased H2O2 generation followed by a failure in embryo development caused by a reduced resistance to water loss, which, in turn, caused embryos to dry out following oviposition. Phenotypes of Duox-silenced eggs were reversed by incubation in a water-saturated atmosphere, simultaneous silencing of the Duox and catalase genes, or H2O2 injection into the female hemocoel. Taken together, our results show that Duox-generated H2O2 fuels egg chorion hardening and that this process plays an essential role during eggshell waterproofing.

  19. Study of potential xanthine oxidase inhibitors: In silico and in vitro biological activity

    Directory of Open Access Journals (Sweden)

    Muthuswamy Umamaheswari


    Full Text Available In an attempt to develop potent anti gout agents, coumarin derivatives and polyphenolic compounds were selected for present study. The docking energy of 2-benzyl coumarin was found to be -7.50 kcal/mol which was less than that of the standard allopurinol (-4.47 kcal/mol. All the selected compounds were found to exhibit lower binding energy (-7.50 to -4.68 kcal/mol than allopurinol. Docking results confirm that selected compounds showed greater inhibition of xanthine oxidase due to their active binding sites. In xanthine oxidase assay, IC50 value of 2-benzyl coumarin was found to be 26 ± 1.16 µg/mL, whereas that of allopurinol was 24 ± 0.28 µg/mL. All the compounds exhibited IC50 values ranging between 26 ± 1.16 to 58 ± 0.74 µg/mL. In enzyme kinetic studies, coumarin derivatives showed competitive and polyphenolic compounds showed non competitive type of enzyme inhibition. It can be concluded that coumarin derivatives could be a remedy for the treatment of gout and related inflammatory disorders.

  20. Genomic organisation, activity and distribution analysis of the microbial putrescine oxidase degradation pathway. (United States)

    Foster, Alexander; Barnes, Nicole; Speight, Robert; Keane, Mark A


    The catalytic action of putrescine specific amine oxidases acting in tandem with 4-aminobutyraldehyde dehydrogenase is explored as a degradative pathway in Rhodococcus opacus. By limiting the nitrogen source, increased catalytic activity was induced leading to a coordinated response in the oxidative deamination of putrescine to 4-aminobutyraldehyde and subsequent dehydrogenation to 4-aminobutyrate. Isolating the dehydrogenase by ion exchange chromatography and gel filtration revealed that the enzyme acts principally on linear aliphatic aldehydes possessing an amino moiety. Michaelis-Menten kinetic analysis delivered a Michaelis constant (K(M)=0.014 mM) and maximum rate (Vmax=11.2 μmol/min/mg) for the conversion of 4-aminobutyraldehyde to 4-aminobutyrate. The dehydrogenase identified by MALDI-TOF mass spectrometric analysis (E value=0.031, 23% coverage) belongs to a functionally related genomic cluster that includes the amine oxidase, suggesting their association in a directed cell response. Key regulatory, stress and transport encoding genes have been identified, along with candidate dehydrogenases and transaminases for the further conversion of 4-aminobutyrate to succinate. Genomic analysis has revealed highly similar metabolic gene clustering among members of Actinobacteria, providing insight into putrescine degradation notably among Micrococcaceae, Rhodococci and Corynebacterium by a pathway that was previously uncharacterised in bacteria.

  1. Cloning, expression, and enzymatic activity evaluation of cholesterol oxidase gene isolated from a native Rhodococcus sp.

    Directory of Open Access Journals (Sweden)

    Hamed Esmaeil Lashgarian


    Full Text Available Cholesterol oxidase (CHO is one of the valuable enzymes that play an important role in: measurement of serum cholesterol, food industry as a biocatalyst and agriculture as a biological larvicide. This enzyme was produced by several bacterial strains. Wild type enzyme produced by Rhodococcus sp. secret two forms of CHO enzyme: extra cellular and membrane bound type which its amount is low and unstable. The goal of the study was cloning, expression, and enzymatic activity evaluation of cholesterol oxidase gene isolated from a native Rhodococcus sp. CHO gene was isolated from native bacteria and cloned into pET23a. In the next step, the construct was expressed in E.coli BL21 and induced by different concentration of IPTG ranges from 0.1 - 0.9 mM. This gene contains 1642 bp and encodes a protein consists of 533 amino acids. It has about 96 % homology with CHO gene isolated from Rhodococcus equi. The high expression was obtained in 0.5 mM concentration of IPTG after 4 hour induction. This recombinant enzyme had a molecular weight of 55 kDa, that secretion of intra cellular type is much more than extracellular form. The optimum pH and temperature conditions for the recombinant enzyme were 7.5 and 45°C, respectively. CHO enzyme obtained from Rhodococcus sp. is a cheap enzyme with medical and industrial applications that can be produced easily and purified in large scale with simple methods.

  2. Blocking Surgically Induced Lysyl Oxidase Activity Reduces the Risk of Lung Metastases

    Directory of Open Access Journals (Sweden)

    Chen Rachman-Tzemah


    Full Text Available Surgery remains the most successful curative treatment for cancer. However, some patients with early-stage disease who undergo surgery eventually succumb to distant metastasis. Here, we show that in response to surgery, the lungs become more vulnerable to metastasis due to extracellular matrix remodeling. Mice that undergo surgery or that are preconditioned with plasma from donor mice that underwent surgery succumb to lung metastases earlier than controls. Increased lysyl oxidase (LOX activity and expression, fibrillary collagen crosslinking, and focal adhesion signaling contribute to this effect, with the hypoxic surgical site serving as the source of LOX. Furthermore, the lungs of recipient mice injected with plasma from post-surgical colorectal cancer patients are more prone to metastatic seeding than mice injected with baseline plasma. Downregulation of LOX activity or levels reduces lung metastasis after surgery and increases survival, highlighting the potential of LOX inhibition in reducing the risk of metastasis following surgery.

  3. Proximity does not contribute to activity enhancement in the glucose oxidase-horseradish peroxidase cascade (United States)

    Zhang, Yifei; Tsitkov, Stanislav; Hess, Henry


    A proximity effect has been invoked to explain the enhanced activity of enzyme cascades on DNA scaffolds. Using the cascade reaction carried out by glucose oxidase and horseradish peroxidase as a model system, here we study the kinetics of the cascade reaction when the enzymes are free in solution, when they are conjugated to each other and when a competing enzyme is present. No proximity effect is found, which is in agreement with models predicting that the rapidly diffusing hydrogen peroxide intermediate is well mixed. We suggest that the reason for the activity enhancement of enzymes localized by DNA scaffolds is that the pH near the surface of the negatively charged DNA nanostructures is lower than that in the bulk solution, creating a more optimal pH environment for the anchored enzymes. Our findings challenge the notion of a proximity effect and provide new insights into the role of DNA scaffolds.

  4. NADPH Oxidase-Dependent NLRP3 Inflammasome Activation and its Important Role in Lung Fibrosis by Multiwalled Carbon Nanotubes. (United States)

    Sun, Bingbing; Wang, Xiang; Ji, Zhaoxia; Wang, Meiying; Liao, Yu-Pei; Chang, Chong Hyun; Li, Ruibin; Zhang, Haiyuan; Nel, André E; Xia, Tian


    The purpose of this paper is to elucidate the key role of NADPH oxidase in NLRP3 inflammasome activation and generation of pulmonary fibrosis by multi-walled carbon nanotubes (MWCNTs). Although it is known that oxidative stress plays a role in pulmonary fibrosis by single-walled CNTs, the role of specific sources of reactive oxygen species, including NADPH oxidase, in inflammasome activation remains to be clarified. In this study, three long aspect ratio (LAR) materials (MWCNTs, single-walled carbon nanotubes, and silver nanowires) are used to compare with spherical carbon black and silver nanoparticles for their ability to trigger oxygen burst activity and NLRP3 assembly. All LAR materials but not spherical nanoparticles induce robust NADPH oxidase activation and respiratory burst activity in THP-1 cells, which are blunted in p22(phox) -deficient cells. The NADPH oxidase is directly involved in lysosomal damage by LAR materials, as demonstrated by decreased cathepsin B release and IL-1β production in p22(phox) -deficient cells. Reduced respiratory burst activity and inflammasome activation are also observed in bone marrow-derived macrophages from p47(phox) -deficient mice. Moreover, p47(phox) -deficient mice have reduced IL-1β production and lung collagen deposition in response to MWCNTs. Lung fibrosis is also suppressed by N-acetyl-cysteine in wild-type animals exposed to MWCNTs.

  5. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity. (United States)

    Banerjee, Soumyabrata; Poddar, Mrinal K


    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats.

  6. Validation of spectrophotometric microplate methods for polyphenol oxidase and peroxidase activities analysis in fruits and vegetables

    Directory of Open Access Journals (Sweden)

    Érica Sayuri SIGUEMOTO

    Full Text Available Abstract Enzymes polyphenol oxidase (PPO and peroxidase (POD play important roles in the processing of fruits and vegetables, since they can produce undesirable changes in color, texture and flavor. Classical methods of activity assessment are based on cuvette spectrophotometric readings. This work aims to propose, to validate and to test microplate spectrophotometric methods. Samples of apple juice and lyophilized enzymes from mushroom and horseradish were analyzed by the cuvette and microplate methods and it was possible to validate the microplate assays with satisfactory results regarding linearity, repeatability, accuracy along with quantitation and detection limits. The proposed microplate methods proved to be reliable and reproducible as the classical methods besides having the advantages of allowing simultaneous analysis and requiring a reduced amount of samples and reactants, which can beneficial to the study of enzyme inactivation in the processing of fruits and vegetables.

  7. Brief maternal deprivation of rats reduces hepatic mixed function oxidase activities

    Energy Technology Data Exchange (ETDEWEB)

    Vesell, E.S. (Pennsylvania State Univ., Hershey (USA)); Heubel, F.; Netter, K.J. (Philipps-Universitaet, Lahnberge (Germany, F.R.))


    Deprivation of pups from mother and sibs for 3 min daily from day 5 today 41 of life reduced activities of 4 hepatic mixed function oxidases (MFO) expressed per mg protein in male rats compared to unhandled control rats. These decreases, though generally small, 22.4% and under, reached statistical significance for the substrates aminopyrine, benzphetamine and ethoxycoumarin. This handling procedure did not consistently affect the inductive response to phenobarbital. Previously ignored as a source of variability in response to xenobiotics, handling appears from these results to merit further investigation as such a factor in uninduced rats. Differences among rats in handling could contribute to large day-to-day variations in their metabolism of xenobiotics.

  8. Recombinant human diamine oxidase activity is not inhibited by ethanol, acetaldehyde, disulfiram, diethyldithiocarbamate or cyanamide. (United States)

    Bartko, Johann; Gludovacz, Elisabeth; Petroczi, Karin; Borth, Nicole; Jilma, Bernd; Boehm, Thomas


    Human diamine oxidase (hDAO, EC is the key enzyme in the degradation of extracellular histamine. Consumption of alcohol is a known trigger of mast cell degranulation in patients with mast cell activation syndrome. Ethanol may also interfere with enzymatic histamine degradation, but reports on the effects on DAO activity are controversial. There are also conflicting reports whether disulfiram, an FDA-approved agent in the treatment of alcohol dependence, inhibits DAO. We therefore investigated the inhibitory potential of ethanol and disulfiram and their metabolites on recombinant human DAO (rhDAO) in three different assay systems. Relevant concentrations of ethanol, acetaldehyde, and acetate did not inhibit rhDAO activity in an in vitro assay system using horseradish peroxidase (HRP) -mediated luminol oxidation. The aldehyde dehydrogenase (ALDH; EC inhibitors cyanamide and its dimer dicyanamide also had no effect on DAO activity. In one assay system, the irreversible ALDH inhibitor disulfiram and its main metabolite diethyldithiocarbamate seemed to inhibit DAO activity. However, the decreased product formation was not due to a direct block of DAO activity but resulted from inhibition of peroxidase employed in the coupled system. Our in vitro data do not support a direct blocking effect of ethanol, disulfiram, and their metabolites on DAO activity in vivo.

  9. Partial characterization of peroxidase and polyphenol oxidase activities in blackberry fruits. (United States)

    González, E M; de Ancos, B; Cano, M P


    A partial characterization of peroxidase (POD) and polyphenol oxidase (PPO) activities in blackberry fruits is described. Two cultivars of blackberry (Wild and Thornless) were analyzed for POD and PPO activities. Stable and highly active POD and PPO extracts were obtained using insoluble poly(vinylpyrrolidone) and Triton X-100 in 0.05 M sodium phosphate, pH 7.5, buffer. Blackberry POD and PPO activities have a pH optimum of 6.5, in a reaction mixture of 0.2 M sodium phosphate. Optimal POD activity was found with 3% o-dianisidine. Maximum PPO activity was found with catechol (catecholase activity) followed by 4-methylcatechol. Polyacrylamide gel electrophoresis of blackberry extracts under non-denaturing conditions resolved in various bands. In the POD extracts of Wild fruits, there was only one band with a mobility of 0.12. In the Thornless POD extracts there were three well-resolved bands, with R(f) values of 0.63, 0.36, and 0.09. Both the Wild and Thornless blackberry cultivars produced a single band of PPO, with R(f) values of 0.1 for Wild and 0.06 for Thornless.

  10. The C-Terminal Region of G72 Increases D-Amino Acid Oxidase Activity

    Directory of Open Access Journals (Sweden)

    Sunny Li-Yun Chang


    Full Text Available The schizophrenia-related protein G72 plays a unique role in the regulation of D-amino acid oxidase (DAO in great apes. Several psychiatric diseases, including schizophrenia and bipolar disorder, are linked to overexpression of DAO and G72. Whether G72 plays a positive or negative regulatory role in DAO activity, however, has been controversial. Exploring the molecular basis of the relationship between G72 and DAO is thus important to understand how G72 regulates DAO activity. We performed yeast two-hybrid experiments and determined enzymatic activity to identify potential sites in G72 involved in binding DAO. Our results demonstrate that residues 123–153 and 138–153 in the long isoform of G72 bind to DAO and enhance its activity by 22% and 32%, respectively. A docking exercise indicated that these G72 peptides can interact with loops in DAO that abut the entrance of the tunnel that substrate and cofactor must traverse to reach the active site. We propose that a unique gating mechanism underlies the ability of G72 to increase the activity of DAO. Because upregulation of DAO activity decreases d-serine levels, which may lead to psychiatric abnormalities, our results suggest a molecular mechanism involving interaction between DAO and the C-terminal region of G72 that can regulate N-methyl-d-aspartate receptor-mediated neurotransmission.

  11. P2X7 receptor is critical in α-synuclein--mediated microglial NADPH oxidase activation. (United States)

    Jiang, Tianfang; Hoekstra, Jake; Heng, Xin; Kang, Wenyan; Ding, Jianqing; Liu, Jun; Chen, Shengdi; Zhang, Jing


    Activated microglia are commonly observed in individuals with neurodegenerative disorders, including Parkinson's disease (PD) and are believed to contribute to neuronal death. This process occurs at least due partially to nicotinamide adenine dinucleotide phosphate oxidase (PHOX) activation, which leads to the production of superoxide and oxidative stress. α-Synuclein (α-Syn), a key protein implicated in PD pathogenesis, can activate microglia, contributing to death of dopaminergic neurons. Here, microglial cells (BV2) and primary cultured microglia were used to study the role that the purinergic receptor P2X7 plays in recognizing α-Syn and promoting PHOX activation. We demonstrate that both wild type and A53T mutant α-Syn readily activate PHOX, with the A53T form producing more rapid and sustained effects,that is, oxidative stress and cellular injuries. Furthermore, this process involves the activation of phosphoinositide 3-kinase (PI3K)/AKT (protein kinase B) pathway. Thus, it is concluded that stimulation of the microglial P2X7 receptor by extracellular α-Syn, with PI3K/AKT activation and increased oxidative stress, could be an important mechanism and a potential therapeutic target for PD.

  12. Blueberry polyphenol oxidase: Characterization and the kinetics of thermal and high pressure activation and inactivation. (United States)

    Terefe, Netsanet Shiferaw; Delon, Antoine; Buckow, Roman; Versteeg, Cornelis


    Partially purified blueberry polyphenol oxidase (PPO) in Mcllvaine buffer (pH=3.6, typical pH of blueberry juice) was subjected to processing at isothermal-isobaric conditions at temperatures from 30 to 80 °C and pressure from 0.1 to 700 MPa. High pressure processing at 30-50 °C at all pressures studied caused irreversible PPO activity increase with a maximum of 6.1 fold increase at 500 MPa and 30 °C. Treatments at mild pressure-mild temperature conditions (0.1-400 MPa, 60 °C) also caused up to 3 fold PPO activity increase. Initial activity increase followed by a decrease occurred at relatively high pressure-mild temperature (400-600 MPa, 60 °C) and mild pressure-high temperature (0.1-400 MPa, 70-80 °C) combinations. At temperatures higher than 76 °C, monotonic decrease in PPO activity occurred at 0.1 MPa and pressures higher than 500 MPa. The activation/inactivation kinetics of the enzyme was successfully modelled assuming consecutive reactions in series with activation followed by inactivation.

  13. Some characteristics of active and latent monophenolase of mushroom polyphenol oxidase

    Directory of Open Access Journals (Sweden)

    Janusz Czapski


    Full Text Available Latent form of monophenolase of mushroom polyphenol oxidase (PPO was activated by 0,1% sodium dodecyl sulfate (SDS. The addition of increasing concentrations of 4-methylcatechol di minished lag period of active and total monophenolase activity, measured using p-cresol with L-proline as a substrate. Changes of lag period were described by equation of one phase exponential decay when concentration of substrate varied from l to 10 mM. Affinity ( 1/Km toward substrate of latent monophenolase was over two times higher than that of the active form, while the maximum velocity (Vmax was two times lower. The catalytic power (Vmax/Km of both forms of monophenolase were almost equal. Electrophoretic analysis followed by scanning technique of the gels was used. Absorbancy of spots, determined from computer image of isoenzyme bands pattern allowed for qualitative and quantitative estimation of electrophoregrams. Presence of one additional clearly defined slow migrating isoenzyme for SDS activated monophenolase differed in this respect active (2 bands and total (3 bands forms of monophenolase.

  14. Activation of lactoperoxidase system in milk by glucose oxidase immobilized in electrospun polylactide microfibers. (United States)

    Zhou, Y; Lim, L-T


    In this study, glucose oxidase (GOX) was immobilized in polylactide (PLA) fibers that were used to activate the lactoperoxidase (LP) system in milk. The GOX-containing microfibers were electrospun from emulsions prepared by dispersing aqueous GOX in PLA dissolved in a chloroform and N,N-dimethylformamide blend, using sorbitan monopalmitate as an emulsifier. The enzymatic activity of GOX-in-PLA fibers (1100 +/- 400 nm diameter) was more than 19 times higher than that of the GOX-in-PLA membrane formed by direct casting, due to the larger surface area of the electrospun fibers. The activation of LP in model solutions using GOX-in-PLA fibers provided a more sustained generation of antimicrobial OSCN(-) than direct activation using H(2)O(2). Preliminary evaluation on milk samples showed that the electrospun GOX-in-PLA microfibers are capable of activating the naturally present LP system, indicating that they may be promising for active food packaging applications to extend the shelf life of milk.

  15. Acute Ethanol Intake Induces NAD(P)H Oxidase Activation and Rhoa Translocation in Resistance Arteries. (United States)

    Simplicio, Janaina A; Hipólito, Ulisses Vilela; Vale, Gabriel Tavares do; Callera, Glaucia Elena; Pereira, Camila André; Touyz, Rhian M; Tostes, Rita de Cássia; Tirapelli, Carlos R


    The mechanism underlying the vascular dysfunction induced by ethanol is not totally understood. Identification of biochemical/molecular mechanisms that could explain such effects is warranted. To investigate whether acute ethanol intake activates the vascular RhoA/Rho kinase pathway in resistance arteries and the role of NAD(P)H oxidase-derived reactive oxygen species (ROS) on such response. We also evaluated the requirement of p47phox translocation for ethanol-induced NAD(P)H oxidase activation. Male Wistar rats were orally treated with ethanol (1g/kg, p.o. gavage) or water (control). Some rats were treated with vitamin C (250 mg/kg, p.o. gavage, 5 days) before administration of water or ethanol. The mesenteric arterial bed (MAB) was collected 30 min after ethanol administration. Vitamin C prevented ethanol-induced increase in superoxide anion (O2-) generation and lipoperoxidation in the MAB. Catalase and superoxide dismutase activities and the reduced glutathione, nitrate and hydrogen peroxide (H2O2) levels were not affected by ethanol. Vitamin C and 4-methylpyrazole prevented the increase on O2- generation induced by ethanol in cultured MAB vascular smooth muscle cells. Ethanol had no effect on phosphorylation levels of protein kinase B (Akt) and eNOS (Ser1177 or Thr495 residues) or MAB vascular reactivity. Vitamin C prevented ethanol-induced increase in the membrane: cytosol fraction ratio of p47phox and RhoA expression in the rat MAB. Acute ethanol intake induces activation of the RhoA/Rho kinase pathway by a mechanism that involves ROS generation. In resistance arteries, ethanol activates NAD(P)H oxidase by inducing p47phox translocation by a redox-sensitive mechanism. O mecanismo da disfunção vascular induzido pelo consumo de etanol não é totalmente compreendido. Justifica-se, assim a identificação de mecanismos bioquímicos e moleculares que poderiam explicar tais efeitos. Investigar se a ingestão aguda de etanol ativa a via vascular RhoA/Rho quinase

  16. Extracellular ATP induces spikes in cytosolic free Ca(2+) but not in NADPH oxidase activity in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Olsen, Lars Folke; Hallett, Maurice B


    In order to establish whether non-mitochondrial oxidase activity in human neutrophils is tightly related to cytosolic Ca(2+) concentration, we simultaneously measured Ca(2+) oscillations induced by ATP and oxidant production in single adherent neutrophils using confocal microscopy. ATP induced fast...

  17. Extracellular ATP induces spikes in cytosolic free Ca2+ but not in NADH oxidase activity in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Olsen, Lars Folke; Hallett, Maurice B.


    In order to establish whether non-mitochondrial oxidase activity in human neutrophils is tightly related to cytosolic Ca2+ concentration, we simultaneously measured Ca2+ oscillations induced by ATP and oxidant production in single adherent neutrophils using confocal microscopy. ATP induced fast...

  18. Modulation of Banana Polyphenol Oxidase (Ppo Activity by Naturally Occurring Bioactive Compounds From Plant Extracts

    Directory of Open Access Journals (Sweden)

    Alamelumangai. M


    Full Text Available Polyphenol Oxidase (PPO (E.C number was extracted from banana (Musa paradisiaca and partially purified by acetone precipitation. The enzyme was found to have high affinity towards its substrate, catechol. In this study, various plant extracts like Glycyrrhiza glabra, Rubia cordifolia, Hesperethusa crenulata and oil from the seeds of Hydnocarpus laurifolia were observed to modulate the activity of banana PPO. Method In this study, various plant extracts were observed to modulate the activity of banana PPO at two different concentrations (0.4 and 40 μg/ml concentrations Result Among these 4 plant extracts, Glycyrrhiza glabra and Rubia cordifolia were found to increase the activity of PPO up to 1.35- 2.7 fold at two different concentrations (4 and 40 μg/ml. Few other two samples like Chaulmogra oil (2 and 4 μl/ml and the Hesperethusa crenulata plant extract (0.4 and 40 μg/ml concentrations, when used at low concentrations decreased the enzyme activity (38 %. Conclusion The novelty of this study is to screen their naturally occurring bioactive compounds from the plant extracts and their inhibitory activity against PPO.

  19. Reduced mitochondria cytochrome oxidase activity in adult children of mothers with Alzheimer's disease. (United States)

    Mosconi, Lisa; de Leon, Mony; Murray, John; E, Lezi; Lu, Jianghua; Javier, Elizabeth; McHugh, Pauline; Swerdlow, Russell H


    Biomarker studies demonstrate inheritance of glucose hypometabolism and increased amyloid-β deposition in adult offspring of mothers, but not fathers, affected by late-onset Alzheimer's disease (LOAD). The underlying genetic mechanisms are unknown. We investigated whether cognitively normal (NL) individuals with a maternal history of LOAD (MH) have reduced platelet mitochondrial cytochrome oxidase activity (COX, electron transport chain complex IV) compared to those with paternal (PH) or negative family history (NH). Thirty-six consecutive NL individuals (age 55 ± 15 y, range 27-71 y, 56% female, CDR = 0, MMSE ≥28, 28% APOE-4 carriers), including 12 NH, 12 PH, and 12 MH, received a blood draw to measure platelet mitochondrial COX activity. Citrate synthase activity (CS) was measured as a reference. Groups were comparable for clinical and neuropsychological measures. We found that after correcting for CS, COX activity was reduced by 29% in MH compared to NH, and by 30% in MH compared to PH (p ≤ 0.006). Results remained significant controlling for age, gender, education, and APOE. No differences were found between PH and NH. COX measures discriminated MH from the other groups with accuracy ≥75%, and relative risk ≥3 (p ≤ 0.005). Among NL with LOAD-parents, only those with MH showed reduced COX activity in platelet mitochondria compared to PH and NH. The association between maternal history of LOAD and systemic COX reductions suggests transmission via mitochondrial DNA, which is exclusively maternally inherited in humans.

  20. Polyphenol oxidase activity as a potential intrinsic index of adequate thermal pasteurization of apple cider. (United States)

    Chen, L; Ingham, B H; Ingham, S C


    In response to increasing concerns about microbial safety of apple cider, the U.S. Food and Drug Administration has mandated treatment of cider sufficient for a 5-log reduction of the target pathogen. Pasteurization has been suggested as the treatment most likely to achieve a 5-log reduction, with Escherichia coli O157:H7 as the target pathogen. Regulators and processors need a reliable method for verifying pasteurization, and apple cider polyphenol oxidase (PPO) activity was studied as a potential intrinsic index for thermal pasteurization. The effect of pasteurization conditions and apple cider properties on PPO activity and survival of three pathogens (E. coli O157:H7, Salmonella, and Listeria monocytogenes) was studied using a Box-Behnken response surface design. Factors considered in the design were pasteurization conditions, i.e., hold temperature (60, 68, and 76 degrees C), preheat time (10, 20, 30 s), and hold time (0, 15, 30 s), pH, and sugar content ((o)Brix) of apple cider. Response surface contour plots were constructed to illustrate the effect of these factors on PPO activity and pathogen survival. Reduction in PPO activity of at least 50% was equivalent to a 5-log reduction in E. coli O157:H7 or L. monocytogenes for cider at pH 3.7 and 12.5 (o)Brix. Further studies, however, are needed to verify the relationship between PPO activity and pathogen reduction in cider with various pH and (o)Brix values.

  1. Potato and mushroom polyphenol oxidase activities are differently modulated by natural plant extracts. (United States)

    Kuijpers, Tomas F M; van Herk, Teunie; Vincken, Jean-Paul; Janssen, Renske H; Narh, Deborah L; van Berkel, Willem J H; Gruppen, Harry


    Enzymatic browning is a major quality issue in fruit and vegetable processing and can be counteracted by different natural inhibitors. Often, model systems containing a single polyphenol oxidase (PPO) are used to screen for new inhibitors. To investigate the impact of the source of PPO on the outcome of such screening, this study compared the effect of 60 plant extracts on the activity of PPO from mushroom ( Agaricus bisporus , AbPPO) and PPO from potato ( Solanum tuberosum , StPPO). Some plant extracts had different effects on the two PPOs: an extract that inhibited one PPO could be an activator for the other. As an example of this, the mate ( Ilex paraguariensis ) extract was investigated in more detail. In the presence of mate extract, oxygen consumption by AbPPO was found to be reduced >5-fold compared to a control reaction, whereas that of StPPO was increased >9-fold. RP-UHPLC-MS analysis showed that the mate extract contained a mixture of phenolic compounds and saponins. Upon incubation of mate extract with StPPO, phenolic compounds disappeared completely and saponins remained. Flash chromatography was used to separate saponins and phenolic compounds. It was found that the phenolic fraction was mainly responsible for inhibition of AbPPO and activation of StPPO. Activation of StPPO was probably caused by activation of latent StPPO by chlorogenic acid quinones.

  2. Increased activities of peroxidase and polyphenol oxidase enhance cassava resistance to Tetranychus urticae. (United States)

    Liang, Xiao; Chen, Qing; Lu, Hui; Wu, Chunling; Lu, Fuping; Tang, Jihong


    In order to study the function of peroxidase (POD) and polyphenol oxidase (PPO) in cassava resistance to spider mites, we tested the changes of transcription levels and activities of these two protective enzymes in both cassava and Tetranychus urticae (=T. cinnabarinus) during the interaction. The results showed that after damage of the mite-susceptible cassava cultivar BRA900 by T. urticae for 1 and 8 days, the transcription levels of MePOD and MePPO and the activities of POD and PPO showed no significant difference compared with those in undamaged leaves. However, the corresponding transcription levels and activities in 1- and 8-day-damaged leaves of mite-resistant cassava cultivar C1115 increased to a significant level of approximately twofold. When T. urticae fed on BRA900 for 1 and 8 days, the transcription levels of TcPPO and TcPOD and the activities of PPO and POD showed no significant difference compared with those before feeding. However, the corresponding transcription levels and activities of these two protective enzymes in T. urticae feeding on C1115 significantly decreased by about half. This study preliminarily validates the function of POD and PPO in cassava resistance to T. urticae, and provides candidate gene resource for molecular breeding of spider mite-resistant cassava.

  3. Retinal ganglion cells of high cytochrome oxidase activity in the rat

    Institute of Scientific and Technical Information of China (English)



    Retinal ganglion cells in the rat were studied using the heavy metal intensified cytochrome oxidase and horseradish peroxidase histochemical methods.The results show that a population of large retinal ganglion cells was consistently observed with the cytochrome oxidase staining method in retinas of normal rats or rats which received unilateral thalamotomy at birth.These cytochrome oxidase rich ganglion cells appeared to have large somata,3-6 primary dendrites and extensive dendritic arbors,and are comparable to ganglion cells labeled by the wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP).However,the morphological details of some of the cells revealed by the cytochrome oxidase staining method are frequently better than those shown by the HRP histochemical method.These results suggest that the mitochondrial enzyme cytochrome oxidase can be used as a simple but reliable marker for identifying and studying a population of retinal genglion cells with high metabolic rate in the rat.

  4. Polyphenol oxidase activity in subcellular fractions of tall fescue contaminated by polycyclic aromatic hydrocarbons. (United States)

    Ling, Wanting; Lu, Xiaodan; Gao, Yanzheng; Liu, Juan; Sun, Yandi


    Understanding enzyme responses to contamination with persistent organic pollutants (POPs) is a key step in the elucidation of POP metabolic mechanisms in plants. However, there is little information available on enzyme activity in subcellular fractions of POP-contaminated plants. To our knowledge, this is the first study to investigate the activities of polyphenol oxidase (PPO) in cell fractions of plants under contamination stress from polycyclic aromatic hydrocarbons (PAHs) using a greenhouse batch technique. Three parameters, E(cell), E(cell-n), and P(cell), denoting the amount of PPO activity, cell fraction content-normalized PPO activity, and proportion of PPO activity in each cell fraction, respectively, were used in this study. Contamination with phenanthrene, as a representative PAH, at a relatively high level (>0.23 mg L⁻¹) in culture solution generally stimulated PPO activity in tall fescue (Festuca arundinacea Schreb.) roots and shoots and their cellular fractions. The amount and distribution proportion of PPO activity in each cell fraction of phenanthrene-contaminated roots and shoots were (in descending order): cell solution > > cell wall > cell organelles. Cell solution was the dominant storage domain of PPO activity and contributed 84.0 and 82.8% of PPO activity in roots and shoots, respectively. The cell wall had the highest density of PPO activity in roots and shoots, based on the highest cell fraction content normalized PPO activity in this cell fraction. Our results provide new information on enzyme responses in plant intracellular fractions to xenobiotic POPs and fundamental information on within-plant POP metabolic mechanisms.

  5. Extra virgin olive oil rich in polyphenols modulates VEGF-induced angiogenic responses by preventing NADPH oxidase activity and expression. (United States)

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; D'Amore, Simona; Gnoni, Antonio; Pellegrino, Mariangela; Storelli, Carlo; De Caterina, Raffaele; Palasciano, Giuseppe; Carluccio, Maria Annunziata


    Previous studies have shown the antiinflammatory, antioxidant and antiangiogenic properties by pure olive oil polyphenols; however, the effects of olive oil phenolic fraction on the inflammatory angiogenesis are unknown. In this study, we investigated the effects of the phenolic fraction (olive oil polyphenolic extract, OOPE) from extra virgin olive oil and related circulating metabolites on the VEGF-induced angiogenic responses and NADPH oxidase activity and expression in human cultured endothelial cells. We found that OOPE (1-10 μg/ml), at concentrations achievable nutritionally, significantly reduced, in a concentration-dependent manner, the VEGF-induced cell migration, invasiveness and tube-like structure formation through the inhibition of MMP-2 and MMP-9. OOPE significantly (Polive oil, with high polyphenol content, decreased VEGF-induced NADPH oxidase activity and Nox4 expression, as well as, MMP-9 expression, as compared with fasting control serum. Overall, native polyphenols and serum metabolites of extra virgin olive oil rich in polyphenols are able to lower the VEGF-induced angiogenic responses by preventing endothelial NADPH oxidase activity and decreasing the expression of selective NADPH oxidase subunits. Our results provide an alternative mechanism by which the consumption of olive oil rich in polyphenols may account for a reduction of oxidative stress inflammatory-related sequelae associated with chronic degenerative diseases.

  6. Subunit structure of bovine milk xanthine oxidase. Effect of limited cleavage by proteolytic enzymes on activity and structure. (United States)

    Nagler, L G; Vartanyan, L S


    Bovine milk xanthine oxidase (xanthine:oxygen oxidoreductase, EC has been purified by a modified method without the use of proteases, and its structure has been analyzed by polyacrylamide gel electrophoresis. Native xanthine oxidase is found to consist of only two polypeptide chains A with molecular weights of 150 000 each. These chains have NH2-terminal methionine. Limited proteolysis with trypsin, chymotrypsin, or subtilisin at pH 8 did not affect molecular weight and activities of the enzyme while each of the A chains was cleaved under these conditions to three fragments C, E, and F with molecular weights of 92 00, 42 000 and 20 000, respectively. These fragments remained bound to each other and were relatively resistant to subsequent proteolysis. The isolation of xanthine oxidase in the presence of pancreatin as described by Hart et al. (1970, Biochem. J. 116, 851) gives partially digested enzyme composed mainly of chains C, E (Mr 35 000) and a small component (Mr approx. 15 0-0). The action of subtilisin on xanthine oxidase at pH 11 resulted in complete digestion of E chains, FAD separation, and total loss of xanthine:oxygen oxidoreductase activity while xanthine:indophenol oxidoreductase activity was relatively little affected. The residual enzyme has a molecular weight of about 200 000, is composed mainly of two C chains (and may probably contain F and/or proteolytic fragments of low molecular weight), contains molybdenum, and does not contain FAD.

  7. L-amino acid oxidase from Naja atra venom activates and binds to human platelets

    Institute of Scientific and Technical Information of China (English)

    Rui Li; Shaowen Zhu; Jianbo Wu; Wanyu Wang; Qiumin Lu; Kenneth J.Clemetson


    An L-amino acid oxidase (LAAO),NA-LAAO,was purified from the venom of Naja atra.Its N-terminal sequence shows great similarity with LAAOs from other snake venoms.NALAAO dose-dependently induced aggregation of washed human platelets.However,it had no activity on platelets in platelet-rich plasma.A low concentration of NA-LAAO greatly promoted the effect of hydrogen peroxide,whereas hydrogen peroxide itself had little activation effect on platelets.NA-LAAO induced tyrosine phosphorylation of a number of platelet proteins including Src kinase,spleen tyrosine kinase,and phospholipase C γ2.Unlike convulxin,Fc receptor γ chain and T lymphocyte adapter protein are not phosphorylated in NA-LAAO activated platelets,suggesting an activation mechanism different from the glycoprotein VI pathway.Catalase inhibited the platelet aggregation and platelet protein phosphorylation induced by NA-LAAO.NA-LAAO bound to fixed platelets as well as to platelet lysates of Western blots.Furthermore,affinity chromatography of platelet proteins on an NA-LAAO Sepharose 4B column isolated a few platelet membrane proteins,suggesting that binding of NA-LAAO to the platelet membrane might play a role in its action on platelets.

  8. Psychological traits and platelet monoamine oxidase activity in eating disorder patients: their relationship and stability. (United States)

    Podar, Iris; Jaanisk, Maiken; Allik, Jüri; Harro, Jaanus


    Self-reported behavior and attitudes towards eating [Eating Disorder Inventory-2; Garner DM (1991). Eating Disorder Inventory-2: Professional Manual. Odessa, Fl.: Psychological Assessment Resources; Estonian version Podar I, Hannus A, Allik J (1999). Personality and Affectivity Characteristics Associated With Eating Disorders: a Comparison of Eating Disordered, Weight-Preoccupied, and Normal Samples. J Pers Assess; 73(1), 133-147] and the activity of platelet monoamine oxidase (MAO) was studied in 11 patients with anorexia nervosa (AN), 43 patients with bulimia nervosa (BN) and a healthy control group (n=138). Nineteen patients filled in the EDI-2 questionnaire and donated blood samples three times with three month intervals in order to determine platelet MAO activity. Eating disordered (ED) patients scored higher on all EDI-2 subscales and had lower MAO activity compared to the control group. They also scored higher than the control group on the Neuroticism domain but lower on the Extraversion, Openness, and Conscientiousness domains of the NEO-PI-R questionnaire. The average stability of MAO on different occasions (r=.56) was slightly smaller than the stability of the EDI-2 scores (r=.70). The lack of correlations between personality dispositions and MAO activity indicates that they have independent influence on eating disorders. A possible relationship between neurochemical mechanisms and psychological symptoms of eating disordered behavior is discussed.

  9. Cardiolipin linoleic acid content and mitochondrial cytochrome c oxidase activity are associated in rat skeletal muscle. (United States)

    Fajardo, Val Andrew; McMeekin, Lauren; Saint, Caitlin; LeBlanc, Paul J


    Cardiolipin (CL) is an inner-mitochondrial membrane phospholipid that is important for optimal mitochondrial function. Specifically, CL and CL linoleic (18:2ω6) content are known to be positively associated with cytochrome c oxidase (COX) activity. However, this association has not been examined in skeletal muscle. In this study, rats were fed high-fat diets with a naturally occurring gradient in linoleic acid (coconut oil [CO], 5.8%; flaxseed oil [FO], 13.2%; safflower oil [SO], 75.1%) in an attempt to alter both mitochondrial CL fatty acyl composition and COX activity in rat mixed hind-limb muscle. In general, mitochondrial membrane lipid composition was fairly resistant to dietary treatments as only modest changes in fatty acyl composition were detected in CL and other major mitochondrial phospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). As a result of this resistance, CL 18:2ω6 content was not different between the dietary groups. Consistent with the lack of changes in CL 18:2ω6 content, mitochondrial COX activity was also not different between the dietary groups. However, correlational analysis using data obtained from rats across the dietary groups showed a significant relationship (p = 0.009, R(2) = 0.21). Specifically, our results suggest that CL 18:2ω6 content may positively influence mitochondrial COX activity thereby making this lipid molecule a potential factor related to mitochondrial health and function in skeletal muscle.

  10. Exposure to GSM 900 MHz electromagnetic fields affects cerebral cytochrome c oxidase activity. (United States)

    Ammari, Mohamed; Lecomte, Anthony; Sakly, Mohsen; Abdelmelek, Hafedh; de-Seze, René


    The world-wide and rapidly growing use of mobile phones has raised serious concerns about the biological and health-related effects of radio frequency (RF) radiation, particularly concerns about the effects of RFs upon the nervous system. The goal of this study was conducted to measure cytochrome oxidase (CO) levels using histochemical methods in order to evaluate regional brain metabolic activity in rat brain after exposure to a GSM 900 MHz signal for 45 min/day at a brain-averaged specific absorption rate (SAR) of 1.5 W/Kg or for 15 min/day at a SAR of 6 W/Kg over seven days. Compared to the sham and control cage groups, rats exposed to a GSM signal at 6 W/Kg showed decreased CO activity in some areas of the prefrontal and frontal cortex (infralimbic cortex, prelimbic cortex, primary motor cortex, secondary motor cortex, anterior cingulate cortex areas 1 and 2 (Cg1 and Cg2)), the septum (dorsal and ventral parts of the lateral septal nucleus), the hippocampus (dorsal field CA1, CA2 and CA3 of the hippocampus and dental gyrus) and the posterior cortex (retrosplenial agranular cortex, primary and secondary visual cortex, perirhinal cortex and lateral entorhinal cortex). However, the exposure to GSM at 1.5 W/Kg did not affect brain activity. Our results indicate that 6 W/Kg GSM 900 MHz microwaves may affect brain metabolism and neuronal activity in rats.

  11. Methadone, monoamine oxidase, and depression: opioid distribution and acute effects on enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, C.A.; Kreek, M.J.; Raghunath, J.; Arns, P.


    Narcotic withdrawal is often accompanied by an atypical depression which responds to resumption of narcotics. It was hypothesized that methadone might exert its antidepressant effects through monoamine oxidase (MAO) inhibition. The current study examined /sub 3/H-methadone distribution in rat brain and effects on regional MAO activity with acute doses (2.5 mg/kg) which approximate those found during chronic methadone maintenance in man. Limbic areas (amygdala, basomedial hypothalamus, caudate-putamen, hippocampus, preoptic nucleus), as well as pituitary and liver were assayed for MAO activity and methadone concentration. MAO activities did not differ significantly in acute methadone or saline-treated cage-mates at 1 or 24 hr. The concentrations of methadone at 1 hr ranged between 17 and 223 ng/100 mg wet wt tissue in the preoptic nucleus and pituitary, respectively. No significant correlation was found between change in MAO activity (MAO methadone/MAO saline) and methadone concentration in any region at 1 or 24 hr. This study does not support the hypothesis that methadone acts as an antidepressant through MAO inhibition, at least not following acute administration of this exogenous opioid.

  12. Xanthine oxidase inhibitory activity of some leafy vegetables collected from Palakkad regions of Kerala

    Directory of Open Access Journals (Sweden)



    Full Text Available Sauropus androgynus, Aerva lanata & Benincasa hispida have been using as leafy vegetable in kerala. The investigation undertaken was aimed to study xanthine oxidase (XO inhibitory activity of these three plants and it was demonstrated the usefulness and beneficial effects in the treatment of Gout. Inhibition of XO is an effective therapeutic approach for treating hyperuricemia that causes gout. Allopurinol, a known inhibitor of XO, was used to validate the method and was adopted as positive control in the studies. The degree of inhibition was determined by measuring the increase in absorbance at 295 nm associated with uric acid formation. Aerva lanata showed a significant XO inhibitory activity with an IC50 value of 62.53μg/ml. Benincasa hispida and Sauropus androgynus showed a moderate significant XO inhibitory activity with an IC50 value of 67.97μg/ml,80.12 μg/ml respectively. The study recommended that leaves possess XO inhibitory activity that might be useful in preventing or slow down the progress of gout.

  13. Active site dynamics in NADH oxidase from Thermus thermophilus studied by NMR spin relaxation. (United States)

    Miletti, Teresa; Farber, Patrick J; Mittermaier, Anthony


    We have characterized the backbone dynamics of NADH oxidase from Thermus thermophilus (NOX) using a recently-developed suite of NMR experiments designed to isolate exchange broadening, together with (15)N R (1), R (1ρ ), and {(1)H}-(15)N steady-state NOE relaxation measurements performed at 11.7 and 18.8 T. NOX is a 54 kDa homodimeric enzyme that belongs to a family of structurally homologous flavin reductases and nitroreductases with many potential biotechnology applications. Prior studies have suggested that flexibility is involved in the catalytic mechanism of the enzyme. The active site residue W47 was previously identified as being particularly important, as its level of solvent exposure correlates with enzyme activity, and it was observed to undergo "gating" motions in computer simulations. The NMR data are consistent with these findings. Signals from W47 are dynamically broadened beyond detection and several other residues in the active site have significant R ( ex ) contributions to transverse relaxation rates. In addition, the backbone of S193, whose side chain hydroxyl proton hydrogen bonds directly with the FMN cofactor, exhibits extensive mobility on the ns-ps timescale. We hypothesize that these motions may facilitate structural rearrangements of the active site that allow NOX to accept both FMN and FAD as cofactors.

  14. Behavioral characterization of a mutant mouse strain lacking D-amino acid oxidase activity. (United States)

    Zhang, Min; Ballard, Michael E; Basso, Ana M; Bratcher, Natalie; Browman, Kaitlin E; Curzon, Pete; Konno, Ryuichi; Meyer, Axel H; Rueter, Lynne E


    D-amino acid oxidase (DAO), an enzyme that degrades d-serine, has been suggested as a susceptibility factor for schizophrenia. Here we sought to understand more about the behavioral consequence of lacking DAO and the potential therapeutic implication of DAO inhibition by characterizing a mouse strain (ddY/DAO(-)) lacking DAO activity. We found that the mutant mice showed enhanced prepulse inhibition responses (PPI). Intriguingly, DAO-/- mice had increased sensitivity to the PPI-disruptive effect induced by the competitive NMDA antagonist, SDZ 220-581. In the 24-h inhibitory avoidance test, DAO-/- mice were not different from DAO+/+ mice during the recall. In Barnes Maze, we found that DAO-/- mice had a shortened latency to enter the escape tunnel. Interestingly, although these mice were hypoactive when tested in a protected open field, they showed a profound increase of activity on the edge of the unprotected open field of the Barnes Maze even with the escape tunnel removed. This increased edge activity does not appear to be related to a reduced level of anxiety given that there were no significant genotype effects on the measures of anxiety-like behaviors in two standard animal models of anxiety, elevated plus maze and novelty suppressed feeding. Our data suggest that DAO-/- mice might have altered functioning of NMDARs. However, these results provide only modest support for manipulations of DAO activity as a potential therapeutic approach to treat schizophrenia.

  15. Xanthine oxidase inhibitory activities and crystal structures of methoxyflavones from Kaempferia parviflora rhizome. (United States)

    Nakao, Kikuyo; Murata, Kazuya; Deguchi, Takahiro; Itoh, Kimihisa; Fujita, Takanori; Higashino, Masayuki; Yoshioka, Yuri; Matsumura, Shin-Ichi; Tanaka, Rika; Shinada, Tetsuro; Ohfune, Yasufumi; Matsuda, Hideaki


    Kaempferia parviflora (KP), a Zingiberaceae plant, is used as a folk medicine in Thailand for the treatment of various symptoms, including general pains, colic gastrointestinal disorders, and male impotence. In this study, the inhibitory activities of KP against xanthine oxidase (XOD) were investigated. The extract of KP rhizomes showed more potent inhibitory activity (38% at 500 µg/ml) than those of the other Zingiberaceae plants tested. Ten methoxyflavones were isolated from the KP extract as the major chemical components and their chemical structures were elucidated by X-ray crystallography. The structurally confirmed methoxyflavones were subjected to the XOD inhibitory test. Among them, 3,5,7,4',5'-pentamethoxyflavone and 3',4',5,7-tetramethoxyflavone showed inhibitory activities (IC(50) of 0.9 and >4 mM, respectively) and their modes of inhibition are clarified as competitive/non-competitive mixed type. To the best of our knowledge, this is the first report to present the inhibitory activities of KP, 3,5,7,4',5'-pentamethoxyflavone and 3',4',5,7-tetramethoxyflavone against XOD.

  16. Phosphatidylinositol 3-phosphate-dependent and -independent functions of p40phox in activation of the neutrophil NADPH oxidase. (United States)

    Bissonnette, Sarah A; Glazier, Christina M; Stewart, Mary Q; Brown, Glenn E; Ellson, Chris D; Yaffe, Michael B


    In response to bacterial infection, the neutrophil NADPH oxidase assembles on phagolysosomes to catalyze the transfer of electrons from NADPH to oxygen, forming superoxide and downstream reactive oxygen species (ROS). The active oxidase is composed of a membrane-bound cytochrome together with three cytosolic phox proteins, p40(phox), p47(phox), and p67(phox), and the small GTPase Rac2, and is regulated through a process involving protein kinase C, MAPK, and phosphatidylinositol 3-kinase. The role of p40(phox) remains less well defined than those of p47(phox) and p67(phox). We investigated the biological role of p40(phox) in differentiated PLB-985 neutrophils, and we show that depletion of endogenous p40(phox) using lentiviral short hairpin RNA reduces ROS production and impairs bacterial killing under conditions where p67(phox) levels remain constant. Biochemical studies using a cytosol-reconstituted permeabilized human neutrophil cores system that recapitulates intracellular oxidase activation revealed that depletion of p40(phox) reduces both the maximal rate and total amount of ROS produced without altering the K(M) value of the oxidase for NADPH. Using a series of mutants, p47PX-p40(phox) chimeras, and deletion constructs, we found that the p40(phox) PX domain has phosphatidylinositol 3-phosphate (PtdIns(3)P)-dependent and -independent functions. Translocation of p67(phox) requires the PX domain but not 3-phosphoinositide binding. Activation of the oxidase by p40(phox), however, requires both PtdIns(3)P binding and an Src homology 3 (SH3) domain competent to bind to poly-Pro ligands. Mutations that disrupt the closed auto-inhibited form of full-length p40(phox) can increase oxidase activity approximately 2.5-fold above that of wild-type p40(phox) but maintain the requirement for PX and SH3 domain function. We present a model where p40(phox) translocates p67(phox) to the region of the cytochrome and subsequently switches the oxidase to an activated state


    NARCIS (Netherlands)



    The relationship between the relative amounts of nuclear and mitochondrial genes for cytochrome-c oxidase subunits and their transcripts and cytochrome-c oxidase activity was investigated in several human tissues and cell lines to get more insight into the regulation of the expression of this mitoch

  18. Impaired NADPH oxidase activity in peripheral blood lymphocytes of galactosemia patients. (United States)

    Al-Essa, Mazen; Dhaunsi, Gursev S; Al-Qabandi, Wafa'a; Khan, Islam


    Galactosemia is an autosomal recessive disorder with a wide range of clinical abnormalities. Cellular oxidative stress is considered as one of the pathogenic mechanisms of galactosemia. In this study, we examined the activity of NADPH oxidase (NOX), a major superoxide-generating enzyme system, in peripheral blood lymphocytes (PBL) from galactosemia patients. PBL were isolated from galactosemia patients and healthy control subjects and used for cell culture studies and biochemical assays. PBL were cultured in the presence or absence of galactose or galactose-1-phosphate (Gal-1-P), and enzyme activities and/or gene expression of NOX, catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPx) were measured in the cell homogenates. PBL isolated from galactosemia patients showed significantly reduced (P Galactosemia patients were found to have significantly (P galactosemia patients; however, Western blotting revealed that NOX-1 protein was not significantly altered. Interestingly, levels of NOX activity in lymphocytes isolated from galactosemia patients significantly increased but remained subnormal when cultured in galactose-deficient medium for two weeks, indicating a galactose-mediated inhibition of NOX. Lymphocytes isolated from control subjects were found to have significantly (P galactosemia patients.

  19. Xanthine Oxidase Activity in Type 2 Diabetes Mellitus Patients with and without Diabetic Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Dijana J. Miric


    Full Text Available This study investigated the relationship between serum xanthine oxidase (XOD activity and the occurrence of diabetic peripheral neuropathy (DPN in type 2 diabetes mellitus (T2DM patients. Serum XOD activity, ischemia-modified albumin (IMA, uric acid (UA, albumin, glycated hemoglobin (HbA1c, advanced glycation end products (AGE, total free thiols, atherogenic index of plasma (AIP, and body mass index (BMI were measured in 80 T2DM patients (29 with and 51 without DPN, and 30 nondiabetic control subjects. Duration of diabetes, hypertension, medication, and microalbuminuria was recorded. Serum XOD activities in controls, non-DPN, and DPN were 5.7±2.4 U/L, 20.3±8.6 U/L, and 27.5±10.6 U/L (p<0.01, respectively. XOD activity was directly correlated to IMA, UA, BMI, HbA1c, and AGE, while inversely correlated to serum total free thiols. A multivariable logistic regression model, which included duration of diabetes, hypertension, AIP, HbA1c, UA, and XOD activity, revealed HbA1c [OR = 1.03 (1.00–1.05; p=0.034] and XOD activity [OR = 1.07 (1.00–1.14; p=0.036] as independent predictors of DPN. Serum XOD activity was well correlated to several other risk factors. These results indicate the role of XOD in the development of DPN among T2DM patients.

  20. Purine-induced expression of urate oxidase and enzyme activity in Atlantic salmon (Salmo salar). Cloning of urate oxidase liver cDNA from three teleost species and the African lungfish Protopterus annectens. (United States)

    Andersen, Øivind; Aas, Turid S; Skugor, Stanko; Takle, Harald; van Nes, Solveig; Grisdale-Helland, Barbara; Helland, Ståle J; Terjesen, Bendik F


    The peroxisomal enzyme urate oxidase plays a pivotal role in the degradation of purines in both prokaryotes and eukaryotes. However, knowledge about the purine-induced expression of the encoding gene is lacking in vertebrates. These are the first published sequences of fish urate oxidase, which were predicted from PCR amplified liver cDNAs of Atlantic salmon (Salmo salar), Atlantic cod (Gadus morhua), Atlantic halibut (Hippoglossus hippoglossus) and African lungfish (Protopterus annectens). Sequence alignment of different vertebrate urate oxidases revealed amino acid substitutions of putative functional importance in the enzyme of chicken and lungfish. In the adult salmon, expression of urate oxidase mRNA predominated in liver, but was also identified in several nonhepatic organs including brain, but not in skeletal muscle and kidney. Juvenile salmon fed diets containing bacterial protein meal (BPM) rich in nucleic acids showed a significant increase in liver urate oxidase enzyme activity, and urea concentrations in plasma, muscle and liver were elevated. Whereas salmon fed the 18% BPM diet showed a nonsignificant increase in liver mRNA levels of urate oxidase compared with the 0% BPM-fed fish, no further increase in mRNA levels was found in fish receiving 36% BPM. The discrepancy between urate oxidase mRNA and enzyme activity was explained by rapid mRNA degradation or alternatively, post-translational control of the activity. Although variable plasma and liver levels of urate were detected, the substrate increased only slightly in 36% BPM-fed fish, indicating that the uricolytic pathway of Atlantic salmon is intimately regulated to handle high dietary purine levels.

  1. Theory and experiment on the cuprous-cupric electron transfer rate at a copper electrode.

    Energy Technology Data Exchange (ETDEWEB)

    Halley, J. W.; Smith, B. B.; Walbran, S.; Curtiss, L. A.; Rigney, R. O.; Sutjianto, A.; Hung, N. C.; Yonco, R. M.; Nagy, Z.; Univ. of Minnesota; NREL


    We describe results of experiment and theory of the cuprous-cupric electron transfer rate in an aqueous solution at a copper electrode. The methods are similar to those we reported earlier for the ferrous-ferric rate. The comparison strongly suggests that, in marked distinction to the ferrous-ferric case, the electron transfer reaction is adiabatic. The model shows that the activation barrier is dominated by the energy required for the ion to approach the electrode, rather than by the energy required for rearrangement of the solvation shell, also in sharp distinction to the case of the ferric-ferrous electron transfer at a gold electrode. Calculated activation barriers based on this image agree with the experimental results reported here.

  2. Theory and experiment on the cuprous{endash}cupric electron transfer rate at a copper electrode

    Energy Technology Data Exchange (ETDEWEB)

    Halley, J.W. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Smith, B.B. [National Renewable Energy Laboratory, Golden, Colorado (United States); Walbran, S. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Curtiss, L.A.; Rigney, R.O.; Sutjianto, A.; Hung, N.C.; Yonco, R.M.; Nagy, Z. [Argonne National Laboratory, Divisions of Materials Science, Chemistry and Chemical Technology, Argonne, Illinois 60439-4837 (United States)


    We describe results of experiment and theory of the cuprous{endash}cupric electron transfer rate in an aqueous solution at a copper electrode. The methods are similar to those we reported earlier for the ferrous{endash}ferric rate. The comparison strongly suggests that, in marked distinction to the ferrous{endash}ferric case, the electron transfer reaction is adiabatic. The model shows that the activation barrier is dominated by the energy required for the ion to approach the electrode, rather than by the energy required for rearrangement of the solvation shell, also in sharp distinction to the case of the ferric{endash}ferrous electron transfer at a gold electrode. Calculated activation barriers based on this image agree with the experimental results reported here. {copyright} {ital 1999 American Institute of Physics.}

  3. A neutrophil GTP-binding protein that regulates cell free NADPH oxidase activation is located in the cytosolic fraction. (United States)

    Gabig, T G; Eklund, E A; Potter, G B; Dykes, J R


    The dormant O2(-)-generating oxidase in plasma membranes from unstimulated neutrophils becomes activated in the presence of arachidonate and a multicomponent cytosolic fraction. This process is stimulated by nonhydrolyzable GTP analogues and may involve a pertussis toxin insensitive GTP-binding protein. Our studies were designed to characterize the putative GTP-binding protein, localizing it to either membrane or cytosolic fraction in this system. Exposure of the isolated membrane fraction to guanosine-5'-(3-O-thio)triphosphate (GTP gamma S), with or without arachidonate, had no effect on subsequent NADPH oxidase activation by the cytosolic fraction. Preexposure of the cytosolic fraction to GTP gamma S alone did not enhance activation of the membrane oxidase. However, preexposure of the cytosol to GTP gamma S then arachidonate caused a four-fold enhancement of its ability to activate the membrane oxidase. This enhancement was evident after removal of unbound GTP gamma S and arachidonate, and was not augmented by additional GTP gamma S during membrane activation. A reconstitution assay was developed for cytosolic component(s) responsible for the GTP gamma S effect. Cytosol preincubated with GTP gamma 35S then arachidonate was fractionated by anion exchange chromatography. A single peak of protein-bound GTP gamma 35S was recovered that had reconstitutive activity. Cytosol preincubated with GTP gamma 35S alone was similarly fractionated and the same peak of protein-bound GTP gamma 35S was observed. However, this peak had no reconstitutive activity. We conclude that the GTP-binding protein regulating this cellfree system is located in the cytosolic fraction. The GTP gamma S-liganded form of this protein may be activated or stabilized by arachidonate.

  4. Cytochrome c oxidase deficiency accelerates mitochondrial apoptosis by activating ceramide synthase 6. (United States)

    Schüll, S; Günther, S D; Brodesser, S; Seeger, J M; Tosetti, B; Wiegmann, K; Pongratz, C; Diaz, F; Witt, A; Andree, M; Brinkmann, K; Krönke, M; Wiesner, R J; Kashkar, H


    Although numerous pathogenic changes within the mitochondrial respiratory chain (RC) have been associated with an elevated occurrence of apoptosis within the affected tissues, the mechanistic insight into how mitochondrial dysfunction initiates apoptotic cell death is still unknown. In this study, we show that the specific alteration of the cytochrome c oxidase (COX), representing a common defect found in mitochondrial diseases, facilitates mitochondrial apoptosis in response to oxidative stress. Our data identified an increased ceramide synthase 6 (CerS6) activity as an important pro-apoptotic response to COX dysfunction induced either by chemical or genetic approaches. The elevated CerS6 activity resulted in accumulation of the pro-apoptotic C16 : 0 ceramide, which facilitates the mitochondrial apoptosis in response to oxidative stress. Accordingly, inhibition of CerS6 or its specific knockdown diminished the increased susceptibility of COX-deficient cells to oxidative stress. Our results provide new insights into how mitochondrial RC dysfunction mechanistically interferes with the apoptotic machinery. On the basis of its pivotal role in regulating cell death upon COX dysfunction, CerS6 might potentially represent a novel target for therapeutic intervention in mitochondrial diseases caused by COX dysfunction.

  5. Methodology to assay CYP2E1 mixed function oxidase catalytic activity and its induction

    Directory of Open Access Journals (Sweden)

    Arthur I. Cederbaum


    Full Text Available The cytochrome P450 mixed function oxidase enzymes are the major catalysts involved in drug metabolism. There are many forms of P450. CYP2E1 metabolizes many toxicologically important compounds including ethanol and is active in generating reactive oxygen species. Since several of the contributions in the common theme series “Role of CYP2E1 and Oxidative/Nitrosative Stress in the Hepatotoxic Actions of Alcohol” discuss CYP2E1, this methodology review describes assays on how CYP2E1 catalytic activity and its induction by ethanol and other inducers can be measured using substrate probes such as the oxidation of para-nitrophenol to para-nitrocatechol and the oxidation of ethanol to acetaldehyde. Approaches to validate that a particular reaction e.g. oxidation of a drug or toxin is catalyzed by CYP2E1 or that induction of that reaction is due to induction of CYP2E1 are important and specific examples using inhibitors of CYP2E1, anti-CYP2E1 IgG or CYP2E1 knockout and knockin mice will be discussed.

  6. Potent and Selective Monoamine Oxidase-B Inhibitory Activity: Fluoro- vs. Trifluoromethyl-4-hydroxylated Chalcone Derivatives. (United States)

    Mathew, Bijo; Mathew, Githa Elizabeth; Uçar, Gülberk; Baysal, Ipek; Suresh, Jerad; Mathew, Sincy; Haridas, Abitha; Jayaprakash, Venkatesan


    For various neurodegenerative disorders like Alzheimer's and Parkinson's diseases, selective and reversible MAO-B inhibitors have a great therapeutic value. In our previous study, we have shown that a series of methoxylated chalcones with F functional group exhibited high binding affinity toward human monoamine oxidase-B (hMAO-B). In continuation of our earlier study and to extend the understanding of the structure-activity relationships, a series of five new chalcones were studied for their inhibition of hMAO. The results demonstrated that these compounds are reversible and selective hMAO-B inhibitors with a competitive mode of inhibition. The most active compound, (2E)-1-(4-hydroxyphenyl)-3-[4-(trifluoromethyl)phenyl]prop-2-en-1-one, exhibited a Ki value of 0.33 ± 0.01 μm toward hMAO-B with a selectivity index of 26.36. A molecular docking study revealed that the presence of a H-bond network in hydroxylated chalcone with the N(5) atom of FAD is crucial for MAO-B selectivity and potency.

  7. Identification and Structural Analysis of Amino Acid Substitutions that Increase the Stability and Activity of Aspergillus niger Glucose Oxidase.

    Directory of Open Access Journals (Sweden)

    Julia Marín-Navarro

    Full Text Available Glucose oxidase is one of the most conspicuous commercial enzymes due to its many different applications in diverse industries such as food, chemical, energy and textile. Among these applications, the most remarkable is the manufacture of glucose biosensors and in particular sensor strips used to measure glucose levels in serum. The generation of ameliorated versions of glucose oxidase is therefore a significant biotechnological objective. We have used a strategy that combined random and rational approaches to isolate uncharacterized mutations of Aspergillus niger glucose oxidase with improved properties. As a result, we have identified two changes that increase significantly the enzyme's thermal stability. One (T554M generates a sulfur-pi interaction and the other (Q90R/Y509E introduces a new salt bridge near the interphase of the dimeric protein structure. An additional double substitution (Q124R/L569E has no significant effect on stability but causes a twofold increase of the enzyme's specific activity. Our results disclose structural motifs of the protein which are critical for its stability. The combination of mutations in the Q90R/Y509E/T554M triple mutant yielded a version of A. niger glucose oxidase with higher stability than those previously described.

  8. Parameters that enhance the bacterial expression of active plant polyphenol oxidases.

    Directory of Open Access Journals (Sweden)

    Mareike E Dirks-Hofmeister

    Full Text Available Polyphenol oxidases (PPOs, EC are type-3 copper proteins that enzymatically convert diphenolic compounds into their corresponding quinones. Although there is significant interest in these enzymes because of their role in food deterioration, the lack of a suitable expression system for the production of soluble and active plant PPOs has prevented detailed investigations of their structure and activity. Recently we developed a bacterial expression system that was sufficient for the production of PPO isoenzymes from dandelion (Taraxacum officinale. The system comprised the Escherichia coli Rosetta 2 (DE3 [pLysSRARE2] strain combined with the pET-22b(+-vector cultivated in auto-induction medium at a constant low temperature (26 °C. Here we describe important parameters that enhance the production of active PPOs using dandelion PPO-2 for proof of concept. Low-temperature cultivation was essential for optimal yields, and the provision of CuCl2 in the growth medium was necessary to produce an active enzyme. By increasing the copper concentration in the production medium to 0.2 mM, the yield in terms of PPO activity per mol purified protein was improved 2.7-fold achieving a v(max of 0.48 ± 0.1 µkat per mg purified PPO-2 for 4-methylcatechol used as a substrate. This is likely to reflect the replacement of an inactive apo-form of the enzyme with a correctly-folded, copper-containing counterpart. We demonstrated the transferability of the method by successfully expressing a PPO from tomato (Solanum lycopersicum showing that our optimized system is suitable for the analysis of further plant PPOs. Our new system therefore provides greater opportunities for the future of research into this economically-important class of enzymes.

  9. Green chemistry synthesis of nano-cuprous oxide. (United States)

    Ceja-Romero, L R; Ortega-Arroyo, L; Ortega Rueda de León, J M; López-Andrade, X; Narayanan, J; Aguilar-Méndez, M A; Castaño, V M


    Green chemistry and a central composite design, to evaluate the effect of reducing agent, temperature and pH of the reaction, were employed to produce controlled cuprous oxide (Cu2O) nanoparticles. Response surface method of the ultraviolet-visible spectroscopy is allowed to determine the most relevant factors for the size distribution of the nanoCu2O. X-ray diffraction reflections correspond to a cubic structure, with sizes from 31.9 to 104.3 nm. High-resolution transmission electron microscopy reveals that the different shapes depend strongly on the conditions of the green synthesis.

  10. The Arabidopsis COX11 Homolog is Essential for Cytochrome c Oxidase Activity. (United States)

    Radin, Ivan; Mansilla, Natanael; Rödel, Gerhard; Steinebrunner, Iris


    Members of the ubiquitous COX11 (cytochrome c oxidase 11) protein family are involved in copper delivery to the COX complex. In this work, we characterize the Arabidopsis thaliana COX11 homolog (encoded by locus At1g02410). Western blot analyses and confocal microscopy identified Arabidopsis COX11 as an integral mitochondrial protein. Despite sharing high sequence and structural similarities, the Arabidopsis COX11 is not able to functionally replace the Saccharomyces cerevisiae COX11 homolog. Nevertheless, further analysis confirmed the hypothesis that Arabidopsis COX11 is essential for COX activity. Disturbance of COX11 expression through knockdown (KD) or overexpression (OE) affected COX activity. In KD lines, the activity was reduced by ~50%, resulting in root growth inhibition, smaller rosettes and leaf curling. In OE lines, the reduction was less pronounced (~80% of the wild type), still resulting in root growth inhibition. Additionally, pollen germination was impaired in COX11 KD and OE plants. This effect on pollen germination can only partially be attributed to COX deficiency and may indicate a possible auxiliary role of COX11 in ROS metabolism. In agreement with its role in energy production, the COX11 promoter is highly active in cells and tissues with high-energy demand for example shoot and root meristems, or vascular tissues of source and sink organs. In COX11 KD lines, the expression of the plasma-membrane copper transporter COPT2 and of several copper chaperones was altered, indicative of a retrograde signaling pathway pertinent to copper homeostasis. Based on our data, we postulate that COX11 is a mitochondrial chaperone, which plays an important role for plant growth and pollen germination as an essential COX complex assembly factor.

  11. Low serum diamine oxidase (DAO) activity levels in patients with migraine. (United States)

    Izquierdo-Casas, Joan; Comas-Basté, Oriol; Latorre-Moratalla, M Luz; Lorente-Gascón, Marian; Duelo, Adriana; Vidal-Carou, M Carmen; Soler-Singla, Luis


    Histamine intolerance is a disorder in the homeostasis of histamine due to a reduced intestinal degradation of this amine, mainly caused by a deficiency in the enzyme diamine oxidase (DAO). Among the several multi-faced symptoms associated with histamine intolerance, headache is one of the most recognized and disabling consequences. The aim of this study was to determine the prevalence of DAO deficiency in patients with a confirmed migraine diagnosis according to the current International Headache Society (IHS) and in non-migraine subjects. DAO activity was assessed in a total of 198 volunteers recruited at the Headache Unit of the Hospital General de Catalunya, 137 in the migraine group and 61 as a control group. DAO enzyme activity in blood samples was determined by ELISA test. Values below 80 HDU/ml (Histamine Degrading Unit/ml) were considered as DAO deficient. Mean value of DAO activity from migraine population (64.5 ± 33.5 HDU/ml) was significantly lower (p < 0.0001) than that obtained from healthy volunteers (91.9 ± 44.3 HDU/ml). DAO deficiency was more prevalent in migraine patients than in the control group. A high incidence rate of DAO deficiency (87%) was observed in the group of patients with migraine. On the other hand, 44% of non-migranous subjects had levels of DAO activity lower than 80 HDU/ml. Despite the multifactorial aetiology of migraine, these results seem to indicate that this enzymatic deficit could be related to the onset of migraine.

  12. Concomitant Prevalence of Low Serum Diamine Oxidase Activity and Carbohydrate Malabsorption

    Directory of Open Access Journals (Sweden)

    Dietmar Enko


    Full Text Available The aim of this retrospective study was to analyze the concomitant prevalence rates for lactose malabsorption (LM, fructose malabsorption (FM, and histamine intolerance (HI in patients with so far unexplained gastrointestinal (GI symptoms. A total of 439 outpatients, who presented unclear abdominal discomfort, underwent lactose (50 g and fructose (25 g hydrogen (H2 breath tests. Additionally, serum diamine oxidase (DAO measurements were performed. Individuals with low serum DAO activity (<10 U/mL, GI symptoms, and response to histamine-free diet were diagnosed with HI. Of all 439 patients, 341 (77.7% were found with 7 various GI conditions. In total, 94 (21.4%, 31 (7.1%, and 100 (22.8% individuals presented LM, FM, or HI only, whereas 116 (26.4% patients showed an overlap of GI entities investigated here. Interestingly, 89 out of 241 (36.9% individuals with carbohydrate malabsorption were also diagnosed with HI (LM + HI: 52 [11.8%], FM + HI: 23 [5.2%], and LM + FM + HI 14 [3.2%] individuals. In conclusion different combinations of LM, FM, and HI are present in individuals with unclear abdominal discomfort/pain. In clinical practice we suggest testing for LM, FM, and additional HI in the diagnostic work-up of these patients. Depending on these various diagnoses possible, patients should get an individualized dietary advice.

  13. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation (United States)

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui


    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  14. Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland Calluna heathland soil. (United States)

    Toberman, Hannah; Freeman, Chris; Evans, Chris; Fenner, Nathalie; Artz, Rebekka R E


    Natural moisture limitation during summer drought can constitute a stress for microbial communities in soil. Given globally predicted increases in drought frequency, there is an urgent need for a greater understanding of the effects of drought events on soil microbial processes. Using a long-term field-scale drought manipulation experiment at Clocaenog, Wales, UK, we analysed fungal community dynamics, using internal transcribed spacer-denaturing gradient gel electrophoresis (DGGE), over a 1-year period in the 6th year of drought manipulation. Ambient seasonality was found to be the dominant factor driving variation in fungal community dynamics. The summer drought manipulation resulted in a significant decline in the abundance of dominant fungal species, both independently of, and in interaction with, this seasonal variation. Furthermore, soil moisture was significantly correlated with the changes in fungal diversity over the drought manipulation period. While the relationship between species diversity and functional diversity remains equivocal, phenol oxidase activity was decreased by the summer drought conditions and there was a significant correlation with the decline of DGGE band richness among the most dominant fungal species during the drought season. Climatically driven events such as droughts may have significant implications for fungal community diversity and therefore, have the potential to interfere with crucial ecosystem processes, such as organic matter decomposition.

  15. Sulfite Oxidase Activity Is Essential for Normal Sulfur, Nitrogen and Carbon Metabolism in Tomato Leaves (United States)

    Brychkova, Galina; Yarmolinsky, Dmitry; Batushansky, Albert; Grishkevich, Vladislav; Khozin-Goldberg, Inna; Fait, Aaron; Amir, Rachel; Fluhr, Robert; Sagi, Moshe


    Plant sulfite oxidase [SO; E.C.] has been shown to be a key player in protecting plants against exogenous toxic sulfite. Recently we showed that SO activity is essential to cope with rising dark-induced endogenous sulfite levels in tomato plants (Lycopersicon esculentum/Solanum lycopersicum Mill. cv. Rheinlands Ruhm). Here we uncover the ramifications of SO impairment on carbon, nitrogen and sulfur (S) metabolites. Current analysis of the wild-type and SO-impaired plants revealed that under controlled conditions, the imbalanced sulfite level resulting from SO impairment conferred a metabolic shift towards elevated reduced S-compounds, namely sulfide, S-amino acids (S-AA), Co-A and acetyl-CoA, followed by non-S-AA, nitrogen and carbon metabolite enhancement, including polar lipids. Exposing plants to dark-induced carbon starvation resulted in a higher degradation of S-compounds, total AA, carbohydrates, polar lipids and total RNA in the mutant plants. Significantly, a failure to balance the carbon backbones was evident in the mutants, indicated by an increase in tricarboxylic acid cycle (TCA) cycle intermediates, whereas a decrease was shown in stressed wild-type plants. These results indicate that the role of SO is not limited to a rescue reaction under elevated sulfite, but SO is a key player in maintaining optimal carbon, nitrogen and sulfur metabolism in tomato plants. PMID:27135342

  16. Inhibition of polyamine oxidase activity affects tumor development during the maize-Ustilago maydis interaction. (United States)

    Jasso-Robles, Francisco Ignacio; Jiménez-Bremont, Juan Francisco; Becerra-Flora, Alicia; Juárez-Montiel, Margarita; Gonzalez, María Elisa; Pieckenstain, Fernando Luis; García de la Cruz, Ramón Fernando; Rodríguez-Kessler, Margarita


    Ustilago maydis is a biotrophic plant pathogenic fungus that leads to tumor development in the aerial tissues of its host, Zea mays. These tumors are the result of cell hypertrophy and hyperplasia, and are accompanied by the reprograming of primary and secondary metabolism of infected plants. Up to now, little is known regarding key plant actors and their role in tumor development during the interaction with U. maydis. Polyamines are small aliphatic amines that regulate plant growth, development and stress responses. In a previous study, we found substantial increases of polyamine levels in tumors. In the present work, we describe the maize polyamine oxidase (PAO) gene family, its contribution to hydrogen peroxide (H2O2) production and its possible role in tumor development induced by U. maydis. Histochemical analysis revealed that chlorotic lesions and maize tumors induced by U. maydis accumulate H2O2 to significant levels. Maize plants inoculated with U. maydis and treated with the PAO inhibitor 1,8-diaminooctane exhibit a notable reduction of H2O2 accumulation in infected tissues and a significant drop in PAO activity. This treatment also reduced disease symptoms in infected plants. Finally, among six maize PAO genes only the ZmPAO1, which encodes an extracellular enzyme, is up-regulated in tumors. Our data suggest that H2O2 produced through PA catabolism by ZmPAO1 plays an important role in tumor development during the maize-U. maydis interaction.

  17. CO-dynamics in the active site of cytochrome c oxidase (United States)

    Soloviov, Maksym; Meuwly, Markus


    The transfer of CO from heme a3 to the CuB site in Cytochrome c oxidase (CcO) after photolysis is studied using molecular dynamics simulations using an explicitly reactive, parametrized potential energy surface based on density functional theory calculations. After photodissociation from the heme-Fe, the CO ligand rebinds to the CuB site on the sub-picosecond time scale. Depending on the simulation protocol the characteristic time ranges from 260 fs to 380 fs which compares with an estimated 450 fs from experiment based on the analysis of the spectral changes as a function of time delay after the photodissociating pulse. Following photoexcitation ≈90% of the ligands are found to rebind to either the CuB (major component, 85%) or the heme-Fe (minor component, 2%) whereas about 10% remain in an unbound state. The infrared spectra of unbound CO in the active site is broad and featureless and no appreciable shift relative to gas-phase CO is found, which is in contrast to the situation in myoglobin. These observations explain why experimentally, unbound CO in the binuclear site of CcO has not been found as yet.

  18. High Osmolarity Environments Activate the Mitochondrial Alternative Oxidase in Debaryomyces Hansenii (United States)

    Garcia-Neto, Wilson; Cabrera-Orefice, Alfredo; Uribe-Carvajal, Salvador; Kowaltowski, Alicia J.; Alberto Luévano-Martínez, Luis


    The oleaginous yeast Debaryomyces hansenii is a good model to understand molecular mechanisms involved in halotolerance because of its impressive ability to survive under a wide range of salt concentrations. Several cellular adaptations are implicated in this response, including the presence of a cyanide-insensitive ubiquinol oxidase (Aox). This protein, which is present in several taxonomical orders, has been related to different stress responses. However, little is known about its role in mitochondria during transitions from low to high saline environments. In this report, we analyze the effects of Aox in shifts from low to high salt concentrations in the culture media. At early stages of a salt insult, we observed that this protein prevents the overflow of electrons on the mitochondrial respiratory chain, thus, decreasing the production of reactive oxygen species. Interestingly, in the presence of high osmolite concentrations, Aox activity is able to sustain a stable membrane potential when coupled to complex I, despite a compromised cytochrome pathway. Taken together, our results suggest that under high osmolarity conditions Aox plays a critical role regulating mitochondrial physiology. PMID:28060946

  19. Alternative Oxidase Activity in Tobacco Leaf Mitochondria (Dependence on Tricarboxylic Acid Cycle-Mediated Redox Regulation and Pyruvate Activation). (United States)

    Vanlerberghe, G. C.; Day, D. A.; Wiskich, J. T.; Vanlerberghe, A. E.; McIntosh, L.


    Transgenic Nicotiana tabacum (cv Petit Havana SR1) containing high levels of mitochondrial alternative oxidase (AOX) protein due to the introduction of a sense transgene(s) of Aox1, the nuclear gene encoding AOX, were used to investigate mechanisms regulating AOX activity. After purification of leaf mitochondria, a large proportion of the AOX protein was present as the oxidized (covalently associated and less active) dimer. High AOX activity in these mitochondria was dependent on both reduction of the protein by DTT (to the noncovalently associated and more active dimer) and its subsequent activation by certain [alpha]-keto acids, particularly pyruvate. Reduction of AOX to its more active form could also be mediated by intramitochondrial reducing power generated by the oxidation of certain tricarboxylic acid cycle substrates, most notably isocitrate and malate. Our evidence suggests that NADPH may be specifically required for AOX reduction. All of the above regulatory mechanisms applied to AOX in wild-type mitochondria as well. Transgenic leaves lacking AOX due to the introduction of an Aox1 antisense transgene or multiple sense transgenes were used to investigate the potential physiological significance of the AOX-regulatory mechanisms. Under conditions in which respiratory carbon metabolism is restricted by the capacity of mitochondrial electron transport, feed-forward activation of AOX by mitochondrial reducing power and pyruvate may act to prevent redirection of carbon metabolism, such as to fermentative pathways.

  20. Antioxidant, α-glucosidase and xanthine oxidase inhibitory activity of bioactive compounds from maize (Zea mays L.). (United States)

    Nile, Shivraj H; Park, Se W


    Chemical investigations into maize (Zea mays L.) kernels yielded phenolic compounds, which were structurally established using chromatographic and spectroscopic methods. The isolated phenolic compounds from maize kernel were examined in vitro for their antioxidant abilities by DPPH (2,2-diphenyl-1-picryl hydrazine) radical, OH radical scavenging activity, and reducing ability, along with α-glucosidase and xanthine oxidase (XO) inhibition. The isolated maize phenolics revealed significant xanthine oxidase and α-glucosidase inhibitory activity to that of allopurinol and acarbose in vitro and in vivo, respectively. The kinetics study with xanthine oxidase revealed competitive type of inhibition by isolated maize vanillic acid (M2), ferulic acid (M5), 3'-methoxyhirsutrin (M7), and peonidin-3-glucoside (M10) as compared to control allopurinol. Overall, with few exceptions, all the phenolic compounds from maize kernel revealed significant biological activities with all parameters examined. Also, the phenolic compounds from maize were found to be more reactive toward DPPH radical and had considerable reducing ability and OH radical scavenging activity. These findings suggest that maize kernel phenolic compounds can be considered as potential antioxidant, α-glucosidase, and XO inhibitory agents those might be further explored for the design of lead antioxidant, antidiabetic and antigout drug candidates using in vivo trials.

  1. Activity of glucose oxidase immobilized onto Fe3+ attached hydroxypropyl methylcellulose films. (United States)

    Sözügeçer, Sevgi; Bayramgil, Nursel Pekel


    Hydroxypropyl methylcellulose (HMPC) insoluble films were prepared by (60)Co-γ irradiation of 10% (w/w) aqueous solutions of hydroxypropyl methylcellulose. The adsorption of Fe(3+) onto HPMC films was studied in the range of pH 3.0-7.0. The effect of initial concentrations of Fe(3+) solutions on adsorption capacity was studied in the range of 100-1000 ppm. Maximum adsorption capacity was found as 250 mg Fe(3+)/g dry HPMC film at pH 5.0. The structure and the morphology of Fe(3+)-attached HPMC film were evaluated by using FTIR/ATR and SEM-EDX methods. Glucose oxidase (GOX) immobilization on both pristine HPMC and maximum Fe(3+)-attached HPMC film was investigated in aqueous solutions containing different amount of GOX and at different pHs. Maximum GOX adsorption capacity was found as 500 mg/g Fe(3+)-attached HPMC film. Residual activity of GOX on pristine HPMC and Fe(3+)-attached HPMC films was investigated with changing pH. While maximum residual GOX activity was observed at pH 6.0 for free enzyme, it was obtained by HPMC and Fe(3+)-attached HPMC at pH 7.0. GOX desorption studies were achieved by using pH 6.0 buffer (I=0.02 M) and 0.1 M EDTA solutions. The long-term stability and activity studies of GOX, which is immobilized onto Fe(3+)-attached HPMC films are still under our investigation.

  2. In vitro xanthine oxidase inhibitory activity of leaves, fruits and peel extracts of Citrus aurantium, Citrus limetta and Citrus limon

    Directory of Open Access Journals (Sweden)

    Muthiah PL


    Full Text Available Aim of the study: To evaluate the in vitro xanthine oxidase inhibitory activity of the extract of leaves, fruits and peel of Citrus aurantium, Citrus limetta and Citrus limon.   Materials and Methods: Xanthine oxidase inhibitory activity was assayed spectrophotometrically under aerobic conditions and the degree of enzyme inhibition was determined by measuring the increase in absorbance at 295nm associated with uric acid formation.   Results: Among the extracts tested, the C.limetta peel extract exhibited highest potency of xanthine oxidase inhibition (IC50 40.16±0.88μg/ml. This was followed by C.aurantium peel (IC50 51.50±2.05μg/ml, C.limon peel (IC50 64.90±1.24μg/ml, C.aurantium leaf (IC5073.50±1.26μg/ml, C.limetta leaf (IC50 74.83±2.42μg/ml, C.limon leaf (IC50 76.83±2.02μg/ml, C.limetta fruit (IC50 95.16±0.60μg/ml extracts compared with the IC50 value of standard allopurinol was 6.6μg/ml.   Conclusion: Recent findings show that the occurrence of gout is increasing worldwide, possibly due to the changes in dietary habits like intake of food rich in nucleic acids, such as meat, sea foods, etc. Xanthine oxidase inhibitors such as allopurinol is the drug of choice, however it has been observed more side effects.  An alternative to allopurinol is the use of medicinal plants, We thus began our program to look for xanthine oxidase inhibitors of phytochemical origin. In conclusion, the study suggests that the leaves and peel extracts of Citrus aurantium, Citrus limetta and Citrus limon possess xanthine oxidase inhibitory activity that might be helpful in preventing or slowing the progress of gout and related disorders.

  3. Low-density lipoprotein antioxidant activity of phenolic compounds and polyphenol oxidase activity in selected clingstone peach cultivars. (United States)

    Chang, S; Tan, C; Frankel, E N; Barrett, D M


    The antioxidant potential of eight clingstone peach cultivars was investigated by determining phenolic compounds and inhibition of low-density lipoprotein (LDL) oxidation. Cultivars low in polyphenol oxidase (PPO) were also selected to minimize enzymatic browning. Inhibition of LDL oxidation varied from 17.0 to 37.1% in peach flesh extract, from 15.2 to 49.8% in whole peach extract, and from 18.2 to 48.1% in peel extract. Total phenols were 432.8-768.1 mg/kg in flesh extract, 483.3-803.0 mg/kg in whole extract, and 910.9-1922.9 mg/kg in peel extract. The correlation coefficient between relative LDL antioxidant activity and concentration of total phenols was 0.76. Peel PPO activity was higher than flesh activity in most cultivars. The lowest PPO and specific activities were found in the Walgant cultivar, followed by Kakamas and 18-8-23. These three cultivars combine the desirable characteristics of strong antioxidant activity, low PPO activity, and lower susceptibility to browning reactions.

  4. Cobalt protoporphyrin induces differentiation of monocytic THP-1 cells through regulation of cytoplasmic Ref-1-related NADPH oxidase activity. (United States)

    Song, Ju Dong; Lee, Sang Kwon; Park, Si Eun; Kim, Kang Mi; Kim, Koanhoi; Park, Yeong Min; Park, Young Chul


    Cobalt protoporphyrin (CoPP) is a potent and effective metalloporphyrin inducer of heme oxygenase-1 (HO-1) activity in many tissues. Here, we report that CoPP induces differentiation of monocytic THP-1 cells into macrophage-like cells. CoPP induced a marked growth inhibition with a slight reduction in viability, and increased adhesion and spreading of THP-1 cells. However, other protoporphyrins did not. CoPP also resulted in expression of CD11b, MMP9, MSR1, CD14 and ICAM-1, which are differentiation markers for macrophages. Interestingly, we observed a decrease of cytoplasmic redox factor-1 (Ref-1) levels in the process of CoPP-induced differentiation of THP-1 cells. In addition, knockdown of Ref-1 by siRNA enhanced cell adhesion induced by CoPP. Furthermore, an inhibitor of NADPH oxidase, diphenyleneiodonium (DPI), completely abolished CoPP-induced adhesion of Ref-1-deficient cells using an siRNA. A cytosolic factor for NADPH oxidase activity, p47phox, was significantly increased in THP-1 cells by CoPP treatment. Κnockdown of Ref-1 increased CoPP-induced p47phox expression in THP-1 cells. Taken together, these results suggest that CoPP induces differentiation of monocytic THP-1 cells, and that the CoPP-induced differentiation is associated with cytoplasmic Ref-1-related NADPH oxidase activity.

  5. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2. (United States)

    de Jong, Olivier G; van Balkom, Bas W M; Gremmels, Hendrik; Verhaar, Marianne C


    Exosomes are important mediators of intercellular communication. Additionally, they contain a variety of components capable of interacting with the extracellular matrix (ECM), including integrins, matrix metalloproteinases and members of the immunoglobin superfamily. Despite these observations, research on exosome-ECM interactions is limited. Here, we investigate whether the exosome-associated lysyl oxidase family member lysyl oxidase-like 2 (LOXL2) is involved in ECM remodelling. We found that LOXL2 is present on the exterior of endothelial cell (EC)-derived exosomes, placing it in direct vicinity of the ECM. It is up-regulated twofold in EC-derived exosomes cultured under hypoxic conditions. Intact exosomes from hypoxic EC and LOXL2 overexpressing EC show increased activity in a fluorometric lysyl oxidase enzymatic activity assay as well as in a collagen gel contraction assay. Concordantly, knockdown of LOXL2 in exosome-producing EC in both normal and hypoxic conditions reduces activity of exosomes in both assays. Our findings show for the first time that ECM crosslinking by EC-derived exosomes is mediated by LOXL2 under the regulation of hypoxia, and implicate a role for exosomes in hypoxia-regulated focal ECM remodelling, a key process in both fibrosis and wound healing.

  6. Increasing the catalytic activity of Bilirubin oxidase from Bacillus pumilus: Importance of host strain and chaperones proteins. (United States)

    Gounel, Sébastien; Rouhana, Jad; Stines-Chaumeil, Claire; Cadet, Marine; Mano, Nicolas


    Aggregation of recombinant proteins into inclusion bodies (IBs) is the main problem of the expression of multicopper oxidase in Escherichia coli. It is usually attributed to inefficient folding of proteins due to the lack of copper and/or unavailability of chaperone proteins. The general strategies reported to overcome this issue have been focused on increasing the intracellular copper concentration. Here we report a complementary method to optimize the expression in E. coli of a promising Bilirubin oxidase (BOD) isolated from Bacillus pumilus. First, as this BOD has a disulfide bridge, we switched E.coli strain from BL21 (DE3) to Origami B (DE3), known to promote the formation of disulfide bridges in the bacterial cytoplasm. In a second step, we investigate the effect of co-expression of chaperone proteins on the protein production and specific activity. Our strategy allowed increasing the final amount of enzyme by 858% and its catalytic rate constant by 83%.

  7. Phagocyte NADPH-oxidase. Studies with flavin analogues as active site probes in triton X-100-solubilized preparations. (United States)

    Parkinson, J F; Gabig, T G


    NADPH-oxidase of stimulated human neutrophil membranes was solubilized in Triton X-100 and activity reconstituted with FAD, 8-F-FAD, 8-phenyl-S-FAD, and 8-S-FAD. The enzyme had similar affinities for all the flavins with Km values in the 60-80 nM range. Vmax was found to increase 4-fold with increasing redox midpoint potential of the flavin. 8-F-FAD reconstituted with the enzyme was reactive toward thiophenol, suggesting exposure of the 8-position to solvent, a finding supported by unsuccessful attempts to label the enzyme with the photoaffinity probe 8-N3-[32P]FAD. Solubilized oxidase stabilized the red thiolate form of 8-S-FAD, a characteristic of flavoproteins of the dehydrogenase/electron transferase classes which stabilize the blue neutral form of the flavin semiquinone radical.

  8. Mn(II) Oxidation by the Multicopper Oxidase Complex Mnx: A Binuclear Activation Mechanism. (United States)

    Soldatova, Alexandra V; Tao, Lizhi; Romano, Christine A; Stich, Troy A; Casey, William H; Britt, R David; Tebo, Bradley M; Spiro, Thomas G


    The bacterial protein complex Mnx contains a multicopper oxidase (MCO) MnxG that, unusually, catalyzes the two-electron oxidation of Mn(II) to MnO2 biomineral, via a Mn(III) intermediate. Although Mn(III)/Mn(II) and Mn(IV)/Mn(III) reduction potentials are expected to be high, we find a low reduction potential, 0.38 V (vs Normal Hydrogen Electrode, pH 7.8), for the MnxG type 1 Cu(2+), the electron acceptor. Indeed the type 1 Cu(2+) is not reduced by Mn(II) in the absence of molecular oxygen, indicating that substrate oxidation requires an activation step. We have investigated the enzyme mechanism via electronic absorption spectroscopy, using chemometric analysis to separate enzyme-catalyzed MnO2 formation from MnO2 nanoparticle aging. The nanoparticle aging time course is characteristic of nucleation and particle growth; rates for these processes followed expected dependencies on Mn(II) concentration and temperature, but exhibited different pH optima. The enzymatic time course is sigmoidal, signaling an activation step, prior to turnover. The Mn(II) concentration and pH dependence of a preceding lag phase indicates weak Mn(II) binding. The activation step is enabled by a pKa > 8.6 deprotonation, which is assigned to Mn(II)-bound H2O; it induces a conformation change (consistent with a high activation energy, 106 kJ/mol) that increases Mn(II) affinity. Mnx activation is proposed to decrease the Mn(III/II) reduction potential below that of type 1 Cu(II/I) by formation of a hydroxide-bridged binuclear complex, Mn(II)(μ-OH)Mn(II), at the substrate site. Turnover is found to depend cooperatively on two Mn(II) and is enabled by a pKa 7.6 double deprotonation. It is proposed that turnover produces a Mn(III)(μ-OH)2Mn(III) intermediate that proceeds to the enzyme product, likely Mn(IV)(μ-O)2Mn(IV) or an oligomer, which subsequently nucleates MnO2 nanoparticles. We conclude that Mnx exploits manganese polynuclear chemistry in order to facilitate an otherwise difficult

  9. Increased Expression and Cellular Localization of Spermine Oxidase in Ulcerative Colitis and Relationship to Disease Activity (United States)

    Hong, Shih-Kuang S.; Chaturvedi, Rupesh; Blanca Piazuelo, M.; Coburn, Lori A.; Williams, Christopher S.; Delgado, Alberto G.; Casero, Robert A.; Schwartz, David A.; Wilson, Keith T.


    Background Polyamines are important in cell growth and wound repair, but have also been implicated in inflammation-induced carcinogenesis. Polyamine metabolism includes back-conversion of spermine to spermidine by the enzyme spermine oxidase (SMO), which produces hydrogen peroxide that causes oxidative stress. In ulcerative colitis (UC), levels of spermine are decreased compared to spermidine. Therefore, we sought to determine if SMO is involved in UC. Methods Colon biopsies and clinical information from subjects undergoing colonoscopy for evaluation of UC or colorectal cancer screening were utilized from 16 normal controls and 53 UC cases. Histopathologic disease severity was graded and the Mayo Disease Activity Index (DAI) and endoscopy subscore assessed. SMO mRNA expression was measured in frozen biopsies by Taq-Man-based real-time polymerase chain reaction (PCR). Formalin-fixed tissues were used for SMO immunohistochemistry. Results There was a 3.1-fold upregulation of SMO mRNA levels in UC patients compared to controls (P = 0.044), and a 3.7-fold increase in involved left colon versus paired uninvolved right colon (P < 0.001). With worsening histologic injury in UC there was a progressive increase in SMO staining of mononuclear inflammatory cells. There was a similar increase in SMO staining with worsening endoscopic disease severity and strong correlation with the DAI (r = 0.653, P < 0.001). Inflammatory cell SMO staining was increased in involved left colon versus uninvolved right colon. Conclusions SMO expression is upregulated in UC tissues, deriving from increased levels in mononuclear inflammatory cells. Dysregulated polyamine homeostasis may contribute to chronic UC by altering immune responses and increasing oxidative stress. PMID:20127992

  10. Extraction of rice bran extract and some factors affecting its inhibition of polyphenol oxidase activity and browning in potato. (United States)

    Boonsiripiphat, Kunnikar; Theerakulkait, Chockchai


    The extraction conditions of rice bran extract (RBE), including extraction ratio, extraction time, and extraction temperature, were studied in relation to enzymatic browning inhibition in potato. The inhibitory effect of RBE on potato polyphenol oxidase (PPO) activity and its total phenolic compound content were highest at an extraction ratio of 1:3 (rice bran:water, w/v), extraction time of 30 min, and extraction temperature of 40 degrees C. RBE showed the most inhibitory effect on PPO activity at pH 6.5. However, the inhibitory effect of RBE on potato PPO activity and its total phenolic compound content were decreased at the higher temperature and longer time.

  11. Potato and Mushroom Polyphenol Oxidase Activities Are Differently Modulated by Natural Plant Extracts

    NARCIS (Netherlands)

    Kuijpers, T.F.M.; Herk, van T.; Vincken, J.P.; Janssen, R.H.; Narh, D.L.; Berkel, van W.J.H.; Gruppen, H.


    Enzymatic browning is a major quality issue in fruit and vegetable processing and can be counteracted by different natural inhibitors. Often, model systems containing a single polyphenol oxidase (PPO) are used to screen for new inhibitors. To investigate the impact of the source of PPO on the outcom

  12. Differences in Monoamine Oxidase Activity in the Brain of Wistar and August Rats with High and Low Locomotor Activity: A Cytochemical Study. (United States)

    Sergutina, A V; Rakhmanova, V I


    Monoamine oxidase activity was quantitatively assessed by cytochemical method in brain structures (layers III and V of the sensorimotor cortex, caudate nucleus, nucleus accumbens, hippocampal CA3 field) of rats of August line and Wistar population with high and low locomotor activity in the open fi eld test. Monoamine oxidase activity (substrate tryptamine) predominated in the nucleus accumbens of Wistar rats with high motor activity in comparison with rats with low locomotor activity. In August rats, enzyme activity (substrates tryptamine and serotonin) predominated in the hippocampus of animals with high motor activity. Comparison of August rats with low locomotor activity and Wistar rats with high motor activity (i.e. animals demonstrating maximum differences in motor function) revealed significantly higher activity of the enzyme (substrates tryptamine and serotonin) in the hippocampus of Wistar rats. The study demonstrates clear-cut morphochemical specificity of monoaminergic metabolism based on the differences in the cytochemical parameter "monoamine oxidase activity", in the studied brain structures, responsible for the formation and realization of goal-directed behavior in Wistar and August rats.

  13. Synthesis and evaluation of xanthine oxidase inhibitory and antioxidant activities of 2-arylbenzo[b]furan derivatives based on salvianolic acid C. (United States)

    Tang, Hong-Jin; Zhang, Xiao-Wei; Yang, Lin; Li, Wei; Li, Jia-Huang; Wang, Jin-Xin; Chen, Jun


    Xanthine oxidase (XO) is the key enzyme in humans which is related to a variety of diseases such as gout, hyperuricemia and cardiovascular diseases. In this work, a series of 2-arylbenzo[b]furan derivatives were synthesized based on salvianolic acid C, and they were evaluated for xanthine oxidase inhibitory and antioxidant activities. Compounds 5b, 6a, 6e and 6f showed potent xanthine oxidase inhibitory activities with IC50 values ranging from 3.99 to 6.36 μM, which were comparable with that of allopurinol. Lineweaver-Burk plots analysis revealed that the representative derivative 6e could bind to either xanthine oxidase or the xanthine oxidase-xanthine complex, which exhibited a mixed-type competitive mechanism. A DPPH radical scavenging assay showed most of the hydroxyl-functionalized 2-arylbenzo[b]furan derivatives possessed the potent antioxidant activity, which was further validated on LPS-stimulated RAW 264.7 macrophages model. The structure-activity relationships were preliminary analyzed and indicated that the structural skeleton of 2-arylbenzo[b]furan and phenolic hydroxyl groups played an important role in maintaining xanthine oxidase inhibitory effect and antioxidant property for the series of derivatives. Meanwhile, molecular docking studies were performed to further confirm the structure-activity relationships and investigate the proposed binding mechanisms of compounds 5d, 6d and 10d binding to the protein.

  14. Involvement of activation of NADPH oxidase and extracellular signal-regulated kinase (ERK) in renal cell injury induced by zinc. (United States)

    Matsunaga, Yoshiko; Kawai, Yoshiko; Kohda, Yuka; Gemba, Munekazu


    Zinc is employed as a supplement; however, zinc-related nephropathy is not generally known. In this study, we investigated zinc-induced renal cell injury using a pig kidney-derived cultured renal epithelial cell line, LLC-PK(1), with proximal kidney tubule-like features, and examined the involvement of free radicals and extracellular signal-regulated kinase (ERK) in the cell injury. The LLC-PK(1) cells showed early uptake of zinc (30 microM), and the release of lactate dehydrogenase (LDH), an index of cell injury, was observed 24 hr after uptake. Three hours after zinc exposure, generation of reactive oxygen species (ROS) was increased. An antioxidant, N, N'-diphenyl-p-phenylenediamine (DPPD), inhibited a zinc-related increase in ROS generation and zinc-induced renal cell injury. An NADPH oxidase inhibitor, diphenyleneiodonium (DPI), inhibited a zinc-related increase in ROS generation and cell injury. We investigated translocation from the cytosol fraction of the p67(phox) subunit, which is involved in the activation of NADPH oxidase, to the membrane fraction, and translocation was induced 3 hr after zinc exposure. We examined the involvement of ERK1/2 in the deterioration of zinc-induced renal cell injury, and the association between ERK1/2 and an increase in ROS generation. Six hours after zinc exposure, the activation (phosphorylation) of ERK1/2 was observed. An antioxidant, DPPD, inhibited the zinc-related activation of ERK1/2. An MAPK/ERK kinase (MEK1/2) inhibitor, U0126, almost completely inhibited zinc-related cell injury (the release of LDH), but did not influence ROS generation. These results suggest that early intracellular uptake of zinc by LLC-PK(1) cells causes the activation of NADPH oxidase, and that ROS generation by the activation of the enzyme leads to the deterioration of renal cell injury via the activation of ERK1/2.

  15. NADPH Oxidase Activity in Cerebral Arterioles Is a Key Mediator of Cerebral Small Vessel Disease—Implications for Prevention

    Directory of Open Access Journals (Sweden)

    Mark F. McCarty


    Full Text Available Cerebral small vessel disease (SVD, a common feature of brain aging, is characterized by lacunar infarcts, microbleeds, leukoaraiosis, and a leaky blood-brain barrier. Functionally, it is associated with cognitive decline, dementia, depression, gait abnormalities, and increased risk for stroke. Cerebral arterioles in this syndrome tend to hypertrophy and lose their capacity for adaptive vasodilation. Rodent studies strongly suggest that activation of Nox2-dependent NADPH oxidase activity is a crucial driver of these structural and functional derangements of cerebral arterioles, in part owing to impairment of endothelial nitric oxide synthase (eNOS activity. This oxidative stress may also contribute to the breakdown of the blood-brain barrier seen in SVD. Hypertension, aging, metabolic syndrome, smoking, hyperglycemia, and elevated homocysteine may promote activation of NADPH oxidase in cerebral arterioles. Inhibition of NADPH oxidase with phycocyanobilin from spirulina, as well as high-dose statin therapy, may have potential for prevention and control of SVD, and high-potassium diets merit study in this regard. Measures which support effective eNOS activity in other ways—exercise training, supplemental citrulline, certain dietary flavonoids (as in cocoa and green tea, and capsaicin, may also improve the function of cerebral arterioles. Asian epidemiology suggests that increased protein intakes may decrease risk for SVD; conceivably, arginine and/or cysteine—which boosts tissue glutathione synthesis, and can be administered as N-acetylcysteine—mediate this benefit. Ameliorating the risk factors for SVD—including hypertension, metabolic syndrome, hyperglycemia, smoking, and elevated homocysteine—also may help to prevent and control this syndrome, although few clinical trials have addressed this issue to date.

  16. Microwave-assisted synthesis and optical properties of cuprous oxide micro/nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Dandan [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China); Du, Yi, E-mail: [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China); Tian, Xiuying, E-mail: [Department of Chemistry and Materials Science, Hunan Institute of Humanities Science and Technology, Loudi 417000 (China); Li, Zhongfu; Chen, Zhongtao; Zhu, Chaofeng [Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, Qilu University of Technology, Jinan 250353 (China)


    Graphical abstract: Cuprous oxide micro/nanocrystals were fabricated by a facile and green microwave-assisted method using soluble starch as reductant and dispersant. Spheres with the diameter of about 100 and 600 nm, octahedron and truncated octahedron with the edge length of about 0.8–3 μm cuprous oxide micro/nanocrystals were successfully obtained. Microwave heating was proved to be a efficient method and was advantageous to the homogeneous nucleation. Growth mechanism of the prepared Cu{sub 2}O microcrystals were investigated carefully. Furthermore, the optical properties of the prepared cuprous oxide microcrystals were investigated by UV–vis diffuse reflectance spectroscopy, demonstrating that their band gaps of obtained samples were 1.96–2.07 eV, assigned to their different sizes and morphologies. - Abstract: Cuprous oxide micro/nanocrystals were fabricated by a facile and green microwave-assisted method using soluble starch as reductant and dispersant. It was observed that the addition amounts of NaOH had a prominent effect on the morphologies and size of cuprous oxide products, and microwave heating was proved to be a efficient method and was advantageous to the homogeneous nucleation. The as-obtained samples were characterized by X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The results indicated that the samples were pure cuprous oxide. Spheres with the diameter of about 100 and 600 nm, octahedron and truncated octahedron with the edge length of about 0.8–3 μm cuprous oxide micro/nanocrystals were successfully obtained. Furthermore, the UV–vis diffuse reflectance spectroscopy was used to investigate the optical properties of the prepared cuprous oxide microcrystals, demonstrating that their band gaps of obtained samples were 1.96–2.07 eV, assigned to their different sizes and morphologies.

  17. Phytochemical Composition, Antioxidant and Xanthine Oxidase Inhibitory Activities of Amaranthus cruentus L. and Amaranthus hybridus L. Extracts. (United States)

    Nana, Fernand W; Hilou, Adama; Millogo, Jeanne F; Nacoulma, Odile G


    This paper describes a preliminary assessment of the nutraceutical value of Amaranthus cruentus (A. cruentus) and Amaranthus hybridus (A. hybridus), two food plant species found in Burkina Faso. Hydroacetonic (HAE), methanolic (ME), and aqueous extracts (AE) from the aerial parts were screened for in vitro antioxidant and xanthine oxidase inhibitory activities. Phytochemical analyses revealed the presence of polyphenols, tannins, flavonoids, steroids, terpenoids, saponins and betalains. Hydroacetonic extracts have shown the most diversity for secondary metabolites. The TLC analyses of flavonoids from HAE extracts showed the presence of rutin and other unidentified compounds. The phenolic compound contents of the HAE, ME and AE extracts were determined using the Folin-Ciocalteu method and ranged from 7.55 to 10.18 mg Gallic acid equivalent GAE/100 mg. Tannins, flavonoids, and flavonols ranged from 2.83 to 10.17 mg tannic acid equivalent (TAE)/100 mg, 0.37 to 7.06 mg quercetin equivalent (QE) /100 mg, and 0.09 to 1.31 mg QE/100 mg, respectively. The betacyanin contents were 40.42 and 6.35 mg Amaranthin Equivalent/100 g aerial parts (dry weight) in A. cruentus and A. hybridus, respectively. Free-radical scavenging activity expressed as IC50 (DPPH method) and iron reducing power (FRAP method) ranged from 56 to 423 µg/mL and from 2.26 to 2.56 mmol AAE/g, respectively. Xanthine oxidase inhibitory activities of extracts of A. cruentus and A. hybridus were 3.18% and 38.22%, respectively. The A. hybridus extract showed the best antioxidant and xanthine oxidase inhibition activities. The results indicated that the phytochemical contents of the two species justify their traditional uses as nutraceutical food plants.

  18. Kinetics of Inhibition of Monoamine Oxidase Using Cymbopogon martinii (Roxb.) Wats.: A Potential Antidepressant Herbal Ingredient with Antioxidant Activity. (United States)

    Gacche, R N; Shaikh, R U; Chapole, S M; Jadhav, A D; Jadhav, S G


    The study was designed to evaluate the antioxidant activity and effect of Cymbopogon martinii (Roxb.) Wats. (Poaceae) leaves on the activity of monoamine oxidase and kinetics of enzyme inhibition. Ethanol extract of C. martinii and rat brain mitochondrial monoamine oxidase preparation ware used to study the kinetics of enzyme inhibition using double reciprocal Lineweaver-Burk plot. The DPPH was used as a source of free radical to evaluate antioxidant potential. It is observed that, the ethanolic extract of C. martinii inhibits the monoamine oxidase activity with competitive mode of inhibition. The V(max) (0.01 mM/min) remained constant while, K(m) varied from 21.00 ± 1.1, 43.33 ± 1.5 and 83.33 ± 1.4 mM for 100-500 μg/ml concentration of C. martinii. The K(i) values were calculated to be 90.00 ± 0.87, 75.00 ± 0.69, 68.18 ± 0.68 μg for 100-500 μg/ml concentration of C. martini. It also shows a significant DPPH (1,1-diphenyl-2-picryl hydrazine) radical scavenging (IC(50) = 0.34 ± 0.05 mg/ml) and reducing activity (IC(50) = 0.70 ± 0.22 mg/ml). The C. martini can be considered as a possible source of MAO inhibitor used in the treatment of depression and other neurological disorders.

  19. Induction of nicotine in tobacco by herbivory and its relation to glucose oxidase activity in the labial gland of three noctuid caterpillars

    Institute of Scientific and Technical Information of China (English)

    ZONG Na; WANG Chenzhu


    Tobacco Nicotiana tabacum L. Is a host plant of Helicoverpa armigera (Hüibner), Helicoverpa assulta Guenée and Spodoptera litura (Fabricius) (Lepidoptera, Noctuidae).The difference in leaf nicotine response to the feeding by these three larvae and the mechanical simulation of their feeding was examined by HPLC. Results indicated that nicotine induction was suppressed by H. Armigera and H. Assulta larvae feeding or by simulated damage treated with their labial glands extracts. The production of nicotine was also suppressed by the glucose oxidase from Aspergillus niger when it was treated on mechanically wounded leaf area. On the contrary, the nicotine production was stimulated by S.litura larva feeding or by simulated damage treated with its labial gland extract. Heat denature can not counteract the stimulation effect of the S. Litura labial gland extracts to tobacco nicotine production. The glucose oxidase activity was detected in labial gland extracts of both H. Arrnigera and H.assulta, but the activity in H. Armigera was significantly higher than that in H. Assulta. No glucose oxidase activity was detected in labial gland extracts of S. Litura. It is shown that the glucose oxidase activity in labial glands of caterpillars plays an important role in the nicotine response to herbivory. The glucose oxidase was mainly contained in the labial gland of H. Armigera larva, and had the highest activity at pH 7.0. D-Glucose was the optimal substrate of the glucose oxidase. Labial gland glucose oxidase activities varied daily during larval development with high activities found when larvae were actively feeding.

  20. Effects of Enhanced UV-B Radiation on the Activity and Expression of Alternative Oxidase in Red Kidney Bean Leaves

    Institute of Scientific and Technical Information of China (English)

    Ming-Guang Zhao; Ying-Gao Liu; Li-Xin Zhang; Lin Zheng; Yu-Rong Bi


    An increase in ultraviolet (UV) B radiation on the earth's surface is a feature of current global climate changes. It has been reported that alternative oxidase (AOX) may have a protective role against oxidative stress induced by environmental stresses, such as UV-B. To better understand the characteristic tolerance of plants to UV-B radiation, the effects of enhanced UV-B radiation on the activity and expression of AOX in red kidney bean (Phaseolus vulgaris) leaves were investigated in the present study. The results show that the total respiration rate and AOX activity in red kidney bean leaves increased significantly during treatment with enhanced UV-B. However, cytochrome oxidase (COX) activity did not change at 24 h of UV-B treatment, before dropping rapidly. Both alternative pathway content and alternative pathway activity were increased in the presence of exogenous H2O2. Immunoblotting analysis with anti-AOX monoclonal antibody revealed that expression of the AOX protein increased in red kidney bean leaves under enhanced UV-B radiation, reaching a peak at 72increase in AOX activity in red kidney bean leaves under enhanced UV-B radiation was mainly due to H2O2-induced AOX expression.

  1. Electrochemical activity of glucose oxidase on a poly(ionic liquid)-Au nanoparticle composite. (United States)

    Lee, Sungwon; Ringstrand, Bryan S; Stone, David A; Firestone, Millicent A


    Glucose oxidase (GOx) adsorbed on an ionic liquid-derived polymer containing internally organized columns of Au nanoparticles exhibits direct electron transfer and bioelectrocatalytic properties towards the oxidation of glucose. The cationic poly(ionic liquid) provides an ideal substrate for the electrostatic immobilization of GOx. The encapsulated Au nanoparticles serve to both promote the direct electron transfer with the recessed enzyme redox centers and impart electronic conduction to the composite, allowing it to function as an electrode for electrochemical detection.

  2. Xanthoangelol and 4-Hydroxyderricin Are the Major Active Principles of the Inhibitory Activities against Monoamine Oxidases on Angelica keiskei K. (United States)

    Kim, Ji Ho; Son, Yeon Kyung; Kim, Gun Hee; Hwang, Keum Hee


    Monoamine oxidase inhibitors (MAOI) have been widely used as antidepressants. Recently, there has been renewed interest in MAO inhibitors. The activity-guided fractionation of extracts from Angelica keiskei Koidzumi (A. keiskei K.) led to the isolation of two prenylated chalcones, xanthoangelol and 4-hydroxyderricin and a flavonoid, cynaroside. These three isolated compounds are the major active ingredients of A. keiskei K. to inhibit the MAOs and DBH activities. Xanthoangelol is a nonselective MAO inhibitor, and a potent dopamine β-hydroxylase (DBH) inhibitor. IC50 values of xanthoangelol to MAO-A and MAO-B were calculated to be 43.4 μM, and 43.9 μM. These values were very similar to iproniazid, which is a nonselective MAO inhibitor used as a drug against depression. The IC50 values of iproniazid were 37 μM, and 42.5 μM in our parallel examination. Moreover, IC50 value of xanthoangelol to DBH was calculated 0.52 μM. 4-Hydroxyderricin is a potent selective MAO-B inhibitor and also mildly inhibits DBH activity. The IC50 value of 4-hydroxyderricin to MAO-B was calculated to be 3.43 μM and this value was higher than that of deprenyl (0.046 μM) used as a positive control for selective MAO-B inhibitor in our test. Cynaroside is a most potent DBH inhibitor. The IC50 value of cynaroside to DBH was calculated at 0.0410 μM. Results of this study suggest that the two prenylated chalcones, xanthoangelol and 4-hydroxyderricin isolated from A. keiskei K., are expected for potent candidates for development of combined antidepressant drug. A. keiskei K. will be an excellent new bio-functional food material that has the combined antidepressant effect.

  3. Molecular Modeling of Peroxidase and Polyphenol Oxidase: Substrate Specificity and Active Site Comparison

    Directory of Open Access Journals (Sweden)

    Lalida Shank


    Full Text Available Peroxidases (POD and polyphenol oxidase (PPO are enzymes that are well known to be involved in the enzymatic browning reaction of fruits and vegetables with different catalytic mechanisms. Both enzymes have some common substrates, but each also has its specific substrates. In our computational study, the amino acid sequence of grape peroxidase (ABX was used for the construction of models employing homology modeling method based on the X-ray structure of cytosolic ascorbate peroxidase from pea (PDB ID:1APX, whereas the model of grape polyphenol oxidase was obtained directly from the available X-ray structure (PDB ID:2P3X. Molecular docking of common substrates of these two enzymes was subsequently studied. It was found that epicatechin and catechin exhibited high affinity with both enzymes, even though POD and PPO have different binding pockets regarding the size and the key amino acids involved in binding. Predicted binding modes of substrates with both enzymes were also compared. The calculated docking interaction energy of trihydroxybenzoic acid related compounds shows high affinity, suggesting specificity and potential use as common inhibitor to grape ascorbate peroxidase and polyphenol oxidase.

  4. NecroX-7 prevents oxidative stress-induced cardiomyopathy by inhibition of NADPH oxidase activity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joonghoon; Park, Eok; Ahn, Bong-Hyun; Kim, Hyoung Jin [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of); Park, Ji-hoon [Department of Biochemistry, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Koo, Sun Young; Kwak, Hyo-Shin; Park, Heui Sul; Kim, Dong Wook; Song, Myoungsub; Yim, Hyeon Joo; Seo, Dong Ook [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of); Kim, Soon Ha, E-mail: [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of)


    Oxidative stress is one of the causes of cardiomyopathy. In the present study, NecroXs, novel class of mitochondrial ROS/RNS scavengers, were evaluated for cardioprotection in in vitro and in vivo model, and the putative mechanism of the cardioprotection of NecroX-7 was investigated by global gene expression profiling and subsequent biochemical analysis. NecroX-7 prevented tert-butyl hydroperoxide (tBHP)-induced death of H9C2 rat cardiomyocytes at EC{sub 50} = 0.057 μM. In doxorubicin (DOX)-induced cardiomyopathy in rats, NecroX-7 significantly reduced the plasma levels of creatine kinase (CK-MB) and lactate dehydrogenase (LDH) which were increased by DOX treatment (p < 0.05). Microarray analysis revealed that 21 genes differentially expressed in tBHP-treated H9C2 cells were involved in ‘Production of reactive oxygen species’ (p = 0.022), and they were resolved by concurrent NecroX-7 treatment. Gene-to-gene networking also identified that NecroX-7 relieved cell death through Ncf1/p47phox and Rac2 modulation. In subsequent biochemical analysis, NecroX-7 inhibited NADPH oxidase (NOX) activity by 53.3% (p < 0.001). These findings demonstrate that NecroX-7, in part, provides substantial protection of cardiomyopathy induced by tBHP or DOX via NOX-mediated cell death. -- Highlights: ► NecroX-7 prevented tert-butyl hydroperoxide-induced in vitro cardiac cell death. ► NecroX-7 ameliorated doxorubicin-induced in vivo cardiomyopathy. ► NecroX-7 prevented oxidative stress and necrosis-enriched transcriptional changes. ► NecroX-7 effectively inhibited NADPH oxidase activation. ► Cardioprotection of Necro-7 was brought on by modulation of NADPH oxidase activity.

  5. Effect of LED photobiomodulation on fluorescent light induced changes in cellular ATPases and Cytochrome c oxidase activity in Wistar rat. (United States)

    A, Ahamed Basha; C, Mathangi D; R, Shyamala


    Fluorescent light exposure at night alters cellular enzyme activities resulting in health defects. Studies have demonstrated that light emitting diode photobiomodulation enhances cellular enzyme activities. The objectives of this study are to evaluate the effects of fluorescent light induced changes in cellular enzymes and to assess the protective role of pre exposure to 670 nm LED in rat model. Male Wistar albino rats were divided into 10 groups of 6 animals each based on duration of exposure (1, 15, and 30 days) and exposure regimen (cage control, exposure to fluorescent light [1800 lx], LED preexposure followed by fluorescent light exposure and only LED exposure). Na(+)-K(+) ATPase, Ca(2+) ATPase, and cytochrome c oxidase of the brain, heart, kidney, liver, and skeletal muscle were assayed. Animals of the fluorescent light exposure group showed a significant reduction in Na(+)-K(+) ATPase and Ca(2+) ATPase activities in 1 and 15 days and their increase in animals of 30-day group in most of the regions studied. Cytochrome c oxidase showed increase in their level at all the time points assessed in most of the tissues. LED light preexposure showed a significant enhancement in the degree of increase in the enzyme activities in almost all the tissues and at all the time points assessed. This study demonstrates the protective effect of 670 nm LED pre exposure on cellular enzymes against fluorescent light induced change.

  6. Design, synthesis of novel pyranotriazolopyrimidines and evaluation of their anti-soybean lipoxygenase, anti-xanthine oxidase, and cytotoxic activities. (United States)

    Saïd, Abderrahim Ben; Romdhane, Anis; Elie, Nicolas; Touboul, David; Jannet, Hichem Ben; Bouajila, Jalloul


    The synthesis of 14-(aryl)-14H-naphto[2,1-b]pyrano[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine-2-yl) acetamidoximes 2a-e has been accomplished by reaction of 2-acetonitrile derivatives 1a-e with hydroxylamine. Cyclocondensation reaction of precursors 2a-e with some elctrophilic species such as ethylorthoformate, acetic anhydride, and methyl-acetoacetate provided the new oxadiazole derivatives 3a-e, 4a-e, and 5a-e, respectively. On the other hand, the reaction of precursors 2a-e with 2-chloropropanoyl chloride afforded the new acetimidamides 6a-e which evolve under reflux of toluene to the new oxadiazoles 7a-e. The synthetic compounds were screened for their anti-xanthine oxidase, anti-soybean lipoxygenase, and cytotoxic activities. Moderate to weak xanthine oxidase and soybean lipoxygenase inhibitions were obtained but significant cytotoxic activities were noted. The most cytotoxic activities were recorded mainly (i) 5a was the most active (IC50 = 4.0 μM) and selective against MCF-7 and (ii) 2a was cytotoxic against the four cell lines with selectivity for MCF-7 and OVCAR-3 (IC50 = 17 and 12 μM, respectively) while 2e is highly selective against OVCAR-3 (IC50 = 10 μM).

  7. On the Direct Electron Transfer, Sensing, and Enzyme Activity in the Glucose Oxidase/Carbon Nanotubes System



    The signal transduction and enzyme activity were investigated in biosensors based on the glucose oxidase (GOx) and carbon nanotubes (CNT) embedded in a bio-adhesive film of chitosan (CHIT). The voltammetric studies showed that, regardless of CHIT matrix, the GOx adsorbed on CNT yielding a pair of surface-confined current peaks at -0.48 V. The anodic peak did not increase in the presence of glucose in an O2-free solution indicating the lack of direct electron transfer (DET) between the enzymat...

  8. Ammonium secretion by Colletotrichum coccodes activates host NADPH oxidase activity enhancing host cell death and fungal virulence in tomato fruits. (United States)

    Alkan, Noam; Davydov, Olga; Sagi, Moshe; Fluhr, Robert; Prusky, Dov


    Colletotrichum pathogens of fruit and leaves are known ammonium secretors. Here, we show that Colletotrichum coccodes virulence, as measured by tomato (Solanum lycopersicum cv. Motelle) fruit tissue necrosis, correlates with the amount of ammonium secreted. Ammonium application to fruit tissue induced hydrogen peroxide (H(2)O(2)) accumulation. To examine whether the tomato NADPH oxidase, SlRBOH, is a source for the ammonium-induced H(2)O(2), wild-type and antisense lines abrogated for SlRBOH (SlRBOH-AS) were examined. Wild-type lines produced 7.5-fold more reactive oxygen species when exposed to exogenous ammonium than did SlRBOH-AS lines. C. coccodes colonization of wild-type tomato lines resulted in higher H(2)O(2) production and faster fungal growth rate compared with colonization in the SlRBOH-AS mutant, although the amount of ammonium secreted by the fungi was similar in both cases. Enhanced ion leakage and cell death of fruit tissue were correlated with H(2)O(2) accumulation, and treatment with the reactive oxygen scavenger N-acetyl-l-cysteine decreased H(2)O(2) production, ion leakage, and cell death. Importantly, the activation of reactive oxygen species production by ammonium was positively affected by an extracellular pH increase from 4 to 9, implying that ammonium exerts its control via membrane penetration. Our results show that C. coccodes activates host reactive oxygen species and H(2)O(2) production through ammonium secretion. The resultant enhancement in host tissue decay is an important step in the activation of the necrotrophic process needed for colonization.

  9. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. (United States)

    Robatjazi, Hossein; Zhao, Hangqi; Swearer, Dayne F; Hogan, Nathaniel J; Zhou, Linan; Alabastri, Alessandro; McClain, Michael J; Nordlander, Peter; Halas, Naomi J


    The rational combination of plasmonic nanoantennas with active transition metal-based catalysts, known as 'antenna-reactor' nanostructures, holds promise to expand the scope of chemical reactions possible with plasmonic photocatalysis. Here, we report earth-abundant embedded aluminum in cuprous oxide antenna-reactor heterostructures that operate more effectively and selectively for the reverse water-gas shift reaction under milder illumination than in conventional thermal conditions. Through rigorous comparison of the spatial temperature profile, optical absorption, and integrated electric field enhancement of the catalyst, we have been able to distinguish between competing photothermal and hot-carrier driven mechanistic pathways. The antenna-reactor geometry efficiently harnesses the plasmon resonance of aluminum to supply energetic hot-carriers and increases optical absorption in cuprous oxide for selective carbon dioxide conversion to carbon monoxide with visible light. The transition from noble metals to aluminum based antenna-reactor heterostructures in plasmonic photocatalysis provides a sustainable route to high-value chemicals and reaffirms the practical potential of plasmon-mediated chemical transformations.Plasmon-enhanced photocatalysis holds promise for the control of chemical reactions. Here the authors report an Al@Cu2O heterostructure based on earth abundant materials to transform CO2 into CO at significantly milder conditions.

  10. Influence of altered gravity on the cytochemical localization of cytochrome oxidase activity in central and peripheral gravisensory systems in developing cichlid fish (United States)

    Paulus, U.; Nindl, G.; Körtje, K. H.; Slenzka, K.; Neubert, J.; Rahmann, H.

    Cichlid fish larvae were reared from hatching to active free swimming under different gravity conditions: natural environment, increased acceleration in a centrifuge, simulated weightlessness in a clinostat and near weightlessness during space flight. Cytochrome oxidase activity was analyzed semiquantitatively on the ultrastructural level as a marker of regional neuronal activity in a primary, vestibular brainstem nucleus and in gravity receptive epithelia in the inner ear. Our results show, that gravity seems to be positively correlated with cytochrome oxidase activity in the magnocellular nucleus of developing fish brain. In the inner ear the energy metabolism is decreased under microgravity concerning utricle but not saccule. Hypergravity has not effect on cytochrome oxidase activity in sensory inner ear epithelia.

  11. Homocysteine enhances superoxide anion release and NADPH oxidase assembly by human neutrophils. Effects on MAPK activation and neutrophil migration. (United States)

    Alvarez-Maqueda, Moisés; El Bekay, Rajaa; Monteseirín, Javier; Alba, Gonzalo; Chacón, Pedro; Vega, Antonio; Santa María, Consuelo; Tejedo, Juan R; Martín-Nieto, José; Bedoya, Francisco J; Pintado, Elisabeth; Sobrino, Francisco


    Hyperhomocysteinaemia has recently been recognized as a risk factor of cardiovascular disease. However, the action mechanisms of homocysteine (Hcy) are not well understood. Given that Hcy may be involved in the recruitment of monocytes and neutrophils to the vascular wall, we have investigated the role of Hcy in essential functions of human neutrophils. We show that Hcy increased superoxide anion (O2*-) release by neutrophils to the extracellular medium, and that this effect was inhibited by superoxide dismutase and diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase activity. The enzyme from rat peritoneal macrophages displayed a similar response. These effects were accompanied by a time-dependent increased translocation of p47phox and p67phox subunits of NADPH oxidase to the plasma membrane. We also show that Hcy increased intracellular H2O2 production by neutrophils, that Hcy enhanced the activation and phosphorylation of mitogen-activated protein kinases (MAPKs), specifically p38-MAPK and ERK1/2, and that the migration of neutrophils was increased by Hcy. Present results are the first evidence that Hcy enhances the oxidative stress of neutrophils, and underscore the potential role of phagocytic cells in vascular wall injury through O2*- release in hyperhomocysteinaemia conditions.

  12. QM/MM studies of xanthine oxidase: variations of cofactor, substrate, and active-site Glu802. (United States)

    Metz, Sebastian; Thiel, Walter


    In continuation of our previous QM/MM study on the reductive half-reaction of wild-type xanthine oxidase, we consider the effects of variations in the cofactor, the substrate, and the active-site Glu802 residue on the reaction mechanism. Replacement of the sulfido ligand in the natural cofactor by an oxo ligand leads to a substantial increase in the computed barriers, consistent with the experimentally observed inactivity of this modified cofactor, whereas the selenido form is predicted to have lower barriers and hence higher activity. For the substrate 2-oxo-6-methylpurine, the calculated pathways for three different tautomers show great similarity to those found previously for xanthine, contrary to claims in the literature that the mechanisms for these two substrates are different. Compared with the wild-type enzyme, the conversion of xanthine to uric acid follows a somewhat different pathway in the Glu802 --> Gln mutant which exhibits a lower overall activity, in agreement with recently published kinetic data. The present results confirm the basic stepwise reaction mechanism and the orientation of the substrate that has been proposed in our previous QM/MM work on aldehyde oxidoreductase and xanthine oxidase.

  13. Site directed mutagenesis of amino acid residues at the active site of mouse aldehyde oxidase AOX1.

    Directory of Open Access Journals (Sweden)

    Silvia Schumann

    Full Text Available Mouse aldehyde oxidase (mAOX1 forms a homodimer and belongs to the xanthine oxidase family of molybdoenzymes which are characterized by an essential equatorial sulfur ligand coordinated to the molybdenum atom. In general, mammalian AOs are characterized by broad substrate specificity and an yet obscure physiological function. To define the physiological substrates and the enzymatic characteristics of mAOX1, we established a system for the heterologous expression of the enzyme in Escherichia coli. The recombinant protein showed spectral features and a range of substrate specificity similar to the native protein purified from mouse liver. The EPR data of recombinant mAOX1 were similar to those of AO from rabbit liver, but differed from the homologous xanthine oxidoreductase enzymes. Site-directed mutagenesis of amino acids Val806, Met884 and Glu1265 at the active site resulted in a drastic decrease in the oxidation of aldehydes with no increase in the oxidation of purine substrates. The double mutant V806E/M884R and the single mutant E1265Q were catalytically inactive enzymes regardless of the aldehyde or purine substrates tested. Our results show that only Glu1265 is essential for the catalytic activity by initiating the base-catalyzed mechanism of substrate oxidation. In addition, it is concluded that the substrate specificity of molybdo-flavoenzymes is more complex and not only defined by the three characterized amino acids in the active site.

  14. Tet1 oxidase regulates neuronal gene transcription, active DNA hydroxymethylation, object location memory, and threat recognition memory

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar


    Full Text Available A dynamic equilibrium between DNA methylation and demethylation of neuronal activity-regulated genes is crucial for memory processes. However, the mechanisms underlying this equilibrium remain elusive. Tet1 oxidase has been shown to play a key role in the active DNA demethylation in the central nervous system. In this study, we used Tet1 gene knockout (Tet1KO mice to examine the involvement of Tet1 in memory consolidation and storage in the adult brain. We found that Tet1 ablation leads to altered expression of numerous neuronal activity-regulated genes, compensatory upregulation of active demethylation pathway genes, and upregulation of various epigenetic modifiers. Moreover, Tet1KO mice showed an enhancement in the consolidation and storage of threat recognition (cued and contextual fear conditioning and object location memories. We conclude that Tet1 plays a critical role in regulating neuronal transcription and in maintaining the epigenetic state of the brain associated with memory consolidation and storage.

  15. Purification of a cytochrome bc1-aa3 supercomplex with quinol oxidase activity from Corynebacterium glutamicum


    Niebisch, A.; Bott, M.


    The aerobic respiratory chain of the Gram-positive Corynebacterium glutamicum involves a bc(1) complex with a diheme cytochrome c(1) and a cytochrome aa(3) oxidase but no additional c-type cytochromes. Here we show that the two enzymes form a supercomplex, because affinity chromatography of either strep-tagged cytochrome b (QcrB) or strep-tagged subunit I (CtaD) of cytochrome aa(3) always resulted in the copurification of the subunits of the bc(1) complex (QcrA, QcrB, QcrC) and the aa(3) comp...

  16. Crystallization and preliminary X-ray diffraction analysis of full-length and proteolytically activated pyruvate oxidase from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, Annett; Neumann, Piotr; Wille, Georg; Stubbs, Milton T.; Tittmann, Kai, E-mail: [Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I, Institut für Biochemie und Biotechnologie, Kurt-Mothes-Strasse 3, D-06120 Halle (Germany)


    The peripheral membrane flavoprotein pyruvate oxidase from E. coli has been crystallized in the full-length form and as a proteolytically activated truncation variant lacking the last 23 amino acids at the C-terminus. The thiamine diphosphate- and flavin-dependent peripheral membrane enzyme pyruvate oxidase from Escherichia coli (EcPOX) has been crystallized in the full-length form and as a proteolytically activated C-terminal truncation variant which lacks the last 23 amino acids (Δ23 EcPOX). Crystals were grown by the hanging-drop vapour-diffusion method using either protamine sulfate (full-length EcPOX) or 2-methyl-2,4-pentanediol (Δ23 EcPOX) as precipitants. Native data sets were collected at a X-ray home source to a resolution of 2.9 Å. The two forms of EcPOX crystallize in different space groups. Whereas full-length EcPOX crystallizes in the tetragonal space group P4{sub 3}2{sub 1}2 with two monomers per asymmetric unit, the crystals of Δ23 EcPOX belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} and contain 12 monomers per asymmetric unit.

  17. Expression analysis of polyphenol oxidase isozymes by active staining method and tissue browning of head lettuce (Lactuca sativa L.). (United States)

    Noda, Takahiro; Iimure, Kazuhiko; Okamoto, Shunsuke; Saito, Akira


    Browning of plant tissue is generally considered attributable to enzymatic oxidation by polyphenol oxidase (PPO). Electrophoresis followed by activity staining has been used as an effective procedure to visually detect and isolate isozymes; however, it has not been applied for examination of various PPO isozymes in lettuce. Our study demonstrated that different lettuce PPO isozymes could be detected at different pH in active staining, and multiple isozymes were detected only under alkaline conditions. As a result, we concluded that activity staining with approximately pH 8 enabled to detect various PPO isozymes in lettuce. By expression analysis of the PPO isozymes after wounding, PPO isozymes that correlated with time-course of tissue browning were detected. The wound-induced PPO may play a key role in enzymatic browning.

  18. Synthesis, crystal structures, fluorescence and xanthine oxidase inhibitory activity of pyrazole-based 1,3,4-oxadiazole derivatives (United States)

    Qi, De-Qiang; Yu, Chuan-Ming; You, Jin-Zong; Yang, Guang-Hui; Wang, Xue-Jie; Zhang, Yi-Ping


    A series of pyrazole-based 1,3,4-oxadiazole derivatives were rationally designed and synthesized in good yields by following a convenient route. All the newly synthesized molecules were fully characterized by IR, 1H NMR and elemental analysis. Eight compounds were structurally determined by single crystal X-ray diffraction analysis. The fluorescence properties of all the compounds were investigated in dimethyl sulfoxide media. In addition, these newly synthesized compounds were evaluated for in vitro inhibitory activity against commercial enzyme xanthine oxidase (XO) by measuring the formation of uric acid from xanthine. Among the compounds synthesized and tested, 3d and 3e were found to be moderate inhibitory activity against commercial XO with IC50 = 72.4 μM and 75.6 μM. The studies gave a new insight in further optimization of pyrazole-based 1,3,4-oxadiazole derivatives with excellent fluorescence properties and XO inhibitory activity.

  19. Gamma radiation affects the anti-Leishmania activity of Bothrops moojeni venom and correlates with L-amino acid oxidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Tempone, A.G.; Lourenco, C.O.; Spencer, P.J.; Rogero, J.R.; Nascimento, N. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Radiobiologia; Andrade Junior, H.F. [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina. Inst. de Medicina Tropical


    Leishmania causes human disfiguring skin disease in endemic areas of Amazon and North Eastern Brazil. Those parasites present a remarkable resistance to most treatments, except those using toxic antimonial salts. We detected a specific anti-Leishmania activity in snake venoms, using an in vitro promastigote assay. In this report, we analyzed the activity of Bothrops moojeni venom against L. Amazonensis, using whole venom or fractions of L-amino acid oxidase (L-AO). Crude venom of B.moojeni, was fractionated by molecular exclusion chromatography. Activity against promastigotes was detected by respiratory oxidative conversion of MTT in a colorimetric assay and L-AO activity was detected by a colorimetric assay with peroxidase and OPD as revealing reagents. Crude venom was irradiated with 500, 1000, and 2000 Gy in a {sup 60} Co gamma radiation source. The venom had an anti-Leishmania activity of 33 pg/promastigote and the active fraction migrates as 100-150 kDa, close to the size described for L-AOs, and also presented L-AO activity. The radiation reduces both the L-AO and anti-Leishmania activity in a dose dependent effect. Those data suggests the anti-Leishmania activity in this venom is closely related to the L-amino acid oxidase activity and also that radiation could be used as a tool to detect specific activities reduction in water solutions, similarly to observed in dry preparations. (author) 13 refs., 3 figs.

  20. Flavonoids from Sideritis Species: Human Monoamine Oxidase (hMAO Inhibitory Activities, Molecular Docking Studies and Crystal Structure of Xanthomicrol

    Directory of Open Access Journals (Sweden)

    Fatma Pinar Turkmenoglu


    Full Text Available The inhibitory effects of flavonoids on monoamine oxidases (MAOs have attracted great interest since alterations in monoaminergic transmission are reported to be related to neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases and psychiatric disorders such as depression and anxiety, thus MAOs may be considered as targets for the treatment of these multi-factorial diseases. In the present study, four Sideritis flavonoids, xanthomicrol (1, isoscutellarein 7-O-[6'''-O-acetyl-β-D-allopyranosyl-(1→2]-β-D-glucopyranoside (2, isoscutellarein 7-O-[6'''-O-acetyl-β-D-allopyranosyl-(1→2]-6''-O-acetyl-β-D-glucopyranoside (3 and salvigenin (4 were docked computationally into the active site of the human monoamine oxidase isoforms (hMAO-A and hMAO-B and were also investigated for their hMAO inhibitory potencies using recombinant hMAO isoenzymes. The flavonoids inhibited hMAO-A selectively and reversibly in a competitive mode. Salvigenin (4 was found to be the most potent hMAO-A inhibitor, while xanthomicrol (1 appeared as the most selective hMAO-A inhibitor. The computationally obtained results were in good agreement with the corresponding experimental values. In addition, the x-ray structure of xanthomicrol (1 has been shown. The current work warrants further preclinical studies to assess the potential of xanthomicrol (1 and salvigenin (4 as new selective and reversible hMAO-A inhibitors for the treatment of depression and anxiety.

  1. α-Lipoic Acid Inhibits Helicobacter pylori-Induced Oncogene Expression and Hyperproliferation by Suppressing the Activation of NADPH Oxidase in Gastric Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Eunyoung Byun


    Full Text Available Hyperproliferation and oncogene expression are observed in the mucosa of Helicobacter pylori- (H. pylori- infected patients with gastritis or adenocarcinoma. Expression of oncogenes such as β-catenin and c-myc is related to oxidative stress. α-Lipoic acid (α-LA, a naturally occurring thiol compound, acts as an antioxidant and has an anticancer effect. The aim of this study is to investigate the effect of α-LA on H. pylori-induced hyperproliferation and oncogene expression in gastric epithelial AGS cells by determining cell proliferation (viable cell numbers, thymidine incorporation, levels of reactive oxygen species (ROS, NADPH oxidase activation (enzyme activity, subcellular levels of NADPH oxidase subunits, activation of redox-sensitive transcription factors (NF-κB, AP-1, expression of oncogenes (β-catenin, c-myc, and nuclear localization of β-catenin. Furthermore, we examined whether NADPH oxidase mediates oncogene expression and hyperproliferation in H. pylori-infected AGS cells using treatment of diphenyleneiodonium (DPI, an inhibitor of NADPH oxidase. As a result, α-LA inhibited the activation of NADPH oxidase and, thus, reduced ROS production, resulting in inhibition on activation of NF-κB and AP-1, induction of oncogenes, nuclear translocation of β-catenin, and hyperproliferation in H. pylori-infected AGS cells. DPI inhibited H. pylori-induced activation of NF-κB and AP-1, oncogene expression and hyperproliferation by reducing ROS levels in AGS cells. In conclusion, we propose that inhibiting NADPH oxidase by α-LA could prevent oncogene expression and hyperproliferation occurring in H. pylori-infected gastric epithelial cells.

  2. Purine nucleoside phosphorylase and xanthine oxidase activities in erythrocytes and plasma from marine, semiaquatic and terrestrial mammals. (United States)

    López-Cruz, Roberto I; Pérez-Milicua, Myrna Barjau; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal-Vertiz, Jaime A; de la Rosa, Alejandro; Vázquez-Medina, José P; Zenteno-Savín, Tania


    Purine nucleoside phosphorylase (PNP) and xanthine oxidase (XO) are key enzymes involved in the purine salvage pathway. PNP metabolizes purine bases to synthetize purine nucleotides whereas XO catalyzes the oxidation of purines to uric acid. In humans, PNP activity is reported to be high in erythrocytes and XO activity to be low in plasma; however, XO activity increases after ischemic events. XO activity in plasma of northern elephant seals has been reported during prolonged fasting and rest and voluntary associated apneas. The objective of this study was to analyze circulating PNP and XO activities in marine mammals adapted to tolerate repeated cycles of ischemia/reperfusion associated with diving (bottlenose dolphin, northern elephant seal) in comparison with semiaquatic (river otter) and terrestrial mammals (human, pig). PNP activities in plasma and erythrocytes, as well as XO activity in plasma, from all species were quantified by spectrophotometry. No clear relationship in circulating PNP or XO activity could be established between marine, semiaquatic and terrestrial mammals. Erythrocytes from bottlenose dolphins and humans are highly permeable to nucleosides and glucose, intraerythrocyte PNP activity may be related to a release of purine nucleotides from the liver. High-energy costs will probably mean a higher ATP degradation rate in river otters, as compared to northern elephant seals or dolphins. Lower erythrocyte PNP activity and elevated plasma XO activity in northern elephant seal could be associated with fasting and/or sleep- and dive-associated apneas.


    Directory of Open Access Journals (Sweden)

    Atrayee Roy


    Full Text Available Polyphenol oxidase(PPO (E.C. number has ubiquitous distribution in almost all living organism. Whereas, peroxidase(POD (E.C. number 1.11.1 act as hormone regulation and defense mechanism in plants. Keeping in pace with their present-day industrial application, efforts have been made to evaluate the activity of these two enzymes (PPO and POD using pepper pericarp (Capsicum annuum L. as an experimental material using catechol and guaiacol as a substrate, respectively. The effects of enzyme extract, substrate, hydrogen peroxide concentration (only for POD, pH and temperature and antimicrobial activity against different bacterial strains were investigated.

  4. Activation of polyphenol oxidase in extracts of bran from several wheat (Triticum aestivum) cultivars using organic solvents, detergents, and chaotropes. (United States)

    Okot-Kotber, Moses; Liavoga, Allan; Yong, Kwon-Joong; Bagorogoza, Katherine


    Polyphenol oxidase (PPO), known to induce browning in wheat-based products, has been shown to be activatable in wheat (Triticum aestivum) bran extracts by chemical compounds. The activity in the extracts could be increased to varying degrees with acetone, methanol, ethanol, 2-propanol, and n-butanol as additives in the extraction buffer. The most potent alcoholic activator was n-butanol (about a 3-fold increase), followed by 2-propanol and ethanol, whereas methanol had the least effect. Ionic detergents in the extraction buffer were also good activators, with sodium dodecyl sulfate (SDS) being more potent (3-fold increase) than cetyltrimethylammonium bromide (CTAB) that had only half as much effect, whereas the nonionic detergent, Triton X-114, was ineffective. The chaotropes, urea and guanidine x HCl (GND), were the most potent activators of all, increasing the activity over 4-fold. Of the two chaotropes, GND was more effective at lower concentrations (<6 M) than urea. However, the enzyme activity lessened at a higher concentration of GND (6 M), while there was a further increase in the activity with 6 M urea treatment. The activity lessened with higher concentration of GND presumably as a result of extensive denaturation of the enzyme, as GND is known to be a more potent denaturant than urea. It is hypothesized that in wheat PPO exists in an inactive form which may be activated by the presence of activators, hitherto unknown, similar in effect to that elicited by the chemical denaturants in this study.

  5. Lack of platelet monoamine oxidase activity in Cebus monkeys (Cebus albifrons). (United States)

    Heintz, R; Richardson, M A; Perumal, A S; Casey, D E


    1. Recent evidence suggests that monoamine oxidase (MAO) plays an important role modulating the extrapyramidal syndromes produced by neuroleptic drugs in both human and nonhuman primates. 2. To evaluate the possibility of using peripheral blood platelet MAO-B levels as indices of central nervous system MAO-B effects, we measured platelet MAO-B levels in Cebus monkeys that were previously tested with neuroleptics (N = 36) or drug naive (N = 6). 3. No platelet MAO-B was consistently detectable in these blood samples. 4. Thus platelet measures of MAO-B do not reliably reflect brain MAO-B function in nonhuman primates and do not offer a useful model for studying blood-brain MAO-B relationships.

  6. The antioxidant activity of soursop decreases the expression of a member of the NADPH oxidase family. (United States)

    Zamudio-Cuevas, Y; Díaz-Sobac, R; Vázquez-Luna, A; Landa-Solís, C; Cruz-Ramos, M; Santamaría-Olmedo, M; Martínez-Flores, K; Fuentes-Gómez, A J; López-Reyes, A


    Cellular oxidative stress produced by an increase in free radicals is one of the factors that promote the development of chronic degenerative diseases; therefore, consuming natural antioxidants helps minimize their negative effects. This study evaluated the cytotoxicity of the soursop extract (Annona muricata), its cytoprotective capacity against oxidative stress induced by hydrogen peroxide, the inhibitory potential of reactive oxygen species (ROS), the molecular mechanism of its antioxidant action, and its capacity to repair cellular damage in the fibroblast cell line. The soursop extract proved not to be cytotoxic in fibroblast cultures and showed cytoprotective capacity against hydrogen peroxide-induced stress; in cell culture it reduced the generation of ROS significantly by inhibiting a sub-unit of the NADPH oxidase enzyme (p47phox). The soursop extract can prevent damage caused by cellular oxidants.

  7. Leukotriene B(4) inhibits neutrophil apoptosis via NADPH oxidase activity: redox control of NF-κB pathway and mitochondrial stability. (United States)

    Barcellos-de-Souza, Pedro; Canetti, Cláudio; Barja-Fidalgo, Christina; Arruda, Maria Augusta


    Leukotriene B(4), an arachidonic acid-derived lipid mediator, is a known proinflammatory agent that has a direct effect upon neutrophil physiology, inducing reactive oxygen species generation by the NADPH oxidase complex and impairing neutrophil spontaneous apoptosis, which in turn may corroborate to the onset of chronic inflammation. Despite those facts, a direct link between inhibition of neutrophil spontaneous apoptosis and NADPH oxidase activation by leukotriene B(4) has not been addressed so far. In this study, we aim to elucidate the putative role of NADPH oxidase-derived reactive oxygen species in leukotriene B(4)-induced anti-apoptotic effect. Our results indicate that NADPH oxidase-derived reactive oxygen species are critical to leukotriene B(4) pro-survival effect on neutrophils. This effect also relies on redox modulation of nuclear factor kappaB signaling pathway. We have also observed that LTB(4)-induced Bad degradation and mitochondrial stability require NADPH oxidase activity. All together, our results strongly suggest that LTB(4)-induced anti-apoptotic effect in neutrophils occurs in a reactive oxygen species-dependent manner. We do believe that a better knowledge of the molecular mechanisms underlying neutrophil spontaneous apoptosis may contribute to the development of more successful strategies to control chronic inflammatory conditions such as rheumatoid arthritis. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Effect of physical exercise on changes in activities of creatine kinase, cytochrome c oxidase and ATP levels caused by ovariectomy. (United States)

    Siebert, Cassiana; Kolling, Janaína; Scherer, Emilene B S; Schmitz, Felipe; da Cunha, Maira Jaqueline; Mackedanz, Vanize; de Andrade, Rodrigo B; Wannmacher, Clovis M D; Wyse, Angela T S


    The reduction in the secretion of ovarian hormones, principally estrogen, is a consequence of menopause. Estrogens act primarily as female sex hormones, but also exert effects on different physiological systems including the central nervous system. The treatment normally used to reduce the symptoms of menopause is the hormone therapy, which seems to be effective in treating symptoms, but it may be responsible for adverse effects. Based on this, there is an increasing demand for alternative therapies that minimize signs and symptoms of menopause. In the present study we investigated the effect of ovariectomy and/or physical exercise on the activities of energy metabolism enzymes, such as creatine kinase (cytosolic and mitochondrial fractions), pyruvate kinase, succinate dehydrogenase, complex II, cytochrome c oxidase, as well as on ATP levels in the hippocampus of adult rats. Adult female Wistar rats with 90 days of age were subjected to ovariectomy (an animal model widely used to mimic the postmenopausal changes). Thirty days after the procedure, the rats were submitted to the exercise protocol, which was performed three times a week for 30 days. Twelve hours after the last training session, the rats were decapitated for subsequent biochemical analyzes. Results showed that ovariectomy did not affect the activities of pyruvate kinase, succinate dehydrogenase and complex II, but decreased the activities of creatine kinase (cytosolic and mitochondrial fractions) and cytochrome c oxidase. ATP levels were also reduced. Exercise did not produce the expected results since it was only able to partially reverse the activity of creatine kinase cytosolic fraction. The results of this study suggest that estrogen deficiency, which occurs as a result of ovariectomy, affects generation systems and energy homeostasis, reducing ATP levels in hippocampus of adult female rats.

  9. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis) (United States)

    Zak, Megan A.; Regish, Amy M.; McCormick, Stephen; Manzon, Richard G.


    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19 °C) or below (8 °C) the thermal optimum (13 °C) and exposure to exogenous thyroid hormone (60 µg T4/g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation.

  10. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis). (United States)

    Zak, Megan A; Regish, Amy M; McCormick, Stephen D; Manzon, Richard G


    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19 °C) or below (8 °C) the thermal optimum (13 °C) and exposure to exogenous thyroid hormone (60 µg T4/g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation.

  11. Tumor necrosis factor receptor-associated protein 1 improves hypoxia-impaired energy production in cardiomyocytes through increasing activity of cytochrome c oxidase subunit II. (United States)

    Xiang, Fei; Ma, Si-Yuan; Zhang, Dong-Xia; Zhang, Qiong; Huang, Yue-Sheng


    Tumor necrosis factor receptor-associated protein 1 protects cardiomyocytes against hypoxia, but the underlying mechanisms are not completely understood. In the present study, we used gain- and loss-of-function approaches to explore the effects of tumor necrosis factor receptor-associated protein 1 and cytochrome c oxidase subunit II on energy production in hypoxic cardiomyocytes. Hypoxia repressed ATP production in cultured cardiomyocytes, whereas overexpression of tumor necrosis factor receptor-associated protein 1 significantly improved ATP production. Conversely, knockdown of tumor necrosis factor receptor-associated protein 1 facilitated the hypoxia-induced decrease in ATP synthesis. Further investigation revealed that tumor necrosis factor receptor-associated protein 1 induced the expression and activity of cytochrome c oxidase subunit II, a component of cytochrome c oxidase that is important in mitochondrial respiratory chain function. Moreover, lentiviral-mediated overexpression of cytochrome c oxidase subunit II antagonized the decrease in ATP synthesis caused by knockdown of tumor necrosis factor receptor-associated protein 1, whereas knockdown of cytochrome c oxidase subunit II attenuated the increase in ATP synthesis caused by overexpression of tumor necrosis factor receptor-associated protein 1. In addition, inhibition of cytochrome c oxidase subunit II by a specific inhibitor sodium azide suppressed the ATP sy nthesis induced by overexpressed tumor necrosis factor receptor-associated protein 1. Hence, tumor necrosis factor receptor-associated protein 1 protects cardiomyocytes from hypoxia at least partly via potentiation of energy generation, and cytochrome c oxidase subunit II is one of the downstream effectors that mediates the tumor necrosis factor receptor-associated protein 1-mediated energy generation program.

  12. Enhancement of convective heat transfer coefficient of ethylene glycol base cuprous oxide (Cu2O) nanofluids (United States)

    Hassan, Ali; Ramzan, Naveed; Umer, Asim; Ahmad, Ayyaz; Muryam, Hina


    The enhancement in the convective heat transfer coefficient of the ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids were investigated. The nanofluids of different volume concentrations i-e 1%, 2.5% and 4.5% were prepared by the two step method. Cuprous oxide (Cu2O) nanoparticles were ultrasonically stirred for four hours in the ethylene glycol (EG). The experimental study has been performed through circular tube geometry in laminar flow regime at average Reynolds numbers 36, 71 and 116. The constant heat flux Q = 4000 (W/m2) was maintained during this work. Substantial enhancement was observed in the convective heat transfer coefficient of ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids than the base fluid. The maximum 74% enhancement was observed in convective heat transfer coefficient at 4.5 vol% concentration and Re = 116.

  13. Palm vitamin E reduces catecholamines, xanthine oxidase activity and gastric lesions in rats exposed to water-immersion restraint stress

    Directory of Open Access Journals (Sweden)

    Mohd Fahami Nur Azlina


    Full Text Available Abstract Background This study examined the effects of Palm vitamin E (PVE and α-tocopherol (α-TF supplementations on adrenalin, noradrenalin, xanthine oxidase plus dehydrogenase (XO + XD activities and gastric lesions in rats exposed to water-immersion restraint stress (WIRS. Methods Sixty male Sprague–Dawley rats (200-250 g were randomly divided into three equal sized groups. The control group was given a normal diet, while the treated groups received the same diet with oral supplementation of PVE or α-TF at 60 mg/kg body weight. After the treatment period of 28 days, each group was further subdivided into two groups with 10 rats without exposing them to stress and the other 10 rats were subjected to WIRS for 3.5 hours. Blood samples were taken to measure the adrenalin and noradrenalin levels. The rats were then sacrificed following which the stomach was excised and opened along the greater curvature and examined for lesions and XO + XD activities. Results The rats exposed to WIRS had lesions in their stomach mucosa. Our findings showed that dietary supplementations of PVE and α-TF were able to reduce gastric lesions significantly in comparison to the stressed control group. WIRS increased plasma adrenalin and noradrenalin significantly. PVE and α-TF treatments reduced these parameters significantly compared to the stressed control. Conclusions Supplementations with either PVE or α-TF reduce the formation of gastric lesions. Their protective effect was related to their abilities to inhibit stress induced elevation of adrenalin and noradrenalin levels as well as through reduction in xanthine oxidase and dehydrogenase activities.

  14. The Use of Cytochrome C Oxidase Enzyme Activity and Immunohistochemistry in Defining Mitochondrial Injury in Kidney Disease. (United States)

    Zsengellér, Zsuzsanna K; Rosen, Seymour


    The renal biopsy is a dynamic way of looking at renal disease, and tubular elements are an important part of this analysis. The mitochondria in 20 renal biopsies were examined by immunohistochemical (electron transport chain enzyme: cytochrome C oxidase IV [COX IV]) and enzyme histochemical methods (COX), both by light and electron microscopy. The distal convoluted tubules and thick ascending limbs showed the greatest intensity in the COX immunostains and enzyme activity in controls. The degree of mitochondrial COX protein and enzyme activity diminished as the tubules became atrophic. With proximal hypertrophic changes, there was great variation in both COX activity and protein expression. In contrast, in three cases of systemic lupus erythematosus, biopsied for high-grade proteinuria, the activity was consistently upregulated, whereas protein expression remained normal. These unexpected findings of heterogeneous upregulation in hypertrophy and the dyssynchrony of protein expression and activity may indicate mitochondrial dysregulation. Functional electron microscopy showed COX activity delineated by the intense mitochondrial staining in normal or hypertrophic proximal tubules. With atrophic changes, residual small mitochondria with diminished activity could be seen. With mitochondrial size abnormalities (enlargement and irregularity, adefovir toxicity), activity persisted. In the renal biopsy, mitochondrial analysis is feasible utilizing immunohistochemical and enzyme histochemical techniques.

  15. Structural, Optical and Electrical Properties of Nanocrystalline Cuprous Oxide Thin Film Deposited By Chemical Method

    Directory of Open Access Journals (Sweden)

    Prakash Bansilal Ahirrao


    Full Text Available Cuprous oxide (Cu2O is an interesting p-type semiconductor material used in solar cell applications.  The Modified Chemical Bath Deposition (M-CBD method is suitable for growing thin multilayer structure due to low deposition temperature. This method does not require any sophisticated instrument and substrate need not to be conductive. The nanocrystalline Cu2O thin films were deposited on glass substrates by M-CBD method. The deposited films were characterized by different characterization techniques to study structural, surface morphological, optical and electrical properties. The structural studies show that, the formation of Cu2O thin films with an average crystallite size of 14 nm. Optical studies show a direct band gap 2.48 eV. The room temperature electrical resistivity is of the order of 1.3 kW-cm and activation energy 0.33 eV. The films exhibit p-type electrical conductivity as seen by thermo-emf measurements.

  16. Cuprous oxide photovoltaic cells. Final report, September 1, 1978-November 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Trivich, D.


    The research described represents the beginning of a second phase of research on cuprous oxide photovoltaic cells. The first phase was concerned with the development of procedures of making Schottky barriers on isolated films of Cu/sub 2/O, including single crystals. It was found that properties of these Schottky barrier cells, in particular the barrier heights, were limited by chemical changes at the junction especially with metals of low work function which tend to be more active chemically, e.g., Al. The motivation of the present phase of the research was to construct junctions that would avoid this chemical degradation while maintaining electrical contact between the Cu/sub 2/O and a low work function material in order to attain larger barrier heights. Essentially the approach involved placing the Cu/sub 2/O in contact with a stable oxide. When this oxide is used as a thin layer between the Cu/sub 2/O and a top metal contact this gives an MIS structure. As another approach the other oxide can be an n-type semiconductor in thicker layers to form a heterojunction. Results are reported. (WHK)

  17. Facile fabrication of electrolyte-gated single-crystalline cuprous oxide nanowire field-effect transistors (United States)

    Stoesser, Anna; von Seggern, Falk; Purohit, Suneeti; Nasr, Babak; Kruk, Robert; Dehm, Simone; Wang, Di; Hahn, Horst; Dasgupta, Subho


    Oxide semiconductors are considered to be one of the forefront candidates for the new generation, high-performance electronics. However, one of the major limitations for oxide electronics is the scarcity of an equally good hole-conducting semiconductor, which can provide identical performance for the p-type metal oxide semiconductor field-effect transistors as compared to their electron conducting counterparts. In this quest, here we present a bulk synthesis method for single crystalline cuprous oxide (Cu2O) nanowires, their chemical and morphological characterization and suitability as active channel material in electrolyte-gated, low-power, field-effect transistors (FETs) for portable and flexible logic circuits. The bulk synthesis method used in the present study includes two steps: namely hydrothermal synthesis of the nanowires and the removal of the surface organic contaminants. The surface treated nanowires are then dispersed on a receiver substrate where the passive electrodes are structured, followed by printing of a composite solid polymer electrolyte (CSPE), chosen as the gate insulator. The characteristic electrical properties of individual nanowire FETs are found to be quite interesting including accumulation-mode operation and field-effect mobility of 0.15 cm2 V-1 s-1.

  18. Multiple amine oxidases in cucumber seedlings. (United States)

    Percival, F W; Purves, W K


    Cell-free extracts of cucumber (Cucumis sativus L. cv. National Pickling) seedlings were found to have amine oxidase activity when assayed with tryptamine as a substrate. Studies of the effect of lowered pH on the extract indicated that this activity was heterogeneous, and three amine oxidases could be separated by ion exchange chromatography. The partially purified enzymes were tested for their activities with several substrates and for their sensitivities to various amine oxidase inhibitors. One of the enzymes may be a monoamine oxidase, although it is inhibited by some diamine oxidase inhibitors. The other two enzymes have properties more characteristic of the diamine oxidases. The possible relationship of the amine oxidases to indoleacetic acid biosynthesis in cucumber seedlings is discussed.

  19. P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice. (United States)

    Chatterjee, Saurabh; Rana, Ritu; Corbett, Jean; Kadiiska, Maria B; Goldstein, Joyce; Mason, Ronald P


    While some studies show that carbon tetrachloride-mediated metabolic oxidative stress exacerbates steatohepatitic-like lesions in obese mice, the redox mechanisms that trigger the innate immune system and accentuate the inflammatory cascade remain unclear. Here we have explored the role of the purinergic receptor P2X7-NADPH oxidase axis as a primary event in recognizing the heightened release of extracellular ATP from CCl(4)-treated hepatocytes and generating redox-mediated Kupffer cell activation in obese mice. We found that an underlying condition of obesity led to the formation of protein radicals and posttranslational nitration, primarily in Kupffer cells, at 24h post-CCl(4) administration. The free radical-mediated oxidation of cellular macromolecules, which was NADPH oxidase and P2X7 receptor-dependent, correlated well with the release of TNF-α and MCP-2 from Kupffer cells. The Kupffer cells in CCl(4)-treated mice exhibited increased expression of MHC Class II proteins and showed an activated phenotype. Increased expression of MHC Class II was inhibited by the NADPH oxidase inhibitor apocynin , P2X7 receptor antagonist A438709 hydrochloride, and genetic deletions of the NADPH oxidase p47 phox subunit or the P2X7 receptor. The P2X7 receptor acted upstream of NADPH oxidase activation by up-regulating the expression of the p47 phox subunit and p47 phox binding to the membrane subunit, gp91 phox. We conclude that the P2X7 receptor is a primary mediator of oxidative stress-induced exacerbation of inflammatory liver injury in obese mice via NADPH oxidase-dependent mechanisms.

  20. Nitrite reductase activity of rat and human xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: evaluation of their contribution to NO formation in vivo. (United States)

    Maia, Luisa B; Pereira, Vânia; Mira, Lurdes; Moura, José J G


    Nitrite is presently considered a NO "storage form" that can be made available, through its one-electron reduction, to maintain NO formation under hypoxia/anoxia. The molybdoenzymes xanthine oxidase/dehydrogenase (XO/XD) and aldehyde oxidase (AO) are two of the most promising mammalian nitrite reductases, and in this work, we characterized NO formation by rat and human XO/XD and AO. This is the first characterization of human enzymes, and our results support the employment of rat liver enzymes as suitable models of the human counterparts. A comprehensive kinetic characterization of the effect of pH on XO and AO-catalyzed nitrite reduction showed that the enzyme's specificity constant for nitrite increase 8-fold, while the Km(NO2(-)) decrease 6-fold, when the pH decreases from 7.4 to 6.3. These results demonstrate that the ability of XO/AO to trigger NO formation would be greatly enhanced under the acidic conditions characteristic of ischemia. The dioxygen inhibition was quantified, and the Ki(O2) values found (24.3-48.8 μM) suggest that in vivo NO formation would be fine-tuned by dioxygen availability. The potential in vivo relative physiological relevance of XO/XD/AO-dependent pathways of NO formation was evaluated using HepG2 and HMEC cell lines subjected to hypoxia. NO formation by the cells was found to be pH-, nitrite-, and dioxygen-dependent, and the relative contribution of XO/XD plus AO was found to be as high as 50%. Collectively, our results supported the possibility that XO/XD and AO can contribute to NO generation under hypoxia inside a living human cell. Furthermore, the molecular mechanism of XO/AO-catalyzed nitrite reduction was revised.

  1. Synthesis, Characterization of Heterodinuclear Co-Cu Complex and Its Electrocatalytic Activity towards 02 Reduction: Implications for Cytochrome c Oxidase Active Site Modeling

    Institute of Scientific and Technical Information of China (English)

    卢卫兵; 汪存信; 周晓海; 任建国


    A new dinudeating ligand consisting of a tetraphanylporphyrin derivative covalently linked with tris(2-benzimidazylmethyl)-amine and its homodinudear Co-Co and heterodinnelear Co-Cu complexes were synthesized and spectroscopically character-ized. The heterobimetallie cobalt-copper complex bearing three benzimidazole ligands for copper, as cytochrome c oxidase ac-tive site model, was applied to the surface of glassy carbon elec-trode to show electrocatalytie activity for O2 reduction in aque-ous solution at an addity level dose to physiological pH value.The kinetic parameters of this electrocatalytic process were ob-tained.

  2. Changes of alternative oxidase activity, capacity and protein content in leaves of Cucumis sativus wild-type and MSC16 mutant grown under different light intensities. (United States)

    Florez-Sarasa, Igor; Ostaszewska, Monika; Galle, Alexander; Flexas, Jaume; Rychter, Anna M; Ribas-Carbo, Miquel


    In vitro studies demonstrated that alternative oxidase (AOX) is biochemically regulated by a sulfhydryl-disulfide system, interaction with alpha-ketoacids, ubiquinone pool redox state and protein content among others. However, there is still scarce information about the in vivo regulation of the AOX. Cucumis sativus wild-type (WT) and MSC16 mutant plants were grown under two different light intensities and were used to analyze the relationship between the amount of leaf AOX protein and its in vivo capacity and activity at night and day periods. WT and MSC16 plants presented lower total respiration (V(t)), cytochrome oxidase pathway (COP) activity (v(cyt)) and alternative oxidase pathway (AOP) activity (v(alt)) when grown at low light (LL), although growth light intensity did not change the amount of cytochrome oxidase (COX) nor AOX protein. Changes of v(cyt) related to growing light conditions suggested a substrate availability and energy demand control. On the other hand, the total amount of AOX protein present in the tissue does not play a role in the regulation neither of the capacity nor of the activity of the AOP in vivo. Soluble carbohydrates were directly related to the activity of the AOP. However, although differences in soluble sugar contents mostly regulate the capacity of the AOP at different growth light intensities, additional regulatory mechanisms are necessary to fully explain the observed results.

  3. Copper electrodeposition from cuprous chloride solutions containing lead, zinc or iron ions

    Institute of Scientific and Technical Information of China (English)

    M. Tchoumou; M. Roynette Ehics


    Cuprous chloride hydrochloric acid solutions were electrolysed in a two compartments cell without agitation for copper extraction. It is found that the current density affects the colour and the size of copper deposits. During electrodeposition of copper from cuprous solution in the presence of various concentrations of lead, zinc or iron ions at different current densities, it is observed that lead is codeposited with copper by increasing current density.In all experiments, the current efficiency for the copper deposition reaction fluctuates between 88.50% and 95.50%.

  4. The activity of mixed function oxidases, estimated by in vivo antipyrine clearance, is similar in horses and camels. (United States)

    Wasfi, I A; Zorob, O M; Boni, N S; Hadi, A A; Agha, B A; Elghazali, M


    The activity of hepatic mixed function oxidases was compared in horses and camels (Camelus dromedarius) by studying the pharmacokinetics of antipyrine in seven camels and five horses following intravenous administration of a single dose of antipyrine (25 mg/kg). The data obtained (mean +/- SEM and median in brackets) in camels and horses, respectively, were as follows: the elimination half-lives were 3.25 +/- 0.23 (3.19) and 3.09 +/- 0.25 (2.90) hr; the apparent volumes of distribution (area method) were 0.691 +/- 0.045 (0.648) and 0.642 +/- 0.034 (0.676) l/kg; the volumes of distribution at steady state were 0.659 +/- 0.040 (0.607) and 0.620 +/- 0.030 (0.653) l/kg; the volume of the central compartment of the two-compartment pharmacokinetic model were 0.386 +/- 0.0523 (0.349) and 0.298 +/- 0.05 (0.308) l/kg; total body clearances were 0.148 +/- 0.008 (0.158) and 0.145 +/- 0.007 (0.147) l/kg/hr; the areas under the curves to infinity were 171.0 +/- 9 (165) and 175 +/- 8.0 (170) There was no statistical significance in any parameter between camels and horses which suggests that the activity of hepatic mixed function oxidases is similar in horses and camels.

  5. Resolution of a low molecular weight G protein in neutrophil cytosol required for NADPH oxidase activation and reconstitution by recombinant Krev-1 protein. (United States)

    Eklund, E A; Marshall, M; Gibbs, J B; Crean, C D; Gabig, T G


    Activation of the membrane-associated NADPH oxidase in intact human neutrophils requires a receptor-associated heterotrimeric GTP-binding protein that is sensitive to pertussis toxin. Activation of this NADPH oxidase by arachidonate in a cell-free system requires an additional downstream pertussis toxin-insensitive G protein (Gabig, T. G., English, D., Akard, L. P., and Schell, M. J. (1987) (J. Biol. Chem. 262, 1685-1690) that is located in the cytosolic fraction of unstimulated cells (Gabig, T. G., Eklund, E. A., Potter, G. B., and Dykes, J. R. (1990) J. Immunol. 145, 945-951). In the present study, immunodepletion of G proteins from the cytosolic fraction of unstimulated neutrophils resulted in a loss of the ability to activate NADPH oxidase in the membrane fraction. The activity in immunodepleted cytosol was fully reconstituted by a partially purified fraction from neutrophil cytosol that contained a 21-kDa GTP-binding protein. Purified human recombinant Krev-1 p21 also completely reconstituted immunodepleted cytosol whereas recombinant human H-ras p21 or yeast RAS GTP-binding proteins had no reconstitutive activity. Rabbit antisera raised against a synthetic peptide corresponding to the effector region of Krev-1 (amino acids 31-43) completely inhibited cell-free NADPH oxidase activation, and this inhibition was blocked by the synthetic 31-43 peptide. An inhibitory monoclonal antibody specific for ras p21 amino acids 60-77 (Y13-259) had no effect on cell-free NADPH oxidase activation. Activation of the NADPH oxidase in intact neutrophils by stimulation with phorbol myristate acetate caused a marked increase in the amount of membrane-associated antigen recognized by 151 antiserum on Western blot. Thus a G protein in the cytosol of unstimulated neutrophils antigenically and functionally related to Krev-1 may be the downstream effector G protein for NADPH oxidase activation. This system represents a unique model to study molecular interactions of a ras-like G

  6. Effects of chlordiazepoxide, diazepam and oxazepam on the antitumor activity, the lethality and the blood level of active metabolites of cyclophosphamide and cyclophosphamide oxidase activity in mice. (United States)

    Sasaki, K; Furusawa, S; Takayanagi, G


    Effects of chlordiazepoxide, diazepam and oxazepam on the antitumor activity and acute toxicity of cyclophosphamide and the level of its active metabolites in the plasma were investigated in mice. Cyclophosphamide was administered 24 h after the final injection of chlordiazepoxide, diazepam or oxazepam (100 mg/kg/d for 3 d, i.p.). Pretreatment with these drugs increased the acute toxicity of cyclophosphamide (300 or 450 mg/kg, i.p.), whereas drugs had no effect on the antitumor activity of cyclophosphamide (100 mg/kg, i.p.) against Ehrlich solid carcinoma. A high level of active metabolites of cyclophosphamide in the plasma after the administration of cyclophosphamide (300 or 450 mg/kg, i.p.) was observed in chlordiazepoxide-, diazepam- or oxazepam-treated mice. On the other hand, chlordiazepoxide, diazepam or oxazepam enhanced significantly the activity of cyclophosphamide oxidase in hepatic microsomes. It is concluded that potentiation of the acute toxicity at a high dose of cyclophosphamide by chlordiazepoxide, diazepam and oxazepam is due to an induction of microsomal drug-metabolizing enzyme which are responsible for the in vivo activation of cyclophosphamide.

  7. Effects of environmental enrichment on anxiety responses, spatial memory and cytochrome c oxidase activity in adult rats. (United States)

    Sampedro-Piquero, P; Zancada-Menendez, C; Begega, A; Rubio, S; Arias, J L


    We have studied the effect of an environmental enrichment (EE) protocol in adult Wistar rats on the activity in the elevated zero-maze (EZM), performance in the radial-arm water maze (RAWM) and we have also examined the changes in the neuronal metabolic activity of several brain regions related to anxiety response and spatial memory through cytochrome c oxidase histochemistry (COx). Our EE protocol had anxiolytic effect in the EZM; the animals spent more time and made more entries into the open quadrants, they had lower latency to enter into the open quadrant and lower levels of defecation. Also, the EE group showed fewer working memory and reference memory errors, as well as lesser distance travelled in the first day of the spatial training. In relation to the neuronal metabolic activity, EE reduced the COx activity in brain regions related to anxiety response, such as the infralimbic cortex, the paraventricular thalamic and hypothalamic nucleus, the basolateral amygdala, and the ventral hippocampus. Interestingly, there were no significant differences between groups in the dorsal hippocampus, more related to spatial cognition. These results suggest a beneficial effect of EE on spatial memory as a result of reducing anxiety levels and the COx activity in brain regions involved in anxiety response. We also found a differential pattern of activation inside the hippocampus, suggesting that the dorsal hippocampus has a preferential involvement in spatial learning and memory, whereas the ventral hippocampus has a role in anxiety response.

  8. Inhibition of Excessive Monoamine Oxidase A/B Activity Protects Against Stress-induced Neuronal Death in Huntington Disease. (United States)

    Ooi, Jolene; Hayden, Michael R; Pouladi, Mahmoud A


    Monoamine oxidases (MAO) are important components of the homeostatic machinery that maintains the levels of monoamine neurotransmitters, including dopamine, in balance. Given the imbalance in dopamine levels observed in Huntington disease (HD), the aim of this study was to examine MAO activity in a mouse striatal cell model of HD and in human neural cells differentiated from control and HD patient-derived induced pluripotent stem cell (hiPSC) lines. We show that mouse striatal neural cells expressing mutant huntingtin (HTT) exhibit increased MAO expression and activity. We demonstrate using luciferase promoter assays that the increased MAO expression reflects enhanced epigenetic activation in striatal neural cells expressing mutant HTT. Using cellular stress paradigms, we further demonstrate that the increase in MAO activity in mutant striatal neural cells is accompanied by enhanced susceptibility to oxidative stress and impaired viability. Treatment of mutant striatal neural cells with MAO inhibitors ameliorated oxidative stress and improved cellular viability. Finally, we demonstrate that human HD neural cells exhibit increased MAO-A and MAO-B expression and activity. Altogether, this study demonstrates abnormal MAO expression and activity and suggests a potential use for MAO inhibitors in HD.

  9. Cardiac Cytochrome c Oxidase Activity and Contents of Submits 1 and 4 are Altered in Offspring by Low Prenatal Intake by Rat Dams (United States)

    It has been reported previously that the offspring of rat dams consuming low dietary copper (Cu) during pregnancy and lactation experience a deficiency in cardiac cytochrome c oxidase (CCO) characterized by reduced catalytic activity and mitochondrial- and nuclear-subunit content after postnatal day...

  10. NADPH oxidase is internalized by clathrin-coated pits and localizes to a Rab27A/B GTPase-regulated secretory compartment in activated macrophages

    DEFF Research Database (Denmark)

    Ejlerskov, Patrick; Christensen, Dan Ploug; Beyaie, David;


    Here, we report that activation of different types of tissue macrophages, including microglia, by lipopolysaccharide (LPS) or GM-CSF stimulation correlates with the quantitative redistribution of NADPH oxidase (cyt b(558)) from the plasma membrane to an intracellular stimulus-responsive storage c...

  11. One-pot synthesis of cuprous oxide-reduced graphene oxide nanocomposite with enhanced photocatalytic and electrocatalytic performance (United States)

    Han, Fugui; Li, Heping; Yang, Jun; Cai, Xiaodong; Fu, Li


    We report on the facile one-step synthesis of porous cuprous oxide nanoparticles on reduced graphene oxide (Cu2O-RGO) by synchronously reducing Cu2+ ions and GO with ethylene glycol. The basic chemical components, crystal structure and surface morphology of prepared nanocomposite was carefully characterized. The photocatalytic activities of the as-prepared nanocomposite was investigated by photodegrading methylene blue (MB) under visible light. The electrocatalytic property of the nanocomposite was investigated by electrocatalytic determination of acetaminophen. The results indicate that the corporation of RGO with Cu2O nanoparticles could high enhance the both photocatalytic and electrocatalytic properties. Moreover, we found that the content of RGO introduced into nanocomposite could highly affect the product properties.

  12. Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity. (United States)

    Deep, Gagan; Kumar, Rahul; Jain, Anil K; Dhar, Deepanshi; Panigrahi, Gati K; Hussain, Anowar; Agarwal, Chapla; El-Elimat, Tamam; Sica, Vincent P; Oberlies, Nicholas H; Agarwal, Rajesh


    Prostate cancer (PCa) is the leading malignancy among men. Importantly, this disease is mostly diagnosed at early stages offering a unique chemoprevention opportunity. Therefore, there is an urgent need to identify and target signaling molecules with higher expression/activity in prostate tumors and play critical role in PCa growth and progression. Here we report that NADPH oxidase (NOX) expression is directly associated with PCa progression in TRAMP mice, suggesting NOX as a potential chemoprevention target in controlling PCa. Accordingly, we assessed whether NOX activity in PCa cells could be inhibited by Graviola pulp extract (GPE) that contains unique acetogenins with strong anti-cancer effects. GPE (1-5 μg/ml) treatment strongly inhibited the hypoxia-induced NOX activity in PCa cells (LNCaP, 22Rv1 and PC3) associated with a decrease in the expression of NOX catalytic and regulatory sub-units (NOX1, NOX2 and p47(phox)). Furthermore, GPE-mediated NOX inhibition was associated with a strong decrease in nuclear HIF-1α levels as well as reduction in the proliferative and clonogenic potential of PCa cells. More importantly, GPE treatment neither inhibited NOX activity nor showed any cytotoxicity against non-neoplastic prostate epithelial PWR-1E cells. Overall, these results suggest that GPE could be useful in the prevention of PCa progression via inhibiting NOX activity.

  13. Covalent attachment of cholesterol oxidase and horseradish peroxidase on perlite through silanization: activity, stability and co-immobilization. (United States)

    Torabi, Seyed-Fakhreddin; Khajeh, Khosro; Ghasempur, Salehe; Ghaemi, Nasser; Siadat, Seyed-Omid Ranaei


    In the present work, co-immobilization of cholesterol oxidase (COD) and horseradish peroxidase (POD) on perlite surface was attempted. The surface of perlite were activated by 3-aminopropyltriethoxysilane and covalently bonded with COD and POD via glutaraldehyde. Enzymes activities have been assayed by spectrophotometric technique. The stabilities of immobilized COD and POD to pH were higher than those of soluble enzymes and immobilization shifted optimum pH of enzymes to the lower pH. Heat inactivation studies showed improved thermostability of the immobilized COD for more than two times, but immobilized POD was less thermostable than soluble POD. Also activity recovery of immobilized COD was about 50% since for immobilized POD was 11%. The K(m) of immobilized enzymes was found slightly lower than that of soluble enzymes. Immobilized COD showed inhibition in its activity at high cholesterol concentration which was not reported for soluble COD before. Co-immobilized enzymes retained 65% of its initial activity after 20 consecutive reactor batch cycles.

  14. In vitro antioxidant, lipoxygenase and xanthine oxidase inhibitory activities of fractions from Cienfuegosia digitata Cav., Sida alba L. and Sida acuta Burn f. (Malvaceae). (United States)

    Konaté, K; Souza, A; Coulibaly, A Y; Meda, N T R; Kiendrebeogo, M; Lamien-Meda, A; Millogo-Rasolodimby, J; Lamidi, M; Nacoulma, O G


    In this study polyphenol content, antioxidant activity, lipoxygenase (LOX) and Xanthine Oxidase (XO) inhibitory effects of n-hexane, dichloromethane, ethyl acetate and n-butanol fractions of aqueous acetone extracts from S. alba L., S. acuta Burn f and Cienfuegosia digitata Cav. were investigated. The total phenolics, flavonoids, flavonols and total tannins were determined by spectrophotometric methods using Folin-ciocalteu, AlCl3 reagents and tannic acid, respectively. The antioxidant potential was evaluated using three methods: inhibition of free radical 2,2-diphenyl-1-picrylhydramzyl (DPPH), ABTS radical cation decolorization assay and Iron (III) to iron (II) reduction activity (FRAP). For enzymatic activity, lipoxygenase and xanthine oxidase inhibitory activities were used. This study shows a relationship between polyphenol contents, antioxidant and enzymatic activities. Present results showed that ethyl acetate and dichloromethane fractions elicit the highest polyphenol content, antioxidant and enzymatic activities.

  15. Effect of acyl-CoA oxidase activity on the accumulation of gamma-decalactone by the yeast Yarrowia lipolytica: a factorial approach. (United States)

    García, Erandi Escamilla; Nicaud, Jean-Marc; Belin, Jean-Marc; Waché, Yves


    beta-Oxidation is a cyclic pathway involved in the degradation of lipids. In yeast, it occurs in peroxisomes and the first step is catalyzed by an acyl-CoA oxidase (Aoxp). The yeast Yarrowia lipolytica possesses several genes (POX) coding for Aoxps. This study is based on the factorial analysis of results obtained with the many POX derivative strains that have been constructed previously. The effect of interactions between Aoxps on the acyl-CoA oxidase (Aox) activity was important even at the second order. We then investigated the effect of Aox activity on growth and lactone production. Aox activity was correlated with acidification of the medium by cells and with cellular growth but not with lactone production, although Aox activity on short chains was inversely correlated with lactone accumulation. Due to the poor correlation between Aox activity and lactone production, the modeling of this parameter gave no satisfactory results but growth depending on Aox activity was modeled.

  16. Decline in cytochrome c oxidase activity in rat-brain mitochondria with aging. Role of peroxidized cardiolipin and beneficial effect of melatonin. (United States)

    Petrosillo, Giuseppe; De Benedictis, Valentina; Ruggiero, Francesca M; Paradies, Giuseppe


    Reactive oxygen species (ROS) are considered a key factor in mitochondrial dysfunction associated with brain aging process. Mitochondrial respiration is an important source of ROS and hence a potential contributor to brain functional changes with aging. In this study, we examined the effect of aging on cytochrome c oxidase activity and other bioenergetic processes such as oxygen consumption, membrane potential and ROS production in rat brain mitochondria. We found a significant age-dependent decline in the cytochrome c oxidase activity which was associated with parallel changes in state 3 respiration, membrane potential and with an increase in H2O2 generation. The cytochrome aa3 content was practically unchanged in mitochondria from young and aged animals. The age-dependent decline of cytochrome c oxidase activity could be restored, in situ, to the level of young animals, by exogenously added cardiolipin. In addition, exposure of brain mitochondria to peroxidized cardiolipin resulted in an inactivation of this enzyme complex. It is suggested that oxidation/depletion of cardiolipin could be responsible, at least in part, for the decline of cytochrome c oxidase and mitochondrial dysfunction in brain aging. Melatonin treatment of old animals largely prevented the age-associated alterations of mitochondrial bioenergetic parameters. These results may prove useful in elucidating the molecular mechanisms underlying mitochondrial dysfunction associated with brain aging process, and may have implications in etiopathology of age-associated neurodegenerative disorders and in the development of potential treatment strategies.

  17. Inhibition by 1-aminocyclobutane-1-carboxylate of the activity of 1-aminocyclopropane-1-carboxylate oxidase obtained from senescing petals of carnation (Dianthus caryophyllus L.) flowers. (United States)

    Kosugi, Y; Oyamada, N; Satoh, S; Yoshioka, T; Onodera, E; Yamada, Y


    We partially purified 1-aminocyclopropane-1-carboxylate (ACC) oxidase from senescing petals of carnation (Dianthus caryophyllus L. cv. Nora) flowers and investigated its general characteristics, and, in particular, the inhibition of its activity by ACC analogs. The enzyme had an optimum pH at 7-7.5 and required Fe2+, ascorbate and NaHCO3 for its maximal activity. The Km for ACC was calculated as 111-125 microM in the presence of NaHCO3. Its M(r) was estimated to be 35 and 36 kDa by gel-filtration chromatography on HPLC and SDS-PAGE, respectively, indicating that the enzyme exists in a monomeric form. These properties were in agreement with those reported previously with ACC oxidases from different plant tissues including senescing carnation petals. Among six ACC analogs tested, 1-aminocyclobutane-1-carboxylate (ACBC) inhibited most severely the activity of ACC oxidase from carnation petals. ACBC acted as a competitive inhibitor with the Ki of 20-30 microM. The comparison between the Km for ACC and the Ki for ACBC indicated that ACBC had an affinity which was ca. 5-fold higher than that of ACC. Whereas ACC inactivated carnation ACC oxidase in a time-dependent manner during incubation, ACBC did not cause the inactivation of the enzyme. Preliminary experiments showed that ACBC and its N-substituted derivatives delayed the onset of senescence in cut carnation flowers.

  18. Role of xanthine oxidase, lactoperoxidase, and NO in the innate immune system of mammary secretion during active involution in dairy cows: manipulation with casein hydrolyzates. (United States)

    Silanikove, Nissim; Shapiro, Fira; Shamay, Avi; Leitner, Gabriel


    The aims of this study were to test whether xanthine oxidase, lactoperoxidase, and NO are components of the innate immune system of mammary secretion during active involution in dairy cows, and whether the innate immune system is activated by casein hydrolysates. Our laboratory has shown recently that infusion of CNH into mammary glands induced involution and was associated with earlier increases in the concentrations of components of the innate immune system. Intact casein is inactive and served as control. Half of the glands of 8 Holstein cows scheduled for dry off (approximately 60 days before parturition) were injected for 3 days with a single dose of casein hydrolyzates and the contralateral glands with a single dose of intact casein with the same concentration. Involution elicited marked increases in xanthine oxidase and lactoperoxidase activities, and accumulation of urate and nitrate. NO and H(2)O(2) were constantly produced in the mammary gland secretion. Nitrite formed either by autooxidation of NO or by conversion of nitrate to nitrite by xanthine oxidase was converted into the powerful nitric dioxide radical by lactoperoxidase and H(2)O(2) that is derived from the metabolism of xanthine oxidase. Nitric dioxide is most likely responsible for the formation of nitrosothiols on thiol-bearing groups, which allows an extended NO presence in mammary secretion. Nitrite is effectively converted to nitrate, which accumulated in the range of approximately 25 microM -1 mM from the start of the experiment to the complete involution of glands. The mammary secretion in all glands was bactericidal and bacteriostatic during established involution, and this appeared sooner and more acutely in glands treated with casein hydrolyzates, within 8 to 24 h. It is concluded that xanthine oxidase, lactoperoxidase, and NO are components of the mammary innate immune system that form bactericidal and bacteriostatic activities in mammary secretions. The innate immune system play a

  19. The effect of ultrasound on particle size, color, viscosity and polyphenol oxidase activity of diluted avocado puree. (United States)

    Bi, Xiufang; Hemar, Yacine; Balaban, Murat O; Liao, Xiaojun


    The effect of ultrasound treatment on particle size, color, viscosity, polyphenol oxidase (PPO) activity and microstructure in diluted avocado puree was investigated. The treatments were carried out at 20 kHz (375 W/cm(2)) for 0-10 min. The surface mean diameter (D[3,2]) was reduced to 13.44 μm from an original value of 52.31 μm by ultrasound after 1 min. A higher L(∗) value, ΔE value and lower a(∗) value was observed in ultrasound treated samples. The avocado puree dilution followed pseudoplastic flow behavior, and the viscosity of diluted avocado puree (at 100 s(-1)) after ultrasound treatment for 1 min was 6.0 and 74.4 times higher than the control samples for dilution levels of 1:2 and 1:9, respectively. PPO activity greatly increased under all treatment conditions. A maximum increase of 25.1%, 36.9% and 187.8% in PPO activity was found in samples with dilution ratios of 1:2, 1:5 and 1:9, respectively. The increase in viscosity and measured PPO activity might be related to the decrease in particle size. The microscopy images further confirmed that ultrasound treatment induced disruption of avocado puree structure.

  20. Gamma irradiation of mushrooms, preliminary studies: effect on O-diphenyl oxidase activity and amino acid content

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, S.; Gebicka, L. (Politechnika Lodzka, Lodz (Poland). Inst. Techniki Radiacynej)


    Mushrooms are a valuable food raw materials because of their nutritional and taste values. Post-harvest ripening, chemical composition (94% water) and possible microbial contamination decrease not only organoleptic and nutritional value, but also the shelf-life. As an objective method of evaluation of irradiated mushrooms we adopted activity determination of o-diphenyl oxidase (o-DPO) which is responsible for discoloration of the edible mushrooms and altered qualitative and quantitative content of amino acids. It was observed that doses up to 2 kGy did not cause any increase in the activity of o-DPO; irradiation also did not affect the taste. Mushrooms irradiated with doses up to 4 kGy were of good quality after 5 days of storage at 4 C, while the control samples (unirradiated) after the same time were considerably changed, probably due too post-harvest ripening. Immediately after exposure the activity of o-DPO increased in proportion to the dose used. During subsequent storage, however, no increase in o-DPO activity was observed. Irradiation used in the range from 0.2 to 0.4 kGy did not affect the nutritional value of the raw material. The results are an additional confirmation that radiation can be used for efficient preservation of mushrooms. (author). 14 refs, 6 tabs.

  1. A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity. (United States)

    Hess, Kenneth C; Liu, Jingjing; Manfredi, Giovanni; Mühlschlegel, Fritz A; Buck, Jochen; Levin, Lonny R; Barrientos, Antoni


    Mitochondria, the major source of cellular energy in the form of ATP, respond to changes in substrate availability and bioenergetic demands by employing rapid, short-term, metabolic adaptation mechanisms, such as phosphorylation-dependent protein regulation. In mammalian cells, an intramitochondrial CO2-adenylyl cyclase (AC)-cyclic AMP (cAMP)-protein kinase A (PKA) pathway regulates aerobic energy production. One target of this pathway involves phosphorylation of cytochrome c oxidase (COX) subunit 4-isoform 1 (COX4i1), which modulates COX allosteric regulation by ATP. However, the role of the CO2-sAC-cAMP-PKA signalosome in regulating COX activity and mitochondrial metabolism and its evolutionary conservation remain to be fully established. We show that in Saccharomyces cerevisiae, normoxic COX activity measured in the presence of ATP is 55% lower than in the presence of ADP. Moreover, the adenylyl cyclase Cyr1 activity is present in mitochondria, and it contributes to the ATP-mediated regulation of COX through the normoxic subunit Cox5a, homologue of human COX4i1, in a bicarbonate-sensitive manner. Furthermore, we have identified 2 phosphorylation targets in Cox5a (T65 and S43) that modulate its allosteric regulation by ATP. These residues are not conserved in the Cox5b-containing hypoxic enzyme, which is not regulated by ATP. We conclude that across evolution, a CO2-sAC-cAMP-PKA axis regulates normoxic COX activity.

  2. Towards printed perovskite solar cells with cuprous oxide hole transporting layers

    DEFF Research Database (Denmark)

    Wang, Yan; Xia, Zhonggao; Liang, Jun


    Solution-processed p-type metal oxide materials have shown great promise in improving the stability of perovskite-based solar cells and offering the feasibility for a low cost printing fabrication process. Herein, we performed a device modeling study on planar perovskite solar cells with cuprous ...

  3. Optical characterization of gold-cuprous oxide interfaces for terahertz emission applications

    NARCIS (Netherlands)

    Ramanandan, G.K.P.; Adam, A.J.L.; Ramakrishnan, G.; Petrik, P.; Hendrikx, R.; Planken, P.C.M.


    We show that the interface between gold and thermally formed cuprous oxide, which emits terahertz radiation when illuminated with ultrafast femtosecond lasers, is in fact an AuCu/Cu2O interface due to the formation of the thermal diffusion alloy AuCu. The alloy enables the formation of a Schottky-ba

  4. p21-Activated kinase1 (Pak1) is a negative regulator of NADPH-oxidase 2 in ventricular myocytes. (United States)

    DeSantiago, Jaime; Bare, Dan J; Xiao, Lei; Ke, Yunbo; Solaro, R John; Banach, Kathrin


    Ischemic conditions reduce the activity of the p21-activated kinase (Pak1) resulting in increased arrhythmic activity. Triggered arrhythmic activity during ischemia is based on changes in cellular ionic balance and the cells Ca(2+) handling properties. In the current study we used isolated mouse ventricular myocytes (VMs) deficient for the expression of Pak1 (Pak1(-/-)) to determine the mechanism by which Pak1 influences the generation of arrhythmic activity during simulated ischemia. The Ca(2+) transient amplitude and kinetics did not significantly change in wild type (WT) and Pak1(-/-) VMs during 15 min of simulated ischemia. However, Pak1(-/-) VMs exhibited an exaggerated increase in [Ca(2+)]i, which resulted in spontaneous Ca(2+) release events and waves. The Ca(2+) overload in Pak1(-/-) VMs could be suppressed with a reverse mode blocker (KB-R7943) of the sodium calcium exchanger (NCX), a cytoplasmic scavenger of reactive oxygen species (ROS; TEMPOL) or a RAC1 inhibitor (NSC23766). Measurements of the cytoplasmic ROS levels revealed that decreased Pak1 activity in Pak1(-/-) VMs or VMs treated with the Pak1 inhibitor (IPA3) enhanced cellular ROS production. The Pak1 dependent increase in ROS was attenuated in VMs deficient for NADPH oxidase 2 (NOX2; p47(phox-/-)) or in VMs where NOX2 was inhibited (gp91ds-tat). Voltage clamp recordings showed increased NCX activity in Pak1(-/-) VMs that depended on enhanced NOX2 induced ROS production. The exaggerated Ca(2+) overload in Pak1(-/-) VMs could be mimicked by low concentrations of ouabain. Overall our data show that Pak1 is a critical negative regulator of NOX2 dependent ROS production and that a latent ROS dependent stimulation of NCX activity can predispose VMs to Ca(2+) overload under conditions where no significant changes in excitation-contraction coupling are yet evident. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. p21-activated kinase1 (Pak1) is a negative regulator of NADPH-oxidase 2 in ventricular myocytes (United States)

    DeSantiago, Jaime; Bare, Dan J; Xiao, Lei; Ke, Yunbo; Solaro, R. John; Banach, Kathrin


    Ischemic conditions reduce the activity of the p21-activated kinase (Pak1) resulting in increased arrhythmic activity. Triggered arrhythmic activity during ischemia is based on changes in cellular ionic balance and the cells Ca2+ handling properties. In the current study we used isolated mouse ventricular myocytes (VMs) deficient for the expression of Pak1 (Pak1-/-) to determine the mechanism by which Pak1 influences the generation of arrhythmic activity during simulated ischemia. The Ca2+ transient amplitude and kinetics did not significantly change in wild type (WT) and Pak1-/- VMs during 15 min of simulated ischemia. However, Pak1-/- VMs exhibited an exaggerated increase in [Ca2+]i, which resulted in spontaneous Ca2+ release events and waves. The Ca2+ overload in Pak1-/- VMs could be suppressed with a reverse mode blocker (KB-R7943) of the sodium calcium exchanger (NCX), a cytoplasmic scavenger of reactive oxygen species (ROS; TEMPOL) or a RAC1 inhibitor (NSC23766). Measurements of the cytoplasmic ROS levels revealed that decreased Pak1 activity in Pak1-/- VMs or VMs treated with the Pak1 inhibitor (IPA3) enhanced cellular ROS production. The Pak1 dependent increase in ROS was attenuated in VMs deficient for NADPH oxidase 2 (NOX2; p47phox-/-) or in VMs where NOX2 was inhibited (gp91ds-tat). Voltage clamp recordings showed increased NCX activity in Pak1-/- VMs that depended on enhanced NOX2 induced ROS production. The exaggerated Ca2+ overload in Pak1-/- VMs could be mimicked by low concentrations of ouabain. Overall our data show that Pak1 is a critical negative regulator of NOX2 dependent ROS production and that a latent ROS dependent stimulation of NCX activity can predispose VMs to Ca2+ overload under conditions where no significant changes in excitation-contraction coupling are yet evident. PMID:24380729

  6. Spermine oxidase (SMO activity in breast tumor tissues and biochemical analysis of the anticancer spermine analogues BENSpm and CPENSpm

    Directory of Open Access Journals (Sweden)

    Gucciardo Giacomo


    Full Text Available Abstract Background Polyamine metabolism has a critical role in cell death and proliferation representing a potential target for intervention in breast cancer (BC. This study investigates the expression of spermine oxidase (SMO and its prognostic significance in BC. Biochemical analysis of Spm analogues BENSpm and CPENSpm, utilized in anticancer therapy, was also carried out to test their property in silico and in vitro on the recombinant SMO enzyme. Methods BC tissue samples were analyzed for SMO transcript level and SMO activity. Student's t test was applied to evaluate the significance of the differences in value observed in T and NT samples. The structure modeling analysis of BENSpm and CPENSpm complexes formed with the SMO enzyme and their inhibitory activity, assayed by in vitro experiments, were examined. Results Both the expression level of SMO mRNA and SMO enzyme activity were significantly lower in BC samples compared to NT samples. The modeling of BENSpm and CPENSpm complexes formed with SMO and their inhibition properties showed that both were good inhibitors. Conclusions This study shows that underexpression of SMO is a negative marker in BC. The SMO induction is a remarkable chemotherapeutical target. The BENSpm and CPENSpm are efficient SMO inhibitors. The inhibition properties shown by these analogues could explain their poor positive outcomes in Phases I and II of clinical trials.

  7. Concentration dependent effects of commonly used pesticides on activation versus inhibition of the quince (Cydonia Oblonga) polyphenol oxidase. (United States)

    Fattouch, Sami; Raboudi-Fattouch, Faten; Ponce, José Vicente Gil; Forment, Josep Vicent; Lukovic, Dunja; Marzouki, Nejib; Vidal, Daniel Ramón


    Polyphenol oxidase (PPO) catalyzes the oxidation of o-diphenols to their respective quinones which undergo autopolymerization and form dark pigments. The interaction of PPO with various substrates and effectors remains the focus of intensive investigations due to the enzyme's key role in pigments biosynthesis including animal melanogenesis and fruit/fungi enzymatic browning. In this study, the effect of a range of commonly used pesticides on the enzyme activity has been evaluated using the purified quince (Cydonia oblonga Miller) PPO. The biochemical analysis showed that, in the presence of high pesticide concentrations, the enzyme was competitively inhibited, particularly with benomyl, carbaryl, deltamethrine and parathion methyl for which inhibition constants (K(i)) were 8.3, 5.7, 12 and 4 microM, respectively. At lower pesticide concentrations (2-10 microM), however, the catecholase activity was significantly activated (pCatechol substrate and parathion methyl inhibitor showed lower total energy scores of -120.06 and -117.4 3 kcal mol(-1), indicating that these ligands had higher PPO-binding affinities. The obtained data bring to light new pesticide functional features of great interest in the medicinal, agro-chemical and environmental circles.

  8. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation. (United States)

    Wang, Su Bin; Jang, Ji Yong; Chae, Yun Hee; Min, Ji Hyun; Baek, Jin Young; Kim, Myunghee; Park, Yunjeong; Hwang, Gwi Seo; Ryu, Jae-Sang; Chang, Tong-Shin


    Reactive oxygen species (ROS) generated upon collagen stimulation act as second messengers to propagate various platelet-activating events. Among the ROS-generating enzymes, NADPH oxidase (NOX) plays a prominent role in platelet activation. Thus, NOX has been suggested as a novel target for anti-platelet drug development. Although kaempferol has been identified as a NOX inhibitor, the influence of kaempferol on the activation of platelets and the underlying mechanism have never been investigated. Here, we studied the effects of kaempferol on NOX activation, ROS-dependent signaling pathways, and functional responses in collagen-stimulated platelets. Superoxide anion generation stimulated by collagen was significantly inhibited by kaempferol in a concentration-dependent manner. More importantly, kaempferol directly bound p47(phox), a major regulatory subunit of NOX, and significantly inhibited collagen-induced phosphorylation of p47(phox) and NOX activation. In accordance with the inhibition of NOX, ROS-dependent inactivation of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) was potently protected by kaempferol. Subsequently, the specific tyrosine phosphorylation of key components (Syk, Vav1, Btk, and PLCγ2) of collagen receptor signaling pathways was suppressed by kaempferol. Kaempferol also attenuated downstream responses, including cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Ultimately, kaempferol inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. This study shows that kaempferol impairs collagen-induced platelet activation through inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2. This effect suggests that kaempferol has therapeutic potential for the prevention and treatment of thrombovascular diseases.

  9. The activity of ascorbic acid and catechol oxidase, the rate of photosynthesis and respiration as related to plant organs, stage of development and copper supply

    Directory of Open Access Journals (Sweden)

    St. Łyszcz


    Full Text Available Some experiments were performed to investigate the physiological role of copper in oat and sunflower and to recognize some effects of copper deficiency. Oat and sunflower plants were grown in pots on a peat soil under copper deficiency conditions (–Cu or with the optimal copper supply (+Cu. In plants the following measurements were carried out: 1 the activity of ascorbic acid oxidase (AAO and of catechol oxidase (PPO in different plant organs and at different stages of plant development, 2 the activity and the rate of photosynthesis, 3 the activity of RuDP-carboxylase, 4 the intensity of plant respiration. The activity of AAO and of PPO, and also the rate and the activity of photosynthesis were significantly lower under conditions of copper deficiency. The activity of both discussed oxidases depended on: 1 the plant species, 2 plant organs, 3 stage of plant development. Copper deficiency caused decrease of the respiration intensity of sunflower leaves but it increased to some extent the respiration of oat tops. Obtained results are consistent with the earlier suggestion of the authors that the PPO activity in sunflower leaves could be a sensitive indicator of copper supply of the plants, farther experiments are in progress.

  10. Cytotoxicity of cuprous oxide nanoparticles to fish blood cells: hemolysis and internalization

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liqiang, E-mail:; Kang Bin [Yunnan University, Asian International Rivers Center, Yunnan Key Laboratory of International Rivers and Trans-boundary Eco-security (China); Ling Jian [Yunnan University, College of Chemistry and Chemical Engineering (China)


    Cuprous oxide nanoparticles (Cu{sub 2}O NPs) possess unique physical and chemical properties which are employed in a broad variety of applications. However, little is known about the adverse effects of Cu{sub 2}O NPs on organisms. In the current study, in vitro cytotoxicity of Cu{sub 2}O NPs (ca. 60 nm in diameter) to the blood cells of freshwater fish Carassius auratus was evaluated. A concentration-dependent hemolytic activity of Cu{sub 2}O NPs to red blood cells (RBCs) and the phagocytosis of Cu{sub 2}O NPs by leukocytes were revealed. The results showed that dosages of Cu{sub 2}O NPs greater than 40 {mu}g/mL were toxic to blood cells, and could cause serious membrane damage to RBCs. The EC{sub 50} value of Cu{sub 2}O NPs as obtained from RBCs and whole blood exposure was 26 and 63 {mu}g/mL, respectively. The generation of reactive oxygen species and the direct interaction between Cu{sub 2}O NPs and the cell membrane were suggested as the possible mechanism for cytotoxicity, and the intrinsic hemolytic active of Cu{sub 2}O NPs was the main contributor to the toxicity rather than solubilized copper ions. The adsorption of plasma proteins on the surfaces of Cu{sub 2}O NPs led to their aggregation in whole blood, and aggregate formation can significantly alleviate the hemolytic effect and subsequently mediate the phagocytosis of Cu{sub 2}O NPs by leukocytes.

  11. MicroRNA-142 reduces monoamine oxidase A expression and activity in neuronal cells by downregulating SIRT1.

    Directory of Open Access Journals (Sweden)

    Amrita Datta Chaudhuri

    Full Text Available Aberrant expression of microRNAs (miRs has been implicated in the pathogenesis of several neurodegenerative disorders. In HIV-associated neurocognitive disorders (HAND, miR-142 was found to be upregulated in neurons and myeloid cells in the brain. We investigated the downstream effects of chronic miR-142 upregulation in neuronal cells by comparing gene expression in stable clones of the human neuroblastoma cell line BE(2M17 expressing miR-142 to controls. Microarray analysis revealed that miR-142 expression led to a reduction in monoamine oxidase (MAO A mRNA, which was validated by qRT-PCR. In addition to the mRNA, the MAOA protein level and enzyme activity were also reduced. Examination of primary human neurons revealed that miR-142 expression indeed resulted in a downregulation of MAOA protein level. Although MAOA is not a direct target of miR-142, SIRT1, a key transcriptional upregulator of MAOA is, thus miR-142 downregulation of MAOA expression is indirect. MiR-142 induced decrease in MAOA expression and activity may contribute to the changes in dopaminergic neurotransmission reported in HAND.

  12. Reduction of NADPH-oxidase activity ameliorates the cardiovascular phenotype in a mouse model of Williams-Beuren Syndrome.

    Directory of Open Access Journals (Sweden)

    Victoria Campuzano


    Full Text Available A hallmark feature of Williams-Beuren Syndrome (WBS is a generalized arteriopathy due to elastin deficiency, presenting as stenoses of medium and large arteries and leading to hypertension and other cardiovascular complications. Deletion of a functional NCF1 gene copy has been shown to protect a proportion of WBS patients against hypertension, likely through reduced NADPH-oxidase (NOX-mediated oxidative stress. DD mice, carrying a 0.67 Mb heterozygous deletion including the Eln gene, presented with a generalized arteriopathy, hypertension, and cardiac hypertrophy, associated with elevated angiotensin II (angII, oxidative stress parameters, and Ncf1 expression. Genetic (by crossing with Ncf1 mutant and/or pharmacological (with ang II type 1 receptor blocker, losartan, or NOX inhibitor apocynin reduction of NOX activity controlled hormonal and biochemical parameters in DD mice, resulting in normalized blood pressure and improved cardiovascular histology. We provide strong evidence for implication of the redox system in the pathophysiology of the cardiovascular disease in a mouse model of WBS. The phenotype of these mice can be ameliorated by either genetic or pharmacological intervention reducing NOX activity, likely through reduced angII-mediated oxidative stress. Therefore, anti-NOX therapy merits evaluation to prevent the potentially serious cardiovascular complications of WBS, as well as in other cardiovascular disorders mediated by similar pathogenic mechanism.

  13. D-Amino acids in the brain and mutant rodents lacking D-amino-acid oxidase activity. (United States)

    Yamanaka, Masahiro; Miyoshi, Yurika; Ohide, Hiroko; Hamase, Kenji; Konno, Ryuichi


    D-Amino acids are stereoisomers of L-amino acids. They are often called unnatural amino acids, but several D-amino acids have been found in mammalian brains. Among them, D-serine is abundant in the forebrain and functions as a co-agonist of NMDA receptors to enhance neurotransmission. D-Amino-acid oxidase (DAO), which degrades neutral and basic D-amino acids, is mainly present in the hindbrain. DAO catabolizes D-serine and, therefore, modulates neurotransmission. In the brains of mutant mice and rats lacking DAO activity, the amounts of D-serine and other D-amino acids are markedly increased. Mutant mice manifested behavioral changes characteristic of altered NMDA receptor activity, likely due to increased levels of D-serine. D-Serine and DAO have been demonstrated to play important roles in cerebellar development and synaptic plasticity. They have also implicated in amyotrophic lateral sclerosis and pain response. There have also been several lines of evidence correlating DAO with schizophrenia. Taken together, the experiments indicate that D-amino acids and DAO have pivotal functions in the central nervous system.

  14. Predicting drunk driving: contribution of alcohol use and related problems, traffic behaviour, personality and platelet monoamine oxidase (MAO) activity. (United States)

    Eensoo, Diva; Paaver, Marika; Harro, Maarike; Harro, Jaanus


    The aim of the study was to characterize the predictive value of socio-economic data, alcohol consumption measures, smoking, platelet monoamine oxidase (MAO) activity, traffic behaviour habits and impulsivity measures for actual drunk driving. Data were collected from 203 male drunk driving offenders and 211 control subjects using self-reported questionnaires, and blood samples were obtained from the two groups. We identified the combination of variables, which predicted correctly, approximately 80% of the subjects' belonging to the drunk driving and control groups. Significant independent discriminators in the final model were, among the health-behaviour measures, alcohol-related problems, frequency of using alcohol, the amount of alcohol consumed and smoking. Predictive traffic behaviour measures were seat belt use and paying for parking. Among the impulsivity measures, dysfunctional impulsivity was the best predictor; platelet MAO activity and age also had an independent predictive value. Our results support the notion that drunk driving is the result of a combination of various behavioural, biological and personality-related risk factors.

  15. Purification and antibacterial activities of an L-amino acid oxidase from king cobra (Ophiophagus hannah venom

    Directory of Open Access Journals (Sweden)

    CS Phua


    Full Text Available Some constituents of snake venom have been found to display a variety of biological activities. The antibacterial property of snake venom, in particular, has gathered increasing scientific interest due to antibiotic resistance. In the present study, king cobra venom was screened against three strains of Staphylococcus aureus [including methicillin-resistant Staphylococcus aureus (MRSA], three other species of gram-positive bacteria and six gram-negative bacteria. King cobra venom was active against all the 12 bacteria tested, and was most effective against Staphylococcus spp. (S. aureus and S. epidermidis. Subsequently, an antibacterial protein from king cobra venom was purified by gel filtration, anion exchange and heparin chromatography. Mass spectrometry analysis confirmed that the protein was king cobra L-amino acid oxidase (Oh-LAAO. SDS-PAGE showed that the protein has an estimated molecular weight of 68 kDa and 70 kDa under reducing and non-reducing conditions, respectively. The minimum inhibitory concentrations (MIC of Oh-LAAO for all the 12 bacteria were obtained using radial diffusion assay method. Oh-LAAO had the lowest MIC value of 7.5 µg/mL against S. aureus ATCC 25923 and ATCC 29213, MRSA ATCC 43300, and S. epidermidis ATCC 12228. Therefore, the LAAO enzyme from king cobra venom may be useful as an antimicrobial agent.

  16. Quantifying protein adsorption and function at nanostructured materials: enzymatic activity of glucose oxidase at GLAD structured electrodes. (United States)

    Jensen, Uffe B; Ferapontova, Elena E; Sutherland, Duncan S


    Nanostructured materials strongly modulate the behavior of adsorbed proteins; however, the characterization of such interactions is challenging. Here we present a novel method combining protein adsorption studies at nanostructured quartz crystal microbalance sensor surfaces (QCM-D) with optical (surface plasmon resonance SPR) and electrochemical methods (cyclic voltammetry CV) allowing quantification of both bound protein amount and activity. The redox enzyme glucose oxidase is studied as a model system to explore alterations in protein functional behavior caused by adsorption onto flat and nanostructured surfaces. This enzyme and such materials interactions are relevant for biosensor applications. Novel nanostructured gold electrode surfaces with controlled curvature were fabricated using colloidal lithography and glancing angle deposition (GLAD). The adsorption of enzyme to nanostructured interfaces was found to be significantly larger compared to flat interfaces even after normalization for the increased surface area, and no substantial desorption was observed within 24 h. A decreased enzymatic activity was observed over the same period of time, which indicates a slow conformational change of the adsorbed enzyme induced by the materials interface. Additionally, we make use of inherent localized surface plasmon resonances in these nanostructured materials to directly quantify the protein binding. We hereby demonstrate a QCM-D-based methodology to quantify protein binding at complex nanostructured materials. Our approach allows label free quantification of protein binding at nanostructured interfaces.

  17. Activation of protein kinase C and nicotinamide adenine dinucleotide phosphate oxidase in leukocytes of spontaneously hypertensive rats. (United States)

    Maeda, Kensaku; Yasunari, Kenichi; Sato, Eisuke F; Yoshikawa, Junichi; Inoue, Masayasu


    The involvement of oxidative stress in polymorphonuclear leukocytes (PMN) in the pathogenesis of hypertension remains to be elucidated. We analyzed the generation of reactive oxygen species (ROS) by the circulating and peritoneally infiltrating PMN from spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). Flow cytometric analysis revealed that ROS generation by PMN from SHR was higher than that from WKY before (at 6 weeks of age) and after (at 16 weeks of age) the onset of hypertension. In vivo, ROS generation by PMN from SHR, but not that by PMN from WKY, was significantly suppressed by 10-week treatment with 50 mg/kg/day carvedilol, and this treatment did not affect blood pressure. Western blotting analysis revealed that protein kinase C alpha (PKCalpha), but not PKCbetaI or betaII, was activated more strongly in PMN from SHR than in PMN from WKY. Furthermore, expression of p47phox of nicotinamide adenine dinucleotide phosphate oxidase, but not of p67phox, in PMN from SHR was higher than that in PMN from WKY. These results suggest that ROS generation by PMN is principally enhanced in SHR through activation of PKCalpha and p47phox.

  18. Structural, phylogenetic and docking studies of D-amino acid oxidase activator (DAOA, a candidate schizophrenia gene

    Directory of Open Access Journals (Sweden)

    Sehgal Sheikh


    Full Text Available Abstract Background Schizophrenia is a neurodegenerative disorder that occurs worldwide and can be difficult to diagnose. It is the foremost neurological disorder leading to suicide among patients in both developed and underdeveloped countries. D-amino acid oxidase activator (DAOA, also known as G72, is directly implicated in the glutamateric hypothesis of schizophrenia. It activates D-amino acid oxidase, which oxidizes D-serine, leading to modulation of the N-methyl-D-aspartate receptor. Methods MODELLER (9v10 was utilized to generate three dimensional structures of the DAOA candidate gene. The HOPE server was used for mutational analysis. The Molecular Evolutionary Genetics Analysis (MEGA5 tool was utilized to reconstruct the evolutionary history of the candidate gene DAOA. AutoDock was used for protein-ligand docking and Gramm-X and PatchDock for protein-protein docking. Results A suitable template (1ZCA was selected by employing BLASTp on the basis of 33% query coverage, 27% identity and E-value 4.9. The Rampage evaluation tool showed 91.1% favored region, 4.9% allowed region and 4.1% outlier region in DAOA. ERRAT demonstrated that the predicted model had a 50.909% quality factor. Mutational analysis of DAOA revealed significant effects on hydrogen bonding and correct folding of the DAOA protein, which in turn affect protein conformation. Ciona was inferred as the outgroup. Tetrapods were in their appropriate clusters with bifurcations. Human amino acid sequences are conserved, with chimpanzee and gorilla showing more than 80% homology and bootstrap value based on 1000 replications. Molecular docking analysis was employed to elucidate the binding mode of the reported ligand complex for DAOA. The docking experiment demonstrated that DAOA is involved in major amino acid interactions: the residues that interact most strongly with the ligand C28H28N3O5PS2 are polar but uncharged (Gln36, Asn38, Thr 122 and non-polar hydrophobic (Ile119, Ser171

  19. Bioactive Compounds, Antioxidant, Xanthine Oxidase Inhibitory, Tyrosinase Inhibitory and Anti-Inflammatory Activities of Selected Agro-Industrial By-products

    Directory of Open Access Journals (Sweden)

    Ehsan Karimi


    Full Text Available Evaluation of abundantly available agro-industrial by-products for their bioactive compounds and biological activities is beneficial in particular for the food and pharmaceutical industries. In this study, rapeseed meal, cottonseed meal and soybean meal were investigated for the presence of bioactive compounds and antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities. Methanolic extracts of rapeseed meal showed significantly (P < 0.01 higher phenolics and flavonoids contents; and significantly (P < 0.01 higher DPPH and nitric oxide free radical scavenging activities when compared to that of cottonseed meal and soybean meal extracts. Ferric thiocyanate and thiobarbituric acid tests results showed rapeseed meal with the highest antioxidant activity (P < 0.01 followed by BHT, cotton seed meal and soybean meal. Rapeseed meal extract in xanthine oxidase and tyrosinase inhibitory assays showed the lowest  IC50 values  followed by cottonseed and soybean meals. Anti-inflammatory assay using IFN-γ/LPS stimulated RAW 264.7 cells indicated rapeseed meal is a potent source of anti-inflammatory agent. Correlation analysis showed that phenolics and flavonoids were highly correlated to both antioxidant and anti-inflammatory activities. Rapeseed meal was found to be promising as a natural source of bioactive compounds with high antioxidant, anti-inflammatory, xanthine oxidase and tyrosinase inhibitory activities in contrast to cotton and soybean meals.

  20. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette, E-mail: [Universität Wien, Althanstrasse 14, 1090 Wien (Austria)


    Latent and active aurone synthase purified from petals of C. grandiflora (cgAUS1) were crystallized. The crystal quality of recombinantly expressed latent cgAUS1 was significantly improved by co-crystallization with the polyoxotungstate Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase-separation zone. Aurone synthase (AUS), a member of a novel group of plant polyphenol oxidases (PPOs), catalyzes the oxidative conversion of chalcones to aurones. Two active cgAUS1 (41.6 kDa) forms that differed in the level of phosphorylation or sulfation as well as the latent precursor form (58.9 kDa) were purified from the petals of Coreopsis grandiflora. The differing active cgAUS1 forms and the latent cgAUS1 as well as recombinantly expressed latent cgAUS1 were crystallized, resulting in six different crystal forms. The active forms crystallized in space groups P2{sub 1}2{sub 1}2{sub 1} and P12{sub 1}1 and diffracted to ∼1.65 Å resolution. Co-crystallization of active cgAUS1 with 1,4-resorcinol led to crystals belonging to space group P3{sub 1}21. The crystals of latent cgAUS1 belonged to space group P12{sub 1}1 and diffracted to 2.50 Å resolution. Co-crystallization of recombinantly expressed pro-AUS with the hexatungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase separation zone significantly improved the quality of the crystals compared with crystals obtained without hexatungstotellurate(VI)

  1. Protonation of the binuclear active site in cytochrome c oxidase decreases the reduction potential of CuB. (United States)

    Blomberg, Margareta R A; Siegbahn, Per E M


    One of the remaining mysteries regarding the respiratory enzyme cytochrome c oxidase is how proton pumping can occur in all reduction steps in spite of the low reduction potentials observed in equilibrium titration experiments for two of the active site cofactors, CuB(II) and Fea3(III). It has been speculated that, at least the copper cofactor can acquire two different states, one metastable activated state occurring during enzyme turnover, and one relaxed state with lower energy, reached only when the supply of electrons stops. The activated state should have a transiently increased CuB(II) reduction potential, allowing proton pumping. The relaxed state should have a lower reduction potential, as measured in the titration experiments. However, the structures of these two states are not known. Quantum mechanical calculations show that the proton coupled reduction potential for CuB is inherently high in the active site as it appears after reaction with oxygen, which explains the observed proton pumping. It is suggested here that, when the flow of electrons ceases, a relaxed resting state is formed by the uptake of one extra proton, on top of the charge compensating protons delivered in each reduction step. The extra proton in the active site decreases the proton coupled reduction potential for CuB by almost half a volt, leading to agreement with titration experiments. Furthermore, the structure for the resting state with an extra proton is found to have a hydroxo-bridge between CuB(II) and Fea3(III), yielding a magnetic coupling that can explain the experimentally observed EPR silence.

  2. Isolated sulfite oxidase deficiency. (United States)

    Relinque, B; Bardallo, L; Granero, M; Jiménez, P J; Luna, S


    Sulfite oxidase deficiency is an uncommon metabolic disease. Only few cases of its isolated form have been reported in the literature. We report a case of severe neonatal onset. A newborn baby of 41 weeks gestational age, weighted at birth of 3240 grams and had an Apgar score of 6-10-10. Fifty-three hours after being born, the baby started with seizures that were refractory to antiepileptic treatment. Brain function was monitored using a-EEG. Laboratory and imaging tests were performed. All of them were consistent with sulfite oxidase deficiency. The diagnosis was confirmed by genetic testing. We highlight the importance of this disease as part of the differential diagnosis of seizures during the neonatal period, as well as the importance of the therapeutic support based on dietary restrictions. It's also remarkable the possibility of prenatal diagnosis by quantifying enzyme activity and it's also possible carrying out DNA mutational analysis.

  3. Effects of gamma irradiation on the radiation-resistant bacteria and polyphenol oxidase activity in fresh kale juice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongho [Team of Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Sinjeongdong 1266, Chonbuk, Jeongeup 580-185 (Korea, Republic of)]. E-mail:; Song, Hyunpa [Team of Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Sinjeongdong 1266, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Lim, Sangyong [Team of Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Sinjeongdong 1266, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Yun, Hyejeong [Team of Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Sinjeongdong 1266, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Chung, Jinwoo [Team of Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Sinjeongdong 1266, Chonbuk, Jeongeup 580-185 (Korea, Republic of)


    Gamma radiation was performed to prolong the shelf life of natural kale juice. The total aerobic bacteria in fresh kale juice, prepared by a general kitchen process, was detected in the range of 10{sup 6} cfu/ml, and about 10{sup 2} cfu/ml of the bacteria survived in the juice in spite of gamma irradiation treatment with a dose of 5 kGy. Two typical radiation-resistant bacteria, Bacillus megaterium and Exiguobacterium acetylicum were isolated and identified from the 5 kGy-irradiated kale juices. The D {sub 10} values of the vegetative cell and endospore of the B. megaterium in peptone water were 0.63{+-}0.05 and 1.52{+-}0.05 kGy, respectively. The D {sub 10} value of the E. acetylicum was calculated as 0.65{+-}0.06 kGy. In the inoculation test, the growth of the surviving B. megaterium and E. acetylicum in the 3-5 kGy-irradiated kale juice retarded and/or decreased significantly during a 3 d post-irradiation storage period. However, there were no significant differences in the residual polyphenol oxidase activity and browning index between the nonirradiated control and the gamma irradiated kale juice during a post-irradiation period.

  4. A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067. (United States)

    Ridge, Justin P; Lin, Marianne; Larsen, Eloise I; Fegan, Mark; McEwan, Alastair G; Sly, Lindsay I


    Pedomicrobium sp. ACM 3067 is a budding-hyphal bacterium belonging to the alpha-Proteobacteria which is able to oxidize soluble Mn2+ to insoluble manganese oxide. A cosmid, from a whole-genome library, containing the putative genes responsible for manganese oxidation was identified and a primer-walking approach yielded 4350 bp of novel sequence. Analysis of this sequence showed the presence of a predicted three-gene operon, moxCBA. The moxA gene product showed homology to multicopper oxidases (MCOs) and contained the characteristic four copper-binding motifs (A, B, C and D) common to MCOs. An insertion mutation of moxA showed that this gene was essential for both manganese oxidation and laccase-like activity. The moxB gene product showed homology to a family of outer membrane proteins which are essential for Type I secretion in Gram-negative bacteria. moxBA has not been observed in other manganese-oxidizing bacteria but homologues were identified in the genomes of several bacteria including Sinorhizobium meliloti 1021 and Agrobacterium tumefaciens C58. These results suggest that moxBA and its homologues constitute a family of genes encoding an MCO and a predicted component of the Type I secretion system.

  5. Effects of gamma irradiation on the radiation-resistant bacteria and polyphenol oxidase activity in fresh kale juice (United States)

    Kim, Dongho; Song, Hyunpa; Lim, Sangyong; Yun, Hyejeong; Chung, Jinwoo


    Gamma radiation was performed to prolong the shelf life of natural kale juice. The total aerobic bacteria in fresh kale juice, prepared by a general kitchen process, was detected in the range of 10 6 cfu/ml, and about 10 2 cfu/ml of the bacteria survived in the juice in spite of gamma irradiation treatment with a dose of 5 kGy. Two typical radiation-resistant bacteria, Bacillus megaterium and Exiguobacterium acetylicum were isolated and identified from the 5 kGy-irradiated kale juices. The D10 values of the vegetative cell and endospore of the B. megaterium in peptone water were 0.63±0.05 and 1.52±0.05 kGy, respectively. The D10 value of the E. acetylicum was calculated as 0.65±0.06 kGy. In the inoculation test, the growth of the surviving B. megaterium and E. acetylicum in the 3-5 kGy-irradiated kale juice retarded and/or decreased significantly during a 3 d post-irradiation storage period. However, there were no significant differences in the residual polyphenol oxidase activity and browning index between the nonirradiated control and the gamma irradiated kale juice during a post-irradiation period.

  6. Purification and characterization of polyphenol oxidase from nettle (Urtica dioica L.) and inhibitory effects of some chemicals on enzyme activity. (United States)

    Güllçin, Ilhami; Küfrevioğlu, O Irfan; Oktay, Münir


    Polyphenol oxidase (PPO) of nettle (Urtica dioica L.) was extracted and purified through (NH4)2SO4 precipitation, dialysis, and CM-Sephadex ion-exchange chromatography and was used for its characterization. The PPO showed activity to catechol, 4-methylcatechol, L-3,4-dihydroxyphenylalanine (L-DOPA), L-tyrosine, p-cresol, pyrogallol, catechin and trans-cinnamic acid. For each of these eight substrates, optimum conditions such as pH and temperature were determined and L-tyrosine was found to be one of the most suitable substrates. Optimum pH and temperature were found at pH 4.5 and 30 degrees C respectively and Km and Vmax values were 7.90 x 10(-4) M, and 11290 EU/mL for with L-tyrosine as substrate. The inhibitory effect of several inhibitors, L-cysteine chloride, sodium azide, sodium cyanide, benzoic acid, salicylic acid, L-ascorbic acid, glutathione, thiourea, sodium diethyl dithiocarbamate, beta-mercaptoethanol and sodium metabisulfite were tested. The most effective was found to be sodium diethyl dithiocarbamate which acted as a competitive inhibitor with a Ki value of 1.79 x 10(-9)M. In addition one isoenzyme of PPO was detected by native polacrylamide slab gel electrophoresis.

  7. Inhibition of biofilms by glucose oxidase, lactoperoxidase and guaiacol: the active antibacterial component in an enzyme alginogel. (United States)

    Cooper, Rose A


    The association of biofilms with wound chronicity has prompted a search for antimicrobial interventions that are effective against biofilms. A patented preparation of glucose oxidase, lactoperoxidase and guaiacol (GLG), which is the antibacterial component of Flaminal, has been shown to inhibit a wide range of bacteria, but it has not yet been tested on biofilms. This study aims to determine the effect of GLG on biofilms of Staphylococcus aureus, methicillin-resistant S. aureus and Pseudomonas aeruginosa. Static biofilms were grown in microtitre plates and on coverslips and treated with a range of concentrations of GLG. Effects were monitored by estimating biofilm biomass by staining with crystal violet, biofilm activity by staining with either resazurin or fluorescein diacetate and biofilm viability by staining with LIVE/DEAD BacLight Bacterial Viability Kit. GLG was able to prevent the formation of biofilms at concentration ≤0.5% (w/v) and higher concentrations were required to inhibit established biofilms. GLG did not disrupt biofilm biomass. Staphylococci were more susceptible to GLG than P. aeruginosa. These in vitro findings must be verified by in vivo studies.

  8. Induction of xanthine oxidase activity, endoplasmic reticulum stress and caspase activation by sodium metabisulfite in rat liver and their attenuation by Ghrelin. (United States)

    Ercan, Sevim; Kencebay, Ceren; Basaranlar, Goksun; Derin, Narin; Aslan, Mutay


    Sodium metabisulfite is used as a preservative in many food preparations but can oxidize to sulfite radicals initiating molecular oxidation. Ghrelin is a peptide hormone primarily produced in the stomach and has anti-inflammatory and anti-oxidant effects on gastrointestinal and cardiovascular systems. This study was performed to elucidate the effect of ghrelin on sulfite-induced endoplasmic reticulum (ER) stress and caspase activation in rat peripheral organs. Xanthine oxidase (XO), xanthine dehydrogenase (XDH) enzyme activities, ER stress markers [phosphorylated PKR-like ER kinase (pPERK); C/EBP-homologous protein (CHOP)], caspase-3, -8, -9 activities, nuclear factor kappa-B (NF-κB) levels were determined in liver, heart and kidney of rats treated with sodium metabisulfite and/or ghrelin for 5 weeks. Sodium metabisulfite treatment significantly elevated XO activity, induced expression of GRP78, CHOP and increased caspase-3, -8 and -9 activities in liver but had no significant effect in heart and kidney. Ghrelin treatment decreased XO activity to baseline levels and attenuated ER stress and caspase activation in liver tissue of sodium metabisulfite treated rats. In conclusion, metabolism of sodium metabisulfite in liver tissue increased XO activity, induced ER stress and caused caspase activation which was attenuated by ghrelin treatment. Ghrelin's hepatoprotective effect could be through modulation of XO activity.

  9. The Effect of MethyI Jasmonate on Ethylene Production, ACC Oxidase Activity and Carbon Dioxide Evolution in the Yellowish-Tangerine Tomato Fruits (Lycopersicon esculentum Mill.

    Directory of Open Access Journals (Sweden)

    Janusz Czapski


    Full Text Available The yellowish-tangerine tomato (cv. Bursztyn in the green, light yellow and yellow stages of ripening were treated with 0.1% and 1.0% of methyl jasmonate (JA-Me in lanolin paste and kept for several days and then they were evaluated for production of ethylene, ACC oxidase activity and CO2 evolution. Production of endogenous ethylene in mature green fruits was low and increased during ripening. JA-Me stimulated ethylene production and ACC oxidase activity in all investigated stages of fruit ripening. Slices excised from mature green fruits produced highest amount of carbon dioxide as compared to more advanced stages of ripening. JA-Me in O,1 % and 1,0% concentrations increased significantly CO2 evolution in green fruits, while in light yellow and yellow fruits only higher concentration of JA-Me stimulated carbon dioxide production.

  10. Functional expression of the Acanthamoeba castellanii alternative oxidase in Escherichia coli; regulation of the activity and evidence for Acaox gene function. (United States)

    Antos-Krzeminska, Nina; Jarmuszkiewicz, Wieslawa


    To evidence Acanthamoeba castellanii alternative oxidase (AcAOX) gene product function, we studied alterations in the levels of mRNA and protein and AcAOX activity during growth in amoeba batch culture. Moreover, heterologous expression of AcAOX in AOX-deficient Escherichia coli confirmed by the protein immunodetection and functional studies was performed. Despite the presence of native bo and bd quinol oxidases in E. coli membrane, from which the latter is known to be cyanide-resistant, functional expression of AcAOX in E. coli conferred cyanide-resistant benzohydroxamate-sensitive respiration on the bacteria. Moreover, AcAOX activity in transformed bacteria was stimulated by GMP and inhibited by ATP, indicating that AcAOX is regulated by mutual exclusion of purine nucleotides, which was previously demonstrated in the mitochondria of A. castellanii.

  11. Epigallocatechin-3-gallate induces oxidative phosphorylation by activating cytochrome c oxidase in human cultured neurons and astrocytes. (United States)

    Castellano-González, Gloria; Pichaud, Nicolas; Ballard, J William O; Bessede, Alban; Marcal, Helder; Guillemin, Gilles J


    Mitochondrial dysfunction and resulting energy impairment have been identified as features of many neurodegenerative diseases. Whether this energy impairment is the cause of the disease or the consequence of preceding impairment(s) is still under discussion, however a recovery of cellular bioenergetics would plausibly prevent or improve the pathology. In this study, we screened different natural molecules for their ability to increase intracellular adenine triphosphate purine (ATP). Among them, epigallocatechin-3-gallate (EGCG), a polyphenol from green tea, presented the most striking results. We found that it increases ATP production in both human cultured astrocytes and neurons with different kinetic parameters and without toxicity. Specifically, we showed that oxidative phosphorylation in human cultured astrocytes and neurons increased at the level of the routine respiration on the cells pre-treated with the natural molecule. Furthermore, EGCG-induced ATP production was only blocked by sodium azide (NaN3) and oligomycin, inhibitors of cytochrome c oxidase (CcO; complex IV) and ATP synthase (complex V) respectively. These findings suggest that the EGCG modulates CcO activity, as confirmed by its enzymatic activity. CcO is known to be regulated differently in neurons and astrocytes. Accordingly, EGCG treatment is acting differently on the kinetic parameters of the two cell types. To our knowledge, this is the first study showing that EGCG promotes CcO activity in human cultured neurons and astrocytes. Considering that CcO dysfunction has been reported in patients having neurodegenerative diseases such as Alzheimer's disease (AD), we therefore suggest that EGCG could restore mitochondrial function and prevent subsequent loss of synaptic function.

  12. Helium-neon laser irradiation of cryopreserved ram sperm enhances cytochrome c oxidase activity and ATP levels improving semen quality. (United States)

    Iaffaldano, N; Paventi, G; Pizzuto, R; Di Iorio, M; Bailey, J L; Manchisi, A; Passarella, S


    This study examines whether and how helium-neon laser irradiation (at fluences of 3.96-9 J/cm(2)) of cryopreserved ram sperm helps improve semen quality. Pools (n = 7) of cryopreserved ram sperm were divided into four aliquots and subjected to the treatments: no irradiation (control) or irradiation with three different energy doses. After treatment, the thawed sperm samples were compared in terms of viability, mass and progressive sperm motility, osmotic resistance, as well as DNA and acrosome integrity. In response to irradiation at 6.12 J/cm(2), mass sperm motility, progressive motility and viability increased (P < 0.05), with no significant changes observed in the other investigated properties. In parallel, an increase (P < 0.05) in ATP content was detected in the 6.12 J/cm(2)-irradiated semen samples. Because mitochondria are the main cell photoreceptors with a major role played by cytochrome c oxidase (COX), the COX reaction was monitored using cytochrome c as a substrate in both control and irradiated samples. Laser treatment resulted in a general increase in COX affinity for its substrate as well as an increase in COX activity (Vmax values), the highest activity obtained for sperm samples irradiated at 6.12 J/cm(2) (P < 0.05). Interestingly, in these irradiated sperm samples, COX activity and ATP contents were positively correlated, and, more importantly, they also showed positive correlation with motility, suggesting that the improved sperm quality observed was related to mitochondria-laser light interactions.

  13. Regulation of neutrophil NADPH oxidase activation in a cell-free system by guanine nucleotides and fluoride. Evidence for participation of a pertussis and cholera toxin-insensitive G protein. (United States)

    Gabig, T G; English, D; Akard, L P; Schell, M J


    Guanine nucleotide-binding regulatory proteins (G proteins) transduce a remarkably diverse group of extracellular signals to a relatively limited number of intracellular target enzymes. In the neutrophil, transduction of the signal following fMet-Leu-Phe receptor-ligand interaction is mediated by a pertussis toxin substrate (Gi) that activates inositol-specific phospholipase C. We have utilized a plasma membrane-containing fraction from unstimulated human neutrophils as the target enzyme to explore the role of G proteins in arachidonate and cytosolic cofactor-dependent activation of the NADPH-dependent O-2-generating oxidase. When certain guanine nucleotides or their nonhydrolyzable analogues were present during arachidonate and cytosolic cofactor-dependent activation, they exerted substantial dose-dependent effects. The GTP analogue, GTP gamma S, caused a 2-fold increase in NADPH oxidase activation (half-maximal stimulation, 1.1 microM). Either GDP or its nonhydrolyzable analogue, GDP beta S, inhibited up to 80% of the basal NADPH oxidase activation (Ki GDP = 0.12 mM, GDP beta S = 0.23 mM). GTP caused only slight and variable stimulation, whereas F-, an agent known to promote the active conformation of G proteins, caused a 1.6-fold stimulation of NADPH oxidase activation. NADPH oxidase activation in the cell-free system was absolutely and specifically dependent on Mg2+. Although O2- production in response to fMet-Leu-Phe was inhibited greater than 90% in neutrophils pretreated with pertussis toxin, cytosolic cofactor and target oxidase membranes from neutrophils treated with pertussis toxin showed no change in basal- or GTP gamma S-stimulated NADPH oxidase activation. Cholera toxin treatment of neutrophils also had no effect on the cell-free activation system. Our results suggest a role for a G protein that is distinct from Gs or Gi in the arachidonate and cytosolic cofactor-dependent NADPH oxidase cell-free activation system.

  14. A newly synthesized molecule derived from ruthenium cation, with antitumour activity, activates NADPH oxidase in human neutrophils. (United States)

    Carballo, M; Vilaplana, R; Márquez, G; Conde, M; Bedoya, F J; González-Vílchez, F; Sobrino, F


    To determine the nature of the mechanism by which certain derived ruthenium (Ru) complexes induce regression in tumour growth, we have investigated the possibility that this mechanism was associated with an increase of superoxide anion (O2-. production by phagocytic cells, which are usually found in tumour nodes. Here we present evidence that a newly synthesized complex, Ru3+-propylene-1, 2-diaminotetra-acetic acid (Ru-PDTA), derived from Ru and the sequestering ligand (PDTA), specifically stimulates O2-. production. This increase was associated with the translocation of cytosolic factors p47(phox) and p67(phox) of NADPH oxidase to the plasma membrane. The Ru-PDTA-complex-dependent O2-. production was abrogated by staurosporine, partially inhibited by diphenylene iodonium, and it was insensitive to pertussis toxin or dibutyryl cyclic AMP pretreatment. An increase of cytosolic Ca2+ levels were also detected in neutrophils treated with the Ru-PDTA complex. Also, Ru-PDTA complex induced the phosphorylation of tyrosine residues of several proteins as assessed by Western blotting. Present data are consistent with the possibility that Ru-PDTA-dependent antitumour effects are due in part to the complex's ability to stimulate the release of toxic oxygen metabolites from phagocytic cells infiltrating tumour masses.

  15. Volume-sensitive NADPH oxidase activity and taurine efflux in NIH3T3 mouse fibroblasts

    DEFF Research Database (Denmark)

    Friis, Martin Barfred; Vorum, Katrine Gribel; Lambert, Ian Henry


    +-mobilizing agonist ATP (10 microM) potentiates the release of taurine but has no effect on ROS production under hypotonic conditions. On the other hand, addition of the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 100 nM) or the lipid messenger lysophosphatidic acid (LPA, 10 n...

  16. Dietary Phenolic Compounds Interfere with the Fate of Hydrogen Peroxide in Human Adipose Tissue but Do Not Directly Inhibit Primary Amine Oxidase Activity

    Directory of Open Access Journals (Sweden)

    Christian Carpéné


    Full Text Available Resveratrol has been reported to inhibit monoamine oxidases (MAO. Many substrates or inhibitors of neuronal MAO interact also with other amine oxidases (AO in peripheral organs, such as semicarbazide-sensitive AO (SSAO, known as primary amine oxidase, absent in neurones, but abundant in adipocytes. We asked whether phenolic compounds (resveratrol, pterostilbene, quercetin, and caffeic acid behave as MAO and SSAO inhibitors. AO activity was determined in human adipose tissue. Computational docking and glucose uptake assays were performed in 3D models of human AO proteins and in adipocytes, respectively. Phenolic compounds fully inhibited the fluorescent detection of H2O2 generated during MAO and SSAO activation by tyramine and benzylamine. They also quenched H2O2-induced fluorescence in absence of biological material and were unable to abolish the oxidation of radiolabelled tyramine and benzylamine. Thus, phenolic compounds hampered H2O2 detection but did not block AO activity. Only resveratrol and quercetin partially impaired MAO-dependent [14C]-tyramine oxidation and behaved as MAO inhibitors. Phenolic compounds counteracted the H2O2-dependent benzylamine-stimulated glucose transport. This indicates that various phenolic compounds block downstream effects of H2O2 produced by biogenic or exogenous amine oxidation without directly inhibiting AO. Phenolic compounds remain of interest regarding their capacity to limit oxidative stress rather than inhibiting AO.

  17. Dietary Phenolic Compounds Interfere with the Fate of Hydrogen Peroxide in Human Adipose Tissue but Do Not Directly Inhibit Primary Amine Oxidase Activity. (United States)

    Carpéné, Christian; Hasnaoui, Mounia; Balogh, Balázs; Matyus, Peter; Fernández-Quintela, Alfredo; Rodríguez, Víctor; Mercader, Josep; Portillo, Maria P


    Resveratrol has been reported to inhibit monoamine oxidases (MAO). Many substrates or inhibitors of neuronal MAO interact also with other amine oxidases (AO) in peripheral organs, such as semicarbazide-sensitive AO (SSAO), known as primary amine oxidase, absent in neurones, but abundant in adipocytes. We asked whether phenolic compounds (resveratrol, pterostilbene, quercetin, and caffeic acid) behave as MAO and SSAO inhibitors. AO activity was determined in human adipose tissue. Computational docking and glucose uptake assays were performed in 3D models of human AO proteins and in adipocytes, respectively. Phenolic compounds fully inhibited the fluorescent detection of H2O2 generated during MAO and SSAO activation by tyramine and benzylamine. They also quenched H2O2-induced fluorescence in absence of biological material and were unable to abolish the oxidation of radiolabelled tyramine and benzylamine. Thus, phenolic compounds hampered H2O2 detection but did not block AO activity. Only resveratrol and quercetin partially impaired MAO-dependent [(14)C]-tyramine oxidation and behaved as MAO inhibitors. Phenolic compounds counteracted the H2O2-dependent benzylamine-stimulated glucose transport. This indicates that various phenolic compounds block downstream effects of H2O2 produced by biogenic or exogenous amine oxidation without directly inhibiting AO. Phenolic compounds remain of interest regarding their capacity to limit oxidative stress rather than inhibiting AO.

  18. Correlation of Aqueous Humor Lysyl Oxidase Activity with TGF-ß Levels and LOXL1 Genotype in Pseudoexfoliation. (United States)

    Gayathri, Ramakrishnan; Coral, Karunakaran; Sharmila, Ferdinamarie; Sripriya, Sarangapani; Sripriya, Krishnamoorthy; Manish, Panday; Shantha, B; Ronnie, George; Vijaya, Lingam; Narayanasamy, Angayarkanni


    Pseudoexfoliation (PXF) is a microfibrillopathy involving disordered elastogenesis. Abnormal extracellular matrix (ECM) production underlies the pathophysiology of PXF. The enzyme Lysyl oxidase (LOX) and its isoforms are known to cross-link the elastin and collagen. Though the etiopathogensis of PXF is not well understood, studies report on the genetic risk involving LOXL1 gene. This study aims to screen LOXL1 coding variants rs1048661 and rs3825942 in the South Indian population and the implication of the single nucleotide polymorphism (SNP) with LOX activity. The levels of transforming growth factor β (TGF-β) in aqueous humor and its correlation with the LOX activity were also examined. Blood, plasma, and aqueous aspirates were prospectively collected from PXF cases with and without glaucoma and cataract cases as controls. DNA was extracted from 48 PXF cases without glaucoma, 12 PXF cases with glaucoma, and 40 age-matched cataract-alone controls without PXF/glaucoma for analyzing LOX SNPs. LOX activity was measured in aqueous humor and plasma of 30 PXF cases without glaucoma, 24 age-matched cataract-alone controls without PXF/glaucoma, and 14 PXF cases with glaucoma. Protein levels of LOX, LOXL1, LOXL2, and total TGF-β were estimated in plasma and aqueous humor by ELISA. The specific activity of LOX in aqueous humor was found to be significantly lowered in PXF cases compared with cataract-alone controls (p = 0.014). This decrease in LOX activity in PXF cases was associated with high-risk GG haplotype. However, this was not statistically significant and a larger sample size is warranted. TGF-β1 and TGF-β2 negatively correlated with LOX activity in aqueous humor (p = 0.028; p = 0.046, respectively). The LOXL1 SNPs, rs1048661 and rs3825942, are associated with PXF in the South Indian population correlating with lowered LOX activity in the aqueous humor. The increased level of total TGF-β in the aqueous humor of PXF cases is possibly associated with LOX

  19. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution (United States)

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico


    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments. PMID:27729845

  20. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution. (United States)

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico


    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments.

  1. Comparison of the Inhibition of Monoamine Oxidase and Butyrylcholinesterase Activities by Infusions from Green Tea and Some Citrus Peels

    Directory of Open Access Journals (Sweden)

    Ayokunle O. Ademosun


    Full Text Available This study sought to investigate the effect of infusions from green tea (Camellia sinensis and some citrus peels [shaddock (Citrus maxima, grapefruit (Citrus paradisi, and orange (Citrus sinensis] on key enzymes relevant to the management of neurodegenerative conditions [monoamine oxidase (MAO and butyrylcholinesterase (BChE]. The total phenol contents and antioxidant activities as typified by their 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS radicals scavenging abilities, ferric reducing antioxidant properties, and Fe2+ chelating abilities were also investigated. Green tea had the highest total phenol (43.3 mg/g and total flavonoid (16.4 mg/g contents, when compared to orange [total phenol (19.6 mg/g, total flavonoid (6.5 mg/g], shaddock [total phenol (16.3 mg/g, total flavonoid (5.2 mg/g], and grapefruit [total phenol (17.7 mg/g, total flavonoid (5.9 mg/g]. Orange (EC50 = 1.78 mg/mL had the highest MAO inhibitory ability, while green tea had the least MAO inhibitory ability (EC50 = 2.56 mg/mL. Similarly, green tea had the least BChE inhibitory ability (EC50 = 5.43 mg/mL when compared to the citrus peels’ infusions. However, green tea infusions had the strongest highest ABTS radical scavenging ability, reducing power, and Fe2+ chelating ability. The inhibition of MAO and BChE activities by the green tea and citrus peels infusions could make them good dietary means for the prevention/management of neurodegenerative conditions.

  2. Decreased NADPH oxidase expression and antioxidant activity in cachectic skeletal muscle


    Sullivan-Gunn, Melanie J.; Campbell-O’Sullivan, Siun P.; Tisdale, Michael J.; Lewandowski, Paul A


    Background Cancer cachexia is the progressive loss of skeletal muscle protein that contributes significantly to cancer morbidity and mortality. Evidence of antioxidant attenuation and the presence of oxidised proteins in patients with cancer cachexia indicate a role for oxidative stress. The level of oxidative stress in tissues is determined by an imbalance between reactive oxygen species production and antioxidant activity. This study aimed to investigate the superoxide generating NADPH oxid...

  3. Duration of hexobarbital-induced sleep and monoamine oxidase activities in rat brain: Focus on the behavioral activity and on the free-radical oxidation. (United States)

    Tseilikman, Vadim E; Kozochkin, Denis A; Manukhina, Eugenia B; Downey, H Fred; Tseilikman, Olga B; Misharina, Maria E; Nikitina, Anna A; Komelkova, Maria V; Lapshin, Maxim S; Kondashevskaya, Marina V; Lazuko, Svetlana S; Kusina, Oxana V; Sahabutdinov, Marat V


    The present study is focused on the relationship between monoamine oxidase (MAO) activity and hepatic content of cytochrome P450 (CYP), which reflects the status of microsomal oxidation. For vital integrative evaluation of hepatic microsomal oxidation in rats, the hexobarbital sleep test was used, and content of CYP was measured in hepatic microsomes. Rats with short hexobarbital sleep time (SHST) had higher content of microsomal CYP than rats with long hexobarbital sleep time (LHST). Whole brain MAO-A and MAO-B activities, serotonin and carbonylated protein levels were higher in SHST than in LHST rats. MAO-A and MAO-B activities were higher in brain cortex of SHST rats; MAO-A activity was higher only in hypothalamus and medulla of LHST. The same brain regions of LHST rats had higher concentrations of carbonylated proteins and lipid peroxidation products than in SHST rats. MAO activity was correlated with microsomal oxidation phenotype. Rats with higher hepatic content of CYP had higher activities of MAO-A and MAO-B in the brain and higher plasma serotonin levels than rats with lower microsomal oxidation. In conclusion, data obtained in this study showed a correlation between MAO activity and microsomal oxidation phenotype.

  4. In Vitro and In Vivo Studies on Quercus acuta Thunb. (Fagaceae Extract: Active Constituents, Serum Uric Acid Suppression, and Xanthine Oxidase Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    In-Soo Yoon


    Full Text Available Quercus acuta Thunb. (Fagaceae (QA is cultivated as a dietary and ornamental plant in China, Japan, South Korea, and Taiwan. It has been widely used as the main ingredient of acorn tofu, a traditional food in China and South Korea. The aim of this study was to determine in vitro and in vivo xanthine oxidase (XO inhibitory and antihyperuricemic activities of an ethyl acetate extract of QA leaf (QALE and identify its active phytochemicals using gas chromatography-mass spectrometry (GC-MS and liquid chromatography (LC systems. The QALE was found to possess potent in vitro antioxidant and XO inhibitory activities. In vivo study using hyperuricemic mice induced with potassium oxonate demonstrated that the QALE could inhibit hepatic XO activity at a relatively low oral dose (50 mg/kg and significantly alleviate hyperuricemia to a similar extent as allopurinol. Several active compounds including vitamin E known to possess XO inhibitory activity were identified from the QALE. To the best of our knowledge, this is the first study that reports the active constituents and antihyperuricemic effect of QA, suggesting that it is feasible to use QALE as a food therapy or alternative medicine for alleviating hyperuricemia and gout.

  5. Wplyw IAA na aktywność oksydazy kwasu indolilooctowego w siewkach pszenicy ozimej i kukurydzy w warunkach stresu osmotycznego [Influence of IAA on IAA-oxidase activity in winter wheat and maize seedlings under conditions of osmotic stress

    Directory of Open Access Journals (Sweden)

    Wiesław Nowakowski


    Full Text Available IAA-oxidase activity was determined in etiolated 7-day-old winter wheat leaves of the variety Grana and in maize leaves of the variety KbDc-310. The results indicate that IAA applied before seeding (1.10-5 M depresses IAA-oxidase activity in the roots and shoot of the cereals tested under conditions of mannitol osmotic stress (-4.84 bar and -9.68 bar.

  6. Wplyw IAA na aktywność oksydazy kwasu indolilooctowego w siewkach pszenicy ozimej i kukurydzy w warunkach stresu osmotycznego [Influence of IAA on IAA-oxidase activity in winter wheat and maize seedlings under conditions of osmotic stress


    Wiesław Nowakowski


    IAA-oxidase activity was determined in etiolated 7-day-old winter wheat leaves of the variety Grana and in maize leaves of the variety KbDc-310. The results indicate that IAA applied before seeding (1.10-5 M) depresses IAA-oxidase activity in the roots and shoot of the cereals tested under conditions of mannitol osmotic stress (-4.84 bar and -9.68 bar).

  7. Inhibitory effect of microwaved thinned nectarine extracts on polyphenol oxidase activity. (United States)

    Redondo, Diego; Venturini, María E; Oria, Rosa; Arias, Esther


    By-products from agricultural practices or from the fruit processing industry are a source of bioactive compounds that could be used in the food industry. Such by-products include thinned fruits, which are expected to contain high quantities of interesting compounds. One possible application of this fruits is the prevention of the enzymatic browning suffered by fruits and vegetables after minimal processing. The aim of this study is to determine the in vitro and in vivo activity of microwaved extracts obtained from thinned nectarines. It has been observed that in vitro the extracts obtained after the application of high microwave power levels (500, 1000 and 1500 W) are mixed type inhibitors of polyphenoloxidase enzyme, showing an irreversible inactivation. This inhibition could be attributed to the Maillard reaction products formed during the microwave treatment. In vivo, a solution of 2% of the extract obtained at 1500 W inhibited the enzymatic browning in minimally processed peaches for 8 days of storage.

  8. Function of wild-type or mutant Rac2 and Rap1a GTPases in differentiated HL60 cell NADPH oxidase activation. (United States)

    Gabig, T G; Crean, C D; Mantel, P L; Rosli, R


    Studies of neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation in a cell-free system showed that the low molecular-weight guanosine triphosphatase (GTPase) Rac was required, and that Rap1a may participate in activation of the catalytic complex. Full-length posttranslationally modified Rac2 was active, whereas only the 1-166 truncated form of Rap1a was functional in the cell-free system, and thus, clarification of the function of Rap1a and Rac2 in intact human phagocytes is needed to provide further insight into their roles as signal transducers from plasma membrane receptors. In the present studies, oligonucleotide-directed mutagenesis was used to introduce a series of mutations into human rap1a or rac2 in the mammalian expression vector pSR alpha neo. HL60 cells transfected with wild-type or mutated rac2 or rap1a cDNA constructs and control HL60 cells transfected with the pSR alpha neo vector containing no inserted cDNA were selected in G418-containing media, then subclones were isolated. Compared with the parent HL60 cells, each of the stable transfected cell lines differentiated similarly into neutrophil-like cells and expressed comparable levels of NADPH oxidase components p47-phox, p67-phox and gp91-phox. The differentiated vector control cell line produced O2. in response to receptor stimulation at rates that were not significantly different from parent HL60 cells. O2-. production by differentiated cell lines expressing mutated N17 Rap1a or N17 Rac2 dominant-negative proteins was inhibited, whereas O2-. production by the subline overexpressing wild-type Rap1a was increased by fourfold. O2-. production by the differentiated cell line expressing GTPase-defective V12 Rap1a was also significantly inhibited, a finding that is consistent with a requirement for cycling between guanosine diphosphate- and GTP-bound forms of Rap1a for continuous NADPH oxidase activation in intact neutrophils. A model is proposed in which Rac2 mediates

  9. Acid-induced p16 hypermethylation contributes to development of esophageal adenocarcinoma via activation of NADPH oxidase NOX5-S. (United States)

    Hong, Jie; Resnick, Murray; Behar, Jose; Wang, Li Juan; Wands, Jack; DeLellis, Ronald A; Souza, Rhonda F; Spechler, Stuart J; Cao, Weibiao


    Inactivation of tumor suppressor gene p16 may play an important role in the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA). Hypermethylation of p16 gene promoter is an important mechanism inactivating p16. However, the mechanisms of p16 hypermethylation in EA are not known. Therefore, we examined whether acid increases methylation of p16 gene promoter and whether NADPH oxidase NOX5-S mediates acid-induced p16 hypermethylation in a Barrett's cell line BAR-T and an EA cell line OE33. We found that NOX5-S was present in BAR-T and OE33 cells. Acid-induced increase in H(2)O(2) production and cell proliferation was significantly reduced by knockdown of NOX5-S. Exogenous H(2)O(2) remarkably increased p16 promoter methylation and cell proliferation. In addition, acid treatment significantly increased p16 promoter methylation and decreased p16 mRNA level. Knockdown of NOX5-S significantly increased p16 mRNA, inhibited acid-induced downregulation of p16 mRNA, and blocked acid-induced increase in p16 methylation and cell proliferation. Conversely, overexpression of NOX5-S significantly decreased p16 mRNA and increased p16 methylation and cell proliferation. In conclusion, NOX5-S is present in BAR-T cells and OE33 cells and mediates acid-induced H(2)O(2) production and cell proliferation. NOX5-S is also involved in acid-induced hypermethylation of p16 gene promoter and downregulation of p16 mRNA. It is possible that acid reflux present in BE patients may activate NOX5-S and increase production of reactive oxygen species, which in turn increase p16 promoter methylation, downregulate p16 expression, and increase cell proliferation, thereby contributing to the progression from BE to EA.

  10. Khz (fusion of Ganoderma lucidum and Polyporus umbellatus mycelia induces apoptosis by increasing intracellular calcium levels and activating JNK and NADPH oxidase-dependent generation of reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Tae Hwan Kim

    Full Text Available Khz is a compound derived from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia that inhibits the growth of cancer cells. The results of the present study show that Khz induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz induced apoptosis by increasing the intracellular Ca(2+ concentration ([Ca(2+](i and activating JNK to generate reactive oxygen species (ROS via NADPH oxidase and the mitochondria. Khz-induced apoptosis was caspase-dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the translocation of regulatory subunits p47(phox and p67(phox to the cell membrane and was necessary for ROS generation by Khz. Khz triggered a rapid and sustained increase in [Ca(2+](i, which activated JNK. JNK plays a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47(phox and p67(phox subunits and ROS generation. In summary, these data indicate that Khz preferentially induces apoptosis in cancer cells, and the signaling mechanisms involve an increase in [Ca(2+](i, JNK activation, and ROS generation via NADPH oxidase and mitochondria.

  11. The structure of monoamine oxidase from Aspergillus niger provides a molecular context for improvements in activity obtained by directed evolution. (United States)

    Atkin, Kate E; Reiss, Renate; Koehler, Valentin; Bailey, Kevin R; Hart, Sam; Turkenburg, Johan P; Turner, Nicholas J; Brzozowski, A Marek; Grogan, Gideon


    Monoamine oxidase from Aspergillus niger (MAO-N) is a flavoenzyme that catalyses the oxidative deamination of primary amines. MAO-N has been used as the starting model for a series of directed evolution experiments, resulting in mutants of improved activity and broader substrate specificity, suitable for application in the preparative deracemisation of primary, secondary and tertiary amines when used as part of a chemoenzymatic oxidation-reduction cycle. The structures of a three-point mutant (Asn336Ser/Met348Lys/Ile246Met or MAO-N-D3) and a five-point mutant (Asn336Ser/Met348Lys/Ile246Met/Thr384Asn/Asp385Ser or MAO-N-D5) have been obtained using a multiple-wavelength anomalous diffraction experiment on a selenomethionine derivative of the truncated MAO-N-D5 enzyme. MAO-N exists as a homotetramer with a large channel at its centre and shares some structural features with human MAO B (MAO-B). A hydrophobic cavity extends from the protein surface to the active site, where a non-covalently bound flavin adenine dinucleotide (FAD) sits at the base of an 'aromatic cage,' the sides of which are formed by Trp430 and Phe466. A molecule of l-proline was observed near the FAD, and this ligand superimposed well with isatin, a reversible inhibitor of MAO-B, when the structures of MAO-N proline and MAO-B-isatin were overlaid. Of the mutations that confer the ability to catalyse the oxidation of secondary amines in MAO-N-D3, Asn336Ser reduces steric bulk behind Trp430 of the aromatic cage and Ile246Met confers greater flexibility within the substrate binding site. The two additional mutations, Thr384Asn and Asp385Ser, that occur in the MAO-N-D5 variant, which is able to oxidise tertiary amines, appear to influence the active-site environment remotely through changes in tertiary structure that perturb the side chain of Phe382, again altering the steric and electronic character of the active site near FAD. The possible implications of the change in steric and electronic environment

  12. Picosecond nonlinear optical properties of cuprous oxide with different nano-morphologies

    Indian Academy of Sciences (India)

    P Harshavardhan Reddy; H Sekhar; D Narayana Rao


    Cuprous oxide nanoclusters, microcubes and microparticles were successfully synthesized by a simple co-precipitation method. Phase purity and crystallinity of the samples were studied by using X-ray powder diffraction. Transmission electron microscopy (TEM) images show different morphologies like nanoclusters, microcubes and microparticles. For linear and nonlinear optical measurements, the as-synthesized Cu2O with different morphologies were dispersed in isopropanol solution. The absorption spectrum recorded in the visible regions shows peaks that depend on the morphology of the particles and the peak shifts towards red region as one goes from nanoclusters to microparticles. Simple open-aperture Z-scan technique is used to measure nonlinear optical properties of cuprous oxide at 532 nm, 30 ps excitation at 10 Hz repetition rate. Cuprous oxide nanoclusters show reverse saturable absorption (RSA) behaviour, the microcubes and microparticles at a similar concentration exhibit saturable absorption (SA) type of behaviour at lower peak intensities and exhibit RSA within SA at higher peak intensities. The results show that the transition from SA to RSA can be ascribed to the two-photon absorption (TPA) process.

  13. An Alternative Procedure for the Glucose Oxidase Assay of Glucose as Applied to the Lactase Activity Assay (United States)

    Corbin Mullis, T.; Winge, Jeffery T.; Deal, S. Todd


    The glucose oxidase assay of glucose has been modified to eliminate the use of micropipets. The modification involves the use of disposable Pasteur pipets and a specified number of drops of each reagent. This simplified technique gives accurate and reproducible results.

  14. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia

    DEFF Research Database (Denmark)

    Rasmussen, Izabela; Pedersen, Line Hjortshøj; Byg, Luise;


    Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin d...

  15. Reduced graphene oxide–cuprous oxide composite via facial deposition for photocatalytic dye-degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, MingYan, E-mail: [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute of Innovative Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Huang, JunRao; Tong, ZhiWei [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Li, WeiHua [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Chen, Jun, E-mail: [Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute of Innovative Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia)


    Highlights: •Cubic Cu{sub 2}O were effectively loaded on n-propylamine (PA) intercalated graphene oxide. •The addition of PA on the carbon sheets supports the stable structure of the composites. •Cu{sub 2}O/PA/rGO showed superior adsorption capacity and photocatalytic activity. -- Abstract: Cubic Cu{sub 2}O nanoparticles have been successfully synthesized on n-propylamine (PA) intercalated graphene oxide (GO) with uniform distribution followed with a subsequent hydrazine hydrate reduction process to generate Cu{sub 2}O/PA/rGO composite. For comparison, Cu{sub 2}O conjugated reduced graphene oxide (Cu{sub 2}O/rGO) composite was also synthesized using the same method. The as-prepared Cu{sub 2}O/PA/rGO and Cu{sub 2}O/rGO nanocomposites are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area analysis, and Electrochemical impedance spectra (EIS) measurements. UV/vis diffuse reflectance spectroscopy was employed to estimate band gap energies of cuprous oxide composites. The results show that the intercalation of PA into the layered GO increases the surface area of the composites and provides an efficient strategy to load Cu{sub 2}O due to the large and uniform distribution of active sites for anchoring copper ions. The surface area of the Cu{sub 2}O/PA/rGO (123 m{sup 2}/g) nanocomposite was found to be almost 2.5 times higher than that of Cu{sub 2}O/rGO (55.7 m{sup 2}/g). The as-prepared Cu{sub 2}O/PA/rGO show significant improvement on both adsorption capacity and photocatalytic activity towards organic pigment pollution compared with Cu{sub 2}O/rGO under identical performance conditions.

  16. X-ray crystal structure of arsenite-inhibited xanthine oxidase: μ-sulfido,μ-oxo double bridge between molybdenum and arsenic in the active site. (United States)

    Cao, Hongnan; Hall, James; Hille, Russ


    Xanthine oxidoreductase is a molybdenum-containing enzyme that catalyzes the hydroxylation reaction of sp(2)-hybridized carbon centers of a variety of substrates, including purines, aldehydes, and other heterocyclic compounds. The complex of arsenite-inhibited xanthine oxidase has been characterized previously by UV-vis, electron paramagnetic resonance, and X-ray absorption spectroscopy (XAS), and the catalytically essential sulfido ligand of the square-pyrimidal molybdenum center has been suggested to be involved in arsenite binding through either a μ-sulfido,μ-oxo double bridge or a single μ-sulfido bridge. However, this is contrary to the crystallographically observed single μ-oxo bridge between molybdenum and arsenic in the desulfo form of aldehyde oxidoreductase from Desulfovibrio gigas (an enzyme closely related to xanthine oxidase), whose molybdenum center has an oxo ligand replacing the catalytically essential sulfur, as seen in the functional form of xanthine oxidase. Here we use X-ray crystallography to characterize the molybdenum center of arsenite-inhibited xanthine oxidase and solve the structures of the oxidized and reduced inhibition complexes at 1.82 and 2.11 Å resolution, respectively. We observe μ-sulfido,μ-oxo double bridges between molybdenum and arsenic in the active sites of both complexes. Arsenic is four-coordinate with a distorted trigonal-pyramidal geometry in the oxidized complex and three-coordinate with a distorted trigonal-planar geometry in the reduced complex. The doubly bridged binding mode is in agreement with previous XAS data indicating that the catalytically essential sulfur is also essential for the high affinity of reduced xanthine oxidoreductase for arsenite.

  17. Modulating NMDA Receptor Function with D-Amino Acid Oxidase Inhibitors: Understanding Functional Activity in PCP-Treated Mouse Model. (United States)

    Sershen, Henry; Hashim, Audrey; Dunlop, David S; Suckow, Raymond F; Cooper, Tom B; Javitt, Daniel C


    Deficits in N-methyl-D-aspartate receptor (NMDAR) function are increasingly linked to persistent negative symptoms and cognitive deficits in schizophrenia. Accordingly, clinical studies have been targeting the modulatory site of the NMDA receptor, based on the decreased function of NMDA receptor, to see whether increasing NMDA function can potentially help treat the negative and cognitive deficits seen in the disease. Glycine and D-serine are endogenous ligands to the NMDA modulatory site, but since high doses are needed to affect brain levels, related compounds are being developed, for example glycine transport (GlyT) inhibitors to potentially elevate brain glycine or targeting enzymes, such as D-amino acid oxidase (DAAO) to slow the breakdown and increase the brain level of D-serine. In the present study we further evaluated the effect of DAAO inhibitors 5-chloro-benzo[d]isoxazol-3-ol (CBIO) and sodium benzoate (NaB) in a phencyclidine (PCP) rodent mouse model to see if the inhibitors affect PCP-induced locomotor activity, alter brain D-serine level, and thereby potentially enhance D-serine responses. D-Serine dose-dependently reduced the PCP-induced locomotor activity at doses above 1000 mg/kg. Acute CBIO (30 mg/kg) did not affect PCP-induced locomotor activity, but appeared to reduce locomotor activity when given with D-serine (600 mg/kg); a dose that by itself did not have an effect. However, the effect was also present when the vehicle (Trappsol(®)) was tested with D-serine, suggesting that the reduction in locomotor activity was not related to DAAO inhibition, but possibly reflected enhanced bioavailability of D-serine across the blood brain barrier related to the vehicle. With this acute dose of CBIO, D-serine level in brain and plasma were not increased. Another weaker DAAO inhibitor NaB (400 mg/kg), and NaB plus D-serine also significantly reduced PCP-induced locomotor activity, but without affecting plasma or brain D-serine level, arguing against a DAAO

  18. Modulating NMDA Receptor Function with D-Amino Acid Oxidase Inhibitors: Understanding Functional Activity in PCP-Treated Mouse Model (United States)

    Sershen, Henry; Hashim, Audrey; Dunlop, David S.; Suckow, Raymond F.; Cooper, Tom B.; Javitt, Daniel C.


    Deficits in N-methyl-D-aspartate receptor (NMDAR) function are increasingly linked to persistent negative symptoms and cognitive deficits in schizophrenia. Accordingly, clinical studies have been targeting the modulatory site of the NMDA receptor, based on the decreased function of NMDA receptor, to see whether increasing NMDA function can potentially help treat the negative and cognitive deficits seen in the disease. Glycine and D-serine are endogenous ligands to the NMDA modulatory site, but since high doses are needed to affect brain levels, related compounds are being developed, for example glycine transport (GlyT) inhibitors to potentially elevate brain glycine or targeting enzymes, such as D-amino acid oxidase (DAAO) to slow the breakdown and increase the brain level of D-serine. In the present study we further evaluated the effect of DAAO inhibitors 5-chloro-benzo[d]isoxazol-3-ol (CBIO) and sodium benzoate (NaB) in a phencyclidine (PCP) rodent mouse model to see if the inhibitors affect PCP-induced locomotor activity, alter brain D-serine level, and thereby potentially enhance D-serine responses. D-Serine dose-dependently reduced the PCP-induced locomotor activity at doses above 1000 mg/kg. Acute CBIO (30 mg/kg) did not affect PCP-induced locomotor activity, but appeared to reduce locomotor activity when given with D-serine (600 mg/kg); a dose that by itself did not have an effect. However, the effect was also present when the vehicle (Trappsol®) was tested with D-serine, suggesting that the reduction in locomotor activity was not related to DAAO inhibition, but possibly reflected enhanced bioavailability of D-serine across the blood brain barrier related to the vehicle. With this acute dose of CBIO, D-serine level in brain and plasma were not increased. Another weaker DAAO inhibitor sodium benzoate (NaB) (400 mg/kg), and NaB plus D-serine also significantly reduced PCP-induced locomotor activity, but without affecting plasma or brain D-serine level

  19. Activation of the human neutrophil NADPH oxidase results in coupling of electron carrier function between ubiquinone-10 and cytochrome b559. (United States)

    Gabig, T G; Lefker, B A


    The enzymatic activity underlying the respiratory burst in human neutrophils was examined in a subcellular fraction with high specific activity and shown to be a membrane-associated complex of a flavoprotein, ubiquinone-10, and cytochrome b559 in an approximate 1.3:1:2 molar ratio. Study of the redox poise of these electron carriers indicated that electron flow in the intact complex from unstimulated cells proceeded: NADPH----E-FAD----ubiquinone-10. Similar studies on the complex prepared from stimulated neutrophils indicated that electron flow proceeded: NADPH----E-FAD----ubiquinone-10----cytochrome b559----oxygen. The active enzyme complex was inhibited by p-chloromercuribenzoate. Inhibition persisted after removal of excess inhibitor, was reversed by dithiothreitol, and could be blocked by prior addition of substrate (NADPH). Inhibition of the active oxidase complex by p-chloromercuribenzoate also inhibited electron flow from NADPH to all purported electron carriers in the chain (i.e. E-FAD, ubiquinone-10, and cytochrome b559). We conclude that activation of the oxidase enzyme complex in the intact neutrophil resulted in linkage of electron carrier function between endogenous ubiquinone-10 and cytochrome b559 and was without demonstrable effect on proximal electron flow. The p-chloromercuribenzoate sensitive site(s) proximal to the initial electron acceptor (E-FAD) did not appear to be altered by the cellular activation process.

  20. Safrole oxide induces neuronal apoptosis through inhibition of integrin beta4/SOD activity and elevation of ROS/NADPH oxidase activity. (United States)

    Su, Le; Zhao, BaoXiang; Lv, Xin; Wang, Nan; Zhao, Jing; Zhang, ShangLi; Miao, JunYing


    Neuronal apoptosis is a very important event in the development of the central nervous system (CNS), but the underlying mechanisms remain to be elucidated. We have previously shown that safrole oxide, a small molecule, induces integrin beta4 expression and promotes apoptosis in vascular endothelial cells. In this study, the effects of safrole oxide on cell growth and apoptosis have been examined in primary cultures of mouse neurons. Safrole oxide was found to significantly inhibit neuronal cell growth and to induce apoptosis. The inhibitory and apoptotic activities of safrole oxide followed a dose- and time-dependent manner. Interestingly, the expression of integrin beta4 was significantly inhibited with safrole oxide treatment. Furthermore, safrole oxide dramatically increases the level of intracellular reactive oxygen species (ROS) and the activity of NADPH oxidase. Moreover, manganese-dependent superoxide dismutase (MnSOD) activity was decreased significantly with safrole oxide treatment. Our study thus demonstrates that safrole oxide induces neuronal apoptosis through integrin beta4, ROS, NADPH, and MnSOD.

  1. Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species. (United States)

    Goyal, Parag; Weissmann, Norbert; Grimminger, Friedrich; Hegel, Cornelia; Bader, Lucius; Rose, Frank; Fink, Ludger; Ghofrani, Hossein A; Schermuly, Ralph T; Schmidt, Harald H H W; Seeger, Werner; Hänze, Jörg


    Hypoxia sensing and related signaling events, including activation of hypoxia-inducible factor 1 (HIF-1), represent key features in cell physiology and lung function. Using cultured A549 cells, we investigated the role of NAD(P)H oxidase 1 (Nox1), suggested to be a subunit of a low-output NAD(P)H oxidase complex, in hypoxia signaling. Nox1 expression was detected on both the mRNA and protein levels. Upregulation of Nox1 mRNA and protein occurred during hypoxia, accompanied by enhanced reactive oxygen species (ROS) generation. A549 cells, which were transfected with a Nox1 expression vector, revealed an increase in ROS generation accompanied by activation of HIF-1-dependent target gene expression (heme oxygenase 1 mRNA, hypoxia-responsive-element reporter gene activity). In A549 cells stably overexpressing Nox1, accumulation of HIF-1alpha in normoxia and an additional increase in hypoxia were noted. Interference with ROS metabolism by the flavoprotein inhibitor diphenylene iodonium (DPI) and catalase inhibited HIF-1 induction. This suggests that H2O2 links Nox1 and HIF-1 activation. We conclude that hypoxic upregulation of Nox1 and subsequently augmented ROS generation may activate HIF-1-dependent pathways.

  2. In vitro rumen simulated (RUSITEC) metabolism of freshly cut or wilted grasses with contrasting polyphenol oxidase activities



    The study investigated in vitro simulated rumen metabolism of freshly cut and wilted cocksfoot [Dactylis glomerata; high polyphenol oxidase (PPO)] and tall fescue (Festuca arundinacea; low PPO). A 16-vessel RUSITEC was used with the four treatment combinations: cocksfoot wilted (C(w)); cocksfoot fresh (C(f)); tall fescue wilted (TF(w)) and tall fescue fresh (TF(f)). Rumen liquor was collected from four fistulated dairy cows maintained on permanent pasture. The experiment ran for 12 d with sam...

  3. Coordinate induction of hepatic fatty acyl-CoA oxidase and P4504A1 in rat after activation of the peroxisome proliferator-activated receptor (PPAR) by sulphur-substituted fatty acid analogues. (United States)

    Demoz, A; Vaagenes, H; Aarsaether, N; Hvattum, E; Skorve, J; Göttlicher, M; Lillehaug, J R; Gibson, G G; Gustafsson, J A; Hood, S


    1. In the liver of rat fed a single dose of 3-thia fatty acids, 3-dithiahexadecanedioic acid (3-thiadicarboxylic acid) and tetradecylthioacetic acid, steady-state levels of P4504A1 and fatty acyl-CoA oxidase mRNAs increased in parallel. The increases were significant 8 h after administration, reaching a maximum after 12 h and decreased from 12 to 24 h after administration. 2. The corresponding enzyme activities of P4504A1 and fatty acyl-CoA oxidase were also induced in a parallel manner by the 3-thia fatty acids. The enzyme activities were significantly increased 12 h after administration and increased further after 24 h. This may reflect a possible effect of the 3-thia fatty acids not only on mRNA levels, but also on the translation and degradation rate of the two enzymes. 3. Repeated administration of 3-thia fatty acids resulted in an increase of the specific P4504A1 protein accompanied with an increased lauric acid hydroxylase activity. The correlation between induction of P4504A1 and fatty acyl-CoA oxidase mRNAs and their enzyme activities may reflect a coordinated rather than a causative induction mechanism, and that these genes respond to a common signal. This suggests that the increased P450 activity may not be responsible or be a prerequisite for fatty acyl-CoA oxidase induction. 4. Since the peroxisome proliferator-activated receptor (PPAR) plays a role in mediating the induction of fatty acyl-CoA oxidase, we analysed the activation of PPAR by fatty acids and sulphur-substituted analogues utilizing a chimera between the N-terminal and DNA-binding domain of the glucocorticoid receptor and the putative ligand-binding domain of PPAR. Arachidonic acid activated this chimeric receptor in Chinese hamster ovary cells. Inhibitors of P450 did not affect the activation of PPAR by arachidonic acid. Furthermore, dicarboxylic acids including 1,12-dodecanedioic acid or 1,16-hexadecanedioic acid only weakly activated the chimera. 3-Thidicarboxylic acid, however, was a

  4. Piceatannol and resveratrol share inhibitory effects on hydrogen peroxide release, monoamine oxidase and lipogenic activities in adipose tissue, but differ in their antilipolytic properties. (United States)

    Les, Francisco; Deleruyelle, Simon; Cassagnes, Laure-Estelle; Boutin, Jean A; Balogh, Balázs; Arbones-Mainar, José M; Biron, Simon; Marceau, Picard; Richard, Denis; Nepveu, Françoise; Mauriège, Pascale; Carpéné, Christian


    Piceatannol is a hydroxylated derivative of resveratrol. While both dietary polyphenols coexist in edible plants and fruits, and share equivalent concentrations in several wines, the influence of piceatannol on adiposity has been less studied than that of resveratrol. Though resveratrol is now recognized to limit fat deposition in various obesity models, the benefit of its dietary supplementation remains under debate regarding human obesity treatment or prevention. The research for more potent resveratrol analogs is therefore still undergoing. This prompted us to compare various effects of piceatannol and resveratrol directly on human adipose tissue (hAT). Hydrogen peroxide release was measured by Amplex Red-based fluorescence in subcutaneous hAT samples from obese patients. Interactions of stilbenes with human amine oxidases and quinone reductase were assessed by radiometric methods, computational docking and electron paramagnetic resonance. Influences on lipogenic and lipolytic activities were compared in mouse adipocytes. Resveratrol and piceatannol inhibited monoamine oxidase (MAO) with respective IC50 of 18.5 and 133.7 μM, but not semicarbazide-sensitive amine oxidase (SSAO) in hAT. For both stilbenes, the docking scores were better for MAO than for SSAO. Piceatannol and resveratrol similarly hampered hydrogen peroxide detection in assays with and without hAT, while they shared pro-oxidant activities when incubated with purified quinone reductase. They exhibited similar dose-dependent inhibition of adipocyte lipogenic activity. Only piceatannol inhibited basal and stimulated lipolysis when incubated at a dose ≥100 μM. Thus, piceatannol exerted on fat cells dose-dependent effects similar to those of resveratrol, except for a stronger antilipolytic action. In this regard, piceatannol should be useful in limiting the lipotoxicity related to obesity when ingested or administered alone - or might hamper the fat mobilization induced by resveratrol when

  5. The peroxidase and oxidase-like activity of NiCo2O4 mesoporous spheres: Mechanistic understanding and colorimetric biosensing. (United States)

    Su, Li; Dong, Wenpei; Wu, Chengke; Gong, Yijun; Zhang, Yan; Li, Ling; Mao, Guojiang; Feng, Suling


    The synthesized NiCo2O4 mesoporous spheres (MS) displayed intrinsic peroxidase and oxidase-like activity were firstly reported. The catalytic mechanism of the oxidase-like activity of NiCo2O4 MS was analyzed in detail using the electron spin resonance (ESR) method. It is found that NiCo2O4 MS could directly oxidize 3,3',5,5'-tetramethylbenzidine (TMB) but did not produce (1)O2 and ·OH. And the mechanism of the peroxidase-like activity of NiCo2O4 MS was also verified that the oxidation of TMB stemmed from not only ·OH but also (1)O2. Based on the NiCo2O4 MS showed excellent peroxidase-like activity over a broad temperature range, especially at normal body temperature, a detection tool was designed for glucose determination in diabetics' serum samples. And this detection method based on NiCo2O4 MS gave a lower limit of detection than the method using Co3O4 NPs and NiO NPs, as the single-component oxides of NiCo2O4. Our study may open up the possibility to make a great influence on the next generation of enzyme mimetics system.

  6. Plasma from hemorrhaged mice activates CREB and increases cytokine expression in lung mononuclear cells through a xanthine oxidase-dependent mechanism. (United States)

    Shenkar, R; Abraham, E


    Hemorrhage rapidly increases plasma xanthine oxidase levels as well as the expression of proinflammatory and immunoregulatory cytokines in the lungs. To determine the role of circulating xanthine oxidase (XO), as well as other plasma factors, in affecting pulmonary cytokine expression, we conducted studies in which plasma from hemorrhaged mice was transferred into unhemorrhaged recipient mice. Administration of posthemorrhage plasma to recipient mice increased the levels of mRNA for interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), and transforming growth factor-beta 1 (TGF-beta 1) in lung mononuclear cells. No enhancement of mRNA levels for these cytokines was found in the lungs of mice given allopurinol-treated posthemorrhage plasma or fed a tungsten-enriched, XO-depleting diet prior to transfer of posthemorrhage plasma. Among the nuclear transcriptional regulatory factors examined, only the cyclic AMP response-element binding protein (CREB) was activated in nuclear extracts from lung mononuclear cells of mice that were given posthemorrhage plasma. No activation of nuclear factor-kappa B (NF-kappa B), nuclear factor interleukin 6 (NF-IL6), activating protein-1 (AP-1), or serum protein-1 (SP-1) was found. These results suggest that the mechanism for hemorrhage-induced increases in pulmonary cytokine expression is by activation of the enhancer CREB through a tissue XO-dependent pathway initiated by plasma-borne mediators.

  7. [Antimycoplasmic Activity of Fermentation Broth of Trichoderma harzianum Rifai F-180, an Organism Producing L-Lysine-α-Oxidase, an Antitumor and Antiviral Enzyme]. (United States)

    Smirnova, I P; Rakovskaya, I V


    A concentrate of the fermentation broth of Trichoderma harzianum Rifai F-180, an organism producing L-lysine-α-oxidase, an antitumor and antiviral enzyme, with the activity in the fermentation broth of 0.54-0.56 U/mI was recovered. The effect of the concentrate on the mycoplasmas growth was investigated for the first time. Two representatives of Mycoplasmafaceae, i.e. Mycoplasma hominis and Mycoplasma fermentans and one representative of Aholeplasmataceae. i. e. Aholeplasma laidlawii were used. It was shown that the fermentation broth inhibited the growth of Mycoplasma hominis after the preliminary exposure. The inhibition rate depended on the mycoplasma inoculation dose and the fermentation broth concentration.

  8. Cytochemical localization of catalase and several hydrogen peroxide-producing oxidases in the nucleoids and matrix of rat liver peroxisomes

    NARCIS (Netherlands)

    Veenhuis, M.; Wendelaar Bonga, S.E.


    The distribution of catalase, amino acid oxidase, α-hydroxy acid oxidase, urate oxidase and alcohol oxidase was studied cytochemically in rat hepatocytes. The presence of catalase was demonstrated with the conventional diaminobenzidine technique. Oxidase activities were visualized with methods based

  9. Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems. (United States)

    Fernandes, Denise C; Wosniak, João; Pescatore, Luciana A; Bertoline, Maria A; Liberman, Marcel; Laurindo, Francisco R M; Santos, Célio X C


    Dihydroethidium (DHE) is a widely used sensitive superoxide (O2(*-)) probe. However, DHE oxidation yields at least two fluorescent products, 2-hydroxyethidium (EOH), known to be more specific for O2(*-), and the less-specific product ethidium. We validated HPLC methods to allow quantification of DHE products in usual vascular experimental situations. Studies in vitro showed that xanthine/xanthine oxidase, and to a lesser degree peroxynitrite/carbon dioxide system led to EOH and ethidium formation. Peroxidase/H2O2 but not H2O2 alone yielded ethidium as the main product. In vascular smooth muscle cells incubated with ANG II (100 nM, 4 h), we showed a 60% increase in EOH/DHE ratio, prevented by PEG-SOD or SOD1 overexpression. We further validated a novel DHE-based NADPH oxidase assay in vascular smooth muscle cell membrane fractions, showing that EOH was uniquely increased after ANG II. This assay was also adapted to a fluorescence microplate reader, providing results in line with HPLC results. In injured artery slices, shown to exhibit increased DHE-derived fluorescence at microscopy, there was approximately 1.5- to 2-fold increase in EOH/DHE and ethidium/DHE ratios after injury, and PEG-SOD inhibited only EOH formation. We found that the amount of ethidium product and EOH/ethidium ratios are influenced by factors such as cell density and ambient light. In addition, we indirectly disclosed potential roles of heme groups and peroxidase activity in ethidium generation. Thus HPLC analysis of DHE-derived oxidation products can improve assessment of O2(*-) production or NADPH oxidase activity in many vascular experimental studies.

  10. Use of the parallax-quench method to determine the position of the active-site loop of cholesterol oxidase in lipid bilayers. (United States)

    Chen, X; Wolfgang, D E; Sampson, N S


    To elucidate the cholesterol oxidase-membrane bilayer interaction, a cysteine was introduced into the active site lid at position-81 using the Brevibacterium enzyme. To eliminate the possibility of labeling native cysteine, the single cysteine in the wild-type enzyme was mutated to a serine without any change in activity. The loop-cysteine mutant was then labeled with acrylodan, an environment-sensitive fluorescence probe. The fluorescence increased and blue-shifted upon binding to lipid vesicles, consistent with a change into a more hydrophobic, i.e., lipid, environment. This acrylodan-labeled cholesterol oxidase was used to explore the pH, ionic strength, and headgroup dependence of binding. Between pH 6 and 10, there was no significant change in binding affinity. Incorporation of anionic lipids (phosphatidylserine) into the vesicles did not increase the binding affinity nor did altering the ionic strength. These experiments suggested that the interactions are primarily driven by hydrophobic effects not ionic effects. Using vesicles doped with either 5-doxyl phosphatidylcholine, 10-doxyl phosphatidylcholine, or phosphatidyl-tempocholine, quenching of acrylodan fluorescence was observed upon binding. Using the parallax method of London [Chattopadhyay, A., and London, E. (1987) Biochemistry 26, 39-45], the acrylodan ring is calculated to be 8.1 +/- 2.5 A from the center of the lipid bilayer. Modeling the acrylodan-cysteine residue as an extended chain suggests that the backbone of the loop does not penetrate into the lipid bilayer but interacts with the headgroups, i.e., the choline. These results demonstrate that cholesterol oxidase interacts directly with the lipid bilayer and sits on the surface of the membrane.

  11. APE1/Ref-1 promotes the effect of angiotensin II on Ca2+ -activated K+ channel in human endothelial cells via suppression of NADPH oxidase. (United States)

    Park, Won Sun; Ko, Eun A; Jung, In Duk; Son, Youn Kyoung; Kim, Hyoung Kyu; Kim, Nari; Park, So Youn; Hong, Ki Whan; Park, Yeong-Min; Choi, Tae-Hoon; Han, Jin


    The effects of angiotensin II (Ang II) on whole-cell large conductance Ca(2+)-activated K(+) (BK(Ca)) currents was investigated in control and Apurinic/apyrimidinic endonuclease1/redox factor 1 (APE1/Ref-1)-overexpressing human umbilical vein endothelial cells (HUVECs). Ang II blocked the BK(Ca) current in a dose-dependent fashion, and this inhibition was greater in APE1/Ref-1-overexpressing HUVECs than in control HUVECs (half-inhibition values of 102.81+/-9.54 nM and 11.34+/-0.39 nM in control and APE1/Ref-1-overexpressing HUVECs, respectively). Pretreatment with the NADPH oxidase inhibitor diphenyleneiodonium (DPI) or knock down of NADPH oxidase (p22 phox) using siRNA increased the inhibitory effect of Ang II on the BK(Ca) currents, similar to the effect of APE1/Ref-1 overexpression. In addition, application of Ang II increased the superoxide and hydrogen peroxide levels in the control HUVECs but not in APE1/Ref-1-overexpressing HUVECs. Furthermore, direct application of hydrogen peroxide increased BK(Ca) channel activity. Finally, the inhibitory effect of Ang II on the BK(Ca) current was blocked by an antagonist of the Ang II type 1 (AT(1)) receptor in both control and APE1/Ref-1-overexpressing HUVECs. From these results, we conclude that the inhibitory effect of Ang II on BK(Ca) channel function is NADPH oxidase-dependent and may be promoted by APE1/Ref-1.

  12. Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion (United States)

    Huang, Lei; Peng, Feng; Yu, Hao; Wang, Hongjuan


    Cuprous oxide (Cu 2O) nanoparticles and microparticles have been prepared by liquid phase chemical synthesis. The samples were characterized by means of SEM, XRD, UV/DRS and XPS. It was presented that as-prepared Cu 2O nanoparticles are substantially stable in ambient atmosphere and the Cu + as main state exists on the surface of Cu 2O nanoparticles. As-prepared Cu 2O microparticles can exist stably as a Cu 2O/CuO core/shell structure; and the Cu 2+ as main state exists on the surface of Cu 2O microparticles. The behaviors of adsorption, photocatalysis and photocorrosion of Cu 2O particles with different sizes were investigated in detail. The results show that Cu 2O nanoparticles are very easy to photocorrosion during the photocatalytic reaction, which cannot be used as photocatalyst directly to degrade organic compound, although as-prepared Cu 2O nanoparticles exhibit special property of adsorption. Cu 2O microparticles have a higher photocatalytic activity than Cu 2O nanoparticles because of its slower photocorrosion rate, although Cu 2O microparticles have much lower adsorption capacity than Cu 2O nanoparticles. The mechanisms of photocatalysis and photocorrosion for Cu 2O under visible light were also discussed.

  13. A multidisciplinary study of the extracutaneous pigment system of European sea bass (Dicentrarchus labrax L.). A possible relationship between kidney disease and dopa oxidase activity level. (United States)

    Arciuli, Marcella; Brunetti, Adalberto; Fiocco, Daniela; Zacchino, Valentina; Centoducati, Gerardo; Aloi, Antonio; Tommasi, Raffaele; Santeramo, Arcangela; De Nitto, Emanuele; Gallone, Anna


    Infectious diseases and breeding conditions can influence fish health status. Furthermore it is well known that human and animal health are strongly correlated. In lower vertebrates melano-macrophage centres, clusters of pigment-containing cells forming the extracutaneous pigment system, are widespread in the stroma of the haemopoietic tissue, mainly in kidney and spleen. In fishes, melano-macrophage centres play an important role in the immune response against antigenic stimulants and pathogens. Hence, they are employed as biomarker of fish health status. We have investigated this cell system in the European sea bass (Dicentrarchus labrax L.) following the enzyme activities involved in melanin biosynthesis. We have found a possible relationship between kidney disease of farmed fishes and dopa oxidase activity level, suggesting it as an indicator of kidney disease. Moreover variations of dopa oxidase activity in extracutaneous pigment system have been observed with respect to environmental temperature. At last, for the first time, using femtosecond transient absorption spectroscopy (Femto-TA), we pointed out that pigment-containing cells of fish kidney tissue present melanin pigments.


    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Maurice; Packer, Lester


    Purified and reconstituted cytochrome {und c} oxidase and mitochondria were crosslinked with biimidates in the presence and absence of cytochrome {und c}. These experiments indicate that oxidase subunit interactions are required for activity and that cytochrome {und c} mobility may be required for electron transport activity. Biimidate treatment of purified and reconstituted oxidase crosslinks all of the oxidase protomers except subunit I when {ge} 20% of the free amines are modified and inhibits steady state oxidase activity. Transient kinetics of ferrocytochrome {und c} oxidation and ferricytochrome {und a} reduction indicates inhibition of electron transfer from heme {und a} to heme {und a}{sub 3}. Crosslinking oxidase molecules to form large aggregates displaying rotational correlation times {ge} 1 ms does not affect oxidase activity. Crosslinking of mitochondria covalently binds the bc{sub 1} and {und aa}{sub 3} complexes to cytochrome {und c}, and inhibits steady-state oxidase activity considerably more than in the case of the purified oxidase. Addition of cytochrome {und c} to the purified oxidase or to {und c}-depleted mitoplasts increases inhibition slightly. Cytochrome {und c} oligomers act as competitive inhibitors of native {und c}, however, crosslinking of cytochrome {und c} to {und c}-depleted mitoplasts or purified oxidase (with dimethyl suberimidate or hetrobifunctional crosslinking reagents) results in a catalytically inactive complex.

  15. Attenuated total reflectance spectroscopy of simultaneous processes: Corrosion inhibition of cuprous oxide by benzotriazole (United States)

    Bratescu, Maria Antoaneta; Allred, Daniel B.; Saito, Nagahiro; Sarikaya, Mehmet; Takai, Osamu


    Attenuated total reflectance (ATR) spectroscopy was used to perform in situ studies of the corrosion inhibition of cuprous oxide (Cu 2O) by benzotriazole (BTA) in aqueous solution at concentrations from 1 to 20 μM. Because two separate processes occur simultaneously, that of Cu 2O corrosion and corrosion inhibition by BTA adsorption, the spectral information was subjected to deconvolution by a conjugate gradient minimization algorithm. Under these conditions, a solution phase concentration of 7-10 μM BTA nearly completely inhibited the corrosion of Cu 2O in deionized water. Using a Langmuir adsorption model, this represented only 25% of the maximally covered surface area.

  16. A photoemission study of benzotriazole on clean copper and cuprous oxide (United States)

    Fang, Bo-Shung; Olson, Clifford G.; Lynch, David W.


    Photoemission spectra of benzotriazole (BTA) chemisorbed on clean Cu and on cuprous oxide were compared with the spectra of condensed- and gas-phase BTA. Chemisorbed BTA bonds to both Cu and Cu 2O via lone-pair orbitais on the nitrogen ring. The lack of a chemical shift for the π- orbitais indicates that BTA does not lie flat on the surface. We propose a model for the geometry and bonding of chemisorbed BTA which accounts for its corrosion inhibition on Cu, and for the corrosion inhibition, or lack of inhibition, by molecules similar to BTA.

  17. Numerical simulation of exciton dynamics in cuprous oxide at ultra low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Som, Sunipa


    This thesis is a theoretical investigation of the relaxation behaviour of excitons in Cuprous Oxide at ultra low temperatures when the excitons are confined within a potential trap and also in a homogeneous system. Under the action of deformation potential phonon scattering only, Bose Einstein Condensation (BEC) occurs for all temperatures in the investigated range. In the case of Auger decay, we do not find at any temperature a BEC due to the heating of the exciton gas. In the case of elastic and phonon-scattering together BEC occurs in this case of 0.1 K.

  18. Growth arrest of lung carcinoma cells (A549) by polyacrylate-anchored peroxovanadate by activating Rac1-NADPH oxidase signalling axis. (United States)

    Chatterjee, Nirupama; Anwar, Tarique; Islam, Nashreen S; Ramasarma, T; Ramakrishna, Gayatri


    Hydrogen peroxide is often required in sublethal, millimolar concentrations to show its oxidant effects on cells in culture as it is easily destroyed by cellular catalase. Previously, we had shown that diperoxovanadate, a physiologically stable peroxovanadium compound, can substitute H2O2 effectively in peroxidation reactions. We report here that peroxovanadate when anchored to polyacrylic acid (PAPV) becomes a highly potent inhibitor of growth of lung carcinoma cells (A549). The early events associated with PAPV treatment included cytoskeletal modifications, increase in GTPase activity of Rac1, accumulation of the reactive oxygen species, and also increase in phosphorylation of H2AX (γH2AX), a marker of DNA damage. These effects persisted even at 24 h after removal of the compound and culminated in increased levels of p53 and p21 together with growth arrest. The PAPV-mediated growth arrest was significantly abrogated in cells pre-treated with the N-acetylcysteine, Rac1 knocked down by siRNA and DPI an inhibitor of NADPH oxidase. In conclusion, our results show that polyacrylate derivative of peroxovanadate efficiently arrests growth of A549 cancerous cells by activating the axis of Rac1-NADPH oxidase leading to oxidative stress and DNA damage.

  19. Rap1 GTPase Inhibits Tumor Necrosis Factor-α-Induced Choroidal Endothelial Migration via NADPH Oxidase- and NF-κB-Dependent Activation of Rac1. (United States)

    Wang, Haibo; Fotheringham, Lori; Wittchen, Erika S; Hartnett, M Elizabeth


    Macrophage-derived tumor necrosis factor (TNF)-α has been found in choroidal neovascularization (CNV) surgically removed from patients with age-related macular degeneration. However, the role of TNF-α in CNV development remains unclear. In a murine laser-induced CNV model, compared with un-lasered controls, TNF-α mRNA was increased in retinal pigment epithelial and choroidal tissue, and TNF-α colocalized with lectin-stained migrating choroidal endothelial cells (CECs). Inhibition of TNF-α with a neutralizing antibody reduced CNV volume and reactive oxygen species (ROS) level around CNV. In CECs, pretreatment with the antioxidant apocynin or knockdown of p22phox, a subunit of NADPH oxidase, inhibited TNF-α-induced ROS generation. Apocynin reduced TNF-α-induced NF-κB and Rac1 activation, and inhibited TNF-α-induced CEC migration. TNF-α-induced Rac1 activation and CEC migration were inhibited by NF-κB inhibitor Bay11-7082. Overexpression of Rap1a prevented TNF-α-induced ROS generation and reduced NF-κB and Rac1 activation. Activation of Rap1 by 8-(4-chlorophenylthio)adenosine-2'-O-Me-cAMP prevented TNF-α-induced CEC migration and reduced laser-induced CNV volume, ROS generation, and activation of NF-κB and Rac1. These findings provide evidence that active Rap1a inhibits TNF-α-induced CEC migration by inhibiting NADPH oxidase-dependent NF-κB and Rac1 activation and suggests that Rap1a de-escalates CNV development by interfering with ROS-dependent signaling in several steps of the pathogenic process. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Involvement of NADPH oxidase in high-dose phenolic acid-induced pro-oxidant activity on rat mesenteric venules. (United States)

    Du, Wen-Yuan; Xiao, Ying; Yao, Jian-Jing; Hao, Zhe; Zhao, Yu-Bin


    In the present study, we investigated the potential role of phenolic acids in initiating oxidative damage to microvascular endothelial cells and the underlying mechanism mediating the pro-oxidant action. Male Wistar rats received high doses of phenolic acid [caffeic acid (CA), salvianolic acid B (SAB), chlorogenic acid (ChA) or ferulic acid (FA)]. The creation of reactive oxygen species in mesenteric microcirculation endothelial cells and adherent leukocytes along with venules were assessed using intravital microscopy. The expression levels of NADPH oxidase subunits (Nox4 and p22(phox)) in terminal ileum tissues were determined by western blot analysis. Intravenous injection of high-dose ChA or CA (7 mg/kg) markedly increased the peroxide production in the venular walls and upregulated the protein expression levels of Nox4 and p22(phox) in the ileum tissues, while the same dose of CA and SAB made no difference within the observation period. No changes were observed in the number of leukocytes adhering to the venular walls. High-dose ChA and FA led to an imbalance between the oxidant and antioxidant mechanism by boosting the expression levels of NADPH oxidase. Thus, we clarified the rationale behind the adverse effects of a herbal injection containing high levels of phenolic acid compounds.

  1. Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. (United States)

    Albuquerque-Pontes, Gianna Móes; Vieira, Rodolfo de Paula; Tomazoni, Shaiane Silva; Caires, Cláudia Oliveira; Nemeth, Victoria; Vanin, Adriane Aver; Santos, Larissa Aline; Pinto, Henrique Dantas; Marcos, Rodrigo Labat; Bjordal, Jan Magnus; de Carvalho, Paulo de Tarso Camillo; Leal-Junior, Ernesto Cesar Pinto


    Modulation of cytochrome c oxidase activity has been pointed as a possible key mechanism for low-level laser therapy (LLLT) in unhealthy biological tissues. But recent studies by our research group with LLLT in healthy muscles before exercise found delayed skeletal muscle fatigue development and improved biochemical status in muscle tissue. Therefore, the aim of this study was to evaluate effects of different LLLT doses and wavelengths in cytochrome c oxidase activity in intact skeletal muscle. In this animal experiment, we irradiated the tibialis anterior muscle of rats with three different LLLT doses (1, 3, and 10 J) and wavelengths (660, 830, and 905 nm) with 50 mW power output. After irradiation, the analyses of cytochrome c oxidase expression by immunohistochemistry were analyzed at 5, 10, 30 min and at 1, 2, 12, and 24 h. Our results show that LLLT increased (p cytochrome c oxidase expression mainly with the following wavelengths and doses: 660 nm with 1 J, 830 nm with 3 J, and 905 nm with 1 J at all time points. We conclude that LLLT can increase cytochrome c oxidase activity in intact skeletal muscle and that it contributes to our understanding of how LLLT can enhance performance and protect skeletal muscles against fatigue development and tissue damage. Our findings also lead us to think that the combined use of different wavelengths at the same time can enhance LLLT effects in skeletal muscle performance and other conditions, and it can represent a therapeutic advantage in clinical settings.

  2. A temperature-induced absorption band centered in the region of 666 nm related to the configuration of the active site in frozen cytochrome oxidase. (United States)

    Denis, M; Clore, G M


    The existence of a temperature-induced absorption band centred in the region of 666 nm is demonstrated for both membrane-bound and soluble cytochrome oxidase in the frozen state. The 666 nm band is generated solely by an increase in temperature of both fully reduced and mixed valence state cytochrome oxidase in the presence of CO or O2 within the 'pocket' containing the active site; it is not formed in the absence of both CO and O2 from the sample. The formation of the 666 nm band is entirely reversible when the temperature is decreased again and its formation is not dependent on the presence of liganded CO at the sixth coordination site of haem a3 in the low temperature range (below --120 degrees C) prior to photolysis. The shape and intensity of the 666 nm band are not affected by the extent of CO recombination following flash and photolysis and temperature increase and are not affected by changes in the valence states of the four metal centres when the O2 reaction is in progress.

  3. Isolation and bioelectrochemical characterization of novel fungal sources with oxidasic activity applied in situ for the cathodic oxygen reduction in microbial fuel cells. (United States)

    Morant, Kyriale Vasconcelos; da Silva, Paulo Henrique; de Campos-Takaki, Galba Maria; Hernández, Camilo Enrique La Rotta


    Brazilian filamentous fungi Rhizopus sp. (SIS-31), Aspergillus sp. (SIS-18) and Penicillium sp. (SIS-21), sources of oxidases were isolated from Caatinga's soils and applied during the in situ cathodic oxygen reduction in fuel cells. All strains were cultivated in submerged cultures using an optimized saline medium enriched with 10 g L(-1) of glucose, 3.0 g L(-1) of peptone and 0.0005 g L(-1) of CuSO4 as enzyme inducer. Parameters of oxidase activity, glucose consumption and microbial growth were evaluated. In-cell experiments evaluated by chronoamperometry were performed and two different electrode compositions were also compared. Maximum current densities of 125.7, 98.7 and 11.5 μA cm(-2) were observed before 24 h and coulombic efficiencies of 56.5, 46.5 and 23.8% were obtained for SIS-31, SIS-21 and SIS-18, respectively. Conversely, maximum power outputs of 328.73, 288.80 and 197.77 mW m(-3) were observed for SIS-18, SIS-21 and SIS-31, respectively. This work provides the primary experimental evidences that fungi isolated from the Caatinga region in Brazil can serve as efficient biocatalysts during the oxygen reduction in air-cathodes to improve electricity generation in MFCs.

  4. Cuprous Oxide Scale up: Gram Production via Bulk Synthesis using Classic Solvents at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hall, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Han, T. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Cuprous oxide is a p-type semiconducting material that has been highly researched for its interesting properties. Many small-scale syntheses have exhibited excellent control over size and morphology. As the demand for cuprous oxide grows, the synthesis method need to evolve to facilitate large-scale production. This paper supplies a facile bulk synthesis method for Cu₂O on average, 1-liter reaction volume can produce 1 gram of particles. In order to study the shape and size control mechanisms on such a scale, the reaction volume was diminished to 250 mL producing on average 0.3 grams of nanoparticles per batch. Well-shaped nanoparticles have been synthesized using an aqueous solution of CuCl₂, NaOH, SDS surfactant, and NH₂OH-HCl at mild temperatures. The time allotted between the addition of NaOH and NH₂OH-HCl was determined to be critical for Cu(OH)2 production, an important precursor to the final produce The effects of stirring rates on a large scale was also analyzed during reagent addition and post reagent addition. A morphological change from rhombic dodecahedra to spheres occurred as the stirring speed was increased. The effects of NH₂OH-HCl concentration were also studied to control the etching effects of the final product.

  5. A Facile One Step Solution Route to Synthesize Cuprous Oxide Nanofluid

    Directory of Open Access Journals (Sweden)

    Shenoy U. Sandhya


    Full Text Available A cuprous oxide nanofluid stabilized by sodium lauryl sulfate, synthesized by using the one step method, has been reported. Nanofluids were synthesized by using a well‐ controlled surfactant‐assisted solution phase synthesis. The method involved reduction of copper acetate by glucose in a mixture of water and ethylene glycol serving as the base fluid. The synthesized fluid was characterized by X‐ray and electron diffraction techniques, in addition, transmission and field emission microscopic techniques and Fourier transform infra red spectroscopic analysis was undertaken. The rheological property, as well as the thermal conductivity of the fluid, were measured. The variation of reaction parameters considerably affected the size of the particles as well as the reaction rate. The uniform dispersion of the particles in the base fluid led to a stability period of three months under stationary state, augmenting the thermal conductivity of the nanofluid. The method is found to be simple, reliable and fast for the synthesis of Newtonian nanofluids containing cuprous oxide nanoparticles.

  6. Chloroplastic NADPH oxidase-like activity-mediated perpetual hydrogen peroxide generation in the chloroplast induces apoptotic-like death of Brassica napus leaf protoplasts. (United States)

    Tewari, Rajesh Kumar; Watanabe, Daisuke; Watanabe, Masami


    Despite extensive research over the past years, regeneration from protoplasts has been observed in only a limited number of plant species. Protoplasts undergo complex metabolic modification during their isolation. The isolation of protoplasts induces reactive oxygen species (ROS) generation in Brassica napus leaf protoplasts. The present study was conducted to provide new insight into the mechanism of ROS generation in B. napus leaf protoplasts. In vivo localization of H(2)O(2) and enzymes involved in H(2)O(2) generation and detoxification, molecular antioxidant-ascorbate and its redox state and lipid peroxidation were investigated in the leaf and isolated protoplasts. Incubating leaf strips in the macerating enzyme (ME) for different duration (3, 6, and 12 h) induced accumulation of H(2)O(2) and malondialdehyde (lipid peroxidation, an index of membrane damage) in protoplasts. The level of H(2)O(2) was highest just after protoplast isolation and subsequently decreased during culture. Superoxide generating NADPH oxidase (NOX)-like activity was enhanced, whereas superoxide dismutase (SOD) and ascorbate peroxidase (APX) decreased in the protoplasts compared to leaves. Diaminobenzidine peroxidase (DAB-POD) activity was also lower in the protoplasts compared to leaves. Total ascorbate content, ascorbate to dehydroascorbate ratio (redox state), were enhanced in the protoplasts compared to leaves. Higher activity of NOX-like enzyme and weakening in the activity of antioxidant enzymes (SOD, APX, and DAB-POD) in protoplasts resulted in excessive accumulation of H(2)O(2) in chloroplasts of protoplasts. Chloroplastic NADPH oxidase-like activity mediated perpetual H(2)O(2) generation probably induced apoptotic-like cell death of B. napus leaf protoplasts as indicated by parallel DNA laddering and decreased mitochondrial membrane potential.

  7. IL-6 mediated degeneration of forebrain GABAergic interneurons and cognitive impairment in aged mice through activation of neuronal NADPH oxidase.

    Directory of Open Access Journals (Sweden)

    Laura L Dugan

    Full Text Available BACKGROUND: Multiple studies have shown that plasma levels of the pro-inflammatory cytokine interleukin-6 (IL-6 are elevated in patients with important and prevalent adverse health conditions, including atherosclerosis, diabetes, obesity, obstructive sleep apnea, hypertension, and frailty. Higher plasma levels of IL-6, in turn, increase the risk of many conditions associated with aging including age-related cognitive decline. However, the mechanisms underlying this association between IL-6 and cognitive vulnerability remain unclear. METHODS AND FINDINGS: We investigated the role of IL-6 in brain aging in young (4 mo and aged (24 mo wild-type C57BL6 and genetically-matched IL-6(-/- mice, and determined that IL-6 was necessary and sufficient for increased neuronal expression of the superoxide-producing immune enzyme, NADPH-oxidase, and this was mediated by non-canonical NFkappaB signaling. Furthermore, superoxide production by NADPH-oxidase was directly responsible for age-related loss of parvalbumin (PV-expressing GABAergic interneurons, neurons essential for normal information processing, encoding, and retrieval in hippocampus and cortex. Targeted deletion of IL-6 or elimination of superoxide by chronic treatment with a superoxide-dismutase mimetic prevented age-related loss of PV-interneurons and reversed age-related cognitive deficits on three standard tests of spatial learning and recall. CONCLUSIONS: Present results indicate that IL-6 mediates age-related loss of critical PV-expressing GABAergic interneurons through increased neuronal NADPH-oxidase-derived superoxide production, and that rescue of these interneurons preserves cognitive performance in aging mice, suggesting that elevated peripheral IL-6 levels may be directly and mechanistically linked to long-lasting cognitive deficits in even normal older individuals. Further, because PV-interneurons are also selectively affected by commonly used anesthetic agents and drugs, our findings

  8. Phytochemical Composition, Antioxidant and Xanthine Oxidase Inhibitory Activities of Amaranthus cruentus L. and Amaranthus hybridus L. Extracts

    Directory of Open Access Journals (Sweden)

    Jeanne F. Millogo


    Full Text Available This paper describes a preliminary assessment of the nutraceutical value of Amaranthus cruentus (A. cruentus and Amaranthus hybridus (A. hybridus, two food plant species found in Burkina Faso. Hydroacetonic (HAE, methanolic (ME, and aqueous extracts (AE from the aerial parts were screened for in vitro antioxidant and xanthine oxidase inhibitory activities. Phytochemical analyses revealed the presence of polyphenols, tannins, flavonoids, steroids, terpenoids, saponins and betalains. Hydroacetonic extracts have shown the most diversity for secondary metabolites. The TLC analyses of flavonoids from HAE extracts showed the presence of rutin and other unidentified compounds. The phenolic compound contents of the HAE, ME and AE extracts were determined using the Folin–Ciocalteu method and ranged from 7.55 to 10.18 mg Gallic acid equivalent GAE/100 mg. Tannins, flavonoids, and flavonols ranged from 2.83 to 10.17 mg tannic acid equivalent (TAE/100 mg, 0.37 to 7.06 mg quercetin equivalent (QE /100 mg, and 0.09 to 1.31 mg QE/100 mg, respectively. The betacyanin contents were 40.42 and 6.35 mg Amaranthin Equivalent/100 g aerial parts (dry weight in A. cruentus and A. hybridus, respectively. Free-radical scavenging activity expressed as IC50 (DPPH method and iron reducing power (FRAP method ranged from 56 to 423 µg/mL and from 2.26 to 2.56 mmol AAE/g, respectively. Xanthine oxidase inhibitory activities of extracts of A. cruentus and A. hybridus were 3.18% and 38.22%, respectively. The A. hybridus extract showed the best antioxidant and xanthine oxidase inhibition activities. The results indicated that the phytochemical contents of the two species justify their traditional uses as nutraceutical food plants.

  9. Inhibitory effect of rice bran extracts and its phenolic compounds on polyphenol oxidase activity and browning in potato and apple puree. (United States)

    Sukhonthara, Sukhontha; Kaewka, Kunwadee; Theerakulkait, Chockchai


    Full-fatted and commercially defatted rice bran extracts (RBE and CDRBE) were evaluated for their ability to inhibit enzymatic browning in potato and apple. RBE showed more effective inhibition of polyphenol oxidase (PPO) activity and browning in potato and apple as compared to CDRBE. Five phenolic compounds in RBE and CDRBE (protocatechuic acid, vanillic acid, p-coumaric acid, ferulic acid and sinapic acid) were identified by HPLC. They were then evaluated for their important role in the inhibition using a model system which found that ferulic acid in RBE and p-coumaric acid in CDRBE were active in enzymatic browning inhibition of potato and apple. p-Coumaric acid exhibited the highest inhibitory effect on potato and apple PPO (p ⩽ 0.05). Almost all phenolic compounds showed higher inhibitory effect on potato and apple PPO than 100 ppm citric acid.

  10. Inhibitory effect of acetylcholine on monoamine oxidase A and B activity in different parts of rat brain. (United States)

    Osman, Mohamed Y; Osman, Hassan M Y


    Acetylcholine (CAS 60-31-1, ACh), which is similar in its chemical structure to the carbamate aldicarb, was found to inhibit brain monoamine oxidase isoenzymes, namely MAO-A and B. The effect of ACh on both isoenzymes extracted from the whole brain of male albino rats and its different parts (frontal cortex, basal ganglia, cerebellum, pons and medulla oblongata) was studied. The results indicated that ACh inhibited MAO-A from the cerebellum and MAO-B from the basal ganglia more than MAO iso-enzymes from other brain parts. The inhibition was of the competitive type. It was also found that the enzyme inhibitor dissociation constants (Ki) and the affinity constants (Ki/Km) of MAO-A were higher than those of MAO-B.

  11. A role for NADPH oxidase in antigen presentation

    Directory of Open Access Journals (Sweden)

    Gail J Gardiner


    Full Text Available The nicotinamide adenine dinucleotide phosphate (NADPH oxidase expressed in phagocytes is a multi-subunit enzyme complex that generates superoxide (O2.-. This radical is an important precursor of hydrogen peroxide (H2O2 and other reactive oxygen species (ROS needed for microbicidal activity during innate immune responses. Inherited defects in NADPH oxidase give rise to chronic granulomatous disease (CGD, a primary immunodeficiency characterized by recurrent infections and granulomatous inflammation. Interestingly, CGD, CGD carrier status, and oxidase gene polymorphisms have all been associated with autoinflammatory and autoimmune disorders, suggesting a potential role for NADPH oxidase in regulating adaptive immune responses. Here, NADPH oxidase function in antigen processing and presentation is reviewed. NADPH oxidase influences dendritic cell (DC crosspresentation by major histocompatibility complex class I molecules (MHC-I through regulation of the phagosomal microenvironment, while in B lymphocytes, NADPH oxidase alters epitope selection by major histocompatibility complex class II molecules (MHC-II.

  12. Mechanism of Flavoprotein l-6-Hydroxynicotine Oxidase: pH and Solvent Isotope Effects and Identification of Key Active Site Residues. (United States)

    Fitzpatrick, Paul F; Chadegani, Fatemeh; Zhang, Shengnan; Dougherty, Vi


    The flavoenzyme l-6-hydroxynicotine oxidase is a member of the monoamine oxidase family that catalyzes the oxidation of (S)-6-hydroxynicotine to 6-hydroxypseudooxynicotine during microbial catabolism of nicotine. While the enzyme has long been understood to catalyze oxidation of the carbon-carbon bond, it has recently been shown to catalyze oxidation of a carbon-nitrogen bond [Fitzpatrick, P. F., et al. (2016) Biochemistry 55, 697-703]. The effects of pH and mutagenesis of active site residues have now been utilized to study the mechanism and roles of active site residues. Asn166 and Tyr311 bind the substrate, while Lys287 forms a water-mediated hydrogen bond with flavin N5. The N166A and Y311F mutations result in ∼30- and ∼4-fold decreases in kcat/Km and kred for (S)-6-hydroxynicotine, respectively, with larger effects on the kcat/Km value for (S)-6-hydroxynornicotine. The K287M mutation results in ∼10-fold decreases in these parameters and a 6000-fold decrease in the kcat/Km value for oxygen. The shapes of the pH profiles are not altered by the N166A and Y311F mutations. There is no solvent isotope effect on the kcat/Km value for amines. The results are consistent with a model in which both the charged and neutral forms of the amine can bind, with the former rapidly losing a proton to a hydrogen bond network of water and amino acids in the active site prior to the transfer of hydride to the flavin.

  13. NOX3 NADPH oxidase couples transient receptor potential vanilloid 1 to signal transducer and activator of transcription 1-mediated inflammation and hearing loss. (United States)

    Mukherjea, Debashree; Jajoo, Sarvesh; Sheehan, Kelly; Kaur, Tejbeer; Sheth, Sandeep; Bunch, Jennifer; Perro, Christopher; Rybak, Leonard P; Ramkumar, Vickram


    Transient receptor potential vanilloid 1 (TRPV1) is implicated in cisplatin ototoxicity. Activation of this channel by cisplatin increases reactive oxygen species generation, which contribute to loss of outer hair cells in the cochlea. Knockdown of TRPV1 by short interfering RNA protected against cisplatin ototoxicity. In this study, we examined the mechanism underlying TRPV1-mediated ototoxicity using cultured organ of Corti transformed cells (UB/OC-1) and rats. Trans-tympanic injections of capsaicin produced transient hearing loss within 24 h, which recovered by 72 h. In UB/OC-1 cells, capsaicin increased NOX3 NADPH oxidase activity and activation of signal transducer and activator of transcription 1 (STAT1). Intratympanic administration of capsaicin transiently increased STAT1 activity and expression of downstream proinflammatory molecules. Capsaicin produced a transient increase in CD14-positive inflammatory cells into the cochlea, which mimicked the temporal course of STAT1 activation but did not alter the expression of apoptotic genes or damage to outer hair cells. In addition, trans-tympanic administration of STAT1 short interfering RNA protected against capsaicin-induced hearing loss. These data suggest that activation of TRPV1 mediates temporary hearing loss by initiating an inflammatory process in the cochlea via activation of NOX3 and STAT1. Thus, these proteins represent reasonable targets for ameliorating hearing loss.

  14. Modifications of laccase activities of copper efflux oxidase, CueO by synergistic mutations in the first and second coordination spheres of the type I copper center. (United States)

    Kataoka, Kunishige; Kogi, Hiroki; Tsujimura, Seiya; Sakurai, Takeshi


    The redox potential of type I copper in the Escherichia coli multicopper oxidase CueO was shifted in the positive or negative direction as a result of the single, double, and triple mutations in the first and second coordination spheres: the formation of the NH···S(-)(Cys500 ligand) hydrogen bond, the breakdown of the NH(His443 ligand)···O(-)(Asp439) hydrogen bond, and the substitution of the Met510 ligand for the non-coordinating Leu or coordinating Gln. Laccase activities of CueO were maximally enhanced 140-fold by virtue of the synergistic effect of mild mutations at and at around the ligand groups to type I copper.

  15. A novel amperometric alcohol biosensor developed in a 3rd generation bioelectrode platform using peroxidase coupled ferrocene activated alcohol oxidase as biorecognition system. (United States)

    Chinnadayyala, Somasekhar R; Kakoti, Ankana; Santhosh, Mallesh; Goswami, Pranab


    Alcohol oxidase (AOx) with a two-fold increase in efficiency (Kcat/Km) was achieved by physical entrapment of the activator ferrocene in the protein matrix through a simple microwave based partial unfolding technique and was used to develop a 3rd generation biosensor for improved detection of alcohol in liquid samples. The ferrocene molecules were stably entrapped in the AOx protein matrix in a molar ratio of ~3:1 through electrostatic interaction with the Trp residues involved in the functional activity of the enzyme as demonstrated by advanced analytical techniques. The sensor was fabricated by immobilizing ferrocene entrapped alcohol oxidase (FcAOx) and sol-gel chitosan film coated horseradish peroxidase (HRP) on a multi-walled carbon nanotube (MWCNT) modified glassy carbon electrode through layer-by-layer technique. The bioelectrode reactions involved the formation of H2O2 by FcAOx biocatalysis of substrate alcohol followed by HRP-catalyzed reduction of the liberated H2O2 through MWCNT supported direct electron transfer mechanism. The amperometric biosensor exhibited a linear response to alcohol in the range of 5.0 × 10(-6) to 30 × 10(-4)mol L(-1) with a detection limit of 2.3 × 10(-6) mol L(-1), and a sensitivity of 150 µA mM(-1) cm(-2). The biosensor response was steady for 28 successive measurements completed in a period of 5h and retained ~90% of the original response even after four weeks when stored at 4 °C. The biosensor was successfully applied for the determination of alcohol in commercial samples and its performance was validated by comparing with the data obtained by GC analyses of the samples.

  16. Xanthine Oxidase Activity Is Associated with Risk Factors for Cardiovascular Disease and Inflammatory and Oxidative Status Markers in Metabolic Syndrome: Effects of a Single Exercise Session

    Directory of Open Access Journals (Sweden)

    Ana Maria Pandolfo Feoli


    Full Text Available Objective. The main goal of the present study was to investigate the xanthine oxidase (XO activity in metabolic syndrome in subjects submitted to a single exercise session. We also investigated parameters of oxidative and inflammatory status. Materials/Methods. A case-control study (9 healthy and 8 MS volunteers was performed to measure XO, superoxide dismutase (SOD, glutathione peroxidase activities, lipid peroxidation, high-sensitivity C-reactive protein (hsCRP content, glucose levels, and lipid profile. Body mass indices, abdominal circumference, systolic and diastolic blood pressure, and TG levels were also determined. The exercise session consisted of 3 minutes of stretching, 3 minutes of warm-up, 30 minutes at a constant dynamic workload at a moderate intensity, and 3 minutes at a low speed. The blood samples were collected before and 15 minutes after the exercise session. Results. Serum XO activity was higher in MS group compared to control group. SOD activity was lower in MS subjects. XO activity was correlated with SOD, abdominal circumference, body mass indices, and hsCRP. The single exercise session reduced the SOD activity in the control group. Conclusions. Our data support the association between oxidative stress and risk factors for cardiovascular diseases and suggest XO is present in the pathogenesis of metabolic syndrome.

  17. Early NADPH oxidase-2 activation is crucial in phenylephrine-induced hypertrophy of H9c2 cells. (United States)

    Hahn, Nynke E; Musters, René J P; Fritz, Jan M; Pagano, Patrick J; Vonk, Alexander B A; Paulus, Walter J; van Rossum, Albert C; Meischl, Christof; Niessen, Hans W M; Krijnen, Paul A J


    Reactive oxygen species (ROS) produced by different NADPH oxidases (NOX) play a role in cardiomyocyte hypertrophy induced by different stimuli, such as angiotensin II and pressure overload. However, the role of the specific NOX isoforms in phenylephrine (PE)-induced cardiomyocyte hypertrophy is unknown. Therefore we aimed to determine the involvement of the NOX isoforms NOX1, NOX2 and NOX4 in PE-induced cardiomyocyte hypertrophy. Hereto rat neonatal cardiomyoblasts (H9c2 cells) were incubated with 100 μM PE to induce hypertrophy after 24 and 48h as determined via cell and nuclear size measurements using digital imaging microscopy, electron microscopy and an automated cell counter. Digital-imaging microscopy further revealed that in contrast to NOX1 and NOX4, NOX2 expression increased significantly up to 4h after PE stimulation, coinciding and co-localizing with ROS production in the cytoplasm as well as the nucleus. Furthermore, inhibition of NOX-mediated ROS production with apocynin, diphenylene iodonium (DPI) or NOX2 docking sequence (Nox2ds)-tat peptide during these first 4h of PE stimulation significantly inhibited PE-induced hypertrophy of H9c2 cells, both after 24 and 48h of PE stimulation. These data show that early NOX2-mediated ROS production is crucial in PE-induced hypertrophy of H9c2 cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Curcumin Inhibits Heat-Induced Apoptosis by Suppressing NADPH Oxidase 2 and Activating the Akt/mTOR Signaling Pathway in Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yuan Peng


    demonstrates that one of the critical mechanisms underlying curcumin inhibiting heat-induced apoptosis is through suppressing NADPH Oxidase 2 and activating the Akt/mTOR signaling pathway in bronchial epithelial cells.


    NARCIS (Netherlands)



    The light microscopical demonstration of D-amino acid oxidase (AAOX) activity with cerium (Ce III) as the capturing agent was improved. The incubation medium was stabilized by the employment of triethanolamine and detrane complexed cerium. A considerable increase in intensity of the reaction was

  20. Study the effect of kidney stones on serum xanthine oxidase, ecto-5ʹ-nucleotidase activity and E3 SUMO-protein ligase NSE2 (NSMCE2 in Malaysian individuals

    Directory of Open Access Journals (Sweden)

    Faridah Yusof


    Conclusions: The present study suggests that the increase in serum of xanthine oxidase,ecto-5ʹ-nucleotidase activities E3 small ubiquitin-like modifier-protein ligase NSE2 concentration can be used as biomarkers for diagnosis of kidney damage in patients with kidney stone, also in developments of change DNA damage and inflammation disorders in these patients.

  1. The Structures of the C185S and C185A Mutants of Sulfite Oxidase Reveal Rearrangement of the Active Site

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, James A.; Wilson, Heather L.; Pushie, M. Jake; Kisker, Caroline; George, Graham N.; Rajagopalan, K.V. (Wurzburg); (Duke); (Saskatchewan)


    Sulfite oxidase (SO) catalyzes the physiologically critical conversion of sulfite to sulfate. Enzymatic activity is dependent on the presence of the metal molybdenum complexed with a pyranopterin-dithiolene cofactor termed molybdopterin. Comparison of the amino acid sequences of SOs from a variety of sources has identified a single conserved Cys residue essential for catalytic activity. The crystal structure of chicken liver sulfite oxidase indicated that this residue, Cys185 in chicken SO, coordinates the Mo atom in the active site. To improve our understanding of the role of this residue in the catalytic mechanism of sulfite oxidase, serine and alanine variants at position 185 of recombinant chicken SO were generated. Spectroscopic and kinetic studies indicate that neither variant is capable of sulfite oxidation. The crystal structure of the C185S variant was determined to 1.9 {angstrom} resolution and to 2.4 {angstrom} resolution in the presence of sulfite, and the C185A variant to 2.8 {angstrom} resolution. The structures of the C185S and C185A variants revealed that neither the Ser or Ala side chains appeared to closely interact with the Mo atom and that a third oxo group replaced the usual cysteine sulfur ligand at the Mo center, confirming earlier extended X-ray absorption fine structure spectroscopy (EXAFS) work on the human C207S mutant. An unexpected result was that in the C185S variant, in the absence of sulfite, the active site residue Tyr322 became disordered as did the loop region flanking it. In the C185S variant crystallized in the presence of sulfite, the Tyr322 residue relocalized to the active site. The C185A variant structure also indicated the presence of a third oxygen ligand; however, Tyr322 remained in the active site. EXAFS studies of the Mo coordination environment indicate the Mo atom is in the oxidized Mo{sup VI} state in both the C185S and C185A variants of chicken SO and show the expected trioxodithiolene active site. Density

  2. Intrinsic Defect Engineering of Cuprous Oxide to Enhance Electrical Transport Properties for Photovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, Michael A.; Siah, Sin-Cheng; Brandt, Riley E.; Serdy, James; Johnston, Steve W.; Lee, Yun Seog; Buonassisi, Tonio


    Intrinsic point-defect species in cuprous oxide films are manipulated based on their thermodynamic properties via the implementation of a controlled annealing process. A wide range of electrical properties is demonstrated, with a window suitable for high-quality solar cell devices. A variation of carrier concentration over two orders of magnitude is demonstrated. Minority carrier lifetime is investigated by means of microwave photoconductance decay measurements, demonstrating a strong correlation with carrier concentration. Spectrally resolved photoluminescence yields are analyzed to provide insight into lifetime limiting mechanisms as a function of Cu2O processing parameters. Hall measurements of carrier mobility and concentration are taken at room temperature to provide insight into the effect of these processing conditions on net ionized defect concentration.

  3. Investigations of the interaction between cuprous oxide nanoparticles and Staphylococcus aureus

    Institute of Scientific and Technical Information of China (English)

    SHEN ChengLing; LI YuanFang; QI WenJing; HUANG ChengZhi


    Cuprous oxide nanoparticles of 30-50 nm in size were prepared in the presence of cetyltrimethylammonium bromide (CTAB).By taking Staphylococcus aureus (S.a),which always causes a variety of suppurative infections and toxinoses in humans,as a model bioparticle,the negative bioeffect of nano-Cu2O on S.a cells was evaluated,and minimal inhibitory concentration (MIC) was determined by imitating the MIC of antibiotics.Cellularity and bactericidal effect were measured by flow cytometry (FCM),dark field light scattering imaging and SEM photography.The results showed that nano-Cu2O particles may,by absorbing on the cell surface,impair the cell wall,damage the cell membrane,and finally increase permeability of the cell membrane,thus leading to a decrease in the viability of bacteria in the nano-Cu2O solution.

  4. Investigations of the interaction between cuprous oxide nanoparticles and Staphylococcus aureus

    Institute of Scientific and Technical Information of China (English)


    Cuprous oxide nanoparticles of 30-50 nm in size were prepared in the presence of cetyltrimethylam-monium bromide (CTAB). By taking Staphylococcus aureus (S.a), which always causes a variety of suppurative infections and toxinoses in humans, as a model bioparticle, the negative bioeffect of nano-Cu2O on S.a cells was evaluated, and minimal inhibitory concentration (MIC) was determined by imitating the MIC of antibiotics. Cellularity and bactericidal effect were measured by flow cytometry (FCM), dark field light scattering imaging and SEM photography. The results showed that nano-Cu2O particles may, by absorbing on the cell surface, impair the cell wall, damage the cell membrane, and finally increase permeability of the cell membrane, thus leading to a decrease in the viability of bacteria in the nano-Cu2O solution.

  5. Epitaxially aligned cuprous oxide nanowires for all-oxide, single-wire solar cells. (United States)

    Brittman, Sarah; Yoo, Youngdong; Dasgupta, Neil P; Kim, Si-in; Kim, Bongsoo; Yang, Peidong


    As a p-type semiconducting oxide that can absorb visible light, cuprous oxide (Cu2O) is an attractive material for solar energy conversion. This work introduces a high-temperature, vapor-phase synthesis that produces faceted Cu2O nanowires that grow epitaxially along the surface of a lattice-matched, single-crystal MgO substrate. Individual wires were then fabricated into single-wire, all-oxide diodes and solar cells using low-temperature atomic layer deposition (ALD) of TiO2 and ZnO films to form the heterojunction. The performance of devices made from pristine Cu2O wires and chlorine-exposed Cu2O wires was investigated under one-sun and laser illumination. These faceted wires allow the fabrication of well-controlled heterojunctions that can be used to investigate the interfacial properties of all-oxide solar cells.

  6. Cuprous Sulfide/Reduced Graphene Oxide Hybrid Nanomaterials: Solvothermal Synthesis and Enhanced Electrochemical Performance (United States)

    He, Zhanjun; Zhu, Yabo; Xing, Zheng; Wang, Zhengyuan


    The cuprous sulfide nanoparticles (CuS NPs)-decorated reduced graphene oxide (rGO) nanocomposites have been successfully prepared via a facile and efficient solvothermal synthesis method. Scanning electron microscopy and transmission electron microscopy images demonstrated that CuS micronspheres composed of nanosheets and distributed on the rGO layer in well-monodispersed form. Fourier-transform infrared spectroscopy analyses and x-ray photoelectron spectroscopy showed that graphene oxide (GO) had been reduced to rGO. The electrochemical performances of CuS/rGO nanocomposites were investigated by cyclic voltammetry and charge/discharge techniques, which showed that the specific capacitance of CuS/rGO nanocomposites was enhanced because of the introduction of rGO.

  7. Synthesis and monoamine oxidase inhibitory activities of some 3-(4-fluorophenyl)-5-aryl-n-substituted-4,5-dihydro-(1H)-pyrazole-1-carbothioamide derivatives. (United States)

    Koç, G Ş; Tan, O U; Uçar, G; Yildirim, E; Erol, K; Palaska, E


    28 new 3-(4-fluorophenyl)-5-aryl-N-substituted-4,5-dihydro-1H-pyrazole-1-carbothioamide derivatives were synthesized and evaluated in vitro for their monoamine oxidase (MAO) A and B inhibitory activity and selectivity. The derivatives substituted by halogen on the fifth position of pyrazole ring, inhibited MAO-A enzyme with a high selectivity index. On the other hand, compounds substituted with 2-naphthyl inhibited MAO-B enzyme with a moderate selectivity index. Docking studies were done to highlight the interactions of the most active derivative with the active site of MAO-A. In addition, in vivo antidepressant and anxiolytic activities of the compounds having selective MAO-A inhibitory effects, were investigated by using Porsolt forced swimming and elevated plus-maze tests respectively. 3-(4-Fluorophenyl)-5-(4-chloro-phenyl)-N-allyl-4,5-dihydro-1H-pyrazole-1-carbothio-amide has antidepressant, 3-(4-fluorophenyl)-5-(4-chlorophenyl)-N-methyl-4,5-dihydro-1H-pyrazole-1-carbothioamide and 3-(4-fluoro-phenyl)-5-(4-bromophenyl)-N-ethyl-4,5-dihydro-1H-pyrazole-1-carbothioamide have anxiolytic activity.

  8. Pathological changes in platelet histamine oxidases in atopic eczema

    Directory of Open Access Journals (Sweden)

    Reinhold Kiehl


    Full Text Available Increased plasma histamine levels were associated with significantly lowered diamine and type B monoamine oxidase activities in platelet-rich plasma of atopic eczema (AE patients. The diamine oxidase has almost normal cofactor levels (pyridoxal phosphate and Cu2+ but the cofactor levels for type B monoamine oxidase (flavin adenine dinucleotide and Fe2+ are lowered. The biogenic amines putrescine, cadaverine, spermidine, spermine, tyramine and serotonin in the sera, as well as dopamine and epinephrine in EDTA-plasma were found to be normal. It is unlikely, therefore, that these amines are responsible for the decreased activities of monoamine and diamine oxidase in these patients. The most likely causative factors for the inhibition of the diamine oxidase are nicotine, alcohol, food additives and other environmental chemicals, or perhaps a genetic defect of the diamine oxidase.

  9. Latent and active polyphenol oxidase (PPO) in red clover (Trifolium pratense) and use of a low PPO mutant to study the role of PPO in proteolysis reduction. (United States)

    Winters, Ana L; Minchin, Frank R; Michaelson-Yeates, Terry P T; Lee, Michael R F; Morris, Phillip


    Polyphenol oxidase (PPO) activity in leaf extracts of wild type (WT) red clover and a mutant line expressing greatly reduced levels of PPO (LP red clover) has been characterized. Both latent and active forms of PPO were present, with the latent being the predominant form. PPO enzyme and substrate (phaselic acid) levels fluctuated over a growing season and were not correlated. Protease activation of latent PPO was demonstrated; however, the rate was too low to have an immediate effect following extraction. A novel, more rapid PPO activation mechanism by the enzyme's own substrate was identified. Rates of protein breakdown and amino acid release were significantly higher in LP red clover extracts compared with WT extracts, with 20 versus 6% breakdown of total protein and 1.9 versus 0.4 mg/g FW of free amino acids released over 24 h, respectively. Inclusion of ascorbic acid increased the extent of protein breakdown. Free phenol content decreased during a 24 h incubation of WT red clover extracts, whereas protein-bound phenol increased and high molecular weight protein species were formed. Inhibition of proteolysis occurred during wilting and ensilage of WT compared with LP forage (1.9 vs 5 and 17 vs 21 g/kg of DM free amino acids for 24 h wilted forage and 90 day silage, respectively). This study shows that whereas constitutive red clover PPO occurs predominantly in the latent form, this fraction can contribute to reducing protein breakdown in crude extracts and during ensilage.

  10. Impact of high pressure processing on color, bioactive compounds, polyphenol oxidase activity, and microbiological attributes of pumpkin purée. (United States)

    González-Cebrino, Francisco; Durán, Rocío; Delgado-Adámez, Jonathan; Contador, Rebeca; Bernabé, Rosario Ramírez


    Physicochemical parameters, bioactive compounds' content (carotenoids and total phenols), total antioxidant activity, and enzymatic activity of polyphenol oxidase (PPO) were evaluated after high pressure processing (HPP) on a pumpkin purée (cv. 'Butternut'). Three pressure levels (400, 500, and 600 MPa) were combined with three holding times (200, 400, and 600 s). The applied treatments reduced the levels of total aerobic mesophilic (TAM), total psychrophilic and psychrotrophic bacteria (TPP), and molds and yeasts (M&Y). All applied treatments did not affect enzymatic activity of PPO. Pressure level increased CIE L* values, which could enhance the lightness perception of high pressure (HP)-treated purées. No differences were found between the untreated and HP-treated purées regarding total phenols and carotenoids content (lutein, α-carotene, and β-carotene) and total antioxidant activity. HPP did not affect most quality parameters and maintained the levels of bioactive compounds. However, it did not achieve the complete inhibition of PPO, which could reduce the shelf-life of the pumpkin purée.

  11. Melamine activates NFκB/COX-2/PGE2 pathway and increases NADPH oxidase-dependent ROS production in macrophages and human embryonic kidney cells. (United States)

    Kuo, Fu-Chen; Tseng, Yu-Ting; Wu, Sing-Ru; Wu, Ming-Tsang; Lo, Yi-Ching


    Melamine is a wildly used compound in manufactures of plastics and resins. A variety of toxic effects from melamine, including nephrolithiasis, chronic kidney inflammation, and bladder carcinoma, have been mentioned. Oxidative stress is considered to be an important pathogenic mechanism of kidney disease which may develop from an increasing free radical production through inflammation. The aim of this study is to investigate melamine-induced oxidative stress and inflammation in macrophage-like cell line RAW 264.7 and human embryonic kidney cell line HEK293. Results indicated melamine activated nuclear factor (NF)-κB through increasing IκB-α degradation and NF-κB p65/p50 DNA-binding activity. In addition, melamine significantly increased COX-2 expression and prostaglandin E2 (PGE2) production. Moreover, melamine activated NADPH oxidase (NOX), including NOX1, NOX2 and NOX4, accompanied with an increase in reactive oxygen species (ROS) production. Furthermore, melamine-induced ROS production could be attenuated by apocynin, a NOX inhibitor. In conclusion, our findings suggest melamine increased inflammation and oxidative stress via activation of NF-κB/COX-2 and NOX/ROS pathway, and first revealed the critical role of NOX in melamine-induced ROS production, suggesting the potential of NOX inhibitor against melamine toxicity.

  12. Electrochemical quartz crystal microbalance studies on enzymatic specific activity and direct electrochemistry of immobilized glucose oxidase in the presence of sodium dodecyl benzene sulfonate and multiwalled carbon nanotubes. (United States)

    Su, Yuhua; Xie, Qingji; Chen, Chao; Zhang, Qingfang; Ma, Ming; Yao, Shouzhuo


    The electrochemical quartz crystal microbalance (EQCM) technique was utilized to monitor in situ the adsorption of glucose oxidase (GOD) and the mixture of GOD and sodium dodecyl benzene sulfonate (SDBS) onto Au electrodes with and without modification of multiwalled carbon nanotubes (MWCNTs) or SDBS/MWCNTs composite, and the relationship between enzymatic specific activity (ESA) and direct electrochemistry of the immobilized GOD was quantitatively evaluated for the first time. Compared with the bare gold electrode at which a little GOD was adsorbed and the direct electrochemistry of the adsorbed GOD was negligible, the amount and electroactivity of adsorbed GOD were greatly enhanced when the GOD was mixed with SDBS and then adsorbed onto the SDBS/MWCNTs modified Au electrode. However, the ESA of the adsorbed GOD was fiercely decreased to only 16.1% of the value obtained on the bare gold electrode, and the portion of adsorbed GOD showing electrochemical activity exhibited very low enzymatic activity, demonstrating that the electroactivity and ESA of immobilized GOD responded oppositely to the presence of MWCNTs and SDBS. The ESA results obtained from the EQCM method were well supported by conventional UV-vis spectrophotometry. The direct electrochemistry of redox proteins including enzymes as a function of their biological activities is an important concern in biotechnology, and this work may have presented a new and useful protocol to quantitatively evaluate both the electroactivity and ESA of trace immobilized enzymes, which is expected to find wider applications in biocatalysis and biosensing fields.

  13. Atividade de peroxidase e polifenoloxidase na resistência do feijão à antracnose Peroxidase and polyphenol oxidase activity in bean anthracnose resistance

    Directory of Open Access Journals (Sweden)

    Ângela Diniz Campos


    Full Text Available O objetivo deste trabalho foi avaliar a influência das enzimas peroxidase e polifenoloxidase na resistência à antracnose de quatro cultivares de feijão. Plântulas de feijão foram pulverizadas com ácido salicílico e com a raça delta de Colletotrichum lindemuthianum (fungo indutor e submetidas à inoculação do patótipo virulento 33/95 de C. lindemuthianum três dias após a aplicação do fungo indutor e do ácido salicílico. Essas plantas foram avaliadas quanto à atividade enzimática e teores de fenóis, três dias após a aplicação do fungo indutor e cinco dias após a inoculação do patótipo virulento. Acréscimos nas atividades dessas enzimas foram maiores nos tratamentos com ácido salicílico e fungo indutor em todas as cultivares. Maiores estímulos nas atividades enzimáticas foram observados nas cultivares com maior resistência à doença. Constatou-se o aparecimento de uma isoperoxidase nos tratamentos com fungo indutor, ácido salicílico, após inoculação do patótipo virulento, e na testemunha, nas cultivares AB 136, Rio Tibagi e Macanudo. Houve correlação positiva entre as atividades da peroxidase e da polifenoloxidase, os teores de compostos fenólicos e a resistência à antracnose.The objective of this work was to evaluate the influence of peroxidase and polyphenol oxidase enzymes in anthracnose resistance of four bean cultivars. Seedlings were sprinkled with salicylic acid and delta race of Colletotrichum lindemuthianum (inducer fungus and after three days they were inoculated with 33/95 virulent pathotype of C. lindemuthianum. Enzyme activity and phenol levels were evaluated three days after inducer fungus application and five days after inoculation with virulent pathotype. Plants treated with salicylic acid and inducer fungus presented higher activity increases of both enzymes, in all cultivars. Higher impulses in enzymatic activity were observed in cultivars with higher disease resistance. One

  14. Synthetic liver X receptor agonist T0901317 inhibits semicarbazide-sensitive amine oxidase gene expression and activity in apolipoprotein E knockout mice

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Dai; Xiang Ou; Xinrui Hao; Dongli Cao; Yaling Tang; Yanwei Hu; Xiaoxu Li; Chaoke Tang


    Semicarbazide-sensitive amine oxidase(SSAO)catalyzes oxidative deamination of primary aromatic and aliphatic amines.Increased SSAO activity has been found in atherosclerosis and diabetes mellitus.We hypothesize that the anti-atherogenic effect of liver X receptors(LXRs)might be related to the inhibition of SSAD gene expression and its activity.In this study,we investigated the effect of LXR agonist T0901317 on SSAO gene expression and its activity in apolipoprotein E knockout(apoE-/-)mice.Male apoE-/-mice(8 weeks old) were randomly divided into four groups:basal control group;vehicle group;prevention group;and treatment group.SSAO gene expression was analyzed by real-time quantitative polymerase chain reaction and its activity was determined.The activity of superoxide dismutase and content of malondialdehy de in the aorta and liver were also determined.In T0901317-treated mice,SSAO gene expression was significantly decreased in the aorta,liver,small intestine,and brain.SSAO activities in serum and in these tissues were also inhibited.The amount of superoxide dismutase in the aorta and liver of the prevention group and treatment group was significantly higher compared with the vehicle group(P<0.05).Malondialdehyde in the tissues of these two groups was significantly lower compared with the vehicle group(P<0.05).Our results showed that T0901317 inhibits SSAO gene expression and its activity in atherogenic apoE-/-mice.The atheroprotective effect of LXR agonist T0901317 is related to the inhibition of SSAO gene expression and its activity.

  15. Synthesis and Herbicidal Activity of Pyrido[2,3-d]pyrimidine-2,4-dione-Benzoxazinone Hybrids as Protoporphyrinogen Oxidase Inhibitors. (United States)

    Wang, Da-Wei; Li, Qian; Wen, Kai; Ismail, Ismail; Liu, Dan-Dan; Niu, Cong-Wei; Wen, Xin; Yang, Guang-Fu; Xi, Zhen


    To search for new protoporphyrinogen oxidase (PPO, EC inhibitors with improved bioactivity, a series of novel pyrido[2,3-d]pyrimidine-2,4-dione-benzoxazinone hybrids, 9-13, were designed and synthesized. Several compounds with improved tobacco PPO (mtPPO)-inhibiting and promising herbicidal activities were found. Among them, the most potent compound, 3-(7-fluoro-3-oxo-4-(prop-2-yn-1-yl)-3,4-dihydro-2H-benzo[b][1,4] oxazin-6-yl)-1-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione, 11q, with a Ki value of 0.0074 μM, showed six times more activity than flumioxazin (Ki = 0.046 μM) against mtPPO. Compound 11q displayed a strong and broad spectrum of weed control at 37.5-150 g of active ingredient (ai)/ha by both post- and pre-emergence application, which was comparable to that of flumioxazin. 11q was safe to maize, soybean, peanut, and cotton at 150 g ai/ha, and selective to rice and wheat at 75 g ai/ha by pre-emergence application, indicating potential applicability in these fields.

  16. Mechanism-based pharmacokinetic-pharmacodynamic modeling of salvianolic acid A effects on plasma xanthine oxidase activity and uric acid levels in acute myocardial infarction rats. (United States)

    Wang, Haidong; Li, Xi; Zhang, Wenting; Liu, Yao; Wang, Shijun; Liu, Xiaoquan; He, Hua


    1. Salvianolic acid A (SalA) was found to attenuate plasma uric acid (UA) concentration and xanthine oxidase (XO) activity in acute myocardial infraction (AMI) rats, which was characterized with developed mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) model. 2. AMI was induced in rats by coronary artery ligation. Surviving AMI rats received a single intravenous dose of 5 mg/kg of SalA and normal saline. The plasma SalA concentrations were determined by HPLC-MS/MS method. The plasma UA concentrations were determined by HPLC method and plasma XO activity were measured spectrophotometrically. An integrated mathematical model characterized the relationship between plasma UA and SalA. 3. Pharmacokinetics was described using two-compartment model for SalA with linear metabolic process. In post-AMI rats, XO activity and UA concentrations were increased, while SalA dosing palliated this increase. These effects were well captured by using two series of transduction models, simulating the delay of inhibition on XO driven by SalA and UA elevation resulted from the multiple factors, respectively. 4. The effect was well described by the developed PK-PD model, indicating that SalA can exert cardiovascular protective effects by decreasing elevated plasma UA levels induced by AMI.

  17. Immobilization of glucose oxidase onto a novel platform based on modified TiO2 and graphene oxide, direct electrochemistry, catalytic and photocatalytic activity. (United States)

    Haghighi, Nasibeh; Hallaj, Rahman; Salimi, Abdollah


    In this work a new organic-inorganic nanocomposite has been introduced for enzyme immobilization. The composite consisting of graphene oxide (GO) and titanium oxide nanoparticles (TiO2) modified with 2, 2'-dithioxo-3, 3'-bis (3-(triethoxysilyl) propyl)-2H, 2'H-[5, 5'-bithiazolylidene]-4, 4'(3H, 3'H)-dione as Organic-Inorganic Supporting Ligand (OISL). The OISL was covalently attached to TiO2 nanoparticles and employed for obtaining a suitable solid surface to enzyme attachment. The glucose oxidase (GOD) was irreversibly loaded on the GC/GO/TiO2-OISL using consecutive cyclic voltammetry. The enzyme immobilization and the enzymatic activity were determined by electrochemical methods. The cyclic voltammogram displayed a pair of well-defined and nearly symmetric redox peaks with a formal potential of -0.465V and an apparent electron transfer rate constant of 1.74s(-1). The GO/TiO2-OISL can catalyze the electroreduction and electrooxidation of hydrogen peroxide. The GC/GO/TiO2-OISL/GOD electrode was used in the hydrogen peroxide determination. The fabricated nanobiocomposite shows dramatic photoelectrocatalytic activity which evaluated by studying the electrocatalytic activity of the fabricated electrode toward hydrogen peroxide in darkness and in the presences of light. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. In vitro Inhibition of Acetyl Cholinesterase, Lipoxygenase, Xanthine Oxidase and Antibacterial Activities of Five Indigofera (Fabaceae Aqueous Acetone Extracts from Burkina Faso

    Directory of Open Access Journals (Sweden)

    C.E. Lamien


    Full Text Available The aim of this study is to evaluate the inhibition of oxidative stress related enzymes of aqueous acetone extracts, as well as antibacterial activity from five Indigofera species well-known medicinal plant from Burkina. Also are investigated in this study the potential contribution of tannins and of flavonol in these activities Particularly, aqueous acetone extracts were investigated for their Lipoxygenase (LOX, Xanthine Oxidase (XO and Acetylcholinesterase (AChE inhibitions that are implied in inflammation, gout and Alzheimer’s etiology diseases. Interestingly, I. macrocalyx which had the highest flavonol content (of all showed more inhibition against LOX and XO (51.16 and 77.33% respectively. Our study showed a significant correlation between XO inhibition and total flavonol content (R2 = 0.9052. AChE was low sensible to all extracts. In contrast, the extracts were rich in tannin compounds especially in I. tinctoria extract. And results of the in vitro antibacterial activities of these extracts against five bacteria showed that all bacteria were sensible to all extracts particularly S. typhimurium and B. cereus. Our results suggest that the five studied species prove to be good sources of inhibition of the three enzymes involved in oxidative stress and also to have some antibacterial properties. That is what probably explains their uses in folk medicine, singularly, in the treatment of gout, dysentery and anti-inflammatory diseases.

  19. Changes in D-aspartic acid and D-glutamic acid levels in the tissues and physiological fluids of mice with various D-aspartate oxidase activities. (United States)

    Han, Hai; Miyoshi, Yurika; Koga, Reiko; Mita, Masashi; Konno, Ryuichi; Hamase, Kenji


    D-Aspartic acid (D-Asp) and D-glutamic acid (D-Glu) are currently paid attention as modulators of neuronal transmission and hormonal secretion. These two D-amino acids are metabolized only by D-aspartate oxidase (DDO) in mammals. Therefore, in order to design and develop new drugs controlling the D-Asp and D-Glu amounts via regulation of the DDO activities, changes in these acidic D-amino acid amounts in various tissues are expected to be clarified in model animals having various DDO activities. In the present study, the amounts of Asp and Glu enantiomers in 6 brain tissues, 11 peripheral tissues and 2 physiological fluids of DDO(+/+), DDO(+/-) and DDO(-/-) mice were determined using a sensitive and selective two-dimensional HPLC system. As a result, the amounts of D-Asp were drastically increased with the decrease in the DDO activity in all the tested tissues and physiological fluids. On the other hand, the amounts of D-Glu were almost the same among the 3 strains of mice. The present results are useful for designing new drug candidates, such as DDO inhibitors, and further studies are expected.

  20. Peptides derived from the copper-binding region of lysyl oxidase exhibit antiangiogeneic properties by inhibiting enzyme activity: an in vitro study. (United States)

    Mohankumar, Arun; Renganathan, Bhuvanasundar; Karunakaran, Coral; Chidambaram, Subbulakshmi; Konerirajapuram Natarajan, Sulochana


    Despite the rigorous research on abnormal angiogenesis, there is a persistent need for the development of new and efficient therapies against angiogenesis-related diseases. The role of Lysyl oxidase (LOX) in angiogenesis and cancer has been established in prior studies. Copper is known to induce the synthesis of LOX, and hence regulates its activity. Hypoxia-induced metastasis is dependent on LOX expression and activity. It has been believed that the inhibition of LOX would be a therapeutic strategy to inhibit angiogenesis. To explore this, we designed peptides (M peptides) from the copper-binding region of LOX and hypothesized them to modulate LOX. The peptides were characterized, and their copper-binding ability was confirmed by mass spectrometry. The M peptides were found to reduce the levels of intracellular copper when the cells were co-treated with copper. The peptides showed promising effect on aortic LOX, recombinant human LOX and LOX produced by human umbilical vein endothelial cells (HUVECs). The study also explores the effect of these peptides on copper and hypoxia-stimulated angiogenic response in HUVECs. It was found that the M peptides inhibited copper/hypoxia-induced LOX activity and inhibited stimulated HUVEC tube formation and migration. This clearly indicated the potential of M peptides in inhibiting angiogenesis, highlighting their role in the formulation of drugs for the same.

  1. Spatial and functional correlation between diamine-oxidase and peroxidase activities and their dependence upon de-etiolation and wounding in chick-pea stems. (United States)

    Angelini, R; Manes, F; Federico, R


    The activities of diamine oxidase (DAO, EC and peroxidase (POD, EC were determined along the stems of light-grown Cicer arietinum L. (chick-pea) seedlings. Enzyme activities were evaluated in the soluble, lightly bound (salt extraction) and tightly bound (Driselase digestion) wall fractions, and in residual fractions obtained from the different internodes. Apparent tissue distributions of both enzymes and lignin depositions were visualised by means of histochemical and immunohistochemical techniques. A close relationship was found between DAO and POD activities in the soluble and wall fractions along the stem. The biochemical activities of both enzymes decreased from the base to the apex of the stem in parallel with the distribution pattern of lignifying tissues in this organ. A similar activity gradient was found for each enzyme along the epidermis of the whole organ. Moreover, deetiolation elicited a rise in the activities of both enzymes in this tissue. Wounding chick-pea stems induced parallel increases in DAO and POD activities in the soluble and wall fractions. In-situ histochemical detection of both enzymes demonstrated the parallel occurrence of the DAO/POD system and lignosuberised depositions in the cell walls adjacent to the wound site. The patterns of POD isoforms resulting from the wound-healing process were determined by means of starch-gel electrophoresis. In addition to changes in relative intensity of enzyme bands in soluble and wall fractions, a new POD isoform, possibly related to the wounding response, appeared in the soluble fraction. This isoform was shown to be lightly bound to cell walls as it could be detected in the extracellular fluids obtained from wound-healed seedlings. On the basis of the above-mentioned results, a strict spatial and functional correlation can be inferred between DAO and POD in chick-pea, and probably in other Leguminosae species, in accordance with previous evidence indicating an integrated role

  2. Impact of Cyanidin-3-Glucoside on Glycated LDL-Induced NADPH Oxidase Activation, Mitochondrial Dysfunction and Cell Viability in Cultured Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xueping Xie


    Full Text Available Elevated levels of glycated low density lipoprotein (glyLDL are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS, activated NADPH oxidase (NOX and suppressed mitochondrial electron transport chain (mETC enzyme activities in vascular endothelial cells (EC. The present study examined the effects of cyanidin-3-glucoside (C3G, a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC. Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2 in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC.

  3. Enormous excitonic effects in bulk, mono- and bi- layers of cuprous halides using many-body perturbation technique (United States)

    Azhikodan, Dilna; Nautiyal, Tashi


    Cuprous halides (CuX with X = Cl, Br, I), intensely studied about four decades ago by experimentalists for excitons, are again drawing attention of researchers recently. Potential of cuprous halide systems for device applications has not yet been fully explored. We go beyond the one-particle picture to capture the two-particle physics (electron-hole interaction to form excitons). We have deployed the full tool kit of many-body perturbation technique, GW approximation + Bethe Salpeter equation, to unfurl the rich excitonic physics of the bulk as well as layers of CuX. The negative spin-orbit contribution at the valence band top in CuCl, compared to CuBr and CuI, is in good agreement with experiments. We note that CuX have exceptionally strong excitons, defying the linear fit (between the excitonic binding energy and band gap) encompassing many semiconductors. The mono- and bi- layers of cuprous halides are predicted to be rich in excitons, with exceptionally large binding energies and the resonance energies in UV/visible region. Hence this work projects CuX layers as good candidates for optoelectronic applications. With advancement of technology, we look forward to experimental realization of CuX layers and harnessing of their rich excitonic potential.

  4. Fructose suppresses uric acid excretion to the intestinal lumen as a result of the induction of oxidative stress by NADPH oxidase activation. (United States)

    Kaneko, Chihiro; Ogura, Jiro; Sasaki, Shunichi; Okamoto, Keisuke; Kobayashi, Masaki; Kuwayama, Kaori; Narumi, Katsuya; Iseki, Ken


    A high intake of fructose increases the risk for hyperuricemia. It has been reported that long-term fructose consumption suppressed renal uric acid excretion and increased serum uric acid level. However, the effect of single administration of fructose on excretion of uric acid has not been clarified. We used male Wistar rats, which were orally administered fructose (5g/kg). Those rats were used in each experiment at 12h after administration. Single administration of fructose suppressed the function of ileal uric acid excretion and had no effect on the function of renal uric acid excretion. Breast cancer resistance protein (BCRP) predominantly contributes to intestinal excretion of uric acid as an active homodimer. Single administration of fructose decreased BCRP homodimer level in the ileum. Moreover, diphenyleneiodonium (DPI), an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox), recovered the suppression of the function of ileal uric acid excretion and the Bcrp homodimer level in the ileum of rats that received single administration of fructose. Single administration of fructose decreases in BCRP homodimer level, resulting in the suppression the function of ileal uric acid excretion. The suppression of the function of ileal uric acid excretion by single administration of fructose is caused by the activation of Nox. The results of our study provide a new insight into the mechanism of fructose-induced hyperuricemia. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Modifications on the hydrogen bond network by mutations of Escherichia coli copper efflux oxidase affect the process of proton transfer to dioxygen leading to alterations of enzymatic activities

    Energy Technology Data Exchange (ETDEWEB)

    Kajikawa, Takao; Kataoka, Kunishige [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Sakurai, Takeshi, E-mail: [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan)


    Highlights: Black-Right-Pointing-Pointer Proton transfer pathway to dioxygen in CueO was identified. Black-Right-Pointing-Pointer Glu506 is the key amino acid to transport proton. Black-Right-Pointing-Pointer The Ala mutation at Glu506 formed a compensatory proton transfer pathway. Black-Right-Pointing-Pointer The Ile mutation at Glu506 shut down the hydrogen bond network. -- Abstract: CueO has a branched hydrogen bond network leading from the exterior of the protein molecule to the trinuclear copper center. This network transports protons in the four-electron reduction of dioxygen. We replaced the acidic Glu506 and Asp507 residues with the charged and uncharged amino acid residues. Peculiar changes in the enzyme activity of the mutants relative to the native enzyme indicate that an acidic amino acid residue at position 506 is essential for effective proton transport. The Ala mutation resulted in the formation of a compensatory hydrogen bond network with one or two extra water molecules. On the other hand, the Ile mutation resulted in the complete shutdown of the hydrogen bond network leading to loss of enzymatic activities of CueO. In contrast, the hydrogen bond network without the proton transport function was constructed by the Gln mutation. These results exerted on the hydrogen bond network in CueO are discussed in comparison with proton transfers in cytochrome oxidase.

  6. Crystal Structure and Inhibitory Activity against Xanthine Oxidase of Bis(μ2-chloro)-chloro-(μ-N,N'-(2-pyridylmethylene)Furanmethanoamine Copper(Ⅱ)Complex

    Institute of Scientific and Technical Information of China (English)

    FANG Rui-Qin; SHI Da-Hua; SHI Lei; ZHU Hai-Liang


    A chloro-bridged dinuclear copper(Ⅱ) complex with ligand 2-pyridylme-thylene-furfurylamine has been synthesized and characterized by single-crystal X-ray diffraction,and its inhibitory activity on xanthine oxidase(XO)Was also evaluated.It crystallizes in the triclinic system,space group P-1 with a=8.0441(16),b=8.5663(17),c=10.060(2)(A),α=77.52(3),β=72.04(3),γ=70.12(3)°,V=615.3(2)(A)3,Z=1,Dc=1.731 g/cm3,F(000)=322,the final R=0.0401 and wR=0.0934 for 1971 observed reflections with Ⅰ>2σ(Ⅰ).X-ray analysis reveals that the Cu(Ⅱ)cation is five-coordinated by two N atoms of Schiff base and three C1 anions.The C-H…Cl intermolecular and intramolecular hydrogen bonds connect the molecules to form a three-dimensional network.Tilis copper(Ⅱ) complex shows more potent inhibitory activity against XO with Ⅰ C50=3.48/μM than the standard inhibitor allopurinol.

  7. Real-time evaluation of polyphenol oxidase (PPO) activity in lychee pericarp based on weighted combination of spectral data and image features as determined by fuzzy neural network. (United States)

    Yang, Yi-Chao; Sun, Da-Wen; Wang, Nan-Nan; Xie, Anguo


    A novel method of using hyperspectral imaging technique with the weighted combination of spectral data and image features by fuzzy neural network (FNN) was proposed for real-time prediction of polyphenol oxidase (PPO) activity in lychee pericarp. Lychee images were obtained by a hyperspectral reflectance imaging system operating in the range of 400-1000nm. A support vector machine-recursive feature elimination (SVM-RFE) algorithm was applied to eliminating variables with no or little information for the prediction from all bands, resulting in a reduced set of optimal wavelengths. Spectral information at the optimal wavelengths and image color features were then used respectively to develop calibration models for the prediction of PPO in pericarp during storage, and the results of two models were compared. In order to improve the prediction accuracy, a decision strategy was developed based on weighted combination of spectral data and image features, in which the weights were determined by FNN for a better estimation of PPO activity. The results showed that the combined decision model was the best among all of the calibration models, with high R(2) values of 0.9117 and 0.9072 and low RMSEs of 0.45% and 0.459% for calibration and prediction, respectively. These results demonstrate that the proposed weighted combined decision method has great potential for improving model performance. The proposed technique could be used for a better prediction of other internal and external quality attributes of fruits.

  8. Evidence that the methylation state of the monoamine oxidase A (MAOA) gene predicts brain activity of MAO A enzyme in healthy men

    National Research Council Canada - National Science Library

    Shumay, Elena; Logan, Jean; Volkow, Nora D; Fowler, Joanna S


    ...). PET brain imaging of monoamine oxidase A (MAO A)-an enzyme metabolizing neurotransmitters-revealed that MAO A levels vary widely between healthy men and this variability was not explained by the common MAOA genotype (VNTR genotype...

  9. The structures of pyruvate oxidase from Aerococcus viridans with cofactors and with a reaction intermediate reveal the flexibility of the active-site tunnel for catalysis


    Juan, Ella Czarina Magat; Hoque, Md Mominul; Hossain, Md Tofazzal; Yamamoto, Tamotsu; Imamura, Shigeyuki; Suzuki, Kaoru; Sekiguchi, Takeshi; Takénaka, Akio


    The crystal structures of pyruvate oxidase from A. viridans in complex with flavin adenine dinucleotide, thiamine diphosphate and the reaction intermediate 2-acetyl-thiamine diphosphate reveal details of substrate recognition and catalysis.

  10. Endothelins and NADPH oxidases in the cardiovascular system. (United States)

    Dammanahalli, Karigowda J; Sun, Zhongjie


    1. The endothelin (ET) system and NADPH oxidase play important roles in the regulation of cardiovascular function, as well as in the pathogenesis of hypertension and other cardiovascular diseases. 2. Endothelins activate NADPH oxidases and thereby increase superoxide production, resulting in oxidative stress and cardiovascular dysfunction. Thus, NADPH oxidases may mediate the role of endothelins in some cardiovascular diseases. However, the role of reactive oxygen species (ROS) in mediating ET-induced vasoconstriction and cardiovascular disease remains under debate, as evidenced by conflicting reports from different research teams. Conversely, activation of NADPH oxidase can stimulate ET secretion via ROS generation, which further enhances the cardiovascular effects of NADPH oxidase. However, little is known about how ROS activate the endothelin system. It seems that the relationship between ET-1 and ROS may vary with cardiovascular disorders. 3. Endothelins activate NADPH oxidase via the ET receptor-proline-rich tyrosine kinase-2 (Pyk2)-Rac1 pathway. Rac1 is an important regulator of NADPH oxidase. There is ample evidence supporting direct stimulation by Rac1 of NADPH oxidase activity. In addition, Rac1-induced cardiomyocyte hypertrophy is mediated by the generation of ROS.

  11. Selective monoamine oxidase B inhibition by an Aphanizomenon flos-aquae extract and by its constitutive active principles phycocyanin and mycosporine-like amino acids. (United States)

    Scoglio, Stefano; Benedetti, Yanina; Benvenuti, Francesca; Battistelli, Serafina; Canestrari, Franco; Benedetti, Serena


    Aphanizomenon flos-aquae (AFA) is a fresh water unicellular blue-green alga that has been traditionally used for over 25 years for its health-enhancing properties. Recent studies have shown the ability of a proprietary AFA extract (Klamin(®)) to improve mood, counteract anxiety, and enhance attention and learning. Aim of this study was to test the monoamine oxidase (MAO) inhibition activity of the same AFA extract and of its constituents phycocyanin (AFA-PC) and mycosporine-like aminoacids (AFA-MAAs). All compounds showed a dose-dependent selective inhibition of MAO-B activity as compared to MAO-A. The IC50 values of the AFA extract (concentration 10 mg/ml), AFA-PC and AFA-MAAs were 6.4 μl/ml, 1.33 μM and 1.98 μM, respectively, evidencing a mixed-type of inhibition for the AFA extract (Ki 0.99 μl/ml), a non-competitive inhibition for AFA-PC (Ki 1.06 μM) and a competitive inhibition for AFA-MAAs (Ki 0.585 μM). These results are important to explain the neuromodulating properties of the AFA extract Klamin(®), which is rich in phenylethylamine, a general neuromodulator, that would nevertheless rapidly destroyed by MAO-B enzymes without the inhibitory activity of the synergic active principles AFA-PC and AFA-MAAs. The present investigation thus proposes the extract as potentially relevant in clinical areas such as mood disorders and neurodegenerative diseases. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Mixed-function oxidase enzyme activity and oxidative stress in lake trout (Salvelinus namaycush) exposed to 3,3{prime},4,4{prime}5-pentachlorobiphenyl (PCB-126)

    Energy Technology Data Exchange (ETDEWEB)

    Palace, V.P. [Univ. of Manitoba, Winnipeg, Manitoba (Canada). Dept. of Zoology; Klaverkamp, J.F.; Lockhart, W.L. [Univ. of Manitoba, Winnipeg, Manitoba (Canada). Dept. of Zoology]|[Department of Fisheries and Oceans, Winnipeg, Manitoba (Canada). Freshwater Inst.; Metner, D.A.; Muir, D.C.G.; Brown, S.B. [Department of Fisheries and Oceans, Winnipeg, Manitoba (Canada). Freshwater Inst.


    Juvenile lake trout were intraperitoneally injected with corn oil containing nominal concentrations of 0, 0.6, 6.3, or 25 {micro}g [{sup 14}C]-3,3{prime},4,4{prime},5-pentachlorobiphenyl (PCB-126) per gram of body weight. The PCB-126 accumulated in liver in a dose-dependent manner to a sustained concentration by 6 weeks and remained elevated for the 30-week experimental period. Mixed-function oxidase (MFO) enzyme activity was elevated in the two highest dose groups relative to the control group, but not in the low-dose group throughout the 30 weeks. Oxidative stress, measured by the thiobarbituric acid reactive substances test, was correlated with ethoxyresorufin O-deethylase and was elevated in liver of the two highest PCB dose groups but not the low-dose group. The activities of the enzymatic antioxidants superoxide dismutase, catalase, and glutathione peroxidase were unaffected by PCB-126 exposure. The nonenzymatic antioxidants superoxide dismutase, catalase, and glutathione peroxidase were unaffected by PCB-126 exposure. The nonenzymatic antioxidant tocopherol was depleted to approximately 75% of the control concentration in liver of all three PCB-dosed groups. Hepatic ascorbic acid levels were not different in any of the treatment groups. Retinol was depleted by greater than an order of magnitude in liver of the two highest dose groups but not in the los-dose group. This study demonstrates a correlation between hepatic MFO activity and oxidative stress in PCB-exposed lake trout. Tocopherol and retinol may be important mediators of oxidative stress but additional study is required to confirm the antioxidant activity of retinol.

  13. Honeybee glucose oxidase--its expression in honeybee workers and comparative analyses of its content and H2O2-mediated antibacterial activity in natural honeys. (United States)

    Bucekova, Marcela; Valachova, Ivana; Kohutova, Lenka; Prochazka, Emanuel; Klaudiny, Jaroslav; Majtan, Juraj


    Antibacterial properties of honey largely depend on the accumulation of hydrogen peroxide (H2O2), which is generated by glucose oxidase (GOX)-mediated conversion of glucose in diluted honey. However, honeys exhibit considerable variation in their antibacterial activity. Therefore, the aim of the study was to identify the mechanism behind the variation in this activity and in the H2O2 content in honeys associated with the role of GOX in this process. Immunoblots and in situ hybridization analyses demonstrated that gox is solely expressed in the hypopharyngeal glands of worker bees performing various tasks and not in other glands or tissues. Real-time PCR with reference genes selected for worker heads shows that the gox expression progressively increases with ageing of the youngest bees and nurses and reached the highest values in processor bees. Immunoblot analysis of honey samples revealed that GOX is a regular honey component but its content significantly varied among honeys. Neither botanical source nor geographical origin of honeys affected the level of GOX suggesting that some other factors such as honeybee nutrition and/or genetic/epigenetic factors may take part in the observed variation. A strong correlation was found between the content of GOX and the level of generated H2O2 in honeys except honeydew honeys. Total antibacterial activity of most honey samples against Pseudomonas aeruginosa isolate significantly correlated with the H2O2 content. These results demonstrate that the level of GOX can significantly affect the total antibacterial activity of honey. They also support an idea that breeding of novel honeybee lines expressing higher amounts of GOX could help to increase the antibacterial efficacy of the hypopharyngeal gland secretion that could have positive influence on a resistance of colonies against bacterial pathogens.

  14. A high-performance liquid chromatography assay with a triazole-bonded column for evaluation of d-amino acid oxidase activity. (United States)

    Iwasaki, Megumi; Kashiwaguma, Yoshiyuki; Nagashima, Chihiro; Izumi, Mao; Uekusa, Ayano; Iwasa, Sumiko; Onozato, Mayu; Ichiba, Hideaki; Fukushima, Takeshi


    Elution profiles of kynurenic acid (KYNA) and 7-chlorokynurenic acid (Cl-KYNA) were examined by high-performance liquid chromatography (HPLC) using a triazole-bonded stationary phase column (Cosmosil® HILIC) under isocratic elution of a mobile phase consisting of CH3 CN-aqueous 10 mm ammonium formate between pH 3.0 and 6.0. The capacity factors of KYNA and Cl-KYNA varied with both the CH3 CN content and the pH of the mobile phase. The elution order of KYNA and Cl-KYNA was reversed between the CH3 CN- and H2 O-rich mobile phases, suggesting that hydrophilic interactions and anion-exchange interactions caused retention of KYNA and Cl-KYNA in the CH3 CN- and H2 O-rich mobile phases, respectively. The present HPLC method using a triazole-bonded column and fluorescence detection (excitation 250 nm, emission 398 nm) was applied to monitor in vitro production of KYNA from d-kynurenine (d-KYN) by d-amino acid oxidase (DAO) using Cl-KYNA as an internal standard. A single KYNA peak was clearly observed after enzymatic reaction of d-KYN with DAO. Production of KYNA from d-KYN was suppressed by the addition of commercial DAO inhibitors. The present HPLC method can be used to evaluate DAO activity and DAO inhibitory effects in candidate drugs for the treatment of schizophrenia.

  15. The determination of aldehyde oxidase activity patterns in the wing discs of Drosophila melanogaster : Absence of field size influence during the third larval instar. (United States)

    McCrady, Edward; Sprey, Th E


    The pattern of aldehyde oxidase (AO) activity was determined in wing discs of Drosophila melanogaster larvae homozygous for the mutants apt (73n), Beaded, and vestigial (vg) in order to determine if reduction in field size in the pouch could be related to alterations of the wild-type AO pattern, as suggested by the Kauffman (1978) hypothesis. The pattern in wild-type discs was resolved into six areas for comparison with mutant discs. vg discs developed at 25° C showed restriction of the pattern into a small area on the anterior side of the disc, and comparison of vg and wild-type prepupal wings allowed positive identification of the AO pattern elements which remained. AO patterns in vg wing discs grown at 27°, 29°, and 31° C were progressively more complete and similar to wild-type, reflecting the reduction in cell death in discs grown at higher temperatures. These results show that cell loss during the third instar in vg development at 25° C is responsible for the alteration of the AO pattern, rather than field size reduction, and that determination of the pattern must take place much earlier than the time of its first appearance during the third larval instar, and before cell death in vg discs begins. Thus mutants acting at earlier stages will be necessary for further tests of the Kauffman hypothesis.

  16. Effect of spermidine and its metabolites on the activity of pea seedlings diamine oxidase and the problems of biosensing of biogenic amines with this enzyme. (United States)

    Kivirand, K; Sõmerik, H; Oldekop, M-L; Rebane, R; Rinken, T


    Spermidine is one of the several biogenic amines, produced during the microbial decarboxylation of proteins. Individual biogenic amines in the formed mixtures are frequently analyzed with oxygen sensor based biosensors, as their content serves as a good biomarker for the determination of food quality. In these biosensors, diamine oxidase from pea seedlings (PSAO), catalyzing the oxidation of various biogenic amines by dissolved oxygen is commonly used for the bio-recognition of amines. However, in the presence of spermidine and/or its metabolite 1,3-diaminopropane, the activity of PSAO and the sensitivity of PSAO-based biosensors decrease due to inhibition. The inhibition constant of soluble spermidine, acting as an inhibiting substrate toward PSAO, was found to be (40±15) mM in freshly prepared solution and (0.28±0.05) mM in solution, incubated 30 days at room temperature. The inhibition constant of 1,3-diaminopropane, acting as a competitive inhibitor, was (0.43±0.12) mM as determined through the oxidation reaction of cadaverine. The metabolic half-life of soluble spermidine was 7 days at room temperature and 186 days at 4 °C. The kinetic measurements were carried out with an oxygen sensor; the composition of the solution of degraded spermidine was analyzed with MS.

  17. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity (United States)

    Abooali, Maryam; Yasinska, Inna M.; Casely-Hayford, Maxwell A.; Berger, Steffen M.; Fasler-Kan, Elizaveta; Sumbayev, Vadim V.


    Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells. PMID:26384306

  18. Correlation between total nitrite/nitrate concentrations and monoamine oxidase (types A and B) and semicarbazide-sensitive amine oxidase enzymatic activities in human mesenteric arteries from non-diabetic and type 2 diabetic patients

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, S.F.; Figueiredo, I.V. [Laboratório de Farmacologia, Faculdade de Farmácia, Universidade de Coimbra, Coimbra (Portugal); Pereira, J.S. [Instituto Português de Oncologia de Coimbra, Coimbra (Portugal); Lopes, M.C.; Caramona, M.M. [Laboratório de Farmacologia, Faculdade de Farmácia, Universidade de Coimbra, Coimbra (Portugal)


    The aim of this study was to determine the correlation between total nitrite/nitrate concentrations (NOx) and the kinetic parameters of monoamine oxidase enzymes (MAO-A and MAO-B) and semicarbazide-sensitive amine oxidase (SSAO) in human mesenteric arteries. Arteries were from non-diabetic and type 2 diabetic patients with sigmoid or rectum carcinoma for whom surgery was the first option and who were not exposed to neo-adjuvant therapy. Segments of human inferior mesenteric arteries from non-diabetic (61.1 ± 8.9 years old, 7 males and 5 females, N = 12) and type 2 diabetic patients (65.8 ± 6.2 years old, 8 males and 4 females, N = 12) were used to determine NOx concentrations and the kinetic parameters of MAO-A, MAO-B and SSAO by the Griess reaction and by radiochemical assay, respectively. The NOx concentrations in arteries from diabetic patients did not differ significantly from those of the non-diabetic group (10.28 ± 4.61 vs 10.71 ± 4.32 nmol/mg protein, respectively). In the non-diabetic group, there was a positive correlation between NOx concentrations and MAO-B parameters: K{sub m} (r = 0.612, P = 0.034) and V{sub max} (r = 0.593, P = 0.042), and a negative correlation with the SSAO parameters: K{sub m} (r = -0.625, P = 0.029) and V{sub max} (r = -0.754, P = 0.005). However, in the diabetic group no correlation was found between NOx concentrations and the three kinetic parameters of the enzymes. These results suggest an important function of sympathetic nerves and vascular NOx concentrations in arteries of non-diabetic patients. Thus, these results confirm the importance of a balance between oxidants and antioxidants in the maintenance of vascular homeostasis to prevent oxidative stress.

  19. multicopper oxidases important for human iron metabolism

    Directory of Open Access Journals (Sweden)

    Diana Wierzbicka


    Full Text Available Multi-copper oxidases are a group of proteins which demonstrate enzymatic activity and are capable of oxidizing their substrates with the concomitant reduction of dioxygen to two water molecules. For some multi-copper oxidases there has been demonstrated ferroxidase activity which is related to their specific structure characterized by the presence of copper centres and iron-binding sites. Three multi-copper oxidases have been included in this group: ceruloplasmin, hephaestin and zyklopen. Multi copper oxidases which are expressed in different tissues are capable of oxidizing a wide spectrum of substrates. Multi-copper oxidases are capable of oxidizing a wide spectrum of substrates. Ceruloplasmin exhibits antioxidant activity as well as being involved in many other biological processes. The observations of phenotypic effects of absence or low expression of multi-copper ferroxidase-coding genes suggest that the main role of these proteins is taking part in iron metabolism. The main role of ceruloplasmin in iron turnover is oxidizing Fe2+ into Fe3+, a process which is essential for iron binding to transferrin (the main iron-transporting protein, as well as to ferritin (the main iron-storage protein. The function of hephaestin as ferroxidase is essential for iron binding to apotransferrin in the lamina propria of the intestinal mucosa, a process that is important for further transport of iron to the liver by the portal vein. Available data indicate that zyklopen is responsible for the placental iron transport. The presence of three multi-copper oxidases with ferroxidase activity emphasizes the significance of oxidation for iron metabolism. The distribution of multi-copper ferroxidases in many tissues ensures the proper iron turnover in the body as well as preventing toxic effects related to the presence of Fe2+ ions. These ions contribute to generation of free radicals, including the highly reactive hydroxyl radical, through the Fenton and Haber

  20. Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. (United States)

    Yin, DeLu Tyler; Urresti, Saioa; Lafond, Mickael; Johnston, Esther M; Derikvand, Fatemeh; Ciano, Luisa; Berrin, Jean-Guy; Henrissat, Bernard; Walton, Paul H; Davies, Gideon J; Brumer, Harry


    Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase family of mononuclear copper-radical oxidases, Auxiliary Activity Family 5 (AA5), is currently represented by only very few characterized members. Here we report the recombinant production and detailed structure-function analyses of two homologues from the phytopathogenic fungi Colletotrichum graminicola and C. gloeosporioides, CgrAlcOx and CglAlcOx, respectively, to explore the wider biocatalytic potential in AA5. EPR spectroscopy and crystallographic analysis confirm a common active-site structure vis-à-vis the archetypal galactose 6-oxidase from Fusarium graminearum. Strikingly, however, CgrAlcOx and CglAlcOx are essentially incapable of oxidizing galactose and galactosides, but instead efficiently catalyse the oxidation of diverse aliphatic alcohols. The results highlight the significant potential of prospecting the evolutionary diversity of AA5 to reveal novel enzyme specificities, thereby informing both biology and applications.

  1. 余甘子果实多酚氧化酶活性影响因素研究%Factors Affecting Activities of Polyphenol Oxidase in Phyllanthus emblica

    Institute of Scientific and Technical Information of China (English)

    郑丽平; 丘春秀; 陈晓虹; 王惠敏; 张福平


    多酚氧化酶(PPO)是酶促褐变的关键酶,以余甘子(Phyllanthus emblica)果实PPO为研究对象,采用分光光度法研究余甘子果实PPO作用的最适底物,同时探究反应体系pH、反应温度、底物浓度、抑制剂对余甘子果实中PPO活性的影响。结果表明,余甘子果实PPO作用的最佳底物为焦性没食子酸,最适pH为6.0,最适反应温度为10℃,底物最佳浓度为0.14 mol/L,抗坏血酸(VC)、柠檬酸、亚硫酸钠、L-半胱氨酸4种抑制剂对余甘子果实PPO活性均表现出不同程度的抑制作用,其中抗坏血酸对余甘子果实PPO活性抑制效果最好。%Polyphenol oxidase (PPO﹚ was the key enzyme of enzymatic browning. The optimal substrate to PPO of Phyllanthus emblica and effects of pH,temperature,concentration of substrate and inhibitor on PPO activity were studied with spectrophotometry. The results showed that the optimal substrate was pyrogallic acid. The optimal pH, temperature and concentration of substrate were 6.0, 10℃ and 0.14 mol/L, respectively. Vitamin C, citric acid, Na2SO3 and L-Cysteine had inhibition effects on PPO activity in different degree. Vitamin C had the best inhibition effect on PPO activity in the fruit of phyllanthus emblica.

  2. Pioglitazone inhibits the expression of nicotinamide adenine dinucleotide phosphate oxidase and p38 mitogen-activated protein kinase in rat mesangial cells

    Institute of Scientific and Technical Information of China (English)

    WANG Shan; YE Shan-dong; SUN Wen-jia; HU Yuan-yuan


    Background Oxidative Stress and p38 mitogen-activated protein kinase (p38MAPK) play a vital role in renal fibrosis.Pioglitazone can protect kidney but the underlying mechanisms are less clear.The purpose of this study was to investigate the effect of pioglitazone on oxidative stress and whether the severity of oxidative stress was associated with the phosphorylation level of p38MAPK.Methods Rat mesangial cells were cultured and randomly assigned to control group,high glucose group and pioglitazone group.After 48-hour exposure,the supernatants and ceils were collected.The protein levels of p22phox,p47phox,phosphorylated p38MAPK,total p38MAPK were measured by Western blotting.The gene expressions of p22phox,p47phox were detected by RT-PCR.The levels of intracellular reactive oxygen species (ROS) were determined by flow cytometry.The levels of superoxide dismutase (SOD) and maleic dialdehyde (MDA) in the supernatant were determined respectively.Results Compared with the control group,the expression levels of p22phox,p47phox,phospho-p38 and ROS significantly increased,activity of SOD decreased in high glucose group,while the level of MDA greatly increased (P <0.01).Pioglitazone significantly suppressed p22phox,p47phox expressions and oxidative stress induced by high glucose.The expressions of p22phox,p47phox,phospho-p38MAPK and ROS generation were markedly reduced after pioglitazone treatment (P <0.05).The activity of SOD in the the supernatant increased (P <0.05),while the level of MDA decreased greatly by pioglitazone (P <0.05).The level of oxidative stress was associated with the phosphorylation level of p38MAPK (P <0.01).Conclusion Pioglitazone can inhibit oxidative stress through suppressing NADPH oxidase expression and p38MAPK phosphorylation.

  3. Amyloid-β and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofilin-actin rods in hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Keifer P Walsh

    Full Text Available Neurites of neurons under acute or chronic stress form bundles of filaments (rods containing 1∶1 cofilin∶actin, which impair transport and synaptic function. Rods contain disulfide cross-linked cofilin and are induced by treatments resulting in oxidative stress. Rods form rapidly (5-30 min in >80% of cultured hippocampal or cortical neurons treated with excitotoxic levels of glutamate or energy depleted (hypoxia/ischemia or mitochondrial inhibitors. In contrast, slow rod formation (50% of maximum response in ∼6 h occurs in a subpopulation (∼20% of hippocampal neurons upon exposure to soluble human amyloid-β dimer/trimer (Aβd/t at subnanomolar concentrations. Here we show that proinflammatory cytokines (TNFα, IL-1β, IL-6 also induce rods at the same rate and within the same neuronal population as Aβd/t. Neurons from prion (PrP(C-null mice form rods in response to glutamate or antimycin A, but not in response to proinflammatory cytokines or Aβd/t. Two pathways inducing rod formation were confirmed by demonstrating that NADPH-oxidase (NOX activity is required for prion-dependent rod formation, but not for rods induced by glutamate or energy depletion. Surprisingly, overexpression of PrP(C is by itself sufficient to induce rods in over 40% of hippocampal neurons through the NOX-dependent pathway. Persistence of PrP(C-dependent rods requires the continuous activity of NOX. Removing inducers or inhibiting NOX activity in cells containing PrP(C-dependent rods causes rod disappearance with a half-life of about 36 min. Cofilin-actin rods provide a mechanism for synapse loss bridging the amyloid and cytokine hypotheses for Alzheimer disease, and may explain how functionally diverse Aβ-binding membrane proteins induce synaptic dysfunction.

  4. Changes of oxidase and hydrolase activities in pecan leaves elicited by black pecan aphid (Hemiptera: Aphididae) feeding. (United States)

    Chen, Yigen; Ni, Xinzhi; Cottrell, Ted E; Wood, Bruce W; Buntin, G David


    The black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), is a foliar feeder of pecan, Carya illinoinensis (Wangenh.) K. Koch (Juglandaceae). The pest causes chlorosis of leaflet lamina, physiological damage to foliage and trees, and commonly limits the profitability of commercial pecan orchard enterprises. However, key aspects of this host-pest interaction are poorly understood. We report here the effects of M. caryaefoliae feeding on the foliar activity of oxidative (i.e., catalase, lipoxygenase [LOX]-1 and 3, and peroxidase) and hydrolytic (i.e., esterase) enzymes in relation to the degree of aphid resistance among pecan varieties. The 2-yr study showed that M. caryaefoliae-infested foliage exhibited elevated peroxidase activity only in susceptible ('Desirable', 'Sumner', and 'Schley'), but not in resistant ('Cape Fear', 'Gloria Grande', and 'Money Maker') genotypes. Susceptible genotypes also exhibited more severe leaf chlorosis in response to M. caryaefoliae feeding than the resistant genotypes; however, the aphid feeding did not influence catalase or esterase activity in all varieties, except the increase of esterase activity in Desirable and Gloria Grande. Melanocallis caryaefoliae feeding also influences activity of two lipoxygenase isozymes, with LOX3 being more frequently induced than LOX1. Foliar LOX3 activity was more frequently induced by M. caryaefoliae feeding in the moderately resistant 'Oconee' and highly resistant Money Maker and Cape Fear than in the susceptible genotypes. Therefore, the elevation of peroxidase is likely to be associated with aphid susceptibility and contributed to the severe leaf chlorosis, whereas the increase of LOX3 activity might be associated with aphid resistance in pecan. These findings contribute to our understanding of the etiology of M. caryaefoliae-elicited leaf chlorosis on pecan foliage. Such information may also be used to develop enzyme markers for identifying black pecan aphid resistance

  5. Precursor of advanced glycation end products mediates ER-stress-induced caspase-3 activation of human dermal fibroblasts through NAD(PH oxidase 4.

    Directory of Open Access Journals (Sweden)

    Danielle T Loughlin

    Full Text Available BACKGROUND: The precursor for advanced glycation end products, 3-deoxyglucosone (3DG is highly upregulated in skin explants of diabetic cutaneous wounds, and has been shown to negatively impact dermal fibroblasts, which are crucial in wound remodeling. 3DG induces apoptosis however; the mechanisms involved in the apoptotic action of 3DG in the pathogenesis of diabetic chronic wounds are poorly understood. Therefore, we sought to delineate novel mechanisms involved with the 3DG-collagen induced apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Using human dermal fibroblasts, we demonstrated that 3DG-modified collagen induces oxidative stress and caspase-3 activation. Oxidative stress was found to be dependent on the upregulation of NAD(PH oxidase 4 (Nox4, a reactive oxygen species (ROS Nox homologue, triggering endoplasmic reticulum (ER stress, as assessed by the ER stress-induced apoptosis marker Growth Arrest and DNA Damage-inducible gene 153 (GADD153. We demonstrated that 3DG-collagen activated GADD153 via phosphorylation of p38 mitogen activated protein kinase (MAPK, and this was dependent on upstream ROS. Inhibition of ROS and/or p38 MAPK abrogated 3DG-collagen induced caspase-3 activation. Our investigations also demonstrated that 3DG-collagen-induced caspase-3 activation did not signal through the canonical receptor for advanced glycation end products (RAGE but through integrin alpha1beta1. To further verify the role of integrins, neutralization of integrins alpha1beta1 prevented 3DG-collagen-induced upregulation of ROS, GADD153, and caspase-3 activation; suggesting that 3DG-collagen signaling to the fibroblast is dependent on integrins alpha1beta1. CONCLUSIONS/SIGNIFICANCE: Taken together, these findings demonstrate for the first time that a RAGE independent mechanism is involved in 3DG-collagen-induced apoptosis. Moreover, the ER stress pathway through activation of Nox4 by integrins alpha1beta1 plays a key role in 3DG-collagen-induced caspase

  6. Improvement in structural and electrical properties of cuprous oxide-coated multiwalled carbon nanotubes

    Indian Academy of Sciences (India)

    Shivani Dhall; Neena Jaggi


    In the present work, cuprous oxide (Cu2O) nanoparticles are coated on multi-walled carbon nanotubes (MWCNTs) using Fehling’s reaction. The coating of Cu2O nanoparticles on the nanotubes was confirmed by SEM and X-ray diffraction (XRD) spectra. The calculated D/G ratio of Cu2O (using 3% CuSO4 by wt)-coated MWCNTs by Raman spectra is found to decrease to 0.94 as compared to 1.14 for pristine MWCNTs. It shows that the presence of Cu2O nanoparticles on nanotubes decreases the inherent defects present in the form of some pentagons/heptagons in the honeycomb hexagonal carbon atoms in the structure of graphene sheets of MWCNTs and increases the crystalline nature of MWCNTs, which is also confirmed by the XRD peaks. Whereas the value of D/G ratio increases to 1.39 for sample 2 (using 5% CuSO4 by wt), which represents the structural deformation. Moreover, the electrical conductivity of MWCNTs was increased by 3 times after coating the nanotubes with Cu2O (using 3% CuSO4 by wt).

  7. Parameters controlling microstructures and resistance switching of electrodeposited cuprous oxide thin films (United States)

    Yazdanparast, Sanaz


    Cuprous oxide (Cu2O) thin films were electrodeposited cathodically from a highly alkaline bath using tartrate as complexing agent. Different microstructures for Cu2O thin films were achieved by varying the applied potential from -0.285 to -0.395 V versus a reference electrode of Ag/AgCl at 50 °C in potentiostatic mode, and separately by changing the bath temperature from 25 to 50 °C in galvanostatic mode. Characterization experiments showed that both grain size and orientation of Cu2O can be controlled by changing the applied potential. Applying a high negative potential of -0.395 V resulted in smaller grain size of Cu2O thin films with a preferred orientation in [111] direction. An increase in the bath temperature in galvanostatic electrodeposition increased the grain size of Cu2O thin films. All the films in Au/Cu2O/Au-Pd cell showed unipolar resistance switching behavior after an initial FORMING process. Increasing the grain size of Cu2O thin films and decreasing the top electrode area increased the FORMING voltage and decreased the current level of high resistance state (HRS). The current in low resistance state (LRS) was independent of the top electrode area and the grain size of deposited films, suggesting a filamentary conduction mechanism in unipolar resistance switching of Cu2O.

  8. Cuprous oxide nanoparticle-inhibited melanoma progress by targeting melanoma stem cells. (United States)

    Yu, Bin; Wang, Ye; Yu, Xinlu; Zhang, Hongxia; Zhu, Ji; Wang, Chen; Chen, Fei; Liu, Changcheng; Wang, Jingqiang; Zhu, Haiying


    Recent studies have shown that metal and metal oxide have a potential function in antitumor therapy. Our previous studies demonstrated that cuprous oxide nanoparticles (CONPs) not only selectively induce apoptosis of tumor cells in vitro but also inhibit the growth and metastasis of melanoma by targeting mitochondria with little hepatic and renal toxicities in mice. As a further study, our current research revealed that CONPs induced apoptosis of human melanoma stem cells (CD271(+/high) cells) in A375 and WM266-4 melanoma cell lines and could significantly suppress the expression of MITF, SOX10 and CD271 involved in the stemness maintenance and tumorigenesis of melanoma stem cells. CD271(+/high) cells could accumulate more CONPs than CD271(-/low) through clathrin-mediated endocytosis. In addition, lower dosage of CONPs exhibited good anti-melanoma effect by decreasing the cell viability, stemness and tumorigenesis of A375 and WM266-4 cells through reducing the expression of SOX10, MITF, CD271 and genes in MAPK pathway involved in tumor progression. Finally, CONPs obviously suppressed the growth of human melanoma in tumor-bearing nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice, accompanied with tumors structural necrosis and fibrosis remarkably and decreased expression of CD271, SOX10 and MITF. These results above proved the effectiveness of CONPs in inhibiting melanoma progress through multiple pathways, especially through targeting melanoma stem cells.

  9. Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design (United States)

    Wang, Yan; Xia, Zhonggao; Liang, Jun; Wang, Xinwei; Liu, Yiming; Liu, Chuan; Zhang, Shengdong; Zhou, Hang


    Solution-processed p-type metal oxide materials have shown great promise in improving the stability of perovskite-based solar cells and offering the feasibility for a low cost printing fabrication process. Herein, we performed a device modeling study on planar perovskite solar cells with cuprous oxide (Cu2O) hole transporting layers (HTLs) by using a solar cell simulation program, wxAMPS. The performance of a Cu2O/perovskite solar cell was correlated to the material properties of the Cu2O HTL, such as thickness, carrier mobility, mid-gap defect, and doping concentrations. The effect of interfacial defect densities on the solar cell performance was also investigated. Our simulation indicates that, with an optimized Cu2O HTL, high performance perovskite solar cells with efficiencies above 13% could be achieved, which shows the potential of using Cu2O as an alternative HTL over other inorganic materials, such as NiOx and MoOx. This study provides theoretical guidance for developing perovskite solar cells with inorganic hole transporting materials via a printing process.

  10. Bioactive compounds from Carissa opaca roots and xanthine oxidase and alpha-amylase inhibitory activities of their methanolic extract and its fractions in different solvents

    Directory of Open Access Journals (Sweden)

    Ramsha Saeed


    Full Text Available Background: Carissa opaca is known for its many ethnomedicinal uses. There was a need to study its bioactivities and identify its phytochemicals. Objective: The objective was to isolate and identify phytochemicals from roots of C. opaca and to evaluate xanthine oxidase (XO and alpha-amylase inhibitory activities of their methanolic extract and its fractions. Materials and Methods: Methanolic extract of finely divided powder of roots of C. opaca was obtained by cold maceration, followed by its fractionation to obtain hexane, chloroform, ethyl acetate, n-butanolic, and aqueous fractions. Phytochemicals screening was done by standard protocols. XO and alpha-amylase inhibitory activities of the methanolic extract and its fractions were studied. The most active ethyl acetate fraction was subjected to the column and thin layer chromatography to isolate its compounds, which were identified by gas chromatography-mass spectrometry and high-performance liquid chromatography comparison. Results: Methanolic extract displayed significant activity against both the enzymes with IC 50 of 156.0 mg/mL and 5.6 mg/mL for XO and alpha-amylase, respectively. Ethyl acetate fraction showed highest activity against both the enzymes with IC 50 of 129 mg/mL and 4.9 mg/mL for XO and alpha-amylase, respectively. Chloroform fraction had IC 50 of 154.2 mg/mL and 5.5 mg/mL for XO and alpha-amylase, respectively. Aqueous fraction exhibited significant efficacy against alpha-amylase (IC 50 5.0 mg/mL. Hexane fraction showed good activity against alpha-amylase in a dose-dependent manner but exhibited opposite trend against XO. The compounds isolated from ethyl acetate fraction included limonene, vanillin, lupeol, rutin, quercetin, b-sitosterol, Vitamin E, 2-hydroxyacetophenone, naphthalenone, 2,3,3-trimethyl-2-(3-methylbuta-1,3-dienyl-6-methylenecyclohexanone, and 2-benzenedicarboxylic acid, mono(2-ethylhexyl ester. Conclusions: Moderately polar phytochemicals of C. opaca roots

  11. Influence of protonation on substrate and inhibitor interactions at the active site of human monoamine oxidase-A. (United States)

    Zapata-Torres, Gerald; Fierro, Angelica; Miranda-Rojas, Sebastian; Guajardo, Carlos; Saez-Briones, Patricio; Salgado, J Cristian; Celis-Barros, Cristian


    Although substrate conversion mediated by human monoaminooxidase (hMAO) has been associated with the deprotonated state of their amine moiety, data regarding the influence of protonation on substrate binding at the active site are scarce. Thus, in order to assess protonation influence, steered molecular dynamics (SMD) runs were carried out. These simulations revealed that the protonated form of the substrate serotonin (5-HT) exhibited stronger interactions at the protein surface compared to the neutral form. The latter displayed stronger interactions in the active site cavity. These observations support the possible role of the deprotonated form in substrate conversion. Multigrid docking studies carried out to rationalize the role of 5-HT protonation in other sites besides the active site indicated two energetically favored docking sites for the protonated form of 5-HT on the enzyme surface. These sites seem to be interconnected with the substrate/inhibitor cavity, as revealed by the tunnels observed by means of CAVER program. pK(a) calculations in the surface loci pointed to Glu³²⁷, Asp³²⁸, His⁴⁸⁸, and Asp¹³² as candidates for a possible in situ deprotonation step. Docking analysis of a group of inhibitors (structurally related to substrates) showed further interactions with the same two docking access sites. Interestingly, the protonated/deprotonated amine moiety of almost all compounds attained different docking poses in the active site, none of them oriented to the flavin moiety, thus producing a more variable and less productive orientations to act as substrates. Our results highlight the role of deprotonation in facilitating substrate conversion and also might reflect the necessity of inhibitor molecules to adopt specific orientations to achieve enzyme inhibition.

  12. Mono- and dinuclear manganese(III) complexes showing efficient catechol oxidase activity: syntheses, characterization and spectroscopic studies. (United States)

    Banu, Kazi Sabnam; Chattopadhyay, Tanmay; Banerjee, Arpita; Mukherjee, Madhuparna; Bhattacharya, Santanu; Patra, Goutam Kumar; Zangrando, Ennio; Das, Debasis


    Four side-off compartmental ligands L1-L4 [L1 = N,N'-ethylenebis(3-formyl-5-methyl-salicylaldimine), L2 = N,N'-1-methylethylenebis(3-formyl-5-methylsalicylaldimine), L3 = N,N'-1,1-dimethylethylenebis(3-formyl-5-methylsalicylaldimine) and L4= N,N'-cyclohexenebis(3-formyl-5-methylsalicylaldimine)] having two binding sites, N2O2 and O4, have been chosen to synthesize mononuclear and dinuclear manganese(III) complexes with the aim to study their catecholase activity using 3,5-di-tert-butylcatechol (3,5-DTBC) as substrate in the presence of molecular oxygen. In all cases only mononuclear manganese complexes (1-4) were obtained, with manganese coordination taking place at the N2O2 binding site only, irrespective of the amount of manganese salt used. All these complexes have been characterized by routine physico-chemical techniques. Complex MnL2Cl.4H2O (2) has further been structurally characterized by X-ray single crystal structure analysis. Four dinuclear manganese complexes, 5-8, were obtained after condensing the two pending formyl groups on each ligand (L1-L4) with aniline followed by reaction with MnCl2 to put the second Mn atom onto another N2O2 site. The catalytic activity of all complexes 1-8 has been investigated following the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylbenzoquinone (3,5-DTBQ) with molecular oxygen in two different solvents, methanol and acetonitrile. The study reveals that the catalytic activity is influenced by the solvent and to a significant extent by the backbone of the diamine and the behavior seems to be related mainly to steric rather than electronic factors. Experimental data suggest that a correlation, the lower the E(1/2) value the higher the catalytic activity, can be drawn between E(1/2) and Vmax of the complexes in a particular solvent. The EPR measurements suggest that the catalytic property of the complexes is related to the metal center(s) participation rather than to a radical mechanism.

  13. Bilirubin Oxidase from Myrothecium verrucaria Physically Absorbed on Graphite Electrodes. Insights into the Alternative Resting Form and the Sources of Activity Loss (United States)

    Tasca, Federico; Farias, Diego; Castro, Carmen; Acuna-Rougier, Cristina; Antiochia, Riccarda


    The oxygen reduction reaction is one of the most important chemical processes in energy converting systems and living organisms. Mediator-less, direct electro-catalytic reduction of oxygen to water was achieved on spectrographite electrodes modified by physical adsorption of bilirubin oxidases from Myrothecium verrucaria. The existence of an alternative resting form of the enzyme is validated. The effect on the catalytic cycle of temperature, pH and the presence of halogens in the buffer was investigated. Previous results on the electrochemistry of bilirubin oxidase and on the impact of the presence of halogens are reviewed and reinterpreted. PMID:26196288

  14. Tyrosinase and catechol oxidase activity of copper(I) complexes supported by imidazole-based ligands: structure-reactivity correlations. (United States)

    Wendt, Franziska; Näther, Christian; Tuczek, Felix


    Four new imidazole-based ligands, 4-((1H-imidazol-4-yl)methyl)-2-phenyl-4,5-dihydrooxyzole (L OL 1), 4-((1H-imidazol-4-yl)methyl)-2-(tert-butyl)-4,5-dihydrooxyzole (L OL 2), 4-((1H-imidazol-4-yl)methyl)-2-methyl-4,5-dihydrooxyzole (L OL 3), and N-(2,2-dimethylpropylidene)-2-(1-trityl-1H-imidazol-4-yl-)ethyl amine (L imz 1), have been synthesized. The corresponding copper(I) complexes [Cu(I)(L OL 1)(CH3CN)]PF6 (CuL OL 1), [Cu(I)(L OL 2)(CH3CN)]PF6 (CuL OL 2), [Cu(I)(L OL 3)(CH3CN)]PF6 (CuL OL 3), [Cu(I)(L imz 1)(CH3CN)2]PF6 (CuL imz 1) as well as the Cu(I) complex derived from the known ligand bis(1-methylimidazol-2-yl)methane (BIMZ), [Cu(I)(BIMZ)(CH3CN)]PF6 (CuBIMZ), are screened as catalysts for the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC-H2) to 3,5-di-tert-butylquinone (3,5-DTBQ). The primary reaction product of these oxidations is 3,5-di-tert-butylsemiquinone (3,5-DTBSQ) which slowly converts to 3,5-DTBQ. Saturation kinetic studies reveal a trend of catalytic activity in the order CuL OL 3 ≈ CuL OL 1 > CuBIMZ > CuL OL 2 > CuL imz 1. Additionally, the catalytic activity of the copper(I) complexes towards the oxygenation of monophenols is investigated. As substrates 2,4-di-tert-butylphenol (2,4-DTBP-H), 3-tert-butylphenol (3-TBP-H), 4-methoxyphenol (4-MeOP-H), N-acetyl-L-tyrosine ethyl ester monohydrate (NATEE) and 8-hydroxyquinoline are employed. The oxygenation products are identified and characterized with the help of UV/Vis and NMR spectroscopy, mass spectrometry, and fluorescence measurements. Whereas the copper complexes with ligands containing combinations of imidazole and imine functions or two imidazole units (CuL imz 1 and CuBIMZ) are found to exhibit catalytic tyrosinase activity, the systems with ligands containing oxazoline just mediate a stoichiometric conversion. Correlations between the structures of the complexes and their reactivities are discussed.

  15. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors (United States)

    Wan, Caichao; Jiao, Yue; Li, Jian


    An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.

  16. Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase. (United States)

    Nie, Huibin; Xue, Xia; Liu, Gang; Guan, Guangju; Liu, Haiying; Sun, Lina; Zhao, Long; Wang, Xueling; Chen, Zhixin


    Nitroalkene derivative of oleic acid (OA-NO2), due to its ability to mediate revisable Michael addition, has been demonstrated to have various biological properties and become a therapeutic agent in various diseases. Though its antioxidant properties have been reported in different models of acute kidney injury (AKI), the mechanism by which OA-NO2 attenuates intracellular oxidative stress is not well investigated. Here, we elucidated the anti-oxidative mechanism of OA-NO2 in an in vitro model of renal ischemia/reperfusion (I/R) injury. Human tubular epithelial cells were subjected to oxygen and glucose deprivation/re-oxygenation (OGD/R) injury. Pretreatment with OA-NO2 (1.25 μM, 45 min) attenuated OGD/R triggered reactive oxygen species (ROS) generation and subsequent mitochondrial membrane potential disruption. This action was mediated via up-regulating endogenous antioxidant defense components including superoxide dismutase (SOD1), heme oxygenase 1 (HO-1), and γ-glutamyl cysteine ligase modulatory subunits (GCLM). Moreover, subcellular fractionation analyses demonstrated that OA-NO2 promoted nuclear translocation of nuclear factor-E2- related factor-2 (Nrf2) and Nrf2 siRNA partially abrogated these protective effects. In addition, OA-NO2 inhibited NADPH oxidase activation and NADPH oxidase 4 (NOX4), NADPH oxidase 2 (NOX2) and p22(phox) up-regulation after OGD/R injury, which was not relevant to Nrf2. These results contribute to clarify that the mechanism of OA-NO2 reno-protection involves both inhibition of NADPH oxidase activity and induction of SOD1, Nrf2-dependent HO-1, and GCLM.

  17. Mitochondrial alternative oxidase acts to dampen the generation of active oxygen species during a period of rapid respiration induced to support a high rate of nutrient uptake. (United States)

    Yip, Justine Y. H.; Vanlerberghe, Greg C.


    When wild type (wt) tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) suspension cells were grown under phosphate (P) limitation, they contained large amounts of mitochondrial alternative oxidase (AOX). When these cells were resupplied with P, there was a large, immediate and sustained stimulation of respiration to support a period of rapid P uptake. Two lines of evidence suggest that the abundant level of AOX present in wt cells contributed to this stimulated rate of respiration. First, when P-limited transgenic antisense tobacco cells (AS8) lacking AOX were resupplied with P, the stimulation of respiration was much less dramatic even though these cells displayed similar rates of P uptake. Second, while the stimulated rate of respiration in AS8 cells was insensitive (as expected) to the AOX inhibitor n-propyl gallate (nPG), much of the stimulated rate of respiration in wt cells could be inhibited by nPG. Given the non-phosphorylating nature of AOX respiration, wt cells required higher rates of electron transport to O2 than AS8 cells to support similar rates of P uptake. The utilization of AOX by wt cells during P uptake was apparently not occurring because the cytochrome (Cyt) pathway alone could not fully support the rate of P uptake, as the respiration of cells lacking AOX (either untreated AS8 cells or wt cells treated with nPG) supported similar rates of P uptake as wt cells with abundant AOX. Rather, we provide in vivo evidence that the utilization of AOX during the period of high respiration supporting P uptake was to dampen the mitochondrial generation of active oxygen species (AOS).

  18. Comparison of Poly Aluminum Chloride and Chlorinated Cuprous for Chemical Oxygen Demand and Color Removal from Kashan Textile Industries Company Wastewater

    Directory of Open Access Journals (Sweden)

    Hoseindoost Gh.1 MSPH,


    Full Text Available Aims Textile wastewaters are the most important health and environmental problems in Kashan. This research was aimed to compare the poly aluminum chloride and chlorinated cuprous efficiency for removal of Chemical Oxygen Demand (COD and color from Kashan Textile Industries Company wastewater. Materials & Methods This experimental bench scale study in a batch system was conducted on 20 composed wastewater samples collected from Kashan Textile Industries Company raw wastewater. During 5 months, in the beginning of every week a day was selected randomly and in the day a composed sample was taken and studied. PAC at the doses of 10, 20, 30, 40 and 50mg.l-1 and chlorinated cuprous at the doses of 100, 200, 300, 400 and 500mg.l-1 were applied. The optimum pH also optimum concentration of PAC and chlorinated cuprous were determined using Jar test. The data was analyzed by SPSS 16 using descriptive statistics and Fisher Exact test. Findings The average concentration of COD in the raw textile wastewater was 2801.56±1398.29mg.l-1. The average COD concentration has been decreased to 1125.47±797.55mg.l-1. There was a significant difference between the effects of these two coagulants efficiency (p<0.05. The average COD removal efficiency for chlorinated cuprous and PAC was 58.52% and 72.56%, respectively. Also, the average color removal efficiency by chlorinated cuprous and PAC were 17.23 and 64.45%, respectively. Conclusion PAC is more efficient than chlorinated cuprous for both COD and color removal from KTIC wastewater.

  19. The NADH oxidase-Prx system in Amphibacillus xylanus. (United States)

    Niimura, Youichi


    Amphibacillus NADH oxidase belongs to a growing new family of peroxiredoxin-linked oxidoreductases including alkyl hydroperoxide reductase F (AhpF). Like AhpF it displays extremely high hydroperoxide reductase activity in the presence of a Prx, thus making up the NADH oxidase-Prx system. The NADH oxidase primarily catalyzes the reduction of oxygen by NADH to form H2O2, while the Prx immediately reduces H2O2 (or ROOH) to water (or ROH). Consequently, the NADH oxidase-Prx system catalyzes the reduction of both oxygen and hydrogen peroxide to water with NADH as the preferred electron donor. The NADH oxidase-Prx system is widely distributed in aerobically growing bacteria lacking a respiratory chain and catalase, and plays an important role not only in scavenging hydroperoxides but also in regenerating NAD in these bacteria.

  20. Cucumber Seedling Indoleacetaldehyde Oxidase 1 (United States)

    Bower, Peter J.; Brown, Hugh M.; Purves, William K.


    Extracts of light-grown Cucumis sativus L. seedlings catalyzed the oxidation of indole-3-acetaldehyde to indole-3-acetic acid. No added cofactors were required. Inhibitor studies indicated that the enzyme is a metalloflavoprotein. While indole-3-aldehyde, benzaldehyde, and phenylacetaldehyde partially inhibited the oxidation of indole-3-acetaldehyde, suggesting that they may serve as alternative substrates, it is proposed that indoleacetaldehyde is the major substrate in vivo. 2,4-Dichlorophenoxyacetic acid strongly inhibited the indoleacetaldehyde oxidase activity, and it is proposed that this enzyme may be subject in vivo to feedback inhibition by indole-3-acetic acid. The enzyme was activated by brief heating or by treatment with mercaptoethanol. PMID:16660220

  1. Female mice lacking active nadph-oxidase enzymes are protected against “western diet”--induced obesity and metabolic syndrome (United States)

    NADPH oxidase (Nox) enzymes have been implicated in regulation of adipocyte differentiation and inflammation in a variety of tissues. We examined the effects of feeding AIN-93G or a “Western diet” (WD) (45% fat, 0.5% cholesterol) on development of obesity and “metabolic syndrome” in wild type (WT) m...

  2. Models for the active site in galactose oxidase: Structure, spectra and redox of copper(II) complexes of certain phenolate ligands

    Indian Academy of Sciences (India)

    Mathrubootham Vaidyanathan; Mallayan Palaniandavar


    Galactose oxidase (GOase) is a fungal enzyme which is unusual among metalloenzymes in appearing to catalyse the two electron oxidation of primary alcohols to aldehydes and H2O2. The crystal structure of the enzyme reveals that the coordination geometry of mononuclear copper(II) ion is square pyramidal, with two histidine imidazoles, a tyrosinate, and either H2O (H 7.0) or acetate (from buffer, H 4.5) in the equatorial sites and a tyrosinate ligand weakly bound in the axial position. This paper summarizes the results of our studies on the structure, spectral and redox properties of certain novel models for the active site of the inactive form of GOase. The monophenolato Cu(II) complexes of the type [Cu(L1)X][H(L1) = 2-(bis(pyrid-2-ylmethyl)aminomethyl)-4-nitrophenol and X-= Cl-1, NCS-2, CH3COO-3, ClO$_{4}^{-}$ 4] reveal a distorted square pyramidal geometry around Cu(II) with an unusual axial coordination of phenolate moiety. The coordination geometry of 3 is reminiscent of the active site of GOase with an axial phenolate and equatorial CH3COO- ligands. All the present complexes exhibit several electronic and EPR spectral features which are also similar to the enzyme. Further, to establish the structural and spectroscopic consequences of the coordination of two tyrosinates in GOase enzyme, we studied the monomeric copper(II) complexes containing two phenolates and imidazole/pyridine donors as closer structural models for GOase. N,Ndimethylethylenediamine and N,N -dimethylethylenediamine have been used as starting materials to obtain a variety of 2,4-disubstituted phenolate ligands. The X-ray crystal structures of the complexes [Cu(L5)(py)], (8) [H2 (L5) = N,N-dimethyl-N ,N -bis(2-hydroxy-4-nitrobenzyl) ethylenediamine, py = pyridine] and [Cu(L8)(H2O)] (11), [H2(L8) = N,N -dimethyl-N,N -bis(2-hydroxy-4-nitrobenzyl)ethylenediamine] reveal distorted square pyramidal geometries around Cu(II) with the axial tertiary amine nitrogen and water coordination respectively

  3. Fibrillar beta-amyloid peptide Aβ1–40 activates microglial proliferation via stimulating TNF-α release and H2O2 derived from NADPH oxidase: a cell culture study

    Directory of Open Access Journals (Sweden)

    Sharpe Martyn


    Full Text Available Abstract Background Alzheimer's disease is characterized by the accumulation of neuritic plaques, containing activated microglia and β-amyloid peptides (Aβ. Fibrillar Aβ can activate microglia, resulting in production of toxic and inflammatory mediators like hydrogen peroxide, nitric oxide, and cytokines. We have recently found that microglial proliferation is regulated by hydrogen peroxide derived from NADPH oxidase. Thus, in this study, we investigated whether Aβ can stimulate microglial proliferation and cytokine production via activation of NADPH oxidase to produce hydrogen peroxide. Methods Primary mixed glial cultures were prepared from the cerebral cortices of 7-day-old Wistar rats. At confluency, microglial cells were isolated by tapping, replated, and treated either with or without Aβ. Hydrogen peroxide production by cells was measured with Amplex Red and peroxidase. Microglial proliferation was assessed under a microscope 0, 24 and 48 hours after plating. TNF-α and IL-1β levels in the culture medium were assessed by ELISA. Results We found that 1 μM fibrillar (but not soluble Aβ1–40 peptide induced microglial proliferation and caused release of hydrogen peroxide, TNF-α and IL-1β from microglial cells. Proliferation was prevented by the NADPH oxidase inhibitor apocynin (10 μM, by the hydrogen peroxide-degrading enzyme catalase (60 U/ml, and by its mimetics EUK-8 and EUK-134 (20 μM; as well as by an antibody against TNF-α and by a soluble TNF receptor inhibitor. Production of TNF-α and IL-1β, measured after 24 hours of Aβ treatment, was also prevented by apocynin, catalase and EUKs, but the early release (measured after 1 hour of Aβ treatment of TNF-α was insensitive to apocynin or catalase. Conclusion These results indicate that Aβ1–40-induced microglial proliferation is mediated both by microglial release of TNF-α and production of hydrogen peroxide from NADPH oxidase. This suggests that TNF-α and NADPH

  4. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction

    KAUST Repository

    Zhang, Zhonghai


    In this work, we propose a solution-based carbon precursor coating and subsequent carbonization strategy to form a thin protective carbon layer on unstable semiconductor nanostructures as a solution to the commonly occurring photocorrosion problem of many semiconductors. A proof-of-concept is provided by using glucose as the carbon precursor to form a protective carbon coating onto cuprous oxide (Cu2O) nanowire arrays which were synthesized from copper mesh. The carbon-layer-protected Cu2O nanowire arrays exhibited remarkably improved photostability as well as considerably enhanced photocurrent density. The Cu2O nanowire arrays coated with a carbon layer of 20 nm thickness were found to give an optimal water splitting performance, producing a photocurrent density of -3.95 mA cm-2 and an optimal photocathode efficiency of 0.56% under illumination of AM 1.5G (100 mW cm-2). This is the highest value ever reported for a Cu 2O-based electrode coated with a metal/co-catalyst-free protective layer. The photostability, measured as the percentage of the photocurrent density at the end of 20 min measurement period relative to that at the beginning of the measurement, improved from 12.6% on the bare, nonprotected Cu2O nanowire arrays to 80.7% on the continuous carbon coating protected ones, more than a 6-fold increase. We believe that the facile strategy presented in this work is a general approach that can address the stability issue of many nonstable photoelectrodes and thus has the potential to make a meaningful contribution in the general field of energy conversion. © 2013 American Chemical Society.

  5. Fabrication of cuprous chloride films on copper substrate by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu-Ting; Ci, Ji-Wei; Tu, Wei-Chen [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Uen, Wu-Yih, E-mail: [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Lan, Shan-Ming [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Tsun-Neng; Shen, Chin-Chang; Wu, Chih-Hung [Institute of Nuclear Energy Research, P.O. Box 3-11, Lungtan 32500, Taiwan (China)


    Polycrystalline CuCl films were fabricated by chemical bath deposition (CBD) on a Cu substrate at a low solution temperature of 90 °C. Continuous CuCl films were prepared using the copper (II) chloride (CuCl{sub 2}) compound as the precursor for both the Cu{sup 2+} and Cl{sup −} sources, together with repeated HCl dip treatments. An HCl dip pretreatment of the substrate favored the nucleation of CuCl crystallites. Further, interrupting the film deposition and including an HCl dip treatment of the film growth surface facilitated the deposition of a full-coverage CuCl film. A dual beam (FIB/SEM) system with energy dispersive spectrometry facilities attached revealed a homogeneous CuCl layer with a flat-top surface and an average thickness of about 1 μm. Both the excitonic and biexcitonic emission lines were well-resolved in the 6.4 K photoluminescence spectra. In particular, the free exciton emission line was observable at room temperature, indicating the good quality of the CuCl films prepared by CBD. - Highlights: • Cuprous chloride (CuCl) was prepared on Cu substrate by chemical bath deposition. • HCl dip treatments facilitated the deposition of a full-coverage CuCl film. • A homogeneous elemental distribution was recognized for the deposited CuCl layer. • Excitonic and biexcitonic photoluminescence lines of CuCl films were well-resolved. • The free exciton emission line of CuCl films was observable at room temperature.

  6. Novel doxorubicin loaded PEGylated cuprous telluride nanocrystals for combined photothermal-chemo cancer treatment. (United States)

    Wang, Xianwen; Ma, Yan; Chen, Huajian; Wu, Xiaoyi; Qian, Haisheng; Yang, Xianzhu; Zha, Zhengbao


    Recently, combined photothermal-chemo therapy has attracted great attention due to its enhanced anti-tumor efficiency via synergistic effects. Herein, PEGylated cuprous telluride nanocrystals (PEGylated Cu2Te NCs) were developed as novel drug nanocarriers for combined photothermal-chemo treatment of cancer cells. PEGylated Cu2Te NCs were fabricated through a simple two-step process, comprised of hot injection and thin-film hydration. The as-prepared PEGylated Cu2Te NCs (average diameter of 5.21±1.05nm) showed a noticeable photothermal conversion efficiency of 33.1% and good capacity to load hydrophobic anti-cancer drug. Due to the protonated amine group at low pH, the doxorubicin (DOX)-loaded PEGylated Cu2Te NCs (PEGylated Cu2Te-DOX NCs) exhibited an acidic pH promoted drug release profile. Moreover, a three-parameter model, which considers the effects of drug-carrier interactions on the initial burst release and the sustained release of drug from micro- and nano-sized carriers, was used to gain insight into how pH and laser irradiation affect drug release from PEGylated Cu2Te-DOX NCs. Based on the results from in vitro cell study, PEGylated Cu2Te-DOX NCs revealed remarkably photothermal-chemo synergistic effect to HeLa cells, attributed to both the PEGylated Cu2Te NCs mediated photothermal ablation and enhanced cellular uptake of the drug. Thus, our results encourage the usage of Cu2Te-DOX drug nanocarriers for enhanced treatment of cancer cells by combined photothermal-chemo therapy.

  7. The serum of rabbitfish (Siganus oramin) has antimicrobial activity to some pathogenic organisms and a novel serum L-amino acid oxidase is isolated. (United States)

    Wang, Fanghua; Li, Ruijun; Xie, Mingquan; Li, Anxing


    The serum of rabbitfish (Siganus oramin) has been confirmed previously to have killing effect to Cryptocaryon irritans, an important marine ciliate protozoan that causes a disease referred to as "marine white spot disease". Herein, we find the serum of the rabbitfish also shows antibacterial activity against both gram-positive and gram-negative bacteria and has killing effect on two other parasites: Trypanosoma brucei brucei, Ichthyophthirius multifiliis. Results of scanning electron microscopy indicated that after treating with rabbitfish serum, the surface of the Staphylococcus aureus was wrinkled and pores were formed on the surface of Escherichia coli. Serum of the rabbitfish possesses a strong killing effect to Ichthyophthirius multifiliis in vitro, causing a similar effect as to C. irritans. The serum of rabbitfish also showed strong killing effect to T. b. brucei in vitro, with the minimus trypanocidal titre (MTT) only to be 1.5% in 1 h. Results of laser confocal fluorescence microscopy indicated that rabbitfish serum could also induce cell rupture of T. b. brucei. A novel antimicrobial protein (SR-LAAO) was isolated from the serum of rabbitfish by using ultrafiltration, reversed phase high performance liquid chromatography (RP-HPLC) and Native polyacrylamide gel electrophoresis (Native-PAGE). Results of gel overlay assay showed that the protein could act alone to inhibit the growth of S. aureus and E. coli. Results of western blot and automated Edman degradation showed that it was the same as the antiparasitic protein (APP) reported before to have killing effect on C. irritans. Full length cDNA sequence of the SR-LAAO was cloned. BLAST research suggested that the cDNA of SR-LAAO has a close similarity with a number of L-amino acid oxidases (LAAOs) and possesses two conserved motifs that exist in LAAOs. Combined, these results demonstrate that this protein which has antimicrobial activity to some pathogenic organisms was a novel LAAO found in the serum of

  8. Direct regulation of cytochrome c oxidase by calcium ions.

    Directory of Open Access Journals (Sweden)

    Tatiana Vygodina

    Full Text Available Cytochrome c oxidase from bovine heart binds Ca(2+ reversibly at a specific Cation Binding Site located near the outer face of the mitochondrial membrane. Ca(2+ shifts the absorption spectrum of heme a, which allowed previously to determine the kinetics and equilibrium characteristics of the binding. However, no effect of Ca(2+ on the functional characteristics of cytochrome oxidase was revealed earlier. Here we report that Ca(2+ inhibits cytochrome oxidase activity of isolated bovine heart enzyme by 50-60% with Ki of ∼1 µM, close to Kd of calcium binding with the oxidase determined spectrophotometrically. The inhibition is observed only at low, but physiologically relevant, turnover rates of the enzyme (∼10 s(-1 or less. No inhibitory effect of Ca(2+ is observed under conventional conditions of cytochrome c oxidase activity assays (turnover number >100 s(-1 at pH 8, which may explain why the effect was not noticed earlier. The inhibition is specific for Ca(2+ and is reversed by EGTA. Na(+ ions that compete with Ca(2+ for binding with the Cation Binding Site, do not affect significantly activity of the enzyme but counteract the inhibitory effect of Ca(2+. The Ca(2+-induced inhibition of cytochrome c oxidase is observed also with the uncoupled mitochondria from several rat tissues. At the same time, calcium ions do not inhibit activity of the homologous bacterial cytochrome oxidases. Possible mechanisms of the inhibition are discussed as well as potential physiological role of Ca(2+ binding with cytochrome oxidase. Ca(2+- binding at the Cation Binding Site is proposed to inhibit proton-transfer through the exit part of the proton conducting pathway H in the mammalian oxidases.

  9. Adipogenesis-related increase of semicarbazide-sensitive amine oxidase and monoamine oxidase in human adipocytes. (United States)

    Bour, Sandy; Daviaud, Danièle; Gres, Sandra; Lefort, Corinne; Prévot, Danielle; Zorzano, Antonio; Wabitsch, Martin; Saulnier-Blache, Jean-Sébastien; Valet, Philippe; Carpéné, Christian


    A strong induction of semicarbazide-sensitive amine oxidase (SSAO) has previously been reported during murine preadipocyte lineage differentiation but it remains unknown whether this emergence also occurs during adipogenesis in man. Our aim was to compare SSAO and monoamine oxidase (MAO) expression during in vitro differentiation of human preadipocytes and in adipose and stroma-vascular fractions of human fat depots. A human preadipocyte cell strain from a patient with Simpson-Golabi-Behmel syndrome was first used to follow amine oxidase expression during in vitro differentiation. Then, human preadipocytes isolated from subcutaneous adipose tissues were cultured under conditions promoting ex vivo adipose differentiation and tested for MAO and SSAO expression. Lastly, human adipose tissue was separated into mature adipocyte and stroma-vascular fractions for analyses of MAO and SSAO at mRNA, protein and activity levels. Both SSAO and MAO were increased from undifferentiated preadipocytes to lipid-laden cells in all the models: 3T3-F442A and 3T3-L1 murine lineages, human SGBS cell strain or human preadipocytes in primary culture. In human subcutaneous adipose tissue, the adipocyte-enriched fraction exhibited seven-fold higher amine oxidase activity and contained three- to seven-fold higher levels of mRNAs encoded by MAO-A, MAO-B, AOC3 and AOC2 genes than the stroma-vascular fraction. MAO-A and AOC3 genes accounted for the majority of their respective MAO and SSAO activities in human adipose tissue. Most of the SSAO and MAO found in adipose tissue originated from mature adipocytes. Although the mechanism and role of adipogenesis-related increase in amine oxidase expression remain to be established, the resulting elevated levels of amine oxidase activities found in human adipocytes may be of potential interest for therapeutic intervention in obesity.

  10. Spectrophotometric Assay of Immobilized Glucose Oxidase

    Directory of Open Access Journals (Sweden)

    Nojan Noorbehesht


    Full Text Available Enzyme results in change the substrate of product. Each enzyme may act on specific substrates, resulting in product or different products. The enzyme glucose oxidase (GOX is a bio catalyst. It accelerates the process of transforming glucose into hydrogen peroxide (H2O2 . These enzymes are used in the chemical industry, food industry, cosmetics and kits for diagnosis of glucose. There are many researches about immobilizations of Glucose Oxide to increase specifications such as repeated use, recovery, stability, shelf life and other features In this work, glucose oxidase enzyme using covalent bonding is placed on the carrier of carbon nanotubes. In this study, multi-walled carbon nanotubes have been used as adsorbents. Also, carbon nanotubes have been functionalized by sulfuric acid and nitric acid with a high concentration. Glucose oxidase is a biological biocatalyst enzyme. It accelerates changing glucose to H2O2. This enzyme is used in the chemical industry, food industry, cosmetics and glucose diagnostic kits. For example, as a result of ongoing research working focuses on the development of glucose biosensors, GOX in practice as standard enzyme has been revealed for immobilization of oxidative enzyme.GOX correct fixation on the MWNTs carrier is a way to reuse enzyme and miniature of biosensor devices and structures. In this study, a spectrophotometer was used to determine the absorbance of the enzyme glucose oxidase (GOX to review its activities after stabilizing the carbon nanotubes.

  11. Hydrometallurgical process for the recycling of copper using anodic oxidation of cuprous ammine complexes and flow-through electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, T.; Yaguchi, M.; Koyama, K.; Tanaka, M. [Metals Recycling Group, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Lee, J.-C. [Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), 30 Gajeong-dong, Yuseong-ku, Daejeon 305-350 (Korea)


    Flow-through electrolysis for copper electrowinning from cuprous ammine complex was studied in order to develop a hydrometallurgical copper recycling process using an ammoniacal chloride solution, focusing on the anodic oxidation of cuprous to cupric ammine complexes. The current efficiency of this anodic oxidation was 96% at a current density of 200 A m{sup -2} under a batch condition. In a flow-through electrolysis using a sub-liter cell and a carbon felt anode, the anodic current efficiency increased with the flow rate and was typically higher than 97%. This tendency was explained by the backward flow of the cupric ammine complex, which was formed on the anode, through the diaphragm. The anodic overpotential was lower than 0.3 V even at an apparent current density of 1500 A m{sup -2}. A similar current efficiency and overpotential were also achieved in a liter scale cell, which indicates the scale flexibility of this electrolysis. The power consumption requirements for copper electrowinning in this cell were 460 and 770 kWh t{sup -1} at the current densities of 250 and 500 A m{sup -2}, respectively, which were much lower than that of the conventional copper electrowinning despite the longer interpolar distance. (author)

  12. Bioanalytical Method to Determine the Effects of Cyanide, Cyanide Metabolites and Cyanide Antidotes on the Activity of Cytochrome C Oxidase Immobilized in an Electrode Supported Lipid Bilayer Membrane (United States)


    7. Rhoten, M. C.; Hawkridge, F. M.; Wilczek, J., The reaction of cytochrome c with bovine and Bacillus stearothermophilus Cytochrome c Oxidase...transferases. Fund. and Appl. Toxicol. 1983, 3, 377-382. 27 35. Isom, G. E.; Burrows, G. E.; Way, J. L., Effect of oxygen on the antagonism of...mechanism of antagonism . Annu. Rev. Pharmacol. Toxicol. 1984, 24, 451-481. 50. Bryant, M. A.; Pemberton, E., Surface Raman scattering of self

  13. Polyphenol oxidase activity changes of sewage river sediment by different phytoremediation methods%复合污染底泥植物修复过程中多酚氧化酶活性变化

    Institute of Scientific and Technical Information of China (English)

    吴卿; 张岳; 李东梅; 郑波


    In order to decide the repair effect of contaminated sewage river sediment by different plants, pot experiment was conducted. Under different phytoremediation method, activity change of polyphenol oxidase in sediment was inspected. Results showed that the phytoremediation method of plant-mycorrhizal fungi-native bacteria can increase the activity of polyphenol oxidase and improve the ability of plants to resist adverse environment. During the growth of maize-ryegrass interaction, the polyphenol oxidase of maize- mycorrhizal fungi recovered fast. During the growth of ryegrass-Medico go sativa interaction, the ryegrass- mycorrhizal fungi phytoremediation method can promote the absorption of heavy metal by plant and restoring polyphenol oxidase activity evidently. Low temperature has considerable influence on the activity of enzyme. The conclusion can help to confirm the best phytoremediation method for contaminated sewage river sediment.%为了确定不同植物对复合污染底泥的修复效果,采用室外盆栽试验,比较了不同植物修复方式、互作条件下多酚氧化酶活性.结果表明:(1)植物-菌根真菌以及植物-菌根真菌-土著细菌联合修复方式,能够提高多酚氧化酶的活性,促进植物生长并吸收底泥中污染物:(2)玉米和黑麦草互作过程中,玉米-菌根真菌联合修复方式修复效果较好.黑麦草和紫花苜蓿互作过程中,黑麦草-菌根真菌修复方式的效果较好;(3)低温对酶活性影响较大.研究结论有助于确定复合污染底泥的最佳修复方式.

  14. Portability of oxidase domains in nonribosomal peptide synthetase modules. (United States)

    Schneider, Tanya L; Walsh, Christopher T


    Oxazole and thiazole rings are present in numerous nonribosomal peptide natural products. Oxidase domains are responsible for catalyzing the oxidation of thiazolines and oxazolines to yield fully aromatic heterocycles. Unlike most domains, the placement of oxidase domains within assembly line modules varies. Noting this tolerance, we investigated the portability of an oxidase domain to a heterologous assembly line. The epimerase domain of PchE, involved in pyochelin biosynthesis, was replaced with the oxidase domain from MtaD, involved in myxothiazol biosynthesis. The chimeric module was expressed in soluble form as a flavin mononucleotide-containing flavoprotein. The functionality of the inserted oxidase domain was assayed within PchE and in transfer of the growing siderophore acyl chain from PchE to the next downstream module. While pyochelin-like product release was not observed downstream, the robust activity of the transplanted oxidase domain and the ability of the chimeric module to produce an advanced intermediate bound to the synthetase underscore the possibility of future engineering within nonribosomal peptide synthetase pathways using oxidase domains.

  15. Hydroxychavicol: a potent xanthine oxidase inhibitor obtained from the leaves of betel, Piper betle. (United States)

    Murata, Kazuya; Nakao, Kikuyo; Hirata, Noriko; Namba, Kensuke; Nomi, Takao; Kitamura, Yoshihisa; Moriyama, Kenzo; Shintani, Takahiro; Iinuma, Munekazu; Matsuda, Hideaki


    The screening of Piperaceous plants for xanthine oxidase inhibitory activity revealed that the extract of the leaves of Piper betle possesses potent activity. Activity-guided purification led us to obtain hydroxychavicol as an active principle. Hydroxychavicol is a more potent xanthine oxidase inhibitor than allopurinol, which is clinically used for the treatment of hyperuricemia.

  16. Existence of aa3-type ubiquinol oxidase as a terminal oxidase in sulfite oxidation of Acidithiobacillus thiooxidans. (United States)

    Sugio, Tsuyoshi; Hisazumi, Tomohiro; Kanao, Tadayoshi; Kamimura, Kazuo; Takeuchi, Fumiaki; Negishi, Atsunori


    It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an alpha-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa(3)-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 degrees C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A(1) and myxothiazol, which are inhibitors of mitochondrial bc(1) complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively.

  17. Regulation of the NADPH Oxidase RBOHD During Plant Immunity



    Pathogen recognition induces the production of reactive oxygen species (ROS) by NADPH oxidases in both plants and animals. ROS have direct antimicrobial properties, but also serve as signaling molecules to activate further immune outputs. However, ROS production has to be tightly controlled to avoid detrimental effects on host cells, but yet must be produced in the right amount, at the right place and at the right time upon pathogen perception. Plant NADPH oxidases belong to the respiratory b...

  18. The inhibition of monoamine oxidase by esomeprazole



    Virtual screening of a library of drugs has suggested that esomeprazole, the S-enantiomer of omeprazole, may possess binding affinities for the active sites of the monoamine oxidase (MAO) A and B enzymes. Based on this finding, the current study examines the MAO inhibitory properties of esomeprazole. Using recombinant human MAO-A and MAO-B, IC50 values for the inhibition of these enzymes by esomeprazole were experimentally determined. To examine the reversibility of MAO inhibition by esomepra...

  19. Synthesis and Biological Evaluation of Novel Aryl-2H-pyrazole Derivatives as Potent Non-purine Xanthine Oxidase Inhibitors. (United States)

    Sun, Zhi-Gang; Zhou, Xiao-Jing; Zhu, Ming-Li; Ding, Wen-Ze; Li, Zhen; Zhu, Hai-Liang


    A series of aryl-2H-pyrazole derivatives were synthesized and evaluated for inhibitory activity against xanthine oxidase in vitro as potent xanthine oxidase inhibitors. Among them, 2 aryl-2H-pyrazole derivatives showed significant inhibitory activities against xanthine oxidase. Compound 19 emerged as the most potent xanthine oxidase inhibitor (IC50=9.8 µM) in comparison with allopurinol (IC50=9.5 µM). The docking study revealed that compound 19 might have strong interactions with the active site of xanthine oxidase. This compound is thus a new candidate for further development for the treatment of gout.

  20. Apoptosis induction in human breast cancer (MCF-7) cells by a novel venom L-amino acid oxidase (Rusvinoxidase) is independent of its enzymatic activity and is accompanied by caspase-7 activation and reactive oxygen species production. (United States)

    Mukherjee, Ashis K; Saviola, Anthony J; Burns, Patrick D; Mackessy, Stephen P


    We report the elucidation of a mechanism of apoptosis induction in breast cancer (MCF-7) cells by an L-amino acid oxidase (LAAO), Rusvinoxidase, purified from the venom of Daboia russelii russelii. Peptide mass fingerprinting analysis of Rusvinoxidase, an acidic monomeric glycoprotein with a mass of ~57 kDa, confirmed its identity as snake venom LAAO. The enzymatic activity of Rusvinoxidase was completely abolished after two cycles of freezing and thawing; however, its cytotoxicity toward MCF-7 cells remained unaffected. Dose- and time-dependent induction of apoptosis by Rusvinoxidase on MCF-7 cells was evident from changes in cell morphology, cell membrane integrity, shrinkage of cells and apoptotic body formation accompanied by DNA fragmentation. Rusvinoxidase induced apoptosis in MCF-7 cells by both the extrinsic (death-receptor) and intrinsic (mitochondrial) signaling pathways. The former pathway of apoptosis operated through activation of caspase-8 that subsequently activated caspase-7 but not caspase-3. Rusvinoxidase-induced intrinsic pathway of apoptosis was accompanied by a time-dependent depolarization of the mitochondrial membrane through the generation of reactive oxygen species, followed by a decrease in cellular glutathione content and catalase activity, and down-regulation of expression of anti-apoptotic proteins Bcl-XL and heat-shock proteins (HSP-90 and HSP-70). Rusvinoxidase treatment resulted in increase of the pro-apoptotic protein Bax, subsequently leading to the release of cytochrome c from mitochondria to the cytosol and activating caspase-9, which in turn stimulated effector caspase-7. Rusvinoxidase at a dose of 4 mg/kg was non-toxic in mice, indicating that it may be useful as a model for the development of peptide-based anticancer drugs.

  1. Xanthine oxidase biosensor for monitoring meat spoilage (United States)

    Vanegas, D. C.; Gomes, C.; McLamore, E. S.


    In this study, we have designed an electrochemical biosensor for real-time detection of specific biomarkers of bacterial metabolism related to meat spoilage (hypoxanthine and xanthine). The selective biosensor was developed by assembling a `sandwich' of nanomaterials and enzymes on a platinum-iridium electrode (1.6 mm tip diameter). The materials deposited on the sensor tip include amorphous platinum nanoclusters (i.e. Pt black), reduced graphene oxide, nanoceria, and xanthine oxidase. Xanthine oxidase was encapsulated in laponite hydrogel and used for the biorecognition of hypoxanthine and xanthine (two molecules involved in the rotting of meat by spoilage microorganisms). The developed biosensor demonstrated good electrochemical performance toward xanthine with sensitivity of 2.14 +/- 1.48 μA/mM, response time of 5.2 +/- 1.5 sec, lower detection limit of 150 +/- 39 nM, and retained at least 88% of its activity after 7 days of continuous use.

  2. Characterization of polyphenol oxidase from plants

    Institute of Scientific and Technical Information of China (English)

    LEI Dongfeng; FENG Yi; JIANG Dazong


    Polyphenol oxidase (PPO) which can mediate browning reaction is a bifunctional copper-containing enzyme encoded by plant nucleolus gene. It usually leads to excessive browning reaction which reduces the coercial profits of fruits and vegetables. In this paper, PPO genes and enzymes in plants are characterized systematically, and the latest progress is reviewed. Some clonings of PPOs genes are reported; the specific temporal and spatial expression pattern of PPOs genes is described; the model of the structure of the precursor form of catechol oxidase is introduced; the possible functions of PPOs in defending against pathogen, wounding, surrounding stress and other inducing factors are demonstrated; the induction and activation of latent PPOs in some plants is elucidated; the scheme of browning inhibition by L-cysteine is clarified; the mechanism of suicide inhibition of latent PPO and kinetic synergism are established. Furthermore, the area for future study is also discussed.

  3. Reassessment of the active site quino-cofactor proposed to occur in the Aspergillus niger amine oxidase AO-I from the properties of model compounds. (United States)

    Melville, C R; Green, E L; Sanders-Loehr, J; Klinman, J P


    Quino-cofactors have been found in a wide variety of prokaryotic and eukaryotic organisms. Two variants have, thus far, been demonstrated to derive from tyrosine precursors: these are the 2,4, 5-trihydroxyphenylalanine quinone (topa quinone or TPQ) [Janes, S. M. , et al. (1990) Science 248, 98] and an o-quinone analogue containing the side chain of a lysine residue (lysyltyrosine quinone or LTQ) [Wang, S. Z., et al. (1996) Science 273, 1078]. Additionally, a third variant of the family of tyrosine-derived cofactors has been reported to exist in an Aspergillus niger amine oxidase AO-I. This was described as an o-quinone cross-linked to the side chain of a glutamate residue [Frebort, I. (1996) Biochim. Biophys. Acta 1295, 59]. We have synthesized model compounds related to the proposed structure. Characterization of the redox properties for the model compound and spectral properties of its 4-nitrophenylhydrazine derivative lead us to conclude that the cofactor in A. niger amine oxidase AO-I has been misidentified. A TPQ carboxylate ester is considered an unlikely candidate for a biologically functional quino-cofactor.

  4. Cuprous oxide nanoparticles inhibit prostate cancer by attenuating the stemness of cancer cells via inhibition of the Wnt signaling pathway (United States)

    Wang, Ye; Yang, Qi-Wei; Yang, Qing; Zhou, Tie; Shi, Min-Feng; Sun, Chen-Xia; Gao, Xiu-Xia; Cheng, Yan-Qiong; Cui, Xin-Gang; Sun, Ying-Hao


    Disordered copper metabolism plays a critical role in the development of various cancers. As a nanomedicine containing copper, cuprous oxide nanoparticles (CONPs) exert ideal antitumor pharmacological effects in vitro and in vivo. Prostate cancer is a frequently diagnosed male malignancy prone to relapse, and castration resistance is the main reason for endocrine therapy failure. However, whether CONPs have the potential to treat castration-resistant prostate cancer is still unknown. Here, using the castration-resistant PC-3 human prostate cancer cell line as a model, we report that CONPs can selectively induce apoptosis and inhibit the proliferation of cancer cells in vitro and in vivo without affecting normal prostate epithelial cells. CONPs can also attenuate the stemness of cancer cells and inhibit the Wnt signaling pathway, both of which highlight the great potential of CONPs as a new clinical castration-resistant prostate cancer therapy.

  5. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes. (United States)

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan


    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.

  6. Lysyl oxidase in colorectal cancer. (United States)

    Cox, Thomas R; Erler, Janine T


    Colorectal cancer is the third most prevalent form of cancer worldwide and fourth-leading cause of cancer-related mortality, leading to ~600,000 deaths annually, predominantly affecting the developed world. Lysyl oxidase is a secreted, extracellular matrix-modifying enzyme previously suggested to act as a tumor suppressor in colorectal cancer. However, emerging evidence has rapidly implicated lysyl oxidase in promoting metastasis of solid tumors and in particular colorectal cancer at multiple stages, affecting tumor cell proliferation, invasion, and angiogenesis. This emerging research has stimulated significant interest in lysyl oxidase as a strong candidate for developing and deploying inhibitors as functional efficacious cancer therapeutics. In this review, we discuss the rapidly expanding body of knowledge concerning lysyl oxidase in solid tumor progression, highlighting recent advancements in the field of colorectal cancer.

  7. NADH oxidase activity (NOX) and enlargement of HeLa cells oscillate with two different temperature-compensated period lengths of 22 and 24 minutes corresponding to different NOX forms (United States)

    Wang, S.; Pogue, R.; Morre, D. M.; Morre, D. J.


    NOX proteins are cell surface-associated and growth-related hydroquinone (NADH) oxidases with protein disulfide-thiol interchange activity. A defining characteristic of NOX proteins is that the two enzymatic activities alternate to generate a regular period length of about 24 min. HeLa cells exhibit at least two forms of NOX. One is tumor-associated (tNOX) and is inhibited by putative quinone site inhibitors (e.g., capsaicin or the antitumor sulfonylurea, LY181984). Another is constitutive (CNOX) and refractory to inhibition. The periodic alternation of activities and drug sensitivity of the NADH oxidase activity observed with intact HeLa cells was retained in isolated plasma membranes and with the solubilized and partially purified enzyme. At least two activities were present. One had a period length of 24 min and the other had a period length of 22 min. The lengths of both the 22 and the 24 min periods were temperature compensated (approximately the same when measured at 17, 27 or 37 degrees C) whereas the rate of NADH oxidation approximately doubled with each 10 degrees C rise in temperature. The rate of increase in cell area of HeLa cells when measured by video-enhanced light microscopy also exhibited a complex period of oscillations reflective of both 22 and 24 min period lengths. The findings demonstrate the presence of a novel oscillating NOX activity at the surface of cancer cells with a period length of 22 min in addition to the constitutive NOX of non-cancer cells and tissues with a period length of 24 min.

  8. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67phox (United States)

    Bechor, Edna; Dahan, Iris; Fradin, Tanya; Berdichevsky, Yevgeny; Zahavi, Anat; Rafalowski, Meirav; Federman-Gross, Aya; Pick, Edgar


    The superoxide (O2.-)-generating NADPH oxidase of phagocytes consists of a membrane component, cytochrome b558 (a heterodimer of Nox2 and p22phox), and four cytosolic components, p47phox, p67phox, p40phox, and Rac. The catalytic component, responsible for O2.- generation, is Nox2. It is activated by the interaction of the dehydrogenase region (DHR) of Nox2 with the cytosolic components, principally with p67phox. Using a peptide-protein binding assay, we found that Nox2 peptides containing a 369CysGlyCys371 triad (CGC) bound p67phox with high affinity, dependent upon the establishment of a disulfide bond between the two cysteines. Serially truncated recombinant Nox2 DHR proteins bound p67phox only when they comprised the CGC triad. CGC resembles the catalytic motif (CGHC) of protein disulfide isomerases (PDIs). This led to the hypothesis that Nox2 establishes disulfide bonds with p67phox via a thiol-dilsulfide exchange reaction and, thus, functions as a PDI. Evidence for this was provided by the following: 1. Recombinant Nox2 protein, which contained the CGC triad, exhibited PDI-like disulfide reductase activity; 2. Truncation of Nox2 C-terminal to the CGC triad or mutating C369 and C371 to R, resulted in loss of PDI activity; 3. Comparison of the sequence of the DHR of Nox2 with PDI family members revealed three small regions of homology with PDIA3; 4. Two monoclonal anti-Nox2 antibodies, with epitopes corresponding to regions of Nox2/PDIA3 homology, reacted with PDIA3 but not with PDIA1; 5. A polyclonal anti-PDIA3 (but not an anti-PDIA1) antibody reacted with Nox2; 6. p67phox, in which all cysteines were mutated to serines, lost its ability to bind to a Nox2 peptide containing the CGC triad and had an impaired capacity to support oxidase activity in vitro. We propose a model of oxidase assembly in which binding of p67phox to Nox2 via disulfide bonds, by virtue of the intrinsic PDI activity of Nox2, stabilizes the primary interaction between the two components.

  9. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67 (phox.). (United States)

    Bechor, Edna; Dahan, Iris; Fradin, Tanya; Berdichevsky, Yevgeny; Zahavi, Anat; Federman Gross, Aya; Rafalowski, Meirav; Pick, Edgar


    The superoxide (O(·-) 2)-generating NADPH oxidase of phagocytes consists of a membrane component, cytochrome b 558 (a heterodimer of Nox2 and p22 (phox) ), and four cytosolic components, p47 (phox) , p67 (phox) , p40 (phox) , and Rac. The catalytic component, responsible for O(·-) 2 generation, is Nox2. It is activated by the interaction of the dehydrogenase region (DHR) of Nox2 with the cytosolic components, principally with p67 (phox) . Using a peptide-protein binding assay, we found that Nox2 peptides containing a (369)CysGlyCys(371) triad (CGC) bound p67 (phox) with high affinity, dependent upon the establishment of a disulfide bond between the two cysteines. Serially truncated recombinant Nox2 DHR proteins bound p67 (phox) only when they comprised the CGC triad. CGC resembles the catalytic motif (CGHC) of protein disulfide isomerases (PDIs). This led to the hypothesis that Nox2 establishes disulfide bonds with p67 (phox) via a thiol-dilsulfide exchange reaction and, thus, functions as a PDI. Evidence for this was provided by the following: (1) Recombinant Nox2 protein, which contained the CGC triad, exhibited PDI-like disulfide reductase activity; (2) Truncation of Nox2 C-terminal to the CGC triad or mutating C369 and C371 to R, resulted in loss of PDI activity; (3) Comparison of the sequence of the DHR of Nox2 with PDI family members revealed three small regions of homology with PDIA3; (4) Two monoclonal anti-Nox2 antibodies, with epitopes corresponding to regions of Nox2/PDIA3 homology, reacted with PDIA3 but not with PDIA1; (5) A polyclonal anti-PDIA3 (but not an anti-PDIA1) antibody reacted with Nox2; (6) p67 (phox) , in which all cysteines were mutated to serines, lost its ability to bind to a Nox2 peptide containing the CGC triad and had an impaired capacity to support oxidase activity in vitro. We propose a model of oxidase assembly in which binding of p67 (phox) to Nox2 via disulfide bonds, by virtue of the intrinsic PDI activity of Nox2, stabilizes

  10. Retraction statement: Dynamics of Cytochrome C Oxidase Activity in Acute Ischemic Stroke' by Selaković, V.M., Jovanović, M.D., Mihajlović, R.R. and Radenović, L.L.J. (United States)


    The above article from Acta Neurologica Scandinavica, published online on 7 April 2005 in Wiley Online Library ( and in Volume 111, pp. 329-332, has been retracted by agreement between the journal Editor in Chief, Professor Elinor Ben-Menachem, and John Wiley & Sons Ltd. The article has been retracted because a similar article had previously been published in the Jugoslovenska medicinska biohemija in 2003. The authors presumed that since the journal was no longer existing, they felt the need to re-publish their work in Acta Neuorologica Scandinavica. However, in the consideration of the Journal, this constitutes dual publication. References SelakovićVM, JovanovićMD, MihajlovićR, RadenovićLLJ. Cytochrome c oxidase in patients with acute ischaemic brain disease. Jugoslovenska medicinska biohemija. 2003;22:329-334. SelakovićVM, JovanovićMD, MihajlovićRR, RadenovićLLJ. Dynamics of cytochrome c oxidase activity in acute ischemic stroke. Acta Neurol Scand. 2005;111:329-332.

  11. Reversible Switching of Redox-Active Molecular Orbitals and Electron Transfer Pathways in Cu(A) Sites of Cytochrome c Oxidase. (United States)

    Zitare, Ulises; Alvarez-Paggi, Damián; Morgada, Marcos N; Abriata, Luciano A; Vila, Alejandro J; Murgida, Daniel H


    The Cu(A) site of cytochrome c oxidase is a redox hub that participates in rapid electron transfer at low driving forces with two redox cofactors in nearly perpendicular orientations. Spectroscopic and electrochemical characterizations performed on first and second-sphere mutants have allowed us to experimentally detect the reversible switching between two alternative electronic states that confer different directionalities to the redox reaction. Specifically, the M160H variant of a native Cu(A) shows a reversible pH transition that allows to functionally probe both states in the same protein species. Alternation between states exerts a dramatic impact on the kinetic redox parameters, thereby suggesting this effect as the mechanism underlying the efficiency and directionality of Cu(A) electron transfer in vivo. These findings may also prove useful for the development of molecular electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Isolation, purification and characterization of a novel glucose oxidase from Penicillium sp. CBS 120262 optimally active at neutral pH

    CSIR Research Space (South Africa)

    Simpson, C


    Full Text Available .51 Two bands at 4.3 and 4.67 5–6 4–6 4.5–6.5 6–8 ND ND 40–50 25–30 ND 6.2 5.2 18.4 [8] [9] [25] Present work strains were reported to contain more than one isoenzyme of GOX, these being, A. niger (Sigma type VII) and P. amagasakiense (ATCC 28686... Penicillium chrysogenum, J. Chromatogr. 397 (1987) 239–249. [8] D. Rando, G-W. Kohring, F. GiVhorn, Production puriWcation and characterization of glucose oxidase from a newly isolated strain of Penicillium pinophilum, Appl. Microbiol. Biotechnol. 48...

  13. Role of amine oxidase expression to maintain putrescine homeostasis in Rhodococcus opacus. (United States)

    Foster, Alexander; Barnes, Nicole; Speight, Robert; Morris, Peter C; Keane, Mark A


    While applications of amine oxidases are increasing, few have been characterised and our understanding of their biological role and strategies for bacteria exploitation are limited. By altering the nitrogen source (NH4Cl, putrescine and cadaverine (diamines) and butylamine (monoamine)) and concentration, we have identified a constitutive flavin dependent oxidase (EC within Rhodococcus opacus. The activity of this oxidase can be increased by over two orders of magnitude in the presence of aliphatic diamines. In addition, the expression of a copper dependent diamine oxidase (EC was observed at diamine concentrations>1mM or when cells were grown with butylamine, which acts to inhibit the flavin oxidase. A Michaelis-Menten kinetic treatment of the flavin oxidase delivered a Michaelis constant (KM)=190μM and maximum rate (kcat)=21.8s(-1) for the oxidative deamination of putrescine with a lower KM (=60μM) and comparable kcat (=18.2s(-1)) for the copper oxidase. MALDI-TOF and genomic analyses have indicated a metabolic clustering of functionally related genes. From a consideration of amine oxidase specificity and sequence homology, we propose a putrescine degradation pathway within Rhodococcus that utilises oxidases in tandem with subsequent dehydrogenase and transaminase enzymes. The implications of PUT homeostasis through the action of the two oxidases are discussed with respect to stressors, evolution and application in microbe-assisted phytoremediation or bio-augmentation.

  14. Alkylamino derivatives of 4-aminomethylpyridine as inhibitors of copper-containing amine oxidases. (United States)

    Bertini, Vincenzo; Buffoni, Franca; Ignesti, Giovanni; Picci, Nevio; Trombino, Sonia; Iemma, Francesca; Alfei, Silvana; Pocci, Marco; Lucchesini, Francesco; De Munno, Angela


    The first substratelike, reversible inhibitors of different copper amine oxidases (CAOs) with IC50 (M) as low as 2.0 x 10(-8) corresponding to derivatives of 4-aminomethylpyridine with alkoxy (1a-d), alkylthio (2a,b), and alkylamino (3a-e, 4a-j) groups in the positions 3 and 5 have been prepared and studied. The inhibitors 1a-d are active on benzylamine oxidase and semicarbazide-sensitive amine oxidase and are very selective with respect to diamine oxidase, lysyl oxidase, and monoamine oxidases. The inhibitors 2a,b are selective for benzylamine oxidase whereas 2a is also a new type of good substrate of diamine oxidase. The inhibitors 3a-e and 4a-j are substratelike, reversible, nonselective inhibitors of various CAOs including pea seedling amine oxidase and Hansenula polymorpha amine oxidase, whose enzymatic sites are known from X-ray structure determinations. The inhibitors 3b,c and 4b,c are excellent substratelike tools for studies correlating CAOs that afford crystals suitable for X-ray structure determinations with CAOs from mammals.


    NARCIS (Netherlands)



    Alcohol oxidase of methylotrophic yeast is an FAD-containing enzyme. When in its active form, the enzyme is an octamer and located in the peroxisomes. To study the importance of FAD-binding on the activity, octamerization and intracellular localization of the enzyme, alcohol oxidase of Hansenula pol

  16. Current status of NADPH oxidase research in cardiovascular pharmacology

    Directory of Open Access Journals (Sweden)

    Rodiño-Janeiro BK


    Full Text Available Bruno K Rodiño-Janeiro,1,2 Beatriz Paradela-Dobarro,1 María Isabel Castiñeiras-Landeira,1 Sergio Raposeiras-Roubín,1,3 José R González-Juanatey,1,3,4 Ezequiel Álvarez1,4 1Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain; 2European Molecular Biology Laboratory, Grenoble, France; 3Cardiology Department, University Clinic Hospital of Santiago de Compostela, Santiago de Compostela, Spain; 4Medicine Department, University of Santiago de Compostela, Santiago de Compostela, Spain Abstract: The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility

  17. Characterization of wheat germin (oxalate oxidase) expressed by Pichia pastoris (United States)

    Pan, Heng-Yen; Whittaker, Mei M.; Bouveret, Romaric; Berna, Anne; Bernier, François; Whittaker, James W.


    High-level secretory expression of wheat (Triticum aestivum) germin/oxalate oxidase was achieved in Pichia pastoris fermentation cultures as an α-mating factor signal peptide fusion, based on the native wheat cDNA coding sequence. The oxalate oxidase activity of the recombinant enzyme is substantially increased (7-fold) by treatment with sodium periodate, followed by ascorbate reduction. Using these methods, approximately 1 g (4×104 U) of purified, activated enzyme was obtained following eight days of induction of a high density Pichia fermentation culture, demonstrating suitability for large-scale production of oxalate oxidase for biotechnological applications. Characterization of the recombinant protein shows that it is glycosylated, with N-linked glycan attached at Asn47. For potential biomedical applications, a nonglycosylated (S49A) variant was also prepared which retains essentially full enzyme activity, but exhibits altered protein-protein interactions. PMID:17399681

  18. Lysyl oxidase in colorectal cancer

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine T


    Colorectal cancer is the third most prevalent form of cancer worldwide and fourth-leading cause of cancer-related mortality, leading to ~600,000 deaths annually, predominantly affecting the developed world. Lysyl oxidase is a secreted, extracellular matrix-modifying enzyme previously suggested...... to act as a tumor suppressor in colorectal cancer. However, emerging evidence has rapidly implicated lysyl oxidase in promoting metastasis of solid tumors and in particular colorectal cancer at multiple stages, affecting tumor cell proliferation, invasion, and angiogenesis. This emerging research has...... advancements in the field of colorectal cancer....

  19. The cation-π interaction between Lys53 and the flavin of fructosamine oxidase (FAOX-II) is critical for activity. (United States)

    Collard, François; Fagan, Rebecca L; Zhang, Jianye; Nemet, Ina; Palfey, Bruce A; Monnier, Vincent M


    Fructosamine oxidases (FAOXs) are flavin-containing enzymes that catalyze the oxidative deglycation of low molecular weight fructosamines or Amadori products. The fructosamine substrate is oxidized by the flavin in the reductive half-reaction, and the reduced flavin is then oxidized by molecular oxygen in the oxidative half-reaction. The crystal structure of FAOX-II from Aspergillus fumigatus reveals a unique interaction between Lys53 and the isoalloxazine. The ammonium nitrogen of the lysine is in contact with and nearly centered over the aromatic ring of the flavin on the si-face. Here, we investigate the importance of this unique interaction on the reactions catalyzed by FAOX by studying both half-reactions of the wild-type and Lys53 mutant enzymes. The positive charge of Lys53 is critical for flavin reduction but plays very little role in the reaction with molecular oxygen. The conservative mutation of Lys53 to arginine had minor effects on catalysis. However, removing the charge by replacing Lys53 with methionine caused more than a million-fold decrease in flavin reduction, while only slowing the oxygen reaction by ∼30-fold. © 2011 American Chemical Society

  20. NFE2L2/NRF2 Activity Is Linked to Mitochondria and AMP-Activated Protein Kinase Signaling in Cancers Through miR-181c/Mitochondria-Encoded Cytochrome c Oxidase Regulation. (United States)

    Jung, Kyeong-Ah; Lee, Sujin; Kwak, Mi-Kyoung


    The nuclear factor (erythroid-derived 2)-like 2 (NFE2L2; NFE2L2/NRF2) pathway contributes to the environmental resistance of cancers by enhancing the antioxidant capacity. Here, we explored the potential connection between NFE2L2/NRF2 and mitochondrial function in cancers. Global miRNA expression analysis of HT29 and HCT116 human colon cancer cells identified that NFE2L2/NRF2 silencing upregulated miR-181c through nuclear factor-κB signaling, and this increase was associated with the reduction in mitochondria-encoded cytochrome c oxidase subunit-1 (MT-CO1), a catalytic core subunit of the complex IV of the electron transport chain (ETC). As a result of ETC dysfunction, NFE2L2/NRF2-silenced cancer cells exhibited the decreases in the mitochondrial membrane potential, oxygen consumption rate, and cellular adenosine triphosphate (ATP) contents. Notably, these changes induced adenosine monophosphate (AMP)-activated protein kinase-α (AMPKα) activation and subsequent metabolic adaptation signaling, including the inhibition of fatty acid and sterol biosynthesis enzymes. As supportive evidence of AMPKα-driven adaption, NFE2L2/NRF2-silenced cells were more vulnerable to AMPKα inhibition-induced growth suppression. Similarly, mouse tumor xenografts derived from NFE2L2/NRF2-silenced HT29 exhibited MT-CO1 reduction and AMPKα activation, thereby increasing responsiveness to the AMPK inhibitor treatment. The association of NFE2L2/NRF2 with MT-CO1 and AMPKα was confirmed in breast cancer cells. We demonstrated the significance of NFE2L2/NRF2 in cancer mitochondria by elucidating the involvement of miR-181c/MT-CO1 as underlying molecular events. We also provide evidence of the crosstalk between NFE2L2/NRF2 and AMPKα as an adaptive link in cancers. Therefore, it may be an effective strategy to inhibit both NFE2L2/NRF2 and AMPKα signaling to overcome adaptive behaviors of cancer. Antioxid. Redox Signal. 27, 945-961.

  1. Expression of alternative oxidase in tomato

    Energy Technology Data Exchange (ETDEWEB)

    Kakefuda, M.; McIntosh, L. (Michigan State Univ., East Lansing (USA))


    Tomato fruit ripening is characterized by an increase in ethylene biosynthesis, a burst in respiration (i.e. the climacteric), fruit softening and pigmentation. As whole tomatoes ripened from mature green to red, there was an increase in the alternative oxidase capacity. Aging pink tomato slices for 24 and 48 hrs also showed an increase of alternative oxidase and cytochrome oxidase capacities. Monoclonal antibodies prepared to the Sauromatum guttatum alternative oxidase were used to follow the appearance of alternative oxidase in tomato fruits. There is a corresponding increase in a 36kDa protein with an increase in alternative oxidase capacity. Effects of ethylene and norbornadiene on alternative oxidase capacity were also studied. We are using an alternative oxidase cDNA clone from potato to study the expression of mRNA in ripening and wounded tomatoes to determine if the gene is transcriptionally regulated.

  2. NADH/NADPH Oxidase and Vascular Function. (United States)

    Griendling, K K; Ushio-Fukai, M


    The vascular NADH/NADPH oxidase has been shown to be the major source of superoxide in the vessel wall. Recent work has provided insight into its structure and activity in vascular cells. This enzyme is involved in both vascular smooth muscle hypertrophy and in some forms of impaired endothelium-dependent relaxation. Because oxidative stress in general participates in the pathogenesis of hypertension and atherosclerosis, the enzymes that produce reactive oxygen species may be important determinants of the course of vascular disease. (Trends Cardiovasc Med 1997;7:301-307). © 1997, Elsevier Science Inc.

  3. Determination of human serum semicarbazide-sensitive amine oxidase activity via flow injection analysis with fluorescence detection after online derivatization of the enzymatically produced benzaldehyde with 1,2-diaminoanthraquinone. (United States)

    El-Maghrabey, Mahmoud H; Kishikawa, Naoya; Ohyama, Kaname; Imazato, Takahiro; Ueki, Yukitaka; Kuroda, Naotaka


    A fast, simple, and sensitive flow injection analysis method was developed for the measurement of semicarbazide-sensitive amine oxidase (SSAO) activity in human serum. Benzaldehyde, generated by the action of SSAO after incubation of serum with benzylamine, was derivatized with a novel aromatic aldehyde-specific reagent (1,2-diaminoanthraquinone) and the fluorescent product was measured by fluorescence detection at excitation and emission wavelengths of 390 and 570nm, respectively. Serum SSAO activity was defined as benzaldehyde (nmol) formed per milliliter serum per hour. The method was linear over SSAO activity of 0.2-150.0nmolmL(-1)h(-1) with a detection limit of 0.06nmolmL(-1)h(-1). The %RSD of intra-day and inter-day precision did not exceed 9.4% and the accuracy ranged from -6.5 to -0.6%. The method was applied for the determination of the serum SSAO activity in healthy controls (C, n=24) and diabetes mellitus patients (DM, n=18). It was demonstrated that the activity (mean±SE) of SSAO in diabetics sera was significantly higher than that in healthy subjects' ones (DM; 73.3±1.8nmolmL(-1)h(-1)vs C; 58.9±2.2nmolmL(-1)h(-1), P<0.01).

  4. Biodegradation of phenolic compounds with oxidases from sorghum and non-defined mixed bacterium media

    Energy Technology Data Exchange (ETDEWEB)

    Obame, C. E. L.; Savadogo, P. W.; Mamoudou, D. H.; Dembele, R. H.; Traore, A. S.


    The biodegradation of the phenolic compounds is performed using oxidative enzymes, e. g. polyphenol oxidases (PPOs) and peroxidases (POXs). These oxidases displaying a wide spectrum for the oxidation of phenolic compounds were isolated either from sorghum or mixed bacteria. Spectrophotometric methods were used to assess the monophenolase and diphenolase activities of PPOs as well as the hydrogen-dependant oxidation of POXs. (Author)

  5. Flavoprotein oxidases : classification and applications

    NARCIS (Netherlands)

    Dijkman, Willem P.; de Gonzalo, Gonzalo; Mattevi, Andrea; Fraaije, Marco W.


    This review provides an overview of oxidases that utilise a flavin cofactor for catalysis. This class of oxidative flavoenzymes has shown to harbour a large number of biotechnologically interesting enzymes. Applications range from their use as biocatalysts for the synthesis of pharmaceutical compoun

  6. Biphenyl Modulates the Expression and Function of Respiratory Oxidases in the Polychlorinated-Biphenyls Degrader Pseudomonas pseudoalcaligenes KF707

    Directory of Open Access Journals (Sweden)

    Federica Sandri


    Full Text Available Pseudomonas pseudoalcaligenes KF707 is a soil bacterium which is known for its capacity to aerobically degrade harmful organic compounds such as polychlorinated biphenyls (PCBs using biphenyl as co-metabolite. Here we provide the first genetic and functional analysis of the KF707 respiratory terminal oxidases in cells grown with two different carbon sources: glucose and biphenyl. We identified five terminal oxidases in KF707: two c(caa3 type oxidases (Caa3 and Ccaa3, two cbb3 type oxidases (Cbb31 and Cbb32, and one bd type cyanide-insensitive quinol oxidase (CIO. While the activity and expression of both Cbb31 and Cbb32 oxidases was prevalent in glucose grown cells as compared to the other oxidases, the activity and expression of the Caa3 oxidase increased considerably only when biphenyl was used as carbon source in contrast to the Cbb32 oxidase which was repressed. Further, the respiratory activity and expression of CIO was up-regulated in a Cbb31 deletion strain as compared to W.T. whereas the CIO up-regulation was not present in Cbb32 and C(caa3 deletion mutants. These results, together, reveal that both function and expression of cbb3 and caa3 type oxidases in KF707 are modulated by biphenyl which is the co-metabolite needed for the activation of the PCBs-degradation pathway.

  7. The structure of a native l-amino acid oxidase, the major component of the Vipera ammodytes ammodytes venomic, reveals dynamic active site and quaternary structure stabilization by divalent ions. (United States)

    Georgieva, Dessislava; Murakami, Mario; Perband, Markus; Arni, Raghuvir; Betzel, Christian


    The crystal structure of the major component of the Vipera ammodytes ammodytes venomic, a flavotoxin, member of the l-amino acid oxidase (LAAO) family, has been determined and refined at 2.6 Å resolution. The asymmetric unit consists of four molecules, each bound to oxidized FAD, representing a dimer of dimers. The binding of four Zn(2+) ions stabilizes the enzymatically active quaternary structure and is considered important for the biological activity of LAAO and other flavoproteins. Each monomer consists of three domains with a cofactor bound between the FAD and substrate binding domains, and a solvent exposed glycosylation site which is considered crucial for the toxicity. Comparison of LAAO structures in the absence and presence of a substrate indicates conformational changes in the dynamic active site. The active site H-bond network involving the triad Lys326-Water-N5 of FAD is formed only upon substrate binding, and results in the increased mobility of the isoalloxazine system. Details of the catalytic transformation of amino acid substrates are discussed.

  8. Nonlinear optical properties of bulk cuprous oxide using single beam Z-scan at 790 nm

    Energy Technology Data Exchange (ETDEWEB)

    Serna, J.; Rueda, E. [Grupo de Óptica y Fotónica, Instituto de Física, Universidad de Antioquia U de A, Calle 70 No. 52-21, Medellín (Colombia); García, H., E-mail: [Department of Physics, Southern Illinois University, Edwardsville, Illinois 60026 (United States)


    The two-photon absorption (TPA) coefficient β and the nonlinear index of refraction n{sub 2} for bulk cuprous oxide (Cu{sub 2}O) direct gap semiconductor single crystal have been measured by using a balance-detection Z-scan single beam technique, with an excellent signal to noise ratio. Both coefficients were measured at 790 nm using a 65 fs laser pulse at a repetition rate of 90.9 MHz, generated by a Ti:Sapphire laser oscillator. The experimental valu