WorldWideScience

Sample records for cupric chloride printed

  1. Hydrolysis of cupric chloride in aqueous ammoniacal ammonium chloride solutions

    Directory of Open Access Journals (Sweden)

    Limpo, J. L.

    1995-06-01

    Full Text Available Cupric solubility in the CuCl2-NH4Cl-NH3-H2O system for chloride concentrations lower than 4 molal in the temperature range 25-60 °C was studied. The experimental results show that for chloride concentration between 3.0 and 1.0 molal the cupric solubility is determined by the solubility of the cupric hydroxychloride Cu(OH1.5Cl0.5. For a chloride concentration value of 4.0 molal, there are two cupric compounds, the hydroxychloride Cu(OH1.5Cl0.5 or the diammine chloride Cu(NH32Cl2, on which the solubility of Cu(II depends, according to the temperature and the value of the ratio [NH3]Total/[Cu]Total.

    Se estudia la solubilidad del Cu(II en el sistema CuCl2-NH4Cl-NH3-H2O para concentraciones de cloruro inferiores a 4 molal en el intervalo de temperaturas 25-60 °C. Los resultados experimentales muestran que, para concentraciones de cloruros comprendidas entre 3,0 y 1,0 molal, la solubilidad cúprica viene determinada por la solubilidad del hidroxicloruro cúprico, Cu(OH1.5Cl0.5. Para concentraciones de cloruro 4,0 molal, existen dos compuestos cúpricos, el hidroxicloruro, Cu(OH1.5Cl0.5 o el cloruro de diamina, Cu(NH32Cl2, de los que, de acuerdo con la temperatura y con el valor de la relación [NH3]Total/[Cu]Total depende la solubilidad del Cu(II.

  2. Decomposition analysis of cupric chloride hydrolysis in the Cu-Cl cycle of hydrogen production

    International Nuclear Information System (INIS)

    Daggupati, V.N.; Naterer, G.F.; Gabriel, K.S.; Gravelsins, R.; Wang, Z.

    2009-01-01

    This paper examines cupric chloride solid conversion during hydrolysis in a thermochemical copper-chlorine (Cu-Cl) cycle for hydrogen production. The hydrolysis reaction is a challenging step, in terms of the excess steam requirement and the decomposition of cupric chloride (CuCl 2 ) into cuprous chloride (CuCl) and chlorine (Cl 2 ). The hydrolysis and decomposition reactions are analyzed with respect to the chemical equilibrium constant. The effects of operating parameters are examined, including the temperature, pressure, excess steam and equilibrium conversion. A maximization of yield and selectivity are very important. Rate constants for the simultaneous reaction steps are determined using a uniform reaction model. A shrinking core model is used to determine the rate coefficients and predict the solid conversion time, with diffusional and reaction control. These new results are useful for scale-up of the engineering equipment in the thermochemical Cu-Cl cycle for hydrogen production. (author)

  3. Studies on the feeding of cupric sulfate pentahydrate and cupric citrate to broiler chickens.

    Science.gov (United States)

    Pesti, G M; Bakalli, R I

    1996-09-01

    Male commercial broiler strain chickens were fed either a control diet (based on corn and soybean meal) or the control diet supplemented with cupric sulfate pentahydrate or cupric citrate in seven experiments (six in floor pens, one in wire-floored batteries). In Experiment 1, feeding 125 or 250 mg/kg copper increased growth (4.9%) and decreased feed conversion ratios (3.4%), total plasma cholesterol (40.2%), and breast muscle cholesterol (37.0%). Feeding 375 mg/kg copper was without further beneficial effect. In Experiment 2, withdrawing growth promoting supplements of copper from the feed for the last 7 d caused a significant (P copper caused only small increases in tissue copper levels: 0.36 vs 0.41 mg/kg for breast meat, and 0.48 vs 0.60 mg/kg for thigh meat, respectively. Litter copper accumulations in these experiments were similar to those of earlier reports. Breast muscle cholesterol was reduced by feeding 125 mg/kg supplemental copper from cupric citrate (27.84 mg/100 g) or 125 mg supplemental copper from cupric sulfate pentahydrate (25.32 mg/100 g) compared to broilers fed the control diet (43.92 mg/100 g). Cupric citrate was efficacious for growth promotion at lower copper levels than cupric sulfate pentahydrate, resulting in reduced litter copper.

  4. Detecting Latent Prints on Stone and Other Difficult Porous Surfaces via Indanedione/Zinc Chloride and Laser

    Directory of Open Access Journals (Sweden)

    Shiquan LIU

    2016-01-01

    Full Text Available Lasers and alternate light sources have been recognized as effective tools for latent print detection for over three decades. Luminescence often increases friction ridge contrast to reveal impressions otherwise undetectable. Indanedione/zinc chloride excited by a forensic light source is widely recognized as an effective process for developing latent prints on porous surfaces. This study was designed to evaluate the use of a combination of luminescence excitation and indanedione with zinc chloride to detect latent prints on stones, bricks, and similar difficult porous surfaces. The wavelengths evaluated included 400 nm (violet, 447 nm (blue, 532 nm (green, and 645 nm (red. Latent prints were deposited on a variety of porous surfaces including bricks, cement stones, wood, and cotton fabric, all commonly encountered at crime scenes in China. The surfaces were examined using white light (light-emitting diode flashlight and laser light sources separately, both before and after treatment with indanedione/zinc chloride. The goal of this study was to evaluate various light sources for their effectiveness in detecting impressions developed by indanedione/zinc chloride on difficult porous surfaces. Results indicated that latent prints on some brick and cement stone surfaces may be effectively detected using 532 nm laser excitation after indanedione/zinc chloride processing.

  5. Studies on the feeding of cupric sulfate pentahydrate, cupric citrate, and copper oxychloride to broiler chickens.

    Science.gov (United States)

    Ewing, H P; Pesti, G M; Bakalli, R I; Menten, J F

    1998-03-01

    Male commercial broiler strain chickens were fed either a control diet (based on corn and soybean meal) or the control diet supplemented with cupric sulfate pentahydrate, copper oxychloride, or cupric citrate in two experiments conducted in floor pens. In Experiment 1, feeding copper at 125 mg/kg diet for 42 d significantly increased broiler growth; and the response from cupric citrate was significantly better than either cupric sulfate or copper oxychloride. In Experiment 2, the inclusion of copper from cupric citrate was reduced to 63 mg/kg and the length of the experiment was increased to 56 d. Cupric sulfate pentahydrate and copper oxychloride treatments increased weight gain by 4.9% and cupric citrate increased weight gain by 9.1%. The feed conversion ratios (grams of feed:grams of gain of live birds) in the birds fed copper were not significantly different from those fed the basal diet (P > 0.05) unless corrections were made for the weights of the dead birds; the adjusted feed conversion ratios (grams of feed:grams of gain of live birds + grams of gain of mortalities) for the copper-treated birds in Experiments 1 and 2 were 5.2 and 7.6% lower, respectively, than the ratios of birds fed the basal diets. Plasma copper levels increased in supplemented chicks by 35% in Experiment 1 and 24% in Experiment 2. Liver copper levels in both experiments were increased by 26% with copper supplementation. Mortality was not affected by dietary treatment in either experiment (P > 0.05).

  6. Oxidative Decarboxylation of Levulinic Acid by Cupric Oxides

    Directory of Open Access Journals (Sweden)

    Lu Lin

    2010-11-01

    Full Text Available In this paper, cupric oxides was found to effectively oxidize levulinic acid (LA and lead to the decarboxylation of levulinic acid to 2-butanone. The effects of cupric oxide dosage, reaction time and initial pH value were investigated in batch experiments and a plausible mechanism was proposed. The results showed that LA decarboxylation over cupric oxides at around 300 °C under acidic conditions produced the highest yield of butanone (67.5%. In order to elucidate the catalytic activity of cupric oxides, XRD, AFM, XPS and H2-TPR techniques was applied to examine their molecular surfaces and their effects on the reaction process.

  7. Cupric citrate as growth promoter for broiler chickens in different rearing stages

    Energy Technology Data Exchange (ETDEWEB)

    Brainer, Monica Maria de Almeida [EAFCe, Ceres, GO (Brazil). Dept. de Zootecnia; Menten, Jose Fernando Machado; Vale, Marcos Martinez do; Morais, Sonia Cristina Daroz de [Universidade de Sao Paulo (USP), Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz (ESALQ). Dept. de Zootecnia]. E-mail: jfmmente@esalq.usp.br

    2003-07-01

    Feeding cupric citrate as alternative to cupric sulfate to broilers has been suggested in the literature. Day-old male broiler chicks (1,200) were used in an experiment to evaluate the efficacy of cupric citrate supplementation (75 mg Cu kg-1) during the 1-21, 22-42 or 1-42 d periods in comparison to an unsupplemented diet and a diet supplemented with cupric sulfate (200 mg Cu kg-1, 1-42 d). A randomized block design was used, with five treatments, six replicates and 40 birds per pen. The diets, based on corn and soybean meal, and water were offered ad libitum during the 42-day experimental period. Over the entire period, there was no effect of copper supplementation (P > 0.05) on bird live weight, weight gain, feed intake, feed conversion and mortality. Cupric citrate supplementation on the 22-42 d period resulted in worse feed conversion as compared to broilers receiving cupric sulfate (2.014 vs. 1.967, P < 0.05). Copper residues in the litter were reduced when broilers were fed cupric citrate, as compared to cupric sulfate (P < 0.01). The absence of response to copper supplementation can be attributed to the environmental and sanitary rearing conditions.

  8. Cupric citrate as growth promoter for broiler chickens in different rearing stages

    International Nuclear Information System (INIS)

    Brainer, Monica Maria de Almeida; Menten, Jose Fernando Machado; Vale, Marcos Martinez do; Morais, Sonia Cristina Daroz de

    2003-01-01

    Feeding cupric citrate as alternative to cupric sulfate to broilers has been suggested in the literature. Day-old male broiler chicks (1,200) were used in an experiment to evaluate the efficacy of cupric citrate supplementation (75 mg Cu kg-1) during the 1-21, 22-42 or 1-42 d periods in comparison to an unsupplemented diet and a diet supplemented with cupric sulfate (200 mg Cu kg-1, 1-42 d). A randomized block design was used, with five treatments, six replicates and 40 birds per pen. The diets, based on corn and soybean meal, and water were offered ad libitum during the 42-day experimental period. Over the entire period, there was no effect of copper supplementation (P > 0.05) on bird live weight, weight gain, feed intake, feed conversion and mortality. Cupric citrate supplementation on the 22-42 d period resulted in worse feed conversion as compared to broilers receiving cupric sulfate (2.014 vs. 1.967, P < 0.05). Copper residues in the litter were reduced when broilers were fed cupric citrate, as compared to cupric sulfate (P < 0.01). The absence of response to copper supplementation can be attributed to the environmental and sanitary rearing conditions

  9. Cupric natural zeolites as microbic ides

    International Nuclear Information System (INIS)

    Contreras A, D.; Olguin G, M. T.; Alcantara D, D.; Burrola A, C.

    2009-01-01

    The Escherichia coli and the Candida albicans are considered contamination indicators for what these organisms reflect the water quality. The natural zeolites by their characteristics and properties, they could incorporate to a waters treatment system, as ion exchange, adsorbents and/or microbiocid agents, representing an alternative method of low cost. Inside this investigation work was found that depending on the microorganism type, it varies the quantity of cupric zeolite that is required to carry out the water disinfection, being great for the case of yeasts than the bacteria s. In addition to that marked differences are presented in the required time to reach this process. The characterization of the natural zeolite material, sodium and cupric, was realized by means of scanning electron microscopy, determining the elementary composition (Energy Dispersive Spectroscopy) of each one of them, and by X-ray diffraction. (Author)

  10. Water Fastness of Screen Printed Pearl Luster Pigments based on Synthetic and Natural Mica on Polyvinyl Chloride Foil and Rich Mineral Paper

    Directory of Open Access Journals (Sweden)

    Mirica Karlovits

    2013-01-01

    Full Text Available The present study attempts to examine water fastness of screen printed pearl luster pigments based on synthetic and natural mica on polyvinyl chloride foil and Rich Mineral Paper. Three types of pearl luster pigments were used, each different from the other in composition, interference colour and particle size: one pigment based on synthetic mica (Pigment 1 and two pigments based on natural mica (Pigment 2 and Pigment 3. Pearl luster pigments were applied to the printing base (PVC transparent base in 15wt.% concentration and printed by means of screen printing technique. The test of water fastness was made on prints, where the samples were soaked in distilled water for 6 and 12 days. It was established that this water treatment did not have any significant impact on the durability of screen printed pearl luster pigments. The pigments could demonstrate slightly better water fastness after being printed on Rich Mineral Paper.

  11. Oxidative leaching process with cupric ion in hydrochloric acid media for recovery of Pd and Rh from spent catalytic converters.

    Science.gov (United States)

    Nogueira, C A; Paiva, A P; Oliveira, P C; Costa, M C; da Costa, A M Rosa

    2014-08-15

    The recycling of platinum-group metals from wastes such as autocatalytic converters is getting growing attention due to the scarcity of these precious metals and the market pressure originated by increase of demand in current and emerging applications. Hydrometallurgical treatment of such wastes is an alternative way to the most usual pyrometallurgical processes based on smelter operations. This paper focuses on the development of a leaching process using cupric chloride as oxidising agent, in HCl media, for recovery of palladium and rhodium from a spent catalyst. The chloride media allows the adequate conditions for oxidising and solubilising the metals, as demonstrated by equilibrium calculations based on thermodynamic data. The experimental study of the leaching process revealed that Pd solubilisation is clearly easier than that of Rh. The factors temperature, time, and HCl and Cu(2+) concentrations were significant regarding Pd and Rh leaching, the latter requiring higher factor values to achieve the same results. Leaching yields of 95% Pd and 86% Rh were achieved under optimised conditions (T = 80 °C, t = 4h, [HCl] = 6M, [Cu(2+)] = 0.3M). Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Synthesis and characterization of cupric oxide (CuO) nanoparticles ...

    African Journals Online (AJOL)

    In the present work, cupric oxide (CuO) nanoparticles (NPs) were prepared by adopting aqueous precipitation method using copper sulphate 5-hydrate as a precursor and NaOH as a stabilizing agent. This gives a large scale production of CuO-NPs which are utilized for the removal of methylene blue (MB) dye. The CuO ...

  13. Control and monitoring of the localized corrosion of zirconium in acidic chloride solutions

    International Nuclear Information System (INIS)

    Fahey, J.; Holmes, D.; Yau, T.L.

    1995-01-01

    Zirconium in acidic chloride solutions which are contaminated with ferric or cupric cations is prone to localized corrosion. This tendency can be reduced by ensuring that the zirconium surface is clean and smooth. In this paper, the effect of surface condition on the localized corrosion of zirconium in acidic chloride solutions is predicted with potentiodynamic scans. These predictions are confirmed by weight loss tests on various combinations of surface finish and acid concentrations. A real time indication of localized corrosion is seen by monitoring the electrochemical noise produced between two similar electrodes immersed in an acidic chloride solutions. Electrochemical noise monitoring correlates well with the predictions from potentiodynamic and weight loss experiments. The electrochemical noise results show that while an elevated (more anodic) potential caused by ferric ion contamination may be a necessary condition for localized corrosion, it is not a sufficient condition: A smooth, clean zirconium surface reduces the localized corrosion of zirconium

  14. Determination of HCl and VOC Emission from Thermal Degradation of PVC in the Absence and Presence of Copper, Copper(II Oxide and Copper(II Chloride

    Directory of Open Access Journals (Sweden)

    Ahamad J. Jafari

    2009-01-01

    Full Text Available Polyvinyl chloride (PVC has played a key role in the development of the plastic industry over the past 40 years. Thermal degradation of PVC leads to formation of many toxic pollutants such as HCl, aromatic and volatile organic carbon vapors. Thermal degradation of PVC and PVC in the present of copper, cupric oxide and copper(II chloride were investigated in this study using a laboratory scale electrical furnace. HCl and Cl- ion were analyzed by a Dionex ion chromatograph and VOCs compounds were analyzed using GC or GC-MS. The results showed that HCl plus Cl- ion and benzene formed about 99% and 80% respectively in the first step of thermal degradation under air atmosphere. The presence of cupric oxide increases the percentage of short chain hydrocarbons more than 184% and decreases the amount of the major aromatic hydrocarbon and HCl plus Cl- ion to 90% and 65% respectively. The total aromatic hydrocarbon emitted less than when atmosphere was air and difference was statistically significant (Pvalue<0.000

  15. Patrick Air Force Base Storm Water Pollution Prevention Plan.

    Science.gov (United States)

    1994-09-01

    7758987 Cupric sulfate 77-47-4 Hexachlorocyclopentadliene 10380297 Cupric sulfate, ammoniated 67-72-1 H-exachloroethane 815827 Cupric tartrate 76-47-01...28300745 Antimony potassium 75-00-3 Chloroethane (Ethyl chlo- tartrate ride) 7789619 Antimony tribromide 67-66-3 Chloroform 10025919 Antimony...5 p-Cresol 7787475 Beryllium chloride 1319-77-3 Cresol (mixed isomers) 7787497 Beryllium fluoride 142712 Cupric acetate 7787555 Beryllium nitrate

  16. Morphology selection for cupric oxide thin films by electrodeposition.

    Science.gov (United States)

    Dhanasekaran, V; Mahalingam, T; Chandramohan, R

    2011-10-01

    Polycrystalline cupric oxide thin films were deposited using alkaline solution bath employing cathodic electrodeposition method. The thin films were electrodeposited at various solution pH. The surface morphology and elemental analyzes of the films were studied using scanning electron microscopy (SEM) and energy dispersive X-ray analysis, respectively. SEM studies revealed that the surface morphology could be tailored suitably by adjusting the pH value during deposition. Mesh average on multiple lattice mode atomic force microscopy image was obtained and reported. Copyright © 2011 Wiley-Liss, Inc.

  17. Effect of chloride ions on the corrosion behavior of low-alloy steel containing copper and antimony in sulfuric acid solution

    Science.gov (United States)

    Park, Sun-Ah; Kim, Seon-Hong; Yoo, Yun-Ha; Kim, Jung-Gu

    2015-05-01

    The influence of the addition of HCl on the corrosion behavior of low-alloy steel containing copper and antimony was investigated using electrochemical (potentiodynamic and potentiostatic polarization tests, and electrochemical impedance spectroscopy) and weight loss tests in a 1.6M H2SO4 solution with different concentrations of hydrochloric acid (0.00, 0.08, 0.15 and 0.20 M HCl) at 60 °C. The result showed that the corrosion rate decreased with increasing HCl by the formation of protective layers. SEM, EDS and XPS examinations of the corroded surfaces after the immersion test indicated that the corrosion production layer formed in the solution containing HCl was highly comprised of metallic Cu, Cu chloride and metallic (Fe, Cu, Sb) compounds. The corrosion resistance was improved by the Cu-enriched layer, in which chloride ions are an accelerator for cupric ion reduction during copper deposition. Furthermore, cuprous and antimonious chloride species are complex salts for cuprous ions adsorbed on the surface during copper deposition.

  18. Potentiometric determination of sulfate with EDTA and the cupric-selective electrode

    International Nuclear Information System (INIS)

    Baumann, E.W.

    1976-11-01

    Sulfate was indirectly determined by precipitating sulfate as BaSO 4 and then dissolving BaSO 4 in excess ammoniacal EDTA. The excess EDTA was titrated potentiometrically with La 3+ . A cupric-selective electrode was used to detect the end point. About 10 -3 M SO 4 2- was determined in 3M HCl solutions of metal oxides with a relative standard deviation of 3.5 percent and a bias of +4 percent

  19. Jahn Teller effect of cations in water: The cupric ion in water

    Energy Technology Data Exchange (ETDEWEB)

    Halley, J.W. [Minnesota Univ., Minneapolis, MN (United States). School of Physics and Astronomy; Wang, X.R. [Hong Kong Univ. of Science and Technology, Kowlon (Hong Kong). Dept. of Physics; Curtiss, L.A. [Argonne National Lab., IL (United States)

    1993-02-01

    We report a molecular dynamics model for the Jahn Teller effect in the solvation shell of a cation in solution in an aqueous liquid. We apply the model to the cupric ion and compare results with results of neutron scattering experiments on copper chlorate solutions. We conclude that the original interpretation of the experiments in terms of a Jan Teller effect may require modification.

  20. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    Science.gov (United States)

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  1. Oxidative leaching process with cupric ion in hydrochloric acid media for recovery of Pd and Rh from spent catalytic converters

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, C.A., E-mail: carlos.nogueira@lneg.pt [Laboratório Nacional de Energia e Geologia, I.P., Campus do Lumiar, 1649-038 Lisboa (Portugal); Paiva, A.P., E-mail: appaiva@fc.ul.pt [Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa (Portugal); Oliveira, P.C. [Laboratório Nacional de Energia e Geologia, I.P., Campus do Lumiar, 1649-038 Lisboa (Portugal); Costa, M.C., E-mail: mcorada@ualg.pt [Centro de Ciências do Mar, Departamento de Química e Farmácia, Faculdade de Ciências e de Tecnologia, Campus de Gambelas, 8005-139 Faro (Portugal); Costa, A.M. Rosa da, E-mail: amcosta@ualg.pt [Centro de Investigação em Química do Algarve, Departamento de Química e Farmácia, Faculdade de Ciências e de Tecnologia, Campus de Gambelas, 8005-139 Faro (Portugal)

    2014-08-15

    Highlights: • A new leaching process based on Cu{sup 2+}/HCl media for recovering Pd and Rh from spent autocatalytic converters is presented. • Palladium and rhodium were efficiently leached, with attained maximum yields of 95% and 86%, respectively. • Temperature, time, and HCl and Cu{sup 2+} concentrations were found to be significant factors in the leaching of Pd and Rh. - Abstract: The recycling of platinum-group metals from wastes such as autocatalytic converters is getting growing attention due to the scarcity of these precious metals and the market pressure originated by increase of demand in current and emerging applications. Hydrometallurgical treatment of such wastes is an alternative way to the most usual pyrometallurgical processes based on smelter operations. This paper focuses on the development of a leaching process using cupric chloride as oxidising agent, in HCl media, for recovery of palladium and rhodium from a spent catalyst. The chloride media allows the adequate conditions for oxidising and solubilising the metals, as demonstrated by equilibrium calculations based on thermodynamic data. The experimental study of the leaching process revealed that Pd solubilisation is clearly easier than that of Rh. The factors temperature, time, and HCl and Cu{sup 2+} concentrations were significant regarding Pd and Rh leaching, the latter requiring higher factor values to achieve the same results. Leaching yields of 95% Pd and 86% Rh were achieved under optimised conditions (T = 80 °C, t = 4 h, [HCl] = 6 M, [Cu{sup 2+}] = 0.3 M)

  2. Effects of Thermal Annealing Conditions on Cupric Oxide Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Seon; Oh, Hee-bong; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2015-07-15

    In this study, cupric oxide (CuO) thin films were grown on fluorine doped tin oxide(FTO) substrate by using spin coating method. We investigated the effects of thermal annealing temperature and thermal annealing duration on the morphological, structural, optical and photoelectrochemical properties of the CuO film. From the results, we could find that the morphologies, grain sizes, crystallinity and photoelectrochemical properties were dependent on the annealing conditions. As a result, the maximum photocurrent density of -1.47 mA/cm{sup 2} (vs. SCE) was obtained from the sample with the thermal annealing conditions of 500 ℃ and 40 min.

  3. 40 CFR 117.3 - Determination of reportable quantities.

    Science.gov (United States)

    2010-07-01

    ... A 10 (4.54) Lead fluoride A 10 (4.54) Lead iodide A 10 (4.54) Lead nitrate A 10 (4.54) Lead stearate... fluoride X 1 (0.454) Beryllium nitrate X 1 (0.454) Butyl acetate D 5,000 (2,270) Butylamine C 1,000 (454) n... B 100 (45.4) Cupric acetoarsenite X 1 (0.454) Cupric chloride A 10 (4.54) Cupric nitrate B 100 (45.4...

  4. Operational Environmental Assessment

    Science.gov (United States)

    1988-09-01

    Anhydride 0 oz Cupric Sulfide 5 lb Oxalic Acid 56 oz Potassium Carbonate Anhydrous 32 oz Potassium Phosphate 36 oz Sodium Acetate 44 oz Sodium...Benzene 35,500 ml Antimony Potassium Tartrate 4,000 gm Barbituric Acid 150 gm Barbituric Acid 400 gm Chromium Trioxide 6,000 gm Disodium Ethylenediamine...Hydrocholoride 600 gm *Benzene a pt Boric Acid 5,000 gm Calcium Chloride 6,500 gm Calcium Chloride 3 lb Citric Acid 3 lb Citric Acid 2,500 gm Cupric Sulfate 2,500

  5. Printing of polymer microcapsules for enzyme immobilization on paper substrate.

    Science.gov (United States)

    Savolainen, Anne; Zhang, Yufen; Rochefort, Dominic; Holopainen, Ulla; Erho, Tomi; Virtanen, Jouko; Smolander, Maria

    2011-06-13

    Poly(ethyleneimine) (PEI) microcapsules containing laccase from Trametes hirsuta (ThL) and Trametes versicolor (TvL) were printed onto paper substrate by three different methods: screen printing, rod coating, and flexo printing. Microcapsules were fabricated via interfacial polycondensation of PEI with the cross-linker sebacoyl chloride, incorporated into an ink, and printed or coated on the paper substrate. The same ink components were used for three printing methods, and it was found that laccase microcapsules were compatible with the ink. Enzymatic activity of microencapsulated TvL was maintained constant in polymer-based ink for at least eight weeks. Thick layers with high enzymatic activity were obtained when laccase-containing microcapsules were screen printed on paper substrate. Flexo printed bioactive paper showed very low activity, since by using this printing method the paper surface was not fully covered by enzyme microcapsules. Finally, screen printing provided a bioactive paper with high water-resistance and the highest enzyme lifetime.

  6. Amperometric Sensor for Detection of Chloride Ions†

    Science.gov (United States)

    Trnkova, Libuse; Adam, Vojtech; Hubalek, Jaromir; Babula, Petr; Kizek, Rene

    2008-01-01

    Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE) and at a CPE modified with solid AgNO3, a solution of AgNO3 and/or solid silver particles. Detection limits (3 S/N) for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO3, solution of AgNO3 and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV) we estimated the limit of detection (3 S/N) as 500 nM. PMID:27873832

  7. Amperometric Sensor for Detection of Chloride Ions.

    Science.gov (United States)

    Trnkova, Libuse; Adam, Vojtech; Hubalek, Jaromir; Babula, Petr; Kizek, Rene

    2008-09-15

    Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE) and at a CPE modified with solid AgNO₃, a solution of AgNO₃ and/or solid silver particles. Detection limits (3 S/N) for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO₃, solution of AgNO₃ and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV) we estimated the limit of detection (3 S/N) as 500 nM.

  8. Enhanced performance of LiFePO4 through hydrothermal synthesis coupled with carbon coating and cupric ion doping

    International Nuclear Information System (INIS)

    Pei Bo; Wang Qiang; Zhang Weixin; Yang Zeheng; Chen Min

    2011-01-01

    Highlights: → Hydrothermal reaction has been adopted to synthesize LiFePO 4 with a narrow size distribution. → LiFePO 4 was modified with carbon coating and cupric cation (Cu 2+ ) doping simultaneously. → Electrochemical properties of LiFePO 4 were improved by carbon coating and cupric cation doping. - Abstract: A hydrothermal reaction has been adopted to synthesize pure LiFePO 4 first, which was then modified with carbon coating and cupric ion (Cu 2+ ) doping simultaneously through a post-heat treatment. X-ray diffraction patterns, transmission electron microscopy and scanning electron microscopy images along with energy dispersive spectroscopy mappings have verified the homogeneous existence of coated carbon and doped Cu 2+ in LiFePO 4 particles with phospho-olivine structure and an average size of 400 nm. The electrochemical performances of the material have been studied by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge measurements. The carbon-coated and Cu 2+ -doped LiFePO 4 sample (LFCu5/C) exhibited an enhanced electronic conductivity of 2.05 x 10 -3 S cm -1 , a specific discharge capacity of 158 mAh g -1 at 50 mA g -1 , a capacity retention of 96.4% after 50 cycles, a decreased charge transfer resistance of 79.4 Ω and superior electrode reaction reversibility. The present synthesis route is promising in making the hydrothermal method more practical for preparation of the LiFePO 4 material and enhancement of electrochemical properties.

  9. Freeform inkjet printing of cellular structures with bifurcations.

    Science.gov (United States)

    Christensen, Kyle; Xu, Changxue; Chai, Wenxuan; Zhang, Zhengyi; Fu, Jianzhong; Huang, Yong

    2015-05-01

    Organ printing offers a great potential for the freeform layer-by-layer fabrication of three-dimensional (3D) living organs using cellular spheroids or bioinks as building blocks. Vascularization is often identified as a main technological barrier for building 3D organs. As such, the fabrication of 3D biological vascular trees is of great importance for the overall feasibility of the envisioned organ printing approach. In this study, vascular-like cellular structures are fabricated using a liquid support-based inkjet printing approach, which utilizes a calcium chloride solution as both a cross-linking agent and support material. This solution enables the freeform printing of spanning and overhang features by providing a buoyant force. A heuristic approach is implemented to compensate for the axially-varying deformation of horizontal tubular structures to achieve a uniform diameter along their axial directions. Vascular-like structures with both horizontal and vertical bifurcations have been successfully printed from sodium alginate only as well as mouse fibroblast-based alginate bioinks. The post-printing fibroblast cell viability of printed cellular tubes was found to be above 90% even after a 24 h incubation, considering the control effect. © 2014 Wiley Periodicals, Inc.

  10. Ultra‐high performance supercritical fluid chromatography of lignin‐derived phenols from alkaline cupric oxide oxidation

    Science.gov (United States)

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta

    2016-01-01

    Traditional chromatographic methods for the analysis of lignin‐derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra‐high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin‐derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5–2.5 μM, a limit of quantification of 2.5–5.0 μM, and a dynamic range of 5.0–2.0 mM (R 2 > 0.997). The new ultra‐high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin‐derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin‐derived phenols in complex environmental samples. PMID:27452148

  11. Amperometric Sensor for Detection of Chloride Ions

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2008-09-01

    Full Text Available Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE and at a CPE modified with solid AgNO3, a solution of AgNO3 and/or solid silver particles. Detection limits (3 S/N for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO3, solution of AgNO3 and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV we estimated the limit of detection (3 S/N as 500 nM.

  12. In situ synthesis of nanoparticles on substrates by inkjet printing

    KAUST Repository

    Abulikemu, Mutalifu; Jabbour, Ghassan

    2014-01-01

    Nanoparticles may be formed on a substrate by mixing precursor solutions deposited by an inkjet printer. A first solution is deposited on a substrate from a first inkjet print cartridge. Then, a second solution is deposited on the substrate from a second inkjet print cartridge. The solutions may be printed in an array of droplets on the substrate. Nanoparticles form when droplets of the first solution overlap with droplets of the second solution. In one example, the nanoparticles may be gold nanoparticles formed from mixing a first solution of 1,2-dichlorobenzene (DCB) and oleylamine and a second solution of gold chloride trihydrite and dimethyl sulfoxide (DMSO). The nanoparticles may be incorporated into optoelectronic devices.

  13. In situ synthesis of nanoparticles on substrates by inkjet printing

    KAUST Repository

    Abulikemu, Mutalifu

    2014-12-23

    Nanoparticles may be formed on a substrate by mixing precursor solutions deposited by an inkjet printer. A first solution is deposited on a substrate from a first inkjet print cartridge. Then, a second solution is deposited on the substrate from a second inkjet print cartridge. The solutions may be printed in an array of droplets on the substrate. Nanoparticles form when droplets of the first solution overlap with droplets of the second solution. In one example, the nanoparticles may be gold nanoparticles formed from mixing a first solution of 1,2-dichlorobenzene (DCB) and oleylamine and a second solution of gold chloride trihydrite and dimethyl sulfoxide (DMSO). The nanoparticles may be incorporated into optoelectronic devices.

  14. Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation.

    Science.gov (United States)

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta; Turner, Charlotta

    2016-08-01

    Traditional chromatographic methods for the analysis of lignin-derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra-high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin-derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5-2.5 μM, a limit of quantification of 2.5-5.0 μM, and a dynamic range of 5.0-2.0 mM (R(2) > 0.997). The new ultra-high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin-derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin-derived phenols in complex environmental samples. © 2016 The Authors, Journal of Separation Science Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. In-vacuum scattered light reduction with black cupric oxide surfaces for sensitive fluorescence detection.

    Science.gov (United States)

    Norrgard, E B; Sitaraman, N; Barry, J F; McCarron, D J; Steinecker, M H; DeMille, D

    2016-05-01

    We demonstrate a simple and easy method for producing low-reflectivity surfaces that are ultra-high vacuum compatible, may be baked to high temperatures, and are easily applied even on complex surface geometries. Black cupric oxide (CuO) surfaces are chemically grown in minutes on any copper surface, allowing for low-cost, rapid prototyping, and production. The reflective properties are measured to be comparable to commercially available products for creating optically black surfaces. We describe a vacuum apparatus which uses multiple blackened copper surfaces for sensitive, low-background detection of molecules using laser-induced fluorescence.

  16. High-Throughput Fabrication of Nanocomplexes Using 3D-Printed Micromixers

    DEFF Research Database (Denmark)

    Bohr, Adam; Boetker, Johan; Wang, Yingya

    2017-01-01

    3D printing allows a rapid and inexpensive manufacturing of custom made and prototype devices. Micromixers are used for rapid and controlled production of nanoparticles intended for therapeutic delivery. In this study, we demonstrate the fabrication of micromixers using computational design and 3D...... via bulk mixing. Moreover, each micromixer could process more than 2 liters per hour with unaffected performance and the setup could easily be scaled-up by aligning several micromixers in parallel. This demonstrates that 3D printing can be used to prepare disposable high-throughput micromixers...... printing, which enable a continuous and industrial scale production of nanocomplexes formed by electrostatic complexation, using the polymers poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Several parameters including polymer concentration, flow rate, and flow ratio were...

  17. The effect of preparation conditions and the ionizing radiation on the kinetics of cupric oxide reduction by hydrogen

    International Nuclear Information System (INIS)

    Pospisil, M.; Taras, P.

    1977-01-01

    Cupric oxide reduction in the temperature interval 170 to 350 degC was studied by thermogravimetry. The reduction kinetics can be quantitatively described by the modified Prout-Tompkinson equation, with the apparent activation energy varying within the limits (4.94 to 5.82)x10 4 J/mol. Irregularities observed during the reduction of the oxide of the oxalate origin are due to the high content of the metallic phase. The p-semiconducting nature of these oxides was proved for all samples. The effect of the pre-irradiation of samples with γ-rays (with an absorbed dose of (1.4 to 4.75)x10 6 J/kg) on the reduction kinetics depends on the origin of the cupric oxide. In contrast to NiO no correlation between the content of super-stoichiometric oxygen and the reduction kinetics was found. After irradiation with γ-rays or with fast neutrons at a dose of 79.8 J/kg the reduction rate increases and the activation energy decreases regardless of the oxide origin. At the same time the concentration of the ionic form of super-stoichiometric oxygen increases. (author)

  18. Synthesis of IGZO ink and study of ink-jet printed IGZO thin films with different Ga concentrations

    Science.gov (United States)

    Shen, Y. K.; Liu, Z.; Wang, X. L.; Ma, W. K.; Chen, Z. H.; Chen, T. P.; Zhang, H. Y.

    2017-12-01

    By dissolving gallium chloride (GaCl3), indium chloride (InCl3), zinc acetate dihydrate [Zn(OAc)2·2H2O] and monoethanolamine (MEA) into a solvent of 2-methoxyethanol, the IGZO ink was synthesized. Five types of IGZO ink were prepared with different molar ratios of In:Ga:Zn, which can be used for ink-jet printing process. The thermal behaviors of IGZO ink with different formulas were investigated and the ideal annealing temperature for film formation was found to be ∼450 °C. Based on the prepared ink, amorphous IGZO thin films were directly printed on the glass substrate with a FujiFilm Dimatix ink-jet printer, followed by a thermal annealing at 450 °C for 1 h. The surface morphology, crystal structure, optical transmittance, electron mobility and carrier concentration were characterized and investigated. The ink-jet printed amorphous IGZO thin films fabricated in this work can be used as switching medium in flexible resistive random access memory devices.

  19. An Efficient Synthesis of Substituted Furans by Cupric Halide-Mediated Intramolecular Halocyclization of 2-(1-Alkynyl)-2-alken-1-ones

    International Nuclear Information System (INIS)

    Fu, Weijun; Guo, Wenbo; Zhu, Mei; Xu, Chen; Xu, Fengjuan

    2013-01-01

    An efficient synthesis of 3-halofurans by the intramolecular cyclization of 2-(1-alkynyl)-2-alken-1-ones with cupric halide has been developed. A broad range of 3-chloro- and 3-bromofuran derivatives could be obtained in the present method in moderate to good yields. The 3-halofuran derivatives are potential synthetic intermediates for amplification of molecular complexity

  20. Determination of total and electrolabile copper in agricultural soil by using disposable modified-carbon screen-printed electrodes.

    Science.gov (United States)

    Faucher, Stéphane; Cugnet, Cyril; Authier, Laurent; Lespes, Gaëtane

    2014-02-01

    The objective of the study is to evaluate modified-carbon screen-printed working electrodes (SPE) combined with square wave anodic stripping voltammetry (SWASV) to determine electrolabile and total copper in soils with the perspective to assess the environmental hazard resulting from copper anthropogenic contamination. The voltammetric method was investigated using a mineralized certified reference soil such that it can be assumed that the copper was totally under electrolabile form in the solution of mineralized soil. In optimal conditions, a copper recovery of 97% and a relative standard deviation (RSD) of 9% were found. The limits of detection and quantification for copper were 0.4 and 1.3 μg L(-1), respectively. Finally, the method was applied on soil leachates, which allowed evaluating the cupric transfer from the soil to the leachates and quantifying the electrolabile copper part in leachates.

  1. A low volume 3D-printed temperature-controllable cuvette for UV visible spectroscopy.

    Science.gov (United States)

    Pisaruka, Jelena; Dymond, Marcus K

    2016-10-01

    We report the fabrication of a 3D-printed water-heated cuvette that fits into a standard UV visible spectrophotometer. Full 3D-printable designs are provided and 3D-printing conditions have been optimised to provide options to print the cuvette in either acrylonitrile butadiene styrene or polylactic acid polymers, extending the range of solvents that are compatible with the design. We demonstrate the efficacy of the cuvette by determining the critical micelle concentration of sodium dodecyl sulphate at 40 °C, the molar extinction coefficients of cobalt nitrate and dsDNA and by reproducing the thermochromic UV visible spectrum of a mixture of cobalt chloride, water and propan-2-ol. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Behavior of copper in acidic sulfate solution: Comparison with acidic chloride

    Energy Technology Data Exchange (ETDEWEB)

    Tromans, D.; Silva, J.C. [Univ. of British Columbia, Vancouver, British Columbia (Canada). Dept. of Metals and Materials Engineering

    1997-03-01

    The anodic polarization behavior of copper in a 0.1 M sulfuric acid (H{sub 2}SO{sub 4}) + 1 M sodium sulfate (Na{sub 2}SO{sub 4}) solution (pH = 2.0) was studied at room temperature under quiescent and stirred conditions. The behavior was compared with aqueous equilibria via construction of a potential-vs-pH (E-pH) diagram for the copper-sulfate-water (Cu-SO{sub 4}{sup 2}-H{sub 2}O) system. Interpretation of the behavior was aided by comparison with aqueous equilibria and polarization studies of copper in a 0.2 M hydrochloric acid (HCl) + 1 M sodium chloride (NaCl) solution(pH = 0.8). The initial anodic dissolution region in the acidic sulfate solution exhibited Tafel behavior with a slope consistent with formation of cupric ions (Cu{sup 2+}) whose rate of formation was charge-transfer controlled. At higher potentials, limiting current density (i{sub L}) behavior was observed under E-pH conditions that were consistent with formation of a film of copper sulfate pentahydrate (CuSO{sub 4} {degree} 5H{sub 2}O). Comparison of experimental i{sub L} values with those predicted by mass transport-controlled processes, using estimates of the diffusion layer thickness obtained from the mass transfer-influenced region of apparent Tafel behavior in the acidic chloride solution, were in sufficient agreement to indicate i{sub L} was controlled by the rate of dissolution of the CuSO{sub 4} {degree} 5H{sub 2}O film via transport of Cu{sup 2+} from the film-electrolyte interface into the bulk solution.

  3. Cupric citrate as growth promoter for broiler chickens in different rearing stages Citrato cúprico como promotor de crescimento de frangos de corte diferentes em fases de criação

    Directory of Open Access Journals (Sweden)

    Mônica Maria de Almeida Brainer

    2003-01-01

    Full Text Available Feeding cupric citrate as alternative to cupric sulfate to broilers has been suggested in the literature. Day-old male broiler chicks (1,200 were used in an experiment to evaluate the efficacy of cupric citrate supplementation (75 mg Cu kg-1 during the 1-21, 22-42 or 1-42 d periods in comparison to an unsupplemented diet and a diet supplemented with cupric sulfate (200 mg Cu kg-1, 1-42 d. A randomized block design was used, with five treatments, six replicates and 40 birds per pen. The diets, based on corn and soybean meal, and water were offered ad libitum during the 42-day experimental period. Over the entire period, there was no effect of copper supplementation (P > 0.05 on bird live weight, weight gain, feed intake, feed conversion and mortality. Cupric citrate supplementation on the 22-42 d period resulted in worse feed conversion as compared to broilers receiving cupric sulfate (2.014 vs. 1.967, P Citrato cúprico foi apontado como alternativa ao sulfato cúprico como promotor de crescimento na dieta de frangos. Este trabalho avaliou a eficácia do citrato cúprico em diferentes fases da criação de frangos de corte. Foram utilizados 1200 pintos machos, em um experimento em blocos casualizados, com cinco tratamentos, seis repetições e 40 aves por parcela. Os tratamentos consistiram de uma dieta não suplementada ou suplementada com citrato cúprico anidro (75 mg Cu kg-1 de 1 a 21 dias, de 22 a 42 dias ou de 1 a 42 dias, ou com sulfato cúprico pentahidratado (200 mg Cu kg-1 de 1 a 42 dias. Foram avaliados o desempenho das aves e o resíduo de cobre na cama. Dietas, à base de milho e farelo de soja, e água foram fornecidas à vontade durante todo o período experimental. Não houve efeito da suplementação de cobre (P > 0,05 sobre o peso vivo, ganho de peso, consumo de ração, conversão alimentar e mortalidade mais refugagem. Os frangos que receberam citrato cúprico na ração a partir dos 22 dias tiveram, no período 22-42 dias

  4. A novel and simple method of printing flexible conductive circuits on PET fabrics

    International Nuclear Information System (INIS)

    Wang, Zehong; Wang, Wei; Jiang, Zhikang; Yu, Dan

    2017-01-01

    Highlights: • A simple preparation of nano-silver conductive ink was proposed. • Conductive pattern was printed on PET fabrics without heat sintering. • The surface resistivity of printed pattern is low to 0.197 Ω cm. - Abstract: Flexible conductive circuits on PET fabrics were fabricated by a simple approach. Firstly, well dispersed nano-silver colloids with average size of 87 nm were synthesized with poly (vinyl pyrrolidone). Then, by adding polyurethane and thickening agent into these colloids, Ag NP-based ink was produced and printed on PET fabrics by screen printing. Conductive patterns were achieved through the swelling process of polyurethane and the decrease of contact resistance between nano-silver particles when immersed in dichloromethane (DCM) and diallyldimethylammonium chloride (DMDAAC) mixed solution. After it was dried at 40 °C,the surface resistivity was about 0.197 Ω cm with width 1.9 mm, and thickness 20 μm. Moreover, the effects of different DCM contents on the conductivity and the film forming ability have been investigated. We believe these foundings will provide some important analysis for printing flexible conductive circuits on textiles.

  5. A novel and simple method of printing flexible conductive circuits on PET fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zehong; Wang, Wei [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science & Technology, Ministry of Education (China); Jiang, Zhikang [Saintyear Holding Group Co., Ltd. (China); Yu, Dan, E-mail: vchtian@163.com [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science & Technology, Ministry of Education (China); Saintyear Holding Group Co., Ltd. (China)

    2017-02-28

    Highlights: • A simple preparation of nano-silver conductive ink was proposed. • Conductive pattern was printed on PET fabrics without heat sintering. • The surface resistivity of printed pattern is low to 0.197 Ω cm. - Abstract: Flexible conductive circuits on PET fabrics were fabricated by a simple approach. Firstly, well dispersed nano-silver colloids with average size of 87 nm were synthesized with poly (vinyl pyrrolidone). Then, by adding polyurethane and thickening agent into these colloids, Ag NP-based ink was produced and printed on PET fabrics by screen printing. Conductive patterns were achieved through the swelling process of polyurethane and the decrease of contact resistance between nano-silver particles when immersed in dichloromethane (DCM) and diallyldimethylammonium chloride (DMDAAC) mixed solution. After it was dried at 40 °C,the surface resistivity was about 0.197 Ω cm with width 1.9 mm, and thickness 20 μm. Moreover, the effects of different DCM contents on the conductivity and the film forming ability have been investigated. We believe these foundings will provide some important analysis for printing flexible conductive circuits on textiles.

  6. Microstructural and electrical properties of PVA/PVP polymer blend films doped with cupric sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Hemalatha, K.; Gowtham, G. K.; Somashekarappa, H., E-mail: drhssappa@gmail.com [Department of Physics, Yuvaraja’s College, University of Mysore, Mysore 570 005, Karnataka (India); Mahadevaiah,; Urs, G. Thejas; Somashekar, R. [Department of Studies in Material Sciences, University of Mysore, Mysore 570 006, Karnataka (India)

    2016-05-23

    A series of polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) polymer blends added with different concentrations of cupric sulphate (CuSO{sub 4}) were prepared by solution casting method and were subjected to X-ray diffraction (XRD) and Ac conductance measurements. An attempt has been made to study the changes in crystal imperfection parameters in PVA/PVP blend films with the increase in concentration of CuSO{sub 4}. Results show that decrease in micro crystalline parameter values is accompanied with increase in the amorphous content in the film which is the reason for film to have more flexibility, biodegradability and good ionic conductivity. AC conductance measurements in these films show that the conductivity increases as the concentration of CuSO{sub 4} increases. These films were suitable for electro chemical applications.

  7. NTP technical report on the toxicity studies of Cupric Sulfate (CAS No. 7758-99-8) Administered in Drinking Water and Feed to F344/N Rats and B6C3F1 Mice.

    Science.gov (United States)

    Hebert, Charles

    1993-07-01

    Cupric sulfate is an inorganic salt which is widely used in industry, agriculture, and veterinary medicine. Its applications include use as an algicide in potable waters and as a feed additive and therapeutic agent in swine, sheep, and cattle. Because copper salts are found in human water supplies, toxicity studies of cupric sulfate pentahydrate were conducted in male and female F344/N rats and B6C3F1 mice by the drinking water (2-week studies only) and dosed feed routes (2-week and 13-week studies). Animals were evaluated for hematology, clinical chemistry, urinalysis, reproductive toxicity, tissue metal accumulation, and histopathology. In the 2-week drinking water studies, groups of five rats and five mice per sex received cupric sulfate at concentrations of 300 to 30,000 ppm for 15 days. One female rat, one male mouse, and three female mice in the 3000 ppm groups and all rats and mice in the 10,000 and 30,000 ppm groups died before the end of the studies. The remaining mice and rats in the 3000 ppm groups gained little or lost weight. Water consumption in the three highest dose groups of both species was reduced by more than 65%. Clinical signs observed in these groups were typical of those seen in moribund animals and were attributed to dehydration. The only gross or microscopic change specifically related to cupric sulfate toxicity was an increase in the size and number of cytoplasmic protein droplets in the epithelium of the renal proximal convoluted tubule in male rats from the 300 and 1000-ppm groups. In the 2-week feed studies, groups of five rats and five mice per sex were fed diets containing 1000 to 16,000 ppm cupric sulfate. No chemical-related deaths occurred in any dose group. Compared to the controls, rats and mice in the two highest dose groups had reduced body weight gains which were attributed to decreased feed consumption. Hyperplasia with hyperkeratosis of the squamous epithelium on the limiting ridge of the forestomach was seen in rats and

  8. The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes.

    Science.gov (United States)

    Randviir, Edward P; Brownson, Dale A C; Metters, Jonathan P; Kadara, Rashid O; Banks, Craig E

    2014-03-14

    We report the fabrication, characterisation (SEM, Raman spectroscopy, XPS and ATR) and electrochemical implementation of novel screen-printed graphene electrodes. Electrochemical characterisation of the fabricated graphene electrodes is undertaken using an array of electroactive redox probes and biologically relevant analytes, namely: potassium ferrocyanide(II), hexaammine-ruthenium(III) chloride, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), β-nicotinamide adenine dinucleotide (NADH), L-ascorbic acid (AA), uric acid (UA) and dopamine hydrochloride (DA). The electroanalytical capabilities of the fabricated electrodes are also considered towards the sensing of AA and DA. The electrochemical and (electro)analytical performances of the fabricated screen-printed graphene electrodes are considered with respect to the relative surface morphologies and material compositions (elucidated via SEM, Raman, XPS and ATR spectroscopy), the density of electronic states (% global coverage of edge-plane like sites/defects) and the specific fabrication conditions utilised. Comparisons are made between two screen-printed graphene electrodes and alternative graphite based screen-printed electrodes. The graphene electrodes are fabricated utilising two different commercially prepared 'graphene' inks, which have long screen ink lifetimes (>3 hours), thus this is the first report of a true mass-reproducible screen-printable graphene ink. Through employment of appropriate controls/comparisons we are able to report a critical assessment of these screen-printed graphene electrodes. This work is of high importance and demonstrates a proof-of-concept approach to screen-printed graphene electrodes that are highly reproducible, paving the way for mass-producible graphene sensing platforms in the future.

  9. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats

    Directory of Open Access Journals (Sweden)

    Lee IC

    2016-06-01

    Full Text Available In-Chul Lee,1 Je-Won Ko,1 Sung-Hyeuk Park,1 Je-Oh Lim,1 In-Sik Shin,1 Changjong Moon,1 Sung-Hwan Kim,2 Jeong-Doo Heo,3 Jong-Choon Kim1 1College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, 2Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, 3Gyeongnam Department of Environment and Toxicology, Korea Institute of Toxicology, Gyeongnam, Republic of Korea Abstract: Despite widespread use and prospective biomedical applications of copper nanoparticles (Cu NPs, their biosafety issues and kinetics remain unclear. Thus, the aim of this study was to compare the detailed in vivo toxicity of Cu NPs and cupric ions (CuCl2; Cu ions after a single oral dose. We determined the physicochemical characteristics of Cu NPs, including morphology, hydrodynamic size, zeta potential, and dissolution in gastric (pH 1.5, vehicle (pH 6.5, and intestinal (pH 7.8 conditions. We also evaluated the kinetics of Cu following a single equivalent dose (500 mg/kg of Cu NPs and Cu ions. Cu NPs had highest dissolution (84.5% only in gastric conditions when compared with complete dissolution of Cu ions under various physiological milieus. Kinetic analysis revealed that highest Cu levels in blood and tested organs of Cu NP-treated rats were 15%–25% lower than that of Cu ions. Similar to the case of Cu ions, Cu levels in the tested organs (especially liver, kidney, and spleen of Cu NP-treated rats increased significantly when compared with the vehicle control. However, delay in reaching the highest level and biopersistence of Cu were observed in the blood and tested organs of Cu NP-treated rats compared with Cu ions. Extremely high levels of Cu in feces indicated that unabsorbed Cu NPs or absorbed Cu ions were predominantly eliminated through liver/feces. Cu NPs exerted apparent toxicological effects at higher dose levels compared with Cu ions and showed sex-dependent differences in mortality, biochemistry, and

  10. Carbon Nanoparticles decorated with cupric oxide Nanoparticles prepared by laser ablation in liquid as an antibacterial therapeutic agent

    Science.gov (United States)

    Khashan, Khawla S.; Jabir, Majid S.; Abdulameer, Farah A.

    2018-03-01

    Carbon nanoparticles (CNPs) decorated with cupric oxide nanoparticles (CuO NPs) were prepared by laser ablation in water, and their antibacterial activity was examined. X-ray diffraction measurements demonstrated the presence of carbon phases and different CuO phases, and results were confirmed by Fourier transform infrared analysis. Energy- Dispersive spectra showed the presence of C, O, and Cu in the final product. Transmission electron micrographs revealed that the CNPs were 10-80 nm in size and spherical; after being decorated with CuO NPs, particles became 5-50 nm in size and uniform in shape. The absorption spectrum of decorated Nanoparticles indicated the appearance of a new peak at 254-264 nm in addition to the fundamental peak at 228 nm. We then examined the antibacterial activity of the decorated CNPs for both gram-negative and -positive bacteria using the agar-well-diffusion method. The mode of action was determined using acridine orange-ethidium bromide staining to detect reactive oxygen species, and bacterial morphological change was studied by scanning electron microscopy. Results showed that CNPs decorated with 43% CuO NPs had the highest antibacterial activity for gram-positive bacteria. The CNPs acted on the cytoplasmic membrane and nucleic acid of bacteria, which led to a loss of cell-wall integrity, increased cell-wall permeability, and nucleic acid damage. The results offer a novel way to synthesis Carbon nanoparticles decorated with cupric oxide nanoparticles and could use them as novel antibacterial agent in future for pharmaceutical and biomedical applications.

  11. Printed environmentally friendly supercapacitors with ionic liquid electrolytes on paper

    Science.gov (United States)

    Pettersson, F.; Keskinen, J.; Remonen, T.; von Hertzen, L.; Jansson, E.; Tappura, K.; Zhang, Y.; Wilén, C.-E.; Österbacka, R.

    2014-12-01

    Environmentally friendly supercapacitors are fabricated using commercial grade aluminum coated paper as a substrate and symmetrical activated carbon electrodes as large area electrodes. Different choline chloride-based eutectic solvents are used as electrolyte. These are inexpensive, environmentally friendly and have a larger operating window compared to that of water electrolytes. As the entire device is printed and the materials used are inexpensive, both small- and large-area power sources can be fabricated to be used in cheap, disposable and recyclable devices. Supercapacitors with different eutectic solvents are measured using cyclic charge-discharge and impedance spectroscopy measurements and compared to one widely used and one "green" imidazolium ionic liquid; EMIM:TFSI and EcoEng 212™, respectively. A mixture of ethylene glycol and choline chloride, Glyceline™, show the highest capacitance and power densities of the electrolytes being tested, including the imidazolium alternatives.

  12. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology.

    Science.gov (United States)

    Xu, Tao; Zhao, Weixin; Zhu, Jian-Ming; Albanna, Mohammad Z; Yoo, James J; Atala, Anthony

    2013-01-01

    This study was designed to develop a versatile method for fabricating complex and heterogeneous three-dimensional (3D) tissue constructs using simultaneous ink-jetting of multiple cell types. Human amniotic fluid-derived stem cells (hAFSCs), canine smooth muscle cells (dSMCs), and bovine aortic endothelial cells (bECs), were separately mixed with ionic cross-linker calcium chloride (CaCl(2)), loaded into separate ink cartridges and printed using a modified thermal inkjet printer. The three cell types were delivered layer-by-layer to pre-determined locations in a sodium alginate-collagen composite located in a chamber under the printer. The reaction between CaCl(2) and sodium alginate resulted in a rapid formation of a solid composite gel and the printed cells were anchored in designated areas within the gel. The printing process was repeated for several cycles leading to a complex 3D multi-cell hybrid construct. The biological functions of the 3D printed constructs were evaluated in vitro and in vivo. Each of the printed cell types maintained their viability and normal proliferation rates, phenotypic expression, and physiological functions within the heterogeneous constructs. The bioprinted constructs were able to survive and mature into functional tissues with adequate vascularization in vivo. These findings demonstrate the feasibility of fabricating complex heterogeneous tissue constructs containing multiple cell types using inkjet printing technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. 40 CFR Appendix A to Part 414 - Non-Complexed Metal-Bearing Waste Streams and Cyanide-Bearing Waste Streams

    Science.gov (United States)

    2010-07-01

    ... Mercaptan/Ethanol + Hydrogen sulfide Methanol/H.P. Synthesis from natural gas via synthetic gas Oxo Alcohols... + Ammonia n-Propyl alcohol/Hydrogenation of propionaldehyde, Oxo process SAN resin/Suspension polymerization... methanol Acetaldehyde/Oxidation of ethylene with cupric chloride catalyst Acetic acid/Catalytic oxidation...

  14. Influence of different concentration of heavy metals on the seed ...

    African Journals Online (AJOL)

    use

    0.001, 0.01, 0.1 and 1%) of lead acetate, cupric carbonate and ferric chloride were ... nutrients and seem to be more or less toxic to plants and ... Some heavy metals at low doses are essential ..... The toxic action and interactions of copper.

  15. Packaging Printing Today

    OpenAIRE

    Stanislav Bolanča; Igor Majnarić; Kristijan Golubović

    2015-01-01

    Printing packaging covers today about 50% of all the printing products. Among the printing products there are printing on labels, printing on flexible packaging, printing on folding boxes, printing on the boxes of corrugated board, printing on glass packaging, synthetic and metal ones. The mentioned packaging are printed in flexo printing technique, offset printing technique, intaglio halftone process, silk – screen printing, ink ball printing, digital printing and hybrid printing process. T...

  16. 46 CFR 151.50-34 - Vinyl chloride (vinyl chloride monomer).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride (vinyl chloride monomer). 151.50-34... chloride (vinyl chloride monomer). (a) Copper, aluminum, magnesium, mercury, silver, and their alloys shall... equipment that may come in contact with vinyl chloride liquid or vapor. (b) Valves, flanges, and pipe...

  17. Polyvinyl chloride resin

    International Nuclear Information System (INIS)

    Kim, Hong Jae

    1976-06-01

    This book contains polyvinyl chloride resin industry with present condition such as plastic industry and polyvinyl chloride in the world and Japan, manufacture of polyvinyl chloride resin ; suspension polymerization and solution polymerization, extruding, injection process, hollow molding vinyl record, vacuum forming, polymer powders process, vinyl chloride varnish, vinyl chloride latex, safety and construction on vinyl chloride. Each chapter has descriptions on of process and kinds of polyvinyl chloride resin.

  18. Print Quality of Ink Jet Printed PVC Foils

    Directory of Open Access Journals (Sweden)

    Nemanja Kašiković

    2015-09-01

    Full Text Available Digital printing technique is used for a wide variety of substrates, one of which are PVC foils. Samples used in this research were printed by digital ink jet printing technique using Mimaki JV22 printing machine and J-Eco Subly Nano inks. As printing substrates, two different types of materials were used (ORACAL 640 - Print Vinyl and LG Hausys LP2712. A test card consisting of fields of CMYK colours was created and printed, varying the number of ink layers applied. Samples were exposed to light after the printing process. Spectrophotometric measurements were conducted before and after the light treatment. Based on spectrophotometricaly obtained data, colour differences ΔE2000 were calculated. Results showed that increasing number of layers, as well as the right choice of substrates, can improve the behaviour of printed product during exploitation.

  19. Packaging Printing Today

    Directory of Open Access Journals (Sweden)

    Stanislav Bolanča

    2015-12-01

    Full Text Available Printing packaging covers today about 50% of all the printing products. Among the printing products there are printing on labels, printing on flexible packaging, printing on folding boxes, printing on the boxes of corrugated board, printing on glass packaging, synthetic and metal ones. The mentioned packaging are printed in flexo printing technique, offset printing technique, intaglio halftone process, silk – screen printing, ink ball printing, digital printing and hybrid printing process. The possibilities of particular printing techniques for optimal production of the determined packaging were studied in the paper. The problem was viewed from the technological and economical aspect. The possible printing quality and the time necessary for the printing realization were taken as key parameters. An important segment of the production and the way of life is alocation value and it had also found its place in this paper. The events in the field of packaging printing in the whole world were analyzed. The trends of technique developments and the printing technology for packaging printing in near future were also discussed.

  20. Sensors for Highly Toxic Gases: Methylamine and Hydrogen Chloride Detection at Low Concentrations in an Ionic Liquid on Pt Screen Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Krishnan Murugappan

    2015-10-01

    Full Text Available Commercially available Pt screen printed electrodes (SPEs have been employed as possible electrode materials for methylamine (MA and hydrogen chloride (HCl gas detection. The room temperature ionic liquid (RTIL 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonylimide ([C2mim][NTf2] was used as a solvent and the electrochemical behaviour of both gases was first examined using cyclic voltammetry. The reaction mechanism appears to be the same on Pt SPEs as on Pt microelectrodes. Furthermore, the analytical utility was studied to understand the behaviour of these highly toxic gases at low concentrations on SPEs, with calibration graphs obtained from 10 to 80 ppm. Three different electrochemical techniques were employed: linear sweep voltammetry (LSV, differential pulse voltammetry (DPV and square wave voltammetry (SWV, with no significant differences in the limits of detection (LODs between the techniques (LODs were between 1.4 to 3.6 ppm for all three techniques for both gases. The LODs achieved on Pt SPEs were lower than the current Occupational Safety and Health Administration Permissible Exposure Limit (OSHA PEL limits of the two gases (5 ppm for HCl and 10 ppm for MA, suggesting that Pt SPEs can successfully be combined with RTILs to be used as cheap alternatives for amperometric gas sensing in applications where these toxic gases may be released.

  1. A novel reutilization method for waste printed circuit boards as flame retardant and smoke suppressant for poly (vinyl chloride)

    Energy Technology Data Exchange (ETDEWEB)

    Xiu, Fu-Rong, E-mail: xiu_chem@hotmail.com [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108 (China); Weng, Huiwei; Qi, Yingying; Yu, Gending; Zhang, Zhigang [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108 (China); Zhang, Fu-Shen [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2016-09-05

    Highlights: • We report a novel electronic waste-based flame retardant for PVC. • The SCWO-treated PCBs significantly improves the flame retardancy of PVC. • The flame retardant mechanism of SCWO-treated PCBs was studied. • Appropriate amount flame retardant does not degrade the mechanical property of PVC. - Abstract: In this study, a novel reutilization method for waste printed circuit boards (PCBs) as flame retardant and smoke suppressant for poly (vinyl chloride) (PVC) was successfully testified. A supercritical water oxidation (SCWO) process was applied to treat waste PCBs before they could be used as flame retardants of PVC. The results indicated that SCWO conditions had a significant effect on the flame retarding and smoke suppressing properties of waste PCBs for PVC. Cu{sub 2}O, CuO, and SnO{sub 2} were the main active ingredients in waste PCBs-derived flame retardants. A conversion of Cu elements (Cu{sup 0} → Cu{sup +} → Cu{sup 2+}) during SCWO process with the increase of reaction temperature was found to be the key influence factor for the flame retarding properties of SCWO-treated PCBs. The experiment results also showed that there was a synergistic effect of flame retardancy between Cu{sup +} and Cu{sup 2+}. After the optimized SCWO treatment, SCWO-treated PCBs significantly improved the flame retardancy and smoke suppression of PVC. Limiting oxygen index (LOI) and char yield (CY) increased with increasing SCWO-treated PCBs content in PVC, while smoke density rating (SDR) and maximum smoke density (MSD) decreased markedly. The mechanical properties of PVC samples were influenced in different degree by adding different content SCWO-treated PCBs.

  2. A novel reutilization method for waste printed circuit boards as flame retardant and smoke suppressant for poly (vinyl chloride)

    International Nuclear Information System (INIS)

    Xiu, Fu-Rong; Weng, Huiwei; Qi, Yingying; Yu, Gending; Zhang, Zhigang; Zhang, Fu-Shen

    2016-01-01

    Highlights: • We report a novel electronic waste-based flame retardant for PVC. • The SCWO-treated PCBs significantly improves the flame retardancy of PVC. • The flame retardant mechanism of SCWO-treated PCBs was studied. • Appropriate amount flame retardant does not degrade the mechanical property of PVC. - Abstract: In this study, a novel reutilization method for waste printed circuit boards (PCBs) as flame retardant and smoke suppressant for poly (vinyl chloride) (PVC) was successfully testified. A supercritical water oxidation (SCWO) process was applied to treat waste PCBs before they could be used as flame retardants of PVC. The results indicated that SCWO conditions had a significant effect on the flame retarding and smoke suppressing properties of waste PCBs for PVC. Cu_2O, CuO, and SnO_2 were the main active ingredients in waste PCBs-derived flame retardants. A conversion of Cu elements (Cu"0 → Cu"+ → Cu"2"+) during SCWO process with the increase of reaction temperature was found to be the key influence factor for the flame retarding properties of SCWO-treated PCBs. The experiment results also showed that there was a synergistic effect of flame retardancy between Cu"+ and Cu"2"+. After the optimized SCWO treatment, SCWO-treated PCBs significantly improved the flame retardancy and smoke suppression of PVC. Limiting oxygen index (LOI) and char yield (CY) increased with increasing SCWO-treated PCBs content in PVC, while smoke density rating (SDR) and maximum smoke density (MSD) decreased markedly. The mechanical properties of PVC samples were influenced in different degree by adding different content SCWO-treated PCBs.

  3. STUDY OF THE FUNDAMENTALS OF MERCURY SPECIATION IN COAL-FIRED BOILERS UNDER SIMULATED POST-COMBUSTION CONDITIONS

    Science.gov (United States)

    The report discusses a continuation of the study on mercury speciation initiated in the fiscal year 1997 (FY97). The previous study found that cupric oxide (CuO) and ferric oxide (Fe2O3) in the presence of hydrogen chloride (HCl) promote elemental mercury oxidation in simulated f...

  4. The study of intermolecular interactions in NLO crystal melaminium chloride hemihydrate using DFT simulation and Hirshfeld surface analysis

    Science.gov (United States)

    Sangeetha, K.; Kumar, V. R. Suresh; Marchewka, M. K.; Binoy, J.

    2018-05-01

    Since, the intermolecular interactions play a crucial role in the formation of crystalline network, its analysis throws light on structure dependent crystalline properties. In the present study, DFT based vibrational spectral investigation has been performed in the stretching region (3500 cm-1 - 2800 cm-1) of IR and Raman spectra of melaminium chloride hemihydrates. The intermolecular interaction has been investigated by analyzing the half width of the OH and NH stretching profile of the deconvoluted spectra. Correlation of vibrational spectra with Hirshfeld surface analysis and finger print plot has been contemplated and molecular docking studies has been performed on melaminium chloride hemihydrate to assess its role in the drug transport mechanism and toxicity to human body.

  5. Synthesis and characterization of zinc oxide thin films prepared by ...

    African Journals Online (AJOL)

    Zinc oxide thin films were prepared with ammonia/ammonium chloride buffer as the reaction moderating agent in the chemical bath deposition technique. An observable color change during the reaction due to variations in the reactants concentration indicated the existence of the cupric (CuO) and cuprous (Cu2O) oxides ...

  6. Cerium(terbium, erbium)chloride-choline chloride aqueous systems

    International Nuclear Information System (INIS)

    Gajfutdinova, R.K.; Zhuravlev, E.F.; Bikbaeva, G.G.; Domrachev, V.N.; Vanskova, G.I.

    1985-01-01

    To clarify the effect of rare earth nature on mutual solubility of rare earth salts and amines the solubility of solid phases in the systems, consisting of choline chloride, water and cerium, terbium, erbium chlorides, has been studied. It is established, that solubility isotherms of all the systems, testify to the formation of new solid phases of the composition: Ce(Tb, Er)xCl 3 x2C 5 H 14 ONClx3H 2 O. Individuality of new solid phases is proved by DTA method, the composition is confirmed by chemical analysis and data of PMR spectra, for choline chloride and its complexes with rare earth chlorides of the given composition PMR and IR spectra are studied

  7. Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat.

    Science.gov (United States)

    Cinti, Stefano; Fiore, Luca; Massoud, Renato; Cortese, Claudio; Moscone, Danila; Palleschi, Giuseppe; Arduini, Fabiana

    2018-03-01

    The recent goal of sustainability in analytical chemistry has boosted the development of eco-designed analytical tools to deliver fast and cost-effective analysis with low economic and environmental impact. Due to the recent focus in sustainability, we report the use of low-cost filter paper as a sustainable material to print silver electrodes and to load reagents for a reagent-free electrochemical detection of chloride in biological samples, namely serum and sweat. The electrochemical detection of chloride ions was carried out by exploiting the reaction of the analyte (i.e. chloride) with the silver working electrode. During the oxidation wave in cyclic voltammetry the silver ions are produced, thus they react with chloride ions to form AgCl, while in the reduction wave, the following reaction occurs: AgCl + e - -->Ag + Cl - . These reactions at the electrode surface resulted in anodic/cathodic peaks directly proportional to the chloride ions in solution. Chloride ions were detected with the addition of only 10μL of the sample on the paper-based electrochemical cell, obtaining linearity up to 200mM with a detection limit equal to 1mM and relative standard deviation lower than 10%. The accuracy of the sensor was evaluated in serum and sweat samples, with percentage recoveries between 93 ± 10 and 108 ± 8%. Moreover, the results achieved with the paper-based device were positively compared with those obtained by using the gold standard method (Ion Selective Electrode) adopted in routine clinical analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Digital Textile Printing

    OpenAIRE

    Moltchanova, Julia

    2011-01-01

    Rapidly evolving technology of digital printing opens new opportunities on many markets. One of them is the printed fabric market where printing companies as well as clients benefit from new printing methods. This thesis focuses on the digital textile printing technology and its implementation for fabric-on-demand printing service in Finland. The purpose of this project was to study the technology behind digital textile printing, areas of application of this technology, the requirements ...

  9. A laser printing based approach for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.; Hu, M.; Guo, Q.; Zhang, W.; Yang, J., E-mail: jyang@eng.uwo.ca [Department of Mechanical and Materials Engineering, Western University, London N6A 3K7 (Canada); Liu, Y.; Lau, W. [Chengdu Green Energy and Green Manufacturing Technology R& D Center, 355 Tengfei Road, 620107 Chengdu (China); Wang, X. [Department of Mechanical and Materials Engineering, Western University, London N6A 3K7 (Canada); Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-03-07

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexible electronics manufacturing.

  10. A laser printing based approach for printed electronics

    International Nuclear Information System (INIS)

    Zhang, T.; Hu, M.; Guo, Q.; Zhang, W.; Yang, J.; Liu, Y.; Lau, W.; Wang, X.

    2016-01-01

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexible electronics manufacturing.

  11. The best printing methods to print satellite images

    Directory of Open Access Journals (Sweden)

    G.A. Yousif

    2011-12-01

    In this paper different printing systems were used to print an image of SPOT-4 satellite, caver part of Sharm Elshekh area, Sinai, Egypt, on the same type of paper as much as possible, especially in the photography. This step is followed by measuring the experimental data, and analyzed colors to determine the best printing systems for satellite image printing data. The laser system is the more printing system where produce a wider range of color and highest densities of ink and access much color detail. Followed by the offset system which it recorded the best dot gain. Moreover, the study shows that it can use the advantages of each method according to the satellite image color and quantity to be produced.

  12. Effect of size of copper nanoparticles on its catalytic behaviour in ...

    Indian Academy of Sciences (India)

    WINTEC

    reduction of cupric salt solution using sodium borohydride in the presence of capping agent. In a typical set, 10 ml ... ammonium chloride followed by 2⋅5 ml of dichloro- methane which separated two layers with the .... nation and the formation of the aryl–aryl carbon bond. 4. Conclusions. In this paper, we have described a ...

  13. Chloride ingress prediction

    DEFF Research Database (Denmark)

    Frederiksen, Jens Mejer; Geiker, Mette Rica

    2008-01-01

    Prediction of chloride ingress into concrete is an important part of durability design of reinforced concrete structures exposed to chloride containing environment. This paper presents experimentally based design parameters for Portland cement concretes with and without silica fume and fly ash...... in marine atmospheric and submersed South Scandinavian environment. The design parameters are based on sequential measurements of 86 chloride profiles taken over ten years from 13 different types of concrete. The design parameters provide the input for an analytical model for chloride profiles as function...... of depth and time, when both the surface chloride concentration and the diffusion coefficient are allowed to vary in time. The model is presented in a companion paper....

  14. One-Bath Pretreatment for Enhanced Color Yield of Ink-Jet Prints Using Reactive Inks

    Directory of Open Access Journals (Sweden)

    Wei Ma

    2017-11-01

    Full Text Available In order to facilely increase the color yield of ink-jet prints using reactive inks, one-bath pretreatment of cotton fabrics with pretreatment formulation containing sodium alginate, glycidyltrimethylammonium chloride (GTA, sodium hydroxide, and urea is designed for realizing sizing and cationization at the same time. The pretreatment conditions, including the concentrations of GTA and alkali, baking temperature, and time are optimized based on the result of thecolor yield on cationic cotton for magenta ink. The mechanism for color yield enhancement on GTA-modified fabrics is discussed and the stability of GTA in the print paste is investigated. Scanning electron microscopey, tear strength, and thermogravimetric analysis of the modified and unmodified cotton are studied and compared. Using the optimal pretreatment conditions, color yield on the cationic cotton for magenta, cyan, yellow, and black reactive inks are increased by 128.7%, 142.5%, 71.0%, and 38.1%, respectively, compared with the corresponding color yield on the uncationized cotton. Much less wastewater is produced using this one-bath pretreatment method. Colorfastness of the reactive dyes on the modified and unmodified cotton is compared and boundary clarity between different colors is evaluated by ink-jet printing of colorful patterns.

  15. Digital printing

    Science.gov (United States)

    Sobotka, Werner K.

    1997-02-01

    Digital printing is described as a tool to replace conventional printing machines completely. Still this goal was not reached until now with any of the digital printing technologies to be described in the paper. Productivity and costs are still the main parameters and are not really solved until now. Quality in digital printing is no problem anymore. Definition of digital printing is to transfer digital datas directly on the paper surface. This step can be carried out directly or with the use of an intermediate image carrier. Keywords in digital printing are: computer- to-press; erasable image carrier; image carrier with memory. Digital printing is also the logical development of the new digital area as it is pointed out in Nicholas Negropotes book 'Being Digital' and also the answer to networking and Internet technologies. Creating images text and color in one country and publishing the datas in another country or continent is the main advantage. Printing on demand another big advantage and last but not least personalization the last big advantage. Costs and being able to coop with this new world of prepress technology is the biggest disadvantage. Therefore the very optimistic growth rates for the next few years are really nonexistent. The development of complete new markets is too slow and the replacing of old markets is too small.

  16. Recent trends in print portals and Web2Print applications

    Science.gov (United States)

    Tuijn, Chris

    2009-01-01

    For quite some time now, the printing business has been under heavy pressure because of overcapacity, dropping prices and the delocalization of the production to low income countries. To survive in this competitive world, printers have to invest in tools that, on one hand, reduce the production costs and, on the other hand, create additional value for their customers (print buyers). The creation of customer portals on top of prepress production systems allowing print buyers to upload their content, approve the uploaded pages based on soft proofs (rendered by the underlying production system) and further follow-up the generation of the printed material, has been illustrative in this respect. These developments resulted in both automation for the printer and added value for the print buyer. Many traditional customer portals assume that the printed products have been identified before they are presented to the print buyer in the portal environment. The products are, in this case, typically entered by the printing organization in a so-called MISi system after the official purchase order has been received from the print buyer. Afterwards, the MIS system then submits the product to the customer portal. Some portals, however, also support the initiation of printed products by the print buyer directly. This workflow creates additional flexibility but also makes things much more complex. We here have to distinguish between special products that are defined ad-hoc by the print buyer and standardized products that are typically selected out of catalogs. Special products are most of the time defined once and the level of detail required in terms of production parameters is quite high. Systems that support such products typically have a built-in estimation module, or, at least, a direct connection to an MIS system that calculates the prices and adds a specific mark-up to calculate a quote. Often, the markup is added by an account manager on a customer by customer basis; in this

  17. Chloride Test

    Science.gov (United States)

    ... metabolic acidosis ) or when a person hyperventilates (causing respiratory alkalosis ). A decreased level of blood chloride (called hypochloremia) ... disease , emphysema or other chronic lung diseases (causing respiratory ... metabolic alkalosis). An increased level of urine chloride can indicate ...

  18. Internet printing

    Science.gov (United States)

    Rahgozar, M. Armon; Hastings, Tom; McCue, Daniel L.

    1997-04-01

    The Internet is rapidly changing the traditional means of creation, distribution and retrieval of information. Today, information publishers leverage the capabilities provided by Internet technologies to rapidly communicate information to a much wider audience in unique customized ways. As a result, the volume of published content has been astronomically increasing. This, in addition to the ease of distribution afforded by the Internet has resulted in more and more documents being printed. This paper introduces several axes along which Internet printing may be examined and addresses some of the technological challenges that lay ahead. Some of these axes include: (1) submission--the use of the Internet protocols for selecting printers and submitting documents for print, (2) administration--the management and monitoring of printing engines and other print resources via Web pages, and (3) formats--printing document formats whose spectrum now includes HTML documents with simple text, layout-enhanced documents with Style Sheets, documents that contain audio, graphics and other active objects as well as the existing desktop and PDL formats. The format axis of the Internet Printing becomes even more exciting when one considers that the Web documents are inherently compound and the traversal into the various pieces may uncover various formats. The paper also examines some imaging specific issues that are paramount to Internet Printing. These include formats and structures for representing raster documents and images, compression, fonts rendering and color spaces.

  19. Digital Inkjet Textile Printing

    OpenAIRE

    Wang, Meichun

    2017-01-01

    Digital inkjet textile printing is an emerging technology developed with the rise of the digital world. It offers a possibility to print high-resolution images with unlimited color selection on fabrics. Digital inkjet printing brings a revolutionary chance for the textile printing industry. The history of textile printing shows the law how new technology replaces the traditional way of printing. This indicates the future of digital inkjet textile printing is relatively positive. Differen...

  20. Printed photodetectors

    International Nuclear Information System (INIS)

    Pace, Giuseppina; Grimoldi, Andrea; Sampietro, Marco; Natali, Dario; Caironi, Mario

    2015-01-01

    Photodetectors convert light pulses into electrical signals and are fundamental building blocks for any opto-electronic system adopting light as a probe or information carrier. They have widespread technological applications, from telecommunications to sensors in industrial, medical and civil environments. Further opportunities are plastic short-range communications systems, interactive large-area surfaces and light-weight, flexible, digital imagers. These applications would greatly benefit from the cost-effective fabrication processes enabled by printing technology. While organic semiconductors are the most investigated materials for printed photodetectors, and are the main focus of the present review, there are notable examples of other inorganic or hybrid printable semiconductors for opto-electronic systems, such as quantum-dots and nanowires. Here we propose an overview on printed photodetectors, including three-terminal phototransistors. We first give a brief account of the working mechanism of these light sensitive devices, and then we review the recent progress achieved with scalable printing techniques such as screen-printing, inkjet and other non-contact technologies in the development of all-printed or hybrid systems. (paper)

  1. Printed photodetectors

    Science.gov (United States)

    Pace, Giuseppina; Grimoldi, Andrea; Sampietro, Marco; Natali, Dario; Caironi, Mario

    2015-10-01

    Photodetectors convert light pulses into electrical signals and are fundamental building blocks for any opto-electronic system adopting light as a probe or information carrier. They have widespread technological applications, from telecommunications to sensors in industrial, medical and civil environments. Further opportunities are plastic short-range communications systems, interactive large-area surfaces and light-weight, flexible, digital imagers. These applications would greatly benefit from the cost-effective fabrication processes enabled by printing technology. While organic semiconductors are the most investigated materials for printed photodetectors, and are the main focus of the present review, there are notable examples of other inorganic or hybrid printable semiconductors for opto-electronic systems, such as quantum-dots and nanowires. Here we propose an overview on printed photodetectors, including three-terminal phototransistors. We first give a brief account of the working mechanism of these light sensitive devices, and then we review the recent progress achieved with scalable printing techniques such as screen-printing, inkjet and other non-contact technologies in the development of all-printed or hybrid systems.

  2. 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution.

    Science.gov (United States)

    Guo, Ting; Holzberg, Timothy R; Lim, Casey G; Gao, Feng; Gargava, Ankit; Trachtenberg, Jordan E; Mikos, Antonios G; Fisher, John P

    2017-04-12

    In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development and computer-aided scaffold design, current quantitative analyses do not correlate material properties, printing parameters, and printing outcomes to a great extent. A model that correlates these properties has tremendous potential to standardize 3D printing for tissue engineering and biomaterial science. In this study, we printed poly(lactic-co-glycolic acid) (PLGA) utilizing a direct melt extrusion technique without additional ingredients. We investigated PLGA with various lactic acid:glycolic acid (LA:GA) molecular weight ratios and end caps to demonstrate the dependence of the extrusion process on the polymer composition. Micro-computed tomography was then used to evaluate printed scaffolds containing different LA:GA ratios, composed of different fiber patterns, and processed under different printing conditions. We built a statistical model to reveal the correlation and predominant factors that determine printing precision. Our model showed a strong linear relationship between the actual and predicted precision under different combinations of printing conditions and material compositions. This quantitative examination establishes a significant foreground to 3D print biomaterials following a systematic fabrication procedure. Additionally, our proposed statistical models can be applied to couple specific biomaterials and 3D printing applications for patient implants with particular requirements.

  3. 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution

    Science.gov (United States)

    Guo, Ting; Holzberg, Timothy R; Lim, Casey G; Gao, Feng; Gargava, Ankit; Trachtenberg, Jordan E; Mikos, Antonios G; Fisher, John P

    2018-01-01

    In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development and computer-aided scaffold design, current quantitative analyses do not correlate material properties, printing parameters, and printing outcomes to a great extent. A model that correlates these properties has tremendous potential to standardize 3D printing for tissue engineering and biomaterial science. In this study, we printed poly(lactic-co-glycolic acid) (PLGA) utilizing a direct melt extrusion technique without additional ingredients. We investigated PLGA with various lactic acid: glycolic acid (LA:GA) molecular weight ratios and end caps to demonstrate the dependence of the extrusion process on the polymer composition. Micro-computed tomography was then used to evaluate printed scaffolds containing different LA:GA ratios, composed of different fiber patterns, and processed under different printing conditions. We built a statistical model to reveal the correlation and predominant factors that determine printing precision. Our model showed a strong linear relationship between the actual and predicted precision under different combinations of printing conditions and material compositions. This quantitative examination establishes a significant foreground to 3D print biomaterials following a systematic fabrication procedure. Additionally, our proposed statistical models can be applied to couple specific biomaterials and 3D printing applications for patient implants with particular requirements. PMID:28244880

  4. 40 CFR 61.65 - Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants.

    Science.gov (United States)

    2010-07-01

    ... dichloride, vinyl chloride and polyvinyl chloride plants. 61.65 Section 61.65 Protection of Environment... AIR POLLUTANTS National Emission Standard for Vinyl Chloride § 61.65 Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants. An owner or operator of an ethylene dichloride...

  5. The pH dependence of silicon-iron interaction in rats.

    Science.gov (United States)

    Jia, X; Emerick, R J; Kayongo-Male, H

    1997-01-01

    A 2 x 2 x 3 factorial experiment was conducted to study the pH dependence of a silicon-iron interaction in vivo. The dietary treatments used in the factorial design were the following (mg/kg of diet): silicon, 0 and 500; iron, 35 and 187; acid-base, ammonium chloride as 0.5% of total diet (acidic), sodium bicarbonate as 1.0% of total diet (basic), or no supplementation of acid or base (control). The supplementation of 500 mg silicon/kg of diet increased plasma-iron concentration in rats fed the acidic or control diets, but not in rats fed the basic diet. A high dietary-iron level suppressed copper absorption and utilization and subsequently imposed a negative effect on its own utilization. An increase in the plasma total-cholesterol concentration caused by high dietary-iron level was likely a consequence of the antagonistic effect of iron on copper absorption and utilization. The use of cupric sulfate pentahydrate as the dietary-copper source in this study resulted in plasma copper concentrations that were approximately twice those obtained in a related study using cupric carbonate. Also, a 42% coefficient of variation (C.V.) for plasma-copper concentrations of rats fed cupric sulfate in this study was greatly reduced from the C.V. = 108% previously associated with the dietary cupric carbonate.

  6. Chloride flux in phagocytes.

    Science.gov (United States)

    Wang, Guoshun

    2016-09-01

    Phagocytes, such as neutrophils and macrophages, engulf microbes into phagosomes and launch chemical attacks to kill and degrade them. Such a critical innate immune function necessitates ion participation. Chloride, the most abundant anion in the human body, is an indispensable constituent of the myeloperoxidase (MPO)-H2 O2 -halide system that produces the potent microbicide hypochlorous acid (HOCl). It also serves as a balancing ion to set membrane potentials, optimize cytosolic and phagosomal pH, and regulate phagosomal enzymatic activities. Deficient supply of this anion to or defective attainment of this anion by phagocytes is linked to innate immune defects. However, how phagocytes acquire chloride from their residing environment especially when they are deployed to epithelium-lined lumens, and how chloride is intracellularly transported to phagosomes remain largely unknown. This review article will provide an overview of chloride protein carriers, potential mechanisms for phagocytic chloride preservation and acquisition, intracellular chloride supply to phagosomes for oxidant production, and methods to measure chloride levels in phagocytes and their phagosomes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Activation of persulfate/copper by hydroxylamine via accelerating the cupric/cuprous redox couple.

    Science.gov (United States)

    Zhou, Peng; Zhang, Jing; Liang, Juan; Zhang, Yongli; Liu, Ya; Liu, Bei

    2016-01-01

    Cuprous copper [Cu(I)] reacts with sodium persulfate (PDS) to generate sulfate radical SO4(-)•, but it has been seldom investigated owing to its instability and difficulty in dissolving it. This study proposes a new method to regenerate Cu(I) from cupric copper [Cu(II)] by addition of hydroxylamine (HA) to induce the continuous production of radicals through active PDS, and investigates the resulting enhanced methyl orange (MO) degradation efficiency and mechanism in the new system. HA accelerated the degradation of MO markedly in the pH range from 6.0 to 8.0 in the HA/Cu(II)/PDS process. Both SO4(-)• and hydroxyl radicals (•OH) were considered as the primary reactive radicals in the process. The MO degradation in the HA/Cu(II)/PDS process can be divided into three stages: the fast stage, the transitory stage, and the low stage. MO degradation was enhanced with increased dosage of PDS. Although high dosage of HA could accelerate the transformation of the Cu(II)/Cu(I) cycle to produce more reactive radicals, excess HA can quench the reactive radicals. This study indicates that through a copper-redox cycling mechanism by HA, the production of SO4(-)• and •OH can be strongly enhanced, and the effective pH range can be expanded to neutral conditions.

  8. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar

    Directory of Open Access Journals (Sweden)

    Gai-Fei Peng

    2014-04-01

    Full Text Available The influence of a chloride-ion adsorption agent (Cl agent in short, composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel’s salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO2− in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel’s salt. More research is needed to confirm the mechanisms.

  9. Printing Insecurity? The Security Implications of 3D-Printing of Weapons.

    Science.gov (United States)

    Walther, Gerald

    2015-12-01

    In 2013, the first gun printed out of plastic by a 3D-printer was successfully fired in the U.S. This event caused a major media hype about the dangers of being able to print a gun. Law enforcement agencies worldwide were concerned about this development and the potentially huge security implications of these functional plastic guns. As a result, politicians called for a ban of these weapons and a control of 3D-printing technology. This paper reviews the security implications of 3D-printing technology and 3D guns. It argues that current arms control and transfer policies are adequate to cover 3D-printed guns as well. However, while this analysis may hold up currently, progress in printing technology needs to be monitored to deal with future dangers pre-emptively.

  10. Chloride test - blood

    Science.gov (United States)

    Serum chloride test ... A greater-than-normal level of chloride is called hyperchloremia. It may be due to: Carbonic anhydrase inhibitors (used to treat glaucoma) Diarrhea Metabolic acidosis Respiratory alkalosis (compensated) Renal ...

  11. Chloride in diet

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002417.htm Chloride in diet To use the sharing features on this page, please enable JavaScript. Chloride is found in many chemicals and other substances ...

  12. Mercuric chloride poisoning

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002474.htm Mercuric chloride poisoning To use the sharing features on this page, please enable JavaScript. Mercuric chloride is a very poisonous form of mercury. It ...

  13. Chloride removal from vitrification offgas

    Energy Technology Data Exchange (ETDEWEB)

    Slaathaug, E.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-06-01

    This study identified and investigated techniques of selectively purging chlorides from the low-level waste (LLW) vitrification process with the purge stream acceptable for burial on the Hanford Site. Chlorides will be present in high concentration in several individual feeds to the LLW Vitrification Plant. The chlorides are highly volatile in combustion type melters and are readily absorbed by wet scrubbing of the melter offgas. The Tank Waste Remediation System (TWRS) process flow sheets show that the resulting chloride rich scrub solution is recycled back to the melter. The chlorides must be purged from the recycle loop to prevent the buildup of excessively high chloride concentrations.

  14. Chloride removal from vitrification offgas

    International Nuclear Information System (INIS)

    Slaathaug, E.J.

    1995-01-01

    This study identified and investigated techniques of selectively purging chlorides from the low-level waste (LLW) vitrification process with the purge stream acceptable for burial on the Hanford Site. Chlorides will be present in high concentration in several individual feeds to the LLW Vitrification Plant. The chlorides are highly volatile in combustion type melters and are readily absorbed by wet scrubbing of the melter offgas. The Tank Waste Remediation System (TWRS) process flow sheets show that the resulting chloride rich scrub solution is recycled back to the melter. The chlorides must be purged from the recycle loop to prevent the buildup of excessively high chloride concentrations

  15. Amine and Titanium (IV Chloride, Boron (III Chloride or Zirconium (IV Chloride-Promoted Baylis-Hillman Reactions

    Directory of Open Access Journals (Sweden)

    Shi-Cong Cui

    2001-10-01

    Full Text Available The Baylis-Hillman reactions of various aryl aldehydes with methyl vinyl ketone at temperatures below -20oC using Lewis acids such as titanium (IV chloride, boron (III chloride or zirconium (IV chloride in the presence of a catalytic amount of selected amines used as a Lewis bases afford the chlorinated compounds 1 as the major product in very high yields. Acrylonitrile can also undergo the same reaction to give the corresponding chlorinated product in moderate yield. A plausible reaction mechanism is proposed. However, if the reaction was carried out at room temperature (ca. 20oC, then the Z-configuration of the elimination product 3, derived from 1, was formed as the major product.

  16. Chloride Transport in Heterogeneous Formation

    Science.gov (United States)

    Mukherjee, A.; Holt, R. M.

    2017-12-01

    The chloride mass balance (CMB) is a commonly-used method for estimating groundwater recharge. Observations of the vertical distribution of pore-water chloride are related to the groundwater infiltration rates (i.e. recharge rates). In CMB method, the chloride distribution is attributed mainly to the assumption of one dimensional piston flow. In many places, however, the vertical distribution of chloride will be influenced by heterogeneity, leading to horizontal movement of infiltrating waters. The impact of heterogeneity will be particularly important when recharge is locally focused. When recharge is focused in an area, horizontal movement of chloride-bearing waters, coupled with upward movement driven by evapotranspiration, may lead to chloride bulges that could be misinterpreted if the CMB method is used to estimate recharge. We numerically simulate chloride transport and evaluate the validity of the CMB method in highly heterogeneous systems. This simulation is conducted for the unsaturated zone of Ogallala, Antlers, and Gatuna (OAG) formations in Andrews County, Texas. A two dimensional finite element model will show the movement of chloride through heterogeneous systems. We expect to see chloride bulges not only close to the surface but also at depths characterized by horizontal or upward movement. A comparative study of focused recharge estimates in this study with available recharge data will be presented.

  17. Print Finishing: From Manual to Automated Print Finishing

    Directory of Open Access Journals (Sweden)

    Gareth Ward

    2004-12-01

    Full Text Available Meeting the demand for faster turnrounds and shorter print runs goes beyond making the printing press easier to set up and change. There is little point in producing plates and then sheets from a press if the post press area does not change to keep abreast of developments in prepress and the print room. The greatest impact is going to come from JDF, the end to end production data format which is finding wide spread acceptance in print areas. To date finishing equipment manufacturers are not as well represented within the CIP4 organisation as prepress and press vendors, but the major manufacturers are members. All are working to the goal of complete connectivity.The idea of JDF is that if the format of a print product like a magazine is known during the creation phases, the information can be used to preset machinery that is going to be used to produce it, so avoiding input errors and saving manufacturing time.A second aspect to JDF is that information about performance and progress is gathered and can be retrieved from a central point or made available to a customer. Production scheduling and costing becomes more accurate and customer relationships are deepened. However JDF to its fullest extent is not yet in use in connecting the finishing area to the rest of the printing plant. Around the world different companies are testing the idea of JDF to connect saddle stitchers, guillotines and binders with frantic work underway to be able to show results soon.

  18. A high speed electrohydrodynamic (EHD) jet printing method for line printing

    International Nuclear Information System (INIS)

    Phung, Thanh Huy; Kim, Seora; Kwon, Kye-Si

    2017-01-01

    Electrohydrodynamic (EHD) jet printing has drawn attention due to its capability to produce smaller dots and patterns with finer lines when compared to those obtained from using conventional inkjet printing. Previous studies have suggested that drop-on-demand EHD-patterning applications should be limited to very slow printing cases with speeds far less than 10 mm s −1 due to the small dot size and limited jetting frequency. In this study, a new EHD printing method is proposed to significantly increase the line-patterning printing speed by modifying the ink and thereby changing the relic shape. The proposed method has the additional advantage of reducing the line-pattern width. The results of the experiment show that the pattern width could be reduced from 20 µ m to 4 µ m by increasing the printing speed from 10 mm s −1 to 50 mm s −1 , respectively. (paper)

  19. Electrochemical Chloride extraction using external electrodes?

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul

    2006-01-01

    Electrochemical methods for the removal of chloride from concrete have been developed and the methods are primarily designed for situations where corrosion has started due to an increased chloride concentration in the vicinity of the reinforcement. In these methods the reinforcement is used...... as the cathode. However, some unwanted side effects can occur, including alkali-silica reaction and in some cases hydrogen embrittlement. It is also suggested also to use electrochemical chloride extraction in a preventive way in constructions where chloride induced corrosion is likely to be a problem after...... a period of time, i.e. remove the chlorides before the chloride front reaches the reinforcement. If the chlorides are removed from outer few centimetres from the surface, the chloride will not reach the reinforcement and cause damage. By using the electrochemical chloride removal in this preventive way...

  20. Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity.

    Science.gov (United States)

    He, Guangli; Hu, Weihua; Li, Chang Ming

    2015-11-01

    We herein report the spontaneous interfacial reaction between copper foil with 0.01 M phosphate buffered saline (PBS) to form free-standing cupric phosphate (Cu3(PO4)2) nanoflowers at ambient temperature. The underlying chemistry was thoroughly investigated and it is found that the formation of nanoflower is synergistically caused by dissolved oxygen, chlorine ions and phosphate ions. Enzyme-Cu3(PO4)2 hybrid nanoflower was further prepared successfully by using an enzyme-dissolving PBS solution and the enzymes in the hybrid exhibit enhanced biological activity. This work provides a facile route for large-scale synthesis of hierarchical inorganic and functional protein-inorganic hybrid architectures via a simple one-step solution-immersion reaction without using either template or surfactant, thus offering great potential for biosensing application among others. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Engraving Print Classification

    International Nuclear Information System (INIS)

    Hoelck, Daniel; Barbe, Joaquim

    2008-01-01

    A print is a mark, or drawing, made in or upon a plate, stone, woodblock or other material which is cover with ink and then is press usually into a paper reproducing the image on the paper. Engraving prints usually are image composed of a group of binary lines, specially those are made with relief and intaglio techniques. Varying the number and the orientation of lines, the drawing of the engraving print is conformed. For this reason we propose an application based on image processing methods to classify engraving prints

  2. Printing Insecurity? The Security Implications of 3D-Printing of Weapons

    OpenAIRE

    Walther, Gerald

    2014-01-01

    In 2013, the first gun printed out of plastic by a 3D-printer was successfully fired in the US. This event caused a major media hype about the dangers of being able to print a gun. Law enforcement agencies worldwide were concerned about this development and the potentially huge security implications of these functional plastic guns. As a result, politicians called for a ban of these weapons and a control of 3D-printing technology. This paper reviews the security implications of 3D-printing te...

  3. Factors influencing chloride deposition in a coastal hilly area and application to chloride deposition mapping

    Directory of Open Access Journals (Sweden)

    H. Guan

    2010-05-01

    Full Text Available Chloride is commonly used as an environmental tracer for studying water flow and solute transport in the environment. It is especially useful for estimating groundwater recharge based on the commonly used chloride mass balance (CMB method. Strong spatial variability in chloride deposition in coastal areas is one difficulty encountered in appropriately applying the method. A high-resolution bulk chloride deposition map in the coastal region is thus needed. The aim of this study is to construct a chloride deposition map in the Mount Lofty Ranges (MLR, a coastal hilly area of approximately 9000 km2 spatial extent in South Australia. We examined geographic (related to coastal distance, orographic, and atmospheric factors that may influence chloride deposition, using partial correlation and regression analyses. The results indicate that coastal distance, elevation, as well as terrain aspect and slope, appear to be significant factors controlling chloride deposition in the study area. Coastal distance accounts for 70% of spatial variability in bulk chloride deposition, with elevation, terrain aspect and slope an additional 15%. The results are incorporated into a de-trended residual kriging model (ASOADeK to produce a 1 km×1 km resolution bulk chloride deposition and concentration maps. The average uncertainty of the deposition map is about 20–30% in the western MLR, and 40–50% in the eastern MLR. The maps will form a useful basis for examining catchment chloride balance for the CMB application in the study area.

  4. 21 CFR 184.1297 - Ferric chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric chloride. 184.1297 Section 184.1297 Food and... Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride, FeC13, CAS Reg. No. 7705-08-0) may be prepared from iron and chlorine or from ferric oxide and hydrogen chloride...

  5. Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing

    International Nuclear Information System (INIS)

    Lorber, Barbara; Martin, Keith R; Hsiao, Wen-Kai; Hutchings, Ian M

    2014-01-01

    We have investigated whether inkjet printing technology can be extended to print cells of the adult rat central nervous system (CNS), retinal ganglion cells (RGC) and glia, and the effects on survival and growth of these cells in culture, which is an important step in the development of tissue grafts for regenerative medicine, and may aid in the cure of blindness. We observed that RGC and glia can be successfully printed using a piezoelectric printer. Whilst inkjet printing reduced the cell population due to sedimentation within the printing system, imaging of the printhead nozzle, which is the area where the cells experience the greatest shear stress and rate, confirmed that there was no evidence of destruction or even significant distortion of the cells during jet ejection and drop formation. Importantly, the viability of the cells was not affected by the printing process. When we cultured the same number of printed and non-printed RGC/glial cells, there was no significant difference in cell survival and RGC neurite outgrowth. In addition, use of a glial substrate significantly increased RGC neurite outgrowth, and this effect was retained when the cells had been printed. In conclusion, printing of RGC and glia using a piezoelectric printhead does not adversely affect viability and survival/growth of the cells in culture. Importantly, printed glial cells retain their growth-promoting properties when used as a substrate, opening new avenues for printed CNS grafts in regenerative medicine. (paper)

  6. Determination of permeability of ultra-fine cupric oxide aerosol through military filters and protective filters

    Science.gov (United States)

    Kellnerová, E.; Večeřa, Z.; Kellner, J.; Zeman, T.; Navrátil, J.

    2018-03-01

    The paper evaluates the filtration and sorption efficiency of selected types of military combined filters and protective filters. The testing was carried out with the use of ultra-fine aerosol containing cupric oxide nanoparticles ranging in size from 7.6 nm to 299.6 nm. The measurements of nanoparticles were carried out using a scanning mobility particle sizer before and after the passage through the filter and a developed sampling device at the level of particle number concentration approximately 750000 particles·cm-3. The basic parameters of permeability of ultra-fine aerosol passing through the tested material were evaluated, in particular particle size, efficiency of nanoparticle capture by filter, permeability coefficient and overall filtration efficiency. Results indicate that the military filter and particle filters exhibited the highest aerosol permeability especially in the nanoparticle size range between 100–200 nm, while the MOF filters had the highest permeability in the range of 200 to 300 nm. The Filter Nuclear and the Health and Safety filter had 100% nanoparticle capture efficiency and were therefore the most effective. The obtained measurement results have shown that the filtration efficiency over the entire measured range of nanoparticles was sufficient; however, it was different for particular particle sizes.

  7. Advances in Home Photo Printing

    Institute of Scientific and Technical Information of China (English)

    Qian Lin; Brian Atkins; Huitao Luo

    2004-01-01

    With digital camera adoptions going main stream, consumers capture a record number of photos.Currently, the majority of the digital photos are printed at home. One of the key enablers of this transformation is the advancement of home photo printing technologies. In the past few years, inkjet printing technologies have continued to deliver smaller drop size, larger number of inks, and longer-lasting prints. In the mean time, advanced image processing automatically enhances captured digital photos while being printed. The combination of the above two forces has closed the gap between the home photo prints and AgX prints. It will give an overview of the home photo printing market and technology trends, and discuss major advancements in automatic image processing.

  8. Printed Electronics

    Science.gov (United States)

    Korkut, Sibel (Inventor); Chiang, Katherine S. (Inventor); Crain, John M. (Inventor); Aksay, Ilhan A. (Inventor); Lettow, John S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2018-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  9. Dynamic electrochemical measurement of chloride ions

    NARCIS (Netherlands)

    Abbas, Yawar; de Graaf, Derk B.; Olthuis, Wouter; van den Berg, Albert

    2016-01-01

    This protocol describes the dynamic measurement of chloride ions using the transition time of a silver silver chloride (Ag/AgCl) electrode. Silver silver chloride electrode is used extensively for potentiometric measurement of chloride ions concentration in electrolyte. In this measurement,

  10. Reaction of calcium chloride with alkali metal chlorides in melts

    International Nuclear Information System (INIS)

    Savin, V.D.; Mikhajlova, N.P.

    1984-01-01

    Thermochemical characteristics of CaCl 2 reaction with sodium, potassium, rubidium and cesium chlorides in melts at 890 deg C are determined. The values of formation enthalpies of infinitely diluted by CaCl 2 solutions (ΔH) in the chloride row increase from -22 in NaCl to -47 kJ/mol of CaCl 2 in CsCl. With increasing the concentration of calcium chloride in the solution the ΔH values decrease. The regularities of separation from the solution of the CaCl 2 -CsCl system at 890 deg C of the CaCl 2 x CsCl in solid are studied. Formation enthalpies under the given conditions constitutes -70+-3 kJ/mol

  11. Printing Has a Future

    Directory of Open Access Journals (Sweden)

    Hans Georg Wenke

    2004-12-01

    Full Text Available Printing will also be done in the future. Printed items meet basic needs and are deeply anchored in people’s habits. Being able to handle and collect printed matter is highly attractive. And paper is now more alive than ever. It is therefore too shortsighted to disclaim the importance of one of the still large economic sectors just because of a few looming-recession instigated market shifts.The exciting aspect of drupa 2004 is: printing will be reinvented, so to speak. Much more printing will be done in the future than at present. On the one hand, people are concentrating on process optimization and automation to ensure this. Measuring and testing, process control and optimization, and linking up "office software" with printing technology will be very central topics at drupa 2004. Electronics and print are not rivals; a symbiosis exists. And printing is high-tech: hardly any other multifaceted sector which has been so successful for centuries is as computerized as the printing industry.A series of "new chapters" in the variety of printing possibilities will be opened at drupa. Talk will be generated by further technical developments, often the connection between paper/cardboard and electronics, the link between the office world and graphics industry, text databases and their link-up to graphic page production tools, and "on the fly" dynamic printing over networks.All of this and more belongs to future potentialities, which are so substantial overall, the outlook is by no means black for the "black art". Like its predecessors, drupa 2004 is also a product trade fair. However, more than ever before in its history, it is also an "information village". The exhibits are useful, because they occasionally make what this means visible.

  12. Printing quality control automation

    Science.gov (United States)

    Trapeznikova, O. V.

    2018-04-01

    One of the most important problems in the concept of standardizing the process of offset printing is the control the quality rating of printing and its automation. To solve the problem, a software has been developed taking into account the specifics of printing system components and the behavior in printing process. In order to characterize the distribution of ink layer on the printed substrate the so-called deviation of the ink layer thickness on the sheet from nominal surface is suggested. The geometric data construction the surface projections of the color gamut bodies allows to visualize the color reproduction gamut of printing systems in brightness ranges and specific color sectors, that provides a qualitative comparison of the system by the reproduction of individual colors in a varying ranges of brightness.

  13. Biosynthesis of nano cupric oxide on cotton using Seidlitzia rosmarinus ashes utilizing bio, photo, acid sensing and leaching properties.

    Science.gov (United States)

    Bashiri Rezaie, Ali; Montazer, Majid; Rad, Mahnaz Mahmoudi

    2017-12-01

    In this research, a facile, rapid and eco-friendly method is introduced for synthesis and loading of cupric oxide on cellulosic chains of cotton fabric with functional properties. Seidlitzia rosmarinus ashes and copper acetate were employed as a natural source of alkaline and metal salt without further chemical materials. The treated samples indicated very good antibacterial activities toward both pathogen Staphylococcus aureus as Gram-positive and Escherichia coli as Gram-negative bacteria. Significant self-cleaning properties against degradation of methylene blue stain under UV irradiation were found. The sensing properties of high concentrated inorganic and organic acids such as sulfuric and formic acids based on colorimetric alterations of the treated fabrics were also confirmed showing acid leaching effects of the treated fabrics. Further, the treated samples showed coloring effects with an enhancement on the physio-mechanical properties including tensile strength, crease recovery angle and hydrophobocity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Facile Preparation of Chloride-Conducting Membranes : First Step towards a Room-Temperature Solid-State Chloride-Ion Battery

    NARCIS (Netherlands)

    Gschwind, Fabienne; Steinle, Dominik; Sandbeck, Daniel; Schmidt, Celine; von Hauff, Elizabeth

    2016-01-01

    Three types of chloride-conducting membranes based on polyvinyl chloride, commercial gelatin, and polyvinyldifluoride-hexafluoropolymer are introduced in this report. The polymers are mixed with chloride-containing salts, such as tetrabutylammonium chloride, and cast to form membranes. We studied

  15. Solvents interactions with thermochromic print

    Directory of Open Access Journals (Sweden)

    Mirela Rožić

    2017-12-01

    Full Text Available In this study, the interactions between different solvents (benzene, acetone, cyclohexanone, various alcohols and water and thermochromic printing ink were investigated. Thermochromic printing ink was printed on metal surface. Components of thermochromic printing inks are polymeric microcapsules and classic yellow offset printing ink. Below its activation temperature, dye and developer within the microcapsules form a blue coloured complex. Therefore, thermochromic print is green. By heating above the activation temperature, blue colour of the complex turns into the leuco dye colourless state and the green colour of the prints turns into the yellow colour of the classic offset pigment. The results of the interaction with various solvents show that the thermochromic print is stable in all tested solvents except in ethanol, acetone and cyclohexanone. In ethanol, the green colour of the print becomes yellow. SEM analysis shows that microcapsules are dissolved. In acetone and cyclohexanone, the green colour of the print turns into blue, and the microcapsules become significantly more visible. Thus, the yellow pigment interacts with examined ketones. Based on the obtained interactions it can be concluded that the microcapsules have more polar nature than the classical pigment particles. Solvent-thermocromic print interactions were analysed using Hansen solubility parameters that rank the solvents based on their estimated interaction capabilities.

  16. Three-dimensional bio-printing.

    Science.gov (United States)

    Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi

    2015-05-01

    Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.

  17. Printing at CERN

    CERN Multimedia

    Otto, R

    2007-01-01

    For many years CERN had a very sophisticated print server infrastructure which supported several different protocols (AppleTalk, IPX and TCP/IP) and many different printing standards. Today’s situation differs a lot: we have a much more homogenous network infrastructure, where TCP/IP is used everywhere and we have less printer models, which almost all work using current standards (i.e. they all provide PostScript drivers). This change gave us the possibility to review the printing architecture aiming at simplifying the infrastructure in order to achieve full automation of the service. The new infrastructure offers both: LPD service exposing print queues to Linux and Mac OS X computers and native printing for Windows based clients. The printer driver distribution is automatic and native on Windows and automated by custom mechanisms on Linux, where the appropriate Foomatic drivers are configured. Also the process of printer registration and queue creation is completely automated following the printer regis...

  18. Electrochemical chloride extraction of a beam polluted by chlorides after 40 years in the sea

    OpenAIRE

    BOUTEILLER, Véronique; LAPLAUD, André; MALOULA, Aurélie; MORELLE, René Stéphane; DUCHESNE, Béatrice; MORIN, Mathieu

    2006-01-01

    A beam element, naturally polluted by chlorides after 40 years of a marine tidal exposure, has been treated by electrochemical chloride extraction. The chloride profiles, before and after treatment, show that free chlorides are extrated with an efficiency of 70 % close to the steel, 50 % in the intermediate cover and only 5 % at the concrete surface. From the electrochemical characterizations (before, after, 1, 2 and 17 months after treatment), the steel potential values can, semehow, indicat...

  19. Sorption of sulphur dioxide in calcium chloride and nitrate chloride liquids

    International Nuclear Information System (INIS)

    Trzepierczynska, I.; Gostomczyk, M.A.

    1989-01-01

    Flue gas desulphurization via application of suspensions has one inherent disadvantage: fixation of sulphur dioxide is very poor. This should be attributed to the low content of calcium ions which results from the solubility of the sorbing species. The solubility of sparingly soluble salts (CaO, CaCO 3 ) may be increased by decreasing the pH of the solution; yet, there is a serious limitation in this method: the corrosivity of the scrubber. The objective of this paper was to assess the sorbing capacity of two soluble calcium salts, calcium chloride and calcium nitrate, as a function of calcium ion concentration in the range of 20 to 82 kg/m 3 . It has been found that sorbing capacity increases with the increasing calcium ion concentration until the calcium concentration in the calcium chloride solution reaches the level of 60 kg/m 3 which is equivalent to the chloride ion content of ∼ 110 kg/m 3 . Addition of calcium hydroxide to the solutions brings about an increase in the sorbing capacity up to 1.6 kg/m 3 and 2.2 kg/m 3 for calcium chloride and calcium nitrate, respectively, as a result of the increased sorbent alkalinity. The sorption capacity of the solutions is considerably enhanced by supplementing them by acetate ions (2.8 to 13.9 kg/m 3 ). Increase in the sorption capacity of calcium nitrate solutions enriched with calcium acetate was approximately 30% as high as that of the chloride solutions enriched with calcium acetate was approximately 30% as high as that of the chloride solutions supplemented in the same way. (author). 12 refs, 7 refs, 4 tabs

  20. 21 CFR 173.375 - Cetylpyridinium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cetylpyridinium chloride. 173.375 Section 173.375... CONSUMPTION Specific Usage Additives § 173.375 Cetylpyridinium chloride. Cetylpyridinium chloride (CAS Reg. No....1666 of this chapter, at a concentration of 1.5 times that of cetylpyridinium chloride. (c) The...

  1. 21 CFR 184.1622 - Potassium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  2. Temperature dependence of diffusion coefficients of trivalent uranium ions in chloride and chloride-fluoride melts

    International Nuclear Information System (INIS)

    Komarov, V.E.; Borodina, N.P.

    1981-01-01

    Diffusion coefficients of U 3+ ions are measured by chronopotentiometric method in chloride 3LiCl-2KCl and in mixed chloride fluoride 3LiCl(LiF)-2KCl melts in the temperature range 633-1235 K. It is shown It is shown that experimental values of diffusion-coefficients are approximated in a direct line in lg D-1/T coordinate in chloride melt in the whole temperature range and in chloride-fluoride melt in the range of 644-1040 K. Experimental values of diffusion coefficients diviate from Arrhenius equation in the direction of large values in chloride-fluoride melt at further increase of temperature up to 1235 K. Possible causes of such a diviation are considered [ru

  3. Measurement of the Cupric Ion Concentration in the Simulation of the Focusing effect

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Je-Young; Hong, Seung-Hyun; Chung, Bum-Jin [Kyung Hee University, Seoul (Korea, Republic of)

    2015-10-15

    The Rayleigh number and aspect ratio (H/R) ranged from 8.49x10{sup 7} to 5.43x10{sup 9} and 0.135 to 0.541 respectively. In order to simulate the different temperature conditions of top and side wall, an electrical resistance was attached to the top wall so that it is mimics hotter wall condition. The heat transfer experiments were replaced by mass transfer experiments based on the heat and mass transfer analogy concept. A sulfuric acid-copper sulfate (H{sub 2}SO{sub 4} - CuSO{sub 4}) electroplating system was adopted as the mass transfer system. The experimental study was performed to investigate the focusing effect according to the different temperature conditions and the height in metallic layer. This work devised a method to simulate the different cooling conditions of the top and side walls and adopted an electrical resistance to the top plate. The electrical resistance was varied for the height of side wall. The experimental results agreed well with the Rayleigh-Benard convection correlations of Dropkin and Somerscales and Globe and Dropkin. The heat transfer was enhanced by increasing the electrical resistance and decreasing the height of side wall. The focusing effect at the side wall was improved by the hotter top wall condition. In order to overcome the limitations of mass transfer, this work tried to measure the cupric ion concentration. The methods of concentration measurement are RGB, Brightness, ICP and PIV. The key of RGB, Brightness and PIV method is the clear images of the thermal boundary layer.

  4. Printing nanotube/nanowire for flexible microsystems

    Science.gov (United States)

    Tortorich, Ryan P.; Choi, Jin-Woo

    2014-04-01

    Printing has become an emerging manufacturing technology for mechanics, electronics, and consumer products. Additionally, both nanotubes and nanowires have recently been used as materials for sensors and electrodes due to their unique electrical and mechanical properties. Printed electrodes and conductive traces particularly offer versatility of fabricating low-cost, disposable, and flexible electrical devices and microsystems. While various printing methods such as screen printing have been conventional methods for printing conductive traces and electrodes, inkjet printing has recently attracted great attention due to its unique advantages including no template requirement, rapid printing at low cost, on-demand printing capability, and precise control of the printed material. Computer generated conductive traces or electrode patterns can simply be printed on a thin film substrate with proper conductive ink consisting of nanotubes or nanowires. However, in order to develop nanotube or nanowire ink, there are a few challenges that need to be addressed. The most difficult obstacle to overcome is that of nanotube/nanowire dispersion within a solution. Other challenges include adjusting surface tension and controlling viscosity of the ink as well as treating the surface of the printing substrate. In an attempt to pave the way for nanomaterial inkjet printing, we present a method for preparing carbon nanotube ink as well as its printing technique. A fully printed electrochemical sensor using inkjet-printed carbon nanotube electrodes is also demonstrated as an example of the possibilities for this technology.

  5. Colour changes in prints during long-term dark storage of prints

    International Nuclear Information System (INIS)

    Parraman, Carinna

    2010-01-01

    The most significant impact on colour fading in prints is exposure to light and air. However what happens to coloured prints during long-term storage in boxes, drawers and on shelves? Measurements of samples, printed in July 2005, stored in a range of light and darkened storage conditions have shown some interesting initial results. As more emphasis is placed on the effects of light, the dark stability of inkjet prints is relatively overlooked when considering how to preserve or store coloured prints. This study and presentation builds on previous research [1] and has concentrated on the changes to colour during storage. With reference to ASTM F2035 - 00(2006) Standard Practice for Measuring the Dark Stability of Ink Jet Prints, the Standards outline points out that whilst natural aging is the most reliable method of assessing image stability, materials and inks any data that is produced quickly becomes redundant; therefore accelerated aging is more preferred. However, the fine art materials in this study are still very much in circulation. The leading fine art papers, and pigmented ink-sets used in these trials are still being used by artists. We can therefore demonstrate the characteristics of colour changes and the impact of ink on paper that utilises natural aging methods.

  6. 21 CFR 184.1138 - Ammonium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The...

  7. 21 CFR 184.1426 - Magnesium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... hydrochloric acid solution and crystallizing out magnesium chloride hexahydrate. (b) The ingredient meets the...

  8. Removal of chloride from MSWI fly ash.

    Science.gov (United States)

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing; Ko, Chun-Han

    2012-10-30

    The high levels of alkali chloride and soluble metal salts present in MSWI fly ash is worth noting for their impact on the environment. In addition, the recycling or reuse of fly ash has become an issue because of limited landfill space. The chloride content in fly ash limits its application as basis for construction materials. Water-soluble chlorides such as potassium chloride (KCl), sodium chloride (NaCl), and calcium chloride hydrate (CaCl(2) · 2H(2)O) in fly ash are easily washed away. However, calcium chloride hydroxide (Ca(OH)Cl) might not be easy to leach away at room temperature. The roasting and washing-flushing processes were applied to remove chloride content in this study. Additionally, air and CO(2) were introduced into the washing process to neutralize the hazardous nature of chlorides. In comparison with the water flushing process, the roasting process is more efficient in reducing the process of solid-liquid separation and drying for the reuse of Cl-removed fly ash particles. In several roasting experiments, the removal of chloride content from fly ash at 1050°C for 3h showed the best results (83% chloride removal efficiency). At a solid to liquid ratio of 1:10 the water-flushing process can almost totally remove water-soluble chloride (97% chloride removal efficiency). Analyses of mineralogical change also prove the efficiency of the fly ash roasting and washing mechanisms for chloride removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A Vector Printing Method for High-Speed Electrohydrodynamic (EHD Jet Printing Based on Encoder Position Sensors

    Directory of Open Access Journals (Sweden)

    Thanh Huy Phung

    2018-02-01

    Full Text Available Electrohyrodynamic (EHD jet printing has been widely used in the field of direct micro-nano patterning applications, due to its high resolution printing capability. So far, vector line printing using a single nozzle has been widely used for most EHD printing applications. However, the application has been limited to low-speed printing, to avoid non-uniform line width near the end points where line printing starts and ends. At end points of line vector printing, the deposited drop amount is likely to be significantly large compared to the rest of the printed lines, due to unavoidable acceleration and deceleration. In this study, we proposed a method to solve the printing quality problems by producing droplets at an equally spaced distance, irrespective of the printing speed. For this purpose, an encoder processing unit (EPU was developed, so that the jetting trigger could be generated according to user-defined spacing by using encoder position signals, which are used for the positioning control of the two linear stages.

  10. Some Thoughts on Contemporary Graphic Print

    Directory of Open Access Journals (Sweden)

    Stefan Skiba

    2016-09-01

    Full Text Available The production requirements of original graphic works of art have changed since 1980. The development of digital printing using lightfast colors now rivals traditional techniques such as wood cut, screen print, lithography, etching etc. Today, with respect to artistic legitimacy, original graphics using traditional printing techniques compete with original graphics produced by digital printing techniques on the art market. What criteria distinguish traditional printing techniques from those of digital printing in the production and acquisition of original graphics? What consequences is the serious artist faced with when deciding to implement digital print production? How does digital print change original graphic acquisition decisions?

  11. 21 CFR 184.1193 - Calcium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium chloride. 184.1193 Section 184.1193 Food... Specific Substances Affirmed as GRAS § 184.1193 Calcium chloride. (a) Calcium chloride (CaCl2·2H2O, CAS Reg. No. 10035-04-8) or anhydrous calcium chloride (CaCl2, CAS Reg. No. 10043-52-4) may be commercially...

  12. Determination of chloride in MOX samples using chloride ion selective electrode

    Energy Technology Data Exchange (ETDEWEB)

    Govindan, R; Das, D K; Mallik, G K; Sumathi, A; Patil, Sangeeta; Raul, Seema; Bhargava, V K; Kamath, H S [Bhabha Atomic Research Centre, Tarapur (India). Advanced Fuel Fabrication Facility

    1997-09-01

    The chloride present in the MOX fuel is separated from the matrix by pyrohydrolysis at a temperature of 950 {+-} 50 degC and is then analyzed by chloride ion selective electrode (Cl-ISE). The range covered is 0.4-4 ppm with a precision of better than {+-}5% R.S.D. (author). 4 refs., 1 tab.

  13. Colour printing techniques

    OpenAIRE

    Parraman, C.

    2017-01-01

    Invited chapter in the book Colour Design: Theories and Applications. In PART 3 COLOUR, DESIGN AND COLORATION this chapter covers:\\ud - Hardcopy colour: analogue versus digital\\ud - Colour theory in relation to printing\\ud - Overview of halftoning and digital print technologies\\ud - Overview and development of inks\\ud - Inkjet papers and inks\\ud - Recent and future trends in colour, printing inks and hardware.\\ud \\ud This book differs from other existing books in the field, with the aim of an...

  14. Print and Manuscript

    OpenAIRE

    Erne, Lukas Christian

    2007-01-01

    Positioning Shakespeare at the "crossroads of manuscript and print" and exploring what the choice of print or manuscript reveals about the poet's intended audience and the social persona the poet wanted to assume and fashion, argues that "Shakespeare's authorial self-presentation begins as a poet and, more specifically, as a print-published poet" with the publication of Venus and Adonis in 1593 and the allusion to the publication of Rape of Lucrece in the next year. Yet also considers the imp...

  15. Printed Electronics

    Science.gov (United States)

    Wade, Jessica; Hollis, Joseph Razzell; Wood, Sebastian

    2018-04-01

    The combination of printing technology with manufacturing electronic devices enables a new paradigm of printable electronics, where 'smart' functionality can be readily incorporated into almost any product at low cost. Over recent decades, rapid progress has been made in this field, which is now emerging into the industrial andcommercial realm. However, successful development and commercialisation on a large scale presents some significant technical challenges. For fully-printable electronic systems, all the component parts must be deposited from solutions (inks), requiring the development of new inorganic, organic and hybrid materials.A variety of traditional printing techniques are being explored and adapted forprinting these new materials in ways that result in the best performing electronicdevices. Whilst printed electronics research has initially focused on traditional typesof electronic device such as light-emitting diodes, transistors, and photovoltaics, it is increasingly apparent that a much wider range of applications can be realised. The soft and stretchable nature of printable materials makes them perfect candidates forbioelectronics, resulting in a wealth of research looking at biocompatible printable inks and biosensors. Regardless of application, the properties of printed electronicmaterials depend on the chemical structures, processing conditions, device architecture,and operational conditions, the complex inter-relationships of which aredriving ongoing research. We focus on three particular 'hot topics', where attention is currently focused: novel materials, characterisation techniques, and device stability. With progress advancing very rapidly, printed electronics is expected to grow over the next decade into a key technology with an enormous economic and social impact.

  16. Pharmacokinetics of vinyl chloride in the rat

    International Nuclear Information System (INIS)

    Bolt, H.M.; Laib, R.J.; Kappus, H.; Buchter, A.

    1977-01-01

    When rats are exposed to [ 14 C]vinyl chloride in a closed system, the vinyl chloride present in the atmosphere equilibrates with the animals' organism within 15 min. The course of equilibration could be determined using rats which had been given 6-nitro-1,2,3-benzothiadiazole. This compound completely blocks metabolism of vinyl chloride. The enzymes responsible for metabolism of vinyl chloride are saturated at an atmospheric concentration of vinyl chloride of 250 ppm. Pharmacokinetic analysis shows that no significant cumulation of vinyl chloride or its major metabolites is to be expected on repeated administration of vinyl chlorides. This may be consistent with the theory that a reactive, shortly living metabolite which occurs in low concentration only, may be responsible for the toxic effects of vinyl chloride

  17. Laboratory investigation of electro-chemical chloride extraction from concrete with penetrated chloride

    NARCIS (Netherlands)

    Polder, R.B.; Hondel, A.W.M. van den

    2002-01-01

    Chloride extraction of concrete is a short-term electrochemical treatment against corrosion of reinforcing steel. The aim is to remove chloride ions from the concrete cover in order to reinstate passive behaviour. Physically sound concrete is left in place. To make this method more predictable and

  18. Cost-estimating for commercial digital printing

    Science.gov (United States)

    Keif, Malcolm G.

    2007-01-01

    The purpose of this study is to document current cost-estimating practices used in commercial digital printing. A research study was conducted to determine the use of cost-estimating in commercial digital printing companies. This study answers the questions: 1) What methods are currently being used to estimate digital printing? 2) What is the relationship between estimating and pricing digital printing? 3) To what extent, if at all, do digital printers use full-absorption, all-inclusive hourly rates for estimating? Three different digital printing models were identified: 1) Traditional print providers, who supplement their offset presswork with digital printing for short-run color and versioned commercial print; 2) "Low-touch" print providers, who leverage the power of the Internet to streamline business transactions with digital storefronts; 3) Marketing solutions providers, who see printing less as a discrete manufacturing process and more as a component of a complete marketing campaign. Each model approaches estimating differently. Understanding and predicting costs can be extremely beneficial. Establishing a reliable system to estimate those costs can be somewhat challenging though. Unquestionably, cost-estimating digital printing will increase in relevance in the years ahead, as margins tighten and cost knowledge becomes increasingly more critical.

  19. A STUDY OF RELATIVE CORRELATION BETWEEN THE PATTERN OF FINGER PRINTS AND LIP PRINTS

    OpenAIRE

    Murugan; Karikalan

    2014-01-01

    BACKGROUND AND OBJECTIVE: The use of conventional methods such as dactylography (study of finger prints) & cheiloscopy (study of lip prints) is of paramount importance, since personal identification by other means such as DNA analysis is sophisticated and not available in rural and developing countries. Fingerprint in its narrow sense is an impression left by the friction ridges of human fingers. The second prints of interest are lip prints. Studies of association between ...

  20. Chloride Ingress in Concrete with Different Age at Time of First Chloride Exposure

    DEFF Research Database (Denmark)

    Hansen, Esben Østergaard; Iskau, Martin Riis; Hasholt, Marianne Tange

    2016-01-01

    Concrete structures cast in spring have longer time to hydrate and are therefore denser and more resistant to chloride ingress when first subjected to deicing salts in winter than structures cast in autumn. Consequently, it is expected that a spring casting will have a longer service life....... This hypothesis is investigated in the present study by testing drilled cores from concrete cast in 2012 and 2013 on the Svendborgsund Bridge. The cores are subject to petrographic examination and mapping of chloride profiles. Moreover, chloride migration coefficients have been measured. The study shows...

  1. CERN printing infrastructure

    International Nuclear Information System (INIS)

    Otto, R; Sucik, J

    2008-01-01

    For many years CERN had a very sophisticated print server infrastructure [13] which supported several different protocols (AppleTalk, IPX and TCP/IP) and many different printing standards. Today's situation differs a lot: we have a much more homogenous network infrastructure, where TCP/IP is used everywhere and we have less printer models, which almost all work using current standards (i.e. they all provide PostScript drivers). This change gave us the possibility to review the printing architecture aiming at simplifying the infrastructure in order to achieve full automation of the service. The new infrastructure offers both: LPD service exposing print queues to Linux and Mac OS X computers and native printing for Windows based clients. The printer driver distribution is automatic and native on Windows and automated by custom mechanisms on Linux, where the appropriate Foomatic drivers are configured. Also the process of printer registration and queue creation is completely automated following the printer registration in the network database. At the end of 2006 we have moved all (∼1200) CERN printers and all users' connections at CERN to the new service. This paper will describe the new architecture and summarize the process of migration

  2. Producing ammonium chloride from coal or shale

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, O L

    1921-02-25

    Process of producing ammonium chloride consists of mixing the substance to be treated with a chloride of an alkali or alkaline earth metal, free silica, water and free hydrochloric acid, heating the mixture until ammonium chloride distills off and collecting the ammonium chloride.

  3. Making PMT halftone prints

    Energy Technology Data Exchange (ETDEWEB)

    Corey, J.D.

    1977-05-01

    In the printing process for technical reports presently used at Bendix Kansas City Division, photographs are reproduced by pasting up PMT halftone prints on the artwork originals. These originals are used to make positive-working plastic plates for offset lithography. Instructions for making good-quality halftone prints using Eastman Kodak's PMT materials and processes are given in this report. 14 figures.

  4. 21 CFR 173.400 - Dimethyldialkylammonium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dimethyldialkylammonium chloride. 173.400 Section... HUMAN CONSUMPTION Specific Usage Additives § 173.400 Dimethyldialkylammonium chloride. Dimethyldialkylammonium chloride may be safely used in food in accordance with the following prescribed conditions: (a...

  5. Microbial reductive dehalogenation of vinyl chloride

    Science.gov (United States)

    Spormann, Alfred M [Stanford, CA; Muller, Jochen A [Baltimore, MD; Rosner, Bettina M [Berlin, DE; Von Abendroth, Gregory [Nannhein, DE; Meshulam-Simon, Galit [Los Altos, CA; McCarty, Perry L [Stanford, CA

    2011-11-22

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  6. The NIH 3D Print Exchange: A Public Resource for Bioscientific and Biomedical 3D Prints.

    Science.gov (United States)

    Coakley, Meghan F; Hurt, Darrell E; Weber, Nick; Mtingwa, Makazi; Fincher, Erin C; Alekseyev, Vsevelod; Chen, David T; Yun, Alvin; Gizaw, Metasebia; Swan, Jeremy; Yoo, Terry S; Huyen, Yentram

    2014-09-01

    The National Institutes of Health (NIH) has launched the NIH 3D Print Exchange, an online portal for discovering and creating bioscientifically relevant 3D models suitable for 3D printing, to provide both researchers and educators with a trusted source to discover accurate and informative models. There are a number of online resources for 3D prints, but there is a paucity of scientific models, and the expertise required to generate and validate such models remains a barrier. The NIH 3D Print Exchange fills this gap by providing novel, web-based tools that empower users with the ability to create ready-to-print 3D files from molecular structure data, microscopy image stacks, and computed tomography scan data. The NIH 3D Print Exchange facilitates open data sharing in a community-driven environment, and also includes various interactive features, as well as information and tutorials on 3D modeling software. As the first government-sponsored website dedicated to 3D printing, the NIH 3D Print Exchange is an important step forward to bringing 3D printing to the mainstream for scientific research and education.

  7. 21 CFR 522.1862 - Sterile pralidoxime chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sterile pralidoxime chloride. 522.1862 Section 522....1862 Sterile pralidoxime chloride. (a) Chemical name. 2-Formyl-1-methylpyridinium chloride oxime. (b) Specifications. Sterile pralidoxime chloride is packaged in vials. Each vial contains 1 gram of sterile...

  8. 49 CFR 173.322 - Ethyl chloride.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Ethyl chloride. 173.322 Section 173.322 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.322 Ethyl chloride. Ethyl chloride must be...

  9. Preparation of pure anhydrous rare earth chlorides

    International Nuclear Information System (INIS)

    Bel'kova, N.L.; Slastenova, N.M.; Batyaev, I.M.; Solov'ev, M.A.

    1979-01-01

    A method has been suggested for obtaining extra-pure anhydrous REE chlorides by chloridizing corresponding oxalates by chlorine in a fluid bed, the chloridizing agents being diluted by an inert gas in a ratio of 2-to-1. The method is applicable to the manufacture of quality chlorides not only of light, but also of heavy REE. Neodymium chloride has an excited life of tau=30 μs, this evidencing the absence of the damping impurities

  10. Crystal field influence on vibration spectra: anhydrous uranyl chloride and dihydroxodiuranyl chloride tetrahydrate

    International Nuclear Information System (INIS)

    Perrin, Andre; Caillet, Paul

    1976-01-01

    Vibrational spectra of anhydrous uranyl chloride UO 2 Cl 2 and so called basic uranyl chloride: dihydroxodiuranyl chloride tetrahydrate /UO 2 (OH) 2 UO 2 /Cl 2 (H 2 O) 4 are reported. Factor group method analysis leads for the first time to complete and comprehensive interpretation of their spectra. Two extreme examples of crystal field influence on vibrational spectra are pointed out: for UO 2 Cl 2 , one is unable to explain spectra without taking into account all the elements of primitive crystalline cell, whilst for dihydroxodiuranyl dichloride tetrahydrate the crystal packing has very little effect on vibrational spectra [fr

  11. Chloride Transport in Undersea Concrete Tunnel

    Directory of Open Access Journals (Sweden)

    Yuanzhu Zhang

    2016-01-01

    Full Text Available Based on water penetration in unsaturated concrete of underwater tunnel, a diffusion-advection theoretical model of chloride in undersea concrete tunnel was proposed. The basic parameters including porosity, saturated hydraulic conductivity, chloride diffusion coefficient, initial water saturation, and moisture retention function of concrete specimens with two water-binder ratios were determined through lab-scale experiments. The variation of chloride concentration with pressuring time, location, solution concentration, initial saturation, hydraulic pressure, and water-binder ratio was investigated through chloride transport tests under external water pressure. In addition, the change and distribution of chloride concentration of isothermal horizontal flow were numerically analyzed using TOUGH2 software. The results show that chloride transport in unsaturated concrete under external water pressure is a combined effect of diffusion and advection instead of diffusion. Chloride concentration increased with increasing solution concentration for diffusion and increased with an increase in water pressure and a decrease in initial saturation for advection. The dominant driving force converted with time and saturation. When predicting the service life of undersea concrete tunnel, it is suggested that advection is taken into consideration; otherwise the durability tends to be unsafe.

  12. 3D Printing A Survey

    Directory of Open Access Journals (Sweden)

    Muhammad Zulkifl Hasan

    2017-08-01

    Full Text Available Solid free fabrication SFF are produced to enhance the printing instrument utilizing distinctive strategies like Piezo spout control multi-spout injet printers or STL arrange utilizing cutting information. The procedure is utilized to diminish the cost and enhance the speed of printing. A few techniques take long at last because of extra process like dry the printing. This study will concentrate on SFFS utilizing UV gum for 3D printing.

  13. 21 CFR 582.3845 - Stannous chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Stannous chloride. 582.3845 Section 582.3845 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3845 Stannous chloride. (a) Product. Stannous chloride. (b) Tolerance. This substance is generally...

  14. 7 CFR 58.434 - Calcium chloride.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Calcium chloride. 58.434 Section 58.434 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.434 Calcium chloride. Calcium chloride, when used, shall meet the requirements of the Food...

  15. Leaching of copper concentrates using NaCl and soluble copper contributed by the own concentrate; Lixiviacion de concentrados de cobre utilizando NaCl y el cobre soluble aportado por el propio concentrado

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, O.; Bernal, N.; Quiroz, R.; Fuentes, G.; Vinals, J.

    2005-07-01

    Leaching of copper concentrates using cupric chloro complexes, generated in situ by the reaction between Cu(II), aported by the soluble copper content of the concentrate, and sodium chloride in acid media was studied. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Chemical and mineralogical characterization from original concentrates was made. Typical variable such as a chloride concentration, soluble copper concentration, leaching time, solid percentage and temperature were studied. DRX and EDS analyzed some of the residues. the experimental results indicated that it is possible to obtain solutions having high copper content (15 to 35 g/L) and 2 to 5 g/L free acid in order to submit this solution directly to a solvent extraction stage. The leaching tests use common reactive and low cost such as sodium chloride and sulfuric acid. (Author) 16 refs.

  16. Leaching of copper concentrates using NaCl and soluble copper contributed by the own concentrate

    International Nuclear Information System (INIS)

    Herrero, O.; Bernal, N.; Quiroz, R.; Fuentes, G.; Vinals, J.

    2005-01-01

    Leaching of copper concentrates using cupric chloro complexes, generated in situ by the reaction between Cu(II), aported by the soluble copper content of the concentrate, and sodium chloride in acid media was studied. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Chemical and mineralogical characterization from original concentrates was made. Typical variable such as a chloride concentration, soluble copper concentration, leaching time, solid percentage and temperature were studied. DRX and EDS analyzed some of the residues. the experimental results indicated that it is possible to obtain solutions having high copper content (15 to 35 g/L) and 2 to 5 g/L free acid in order to submit this solution directly to a solvent extraction stage. The leaching tests use common reactive and low cost such as sodium chloride and sulfuric acid. (Author) 16 refs

  17. CERN printing infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Otto, R; Sucik, J [CERN, Geneva (Switzerland)], E-mail: Rafal.Otto@cern.ch, E-mail: Juraj.Sucik@cern.ch

    2008-07-15

    For many years CERN had a very sophisticated print server infrastructure [13] which supported several different protocols (AppleTalk, IPX and TCP/IP) and many different printing standards. Today's situation differs a lot: we have a much more homogenous network infrastructure, where TCP/IP is used everywhere and we have less printer models, which almost all work using current standards (i.e. they all provide PostScript drivers). This change gave us the possibility to review the printing architecture aiming at simplifying the infrastructure in order to achieve full automation of the service. The new infrastructure offers both: LPD service exposing print queues to Linux and Mac OS X computers and native printing for Windows based clients. The printer driver distribution is automatic and native on Windows and automated by custom mechanisms on Linux, where the appropriate Foomatic drivers are configured. Also the process of printer registration and queue creation is completely automated following the printer registration in the network database. At the end of 2006 we have moved all ({approx}1200) CERN printers and all users' connections at CERN to the new service. This paper will describe the new architecture and summarize the process of migration.

  18. Drug-printing by flexographic printing technology--a new manufacturing process for orodispersible films.

    Science.gov (United States)

    Janssen, Eva Maria; Schliephacke, Ralf; Breitenbach, Armin; Breitkreutz, Jörg

    2013-01-30

    Orodispersible films (ODFs) are intended to disintegrate within seconds when placed onto the tongue. The common way of manufacturing is the solvent casting method. Flexographic printing on drug-free ODFs is introduced as a highly flexible and cost-effective alternative manufacturing method in this study. Rasagiline mesylate and tadalafil were used as model drugs. Printing of rasagiline solutions and tadalafil suspensions was feasible. Up to four printing cycles were performed. The possibility to employ several printing cycles enables a continuous, highly flexible manufacturing process, for example for individualised medicine. The obtained ODFs were characterised regarding their mechanical properties, their disintegration time, API crystallinity and homogeneity. Rasagiline mesylate did not recrystallise after the printing process. Relevant film properties were not affected by printing. Results were comparable to the results of ODFs manufactured with the common solvent casting technique, but the APIs are less stressed through mixing, solvent evaporation and heat. Further, loss of material due to cutting jumbo and daughter rolls can be reduced. Therefore, a versatile new manufacturing technology particularly for processing high-potent low-dose or heat sensitive drugs is introduced in this study. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. The best printing methods to print satellite images

    OpenAIRE

    G.A. Yousif; R.Sh. Mohamed

    2011-01-01

    Printing systems operate in general as a system of color its color scale is limited as compared with the system color satellite images. Satellite image is building from very small cell named pixel, which represents the picture element and the unity of color when the image is displayed on the screen, this unit becomes lesser in size and called screen point. This unit posseses different size and shape from the method of printing to another, depending on the output resolution, tools and material...

  20. MolPrint3D: Enhanced 3D Printing of Ball-and-Stick Molecular Models

    Science.gov (United States)

    Paukstelis, Paul J.

    2018-01-01

    The increased availability of noncommercial 3D printers has provided instructors and students improved access to printing technology. However, printing complex ball-and-stick molecular structures faces distinct challenges, including the need for support structures that increase with molecular complexity. MolPrint3D is a software add-on for the…

  1. Influence of printing speed on production of embossing tools using FDM 3D printing technology

    Directory of Open Access Journals (Sweden)

    Jelena Žarko

    2017-06-01

    Full Text Available Manufacturing of the embossing tools customary implies use of metals such as zinc, magnesium, copper, and brass. In the case of short run lengths, a conventional manufacturing process and the material itself represent a significant cost, not only in the terms of material costs and the need for using complex technological systems which are necessary for their production, but also in the terms of the production time. Alternatively, 3D printing can be used for manufacturing similar embossing tools with major savings in production time and costs. However, due to properties of materials used in the 3D printing technology, expected results of embossing by 3D printed tools cannot be identical to metal ones. This problem is emphasized in the case of long run lengths and high accuracy requirement for embossed elements. The objective of this paper is primarily focused on investigating the influence of the printing speed on reproduction quality of the embossing tools printed with FDM (Fused Deposition Modelling technology. The obtained results confirmed that printing speed as a process parameter affects the reproduction quality of the embossing tools printed with FDM technology: in the case of deposition rate of 90 mm/s was noted the poorest dimensional accuracy in relation to the 3D model, which is more emphasised in case of circular and square elements. Elements printed with the highest printing speed have a greater dimensional accuracy, but with evident cracks on the surface.

  2. 21 CFR 582.6193 - Calcium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium chloride. 582.6193 Section 582.6193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance is generally...

  3. Introduction to printed electronics

    CERN Document Server

    Suganuma, Katsuaki

    2014-01-01

    This book describes in detail modern technologies for printed electronics, explaining how nanotechnology and modern printing technology are merging to revolutionize electronics fabrication of thin, lightweight, large, and inexpensive products. Readers will benefit from the explanations of materials, devices and circuits used to design and implement the latest applications of printed electronics, such as thin flexible OLED displays, organic solar cells, OLED lighting, smart wallpaper, sensors, logic, memory and more.

  4. Recent Progress in the Development of Printed Thin-Film Transistors and Circuits with High-Resolution Printing Technology.

    Science.gov (United States)

    Fukuda, Kenjiro; Someya, Takao

    2017-07-01

    Printed electronics enable the fabrication of large-scale, low-cost electronic devices and systems, and thus offer significant possibilities in terms of developing new electronics/optics applications in various fields. Almost all electronic applications require information processing using logic circuits. Hence, realizing the high-speed operation of logic circuits is also important for printed devices. This report summarizes recent progress in the development of printed thin-film transistors (TFTs) and integrated circuits in terms of materials, printing technologies, and applications. The first part of this report gives an overview of the development of functional inks such as semiconductors, electrodes, and dielectrics. The second part discusses high-resolution printing technologies and strategies to enable high-resolution patterning. The main focus of this report is on obtaining printed electrodes with high-resolution patterning and the electrical performance of printed TFTs using such printed electrodes. In the final part, some applications of printed electronics are introduced to exemplify their potential. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Prints Charles ja prints Michael külastasid Tallinna kirikuid / Allan Tammiku

    Index Scriptorium Estoniae

    Tammiku, Allan

    2001-01-01

    Prints Charles külastas 6. novembril Eesti-visiidi ajal Tallinna toomkirikut ja Pühavaimu kirikut, prints Michael viibis Tallinnas 11. novembril eravisiidil, ta külastas toomkirikut, Niguliste ja Pühavaimu kirikut

  6. Measurement of the Cupric Ion Concentration Variation near Electrodes in the Copper Electroplating System

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Je Young; Chung, Bum Jin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The heat fluxes to the side wall imposed at the upper metallic layer, are known to increase with the reduction of layer height. This 'Focusing effect' is varied by cooling condition of upper boundary and height of the metallic layer. The heat transfer experiments were replaced by mass transfer experiments based on the heat and mass transfer analogy concept. When the electroplating system is adopted as the mass transfer system, in order to simulate the different temperature conditions of top and side walls, an electrical resistance was attached to the top wall so that it is mimics hotter wall condition. Because the quantitative temperature conditions according to the electrical resistance were unknown, the methodology development is necessary. The electrical resistance was adopted to the top plate. But the quantitative temperature conditions depending on the electrical resistance were unknown. In order to overcome the limitations of mass transfer, this work tried to measure the cupric ion concentration. The methods of concentration measurement are RGB, Brightness, ICP, PIV, and Interferometry. The key of RGB, Brightness and PIV method is the clear images of the concentration boundary layer corresponding the thermal boundary layer of heat transfer. The results for ICP method can be got by taking the trace sample of a solution, accurately. The formation of patterns in the interferometry is very important. The characteristics of the interference pattern depend on the nature of the light source, the precise orientation of the mirrors, etc. The methodology of concentration measurement is still under development stage.

  7. Measurement of the Cupric Ion Concentration Variation near Electrodes in the Copper Electroplating System

    International Nuclear Information System (INIS)

    Moon, Je Young; Chung, Bum Jin

    2016-01-01

    The heat fluxes to the side wall imposed at the upper metallic layer, are known to increase with the reduction of layer height. This 'Focusing effect' is varied by cooling condition of upper boundary and height of the metallic layer. The heat transfer experiments were replaced by mass transfer experiments based on the heat and mass transfer analogy concept. When the electroplating system is adopted as the mass transfer system, in order to simulate the different temperature conditions of top and side walls, an electrical resistance was attached to the top wall so that it is mimics hotter wall condition. Because the quantitative temperature conditions according to the electrical resistance were unknown, the methodology development is necessary. The electrical resistance was adopted to the top plate. But the quantitative temperature conditions depending on the electrical resistance were unknown. In order to overcome the limitations of mass transfer, this work tried to measure the cupric ion concentration. The methods of concentration measurement are RGB, Brightness, ICP, PIV, and Interferometry. The key of RGB, Brightness and PIV method is the clear images of the concentration boundary layer corresponding the thermal boundary layer of heat transfer. The results for ICP method can be got by taking the trace sample of a solution, accurately. The formation of patterns in the interferometry is very important. The characteristics of the interference pattern depend on the nature of the light source, the precise orientation of the mirrors, etc. The methodology of concentration measurement is still under development stage.

  8. Semiotic Analysis Of Mcdonald's Printed Advertisement

    OpenAIRE

    URAIDA, SITI

    2014-01-01

    Keywords: Semiotic, printed advertisement, sign, icon, symbol, index, connotation, myth Printed advertisement has a promotional function as medium to advertise aproduct. It implicitly persuades people to create demand of product which is being advertised. In this study, the writer uses printed advertisement of McDonald's fast food company as the object. The printed advertisement was analyzed by usingSemiotics study. There are seven printed advertisements that were analyzes in this study. All ...

  9. AirPrint Forensics: Recovering the Contents and Metadata of Printed Documents from iOS Devices

    Directory of Open Access Journals (Sweden)

    Luis Gómez-Miralles

    2015-01-01

    data they may store, opens new opportunities in the field of computer forensics. In 2010, version 4 of the iOS operating system introduced AirPrint, a simple and driverless wireless printing functionality supported by hundreds of printer models from all major vendors. This paper describes the traces left in the iOS device when AirPrint is used and presents a method for recovering content and metadata of documents that have been printed.

  10. Durability of ink jet prints

    International Nuclear Information System (INIS)

    Dobric, E; Mirkovic, I Bolanca; Bolanca, Z

    2010-01-01

    The aim of this paper is the result presentation of some optical properties research for ink jet prints after: exposing the prints to the mixed daylight and artificial light, exposing of prints to the sun-light through the glass window, and exposing of prints to outdoor conditions during the summer months. The prints obtained by piezoelectric and thermal ink jet technologies were used in the researches. The dye-based inks and the pigmented inks based on water and the low solvent inks were used. The results of these researches, except the scientific contribution in the domain of understanding and explaining the environmental conditions on the gamut size, i.e. the range of color tonality, colorimetric stability and print quality, can be used by the ink and paper manufacturers in new formulations, offer data for the printer producers for further production and evaluation of the position of their products.

  11. Chloride removal from plutonium alloy

    International Nuclear Information System (INIS)

    Holcomb, H.P.

    1983-01-01

    SRP is evaluating a program to recover plutonium from a metallic alloy that will contain chloride salt impurities. Removal of chloride to sufficiently low levels to prevent damaging corrosion to canyon equipment is feasible as a head-end step following dissolution. Silver nitrate and mercurous nitrate were each successfully used in laboratory tests to remove chloride from simulated alloy dissolver solution containing plutonium. Levels less than 10 ppM chloride were achieved in the supernates over the precipitated and centrifuged insoluble salts. Also, less than 0.05% loss of plutonium in the +3, +4, or +6 oxidation states was incurred via precipitate carrying. These results provide impetus for further study and development of a plant-scale process to recover plutonium from metal alloy at SRP

  12. Luminous lip-prints as criminal evidence.

    Science.gov (United States)

    Castelló, Ana; Alvarez-Seguí, Mercedes; Verdú, Fernando

    2005-12-20

    Luminescence is specially a useful property for the search of invisible evidences at the scene of a crime. In the latent fingerprints particular case, there are at one's disposal fluorescent reagents for their localization. The study of latent lip prints (that is lip prints from protective lipstick, or permanent or long-lasting lipstick that do not leave any visible marks) is more recent than fingerprints study. Because of the different composition of both types of prints, different reagents have been tried out on their developing. Although, lysochromes are particularly useful reagents to obtain latent lip prints, it may occur on coloured or multicoloured surfaces, the developing is not perceived due to contrast problems between the reagent and the surface where the print is searched. Again, luminescence offers the possibility to solve this problem. Nile Red is being studied as a potential developer for latent lip prints. The results on very old prints (over 1year) indicate that this reagent is highly efficient to get latent lip prints.

  13. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials

    Directory of Open Access Journals (Sweden)

    Amelia Yilin Lee

    2017-10-01

    Full Text Available The rapid development of additive manufacturing and advances in shape memory materials have fueled the progress of four-dimensional (4D printing. With the right external stimulus, the need for human interaction, sensors, and batteries will be eliminated, and by using additive manufacturing, more complex devices and parts can be produced. With the current understanding of shape memory mechanisms and with improved design for additive manufacturing, reversibility in 4D printing has recently been proven to be feasible. Conventional one-way 4D printing requires human interaction in the programming (or shape-setting phase, but reversible 4D printing, or two-way 4D printing, will fully eliminate the need for human interference, as the programming stage is replaced with another stimulus. This allows reversible 4D printed parts to be fully dependent on external stimuli; parts can also be potentially reused after every recovery, or even used in continuous cycles—an aspect that carries industrial appeal. This paper presents a review on the mechanisms of shape memory materials that have led to 4D printing, current findings regarding 4D printing in alloys and polymers, and their respective limitations. The reversibility of shape memory materials and their feasibility to be fabricated using three-dimensional (3D printing are summarized and critically analyzed. For reversible 4D printing, the methods of 3D printing, mechanisms used for actuation, and strategies to achieve reversibility are also highlighted. Finally, prospective future research directions in reversible 4D printing are suggested.

  14. Print-to-print: printer-enabled out-of-cleanroom multiobject microprinting method.

    Science.gov (United States)

    Xing, Siyuan; Zhao, Siwei; Pan, Tingrui

    2014-01-01

    Micropatterning techniques have gained growing interests from a broad range of engineering and biology researches as it realizes the high-throughput and highly quantitative investigations on miniature biological objects (e.g., cells and bacteria) by spatially defined micropatterns. However, most of the existing techniques rely on expensive instruments or intensive cleanroom access which may not be easy to be utilized in a regular biological laboratory. Here, we present the detailed procedures of a simple versatile microprinting process, referred to as Print-to-Print (P2P), to form multiobject micropatterns for potential biological applications. Only a solid-phase printer and custom-made superhydrophobic (SH) films are utilized for the printing and no thermal or chemical treatment is involved during the entire printing process. Moreover, the noncontact nature of droplet transferring and printing steps can be highly advantageous for sensitive biological uses. By the P2P process, a minimal feature resolution of 229 ± 17 μm has been successfully achieved. What's more, this approach has been applied to form micropatterning on various commonly used substrates in biology as well as multiobject co-patterns. In addition, the SH substrates have also been demonstrated to be reusable. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. 21 CFR 173.255 - Methylene chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methylene chloride. 173.255 Section 173.255 Food... Solvents, Lubricants, Release Agents and Related Substances § 173.255 Methylene chloride. Methylene chloride may be present in food under the following conditions: (a) In spice oleoresins as a residue from...

  16. 21 CFR 182.8252 - Choline chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Choline chloride. 182.8252 Section 182.8252 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... chloride. (a) Product. Choline chloride. (b) Conditions of use. This substance is generally recognized as...

  17. 21 CFR 582.5446 - Manganese chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  18. 21 CFR 582.5252 - Choline chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Choline chloride. 582.5252 Section 582.5252 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5252 Choline chloride. (a) Product. Choline chloride. (b) Conditions of use. This...

  19. 21 CFR 582.5622 - Potassium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  20. 21 CFR 582.1193 - Calcium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium chloride. 582.1193 Section 582.1193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1193 Calcium chloride. (a) Product. Calcium chloride. (b) Conditions of use. This substance...

  1. 3D-Printed Millimeter Wave Structures

    Science.gov (United States)

    2016-03-14

    demonstrates the resolution of the printer with a 10 micron nozzle. Figure 2: Measured loss tangent of SEBS and SBS samples. 3D - Printed Millimeter... 3D printing of styrene-butadiene-styrene (SBS) and styrene ethylene/butylene-styrene (SEBS) is used to demonstrate the feasibility of 3D - printed ...Additionally, a dielectric lens is printed which improves the antenna gain of an open-ended WR-28 waveguide from 7 to 8.5 dBi. Keywords: 3D printing

  2. Inkjet-Printed Lithium-Sulfur Microcathodes for All-Printed, Integrated Nanomanufacturing.

    Science.gov (United States)

    Milroy, Craig A; Jang, Seonpil; Fujimori, Toshihiko; Dodabalapur, Ananth; Manthiram, Arumugam

    2017-03-01

    Improved thin-film microbatteries are needed to provide appropriate energy-storage options to power the multitude of devices that will bring the proposed "Internet of Things" network to fruition (e.g., active radio-frequency identification tags and microcontrollers for wearable and implantable devices). Although impressive efforts have been made to improve the energy density of 3D microbatteries, they have all used low energy-density lithium-ion chemistries, which present a fundamental barrier to miniaturization. In addition, they require complicated microfabrication processes that hinder cost-competitiveness. Here, inkjet-printed lithium-sulfur (Li-S) cathodes for integrated nanomanufacturing are reported. Single-wall carbon nanotubes infused with electronically conductive straight-chain sulfur (S@SWNT) are adopted as an integrated current-collector/active-material composite, and inkjet printing as a top-down approach to achieve thin-film shape control over printed electrode dimensions is used. The novel Li-S cathodes may be directly printed on traditional microelectronic semicoductor substrates (e.g., SiO 2 ) or on flexible aluminum foil. Profilometry indicates that these microelectrodes are less than 10 µm thick, while cyclic voltammetry analyses show that the S@SWNT possesses pseudocapacitive characteristics and corroborates a previous study suggesting the S@SWNT discharge via a purely solid-state mechanism. The printed electrodes produce ≈800 mAh g -1 S initially and ≈700 mAh g -1 after 100 charge/discharge cycles at C/2 rate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Remote Collaborative 3D Printing - Process Investigation

    Science.gov (United States)

    2016-04-01

    COLLABORATIVE 3D PRINTING - PROCESS INVESTIGATION Cody M. Reese, PE CAD MODEL PRINT MODEL PRINT PREVIEW PRINTED PART AERIAL VIRTUAL This...REMOTE COLLABORATIVE 3D PRINTING - PROCESS INVESTIGATION 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Cody M. Reese...release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Remote Collaborative 3D Printing project is a collaboration between

  4. Enhancement of heat dissipation of LED module with cupric-oxide composite coating on aluminum-alloy heat sink

    International Nuclear Information System (INIS)

    Kim, Donghyun; Lee, Junghoon; Kim, Junho; Choi, Chang-Hwan; Chung, Wonsub

    2015-01-01

    Highlights: • We fabricate the CuO/resin composite coating layer on aluminum alloy heat sink. • CuO/resin coating considerably improved the surface emissivity. • The LED junction temperature was reduced by CuO/resin coated heat sink. • The thermal resistance of heat sink was decreased by CuO/resin composite coating at 200 μm thickness. - Abstract: A composite coating composed of cupric oxide (CuO) and silicon-based resin was applied to an aluminum-alloy heat sink for a light emitting diode (LED) module. The purpose of the composite coating is to improve the heat dissipation performance of heat sink by enhancing thermal radiation emission. The heat dissipation performance was investigated in terms of LED junction temperature and thermal resistance using a thermal transient method. The CuO and silicon-based resin composite coating showed higher emissivity, and the lower junction temperature and thermal resistance of the heat sink was achieved. In addition, a continuous operation test of the LED chip with the heat sink revealed that the surface treated with the CuO composite coating stably dissipated heat without degradation. In conclusion, the composite coating proposed here showed a significant improvement of the heat dissipation performance of the aluminum-alloy heat sink due to the enhanced thermal radiation property.

  5. 21 CFR 582.5985 - Zinc chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is...

  6. 21 CFR 182.8985 - Zinc chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc chloride. 182.8985 Section 182.8985 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is generally recognized as safe when used in...

  7. 21 CFR 172.180 - Stannous chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Stannous chloride. 172.180 Section 172.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.180 Stannous chloride. The food additive stannous chloride may be safely used for color...

  8. Comment on "Combination of cupric ion with hydroxylamine and hydrogen peroxide for the control of bacterial biofilms on RO membranes by Hye-Jin Lee, Hyung-Eun Kim, Changha Lee [Water Research 110, 2017, 83-90]".

    Science.gov (United States)

    Chen, Long; Peng, Ying; Tang, Min; Wu, Feng

    2017-07-01

    The methodology employed by Lee et al. to terminate their bactericidal assays was found to be flawed via our demonstrations. Briefly, EDTA or sulfite combining with cupric ion did not fully terminate, and instead even boosted the P. aeruginosa death. We therefore suggested them to seek for other means of reaction termination, such as the combination of buffering agent PBS and Cu(II)-complexing agent EDTA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Salt, chloride, bleach, and innate host defense

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  10. Salt, chloride, bleach, and innate host defense.

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.

  11. Software for Quantitative Estimation of Coefficients of Ink Transfer on the Printed Substrate in Offset Printing

    Science.gov (United States)

    Varepo, L. G.; Trapeznikova, O. V.; Panichkin, A. V.; Roev, B. A.; Kulikov, G. B.

    2018-04-01

    In the framework of standardizing the process of offset printing, one of the most important tasks is the correct selection of the printing system components, taking into account the features of their interaction and behavior in the printing process. The program allows to calculate the transfer of ink on the printed material between the contacting cylindrical surfaces of the sheet-fed offset printing apparatus with the boundaries deformation. A distinctive feature of this software product is the modeling of the liquid flow having free boundaries and causing deformation of solid boundaries when flowing between the walls of two cylinders.

  12. 21 CFR 184.1446 - Manganese chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese chloride. 184.1446 Section 184.1446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2·4H2O, CAS...

  13. Selecting suitable enclosures for digitally printed materials

    International Nuclear Information System (INIS)

    Burge, D; Rima, L

    2010-01-01

    It cannot be assumed that storage enclosures considered safe for traditionally printed images and documents are suitable for modern, digitally printed materials. In this project, a large variety of digital print types were tested using a modified version of the ISO 18916 Imaging materials-Processed imaging materials-Photographic activity test for enclosure materials standard to assess the risk to digital prints by paper enclosures known to be inert or reactive with traditional photographic prints. The types of enclosures tested included buffered and non-buffered cotton papers, and groundwood paper. In addition, qualitative filter paper that had been wetted and dried with either an acidic or basic solution was also tested to determine the effects of enclosure pH on digitally printed materials. It was determined that, in general, digital prints tended to be less reactive with various enclosure types than traditional prints. Digital prints were most sensitive to paper that contained groundwood. The enclosure reactivity test results were then integrated with previous published work on the tendencies of various enclosure types to abrade, ferrotype, or block to digital prints in order to create a comprehensive set of recommendations for digital print storage enclosures.

  14. Inkjet printed electronics using copper nanoparticle ink

    OpenAIRE

    Kang, Jin Sung; Kim, Hak Sung; Ryu, Jongeun; Thomas Hahn, H.; Jang, Seonhee; Joung, Jae Woo

    2010-01-01

    Inkjet printing of electrode using copper nanoparticle ink is presented. Electrode was printed on a flexible glass epoxy composite substrate using drop on demand piezoelectric dispenser and was sintered at 200 °C of low temperature in N2 gas condition. The printed electrodes were made with various widths and thickness. In order to control the thickness of the printed electrode, number of printing was varied. Resistivity of printed electrode was calculated from the cross-sectional area measure...

  15. Checking a printed board

    CERN Multimedia

    1977-01-01

    An 'Interactive Printed Circuit Board Design System' has been developed by a company in a Member-State. Printed circuits are now produced at the SB's surface treatment workshop using a digitized photo-plotter.

  16. 3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing.

    Science.gov (United States)

    Kuang, Xiao; Chen, Kaijuan; Dunn, Conner K; Wu, Jiangtao; Li, Vincent C F; Qi, H Jerry

    2018-02-28

    The three-dimensional (3D) printing of flexible and stretchable materials with smart functions such as shape memory (SM) and self-healing (SH) is highly desirable for the development of future 4D printing technology for myriad applications, such as soft actuators, deployable smart medical devices, and flexible electronics. Here, we report a novel ink that can be used for the 3D printing of highly stretchable, SM, and SH elastomer via UV-light-assisted direct-ink-write printing. An ink containing urethane diacrylate and a linear semicrystalline polymer is developed for the 3D printing of a semi-interpenetrating polymer network elastomer that can be stretched by up to 600%. The 3D-printed complex structures show interesting functional properties, such as high strain SM and SM -assisted SH capability. We demonstrate that such a 3D-printed SM elastomer has the potential application for biomedical devices, such as vascular repair devices. This research paves a new way for the further development of novel 4D printing, soft robotics, and biomedical devices.

  17. Method for preparation of melts of alkali metal chlorides with highly volatile polyvalent metal chlorides

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Kudyakov, V.Ya.

    1990-01-01

    A method for production of alkali metal (Cs, Rb, K) chloride melts with highly volatile polyvalent metal chlorides is suggested. The method consists, in saturation of alkali metal chlorides, preheated to the melting point, by volatile component vapours (titanium tetrachloride, molybdenum or tantalum pentachloride) in proportion, corresponding to the composition reguired. The saturation is realized in an evacuated vessel with two heating areas for 1-1.5 h. After gradual levelling of temperature in both areas the product is rapidly cooled. 1 fig.; 1 tab

  18. Determination of Chloride Content in Cementitious Materials : From Fundamental Aspects to Application of Ag/AgCl Chloride Sensors

    NARCIS (Netherlands)

    Pargar, F.; Koleva, D.A.; van Breugel, K.

    2017-01-01

    This paper reports on the advantages and drawbacks of available test methods for the determination of chloride content in cementitious materials in general, and the application of Ag/AgCl chloride sensors in particular. The main factors that affect the reliability of a chloride sensor are presented.

  19. High-resolution direct 3D printed PLGA scaffolds: print and shrink

    International Nuclear Information System (INIS)

    Chia, Helena N; Wu, Benjamin M

    2015-01-01

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds. (paper)

  20. High-resolution direct 3D printed PLGA scaffolds: print and shrink.

    Science.gov (United States)

    Chia, Helena N; Wu, Benjamin M

    2014-12-17

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds.

  1. Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (II) and cadmium (II) in soil and water samples

    International Nuclear Information System (INIS)

    Kadara, Rashid O.; Tothill, Ibtisam E.

    2008-01-01

    A bulk-modified screen-printed carbon electrode characterised for metal ion detection is presented. Bismuth oxide (Bi 2 O 3 ) was mixed with graphite-carbon ink to obtain the modified electrode. The best composition was 2% Bi 2 O 3 (wt%) in the graphite-carbon ink. The modified electrode with onboard screen-printed carbon counter and silver-silver chloride pseudo-reference electrodes exhibited good performance in the electrochemical measurement of lead (II) and cadmium (II). The electrode displayed excellent linear behaviour in the concentration range examined (20-300 μg L -1 ) with limits of detection of 8 and 16 μg L -1 for both lead (II) and cadmium (II), respectively. The analytical utility of the modified electrode was illustrated by the stripping chronopotentiometric determinations of lead (II) in soil extracts and wastewater samples

  2. Micellar solubilization in strongly interacting binary surfactant systems. [Binary surfactant systems of: dodecyltrimethylammonium chloride + sodium dodecyl sulfate; benzyldimethyltetradecylammonium chloride + tetradecyltrimethylammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Treiner, C. (Universite Pierre et Marie Curie, Paris (France)); Nortz, M.; Vaution, C. (Faculte de Pharmacie de Paris-sud, Chatenay-Malabry (France))

    1990-07-01

    The apparent partition coefficient P of barbituric acids between micelles and water has been determined in mixed binary surfactant solutions from solubility measurements in the whole micellar composition range. The binary systems chosen ranged from the strongly interacting system dodecyltrimethylammonium chloride + sodium dodecyl sulfate to weakly interacting systems such as benzyldimethyltetradecylammonium chloride + tetradecyltrimethyammonium chloride. In all cases studied, mixed micelle formation is unfavorable to micellar solubilization. A correlation is found between the unlike surfactants interaction energy, as measured by the regular solution parameter {beta} and the solute partition coefficient change upon surfactant mixing. By use of literature data on micellar solubilization in binary surfactant solutions, it is shown that the change of P for solutes which are solubilized by surface adsorption is generally governed by the sign and amplitude of the interaction parameter {beta}.

  3. 3D Printing of Biosamples: A Concise Review

    Science.gov (United States)

    Zhao, Victoria Xin Ting; Wong, Ten It; Zhou, Xiaodong

    This paper reviews the recent development of 3D printing of biosamples, in terms of the 3D structure design, suitable printing technology, and available materials. Successfully printed 3D biosamples should possess the properties of high cell viability, vascularization and good biocompatibility. These goals are attained by printing the materials of hydrogels, polymers and cells, with a carefully selected 3D printer from the categories of inkjet printing, extrusion printing and laser printing, based on the uniqueness, advantages and disadvantages of these technologies. For recent developments, we introduce the 3D applications of creating scaffolds, printing cells for self-assembly and testing platforms. We foresee more bio-applications of 3D printing will be developed, with the advancements on materials and 3D printing machines.

  4. 3D Bio-Printing Review

    Science.gov (United States)

    Du, Xianbin

    2018-01-01

    Ultimate goal of tissue engineering is to replace pathological or necrotic body tissue or organ by artificial tissue or organ and tissue engineering is a very promising research field. 3D bio-printing is a kind of emerging technologies and a branch of tissue engineering. It has made significant progress in the past decade. 3D bio-printing can realize tissue and organ construction in vitro and has wide application in basic research and pharmacy. This paper is to make an analysis and review on 3D bio-printing from the perspectives of bioink, printing technology and technology application.

  5. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  6. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    Directory of Open Access Journals (Sweden)

    Rubaiyet Iftekharul Haque

    2015-10-01

    Full Text Available A capacitive acoustic resonator developed by combining three-dimensional (3D printing and two-dimensional (2D printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency.

  7. 3D Printing: Print the future of ophthalmology.

    Science.gov (United States)

    Huang, Wenbin; Zhang, Xiulan

    2014-08-26

    The three-dimensional (3D) printer is a new technology that creates physical objects from digital files. Recent technological advances in 3D printing have resulted in increased use of this technology in the medical field, where it is beginning to revolutionize medical and surgical possibilities. It is already providing medicine with powerful tools that facilitate education, surgical planning, and organ transplantation research. A good understanding of this technology will be beneficial to ophthalmologists. The potential applications of 3D printing in ophthalmology, both current and future, are explored in this article. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  8. Thallium-201 chloride dynamic analysis using thallium-201 chloride and sodium iodide-131 thyroid subtraction scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Setsuo; Hiraki, Yoshio; Togami, Izumi [Okayama Univ. (Japan). School of Medicine

    1984-10-01

    The mechanism of /sup 201/Tl chloride accumulation is unclear in thyroid gland and thyroid tumor. This report examines 108 patients that received thyroid scintigraphy examinations with both /sup 201/Tl chloride and sodium /sup 131/I. The patients were diagnosed clinically and histologically whenever possible. The ROI were obtained by subtraction imaging with both isotopes and by subtraction positive and negative areas of imaging. Dynamic curves were obtained for /sup 201/Tl chloride per square unit of each ROI. The dynamic curve in the radioiodide-accumulated area was examined. The data indicate that the clearance rate of /sup 201/Tl chloride (T/sub 15/) was correlated with the sodium /sup 131/I uptake rate at 24 h (r=0.70).

  9. Application to printed resistors

    International Nuclear Information System (INIS)

    Hachiyanagi, Yoshimi; Uraki, Hisatsugu; Sawamura, Masashi

    1989-01-01

    Most of printed circuit boards are made at present by etching copper foils which are laminated on insulating composite boards of paper/phenol resin or glass nonwoven fabric/epoxy rein. This is called subtractive process, and since this is a wet process, the problem of coping with the pollution due to etching solution, plating solution and others is involved. As the method of solving this problem, attention has been paid to the dry process which forms conductor patterns by screen printing using electro-conductive paste. For such resin substrates, generally polymer thick films (PTF) using thermosetting resin as the binder are used. Also the research on the formation of resistors, condensers and other parts by printing using the technology of cermet thick films (CTF) and PTF is active, and it is partially put in practical use. The problems are the deformation and deterioration of substrates, therefore, as the countermeasures, electron beam hardening type PTF has been studied, and various pastes have been developed. In this paper, electron beam hardening type printed resistors are reported. The features, resistance paste, and a number of the experiments on printed resistors are described. (K.I.)

  10. Modified chloride diffusion model for concrete under the coupling effect of mechanical load and chloride salt environment

    Science.gov (United States)

    Lei, Mingfeng; Lin, Dayong; Liu, Jianwen; Shi, Chenghua; Ma, Jianjun; Yang, Weichao; Yu, Xiaoniu

    2018-03-01

    For the purpose of investigating lining concrete durability, this study derives a modified chloride diffusion model for concrete based on the odd continuation of boundary conditions and Fourier transform. In order to achieve this, the linear stress distribution on a sectional structure is considered, detailed procedures and methods are presented for model verification and parametric analysis. Simulation results show that the chloride diffusion model can reflect the effects of linear stress distribution of the sectional structure on the chloride diffusivity with reliable accuracy. Along with the natural environmental characteristics of practical engineering structures, reference value ranges of model parameters are provided. Furthermore, a chloride diffusion model is extended for the consideration of multi-factor coupling of linear stress distribution, chloride concentration and diffusion time. Comparison between model simulation and typical current research results shows that the presented model can produce better considerations with a greater universality.

  11. Three-dimensional sponge-like architectured cupric oxides as high-power and long-life anode material for lithium rechargeable batteries

    International Nuclear Information System (INIS)

    Choi, Chung Seok; Park, Young-Uk; Kim, Hyungsub; Kim, Na Rae; Kang, Kisuk; Lee, Hyuck Mo

    2012-01-01

    Cupric oxide (CuO) nanoparticles (NPs) with three-dimensional (3D) sponge structure are obtained through the sintering of Cu NPs at 360 °C. Their morphology is analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and their crystal structure is checked by X-ray diffraction. CuO NPs have a 3D porous structure. The NPs are assembled to form larger secondary particles with many empty spaces among them, and they have a CuO phase after the heat treatment. CuO NPs with this novel architecture exhibit good electrochemical performance as anode material. The anode material with a sponge-like structure is prepared at 360 °C, as the Li-ion battery exhibits a high electrochemical capacity of 674 mAh g −1 . When the sample is sintered at 360 °C, the charge/discharge capacities increase gradually and cycle up to 50 cycles at a C/10 rate, exhibiting excellent rate capability compared with earlier reported CuO/CuO-composite anodes. Electrochemical impedance spectroscopy (EIS) measurements suggest that the superior electrical conductivity of the sample sintered at 360 °C is the main factor responsible for the improved power capability.

  12. Enthalpic interactions of N-glycylglycine with xylitol in aqueous sodium chloride and potassium chloride solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    Liu Min; Wang Lili; Zhu Lanying; Li Hui; Sun Dezhi; Di Youying; Li Linwei

    2010-01-01

    The mixing enthalpies of N-glycylglycine with xylitol and their respective enthalpies of dilution in aqueous sodium chloride and potassium chloride solutions have been determined by using flow-mix isothermal microcalorimetry at the temperature of 298.15 K. These experimental results have been used to determine the heterotactic enthalpic interaction coefficients (h xy , h xxy , and h xyy ) according to the McMillan-Mayer theory. It has been found that the heterotactic enthalpic pairwise interaction coefficients h xy between N-glycylglycine and xylitol in aqueous sodium chloride and potassium chloride solutions are negative and become less negative with an increase in the molality of sodium chloride or potassium chloride. The results are discussed in terms of solute-solute and solute-solvent interactions.

  13. Enthalpic interactions of N-glycylglycine with xylitol in aqueous sodium chloride and potassium chloride solutions at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Liu Min, E-mail: panpanliumin@163.co [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Wang Lili [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Zhu Lanying [College of Life Science and Bioengineering, Liao Cheng University, Liaocheng, Shandong 252059 (China); Li Hui; Sun Dezhi; Di Youying; Li Linwei [College of Chemistry and Chemical Engineering, Liao Cheng University, Liaocheng, Shandong 252059 (China)

    2010-07-15

    The mixing enthalpies of N-glycylglycine with xylitol and their respective enthalpies of dilution in aqueous sodium chloride and potassium chloride solutions have been determined by using flow-mix isothermal microcalorimetry at the temperature of 298.15 K. These experimental results have been used to determine the heterotactic enthalpic interaction coefficients (h{sub xy}, h{sub xxy}, and h{sub xyy}) according to the McMillan-Mayer theory. It has been found that the heterotactic enthalpic pairwise interaction coefficients h{sub xy} between N-glycylglycine and xylitol in aqueous sodium chloride and potassium chloride solutions are negative and become less negative with an increase in the molality of sodium chloride or potassium chloride. The results are discussed in terms of solute-solute and solute-solvent interactions.

  14. Renal abnormalities in congenital chloride diarrhea

    International Nuclear Information System (INIS)

    Al-Hamad, Nadia M.; Al-Eisa, Amal A.

    2004-01-01

    Congenital chloride diarrhea CLD is a rare autosomal recessive disorder caused by a defect in the chloride/ bicarbonate exchange in the ileum and colon. It is characterized by watery diarrhea, abdominal distension, hypochloremic hypokalemic metabolic alkalosis with high fecal content of chloride >90 mmol/l. We report 3 patients with CLD associated with various renal abnormalities including chronic renal failure secondary to renal hypoplasia, nephrocalcinosis and congenital nephrotic syndrome. (author)

  15. Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning.

    Science.gov (United States)

    Zhou, Lu; Yang, Lei; Yu, Mengjie; Jiang, Yi; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei

    2017-11-22

    Manufacturing small-molecule organic light-emitting diodes (OLEDs) via inkjet printing is rather attractive for realizing high-efficiency and long-life-span devices, yet it is challenging. In this paper, we present our efforts on systematical investigation and optimization of the ink properties and the printing process to enable facile inkjet printing of conjugated light-emitting small molecules. Various factors on influencing the inkjet-printed film quality during the droplet generation, the ink spreading on the substrates, and its solidification processes have been systematically investigated and optimized. Consequently, halogen-free inks have been developed and large-area patterning inkjet printing on flexible substrates with efficient blue emission has been successfully demonstrated. Moreover, OLEDs manufactured by inkjet printing the light-emitting small molecules manifested superior performance as compared with their corresponding spin-cast counterparts.

  16. Banner Pages on the New Printing Infrastructure

    CERN Multimedia

    2006-01-01

    Changes to the printing service were announced in CERN Bulletin No. 37-38/2006. In the new infrastructure, the printing of the banner page has been disabled in order to reduce paper consumption. Statistics show that the average print job size is small and the paper savings by not printing the banner page could be up to 20 %. When each printer is moved onto the new infrastructure banner page printing will be disabled. In the case of corridor printers which are shared by several users, the Helpdesk can re-enable banner page printing upon request. We hope ultimately to arrive at a situation where banner page printing is enabled on fewer than 10% of printers registered on the network. You can still print banner pages on printers where it has been centrally disabled by using Linux. Simply add it to your print job on the client side by adding the -o job-sheets option to your lpr command. Detailed documentation is available on each SLC3/4 under the following link: http://localhost:631/sum.html#4_2 Please bea...

  17. Balkan Print Forum – Dynamic Balkan Print Media Community

    Directory of Open Access Journals (Sweden)

    Rossitza Velkova

    2011-11-01

    Full Text Available Founded in October 2006, the Balkan Print Forum is gradually becoming an important regional institution. Its main targets are to share experiences and know-how,to initiate and intensify contacts and to support joint projects in the Balkan region.Since drupa 2008 there are 11 member countries of the Balkan Print Forum:Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Former Yugoslav Republic of Macedonia, Greece, Hungary, Romania, Serbia, Slovenia and Turkey. Partners of BPF are some companies and universities from Russia and Ukraine.

  18. Active origami by 4D printing

    International Nuclear Information System (INIS)

    Ge, Qi; Qi, H Jerry; Dunn, Martin L; Dunn, Conner K

    2014-01-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand. (paper)

  19. Active origami by 4D printing

    Science.gov (United States)

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

  20. Inkjet and screen printing for electronic applications

    OpenAIRE

    Medina Rodríguez, Beatriz

    2016-01-01

    Printed electronics (PE) is a set of printing methods used to create electrical devices on various substrates. Printing typically uses common printing equipment suitable for defining patterns on material, such as screen printing, flexography, gravure, offset lithography, and inkjet. Electrically functional, electronic or optical inks are deposited on the substrate, creating active or passive devices. PE offers a great advantage when compared to traditional processes or microelectronics du...

  1. Study on the chloride migration coefficient obtained following different Rapid Chloride Migration (RCM) test guidelines

    NARCIS (Netherlands)

    Spiesz, P.R.; Brouwers, H.J.H.; Uzoegbo, H.C.; Schmidt, W.

    2013-01-01

    This work presents the differences in the available Rapid Chloride Migration (RCM) test guidelines, and their influence on the values of the chloride migration coefficients DRCM, obtained following these guidelines. It is shown that the differences between the guidelines are significant and concern

  2. Can lip prints provide biologic evidence?

    Science.gov (United States)

    Sharma, Preeti; Sharma, Neeraj; Wadhwan, Vijay; Aggarwal, Pooja

    2016-01-01

    Lip prints are unique and can be used in personal identification. Very few studies are available which establish them as biological evidence in the court of law. Thus, the objective of this study was to attempt to isolate DNA and obtain full short tandem repeat (STR) loci of the individual from the lip prints on different surfaces. Twelve lip prints were procured on different surfaces such as tissue paper, cotton cloth, ceramic tile, and glass surface. Latent lip prints were developed using fingerprint black powder. Lipstick-coated lip prints were also collected on the same supporting items. DNA was isolated, quantified, and amplified using Identifiler™ kit to type 15 STR loci. Ample quantity of DNA was extracted from all the lip print impressions and 15 loci were successfully located in seven samples. Fourteen loci were successfully typed in 3 lip impressions while 13 loci were typed in 2 samples. This study emphasizes the relevance of lip prints at the scene of crime. Extraction of DNA followed by typing of STR loci establishes the lip prints as biological evidence too. Tissue papers, napkins, cups, and glasses may have imprints of the suspect's lips. Thus, the full genetic profile is extremely useful for the forensic team.

  3. 3D printed e-tongue

    Science.gov (United States)

    Gaál, Gabriel; da Silva, Tatiana A.; Gaál, Vladimir; Hensel, Rafael C.; Amaral, Lucas R.; Rodrigues, Varlei; Riul, Antonio

    2018-05-01

    Nowadays, one of the biggest issues addressed to electronic sensor fabrication is the build-up of efficient electrodes as an alternative way to the expensive, complex and multistage processes required by traditional techniques. Printed electronics arises as an interesting alternative to fulfill this task due to the simplicity and speed to stamp electrodes on various surfaces. Within this context, the Fused Deposition Modeling 3D printing is an emerging, cost-effective and alternative technology to fabricate complex structures that potentiates several fields with more creative ideas and new materials for a rapid prototyping of devices. We show here the fabrication of interdigitated electrodes using a standard home-made CoreXY 3D printer using transparent and graphene-based PLA filaments. Macro 3D printed electrodes were easily assembled within 6 minutes with outstanding reproducibility. The electrodes were also functionalized with different nanostructured thin films via dip-coating Layer-by-Layer technique to develop a 3D printed e-tongue setup. As a proof of concept, the printed e-tongue was applied to soil analysis. A control soil sample was enriched with several macro-nutrients to the plants (N, P, K, S, Mg and Ca) and the discrimination was done by electrical impedance spectroscopy of water solution of the soil samples. The data was analyzed by Principal Component Analysis and the 3D printed sensor distinguished clearly all enriched samples despite the complexity of the soil chemical composition. The 3D printed e-tongue successfully used in soil analysis encourages further investments in developing new sensory tools for precision agriculture and other fields exploiting the simplicity and flexibility offered by the 3D printing techniques.

  4. Potassium sorbate-A new aqueous copper corrosion inhibitor

    International Nuclear Information System (INIS)

    Abelev, Esta; Starosvetsky, David; Ein-Eli, Yair

    2007-01-01

    This work presents the novel nature of 2,4-hexadienoic acid potassium salt (potassium sorbate (KCH 3 CH=CHCH=CHCO 2 )) as an effective copper aqueous corrosion inhibitor. The influence of pH and potassium sorbate concentration on copper corrosion in aerated sulfate and chloride solutions is reported. Degree of copper protection was found to increase with an increase in potassium sorbate concentration; an optimum concentration of this inhibitor in sulfate solutions was found to be 10 g/L. Copper is highly resistant to corrosion attacks by chloride ions in the presence of potassium sorbate. X-ray photoelectron spectroscopy (XPS) studies suggest that copper protection is achieved via the formation of a mixed layer of cuprous oxide, cupric hydroxide and copper(II)-sorbate at the metal surface

  5. Mapping the spatial distribution of chloride deposition across Australia

    Science.gov (United States)

    Davies, P. J.; Crosbie, R. S.

    2018-06-01

    The high solubility and conservative behaviour of chloride make it ideal for use as an environmental tracer of water and salt movement through the hydrologic cycle. For such use the spatial distribution of chloride deposition in rainfall at a suitable scale must be known. A number of authors have used point data acquired from field studies of chloride deposition around Australia to construct relationships to characterise chloride deposition as a function of distance from the coast; these relationships have allowed chloride deposition to be interpolated in different regions around Australia. In this paper we took this a step further and developed a chloride deposition map for all of Australia which includes a quantification of uncertainty. A previously developed four parameter model of chloride deposition as a function of distance from the coast for Australia was used as the basis for producing a continental scale chloride deposition map. Each of the four model parameters were made spatially variable by creating parameter surfaces that were interpolated using a pilot point regularisation approach within a parameter estimation software. The observations of chloride deposition were drawn from a literature review that identified 291 point measurements of chloride deposition over a period of 80 years spread unevenly across all Australian States and Territories. A best estimate chloride deposition map was developed from the resulting surfaces on a 0.05 degree grid. The uncertainty in the chloride deposition map was quantified as the 5th and 95th percentile of 1000 calibrated models produced via Null Space Monte Carlo analysis and the spatial variability of chloride deposition across the continent was consistent with landscape morphology. The temporal variability in chloride deposition on a decadal scale was investigated in the Murray-Darling Basin, this highlighted the need for long-term monitoring of chloride deposition if the uncertainty of the continental scale map is

  6. Plasma jet printing for flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gandhiraman, Ram P.; Singh, Eric; Diaz-Cartagena, Diana C.; Koehne, Jessica; Meyyappan, M. [Center for Nanotechnology, NASA Ames Research Center, Moffett Field, California 94035 (United States); Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-03-21

    Recent interest in flexible electronics and wearable devices has created a demand for fast and highly repeatable printing processes suitable for device manufacturing. Robust printing technology is critical for the integration of sensors and other devices on flexible substrates such as paper and textile. An atmospheric pressure plasma-based printing process has been developed to deposit different types of nanomaterials on flexible substrates. Multiwalled carbon nanotubes were deposited on paper to demonstrate site-selective deposition as well as direct printing without any type of patterning. Plasma-printed nanotubes were compared with non-plasma-printed samples under similar gas flow and other experimental conditions and found to be denser with higher conductivity. The utility of the nanotubes on the paper substrate as a biosensor and chemical sensor was demonstrated by the detection of dopamine, a neurotransmitter, and ammonia, respectively.

  7. Chloride channels as tools for developing selective insecticides.

    Science.gov (United States)

    Bloomquist, Jeffrey R

    2003-12-01

    Ligand-gated chloride channels underlie inhibition in excitable membranes and are proven target sites for insecticides. The gamma-aminobutyric acid (GABA(1)) receptor/chloride ionophore complex is the primary site of action for a number of currently used insecticides, such as lindane, endosulfan, and fipronil. These compounds act as antagonists by stabilizing nonconducting conformations of the chloride channel. Blockage of the GABA-gated chloride channel reduces neuronal inhibition, which leads to hyperexcitation of the central nervous system, convulsions, and death. We recently investigated the mode of action of the silphinenes, plant-derived natural compounds that structurally resemble picrotoxinin. These materials antagonize the action of GABA on insect neurons and block GABA-mediated chloride uptake into mouse brain synaptoneurosomes in a noncompetitive manner. In mammals, avermectins have a blocking action on the GABA-gated chloride channel consistent with a coarse tremor, whereas at longer times and higher concentrations, activation of the channel suppresses neuronal activity. Invertebrates display ataxia, paralysis, and death as the predominant signs of poisoning, with a glutamate-gated chloride channel playing a major role. Additional target sites for the avermectins or other chloride channel-directed compounds might include receptors gated by histamine, serotonin, or acetylcholine.The voltage-sensitive chloride channels form another large gene family of chloride channels. Voltage-dependent chloride channels are involved in a number of physiological processes including: maintenance of electrical excitability, chloride ion secretion and resorption, intravesicular acidification, and cell volume regulation. A subset of these channels is affected by convulsants and insecticides in mammals, although the role they play in acute lethality in insects is unclear. Given the wide range of functions that they mediate, these channels are also potential targets for

  8. The NIH 3D Print Exchange: A Public Resource for Bioscientific and Biomedical 3D Prints

    OpenAIRE

    Coakley, Meghan F.; Hurt, Darrell E.; Weber, Nick; Mtingwa, Makazi; Fincher, Erin C.; Alekseyev, Vsevelod; Chen, David T.; Yun, Alvin; Gizaw, Metasebia; Swan, Jeremy; Yoo, Terry S.; Huyen, Yentram

    2014-01-01

    The National Institutes of Health (NIH) has launched the NIH 3D Print Exchange, an online portal for discovering and creating bioscientifically relevant 3D models suitable for 3D printing, to provide both researchers and educators with a trusted source to discover accurate and informative models. There are a number of online resources for 3D prints, but there is a paucity of scientific models, and the expertise required to generate and validate such models remains a barrier. The NIH 3D Print ...

  9. Electron beam hardening type copper plate printing ink

    International Nuclear Information System (INIS)

    Kawamura, Eiji; Inoue, Mitsuo; Kusaki, Satoichiro

    1989-01-01

    Copper plate printing is the printing method of filling ink in the parts of concave printing elements on a type area, and transferring the ink to a base, and it is the feature that the ink in the printing element parts of a print rises. Copper plate prints show profound feeling, in addition, its effect of preventing forgery is high. This method is generally called engraving printing, and is used frequently for printing various bills and artistic prints. The electron beam irradiation apparatus installed in the laboratory of the Printing Bureau, Ministry of Finance, is an experimental machine of area beam type, and is so constructed as to do batch conveyance and web conveyance. As the ink in printing element parts rises, the offset at the delivery part of a printing machine becomes a problem. Electron beam is superior in its transparency, and can dry instantaneously to the inside of opaque ink. At 200 kV of acceleration voltage, the ink of copper plate prints can be hardened by electron beam irradiation. The dilution monomers as the vehicle for ink were tested for their dilution capability and the effect of electron beam hardening. The problem in the utilization of electron beam is the deterioration of papers, and the counter-measures were tested. (K.I.)

  10. Relation between chloride exchange diffusion and a conductive chloride pathway across the isolated skin of the toad (Bufo bufo)

    DEFF Research Database (Denmark)

    Kristensen, P; Larsen, Erik Hviid

    1978-01-01

    Substitution of chloride in the outside bathing medium of the toad skin with bromide, iodide, nitrate and sulphate leads to a reduction in the apparent exchange diffusion of chloride across this tissue, and also to a reduction of the chloride current recorded during hyperpolarization. A series...

  11. Customizing digital printing for fine art practice

    Science.gov (United States)

    Parraman, Carinna E.; Thirkell, Paul; Hoskins, Steve; Wang, Hong Qiang; Laidler, Paul

    2005-01-01

    The presentation will demonstrate how through alternative methods of digital print production the Centre for Fine Print Research (CFPR) is developing methodologies for digital printing that attempt to move beyond standard reproductive print methods. Profiling is used for input and output hardware, along with bespoke profiling for fine art printmaking papers. Examples of artist's work, and examples from the Perpetual Portfolio are included - an artist in residence scheme for selected artists wanting to work at the Centre and to make a large-format digital print. Colour is an important issue: colour fidelity, colour density on paper, colour that can be achieved through multiple-pass printing. Research is also underway to test colour shortfalls in the current inkjet ink range, and to extend colour through the use of traditional printing inks.

  12. PRINTING TECHNIQUES: RECENT DEVELOPMENTS IN PHARMACEUTICAL TECHNOLOGY.

    Science.gov (United States)

    Jamroz, Witold; Kurek, Mateusz; Lyszczarz, Ewelina; Brniak, Witold; Jachowicz, Renata

    2017-05-01

    In the last few years there has been a huge progress in a development of printing techniques and their application in pharmaceutical sciences and particularly in the pharmaceutical technology. The variety of printing methods makes it necessary to systemize them, explain the principles of operation, and specify the possibilities of their use in pharmaceutical technology. This paper aims to review the printing techniques used in a drug development process. The growing interest in 2D and 3D printing methods results in continuously increasing number of scientific papers. Introduction of the first printed drug Spritam@ to the market seems to be a milestone of the 3D printing development. Thus, a particular aim of this review is to show the latest achievements of the researchers in the field of the printing medicines.

  13. Study of Photosensitive Dry Films Absorption for Printed Circuit Boards by Photoacoustic Technique

    Science.gov (United States)

    Hernández, R.; Zaragoza, J. A. Barrientos; Jiménez-Pérez, J. L.; Orea, A. Cruz; Correa-Pacheco, Z. N.

    2017-08-01

    In this work, the study of photosensitive dry-type films by photoacoustic technique is proposed. The dry film photoresist is resistant to chemical etching for printed circuit boards such as ferric chloride, sodium persulfate or ammonium, hydrochloric acid. It is capable of faithfully reproducing circuit pattern exposed to ultraviolet light (UV) through a negative. Once recorded, the uncured portion is removed with alkaline solution. It is possible to obtain good results in surface mount circuits with tracks of 5 mm. Furthermore, the solid resin films are formed by three layers, two protective layers and a UV-sensitive optical absorption layer in the range of 325 nm to 405 nm. By means of optical absorption of UV-visible rays emitted by a low-power Xe lamp, the films transform this energy into thermal waves generated by the absorption of optical radiation and subsequently no-radiative de-excitation occurs. The photoacoustic spectroscopy is a useful technique to measure the transmittance and absorption directly. In this study, the optical absorption spectra of the three layers of photosensitive dry-type films were obtained as a function of the wavelength, in order to have a knowledge of the absorber layer and the protective layers. These analyses will give us the physical properties of the photosensitive film, which are very important in curing the dry film for applications in printed circuit boards.

  14. Influence of Parameters of a Printing Plate on Photoluminescence of Nanophotonic Printed Elements of Novel Packaging

    Directory of Open Access Journals (Sweden)

    Olha Sarapulova

    2015-01-01

    Full Text Available In order to produce nanophotonic elements for smart packaging, we investigated the influence of the parameters of screen and offset gravure printing plates on features of printed application of coatings with nanophotonic components and on parameters of their photoluminescence. To determine the dependence of luminescence intensity on the thickness of solid coating, we carried out the formation of nanophotonic solid surfaces by means of screen printing with different layer thickness on polypropylene film. The obtained analytical dependencies were used to confirm the explanation of the processes that occur during the fabrication of nanophotonic coverings with offset gravure printing plates. As a result of experimental studies, it was determined that the different character of the dependency of total luminescence intensity of nanophotonic elements from the percentage of a pad is explained by the use of different types of offset gravure printing plates, where the size of raster points remains constant in one case and changes in the other case, while the depth of the printing elements accordingly changes or remains constant. To obtain nanophotonic areas with predetermined photoluminescent properties, the influence of investigated factors on changes of photoluminescent properties of nanophotonic printed surfaces should be taken into consideration.

  15. Synthesis of carbon-14 labelled ethyl chloride

    International Nuclear Information System (INIS)

    Kanski, R.

    1976-01-01

    A new efficient method of synthesis of ethyl chloride (1,2- 14 C), based on the Ba 14 CO 3 and dry hydrogen chloride as starting materials has been developed and described. Addition of the hydrogen chloride to ethylene (1,2- 14 C), obtained from Ba 14 CO 3 , has been carried out in the presence of the AlCl 3 as catalyst. The outlined method leads to ethyl chloride (1,2- 14 C) of high specific activity. The radiochemical yield of the reaction based on the activity of barium carbonate used was 72%. (author)

  16. 3D-printed Bioanalytical Devices

    Science.gov (United States)

    Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F

    2016-01-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices. PMID:27250897

  17. Printing and civilization; Insatsu to bunmei

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T. [Dainippon Ink and Chemicals Inc., Tokyo (Japan)

    1995-01-01

    It can be said that the printing has not been only a barometer of culture, but also has formed a foundation of culture as the facilities of civilization, and has shouldered a role to drag the culture. In modern nation, that the freedom of speech and press has been clearly pointed out as the fundamental human right, shows straightforwardly an important significance of such a printing. Though it is also statistically clear that there is an exact relation between GNP and printed materials per capita, in this paper centering around the examples in Japan, a relation between the printing and civilization/culture is introduced like the episodes. It does not yet become definite that what kind of influence a proposition so called `printing is a barometer of culture` is affected by the information/communication revolution which is regarded to be advanced very rapidly. However, speaking conclusively it can not be thought that a demand for the printing which can produce the information in a great deal of quantity with a low cost, and for the printing which does not need special output terminal and is excellent in portability and glance ability, may largely be reduced. 1 fig.

  18. Natural fibre composites for 3D Printing

    OpenAIRE

    Pandey, Kapil

    2015-01-01

    3D printing has been common option for prototyping. Not all the materials are suitable for 3D printing. Various studies have been done and still many are ongoing regarding the suitability of the materials for 3D printing. This thesis work discloses the possibility of 3D printing of certain polymer composite materials. The main objective of this thesis work was to study the possibility for 3D printing the polymer composite material composed of natural fibre composite and various different ...

  19. Active materials by four-dimension printing

    Science.gov (United States)

    Ge, Qi; Qi, H. Jerry; Dunn, Martin L.

    2013-09-01

    We advance a paradigm of printed active composite materials realized by directly printing glassy shape memory polymer fibers in an elastomeric matrix. We imbue the active composites with intelligence via a programmed lamina and laminate architecture and a subsequent thermomechanical training process. The initial configuration is created by three-dimension (3D) printing, and then the programmed action of the shape memory fibers creates time dependence of the configuration—the four-dimension (4D) aspect. We design and print laminates in thin plate form that can be thermomechanically programmed to assume complex three-dimensional configurations including bent, coiled, and twisted strips, folded shapes, and complex contoured shapes with nonuniform, spatially varying curvature. The original flat plate shape can be recovered by heating the material again. We also show how the printed active composites can be directly integrated with other printed functionalities to create devices; here we demonstrate this by creating a structure that can assemble itself.

  20. Printing versus coating - What will be the future production technology for printed electronics?

    Energy Technology Data Exchange (ETDEWEB)

    Glawe, Andrea; Eggerath, Daniel; Schäfer, Frank [KROENERT GmbH and Co KG, Schuetzenstrasse 105, 22761 Hamburg (Germany)

    2015-02-17

    The market of Large Area Organic Printed Electronics is developing rapidly to increase efficiency and quality as well as to lower costs further. Applications for OPV, OLED, RFID and compact Printed Electronic systems are increasing. In order to make the final products more affordable, but at the same time highly accurate, Roll to Roll (R2R) production on flexible transparent polymer substrates is the way forward. There are numerous printing and coating technologies suitable depending on the design, the product application and the chemical process technology. Mainly the product design (size, pattern, repeatability) defines the application technology.

  1. Chloride sensing by WNK1 kinase involves inhibition of autophosphorylation

    Science.gov (United States)

    Piala, Alexander T.; Moon, Thomas M.; Akella, Radha; He, Haixia; Cobb, Melanie H.; Goldsmith, Elizabeth J.

    2014-01-01

    WNK1 [with no lysine (K)] is a serine-threonine kinase associated with a form of familial hypertension. WNK1 is at the top of a kinase cascade leading to phosphorylation of several cotransporters, in particular those transporting sodium, potassium, and chloride (NKCC), sodium and chloride (NCC), and potassium and chloride (KCC). The responsiveness of NKCC, NCC, and KCC to changes in extracellular chloride parallels their phosphorylation state, provoking the proposal that these transporters are controlled by a chloride-sensitive protein kinase. Here, we found that chloride stabilizes the inactive conformation of WNK1, preventing kinase autophosphorylation and activation. Crystallographic studies of inactive WNK1 in the presence of chloride revealed that chloride binds directly to the catalytic site, providing a basis for the unique position of the catalytic lysine. Mutagenesis of the chloride binding site rendered the kinase less sensitive to inhibition of autophosphorylation by chloride, validating the binding site. Thus, these data suggest that WNK1 functions as a chloride sensor through direct binding of a regulatory chloride ion to the active site, which inhibits autophosphorylation. PMID:24803536

  2. Preparation of Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) Material and its Application to Electrochemical Degradation of Methylene Blue in Sodium Chloride Solution

    Science.gov (United States)

    Riyanto; Prawidha, A. D.

    2018-01-01

    Electrochemical degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode in sodium chloride have been done. The aim of this work was to degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC). Carbon chitosan composite electrode was preparing by Carbon and Chitosan powder and PVC in 4 mL tetrahydrofuran (THF) solvent and swirled flatly to homogeneous followed by drying in an oven at 100 °C for 3 h. The mixture was placed in stainless steel mould and pressed at 10 ton/cm2. Sodium chloride was used electrolyte solution. The effects of the current and electrolysis time were investigated using spectrophotometer UV-Visible. The experimental results showed that the carbon-chitosan composite electrode have higher effect in the electrochemical degradation of methylene blue in sodium chloride. Based on UV-visible spectra analysis shows current and electrolysis time has high effect to degradation of methylene blue in sodium chloride. Chitosan and polyvinyl chloride can strengthen the bond between the carbons so that the material has the high stability and conductivity. As conclusions is Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode have a high electrochemical activity for degradation of methylene blue in sodium chloride.

  3. Proceedings of the Triservice Corrosion of Military Equipment Conference (1974) held at Dayton, Ohio on 29-31 Oct 1974. Volume II. Sessions IV through VII

    Science.gov (United States)

    1975-09-01

    assumed the copper is ionised as the cuprous or cupric ion. This order of magnitude is in agreement with that rlet-, Ied in electrochemical investigations...solution containing 1. 0 molar Ammnonium Chloride, 0.Z5 molar Ammoniun Nitrate, 0. 01 molar Ammonium Tartrate , and 3 g/l Hydrogen Peroxide (10 ml of 30...annmmoniunm tartrate 3 g/l hydrogen peroxide (10 nil of 301 stock solution per liter) The solution has a pH of about 5. Z to 5.4, Note: If a stock solution of

  4. Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (II) and cadmium (II) in soil and water samples

    Energy Technology Data Exchange (ETDEWEB)

    Kadara, Rashid O. [Cranfield Health, Cranfield University, Silsoe, Bedfordshire MK45 4DT (United Kingdom); School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottinghamshire NG11 8NS (United Kingdom)], E-mail: kayusee2001@yahoo.co.uk; Tothill, Ibtisam E. [Cranfield Health, Cranfield University, Silsoe, Bedfordshire MK45 4DT (United Kingdom)

    2008-08-08

    A bulk-modified screen-printed carbon electrode characterised for metal ion detection is presented. Bismuth oxide (Bi{sub 2}O{sub 3}) was mixed with graphite-carbon ink to obtain the modified electrode. The best composition was 2% Bi{sub 2}O{sub 3} (wt%) in the graphite-carbon ink. The modified electrode with onboard screen-printed carbon counter and silver-silver chloride pseudo-reference electrodes exhibited good performance in the electrochemical measurement of lead (II) and cadmium (II). The electrode displayed excellent linear behaviour in the concentration range examined (20-300 {mu}g L{sup -1}) with limits of detection of 8 and 16 {mu}g L{sup -1} for both lead (II) and cadmium (II), respectively. The analytical utility of the modified electrode was illustrated by the stripping chronopotentiometric determinations of lead (II) in soil extracts and wastewater samples.

  5. Buried chloride stereochemistry in the Protein Data Bank.

    Science.gov (United States)

    Carugo, Oliviero

    2014-09-23

    Despite the chloride anion is involved in fundamental biological processes, its interactions with proteins are little known. In particular, we lack a systematic survey of its coordination spheres. The analysis of a non-redundant set (pairwise sequence identity chloride anion shows that the first coordination spheres of the chlorides are essentially constituted by hydrogen bond donors. Amongst the side-chains positively charged, arginine interacts with chlorides much more frequently than lysine. Although the most common coordination number is 4, the coordination stereochemistry is closer to the expected geometry when the coordination number is 5, suggesting that this is the coordination number towards which the chlorides tend when they interact with proteins. The results of these analyses are useful in interpreting, describing, and validating new protein crystal structures that contain chloride anions.

  6. Detection of latent prints by Raman imaging

    Science.gov (United States)

    Lewis, Linda Anne [Andersonville, TN; Connatser, Raynella Magdalene [Knoxville, TN; Lewis, Sr., Samuel Arthur

    2011-01-11

    The present invention relates to a method for detecting a print on a surface, the method comprising: (a) contacting the print with a Raman surface-enhancing agent to produce a Raman-enhanced print; and (b) detecting the Raman-enhanced print using a Raman spectroscopic method. The invention is particularly directed to the imaging of latent fingerprints.

  7. Chloride Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/chloridebloodtest.html Chloride Blood Test To use the sharing features on this page, please enable JavaScript. What is a Chloride Blood Test? A chloride blood test measures the ...

  8. Colour print workflow and methods for multilayering of colour and decorative inks using UV inkjet for fine art printing

    Science.gov (United States)

    Parraman, Carinna

    2012-01-01

    In order to increase density of colour and improve ink coverage when printing onto a range of non standard substrates, this paper will present research into multi-layering of colour and the appearance of colour at 'n' levels of ink coverage. Returning to our original investigation of artist's requirements when making inkjet prints, these observations are based on empirical approaches that address the need to present physical data that is more useful and meaningful to the designer. The study has used multi-pass printed colour charts to measure colour and to provide users with an understanding at a soft-preview level to demonstrate the appearance of printed colour on different substrates. Test results relating to the appearance of print on different surfaces, and a series of case studies will be presented using recent research into the capabilities of UV printing technology, which has widened the opportunities for the designer to print onto non-standard materials. It will also present a study into layering of greys and gloss in order to improve the appearance of printed images onto metal.

  9. Atmospheric chloride: Its implication for foliar uptake and damage

    Science.gov (United States)

    McWilliams, E. L.; Sealy, R. L.

    Atmospheric chloride is inversely related to distance from the Texas coast; r2 = 0.86. Levels of atmospheric chloride are higher in the early summer than in the winter because of salt storms. Leaf chloride l'evels of Tillandsia usneoides L. (Spanish moss) reflect the atmospheric chloride levels; r2 = 0.78. The importance of considering the effect of atmospheric chloride on leaf damage to horticultural crops is discussed.

  10. The influence of printing substrate on macro non-uniformity and line reproduction quality of imprints printed with electrophotographic process

    Directory of Open Access Journals (Sweden)

    Đorđe Vujčić

    2016-12-01

    Full Text Available Print quality is very important for every printing technique. It depends on many different quality attributes. This research included analysis of macro non-uniformities and line reproduction. 16 different paper substrates printed by electrophotographic process were analyzed. They were separated in two groups: coated and uncoated papers. Analysis of macro non-uniformity showed that print mottle has lower values when printed on coated papers than on uncoated papers. Line reproduction analysis showed that the toner spreaded, during melting and fixation, on line edges for both types of paper. According to these results it can be concluded that paper substrate affects the macro non-uniformity and line reproduction, thus overall print quality.

  11. Influence of chloride admixtures on cement matrix durability

    International Nuclear Information System (INIS)

    Sheikh, I.A.; Zamorani, E.; Serrini, G.

    1989-01-01

    The influence of various inorganic salts, as chloride admixtures to Portland cement, on the mechanical properties and the durability of the matrix has been studied. The salts used in this study are chromium, nickel and cadmium chlorides. Improved compressive strength values are obtained which have been correlated to the stable metal hydroxide formation in high pH environment. Under static water conditions at 50 0 C, hydrolyzed chloride ions exhibit adverse effects on the matrix durability through rapid release of calcium as calcium chloride in the initial period of leaching. On the contrary, enhanced matrix durability is obtained on long term leaching in the case of cement containing chromium chloride

  12. Reprocessable thermosets for sustainable three-dimensional printing.

    Science.gov (United States)

    Zhang, Biao; Kowsari, Kavin; Serjouei, Ahmad; Dunn, Martin L; Ge, Qi

    2018-05-08

    Among all three-dimensional (3D) printing materials, thermosetting photopolymers claim almost half of the market, and have been widely used in various fields owing to their superior mechanical stability at high temperatures, excellent chemical resistance as well as good compatibility with high-resolution 3D printing technologies. However, once these thermosetting photopolymers form 3D parts through photopolymerization, the covalent networks are permanent and cannot be reprocessed, i.e., reshaped, repaired, or recycled. Here, we report a two-step polymerization strategy to develop 3D printing reprocessable thermosets (3DPRTs) that allow users to reform a printed 3D structure into a new arbitrary shape, repair a broken part by simply 3D printing new material on the damaged site, and recycle unwanted printed parts so the material can be reused for other applications. These 3DPRTs provide a practical solution to address environmental challenges associated with the rapid increase in consumption of 3D printing materials.

  13. Concept of heat-induced inkless eco-printing.

    Science.gov (United States)

    Chen, Jinxiang; Wang, Yong; Xie, Juan; Meng, Chuang; Wu, Gang; Zu, Qiao

    2012-07-01

    Existing laser and inkjet printers often produce adverse effects on human health, the recycling of printing paper and the environment. Therefore, this paper examines the thermogravimetry curves for printer paper, analyzes the discoloration of paper using heat-induction, and investigates the relationship between paper discoloration and the heat-inducing temperature. The mechanism of heat-induced printing is analyzed initially, and its feasibility is determined by a comparative analysis of heat-induced (laser ablation) printing and commercial printing. The innovative concept of heat-induced inkless eco-printing is proposed, in which the required text or graphics are formed on the printing paper via yellowing and blackening produced by thermal energy. This process does not require ink during the printing process; thus, it completely eliminates the aforementioned health and environmental issues. This research also contributes to related interdisciplinary research in biology, laser technology, photochemistry, nano-science, paper manufacturing and color science. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Print like an Egyptian.

    Science.gov (United States)

    Weisensee, Marilyn

    1990-01-01

    Describes a relief printmaking unit for sixth graders with the objective of decorating the inside of a pyramid. Ancient Egyptian imagery was used to help students become familiar with the style. Students designed and printed linoleum prints in different colors. They then critiqued their work and made their selection for the pyramid. (KM)

  15. [Forensic Analysis for 54 Cases of Suxamethonium Chloride Poisoning].

    Science.gov (United States)

    Zhao, Y F; Zhao, B Q; Ma, K J; Zhang, J; Chen, F Y

    2017-08-01

    To observe and analyze the performance of forensic science in the cases of suxa- methonium chloride poisoning, and to improve the identification of suxamethonium chloride poisoning. Fifty-four cases of suxamethonium chloride poisoning were collected. The rules of determination of suxamethonium chloride poisoning were observed by the retrospective analysis of pathological and toxicological changes as well as case features. The pathological features of suxamethonium chloride poisoning were similar to the general changes of sudden death, which mainly included acute pulmonary congestion and edema, and partly showed myocardial disarray and fracture. Suxamethonium chloride could be detected in the heart blood of all cases and in skin tissue of part cases. Suxa-methonium chloride poisoning has the characteristics with fast death and covert means, which are difficult to rescue and easily miss inspection. For the cases of sudden death or suspicious death, determination of suxamethonium chloride should be taken as a routine detection index to prevent missing inspection. Copyright© by the Editorial Department of Journal of Forensic Medicine

  16. Medical 3D Printing for the Radiologist

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A.; Cai, Tianrun; Kumamaru, Kanako K.; George, Elizabeth; Wake, Nicole; Caterson, Edward J.; Pomahac, Bohdan; Ho, Vincent B.; Grant, Gerald T.

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. ©RSNA, 2015 PMID:26562233

  17. Medical 3D Printing for the Radiologist.

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. (©)RSNA, 2015.

  18. Photooxidation stability of microcapsules in thermochromic prints

    Directory of Open Access Journals (Sweden)

    Mirela Rozic

    2018-03-01

    Full Text Available In this paper, photochemical stability of two thermochromic prints was investigated: vegetable oil based offset and UV curing screen printing ink. The obtained preliminary results can be used for further detailed examination of prints stability. It is well known that thermochromic printing inks are very unstabile when exsposed to UV irradiance and this is why they are mainly used for applications that are not directly exposed to sunlight. The results of the study show the heterogeneous nature of photooxidative degradation of thermochromic prints, and the opposite behaviour of photooxidation can be noticed comparing examined prints. Microcapsules in the UV curable screen print by fixation with polar polymer binder can create a new products stable to photoxidation. For this reason, the areas where the microcapsules and binder are bonded together are stable. Degraded only areas where binder is not related to microcapsules. Microcapsules in offset print do not have the ability to create new stabile forms due to smaller polarity and different chemical composition of the offset oxidized binder. In the offset print, the microcapsules are the least photooxidative stable and also cause lower photooxidative stability of the binder in contact with them. Cavities are formed in the areas where microcapsules are in contact with the binder, while the areas in which the binder is not in contact with microcapsules are not degraded.

  19. Growth and characterization of magnesium chloride and lanthanum chloride doped strontium tartrate crystals - gel method

    International Nuclear Information System (INIS)

    Kalaiarasi, S.; Jaikumar, D.

    2014-01-01

    Growth of single crystals of doped strontium tartrate by controlled diffusion of strontium chloride into the silica gel charged with tartaric acid at room temperature is narrated. In this study, we synthesized magnesium chloride (5% and 10%) doped strontium tartrate crystals and Lanthanum chloride (5%, 10% and 15%) doped strontium tartrate crystals are grown. The crystal structure of the compound crystals was confirmed by single crystal X-ray diffraction. The Fourier transform infrared spectrum of pure and doped crystals are recorded and analyzed. The UV-Vis-NIR spectrum analysis reveals that the optical study of the grown crystals. The second harmonic generation efficiency was measured by using Kurtz powder technique with Nd:YAG laser of wavelength 1064 nm. (author)

  20. All-printed capacitors with continuous solution dispensing technology

    Science.gov (United States)

    Ge, Yang; Plötner, Matthias; Berndt, Andreas; Kumar, Amit; Voit, Brigitte; Pospiech, Doris; Fischer, Wolf-Joachim

    2017-09-01

    Printed electronics have been introduced into the commercial markets in recent years. Various printing technologies have emerged aiming to process printed electronic devices with low cost, environmental friendliness, and compatibility with large areas and flexible substrates. The aim of this study is to propose a continuous solution dispensing technology for processing all-printed thin-film capacitors on glass substrates using a leading-edge printing instrument. Among all printing technologies, this study provides concrete proof of the following outstanding advantages of this technology: high tolerance to inks, high throughput, low cost, and precise pattern transfers. Ag nanoparticle ink based on glycol ethers was used to print the electrodes. To obtain dielectric ink, a copolymer powder of poly(methyl methacrylate-co-benzoylphenyl methacrylate) containing crosslinkable side groups was dissolved in anisole. Various layouts were designed to support multiple electronic applications. Scanning electron microscopy and atomic force microscopy were used to investigate the all-printed capacitor layers formed using the proposed process. Additionally, the printed capacitors were electrically characterized under direct current and alternating current. The measured electrical properties of the printed capacitors were consistent with the theoretical results.

  1. Influence of Parameters of a Printing Plate on Photoluminescence of Nano photonic Printed Elements of Novel Packaging

    International Nuclear Information System (INIS)

    Sarapulova, O.; Sherstiuk, V.

    2015-01-01

    In order to produce nano photonic elements for smart packaging, we investigated the influence of the parameters of screen and offset gravure printing plates on features of printed application of coatings with nano photonic components and on parameters of their photoluminescence. To determine the dependence of luminescence intensity on the thickness of solid coating, we carried out the formation of nano photonic solid surfaces by means of screen printing with different layer thickness on polypropylene film. The obtained analytical dependencies were used to confirm the explanation of the processes that occur during the fabrication of nano photonic coverings with offset gravure printing plates. As a result of experimental studies, it was determined that the different character of the dependency of total luminescence intensity of nano photonic elements from the percentage of a pad is explained by the use of different types of offset gravure printing plates, where the size of raster points remains constant in one case and changes in the other case, while the depth of the printing elements accordingly changes or remains constant. To obtain nano photonic areas with predetermined photo luminescent properties, the influence of investigated factors on changes of photo luminescent properties of nano photonic printed surfaces should be taken into consideration

  2. Review of Recent Inkjet-Printed Capacitive Tactile Sensors

    Directory of Open Access Journals (Sweden)

    Ahmed Salim

    2017-11-01

    Full Text Available Inkjet printing is an advanced printing technology that has been used to develop conducting layers, interconnects and other features on a variety of substrates. It is an additive manufacturing process that offers cost-effective, lightweight designs and simplifies the fabrication process with little effort. There is hardly sufficient research on tactile sensors and inkjet printing. Advancements in materials science and inkjet printing greatly facilitate the realization of sophisticated tactile sensors. Starting from the concept of capacitive sensing, a brief comparison of printing techniques, the essential requirements of inkjet-printing and the attractive features of state-of-the art inkjet-printed tactile sensors developed on diverse substrates (paper, polymer, glass and textile are presented in this comprehensive review. Recent trends in inkjet-printed wearable/flexible and foldable tactile sensors are evaluated, paving the way for future research.

  3. Experiments on Printed Intelligence and Its Applications

    OpenAIRE

    Barbonelova, Angelina

    2015-01-01

    Printed intelligence technology refers to products and systems that are produced using traditional printing methods and that are able to communicate or react with the user, environment or other products and systems. The technology provides the foundations of innovative products such as printed OLEDs (organic light emitting device), electroluminescent displays, organic photovoltaics, thin film batteries and disposable sensors. This study presents research on different printing techniques i...

  4. Future of printing: changes and challenges, technologies and markets

    Science.gov (United States)

    Kipphan, Helmut

    1998-01-01

    Digitalization within the graphic arts industry is described and it is explained how it is improving and changing the print production strategies and which new kinds of print production systems are developed or can be expected. The relationship of printed media and electronic media is analyzed and a positioning for the next century is given. The state of the art of conventional printing technologies, especially using direct imagine techniques, and their position within the digital workflow are shortly described. Non-impact printing multicolor printing systems are explained, based on general design criteria and linked to existing and newly announced equipment. The use of high-tech components for building up successful systems with high reliability, high quality and low production costs is included with some examples. Digital printing systems open many opportunities in print production: distributed printing, personalization, print and book on demand are explained as examples. The overview of the several printing technologies and their positioning regarding quality and productivity leads to the scenario about the important position of printed media, also in the distant future.

  5. Functional electronic screen printing – electroluminescent smart fabric watch

    OpenAIRE

    de Vos, Marc; Torah, Russel; Beeby, Steve; Tudor, John

    2013-01-01

    Motivation for screen printed smart fabrics.Introduce functional electronic screen printing on fabrics.Printed smart fabric watch design.Printing process for electroluminescent watch.Demonstration video.Conclusions and further work.Examples of other screen printed smart fabrics.

  6. Contextual advertisement placement in printed media

    Science.gov (United States)

    Liu, Sam; Joshi, Parag

    2010-02-01

    Advertisements today provide the necessary revenue model supporting the WWW ecosystem. Targeted or contextual ad insertion plays an important role in optimizing the financial return of this model. Nearly all the current ads that appear on web sites are geared for display purposes such as banner and "pay-per-click". Little attention, however, is focused on deriving additional ad revenues when the content is repurposed for alternative mean of presentation, e.g. being printed. Although more and more content is moving to the Web, there are still many occasions where printed output of web content is desirable, such as maps and articles; thus printed ad insertion can potentially be lucrative. In this paper, we describe a contextual ad insertion network aimed to realize new revenue for print service providers for web printing. We introduce a cloud print service that enables contextual ads insertion, with respect to the main web page content, when a printout of the page is requested. To encourage service utilization, it would provide higher quality printouts than what is possible from current browser print drivers, which generally produce poor outputs, e.g. ill formatted pages. At this juncture we will limit the scope to only article-related web pages although the concept can be extended to arbitrary web pages. The key components of this system include (1) the extraction of article from web pages, (2) the extraction of semantics from article, (3) querying the ad database for matching advertisement or coupon, and (4) joint content and ad layout for print outputs.

  7. All-printed paper memory

    KAUST Repository

    Lien, Derhsien

    2014-08-26

    We report the memory device on paper by means of an all-printing approach. Using a sequence of inkjet and screen-printing techniques, a simple metal-insulator-metal device structure is fabricated on paper as a resistive random access memory with a potential to reach gigabyte capacities on an A4 paper. The printed-paper-based memory devices (PPMDs) exhibit reproducible switching endurance, reliable retention, tunable memory window, and the capability to operate under extreme bending conditions. In addition, the PBMD can be labeled on electronics or living objects for multifunctional, wearable, on-skin, and biocompatible applications. The disposability and the high-security data storage of the paper-based memory are also demonstrated to show the ease of data handling, which are not achievable for regular silicon-based electronic devices. We envision that the PPMDs manufactured by this cost-effective and time-efficient all-printing approach would be a key electronic component to fully activate a paper-based circuit and can be directly implemented in medical biosensors, multifunctional devices, and self-powered systems. © 2014 American Chemical Society.

  8. 40 CFR 63.824 - Standards: Publication rotogravure printing.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) National Emission Standards for the Printing and Publishing Industry § 63.824 Standards: Publication rotogravure printing. (a) Each owner or operator of any publication rotogravure printing affected... printing. 63.824 Section 63.824 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  9. Chloride regulates afferent arteriolar contraction in response to depolarization

    DEFF Research Database (Denmark)

    Hansen, P B; Jensen, B L; Skott, O

    1998-01-01

    -Renal vascular reactivity is influenced by the level of dietary salt intake. Recent in vitro data suggest that afferent arteriolar contractility is modulated by extracellular chloride. In the present study, we assessed the influence of chloride on K+-induced contraction in isolated perfused rabbit...... afferent arterioles. In 70% of vessels examined, K+-induced contraction was abolished by acute substitution of bath chloride. Consecutive addition of Cl- (30, 60, 80, 100, 110, and 117 mmol/L) restored the sensitivity to K+, and half-maximal response was observed at 82 mmol/L chloride. The calcium channel...... antagonist diltiazem (10(-6) mol/L) abolished K+-induced contractions. Bicarbonate did not modify the sensitivity to chloride. Norepinephrine (10(-6) mol/L) induced full contraction in depolarized vessels even in the absence of chloride. Iodide and nitrate were substituted for chloride with no inhibitory...

  10. Printing Ancient Terracotta Warriors

    Science.gov (United States)

    Gadecki, Victoria L.

    2010-01-01

    Standing in awe in Xian, China, at the Terra Cotta warrior archaeological site, the author thought of sharing this experience and excitement with her sixth-grade students. She decided to let her students carve patterns of the ancient soldiers to understand their place in Chinese history. They would make block prints and print multiple soldiers on…

  11. FUTURE SCOPE OF WOMEN CARRIER IN THE PRINTING INDUSTRY: THE CHALLENGES OF WOMEN IN PRINTING OGANIZATIONS (A SURVEY OF TWENTY FIVE COMPANIES "SMALL, MEDIUM AND LARGE PRINTING ORGANIZATION" IN AREA "NCR DELHI AND HISAR, HR".)

    OpenAIRE

    Mr. Azad Singh*

    2017-01-01

    Women carrier in printing organization today, printing industry is growing with an expositional rate & required skills manpower. In this survey based paper to getting recruit of women 10%small, 30%medium and 60% large scale print industry. Objective of this paper is too filled out manpower skills printing industries are seaking in B.Tech women printing students to bridge the gap between skills and required in printing organization. A survey 25 companies was carried out. the result indicated t...

  12. Three-Dimensionally Printed Micro-electromechanical Switches.

    Science.gov (United States)

    Lee, Yongwoo; Han, Jungmin; Choi, Bongsik; Yoon, Jinsu; Park, Jinhee; Kim, Yeamin; Lee, Jieun; Kim, Dae Hwan; Kim, Dong Myong; Lim, Meehyun; Kang, Min-Ho; Kim, Sungho; Choi, Sung-Jin

    2018-05-09

    Three-dimensional (3D) printers have attracted considerable attention from both industry and academia and especially in recent years because of their ability to overcome the limitations of two-dimensional (2D) processes and to enable large-scale facile integration techniques. With 3D printing technologies, complex structures can be created using only a computer-aided design file as a reference; consequently, complex shapes can be manufactured in a single step with little dependence on manufacturer technologies. In this work, we provide a first demonstration of the facile and time-saving 3D printing of two-terminal micro-electromechanical (MEM) switches. Two widely used thermoplastic materials were used to form 3D-printed MEM switches; freely suspended and fixed electrodes were printed from conductive polylactic acid, and a water-soluble sacrificial layer for air-gap formation was printed from poly(vinyl alcohol). Our 3D-printed MEM switches exhibit excellent electromechanical properties, with abrupt switching characteristics and an excellent on/off current ratio value exceeding 10 6 . Therefore, we believe that our study makes an innovative contribution with implications for the development of a broader range of 3D printer applications (e.g., the manufacturing of various MEM devices and sensors), and the work highlights a uniquely attractive path toward the realization of 3D-printed electronics.

  13. Scalable, full-colour and controllable chromotropic plasmonic printing

    Science.gov (United States)

    Xue, Jiancai; Zhou, Zhang-Kai; Wei, Zhiqiang; Su, Rongbin; Lai, Juan; Li, Juntao; Li, Chao; Zhang, Tengwei; Wang, Xue-Hua

    2015-01-01

    Plasmonic colour printing has drawn wide attention as a promising candidate for the next-generation colour-printing technology. However, an efficient approach to realize full colour and scalable fabrication is still lacking, which prevents plasmonic colour printing from practical applications. Here we present a scalable and full-colour plasmonic printing approach by combining conjugate twin-phase modulation with a plasmonic broadband absorber. More importantly, our approach also demonstrates controllable chromotropic capability, that is, the ability of reversible colour transformations. This chromotropic capability affords enormous potentials in building functionalized prints for anticounterfeiting, special label, and high-density data encryption storage. With such excellent performances in functional colour applications, this colour-printing approach could pave the way for plasmonic colour printing in real-world commercial utilization. PMID:26567803

  14. Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models.

    Science.gov (United States)

    Favero, Christian S; English, Jeryl D; Cozad, Benjamin E; Wirthlin, John O; Short, Megan M; Kasper, F Kurtis

    2017-10-01

    Three-dimensional (3D) printing technologies enable production of orthodontic models from digital files; yet a range of variables associated with the process could impact the accuracy and clinical utility of the models. The objective of this study was to investigate the effect of print layer height on the accuracy of orthodontic models printed 3 dimensionally using a stereolithography format printer and to compare the accuracy of orthodontic models fabricated with several commercially available 3D printers. Thirty-six identical models were produced with a stereolithography-based 3D printer using 3 layer heights (n = 12 per group): 25, 50, and 100 μm. Forty-eight additional models were printed using 4 commercially available 3D printers (n = 12 per group). Each printed model was digitally scanned and compared with the input file via superimposition analysis using a best-fit algorithm to assess accuracy. Statistically significant differences were found in the average overall deviations of models printed at each layer height, with the 25-μm and 100-μm layer height groups having the greatest and least deviations, respectively. Statistically significant differences were also found in the average overall deviations of models produced using the various 3D printer models, but all values fell within clinically acceptable limits. The print layer height and printer model can affect the accuracy of a 3D printed orthodontic model, but the impact should be considered with respect to the clinical tolerances associated with the envisioned application. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  15. Properties of silver chloride track detectors

    International Nuclear Information System (INIS)

    Dmitriev, V.D.; Kocherov, N.P.; Novikova, N.R.; Perfilov, N.A.

    1976-01-01

    The experiments on preparation of silver chloride track detectors and their properties are described. The results of X-ray structural analysis and data on sensitivity to charged particles and actinic light of silver chloride crystals, doped with several elements, are presented. (orig.) [de

  16. Templated Dry Printing of Conductive Metal Nanoparticles

    Science.gov (United States)

    Rolfe, David Alexander

    Printed electronics can lower the cost and increase the ubiquity of electrical components such as batteries, sensors, and telemetry systems. Unfortunately, the advance of printed electronics has been held back by the limited minimum resolution, aspect ratio, and feature fidelity of present printing techniques such as gravure, screen printing and inkjet printing. Templated dry printing offers a solution to these problems by patterning nanoparticle inks into templates before drying. This dissertation shows advancements in two varieties of templated dry nanoprinting. The first, advective micromolding in vapor-permeable templates (AMPT) is a microfluidic approach that uses evaporation-driven mold filling to create submicron features with a 1:1 aspect ratio. We will discuss submicron surface acoustic wave (SAW) resonators made through this process, and the refinement process in the template manufacturing process necessary to make these devices. We also present modeling techniques that can be applied to future AMPT templates. We conclude with a modified templated dry printing that improves throughput and isolated feature patterning by transferring dry-templated features with laser ablation. This method utilizes surface energy-defined templates to pattern features via doctor blade coating. Patterned and dried features can be transferred to a polymer substrate with an Nd:YAG MOPA fiber laser, and printed features can be smaller than the laser beam width.

  17. Digital Dentistry — 3D Printing Applications

    Directory of Open Access Journals (Sweden)

    Zaharia Cristian

    2017-03-01

    Full Text Available Three-dimensional (3D printing is an additive manufacturing method in which a 3D item is formed by laying down successive layers of material. 3D printers are machines that produce representations of objects either planned with a CAD program or scanned with a 3D scanner. Printing is a method for replicating text and pictures, typically with ink on paper. We can print different dental pieces using different methods such as selective laser sintering (SLS, stereolithography, fused deposition modeling, and laminated object manufacturing. The materials are certified for printing individual impression trays, orthodontic models, gingiva mask, and different prosthetic objects. The material can reach a flexural strength of more than 80 MPa. 3D printing takes the effectiveness of digital projects to the production phase. Dental laboratories are able to produce crowns, bridges, stone models, and various orthodontic appliances by methods that combine oral scanning, 3D printing, and CAD/CAM design. Modern 3D printing has been used for the development of prototypes for several years, and it has begun to find its use in the world of manufacturing. Digital technology and 3D printing have significantly elevated the rate of success in dental implantology using custom surgical guides and improving the quality and accuracy of dental work.

  18. Advances and Future Challenges in Printed Batteries.

    Science.gov (United States)

    Sousa, Ricardo E; Costa, Carlos M; Lanceros-Méndez, Senentxu

    2015-11-01

    There is an increasing interest in thin and flexible energy storage devices to meet modern society's needs for applications such as radio frequency sensing, interactive packaging, and other consumer products. Printed batteries comply with these requirements and are an excellent alternative to conventional batteries for many applications. Flexible and microbatteries are also included in the area of printed batteries when fabricated using printing technologies. The main characteristics, advantages, disadvantages, developments, and printing techniques of printed batteries are presented and discussed in this Review. The state-of-the-art takes into account both the research and industrial levels. On the academic level, the research progress of printed batteries is divided into lithium-ion and Zn-manganese dioxide batteries and other battery types, with emphasis on the different materials for anode, cathode, and separator as well as in the battery design. With respect to the industrial state-of-the-art, materials, device formulations, and manufacturing techniques are presented. Finally, the prospects and challenges of printed batteries are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 3D Printed Bionic Nanodevices

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with

  20. 3D Printed Bionic Nanodevices.

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  1. 3D printing technologies for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Wei, Min; Viswanathan, Vilayanur V.; Swart, Benjamin; Shao, Yuyan; Wu, Gang; Zhou, Chi

    2017-10-01

    Fabrication of electrodes and electrolytes play an important role in promoting the performance of electrochemical energy storage (EES) devices such as batteries and supercapacitors. Traditional fabrication techniques have limited capability in controlling the geometry and architecture of the electrode and solid-state electrolytes, which would otherwise compromise the performance. 3D printing, a disruptive manufacturing technology, has emerged as an innovative approach to fabricating EES devices from nanoscale to macroscale and from nanowatt to megawatt, providing great opportunities to accurately control device geometry (e.g., dimension, porosity, morphology) and structure with enhanced specific energy and power densities. Moreover, the additive manufacturing nature of 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost effective manner. With the unique spatial and temporal material manipulation capability, 3D printing can integrate multiple nanomaterials in the same print, and multi-functional EES devices (including functional gradient devices) can be fabricated. Herein, we review recent advances in 3D printing of EES devices. We focused on two major 3D printing technologies including direct writing and inkjet printing. The direct material deposition characteristics of these two processes enable them to print on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Other potential 3D printing techniques such as freeze nano-printing, stereolithography, fused deposition modeling, binder jetting, laminated object manufacturing, and metal 3D printing are also introduced. The advantages and limitations of each 3D printing technology are extensively discussed. More importantly, we provide a perspective on how to integrate the emerging 3D printing with existing technologies to create structures over multiple length scale from

  2. The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes.

    Science.gov (United States)

    Bin Hamzah, Hairul Hisham; Keattch, Oliver; Covill, Derek; Patel, Bhavik Anil

    2018-06-14

    Additive manufacturing also known as 3D printing is being utilised in electrochemistry to reproducibly develop complex geometries with conductive properties. In this study, we explored if the electrochemical behavior of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes was influenced by printing direction. The electrodes were printed in both horizontal and vertical directions. The horizsontal direction resulted in a smooth surface (HPSS electrode) and a comparatively rougher surface (HPRS electrode) surface. Electrodes were characterized using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. For various redox couples, the vertical printed (VP) electrode showed enhanced current response when compared the two electrode surfaces generated by horizontal print direction. No differences in the capacitive response was observed, indicating that the conductive surface area of all types of electrodes were identical. The VP electrode had reduced charge transfer resistance and uncompensated solution resistance when compared to the HPSS and HPRS electrodes. Overall, electrodes printed in a vertical direction provide enhanced electrochemical performance and our study indicates that print orientation is a key factor that can be used to enhance sensor performance.

  3. Three-Dimensional Printing Surgical Applications.

    Science.gov (United States)

    AlAli, Ahmad B; Griffin, Michelle F; Butler, Peter E

    2015-01-01

    Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice.

  4. Four-dimensional Printing of Liquid Crystal Elastomers.

    Science.gov (United States)

    Ambulo, Cedric P; Burroughs, Julia J; Boothby, Jennifer M; Kim, Hyun; Shankar, M Ravi; Ware, Taylor H

    2017-10-25

    Three-dimensional structures capable of reversible changes in shape, i.e., four-dimensional-printed structures, may enable new generations of soft robotics, implantable medical devices, and consumer products. Here, thermally responsive liquid crystal elastomers (LCEs) are direct-write printed into 3D structures with a controlled molecular order. Molecular order is locally programmed by controlling the print path used to build the 3D object, and this order controls the stimulus response. Each aligned LCE filament undergoes 40% reversible contraction along the print direction on heating. By printing objects with controlled geometry and stimulus response, magnified shape transformations, for example, volumetric contractions or rapid, repetitive snap-through transitions, are realized.

  5. Strategies in the digital printing value system

    OpenAIRE

    Mejtoft, Thomas

    2006-01-01

    The research objective of this thesis is to identify corporate strategies and strategic decisions in the digital printing business and to analyze how these have evolved due to the introduction of digital printing. This thesis comprises three separate studies, all based on qualitative case methodology. The first study is focused on digital printing houses and how their business strategies have changed due to their investment in digital printing production equipment. The second study concentrat...

  6. Chloride Ingress into Concrete under Water Pressure

    DEFF Research Database (Denmark)

    Lund, Mia Schou; Sander, Lotte Braad; Grelk, Bent

    2011-01-01

    The chloride ingress into concrete under water pressures of 100 kPa and 800 kPa have been investigated by experiments. The specimens were exposed to a 10% NaCl solution and water mixture. For the concrete having w/c = 0.35 the experimental results show the chloride diffusion coefficient at 800 k......Pa (~8 atm.) is 12 times greater than at 100 kPa (~1 atm.). For w/c = 0.45 and w/c = 0.55 the chloride diffusion coefficients are 7 and 3 times greater. This means that a change in pressure highly influences the chloride ingress into the concrete and thereby the life length models for concrete structures....

  7. Role of free radicals in the initiation and promotion of radiation transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Troll, W.; Little, J.B.

    1984-01-01

    We have studied the effects of superoxide dismutase (SOD), catalase, Cu(II) (3,5-diisopropylsalicylate)2 (CuDIPS) and other copper compounds on radiation transformation in vitro using C3H 10T1/2 cells. When present only during irradiation, high concentrations of SOD in the medium enhanced transformation, while catalase, inactivated SOD (autoclaved), CuDIPS, cupric chloride and cuprous chloride inhibited the initiation phase of radiation transformation. SOD, catalase and CuDIPS did not affect the expression phase of radiation transformation. Suppression of the TPA enhancement of transformation by catalase was a highly significant effect, while the suppression by SOD was not of statistical significance. Our results suggest that hydrogen peroxide (H 2 O 2 ) may be important in the cellular damage leading to malignant transformation

  8. Role of free radicals in the initiation and promotion of radiation transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Little, J.B.; Troll, W.

    1984-01-01

    The effects of superoxide dismutase (SOD), catalase, Cu(II) (3,5-diisopropylsalicylate) 2 (CuDIPS) and other copper compounds on radiation transformation in vitro have been studied using C3H 10T1/2 cells. When present only during irradiation, high concentrations of SOD in the medium enhanced transformation, while catalase, inactivated SOD (autoclaved), CuDIPS, cupric chloride and cuprous chloride inhibited the initiation phase of radiation transformation. SOD, catalase and CuDIPS did not affect the expression phase of radiation transformation. Suppression of the TPA enhancement of transformation by catalase was a highly significant effect, while the suppression by SOD was not of statistical significance. These results suggest that hydrogen peroxide (H 2 O 2 ) may be important in the cellular damage leading to malignant transformation. (author)

  9. Visual Attention to Print-Salient and Picture-Salient Environmental Print in Young Children

    Science.gov (United States)

    Neumann, Michelle M.; Summerfield, Katelyn; Neumann, David L.

    2015-01-01

    Environmental print is composed of words and contextual cues such as logos and pictures. The salience of the contextual cues may influence attention to words and thus the potential of environmental print in promoting early reading development. The present study explored this by presenting pre-readers (n = 20) and beginning readers (n = 16) with…

  10. Image once, print thrice? Three-dimensional printing of replacement parts.

    Science.gov (United States)

    Rankin, Timothy M; Wormer, Blair A; Miller, John D; Giovinco, Nicholas A; Al Kassis, Salam; Armstrong, David G

    2018-02-01

    The last 20 years has seen an exponential increase in 3D printing as it pertains to the medical industry and more specifically surgery. Previous reviews in this domain have chosen to focus on applications within a specific field. To our knowledge, none have evaluated the broad applications of patient-specific or digital imaging and communications in medicine (DICOM) derived applications of this technology. We searched PUBMED and CINAHL from April 2012 to April 2017. 261 studies fulfilled the inclusion criteria. Proportions of articles reviewed: DICOM (5%), CT (38%), MRI (20%), Ultrasonography (28%), and Bio-printing (9%). There is level IV evidence to support the use of 3D printing for education, pre-operative planning, simulation and implantation. In order to make this technology widely applicable, it will require automation of DICOM to standard tessellation language to implant. Advances in knowledge: Recent lapses in intellectual property and greater familiarity with rapid prototyping in medicine has set the stage for the next generation of custom implants, simulators and autografts. Radiologists may be able to help establish reimbursable procedural terminology.

  11. 29 CFR 1926.1152 - Methylene chloride.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Methylene chloride. 1926.1152 Section 1926.1152 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Methylene chloride. Note: The requirements applicable to construction employment under this section are...

  12. 29 CFR 1915.1052 - Methylene chloride.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Methylene chloride. 1915.1052 Section 1915.1052 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1052 Methylene chloride. Note: The requirements applicable to shipyard employment under this...

  13. Designing Biomaterials for 3D Printing.

    Science.gov (United States)

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  14. Batch fabrication of disposable screen printed SERS arrays.

    Science.gov (United States)

    Qu, Lu-Lu; Li, Da-Wei; Xue, Jin-Qun; Zhai, Wen-Lei; Fossey, John S; Long, Yi-Tao

    2012-03-07

    A novel facile method of fabricating disposable and highly reproducible surface-enhanced Raman spectroscopy (SERS) arrays using screen printing was explored. The screen printing ink containing silver nanoparticles was prepared and printed on supporting materials by a screen printing process to fabricate SERS arrays (6 × 10 printed spots) in large batches. The fabrication conditions, SERS performance and application of these arrays were systematically investigated, and a detection limit of 1.6 × 10(-13) M for rhodamine 6G could be achieved. Moreover, the screen printed SERS arrays exhibited high reproducibility and stability, the spot-to-spot SERS signals showed that the intensity variation was less than 10% and SERS performance could be maintained over 12 weeks. Portable high-throughput analysis of biological samples was accomplished using these disposable screen printed SERS arrays.

  15. Thermochemistry of certain rare earth and ammonium double chlorides

    International Nuclear Information System (INIS)

    Usubaliev, D.U.; Abramtsev, V.A.; Kydynov, M.K.; Vilyaev, A.N.

    1987-01-01

    In a calorimeter with isothermal casing at 25 deg C dissolution enthalpies of double chlorides of rare earths and ammonium LnCl 3 x2NH 4 Cl (Ln=La, Sm) and LnCl 3 x3NH 4 Cl (Ln=Gd, Tb, Ho) in water, as well as dissolution enthalpy of rare earth chlorides in solution of ammonium chloride and NH 4 Cl in solution of rare earth chloride, have been measured. Formation enthalpies, standard formation enthalpies, dissociation enthalpies of the above-mentioned double chlorides are calculated

  16. Printed organic thin-film transistor-based integrated circuits

    International Nuclear Information System (INIS)

    Mandal, Saumen; Noh, Yong-Young

    2015-01-01

    Organic electronics is moving ahead on its journey towards reality. However, this technology will only be possible when it is able to meet specific criteria including flexibility, transparency, disposability and low cost. Printing is one of the conventional techniques to deposit thin films from solution-based ink. It is used worldwide for visual modes of information, and it is now poised to enter into the manufacturing processes of various consumer electronics. The continuous progress made in the field of functional organic semiconductors has achieved high solubility in common solvents as well as high charge carrier mobility, which offers ample opportunity for organic-based printed integrated circuits. In this paper, we present a comprehensive review of all-printed organic thin-film transistor-based integrated circuits, mainly ring oscillators. First, the necessity of all-printed organic integrated circuits is discussed; we consider how the gap between printed electronics and real applications can be bridged. Next, various materials for printed organic integrated circuits are discussed. The features of these circuits and their suitability for electronics using different printing and coating techniques follow. Interconnection technology is equally important to make this product industrially viable; much attention in this review is placed here. For high-frequency operation, channel length should be sufficiently small; this could be achievable with a combination of surface treatment-assisted printing or laser writing. Registration is also an important issue related to printing; the printed gate should be perfectly aligned with the source and drain to minimize parasitic capacitances. All-printed organic inverters and ring oscillators are discussed here, along with their importance. Finally, future applications of all-printed organic integrated circuits are highlighted. (paper)

  17. Secretion of acid phosphatase by axenic Entamoeba histolytica NIH-200 and properties of the extracellular enzyme.

    Science.gov (United States)

    Agrawal, A; Pandey, V C; Kumar, S; Sagar, P

    1989-01-01

    Entamoeba histolytica (NIH-200) secreted large amounts of acid phosphatase in its external environment when grown axenically in modified TPS-II medium. Fractionation by DEAE-cellulose chromatography of the precipitate obtained from the cell-free medium at 60% ammonium sulfate saturation yielded 3 distinct peaks of enzyme activity. The enzyme in all the peaks showed resistance to tartrate but was inhibited by fluoride, cupric chloride, ethylene diamine-tetra acetic acid, ammonium molybdate and cysteine; however, enzyme associated with different peaks differed in its polyacrylamide gel electrophoretic profiles and behavior towards concanavalin A.

  18. Your Next Airplane: Just Hit Print

    Science.gov (United States)

    2013-04-01

    significantly impact the market, but if properly managed, 3-D printing can revolutionize the military through three principal benefits : cost...applications arise, many of which can be tailored to either commercial benefit or military utility. For the military to steer the dialogue over the...from custom chocolate sculptures, to firearms printed in your basement, to light-weight, fuel-efficient printed cars. University research grants

  19. Dramatic Advance in Quality in Flexographic Printing

    Directory of Open Access Journals (Sweden)

    Jochen Richter

    2004-12-01

    Full Text Available The enormous changes in flexography printing in recent years concerning the printing quality achievable cannot generally be ascribed to a single revolutionary invention, but are the result of continuous developments to the complete system. Thus the direct drive technology in all machine types and its associated advantages in terms of printing length corrections has become established since drupa 2000. The race for ever finer raster rolls has also been completed to the benefit of improvements in bowl geometry and in ceramic surfaces. Clearly improved colour transfer behaviour has become feasible as a result. In a closely intermeshed system such as flexography printing this naturally has to have an effect on the printing colours used. Further improvements in bonding agents and pigment concentrations now allow users to print ever thinner colour layers while maintaining all of the required authenticities.Furthermore, it has become possible to reduce additional disturbing characteristics in the UV colour area, such as the unpleasant odour. While the digital imaging of printing plates has primarily been improved in terms of economic efficiency by the use of up to eight parallel laser beams, extreme improvements in the system are noticeable especially in the area of directly engraved printing moulds. Whereas many still dismissed directly engraved polymer plates at the last drupa as a laboratory system, the first installation was recently placed on the market a mere three years later. A further noteworthy innovation of recent years that has reached market maturity is thin sleeve technology, which combines the advantages of a photopolymer plate with a round imaged printing mould. There are no high sleeve costs for each printing mould, except for one-off cost for an adapter sleeve. To conclude, it can be said that although flexography printing has experienced many new features in the time between drupa 2000 and today, it still has enormous potential for

  20. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  1. 21 CFR 177.1950 - Vinyl chloride-ethylene copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-ethylene copolymers. 177.1950... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1950 Vinyl chloride-ethylene copolymers. The vinyl chloride-ethylene copolymers identified in paragraph (a) of this section may be safely...

  2. Chlorides behavior in raw fly ash washing experiments

    International Nuclear Information System (INIS)

    Zhu Fenfen; Takaoka, Masaki; Oshita, Kazuyuki; Kitajima, Yoshinori; Inada, Yasuhiro; Morisawa, Shinsuke; Tsuno, Hiroshi

    2010-01-01

    Chloride in fly ash from municipal solid waste incinerators (MSWIs) is one of the obstructive substances in recycling fly ash as building materials. As a result, we have to understand the behavior of chlorides in recycling process, such as washing. In this study, we used X-ray absorption near edge structure (XANES) and X-ray diffraction (XRD) to study the chloride behavior in washed residue of raw fly ash (RFA). We found that a combination of XRD and XANES, which is to use XRD to identify the situation of some compounds first and then process XANES data, was an effective way to explain the chlorides behavior in washing process. Approximately 15% of the chlorine in RFA was in the form of NaCl, 10% was in the form of KCl, 51% was CaCl 2 , and the remainder was in the form of Friedel's salt. In washing experiments not only the mole percentage but also the amount of soluble chlorides including NaCl, KCl and CaCl 2 decreases quickly with the increase of liquid to solid (L/S) ratio or washing frequency. However, those of insoluble chlorides decrease slower. Moreover, Friedel's salt and its related compound (11CaO.7Al 2 O 3 .CaCl 2 ) were reliable standards for the insoluble chlorides in RFA, which are strongly related to CaCl 2 . Washing of RFA promoted the release of insoluble chlorides, most of which were in the form of CaCl 2 .

  3. 3D-printing technologies for electrochemical applications.

    Science.gov (United States)

    Ambrosi, Adriano; Pumera, Martin

    2016-05-21

    Since its conception during the 80s, 3D-printing, also known as additive manufacturing, has been receiving unprecedented levels of attention and interest from industry and research laboratories. This is in addition to end users, who have benefited from the pervasiveness of desktop-size and relatively cheap printing machines available. 3D-printing enables almost infinite possibilities for rapid prototyping. Therefore, it has been considered for applications in numerous research fields, ranging from mechanical engineering, medicine, and materials science to chemistry. Electrochemistry is another branch of science that can certainly benefit from 3D-printing technologies, paving the way for the design and fabrication of cheaper, higher performing, and ubiquitously available electrochemical devices. Here, we aim to provide a general overview of the most commonly available 3D-printing methods along with a review of recent electrochemistry related studies adopting 3D-printing as a possible rapid prototyping fabrication tool.

  4. High speed printing with polygon scan heads

    Science.gov (United States)

    Stutz, Glenn

    2016-03-01

    To reduce and in many cases eliminate the costs associated with high volume printing of consumer and industrial products, this paper investigates and validates the use of the new generation of high speed pulse on demand (POD) lasers in concert with high speed (HS) polygon scan heads (PSH). Associated costs include consumables such as printing ink and nozzles, provisioning labor, maintenance and repair expense as well as reduction of printing lines due to high through put. Targets that are applicable and investigated include direct printing on plastics, printing on paper/cardboard as well as printing on labels. Market segments would include consumer products (CPG), medical and pharmaceutical products, universal ID (UID), and industrial products. In regards to the POD lasers employed, the wavelengths include UV(355nm), Green (532nm) and IR (1064nm) operating within the repetition range of 180 to 250 KHz.

  5. 29 CFR 1915.1017 - Vinyl chloride.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Vinyl chloride. 1915.1017 Section 1915.1017 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1017 Vinyl chloride. Note: The requirements applicable to shipyard employment under this section...

  6. 29 CFR 1926.1117 - Vinyl chloride.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Vinyl chloride. 1926.1117 Section 1926.1117 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... chloride. Note: The requirements applicable to construction work under this section are identical to those...

  7. Variable-data Printing Serves - Niches Here, There & Everywhere

    Directory of Open Access Journals (Sweden)

    Roger Ynostroza

    2004-12-01

    Full Text Available A milestone focus on high-end digital color presses capable of variable-data imaging - a technology that was introduced ten years ago and is just now at the beginning of wider, more successful implementation in commercial printing-tends to overshadow some real achievements on other variable-data fronts. Those activities involve ink-jet and electrophotographic imaging for high-volume transactional printing, print-on-demand books and catalogs, wide-format proofing and imaging, label production, and printing of text and coding of printed packaging.The capabilities of digital production color presses intrigue commercial printers the most, especially new units referred to by manufacturers as "Series II" or "third-generation" systems. Besides having more press-like characteristics, from offset-caliber quality, image consistency, and high output rates to sturdy construction, reliability, and stock choice, the units seem to represent a way to produce printing that’s beyond the norm.Some users are producing hybrid printed products (offset printing a quantity of "shells" that are later personalized by digital presses, while others are utilizing clients’ "dynamic" databases to personalize marketing materials that drive response rates up to 15%, even 35%. Finally, digital color systems prompt the creation of high-margin Internet-based print providers offering easy-to-design and easy-toorder print materials. Printers may do well to adopt the high-value communications capability that digital imaging offers.

  8. Printing of Wearable Antenna on Textile

    Directory of Open Access Journals (Sweden)

    Khirotdin Rd. Khairilhijra

    2018-01-01

    Full Text Available A wearable antenna which is meant to be a part of the clothing used for communication purposes includes tracking, navigation and mobile computing has been seen in demand due to the recent miniaturization of wireless devices. Printing of conductive ink provides flexibility properties on electronics thus allowing it to be used on conformal surfaces. However, the current printing techniques mostly suffer from ink incompatibility and limited of substrates to be printed with. Hence, this paper intend to discloses the printing of wearable antenna using alternative technique via syringe-based deposition system with conductive ink on textile. A validation between simulation and measurement of return loss, (S11 and radiation pattern of the antenna printed is also performed. It was found that a functional antenna is successfully printed on textile since the performances obtained are as expected. The antenna resonated at a minimum resonant frequency of 1.82 GHz which the S11 gathered at-18.90 dB. The radiation pattern for both simulation and measurement is as predicted since both have a larger magnitude of the main lobe than the side lobe. The magnitude of the main lobe from measurement was observed to be 8.83 dB higher than the magnitude of the main lobe of the simulation which is only 3.77 dB. It is proven that the syringe-based deposition system is capable of printing functional antenna on textile.

  9. Inkjet Printed Radio Frequency Passive Components

    KAUST Repository

    McKerricher, Garret

    2015-12-01

    Inkjet printing is a mature technique for colourful graphic arts. It excels at customized, large area, high resolution, and small volume production. With the developments in conductive, and dielectric inks, there is potential for large area inkjet electronics fabrication. Passive radio frequency devices can benefit greatly from a printing process, since the size of these devices is defined by the frequency of operation. The large size of radio frequency passives means that they either take up expensive space “on chip” or that they are fabricated on a separate lower cost substrate and somehow bonded to the chips. This has hindered cost-sensitive high volume applications such as radio frequency identification tags. Substantial work has been undertaken on inkjet-printed conductors for passive antennas on microwave substrates and even paper, yet there has been little work on the printing of the dielectric materials aimed at radio frequency passives. Both the conductor and dielectric need to be integrated to create a multilayer inkjet printing process that is capable of making quality passives such as capacitors and inductors. Three inkjet printed dielectrics are investigated in this thesis: a ceramic (alumina), a thermal-cured polymer (poly 4 vinyl phenol), and a UV-cured polymer (acrylic based). For the conductor, both a silver nanoparticle ink as well as a custom in-house formulated particle-free silver ink are explored. The focus is on passives, mainly capacitors and inductors. Compared to low frequency electronics, radio frequency components have additional sensitivity regarding skin depth of the conductor and surface roughness, as well as dielectric constant and loss tangent of the dielectric. These concerns are investigated with the aim of making the highest quality components possible and to understand the current limitations of inkjet-fabricated radio frequency devices. An inkjet-printed alumina dielectric that provides quality factors of 200 and high

  10. Mass transport and chloride ion complexes in occluded cell

    International Nuclear Information System (INIS)

    Tsuru, T.; Hashimoto, K.; Nishikata, A.; Haruyama, S.

    1989-01-01

    Changes in the transport and the concentration of ions in a model occluded cell are traced during galvanostatic anodic polarization of a mild steel and a stainless steel. Apparent transport numbers of anions and cations, which were estimated from chemical analysis of solution, were different from those calculated from known mobility data. At the initial stage of the polarization, the transport number of chloride ion was almost unity, and then decreased gradually. For the mild steel, the concentration of total chloride ion accumulated in the occluded compartment increased with the anodic charge passed, and the amount of chloride ion complexed with cations also increased. The chloride complex was estimated as FeCl + . For SUS304 stainless steel, the total chloride ion increased, however, the free chloride ion, which responded to an Ag/AgCl electrode remained approximately 2 mol/dm 3 . Therefore, most of the chloride ions transferred into the occluded cell formed complex ions, such as CrCl n 3-n . The number of chloride ion coordinated to ferrous and chromic ions was estimated from the data fo mass transport for the case of the mild steel and the stainless steel. (author) 9 refs., 14 figs

  11. Anodic Behavior of Alloy 22 in Calcium Chloride and in Calcium Chloride Plus Calcium Nitrate Brines

    International Nuclear Information System (INIS)

    Evans, K.J.; Day, S.D.; Ilevbare, G.O.; Whalen, M.T.; King, K.J.; Hust, G.A.; Wong, L.L.; Estill, J.C.; Rebak, R.B.

    2003-01-01

    Alloy 22 (UNS N60622) is a nickel-based alloy, which is extensively used in aggressive industrial applications, especially due to its resistance to localized corrosion and stress corrosion cracking in high chloride environments. The purpose of this work was to characterize the anodic behavior of Alloy 22 in concentrated calcium chloride (CaCl 2 ) brines and to evaluate the inhibitive effect of nitrate, especially to localized corrosion. Standard electrochemical tests such as polarization resistance and cyclic polarization were used. Results show that the corrosion potential of Alloy 22 was approximately -360 mV in the silver-silver chloride (SSC) scale and independent of the tested temperature. Cyclic polarization tests showed that Alloy 22 was mainly susceptible to localized attack in 5 M CaCl 2 at 75 C and higher temperatures. The addition of nitrate in a molar ratio of chloride to nitrate equal to 10 increased the onset of localized corrosion to approximately 105 C. The addition of nitrate to the solution also decreased the uniform corrosion rate and the passive current of the alloy

  12. Uniformity of fully gravure printed organic field-effect transistors

    International Nuclear Information System (INIS)

    Hambsch, M.; Reuter, K.; Stanel, M.; Schmidt, G.; Kempa, H.; Fuegmann, U.; Hahn, U.; Huebler, A.C.

    2010-01-01

    Fully mass-printed organic field-effect transistors were made completely by means of gravure printing. Therefore a special printing layout was developed in order to avoid register problems in print direction. Upon using this layout, contact pads for source-drain electrodes of the transistors are printed together with the gate electrodes in one and the same printing run. More than 50,000 transistors have been produced and by random tests a yield of approximately 75% has been determined. The principle suitability of the gravure printed transistors for integrated circuits has been shown by the realization of ring oscillators.

  13. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  14. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  15. Process for making rare earth metal chlorides

    International Nuclear Information System (INIS)

    Kruesi, P.R.

    1981-01-01

    An uncombined metal or a metal compound such as a sulfide, oxide, carbonate or sulfate is converted in a liquid salt bath to the corresponding metal chloride by reacting it with chlorine gas or a chlorine donor. The process applies to metals of groups 1b, 2a, 2b, 3a, 3b, 4a, 5a and 8 of the periodic table and to the rare earth metals. The chlorine donor may be ferric or sulfur chloride. The liquid fused salt bath is made up of chlorides of alkali metals, alkaline earth metals, ammonia, zinc and ferric iron. Because the formed metal chlorides are soluble in the liquid fused salt bath, they can be recovered by various conventional means

  16. Crystal structures of salicylideneguanylhydrazinium chloride and its copper(II) and cobalt(III) chloride complexes

    International Nuclear Information System (INIS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Bocelli, G.; Antosyak, B. Ya.; Shova, S. G.; Gulea, A. P.

    2006-01-01

    The crystal structures of salicylideneguanylhydrazinium chloride hydrate hemiethanol solvate (I), salicylideneguanylhydrazinium trichloroaquacuprate(II) (II), and bis(salicylideneguanylhydrazino)cobalt(III) chloride trihydrate (III) are determined using X-ray diffraction. The structures of compounds I, II, and III are solved by direct methods and refined using the least-squares procedure in the anisotropic approximation for the non-hydrogen atoms to the final factors R = 0.0597, 0.0212, and 0.0283, respectively. In the structure of compound I, the monoprotonated molecules and chlorine ions linked by hydrogen bonds form layers aligned parallel to the (010) plane. In the structure of compound II, the salicylaldehyde guanylhydrazone cations and polymer chains consisting of trichloroaquacuprate(II) anions are joined by an extended three-dimensional network of hydrogen bonds. In the structure of compound III, the [Co(LH) 2 ] + cations, chloride ions, and molecules of crystallization water are linked together by a similar network

  17. Printed Spacecraft Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Holmans, Walter [Planetary Systems Corporation

    2016-10-01

    In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.

  18. Effect of hydrophobic microstructured surfaces on conductive ink printing

    International Nuclear Information System (INIS)

    Kim, Seunghwan; Kang, Hyun Wook; Lee, Kyung Heon; Sung, Hyung Jin

    2011-01-01

    Conductive ink was printed on various microstructured substrates to measure the printing quality. Poly-dimethylsiloxane (PDMS) substrates were used to test the printability of the hydrophobic surface material. Microstructured arrays of 10 µm regular PDMS cubes were prepared using the MEMS fabrication technique. The gap distance between the cubes was varied from 10 to 40 µm. The printing wettability of the microstructured surfaces was determined by measuring the contact angle of a droplet of silver conductive ink. Screen-printing methods were used in the conductive line printing experiment. Test line patterns with finely varying widths (30–250 µm) were printed repeatedly, and the conductivity of the printed lines was measured. The printability, which was defined as the ratio of the successfully printed patterns to the total number of printed patterns, was analyzed as a function of the linewidth and the gap distance of the microstructured surfaces

  19. A multimaterial electrohydrodynamic jet (E-jet) printing system

    International Nuclear Information System (INIS)

    Sutanto, E; Shigeta, K; Kim, Y K; Graf, P G; Hoelzle, D J; Barton, K L; Alleyne, A G; Ferreira, P M; Rogers, J A

    2012-01-01

    Electrohydrodynamic jet (E-jet) printing has emerged as a high-resolution alternative to other forms of direct solution-based fabrication approaches, such as ink-jet printing. This paper discusses the design, integration and operation of a unique E-jet printing platform. The uniqueness lies in the ability to utilize multiple materials in the same overall print-head, thereby enabling increased degrees of heterogeneous integration of different functionalities on a single substrate. By utilizing multiple individual print-heads, with a carrousel indexing among them, increased material flexibility is achieved. The hardware design and system operation for a relatively inexpensive system are developed and presented. Crossover interconnects and multiple fluorescent tagged proteins, demonstrating printed electronics and biological sensing applications, respectively. (paper)

  20. 3D inkjet printed radio frequency inductors and capacitors

    KAUST Repository

    Vaseem, Mohammad

    2016-12-08

    Inkjet printing has emerged as an ideal method for the fabrication of low cost and efficient electronic systems. However, most of the printed designs at present utilize 2D inkjet printing of metallic inks on conventional substrates. In order to have fully printed RF components, the substrate must also be printed. 3D printing of polymers can be an ideal mechanism for printing substrates, however typically such materials cannot handle high sintering temperatures (>150 0C) required for nanoparticles based metallic inks. In this work, an all-inkjet printed process is demonstrated that utilizes 3D inkjet printing of a UV-cured dielectric material in combination with the printing of a particle free conductive silver organo-complex (SOC) ink for realization of inductors and capacitors. The processing temperature does not exceed 80 0C and still state of the art conductivity of 1×107 S/m is achieved. Both the conductive ink and dielectric have roughness values under 500 nm. The inductor and capacitor exhibit quality factors of 8 and 20 respectively in the high MHz and GHz regime.

  1. Study of lip prints: A forensic study

    Directory of Open Access Journals (Sweden)

    Vikash Ranjan

    2014-01-01

    Full Text Available Background: Although several studies have been done on lip prints for human identification in forensic science, there is a doubt about their use in gender determination. Aims: The present study was designed to study the lip groove patterns in all the quadrants of both male and female subjects to identify the sex, based on the patterns of the grooves of the lip prints. Study Design: 300 lip prints were collected from volunteers of D. J. College of Dental Sciences and Research, Modinagar (UP. Materials and Methods: Lip prints were recorded with lip stick and transferred on to a glass slide. Statistical Analysis: Pearson chi-square test was adopted for statistical analysis and probability value (P value was calculated. Conclusion: In our study, none of the lip prints were identical, thus confirming the role of lip prints in individual identification. According to Suzuki′s classification, Type I, II, III and IV patterns were significant in gender determination.

  2. Printing in heterogeneous computer environment at DESY

    International Nuclear Information System (INIS)

    Jakubowski, Z.

    1996-01-01

    The number of registered hosts DESY reaches 3500 while the number of print queues approaches 150. The spectrum of used computing environment is very wide: from MAC's and PC's, through SUN, DEC and SGI machines to the IBM mainframe. In 1994 we used 18 tons of paper. We present a solution for providing print services in such an environment for more than 3500 registered users. The availability of the print service is a serious issue. Using centralized printing has a lot of advantages for software administration but creates single point of failure. We solved this problem partially without using expensive software and hardware. The talk provides information about the DESY central central print spooler concept. None of the systems available on the market provides ready to use reliable solution for all platforms used for DESY. We discuss concepts for installation, administration and monitoring large number of printers. We found a solution for printing both on central computing facilities likewise for support of stand-alone workstations. (author)

  3. Network printing in a heterogenous environment

    International Nuclear Information System (INIS)

    Beyer, C.; Schroth, G.

    2001-01-01

    Mail and printing are often said to be the most visible services for the user in the network. Though many people talked about the paperless bureau a few years ago it seems that the more digital data is accessible, the more it gets printed. Print management in a heterogenous network environments is typically crossing all operating systems. Each of those brings its own requirements and different printing system implementations with individual user interfaces. The scope is to give the user the advantage and features of the native interface of their operating system while making administration tasks as easy as possible by following the general ideas of a centralised network service on the server side

  4. Estimating Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China

    Science.gov (United States)

    Fu, X.; Wang, T.; Wang, S.; Zhang, L.

    2017-12-01

    Nitryl chloride (ClNO2) can significantly impact the atmospheric photochemistry via photolysis and subsequent reactions of chlorine radical with other gases. The formation of ClNO2 in the atmosphere is sensitive to the emissions of chlorine-containing particulates from oceanic and anthropogenic sources. For China, the only available anthropogenic chlorine emission inventory was compiled for the year 1990 with a coarse resolution of 1 degree. In this study, we developed an up-to-date anthropogenic inventory of hydrogen chloride (HCl) and fine particulate chloride (Cl-) emissions in China for the year 2014, including coal burning, industrial processes, biomass burning and waste burning. Bottom-up and top-down methodologies were combined. Detailed local data (e.g. Cl content in coal, control technologies, etc.) were collected and applied. In order to improve the spatial resolution of emissions, detailed point source information were collected for coal-fired power plants, cement factories, iron & steel factories and waste incineration factories. Uncertainties of this emission inventory and their major causes were analyzed using the Monte Carlo method. This work enables better quantification of the ClNO2 production and impact over China.

  5. Exposure assessment of workers in printed electronics workplace.

    Science.gov (United States)

    Lee, Ji Hyun; Sohn, Eun Kyung; Ahn, Jin Soo; Ahn, Kangho; Kim, Keun Soo; Lee, Jong Hwan; Lee, Taik Min; Yu, Il Je

    2013-07-01

    Printed electronics uses converging technologies, such as printing, fine mechanics, nanotechnology, electronics and other new technologies. Consequently, printed electronics raises additional health and safety concerns to those experienced in the traditional printing industry. This study investigated two printed electronics workplaces based on a walk-through survey and personal and area sampling. All the printed electronics operations were conducted in a cleanroom. No indication of exposure to excess silver nanoparticles or carbon nanotubes (CNTs) was found. While the organic solvents were lower than current occupational exposure limits, there was a lack of engineering controls, such as local exhaust ventilation, correct enclosure and duct connections. There was also an insufficient quantity of personal protective equipment, and some organic solvents not described in the safety data sheets (SDSs) were detected in the air samples. Plus, the cleaning work, a major emissions operation, was not conducted within a hood, and the cleaning waste was not properly disposed of. Therefore, the present exposure assessment results from two printed electronics workplaces suggest that the printed electronics industry needs to take note of the occupational safety and health risks and hazards already established by the traditional printing industry, along with new risks and hazards originating from converging technologies such as nanotechnology.

  6. µPlasma printing of hydrophobic and hydrophilic patterns to improve wetting behaviour for printed electronics

    NARCIS (Netherlands)

    Erik Niewenhuis; ir Renee Verkuijlen; Dr Jan Bernards; ir Martijn van Dongen; Lise Verbraeken

    2012-01-01

    Inkjet printing is a rapidly growing technology for depositing functional materials in the production of organic electronics. Challenges lie among others in the printing of high resolution patterns with high aspect ratio of functional materials to obtain the needed functionality like e.g.

  7. Three-Dimensional Printed Graphene Foams.

    Science.gov (United States)

    Sha, Junwei; Li, Yilun; Villegas Salvatierra, Rodrigo; Wang, Tuo; Dong, Pei; Ji, Yongsung; Lee, Seoung-Ki; Zhang, Chenhao; Zhang, Jibo; Smith, Robert H; Ajayan, Pulickel M; Lou, Jun; Zhao, Naiqin; Tour, James M

    2017-07-25

    An automated metal powder three-dimensional (3D) printing method for in situ synthesis of free-standing 3D graphene foams (GFs) was successfully modeled by manually placing a mixture of Ni and sucrose onto a platform and then using a commercial CO 2 laser to convert the Ni/sucrose mixture into 3D GFs. The sucrose acted as the solid carbon source for graphene, and the sintered Ni metal acted as the catalyst and template for graphene growth. This simple and efficient method combines powder metallurgy templating with 3D printing techniques and enables direct in situ 3D printing of GFs with no high-temperature furnace or lengthy growth process required. The 3D printed GFs show high-porosity (∼99.3%), low-density (∼0.015g cm -3 ), high-quality, and multilayered graphene features. The GFs have an electrical conductivity of ∼8.7 S cm -1 , a remarkable storage modulus of ∼11 kPa, and a high damping capacity of ∼0.06. These excellent physical properties of 3D printed GFs indicate potential applications in fields requiring rapid design and manufacturing of 3D carbon materials, for example, energy storage devices, damping materials, and sound absorption.

  8. Indirect X-ray Detectors Based on Inkjet-Printed Photodetectors with a Screen-Printed Scintillator Layer.

    Science.gov (United States)

    Oliveira, Juliana; Correia, Vitor; Sowade, Enrico; Etxebarria, Ikerne; Rodriguez, Raul D; Mitra, Kalyan Y; Baumann, Reinhard R; Lanceros-Mendez, Senentxu

    2018-04-18

    Organic photodetectors (PDs) based on printing technologies will allow to expand the current field of PD applications toward large-area and flexible applications in areas such as medical imaging, security, and quality control, among others. Inkjet printing is a powerful digital tool for the deposition of smart and functional materials on various substrates, allowing the development of electronic devices such as PDs on various substrates. In this work, inkjet-printed PD arrays, based on the organic thin-film transistor architecture, have been developed and applied for the indirect detection of X-ray radiation using a scintillator ink as an X-ray absorber. The >90% increase of the photocurrent of the PDs under X-ray radiation, from about 53 nA without the scintillator film to about 102 nA with the scintillator located on top of the PD, proves the suitability of the developed printed device for X-ray detection applications.

  9. Inkjet 3D printing of microfluidic structures—on the selection of the printer towards printing your own microfluidic chips

    International Nuclear Information System (INIS)

    Walczak, Rafał; Adamski, Krzysztof

    2015-01-01

    This article reports, for the first time, the results of detailed research on the application of inkjet 3D printing for the fabrication of microfluidic structures. CAD designed test structures were printed with four different printers. Dimensional fidelity, shape conformity, and surface roughness were studied for each printout. It was found that the minimum dimension (width or depth) for a properly printed microfluidic channel was approximately 200 μm. Although the nominal resolution of the printers was one order of magnitude better, smaller structures were significantly deformed or not printed at all. It was also found that a crucial step in one-step fabrication of embedded microchannels is the removal of the support material. We also discuss the source of print error and present a way to evaluate other printers. The printouts obtained from the four different printers were compared, and the optimal printing technique and printer were used to fabricate a microfluidic structure for the spectrophotometric characterisation of beverages. UV/VIS absorbance characteristics were collected using this microfluidic structure, demonstrating that the fabricated spectrophotometric chip operated properly. Thus, a proof-of-concept for using inkjet 3D printing for the fabrication of microfluidic structures was obtained. (paper)

  10. Bone marrow scintigraphy with 111In-chloride

    International Nuclear Information System (INIS)

    Fujishima, Mamoru; Hiraki, Yoshio; Takeda, Yoshihiro; Kohno, Yoshihiro; Niiya, Harutaka; Aono, Kaname; Yorimitsu, Seiichi; Takahashi, Isao

    1988-01-01

    Bone marrow scintigraphy with indium chloride ( 111 In) was performed in fifty-one patients with the hematological diseases. The results of the investigation were that 1) in all patients, as well as in patients with aplastic anemia, no correlation was there between the degree of the indium chloride accumulation and peripheral blood counts, 2) in patients with aplastic anemia and pure red cell aplasia (PRCA) a tendency to reduction in uptake of indium chloride in bone marrow, 3) in patients with these two good correlation between the degree of indium chloride accumulation and histology of the erythroid bone marrow, but in patients with chronic myelocytic leukemia (CML) and atypical leukemia no correlation between the two, so it seemed unlikely that indium chloride should reflect the effective production of erythrocytes, 4) four patients with leukemia were studied with indium chloride bone marrow imaging two times to evaluate their responses to chemotherapy, and peripheral expansion was no change or reduced in two patients with acute myelocytic leukemia (AML) and one patient with acute lymphocytic leukemia (ALL) who obtained complete remission, but on the other hand, it enlarged in one patient with acute myelocytic leukemia who obtained partial remission, and 5) in two patients with chronic myelocytic leukemia it enlarged up to the ankle joints, which was considerably specific. (author)

  11. 3D Printing of Carbon Nanotubes-Based Microsupercapacitors.

    Science.gov (United States)

    Yu, Wei; Zhou, Han; Li, Ben Q; Ding, Shujiang

    2017-02-08

    A novel 3D printing procedure is presented for fabricating carbon-nanotubes (CNTs)-based microsupercapacitors. The 3D printer uses a CNTs ink slurry with a moderate solid content and prints a stream of continuous droplets. Appropriate control of a heated base is applied to facilitate the solvent removal and adhesion between printed layers and to improve the structure integrity without structure delamination or distortion upon drying. The 3D-printed electrodes for microsupercapacitors are characterized by SEM, laser scanning confocal microscope, and step profiler. Effect of process parameters on 3D printing is also studied. The final solid-state microsupercapacitors are assembled with the printed multilayer CNTs structures and poly(vinyl alcohol)-H 3 PO 4 gel as the interdigitated microelectrodes and electrolyte. The electrochemical performance of 3D printed microsupercapacitors is also tested, showing a significant areal capacitance and excellent cycle stability.

  12. Chlorides behavior in raw fly ash washing experiments.

    Science.gov (United States)

    Zhu, Fenfen; Takaoka, Masaki; Oshita, Kazuyuki; Kitajima, Yoshinori; Inada, Yasuhiro; Morisawa, Shinsuke; Tsuno, Hiroshi

    2010-06-15

    Chloride in fly ash from municipal solid waste incinerators (MSWIs) is one of the obstructive substances in recycling fly ash as building materials. As a result, we have to understand the behavior of chlorides in recycling process, such as washing. In this study, we used X-ray absorption near edge structure (XANES) and X-ray diffraction (XRD) to study the chloride behavior in washed residue of raw fly ash (RFA). We found that a combination of XRD and XANES, which is to use XRD to identify the situation of some compounds first and then process XANES data, was an effective way to explain the chlorides behavior in washing process. Approximately 15% of the chlorine in RFA was in the form of NaCl, 10% was in the form of KCl, 51% was CaCl(2), and the remainder was in the form of Friedel's salt. In washing experiments not only the mole percentage but also the amount of soluble chlorides including NaCl, KCl and CaCl(2) decreases quickly with the increase of liquid to solid (L/S) ratio or washing frequency. However, those of insoluble chlorides decrease slower. Moreover, Friedel's salt and its related compound (11CaO.7Al(2)O(3).CaCl(2)) were reliable standards for the insoluble chlorides in RFA, which are strongly related to CaCl(2). Washing of RFA promoted the release of insoluble chlorides, most of which were in the form of CaCl(2). Copyright 2010 Elsevier B.V. All rights reserved.

  13. Pseudoisochromatic test plate colour representation dependence on printing technology

    International Nuclear Information System (INIS)

    Luse, K; Ozolinsh, M; Fomins, S

    2012-01-01

    The aim of the study is to determine best printing technology for creation of colour vision deficiency tests. Valid tests for protanopia and deuteranopia were created from perceived colour matching experiments from printed colour samples by colour deficient individuals. Calibrated EpsonStylus Pro 7800 printer for ink prints and Noritsu HD 3701 digital printer for photographic prints were used. Multispectral imagery (by tunable liquid crystal filters system CRI Nuance Vis 07) data analysis show that in case of ink prints, the measured pixel colour coordinate dispersion (in the CIExy colour diagram) of similar colour arrays is smaller than in case of photographic printing. The print quality in terms of colour coordinate dispersion for printing methods used is much higher than in case of commercially available colour vision deficiency tests.

  14. Paper-based inkjet-printed ultra-wideband fractal antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-01-01

    For the first time, paper-based inkjet-printed ultra-wideband (UWB) fractal antennas are presented. Two new designs, a miniaturised UWB monopole, which utilises a fractal matching network and is the smallest reported inkjet-printed UWB printed antenna to date, and a fourth-order Koch Snowflake monopole, which utilises a Sierpinski gasket fractal for ink reduction, are demonstrated. It is shown that fractals prove to be a successful method of reducing fabrication costs in inkjet-printed antennas, while retaining or enhancing printed antenna performance. © 2012 The Institution of Engineering and Technology.

  15. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  16. Digital Printing Quality Detection and Analysis Technology Based on CCD

    Science.gov (United States)

    He, Ming; Zheng, Liping

    2017-12-01

    With the help of CCD digital printing quality detection and analysis technology, it can carry out rapid evaluation and objective detection of printing quality, and can play a certain control effect on printing quality. It can be said CDD digital printing quality testing and analysis of the rational application of technology, its digital printing and printing materials for a variety of printing equipments to improve the quality of a very positive role. In this paper, we do an in-depth study and discussion based on the CCD digital print quality testing and analysis technology.

  17. 3D printed soft parallel actuator

    Science.gov (United States)

    Zolfagharian, Ali; Kouzani, Abbas Z.; Khoo, Sui Yang; Noshadi, Amin; Kaynak, Akif

    2018-04-01

    This paper presents a 3-dimensional (3D) printed soft parallel contactless actuator for the first time. The actuator involves an electro-responsive parallel mechanism made of two segments namely active chain and passive chain both 3D printed. The active chain is attached to the ground from one end and constitutes two actuator links made of responsive hydrogel. The passive chain, on the other hand, is attached to the active chain from one end and consists of two rigid links made of polymer. The actuator links are printed using an extrusion-based 3D-Bioplotter with polyelectrolyte hydrogel as printer ink. The rigid links are also printed by a 3D fused deposition modelling (FDM) printer with acrylonitrile butadiene styrene (ABS) as print material. The kinematics model of the soft parallel actuator is derived via transformation matrices notations to simulate and determine the workspace of the actuator. The printed soft parallel actuator is then immersed into NaOH solution with specific voltage applied to it via two contactless electrodes. The experimental data is then collected and used to develop a parametric model to estimate the end-effector position and regulate kinematics model in response to specific input voltage over time. It is observed that the electroactive actuator demonstrates expected behaviour according to the simulation of its kinematics model. The use of 3D printing for the fabrication of parallel soft actuators opens a new chapter in manufacturing sophisticated soft actuators with high dexterity and mechanical robustness for biomedical applications such as cell manipulation and drug release.

  18. Printing Values In Interactive ROOT

    CERN Document Server

    Perovic, Boris

    2015-01-01

    This project report summarizes the work I have been performing during the past twelve weeks as a Summer Student intern working on ROOT project in the SFT group, PH department, under the supervision of Axel Naumann and Danilo Piparo. One of the widely requested features for ROOT was improved interactive shell experience as well as improved printing of object values. Solving this issue was the goal of this project. Primarily, we have enabled printing of the collections. Secondly, we have unified the printing interface, making it much more robust and extendible. Thirdly, we have implemented printing of nested collections in a flexible and user-friendly manner. Finally, we have added an interactive mode, allowing for paginated output. At the beginning of the report, ROOT is presented with examples of where it is used and how important it is. Then, the motivation behind the project is elaborated, by presenting the previous state of the software package and its potential for improvement. Further, the process in wh...

  19. 7 CFR 58.340 - Printing and packaging.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Printing and packaging. 58.340 Section 58.340... Procedures § 58.340 Printing and packaging. Printing and packaging of consumer size containers of butter... packaging equipment should be provided. The outside cartons should be removed from bulk butter in a room...

  20. Studies on the mercuric chloride resistance of Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Vaczi, L; Fodor, M; Milch, H; Rethy, A

    1962-01-01

    Among 409 pathogenic Staph. aureus strains 34% have been found to be sensitive, and 66% resistant, to mercuric chloride. The incidence of mercuric chloride resistant cultures among antibiotic sensitive staphylococci was 20%; among strains resistant to penicillin or to more than one antibiotic, 70%. Mercuric chloride resistant organisms occurred chiefly among phage group I and untypable strains; they were especially common among the so called epidemic strains of phage group I, and among cultures resistant to 4-6 antibiotics. In mercuric chloride sensitivity a thirtyfold, in merthiolate sensitivity only a two-fold difference has been revealed among the strains. The sulfydryl group content of mercuric chloride resistant organisms was only 1 1/2 times higher than that of sensitive bacteria. As to p-chlor mercuric benzoate binding capacity, a twofold difference was found between mercuric chloride sensitive and resistant staphylococci. The differences in the mercuric chloride resistance of various staphylococcal strains might be due to differences in the chemical structure of the cell surface. 9 references, 1 figure, 6 tables.

  1. Advances in digital printing and quality considerations of digitally printed images

    Science.gov (United States)

    Waes, Walter C.

    1997-02-01

    The traditional 'graphic arts' market has changed very rapidly. It has been only ten years now since Aldus introduced its 'PageMaker' software for text and layout. The platform used was Apple-Mac, which became also the standard for many other graphic applications. The so-called high-end workstations disappeared. This was the start for what later was called: the desk top publishing revolution. At the same time, image scanning became also user-friendly and heavy duty scanners were reduced to desktop-size. Color- reproduction became a commodity product. Since then, the pre-press industry has been going through a technical nightmare, trying to keep up with the digital explosion. One after another, tasks and crafts of pre-press were being transformed by digital technologies. New technologies in this field came almost too fast for many people to adapt. The next digital revolution will be for the commercial printers. All the reasons are explained later in this document. There is now a definite need for a different business-strategy and a new positioning in the electronic media-world. Niches have to be located for new graphic arts- applications. Electronic services to-and-from originators' and executors environments became a requirement. Data can now flow on-line between the printer and the originator of the job. It is no longer the pre-press shop who is controlling this. In many cases, electronic data goes between the print-buyer or agency and the printer. High power communication-systems with accepted standard color- management are transforming the printer, and more particularly, the pre-press shop fatally. The new digital printing market, now in the beginning of its expected full expansion, has to do with growing requests coming from agencies and other print-buyers for: (1) short-run printing; (2) print-on-demand approximately in-time; (3) personalization or other forms of customization; (4) quick turnaround.

  2. Combined HPLC-CUPRAC (cupric ion reducing antioxidant capacity) assay of parsley, celery leaves, and nettle.

    Science.gov (United States)

    Yildiz, Leyla; Başkan, Kevser Sözgen; Tütem, Esma; Apak, Reşat

    2008-10-19

    This study aims to identify the essential antioxidant compounds present in parsley (Petroselinum sativum) and celery (Apium graveolens) leaves belonging to the Umbelliferae (Apiaceae) family, and in stinging nettle (Urtica dioica) belonging to Urticaceae family, to measure the total antioxidant capacity (TAC) of these compounds with CUPRAC (cupric ion reducing antioxidant capacity) and ABTS spectrophotometric methods, and to correlate the TAC with high performance liquid chromatography (HPLC) findings. The CUPRAC spectrophotometric method of TAC assay using copper(II)-neocuproine (2,9-dimethyl-1,10-phenanthroline) as the chromogenic oxidant was developed in our laboratories. The individual antioxidant constituents of plant extracts were identified and quantified by HPLC on a C18 column using a modified mobile phase of gradient elution comprised of MeOH-0.2% o-phosphoric acid and UV detection for polyphenols at 280 nm. The TAC values of HPLC-quantified antioxidant constituents were found, and compared for the first time with those found by CUPRAC. The TAC of HPLC-quantified compounds accounted for a relatively high percentage of the observed CUPRAC capacities of plant extracts, namely 81% of nettle, 60-77% of parsley (in different hydrolyzates of extract and solid sample), and 41-57% of celery leaves (in different hydrolyzates). The CUPRAC total capacities of the 70% MeOH extracts of studied plants (in the units of mmol trolox g(-1)plant) were in the order: celery leaves>nettle>parsley. The TAC calculated with the aid of HPLC-spectrophotometry did not compensate for 100% of the CUPRAC total capacities, because all flavonoid glycosides subjected to hydrolysis were either not detectable with HPLC, or not converted to the corresponding aglycons (i.e., easily detectable and quantifiable with HPLC) during the hydrolysis step.

  3. 40 CFR 61.64 - Emission standard for polyvinyl chloride plants.

    Science.gov (United States)

    2010-07-01

    ... chloride plants. 61.64 Section 61.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Standard for Vinyl Chloride § 61.64 Emission standard for polyvinyl chloride plants. An owner or operator of a polyvinyl chloride plant shall comply with the requirements of this section and § 61.65. (a...

  4. 3D printing applications for transdermal drug delivery.

    Science.gov (United States)

    Economidou, Sophia N; Lamprou, Dimitrios A; Douroumis, Dennis

    2018-06-15

    The role of two and three-dimensional printing as a fabrication technology for sophisticated transdermal drug delivery systems is explored in literature. 3D printing encompasses a family of distinct technologies that employ a virtual model to produce a physical object through numerically controlled apparatuses. The applicability of several printing technologies has been researched for the direct or indirect printing of microneedle arrays or for the modification of their surface through drug-containing coatings. The findings of the respective studies are presented. The range of printable materials that are currently used or potentially can be employed for 3D printing of transdermal drug delivery (TDD) systems is also reviewed. Moreover, the expected impact and challenges of the adoption of 3D printing as a manufacturing technique for transdermal drug delivery systems, are assessed. Finally, this paper outlines the current regulatory framework associated with 3D printed transdermal drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Viscoplastic Matrix Materials for Embedded 3D Printing.

    Science.gov (United States)

    Grosskopf, Abigail K; Truby, Ryan L; Kim, Hyoungsoo; Perazzo, Antonio; Lewis, Jennifer A; Stone, Howard A

    2018-03-16

    Embedded three-dimensional (EMB3D) printing is an emerging technique that enables free-form fabrication of complex architectures. In this approach, a nozzle is translated omnidirectionally within a soft matrix that surrounds and supports the patterned material. To optimize print fidelity, we have investigated the effects of matrix viscoplasticity on the EMB3D printing process. Specifically, we determine how matrix composition, print path and speed, and nozzle diameter affect the yielded region within the matrix. By characterizing the velocity and strain fields and analyzing the dimensions of the yielded regions, we determine that scaling relationships based on the Oldroyd number, Od, exist between these dimensions and the rheological properties of the matrix materials and printing parameters. Finally, we use EMB3D printing to create complex architectures within an elastomeric silicone matrix. Our methods and findings will both facilitate future characterization of viscoplastic matrices and motivate the development of new materials for EMB3D printing.

  6. Direct Desktop Printed-Circuits-on-Paper Flexible Electronics

    Science.gov (United States)

    Zheng, Yi; He, Zhizhu; Gao, Yunxia; Liu, Jing

    2013-01-01

    There currently lacks of a way to directly write out electronics, just like printing pictures on paper by an office printer. Here we show a desktop printing of flexible circuits on paper via developing liquid metal ink and related working mechanisms. Through modifying adhesion of the ink, overcoming its high surface tension by dispensing machine and designing a brush like porous pinhead for printing alloy and identifying matched substrate materials among different papers, the slightly oxidized alloy ink was demonstrated to be flexibly printed on coated paper, which could compose various functional electronics and the concept of Printed-Circuits-on-Paper was thus presented. Further, RTV silicone rubber was adopted as isolating inks and packaging material to guarantee the functional stability of the circuit, which suggests an approach for printing 3D hybrid electro-mechanical device. The present work paved the way for a low cost and easygoing method in directly printing paper electronics.

  7. 3D inkjet printed radio frequency inductors and capacitors

    KAUST Repository

    Vaseem, Mohammad; McKerricher, Garret; Shamim, Atif

    2016-01-01

    fully printed RF components, the substrate must also be printed. 3D printing of polymers can be an ideal mechanism for printing substrates, however typically such materials cannot handle high sintering temperatures (>150 0C) required for nanoparticles

  8. Quality Inspection of Printed Texts

    DEFF Research Database (Denmark)

    Pedersen, Jesper Ballisager; Nasrollahi, Kamal; Moeslund, Thomas B.

    2016-01-01

    -folded: for costumers of the printing and verification system, the overall grade used to verify if the text is of sufficient quality, while for printer's manufacturer, the detailed character/symbols grades and quality measurements are used for the improvement and optimization of the printing task. The proposed system...

  9. Printed organo-functionalized graphene for biosensing applications.

    Science.gov (United States)

    Wisitsoraat, A; Mensing, J Ph; Karuwan, C; Sriprachuabwong, C; Jaruwongrungsee, K; Phokharatkul, D; Daniels, T M; Liewhiran, C; Tuantranont, A

    2017-01-15

    Graphene is a highly promising material for biosensors due to its excellent physical and chemical properties which facilitate electron transfer between the active locales of enzymes or other biomaterials and a transducer surface. Printing technology has recently emerged as a low-cost and practical method for fabrication of flexible and disposable electronics devices. The combination of these technologies is promising for the production and commercialization of low cost sensors. In this review, recent developments in organo-functionalized graphene and printed biosensor technologies are comprehensively covered. Firstly, various methods for printing graphene-based fluids on different substrates are discussed. Secondly, different graphene-based ink materials and preparation methods are described. Lastly, biosensing performances of printed or printable graphene-based electrochemical and field effect transistor sensors for some important analytes are elaborated. The reported printed graphene based sensors exhibit promising properties with good reliability suitable for commercial applications. Among most reports, only a few printed graphene-based biosensors including screen-printed oxidase-functionalized graphene biosensor have been demonstrated. The technology is still at early stage but rapidly growing and will earn great attention in the near future due to increasing demand of low-cost and disposable biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Removal of iron contaminant from zirconium chloride solution

    International Nuclear Information System (INIS)

    Voit, D.O.

    1992-01-01

    This patent describes a process for eliminating iron contaminant from an aqueous zirconium chloride solution that has been contaminated with FeCl 3 in a plant in which zirconium and hafnium chloride solutions are separated by a main MINK solvent extraction system and the FeCl 3 is normally removed from the zirconium chloride solution by a secondary MINK solvent extraction system

  11. 3D-printed upper limb prostheses: a review.

    Science.gov (United States)

    Ten Kate, Jelle; Smit, Gerwin; Breedveld, Paul

    2017-04-01

    This paper aims to provide an overview with quantitative information of existing 3D-printed upper limb prostheses. We will identify the benefits and drawbacks of 3D-printed devices to enable improvement of current devices based on the demands of prostheses users. A review was performed using Scopus, Web of Science and websites related to 3D-printing. Quantitative information on the mechanical and kinematic specifications and 3D-printing technology used was extracted from the papers and websites. The overview (58 devices) provides the general specifications, the mechanical and kinematic specifications of the devices and information regarding the 3D-printing technology used for hands. The overview shows prostheses for all different upper limb amputation levels with different types of control and a maximum material cost of $500. A large range of various prostheses have been 3D-printed, of which the majority are used by children. Evidence with respect to the user acceptance, functionality and durability of the 3D-printed hands is lacking. Contrary to what is often claimed, 3D-printing is not necessarily cheap, e.g., injection moulding can be cheaper. Conversely, 3D-printing provides a promising possibility for individualization, e.g., personalized socket, colour, shape and size, without the need for adjusting the production machine. Implications for rehabilitation Upper limb deficiency is a condition in which a part of the upper limb is missing as a result of a congenital limb deficiency of as a result of an amputation. A prosthetic hand can restore some of the functions of a missing limb and help the user in performing activities of daily living. Using 3D-printing technology is one of the solutions to manufacture hand prostheses. This overview provides information about the general, mechanical and kinematic specifications of all the devices and it provides the information about the 3D-printing technology used to print the hands.

  12. NuLYTELY (PEG 3350, sodium chloride, sodium bicarbonate and potassium chloride for oral solution).

    Science.gov (United States)

    Swartz, M L

    1992-02-01

    NuLYTELY (PEG 3350, Sodium Chloride, Sodium Bicarbonate, and Potassium Chloride for Oral Solution), a product from Braintree Laboratories, Inc. is a modification of GoLYTELY (PEG 3350 and Electrolytes for Oral Solution) that has been found to have the same therapeutic advantages in terms of safety, efficacy, speed and patient acceptance. This product was developed to improve upon the taste of GoLYTELY. NuLYTELY represents an effective alternative for bowel cleansing prior to colonoscopy that may be more acceptable to some patients.

  13. [Determination of Chloride Salt Solution by NIR Spectroscopy].

    Science.gov (United States)

    Zhang, Bin; Chen, Jian-hong; Jiao, Ming-xing

    2015-07-01

    Determination of chloride salt solution by near infrared spectrum plays a very important role in Biomedicine. The near infrared spectrum analysis of Sodium chloride, potassium chloride, calcium chloride aqueous solution shows that the concentration change of chloride salt can affect hydrogen bond, resulting in the variation of near infrared spectrum of water. The temperature influence on NIR spectrum has been decreased by choosing reasonable wavelength range and the wavelength where the temperature effects are zero (isosbestic point). Chlorine salt prediction model was established based on partial least squares method and used for predicting the concentration of the chlorine ion. The impact on near infrared spectrum of the cation ionic radius, the number of ionic charge, the complex effect of ionic in water has also discussed in this article and the reason of every factor are analysed. Experimental results show that the temperature and concentration will affect the near-infrared spectrum of the solution, It is found that the effect of temperature plays the dominant role at low concentrations of chlorine salt; rather, the ionic dominates at high concentration. Chloride complexes are formed in aqueous solution, It has an effect on hydrogen bond of water combining with the cations in chlorine salt solution, Comparing different chloride solutions at the same concentration, the destruction effects of chloride complexes and catnions on the hydrogen bond of water increases in the sequences: CaCl2 >NaCl>KC. The modeling result shows that the determination coefficients (R2) = 99.97%, the root mean square error of cross validation (RM- SECV) = 4.51, and the residual prediction deviation (RPD) = 62.7, it meets the daily requirements of biochemical detection accuracy.

  14. Detection of colloidal silver chloride near solubility limit

    Science.gov (United States)

    Putri, K. Y.; Adawiah, R.

    2018-03-01

    Detection of nanoparticles in solution has been made possible by several means; one of them is laser-induced breakdown detection (LIBD). LIBD is able to distinguish colloids of various sizes and concentrations. This technique has been used in several solubility studies. In this study, the formation of colloids in a mixed system of silver nitrate and sodium chloride was observed by acoustic LIBD. Silver chloride has low solubility limit, therefore LIBD measurement is appropriate. Silver and chloride solutions with equal concentrations, set at below and above the solubility of silver chloride as the expected solid product, were mixed and the resulting colloids were observed. The result of LIBD measurement showed that larger particles were present as more silver and chloride introduced. However, once the concentrations exceeded the solubility limit of silver chloride, the detected particle size seemed to be decreasing, hence suggested the occurrence of coprecipitation process. This phenomenon indicated that the ability of LIBD to detect even small changes in colloid amounts might be a useful tool in study on formation and stability of colloids, i.e. to confirm whether nanoparticles synthesis has been successfully performed and whether the system is stable or not.

  15. Effects of platinic chloride on Tetrahymena pyrifromis GL

    DEFF Research Database (Denmark)

    Nilsson, Jytte R.

    1992-01-01

    Cellebiologi, platinum(IV)chloride, endocytosis, detoxification, cell proliferation, fine structure, cisplatin......Cellebiologi, platinum(IV)chloride, endocytosis, detoxification, cell proliferation, fine structure, cisplatin...

  16. Logistics of Three-dimensional Printing: Primer for Radiologists.

    Science.gov (United States)

    Hodgdon, Taryn; Danrad, Raman; Patel, Midhir J; Smith, Stacy E; Richardson, Michael L; Ballard, David H; Ali, Sayed; Trace, Anthony Paul; DeBenedectis, Carolynn M; Zygmont, Matthew E; Lenchik, Leon; Decker, Summer J

    2018-01-01

    The Association of University Radiologists Radiology Research Alliance Task Force on three-dimensional (3D) printing presents a review of the logistic considerations for establishing a clinical service using this new technology, specifically focused on implications for radiology. Specific topics include printer selection for 3D printing, software selection, creating a 3D model for printing, providing a 3D printing service, research directions, and opportunities for radiologists to be involved in 3D printing. A thorough understanding of the technology and its capabilities is necessary as the field of 3D printing continues to grow. Radiologists are in the unique position to guide this emerging technology and its use in the clinical arena. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  17. High-Speed Printing Process Characterization using the Lissajous Trajectory Method

    Science.gov (United States)

    Lee, Sangwon; Kim, Daekeun

    2018-04-01

    We present a novel stereolithographic three-dimensional (3D) printing process that uses Lissajous trajectories. By using Lissajous trajectories, this 3D printing process allows two laser-scanning mirrors to operate at similar high-speed frequencies simultaneously, and the printing speed can be faster than that of raster scanning used in conventional stereolithography. In this paper, we first propose the basic theoretical background for this printing process based on Lissajous trajectories. We also characterize its printing conditions, such as printing size, laser spot size, and minimum printing resolution, with respect to the operating frequencies of the scanning mirrors and the capability of the laser modulation. Finally, we demonstrate simulation results for printing basic 2D shapes by using a noble printing process algorithm.

  18. A plastic surgery application in evolution: three-dimensional printing.

    Science.gov (United States)

    Gerstle, Theodore L; Ibrahim, Ahmed M S; Kim, Peter S; Lee, Bernard T; Lin, Samuel J

    2014-02-01

    Three-dimensional printing represents an evolving technology still in its infancy. Currently, individuals and small business entities have the ability to manufacture physical objects from digital renderings, computer-aided design, and open source files. Design modifications and improvements in extrusion methods have made this technology much more affordable. This article explores the potential uses of three-dimensional printing in plastic surgery. A review was performed detailing the known uses of three-dimensional printing in medicine. The potential applications of three-dimensional printing in plastic surgery are discussed. Various applications for three-dimensional printing technology have emerged in medicine, including printing organs, printing body parts, bio-printing, and computer-aided tissue engineering. In plastic surgery, these tools offer various prospective applications for surgical planning, resident education, and the development of custom prosthetics. Numerous applications exist in medicine, including the printing of devices, implants, tissue replacements, and even whole organs. Plastic surgeons may likely find this technology indispensable in surgical planning, education, and prosthetic device design and development in the near future.

  19. The analysis of ink jet printed eco-font efficiency

    Directory of Open Access Journals (Sweden)

    Rastko Milošević

    2016-07-01

    Full Text Available Utilization of eco-font for office printing is one of sustainable, “green” printing concepts, which besides obvious economic benefits, as a result has a certain effect on environmental sustainability as well. The fundamental problem that this practice faces is decreased quality of text printed using eco-fonts comparing to those printed with regular fonts. The aim of this research is eco-font efficiency estimation, i.e. determination of toner usage reduction level of ink jet printed documents typed with this font type, as well as estimation of the extent humans perceive differences between text printed with eco-font and the one printed by its „non-eco“ equivalent. Combining instrumental measuring method and digital image analysis, it was found that this simple principle (eco-font utilization enables substantial toner usage reduction for an ink jet printing system, while visual test showed that visual experience of text printed using eco-font is sufficient. In addition, awareness of benefits that eco-font utilization brings, change users’ attitude towards eco-font quality.

  20. Surface Chloride Levels in Colorado Structural Concrete

    Science.gov (United States)

    2018-01-01

    This project focused on the chloride-induced corrosion of reinforcing steel in structural concrete. The primary goal of this project is to analyze the surface chloride concentration level of the concrete bridge decks throughout Colorado. The study in...

  1. Simple chloride sensors for continuous groundwater monitoring

    DEFF Research Database (Denmark)

    Thorn, Paul; Mortensen, John

    2012-01-01

    The development of chloride sensors which can be used for continuous, on-line monitoring of groundwater could be very valuable in the management of our coastal water resources. However, sensor stability, drift, and durability all need to be addressed in order for the sensors to be used in continu......The development of chloride sensors which can be used for continuous, on-line monitoring of groundwater could be very valuable in the management of our coastal water resources. However, sensor stability, drift, and durability all need to be addressed in order for the sensors to be used...... in continuous application. This study looks at the development of a simple, inexpensive chloride electrode, and evaluates its performance under continuous use, both in the laboratory and in a field test in a monitoring well. The results from the study showed a consistent response to changing chloride...... concentrations over longer periods. The signal was seen to be stable, with regular drift in both laboratory and field test. In the field application, the sensor signal was corrected for drift, and errors were observed to be under 7% of that of conductivity measurements. The study also found that the chloride...

  2. Interpretation of postmortem vitreous concentrations of sodium and chloride.

    Science.gov (United States)

    Zilg, B; Alkass, K; Berg, S; Druid, H

    2016-06-01

    Vitreous fluid can be used to analyze sodium and chloride levels in deceased persons, but it remains unclear to what extent such results can be used to diagnose antemortem sodium or chloride imbalances. In this study we present vitreous sodium and chloride levels from more than 3000 cases. We show that vitreous sodium and chloride levels both decrease with approximately 2.2mmol/L per day after death. Since potassium is a well-established marker for postmortem interval (PMI) and easily can be analyzed along with sodium and chloride, we have correlated sodium and chloride levels with the potassium levels and present postmortem reference ranges relative the potassium levels. We found that virtually all cases outside the reference range show signs of antemortem hypo- or hypernatremia. Vitreous sodium or chloride levels can be the only means to diagnose cases of water or salt intoxication, beer potomania or dehydration. We further show that postmortem vitreous sodium and chloride strongly correlate and in practice can be used interchangeably if analysis of one of the ions fails. It has been suggested that vitreous sodium and chloride levels can be used to diagnose drowning or to distinguish saltwater from freshwater drowning. Our results show that in cases of freshwater drowning, vitreous sodium levels are decreased, but that this mainly is an effect of postmortem diffusion between the eye and surrounding water rather than due to the drowning process, since the decrease in sodium levels correlates with immersion time. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Scalable, full-colour and controllable chromotropic plasmonic printing

    OpenAIRE

    Xue, Jiancai; Zhou, Zhang-Kai; Wei, Zhiqiang; Su, Rongbin; Lai, Juan; Li, Juntao; Li, Chao; Zhang, Tengwei; Wang, Xue-Hua

    2015-01-01

    Plasmonic colour printing has drawn wide attention as a promising candidate for the next-generation colour-printing technology. However, an efficient approach to realize full colour and scalable fabrication is still lacking, which prevents plasmonic colour printing from practical applications. Here we present a scalable and full-colour plasmonic printing approach by combining conjugate twin-phase modulation with a plasmonic broadband absorber. More importantly, our approach also demonstrates ...

  4. 48 CFR 1631.205-78 - FEHBP printed material costs.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true FEHBP printed material... carrier orders printed material that is available from the Government Printing Office (GPO) under the... COST PRINCIPLES AND PROCEDURES Contracts With Commercial Organizations 1631.205-78 FEHBP printed...

  5. Chloride equilibrium potential in salamander cones

    Directory of Open Access Journals (Sweden)

    Bryson Eric J

    2004-12-01

    Full Text Available Abstract Background GABAergic inhibition and effects of intracellular chloride ions on calcium channel activity have been proposed to regulate neurotransmission from photoreceptors. To assess the impact of these and other chloride-dependent mechanisms on release from cones, the chloride equilibrium potential (ECl was determined in red-sensitive, large single cones from the tiger salamander retinal slice. Results Whole cell recordings were done using gramicidin perforated patch techniques to maintain endogenous Cl- levels. Membrane potentials were corrected for liquid junction potentials. Cone resting potentials were found to average -46 mV. To measure ECl, we applied long depolarizing steps to activate the calcium-activated chloride current (ICl(Ca and then determined the reversal potential for the current component that was inhibited by the Cl- channel blocker, niflumic acid. With this method, ECl was found to average -46 mV. In a complementary approach, we used a Cl-sensitive dye, MEQ, to measure the Cl- flux produced by depolarization with elevated concentrations of K+. The membrane potentials produced by the various high K+ solutions were measured in separate current clamp experiments. Consistent with electrophysiological experiments, MEQ fluorescence measurements indicated that ECl was below -36 mV. Conclusions The results of this study indicate that ECl is close to the dark resting potential. This will minimize the impact of chloride-dependent presynaptic mechanisms in cone terminals involving GABAa receptors, glutamate transporters and ICl(Ca.

  6. Hydrolysis of ferric chloride in solution

    International Nuclear Information System (INIS)

    Lussiez, G.; Beckstead, L.

    1996-11-01

    The Detox trademark process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves a two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200 degrees C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl 3 liquid + H 2 O → FeOCl solid + 2 HCl gas During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl solid + H 2 O → Fe 2 O 3 solid + 2 HCl gas . The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way

  7. Embedding complex objects with 3d printing

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-10-12

    A CMOS technology-compatible fabrication process for flexible CMOS electronics embedded during additive manufacturing (i.e. 3D printing). A method for such a process may include printing a first portion of a 3D structure; pausing the step of printing the 3D structure to embed the flexible silicon substrate; placing the flexible silicon substrate in a cavity of the first portion of the 3D structure to embed the flexible silicon substrate in the 3D structure; and resuming the step of printing the 3D structure to form the second portion of the 3D structure.

  8. 3D Printing the Complete CubeSat

    Science.gov (United States)

    Kief, Craig

    2015-01-01

    The 3D Printing the Complete CubeSat project is designed to advance the state-of-the-art in 3D printing for CubeSat applications. Printing in 3D has the potential to increase reliability, reduce design iteration time and provide greater design flexibility in the areas of radiation mitigation, communications, propulsion, and wiring, among others. This project is investigating the possibility of including propulsion systems into the design of printed CubeSat components. One such concept, an embedded micro pulsed plasma thruster (mPPT), could provide auxiliary reaction control propulsion for a spacecraft as a means to desaturate momentum wheels.

  9. Transport and fate of chloride from road salt within a mixed urban and agricultural watershed in Illinois (USA): assessing the influence of chloride application rates

    Science.gov (United States)

    Ludwikowski, Jessica J.; Peterson, Eric W.

    2018-01-01

    In a typical winter season, approximately 471,000 tons of road salt are deposited along roadways in Illinois, USA. An estimated 45% of the deposited road salt will infiltrate through the soils and into shallow aquifers. Transported through shallow aquifers, chloride associated with the road salts has the potential to reside within groundwater for years based on the pathway, the geologic material, and the recharge rate of the aquifer system. Utilizing MODFLOW and MT3D, simulations employing various road-salt application rates were conducted to assess the net accumulation of chloride and the residence times of chloride in an agriculture-dominated watershed that originates in an urban area. A positive-linear relationship was observed between the application rate of chloride and both the maximum chloride concentration and total mass accumulated within the watershed. Simulated annual recharge rates along impacted surfaces ranged from 1,000 to 10,000 mg/L. After 60 years of application, simulated chloride concentrations in groundwater ranged from 197 to 1,900 mg/L. For all application rates, chloride concentrations within the groundwater rose at an annual rate of >3 mg/L. While concentrations increase throughout the system, the majority of chloride accumulation occurs near the roads and the urban areas. Model simulations reveal a positive relationship between application rate and residence time of chloride (1,123-1,288 days based on application rate). The models indicate that continued accumulation of chloride in shallow aquifers can be expected, and methods that apply less chloride effectively need to be examined.

  10. Paper-based inkjet-printed ultra-wideband fractal antennas

    KAUST Repository

    Maza, Armando Rodriguez; Cook, Benjamin Stassen; Jabbour, Ghassan E.; Shamim, Atif

    2012-01-01

    For the first time, paper-based inkjet-printed ultra-wideband (UWB) fractal antennas are presented. Two new designs, a miniaturised UWB monopole, which utilises a fractal matching network and is the smallest reported inkjet-printed UWB printed

  11. Substitution within the Danish printing industry

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Bøg, Carsten

    2009-01-01

    are running a substitution project. A major part of the work has been mapping the presence of chemicals which are potential candidates for substitution (e.g. PBT, CMR, vPvB, EDS) within the Danish printing industry and this work was recently finished. The mapping comprises a combination of a literature study......The implementation of the EU REACH regulation will most probably promote substitution within sectors handling a lot of different chemicals like the printing industry. With the aim of being at the cutting edge of this development the Danish EPA together with the Danish printing industry and IPU...... total 15 substances) were found in the Danish printing industry. This paper presents the results of the mapping of chemical candidates and the first results on preparing for actual substitutions....

  12. Comparative Study on Cushion Performance Between 3D Printed Kelvin Structure and 3D Printed Lattice Structure

    Science.gov (United States)

    Priyadarshini, Lakshmi

    Frequently transported packaging goods are more prone to damage due to impact, jolting or vibration in transit. Fragile goods, for example, glass, ceramics, porcelain are susceptible to mechanical stresses. Hence ancillary materials like cushions play an important role when utilized within package. In this work, an analytical model of a 3D cellular structure is established based on Kelvin model and lattice structure. The research will provide a comparative study between the 3D printed Kelvin unit structure and 3D printed lattice structure. The comparative investigation is based on parameters defining cushion performance such as cushion creep, indentation, and cushion curve analysis. The applications of 3D printing is in rapid prototyping where the study will provide information of which model delivers better form of energy absorption. 3D printed foam will be shown as a cost-effective approach as prototype. The research also investigates about the selection of material for 3D printing process. As cushion development demands flexible material, three-dimensional printing with material having elastomeric properties is required. Further, the concept of cushion design is based on Kelvin model structure and lattice structure. The analytical solution provides the cushion curve analysis with respect to the results observed when load is applied over the cushion. The results are reported on basis of attenuation and amplification curves.

  13. Ultrafast Digital Printing toward 4D Shape Changing Materials.

    Science.gov (United States)

    Huang, Limei; Jiang, Ruiqi; Wu, Jingjun; Song, Jizhou; Bai, Hao; Li, Bogeng; Zhao, Qian; Xie, Tao

    2017-02-01

    Ultrafast 4D printing (printing converts the structure into 3D. An additional dimension can be incorporated by choosing the printing precursors. The process overcomes the speed limiting steps of typical 3D (4D) printing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Printing method for organic light emitting device lighting

    Science.gov (United States)

    Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo-Gun; Kim, Tae-Un; Kim, Snag-Gi; Hong, Kyung-Jin; So, Soon-Yeol

    2013-03-01

    Organic Light Emitting Device (OLED) has a characteristic to change the electric energy into the light when the electric field is applied to the organic material. OLED is currently employed as a light source for the lighting tools because research has extensively progressed in the improvement of luminance, efficiency, and life time. OLED is widely used in the plate display device because of a simple manufacture process and high emitting efficiency. But most of OLED lighting projects were used the vacuum evaporator (thermal evaporator) with low molecular. Although printing method has lower efficiency and life time of OLED than vacuum evaporator method, projects of printing OLED actively are progressed because was possible to combine with flexible substrate and printing technology. Printing technology is ink-jet, screen printing and slot coating. This printing method allows for low cost and mass production techniques and large substrates. In this research, we have proposed inkjet printing for organic light-emitting devices has the dominant method of thick film deposition because of its low cost and simple processing. In this research, the fabrication of the passive matrix OLED is achieved by inkjet printing, using a polymer phosphorescent ink. We are measured optical and electrical characteristics of OLED.

  15. High-Performance Screen-Printed Thermoelectric Films on Fabrics.

    Science.gov (United States)

    Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook; Ko, Dong-Su; Kim, Hyun-Sik; Kim, Sang Il; Yin, Lu; Schlossberg, Sarah M; Cui, Shuang; You, Jung-Min; Kwon, Soonshin; Zheng, Jianlin; Wang, Joseph; Chen, Renkun

    2017-08-04

    Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screen-printing of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5 Sb 1.5 Te 3 or n-type Bi 2 Te 2.7 Se 0.3 ), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscosity for printability at a very small concentration (0.45-0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.

  16. Pharmaceutical 3D printing: Design and qualification of a single step print and fill capsule.

    Science.gov (United States)

    Smith, Derrick M; Kapoor, Yash; Klinzing, Gerard R; Procopio, Adam T

    2018-06-10

    Fused deposition modeling (FDM) 3D printing (3DP) has a potential to change how we envision manufacturing in the pharmaceutical industry. A more common utilization for FDM 3DP is to build upon existing hot melt extrusion (HME) technology where the drug is dispersed in the polymer matrix. However, reliable manufacturing of drug-containing filaments remains a challenge along with the limitation of active ingredients which can sustain the processing risks involved in the HME process. To circumvent this obstacle, a single step FDM 3DP process was developed to manufacture thin-walled drug-free capsules which can be filled with dry or liquid drug product formulations. Drug release from these systems is governed by the combined dissolution of the FDM capsule 'shell' and the dosage form encapsulated in these shells. To prepare the shells, the 3D printer files (extension '.gcode') were modified by creating discrete zones, so-called 'zoning process', with individual print parameters. Capsules printed without the zoning process resulted in macroscopic print defects and holes. X-ray computed tomography, finite element analysis and mechanical testing were used to guide the zoning process and printing parameters in order to manufacture consistent and robust capsule shell geometries. Additionally, dose consistencies of drug containing liquid formulations were investigated in this work. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Extractive process for preparing high purity magnesium chloride hexahydrate

    Directory of Open Access Journals (Sweden)

    Fezei Radouanne

    2012-01-01

    Full Text Available This paper refers a method for the preparation of magnesium chloride hexahydrate (bischofite from Sebkha el Melah of Zarzis Tunisian natural brine. It is a five-stage process essentially based on crystallization by isothermal evaporation and chemical precipitation. The two first steps were dedicated to the crystallization of sodium chloride and potassiummagnesium double salts, respectively. Then, the resulting liquor was desulfated using calcium chloride solution. After that another isothermal evaporation stage was implemented in order to eliminate potassium ions in the form of carnallite, KCl.MgCl2.6H2O. At the end of this step, the recovered solution primarily composed of magnesium and chloride ions was treated by dioxan in order to precipitate magnesium chloride as MgCl2.6H2O.C4H8O2. This compound dried at constant temperature of 100°C gave good quality magnesium chloride hexahydrate. Besides this salt, the various by-products obtained from the different treatment stages are also useful.

  18. No-infill 3D Printing

    Science.gov (United States)

    Wei, Xiao-Ran; Zhang, Yu-He; Geng, Guo-Hua

    2016-09-01

    In this paper, we examined how printing the hollow objects without infill via fused deposition modeling, one of the most widely used 3D-printing technologies, by partitioning the objects to shell parts. More specifically, we linked the partition to the exact cover problem. Given an input watertight mesh shape S, we developed region growing schemes to derive a set of surfaces that had inside surfaces that were printable without support on the mesh for the candidate parts. We then employed Monte Carlo tree search over the candidate parts to obtain the optimal set cover. All possible candidate subsets of exact cover from the optimal set cover were then obtained and the bounded tree was used to search the optimal exact cover. We oriented each shell part to the optimal position to guarantee the inside surface was printed without support, while the outside surface was printed with minimum support. Our solution can be applied to a variety of models, closed-hollowed or semi-closed, with or without holes, as evidenced by experiments and performance evaluation on our proposed algorithm.

  19. Solid-phase extraction of cobalt(II) from lithium chloride solutions using a poly(vinyl chloride)-based polymer inclusion membrane with Aliquat 336 as the carrier.

    Science.gov (United States)

    Kagaya, Shigehiro; Cattrall, Robert W; Kolev, Spas D

    2011-01-01

    The extraction of cobalt(II) from solutions containing various concentrations of lithium chloride, hydrochloric acid, and mixtures of lithium chloride plus hydrochloric acid is reported using a poly(vinyl chloride) (PVC)-based polymer inclusion membrane (PIM) containing 40% (w/w) Aliquat 336 as a carrier. The extraction from lithium chloride solutions and mixtures with hydrochloric acid is shown to be more effective than extraction from hydrochloric acid solutions alone. The solution concentrations giving the highest amounts of extraction are 7 mol L(-1) for lithium chloride and 8 mol L(-1) lithium chloride plus 1 mol L(-1) hydrochloric acid for mixed solutions. Cobalt(II) is easily stripped from the membrane using deionized water. The cobalt(II) species extracted into the membrane are CoCl(4)(2-) for lithium chloride solutions and HCoCl(4)(-) for mixed solutions; these form ion-pairs with Aliquat 336. It is also shown that both lithium chloride and hydrochloric acid are extracted by the PIM and suppress the extraction of cobalt(II) by forming ion-pairs in the membrane (i.e. R(3)MeN(+)·HCl(2)(-) for hydrochloric acid and R(3)MeN(+)·LiCl(2)(-) for lithium chloride). 2011 © The Japan Society for Analytical Chemistry

  20. Print2Screen Mobile App: Embedding Multimedia in Printed ODL Course Materials Using QR Codes

    Science.gov (United States)

    Abeywardena, Ishan Sudeera

    2017-01-01

    With the rise of OER and multimedia such as YouTube videos, many academic institutions are becoming mindful of the richness they bring into the teaching and learning process. Given that multimedia resources cannot be directly integrated into printed material, the only available alternative is to print hyperlinks, which teachers and learners can…

  1. 40 CFR 721.6167 - Piperdinium, 1,1-dimethyl-, chloride.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Piperdinium, 1,1-dimethyl-, chloride... Substances § 721.6167 Piperdinium, 1,1-dimethyl-, chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as piperdinium, 1,1-dimethyl-, chloride. (PMN...

  2. Synthesis of 14C-dehydrocorydaline chloride

    International Nuclear Information System (INIS)

    Zhang Rui; Wang Ding

    1988-01-01

    A method for synthesis of 14 C-dehydrocorydaline chloride is described. In the presence of sodium hydroxide, acetonylpalmatine is reacted with 14 C-methyl iodide in sealed glass ampoule to give 14 C-13-methylpalmatine iodide which is then converted to chloride. The radiochemical purity of 14 C-dehydrocorydaline determined by TLC is over 98% and the labelling efficiency is 54%

  3. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements...

  4. Chronopotentiometric chloride sensing using transition time measurement

    NARCIS (Netherlands)

    Abbas, Yawar; de Graaf, D.B.; Olthuis, Wouter; van den Berg, Albert

    2013-01-01

    Detection of chloride ions is crucial to accurately access the concrete structure durability[1]. The existing electrochemical method of chloride ions detection in concrete, potentiometry[1], is not suitable for in-situ measurement due to the long term stability issue of conventional reference

  5. Method for synthesizing pollucite from chabazite and cesium chloride

    International Nuclear Information System (INIS)

    Pereira, C.

    1999-01-01

    A method is described for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method is described for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700 C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite. 3 figs

  6. All-printed paper memory

    KAUST Repository

    He, Jr-Hau

    2016-08-11

    All-printed paper-based substrate memory devices are described. In an embodiment, a paper-based memory device is prepared by coating one or more areas of a paper substrate with a conductor material such as a carbon paste, to form a first electrode of a memory, depositing a layer of insulator material, such as titanium dioxide, over one or more areas of the conductor material, and depositing a layer of metal over one or more areas of the insulator material to form a second electrode of the memory. In an embodiment, the device can further include diodes printed between the insulator material and the second electrode, and the first electrode and the second electrodes can be formed as a crossbar structure to provide a WORM memory. The various layers and the diodes can be printed onto the paper substrate by, for example, an ink jet printer.

  7. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride.

    Science.gov (United States)

    Ratner, Martha A; Decker, Sarah E; Aller, Stephen G; Weber, Gerhard; Forrest, John N

    2006-03-01

    In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action. Copyright 2006 Wiley-Liss, Inc.

  8. On solubility of rare earth chlorides in water at different temperatures

    International Nuclear Information System (INIS)

    Nikolaev, A.V.; Sorokina, A.A.; Sokolova, N.P.; Kotlyar-Shapirov, G.S.; Bagryantseva, L.I.

    1978-01-01

    Solubility of rare earth chlorides at -5, -10 and -15 deg C is studied. Rare earth chloride solubility dependences on the temperature in the interval from -15 to 50 deg C are presented. Decrease of solubility temperature coefficient to a zero is observed at temperature drop almost for all rare earth chlorides. Solubility temperature coefficient at the same temperature but for different rare earth chlorides reduces appreciably with the growth of rare earth chloride serial number. This testifies to the corresponding decrease of integral solution heat of rare earth chloride crystallohydrates

  9. Antisense oligonucleotides suppress cell-volume-induced activation of chloride channels.

    Science.gov (United States)

    Gschwentner, M; Nagl, U O; Wöll, E; Schmarda, A; Ritter, M; Paulmichl, M

    1995-08-01

    Cell volume regulation is an essential feature of most cells. After swelling in hypotonic media, the simultaneous activation of potassium and chloride channels is believed to be the initial, time-determining step in cell volume regulation. The activation of both pathways is functionally linked and enables the cells to lose ions and water, subsequently leading to cell shrinkage and readjustment of the initial volume. NIH 3T3 fibroblasts efficiently regulate their volume after swelling and bear chloride channels that are activated by decreasing extracellular osmolarity. The chloride current elicited in these cells after swelling is reminiscent of the current found in oocytes expressing an outwardly rectifying chloride current termed ICln. Introduction of antisense oligodeoxynucleotides complementary to the first 30 nucleotides of the coding region of the ICln channel into NIH 3T3 fibroblasts suppresses the activation of the swelling-induced chloride current. The experiments directly demonstrate an unambiguous link between a volume-activated chloride current and a cloned protein involved in chloride transport.

  10. Endodontic applications of 3D printing.

    Science.gov (United States)

    Anderson, J; Wealleans, J; Ray, J

    2018-02-27

    Computer-aided design (CAD) and computer-aided manufacturing (CAM) technologies can leverage cone beam computed tomography data for production of objects used in surgical and nonsurgical endodontics and in educational settings. The aim of this article was to review all current applications of 3D printing in endodontics and to speculate upon future directions for research and clinical use within the specialty. A literature search of PubMed, Ovid and Scopus was conducted using the following terms: stereolithography, 3D printing, computer aided rapid prototyping, surgical guide, guided endodontic surgery, guided endodontic access, additive manufacturing, rapid prototyping, autotransplantation rapid prototyping, CAD, CAM. Inclusion criteria were articles in the English language documenting endodontic applications of 3D printing. Fifty-one articles met inclusion criteria and were utilized. The endodontic literature on 3D printing is generally limited to case reports and pre-clinical studies. Documented solutions to endodontic challenges include: guided access with pulp canal obliteration, applications in autotransplantation, pre-surgical planning and educational modelling and accurate location of osteotomy perforation sites. Acquisition of technical expertise and equipment within endodontic practices present formidable obstacles to widespread deployment within the endodontic specialty. As knowledge advances, endodontic postgraduate programmes should consider implementing 3D printing into their curriculums. Future research directions should include clinical outcomes assessments of treatments employing 3D printed objects. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  11. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    Science.gov (United States)

    de Vos, Marc; Torah, Russel; Tudor, John

    2016-04-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps.

  12. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    International Nuclear Information System (INIS)

    De Vos, Marc; Torah, Russel; Tudor, John

    2016-01-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps. (paper)

  13. Resistance of Alkali-Activated Slag Concrete to Chloride-Induced Corrosion

    Directory of Open Access Journals (Sweden)

    Joon Woo Park

    2015-01-01

    Full Text Available The corrosion resistance of steel in alkali-activated slag (AAS mortar was evaluated by a monitoring of the galvanic current and half-cell potential with time against a chloride-contaminated environment. For chloride transport, rapid chloride penetration test was performed, and chloride binding capacity of AAS was evaluated at a given chloride. The mortar/paste specimens were manufactured with ground granulated blast-furnace slag, instead of Portland cement, and alkali activators were added in mixing water, including Ca(OH2, KOH and NaOH, to activate hydration process. As a result, it was found that the corrosion behavior was strongly dependent on the type of alkali activator: the AAS containing the Ca(OH2 activator was the most passive in monitoring of the galvanic corrosion and half-cell potential, while KOH, and NaOH activators indicated a similar level of corrosion to Portland cement mortar (control. Despite a lower binding of chloride ions in the paste, the AAS had quite a higher resistance to chloride transport in rapid chloride penetration, presumably due to the lower level of capillary pores, which was ensured by the pore distribution of AAS mortar in mercury intrusion porosimetry.

  14. EU Design Law and 3D Printing

    DEFF Research Database (Denmark)

    Nordberg, Ana; Schovsbo, Jens Hemmingsen

    2017-01-01

    The article considers the implications for EU design law of 3D-printing. It first describes the 3D-printing technology and the e-ecosystem which is evolving around the technology and involves a number of new stakeholders who in different ways are engaged in the making and sharing of CAD-files and....../or printing. It is submitted that it is only a matter of time before 3D-printing equipment becomes ubiquitous. It is pointed out how the new technology and e-ecosystem at the same time represent threats and opportunities to design holders and to the societal interests in design and design law. EU design law...

  15. Towards microscale electrohydrodynamic three-dimensional printing

    International Nuclear Information System (INIS)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-01-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics. (paper)

  16. 3D Printed Multimaterial Microfluidic Valve.

    Directory of Open Access Journals (Sweden)

    Steven J Keating

    Full Text Available We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  17. Towards microscale electrohydrodynamic three-dimensional printing

    Science.gov (United States)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-02-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics.

  18. Chloride binding site of neurotransmitter sodium symporters

    DEFF Research Database (Denmark)

    Kantcheva, Adriana Krassimirova; Quick, Matthias; Shi, Lei

    2013-01-01

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs...

  19. Catalytic Conversion of Cellulose to Levulinic Acid by Metal Chlorides

    Directory of Open Access Journals (Sweden)

    Beixiao Zhang

    2010-08-01

    Full Text Available The catalytic performance of various metal chlorides in the conversion of cellulose to levulinic acid in liquid water at high temperatures was investigated. The effects of reaction parameters on the yield of levulinic acid were also explored. The results showed that alkali and alkaline earth metal chlorides were not effective in conversion of cellulose, while transition metal chlorides, especially CrCl3, FeCl3 and CuCl2 and a group IIIA metal chloride (AlCl3, exhibited high catalytic activity. The catalytic performance was correlated with the acidity of the reaction system due to the addition of the metal chlorides, but more dependent on the type of metal chloride. Among those metal chlorides, chromium chloride was found to be exceptionally effective for the conversion of cellulose to levulinic acid, affording an optimum yield of 67 mol % after a reaction time of 180 min, at 200 °C, with a catalyst dosage of 0.02 M and substrate concentration of 50 wt %. Chromium metal, most of which was present in its oxide form in the solid sample and only a small part in solution as Cr3+ ion, can be easily separated from the resulting product mixture and recycled. Finally, a plausible reaction scheme for the chromium chloride catalyzed conversion of cellulose in water was proposed.

  20. On barium oxide solubility in barium-containing chloride melts

    International Nuclear Information System (INIS)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Bovet, Andrey L.; Korzun, Iraida V.

    2016-01-01

    Oxide solubility in chloride melts depends on temperature and composition of molten solvent. The solubility of barium oxide in the solvents with barium chloride content is essentially higher than that in molten alkali chlorides. Spectral data demonstrate the existence of oxychloride ionic groupings in such melts. This work presents the results of the BaO solubility in two molten BaCl 2 -NaCl systems with different barium chloride content. The received data together with earlier published results revealed the main regularities of BaO solubility in molten BaO-BaCl 2 -MCl systems.

  1. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    Science.gov (United States)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  2. Bone marrow scintigraphy with 111In-chloride

    International Nuclear Information System (INIS)

    Aburano, Tamio; Ueno, Kyoichi; Sugihara, Masami; Tada, Akira; Tonami, Norihisa

    1977-01-01

    It is assumed that 111 In-chloride is bound to serum transferrin and then transported into reticulocyte in erythropoietic marrow. However, several biochemical differences between radioiron and 111 In have been reported since these years. In present study, clinical usefulness of 111 In-chloride bone marrow scintigraphy was examined especially by comparing 111 In-chloride image with sup(99m)Tc-colloid. Obtained results are as follows: 1) In most cases, both 111 In-chloride and sup(99m)Tc-colloid images showed similar bone marrow distributions. 2) In three out of 7 cases with hypoplastic anemia and two patients with bone marrow irradiation (700-1,000 rad), the central marrow or irradiated marrow showed marked decreased uptake of 111 In, and showed normal uptake of sup(99m)Tc. 3) In two out of 3 cases with chronic myelogenous leucemia, central marrow showed normal uptake of 111 In, and showed decreased uptake of sup(99m)Tc. From the present study, the same dissociation findings as those between radioiron and radiocolloid could be obtained in hypoplastic anemia and bone marrow irradiation. 111 In-chloride would appear to be a useful erythropoietic imaging agent, although further study of exact comparison with radioiron should be necessary. (auth.)

  3. Electrodeposition behavior of nickel and nickel-zinc alloys from the zinc chloride-1-ethyl-3-methylimidazolium chloride low temperature molten salt

    International Nuclear Information System (INIS)

    Gou Shiping; Sun, I.-W.

    2008-01-01

    The electrodeposition of nickel and nickel-zinc alloys was investigated at polycrystalline tungsten electrode in the zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt. Although nickel(II) chloride dissolved easily into the pure chloride-rich 1-ethyl-3-methylimidazolium chloride ionic melt, metallic nickel could not be obtained by electrochemical reduction of this solution. The addition of zinc chloride to this solution shifted the reduction of nickel(II) to more positive potential making the electrodeposition of nickel possible. The electrodeposition of nickel, however, requires an overpotential driven nucleation process. Dense and compact nickel deposits with good adherence could be prepared by controlling the deposition potential. X-ray powder diffraction measurements indicated the presence of crystalline nickel deposits. Non-anomalous electrodeposition of nickel-zinc alloys was achieved through the underpotential deposition of zinc on the deposited nickel at a potential more negative than that of the deposition of nickel. X-ray powder diffraction and energy-dispersive spectrometry measurements of the electrodeposits indicated that the composition and the phase types of the nickel-zinc alloys are dependent on the deposition potential. For the Ni-Zn alloy deposits prepared by underpotential deposition of Zn on Ni, the Zn content in the Ni-Zn was always less than 50 atom%

  4. Surface defect free growth of a spin dimer TlCuCl{sub 3} compound crystals and investigations on its optical and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Gihun, E-mail: G.Ryu@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Son, Kwanghyo [Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569 Stuttgart (Germany)

    2016-05-15

    A defect-free high quality single crystal of spin dimer TlCuCl{sub 3} compound is firstly synthesized at the optimal growth temperature using the vertical Bridgman method. In this study, we clearly found that the cupric chloride is easily decomposed into the Cl{sup −} deficient composition at ≥470 °C. The Cl{sup −}- related gas phase at the high temperature region also always gives rise to a pinhole-like surface defect at the surface of crystal. Therefore, we clearly verified an exotic anisotropic magnetic behavior (anisotropic ratio of M{sub b}/M{sub (201)} at 2 K, 7 T=10) using the defect-free TlCuCl{sub 3} crystals in this three-dimensional spin dimer TlCuCl{sub 3} compound, relatively stronger magnetic ordering in the H//b than that of H//(201) direction at above the transition magnetic field. - Graphical abstract: A single crystal of spin dimer TlCuCl{sub 3} compound with a defect free is successfully synthesized on the basis of TG/DTA result. We newly found that this cupric chloride compound is easily decomposed into the Cl{sup −} deficient composition at ≥470 °C and Cl{sup −} related gas phases also give rise to the defects like a pinhole on the surface of TlCuCl{sub 3} crystal. Using the crystals with a surface defect free, we also clearly verified the crystal structure of spin dimer TlCuCl{sub 3} compound.

  5. Alginate gelation-induced cell death during laser-assisted cell printing

    International Nuclear Information System (INIS)

    Gudapati, Hemanth; Yan, Jingyuan; Huang, Yong; Chrisey, Douglas B

    2014-01-01

    Modified laser-induced forward transfer has emerged as a promising bioprinting technique. Depending on the operating conditions and cell properties, laser cell printing may cause cell injury and even death, which should be carefully elucidated for it to be a viable technology. This study has investigated the effects of alginate gelation, gelation time, alginate concentration, and laser fluence on the post-transfer cell viability of NIH 3T3 fibroblasts. Sodium alginate and calcium chloride are used as the gel precursor and gel reactant solution to form cell-laden alginate microspheres. It is found that the effects of gelation depend on the duration of gelation. Two-minute gelation is observed to increase the cell viability after 24 h incubation, mainly due to the protective cushion effect of the forming gel membrane during droplet landing. Despite the cushion effect from 10 min gelation, it is observed that the cell viability decreases after 24 h incubation because of the forming thick gel membrane that reduces nutrient and oxygen diffusion from the culture medium. In addition, the cell viability after 24 h incubation decreases as the laser fluence or alginate concentration increases. (paper)

  6. 3D printed replicas for endodontic education.

    Science.gov (United States)

    Reymus, M; Fotiadou, C; Kessler, A; Heck, K; Hickel, R; Diegritz, C

    2018-06-14

    To assess the feasibility of producing artificial teeth for endodontic training using 3D printing technology, to analyse the accuracy of the printing process, and to evaluate the teeth by students when used during training. Sound extracted human teeth were selected, digitalized by cone beam computed tomography (CBCT) and appropriate software and finally reproduced by a stereolithographic printer. The printed teeth were scanned and compared with the original ones (trueness) and to one another (precision). Undergraduate dental students in the third and fourth years performed root canal treatment on printed molars and were subsequently asked to evaluate their experience with these compared to real teeth. The workflow was feasible for manufacturing 3D printed tooth replicas. The absolute deviation after printing (trueness) ranged from 50.9μm to 104.3μm. The values for precision ranged from 43.5μm to 68.2μm. Students reported great benefits in the use of the replicated teeth for training purposes. The presented workflow is feasible for any dental educational institution who has access to a CBCT unit and a stereolithographic printer. The accuracy of the printing process is suitable for the production of tooth replicas for endodontic training. Undergraduate students favoured the availability of these replicas and the fairness they ensured in training due to standardization. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Dimensional accuracy of 3D printed vertebra

    Science.gov (United States)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  8. 3D printing for clinical application in otorhinolaryngology.

    Science.gov (United States)

    Zhong, Nongping; Zhao, Xia

    2017-12-01

    Three-dimensional (3D) printing is a promising technology that can use a patient's image data to create complex and personalized constructs precisely. It has made great progress over the past few decades and has been widely used in medicine including medical modeling, surgical planning, medical education and training, prosthesis and implants. Three-dimensional (3D) bioprinting is a powerful tool that has the potential to fabricate bioengineered constructs of the desired shape layer-by-layer using computer-aided deposition of living cells and biomaterials. Advances in 3D printed implants and future tissue-engineered constructs will bring great progress to the field of otolaryngology. By integrating 3D printing into tissue engineering and materials, it may be possible for otolaryngologists to implant 3D printed functional grafts into patients for reconstruction of a variety of tissue defects in the foreseeable future. In this review, we will introduce the current state of 3D printing technology and highlight the applications of 3D printed prosthesis and implants, 3D printing technology combined with tissue engineering and future directions of bioprinting in the field of otolaryngology.

  9. EL device pad-printed on a curved surface

    International Nuclear Information System (INIS)

    Lee, Taik-Min; Hur, Shin; Kim, Jae-Hyun; Choi, Hyun-Cheol

    2010-01-01

    This paper is unique in that the electroluminescence (EL) display device is fabricated on a curved surface using the pad-printing method. The precision of the pad-printing process is explored to verify whether it can be used for micro patterning. The minimum pattern size and pattern distortion, which is caused by use of the pad, were tested and simulated. The minimal pattern was found to be 35 µm wide and 2.4 µm thick. Pattern distortion when pad-printing on a flat surface, caused by the deformation of the silicon pad, was less than 5 µm. Numerical analysis shows how to estimate pattern distortion when pad-printing on a curved surface. The proposed EL display device consists of five layers, namely a bottom electrode, dielectric layer, phosphor, transparent electrode and a bus electrode. The ink of each layer was reformulated with solvents and the pad-printing conditions were controlled. A PEN film was used first in order to realize the pad-printing process condition of each layer. Finally, the EL display device was printed onto a dish with a radius of curvature of 80 mm. The luminance was 180 cd m −2

  10. Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters

    Science.gov (United States)

    Hashemi Sanatgar, Razieh; Campagne, Christine; Nierstrasz, Vincent

    2017-05-01

    In this paper, 3D printing as a novel printing process was considered for deposition of polymers on synthetic fabrics to introduce more flexible, resource-efficient and cost effective textile functionalization processes than conventional printing process like screen and inkjet printing. The aim is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity. Adhesion of polymer and nanocomposite layers which were 3D printed directly onto the textile fabrics using fused deposition modeling (FDM) technique was investigated. Different variables which may affect the adhesion properties including 3D printing process parameters, fabric type and filler type incorporated in polymer were considered. A rectangular shape according to the peeling standard was designed as 3D computer-aided design (CAD) to find out the effect of the different variables. The polymers were printed in different series of experimental design: nylon on polyamide 66 (PA66) fabrics, polylactic acid (PLA) on PA66 fabric, PLA on PLA fabric, and finally nanosize carbon black/PLA (CB/PLA) and multi-wall carbon nanotubes/PLA (CNT/PLA) nanocomposites on PLA fabrics. The adhesion forces were quantified using the innovative sample preparing method combining with the peeling standard method. Results showed that different variables of 3D printing process like extruder temperature, platform temperature and printing speed can have significant effect on adhesion force of polymers to fabrics while direct 3D printing. A model was proposed specifically for deposition of a commercial 3D printer Nylon filament on PA66 fabrics. In the following, among the printed polymers, PLA and its composites had high adhesion force to PLA fabrics.

  11. 3D Printing by Multiphase Silicone/Water Capillary Inks.

    Science.gov (United States)

    Roh, Sangchul; Parekh, Dishit P; Bharti, Bhuvnesh; Stoyanov, Simeon D; Velev, Orlin D

    2017-08-01

    3D printing of polymers is accomplished easily with thermoplastics as the extruded hot melt solidifies rapidly during the printing process. Printing with liquid polymer precursors is more challenging due to their longer curing times. One curable liquid polymer of specific interest is polydimethylsiloxane (PDMS). This study demonstrates a new efficient technique for 3D printing with PDMS by using a capillary suspension ink containing PDMS in the form of both precured microbeads and uncured liquid precursor, dispersed in water as continuous medium. The PDMS microbeads are held together in thixotropic granular paste by capillary attraction induced by the liquid precursor. These capillary suspensions possess high storage moduli and yield stresses that are needed for direct ink writing. They could be 3D printed and cured both in air and under water. The resulting PDMS structures are remarkably elastic, flexible, and extensible. As the ink is made of porous, biocompatible silicone that can be printed directly inside aqueous medium, it can be used in 3D printed biomedical products, or in applications such as direct printing of bioscaffolds on live tissue. This study demonstrates a number of examples using the high softness, elasticity, and resilience of these 3D printed structures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of ultrasound on electrochemical chloride extraction from mortar

    Science.gov (United States)

    Chen, Yiqun; Yao, Wu; Zuo, Junqing

    2018-03-01

    In this paper, the effect of auxiliary ultrasound on electrochemical chloride extraction (ECE) was studied. The chloride removal efficiency was investigated by examining the chloride content with ultrasound-assisted ECE and changing the introducing time of ultrasound. The experimental results showed that removal of chloride ions was noted to be more effective in ECE treatment assisted with ultrasound treatment (UT). In addition, the lower w/c ratio led to more distinct effect of ultrasonic cavitation on chloride removal. Electrochemical behaviors measured with different treatment revealed that UT treatment was effective on moderating the corrosion condition. Microstructural analyses revealed a significant alteration in composition and morphology of cementitious phases with UT treatment. Pull-out tests indicated that ultrasound had a certain negative impact on the bond strength. Although the effect of introducing ultrasound in the first 2 weeks or the last 2 weeks on the extraction efficiency was not obvious, intermittent ultrasound could not only ensure the chloride extraction efficiency, but also reduce the adverse effect of ultrasound on the bond strength.

  13. Computer Security: Printing confidentially

    CERN Document Server

    Stefan Lueders, Computer Security Team

    2015-01-01

    Have you ever hesitated to print a confidential document using CERN printers? Or perhaps you have rushed quickly to the printer after hitting the “print” button in order to avoid someone else getting hold of and reading your document? These times are over now with the new printing infrastructure!   Indeed, many of us regularly print out confidential documents like our salary slips, MARS forms, tendering documents and drafts of preliminary papers. The upcoming CERN data protection policy will require all of us to respect the confidentiality of such documents and, as the word “confidential” implies, access to “confidential” or sensitive documents will be tightly controlled. What can we do about the public printers located in many buildings, floors and shared spaces - accessible not only to CERN staff and users but also to visitors and guests? Some printers are located in the vicinity of restaurants, cafeterias or close to paths taken b...

  14. 3D printing for soft robotics - a review.

    Science.gov (United States)

    Gul, Jahan Zeb; Sajid, Memoon; Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Shah, Imran; Kim, Kyung-Hwan; Lee, Jae-Wook; Choi, Kyung Hyun

    2018-01-01

    Soft robots have received an increasing attention due to their advantages of high flexibility and safety for human operators but the fabrication is a challenge. Recently, 3D printing has been used as a key technology to fabricate soft robots because of high quality and printing multiple materials at the same time. Functional soft materials are particularly well suited for soft robotics due to a wide range of stimulants and sensitive demonstration of large deformations, high motion complexities and varied multi-functionalities. This review comprises a detailed survey of 3D printing in soft robotics. The development of key 3D printing technologies and new materials along with composites for soft robotic applications is investigated. A brief summary of 3D-printed soft devices suitable for medical to industrial applications is also included. The growing research on both 3D printing and soft robotics needs a summary of the major reported studies and the authors believe that this review article serves the purpose.

  15. Grey Balance Colorimetry of the Automatically Guided Printing

    Directory of Open Access Journals (Sweden)

    Igor Zjakic

    2005-12-01

    Full Text Available Apart from visual control, it is possible to controll the ink on a print by means of auxilliary instruments - densitometer, colorimeter and spectral photometer.One of the problems in offset printing reproduction is the inconstancy of theink flow and ink consumption during the run printing. This problem appears because of the change of ink viscosity, the change of ink temperature, the change of fountain solution quantity in ink, the change of printing speed etc.This article shows the measurements of the chromatic values performed by spectral photometer on the control - signal strip from the very beginning of the run printing till 20000th print. Gray balance (CMY by means of CIE L*a*b* system has been investigated. Densitometric values of the solid area, the growth of the screen values and doubling-shear have been determined. The results of the spectrophotometric measurements of gray balance and the densitometric measurements of the solid tint have been analyzed.

  16. High-Throughput Printing Process for Flexible Electronics

    Science.gov (United States)

    Hyun, Woo Jin

    Printed electronics is an emerging field for manufacturing electronic devices with low cost and minimal material waste for a variety of applications including displays, distributed sensing, smart packaging, and energy management. Moreover, its compatibility with roll-to-roll production formats and flexible substrates is desirable for continuous, high-throughput production of flexible electronics. Despite the promise, however, the roll-to-roll production of printed electronics is quite challenging due to web movement hindering accurate ink registration and high-fidelity printing. In this talk, I will present a promising strategy for roll-to-roll production using a novel printing process that we term SCALE (Self-aligned Capillarity-Assisted Lithography for Electronics). By utilizing capillarity of liquid inks on nano/micro-structured substrates, the SCALE process facilitates high-resolution and self-aligned patterning of electrically functional inks with greatly improved printing tolerance. I will show the fabrication of key building blocks (e.g. transistor, resistor, capacitor) for electronic circuits using the SCALE process on plastics.

  17. Three-dimensional printing and pediatric liver disease.

    Science.gov (United States)

    Alkhouri, Naim; Zein, Nizar N

    2016-10-01

    Enthusiastic physicians and medical researchers are investigating the role of three-dimensional printing in medicine. The purpose of the current review is to provide a concise summary of the role of three-dimensional printing technology as it relates to the field of pediatric hepatology and liver transplantation. Our group and others have recently demonstrated the feasibility of printing three-dimensional livers with identical anatomical and geometrical landmarks to the native liver to facilitate presurgical planning of complex liver surgeries. Medical educators are exploring the use of three-dimensional printed organs in anatomy classes and surgical residencies. Moreover, mini-livers are being developed by regenerative medicine scientist as a way to test new drugs and, eventually, whole livers will be grown in the laboratory to replace organs with end-stage disease solving the organ shortage problem. From presurgical planning to medical education to ultimately the bioprinting of whole organs for transplantation, three-dimensional printing will change medicine as we know in the next few years.

  18. The future of 3D printing technology in biomedicine

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2015-07-01

    Full Text Available 3D printing, one of the hottest cutting-edge interdisciplinary technologies, is projected to have revenue of $8.4 billion in 2020. #D printing technology will implement the concept of personalized medicine in medical healthcare industry and pharmaceutical fabrication. Organ printing, which it is defined as computer-aided, jet based 3D tissue-engineering of living human organs, is an interesting and challengeable field for 3D printing. Customized implants and prostheses can be produced in any imaginable geometry through the translation of radiological images of patients into digital.stl 3D print files. The creation of anatomical models based on the patient’s pathological conditions using 3D printing technologies would provide good models for training and to design surgical approaches. Hence, 3D printing not only will transform medical healthcare industry but also promises new converging technologies in the field of regenerative medicine.

  19. Forensic print extraction using 3D technology and its processing

    Science.gov (United States)

    Rajeev, Srijith; Shreyas, Kamath K. M.; Panetta, Karen; Agaian, Sos S.

    2017-05-01

    Biometric evidence plays a crucial role in criminal scene analysis. Forensic prints can be extracted from any solid surface such as firearms, doorknobs, carpets and mugs. Prints such as fingerprints, palm prints, footprints and lip-prints can be classified into patent, latent, and three-dimensional plastic prints. Traditionally, law enforcement officers capture these forensic traits using an electronic device or extract them manually, and save the data electronically using special scanners. The reliability and accuracy of the method depends on the ability of the officer or the electronic device to extract and analyze the data. Furthermore, the 2-D acquisition and processing system is laborious and cumbersome. This can lead to the increase in false positive and true negative rates in print matching. In this paper, a method and system to extract forensic prints from any surface, irrespective of its shape, is presented. First, a suitable 3-D camera is used to capture images of the forensic print, and then the 3-D image is processed and unwrapped to obtain 2-D equivalent biometric prints. Computer simulations demonstrate the effectiveness of using 3-D technology for biometric matching of fingerprints, palm prints, and lip-prints. This system can be further extended to other biometric and non-biometric modalities.

  20. 3D-PRINTING OF BUILD OBJECTS

    Directory of Open Access Journals (Sweden)

    SAVYTSKYI M. V.

    2016-03-01

    Full Text Available Raising of problem. Today, in all spheres of our life we can constate the permanent search for new, modern methods and technologies that meet the principles of sustainable development. New approaches need to be, on the one hand more effective in terms of conservation of exhaustible resources of our planet, have minimal impact on the environment and on the other hand to ensure a higher quality of the final product. Construction is not exception. One of the new promising technology is the technology of 3D -printing of individual structures and buildings in general. 3Dprinting - is the process of real object recreating on the model of 3D. Unlike conventional printer which prints information on a sheet of paper, 3D-printer allows you to display three-dimensional information, i.e. creates certain physical objects. Currently, 3D-printer finds its application in many areas of production: machine building elements, a variety of layouts, interior elements, various items. But due to the fact that this technology is fairly new, it requires the creation of detailed and accurate technologies, efficient equipment and materials, and development of common vocabulary and regulatory framework in this field. Research Aim. The analysis of existing methods of creating physical objects using 3D-printing and the improvement of technology and equipment for the printing of buildings and structures. Conclusion. 3D-printers building is a new generation of equipment for the construction of buildings, structures, and structural elements. A variety of building printing technics opens up wide range of opportunities in the construction industry. At this stage, printers design allows to create low-rise buildings of different configurations with different mortars. The scientific novelty of this work is to develop proposals to improve the thermal insulation properties of constructed 3D-printing objects and technological equipment. The list of key terms and notions of construction

  1. ERP system for 3D printing industry

    Directory of Open Access Journals (Sweden)

    Deaky Bogdan

    2017-01-01

    Full Text Available GOCREATE is an original cloud-based production management and optimization service which helps 3D printing service providers to use their resources better. The proposed Enterprise Resource Planning system can significantly increase income through improved productivity. With GOCREATE, the 3D printing service providers get a much higher production efficiency at a much lower licensing cost, to increase their competitiveness in the fast growing 3D printing market.

  2. 3D freeform printing of silk fibroin.

    Science.gov (United States)

    Rodriguez, Maria J; Dixon, Thomas A; Cohen, Eliad; Huang, Wenwen; Omenetto, Fiorenzo G; Kaplan, David L

    2018-04-15

    Freeform fabrication has emerged as a key direction in printing biologically-relevant materials and structures. With this emerging technology, complex structures with microscale resolution can be created in arbitrary geometries and without the limitations found in traditional bottom-up or top-down additive manufacturing methods. Recent advances in freeform printing have used the physical properties of microparticle-based granular gels as a medium for the submerged extrusion of bioinks. However, most of these techniques require post-processing or crosslinking for the removal of the printed structures (Miller et al., 2015; Jin et al., 2016) [1,2]. In this communication, we introduce a novel method for the one-step gelation of silk fibroin within a suspension of synthetic nanoclay (Laponite) and polyethylene glycol (PEG). Silk fibroin has been used as a biopolymer for bioprinting in several contexts, but chemical or enzymatic additives or bulking agents are needed to stabilize 3D structures. Our method requires no post-processing of printed structures and allows for in situ physical crosslinking of pure aqueous silk fibroin into arbitrary geometries produced through freeform 3D printing. 3D bioprinting has emerged as a technology that can produce biologically relevant structures in defined geometries with microscale resolution. Techniques for fabrication of free-standing structures by printing into granular gel media has been demonstrated previously, however, these methods require crosslinking agents and post-processing steps on printed structures. Our method utilizes one-step gelation of silk fibroin within a suspension of synthetic nanoclay (Laponite), with no need for additional crosslinking compounds or post processing of the material. This new method allows for in situ physical crosslinking of pure aqueous silk fibroin into defined geometries produced through freeform 3D printing. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights

  3. Analysis of the Optical Properties of Screen-Printed and Aerosol-Printed and Plated Fingers of Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    R. Woehl

    2008-01-01

    Full Text Available One main efficiency loss in industrial solar cells is the shading of the cell caused by the metal front side contacts. With the aerosol-printing technique plus an additional light-induced plating (LIP step, not only is the geometrical contact width narrowed compared to screen-printed contacts but also the shape of the finger changes. In this work, the effective shading of different finger types is analysed with two different measurement methods. The essential parameter for characterising the finger is the effective width which can be reduced drastically compared to the geometrical width due to total internal reflection at the glass-air layer and the reflection from the roundish edges of the contact fingers into the cell. This parameter was determined with different methods. It could be shown that for aerosol-printed fingers the effective (optical width is only 38% of its geometrical width, while for standard screen-printed fingers it is 47%. The measured values are compared to a theoretical model for an aerosol-printed and plated finger and are in good agreement.

  4. Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability

    Science.gov (United States)

    Schilz, Jodi R.; Reddy, K. J.; Nair, Sreejayan; Johnson, Thomas E.; Tjalkens, Ronald B.; Krueger, Kem P.; Clark, Suzanne

    2015-01-01

    In situ recovery (ISR) is the predominant method of uranium extraction in the United States. During ISR, uranium is leached from an ore body and extracted through ion exchange. The resultant production bleed water (PBW) contains contaminants such as arsenic and other heavy metals. Samples of PBW from an active ISR uranium facility were treated with cupric oxide nanoparticles (CuO-NPs). CuO-NP treatment of PBW reduced priority contaminants, including arsenic, selenium, uranium, and vanadium. Untreated and CuO-NP treated PBW was used as the liquid component of the cell growth media and changes in viability were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in human embryonic kidney (HEK 293) and human hepatocellular carcinoma (Hep G2) cells. CuO-NP treatment was associated with improved HEK and HEP cell viability. Limitations of this method include dilution of the PBW by growth media components and during osmolality adjustment as well as necessary pH adjustment. This method is limited in its wider context due to dilution effects and changes in the pH of the PBW which is traditionally slightly acidic however; this method could have a broader use assessing CuO-NP treatment in more neutral waters. PMID:26132311

  5. How useful is 3D printing in maxillofacial surgery?

    Science.gov (United States)

    Louvrier, A; Marty, P; Barrabé, A; Euvrard, E; Chatelain, B; Weber, E; Meyer, C

    2017-09-01

    3D printing seems to have more and more applications in maxillofacial surgery (MFS), particularly since the release on the market of general use 3D printers several years ago. The aim of our study was to answer 4 questions: 1. Who uses 3D printing in MFS and is it routine or not? 2. What are the main clinical indications for 3D printing in MFS and what are the kinds of objects that are used? 3. Are these objects printed by an official medical device (MD) manufacturer or made directly within the department or the lab? 4. What are the advantages and drawbacks? Two bibliographic researches were conducted on January the 1st, 2017 in PubMed, without time limitation, using "maxillofacial surgery" AND "3D printing" for the first and for the second "maxillofacial surgery" AND "computer-aided design" AND "computer-aided manufacturing" as keywords. Articles in English or French dealing with human clinical use of 3D printing were selected. Publication date, nationality of the authors, number of patients treated, clinical indication(s), type of printed object(s), type of printing (lab/hospital-made or professional/industry) and advantages/drawbacks were recorded. Two hundred and ninety-seven articles from 35 countries met the criteria. The most represented country was the People's Republic of China (16% of the articles). A total of 2889 patients (10 per article on average) benefited from 3D printed objects. The most frequent clinical indications were dental implant surgery and mandibular reconstruction. The most frequently printed objects were surgical guides and anatomic models. Forty-five percent of the prints were professional. The main advantages were improvement in precision and reduction of surgical time. The main disadvantages were the cost of the objects and the manufacturing period when printed by the industry. The arrival on the market of low-cost printers has increased the use of 3D printing in MFS. Anatomic models are not considered to be MDs and do not have

  6. Improving Heat Transfer Performance of Printed Circuit Boards

    Science.gov (United States)

    Schatzel, Donald V.

    2009-01-01

    This paper will explore the ability of printed circuit boards laminated with a Carbon Core Laminate to transfer heat vs. standard printed circuit boards that use only thick layers of copper. The paper will compare the differences in heat transfer performance of printed circuit boards with and without CCL.

  7. 3D-printing soft sEMG sensing structures

    NARCIS (Netherlands)

    Wolterink, Gerjan; Sanders, Remco; Muijzer, Frodo; van Beijnum, Bert-Jan; Krijnen, Gijs

    2017-01-01

    This paper describes the development and characterization of soft and flexible 3D-printed sEMG electrodes. The electrodes are printed in one go on a low cost consumer multi-material FDM printer. The printed structures do not need any further production steps to give them conductive properties.

  8. Three-Dimensional Printing of Drug-Eluting Implants

    DEFF Research Database (Denmark)

    Water, Jorrit Jeroen; Bohr, Adam; Bøtker, Johan Peter

    2015-01-01

    The aim of the present work was to investigate the potential of three-dimensional (3D) printing as a manufacturing method for products intended for personalized treatments by exploring the production of novel polylactide-based feedstock materials for 3D printing purposes. Nitrofurantoin (NF......) and hydroxyapatite (HA) were successfully mixed and extruded with up to 30% drug load with and without addition of 5% HA in polylactide strands, which were subsequently 3D-printed into model disc geometries (10 × 2 mm). X-ray powder diffraction analysis showed that NF maintained its anhydrate solid form during...... of custom-made, drug-loaded feedstock materials for 3D printing of pharmaceutical products for controlled release....

  9. 3D-Printed Biopolymers for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Xiaoming Li

    2014-01-01

    Full Text Available 3D printing technology has recently gained substantial interest for potential applications in tissue engineering due to the ability of making a three-dimensional object of virtually any shape from a digital model. 3D-printed biopolymers, which combine the 3D printing technology and biopolymers, have shown great potential in tissue engineering applications and are receiving significant attention, which has resulted in the development of numerous research programs regarding the material systems which are available for 3D printing. This review focuses on recent advances in the development of biopolymer materials, including natural biopolymer-based materials and synthetic biopolymer-based materials prepared using 3D printing technology, and some future challenges and applications of this technology are discussed.

  10. Cardiothoracic Applications of 3D Printing

    Science.gov (United States)

    Giannopoulos, Andreas A.; Steigner, Michael L.; George, Elizabeth; Barile, Maria; Hunsaker, Andetta R.; Rybicki, Frank J.; Mitsouras, Dimitris

    2016-01-01

    Summary Medical 3D printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as CT, MRI, echocardiography and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D printed models can improve diagnosis and allow for advanced pre-operative planning. The majority of applications reported involve congenital heart diseases, valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing peri-operative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality. PMID:27149367

  11. VOLATILE CHLORIDE PROCESS FOR THE RECOVERY OF METAL VALUES

    Science.gov (United States)

    Hanley, W.R.

    1959-01-01

    A process is presented for recovering uranium, iron, and aluminum from centain shale type ores which contain uranium in minute quantities. The ore is heated wiih a chlorinating agent. such as chlorine, to form a volatilized stream of metal chlorides. The chloride stream is then passed through granular alumina which preferentially absorbs the volatile uranium chloride and from which the uranium may later be recovered. The remaining volatilized chlorides, chiefly those of iron and aluminum, are further treated to recover chlorine gas for recycle, and to recover ferric oxide and aluminum oxide as valuable by-products.

  12. Plasmonic colour laser printing

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Vannahme, Christoph; Højlund-Nielsen, Emil

    2016-01-01

    -beam lithography (EBL) or focused ion beam (FIB), both expensive and not scalable processes that are not suitable for post-processing customization. Here we show a method of colour printing on nanoimprinted plasmonic metasurfaces using laser post-writing. Laser pulses induce transient local heat generation...... that leads to melting and reshaping of the imprinted nanostructures. Depending on the laser pulse energy density, different surface morphologies that support different plasmonic resonances leading to different colour appearances can be created. Using this technique we can print all primary colours...

  13. The Decline of Print: Ten Years of Print Serial Use in a Small Academic Medical Library

    Science.gov (United States)

    Rosati, Karen Thompson

    2006-01-01

    Tracking use of print journals over a ten-year period has allowed The University of South Carolina (USC) School of Medicine Library an essential tool for more accurate collection development, for both print and electronic selection. This lengthy study has provided usage statistics for purchasing decisions regarding electronic subscriptions still…

  14. Hydrocracking mechanisms in molten zinc chloride. Isotope scrambling and pyrolysis studies

    International Nuclear Information System (INIS)

    Larsen, J.W.; Earnest, S.

    1979-01-01

    Bruceton coal was hydrocracked in molten zinc chloride using H 2 -D 2 mixtures. No H-D was observed. The pyrolysis of Bruceton coal and a lignite in molten zinc chloride and an inert salt was carried out and the tetrahydrofuran and pyridine extractability of the products determined. In the absence of H 2 , zinc chloride is not an effective cracking catalyst. It is tentatively concluded that the catalytically active species is formed from zinc chloride and something in the coal and H 2 . The interactions between zinc chloride and the lignite appear to be significantly different than the interactions between zinc chloride and the bituminous coal. (Auth.)

  15. Repassivation Potential of Alloy 22 in Sodium and Calcium Chloride Brines

    International Nuclear Information System (INIS)

    Rebak, R B; Ilevbare, G O; Carranza, R M

    2007-01-01

    A comprehensive matrix of 60 tests was designed to explore the effect of calcium chloride vs. sodium chloride and the ratio R of nitrate concentration over chloride concentration on the repassivation potential of Alloy 22. Tests were conducted using the cyclic potentiodynamic polarization (CPP) technique at 75 C and at 90 C. Results show that at a ratio R of 0.18 and higher nitrate was able to inhibit the crevice corrosion in Alloy 22 induced by chloride. Current results fail to show in a consistent way a different effect on the repassivation potential of Alloy 22 for calcium chloride solutions than for sodium chloride solutions

  16. Two-electron oxidation of cobalt phthalocyanines by thionyl chloride: Implications for lithium/thionyl chloride batteries. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, P.A.; Lever, A.B.

    1989-10-20

    Cyclic voltammetry, DPV and electronic spectroscopy are used to study the reaction between thionyl chloride and cobalt phthalocyanine. SOCl2 reacts with (Co(I)Tn Pc(2-)) and Co(II)Tn Pc(2-) to give two-electron oxidized species. Implications for Li/SOCl2 batteries are discussed. Thionyl chloride also forms a mono SOCl2 adduct with Co(II)TnPc(2-). Driving forces (Delta E values) were calculated for CoTnPc comproportionation and CoTnPc + SOCl2 reactions. Rest potential measurements of a Li/SOCl2 cells show that addition of AlCl3 stabilizes the LiCl product as LiAlCl4. A catalytic two-electron mechanism is indicated for the reduction of thionyl chloride in a Li/SOCl2/(CoTnPc,C) battery.

  17. 3D-printing of undisturbed soil imaged by X-ray

    Science.gov (United States)

    Bacher, Matthias; Koestel, John; Schwen, Andreas

    2014-05-01

    The unique pore structures in Soils are altered easily by water flow. Each sample has a different morphology and the results of repetitions vary as well. Soil macropores in 3D-printed durable material avoid erosion and have a known morphology. Therefore potential and limitations of reproducing an undisturbed soil sample by 3D-printing was evaluated. We scanned an undisturbed soil column of Ultuna clay soil with a diameter of 7 cm by micro X-ray computer tomography at a resolution of 51 micron. A subsample cube of 2.03 cm length with connected macropores was cut out from this 3D-image and printed in five different materials by a 3D-printing service provider. The materials were ABS, Alumide, High Detail Resin, Polyamide and Prime Grey. The five print-outs of the subsample were tested on their hydraulic conductivity by using the falling head method. The hydrophobicity was tested by an adapted sessile drop method. To determine the morphology of the print-outs and compare it to the real soil also the print-outs were scanned by X-ray. The images were analysed with the open source program ImageJ. The five 3D-image print-outs copied from the subsample of the soil column were compared by means of their macropore network connectivity, porosity, surface volume, tortuosity and skeleton. The comparison of pore morphology between the real soil and the print-outs showed that Polyamide reproduced the soil macropore structure best while Alumide print-out was the least detailed. Only the largest macropore was represented in all five print-outs. Printing residual material or printing aid material remained in and clogged the pores of all print-out materials apart from Prime Grey. Therefore infiltration was blocked in these print-outs and the materials are not suitable even though the 3D-printed pore shapes were well reproduced. All of the investigated materials were insoluble. The sessile drop method showed angles between 53 and 85 degrees. Prime Grey had the fastest flow rate; the

  18. Inkjet printing and adhesion characterisation of conductive tracks on a commercial printed circuit board material

    International Nuclear Information System (INIS)

    Sridhar, A.; Dijk, D.J. van; Akkerman, R.

    2009-01-01

    Silver nanoparticle-based conductive tracks were inkjet printed using a piezoelectric drop-on-demand inkjet printer on a commercially available electronics grade fibre glass (E-glass) reinforced substrate material, and the experimental results have been summarised. Ink jetting was done on two variants of this substrate material, viz. etched and unetched, to determine the influence of substrate surface topography on adhesion and accuracy of the printed tracks. The pull-off adhesion test method was used to quantify adhesive strength. The dependence of the pull-off test results on local geometry of the test area are illustrated with the aid of scanning electron microscope images and interferometer studies. Based on the outcomes of the experiments, conclusions concerning the suitable surface topography for inkjet printing have been arrived at.

  19. Embedding objects during 3D printing to add new functionalities.

    Science.gov (United States)

    Yuen, Po Ki

    2016-07-01

    A novel method for integrating and embedding objects to add new functionalities during 3D printing based on fused deposition modeling (FDM) (also known as fused filament fabrication or molten polymer deposition) is presented. Unlike typical 3D printing, FDM-based 3D printing could allow objects to be integrated and embedded during 3D printing and the FDM-based 3D printed devices do not typically require any post-processing and finishing. Thus, various fluidic devices with integrated glass cover slips or polystyrene films with and without an embedded porous membrane, and optical devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber were 3D printed to demonstrate the versatility of the FDM-based 3D printing and embedding method. Fluid perfusion flow experiments with a blue colored food dye solution were used to visually confirm fluid flow and/or fluid perfusion through the embedded porous membrane in the 3D printed fluidic devices. Similar to typical 3D printed devices, FDM-based 3D printed devices are translucent at best unless post-polishing is performed and optical transparency is highly desirable in any fluidic devices; integrated glass cover slips or polystyrene films would provide a perfect optical transparent window for observation and visualization. In addition, they also provide a compatible flat smooth surface for biological or biomolecular applications. The 3D printed fluidic devices with an embedded porous membrane are applicable to biological or chemical applications such as continuous perfusion cell culture or biocatalytic synthesis but without the need for any post-device assembly and finishing. The 3D printed devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber would have applications in display, illumination, or optical applications. Furthermore, the FDM-based 3D printing and embedding method could also be utilized to print casting molds with an integrated glass bottom for polydimethylsiloxane (PDMS) device replication

  20. 3D Printing of Ball Grid Arrays

    Science.gov (United States)

    Sinha, Shayandev; Hines, Daniel; Dasgupta, Abhijit; Das, Siddhartha

    Ball grid arrays (BGA) are interconnects between an integrated circuit (IC) and a printed circuit board (PCB), that are used for surface mounting electronic components. Typically, lead free alloys are used to make solder balls which, after a reflow process, establish a mechanical and electrical connection between the IC and the PCB. High temperature processing is required for most of these alloys leading to thermal shock causing damage to ICs. For producing flexible circuits on a polymer substrate, there is a requirement for low temperature processing capabilities (around 150 C) and for reducing strain from mechanical stresses. Additive manufacturing techniques can provide an alternative methodology for fabricating BGAs as a direct replacement for standard solder bumped BGAs. We have developed aerosol jet (AJ) printing methods to fabricate a polymer bumped BGA. As a demonstration of the process developed, a daisy chain test chip was polymer bumped using an AJ printed ultra violet (UV) curable polymer ink that was then coated with an AJ printed silver nanoparticle laden ink as a conducting layer printed over the polymer bump. The structure for the balls were achieved by printing the polymer ink using a specific toolpath coupled with in-situ UV curing of the polymer which provided good control over the shape, resulting in well-formed spherical bumps on the order of 200 um wide by 200 um tall for this initial demonstration. A detailed discussion of the AJ printing method and results from accelerated life-time testing will be presented

  1. Printed products for digital cameras and mobile devices

    Science.gov (United States)

    Fageth, Reiner; Schmidt-Sacht, Wulf

    2005-01-01

    Digital photography is no longer simply a successor to film. The digital market is now driven by additional devices such as mobile phones with camera and video functions (camphones) as well as innovative products derived from digital files. A large number of consumers do not print their images and non-printing has become the major enemy of wholesale printers, home printing suppliers and retailers. This paper addresses the challenge facing our industry, namely how to encourage the consumer to print images easily and conveniently from all types of digital media.

  2. Advanced intermediate temperature sodium copper chloride battery

    Science.gov (United States)

    Yang, Li-Ping; Liu, Xiao-Min; Zhang, Yi-Wei; Yang, Hui; Shen, Xiao-Dong

    2014-12-01

    Sodium metal chloride batteries, also called as ZEBRA batteries, possess many merits such as low cost, high energy density and high safety, but their high operation temperature (270-350 °C) may cause several issues and limit their applications. Therefore, decreasing the operation temperature is of great importance in order to broaden their usage. Using a room temperature ionic liquid (RTIL) catholyte composed of sodium chloride buffered 1-ethyl-3-methylimidazolium chloride-aluminum chloride and a dense β″-aluminates solid electrolyte film with 500 micron thickness, we report an intermediate temperature sodium copper chloride battery which can be operated at only 150 °C, therefore alleviating the corrosion issues, improving the material compatibilities and reducing the operating complexities associated with the conventional ZEBRA batteries. The RTIL presents a high ionic conductivity (0.247 S cm-1) at 150 °C and a wide electrochemical window (-2.6 to 2.18 vs. Al3+/Al). With the discharge plateau at 2.64 V toward sodium and the specific capacity of 285 mAh g-1, this intermediate temperature battery exhibits an energy density (750 mWh g-1) comparable to the conventional ZEBRA batteries (728-785 mWh g-1) and superior to commercialized Li-ion batteries (550-680 mWh g-1), making it very attractive for renewable energy integration and other grid related applications.

  3. A wearable tracking device inkjet-printed on textile

    KAUST Repository

    Krykpayev, Bauyrzhan

    2017-05-20

    Despite the abundance of localization applications, the tracking devices have never been truly realized in E-textiles. Standard printed circuit board (PCB)-based devices are obtrusive and rigid and hence not suitable for textile based implementations. An attractive option would be direct printing of circuit layout on the textile itself, negating the use of rigid PCB materials. However, high surface roughness and porosity of textiles prevents efficient and reliable printing of electronics on textile. In this work, by printing an interface layer on the textile first, a complete localization circuit integrated with an antenna has been inkjet-printed on the textile for the first time. Printed conductive traces were optimized in terms of conductivity and resolution by controlling the number of over-printed layers. The tracking device determines the wearer\\'s position using WiFi and this information can be displayed on any internet-enabled device, such as smart phone. The device is compact (55mm×45mm) and lightweight (22g with 500mAh battery) for people to comfortably wear it and can be easily concealed in case discretion is required. The device operates at 2.4GHz communicated up to a distance of 55m, with localization accuracy of up to 8m.

  4. Digital multicolor printing: state of the art and future challenges

    Science.gov (United States)

    Kipphan, Helmut

    1995-04-01

    During the last 5 years, digital techniques have become extremely important in the graphic arts industry. All sections in the production flow for producing multicolor printed products - prepress, printing and postpress - are influenced by digitalization, in an evolutionary and revolutionary way. New equipment and network techniques bring all the sections closer together. The focus is put on high-quality multicolor printing, together with high productivity. Conventional offset printing technology is compared with the leading nonimpact printing technologies. Computer to press is contrasted with computer to print techniques. The newest available digital multicolor presses are described - the direct imaging offset printing press from HEIDELBERG with new laser imaging technique as well as the INDIGO and XEIKON presses based on electrophotography. Regarding technical specifications, economic calculations and print quality, it is worked out that each technique has its own market segments. An outlook is given for future computer to press techniques and the potential of nonimpact printing technologies for advanced high-speed multicolor computer to print equipment. Synergy effects from the NIP-technologies to the conventional printing technologies and vice versa are possible for building up innovative new products, for example hybrid printing systems. It is also shown that there is potential for improving the print quality, based on special screening algorithms, and a higher number of grey levels per pixel by using NIP-technologies. As an intermediate step in digitalization of the production flow, but also as an economical solution computer to plate equipment is described. By producing printed products totally in a digital way, digital color proofing as well as color management systems are needed. The newest high-tech equipment using NIP-technologies for producing proofs is explained. All in all it is shown that the state of the art in digital multicolor printing has reached

  5. Printing Processes Used to Manufacture Photovoltaic Solar Cells

    Science.gov (United States)

    Rardin, Tina E.; Xu, Renmei

    2011-01-01

    There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make…

  6. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be

  7. Powder-based 3D printing application for geomechanical testing

    Science.gov (United States)

    Williams, M.; Yoon, H.; Choens, R. C., II; Martinez, M. J.; Dewers, T. A.; Lee, M.

    2017-12-01

    3D printing of fractured and porous analog geomaterials has the potential to enhance hydrogeological and mechanical interpretations by generating engineered samples in testable configurations with reproducible microstructures and tunable surface and mechanical properties. For geoscience applications, 3D printing technology can be co-opted to print reproducible structures derived from CT-imaging of actual rocks and theoretical algorithms. In particular, the use of 3D printed samples allows us to overcome sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from material variability. In this work, gypsum powder-based 3D printing was used to print cylindrical core samples and block samples with a pre-existing flaw geometry. All samples are printed in three different directions to evaluate the impact of printing direction on mechanical properties. For the cylindrical samples, unconfined compression testing has been performed. For compressive strength, the samples printed perpendicular to the loading direction show stronger than those printed parallel to the loading and at 45 degree. Micro-CT images of the printed samples reveal the uneven spreading of binder, resulting in soft inner core surrounded by stronger outer shell. In particular, the layered feature with binder causes the strong anisotropic properties. This was also confirmed by the wave velocity. For the small block samples ( 6.1cm wide, 10cm high, and 1.25cm thick) with an inclined flaw, uniaxial tests coupled with an array of acoustic emission sensors and digital image correlation revealed that cracks were developed at/near the tip of flaw as expected. Although acoustic events were detected, localization was not detectable mainly due to strong attenuation. Advantage and disadvantage of power-based 3D printing for mechanical testing will be discussed and a few attempts will be presented to improve the applicability of powder-based printing technique. Sandia

  8. ABS 3D printed solutions for cryogenic applications

    Science.gov (United States)

    Bartolomé, E.; Bozzo, B.; Sevilla, P.; Martínez-Pasarell, O.; Puig, T.; Granados, X.

    2017-03-01

    3D printing has become a common, inexpensive and rapid prototyping technique, enabling the ad hoc fabrication of complex shapes. In this paper, we demonstrate that 3D printed objects in ABS can be used at cryogenic temperatures, offering flexible solutions in different fields. Firstly, a thermo-mechanical characterization of ABS 3D printed specimens at 77 K is reported, which allowed us to delimit the type of cryogenic uses where 3D printed pieces may be implemented. Secondly, we present three different examples where ABS 3D printed objects working at low temperatures have provided specific solutions: (i) SQUID inserts for angular magnetometry (low temperature material characterization field); (ii) a cage support for a metamaterial ;magnetic concentrator; (superconductivity application), and (iii) dedicated tools for cryopreservation in assisted reproductive techniques (medicine field).

  9. Radiation fixation of vinyl chloride in an insecticide aerosol container

    International Nuclear Information System (INIS)

    Kagiya, V.T.; Takemoto, K.

    1975-01-01

    Recently, a large quantity of vinyl chloride has been used as spraying additive for insecticide aerosols. Since January 1974 when the Food and Drug Administration of the United States of America announced that vinyl chloride causes liver cancer, it has been forbidden in Japan and the United States of America to market insecticide aerosol containers containing vinyl chloride. In Japan, following a government order, about 20 million insecticide aerosol containers have been collected and put into storage. A report is given on the radiation fixation of vinyl chloride as polyvinylchloride powder by gamma-ray-induced polymerization in the aerosol container. Insecticide aerosol containers containing vinyl chloride were irradiated by gamma rays from 60 Co at room temperature. Vinyl chloride polymerized to form powdered polymer in the container. Polymerization conversion increased with the irradiation dose, and after 10 Mrad irradiation, vinyl chloride was not found in the sprayed gas. This establishes that vinyl chloride can be fixed by gamma-ray irradiation in the aerosol container. To accelerate the reaction rate, the effect of various additives on the reaction was investigated. It was found that halogenated hydrocarbons, such as chloroform and carbon tetrachloride, accelerated the initiation of the polymerization, and that a vinyl monomer such as vinyl acetate accelerated the reaction rate due to the promotion of the initiation and the high reactivity of the polyvinylacetate radical to vinyl chloride. Consequently, the required irradiation dose for the fixation of vinyl chloride was decreased to less than 5 Mrad by the addition of various kinds of additives. Following the request of the Ministry of Public Welfare, various technical problems for large-scale treatment are being studied with the co-operation of the Federation of Insecticide Aerosols. (author)

  10. A fully printed ferrite nano-particle ink based tunable antenna

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Inkjet printing or printing in general has emerged as a very attractive method for the fabrication of low cost and large size electronic systems. However, most of the printed designs rely on nano-particle based metallic inks which are printed on conventional microwave substrates. In order to have a fully printed fabrication process, the substrate also need to be printed. In this paper, a fully printed multi-layer process utilizing custom Fe2O3 based magnetic ink and a silver organic complex (SOC) ink is demonstrated for tunable antennas applications. The ink has been characterized for high frequency and magnetostatic properties. Finally as a proof of concept, a microstrip patch antenna is realized using the proposed fabrication technique which shows a tuning range of 12.5 %.

  11. Nanoparticle composites for printed electronics

    International Nuclear Information System (INIS)

    Männl, U; Van den Berg, C; Magunje, B; Härting, M; Britton, D T; Jones, S; Van Staden, M J; Scriba, M R

    2014-01-01

    Printed Electronics is a rapidly developing sector in the electronics industry, in which nanostructured materials are playing an increasingly important role. In particular, inks containing dispersions of semiconducting nanoparticles, can form nanocomposite materials with unique electronic properties when cured. In this study we have extended on our previous studies of functional nanoparticle electronic inks, with the development of a solvent-based silicon ink for printed electronics which is compatible with existing silver inks, and with the investigation of other metal nanoparticle based inks. It is shown that both solvent-based and water-based inks can be used for both silver conductors and semiconducting silicon, and that qualitatively there is no difference in the electronic properties of the materials printed with a soluble polymer binder to when an acrylic binder is used. (paper)

  12. 3D-printed patient-specific applications in orthopedics

    Directory of Open Access Journals (Sweden)

    Wong KC

    2016-10-01

    Full Text Available Kwok Chuen Wong Department of Orthopedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Abstract: With advances in both medical imaging and computer programming, two-dimensional axial images can be processed into other reformatted views (sagittal and coronal and three-dimensional (3D virtual models that represent a patients’ own anatomy. This processed digital information can be analyzed in detail by orthopedic surgeons to perform patient-specific orthopedic procedures. The use of 3D printing is rising and has become more prevalent in medical applications over the last decade as surgeons and researchers are increasingly utilizing the technology’s flexibility in manufacturing objects. 3D printing is a type of manufacturing process in which materials such as plastic or metal are deposited in layers to create a 3D object from a digital model. This additive manufacturing method has the advantage of fabricating objects with complex freeform geometry, which is impossible using traditional subtractive manufacturing methods. Specifically in surgical applications, the 3D printing techniques can not only generate models that give a better understanding of the complex anatomy and pathology of the patients and aid in education and surgical training, but can also produce patient-specific surgical guides or even custom implants that are tailor-made to the surgical requirements. As the clinical workflow of the 3D printing technology continues to evolve, orthopedic surgeons should embrace the latest knowledge of the technology and incorporate it into their clinical practice for patient-specific orthopedic applications. This paper is written to help orthopedic surgeons stay up-to-date on the emerging 3D technology, starting from the acquisition of clinical imaging to 3D printing for patient-specific applications in orthopedics. It 1 presents the necessary steps to prepare the medical images that are

  13. Printed MIMO antenna engineering

    CERN Document Server

    Sharawi, Mohammad S

    2014-01-01

    Wireless communications has made a huge leap during the past two decades. The multiple-input-multiple-output (MIMO) technology was proposed in the 1990's as a viable solution that can overcome the data rate limit experienced by single-input-single-output (SISO) systems. This resource is focused on printed MIMO antenna system design. Printed antennas are widely used in mobile and handheld terminals due to their conformity with the device, low cost, good integration within the device elements and mechanical parts, as well as ease of fabrication.A perfect design companion for practicing engineers

  14. Primer printed circuit boards

    CERN Document Server

    Argyle, Andrew

    2009-01-01

    Step-by-step instructions for making your own PCBs at home. Making your own printed circuit board (PCB) might seem a daunting task, but once you master the steps, it's easy to attain professional-looking results. Printed circuit boards, which connect chips and other components, are what make almost all modern electronic devices possible. PCBs are made from sheets of fiberglass clad with copper, usually in multiplelayers. Cut a computer motherboard in two, for instance, and you'll often see five or more differently patterned layers. Making boards at home is relatively easy

  15. Viscosity and density tables of sodium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fair, J.A.; Ozbek, H. (comps.)

    1977-04-01

    A file is presented containing tabulated data extracted from the scientific literature on the density and viscosity of aqueous sodium chloride solutions. Also included is a bibliography of the properties of aqueous sodium chloride solutions. (MHR)

  16. Determination of chloride in water. A comparison of three methods

    International Nuclear Information System (INIS)

    Steele, P.J.

    1978-09-01

    The presence of chloride in the water circuits of nuclear reactors, power stations and experimental rigs is undesirable because of the possibility of corrosion. Three methods are considered for the determination of chloride in water in the 0 to 10 μg ml -1 range. The potentiometric method, using a silver-silver chloride electrode, is capable of determining chloride above the 0.1μg ml -1 level, with a standard deviation of 0.03 to 0.12 μg ml -1 in the range 0.1 to 6.0 μg ml -1 chloride. Bromide, iodide and strong reducing agents interfere but none of the cations likely to be present has an effect. The method is very susceptible to variations in temperature. The turbidimetric method involves the production of suspended silver chloride by the addition of silver nitride solution to the sample. The method is somewhat unreliable and is more useful as a rapid, routine limit-testing technique. In the third method, chloride in the sample is pre-concentrated by co-precipitation on lead phosphate, redissolved in acidified ferric nitrate solution and determined colorimetrically by the addition of mercuric thiocyanate solution. It is suitable for determining chloride in the range 0 to 50 μg, using a sample volume of 100 to 500 ml. None of the chemical species likely to be present interferes. In all three methods, chloride contamination can occur at any point in the determination. Analyses should be carried out in conditions where airborne contamination is minimised and a high degree of cleanliness must be maintained. (author)

  17. Corrosion Risk of Reinforced Concrete Structure Arising from Internal and External Chloride

    Directory of Open Access Journals (Sweden)

    M. J. Kim

    2018-01-01

    Full Text Available The corrosion risk of internal chloride and external chloride from three different exposure conditions was evaluated. The initiation of corrosion was detected by monitoring the galvanic current between cathode metal and embedded steel. The chloride threshold was determined by measuring the corrosion rate of steel by the polarization technique for internal chloride and the chloride profiling test for external chloride. As the result, the initiation of corrosion was accelerated with a cyclic wet/dry condition, compared to the totally wet condition. In addition, it was found that an increase of the drying ratio in the exposure condition resulted in an increase of corrosion rate after initiation. The threshold level of external chloride ranged from 0.2 to 0.3% weight by cement and internal chloride shows higher range, equated to 1.59–3.10%. Based on these data, the chloride penetration with exposure condition was predicted to determine the service life of reinforced concrete structure.

  18. Realization of superconductive films by screen printing

    International Nuclear Information System (INIS)

    Baudry, H.

    1988-01-01

    Screen printing is a promising method to manufacture superconductive lines making use of superconductive ceramics. An ink has been realized with YBa 2 Cu 3 0 7-x' and the process conditions defined by thermal analysis. A superconductive transition is observed after screen printing on MgO. The firing of the layer is made at 920 0 C followed by a reoxidation step at 420 0 C. The silver electrical contacts are also screen printed [fr

  19. Intrinsic defects in 3D printed materials

    OpenAIRE

    Bolton, Christopher; Dagastine, Raymond

    2015-01-01

    We discuss the impact of bulk structural defects on the coherence, phase and polarisation of light passing through transparent 3D printed materials fabricated using a variety of commercial print technologies.

  20. Accelerated testing for chloride threshold of reinforcing steel in concrete

    NARCIS (Netherlands)

    Polder, R.B.; Put, M. van; Peelen, W.H.A.

    2017-01-01

    Testing for the chloride threshold (also called critical chloride content) for corrosion initiation of steel in concrete has been found difficult and, at best, time consuming. Nevertheless, the chloride threshold is an important parameter in service life design of new structures and for evaluation

  1. Inkjet Printed Radio Frequency Passive Components

    KAUST Repository

    McKerricher, Garret

    2015-01-01

    -resonant frequencies around 1GHz. These fully printed devices have quality factors less than 10. Finally, 3D inkjet-printed UV-cured material is utilized with a novel silver organo-complex ink at 80oC providing conductivity of 1x107 S/m. A lumped element filter

  2. A Framework for 3d Printing

    DEFF Research Database (Denmark)

    Pilkington, Alan; Frandsen, Thomas; Kapetaniou, Chrystalla

    3D printing technologies and processes offer such a radical range of options for firms that we currently lack a structured way of recording possible impact and recommending actions for managers. The changes arising from 3d printing includes more than just new options for product design, but also...

  3. High lumenal chloride in the lysosome is critical for lysosome function.

    Science.gov (United States)

    Chakraborty, Kasturi; Leung, KaHo; Krishnan, Yamuna

    2017-07-25

    Lysosomes are organelles responsible for the breakdown and recycling of cellular machinery. Dysfunctional lysosomes give rise to lysosomal storage disorders as well as common neurodegenerative diseases. Here, we use a DNA-based, fluorescent chloride reporter to measure lysosomal chloride in Caenorhabditis elegans as well as murine and human cell culture models of lysosomal diseases. We find that the lysosome is highly enriched in chloride, and that chloride reduction correlates directly with a loss in the degradative function of the lysosome. In nematodes and mammalian cell culture models of diverse lysosomal disorders, where previously only lysosomal pH dysregulation has been described, massive reduction of lumenal chloride is observed that is ~10 3 fold greater than the accompanying pH change. Reducing chloride within the lysosome impacts Ca 2+ release from the lysosome and impedes the activity of specific lysosomal enzymes indicating a broader role for chloride in lysosomal function.

  4. Inkjet printing of single-crystal films.

    Science.gov (United States)

    Minemawari, Hiromi; Yamada, Toshikazu; Matsui, Hiroyuki; Tsutsumi, Jun'ya; Haas, Simon; Chiba, Ryosuke; Kumai, Reiji; Hasegawa, Tatsuo

    2011-07-13

    The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science. Whether based on inorganic or organic materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. 'Printed electronics' is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials. However, because of the strong self-organizing tendency of the deposited materials, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid-air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C(8)-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4 cm(2) V(-1) s(-1). This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications.

  5. Printing microstructures in a polymer matrix using a ferrofluid droplet

    International Nuclear Information System (INIS)

    Abdel Fattah, Abdel Rahman; Ghosh, Suvojit; Puri, Ishwar K.

    2016-01-01

    We print complex curvilinear microstructures in an elastomer matrix using a ferrofluid droplet as the print head. A magnetic field moves the droplet along a prescribed path in liquid polydimethylsiloxane (PDMS). The droplet sheds magnetic nanoparticle (MNP) clusters in its wake, forming printed features. The PDMS is subsequently heated so that it crosslinks, which preserves the printed features in the elastomer matrix. The competition between magnetic and drag forces experienced by the ferrofluid droplet and its trailing MNPs highlight design criteria for successful printing, which are experimentally confirmed. The method promises new applications, such as flexible 3D circuitry. - Highlights: • Magnetically guided miscible ferrofluid droplets print 3D patterns in a polymer. • Printing mechanism depends on the dynamics between the fluid and magnetic forces. • Droplet size influences the width of the printed trail. • The Colloidal distribution of the ferrofluid is important for pattern integrity. • Particle trajectories and trails are simulated and validated through experiments.

  6. 3D printed plastics for beam modulation in proton therapy

    International Nuclear Information System (INIS)

    Lindsay, C; Hoehr, C; Kumlin, J; Schaffer, P; Jirasek, A; Lee, R; Martinez, D M

    2015-01-01

    Two 3D printing methods, fused filament fabrication (FFF) and PolyJet™ (PJ) were investigated for suitability in clinical proton therapy (PT) energy modulation. Measurements of printing precision, printed density and mean stopping power are presented. FFF is found to be accurate to 0.1 mm, to contain a void fraction of 13% due to air pockets and to have a mean stopping power dependent on geometry. PJ was found to print accurate to 0.05 mm, with a material density and mean stopping power consistent with solid poly(methyl methacrylate) (PMMA). Both FFF and PJ were found to print significant, sporadic defects associated with sharp edges on the order of 0.2 mm. Site standard PT modulator wheels were printed using both methods. Measured depth-dose profiles with a 74 MeV beam show poor agreement between PMMA and printed FFF wheels. PJ printed wheel depth-dose agreed with PMMA within 1% of treatment dose except for a distal falloff discrepancy of 0.5 mm. (note)

  7. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics.

    Science.gov (United States)

    Cui, Zheng; Han, Yiwei; Huang, Qijin; Dong, Jingyan; Zhu, Yong

    2018-04-19

    A silver nanowire (AgNW) based conductor is a promising component for flexible and stretchable electronics. A wide range of flexible/stretchable devices using AgNW conductors has been demonstrated recently. High-resolution, high-throughput printing of AgNWs remains a critical challenge. Electrohydrodynamic (EHD) printing has been developed as a promising technique to print different materials on a variety of substrates with high resolution. Here, AgNW ink was developed for EHD printing. The printed features can be controlled by several parameters including AgNW concentration, ink viscosity, printing speed, stand-off distance, etc. With this method, AgNW patterns can be printed on a range of substrates, e.g. paper, polyethylene terephthalate (PET), glass, polydimethylsiloxane (PDMS), etc. First, AgNW samples on PDMS were characterized under bending and stretching. Then AgNW heaters and electrocardiogram (ECG) electrodes were fabricated to demonstrate the potential of this printing technique for AgNW-based flexible and stretchable devices.

  8. Printing microstructures in a polymer matrix using a ferrofluid droplet

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Fattah, Abdel Rahman [Department of Mechanical Engineering, Hamilton, Ontario (Canada); Ghosh, Suvojit [Department of Engineering Physics, McMaster University, Hamilton, Ontario (Canada); Puri, Ishwar K. [Department of Mechanical Engineering, Hamilton, Ontario (Canada); Department of Engineering Physics, McMaster University, Hamilton, Ontario (Canada)

    2016-03-01

    We print complex curvilinear microstructures in an elastomer matrix using a ferrofluid droplet as the print head. A magnetic field moves the droplet along a prescribed path in liquid polydimethylsiloxane (PDMS). The droplet sheds magnetic nanoparticle (MNP) clusters in its wake, forming printed features. The PDMS is subsequently heated so that it crosslinks, which preserves the printed features in the elastomer matrix. The competition between magnetic and drag forces experienced by the ferrofluid droplet and its trailing MNPs highlight design criteria for successful printing, which are experimentally confirmed. The method promises new applications, such as flexible 3D circuitry. - Highlights: • Magnetically guided miscible ferrofluid droplets print 3D patterns in a polymer. • Printing mechanism depends on the dynamics between the fluid and magnetic forces. • Droplet size influences the width of the printed trail. • The Colloidal distribution of the ferrofluid is important for pattern integrity. • Particle trajectories and trails are simulated and validated through experiments.

  9. Absorption media for irreversibly gettering thionyl chloride

    Science.gov (United States)

    Buffleben, George; Goods, Steven H.; Shepodd, Timothy; Wheeler, David R.; Whinnery, Jr., LeRoy

    2002-01-01

    Thionyl chloride is a hazardous and reactive chemical used as the liquid cathode in commercial primary batteries. Contrary to previous thinking, ASZM-TEDA.RTM. carbon (Calgon Corporation) reversibly absorbs thionyl chloride. Thus, several candidate materials were examined as irreversible getters for thionyl chloride. The capacity, rate and effect of temperature were also explored. A wide variety of likely materials were investigated through screening experiments focusing on the degree of heat generated by the reaction as well as the material absorption capacity and irreversibility, in order to help narrow the group of possible getter choices. More thorough, quantitative measurements were performed on promising materials. The best performing getter was a mixture of ZnO and ASZM-TEDA.RTM. carbon. In this example, the ZnO reacts with thionyl chloride to form ZnCl.sub.2 and SO.sub.2. The SO.sub.2 is then irreversibly gettered by ASZM-TEDA.RTM. carbon. This combination of ZnO and carbon has a high capacity, is irreversible and functions effectively above -20.degree. C.

  10. A brief review of extrusion-based tissue scaffold bio-printing.

    Science.gov (United States)

    Ning, Liqun; Chen, Xiongbiao

    2017-08-01

    Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion-based bio-printing for scaffold fabrication, focusing on the prior-printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to-date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi-materials/cells manipulation, and process-induced cell damage in extrusion-based bio-printing. The key issue and challenges for extrusion-based bio-printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio-printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio-printing. The address of these challenges will significantly enhance the capability of extrusion-based bio-printing. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium pantothenate, calcium chloride double salt... FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  12. Mutagenicity of vinyl chloride after metabolic activation

    Energy Technology Data Exchange (ETDEWEB)

    Rannug, U; Johansson, A; Ramel, C; Wachtmeister, C A

    1974-01-01

    Vinyl chloride has recently been shown to cause a malignant liver tumor disease in man after occupational exposure in PVC plants. This actualizes the problem of whether such hazards could be avoided or at least diminished in the future by a screening for mutagenicity of chemicals used in industries. The basis for such a screening procedure is the close correlation between carcinogenic and mutagenic effects of chemicals. Experiments with Salmonella bacteria showed that the carcinogenic hazard of vinyl chloride could have been traced by means of mutagenicity tests. The data indicate that vinyl chloride is not mutagenic per se but becomes mutagenic after a metabolic activation in the liver. 24 references, 1 figure, 4 tables.

  13. Chloride Ingress in Concrete Cracks under Cyclic Loading

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Olesen, John Forbes

    2005-01-01

    was similar for both sets and the maximum crack width was kept constant throughout the exposure period by means of precracking and an external prestressed reinforcement. Chloride profiles after 40 days revealed a considerable increase in ingress towards the crack tip in contrast to data from the literature....... Preliminary investigations have been undertaken to quantify the effect of dynamic load application on the chloride ingress into concrete cracks. Specimens were designed allowing ingress of a chloride solution into a single crack of a saturated unreinforced mortar beam. One set of specimens was subjected...... to a load frequency of ten applications per minute and a second set to one application per hour simulating static cracks, however limiting the ingress hampering effects of autogenous healing and a possible dense precipitation on the crack faces. The averaged chloride exposure interval of the crack faces...

  14. Ultrasonic properties of all-printed piezoelectric polymer transducers

    Science.gov (United States)

    Wagle, Sanat; Decharat, Adit; Bodö, Peter; Melandsø, Frank

    2013-12-01

    The ability of producing ultrasonic transducers from screen-printing has been explored experimentally, through printing and characterization of a large number of transducers. In an all-printed test design, 124 transducers with four different electrode sizes ranging from 1 to 4.9 mm2, were printed layer-by-layer on a high performance polyethyleneimine polymer. Inks from ferroelectric and conductive polymers were applied to the active part of a transducer, to provide a good acoustical match between the individual layers. Ultrasonic characterizations of the transducers done by two independent methods provided a broad-banded frequency response with a maximum response around 100 MHz.

  15. Printed circuits and their applications: Which way forward?

    Science.gov (United States)

    Cantatore, E.

    2015-09-01

    The continuous advancements in printed electronics make nowadays feasible the design of printed circuits which enable meaningful applications. Examples include ultra-low cost sensors embedded in food packaging, large-area sensing surfaces and biomedical assays. This paper offers an overview of state-of-the-art digital and analog circuit blocks, manufactured with a printed complementary organic TFT technology. An analog to digital converter and an RFID tag implemented exploiting these building blocks are also described. The main remaining drawbacks of the printed technology described are identified, and new approaches to further improve the state of the art, enabling more innovative applications are discussed.

  16. Standard practice for preparing sulfur prints for macrostructural evaluation

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice provides information required to prepare sulfur prints (also referred to as Baumann Prints) of most ferrous alloys to reveal the distribution of sulfide inclusions. 1.2 The sulfur print reveals the distribution of sulfides in steels with bulk sulfur contents between about 0.010 and 0.40 weight percent. 1.3 Certain steels contain complex sulfides that do not respond to the test solutions, for example, steels containing titanium sulfides or chromium sulfides. 1.4 The sulfur print test is a qualitative test. The density of the print image should not be used to assess the sulfur content of a steel. Under carefully controlled conditions, it is possible to compare print image intensities if the images are formed only by manganese sulfides. 1.5 The sulfur print image will reveal details of the solidification pattern or metal flow from hot or cold working on appropriately chosen and prepared test specimens. 1.6 This practice does not address acceptance criteria based on the use of the method. ...

  17. Novel Biomaterials Used in Medical 3D Printing Techniques

    Directory of Open Access Journals (Sweden)

    Karthik Tappa

    2018-02-01

    Full Text Available The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.

  18. Novel Biomaterials Used in Medical 3D Printing Techniques.

    Science.gov (United States)

    Tappa, Karthik; Jammalamadaka, Udayabhanu

    2018-02-07

    The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.

  19. Virtual printer : an environment for digital print modeling and inspection

    NARCIS (Netherlands)

    Marchenko, V.

    2014-01-01

    Océ-Technologies B.V., a member of the Canon Group, specializes in providing solutions for enterprise printing, large format printing, and production printing. Software is an important part of a modern printer. One of the tasks for inkjet-printer software is to transform input print data into timed

  20. 5 CFR 532.279 - Special wage schedules for printing positions.

    Science.gov (United States)

    2010-01-01

    ... the printing survey as follows: (1) The lead agency must include North American Industry... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Special wage schedules for printing... printing positions. (a) The lead agency in a special printing schedule area listed in paragraph (j) of this...

  1. Topography printing to locally control wettability.

    Science.gov (United States)

    Zheng, Zijian; Azzaroni, Omar; Zhou, Feng; Huck, Wilhelm T S

    2006-06-21

    This paper reports a new patterning method, which utilizes NaOH to facilitate the irreversible binding between the PDMS stamp and substrates and subsequent cohesive mechanical failure to transfer the PDMS patterns. Our method shows high substrate tolerance and can be used to "print" various PDMS geometries on a wide range of surfaces, including Si100, glass, gold, polymers, and patterned SU8 photoresist. Using this technique, we are able to locally change the wettability of substrate surfaces by printing well-defined PDMS architectures on the patterned SU8 photoresist. It is possible to generate differential wetting and dewetting properties in microchannels and in the PDMS printed area, respectively.

  2. Three-dimensional Printing in Developing Countries.

    Science.gov (United States)

    Ibrahim, Ahmed M S; Jose, Rod R; Rabie, Amr N; Gerstle, Theodore L; Lee, Bernard T; Lin, Samuel J

    2015-07-01

    The advent of 3-dimensional (3D) printing technology has facilitated the creation of customized objects. The lack of regulation in developing countries renders conventional means of addressing various healthcare issues challenging. 3D printing may provide a venue for addressing many of these concerns in an inexpensive and easily accessible fashion. These may potentially include the production of basic medical supplies, vaccination beads, laboratory equipment, and prosthetic limbs. As this technology continues to improve and prices are reduced, 3D printing has the potential ability to promote initiatives across the entire developing world, resulting in improved surgical care and providing a higher quality of healthcare to its residents.

  3. Denitrification of fertilizer wastewater at high chloride concentration

    DEFF Research Database (Denmark)

    Ucisik, Ahmed Süheyl; Henze, Mogens

    Wastewater from fertilizer industry is characterized by high contents of chloride concentration, which normally vary between 60 and 76 g/l. Experiments with bilogical denitrification were performed in lab-scale "fill and draw" reactors with synthetic wastewater with chloride concentrations up to 77.......4 g/l. The results of the experiments showed that biological denitrification was feasible at the extreme environmental conditions prevailing in fertilizer wastewater. Stable continuous biological denitrfication of the synthetic high chloride wastewater was performed up to 77.4 g Cl/l at 37 degree C...

  4. Lithium-thionyl chloride batteries - past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    McCartney, J.F.; Lund, T.J.; Sturgeon, W.J.

    1980-02-01

    Lithium based batteries have the highest theoretical energy density of known battery types. Of the lithium batteries, the lithium-thionyl chloride electrochemistry has the highest energy density of those which have been reduced to practice. The characteristics, development status, and performance of lithium-thionyl chloride batteries are treated in this paper. Safety aspects of lithium-thionyl chloride batteries are discussed along with impressive results of hazard/safety tests of these batteries. An orderly development plan of a minimum family of standard cells to avoid a proliferation of battery sizes and discharge rates is presented.

  5. Formation of mixed hydroxides in the thorium chloride-iron chloride-sodium hydroxide system

    International Nuclear Information System (INIS)

    Krivokhatskij, A.S.; Prokudina, A.F.; Sapozhnikova, T.V.

    1976-01-01

    The process of formation of mixed hydroxides in the system thorium chloride-iron chloride-NaOH was studied at commensurate concentrations of Th and Fe in solution (1:1 and 1:10 mole fractions, respectively) with ionic strength 0.3, 2.1, and 4.1, created with the electrolyte NaCl, at room temperature 22+-1degC. By the methods of chemical, potentiometric, thermographic, and IR-spectrometric analyses, it was shown that all the synthesized precipitates are mechanical mixtures of two phases - thorium hydroxide and iron hydroxide - and not a new hydrated compound. The formal solubility of the precipitates of mixed hydroxides was determined. It was shown that the numerical value of the formal solubility depends on the conditions of formation and age of the precipitates

  6. [Research progress on the technique and materials for three-dimensional bio-printing].

    Science.gov (United States)

    Yang, Runhuai; Chen, Yueming; Ma, Changwang; Wang, Huiqin; Wang, Shuyue

    2017-04-01

    Three-dimensional (3D) bio-printing is a novel engineering technique by which the cells and support materials can be manufactured to a complex 3D structure. Compared with other 3D printing methods, 3D bio-printing should pay more attention to the biocompatible environment of the printing methods and the materials. Aimed at studying the feature of the 3D bio-printing, this paper mainly focuses on the current research state of 3D bio-printing, with the techniques and materials of the bio-printing especially emphasized. To introduce current printing methods, the inkjet method, extrusion method, stereolithography skill and laser-assisted technique are described. The printing precision, process, requirements and influence of all the techniques on cell status are compared. For introduction of the printing materials, the cross-link, biocompatibility and applications of common bio-printing materials are reviewed and compared. Most of the 3D bio-printing studies are being remained at the experimental stage up to now, so the review of 3D bio-printing could improve this technique for practical use, and it could also contribute to the further development of 3D bio-printing.

  7. Laser-assisted printing of alginate long tubes and annular constructs

    International Nuclear Information System (INIS)

    Yan Jingyuan; Huang Yong; Chrisey, Douglas B

    2013-01-01

    Laser-assisted printing such as laser-induced forward transfer has been well studied to pattern or fabricate two-dimensional constructs. In particular, laser printing has found increasing biomedical applications as an orifice-free cell and organ printing approach, especially for highly viscous biomaterials and biological materials. Unfortunately, there have been very few studies on the efficacy of three-dimensional printing performance of laser printing. This study has investigated the feasibility of laser tube printing and the effects of sodium alginate concentration and operating conditions such as the laser fluence and laser spot size on the printing quality during laser-assisted printing of alginate annular constructs (short tubes) with a nominal diameter of 3 mm. It is found that highly viscous materials such as alginate can be printed into well-defined long tubes and annular constructs. The tube wall thickness and tube outer diameter decrease with the sodium alginate concentration, while they first increase, then decrease and finally increase again with the laser fluence. The sodium alginate concentration dominates if the laser fluence is low, and the laser fluence dominates if the sodium alginate concentration is low. (paper)

  8. Preparation and characterization of poly-(methacrylatoethyl trimethylammonium chloride-co-vinylbenzyl chloride-co-ethylene dimethacrylate monolith

    Directory of Open Access Journals (Sweden)

    Eko Malis

    2015-05-01

    Full Text Available A polymer monolithic column, poly-(methacrylatoethyltrimethylammonium chloride-co-vinylbenzyl chloride-co-ethylene dimethacrylate or poly-(MATE-co-VBC-co-EDMA was successfully prepared in the current study by one-step thermally initiated in situ polymerization, confined in a steel tubing of 0.5 mm i.d. and 1/16” o.d. The monoliths were prepared from methacrylatoethyltrimethylammonium chloride (MATE and vinylbenzyl chloride (VBC as monomer and ethylene dimethacrylate (EDMA as crosslinker using a binary porogen system of 1-propanol and 1,4-butanediol. The inner wall of steel tubing was pretreated with 3-methacryloxypropyl-trimethoxysilane (MAPS. In order to obtain monolith with adequate column efficiency and low flow resistance, some parameters such as total monomer concentration (%T and crosslinker concentration (%C were optimized. The morphology of this monolith was assessed by scanning electron microscopy (SEM. The properties of the monolithic column, such as permeability, binding capacity, and pore size distribution were also characterized in detail. From the results of the characterization of all monolith variation, monolith with %T 30 %C 50 and %T 35 %C 50 give the best characteristic. These monoliths have high permeability, adequate molecular recognition sites (represented with binding capacity value of over 20 mg/mL, and have over 80% flow through pores in their pore structure contribute to low flow resistance. The resulted monolithic columns have promising potential for dual mode liquid chromatography. MATE may contribute for anion-exchange while VBC may responsible for reversed-phase liquid chromatography.

  9. Digital Dentistry — 3D Printing Applications

    OpenAIRE

    Zaharia Cristian; Gabor Alin-Gabriel; Gavrilovici Andrei; Stan Adrian Tudor; Idorasi Laura; Sinescu Cosmin; Negruțiu Meda-Lavinia

    2017-01-01

    Three-dimensional (3D) printing is an additive manufacturing method in which a 3D item is formed by laying down successive layers of material. 3D printers are machines that produce representations of objects either planned with a CAD program or scanned with a 3D scanner. Printing is a method for replicating text and pictures, typically with ink on paper. We can print different dental pieces using different methods such as selective laser sintering (SLS), stereolithography, fused deposition mo...

  10. Application of autoradiography in finger print analysis

    International Nuclear Information System (INIS)

    Stverak, B.; Kopejtko, J.; Simek, J.

    1983-01-01

    In order to broaden the possibilities of developing latent finger prints a tracer technique has been developed using sup(110m)Ag and autoradiographic imaging. This method has been tested on glass, paper and certain plastics. On paper it is possible to visualize finger prints even after previous development using Ninhydrin. It is shown that usable finger prints may be obtained also from materials from which they cannot be obtained using classical methods, e.g., polyethylene and simulated leather. (author)

  11. Cultural stereotypes in Nigerian print media advertisements ...

    African Journals Online (AJOL)

    Cultural stereotypes in Nigerian print media advertisements. ... Abstract. This study set out to examine the extent to which cultural stereotype roles are depicted in print advertisements in Nigeria. It specifically ... AJOL African Journals Online.

  12. VOCl as a Cathode for Rechargeable Chloride Ion Batteries.

    Science.gov (United States)

    Gao, Ping; Reddy, M Anji; Mu, Xiaoke; Diemant, Thomas; Zhang, Le; Zhao-Karger, Zhirong; Chakravadhanula, Venkata Sai Kiran; Clemens, Oliver; Behm, R Jürgen; Fichtner, Maximilian

    2016-03-18

    A novel room temperature rechargeable battery with VOCl cathode, lithium anode, and chloride ion transporting liquid electrolyte is described. The cell is based on the reversible transfer of chloride ions between the two electrodes. The VOCl cathode delivered an initial discharge capacity of 189 mAh g(-1) . A reversible capacity of 113 mAh g(-1) was retained even after 100 cycles when cycled at a high current density of 522 mA g(-1) . Such high cycling stability was achieved in chloride ion batteries for the first time, demonstrating the practicality of the system beyond a proof of concept model. The electrochemical reaction mechanism of the VOCl electrode in the chloride ion cell was investigated in detail by ex situ X-ray diffraction (XRD), infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results confirm reversible deintercalation-intercalation of chloride ions in the VOCl electrode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Local impermeant anions establish the neuronal chloride concentration

    DEFF Research Database (Denmark)

    Glykys, J; Dzhala, V; Egawa, K

    2014-01-01

    Neuronal intracellular chloride concentration [Cl(-)](i) is an important determinant of γ-aminobutyric acid type A (GABA(A)) receptor (GABA(A)R)-mediated inhibition and cytoplasmic volume regulation. Equilibrative cation-chloride cotransporters (CCCs) move Cl(-) across the membrane, but accumulat...

  14. 3D inkjet printed flexible and wearable antenna systems

    KAUST Repository

    Shamim, Atif

    2017-01-01

    extremely low cost, to the extent that they become disposable. The flexible and low cost aspects can be addressed by adapting additive manufacturing technologies such as inkjet printing and 3D printing. This paper presents inkjet printing as an emerging new

  15. Cibachrome testing. [photographic processing and printing materials

    Science.gov (United States)

    Weinstein, M. S.

    1974-01-01

    The use of Cibachrome products as a solution to problems encountered when contact printing Kodak film type SO-397 onto Kodak Ektrachrome color reversal paper type 1993 is investigated. A roll of aerial imagery consisting of Kodak film types SO-397 and 2443 was contact printed onto Cibachrome and Kodak materials and compared in terms of color quality, resolution, cost, and compatibility with existing equipment and techniques. Objective measurements are given in terms of resolution and sensitometric response. Comparison prints and transparencies were viewed and ranked according to overall quality and aesthetic appeal. It is recommended that Cibachrome Print material be used in place of Kodak Ektachrome paper because it is more easily processed, the cost is equivalent, and it provides improved resolution, color quality, and image fade resistance.

  16. AlN powder synthesis via nitriding reaction of aluminum sub-chloride

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, T.; Nishida, T.; Sugiura, M. (Waseda Univ., Tokyo (Japan). Graduate School); Fuwa, A. (Waseda Univ., Tokyo (Japan))

    1993-06-01

    In order to obtain the pertinent properties of aluminium nitride in its sintered form, it is desirable to have powders of finer sizes with narrower size distribution and higher purity, thereby making the sintering processing easier and the final body denser. Instead of using sublimated aluminum tri-chloride vapor (AlCl3) as an aluminum source in the vapor phase nitriding reaction, the mixed aluminum chloride vapor consisted of aluminum tri-chloride, bi-chloride and mono-chloride are used in the reaction with ammonia at temperatures of 1000 and 1200K. The mixed chloride vapors are produced by reacting chlorine with molten aluminum at 1000 or 1200K under atmospheric pressure. The reaction of this mixed chloride vapor with ammonia is then experimentally investigated to study the aluminum nitride powder morphology. The aluminum nitride powders synthesized under various ammonia concentrations are characterized for size distribution, mean particle size and particle morphology. 24 refs., 8 figs., 2 tabs.

  17. High lumenal chloride in the lysosome is critical for lysosome function

    Science.gov (United States)

    Chakraborty, Kasturi; Leung, KaHo; Krishnan, Yamuna

    2017-01-01

    Lysosomes are organelles responsible for the breakdown and recycling of cellular machinery. Dysfunctional lysosomes give rise to lysosomal storage disorders as well as common neurodegenerative diseases. Here, we use a DNA-based, fluorescent chloride reporter to measure lysosomal chloride in Caenorhabditis elegans as well as murine and human cell culture models of lysosomal diseases. We find that the lysosome is highly enriched in chloride, and that chloride reduction correlates directly with a loss in the degradative function of the lysosome. In nematodes and mammalian cell culture models of diverse lysosomal disorders, where previously only lysosomal pH dysregulation has been described, massive reduction of lumenal chloride is observed that is ~103 fold greater than the accompanying pH change. Reducing chloride within the lysosome impacts Ca2+ release from the lysosome and impedes the activity of specific lysosomal enzymes indicating a broader role for chloride in lysosomal function. DOI: http://dx.doi.org/10.7554/eLife.28862.001 PMID:28742019

  18. Chloride Sources and Losses in Two Tile-Drained Agricultural Watersheds.

    Science.gov (United States)

    David, Mark B; Mitchell, Corey A; Gentry, Lowell E; Salemme, Ronald K

    2016-01-01

    Chloride is a relatively unreactive plant nutrient that has long been used as a biogeochemical tracer but also can be a pollutant causing aquatic biology impacts when concentrations are high, typically from rock salt applications used for deicing roads. Chloride inputs to watersheds are most often from atmospheric deposition, road salt, or agricultural fertilizer, although studies on agricultural watersheds with large fertilizer inputs are few. We used long-term (21 and 17 yr) chloride water quality data in two rivers of east-central Illinois to better understand chloride biogeochemistry in two agricultural watersheds (Embarras and Kaskaskia), the former with a larger urban land use and both with extensive tile drainage. During our sampling period, the average chloride concentration was 23.7 and 20.9 mg L in the Embarras and Kaskaskia Rivers, respectively. Annual fluxes of chloride were 72.5 and 61.2 kg ha yr in the Embarras and Kaskaskia watersheds, respectively. In both watersheds, fertilizer chloride was the dominant input (∼49 kg ha yr), with road salt likely the other major source (23.2 and 7.2 kg ha yr for the Embarras and Kaskaskia watersheds, respectively). Combining our monitoring data with earlier published data on the Embarras River showed an increase in chloride concentrations as potash use increased in Illinois during the 1960s and 1970s with a lag of about 2 to 6 yr to changes in potash inputs based on a multiple-regression model. In these agricultural watersheds, riverine chloride responds relatively quickly to potash fertilization as a result of tile-drainage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering.

    Directory of Open Access Journals (Sweden)

    Arghavan Farzadi

    Full Text Available Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z, on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity.

  20. Special Issue: 3D Printing for Biomedical Engineering.

    Science.gov (United States)

    Chua, Chee Kai; Yeong, Wai Yee; An, Jia

    2017-02-28

    Three-dimensional (3D) printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research.