WorldWideScience

Sample records for cuprate hts oxides

  1. The oxygen isotope effect on the in-plane penetration depth in cuprate superconductors

    International Nuclear Information System (INIS)

    Khasanov, R; Shengelaya, A; Morenzoni, E; Conder, K; Savic, I M; Keller, H

    2004-01-01

    Muon spin rotation (μSR) studies of the oxygen isotope ( 16 O/ 18 O) effect (OIE) on the in-plane magnetic field penetration depth λ ab in cuprate high-temperature superconductors (HTS) are presented. First, the doping dependence of the OIE on the transition temperature T c in various HTS is briefly discussed. It is observed that different cuprate families show similar doping dependences of the OIE on T c . Then, bulk μSR, low-energy μSR, and magnetization studies of the total and site-selective OIE on λ ab are described in some detail. A substantial OIE on λ ab was observed in various cuprate families at all doping levels, suggesting that cuprate HTS are non-adiabatic superconductors. The experiments clearly demonstrate that the total OIE on T c and λ ab arise from the oxygen sites within the superconducting CuO 2 planes, demonstrating that the phonon modes involving the movement of planar oxygen are dominantly coupled to the supercarriers. Finally, it is shown that the OIE on T c and λ ab exhibit a relation that appears to be generic for different families of cuprate HTS. The observation of these unusual isotope effects implies that lattice effects play an essential role in cuprate HTS and have to be considered in any realistic model of high-temperature superconductivity

  2. The oxygen isotope effect on the in-plane penetration depth in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Khasanov, R [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland); Shengelaya, A [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland); Morenzoni, E [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Conder, K [Laboratory for Neutron Scattering, ETH Zuerich and PSI Villigen, CH-5232 Villigen PSI (Switzerland); Savic, I M [Faculty of Physics, University of Belgrade, 11001 Belgrade (Serbia and Montenegro); Keller, H [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland)

    2004-10-13

    Muon spin rotation ({mu}SR) studies of the oxygen isotope ({sup 16}O/{sup 18}O) effect (OIE) on the in-plane magnetic field penetration depth {lambda}{sub ab} in cuprate high-temperature superconductors (HTS) are presented. First, the doping dependence of the OIE on the transition temperature T{sub c} in various HTS is briefly discussed. It is observed that different cuprate families show similar doping dependences of the OIE on T{sub c}. Then, bulk {mu}SR, low-energy {mu}SR, and magnetization studies of the total and site-selective OIE on {lambda}{sub ab} are described in some detail. A substantial OIE on {lambda}{sub ab} was observed in various cuprate families at all doping levels, suggesting that cuprate HTS are non-adiabatic superconductors. The experiments clearly demonstrate that the total OIE on T{sub c} and {lambda}{sub ab} arise from the oxygen sites within the superconducting CuO{sub 2} planes, demonstrating that the phonon modes involving the movement of planar oxygen are dominantly coupled to the supercarriers. Finally, it is shown that the OIE on T{sub c} and {lambda}{sub ab} exhibit a relation that appears to be generic for different families of cuprate HTS. The observation of these unusual isotope effects implies that lattice effects play an essential role in cuprate HTS and have to be considered in any realistic model of high-temperature superconductivity.

  3. Renormalized modes in cuprate superconductors

    Science.gov (United States)

    Gupta, Anushri; Kumari, Anita; Verma, Sanjeev K.; Indu, B. D.

    2018-04-01

    The renormalized mode frequencies are obtained with the help of quantum dynamical approach of many body phonon Green's function technique via a general Hamiltonian (excluding BCS Hamiltonian) including the effects of phonons and electrons, anharmonicities and electron-phonon interactions. The numerical estimates have been carried out to study the renormalized mode frequency of high temperature cuprate superconductor (HTS) YBa2Cu3O7-δ using modified Born-Mayer-Huggins interaction potential (MBMHP) best applicable to study the dynamical properties of all HTS.

  4. Non-separable pairing interaction kernels applied to superconducting cuprates

    International Nuclear Information System (INIS)

    Haley, Stephen B.; Fink, Herman J.

    2014-01-01

    Highlights: • Non-separable interaction kernels with weak interactions produces HTS. • A probabilistic approach is used in filling the electronic states in the unit cell. • A set of coupled equations is derived which describes the energy gap. • SC properties of separable with non-separable interactions are compared. • There is agreement with measured properties of the SC and normal states. - Abstract: A pairing Hamiltonian H(Γ) with a non-separable interaction kernel Γ produces HTS for relatively weak interactions. The doping and temperature dependence of Γ(x,T) and the chemical potential μ(x) is determined by a probabilistic filling of the electronic states in the cuprate unit cell. A diverse set of HTS and normal state properties is examined, including the SC phase transition boundary T C (x), SC gap Δ(x,T), entropy S(x,T), specific heat C(x,T), and spin susceptibility χ s (x,T). Detailed x,T agreement with cuprate experiment is obtained for all properties

  5. Oxygen hole mechanism of superconductivity in cuprates and other metal oxides

    International Nuclear Information System (INIS)

    Rao, C.N.R.

    1989-01-01

    Several theoretical models have been proposed to explain high-temperature superconductivity in cuprates. An issue that is central to any model is the nature of copper and oxygen species in the cuprates since superconductivity clearly owes its origin to the Cu-O sheets universally present in all the cuprate families. Thus, the five families of cuprate superconductors, La 2 - x M x CuO 4 (M = Ca, Sr or Ba) of the K 2 NiF 4 structure, LnBa 2 Cu 3 O 7 - δ (Ln = Y or rare earth), Bi 2 (Ca, Sr) n + 1 Cu n O 2n + 4 , Tl 2 (Ca, Ba) n + 1 Cu n O 2n + 4 and Tl (Ca, Ba) n + 1 Cu n O 2n + 3 , all contain two-dimensional Cu-O sheets. The Cu-O chains additionally present in the 123 compounds do not seem to play any crucial role. It has been generally believed that magnetic, superconducting and related properties of cuprates have some thing to do with the mixed valency of copper. For example, the resonating valence bond (RVB) model requires the presence of holes on Cu sites (Cu 3 + species). There are also a few models, however, based on the presence of holes on oxygen sites (O - species); dimerization of oxygen holes has also been suggested to occur by a few workers. It is the purpose of this article to briefly present the available experimental evidence for the presence of oxygen holes and to discuss their role in high-temperature conductivity. It will be shown that these holes play a role in other oxide materials as well as including the Cu-free Ba 1 - x K x BiO 3 superconductor

  6. Efficient growth of HTS films with volatile elements

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M.P.; Overmyer, D.L.; Dominguez, F.

    1998-12-22

    A system is disclosed for applying a volatile element-HTS layer, such as Tl-HTS, to a substrate in a multiple zone furnace, said method includes heating at higher temperature, in one zone of the furnace, a substrate and adjacent first source of Tl-HTS material, to sublimate Tl-oxide from the source to the substrate; and heating at lower temperature, in a separate zone of the furnace, a second source of Tl-oxide to replenish the first source of Tl-oxide from the second source. 3 figs.

  7. Prospects for the use of HTS in high field magnets for future accelerator facilities

    CERN Document Server

    Ballarino, A

    2014-01-01

    The enthusiasm that followed discovery of High Temperature Superconductors (HTS) and the initial genuine hope of a replacement technology that could have taken over from conventional Low Temperature Superconductors (LTS) was damped during the years by difficulties in reaching performance levels of competing materials: insufficient current-carrying performance, short piece lengths, and fragility of the brittle oxide superconductors made development of applications slow and limited to demonstrators or devices less demanding from the point of view of conductor performance. However, thanks to a continuous R&D effort, significant progress was made in the past years on the development of cuprate superconductors. Today long lengths of BSCCO 2223 (km range) and REBCO (a more general acronym for YBCO, where RE = Rare Earth) tape (hundreds of meters range) conductor with controlled and homogeneous characteristics are commercially available, and tremendous progress has been made in the development of BSSCO 2212 roun...

  8. Superconducting thallium cuprates obtained by substitution of copper for thallium in the double-thallium layer cuprate (Tl2212)

    International Nuclear Information System (INIS)

    Gopalakrishnan, J.; Shivakumara, C.; Manivannan, V.

    1994-01-01

    A new series of superconducting thallium cuprates of nominal composition, (Tl 2-x Cu x )Ba 2 CaCu 2 O 8 (0 c s in the range 110--99K. The phases are metastable, decomposing at higher temperatures (∼1,150K) to a mixture of thallium cuprates, CuO and BaCuO 2 . Significantly, x=1 member decomposes at 1,150K to mixture of Tl2223, CuO and BaCuO 2 . Chemical titrations involving oxidation of bromide ions reveals that the copper substituting for thallium in (Tl 2-x Cu x )Ba 2 CaCu 2 O 8 most likely occurs in the III oxidation state for x≤0.25 and in a mixed state (II,III) state for x>0.25

  9. Magnetron sputtering of Fe-oxides on the top of HTS YBCO films

    Energy Technology Data Exchange (ETDEWEB)

    Nurgaliev, T. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Blagoev, B. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Laboratory of High Magnetic Fields and Low Temperatures, 95 Gajowicka Str., 53-421 Wroclaw (Poland); Buchkov, K. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Mateev, E. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Gajda, G. [Laboratory of High Magnetic Fields and Low Temperatures, 95 Gajowicka Str., 53-421 Wroclaw (Poland); Nedkov, I. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Kovacheva, D. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 10, 1113 Sofia (Bulgaria); Slavov, L. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Laboratory of High Magnetic Fields and Low Temperatures, 95 Gajowicka Str., 53-421 Wroclaw (Poland); Starbova, I.; Starbov, N. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Nankovski, M. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Sofia university “St. Kliment Ohridski”, Faculty of Physics, 5 James Bourchier Blvd., 1164 Sofia (Bulgaria)

    2017-05-01

    The possibilities for preparation of bilayers containing magnetic Fe-oxide (Fe-O) and high temperature superconducting (HTS) YBa{sub 2}Cu{sub 3}O{sub 7−x} (YBCO) thin films were investigated. For this purpose, Fe-O films were deposited using reactive magnetron sputtering at comparatively low temperatures T≤250 °C onto dielectric (for example, LaAlO{sub 3} (LAO)) substrates, covered with a HTS YBCO film. The sputtering of the Fe-O layer at such conditions did not lead to a crucial damage of the critical temperature T{sub C} of the YBCO film, but could affect the width of the superconducting transition. A decrease of the critical temperature of the (Fe-O)/YBCO/LAO bilayer kept at ambient conditions was observed, possibly due to the negative effects of the water vapour on the sample characteristics. The double peak structure of the imaginary component of the response signal to the AC harmonic magnetic field, observed in such a (Fe-O)/YBCO/LAO sample, was ascribed from two possible views: as a consequence of morphology determined inter- and intra-granular contributions and/or as transitions from dominant irreversible processes as Bean-Livingston barrier to vortex state chains formation. - Highlights: • Iron-oxide (Fe-O) film sputtered on the top of superconducting HTS YBCO film at not very high temperatures. • No crucially damaged superconducting properties of YBCO film during Fe-O sputtering process. • A negative effect of the ambient conditions on the critical temperature of the obtained samples. • A double peak structure of the response signal to the AC harmonic magnetic field in a (Fe-O)/YBCO/LAO is observed.

  10. Magnetron sputtering of Fe-oxides on the top of HTS YBCO films

    International Nuclear Information System (INIS)

    Nurgaliev, T.; Blagoev, B.; Buchkov, K.; Mateev, E.; Gajda, G.; Nedkov, I.; Kovacheva, D.; Slavov, L.; Starbova, I.; Starbov, N.; Nankovski, M.

    2017-01-01

    The possibilities for preparation of bilayers containing magnetic Fe-oxide (Fe-O) and high temperature superconducting (HTS) YBa 2 Cu 3 O 7−x (YBCO) thin films were investigated. For this purpose, Fe-O films were deposited using reactive magnetron sputtering at comparatively low temperatures T≤250 °C onto dielectric (for example, LaAlO 3 (LAO)) substrates, covered with a HTS YBCO film. The sputtering of the Fe-O layer at such conditions did not lead to a crucial damage of the critical temperature T C of the YBCO film, but could affect the width of the superconducting transition. A decrease of the critical temperature of the (Fe-O)/YBCO/LAO bilayer kept at ambient conditions was observed, possibly due to the negative effects of the water vapour on the sample characteristics. The double peak structure of the imaginary component of the response signal to the AC harmonic magnetic field, observed in such a (Fe-O)/YBCO/LAO sample, was ascribed from two possible views: as a consequence of morphology determined inter- and intra-granular contributions and/or as transitions from dominant irreversible processes as Bean-Livingston barrier to vortex state chains formation. - Highlights: • Iron-oxide (Fe-O) film sputtered on the top of superconducting HTS YBCO film at not very high temperatures. • No crucially damaged superconducting properties of YBCO film during Fe-O sputtering process. • A negative effect of the ambient conditions on the critical temperature of the obtained samples. • A double peak structure of the response signal to the AC harmonic magnetic field in a (Fe-O)/YBCO/LAO is observed.

  11. Manganite/Cuprate Superlattice as Artificial Reentrant Spin Glass

    KAUST Repository

    Ding, Junfeng; Cossu, Fabrizio; Lebedev, Oleg I.; Zhang, Yuqin; Zhang, Zhidong; Schwingenschlö gl, Udo; Wu, Tao

    2016-01-01

    magnetic memory effect discovered in oxide heterostructures composed of ultrathin manganite La0.7Sr0.3MnO3 (LSMO) and cuprate La2CuO4 (LCO) layers. These heterostructures are featured with enhanced ferromagnetism before entering the spin glass state: a

  12. An HTS machine laboratory prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2012-01-01

    This paper describes Superwind HTS machine laboratory setup which is a small scale HTS machine designed and build as a part of the efforts to identify and tackle some of the challenges the HTS machine design may face. One of the challenges of HTS machines is a Torque Transfer Element (TTE) which...... conduction compared to a shaft. The HTS machine was successfully cooled to 77K and tests have been performed. The IV curves of the HTS field winding employing 6 HTS coils indicate that two of the coils had been damaged. The maximal value of the torque during experiments of 78Nm was recorded. Loaded with 33...

  13. Copper and CuNi alloys substrates for HTS coated conductor applications protected from oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Segarra, M; Diaz, J; Xuriguera, H; Chimenos, J M; Espiell, F [Dept. of Chemical Engineering and Metallurgy, Univ. of Barcelona, Barcelona (Spain); Miralles, L [Lab. d' Investigacio en Formacions Geologiques. Dept. of Petrology, Geochemistry and Geological Prospecting, Univ. of Barcelona, Barcelona (Spain); Pinol, S [Inst. de Ciencia de Materials de Barcelona, Bellaterra (Spain)

    2003-07-01

    Copper is an interesting substrate for HTS coated conductors for its low cost compared to other metallic substrates, and for its low resistivity. Nevertheless, mechanical properties and resistance to oxidation should be improved in order to use it as substrate for YBCO deposition by non-vacuum techniques. Therefore, different cube textured CuNi tapes were prepared by RABIT as possible substrates for deposition of high critical current density YBCO films. Under the optimised conditions of deformation and annealing, all the studied CuNi alloys (2%, 5%, and 10% Ni) presented (100) left angle 001 right angle cube texture which is compatible for YBCO deposition. Textured CuNi alloys present higher tensile strength than pure copper. Oxidation resistance of CuNi tapes under different oxygen atmospheres was also studied by thermogravimetric analysis and compared to pure copper tapes. Although the presence of nickel improves mechanical properties of annealed copper, it does not improve its oxidation resistance. However, when a chromium buffer layer is electrodeposited on the tape, oxygen diffusion is slowed down. Chromium is, therefore, useful for protecting copper and CuNi alloys from oxidation although its recrystallisation texture, (110), is not suitable for coated conductors. (orig.)

  14. Analysis and experimental validation of an HTS linear synchronous propulsion prototype with HTS magnetic suspension

    International Nuclear Information System (INIS)

    Jin Jianxun; Zheng Luhai; Guo Youguang; Xu Wei; Zhu Jianguo

    2011-01-01

    An HTS linear synchronous propulsion prototype with an HTSLSM drive is developed. The feasibility of combining an HTSLSM with an HTS magnetic suspension system has been verified. Three different PMGs are studied by ECS method and experiment verification to obtain an optimal one. The prototype has been tested to obtain the performance and thrust characteristics of the HTSLSM. The measurement results benefit the optimal design and control scheme development for an HTSLSM. A high temperature superconducting (HTS) linear propulsion system composed of a single-sided HTS linear synchronous motor (HTSLSM) in its middle and HTS magnetic suspension sub-systems on both sides has been developed. The HTSLSM uses an HTS bulk magnet array on the moving secondary, and the field-trapped characteristics of the HTS bulk using different magnetized methods have been measured and compared to identify their magnetization capability. In order to generate a large levitation force for the system, three different types of permanent magnet guideways (PMGs) have been numerically analyzed and experimentally verified to obtain an optimal PMG. Based on comprehensive experimental prototype tests, the results show that the HTS linear propulsion system can run with stable magnetic suspension having a constant air-gap length, and the thrust characteristics versus the exciting current, working frequency and the air-gap length have also been obtained. This work forms the basis for developing a practical HTS linear propulsion system by using HTS bulks both for propulsion and suspension.

  15. The color of polarization in cuprate superconductors

    International Nuclear Information System (INIS)

    Hoff, H.A.; Osofsky, M.S.; Lechter, W.L.; Pande, C.S.

    1991-01-01

    A technique for the identification of individual anisotropic grains in a heterogeneous and opaque material involves the observation of grain color in reflected light through crossed polarizers (color of polarization). Such colors are generally characteristic of particular phases. When grains of many members of the class of hole carrier cuprate superconductors are so viewed at room temperature with a 'daylight' source, a characteristic color of polarization is observed. This color was studied in many of these cuprate superconductors and a strong correlation was found between color and the existence of superconductivity. Two members were also examined of the electron cuprate superconductors and it was found that they possess the same color of polarization as the hole carrier cuprate superconductors so far examined. The commonality of the characteristic color regardless of charge carrier indicates that the presence of this color is independent of carrier type. The correlation of this color with the existence of superconductivity in the cuprate superconductors suggests that the origin of the color relates to the origin of superconductivity. Photometric techniques are also discussed

  16. Armature reaction effects on HTS field winding in HTS machine

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech

    2013-01-01

    sensitivity to both armature reaction intensity and angular position with respect to the HTS coils. Furthermore, the characterization of the HTS feld winding has been correlated to the electromagnetic torque of the machine where the maximal Ic reduction of 21% has been observed for the maximum torque....

  17. Manganite/Cuprate Superlattice as Artificial Reentrant Spin Glass

    KAUST Repository

    Ding, Junfeng

    2016-05-04

    Emerging physical phenomena at the unit-cell-controlled interfaces of transition-metal oxides have attracted lots of interest because of the rich physics and application opportunities. This work reports a reentrant spin glass behavior with strong magnetic memory effect discovered in oxide heterostructures composed of ultrathin manganite La0.7Sr0.3MnO3 (LSMO) and cuprate La2CuO4 (LCO) layers. These heterostructures are featured with enhanced ferromagnetism before entering the spin glass state: a Curie temperature of 246 K is observed in the superlattice with six-unit-cell LSMO layers, while the reference LSMO film with the same thickness shows much weaker magnetism. Furthermore, an insulator-metal transition emerges at the Curie temperature, and below the freezing temperature the superlattices can be considered as a glassy ferromagnetic insulator. These experimental results are closely related to the interfacial spin reconstruction revealed by the first-principles calculations, and the dependence of the reentrant spin glass behavior on the LSMO layer thickness is in line with the general phase diagram of a spin system derived from the infinite-range SK model. The results of this work underscore the manganite/cuprate superlattices as a versatile platform of creating artificial materials with tailored interfacial spin coupling and physical properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Aspects of electron correlations in the cuprate superconductors

    International Nuclear Information System (INIS)

    Brenig, W.

    1995-01-01

    We review concepts and effects of electron correlations in the copper-oxide superconductors. The purpose of this article is twofold. First, we provide an overview of results of various electron spectroscopies, Raman scattering and optical conductivity studies with a particular emphasis on experiments which identify the charge and spin correlations relevant to the cuprates. Second, we focus on microscopic theories of the single-particle excitations, and the charge and spin dynamics in the normal state of cuprates considering those models which incorporate strong electron correlations. The single-particle spectrum of the three-band Hubbard model is reviewed and related to results of electron spectroscopy. The carrier dynamics in the t-J model and the one-band Hubbard model at low doping is discussed in detail. We examine approaches which describe the single-particle excitations of correlated electron systems at finite doping. Theories of the static and dynamic magnetic correlations are considered and we speculate on the consequences of the spin dynamics for Raman scattering and the optical conductivity. Finally, selected phenomenological ideas are reviewed. ((orig.))

  19. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    An optimization approach of HTS coils in HTS synchronous machines (SM) is presented. The optimization is aimed at high power SM suitable for direct driven wind turbines applications. The optimization process was applied to a general radial flux machine with a peak air gap flux density of ~3T...... is suitable for which coil segment is presented. Thus, the performed study gives valuable input for the coil design of HTS machines ensuring optimal usage of HTS tapes....

  20. Superconductivity in doped two-leg ladder cuprates

    International Nuclear Information System (INIS)

    Qin Jihong; Yuan Feng; Feng Shiping

    2006-01-01

    Within the t-J ladder model, superconductivity with a modified d-wave symmetry in doped two-leg ladder cuprates is investigated based on the kinetic energy driven superconducting mechanism. It is shown that the spin-liquid ground-state at the half-filling evolves into the superconducting ground-state upon doping. In analogy to the doping dependence of the superconducting transition temperature in the planar cuprate superconductors, the superconducting transition temperature in doped two-leg ladder cuprates increases with increasing doping in the underdoped regime, and reaches a maximum in the optimal doping, then decreases in the overdoped regime

  1. A novel HTS magnetic levitation dining table

    Science.gov (United States)

    Lu, Yiyun; Huang, Huiying

    2018-05-01

    High temperature superconducting (HTS) bulk can levitate above or suspend below a permanent magnet stably. Many magnificent potential applications of HTS bulk are proposed by researchers. Until now, few reports have been found for real applications of HTS bulk. A complete set of small-scale HTS magnetic levitation table is proposed in the paper. The HTS magnetic levitation table includes an annular HTS magnetic levitation system which is composed of an annular HTS bulk array and an annular permanent magnet guideway (PMG). The annular PMG and the annular cryogenics vessel which used to maintain low temperature environment of the HTS bulk array are designed. 62 YBCO bulks are used to locate at the bottom of the annular vessel. A 3D-model finite element numerical method is used to design the HTS bulk magnetic levitation system. Equivalent magnetic levitation and guidance forces calculation rules are proposed aimed at the annular HTS magnetic levitation system stability. Based on the proposed method, levitation and guidance forces curves of the one YBCO bulk magnetic above PMG could be obtained. This method also can use to assist PMG design to check whether the designed PMG could reach the basic demand of the HTS magnetic levitation table.

  2. Praseodymium Cuprate Thin Film Cathodes for Intermediate Temperature Solid Oxide Fuel Cells: Roles of Doping, Orientation, and Crystal Structure.

    Science.gov (United States)

    Mukherjee, Kunal; Hayamizu, Yoshiaki; Kim, Chang Sub; Kolchina, Liudmila M; Mazo, Galina N; Istomin, Sergey Ya; Bishop, Sean R; Tuller, Harry L

    2016-12-21

    Highly textured thin films of undoped, Ce-doped, and Sr-doped Pr 2 CuO 4 were synthesized on single crystal YSZ substrates using pulsed laser deposition to investigate their area-specific resistance (ASR) as cathodes in solid-oxide fuel cells (SOFCs). The effects of T' and T* crystal structures, donor and acceptor doping, and a-axis and c-axis orientation on ASR were systematically studied using electrochemical impedance spectroscopy on half cells. The addition of both Ce and Sr dopants resulted in improvements in ASR in c-axis oriented films, as did the T* crystal structure with the a-axis orientation. Pr 1.6 Sr 0.4 CuO 4 is identified as a potential cathode material with nearly an order of magnitude faster oxygen reduction reaction kinetics at 600 °C compared to thin films of the commonly studied cathode material La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3-δ . Orientation control of the cuprate films on YSZ was achieved using seed layers, and the anisotropy in the ASR was found to be less than an order of magnitude. The rare-earth doped cuprate was found to be a versatile system for study of relationships between bulk properties and the oxygen reduction reaction, critical for improving SOFC performance.

  3. Development of a highly sensitive current and position monitor with HTS squids and an HTS magnetic shield

    International Nuclear Information System (INIS)

    Watanabe, T.; Ikeda, T.; Kase, M.; Yano, Y.; Watanabe, S.; Sasaki, Y.; Kawaguchi, T.

    2005-01-01

    A highly sensitive current and position monitor with HTS (High-Temperature Superconducting) SQUIDs (Superconducting QUantum Interference Device) and an HTS magnetic shield for the measurement of the intensity of faint beams, such as a radioisotope beam, has been developed for the RIKEN RI beam factory project. The HTS magnetic shield and the HTS current sensor including the HTS SQUID are cooled by a low-vibration pulse-tube refrigerator. Both the HTS magnetic shield and the HTS current sensor were fabricated by dip-coating a thin Bi 2 -Sr 2 -Ca 2 -Cu 3 -O x (Bi-2223) layer on 99.9% MgO ceramic substrates. The HTS technology enables us to develop a system equipped with a downsized and highly sensitive current monitor. Recently, a prototype system was completed and installed in the beam transport line of the RIKEN Ring Cyclotron to measure the DC-current of high-energy heavy-ion beams. As a result, we succeeded in measuring the intensity of the 600 nA 40 Ar 17+ beam (95 MeV/u). We describe the present status of the monitor system and the results of the beam measurements. (author)

  4. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  5. Pseudogap and cuprate superconductivity: MaxEnt-μSR studies

    International Nuclear Information System (INIS)

    Boekema, C.; Schwartz, R.; Love, A.; Browne, M.C.

    2013-01-01

    Highlights: • A magnetic origin of cuprate superconductivity is plausible. • Cuprate loop currents are observed, close to predictions. • Pseudogap effects are seen above and below T c . -- Abstract: The basic physics of cuprate superconductivity is still much deliberated after 27 years of research. In contrast to phononic or polaronic roots, Varma’s theory promotes a magnetic origin. To probe cuprate magnetism, we examine zero field (ZF) muon-spin-rotation (μSR) data of RBa 2 Cu 3 O 7−δ (RBCO; R = Gd, Eu) especially near T c . Possible weak effects are analyzed using Maximum Entropy (MaxEnt, ME) to transform our μSR time series. Concerning predicted pseudogap loop currents, we have observed μSR signals in zero field for GdBCO above and now also below T c . These are near predicted fields of about 100 Oe. Using MaxEnt, we analyze transverse field (TF) μSR data of optimal doped EuBCO. Our focus is also on a temperature interval above T c to comprehend precursor effects. Our results point toward magnetic roots of cuprate superconductivity

  6. HTS machine laboratory prototype

    DEFF Research Database (Denmark)

    machine. The machine comprises six stationary HTS field windings wound from both YBCO and BiSCOO tape operated at liquid nitrogen temperature and enclosed in a cryostat, and a three phase armature winding spinning at up to 300 rpm. This design has full functionality of HTS synchronous machines. The design...

  7. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangmin, E-mail: kwangmin81@gmail.com [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of); Jin, Yoon-Su; Oh, Yunsang [Vector Fields Korea Inc., Pohang 790-834 (Korea, Republic of); Park, Minwon [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of)

    2014-09-15

    Highlights: • The authors designed and fabricated a D-shape coil based toroid-type HTS DC reactor using 2G GdBCO HTS wires. • The toroid-type magnet consisted of 30 D-shape double pancake coil (DDC)s. The total length of the wire was 2.32 km. • The conduction cooling method was adopted for reactor magnet cooling. • The maximum cooling temperature of reactor magnet is 5.5 K. • The inductance was 408 mH in the steady-state condition (300 A operating). - Abstract: This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  8. Electronic Raman response in electron-doped cuprate superconductors

    International Nuclear Information System (INIS)

    Geng Zhihao; Feng Shiping

    2012-01-01

    The electronic Raman response in the electron-doped cuprate superconductors is studied based on the t-t'-J model. It is shown that although the domelike shape of the doping dependent peak energy in the B 2g symmetry is a common feature for both electron-doped and hole-doped cuprate superconductors, there are pronounced deviations from a cubic response in the B 2g channel and a linear response in the B 2g channel for the electron-doped case in the low energy limit. It is also shown that these pronounced deviations are mainly caused by a nonmonotonic d-wave gap in the electron-doped cuprate superconductors.

  9. Transport anomalies and quantum criticality in electron-doped cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu; Yu, Heshan; He, Ge; Hu, Wei; Yuan, Jie; Zhu, Beiyi [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Jin, Kui, E-mail: kuijin@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2016-06-15

    Highlights: • Electrical transport and its complementary thermal transport on electron-doped cuprates are reviewed. • The common features of electron-doped cuprates are sorted out and shown in the last figure. • The complex superconducting fluctuations and quantum fluctuations are distinguished. - Abstract: Superconductivity research is like running a marathon. Three decades after the discovery of high-T{sub c} cuprates, there have been mass data generated from transport measurements, which bring fruitful information. In this review, we give a brief summary of the intriguing phenomena reported in electron-doped cuprates from the aspect of electrical transport as well as the complementary thermal transport. We attempt to sort out common features of the electron-doped family, e.g. the strange metal, negative magnetoresistance, multiple sign reversals of Hall in mixed state, abnormal Nernst signal, complex quantum criticality. Most of them have been challenging the existing theories, nevertheless, a unified diagram certainly helps to approach the nature of electron-doped cuprates.

  10. Design of an HTS motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y; Pei, R; Hong, Z; Jiang, Q; Coombs, T A [Cambridge University engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)], E-mail: yj222@cam.ac.uk

    2008-02-01

    This paper gives a detailed description of the design of a high temperature superconducting (HTS) motor. The stator of the motor consists of six air cored HTS racetrack windings, together with an iron shield. The rotor is made of 80 superconducting YBCO pucks, which can be magnetized and equates to a four-pole permanent magnet. The whole HTS motor is cooled by liquid nitrogen to 77K, and acts as a permanent magnet synchronous motor with the power rate of 15.7 kW.

  11. Toward (-)-Enterocin: An Improved Cuprate Barbier Protocol To Overcome Strain and Sterical Hindrance.

    Science.gov (United States)

    Rizzo, Antonio; Trauner, Dirk

    2018-04-06

    An approach toward (-)-enterocin, an antibiotic isolated from Streptomyces hygroscopicus, is described. Its compact, heavily oxidized protoadamantane core represents a daunting challenge for an efficient synthesis. Convergent assembly of its 2-oxabicyclo[3.3.1]nonane core with a cuprate-mediated Barbier reaction is disclosed. Its functionalization to a suitable substrate for a biomimetic aldol to close the final ring of the natural product is evaluated.

  12. Incommensurate Phonon Anomaly and the Nature of Charge Density Waves in Cuprates

    Science.gov (United States)

    Miao, H.; Ishikawa, D.; Heid, R.; Le Tacon, M.; Fabbris, G.; Meyers, D.; Gu, G. D.; Baron, A. Q. R.; Dean, M. P. M.

    2018-01-01

    While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wave vectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here, we investigate the temperature dependence of the low-energy phonons in the canonical CDW-ordered cuprate La1.875 Ba0.125 CuO4 . We discover that the phonon softening wave vector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wave vector of 0.238 reciprocal lattice units (r.l.u.) below the ordering transition temperature to 0.3 r.l.u. at 300 K. This high-temperature behavior shows that "214"-type cuprates can host CDW correlations at a similar wave vector to previously reported CDW correlations in non-214-type cuprates such as YBa2 Cu3 O6 +δ . This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low-temperature ordering wave vectors.

  13. Similarity in the superconducting properties of chalcogenides, cuprate oxides and fullerides

    International Nuclear Information System (INIS)

    Tsendin, K.D.; Popov, B.P.; Denisov, D.V.

    2004-01-01

    The idea of Anderson pairs has been put forward for explanation of many extraordinary properties of chalcogenides glassy semiconductors. Recent decades made obvious that these pairs localized on the centers with negative effective correlation energy (negative-U centers) really exist in chalcogenides. If the concentration of negative-U centers is enough to create the pair band states, this can lead to superconductivity because Anderson pairs are Bose particles. In the present paper we show that several puzzling superconductivity properties of chalcogenides, high-temperature cuprate superconductors and fullerides are similar for these three groups of materials and can be naturally explained in the frame of negative-U centers model of superconductivity

  14. HTS Insert Magnet Design Study

    CERN Document Server

    Devaux, M; Fleiter, J; Fazilleau, P; Lécrevisse, T; Pes, C; Rey, J-M; Rifflet, J-M; Sorbi, M; Stenvall, A; Tixador, P; Volpini, G

    2011-01-01

    Future accelerator magnets will need to reach higher field in the range of 20 T. This field level is very difficult to reach using only Low Temperature Superconductor materials whereas High Temperature Superconductors (HTS) provide interesting opportunities. High current densities and stress levels are needed to design such magnets. YBCO superconductor indeed carries large current densities under high magnetic field and provides good mechanical properties especially when produced using the IBAD approach. The HFM EUCARD program studies the design and the realization of an HTS insert of 6 T inside a Nb$_{3}$Sn dipole of 13T at 4.2 K. In the2HTS insert, engineering current densities higher than 250 MA/m under 19 T are required to fulfill the specifications. The stress level is also very severe. YBCO IBAD tapes theoretically meet these challenges from presented measurements. The insert protection is also a critical because HTS materials show low quench propagation velocities and the coupling with the Nb$_{3}$Sn m...

  15. Excess Oxygen Defects in Layered Cuprates

    Science.gov (United States)

    Lightfoot, P.; Pei, S. Y.; Jorgensen, J. D.; Manthiram, A.; Tang, X. X.; Goodenough, J. B.

    1990-09-01

    Neutron powder diffraction has been used to study the oxygen defect chemistry of two non-superconducting layered cuprates, La{sub 1. 25}Dy{sub 0.75}Cu{sub 3.75}F{sub 0.5}, having a T{sup {asterisk}}- related structure, and La{sub 1.85}Sr{sub 1.15}Cu{sub 2}O{sub 6.25}, having a structure related to that of the newly discovered double-layer superconductor La{sub 2-x}Sr{sub x}CaCu{sub 2}O{sub 6}. The role played by oxygen defects in determining the superconducting properties of layered cuprates is discussed.

  16. What is strange about high-temperature superconductivity in cuprates?

    Science.gov (United States)

    Božović, I.; He, X.; Wu, J.; Bollinger, A. T.

    2017-10-01

    Cuprate superconductors exhibit many features, but the ultimate question is why the critical temperature (Tc) is so high. The fundamental dichotomy is between the weak-pairing, Bardeen-Cooper-Schrieffer (BCS) scenario, and Bose-Einstein condensation (BEC) of strongly-bound pairs. While for underdoped cuprates it is hotly debated which of these pictures is appropriate, it is commonly believed that on the overdoped side strongly-correlated fermion physics evolves smoothly into the conventional BCS behavior. Here, we test this dogma by studying the dependence of key superconducting parameters on doping, temperature, and external fields, in thousands of cuprate samples. The findings do not conform to BCS predictions anywhere in the phase diagram.

  17. High-Temperature Cuprate Superconductors Experiment, Theory, and Applications

    CERN Document Server

    Plakida, Nikolay Maksimilianovich

    2010-01-01

    High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their...

  18. US effort on HTS power transformers

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, S., E-mail: shirish.pmehta@spx.com [Waukesha Electric Systems, 400 S. Praire Avenue, Waukesha, WI 53186 (United States)

    2011-11-15

    Fault Current Limiting HTS Transformer development program plan is presented. Benefits of FCL HTS Transformers for power delivery system. Independent program review process is described. Transformer specifications, site requirement described. Waukesha Electric Systems has been working in HTS power transformers development program under the auspices of US Government Department of Energy since 1994. This presentation will describe various milestones for this program and program history along with the lessons learned along the way. Our motivations for working on this development program based on man benefits offered by HTS power transformers to power delivery systems will be discussed. Based on various issues encountered during execution of many HTS projects, DOE has set up an independent program review process that is lead by team of experts. This team reviews are integral part of all DOE HTS projects. Success of all projects would be greatly enhanced by identifying critical issues early in the program. Requiring appropriate actions to mitigate the issues before processing further will lead to proactive interrogation and incorporation of expert's ideas in the project plans. Working of this review process will be also described in this presentation. Waukesha Electric Systems team including: Superpower-Inc, Oak Ridge National Laboratory, University of Houston Center for Superconductivity and Southern California Edison company was awarded a cost share grant by US Government in 2010 for development of a fault current limiting HTS power transformer. This multi year's program will require design, manufacture, installation, and monitoring of a 28 MVA tree phase transformer installed at Irvine CA. Smart Grid demonstration site. Transformer specifications along with requirements for fault current limiting and site requirement will be discussed. Design and development of various sub systems in support of this program including: HTS conductor performance specification

  19. US effort on HTS power transformers

    International Nuclear Information System (INIS)

    Mehta, S.

    2011-01-01

    Fault Current Limiting HTS Transformer development program plan is presented. Benefits of FCL HTS Transformers for power delivery system. Independent program review process is described. Transformer specifications, site requirement described. Waukesha Electric Systems has been working in HTS power transformers development program under the auspices of US Government Department of Energy since 1994. This presentation will describe various milestones for this program and program history along with the lessons learned along the way. Our motivations for working on this development program based on man benefits offered by HTS power transformers to power delivery systems will be discussed. Based on various issues encountered during execution of many HTS projects, DOE has set up an independent program review process that is lead by team of experts. This team reviews are integral part of all DOE HTS projects. Success of all projects would be greatly enhanced by identifying critical issues early in the program. Requiring appropriate actions to mitigate the issues before processing further will lead to proactive interrogation and incorporation of expert's ideas in the project plans. Working of this review process will be also described in this presentation. Waukesha Electric Systems team including: Superpower-Inc, Oak Ridge National Laboratory, University of Houston Center for Superconductivity and Southern California Edison company was awarded a cost share grant by US Government in 2010 for development of a fault current limiting HTS power transformer. This multi year's program will require design, manufacture, installation, and monitoring of a 28 MVA tree phase transformer installed at Irvine CA. Smart Grid demonstration site. Transformer specifications along with requirements for fault current limiting and site requirement will be discussed. Design and development of various sub systems in support of this program including: HTS conductor performance specification

  20. Commercialization of Medium Voltage HTS Triax TM Cable Systems

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, David

    2012-12-31

    The original project scope that was established in 2007 aimed to install a 1,700 meter (1.1 mile) medium voltage HTS Triax{TM} cable system into the utility grid in New Orleans, LA. In 2010, however, the utility partner withdrew from the project, so the 1,700 meter cable installation was cancelled and the scope of work was reduced. The work then concentrated on the specific barriers to commercialization of HTS cable technology. The modified scope included long-length HTS cable design and testing, high voltage factory test development, optimized cooling system development, and HTS cable life-cycle analysis. In 2012, Southwire again analyzed the market for HTS cables and deemed the near term market acceptance to be low. The scope of work was further reduced to the completion of tasks already started and to testing of the existing HTS cable system in Columbus, OH. The work completed under the project included: • Long-length cable modeling and analysis • HTS wire evaluation and testing • Cable testing for AC losses • Optimized cooling system design • Life cycle testing of the HTS cable in Columbus, OH • Project management. The 200 meter long HTS Triax{TM} cable in Columbus, OH was incorporated into the project under the initial scope changes as a test bed for life cycle testing as well as the site for an optimized HTS cable cooling system. The Columbus cable utilizes the HTS TriaxTM design, so it provided an economical tool for these of the project tasks.

  1. High-temperature cuprate superconductors. Experiment, theory, and applications

    International Nuclear Information System (INIS)

    Plakida, Nikolay

    2010-01-01

    High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their knowledge of this remarkable class of materials. (orig.)

  2. Protection of HTS magnets

    International Nuclear Information System (INIS)

    Iwasa, Yukikazu

    2005-01-01

    The paper discusses protection issues for HTS magnet. For protection, the HTS magnet must rely on an active technique. Closed-form expressions of the matrix metal operating current density based on overheating and internal voltage criteria for protection, under very simplifying assumptions, are presented. Perhaps the most important conclusions of these criteria are that: (1) HTS (and LTS) magnets must be wound with composite conductor having a significant portion of its overall cross section occupied by normal metal generally of high electrical conductivity and (2) HTS windings must possess 'high' NZP velocities to make the resistive zone occupy as large a fraction of the winding volume as possible. The paper also derives an analytical expression, under another set of simplifying assumptions, to determine the minimum resistive voltage level, dictated by the maximum hot-spot temperature set at 150 K, required to initiate an active protection process. Remarkably, this minimum detection voltage is nearly independent of the matrix metal current density, I op /A m . For a set of operating parameters used in a numerical example, a computed minimum detection voltage, at I op /A m = 5 x 10 4 A/cm 2 , is ∼30 mV, which, considering it must be discerned in the presence of extraneous voltage signals likely to be present in real world operating conditions, would be non-trivial. To satisfy the overheating criterion at a level of I op /A m , which keeps the winding overall current density 'viable' and at the same time to raise the minimum detection resistive voltage, the winding volume occupied by the resistive state must be expanded. The paper concludes with discussion of challenging new areas of research for protection of HTS magnets

  3. Synchronous motor with HTS-2G wires

    Science.gov (United States)

    Dezhin, D.; Ilyasov, R.; Kozub, S.; Kovalev, K.; Verzhbitsky, L.

    2014-05-01

    One of the applications of new high-temperature superconductor materials (HTS) is field coils for synchronous electrical machines. The use of YBCO 2G HTS tapes (HTS-2G) allows increasing of magnetic flux density in the air gap, which will increase the output power and reduce the dimensions of the motor. Such motors with improved characteristics can be successfully used in transportation as traction motor. In MAI-based "Center of Superconducting machines and devices" with the support of "Rosatom" has been designed and tested a prototype of the 50 kW synchronous motor with radial magnetic flux from a field-coils based on HTS-2G tapes. The experimental and theoretical results are presented.

  4. Effects of c-axis Josephson coupling on dissipation, flux dynamics and the mechanism of high-Tc superconductivity

    International Nuclear Information System (INIS)

    Gray, K.E.; Hettinger, J.D.

    1995-01-01

    Measurements of the c-axis transport in highly anisotropic HTS materials strongly indicate that Josephson coupling is involved. This conclusion affects various properties of the HTS cuprates, including the irreversibility behavior for transport in the ab planes, the direct c-axis transport and potentially the mechanism of Cooper pairing

  5. Metal–insulator crossover in high Tc cuprates: A gauge field approach

    Indian Academy of Sciences (India)

    plane resistivity of underdoped cuprates and a range of superconducting cuprates in the presence of a strong magnetic field suppressing superconductivity. We propose an explanation for this phenomenon based on a gauge field theory approach ...

  6. HTS axial flux induction motor with analytic and FEA modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, S., E-mail: alexlee.zn@gmail.com; Fan, Y.; Fang, J.; Qin, W.; Lv, G.; Li, J.H.

    2013-11-15

    Highlights: •A high temperature superconductor axial flux induction motor and a novel maglev scheme are presented. •Analytic method and finite element method have been adopted to model the motor and to calculate the force. •Magnetic field distribution in HTS coil is calculated by analytic method. •An effective method to improve the critical current of HTS coil is presented. •AC losses of HTS coils in the HTS axial flux induction motor are estimated and tested. -- Abstract: This paper presents a high-temperature superconductor (HTS) axial-flux induction motor, which can output levitation force and torque simultaneously. In order to analyze the character of the force, analytic method and finite element method are adopted to model the motor. To make sure the HTS can carry sufficiently large current and work well, the magnetic field distribution in HTS coil is calculated. An effective method to improve the critical current of HTS coil is presented. Then, AC losses in HTS windings in the motor are estimated and tested.

  7. HTS axial flux induction motor with analytic and FEA modeling

    International Nuclear Information System (INIS)

    Li, S.; Fan, Y.; Fang, J.; Qin, W.; Lv, G.; Li, J.H.

    2013-01-01

    Highlights: •A high temperature superconductor axial flux induction motor and a novel maglev scheme are presented. •Analytic method and finite element method have been adopted to model the motor and to calculate the force. •Magnetic field distribution in HTS coil is calculated by analytic method. •An effective method to improve the critical current of HTS coil is presented. •AC losses of HTS coils in the HTS axial flux induction motor are estimated and tested. -- Abstract: This paper presents a high-temperature superconductor (HTS) axial-flux induction motor, which can output levitation force and torque simultaneously. In order to analyze the character of the force, analytic method and finite element method are adopted to model the motor. To make sure the HTS can carry sufficiently large current and work well, the magnetic field distribution in HTS coil is calculated. An effective method to improve the critical current of HTS coil is presented. Then, AC losses in HTS windings in the motor are estimated and tested

  8. Tl Cuprate Superconductors Studied by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, R. P. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099 (United States); Siegal, M. P. [Sandia National Laboratories, Albuquerque, NM 87185-1421 (United States); Overmyer, D. L. [Sandia National Laboratories, Albuquerque, NM 87185-1421 (United States); Ren, Z. F. [Department of Chemistry, State University of New York, Buffalo, NY 14260-3000 (United States); Lao, J. Y. [Department of Chemistry, State University of New York, Buffalo, NY 14260-3000 (United States); Wang, J. H. [Department of Chemistry, State University of New York, Buffalo, NY 14260-3000 (United States)

    1999-07-01

    XPS measurements on epitaxial thin films of the Tl cuprate superconductors Tl2Ba2CaCu2O8, Tl2Ba2Ca2Cu3O10, and Tl0.78Bi0.22Ba0.4Sr1.6Ca2Cu3O9-{delta} are presented. These data, together with previous measurements in this lab on Tl2Ba2CuO6-{delta} and TlBa2CaCu2O7-{delta}, comprise a comprehensive data set for comparison of Tl cuprates in which the number of Tl-O and Cu-O layers, and hence the chemical and electronic properties, vary. (c) 2000 American Vacuum Society.

  9. Tl Cuprate Superconductors Studied by XPS

    International Nuclear Information System (INIS)

    Vasquez, R. P.; Siegal, M. P.; Overmyer, D. L.; Ren, Z. F.; Lao, J. Y.; Wang, J. H.

    1999-01-01

    XPS measurements on epitaxial thin films of the Tl cuprate superconductors Tl2Ba2CaCu2O8, Tl2Ba2Ca2Cu3O10, and Tl0.78Bi0.22Ba0.4Sr1.6Ca2Cu3O9-δ are presented. These data, together with previous measurements in this lab on Tl2Ba2CuO6-δ and TlBa2CaCu2O7-δ, comprise a comprehensive data set for comparison of Tl cuprates in which the number of Tl-O and Cu-O layers, and hence the chemical and electronic properties, vary. (c) 2000 American Vacuum Society

  10. Large-scale HTS bulks for magnetic application

    International Nuclear Information System (INIS)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    Highlights: ► ATZ Company has constructed about 130 HTS magnet systems. ► Multi-seeded YBCO bulks joint the way for large-scale application. ► Levitation platforms demonstrate “superconductivity” to a great public audience (100 years anniversary). ► HTS magnetic bearings show forces up to 1 t. ► Modular HTS maglev vacuum cryostats are tested for train demonstrators in Brazil, China and Germany. -- Abstract: ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN 2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500–3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN 2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved

  11. Large-scale HTS bulks for magnetic application

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank N., E-mail: werfel@t-online.de [Adelwitz Technologiezentrum GmbH (ATZ), Rittergut Adelwitz 16, 04886 Arzberg-Adelwitz (Germany); Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter [Adelwitz Technologiezentrum GmbH (ATZ), Rittergut Adelwitz 16, 04886 Arzberg-Adelwitz (Germany)

    2013-01-15

    Highlights: ► ATZ Company has constructed about 130 HTS magnet systems. ► Multi-seeded YBCO bulks joint the way for large-scale application. ► Levitation platforms demonstrate “superconductivity” to a great public audience (100 years anniversary). ► HTS magnetic bearings show forces up to 1 t. ► Modular HTS maglev vacuum cryostats are tested for train demonstrators in Brazil, China and Germany. -- Abstract: ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN{sub 2} and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500–3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN{sub 2} allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  12. Bosonic Spectral Function and the Electron-Phonon Interaction in HTSC Cuprates

    International Nuclear Information System (INIS)

    Maksimov, E. G.; Tamm, I. E.; Kulic, M.L.; Kulic, M.L.; Dolgov, O. V.

    2010-01-01

    In this paper we discuss experimental evidence related to the structure and origin of the bosonic spectral function a2F(ο) in high-temperature superconducting (HTSC) cuprates at and near optimal doping. Global properties of a2F(ο), such as number and positions of peaks, are extracted by combining optics, neutron scattering, ARPES and tunnelling measurements. These methods give evidence for strong electron-phonon interaction (EPI) with 1<λep <3.5 in cuprates near optimal doping. We clarify how these results are in favor of the modified Migdal-Eliashberg (ME) theory for HTSC cuprates near optimal doping. In Section 2 we discuss theoretical ingredients such as strong EPI, strong correlations which are necessary to explain the mechanism of d-wave pairing in optimally doped cuprates. These comprise the ME theory for EPI in strongly correlated systems which give rise to the forward scattering peak. The latter is supported by the long-range part of EPI due to the weakly screened Madelung interaction in the ionic-metallic structure of layered HTSC cuprates. In this approach EPI is responsible for the strength of pairing while the residual Coulomb interaction and spin fluctuations trigger the d-wave pairing.

  13. A compact 3 T all HTS cryogen-free MRI system

    Science.gov (United States)

    Parkinson, B. J.; Bouloukakis, K.; Slade, R. A.

    2017-12-01

    We have designed and built a passively shielded, cryogen-free 3 T 160 mm bore bismuth strontium calcium copper oxide HTS magnet with shielded gradient coils suitable for use in small animal imaging applications. The magnet is cooled to approximately 16 K using a two-stage cryocooler and is operated at 200 A. The magnet has been passively shimmed so as to achieve ±10 parts per million (ppm) homogeneity over a 60 mm diameter imaging volume. We have demonstrated that B 0 temporal stability is fit-for-purpose despite the magnet operating in the driven mode. The system has produced good quality spin-echo and gradient echo images. This compact HTS-MRI system is emerging as a true alternative to conventional low temperature superconductor based cryogen-free MRI systems, with much more efficient cryogenics since it operates entirely from a single phase alternating current electrical supply.

  14. Archives: HTS Teologiese Studies / Theological Studies

    African Journals Online (AJOL)

    Items 1 - 50 of 120 ... Archives: HTS Teologiese Studies / Theological Studies. Journal Home > Archives: HTS Teologiese Studies / Theological Studies. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search ...

  15. Spin dynamics in high-TC superconducting cuprates

    International Nuclear Information System (INIS)

    Bourges, Ph.

    2003-07-01

    This work is dedicated to the detailed investigations of the magnetic resonance peak in the superconducting state of cuprates. The existence of such a peak could be the signature of a mechanism linked to magnetism that could explain high critical temperature superconductivity. Inelastic neutron scattering is an adequate tool for the understanding of cuprate properties because it reveals magnetic fluctuations whose behaviour and variety depend strongly on temperature and on the level of doping. The last part of this work is dedicated to the study of spin dynamics in YBa 2 Cu 3 O 6+x system

  16. Development of a single-phase 30 m HTS power cable

    Science.gov (United States)

    Cho, Jeonwook; Bae, Joon-Han; Kim, Hae-Jong; Sim, Ki-Deok; Kim, Seokho; Jang, Hyun-Man; Lee, Chang-Young; Kim, Dong-Wook

    2006-05-01

    HTS power transmission cables appear to be the replacement and retrofitting of underground cables in urban areas and HTS power transmission cable offers a number of technical and economic merits compared to the normal conductor cable system. A 30 m long, single-phase 22.9 kV class HTS power transmission cable system has been developed by Korea Electrotechnology Research Institute (KERI), LS Cable Ltd., and Korea Institute of Machinery and Materials (KIMM), which is one of the 21st century frontier project in Korea since 2001. The HTS power cable has been developed, cooled down and tested to obtain realistic thermal and electrical data on HTS power cable system. The evaluation results clarified such good performance of HTS cable that DC critical current of the HTS cable was 3.6 kA and AC loss was 0.98 W/m at 1260 Arms and shield current was 1000 Arms. These results proved the basic properties for 22.9 kV HTS power cable. As a next step, we have been developing a 30 m, three-phase 22.9 kV, 50 MV A HTS power cable system and long term evaluation is in progress now.

  17. Analysis of stability and quench in HTS devices-New approaches

    International Nuclear Information System (INIS)

    Vysotsky, V.S.; Sytnikov, V.E.; Rakhmanov, A.L.; Ilyin, Y.

    2006-01-01

    R and D of HTS devices are in their full steam-more magnets and devices are developed with larger sizes. But analysis of their stability and quench was still old fashioned, based on normal zone determination, analysis of its appearance and propagation. Some peculiarities of HTS make this traditional, quite impractical and inconvenient approach to consideration of HTS devices stability and quench development using normal zone origination and propagation analysis. The novel approaches were developed that consider the HTS device as a cooled medium with non-linear parameters with no mentioning of 'superconductivity' in the analysis. The approach showed its effectiveness and convenience to analyze the stability and quench development in HTS devices. In this paper the analysis of difference between HTS and LTS quench, dependent on index n and specific heat comparison, is followed by the short approach descriptions and by the consequences from it for the HTS devices design. The further development of the method is presented for the analysis of long HTS objects where 'blow-up' regimes may happen. This is important for design and analysis of HTS power cables operations under overloading conditions

  18. Flywheel Challenge: HTS Magnetic Bearing

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2006-01-01

    A 200 mm cylindrical engineering prototype high temperature superconducting (HTS) was designed and fabricated. Measurements show that the 17 kg PM rotor can suspend safely 1000 kg in axial direction and 470 kg radially. The rationale for the bearing performance is to stabilize a 400 kg rotor of a new compact 5 kWh/280 kW flywheel energy storage system (COM - FESS). Measurements of the magnetic bearing force, stiffness and drag-torque are presented indicated the successful targeting a milestone in the HTS bearing technology. The influence of the PM configuration and the YBCO temperature on the bearing performance was experimentally studied, providing high-force or high-stiffness behaviour. The axial stiffness 5 kN/mm at 0.5 mm displacement is the highest value of a HTS bearing we know

  19. Development of toroid-type HTS DC reactor series for HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangmin, E-mail: kwangmin81@gmail.com [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of); Oh, Yunsang [Vector Fields Korea Inc., Pohang 790-834 (Korea, Republic of); Park, Minwon; Yu, In-Keun [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of)

    2015-11-15

    Highlights: • The authors developed the 400 mH, 400 A class toroid-type HTS DC reactor system. • The target temperature, inductance and operating current are under 20 K at magnet, 400 mH and 400 A, respectively. All target performances of the HTS DC reactor were achieved. • The HTS DC reactor was conducted through the interconnection operation with a LCC type HVDC system. • Now, the authors are studying the 400 mH, 1500 A class toroid-type HTS DC reactor for the next phase HTS DC reactor. - Abstract: This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  20. Development of toroid-type HTS DC reactor series for HVDC system

    International Nuclear Information System (INIS)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-01-01

    Highlights: • The authors developed the 400 mH, 400 A class toroid-type HTS DC reactor system. • The target temperature, inductance and operating current are under 20 K at magnet, 400 mH and 400 A, respectively. All target performances of the HTS DC reactor were achieved. • The HTS DC reactor was conducted through the interconnection operation with a LCC type HVDC system. • Now, the authors are studying the 400 mH, 1500 A class toroid-type HTS DC reactor for the next phase HTS DC reactor. - Abstract: This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  1. Overcurrent experiments on HTS tape and cable conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Jensen, Kim Høj; Træholt, Chresten

    2001-01-01

    their critical current. In this light, it is important to investigate the response of HTS tapes and cable conductors to overcurrents several times the critical current. A number of experiments have been performed on HTS tapes and cable conductors, with currents up to 20 times the critical current. During...... overcurrent experiments, the voltage, and the temperature were measured as functions of time in order to investigate the dynamic behavior of the HTS tape and cable conductor. After each experiment, damage to the superconductors was assessed by measuring the critical current. Preliminary results show...... that within seconds an HTS tape (critical current=17 A) heats above room temperature with an overcurrent larger than 140 A. Similar overcurrent experiments showed that a HTS cable conductor could sustain damage with overcurrents exceeding 10 times the critical current of the cable conductor....

  2. Doping dependence of Meissner effect in cuprate superconductors

    International Nuclear Information System (INIS)

    Feng Shiping; Huang Zheyu; Zhao Huaisong

    2010-01-01

    Within the t-t'-J model, the doping dependence of the Meissner effect in cuprate superconductors is studied based on the kinetic energy driven superconducting mechanism. Following the linear response theory, it is shown that the electromagnetic response consists of two parts, the diamagnetic current and the paramagnetic current, which exactly cancels the diamagnetic term in the normal state, and then the Meissner effect is obtained for all the temperature T ≤ T c throughout the superconducting dome. By considering the two-dimensional geometry of cuprate superconductors within the specular reflection model, the main features of the doping and temperature dependence of the local magnetic field profile, the magnetic field penetration depth, and the superfluid density observed on cuprate superconductors are well reproduced. In particular, it is shown that in analogy to the domelike shape of the doping dependent superconducting transition temperature, the maximal superfluid density occurs around the critical doping δ ∼ 0.195, and then decreases in both lower doped and higher doped regimes.

  3. Development of toroid-type HTS DC reactor series for HVDC system

    Science.gov (United States)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-11-01

    This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  4. Progress in development of high capacity magnetic HTS bearings

    International Nuclear Information System (INIS)

    Kummeth, P.; Nick, W.; Neumueller, H.-W.

    2005-01-01

    HTS magnetic bearings are inherently stable without an active feedback system. They provide low frictional losses, no wear and allow operation at high rotational speed without lubrication. So they are very promising for use in motors, generators and turbines. We designed and constructed an HTS radial bearing for use with a 400 kW HTS motor. It consists of alternating axially magnetized permanent magnet rings on the rotor and a segmented YBCO stator. Stator cooling is performed by liquid nitrogen, the temperature of the stator can be adjusted by varying the pressure in the cryogenic vessel. At 68 K maximum radial forces of more than 3.7 kN were found. These results range within the highest radial bearing capacities reported worldwide. The encouraging results lead us to develop a large heavy load HTS radial bearing. Currently a high magnetic gradient HTS bearing for a 4 MVA synchronous HTS generator is under construction

  5. Optical and electron microanalysis of cuprate superconductors

    International Nuclear Information System (INIS)

    Hoff, H.A.; Osofsky, M.S.; Toth, L.E.; Richards, L.E.; Pande, C.S.; Lechter, W.L.

    1990-01-01

    Individual anisotropic grains in heterogeneous and opaque cuprate materials, when viewed in a reflected-light optical microscope through crossed polarizers, often have characteristic colors, when a daylight source is used. Of the cuprate superconductors, regardless of charge carrier type, examined so far, only one characteristic color has been observed We have studied the presence of color and found a strong correlation with the existence of superconductivity. The change in color from insulator to metal to superconductor and the compositions corresponding to these changes found by quantitative energy dispersive x-ray spectroscopy on superconducting Tl-Sr-Ca-Cu-O and metallic but not superconducting La-Sr-Cu-O materials is discussed

  6. A new approach for AC loss reduction in HTS transformer using auxiliary windings, case study: 25 kA HTS current injection transformer

    Science.gov (United States)

    Heydari, Hossein; Faghihi, Faramarz; Aligholizadeh, Reza

    2008-01-01

    AC loss is one of the important parameters in HTS (high temperature superconducting) AC devices. Among the HTS AC power devices, the transformer is an essential part in the electrical power system. The AC losses in an HTS tape depend on the magnetic field. One of the techniques usually adopted to mitigate the unwanted magnetic field is using a system of coils that produce a magnetic field opposite to the incident one, reducing the total magnetic field. In this paper adding two auxiliary windings to the HTS transformer to produce this opposite magnetic field is proposed. The proper use of these auxiliary windings could reduce the leakage flux and, therefore, the AC loss. A mathematical model is used to describe the behaviour of a transformer operating with auxiliary windings, based on the theory of electromagnetic coupled circuits. The influence of the auxiliary windings on the leakage field is studied by the finite element method (FEM) and the AC loss of an HTS transformer was calculated. Also, the simulation results show that employing auxiliary windings will improve the HTS transformer efficiency.

  7. A new approach for AC loss reduction in HTS transformer using auxiliary windings, case study: 25 kA HTS current injection transformer

    International Nuclear Information System (INIS)

    Heydari, Hossein; Faghihi, Faramarz; Aligholizadeh, Reza

    2008-01-01

    AC loss is one of the important parameters in HTS (high temperature superconducting) AC devices. Among the HTS AC power devices, the transformer is an essential part in the electrical power system. The AC losses in an HTS tape depend on the magnetic field. One of the techniques usually adopted to mitigate the unwanted magnetic field is using a system of coils that produce a magnetic field opposite to the incident one, reducing the total magnetic field. In this paper adding two auxiliary windings to the HTS transformer to produce this opposite magnetic field is proposed. The proper use of these auxiliary windings could reduce the leakage flux and, therefore, the AC loss. A mathematical model is used to describe the behaviour of a transformer operating with auxiliary windings, based on the theory of electromagnetic coupled circuits. The influence of the auxiliary windings on the leakage field is studied by the finite element method (FEM) and the AC loss of an HTS transformer was calculated. Also, the simulation results show that employing auxiliary windings will improve the HTS transformer efficiency

  8. A new approach for AC loss reduction in HTS transformer using auxiliary windings, case study: 25 kA HTS current injection transformer

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, Hossein; Faghihi, Faramarz; Aligholizadeh, Reza [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2008-01-15

    AC loss is one of the important parameters in HTS (high temperature superconducting) AC devices. Among the HTS AC power devices, the transformer is an essential part in the electrical power system. The AC losses in an HTS tape depend on the magnetic field. One of the techniques usually adopted to mitigate the unwanted magnetic field is using a system of coils that produce a magnetic field opposite to the incident one, reducing the total magnetic field. In this paper adding two auxiliary windings to the HTS transformer to produce this opposite magnetic field is proposed. The proper use of these auxiliary windings could reduce the leakage flux and, therefore, the AC loss. A mathematical model is used to describe the behaviour of a transformer operating with auxiliary windings, based on the theory of electromagnetic coupled circuits. The influence of the auxiliary windings on the leakage field is studied by the finite element method (FEM) and the AC loss of an HTS transformer was calculated. Also, the simulation results show that employing auxiliary windings will improve the HTS transformer efficiency.

  9. Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems

    Science.gov (United States)

    Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long

    2017-07-01

    According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable.

  10. Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems

    International Nuclear Information System (INIS)

    Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long

    2017-01-01

    According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable. (paper)

  11. The pseudogap in the c-axis optical conductivity in high Tc-cuprates

    International Nuclear Information System (INIS)

    Won, H.

    1999-01-01

    The pseudogap phenomenon is most remarkable in the underdoped region of high-T c cuprates. Since the superconducting state in the optimally doped high-T c cuprates is well described by the BCS-like d-wave superconductors, it is natural to assume that the pseudogap arises from the standard superconducting fluctuation. In particular in the layered compounds like high-T c cuprates Varlamov and his coworkers pointed out the density of states (DOS) correction to the superconducting fluctuation will play the crucial role. However, unfortunately in their analysis d-wave nature of the high-T c cuprates is ignored. Perhaps more seriously some unnecessary approximations were introduced in their analysis. The present theory gives somewhat different expressions of quasi-particle density of states for B = 0 and B ≠ 0, which can be tested experimentally. (orig.)

  12. Metal–insulator crossover in high c cuprates: A gauge field ...

    Indian Academy of Sciences (India)

    A metal–insulator crossover appears in the experimental data for in-plane resistivity of underdoped cuprates and a range of superconducting cuprates in the presence of a strong magnetic field suppressing superconductivity. We propose an explanation for this phenomenon based on a gauge field theory approach to the t-J ...

  13. Dynamics of correlation-frozen antinodal quasiparticles in superconducting cuprates

    Science.gov (United States)

    Cilento, Federico; Manzoni, Giulia; Sterzi, Andrea; Peli, Simone; Ronchi, Andrea; Crepaldi, Alberto; Boschini, Fabio; Cacho, Cephise; Chapman, Richard; Springate, Emma; Eisaki, Hiroshi; Greven, Martin; Berciu, Mona; Kemper, Alexander F.; Damascelli, Andrea; Capone, Massimo; Giannetti, Claudio; Parmigiani, Fulvio

    2018-01-01

    Many puzzling properties of high–critical temperature (Tc) superconducting (HTSC) copper oxides have deep roots in the nature of the antinodal quasiparticles, the elementary excitations with wave vector parallel to the Cu–O bonds. These electronic states are most affected by the onset of antiferromagnetic correlations and charge instabilities, and they host the maximum of the anisotropic superconducting gap and pseudogap. We use time-resolved extreme-ultraviolet photoemission with proper photon energy (18 eV) and time resolution (50 fs) to disclose the ultrafast dynamics of the antinodal states in a prototypical HTSC cuprate. After photoinducing a nonthermal charge redistribution within the Cu and O orbitals, we reveal a dramatic momentum-space differentiation of the transient electron dynamics. Whereas the nodal quasiparticle distribution is heated up as in a conventional metal, new quasiparticle states transiently emerge at the antinodes, similarly to what is expected for a photoexcited Mott insulator, where the frozen charges can be released by an impulsive excitation. This transient antinodal metallicity is mapped into the dynamics of the O-2p bands, thus directly demonstrating the intertwining between the low- and high-energy scales that is typical of correlated materials. Our results suggest that the correlation-driven freezing of the electrons moving along the Cu–O bonds, analogous to the Mott localization mechanism, constitutes the starting point for any model of high-Tc superconductivity and other exotic phases of HTSC cuprates. PMID:29507885

  14. Impurity induced resistivity upturns in underdoped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Das, Nabyendu, E-mail: nabyendudas@gmail.com; Singh, Navinder

    2016-01-28

    Impurity induced low temperature upturns in both the ab-plane and the c-axis dc-resistivities of cuprates in the pseudogap state have been observed in experiments. We provide an explanation of this phenomenon by incorporating impurity scattering of the charge carriers within a phenomenological model proposed by Yang, Rice and Zhang. The scattering between charge carriers and the impurity atom is considered within the lowest order Born approximation. Resistivity is calculated within Kubo formula using the impurity renormalized spectral functions. Using physical parameters for cuprates, we describe qualitative features of the upturn phenomena and its doping evolution that coincides with the experimental findings. We stress that this effect is largely due to the strong electronic correlations.

  15. Impurity induced resistivity upturns in underdoped cuprates

    International Nuclear Information System (INIS)

    Das, Nabyendu; Singh, Navinder

    2016-01-01

    Impurity induced low temperature upturns in both the ab-plane and the c-axis dc-resistivities of cuprates in the pseudogap state have been observed in experiments. We provide an explanation of this phenomenon by incorporating impurity scattering of the charge carriers within a phenomenological model proposed by Yang, Rice and Zhang. The scattering between charge carriers and the impurity atom is considered within the lowest order Born approximation. Resistivity is calculated within Kubo formula using the impurity renormalized spectral functions. Using physical parameters for cuprates, we describe qualitative features of the upturn phenomena and its doping evolution that coincides with the experimental findings. We stress that this effect is largely due to the strong electronic correlations.

  16. New facility for testing LHC HTS power leads

    CERN Document Server

    Rabehl, Roger Jon; Fehér, S; Huang, Y; Orris, D; Pischalnikov, Y; Sylvester, C D; Tartaglia, M

    2005-01-01

    A new facility for testing HTS power leads at the Fermilab Magnet Test Facility has been designed and operated. The facility has successfully tested 19 pairs of HTS power leads, which are to be integrated into the Large Hadron Collider Interaction Region cryogenic feed boxes. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. HTS power lead test results from the commissioning phase of the project are also presented.

  17. Study on AC loss measurements of HTS power cable for standardizing

    Science.gov (United States)

    Mukoyama, Shinichi; Amemiya, Naoyuki; Watanabe, Kazuo; Iijima, Yasuhiro; Mido, Nobuhiro; Masuda, Takao; Morimura, Toshiya; Oya, Masayoshi; Nakano, Tetsutaro; Yamamoto, Kiyoshi

    2017-09-01

    High-temperature superconducting power cables (HTS cables) have been developed for more than 20 years. In addition of the cable developments, the test methods of the HTS cables have been discussed and proposed in many laboratories and companies. Recently the test methods of the HTS cables is required to standardize and to common in the world. CIGRE made the working group (B1-31) for the discussion of the test methods of the HTS cables as a power cable, and published the recommendation of the test method. Additionally, IEC TC20 submitted the New Work Item Proposal (NP) based on the recommendation of CIGRE this year, IEC TC20 and IEC TC90 started the standardization work on Testing of HTS AC cables. However, the individual test method that used to measure a performance of HTS cables hasn’t been established as world’s common methods. The AC loss is one of the most important properties to disseminate low loss and economical efficient HTS cables in the world. We regard to establish the method of the AC loss measurements in rational and in high accuracy. Japan is at a leading position in the AC loss study, because Japanese researchers have studied on the AC loss technically and scientifically, and also developed the effective technologies for the AC loss reduction. The JP domestic commission of TC90 made a working team to discussion the methods of the AC loss measurements for aiming an international standard finally. This paper reports about the AC loss measurement of two type of the HTS conductors, such as a HTS conductor without a HTS shield and a HTS conductor with a HTS shield. The AC loss measurement method is suggested by the electrical method..

  18. Chemical bonding in Tl cuprates studied by x-ray photoemission

    International Nuclear Information System (INIS)

    Vasquez, R.P.; Siegal, M.P.; Overmyer, D.L.; Ren, Z.F.; Lao, J.Y.; Wang, J.H.

    1999-01-01

    Epitaxial thin films of the Tl cuprate superconductors Tl 2 Ba 2 CaCu 2 O 8 , Tl 2 Ba 2 Ca 2 Cu 3 O 10 , and Tl 0.78 Bi 0.22 Ba 0.4 Sr 1.6 Ca 2 Cu 3 O 9-δ are studied with x-ray photoemission spectroscopy. These data, together with previous measurements in this lab of Tl 2 Ba 2 CuO 6+δ and TlBa 2 CaCu 2 O 7-δ , comprise a comprehensive data set for a comparative study of Tl cuprates with a range of chemical and electronic properties. In the Cu 2p spectra, a larger energy separation between the satellite and main peaks (E s -E m ) and a lower intensity ratio (I s /I m ) are found to correlate with higher values of T c . Analysis of these spectra within a simple configuration interaction model suggests that higher values of T c are related to low values of the O 2p→Cu 3d charge transfer energy. In the O 1s region, a smaller bond length between Ba and Cu-O planar oxygen is found to correlate with a lower binding energy for the signal associated with Cu-O bonding, most likely resulting from the increased polarization screening by Ba 2+ ions. For samples near optimum doping, maximum T c is observed to occur when the Tl 4f 7/2 binding energy is near 117.9 eV, which is near the middle of the range of values observed for Tl cuprates. Higher Tl 4f 7/2 binding energies, corresponding to formal oxidation states nearer Tl 1+ , are also found to correlate with longer bond lengths between Ba and Tl-O planar oxygen, and with higher binding energies of the O 1s signal associated with Tl-O bonding. copyright 1999 The American Physical Society

  19. Visualizing electron pockets in cuprate superconductors

    Science.gov (United States)

    Das, Tanmoy; Markiewicz, R. S.; Bansil, A.; Balatsky, A. V.

    2012-06-01

    Fingerprints of the electron pocket in cuprates have been obtained only in numerous magnetotransport measurements, but its absence in spectroscopic observations poses a long-standing mystery. We develop a theoretical tool to provide ways to detect electron pockets via spectroscopies including scanning tunneling microscopy (STM) spectra, inelastic neutron scattering (INS), and angle-resolved photoemission spectroscopy (ARPES). We show that the quasiparticle-interference (QPI) pattern, measured by STM, shows an additional seven q vectors associated with the scattering on the electron pocket than that on the hole pocket. Furthermore, the Bogolyubov quasiparticle scatterings of the electron pocket lead to a second magnetic resonance mode in the INS spectra at a higher resonance energy. Finally, we reanalyze some STM, INS, and ARPES experimental data of several cuprates which dictates the direct fingerprints of electron pockets in these systems.

  20. Inverse correlation between quasiparticle mass and T c in a cuprate high-T c superconductor.

    Science.gov (United States)

    Putzke, Carsten; Malone, Liam; Badoux, Sven; Vignolle, Baptiste; Vignolles, David; Tabis, Wojciech; Walmsley, Philip; Bird, Matthew; Hussey, Nigel E; Proust, Cyril; Carrington, Antony

    2016-03-01

    Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature T c is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-T c superconductivity. We have tested the robustness of this correlation between m* and T c by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as T c increases under pressure. This inverse correlation between m* and T c suggests that quantum fluctuations of the charge order enhance m* but do not enhance T c.

  1. Insights on the cuprate high energy anomaly observed in ARPES

    International Nuclear Information System (INIS)

    Moritz, B.; Johnston, S.; Devereaux, T.P.

    2010-01-01

    Recently, angle-resolved photoemission spectroscopy has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). The anomaly is present for both hole- and electron-doped cuprates as well as the half-filled parent insulators with different energy scales arising on either side of the phase diagram. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. creating a 'waterfall'-like appearance, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram. We find that the anomaly demarcates a transition, or cross-over, from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character.

  2. Insights on the cuprate high energy anomaly observed in ARPES

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, B., E-mail: moritzb@slac.stanford.ed [Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Department of Physics and Astrophysics, University of North Dakota, Grand Forks, ND 58202 (United States); Johnston, S. [Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Devereaux, T.P. [Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States)

    2010-07-15

    Recently, angle-resolved photoemission spectroscopy has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). The anomaly is present for both hole- and electron-doped cuprates as well as the half-filled parent insulators with different energy scales arising on either side of the phase diagram. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. creating a 'waterfall'-like appearance, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram. We find that the anomaly demarcates a transition, or cross-over, from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character.

  3. Fermion local charged boson model and cuprate superconductors

    International Nuclear Information System (INIS)

    Sinha, K.P.; Kakani, S.L.

    2002-01-01

    One of the most exciting developments in Science in past few years is the discovery of high temperature superconductivity (HTSC) in cuprates. It has been observed that the superconducting state in these cuprates is rather normal compared to the anomalous normal state. This discovery has led to deluge of experimental and theoretical researches all along the world. These cuprates are close to metal-insulator transition and the stability of the insulating and metallic phase depends on the degree of doping. Measurements of physical properties of these systems have revealed many anomalous results both in the superconducting and normal states, e.g. d-wave superconducting gap, the presence of pseudo gap in the normal state, static or dynamic striped structure of CuO 2 planes etc. These have posed serious theoretical challenges towards formulating the mechanisms of pairing and explanation of anomalous behaviour. Several theoretical proposals have been advanced and only a few are likely to survive in the teeth of some reliable experimental data. A combined mechanism mediated by phonons and lochons (local charged bosons, local pairs or bipolarons) for the pairing of fermions (holes or electrons) belonging to a wide band provides a microscopic explanation of anomalous normal state properties of HTSC cuprates and vindicates features of the phenomenological marginal Fermi liquid formulation. In the present review article detailed features of combined lochon and phonon mediated pairing mechanism are presented and a contact with the normal and superconducting state properties of HTSC in YBa 2 Cu 3 O x does indicate pair hopping between planes via such resonant centres lying in between the CuO 2 planes. (author)

  4. Superconducting Electric Machine with Permanent Magnets and Bulk HTS Elements

    Science.gov (United States)

    Levin, A. V.; Vasich, P. S.; Dezhin, D. S.; Kovalev, L. K.; Kovalev, K. L.; Poltavets, V. N.; Penkin, V. T.

    Theoretical methods of calculating of two-dimensional magnetic fields, inductive parameters and output characteristics of the new type of high-temperature superconducting (HTS) synchronous motors with a composite rotor are presented. The composite rotor has the structure containing HTS flat elements, permanent magnets and ferromagnetic materials. The developed calculation model takes into account the concentrations and physical properties of these rotor elements. The simulation results of experimental HTS motor with a composite rotor are presented. The application of new type of HTS motor in different constructions of industrial high dynamic drivers is discussed.

  5. Race-track coils for a 3 MW HTS ship motor

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, E., E-mail: ueno-eisaku@sei.co.jp; Kato, T.; Hayashi, K.

    2014-09-15

    Highlights: • Sumitomo Electric manufactured the HTS field coils for a 3 MW HTS ship motor. • The motor was developed and successfully passed the loading test by Kawasaki Heavy. • We tested and obtained the basic data to evaluate the 20-year durability of coils. - Abstract: Since the discovery of high-temperature superconductivity (HTS), Sumitomo Electric has been developing silver-sheathed Bi2223 superconducting wire and products. Ship propulsion motors are one of the most promising applications of HTS. Sumitomo Electric Industries, Ltd. (SEI) has recently manufactured 24 large racetrack coils, using 70 km long DI-BSCCO wires, for use in a 3 MW HTS motor developed by Kawasaki Heavy Industries, Ltd. (KHI). The 3 MW HTS motor, using our newly developed racetrack coils, has successfully passed the loading test. It is particularly important that the HTS field coils used in ship propulsion motors can withstand the expansive forces repeatedly applied to them. As racetrack type coils have straight sections, the support mechanism they require to withstand expansive forces is very different from that of circular coils. Therefore, we ran tests and obtained the basic data to evaluate the 20-year durability of racetrack coils against the repeatedly applied expansive forces expected in domestic ship propulsion motors.

  6. Fault Management of a Cold Dielectric HTS Power Transmission Cable

    International Nuclear Information System (INIS)

    Maguire, J; Allais, A; Yuan, J; Schmidt, F; Hamber, F; Welsh, Tom

    2006-01-01

    High temperature superconductor (HTS) power transmission cables offer significant advantages in power density over conventional copper-based cables. As with conventional cables, HTS cables must be safe and reliable when abnormal conditions, such as local and through faults, occur in the power grid. Due to the unique characteristics of HTS power cables, the fault management of an HTS cable is different from that of a conventional cable. Issues, such as nitrogen bubble formation within lapped dielectric material, need to be addressed. This paper reviews the efforts that have been performed to study the fault conditions of a cold dielectric HTS power cable. As a result of the efforts, a fault management scheme has been developed, which provides both local and through faults system protection. Details of the fault management scheme with examples are presented

  7. An active homopolar magnetic bearing with high temperature superconductor (HTS) coils and ferromagnetic cores

    Science.gov (United States)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-01-01

    A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.

  8. Tunneling in cuprate and bismuthate superconductors

    International Nuclear Information System (INIS)

    Zasadzinski, J.F.; Huang, Qiang; Tralshawala, N.

    1991-10-01

    Tunneling measurements using a point-contact technique are reported for the following high temperature superconducting oxides: Ba 1-x K x BiO 3 (BKBO), Nd 2-x Ce x CuO 4 (NCCO), Bi 2 Sr 2 CaCu 2 O 7 (BSCCO) and Tl 2 Ba 2 CaCu 2 O x (TBCCO). For the bismuthate, BKBO, ideal, S-I-N tunneling characteristics are observed using a Au tip. The normalized conductance is fitted to a BCS density of states and thermal smearing only proving there is no fundamental limitation in BKBO for device applications. For the cuprates, the normalized conductance displays BCS-like characteristics, but with a broadening larger than from thermal smearing. Energy gap values are presented for each material. For BKBO and NCCO the Eliashberg functions, α 2 F(ω), obtained from the tunneling are shown to be in good agreement with neutron scattering results. Proximity effect tunneling studies are reported for Au/BSCCO bilayers and show that the energy gap of BSCCO can be observed through Au layers up to 600 Angstrom thick

  9. Hypertonic saline solution reduces the oxidative stress responses in traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    Mojtaba Mojtahedzadeh

    2014-01-01

    Full Text Available Background: Oxidative stress processes play an important role in the pathogenesis of secondary brain injury after traumatic brain injury (TBI. Hypertonic saline (HTS has advantages as being preferred osmotic agent, but few studies investigated oxidant and antioxidant effects of HTS in TBI. This study was designed to compare two different regimens of HTS 5% with mannitol on TBI-induced oxidative stress. Materials and Methods: Thirty-three adult patients with TBI were recruited and have randomly received one of the three protocols: 125 cc of HTS 5% every 6 h as bolus, 500 cc of HTS 5%as infusion for 24 h or 1 g/kg mannitol of 20% as a bolus, repeated with a dose of 0.25-0.5 g/kg every 6 h based on patient′s response for 3 days. Serum total antioxidant power (TAP, reactive oxygen species (ROS and nitric oxide (NO were measured at baseline and daily for 3 days. Results: Initial serum ROS and NO levels in patients were higher than control(6.86± [3.2] vs. 1.57± [0.5] picoM, P = 0.001, 14.6± [1.6] vs. 7.8± [3.9] mM, P = 0.001, respectively. Levels of ROS have decreased for all patients, but reduction was significantly after HTS infusion and mannitol (3. 08 [±3.1] to 1.07 [±1.6], P = 0.001, 5.6 [±3.4] to 2.5 [±1.8], P = 0.003 respectively. During study, NO levels significantly decreased in HTS infusion but significantly increased in mannitol. TAP Levels had decreased in all patients during study especially in mannitol (P = 0.004. Conclusion: Hypertonic saline 5% has significant effects on the oxidant responses compared to mannitol following TBI that makes HTS as a perfect therapeutic intervention for reducing unfavorable outcomes in TBI patients.

  10. Reduction of Thermal Loss in HTS Windings by Using Magnetic Flux Deflection

    Science.gov (United States)

    Tsuzuki, K.; Miki, M.; Felder, B.; Koshiba, Y.; Izumi, M.; Umemoto, K.; Aizawa, K.; Yanamoto, T.

    Efforts on the generation of intensified magnetic flux have been made for the optimized shape of HTS winding applications. This contributes to the high efficiency of the rotating machines using HTS windings. Heat generation from the HTS windings requires to be suppressed as much as possible, when those coils are under operation with either direct or alternative currents. Presently, the reduction of such thermal loss generated by the applied currents on the HTS coils is reported with a magnetic flux deflection system. The HTS coils are fixed together with flattened magnetic materials to realize a kind of redirection of the flux pathway. Eventually, the magnetic flux density perpendicular to the tape surface (equivalent to the a-b plane) of the HTS tape materials is reduced to the proximity of the HTS coil. To verify the new geometry of the surroundings of the HTS coils with magnetic materials, a comparative study of the DC coil voltage was done for different applied currents in prototype field-pole coils of a ship propulsion motor.

  11. Design, construction and performance of an EMS-based HTS maglev vehicle

    International Nuclear Information System (INIS)

    Gu Chen; Liu Menglin; Xing Huawei; Zhou, Tong; Yin Wensheng; Zong Jun; Han Zhenghe

    2005-01-01

    A laboratory-scale EMS-based HTS maglev vehicle operating over a 1.5 m guideway has been successfully constructed. The fully integrated system consists of a vehicle chassis, four dependent magnetic circuits, four distance sensors, and control and power amplification circuits. As key component of the system, each magnetic circuit includes a U-shape iron core with one HTS coil forming each pole. Eight HTS coils made of Bi-2223 multi-filamentary tape were used to provide the magnetic motive force. Several questions relating to the unique characteristics of the HTS material in a controlled magnetic circuit are discussed. The most important consideration for such applications is that the anisotropic critical current of the Bi-2223/Ag tape depends strongly on the magnetic field. The commercially available FEA software ANSYS was used to simulate the field distribution along the magnetic circuit and HTS coil winding, and thereby identify how the magnetic circuit alters the field distribution in the coil winding and therefore also the critical current. A general optimization process is described for finding the best position in the U-shape iron core to hold the HTS coils. In this process the critical current of the HTS tape and the force-current characteristic of the magnetic circuit are considered synthetically. The results demonstrate the feasibility and stability of HTS material in a typical maglev system and other similar controllability applications

  12. Design, construction and performance of an EMS-based HTS maglev vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Gu Chen [Applied Superconductivity Research Center, Department of Physics, Building LiZhai, Room 102, Tsinghua University, Beijing 100084 (China)]. E-mail: guchen@mail.tsinghua.edu.cn; Liu Menglin [Applied Superconductivity Research Center, Department of Physics, Building LiZhai, Room 102, Tsinghua University, Beijing 100084 (China); Xing Huawei [Department of Automation, Tsinghua University, Beijing 100084 (China); Zhou, Tong [Department of Automation, Tsinghua University, Beijing 100084 (China); Yin Wensheng [Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China); Zong Jun [Innova Superconductor Technology Co., Ltd., Beijing 100176 (China); Han Zhenghe [Applied Superconductivity Research Center, Department of Physics, Building LiZhai, Room 102, Tsinghua University, Beijing 100084 (China)

    2005-06-15

    A laboratory-scale EMS-based HTS maglev vehicle operating over a 1.5 m guideway has been successfully constructed. The fully integrated system consists of a vehicle chassis, four dependent magnetic circuits, four distance sensors, and control and power amplification circuits. As key component of the system, each magnetic circuit includes a U-shape iron core with one HTS coil forming each pole. Eight HTS coils made of Bi-2223 multi-filamentary tape were used to provide the magnetic motive force. Several questions relating to the unique characteristics of the HTS material in a controlled magnetic circuit are discussed. The most important consideration for such applications is that the anisotropic critical current of the Bi-2223/Ag tape depends strongly on the magnetic field. The commercially available FEA software ANSYS was used to simulate the field distribution along the magnetic circuit and HTS coil winding, and thereby identify how the magnetic circuit alters the field distribution in the coil winding and therefore also the critical current. A general optimization process is described for finding the best position in the U-shape iron core to hold the HTS coils. In this process the critical current of the HTS tape and the force-current characteristic of the magnetic circuit are considered synthetically. The results demonstrate the feasibility and stability of HTS material in a typical maglev system and other similar controllability applications.

  13. Critical current studies of a HTS rectangular coil

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z. [Department of Engineering, University of Cambridge (United Kingdom); Chudy, M., E-mail: Michal.chudy@stuba.sk [Graduate School of Technology Management, University of Pretoria (South Africa); Institute of Power and Applied Electrical Engineering, Slovak University of Technology in Bratislava (Slovakia); Ruiz, H.S. [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Zhang, X.; Coombs, T. [Department of Engineering, University of Cambridge (United Kingdom)

    2017-05-15

    Highlights: • Unique square pancake coil was manufactured. • Measurements in relatively high magnetic field were performed. • Different sections of the coil were characterized. • Parts of the coil which are limiting critical current were identified. - Abstract: Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.

  14. The status of commercial and developmental HTS wires

    Energy Technology Data Exchange (ETDEWEB)

    Masur, L.J.; Buczek, D.; Harley, E.; Kodenkandath, T.; Li, X.; Lynch, J.; Nguyen, N.; Rupich, M.; Schoop, U.; Scudiere, J.; Siegal, E.; Thieme, C.; Verebelyi, D.; Zhang, W.; Kellers, J

    2003-10-15

    This paper provides an update on the development, performance and application of first and second generation high temperature superconductor (HTS) wires fabricated at American Superconductor (AMSC). First generation, multifilamentary composite wire is available commercially today in different viable product forms. This conductor carries 140 x the current of copper of the same cross-section, and is robust enough to stand tough industrial requirements. Second generation HTS wires, having a coated conductor composite architecture, are under development today and achieved substantial progress recently. AMSC's first generation wire will continue as the workhorse of the industry for the next 3-4 years while AMSC's second generation coated conductor wire is on track to be reproducible, uniform, scalable, and low cost. This paper provides a product differentiation with a view on the application of HTS wire in the electric power sector. Basic engineering data is reviewed that shall aid the engineer in the selection of the HTS wire product.

  15. Large-scale HTS bulks for magnetic application

    Science.gov (United States)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  16. HTS thin films: Passive microwave components and systems integration issues

    International Nuclear Information System (INIS)

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B.

    1994-01-01

    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory's High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects

  17. Detection of Local Temperature Change on HTS Cables via Time-Frequency Domain Reflectometry

    Science.gov (United States)

    Bang, Su Sik; Lee, Geon Seok; Kwon, Gu-Young; Lee, Yeong Ho; Ji, Gyeong Hwan; Sohn, Songho; Park, Kijun; Shin, Yong-June

    2017-07-01

    High temperature superconducting (HTS) cables are drawing attention as transmission and distribution cables in future grid, and related researches on HTS cables have been conducted actively. As HTS cables have come to the demonstration stage, failures of cooling systems inducing quench phenomenon of the HTS cables have become significant. Several diagnosis of the HTS cables have been developed but there are still some limitations of the experimental setup. In this paper, a non-destructive diagnostic technique for the detection of the local temperature change point is proposed. Also, a simulation model of HTS cables with a local temperature change point is suggested to verify the proposed diagnosis. The performance of the diagnosis is checked by comparative analysis between the proposed simulation results and experiment results of a real-world HTS cable. It is expected that the suggested simulation model and diagnosis will contribute to the commercialization of HTS cables in the power grid.

  18. Prospects for HTS applications

    International Nuclear Information System (INIS)

    Gamble, B.B.; Snitchler, G.L.; Schwall, R.E.

    1996-01-01

    High temperature superconductor (HTS) wire is rapidly maturing into a working material being produced in ever larger quantities and being used in more significant demonstrations and prototypes. Conductor is now produced routinely in several hundred meter lengths with reproducible results. Current density has progressed to a level suitable for demonstration of many applications. Wire strength has improved and large prototypes fabricated or under consideration using HTS include Superconducting Magnetic Energy Storage (SMES), rotating electrical machines including synchronous ac and dc homopolar motors and drives, generators and condensers, underground transmission cables, utility distribution equipment such as transformers and current limiters, commercial processing applications such as magnetic separation, and specialty magnets such as high field inserts. In this paper the requirements, progress toward these requirements, and the prospects for the future are reviewed

  19. Chemical Bonding in Tl Cuprates Studied by X-Ray Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Lao, J.Y.; Overmyer, D.L.; Ren, Z.F.; Siegal, M.P.; Vasquez, R.P.; Wang, J.H.

    1999-04-05

    Epitaxial thin films of the Tl cuprate superconductors Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8}, Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}, and TL{sub 0.78}Bi{sub 0.22}Ba{sub 0.4}Sr{sub 1.6}Ca{sub 2}Cu{sub 3}O{sub 9{minus}{delta}} are studied with x-ray photoemission spectroscopy. These data, together with previous measurements in this lab of Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} and TlBa{sub 2}CaCu{sub 2}O{sub 7{minus}{delta}}, comprise a comprehensive data set for a comparative study of Tl cuprates with a range of chemical and electronic properties. In the Cu 2p spectra, a larger energy separation between the satellite and main peaks (E{sub s}-E{sub m}) and a lower intensity ratio (I{sub s}/I{sub m}) are found to correlate with higher values of T{sub c}. Analysis of these spectra within a simple configuration interaction model suggests that higher values of T{sub c} are related to low values of the O 2p {r_arrow} Cu 3d charge transfer energy. In the O 1s region, a smaller bond length between Ba and Cu-O planar oxygen is found to correlate with a lower binding energy for the signal associated with Cu-O bonding, most likely resulting from the increased polarization screening by Ba{sup 2+} ions. For samples near optimum doping, maximum T{sub c} is observed to occur when the Tl 4f{sub 7/2} binding energy is near 117.9 eV, which is near the middle of the range of values observed for Tl cuprates. Higher Tl 4f{sub 7/2} binding energies, corresponding to formal oxidation states nearer Tl{sup 1+}, are also found to correlate with longer bond lengths between Ba and Tl-O planar oxygen, and with higher binding energies of the O 1s signal associated with Tl-O bonding.

  20. Chemical bonding in Tl cuprates studied by x-ray photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, R.P. [Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099 (United States); Siegal, M.P.; Overmyer, D.L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Ren, Z.F.; Lao, J.Y.; Wang, J.H. [Materials Synthesis Laboratory, Department of Chemistry, State University of New York, Buffalo, New York 14260-3000 (United States)

    1999-08-01

    Epitaxial thin films of the Tl cuprate superconductors Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8}, Tl{sub 2}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}, and Tl{sub 0.78}Bi{sub 0.22}Ba{sub 0.4}Sr{sub 1.6}Ca{sub 2}Cu{sub 3}O{sub 9{minus}{delta}} are studied with x-ray photoemission spectroscopy. These data, together with previous measurements in this lab of Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} and TlBa{sub 2}CaCu{sub 2}O{sub 7{minus}{delta}}, comprise a comprehensive data set for a comparative study of Tl cuprates with a range of chemical and electronic properties. In the Cu 2p spectra, a larger energy separation between the satellite and main peaks (E{sub s}{minus}E{sub m}) and a lower intensity ratio (I{sub s}/I{sub m}) are found to correlate with higher values of T{sub c}. Analysis of these spectra within a simple configuration interaction model suggests that higher values of T{sub c} are related to low values of the O&hthinsp;2p{r_arrow}Cu&hthinsp;3d charge transfer energy. In the O&hthinsp;1s region, a smaller bond length between Ba and Cu-O planar oxygen is found to correlate with a lower binding energy for the signal associated with Cu-O bonding, most likely resulting from the increased polarization screening by Ba{sup 2+} ions. For samples near optimum doping, maximum T{sub c} is observed to occur when the Tl 4f{sub 7/2} binding energy is near 117.9 eV, which is near the middle of the range of values observed for Tl cuprates. Higher Tl&hthinsp;4f{sub 7/2} binding energies, corresponding to formal oxidation states nearer Tl{sup 1+}, are also found to correlate with longer bond lengths between Ba and Tl-O planar oxygen, and with higher binding energies of the O&hthinsp;1s signal associated with Tl-O bonding. {copyright} {ital 1999} {ital The American Physical Society}

  1. Fermi-surface reconstruction by stripe order in cuprate superconductors

    Science.gov (United States)

    Laliberté, Francis

    2012-02-01

    The origin of pairing in a superconductor resides in the underlying normal state. In the cuprate high-temperature superconductor YBCO, application of a magnetic field to suppress superconductivity reveals a ground state that appears to break the translational symmetry of the lattice, pointing to some density-wave order [1,2,3]. In another cuprate, Eu-LSCO, the onset of stripe order - a modulation of spin and charge densities - at low temperature is well established [4]. By a comparative study of thermoelectric transport in the cuprates YBCO and Eu-LSCO, we show that the two materials exhibit a very similar process of Fermi-surface reconstruction as a function of temperature and doping [5,6]. This strongly suggests that Fermi-surface reconstruction is caused by stripe order in both cases, compelling evidence that stripe order is a generic tendency of hole-doped cuprates.[4pt] Work done in collaboration with J. Chang, N. Doiron-Leyraud, E. Hassinger, R. Daou, D. LeBoeuf, M. Rondeau, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, S. Pyon, T. Takayama, H. Takagi, I. Sheikin, L. Malone, C. Proust, K. Behnia and L. Taillefer.[4pt] [1] N. Doiron-Leyraud et al., Nature 447, 565 (2007).[0pt] [2] D. LeBoeuf et al., Nature 450, 533 (2007).[0pt] [3] D. LeBoeuf et al., Phys. Rev. B 83, 054506 (2011).[0pt] [4] J. Fink et al., Phys. Rev. B 83, 092503 (2011).[0pt] [5] J. Chang et al., Phys. Rev. Lett. 104, 057005 (2010).[0pt] [6] F. Lalibert'e et al., Nat. Commun. 2, 432 (2011).

  2. Diffusion of nonequilibrium quasi-particles in a cuprate superconductor

    International Nuclear Information System (INIS)

    Gedik, N.; Orenstein, J.; Liang, Ruixing; Bonn, D.A.; Hardy, W.N.

    2003-01-01

    We report a transport study of nonequilibrium quasi-particles in a high-transition-temperature cuprate superconductor using the transient grating technique. Low-intensity laser excitation (at a photon energy of 1.5 electron volts) was used to introduce a spatially periodic density of quasi-particles into a high-quality untwinned single crystal of YBa2Cu3O6.5. Probing the evolution of the initial density through space and time yielded the quasi-particle diffusion coefficient and the inelastic and elastic scattering rates. The technique reported here is potentially applicable to precision measurements of quasi-particle dynamics not only in cuprate superconductors but in other electronic systems as well

  3. Numerical assessment of efficiency and control stability of an HTS synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Xian Wei; Yuan Weijia; Coombs, T A, E-mail: wx210@cam.ac.u [Electronic, Power and Energy Conversion Group, Engineering Department, Cambridge University, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2010-06-01

    A high temperature superconducting (HTS) permanent magnet synchronous motor (PMSM) is designed and developed in Cambridge University. It is expected to become cost competitive with the conventional PMSM owing to its high efficiency, high power density, high torque density, etc. The structure and parameters of HTS PMSM are detailed. Both AC losses by transport current and applied filed in stator armature winding of HTS PMSM are also analyzed. Computed and simulated results of the characteristics of the HTS PMSM and conventional PMSM are compared. The improvement on stability of direct torque control (DTC) on the HTS PMSM is estimated, and proved by simulation on Matlab/Simulink.

  4. HTS thin films: Passive microwave components and systems integration issues

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B. [National Aeronautics and Space Administration, Cleveland, OH (United States)

    1994-12-31

    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory`s High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects.

  5. HTS power leads for the BTEV interaction region

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S.; Carcagno, R.; Orris, D.; Page, T.; Pischalnikov, Y.; Rabehl, R.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2005-05-01

    A new Interaction Region (IR) for the BTEV experiment was planned to be built at Fermilab. This IR would have required new superconducting quadrupole magnets and many additional power circuits for their operation. The new ''low beta'' quadrupole magnet design was based upon the Fermilab LHC quadrupole design, and would have operated at 9.56 kA in 4.5 K liquid helium. The use of conventional power leads for these circuits would have required substantially more helium for cooling than is available from the cryogenic plant, which is already operating close to its limit. To decrease the heat load and helium cooling demands, the use of HTS power leads was necessary. In developing specifications for HTS leads for the BTEV interaction region, several 6 kA HTS leads produced by American Superconductor Corporation (ASC) have been tested at over-current conditions. Final design requirements were to be based on these test results. This paper summarizes the test results and describes the design requirements for the 9.65 kA HTS power leads.

  6. HTS power leads for the BTEV interaction region

    International Nuclear Information System (INIS)

    Feher, S.; Carcagno, R.; Orris, D.; Page, T.; Pischalnikov, Y.; Rabehl, R.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.

    2005-01-01

    A new Interaction Region (IR) for the BTEV experiment was planned to be built at Fermilab. This IR would have required new superconducting quadrupole magnets and many additional power circuits for their operation. The new ''low beta'' quadrupole magnet design was based upon the Fermilab LHC quadrupole design, and would have operated at 9.56 kA in 4.5 K liquid helium. The use of conventional power leads for these circuits would have required substantially more helium for cooling than is available from the cryogenic plant, which is already operating close to its limit. To decrease the heat load and helium cooling demands, the use of HTS power leads was necessary. In developing specifications for HTS leads for the BTEV interaction region, several 6 kA HTS leads produced by American Superconductor Corporation (ASC) have been tested at over-current conditions. Final design requirements were to be based on these test results. This paper summarizes the test results and describes the design requirements for the 9.65 kA HTS power leads

  7. Recent Progress in Electrical Insulation Techniques for HTS Power Apparatus

    Science.gov (United States)

    Hayakawa, Naoki; Kojima, Hiroki; Hanai, Masahiro; Okubo, Hitoshi

    This paper describes the electrical insulation techniques at cryogenic temperatures, i.e. Cryodielectrics, for HTS power apparatus, e.g. HTS power transmission cables, transformers, fault current limiters and SMES. Breakdown and partial discharge characteristics are discussed for different electrical insulation configurations of LN2, sub-cooled LN2, solid, vacuum and their composite insulation systems. Dynamic and static insulation performances with and without taking account of quench in HTS materials are also introduced.

  8. Hysteresis and reluctance electric machines with bulk HTS elements. Recent results and future development

    International Nuclear Information System (INIS)

    Kovalev, L.K.; Ilushin, K.V.; Penkin, V.T.; Kovalev, K.L.; Koneev, S.M.-A.; Poltavets, V.N.; Larionoff, A.E.; Modestov, K.A.; Larionoff, S.A.; Gawalek, W.; Habisreuther, T.; Oswald, B.; Best, K.-J.; Strasser, T.

    2000-01-01

    Two new types of HTS electric machine are considered. The first type is hysteresis motors and generators with cylindrical and disc rotors containing bulk HTS elements. The second type is reluctance motors with compound HTS-ferromagnetic rotors. The compound HTS-ferromagnetic rotors, consisting of joined alternating bulk HTS (YBCO) and ferromagnetic (iron) plates, provide a new active material for electromechanical purposes. Such rotors have anisotropic properties (ferromagnetic in one direction and diamagnetic in the perpendicular one). Theoretical and experimental results for HTS hysteresis and reluctance motors are presented. A series of hysteresis HTS motors with output power rating from 1 kW (at 50 Hz) up to 4 kW (at 400 Hz) and a series of reluctance HTS motors with output power 2-18.5 kW (at 50 Hz) were constructed and successfully tested. It was shown that HTS reluctance motors could reach two to five times better overall dimensions and specific power than conventional asynchronous motors of the same size and will have higher values of power factor (cos φ≥0.7 to 0.8). (author)

  9. Design and Development of a 100 MVA HTS Generator for Commercial Entry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-06-07

    In 2002, General Electric and the US Department of Energy (DOE) entered into a cooperative agreement for the development of a commercialized 100 MVA generator using high temperature superconductors (HTS) in the field winding. The intent of the program was to: (1) identify and develop technologies that would be needed for such a generator; (2) develop conceptual designs for generators with ratings of 100 MVA and higher using HTS technology; (3) perform proof of concept tests at the 1.5 MW level for GE's proprietary warm iron rotor HTS generator concept; and (4) design, build, and test a prototype of a commercially viable 100 MVA generator that could be placed on the power grid. This report summarizes work performed during the program and is provided as one of the final program deliverables. The design for the HTS generator was based on GE's warm iron rotor concept in which a cold HTS coil is wound around a warm magnetic iron pole. This approach for rotating HTS electrical machinery provides the efficiency benefits of the HTS technology while addressing the two most important considerations for power generators in utility applications: cost and reliability. The warm iron rotor concept uses the least amount of expensive HTS wire compared to competing concepts and builds on the very high reliability of conventional iron core stators and armature windings.

  10. Structure, stoichiometry and spectroscopy of oxide superconductors

    Science.gov (United States)

    Rao, C. N. R.

    In the new oxide superconductors, structure and oxygen stoichiometry play the most crucial role. Thus, all the high-temperature oxide superconductors are orthorhombic perovskites with low-dimensional features. Oxygen stoichiometry in YBa2Cu3O7-δ has an important bearing on the structure as well as superconductivity. This is equally true in the La3-xBa3+xCu 6O14+δ system of which only the 123 oxide (x = 1) with the orthorhombic structure shows high Tc. Orthorhombicity though not essential, is generally found ; it is necessary for the formation of twins. The nature of oxygen and copper in the cuprates has been examined by electron spectroscopy. Copper in these cuprates is only in 1 + and 2 + states. It seems likely that oxygen holes are responsible for superconductivity of the cuprates as well as Ba(Bi, Pb)O3. High Tc superconductivity is also found in oxides of the Bi-(Ca, Sr)-Cu-O and related oxides possessing Cu-O sheets. Dans les nouveaux oxydes supraconducteurs, la structure et la stoechiométrie de l'oxygène jouent un rôle absolument crucial. Ainsi, tous les oxydes supraconducteurs à haute température critique sont des pérovskites orthorhombiques possédant des propriétés de basse dimensionnalité. La stoechiométrie de l'oxygène dans YBa2Cu3O7- δ a une influence importante tant sur la structure que sur la supraconductibilité. Ceci est également valable pour les composés du type La3 -xBa3 + xCu 6O14 + δ parmi lesquels seul l'oxyde 123 (x = 1) à structure orthorhombique présente un grand T. Bien que ce ne soit pas essentiel, cette orthorhombicité est fréquente ; elle est nécessaire à la formation de macles. La nature de l'oxygène et du cuivre a été observée par spectroscopie électronique... Dans ces cuprates, le cuivre est dans les seuls états de valence + 1 et + 2. Vraisemblablement, les trous logés sur l'oxygène sont responsables de la supraconductibilité des cuprates comme de Ba(Bi, Pb)O3. La supraconductibilité existe aussi

  11. Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates.

    Science.gov (United States)

    Kreisel, A; Choubey, Peayush; Berlijn, T; Ku, W; Andersen, B M; Hirschfeld, P J

    2015-05-29

    We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov-de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi_{2}Sr_{2}CaCu_{2}O_{8} can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude "filter" theories on a microscopic foundation and solves a long-standing puzzle. We then study quasiparticle interference phenomena induced by out-of-plane weak potential scatterers, and show how patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.

  12. High-energy kink in the single-particle spectra of cuprates

    International Nuclear Information System (INIS)

    Cojocaru, S.; Citro, R.; Marinaro, M.

    2008-01-01

    Within a phenomenological model where electrons are coupled to a bosonic mode in a generic form of damped oscillator, we analyze the high-energy kink recently observed in ARPES experiments on cuprates. It is shown that the model allows to describe the main anomalous features found in experiments, such as the broad incoherent spectral weight, the 'waterfall dispersion', its doping and temperature dependence. In contrast to the low-energy kink, presence of significant damping is required to account for the anomalies. The 'bosonic mode' is related to the incoherent excitation peak observed in optical conductivity spectra of cuprates

  13. High-energy kink in the single-particle spectra of cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Cojocaru, S. [Dipartimento di Fisica ' E. R. Caianiello' and C.N.I.S.M., Universita degli Studi di Salerno, Via S. Allende, I-84081 Baronissi (Italy); Institute of Applied Physics, Chisinau 2028 (Moldova, Republic of); Citro, R. [Dipartimento di Fisica ' E. R. Caianiello' and C.N.I.S.M., Universita degli Studi di Salerno, Via S. Allende, I-84081 Baronissi (Italy)], E-mail: citro@sa.infn.it; Marinaro, M. [Dipartimento di Fisica ' E. R. Caianiello' and C.N.I.S.M., Universita degli Studi di Salerno, Via S. Allende, I-84081 Baronissi (Italy); I.I.A.S.S., Via G. Pellegrino, n. 19 84019 Vietri sul Mare (Italy)

    2008-04-01

    Within a phenomenological model where electrons are coupled to a bosonic mode in a generic form of damped oscillator, we analyze the high-energy kink recently observed in ARPES experiments on cuprates. It is shown that the model allows to describe the main anomalous features found in experiments, such as the broad incoherent spectral weight, the 'waterfall dispersion', its doping and temperature dependence. In contrast to the low-energy kink, presence of significant damping is required to account for the anomalies. The 'bosonic mode' is related to the incoherent excitation peak observed in optical conductivity spectra of cuprates.

  14. Production LHC HTS power lead test results

    CERN Document Server

    Tartaglia, M; Fehér, S; Huang, Y; Orris, D F; Pischalnikov, Y; Rabehl, Roger Jon; Sylvester, C D; Zbasnik, J

    2005-01-01

    The Fermilab Magnet test facility has built and operated a test stand to characterize the performance of HTS power leads. We report here the results of production tests of 20 pairs of 7.5 kA HTS power leads manufactured by industry for installation in feed boxes for the LHC Interaction Region quadrupole strings. Included are discussions of the thermal, electrical, and quench characteristics under "standard" and "extreme" operating conditions, and the stability of performance across thermal cycles.

  15. Production LHC HTS power lead test results

    International Nuclear Information System (INIS)

    Tartaglia, M.A.; Carcagno, R.H.; Feher, S.; Huang, Y.; Orris, D.F.; Pischalnikov, Y.; Rabehl, R.J.; Sylvester, C.; Zbasnik, J.

    2004-01-01

    The Fermilab Magnet test facility has built and operated a test stand to characterize the performance of HTS power leads. We report here the results of production tests of 20 pairs of 7.5 kA HTS power leads manufactured by industry for installation in feed boxes for the LHC Interaction Region quadrupole strings. Included are discussions of the thermal, electrical, and quench characteristics under ''standard'' and ''extreme'' operating conditions, and the stability of performance across thermal cycles

  16. Superconducting Mercury-Based Cuprate Films with a Zero-Resistance Transition Temperature of 124 Kelvin

    Science.gov (United States)

    Tsuei, C. C.; Gupta, A.; Trafas, G.; Mitzi, D.

    1994-03-01

    The synthesis of high-quality films of the recently discovered mercury-based cuprate films with high transition temperatures has been plagued by problems such as the air sensitivity of the cuprate precursor and the volatility of Hg and HgO. These processing difficulties have been circumvented by a technique of atomic-scale mixing of the HgO and cuprate precursors, use of a protective cap layer, and annealing in an appropriate Hg and O_2 environment. With this procedure, a zero-resistance transition temperature as high as 124 kelvin in c axis-oriented epitaxial HgBa_2CaCu_2O6+δ films has been achieved.

  17. Superconducting mercury-based cuprate films with a zero-resistance transition temperature of 124 Kelvin.

    Science.gov (United States)

    Tsuei, C C; Gupta, A; Trafas, G; Mitzi, D

    1994-03-04

    The synthesis of high-quality films of the recently discovered mercury-based cuprate films with high transition temperatures has been plagued by problems such as the air sensitivity of the cuprate precursor and the volatility of Hg and HgO. These processing difficulties have been circumvented by a technique of atomic-scale mixing of the HgO and cuprate precursors, use of a protective cap layer, and annealing in an appropriate Hg and O(2) environment. With this procedure, a zero-resistance transition temperature as high as 124 kelvin in c axis-oriented epitaxial HgBa(2)CaCu(2)O(6+delta) films has been achieved.

  18. Tests of operating conditions for metrological application of HTS Josephson arrays

    International Nuclear Information System (INIS)

    Sosso, A; Lacquaniti, V; Andreone, D; Cerri, R; Klushin, A M

    2006-01-01

    We report on an experimental study of metrological properties of High Temperature Superconductor arrays, made of shunted bicrystal YBCO Josephson junctions, to assess their accuracy. A detailed analysis of measurement errors is presented, mainly based on a direct comparison of an HTS array against a low temperature array. Owing to the high sensitivity of the comparison, we were able to measure the changes in the HTS array voltage on a step at nanovolt level. A precise estimate of the dependence of the HTS array step width on operating conditions was obtained. Differences were observed with respect to the results provided by the usual, low sensitivity, techniques, confirming that the method we adopted is necessary in the study of HTS arrays for metrology. The high sensitivity analysis was applied in the derivation of the temperature dependence of the critical current as well, providing some insights on the behaviour of the HTS array

  19. Utilization of process TEG for fabrication of HTS circuits

    International Nuclear Information System (INIS)

    Hato, T.; Okada, Y.; Maruyama, M.; Suzuki, H.; Wakana, H.; Adachi, S.; Kawabe, U.; Tanabe, K.

    2006-01-01

    We improved the fabrication process of high-temperature superconducting (HTS) sampler circuits with multilayer structures by utilizing a test elements group (TEG). Among a lot of difficulties in the HTS circuit fabrication process, loss of oxygen is one of the most significant problems. Since the film transition temperature (T c ) has a strong relationship with the resistance at room temperature, we fabricated a test pattern on the same wafer of the circuits and measured the resistance at room temperature by using a prober to estimate the T c of each layer. By introducing the measurement of the normal resistance after each process, we found better process conditions without a T c drop. Moreover, we constructed a low-temperature probing system, in which we can measure the junction TEG. The system enabled feedback of the fabrication condition soon after the junction process. The utilization of the process TEG contributed to reproducible fabrication of HTS circuits and that is a promising advance of the HTS circuit technology

  20. Second-generation HTS conductors

    CERN Document Server

    2010-01-01

    The discovery of high temperature superconductors (HTS) in 1986 by two IBM scientists led to an unprecedented explosion of research and development efforts world-wide because of the significant potential for practical applications offered by these materials. However, the early euphoria created by the exciting prospects was dampened by the daunting task of fabricating these materials into useful forms with acceptable superconducting properties. Progress towards this goal has been hindered by many intrinsic materials problems, such as weak-links, flux-creep, and poor mechanical properties. The above problems led to the development of the Second-Generation of HTS wires. Three methods were invented to produce flexible metallic substrates, which were also crystallographically biaxially textured, and resembled a long, mosaic single crystal. The first method invented is the Ion-Beam-Assisted-Deposition (IBAD). The second method developed was the Inclined-Substrate-Deposition (ISD). The third method invented is calle...

  1. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.J.

    2010-04-30

    In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not

  2. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    International Nuclear Information System (INIS)

    Zhou, X.J.

    2010-01-01

    In addition to the record high superconducting transition temperature (T c ), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T c , and anomalous normal state properties above T c . In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T c . As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T c superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not thought possible

  3. Competing pseudogap and impurity effects on the normal-state specific heat properties of cuprate superconductors

    Science.gov (United States)

    Dzhumanov, S.; Karimboev, E. X.

    2014-07-01

    In this paper, we show that the pseudogap in the excitation spectra of high-Tc cuprates together with the impurity phase and charge inhomogeneity plays key roles in determining the essential features of their anomalous specific heat properties observed above Tc. We consider the doped cuprate superconductor as a multi-carrier model system (which consists of intrinsic and extrinsic polarons and pre-formed bosonic Cooper pairs) and study the competing pseudogap and impurity effects on the normal-state electronic specific heat of high-Tc cuprates taking into account charge inhomogeneities. We argue that unconventional electron-phonon interactions are responsible for the precursor Cooper pairing in the polaronic band below a mean-field temperature T∗ and the existence of a pseudogap above Tc in the cuprates. The electronic specific heat Ce(T) of doped cuprates below T∗ is calculated taking into account three contributions coming from the excited components of Cooper pairs, the ideal Bose-gas of incoherent Cooper pairs and the unpaired carriers in the impurity band. Above T∗, two contributions to Ce(T) coming from the unpaired intrinsic and extrinsic polarons are calculated within the two-component degenerate Fermi-gas model. By comparing our results with the experimental Ce(T) data obtained for La- and Y-based cuprates, we find that the observed behaviors of Ce(T) (below and above T∗) are similar to the calculated results for Ce(T) and the BCS-type jumps of Ce(T) at T∗ may be depressed by the impurity effects and may become more or less pronounced BCS-type anomalies in Ce(T) .

  4. Transient analysis of an HTS DC power cable with an HVDC system

    International Nuclear Information System (INIS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-01-01

    Highlights: •A model of an HTS DC power cable was developed using real time digital simulator. •The simulations of the HTS DC power cable in connection with an HVDC system were performed. •The transient analysis results of the HTS DC power cable were presented. -- Abstract: The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system

  5. Transient analysis of an HTS DC power cable with an HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Minh-Chau, E-mail: thanchau7787@gmail.com [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@cwnu.ac.kr [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yang, Byeongmo [Korea Electric Power Research Institute, 105 Munji-Ro, Yuseong-Gu, Daejon 305-760 (Korea, Republic of)

    2013-11-15

    Highlights: •A model of an HTS DC power cable was developed using real time digital simulator. •The simulations of the HTS DC power cable in connection with an HVDC system were performed. •The transient analysis results of the HTS DC power cable were presented. -- Abstract: The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  6. Temperature and doping dependence of the high-energy kink in cuprates.

    Science.gov (United States)

    Zemljic, M M; Prelovsek, P; Tohyama, T

    2008-01-25

    It is shown that spectral functions within the extended t-J model, evaluated using the finite-temperature diagonalization of small clusters, exhibit the high-energy kink in single-particle dispersion consistent with recent angle-resolved photoemission results on hole-doped cuprates. The kink and waterfall-like features persist up to large doping and to temperatures beyond J; hence, the origin can be generally attributed to strong correlations and incoherent hole propagation at large binding energies. In contrast, our analysis predicts that electron-doped cuprates do not exhibit these phenomena in photoemission.

  7. Rotor compound concept for designing an industrial HTS synchronous motor

    Science.gov (United States)

    Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.

    2013-06-01

    Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model potentially is more effective than the other iron made HTS motors.

  8. Quantum critical scaling at the edge of Fermi liquid stability in a cuprate superconductor.

    Science.gov (United States)

    Butch, Nicholas P; Jin, Kui; Kirshenbaum, Kevin; Greene, Richard L; Paglione, Johnpierre

    2012-05-29

    In the high-temperature cuprate superconductors, the pervasiveness of anomalous electronic transport properties suggests that violation of conventional Fermi liquid behavior is closely tied to superconductivity. In other classes of unconventional superconductors, atypical transport is well correlated with proximity to a quantum critical point, but the relative importance of quantum criticality in the cuprates remains uncertain. Here, we identify quantum critical scaling in the electron-doped cuprate material La(2-x)Ce(x)CuO(4) with a line of quantum critical points that surrounds the superconducting phase as a function of magnetic field and charge doping. This zero-temperature phase boundary, which delineates a metallic Fermi liquid regime from an extended non-Fermi liquid ground state, closely follows the upper critical field of the overdoped superconducting phase and gives rise to an expanse of distinct non-Fermi liquid behavior at finite temperatures. Together with signatures of two distinct flavors of quantum fluctuations, these facts suggest that quantum criticality plays a significant role in shaping the anomalous properties of the cuprate phase diagram.

  9. A space-qualified experiment integrating HTS digital circuits and small cryocoolers

    International Nuclear Information System (INIS)

    Silver, A.; Akerling, G.; Auten, R.

    1996-01-01

    High temperature superconductors (HTS) promise to achieve electrical performance superior to that of conventional electronics. For application in space systems, HTS systems must simultaneously achieve lower power, weight, and volume than conventional electronics, and meet stringent space qualification and reliability requirements. Most effort to date has focused on passive RF/microwave applications. However, incorporation of active microwave components such as amplifiers, mixers, and phase shifters, and on-board high data rate digital signal processing is limited by the power and weight of their spacecraft electronic and support modules. Absence of data on active HTS components will prevent their utilization in space. To validate the feasibility in space of HTS circuits and components based on Josephson junctions, one needs to demonstrate HTS circuits and critical supporting technologies, such as space-qualified packaging and interconnects, closed-cycle cryocooling, and interface electronics. This paper describes the packaging, performance, and space test plan of an integrated, space-qualified experimental package consisting of HTS Josephson junction circuits and all the supporting components for NRL's high temperature superconductor space experiment (HTSSE-II). Most of the technical challenges and approaches are equally applicable to passive and active RF/microwave and digital electronic components, and this experiment will provide valuable validation data

  10. Metal-insulator crossover in superconducting cuprates in strong magnetic fields

    International Nuclear Information System (INIS)

    Marchetti, P.A.; Su Zhaobin; Yu Lu

    2001-02-01

    The metal-insulator crossover of the in-plane resistivity upon temperature decrease, recently observed in several classes of cuprate superconductors, when a strong magnetic field suppresses the superconductivity, is explained using the U(1)xSU(2) Chern-Simons gauge field theory. The origin of this crossover is the same as that for a similar phenomenon observed in heavily underdoped cuprates without magnetic field. It is due to the interplay between the diffusive motion of the charge carriers and the 'peculiar' localization effect due to short-range antiferromagnetic order. We also calculate the in-plane transverse magnetoresistance which is in a fairly good agreement with available experimental data. (author)

  11. Angle-resolved photoemission in high Tc cuprates from theoretical viewpoints

    International Nuclear Information System (INIS)

    Tohyama, T.; Maekawa, S.

    2000-01-01

    The angle-resolved photoemission (ARPES) technique has been developed rapidly over the last decade, accompanied by the improvement of energy and momentum resolutions. This technique has been established as the most powerful tool to investigate the high T c cuprate superconductors. We review recent ARPES data on the cuprates from a theoretical point of view, with emphasis on the systematic evolution of the spectral weight near the momentum (π, 0) from insulator to overdoped systems. The effects of charge stripes on the ARPES spectra are also reviewed. Some recent experimental and theoretical efforts to understand the superconducting state and the pseudogap phenomenon are discussed. (author)

  12. Synchronous Generator with HTS-2G field coils for Windmills with output power 1 MW

    Science.gov (United States)

    Kovalev, K.; Kovalev, L.; Poltavets, V.; Samsonovich, S.; Ilyasov, R.; Levin, A.; Surin, M.

    2014-05-01

    Nowadays synchronous generators for wind-mills are developed worldwide. The cost of the generator is determined by its size and weight. In this deal the implementation of HTS-2G generators is very perspective. The application of HTS 2G field coils in the rotor allows to reduce the size of the generator is 1.75 times. In this work the design 1 MW HTS-2G generator is considered. The designed 1 MW HTS-2G generator has the following parameters: rotor diameter 800 mm, active length 400 mm, phase voltage 690V, rotor speed 600 min-1 rotor field coils with HTS-2G tapes. HTS-2G field coils located in the rotating cryostat and cooled by liquid nitrogen. The simulation and optimization of HTS-2G field coils geometry allowed to increase feed DC current up to 50A. Copper stator windings are water cooled. Magnetic and electrical losses in 1 MW HTS-2G generator do not exceed 1.6% of the nominal output power. In the construction of HTS-2G generator the wave multiplier with ratio 1:40 is used. The latter allows to reduce the total mass of HTS-2G generator down to 1.5 tons. The small-scale model of HTS-2G generator with output power 50 kW was designed, manufactured and tested. The test results showed good agreement with calculation results. The manufacturing of 1 MW HTS-2G generator is planned in 2014. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry".

  13. Quasiparticle density of states, localization, and distributed disorder in the cuprate superconductors

    Science.gov (United States)

    Sulangi, Miguel Antonio; Zaanen, Jan

    2018-04-01

    We explore the effects of various kinds of random disorder on the quasiparticle density of states of two-dimensional d -wave superconductors using an exact real-space method, incorporating realistic details known about the cuprates. Random on-site energy and pointlike unitary impurity models are found to give rise to a vanishing DOS at the Fermi energy for narrow distributions and low concentrations, respectively, and lead to a finite, but suppressed, DOS at unrealistically large levels of disorder. Smooth disorder arising from impurities located away from the copper-oxide planes meanwhile gives rise to a finite DOS at realistic impurity concentrations. For the case of smooth disorder whose average potential is zero, a resonance is found at zero energy for the quasiparticle DOS at large impurity concentrations. We discuss the implications of these results on the computed low-temperature specific heat, the behavior of which we find is strongly affected by the amount of disorder present in the system. We also compute the localization length as a function of disorder strength for various types of disorder and find that intermediate- and high-energy states are quasiextended for low disorder, and that states near the Fermi energy are strongly localized and have a localization length that exhibits an unusual dependence on the amount of disorder. We comment on the origin of disorder in the cuprates and provide constraints on these based on known results from scanning tunneling spectroscopy and specific heat experiments.

  14. HTS Power Leads for the BTeV Interaction Region

    CERN Document Server

    Feher, Sandor; Orris, Darryl; Pishchalnikov, Yu M; Rabehl, Roger Jon; Sylvester, C D; Tartaglia, M; Tompkins, John

    2005-01-01

    A new Interaction Region for the BTEV experiment is planned to be built soon at Fermilab. This IR will require new superconducting quadrupole magnets and many additional power circuits for their operation. The new "low beta" quadupole magnet design is based upon the Fermilab LHC quadrupole design, and will operate at 9.56 kA in 4.5 K liquid helium. The use of conventional power leads for these circuits would require substantially more helium for cooling than is available from the cryogenic plant, which is already operating close to its limit. To decrease the heat load and helium cooling demands, the use of HTS power leads is necessary. Fermilab is in the process of procuring HTS leads for this new interaction region. Several 6 kA HTS leads produced by American Superconductor Corporation have been tested at over-current conditions. Based on the test results, design requirements are being developed for procuring the HTS current leads. This paper summarizes the test results and describes the design requirements ...

  15. Characteristics on electodynamic suspension simulator with HTS levitation magnet

    International Nuclear Information System (INIS)

    Lee, J.; Bae, D.K.; Sim, K.; Chung, Y.D.; Lee, Y.-S.

    2009-01-01

    High-T c superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high-T c superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.

  16. Characteristics on electodynamic suspension simulator with HTS levitation magnet

    Science.gov (United States)

    Lee, J.; Bae, D. K.; Sim, K.; Chung, Y. D.; Lee, Y.-S.

    2009-10-01

    High- Tc superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high- Tc superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.

  17. Study and operating conditions of HTS Josephson arrays for metrological application

    International Nuclear Information System (INIS)

    Sosso, A.; Lacquaniti, V.; Andreone, D.; Cerri, R.; Klushin, A.M.

    2006-01-01

    We report an experimental study of metrological properties of high-temperature superconductor arrays, made of shunted bicrystal YBCO Josephson junctions. The work is mainly based on a direct comparison against a low temperature array. Owing to the high sensitivity of the measurements, we observed at nanovolt level the changes in the HTS array voltage on a step. A precise estimate of the dependence of the HTS array step width on operating conditions was obtained. Differences were observed with respect to the results of low sensitivity techniques, confirming that our method is necessary in the study of HTS arrays for metrology. The high sensitivity analysis was also applied in the derivation of the temperature dependence of the critical current, providing insights on the behavior of the HTS array

  18. First-principles study on the creation of holes in high Tc cuprates

    International Nuclear Information System (INIS)

    Ambrosch-Draxl, C.; Sherman, E.Ya.; Auer, H.; Thonhauser, T.

    2004-01-01

    We investigate the charge redistribution in high T c cuprates as a function of pressure, composition, and doping. To this extent we have performed first-principles calculations based on density functional theory for several representatives of the Hg based cuprates. In particular, we focus on the creation of holes in the copper-oxygen planes. Conclusions are drawn about the similarities and differences between the three parameters influencing the superconducting transition temperature. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. The insulation coordination and surge arrester design for HTS cable system in Icheon substation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: Hansang80@korea.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Yoon, Dong-Hee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Lee, Seung-Ryul [Korea Electrotechnology Research Institute, Naeson-dong, Uiwang-si, Gyeonggi-do 437-080 (Korea, Republic of); Yang, Byeong-Mo [Korea Electric Power Research Institute, Munji-dong, Yuseong-gu, Daejeon 305-760 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-01-15

    Highlights: ► It is necessary to study lightning response of the HTS cable. ► The analytic model has been developed for the HTS cable in the Icheon substation. ► Well-designed surge arrester has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes an insulation coordination and surge arrester design for HTS (High-Temperature Superconducting) cable system in Icheon substation in Korea. In the aspect of the economic analysis, since the HTS cable is very expensive, the insulation coordination to prevent the dielectric breakdown caused by the lightning surge should be considered carefully. Also, in the aspect of the power system reliability, since the HTS cable has much more capacity compared than conventional power cables and the ripple effect from the HTS cable failure may lead to the wide area blackout, an intensive study for insulation coordination from lightning surge is one of the most important considerations. In this paper, the insulation coordination for lightning surge is verified using HTS cable and power equipment models and the design of the proper surge arrester is proposed.

  20. “A Long March to Room Temperature Superconductivity”

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    In the last 29 years, great progress has been made in all areas of high temperature superconductivity (HTS) research from raising the transition temperature Tc and discovering new HTS compounds to developing theoretical models of HTS and fabricating and testing HTS prototype devices. For example, the Tc has been increased to 164 K in cuprate HgBa2Ca2Cu3Ox under 30 GPa in 1993 at Houston, more than 200 HTS compounds have been found, numerous theoretical models have been developed, and many HTS prototype devices have been tested to display superior performance to that of their non-superconducting counterparts. The strong electron-phonon interaction required for the high Tc observed has been considered to be able to induce catastrophic structure collapse before high Tc can be realized, and a novel magnetism-based interaction in different forms has thus been proposed for high Tc. However, room temperature superconductivity is still elusive and a comprehensive microscopic theory of HTS remains to be achieved. The...

  1. Electrical performance analysis of HTS synchronous motor based on 3D FEM

    International Nuclear Information System (INIS)

    Baik, S.K.; Kwon, Y.K.; Kim, H.M.; Lee, J.D.; Kim, Y.C.; Park, G.S.

    2010-01-01

    A 1-MW class superconducting motor with High-Temperature Superconducting (HTS) field coil is analyzed and tested. This machine is a prototype to make sure applicability aimed at generator and industrial motor applications such as blowers, pumps and compressors installed in large plants. This machine has the HTS field coil made of Bi-2223 HTS wire and the conventional copper armature (stator) coils cooled by water. The 1-MW class HTS motor is analyzed by 3D electromagnetic Finite Element Method (FEM) to get magnetic field distribution, self and mutual inductance, and so forth. Especially excitation voltage (Back EMF) is estimated by using the mutual inductance between armature and field coils and compared with experimental result. Open and short circuit tests were conducted in generator mode while a 1.1-MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests and also compared with the analysis results from FEM.

  2. Enhancing critical current density of cuprate superconductors

    Science.gov (United States)

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  3. Degradation characteristics of 2G HTS tapes with respect to an electrical breakdown

    International Nuclear Information System (INIS)

    Kang, Jong O; Lee, On You; Mo, Young Kyu; Kim, Jun Il; Bang, Seung Min; Lee, Hong Seok; Kang, Hyoung Ku; Lee, Jae Hun; Jang, Cheol Yeong

    2015-01-01

    The electrical insulation design for a superconducting coil system is important for developing high voltage superconducting apparatuses. Also, the degraded characteristics of superconducting tapes due to an electrical breakdown should be considered for superconducting coils design. In this study, the degradation characteristics of 2G high temperature superconducting (HTS) tapes were studied with respect to electrical breakdown tests. The degradation tests of 2G HTS tapes were performed with various stabilizer materials. The degradation characteristics of 2G HTS tapes such as critical current(Ic) and index number were observed by performing electrical breakdown tests. It was found that the characteristics such as Ic and index number can be degraded by an electrical breakdown. Moreover, it was concluded that the degradation characteristics of 2G HTS tapes were affected by a stabilizer material and applied breakdown voltage. The cross sectional view of 2G HTS tapes was observed by using a scanning electron microscope (SEM). As results, it is found that the degradation characteristics of 2G HTS tapes are concerned with hardness and electrical resistivity of stabilizer layers

  4. Development of the cryo-rotary joint for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    International Nuclear Information System (INIS)

    Miki, M; Felder, B; Tsuzuki, K; Izumi, M; Hayakawa, H

    2010-01-01

    We have studied a prototype of an axial-gap type synchronous motor with Gd-bulk HTS field-pole magnets since 2001. At the liquid nitrogen temperature, these bulks have trapped over 1 T inside the motor after being applied the pulsed field magnetization method. Increasing the flux of the field poles is the most straightforward way of improving the output power of the motor. Cooling down the bulk HTS magnets below the liquid nitrogen temperature provides an effective alternative to increase the magnetic flux trapping. In 2007, we exchanged the cryogen from liquid nitrogen to condensed neon. The key technology of this challenge is a rotary joint, introducing a fluid cryogen into the rotating body in the motor from the static reservoir. We have successfully developed a compact rotary joint which is smaller and lighter than the existent one (1/10 volume, 1/3 length and 1/12 weight). The present joint was manufactured and evaluated with liquid nitrogen and condensed neon. We presume a total heat loss of this rotary joint of less than 10 watts. Successful cooling and rotating tests of the bulk-HTS motor with this novel rotary joint are conducted.

  5. Development of the cryo-rotary joint for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Miki, M; Felder, B; Tsuzuki, K; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Hayakawa, H, E-mail: d082025@kaiyodai.ac.j [Kitano Seiki Co. Ltd., 7-17-3, Chuo, Ohta-ku, Tokyo 143-0024 (Japan)

    2010-06-01

    We have studied a prototype of an axial-gap type synchronous motor with Gd-bulk HTS field-pole magnets since 2001. At the liquid nitrogen temperature, these bulks have trapped over 1 T inside the motor after being applied the pulsed field magnetization method. Increasing the flux of the field poles is the most straightforward way of improving the output power of the motor. Cooling down the bulk HTS magnets below the liquid nitrogen temperature provides an effective alternative to increase the magnetic flux trapping. In 2007, we exchanged the cryogen from liquid nitrogen to condensed neon. The key technology of this challenge is a rotary joint, introducing a fluid cryogen into the rotating body in the motor from the static reservoir. We have successfully developed a compact rotary joint which is smaller and lighter than the existent one (1/10 volume, 1/3 length and 1/12 weight). The present joint was manufactured and evaluated with liquid nitrogen and condensed neon. We presume a total heat loss of this rotary joint of less than 10 watts. Successful cooling and rotating tests of the bulk-HTS motor with this novel rotary joint are conducted.

  6. Materials processing and machine applications of bulk HTS

    Science.gov (United States)

    Miki, M.; Felder, B.; Tsuzuki, K.; Xu, Y.; Deng, Z.; Izumi, M.; Hayakawa, H.; Morita, M.; Teshima, H.

    2010-12-01

    We report a refrigeration system for rotating machines associated with the enhancement of the trapped magnetic flux of bulk high-temperature superconductor (HTS) field poles. A novel cryogenic system was designed and fabricated. It is composed of a low-loss rotary joint connecting the rotor and a closed-cycle thermosiphon under a GM cryocooler using a refrigerant. Condensed neon gas was adopted as a suitable cryogen for the operation of HTS rotating machines with field poles composed of RE-Ba-Cu-O family materials, where RE is a rare-earth metal. Regarding the materials processing of the bulks HTS, thanks to the addition of magnetic particles to GdBa2Cu3O7 - d (Gd123) bulk superconductors an increase of more than 20% in the trapped magnetic flux density was achieved at liquid nitrogen temperature. Field-pole Gd123 bulks up to 46 mm in diameter were synthesized with the addition of Fe-B alloy magnetic particles and assembled into the synchronous machine rotor to be tested. Successful cooling of the magnetized rotor field poles down to 35 K and low-output-power rotating operation was achieved up to 720 rpm in the test machine with eight field-pole bulks. The present results show a substantial basis for making a prototype system of rotating machinery of applied HTS bulks.

  7. Materials processing and machine applications of bulk HTS

    Energy Technology Data Exchange (ETDEWEB)

    Miki, M; Felder, B; Tsuzuki, K; Xu, Y; Deng, Z; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Hayakawa, H [Kitano Seiki Co. Ltd, 7-17-3, Chuo, Ohta-ku, Tokyo 143-0024 (Japan); Morita, M; Teshima, H, E-mail: d082025@kaiyodai.ac.j [Nippon Steel Co. Ltd, 20-1, Shintomi, Huttsu-shi, Chiba 293-8511 (Japan)

    2010-12-15

    We report a refrigeration system for rotating machines associated with the enhancement of the trapped magnetic flux of bulk high-temperature superconductor (HTS) field poles. A novel cryogenic system was designed and fabricated. It is composed of a low-loss rotary joint connecting the rotor and a closed-cycle thermosiphon under a GM cryocooler using a refrigerant. Condensed neon gas was adopted as a suitable cryogen for the operation of HTS rotating machines with field poles composed of RE-Ba-Cu-O family materials, where RE is a rare-earth metal. Regarding the materials processing of the bulks HTS, thanks to the addition of magnetic particles to GdBa{sub 2}Cu{sub 3}O{sub 7-d} (Gd123) bulk superconductors an increase of more than 20% in the trapped magnetic flux density was achieved at liquid nitrogen temperature. Field-pole Gd123 bulks up to 46 mm in diameter were synthesized with the addition of Fe-B alloy magnetic particles and assembled into the synchronous machine rotor to be tested. Successful cooling of the magnetized rotor field poles down to 35 K and low-output-power rotating operation was achieved up to 720 rpm in the test machine with eight field-pole bulks. The present results show a substantial basis for making a prototype system of rotating machinery of applied HTS bulks.

  8. Progress in American Superconductor’s HTS wire and optimization for fault current limiting systems

    Energy Technology Data Exchange (ETDEWEB)

    Malozemoff, Alexis P., E-mail: amalozemoff@amsc.com

    2016-11-15

    Highlights: • AMSC HTS wire critical current needed for rotating machinery is doubled by 16 MeV Au irradiation. • Nonuniformity of HTS wires in power devices causes hot spot formation during power system faults. • Lower normal-state resistivity and critical current lower HTS wire hot spot heating during faults. • HTS wire hot spot heating in HTS cables during faults must stay below lN{sub 2} bubble nucleation point. • HTS wire can be designed to meet hot spot heating limits in fault current limiting cables. - Abstract: American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25–50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires’ critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and

  9. 1 MVA HTS-2G Generator for Wind Turbines

    Science.gov (United States)

    Kovalev, K. L.; Poltavets, V. N.; Ilyasov, R. I.; Verzhbitsky, L. G.; Kozub, S. S.

    2017-10-01

    The calculation, design simulations and design performance of 1 MVA HTS-2G (second-generation high-temperature superconductor) Generator for Wind Turbines were done in 2013-2014 [1]. The results of manufacturing and testing of 1 MVA generator are presented in the article. HTS-2G field coils for the rotor were redesigned, fabricated and tested. The tests have shown critical current of the coils, 41-45 A (self field within the ferromagnetic core, T = 77 K), which corresponds to the current of short samples at self field. Application of the copper inner frame on the pole has improved internal cooling conditions of HTS coil windings and reduced the magnetic field in the area, thereby increased the critical current value. The original construction of the rotor with a rotating cryostat was developed, which decreases the thermal in-flow to the rotor. The stator of 1 MW HTS-2G generator has been manufactured. In order to improve the specific weight of the generator, the wave (harmonic drive) multiplier was used, which provides increasing RPM from 15 RPM up to 600 RPM. The total mass of the multiplier and generator is significantly smaller compared to traditional direct-drive wind turbines generators [2-7]. Parameters of the multiplier and generator were chosen based on the actual parameters of wind turbines, namely: 15 RPM, power is 1 MVA. The final test of the assembled synchronous generator with HTS-2G field coils for Wind Turbines with output power 1 MVA was completed during 2015.

  10. Sensitive quench detection of the HTS coil using a co-winding coil

    International Nuclear Information System (INIS)

    Takagi, Tomohiro; Ariyama, Takahiro; Takao, Tomoaki; Tsukamoto, Osami

    2017-01-01

    The authors have studied the co-winding coil method (CW method) using the co-wound coil electrically insulated from the HTS coil. In this method, the quench is detected by the voltage difference between the coil of the HTS tape (HTS coil) and the coil of the normal conductor (CW coil). The voltage induced in the CW coil caused by the change of the magnetic field is almost the same as that in the HTS coil because the coils are magnetically coupled close to each other. Therefore, it is expected that the induced voltage will be canceled with high accuracy and that the resistive voltage in the HTS coil will be detected with greater sensitivity compared to the bridge balance method, which is used commonly. In this study, quench detection applying the CW method is demonstrated using an experimental double-pancake coil. A tape with the copper layer deposited on the polymer substrate was used as the insulated conductor wire to form the CW coil. An additional pancake coil was used to expose the experimental double-pancake coil to the external magnetic field asymmetrically. It was shown that the CW method can detect the resistive voltage with greater sensitivity even when the HTS coil was exposed to the changing asymmetric external magnetic field. (author)

  11. Integration of HTS Cables in the Future Grid of the Netherlands

    Science.gov (United States)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future transmission grid will obtain electrical power generated by decentralized renewable sources, together with large scale generation units located at the coastal region. In this way electrical power has to be distributed and transmitted over longer distances from generation to end user. Potential grid issues like: amount of distributed power, grid stability and electrical loss dissipation merit particular attention. High temperature superconductors (HTS) can play an important role in solving these grid problems. Advantages to integrate HTS components at transmission voltages are numerous: more transmittable power together with less emissions, intrinsic fault current limiting capability, lower ac loss, better control of power flow, reduced footprint, less magnetic field emissions, etc. The main obstacle at present is the relatively high price of HTS conductor. However as the price goes down, initial market penetration of several HTS components (e.g.: cables, fault current limiters) is expected by year 2015. In the full paper we present selected ways to integrate EHV AC HTS cables depending on a particular future grid scenario in the Netherlands.

  12. On the interplay of Jahn-Teller physics and Mott physics in cuprates

    International Nuclear Information System (INIS)

    Kamimura, H; Ushio, H

    2008-01-01

    The extended two-story house model which is now called the Kamimura-Suwa (K-S) model has clarified how the interplay of Mott physics and Jahn-Teller physics plays an important role in determining the superconducting as well as metallic state of underdoped cuprates. In this paper it is first pointed out for underdoped cuprates that Mott physics leads to the existence of local antiferromagnetic order constructed from the localized spins while that the anti-Jahn-Teller effect as a central issue of Jahn-Teller physics leads to the existence of two kinds of orbitals parallel and perpendicular to a CuO 2 plane whose states have nearly the same energy. As a result of the interplay of both physics the K-S model has shown that the exchange interactions between the spins of a localized hole and of a carrier hole play an important role in producing the coexistence of superconductivity and antiferromagnetism in underdoped cuprates. The appearance of d-wave superconductivity even in the phonon-involved mechanism is also shown to be due to the interplay of Jahn-Teller physics and Mott Physics. Brief review of these facts as well as the K-S model is given in this paper. More outstanding result in this paper is that the origin of pseudogap in the deeply underdoped regime has been clarified. In this paper it is shown theoretically for the first time that the so-called T* pseudogap observed in ARPES, STM and tunneling experiments below T c in underdoped cuprates corresponds to the real transition of photo-excited electrons from the occupied states in the originally conduction band below the superconducting gap to a free-electron state above the vacuum level. Thus we conclude that the T* pseudogap in the underdoped cuprates which increases with decreasing the hole concentration is not 'pseudo', but a real gap which exists even below T c

  13. Development of a 600 kJ HTS SMES

    International Nuclear Information System (INIS)

    Seong, K.C.; Kim, H.J.; Kim, S.H.; Sim, K.D.; Sohn, M.H.; Lee, E.Y.; Park, S.J.; Hahn, S.Y.; Park, M.W.

    2008-01-01

    This paper describes an overview of development on a 600 kJ high-temperature superconducting magnetic energy storage (HTS SMES). Our final goal will be the commercialization of MJ class HTS SMES system for the increase of power quality within 5 years. Hence, for this purpose, we have developed the research and development in 3 years. The purpose of this research is to develop a pilot system, which can protect the sensitivity loads from a momentary power interruption or a voltage sag

  14. Zeeman and orbital limiting magnetic fields in cuprates: The ...

    Indian Academy of Sciences (India)

    1IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, ... In cuprates, in a view where pairing correlations set in at the pseudogap ... the field Hc2 bounding the superconducting response and the pseudogap closing field.

  15. Low Friction Cryostat for HTS Power Cable of Dutch Project

    NARCIS (Netherlands)

    Chevtchenko, O.; Zuijderduin, R.; Smit, J.; Willen, D.; Lentge, H.; Thidemann, C.; Traeholt, C.

    2012-01-01

    Particulars of 6 km long HTS AC power cable for Amsterdam project are: a cable has to fit in an annulus of 160 mm, with only two cooling stations at the cable ends [1]. Application of existing solutions for HTS cables would result in excessively high coolant pressure drop in the cable, possibly

  16. Theory of superconductivity and spin excitations in cuprates

    Science.gov (United States)

    Plakida, Nikolay M.

    2018-06-01

    A microscopic theory of high-temperature superconductivity in strongly correlated systems as cuprates is presented. The two-subband extended Hubbard model is considered where the intersite Coulomb repulsion and electron-phonon interaction are taken into account. The low-energy spin excitations are considered within the t-J model.

  17. Mobile conduction-cooled HTS SMES

    International Nuclear Information System (INIS)

    Ren, L.; Tang, Y.; Li, J.; Shi, J.; Chen, L.; Guo, F.; Fang, J.; Wen, J.

    2010-01-01

    An immovable 35 kJ/7 kW high-T c superconducting magnetic energy storage (HTS SMES) system had been developed in the Electric Power System Dynamic Simulation Laboratory, Huazhong University of Science and Technology in 2005. In order to adapt for on-site experimental conditions, the mechanical configuration of the magnet is reinforced and the SMES system is assembled in a special container to be freighted to the actual power system for the feasibility study on different applications at different sites. The mobile HTS SMES system had withstood various kinds of poor road surfaces and then arrived at the experimental site on August 18, 2009. In this paper, the reconstructed configuration and the shock absorption of the magnet are presented. The field test results show that the mobile SMES system can operate on the power network at different locations and suppress effectively power fluctuation of the generator terminal.

  18. Development of non-destructive evaluation system using an HTS-SQUID gradiometer for magnetized materials

    Science.gov (United States)

    Kawano, J.; Tsukamoto, A.; Adachi, S.; Oshikubo, Y.; Hato, T.; Tanabe, K.; Okamura, T.

    We have developed a new eddy-current non-destructive evaluation (NDE) system using an HTS SQUID gradiometer with the aim of applying it to practical materials with magnetization. The new NDE system employs a LN2-cooled external Cu pickup coil and an HTS SQUID chip placed in a magnetic shield made of HTS material. The HTS SQUID chip consists of an HTS planar gradiometer manufactured by using a ramp-edge junction technology and a multi-turn HTS thin film input coil coupled with the flip-chip configuration. The first-order coaxial gradiometric Cu pickup coil with a diameter of 16 mm and the baseline of 5.6 mm was used in the present NDE experiments. By using this NDE system, we could observe defect-induced magnetic signals without an appreciable influence of magnetization up to 10 mT. We also examined the ability of detecting deep-lying defects and compared with the results obtained using our previous NDE system.

  19. Condensation energy of the superconducting bilayer cuprates

    Indian Academy of Sciences (India)

    cuprates also depends on the number of CuO2 layers per unit cell and the extent of doping. In a bilayer or ... unit cell is smaller than the adjacent layers in a single layer system; therefore it is natural to include interlayer .... energy conservation principle, the change in the kinetic energy of the electrons in the out- of-plane ...

  20. Oxygen diffusion in cuprate superconductors

    International Nuclear Information System (INIS)

    Routbort, J.L.; Rothman, S.J.

    1995-01-01

    Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La 2-x Sr x CuO 4 , YBa 2 Cu 3 O 7- δ, YBa 2 Cu 4 O 8 , and the Bi 2 Sr 2 Ca n-1 Cu n O 2+4 (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible

  1. Quench detection/protection of an HTS coil by AE signals

    International Nuclear Information System (INIS)

    Yoneda, M.; Nanato, N.; Aoki, D.; Kato, T.; Murase, S.

    2011-01-01

    A quench detection/protection system based on measuring AE signals was developed. The system was tested for a Bi2223 coil. Temperature rise after a quench occurrence was restrained at very low value. The normal zone propagation velocities in high T c superconductors are slow at high operation temperature and therefore local and excessive temperature rise generates at quench occurrence, and then the superconductors are degraded or burned. Therefore it is essential to detect the temperature rise in high T c superconducting (HTS) coils as soon as possible and protect them. The authors have presented a quench detection method for HTS coils by time-frequency visualization of AE signals and have shown its usefulness for a HTS coil with height and outer diameter of 40-50 mm. In this paper, the authors present a quench detection/protection system based on superior method in quench detection time to the previous method and show its usefulness for a larger HTS coil (height and outer diameter: 160-190 mm) than the previous coil.

  2. Flop transitions in cuprate and color superconductors: From SO(5) to SO(10) unification?

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekharan, S.; Chudnovsky, V.; Schlittgen, B.; Wiese, U.-J

    2001-03-01

    The phase diagrams of cuprate superconductors and of QCD at non-zero baryon chemical potential are qualitatively similar. The Neel phase of the cuprates corresponds to the chirally broken phase of QCD, and the high-temperature superconducting phase corresponds to the color superconducting phase. In the SO(5) theory for the cuprates the SO(3){sub s} spin rotational symmetry and the U(1){sub em} gauge symmetry of electromagnetism are dynamically unified. This suggests that the SU(2){sub L} x SU(2){sub R} x U(1){sub B} chiral symmetry of QCD and the SU(3){sub c} color gauge symmetry may get unified to SO(10). Dynamical enhancement of symmetry from SO(2){sub s} x Z(2) to SO(3){sub s} is known to occur in anisotropic antiferromagnets. In these systems the staggered magnetization flops from an easy 3-axis into the 12-plane at a critical value of the external magnetic field. Similarly, the phase transitions in the SO(5) and SO(10) models are flop transitions of a 'superspin'. Despite this fact, a renormalization group flow analysis in 4 -- {epsilon} dimensions indicates that a point with full SO(5) or SO(10) symmetry exists neither in the cuprates nor in QCD.

  3. Flop transitions in cuprate and color superconductors: From SO(5) to SO(10) unification?

    International Nuclear Information System (INIS)

    Chandrasekharan, S.; Chudnovsky, V.; Schlittgen, B.; Wiese, U.-J.

    2001-01-01

    The phase diagrams of cuprate superconductors and of QCD at non-zero baryon chemical potential are qualitatively similar. The Neel phase of the cuprates corresponds to the chirally broken phase of QCD, and the high-temperature superconducting phase corresponds to the color superconducting phase. In the SO(5) theory for the cuprates the SO(3) s spin rotational symmetry and the U(1) em gauge symmetry of electromagnetism are dynamically unified. This suggests that the SU(2) L x SU(2) R x U(1) B chiral symmetry of QCD and the SU(3) c color gauge symmetry may get unified to SO(10). Dynamical enhancement of symmetry from SO(2) s x Z(2) to SO(3) s is known to occur in anisotropic antiferromagnets. In these systems the staggered magnetization flops from an easy 3-axis into the 12-plane at a critical value of the external magnetic field. Similarly, the phase transitions in the SO(5) and SO(10) models are flop transitions of a 'superspin'. Despite this fact, a renormalization group flow analysis in 4 -- ε dimensions indicates that a point with full SO(5) or SO(10) symmetry exists neither in the cuprates nor in QCD

  4. Loss analysis of a 1 MW class HTS synchronous motor

    International Nuclear Information System (INIS)

    Baik, S K; Kwon, Y K; Kim, H M; Lee, J D; Kim, Y C; Park, H J; Kwon, W S; Park, G S

    2009-01-01

    The HTS (High-Temperature Superconducting) synchronous motor has advantages over the conventional synchronous motor such as smaller size and higher efficiency. Higher efficiency is due to smaller loss than the conventional motor, so it is important to do loss analysis in order to develop a machine with higher efficiency. This paper deals with machine losses those are dissipated in each part of a HTS synchronous motor. These losses are analyzed theoretically and compared with loss data obtained from experimental results of a 1 MW class HTS synchronous motor. Each machine loss is measured based on IEEE 115 standard and the results are analyzed and considered based on the manufacturing of the test machine.

  5. AC Application of HTS Conductors in Highly Dynamic Electric Motors

    International Nuclear Information System (INIS)

    Oswald, B; Best, K-J; Setzer, M; Duffner, E; Soell, M; Gawalek, W; Kovalev, L K

    2006-01-01

    Based on recent investigations we design highly dynamic electric motors up to 400 kW and linear motors up to 120 kN linear force using HTS bulk material and HTS tapes. The introduction of HTS tapes into AC applications in electric motors needs fundamental studies on double pancake coils under transversal magnetic fields. First theoretical and experimental results on AC field distributions in double-pancake-coils and corresponding AC losses will be presented. Based on these results the simulation of the motor performance confirms extremely high power density and efficiency of both types of electric motors. Improved characteristics of rare earth permanent magnets used in our motors at low temperatures give an additional technological benefit

  6. HTS power lead testing at the Fermilab magnet test facility

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; /Fermilab

    2005-08-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV C0 interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads.

  7. HTS power lead testing at the Fermilab magnet test facility

    International Nuclear Information System (INIS)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.

    2005-01-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV CO interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads

  8. Development and construction of an HTS rotor for ship propulsion application

    Energy Technology Data Exchange (ETDEWEB)

    Nick, W; Frank, M; Kummeth, P; Rabbers, J J; Wilke, M; Schleicher, K, E-mail: wolfgang.nick@siemens.co [Siemens AG, CT PS 3, Guenther-Scharowsky-Str. 1, D-91050 Erlangen (Germany)

    2010-06-01

    A low-speed high-torque HTS machine is being developed at Siemens on the basis of previous steps (400kW demonstrator, 4MVA generator). The goal of the programme is to utilize the characteristic advantages offered by electrical machines with HTS-excited rotor, such as efficiency, compact size, and dynamic performance. To be able to address future markets, requirements from ship classification as well as potential customers have to be met. Electromagnetic design cannot be focused on nominal operation only, but has to deal with failure modes like short circuit too. Utilization of superconductor requires to consider margins taking into account that the windings have to operate reliably not only in 'clean' laboratory conditions, but in rough environment with the stator connected to a power converter. Extensive quality control is needed to ensure homogenous performance (current capacity, electrical insulation, dimensions) for the large quantity of HTS (45 km). The next step was to set up and operate a small-scale 'industrial' manufacturing process to produce HTS windings in a reproducible way, including tests at operating conditions. A HTS rotor includes many more components compared to a conventional one, so tough geometric tolerances must be met to ensure robust performance of the system. All this gives a challenging task, which will be concluded by cold testing of the rotor in a test facility. Then the rotor will be delivered for assembly to the stator. In following machine tests the performance of the innovative HTS drive system will be demonstrated.

  9. Analysis of an HTS coil for large scale superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Young; Lee, Se Yeon; Choi, Kyeong Dal; Park, Sang Ho; Hong, Gye Won; Kim, Sung Soo; Kim, Woo Seok [Korea Polytechnic University, Siheung (Korea, Republic of); Lee, Ji Kwang [Woosuk University, Wanju (Korea, Republic of)

    2015-06-15

    It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

  10. Analysis of an HTS coil for large scale superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Lee, Ji Young; Lee, Se Yeon; Choi, Kyeong Dal; Park, Sang Ho; Hong, Gye Won; Kim, Sung Soo; Kim, Woo Seok; Lee, Ji Kwang

    2015-01-01

    It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work

  11. The Effect of Magnetic Field on HTS Leads What Happens when thePower Fails at RAL?

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.

    2007-02-14

    The key to being able to operate the MICE superconducting solenoids on small coolers is the use of high temperature superconducting (HTS) leads between the first stage of the cooler and the magnet, which operates at around 4.2 K. Because MICE magnets are not shielded, all of the MICE magnets have a stray magnetic field in the region where the coolers and the HTS leads are located. The behavior of the HTS leads in a magnetic field depends strongly on the HTS material used for the leads and the temperature of the cooler first stage temperature. The HTS leads can be specified to operate at the maximum current for the magnet. This report shows how the HTS leads can be specified for use the MICE magnets. MICE magnets take from 1.3 hours (the tracker solenoids) to 3.7 hours (the coupling magnet) to charge to the highest projected operating currents. If the power fails, the cooler and the upper ends of the HTS leads warm up. The question is how one can discharge the magnet to protect the HTS leads without quenching the MICE magnets. This report describes a method that one can use to protect the HTS leads in the event of a power failure at the Rutherford Appleton Laboratory (RAL).

  12. HTS Teologiese Studies / Theological Studies

    African Journals Online (AJOL)

    HTS Teologiese Studies/Theological Studies is an acclaimed Open Access journal with broad coverage that promotes multidisciplinary, religious, and biblical aspects of studies in the international theological arena. The journal's publication criteria are based on high ethical standards and the rigor of the methodology and ...

  13. Study of HTS Wires at High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Turrioni, D.; Barzi, E.; Lamm, M.J.; Yamada, R.; Zlobin, A.V.; Kikuchi, A.; /Fermilab

    2009-01-01

    Fermilab is working on the development of high field magnet systems for ionization cooling of muon beams. The use of high temperature superconducting (HTS) materials is being considered for these magnets using Helium refrigeration. Critical current (I{sub c}) measurements of HTS conductors were performed at FNAL and at NIMS up to 28 T under magnetic fields at zero to 90 degree with respect to the sample face. A description of the test setups and results on a BSCCO-2223 tape and second generation (2G) coated conductors are presented.

  14. Centrifuge advances using HTS magnetic bearings

    Science.gov (United States)

    Werfel, F. N.; Flögel-Delor, U.; Rothfeld, R.; Wippich, D.; Riedel, T.

    2001-05-01

    Passive magnetic bearings are of increasing technical interest. We performed experiments with centrifugal rotors to analyze gyroscopic forces in terms imbalance, rotor elasticity and damping. Centrifuge rotors need to be operated soft and stable without whirling the sediments. In order to evaluate optimal parameters critical and resonance behaviors are investigated. Eccentricities up 2 mm are safely passed by accelerating test wheels. In a simple model we describe the effect of passing critical rotational speeds. Measurements of bearing properties and wheel performance are presented. We have constructed a first prototype centrifuge designed with a HTS double bearing which operates a titanium rotor safely up to 30 000 rpm. A 15 W Stirling cooler serves cryogenics of the YBCO stators. From the experiments design guidelines for centrifugal applications with HTS bearings are given.

  15. Performance test of a 1 MW class HTS synchronous motor for industrial application

    International Nuclear Information System (INIS)

    Kwon, Y.K.; Kim, H.M.; Baik, S.K.; Lee, E.Y.; Lee, J.D.; Kim, Y.C.; Lee, S.H.; Hong, J.P.; Jo, Y.S.; Ryu, K.S.

    2008-01-01

    This paper deals with development activities of high temperature superconducting (HTS) synchronous motor at DOOSAN heavy industry and Korea Electrotechnology Research Institute (KERI) in Korea, and is sponsored by DAPAS program which is supported by Korean government. The final aim of the project is realization of HTS motor in the field of industry such as large driving pumps, fans and compressors for utility and industrial environments. At present time, 1 MW HTS motor is developed for the purpose to fully represent the design and manufacturing issues for the larger capacity machine. The number of pole and rotating speed of machine are 2 pole and 3600 rpm. The HTS field coil of the developed motor is cooled by way of neon thermosyphon mechanism and the stator coil is cooled by water through hollow copper conductor. This paper describes status of 1 MW HTS motor development, such as design, fabrication and performance test results, which was conducted at steady state in generator mode and motor mode

  16. Levitation force relaxation under reloading in a HTS Maglev system

    International Nuclear Information System (INIS)

    He Qingyong; Wang Jiasu; Wang Suyu; Wang Jiansi; Dong Hao; Wang Yuxin; Shao Senhao

    2009-01-01

    The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle

  17. Modelling, Construction, and Testing of a Simple HTS Machine Demonstrator

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Abrahamsen, Asger Bech

    2011-01-01

    This paper describes the construction, modeling and experimental testing of a high temperature superconducting (HTS) machine prototype employing second generation (2G) coated conductors in the field winding. The prototype is constructed in a simple way, with the purpose of having an inexpensive way...... of validating finite element (FE) simulations and gaining a better understanding of HTS machines. 3D FE simulations of the machine are compared to measured current vs. voltage (IV) curves for the tape on its own. It is validated that this method can be used to predict the critical current of the HTS tape...... installed in the machine. The measured torque as a function of rotor position is also reproduced by the 3D FE model....

  18. Levitation force relaxation under reloading in a HTS Maglev system

    Energy Technology Data Exchange (ETDEWEB)

    He Qingyong [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: hedoubling@gmail.com; Wang Jiasu; Wang Suyu; Wang Jiansi; Dong Hao; Wang Yuxin; Shao Senhao [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2009-02-01

    The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle.

  19. Development and characterization of magnetic HTS bearings for a 400 kW synchronous HTS motor

    International Nuclear Information System (INIS)

    Kummeth, P; Ries, G; Nick, W; Neumueller, H-W

    2004-01-01

    Promising results of static and dynamic investigations on various journal type test bearings encouraged us to develop a scaled-up HTS bearing, able to carry the HTS rotor of a 400 kW superconducting motor. The stator, a YBCO hollow cylinder of 203 mm inner diameter and 250 mm length, is cooled by liquid nitrogen. Permanent magnet rings with a diameter of 200 mm were mounted on a shaft with alternating polarity. Characterization of the bearing capacity was performed with three different YBCO stators at temperatures between 66 and 86 K in a test set-up. A significant influence of the temperature was found. At a stator temperature of 72 K and a rotation frequency of 25 Hz (corresponding to nominal motor speed) a radial bearing force of 2700 N was measured for the shaft at centre position. Under rotation of the shaft the bearing capacity is reduced. At present our results range within the highest radial bearing capacities reported world-wide

  20. Research of a 600 kJ HTS-SMES system

    International Nuclear Information System (INIS)

    Seong, K.C.; Kim, H.J.; Kim, S.H.; Park, S.J.; Woo, M.H.; Hahn, S.Y.

    2007-01-01

    This paper describes an overview of researches on a 600 kJ high temperature superconducting magnetic energy storage (HTS-SMES) system in Korea. This project is scheduled to be conducted over three years from September 2004 to August 2007, supported by the Ministry of Commerce, Industry and Energy (MOCIE) of Korea. This project is built based on collaboration among industries, universities, and laboratories. This paper describes current status of the 600 kJ HTS-SMES system in Korea

  1. Thermal conductivity measurement of HTS tapes and stacks for current lead applications

    International Nuclear Information System (INIS)

    Schwarz, Michael; Weiss, Klaus-Peter; Heller, Reinhard; Fietz, Walter H.

    2009-01-01

    The use of high-temperature-superconductors (HTS) within current leads offers a high potential to save cooling-power. The principle of HTS current leads is well established, e.g. for particle accelerators (LHC-CERN) but also on the commercial sector, which offer HTS current leads ready for use in small scale magnets and magnets systems. Future fusion machines currently under construction like ITER, W7-X or JT-60SA also will use HTS current leads. At the moment the standard material for HTS current leads is a Bi 2 Sr 2 Ca 2 Cu 3 O x (BSCCO)-AgAu composite tape. The common way to receive high current capacity current leads is to form stacks by sintering or soldering these tapes together. The solder changes the thermal conductivity of the stacks compared to the single tape in the temperature range from 4 K to 60 K. To estimate the heat flux from the warm environment to the cold application the measurement of the thermal conductivity of the soldered stack is mandatory. Therefore the thermal conductivity of stacks with different number of tapes is investigated. To measure the thermal conduction in the current flow direction, the axial heat flow method is used. Combining these results with FEM simulations gives the possibility to estimate the thermal conductivity normal to the flat tape plane. The resulting anisotropic thermal conductivity can be used to model the behaviour of the HTS tape under thermal disturbances more accurately.

  2. Hybrid crystals of cuprates and iron-based superconductors

    Science.gov (United States)

    Xia, Dai; Cong-Cong, Le; Xian-Xin, Wu; Jiang-Ping, Hu

    2016-07-01

    We propose two possible new compounds, Ba2CuO2Fe2As2 and K2CuO2Fe2Se2, which hybridize the building blocks of two high temperature superconductors, cuprates and iron-based superconductors. These compounds consist of square CuO2 layers and antifluorite-type Fe2 X 2 (X = As, Se) layers separated by Ba/K. The calculations of binding energies and phonon spectra indicate that they are dynamically stable, which ensures that they may be experimentally synthesized. The Fermi surfaces and electronic structures of the two compounds inherit the characteristics of both cuprates and iron-based superconductors. These compounds can be superconductors with intriguing physical properties to help to determine the pairing mechanisms of high T c superconductivity. Project supported by the National Basic Research Program of China (Grant No. 2015CB921300), the National Natural Science Foundation of China (Grant Nos. 1190020 and 11334012), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07000000).

  3. Normal state Raman spectra of high-Tc cuprates

    International Nuclear Information System (INIS)

    Bishoyi, K.C.; Rout, G.C.; Behera, S.N.

    2003-01-01

    We present a microscopic theory to explain Raman spectra of high-T c cuprates R 2-x M x CuO 4 in the normal state. We used electronic Hamiltonian prescribed by Fulde in presence of anti-ferromagnetism. Phonon interaction to the hybridization between the conduction electrons of the system and the f-electrons has been incorporated in the calculation. The phonon spectral density is calculated by the Green function technique of Zubarev at zero wave vector and finite (room) temperature limit. Parameter dependence of Raman active phonon frequencies are studied by varying model parameters of the system i.e. the position of f-level (ε f ), the effective electron-phonon coupling strength (g), the staggered magnetic field (h 1 ), and the hybridization parameter (v). The four Raman active peaks (P 1 to P 4 ) represent the electronic states of the atomic sub-systems of the cuprate systems. They show up as phonon excitations due to the coupling of the phonon to the electrons and the anti-ferromagnetic gap. (author)

  4. Rotor compound concept for designing an industrial HTS synchronous motor

    International Nuclear Information System (INIS)

    Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.

    2013-01-01

    Highlights: • The superconducting tapes are used in the industrial synchronous motor winding due to their electrical characteristics. • The high magnetic field with no electric loss is obtainable by using the superconducting rotor coils. • The rotor core can be replaced by light non-magnetic materials which drops the rotor total weight up to 50%. • Decreasing the rotor weight was verified by FEM analyses for a sample motor. -- Abstract: Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model

  5. A spatial interpretation of emerging superconductivity in lightly doped cuprates

    Science.gov (United States)

    Deutscher, Guy; de Gennes, Pierre-Gilles

    The formation of domains comprising alternating 'hole rich' and 'hole poor' ladders recently observed by Scanning Tunneling Microscopy by Kohsaka et al., on lightly hole doped cuprates, is interpreted in terms of an attractive mechanism which favors the presence of doped holes on Cu sites located each on one side of an oxygen atom. This mechanism leads to a geometrical pattern of alternating hole-rich and hole-poor ladders with a periodicity equal to 4 times the lattice spacing in the CuO plane, as observed experimentally. Cuprates supraconducteurs peu dopés : une interprétation des structures spatiales. Des arrangements électroniques réguliers ont été détectés récemment par Kohsaka et al. dans des cuprates sous dopés (via une sonde tunnel locale). Certaines paires Cu-O-Cu sont « actives », et forment une échelle. Les autres sites sont peu actifs. Pour expliquer ces structures, nous postulons que, lorsqu'une liaison Cu-O-Cu est occupée par deux trous, la distance (Cu-Cu) rétrécit et l'intégrale de transfert (t) est fortement augmentée. Ceci peut engendrer des paires localisées (réelles ou virtuelles). Aux taux de dopage étudiés, la période de répétition vaudrait 4 mailles élémentaires.

  6. Semiempirical search for oxide superconductors based on bond valence sums

    International Nuclear Information System (INIS)

    Tanaka, S.; Fukushima, N.; Niu, H.; Ando, K.

    1992-01-01

    Relationships between crystal structures and electronic states of layered transition-metal oxides are analyzed in the light of bond valence sums. Correlations between the superconducting transition temperature T c and the bond-valence-sum parameters are investigated for the high-T c cuprate compounds. Possibility of making nonsuperconducting oxides superconducting is discussed. (orig.)

  7. Thermal analysis of the conduction cooling system for HTS SMES system of 600 kJ class

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Yeom, Han Kil; Park, Seong Je; Kim, Hyo Bong; Koh, Deuk Yong

    2007-01-01

    SMES systems need cryogenic cooling systems. Conduction cooling system has more effective, compact structure than cryogen. In general, 2 stage GM cryocoolers are used for conduction cooling of HTS SMES system. 1st stages of cryocoolers are used for the cooling of current leads and radiation shields, and 2nd stages of cryocoolers for HTS coil. For the effective conduction cooling of the HTS SMES system, the temperature difference between the cryocooler and HTS coil should be minimized. In this paper, a cryogenic conduction cooling system for HTS SMES is analyzed to evaluate the performance of the cooling system. The analysis is carried out for the steady state with the heat generation of the HTS coil and effects of the thermal contact resistance. The results show the effects of the heat generation and thermal contact resistance on the temperature distribution

  8. Status of the technology development of large scale HTS generators for wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Le, T. D.; Kim, J. H.; Kim, D. J.; Boo, C. J.; Kim, H. M. [Jeju National University, Jeju (Korea, Republic of)

    2015-06-15

    Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design-operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study.

  9. Status of the technology development of large scale HTS generators for wind turbine

    International Nuclear Information System (INIS)

    Le, T. D.; Kim, J. H.; Kim, D. J.; Boo, C. J.; Kim, H. M.

    2015-01-01

    Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design-operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study

  10. Observation of 45 GHz current waveforms using HTS sampler

    International Nuclear Information System (INIS)

    Maruyama, M.; Suzuki, H.; Hato, T.; Wakana, H.; Nakayama, K.; Ishimaru, Y.; Horibe, O.; Adachi, S.; Kamitani, A.; Suzuki, K.; Oshikubo, Y.; Tarutani, Y.; Tanabe, K.

    2005-01-01

    We succeeded in observing high-frequency current waveforms up to 45 GHz using a high-temperature superconducting (HTS) sampler. In this experiment, we used a sampler circuit with a superconducting pickup coil, which magnetically detects current signals flowing through a micro-strip line on a printed board placed outside the cryochamber. This type of measurement enables non-contact current-waveform observation that seems useful for analyses of EMI, defects in LSI, etc. Computer simulation reveals that one of our latest versions of HTS sampler circuits having Josephson transmission lines with optimized biases as buffers has a potential of sampling high-frequency signals with a bandwidth above 100 GHz. To realize the circuit parameters required in the simulations, we developed an HTS circuit fabrication process employing a lower ground plane structure with SrSnO 3 insulating layers. We consider that improvement of the circuit fabrication process and optimization of the pickup coil lead to much higher signal frequency observable by the sampler

  11. Assessment of High Temperature Superconducting (HTS) electric motors for rotorcraft propulsion

    Science.gov (United States)

    Doernbach, Jay

    1990-01-01

    The successful development of high temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. Applications of high temperature superconductors have been envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft and solar powered aircraft. The potential of HTS electric motors and generators for providing primary shaft power for rotorcraft propulsion is examined. Three different sized production helicopters were investigated; namely, the Bell Jet Ranger, the Sikorsky Black Hawk and the Sikorsky Super Stallion. These rotorcraft have nominal horsepower ratings of 500, 3600, and 13400 respectively. Preliminary results indicated that an all-electric HTS drive system produces an improvement in rotorcraft Takeoff Gross Weight (TOGW) for those rotorcraft with power ratings above 2000 horsepower. The predicted TOGW improvements are up to 9 percent for the medium-sized Sikorsky Black Hawk and up to 20 percent for the large-sized Sikorsky Super Stallion. The small-sized Bell Jet Ranger, however, experienced a penalty in TOGW with the all-electric HTS drive system.

  12. Modelling and construction of a compact 500 kg HTS magnetic bearing

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Rothfeld, R; Goebel, B; Wippich, D; Riedel, T

    2005-01-01

    The progress of heavy-load HTS bearings depends on improvements in design, material quality and reliable cooling. We have constructed, manufactured and tested a 200 mm HTS journal bearing with a thermally encapsulated YBCO ring. For maximum force the larger gap due to the bearing cryostat (>4 mm) requires adjustment of the magnetic excitation pole distance and the Fe collector shim thickness. HTS material progress is obtained by top-seeded single- or multiple-grain growth which increases the averaged trapped magnetic flux density. Successful YBCO ring growth with radial c axis distribution by seeding the inner ring surface has been performed. The encapsulation ensures a substantially reduced cryogenic effort and stabilizes bearing operation at 78-79 K

  13. Chasing the cuprates with dilatonic dyons

    Energy Technology Data Exchange (ETDEWEB)

    Amoretti, Andrea [Department of Applied Mathematics and Theoretical Physics, University of Cambridge,Cambridge, CB3 OWA (United Kingdom); Baggioli, Matteo [Institut de Física d’Altes Energies (IFAE), Universitat Autònoma de Barcelona,The Barcelona Institute of Science and Technology,Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Magnoli, Nicodemo [Dipartimento di Fisica, Università di Genova, and I.N.F.N. - Sezione di Genova,via Dodecaneso 33, I-16146, Genova (Italy); Musso, Daniele [Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, I-34151 Trieste (Italy)

    2016-06-20

    Magnetic field and momentum dissipation are key ingredients in describing condensed matter systems. We include them in gauge/gravity and systematically explore the bottom-up panorama of holographic IR effective field theories based on bulk Einstein-Maxwell Lagrangians plus scalars. The class of solutions here examined appears insufficient to capture the phenomenology of charge transport in the cuprates. We analyze in particular the temperature scaling of the resistivity and of the Hall angle. Keeping an open attitude, we illustrate weak and strong points of the approach.

  14. A simple model for normal state in- and out-of-plane resistivities of hole doped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Naqib, S.H., E-mail: shnaqib.physicsru@gmail.com [Department of Physics, University of Rajshahi, Rajshahi 6205 (Bangladesh); Azam, M. Afsana [Department of Physics, University of Rajshahi, Rajshahi 6205 (Bangladesh); Department of Physics, DUET, Gazipur, Dhaka (Bangladesh); Uddin, M. Borhan [Department of Physics, University of Rajshahi, Rajshahi 6205 (Bangladesh); Department of CSE, International Islamic University Chittagong, Sitakunda, IIUC Rd, Kumira 4314 Bangladesh (Bangladesh); Cole, J.R. [Cambridge Flow Solutions Ltd., Histon, Cambridge CB24 9AD (United Kingdom)

    2016-05-15

    Highlights: • In- and out-of-plane charge transport have been investigated for hole doped cuprates. • Effect of quantum critical point (QCP) on non-Fermi liquid behavior has been explored. • The impact of pseudogap (PG) on carrier scattering rate has been studied. • In- and out-of plane resistivities have been modeled by considering the QCP and the PG. • The model explains the non-Fermi liquid charge transport in hole doped cuprates. - Abstract: The highly anisotropic and qualitatively different nature of the normal state in- and out-of-plane charge dynamics in high-T{sub c} cuprates cannot be accommodated within the conventional Boltzmann transport theory. The variation of in-plane and out-of-plane resistivities with temperature and hole content are anomalous and cannot be explained by Fermi-liquid theory. In this study, we have proposed a simple phenomenological model for the dc resistivity of cuprates by incorporating two firmly established generic features of all hole doped cuprate superconductors—(i) the pseudogap in the quasiparticle energy spectrum and (ii) the T-linear resistivity at high temperatures. This T-linear behavior over an extended temperature range can be attributed to a quantum criticality, affecting the electronic phase diagram of cuprates. Experimental in-plane and out-of-plane resistivities (ρ{sub p}(T) and ρ{sub c}(T), respectively) of double-layer Y(Ca)123 have been analyzed using the proposed model. This phenomenological model describes the temperature and the hole content dependent resistivity over a wide range of temperature and hole content, p. The characteristic PG energy scale, ε{sub g}(p), extracted from the analysis of the resistivity data, agrees quite well with those found in variety of other experiments. Various other extracted parameters from the analysis of ρ{sub p}(T) and ρ{sub c}(T) data showed systematic trends with changing hole concentration. We have discussed important features found from the analysis in

  15. Determination of Retardation Effects in the High Tc Cuprates from Sharvin Contact Measurements

    International Nuclear Information System (INIS)

    Deutscher, G.

    1995-01-01

    It is well known that retardation effects are essential to allow the attractive part of the electron-electron interaction (for instance, phonon mediated) to overcome the Coulomb repulsion. In new superconductors such as the cuprates for which the interaction is a priori unknown, it is therefore essential to determine the retarded and non retarded parts of the interaction. We show how this can be achieved by an analysis of Sharvin contact measurements between a noble metal tip and a cuprate. It turns out that both the retarded and non retarded parts are large, the former being however larger than the later

  16. AC losses in horizontally parallel HTS tapes for possible wireless power transfer applications

    Science.gov (United States)

    Shen, Boyang; Geng, Jianzhao; Zhang, Xiuchang; Fu, Lin; Li, Chao; Zhang, Heng; Dong, Qihuan; Ma, Jun; Gawith, James; Coombs, T. A.

    2017-12-01

    This paper presents the concept of using horizontally parallel HTS tapes with AC loss study, and the investigation on possible wireless power transfer (WPT) applications. An example of three parallel HTS tapes was proposed, whose AC loss study was carried out both from experiment using electrical method; and simulation using 2D H-formulation on the FEM platform of COMSOL Multiphysics. The electromagnetic induction around the three parallel tapes was monitored using COMSOL simulation. The electromagnetic induction and AC losses generated by a conventional three turn coil was simulated as well, and then compared to the case of three parallel tapes with the same AC transport current. The analysis demonstrates that HTS parallel tapes could be potentially used into wireless power transfer systems, which could have lower total AC losses than conventional HTS coils.

  17. Numerical and experimental comparison of electromechanical properties and efficiency of HTS and ferromagnetic hysteresis motors

    International Nuclear Information System (INIS)

    Inacio, D; Inacio, S; Pina, J; Goncalves, A; Neves, M Ventim; Rodrigues, A Leao

    2008-01-01

    Hysteresis motors are very attractive in a wide range of fractional power applications, due to its torque-speed characteristics and simplicity of construction. This motor's performance is expected to improve when HTS rotors are used, and in fact, hysteresis motors have shown to be probably the most viable electrical machines using HTS materials. While these motors, either conventional or HTS, are both hysteresis motors, they base their operation on different physical phenomena: hysteretic behaviour in conventional ferromagnetic materials is due to the material's non-linear magnetic properties, while in HTS materials the hysteresis has an ohmic nature and is related with vortices' dynamics. In this paper, theoretical aspects of both conventional and HTS hysteresis motors are discussed, its operation principles are highlighted, and the characteristics of both motors are presented. The characteristics, obtained both by experimental tests and numerical simulation (made with commercial software), are compared, in order to evaluate not only the motor's electromechanical performances but also the overall systems efficiency, including cryogenics for the HTS device

  18. Characteristics of joint resistance with different kinds of HTS tapes for heater trigger switch

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Je Yull; Park, Young Gun; Lee, Woo Seung; Jo, Hyun Chul; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Yoon, Yong Soo [Shin Ansan University, Ansan (Korea, Republic of)

    2014-03-15

    Recently, many researches on the system of superconducting power supply and superconducting magnetic energy storage (SMES) using high temperature superconducting (HTS) tapes has been progressed. Those kinds of superconducting devices use the heater trigger switches that have a control delay problem at moments of heating up and cooling down. One way to reduce the time delay is using a different HTS tape at trigger part. For example, HTS tape having lower critical temperature can reduce time delay of heating up and heating down stage for heater trigger operation. This paper deals with resistances joint with different kinds of HTS tapes which have different properties to verify usefulness of the suggested method. Three kinds of commercial HTS tapes with different specifications are selected as samples and two kinds of solders are used for comparison. Joint is performed with temperature and pressure controllable joint machine and the joint characteristics are analyzed under the repeatable conditions.

  19. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc, max ≈ 95 K and (Bi 1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc, max ≈ 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to (π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is

  20. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc,max ~95 K and (Bi1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc,max 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major di erences in the band structure. First, the Fermi surface segments close to ( π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is consistent with

  1. Transient analysis of an HTS DC power cable with an HVDC system

    Science.gov (United States)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-11-01

    The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  2. Conceptual Design of a Single Phase 33 MVA HTS Transformer with a Tertiary Winding

    International Nuclear Information System (INIS)

    Lee, S. W.; Kim, W. S.; Hahn, S. Y.; Hwang, Y. I.; Choi, K. D.

    2006-01-01

    We have proposed a 3 phase, 100 MVA, 154 kV class HTS transformer substituting for a 60 MVA conventional transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The electrical characteristics of the HTS transformer such as % impedance and AC loss vary with the arrangement of the windings and gaps between windings. We analyzed the effects of the winding parameters, evaluated the cost of each design, and proposed a suitable HTS transformer model for future power distribution system.

  3. Design study on 50 kJ HTS SMES for simulated dynamic experiment of electric power systems

    International Nuclear Information System (INIS)

    Dai Taozhen; Fan Zeyang; Li Jingdong; Tang Yuejin; Cheng Shijie; Pan Yuan; Wang Jingrong

    2004-01-01

    We conducted a study in order to determine a suitable design for a 50 kJ class high temperature superconducting (HTS) SMES. Magnet size and volume are expected to be reduced by using the HTS since the HTS wire keeps better properties at high magnetic field than does LTS wire. In this paper, both the electromagnetic and mechanical design objects are considered when optimizing the magnet volume of a 50 kJ/10 kW grid model HTS-SMES system with finite element analysis method and simulated annealing algorithm. We carried out parameter surveys of the magnetic fields and circumference stress applied to the HTS-SMES magnets and studied a suitable magnet dimension with low inductance and high current. 2-3.5 T maximum magnetic field applied to the magnet and a low inductance and high current design for a 50 kJ HTS magnet are suitable for improving the dynamic response of system

  4. HTS Nested magnet wound with 12 mm GdBCO tape and 4.4 mm YBCO tape

    International Nuclear Information System (INIS)

    Kang, Myung Hun; Ku, Myung Hwan; Cha, Guee Soo; Lim, Hyoung Woo

    2015-01-01

    The properties of High Temperature Superconducting (HTS) tapes are progressing, as HTS tapes evolve from 1st generation to 2nd generation. This paper presents design and construction of a 2nd generation HTS magnet consisting of two nested GdBCO and YBCO pancake coils. Two HTS tapes of different widths were used to wind the HTS nested magnet. Considering that a higher magnetic field is applied to the inner magnet than to the outer magnet, 12 mm GdBCO tape was used for winding the inner magnet, which consisted of four single pancake windings. Eight double pancake windings wound with 4.4 mm YBCO tapes were used for the outer magnet. The test results show that the central magnetic field of the HTS nested magnet was 920 mT. The measured critical currents of the inner and outer magnet at 77K were 80.8 A and 32.6 A, respectively

  5. Test results of the 18 kA EDIPO HTS current leads

    International Nuclear Information System (INIS)

    Wesche, Rainer; Bagnasco, Maurizio; Bruzzone, Pierluigi; Felder, Roland; Guetg, Marc; Holenstein, Manuel; Jenni, Markus; March, Stephen; Roth, Felix; Vogel, Martin

    2011-01-01

    For the new test facility EDIPO (European DIPOle), to be hosted by CRPP, two 18 kA HTS current leads were manufactured and successfully tested. The HTS module, made of AgMgAu/Bi-2223 tapes, is cooled only by heat conduction to the cold end, while the copper part is cooled by forced flow helium gas. The current leads were tested at low voltage up to the maximum current of 18 kA. The helium mass flow rates required for stable operation at various currents were determined. In addition to the steady state operation, the transient behavior in the case of a loss of flow was studied experimentally. The test results provide an estimate of the operational limits of the EDIPO HTS current leads.

  6. Test results of the 18 kA EDIPO HTS current leads

    Energy Technology Data Exchange (ETDEWEB)

    Wesche, Rainer, E-mail: rainer.wesche@psi.ch [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association Euratom - Confederation Suisse, 5232 Villigen PSI (Switzerland); Bagnasco, Maurizio; Bruzzone, Pierluigi; Felder, Roland; Guetg, Marc; Holenstein, Manuel; Jenni, Markus; March, Stephen; Roth, Felix; Vogel, Martin [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association Euratom - Confederation Suisse, 5232 Villigen PSI (Switzerland)

    2011-10-15

    For the new test facility EDIPO (European DIPOle), to be hosted by CRPP, two 18 kA HTS current leads were manufactured and successfully tested. The HTS module, made of AgMgAu/Bi-2223 tapes, is cooled only by heat conduction to the cold end, while the copper part is cooled by forced flow helium gas. The current leads were tested at low voltage up to the maximum current of 18 kA. The helium mass flow rates required for stable operation at various currents were determined. In addition to the steady state operation, the transient behavior in the case of a loss of flow was studied experimentally. The test results provide an estimate of the operational limits of the EDIPO HTS current leads.

  7. A simulation study on the variation of virtual NMR signals by winding, bobbin, spacer error of HTS magnet

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Seong; Lee, Woo Seung; Kim, Jin Sub; Song, Seung Hyun; Nam, Seok Ho; Jeon, Hae Ryong; Beak, Geon Woo; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of)

    2016-09-15

    Recently, production technique and property of the High-Temperature Superconductor (HTS) tape have been improved. Thus, the study on applying an HTS magnet to the high magnetic field application is rapidly increased. A Nuclear Magnetic Resonance (NMR) spectrometer requires high magnitude and homogeneous of central magnetic field. However, the HTS magnet has fabrication errors because shape of HTS is tape and HTS magnet is manufactured by winding HTS tape to the bobbin. The fabrication errors are winding error, bobbin diameter error, spacer thickness error and so on. The winding error occurs when HTS tape is departed from the arranged position on the bobbin. The bobbin diameter and spacer thickness error occur since the diameter of bobbin and spacer are inaccurate. These errors lead magnitude and homogeneity of central magnetic field to be different from its ideal design. The purpose of this paper is to investigate the effect of winding error, bobbin diameter error and spacer thickness error on the central field and field homogeneity of HTS magnet using the virtual NMR signals in MATLAB simulation.

  8. New Perspectives in HTS Transformer Design

    Energy Technology Data Exchange (ETDEWEB)

    Ariante, M [C.R.I.S, via Nuova delle Brecce 260, Naples (Italy); Formisano, A [D.I.I., Seconda Universita di Napoli, Aversa (CE) (Italy); Marignetti, F [D.A.E.I.M.I., Universita di Cassino, Cassino (France) (Italy); Martone, R [D.I.I., Seconda Universita di Napoli, Aversa (CE) (Italy); Masullo, G [C.R.I.S, via Nuova delle Brecce 260, Naples (Italy); Matrone, A [C.R.I.S, via Nuova delle Brecce 260, Naples (Italy); Quarantiello, R [C.R.I.S, via Nuova delle Brecce 260, Naples (Italy); Rubinacci, G [D.I.E, Universita di Napoli Federico II, Naples (Italy); Sangiorgi, F [GETRA S.p.A., Marcianise (CE) (Italy); Scarano, M [D.A.E.I.M.I., Universita di Cassino, Cassino (France), Italy; Silvestri, S [GETRA S.p.A., Marcianise (CE) (Italy); Villone, F [D.A.E.I.M.I., Universita di Cassino, Cassino (France), (taly); Zigon, M [GETRA S.p.A., Marcianise (CE) (Italy)

    2006-06-01

    Power transformers based on High Temperature Superconductors (HTS) technology are an appealing promise for several practical applications. The present designs still leave wide margins of possible improvement in terms of both layout optimisation and introduction of new technologies. In the framework of a technical-scientific cooperation among scientific and industrial subjects, a 10 kVA single-phase transformer was designed and manufactured, using copper for primary windings and BSCCO-2223 HTS tape for secondary windings. The layout has been optimized taking into account the particular characteristics of BSCCO tapes, in particular their AC losses, and the usual figures (stray flux, Joule and iron losses, weight and overall footprint) considered in transformers design. The prototype has then been realized and characterized, using general as well as specific tests. The performance of the device has been evaluated and compared with numerical calculation. In the paper, an overview of the device design and manufacturing will be presented, together with a critical comparison between computed and measured performance.

  9. 2011 Aspen Winter Conference on Contrasting Superconductivity of Pnictides and Cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P. [Aspen Center for Physics, CO (United States); Schmalian, J. [Aspen Center for Physics, CO (United States); Canfield, P. [Aspen Center for Physics, CO (United States); Chakravarty, S. [Aspen Center for Physics, CO (United States)

    2011-05-02

    Our quest for materials with better properties is closely integral to the fabric of our society. Currently the development of materials that will allow for improved generation, transport, and storage of energy is at the forefront of our research in condensed matter physics and materials science. Among these materials, compounds that exhibit correlated electron states and emergent phenomena such as superconductivity have great promise, but also difficulties that need to be overcome: problems associated with our need to reliably find, understand, improve and control these promising materials. At the same time, the field of correlated electrons represents the frontier of our understanding of the electronic properties of solids. It contains deep open scientific issues within the broad area of quantum phenomena in matter. The aim of this workshop is to explore and understand the physics of recently discovered Fe-based high-temperature superconductors and contrast and compare them with the cuprates. The superconductivity in iron pnictides, with transition temperatures in excess of 55 K, was discovered in early 2008. The impact of this discovery is comparable to cuprates discovered in 1986. At the same time a number of recent experimental developments in cuprates may lead to a shift in our thinking with regards to these materials. There is therefore much to be learned by devoting a conference in which both classes of superconductors are discussed, especially at this nascent stage of the pnictides.

  10. The thermal relay design to improve power system security for the HTS cables in Icheon substation

    International Nuclear Information System (INIS)

    Lee, Hansang; Yang, Byeong-Mo; Jang, Gilsoo

    2013-01-01

    Highlights: •It is important to study thermal characteristics of the HTS cable. •The thermal relay in the Icheon substation has been developed. •Well-designed thermal relay has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes a model for thermal protection relay for the high temperature superconducting (HTS) cables and thermal protection scheme in Icheon substation in Korea. The thermal protection is one of the most important factors to guarantee the reliability of the HTS cable as well as power system security. The superconductivity of the HTS cables, which can be guaranteed by the liquid nitrogen near 70 K, can be threatened by the large fault current. To avoid the overheating in HTS cable and to secure the power system operation with the HTS cable, the thermal protection relay should be considered. To find the optimal thermal-protection scheme, the model for the superconducting power system has been achieved in Icheon substation and the thermal protection scheme has been verified through PSCAD/EMTDC simulation

  11. The thermal relay design to improve power system security for the HTS cables in Icheon substation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: hslee80@kiu.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Yang, Byeong-Mo [Korea Electric Power Research Institute, Munji-dong, Yuseong-gu, Daejeon 305-760 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-11-15

    Highlights: •It is important to study thermal characteristics of the HTS cable. •The thermal relay in the Icheon substation has been developed. •Well-designed thermal relay has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes a model for thermal protection relay for the high temperature superconducting (HTS) cables and thermal protection scheme in Icheon substation in Korea. The thermal protection is one of the most important factors to guarantee the reliability of the HTS cable as well as power system security. The superconductivity of the HTS cables, which can be guaranteed by the liquid nitrogen near 70 K, can be threatened by the large fault current. To avoid the overheating in HTS cable and to secure the power system operation with the HTS cable, the thermal protection relay should be considered. To find the optimal thermal-protection scheme, the model for the superconducting power system has been achieved in Icheon substation and the thermal protection scheme has been verified through PSCAD/EMTDC simulation.

  12. Frequency dependence of magnetic shielding performance of HTS plates in mixed states

    International Nuclear Information System (INIS)

    Kamitani, Atsushi; Yokono, Takafumi; Yokono, Takafumi

    2000-01-01

    The magnetic shielding performance of the high-Tc superconducting (HTS) plate is investigated numerically. The behavior of the shielding current density in the HTS plate is expressed as the integral-differential equation with a normal component of the current vector potential as a dependent variable. The numerical code for solving the equation has been developed by using the combination of the Newton-Raphson method and the successive substitution method and, by use of the code, damping coefficients and shielding factors are evaluated for the various values of the frequency ω. The results of computations show that the HTS plate has a possibility of shielding the high-frequency magnetic field with ω > or approx. 1 kHz. (author)

  13. Frequency dependence of magnetic shielding performance of HTS plates in mixed states

    Energy Technology Data Exchange (ETDEWEB)

    Kamitani, Atsushi; Yokono, Takafumi [Yamagata Univ., Yonezawa (Japan). Faculty of Engineering; Yokono, Takafumi [Tsukuba Univ., Ibaraki (Japan). Inst. of Information Sciences and Electronics

    2000-06-01

    The magnetic shielding performance of the high-Tc superconducting (HTS) plate is investigated numerically. The behavior of the shielding current density in the HTS plate is expressed as the integral-differential equation with a normal component of the current vector potential as a dependent variable. The numerical code for solving the equation has been developed by using the combination of the Newton-Raphson method and the successive substitution method and, by use of the code, damping coefficients and shielding factors are evaluated for the various values of the frequency {omega}. The results of computations show that the HTS plate has a possibility of shielding the high-frequency magnetic field with {omega} > or approx. 1 kHz. (author)

  14. Low resistance splices for HTS devices and applications

    Science.gov (United States)

    Lalitha, S. L.

    2017-09-01

    This paper discusses the preparation methodology and performance evaluation of low resistance splices made of the second generation (2G) high-temperature superconductor (HTS). These splices are required in a broad spectrum of HTS devices including a large aperture, high-field solenoid built in the laboratory to demonstrate a superconducting magnetic energy storage (SMES) device. Several pancake coils are assembled in the form of a nested solenoid, and each coil requires a hundred meters or more of 2G (RE)BCO tape. However, commercial availability of this superconductor with a very uniform physical properties is currently limited to shorter piece lengths. This necessitates us having splices to inter-connect the tape pieces within a pancake coil, between adjacent pancake coils, and to attach HTS current leads to the magnet assembly. As a part of the optimization and qualification of splicing process, a systematic study was undertaken to analyze the electrical performance of splices in two different configurations suitable for this magnet assembly: lap joint and spiral joint. The electrical performance is quantified in terms of the resistance of splices estimated from the current-voltage characteristics. It has been demonstrated that a careful application of this splicing technique can generate lap joints with resistance less than 1 nΩ at 77 K.

  15. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System

    Science.gov (United States)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  16. Temperature and carrier density dependence of anisotropy in supercurrent density in layered cuprate superconductors

    International Nuclear Information System (INIS)

    Singh, M.P.; Tewari, B.S.; Ajay

    2006-01-01

    In the present work, we have studied the effect of temperature and carrier density on anisotropy in supercurrent density in bilayer cuprate superconductors. Here, we have considered a tight binding bilayered Hubbard Hamiltonian containing intra and interlayer attractive interactions. The situation considered here is similar to a SIS junction. We have got the expressions for the superconducting order parameters, carrier density and anisotropy in superconducting density (I ab /I c ) for such SIS junction. The numerical analysis show that the anisotropy in the supercurrent density depends on temperature and carrier density in layered high T c cuprates. (author)

  17. High-Tc cuprate superconductivity in a nutshell

    International Nuclear Information System (INIS)

    Won, Hyekyung; Haas, Stephan; Parker, David; Maki, Kazumi

    2005-01-01

    Since the discovery of high-T c cuprate superconductivity in 1986 many new experimental techniques and theoretical concepts have been developed. In particular it was shown that the BCS theory of d-wave superconductivity describes semi-quantitatively the high-T c superconductivity. Furthermore, it was demonstrated that Volovik's approach is extremely useful for finding the quasiparticle properties in the vortex state. Here we survey these developments and forecast future directions. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Pseudogap and competing states in underdoped cuprates

    International Nuclear Information System (INIS)

    Lee, Patrick A.

    2004-01-01

    I shall argue that the high T c problem is the problem of doping into a Mott insulator. Furthermore, the well documented pseudo-gap phenomenon in underdoped cuprates holds the key to understanding this physics. Phase fluctuation alone cannot explain this phenomenon, but there is a clear need to identify a competing state which lives in the vortex core. The staggered flux state is a good candidate for the competing state and experimental tests of these ideas will be discussed

  19. Oxygen diffusion in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Routbort, J.L.; Rothman, S.J.

    1995-01-01

    Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La{sub 2}{sub {minus}}{sub {times}}Sr{sub {times}}CuO{sub 4}, YBa{sub 2}Cu{sub 3}O{sub 7}{sub {minus}}{delta}, YBa{sub 2}Cu{sub 4}O{sub 8}, and the Bi{sub 2}Sr{sub 2}Ca{sub n}{sub {minus}}{sub 1}Cu{sub n}O{sub 2}{sub +}{sub 4} (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible.

  20. A compactly integrated cooling system of a combination dual 1.5-MW HTS motors for electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Le, T. D.; Kim, J. H.; Hyeon, C. J.; Kim, H. M.; Kim, D. K. [Jeju National University, Jeju (Korea, Republic of); Kim, Y. S. [Shin Ansan University, Ansan (Korea, Republic of); Lee, J.; Park, Y. G.; Jeon, H. [Yonsei University, Seoul (Korea, Republic of); Quach, H. L. [Electronic and Telecommunication Engineering, Can Tho University of Technology, Can Tho (Viet Nam)

    2016-12-15

    The high temperature superconducting (HTS) contra-rotating propulsion (CRP) systems comprise two coaxial propellers sited on behind the other and rotate in opposite directions. They have the hydrodynamic advantage of recovering the slipstream rotational energy which would otherwise be lost to a conventional single-screw system. However, the cooling systems used for HTS CRP system need a high cooling power enough to maintain a low temperature of 2G HTS material operating at liquid neon (LNe) temperature (24.5 - 27 K). In this paper, a single thermo-syphon cooling approach using a Gifford-McMahon (G-M) cryo-cooler is presented. First, an optimal thermal design of a 1.5 MW HTS motor was conducted varying to different types of commercial 2G HTS tapes. Then, a mono-cryogenic cooling system for an integration of two 1.5 MW HTS motors will be designed and analyzed. Finally, the 3D finite element analysis (FEA) simulation of thermal characteristics was also performed.

  1. Reassessment of the electronic state, magnetism, and superconductivity in high-T{sub c} cuprates with the Nd{sub 2}CuO{sub 4} structure

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Michio, E-mail: minaito@cc.tuat.ac.jp [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan); Krockenberger, Yoshiharu; Ikeda, Ai; Yamamoto, Hideki [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2016-04-15

    Highlights: • The 30-year history of “electron-doped” cuprates is reviewed, including basic physics and material issues. • Undoped cuprates with the Nd{sub 2}CuO{sub 4} (T’) structure are superconducting with T{sub c} over 30 K. • Electron doping by Ce in T’-RE{sub 2}CuO{sub 4} lowers T{sub c} and the highest T{sub c} is obtained at no doping. - Abstract: The electronic phase diagram of the cuprates remains enigmatic and is still a key ingredient to understand the mechanism of high-T{sub c} superconductivity. It has been believed for a long time that parent compounds of cuprates were universally antiferromagnetic Mott insulators (charge-transfer insulators) and that high-T{sub c} superconductivity would develop upon doping holes or electrons in a Mott–Hubbard insulator (“doped Mott-insulator scenario”). However, our recent discovery of superconductivity in the parent compounds of square-planar cuprates with the Nd{sub 2}CuO{sub 4} (T’) structure and the revised electronic phase diagram in T’ cuprates urged a serious reassessment to the above scenario. In this review, we present the main results derived from our synthesis and experiments on T’ cuprates in the undoped or heavily underdoped regime over 20 years, including material issues and basic physics. The key material issue is how to remove excess oxygen ions at the apical site without introducing oxygen vacancies in the CuO{sub 2} planes. In order to put this into practice, the basic knowledge of complex solid-state chemistry in T’ cuprates is required, which is also included in this review.

  2. Loss measurement and analysis for the prototype generator with HTS stator and permanent magnet rotor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Peng, E-mail: songp10@mails.tsinghua.edu.cn [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China); Qu, Timing, E-mail: tmqu@mail.tsinghua.edu.cn [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084 (China); Yu, Xiaoyu [Department of Mechanical Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084 (China); Li, Longnian; Gu, Chen [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China); Li, Xiaohang [Innova Superconductor Technology Co., Ltd., Beijing 100084 (China); Wang, Dewen; Hu, Boping [Beijing Zhong Ke San Huan Hi-Tech Co., Ltd., Beijing 100084 (China); Chen, Duxing [Department Fis, University Autonoma Barcelona, Barcelona 08193 (Spain); Han, Zhenghe [Applied Superconductivity Research Center, Department of Physics, Tsinghua University, Beijing 100084 (China)

    2013-11-15

    Highlights: •A novel prototype HTS generator with HTS armature windings was developed. •No-load loss and the iron loss at low temperature were measured. •The total loss at low temperature is much larger than the room temperature case. •The reason for no-load loss increment at low temperature is discussed. -- Abstract: A prototype HTS synchronous generator with a permanent magnet rotor and HTS armature windings was developed. The rated armature frequency is 10 Hz. The cryogenic Dewar is tightly surrounded outside the iron core. Both HTS coils and the iron core were cooled by using conduction cooling method. During the process of no-load running, the no-load loss power data were obtained through the torque measurement. The temperature evolution characteristics of the stator was measured by PT-100 temperature sensors. These results show that the no-load loss power at around 77 K are much larger than that at room temperature. The possible reason for the no-load loss increment is discussed. The ac loss power of one individual HTS coil used in this generator was also tested. Compared with the iron loss power, the ac loss power is rather small and could be neglected.

  3. Mobile HTS-SQUID NDE system with robot arm and active shielding using fluxgate

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukade, Y. [Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)], E-mail: hatukade@eco.tut.ac.jp; Yotsugi, K.; Tanaka, S. [Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2008-09-15

    A robot-arm-based mobile HTS-SQUID NDE system was developed for inspection of advanced structures such as hydrogen fuel cell tanks. In order to realize stable operation of HTS-SQUID exposed in Earth's field and robot arm's noise without flux trapping, flux jumping and unlocking during motion, a new active magnetic shielding (AMS) technique using fluxgate was introduced. The high sensitive fluxgate, which could measure magnetic field of up to several 10 {mu}T, was mounted near an HTS-SQUID gradiometer on the robot arm to measure the ambient noise and feed back its output to a compensation coil, which surrounded both SQUID and fluxgate to cancel the ambient noise around them. The AMS technique successfully enabled the HTS-SQUID gradiometer to be moved at 10 mm/s by the robot arm in unshielded environment without flux trapping, jumping and unlocking. Detection of hidden slots in multi-layer composite-metal structures imitating the fuel cell tank was demonstrated.

  4. Fully filamentized HTS coated conductor via striation and selective electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Kesgin, Ibrahim; Majkic, Goran [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Selvamanickam, Venkat, E-mail: selva@uh.edu [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)

    2013-03-15

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer.

  5. Fully filamentized HTS coated conductor via striation and selective electroplating

    International Nuclear Information System (INIS)

    Kesgin, Ibrahim; Majkic, Goran; Selvamanickam, Venkat

    2013-01-01

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer

  6. Bi2212 HTS Tubular Bulk with Conical Shape for Current Lead

    International Nuclear Information System (INIS)

    Tamura, H; Mito, T; Yamada, Y; Watanabe, M; Ohkubo, J; Heller, R

    2006-01-01

    Current leads using HTS material have been developed for application in a large scale superconducting magnet system. Tokai University and NIFS have developed Bi2212 tubular bulk which was prepared by a diffusion process. 8 kA of maximum transport current was achieved by a tubular bulk with a cylindrical shape. The maximum current was estimated to be 2 kA at 50 K for this tubular bulk. A current lead can be designed with this bulk the warm end of the HTS part being at 50 K and the cold end at 4.2 K. Under this condition, the cross section of the cold end of the bulk can be reduced. This type of HTS bulk has a great potential for flexible design since the Bi2212 layer can be reacted on the surface of any shapes of substrate. If a conical shaped HTS bulk was made, it could be an advantage for heat leakage to the cold end. To confirm this effect, we have made two types of conical bulk. The transport current of the specimen exceeds 7 kA at 4.2 K and 4 kA of stable current flow was achieved with a warm end temperature of 50 K

  7. Three-phase AC synchronous motor with high-temperature superconductor (HTS) rotor windings and HTS bearings. Final report

    International Nuclear Information System (INIS)

    Neumueller, H.W.; Nick, W.; Frank, M.; Massek, P.; Hasselt, P. van; Thummes, G.; Haefner, H.U.; Kummeth, P.; Werfel, F.; Frauenhofer, J.; Senger, R.; Schmidt, W.

    2003-06-01

    The project involved the design, construction and testing of a 3000 kW converter-fed synchronous motor as a development prototype with - HTS rotor windings, - closed-circuit cooling system, - stator air-gap winding and - high-gradient HTS magnetic bearing. The project objective was to create the conditions necessary for the construction of an application-oriented model(∼2 MW) that would be suitable for field tests and provide a starting point for subsequent series expansion. The main focus was fixed on feasibility and function issues relating to the various components, particularly during operation of the overall system in the test bay. These ambitious targets were achieved within the scope of project-based cooperation. This has been demonstrated especially in test bed operation of the machine since spring 2001, in the course of which the motor produced a maximum continuous rating of 450 kW - significantly above the specified value - while the short-time rating could be increased up to 600 kW. Throughout testing the motor demonstrated excellent performance characteristics that are markedly indifferent to load fluctuations and indicative of important operating advantages to subsequent users of such HTS motors. Loss calculations showed that, in terms of efficiency, this prototype already represents an approximately 1% improvement over the conventional motors or generators currently available. The robustness of the cooling concept developed as part of the project was also convincingly demonstrated during the comprehensive test phase, which has been ongoing since spring 2001. The innovative pulse-tube coolers developed by our partner companies Leybold and TransMIT promise further advantages over current commercial GM-coolers. Despite considerable problems with materials the team successfully built and operated a contactless HTS magnet bearing (based on YBCO stator cylinders from partner company ATZ) that is currently one of the world's largest in terms of bearing

  8. Operational characteristics analysis of a 8 mH class HTS DC reactor for an LCC type HVDC system

    International Nuclear Information System (INIS)

    Kim, S. K.; Go, B. S.; Dinh, M. C.; Park, M.; Yu, I. K.; Kim, J. H.

    2015-01-01

    Many kinds of high temperature superconducting (HTS) devices are being developed due to its several advantages. In particular, the advantages of HTS devices are maximized under the DC condition. A line commutated converter (LCC) type high voltage direct current (HVDC) transmission system requires large capacity of DC reactors to protect the converters from faults. However, conventional DC reactor made of copper causes a lot of electrical losses. Thus, it is being attempted to apply the HTS DC reactor to an HVDC transmission system. The authors have developed a 8 mH class HTS DC reactor and a model-sized LCC type HVDC system. The HTS DC reactor was operated to analyze its operational characteristics in connection with the HVDC system. The voltage at both ends of the HTS DC reactor was measured to investigate the stability of the reactor. The voltages and currents at the AC and DC side of the system were measured to confirm the influence of the HTS DC reactor on the system. Two 5 mH copper DC reactors were connected to the HVDC system and investigated to compare the operational characteristics. In this paper, the operational characteristics of the HVDC system with the HTS DC reactor according to firing angle are described. The voltage and current characteristics of the system according to the types of DC reactors and harmonic characteristics are analyzed. Through the results, the applicability of an HTS DC reactor in an HVDC system is confirmed

  9. Operational characteristics analysis of a 8 mH class HTS DC reactor for an LCC type HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. K.; Go, B. S.; Dinh, M. C.; Park, M.; Yu, I. K. [Changwon National University, Changwon (Korea, Republic of); Kim, J. H. [Daejeon University, Daejeon (Korea, Republic of)

    2015-03-15

    Many kinds of high temperature superconducting (HTS) devices are being developed due to its several advantages. In particular, the advantages of HTS devices are maximized under the DC condition. A line commutated converter (LCC) type high voltage direct current (HVDC) transmission system requires large capacity of DC reactors to protect the converters from faults. However, conventional DC reactor made of copper causes a lot of electrical losses. Thus, it is being attempted to apply the HTS DC reactor to an HVDC transmission system. The authors have developed a 8 mH class HTS DC reactor and a model-sized LCC type HVDC system. The HTS DC reactor was operated to analyze its operational characteristics in connection with the HVDC system. The voltage at both ends of the HTS DC reactor was measured to investigate the stability of the reactor. The voltages and currents at the AC and DC side of the system were measured to confirm the influence of the HTS DC reactor on the system. Two 5 mH copper DC reactors were connected to the HVDC system and investigated to compare the operational characteristics. In this paper, the operational characteristics of the HVDC system with the HTS DC reactor according to firing angle are described. The voltage and current characteristics of the system according to the types of DC reactors and harmonic characteristics are analyzed. Through the results, the applicability of an HTS DC reactor in an HVDC system is confirmed.

  10. Extending the Use of HTS to Feeders in Superconducting Magnet Systems

    CERN Document Server

    Ballarino, A; Taylor, T

    2008-01-01

    Following the successful adoption of high temperature superconductors (HTS) in over a thousand current leads that will feed 3 MA from warm to cold in the Large Hadron Collider (LHC), the use of HTS has been generally accepted as suitable technology for the design of efficient leads feeding cryo-magnets. We now consider the extension of the technology to the interconnection of strings of superconducting magnets and their connection to feed-boxes through which the excitation current is fed. It is proposed to use HTS material for this application instead of low-temperature superconductor or normal-conducting material. The implications of adopting this technology are discussed with regard to the choice of materials, highlighting the differences with more conventional schemes. Examples are given of how this approach could be applied to the consolidation and upgrade of the LHC.

  11. Half-integer flux quantum effect in cuprate superconductors - a probe of pairing symmetry

    International Nuclear Information System (INIS)

    Tsuei, C.C.; Kirtley, J.R.; Gupta, A.; Sun, J.Z.; Moler, K.A.; Wang, J.H.

    1996-01-01

    Based on macroscopic quantum coherence effects arising from pair tunneling and flux quantization, a series of tricrystal experiments have been designed and carried out to test the order parameter symmetry in high-T c cuprate superconductors. By using a scanning SQUID microscope, we have directly and non-invasively observed the spontaneously generated half-integer flux quantum effect in controlled-orientation tricrystal cuprate superconducting systems. The presence or absence of the half-integer flux quantum effect as a function of the tricrystal geometry allows us to prove that the order parameter symmetry in the YBCO and Tl2201 systems is consistent with that of the d x 2 -y 2 pair state. (orig.)

  12. AC HTS Transmission Cable for Integration into the Future EHV Grid of the Netherlands

    Science.gov (United States)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future grid must be capable to transmit all the connected power. Power generation will be more decentralized like for instance wind parks connected to the grid. Furthermore, future large scale production units are expected to be installed near coastal regions. This creates some potential grid issues, such as: large power amounts to be transmitted to consumers from west to east and grid stability. High temperature superconductors (HTS) can help solving these grid problems. Advantages to integrate HTS components at Extra High Voltage (EHV) and High Voltage (HV) levels are numerous: more power with less losses and less emissions, intrinsic fault current limiting capability, better control of power flow, reduced footprint, etc. Today's main obstacle is the relatively high price of HTS. Nevertheless, as the price goes down, initial market penetration for several HTS components is expected by year 2015 (e.g.: cables, fault current limiters). In this paper we present a design of intrinsically compensated EHV HTS cable for future grid integration. Discussed are the parameters of such cable providing an optimal power transmission in the future network.

  13. Dielectric properties of glasses prepared by quenching melts of superconducting Bi-Ca-Sr-Cu-O cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Varma, K. B. R.; Subbanna, G. N.; Ramakrishnan, T. V.; Rao, C. N. R.

    1989-07-03

    Glasses obtained from quenching melts of superconducting bismuth cuprates of the formula Bi/sub 2/(Ca,Sr)/sub /ital n/+1/Cu/sub /ital n//O/sub 2/ital n/+4/ with /ital n/=1 and 3 exhibit novel dielectric properties. They possess relatively high dielectric constants as well as high electrical conductivity. The novel dielectric properties of these cuprate glasses are likely to be of electronic origin. They exhibit a weak microwave absorption due to the presence of microcrystallites.

  14. Simulation of chain of quenches on toroidal HTS-SMES taking account of thermal and electromagnetic characteristics

    Science.gov (United States)

    Oga, Y.; Noguchi, S.; Igarashi, H.

    When a temperature rise occurs at a local area inside a coil of toroidal HTS-SMES by any reason, a temperature hotspot which results in a thermal runaway appears at the local area. Subsequently, after appearing the local normal zone in the HTS coil, the transport current of the HTS coil decrease since the resistance of HTS coil appears and the current partially flows into a parallel-connecting shunt resistance. However, if the transport current of the normal-transitioned HTS coil is hardly changed, the temperature on the hotspot would rise more and then the normal zone would spread rapidly. It may cause a serious accident due to high stored energy. Therefore, using the numerical simulation, we have investigated the behaviors of the coil current, the critical current, and the temperature in the superconducting element coils of HTS-SMES. Consequently, the temperature of the superconducting element coils rises up extremely when a large heat is generated at a certain area of one of them by any reason. Moreover, there is a possibility that the shunt resister hardly functions for protection since the coil is burned out due to high inductances and low resistance of the superconducting element coil.

  15. The electrical characteristics of solid insulators for 154 kV class HTS transformer

    International Nuclear Information System (INIS)

    Cheon, H.G.; Choi, J.H.; Pang, M.S.; Kim, W.J.; Kim, S.H.

    2011-01-01

    HTS transformer, without any loss of insulation lifetime due to the reduction in terms of size and weight, can increase the overload capacity, and have some benefits such as the improvement in efficiency, minimization of environmental pollution, and convenient spatial arrangement, which contribute a lot to electric power system operation. However, for practical insulation design of the HTS transformer, it is necessary to establish the research on electrical properties LN 2 as well as solid insulators. These solid insulators have been used as main insulations for HTS transformer. In this paper, we discussed breakdown and V-t characteristics of glass fiber reinforced plastics (GFRP) and pressboard in LN 2 .

  16. Second-generation HTS conductors

    CERN Document Server

    Goyal, Amit

    2006-01-01

    The discovery of high temperature superconductors (HTS) in 1986 by two IBM scientists led to an unprecedented explosion of research and development efforts world-wide because of the significant potential for practical applications offered by these materials. However, the early euphoria created by the exciting prospects was dampened by the daunting task of fabricating these materials into useful forms with acceptable superconducting properties. Progress towards this goal has been hindered by many intrinsic materials problems, such as weak-links, flux-creep, and poor mechanical properties.

  17. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    Science.gov (United States)

    Longcai, Zhang

    2014-07-01

    Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  18. Engineering development of an HTS floating coil for the Mini-RT project

    International Nuclear Information System (INIS)

    Yanagi, Nagato; Mito, Toshiyuki; Morikawa, Junji

    2004-01-01

    A magnetically-levitated superconducting coil device, Mini-RT, has been constructed using a high temperature superconductor (HTS) for the purpose of examining a new magnetic confinement scheme of high-beta non-neutral plasmas. The floating coil is wound with silver-sheathed Bi-2223 tapes, and it is operated in the temperature range of 20-40 K. A number of studies and experiments were carried out in order to realize the necessary system. One of them was to demonstrate magnetic levitation using a miniature HTS floating coil having a diameter of 80 mm. The coil was fabricated using Bi-2223/Ag tapes of 12 m and excited by field cooling with liquid nitrogen. The magnetic levitation was examined using a real-time feedback control system with laser displacement gauges. Additionally, a persistent current switch (PCS) has been developed using Bi-2223/Ag tapes of 21 m, and a prototype HTS-PCS was tested in a cryostat. After construction of the floating coil and HTS-PCS for the Mini-RT device was completed, excitation tests were carried out in the cryostat and the basic properties up to the nominal operation condition were examined. (author)

  19. Accelerating the introduction of HTS products for a broad range of electric power and industrial applications

    Science.gov (United States)

    Eaton, Russell

    2002-01-01

    The Department of Energy (DOE), as part of its Superconductivity Program for Electric Systems, is successfully pursuing the development of electric power and industrial devices, incorporating significant high-temperature superconducting (HTS) components or subsystems, through its innovative Superconducting Partnership Initiative (SPI). The objective of the SPI is to accelerate the commercial introduction of the HTS products for a broad range of electric power and industrial applications. DOE's approach to accomplishing the SPI objective is to support cost shared projects carried out by industry led teams. DOE will fund projects to develop HTS devices that are either in (1) the research and development stage (Phase 1), (2) the pre-commercialization stage (Phase II), or (3) the commercial entry stage (Phase III). DOE's industry partners must contribute at least half a project's costs. These teams will include capabilities needed to develop the device as well as to develop the business plan for the commercial product introduction. DOE's partners consist of vertically integrated teams consisting of equipment manufacturers, HTS wire and coil suppliers, national laboratories, and end users, primarily utilities. These partners carry out the multi-year technology development efforts, consisting generally of design, construction, and testing of the HTS system. Finally, commercialization of HTS products will be discussed primarily in terms of benefits these products will have over competing products based upon conventional conductors and the critical need for affordable, practical HTS materials and conductors for these applications. .

  20. Robot-arm-based mobile HTS SQUID system for NDE of structures

    Energy Technology Data Exchange (ETDEWEB)

    Yotsugi, K; Hatsukade, Y; Tanaka, S [Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, Aichi 441-8580 (Japan)], E-mail: hatukade@eco.tut.ac.jp

    2008-02-01

    A robot-arm-based mobile HTS SQUID system was developed for NDE of fixed targets. To realize the system, active magnetic shielding technique using fluxgate as reference sensor for ambient field was applied to a cryocooler-based HTS SQUID gradiometer that was mounted on commercial robot-arm. In this technique, ambient field noise and pulse noise of 550 nT from robot were measured by the fluxgate near the SQUID, and then the fluxgate output was negatively fed back to generate compensation field around the SQUID and fluxgate. The noise from robot was reduced by a factor of about 20 and the shielding technique enabled the HTS SQUID to move in unshielded environment by the robot-arm without flux-trapping or unlocking at 10 mm/s. System noise measurement and inspection of hidden cracks in multi-layer composite-metal structure were demonstrated using the mobile SQUID-NDE system.

  1. web cellHTS2: A web-application for the analysis of high-throughput screening data

    Directory of Open Access Journals (Sweden)

    Boutros Michael

    2010-04-01

    Full Text Available Abstract Background The analysis of high-throughput screening data sets is an expanding field in bioinformatics. High-throughput screens by RNAi generate large primary data sets which need to be analyzed and annotated to identify relevant phenotypic hits. Large-scale RNAi screens are frequently used to identify novel factors that influence a broad range of cellular processes, including signaling pathway activity, cell proliferation, and host cell infection. Here, we present a web-based application utility for the end-to-end analysis of large cell-based screening experiments by cellHTS2. Results The software guides the user through the configuration steps that are required for the analysis of single or multi-channel experiments. The web-application provides options for various standardization and normalization methods, annotation of data sets and a comprehensive HTML report of the screening data analysis, including a ranked hit list. Sessions can be saved and restored for later re-analysis. The web frontend for the cellHTS2 R/Bioconductor package interacts with it through an R-server implementation that enables highly parallel analysis of screening data sets. web cellHTS2 further provides a file import and configuration module for common file formats. Conclusions The implemented web-application facilitates the analysis of high-throughput data sets and provides a user-friendly interface. web cellHTS2 is accessible online at http://web-cellHTS2.dkfz.de. A standalone version as a virtual appliance and source code for platforms supporting Java 1.5.0 can be downloaded from the web cellHTS2 page. web cellHTS2 is freely distributed under GPL.

  2. Unparticles and anomalous dimensions in the cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Karch, Andreas [Department of Physics, University of Washington,3910 15th Ave. NE, Seattle, WA 98195-1560 (United States); Limtragool, Kridsanaphong; Phillips, Philip W. [Department of Physics and Institute for Condensed Matter Theory, University of Illinois,1110 W. Green Street, Urbana, IL 61801 (United States)

    2016-03-25

    Motivated by the overwhelming evidence some type of quantum criticality underlies the power-law for the optical conductivity and T−linear resistivity in the cuprates, we demonstrate here how a scale-invariant or unparticle sector can lead to a unifying description of the observed scaling forms. We adopt the continuous mass formalism or multi band (flavor) formalism of the unparticle sector by letting various microscopic parameters be mass-dependent. In particular, we show that an effective mass that varies with the flavor index as well as a running band edge and lifetime capture the AC and DC transport phenomenology of the cuprates. A key consequence of the running mass is that the effective dynamical exponent can differ from the underlying bare critical exponent, thereby providing a mechanism for realizing the fractional values of the dynamical exponent required in a previous analysis http://dx.doi.org/10.1103/PhysRevB.91.155126. We also predict that regardless of the bare dynamical exponent, z, a non-zero anomalous dimension for the current is required. Physically, the anomalous dimension arises because the charge depends on the flavor, mass or energy. The equivalent phenomenon in a d+1 gravitational construction is the running of the charge along the radial direction. The nature of the superconducting instability in the presence of scale invariant stuff shows that the transition temperature is not necessarily a monotonic function of the pairing interaction.

  3. HTS microstrip disk resonator with an upper dielectric layer for 4GHz

    International Nuclear Information System (INIS)

    Yamanaka, Kazunori; Kai, Manabu; Akasegawa, Akihiko; Nakanishi, Teru

    2006-01-01

    We propose HTS microstrip disk resonator with an upper dielectric layer as a candidate resonator structure of HTS compact power filter for 4GHz band. The electromagnetic simulations on the upper dielectric layer examined the current distributions of the HTS resonators that had TM 11 mode resonance of about 4 GHz. By the simulations, it is evaluated that of the maximum current density near the end portion of the disk-shape pattern of the resonator with the thick upper-layered structure decreases by roughly 30-50 percent, as compared with that of the resonator without it. Then, we designed and fabricated the resonator samples with and without the upper dielectrics. The RF power measurement results indicated that the upper dielectric layer leads to an increase in handling power

  4. High pressure study of high temperatures superconductors: Material base, universal Tc-behavior, and charge transfer

    International Nuclear Information System (INIS)

    Chu, C.W.; Hor, P.H.; Lin, J.G.; Xiong, Q.; Huang, Z.J.; Meng, R.L.; Xue, Y.Y.; Jean, Y.C.

    1991-01-01

    The superconducting transition temperature (T c ) has been measured in YBa 2 Cu 3 O 6.7 , YBa 2 Cu 3 O 7 , Y 2 Ba 4 Cu 7 O 15 , YBa 2 Cu 4 O 8 , Tl 2 Ba 2 Ca n-1 Cu n O n+4-δ , La 2-x Sr x CuO 4 , and La 2-x Ba x CuO 4 under high pressures. The pressure effect on the positron lifetime (τ) has also been determined in the first four compounds. Based on these and other high pressure data, the authors suggest that (1) all known cuprate high temperature superconductors (HTS's) may be no more than mere modifications of either 214-T, 214-T', 123, or a combination of 214-T' and 123, (2) a nonmonotonic T c -behavior may govern the T c -variation of all hole cuprate HTS's and (3) pressure can induce charge transfer leading to a T c -change. The implications of these suggestions will also be discussed

  5. Considerations for improved polycrystalline cuprate superconductors

    International Nuclear Information System (INIS)

    Shinde, S.L.; Shaw, T.M.

    1990-01-01

    Polycrystalline cuprate superconductors exhibit two-stage superconducting transitions, that are characteristic of granular systems. This behaviour suggests approaches involving improvements in intra and inter-grain properties in order to improve the technologically important superconducting properties such as the magnetic remanent moment and transport critical current density. This paper reports results of our studies on oxygenation, twin density control through grain size and changes in flux pinning within the YBa 2 Cu 3 O 7-δ matrix with Ag substitution under the heading of intra-grain properties and the detrimental effect of grain boundary phases and the effect of Ag substitution on grain boundary pinning under the heading of inter-grain properties

  6. Efficient analysis for nonlinear microwave characteristics of high-power HTS thin film microstrip resonators

    Energy Technology Data Exchange (ETDEWEB)

    Kedar, Ashutosh [RADL Division, Electronics and Radar Development Establishment, C V Raman Nagar, Bangalore-560093 (India); Kataria, N D [National Physical Laboratory, New Delhi (India)

    2005-08-01

    This paper investigates the nonlinear effects of high-T{sub c} superconducting (HTS) thin film in high-power applications. A nonlinear model for complex surface impedance has been proposed for the efficient analysis of the nonlinearity of HTS thin films. Further, using the developed model, analysis of HTS-MSR has been done using the spectral domain method (SDM). The SDM formulation has been modified to account for finite conductivity and thickness of HTS films by incorporating a complex resistive boundary condition. The results have been validated with the experiments performed with microstrip resonators (MSRs) based on YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) thin films made by a laser ablation technique on LaAlO{sub 3} substrates, characterized for their characteristics, namely, resonant frequency and quality factor measured as a function of temperature and input RF power. A close agreement between the theoretical and measured results has been achieved validating the analysis.

  7. Efficient analysis for nonlinear microwave characteristics of high-power HTS thin film microstrip resonators

    International Nuclear Information System (INIS)

    Kedar, Ashutosh; Kataria, N D

    2005-01-01

    This paper investigates the nonlinear effects of high-T c superconducting (HTS) thin film in high-power applications. A nonlinear model for complex surface impedance has been proposed for the efficient analysis of the nonlinearity of HTS thin films. Further, using the developed model, analysis of HTS-MSR has been done using the spectral domain method (SDM). The SDM formulation has been modified to account for finite conductivity and thickness of HTS films by incorporating a complex resistive boundary condition. The results have been validated with the experiments performed with microstrip resonators (MSRs) based on YBa 2 Cu 3 O 7-x (YBCO) thin films made by a laser ablation technique on LaAlO 3 substrates, characterized for their characteristics, namely, resonant frequency and quality factor measured as a function of temperature and input RF power. A close agreement between the theoretical and measured results has been achieved validating the analysis

  8. Heating Development Analysis in Long HTS Objects - Updated Results

    Energy Technology Data Exchange (ETDEWEB)

    Vysotsky, V S; Repnikov, V V; Lobanov, E A; Karapetyan, G H; Sytnikov, V E [All-Russian Scientific R and D Cable Institute, 5, Shosse Entuziastov, 111024, Moscow (Russian Federation)

    2006-06-01

    During fault in a grid large overload current, up to 30-times fold, forcibly will go to an HTS superconducting cable installed in a grid causing its quench and heating. The upgraded model has been used to analyse the heating development in long HTS objects during overloads. The model better presents real properties of materials used. New calculations coincide well with experiments and permit to determine the cooling coefficients. The stability limit (thermal runaway current) was determined for different cooling and index n. The overload currents, at which the superconductor will be heated up to 100 K during 250 ms can be determined also. The model may be used for practical evaluations of operational parameters.

  9. Progress in AMSC scale-up of second generation HTS wire

    International Nuclear Information System (INIS)

    Zhang, W.; Rupich, M.W.; Schoop, U.; Verebelyi, D.T.; Thieme, C.L.H.; Li, X.; Kodenkandath, T.; Huang, Y.; Siegal, E.; Buczek, D.; Carter, W.; Nguyen, N.; Schreiber, J.; Prasova, M.; Lynch, J.; Tucker, D.; Fleshler, S.

    2007-01-01

    American Superconductor has successfully scaled up its low-cost, high volume second generation (2G) HTS wire process into pre-pilot scale production, with performance approaching first generation (1G) HTS wire. AMSC's manufacturing approach is based on RABiTS TM /MOD wide strip technology, with metal organic deposition (MOD) process for the YBCO layer and the Rolling Assisted Biaxially Textured Substrate (RABiTS) process for the template. In this paper, we review the status of the 2G manufacturing scale up at AMSC and describe the properties and architecture of the 2G wire being manufactured and developed for various applications

  10. Low Friction Cryostat for HTS Power Cable of Dutch Project

    DEFF Research Database (Denmark)

    Chevtchenko, Oleg; Zuijderduin, Roy; Smit, Johan

    2012-01-01

    affecting public acceptance of the project. In order to solve this problem, a model cryostat was developed consisting of alternating rigid and flexible sections and hydraulic tests were conducted using sub-cooled liquid nitrogen. In the 47 m-long cryostat, containing a full-size HTS cable model, measured....... A flexible dummy HTS cable was inserted into this cryostat and sub-cooled liquid nitrogen was circulated in the annulus between the dummy cable surface and the inner cryostat surface. In the paper details are presented of the cryostat, of the measurement setup, of the experiment and of the results....

  11. Image processing for HTS SQUID probe microscope

    International Nuclear Information System (INIS)

    Hayashi, T.; Koetitz, R.; Itozaki, H.; Ishikawa, T.; Kawabe, U.

    2005-01-01

    An HTS SQUID probe microscope has been developed using a high-permeability needle to enable high spatial resolution measurement of samples in air even at room temperature. Image processing techniques have also been developed to improve the magnetic field images obtained from the microscope. Artifacts in the data occur due to electromagnetic interference from electric power lines, line drift and flux trapping. The electromagnetic interference could successfully be removed by eliminating the noise peaks from the power spectrum of fast Fourier transforms of line scans of the image. The drift between lines was removed by interpolating the mean field value of each scan line. Artifacts in line scans occurring due to flux trapping or unexpected noise were removed by the detection of a sharp drift and interpolation using the line data of neighboring lines. Highly detailed magnetic field images were obtained from the HTS SQUID probe microscope by the application of these image processing techniques

  12. Characterization of pinning stability of HTS Gd123 bulks by using a pulsed-field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, R; Miki, M; Tsuzuki, K; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchujima, Koto-ku, Tokyo 135-8533 (Japan); Yamaguchi, K [Sumitomo Heavy Industries Ltd., ThinkPark Tower, 1-1-2, Osaki, Shinagawa-ku, Tokyo 141-6025 (Japan); Kimura, Y [Kawasaki Heavy Industries Ltd., Technical Institute System Technology Development Center, 1-1, Kawasaki-cho, Akashi-shi, Hyogo 673-8666 (Japan); Ida, T, E-mail: m084025@kaiyodai.ac.j [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, Toyota-gun, Hiroshima 725-0231 (Japan)

    2010-06-01

    High-temperature superconductor (HTS) Gd-bulks are used for field-pole magnets of rotating machines. We have conducted a study of pulsed-field magnetization (PFM) for the bulks to be magnetized alternatively on the rotor. Performances of HTS bulks have been qualified on the basis of the field-cooling magnetization (FCM). HTS bulks are a kind of crystals containing lots of tiny crystals boundaries. It is difficult to find comparable data between PFM and FCM results, mainly because of the different pinning stability through both processes. We need to assess an effective method of characterization for the flux pinning stability under PFM. We compared two HTS bulks: one shows a flux flow and relatively small trapped flux while the other is magnetized with a little flux instability and a large integrated trapped flux. These Gd123 bulks are 100 mm in diameter and 20 mm in thickness. After applying PFM at the liquid nitrogen temperature, we measured the trapped field density distribution and introduced a new parameter representing the trapped flux instability at each position on the surface of the bulk. We propose a way of visualization of the flux pinning instability of the HTS bulks.

  13. Optimization of HTS superconducting magnetic energy storage magnet volume

    Science.gov (United States)

    Korpela, Aki; Lehtonen, Jorma; Mikkonen, Risto

    2003-08-01

    Nonlinear optimization problems in the field of electromagnetics have been successfully solved by means of sequential quadratic programming (SQP) and the finite element method (FEM). For example, the combination of SQP and FEM has been proven to be an efficient tool in the optimization of low temperature superconductors (LTS) superconducting magnetic energy storage (SMES) magnets. The procedure can also be applied for the optimization of HTS magnets. However, due to a strongly anisotropic material and a slanted electric field, current density characteristic high temperature superconductors HTS optimization is quite different from that of the LTS. In this paper the volumes of solenoidal conduction-cooled Bi-2223/Ag SMES magnets have been optimized at the operation temperature of 20 K. In addition to the electromagnetic constraints the stress caused by the tape bending has also been taken into account. Several optimization runs with different initial geometries were performed in order to find the best possible solution for a certain energy requirement. The optimization constraints describe the steady-state operation, thus the presented coil geometries are designed for slow ramping rates. Different energy requirements were investigated in order to find the energy dependence of the design parameters of optimized solenoidal HTS coils. According to the results, these dependences can be described with polynomial expressions.

  14. A novel ferrimagnetic irido-cuprate: IrSr2GdCu2O8

    International Nuclear Information System (INIS)

    Dos Santos-Garcia, A.J.; Aguirre, Myriam H.; Moran, E.; Saez Puche, R.; Alario-Franco, M.A.

    2006-01-01

    We have performed an investigation of the structural, microstructural and magnetic properties of the new compound IrSr 2 GdCu 2 O 8 . The sample was prepared under high temperature (∼1393K) and high-pressure conditions (∼60Kbars) in a Belt type apparatus. X-ray diffraction (XRD) analysis shows that this irido-cuprate is isostructural with the corresponding Ru-1212 phase. Structurally, this material shows an interesting hierarchy of ordering phenomena, whose observation actually depends on the technique used to analyze the material: from a 'simple' cell a p xa p x3a p which is supported by XRD, through a 'diagonal' one, ∼2a p x2a p x3a p as seen by SAED, to a microdomain texture of this last one cell supported by HREM. A ferrimagnetic Ir IV -Gd III spin ordering is observed below 15K. The iridium oxidation state seems to be +4

  15. Muon and other studies of magnetic ordering in cuprate layer-compounds

    International Nuclear Information System (INIS)

    Portis, A.M.; Celio, M.

    1989-01-01

    Muon spin rotation studies of magnetic ordering in the planar cuprates are reviewed. Particular attention is given to doped La 2 CuO 4 and oxygen-depleted YBa 2 Cu 3 O 7-δ and to related experimental investigations. Studies of transition element substituted compounds are also reviewed. (orig.)

  16. Development of a HTS transceiver sub-system for 3G mobile communication TD-SCDMA base station

    Science.gov (United States)

    Zhang, Xueqiang; He, Xiaofeng; Wang, Yuehui; Duan, Tao; Wang, Guizhen; Zhang, Yan; Li, Chunguang; Zhang, Qiang; Li, Hong; He, Yusheng

    2010-02-01

    A prototype of a high temperature superconducting (HTS) transceiver sub-system for applications in a TD-SCDMA, one of the third generation (3G) communication standards, base station has been developed. Both the HTS sub-system and the conventional counterpart have been implemented into a TD-SCDMA commercial communication network and comparison test studies were carried out. The measured results showed that the HTS sub-system could remarkably improve the RF performance of both transmitting and receiving chains.

  17. Development of a HTS transceiver sub-system for 3G mobile communication TD-SCDMA base station

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xueqiang; He Xiaofeng; Wang Yuehui; Li Chunguang; Zhang Qiang; Li Hong; He Yusheng [National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Duan Tao; Wang Guizhen; Zhang Yan [Datang Mobile Communications Equipment Co., Ltd, Beijing 100190 (China)

    2010-02-15

    A prototype of a high temperature superconducting (HTS) transceiver sub-system for applications in a TD-SCDMA, one of the third generation (3G) communication standards, base station has been developed. Both the HTS sub-system and the conventional counterpart have been implemented into a TD-SCDMA commercial communication network and comparison test studies were carried out. The measured results showed that the HTS sub-system could remarkably improve the RF performance of both transmitting and receiving chains.

  18. Development of a HTS transceiver sub-system for 3G mobile communication TD-SCDMA base station

    International Nuclear Information System (INIS)

    Zhang Xueqiang; He Xiaofeng; Wang Yuehui; Li Chunguang; Zhang Qiang; Li Hong; He Yusheng; Duan Tao; Wang Guizhen; Zhang Yan

    2010-01-01

    A prototype of a high temperature superconducting (HTS) transceiver sub-system for applications in a TD-SCDMA, one of the third generation (3G) communication standards, base station has been developed. Both the HTS sub-system and the conventional counterpart have been implemented into a TD-SCDMA commercial communication network and comparison test studies were carried out. The measured results showed that the HTS sub-system could remarkably improve the RF performance of both transmitting and receiving chains.

  19. Magnetic excitations of layered cuprates studied by RIXS at Cu L{sub 3} edge

    Energy Technology Data Exchange (ETDEWEB)

    Ghiringhelli, G., E-mail: giacomo.ghiringhelli@fisi.polimi.it [CNR/SPIN, CNISM and Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano (Italy); Braicovich, L. [CNR/SPIN, CNISM and Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-06-15

    Highlights: ► We have developed very high resolution RIXS instrumentation. ► Cu L{sub 3} RIXS is ideal for studying magnetic excitations in layered cuprates. ► RIXS has been used to map magnon and paramagnon dispersion in HTcS. ► We have developed the first partial polarization analyzer for RIXS in the soft X-rays. -- Abstract: The inelastic scattering of X-rays is becoming a powerful alternative to better established techniques, based on neutrons or low energy photons, for the study of low- and medium-energy excitations in solids. When performed in the soft range the resonant inelastic X-ray scattering (RIXS) is ideal for strongly correlated electron systems based on 3d transition metals. The remarkable evolution of Cu L{sub 3} RIXS has been boosted by the steady improvement of experimental energy resolution, and by the fortunate fact that cuprates give intense and richly featured spectra. Over the last 8 years several key results were obtained using the AXES (ESRF) and the SAXES (SLS) spectrometers. This initial success is now supporting several new projects for soft X-ray RIXS worldwide. We briefly present here the case of spin excitation dispersion in insulating and superconducting cuprates and the first RIXS spectra with partial polarization analysis of the scattered photons.

  20. n value and Jc distribution dependence of AC transport current losses in HTS conductors

    International Nuclear Information System (INIS)

    Ogawa, Jun; Sawai, Yusuke; Nakayama, Haruki; Tsukamoto, Osami; Miyagi, Daisuke

    2004-01-01

    Compared with LTS materials, HTS materials have some peculiarities affecting AC loss characteristics of the conductors. We measured the AC transport current losses in YBCO thin film coated conductors and a Bi2223/Ag sheathed tape. Comparing the measured data with analytical calculations, the dependence of the AC transport current losses on the n value and critical current density distributions are studied. It is shown that, considering the n values and J c distributions, the peculiarities in the HTS materials can be taken into consideration and the transport current losses in HTS conductors can be calculated by the same analytical method used for LTS

  1. The levitation characteristics of the magnetic substances using trapped HTS bulk annuli with various magnetic field distributions

    International Nuclear Information System (INIS)

    Kim, S.B.; Ikegami, T.; Matsunaga, J.; Fujii, Y.; Onodera, H.

    2013-01-01

    Highlights: •The spherical solenoid magnet can make a various magnetic field distributions. •We generated a large magnetic gradient at inner space of HTS bulks. •The levitation height of samples was improved by the reapplied field method. •The levitation height depends on the variation rate of magnetic field gradient. -- Abstract: We have been investigating the levitation system without any mechanical contact which is composed of a field-cooled ring-shaped high temperature superconducting (HTS) bulks [1]. In this proposed levitation system, the trapped magnetic field distributions of stacked HTS bulk are very important. In this paper, the spherical solenoid magnet composed of seven solenoid coils with different inner and outer diameters was designed and fabricated as a new magnetic source. The fabricated spherical solenoid magnet can easily make a homogeneous and various magnetic field distributions in inner space of stacked HTS bulk annuli by controlling the emerging currents of each coil. By using this spherical solenoid magnet, we tried to make a large magnetic field gradient in inner space of HTS bulk annuli, and it is very important on the levitation of magnetic substances. In order to improve the levitation properties of magnetic substances with various sizes, the external fields were reapplied to the initially trapped HTS bulk magnets. We could generate a large magnetic field gradient along the axial direction in inner space of HTS bulk annuli, and obtain the improved levitation height of samples by the proposed reapplied field method

  2. Quench Detection and Protection of an HTS Coil

    Science.gov (United States)

    Sheehan, Evan; Pfotenhauer, John; Miller, Franklin; Christianson, Owen

    2017-12-01

    A pulsed, modular HTS magnet for energy storage applications was constructed and tested. Charge and discharge pulses were accomplished in about 1 second. A recuperative cryogenic cooling system supplies 42 to 80 Kelvin helium gas to the magnet. A practical solution to overvoltage and overcurrent protection has been implemented digitally using LabVIEW. Voltages as little as 46 μV greater than the expected value trigger the protection system, which stops the pulse profile and begins an immediate current ramp down to zero over 1 second. The protection system has displayed its effectiveness in HTS transition detection and damage prevention. Experimentation has demonstrated that current pulses on the order of seconds with amplitudes of up to 110 Amps can be achieved for extended periods. Higher currents produce joint heating in excess of the available cooling from the existing cryogenic system.

  3. Low AC Loss in a 3 kA HTS Cable of the Dutch Project

    Science.gov (United States)

    Chevtchenko, Oleg; Zuijderduin, Roy; Smit, Johan; Willén, Dag; Lentge, Heidi; Thidemann, Carsten; Traeholt, Chresten; Melnik, Irina; Geschiere, Alex

    Requirements for a 6 km long high temperature superconducting (HTS) AC power cable of the Amsterdam project are: a cable has to fit in an annulus of 160 mm, with two cooling stations at the cable ends only. Existing solutions for HTS cables would lead to excessively high coolant pressure drop in the cable, potentially affecting public acceptance of the project. A way out would be to substantially reduce AC losses from 1 down to about 0.1 W/m per phase at rated current of 3 kArms, frequency of 50 Hz and temperature of 77 K. In this paper we discuss a strategy towards this ambitious goal, a concept design of the single phase cable 3 kA conductor made of YBCO tapes and present corresponding experimental and simulation data supporting the developed approach leading directly to this goal. HTS cable model was made that show a drastically reduced AC loss. The low loss was achieved by using appropriate pitch angles for two-layer cable conductor of relatively large diameter, by minimizing the gaps between the HTS tapes, and by using narrow HTS tapes that conform well to the roundness of the underlying former. AC loss of 0.12 W/m at 3 kArms was measured at a frequency of 60 Hz and at a temperature of 77 K.

  4. The rich variety of cuprates

    International Nuclear Information System (INIS)

    Rice, T.M.

    1997-01-01

    The discovery of high-T c superconductivity focussed attention on the cuprates. Square planar coordinated Cu 2+ -ions are ideal S=1/2 ions. The exchange interaction between neighboring ions is very different for edge sharing (weak and ferromagnetic) and corner sharing (strong and antiferromagnetic) configurations. Many different magnetic structures are possible, e.g. chains, zig-zag chains, ladders, etc., weakly coupled to each other. The spin-liquid state of the two-leg ladder is especially interesting, not least because of the possible quantum critical point separating the spin liquid and long-range ordered states as the interladder coupling is increased. Hole doping to introduce mobile Cu 3+ -ionic configuration opens new possibilities. The recent discovery of superconductivity under pressure in a doped ladder system is encouraging. (orig.)

  5. D-wave condensate and essential phenomenological description of some properties of high-Tc cuprate superconductors

    International Nuclear Information System (INIS)

    Dunne, L.J.; Univ. of Sussex, Falmer; Braendas, E.J.; Murrell, J.N.

    1999-01-01

    The discovery of high T c superconducting cuprates occurred over a decade ago but the cause of the superconducting condensation and electronic structure of such compounds is still a matter of considerable debate. While there is no agreement as to the pairing mechanism, there is, on the other hand, a wide consensus about the main properties which a theoretical description should provide. In this article, a theory is presented which accounts in a straightforward way for many of the essential properties of the high T c cuprate superconductors. Some further developments of the model are suggested, particularly relating to the normal state spin-gap which the model does not currently describe

  6. Low AC Loss in a 3 kA HTS Cable of the Dutch Project

    DEFF Research Database (Denmark)

    Chevtchenko, Oleg; Zuijderduin, Roy; Smit, Johan

    2012-01-01

    Requirements for a 6km long high temperature superconducting (HTS) AC power cable of the Amsterdam project are: a cable has to fit in an annulus of 160mm, with two cooling stations at the cable ends only. Existing solutions for HTS cables would lead to excessively high coolant pressure drop in th...

  7. Study on ac losses of HTS coil carrying ac transport current

    International Nuclear Information System (INIS)

    Dai Taozhen; Tang Yuejin; Li Jingdong; Zhou Yusheng; Cheng Shijie; Pan Yuan

    2005-01-01

    Ac loss has an important influence on the thermal performances of HTS coil. It is necessary to quantify ac loss to ascertain its impact on coil stability and for sizing the coil refrigeration system. In this paper, we analyzed in detail the ac loss components, hysteresis loss, eddy loss and flux flow loss in the pancake HTS coil carrying ac transport current by finite element method. We also investigated the distribution of the ac losses in the coil to study the effects of magnetic field distribution on ac losses

  8. Marginal Fermi liquid and kink structure of quasiparticles in cuprates

    International Nuclear Information System (INIS)

    Kakehashi, Y.; Fulde, P.

    2007-01-01

    On the basis of the self-consistent projection operator method for nonlocal excitations, we show that a kink structure appears in the quasiparticle excitation spectrum of the two-dimensional Hubbard model at low doping concentrations. It is caused by a mixing between the quasiparticle state and the excitations with short-range antiferromagnetic order. The results explain the kink in high-T c cuprates

  9. Principle and analysis of a linear motor driving system for HTS levitation applications

    International Nuclear Information System (INIS)

    Jin, Jian X.; Guo, You G.; Zhu, Jian G.

    2007-01-01

    High temperature superconductor (HTS) high levitation force density with passive and self-stabilizing features allows a number of special applications to be developed. Linear motor driving systems are commonly required for those applications such as levitated transport systems. In this paper a prototype linear motor driving system with HTS is analyzed with calculation details including its magnetic fields and driving forces presented in the paper

  10. prototype Roebel cable to be used to wind a HTS accelerator demonstration dipole

    CERN Multimedia

    Barnard, Henry

    2014-01-01

    This is a prototype Roebel cable to be used to wind a HTS accelerator demonstration dipole, a first of its kind, within the scope of EuCARD2 WP10 (Future Magnets). The strips are stainless steel and copper, but the final one will be an HTS tape (YBCO) and copper. This prototype cable was manufactured by KIT within the scope of EuCARD2.

  11. Progress in AMSC scale-up of second generation HTS wire

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. [American Superconductor Corporation, 2 Technology Drive, Westborough, MA 01545 (United States)], E-mail: wzhang@amsuper.com; Rupich, M.W.; Schoop, U.; Verebelyi, D.T.; Thieme, C.L.H.; Li, X.; Kodenkandath, T.; Huang, Y.; Siegal, E.; Buczek, D.; Carter, W.; Nguyen, N.; Schreiber, J.; Prasova, M.; Lynch, J.; Tucker, D.; Fleshler, S. [American Superconductor Corporation, 2 Technology Drive, Westborough, MA 01545 (United States)

    2007-10-01

    American Superconductor has successfully scaled up its low-cost, high volume second generation (2G) HTS wire process into pre-pilot scale production, with performance approaching first generation (1G) HTS wire. AMSC's manufacturing approach is based on RABiTS{sup TM}/MOD wide strip technology, with metal organic deposition (MOD) process for the YBCO layer and the Rolling Assisted Biaxially Textured Substrate (RABiTS) process for the template. In this paper, we review the status of the 2G manufacturing scale up at AMSC and describe the properties and architecture of the 2G wire being manufactured and developed for various applications.

  12. NMR studies of spin dynamics in cuprates

    International Nuclear Information System (INIS)

    Takigawa, M.; Mitzi, D.B.

    1994-01-01

    The authors report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi 2.1 Sr 1.94 Ca 0.88 Cu 2.07 O 8+σ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa 2 Cu 3 O 6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector

  13. NMR studies of spin dynamics in cuprates

    Science.gov (United States)

    Takigawa, M.; Mitzi, D. B.

    1994-04-01

    We report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi2.1Sr1.94Ca0.88Cu2.07O8+δ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa2Cu3O6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector.

  14. Atomic Layer Epitaxy of Superconducting Oxides and Heterostructures

    National Research Council Canada - National Science Library

    Chang, R

    1998-01-01

    ...) materials and insulating metal oxides. Improving the nature of such interfaces is a crucial barrier which must be surmounted before HTS materials can be successfully incorporated on a large scale into a myriad of advanced active...

  15. Static and dynamic stability of the guidance force in a side-suspended HTS maglev system

    Science.gov (United States)

    Zhou, Dajin; Cui, Chenyu; Zhao, Lifeng; Zhang, Yong; Wang, Xiqing; Zhao, Yong

    2017-02-01

    The static and dynamic stability of the guidance force in a side-suspended HTS-PMG (permanent magnetic guideway) system were studied theoretically and experimentally. It is found that there are two types of guidance force that exist in the HTS-PMG system, which are sensitive to the levitation gap and the arrangement of YBCO bulks around the central axis of the PMG. An optimized YBCO array was used to stabilize the system, which enabled a side-suspended HTS-PMG maglev vehicle to run stably at 102 km h-1 on a circular test track with 6.5 m in diameter.

  16. Peculiarities on voltage - current characteristics of HTS tapes at overloading conditions cooled by liquid nitrogen

    International Nuclear Information System (INIS)

    Vysotsky, V S; Fetisov, S S; Sytnikov, V E

    2008-01-01

    Electro - technical devices are considered as the most prospective use for high temperature superconductors. For such devices the overload currents due to faults in grids are the operational reality. In these cases the fault currents may forcibly go to superconductors being sometimes dozens times more than the critical currents of HTS. Overloads are the working modes for fault current limiters also. To understand the behavior of HTS devices at overloads it is important to study voltage-current characteristics (VCC) of basic HTS tapes in real cooling conditions. The knowledge of VCC permits to model and to simulate properly HTS devices behavior at overloads. We performed the study of VCC of several HTS tapes at currents several times more than their critical ones. Both, 1-G and 2-G tapes were tested. There were found peculiarities or 'spikes' on VCC at rising currents that vanished at decaying currents. It was shown that such peculiarities are determined by the change of cooling conditions from the convective heat exchange to the nucleate boiling. Nucleate boiling activation and development times were determined. Their dependencies on heat release were measured. The data obtained can be used in simulation of heating of real superconducting devices at overload conditions

  17. Cryogenic system with the sub-cooled liquid nitrogen for cooling HTS power cable

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Y.F. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Graduate School of Chinese Academy of Sciences, Beijing (China); Gong, L.H.; Xu, X.D.; Li, L.F.; Zhang, L. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Xiao, L.Y. [Chinese Academy of Sciences, Beijing (China). Institute of Electrical Engineering

    2005-04-01

    A 10 m long, three-phase AC high-temperature superconducting (HTS) power cable had been fabricated and tested in China August 2003. The sub-cooled liquid nitrogen (LN{sub 2}) was used to cool the HTS cable. The sub-cooled LN{sub 2} circulation was built by means of a centrifugal pump through a heat exchanger in the sub-cooler, the three-phase HTS cable cryostats and a LN{sub 2} gas-liquid separator. The LN{sub 2} was cooled down to 65 K by means of decompressing, and the maximum cooling capacity was about 3.3 kW and the amount of consumed LN{sub 2} was about 72 L/h at 1500 A. Cryogenic system design, test and some experimental results would be presented in this paper. (author)

  18. Phenomenological Theory for Pseudogap States in High Tc Cuprate

    Directory of Open Access Journals (Sweden)

    Zhang Fuchun

    2012-03-01

    Full Text Available Pseudogap phase in the underdoped region of high-Tc cuprate is one of the challenging issues in condensed matter physics. In this talk, I will describe a phenomenological theory for this phase, based on analogies to the approach to Mott localization at weak coupling in lower dimensional systems. I will make comparisons of the theory to a series of the experiments, including angle resolved photoemission spectroscope, scanning tunneling microscope.

  19. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Kyu, E-mail: power@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Kim, Kwangmin; Park, Minwon [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of)

    2015-11-15

    Highlights: • A 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC transmission system. • The 400 mH class HTS DC reactor was connected to real power network via the HVDC system. • The DC current flowed in HTS DC reactor has several harmonic components and it was analyzed using FFT. - Abstract: High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  20. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    International Nuclear Information System (INIS)

    Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin

    2015-01-01

    Highlights: • A 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC transmission system. • The 400 mH class HTS DC reactor was connected to real power network via the HVDC system. • The DC current flowed in HTS DC reactor has several harmonic components and it was analyzed using FFT. - Abstract: High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  1. Development of a field pole of 1 MW-class HTS motor

    International Nuclear Information System (INIS)

    Yuan, S; Kimura, Y; Miki, M; Felder, B; Tsuzuki, K; Izumi, M; Ida, T; Umemoto, K; Aizawa, K; Yokoyama, M

    2010-01-01

    We report a field-pole high-temperature superconductor (HTS) magnet designed for 1 MW-class motor for propulsion. The field pole is assembled to the rotor of the radial-type motor. Each field pole is composed of HTS-Bi2223 tape wound into coils which have been piled up as a double pancake coils. In the design concept of the motor, we employ field poles without iron core. We prepared the test field-pole coil, whose dimension is smaller than the designed one for 1 MW, and tested its performances after cooling under self-field and external magnetic field. We verified the operation with the minimum bend radius of the coils required in the motor design, while keeping an optimal current which is lower than the critical current of the field-pole coil. The test HTS field poles were successfully cooled down and operated under a magnetic field ranging up to 5 T. We report the results of the test field-pole coil and the manufacture of a practical racetrack coil with Bi2223 and discuss the adaptability to 1 MW-class motors.

  2. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    International Nuclear Information System (INIS)

    Hatsukade, Y; Masutani, N; Teranishi, S; Masamoto, K; Kanenaga, S; Adachi, S; Tanabe, K

    2017-01-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 A pp . Relation between the frequency of the input current and the measured signal was shown and discussed. (paper)

  3. HTS-SQUID NDE Technique for Pipes based on Ultrasonic Guided Wave

    Science.gov (United States)

    Hatsukade, Y.; Masutani, N.; Teranishi, S.; Masamoto, K.; Kanenaga, S.; Adachi, S.; Tanabe, K.

    2017-07-01

    This article describes research on the novel high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) non-destructive evaluation (NDE) technique for metallic pipes based on ultrasonic guided waves. We constructed HTS-SQUID NDE system for pipes based on ultrasonic guided waves, which were generated and received by means of the magnetostrictive effects. Using the system, we measured magnetic signals due to T (0, 1) mode ultrasonic guided waves that transmitted on aluminium pipe, and investigated influences of measurement parameters to the magnetic signals, such as direction of a HTS-SQUID gradiometer, lift-off distance, and intensity and frequency of input current fed to a magnetostrictive transmitter. With the gradiometer oriented parallel to the pipe axis, more than 10 times larger signals were measured compared with that oriented perpendicular to the pipe axis. Magnetic signals measured by the gradiometer were inverse proportional to the power of the list- off distance, and proportional to the intensity of the input current up to 1 App. Relation between the frequency of the input current and the measured signal was shown and discussed.

  4. Development of a field pole of 1 MW-class HTS motor

    Science.gov (United States)

    Yuan, S.; Kimura, Y.; Miki, M.; Felder, B.; Tsuzuki, K.; Ida, T.; Izumi, M.; Umemoto, K.; Aizawa, K.; Yokoyama, M.

    2010-06-01

    We report a field-pole high-temperature superconductor (HTS) magnet designed for 1 MW-class motor for propulsion. The field pole is assembled to the rotor of the radial-type motor. Each field pole is composed of HTS-Bi2223 tape wound into coils which have been piled up as a double pancake coils. In the design concept of the motor, we employ field poles without iron core. We prepared the test field-pole coil, whose dimension is smaller than the designed one for 1 MW, and tested its performances after cooling under self-field and external magnetic field. We verified the operation with the minimum bend radius of the coils required in the motor design, while keeping an optimal current which is lower than the critical current of the field-pole coil. The test HTS field poles were successfully cooled down and operated under a magnetic field ranging up to 5 T. We report the results of the test field-pole coil and the manufacture of a practical racetrack coil with Bi2223 and discuss the adaptability to 1 MW-class motors.

  5. The state of itinerant charge carriers and thermoelectric effects in correlated oxide metals

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.; Abdus Salam International Centre for Theoretical Physics, Trieste

    2000-10-01

    We analyzed the physics of transport processes and, in particular, the thermoelectric power in the mercurocuprates and other cuprates to get a better insight into the state of the carriers in these compounds. The actual problems related to the complicated mechanisms of carriers scattering above Tc are discussed. The experimental studies of thermoelectric power showed that the state of carriers in cuprates can be influenced by many complicated scattering processes, however the underlying mechanism for the linear decreasing of the TEP with increasing the temperature for most hole-doped HTSC cuprates is still not yet known. The actual problems related to the complicated mechanisms of carriers scattering above Tc are discussed for a few models of charge transport. A comparison between the analytical and experimental results is also made. It is concluded that the crucial factor for the understanding of the transport properties of correlated oxide metals is the nature of itinerant charge carriers, i.e. renormalized quasiparticles. (author)

  6. Spatial distribution of superconducting and charge-density-wave order parameters in cuprates and its influence on the quasiparticle tunnel current (Review Article)

    Science.gov (United States)

    Gabovich, Alexander M.; Voitenko, Alexander I.

    2016-10-01

    The state of the art concerning tunnel measurements of energy gaps in cuprate oxides has been analyzed. A detailed review of the relevant literature is made, and original results calculated for the quasiparticle tunnel current J(V) between a metallic tip and a disordered d-wave superconductor partially gapped by charge density waves (CDWs) are reported, because it is this model of high-temperature superconductors that becomes popular owing to recent experiments in which CDWs were observed directly. The current was calculated suggesting the scatter of both the superconducting and CDW order parameters due to the samples' intrinsic inhomogeneity. It was shown that peculiarities in the current-voltage characteristics inherent to the case of homogeneous superconducting material are severely smeared, and the CDW-related features transform into experimentally observed peak-dip-hump structures. Theoretical results were used to fit data measured for YBa2Cu3O7-δ and Bi2Sr2CaCu2O8+δ. The fitting demonstrated a good qualitative agreement between the experiment and model calculations. The analysis of the energy gaps in high-Tc superconductors is important both per se and as a tool to uncover the nature of superconductivity in cuprates not elucidated so far despite of much theoretical effort and experimental progress.

  7. Nonlinear optical control of Josephson coupling in cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Casandruc, Eliza

    2017-03-15

    In High-T{sub C} cuprates superconducting Cu-O planes alternate with insulating layers along the crystallographic c-axis, making the materials equivalent to Josephson junctions connected in series. The most intriguing consequence is that the out-of-plane superconducting transport occurs via Cooper pairs tunneling across the insulating layers and can be predicted by the Josephson tunneling equations. Nonlinear interaction between light fields and the superconducting carriers serves as a powerful dynamical probe of cuprates, while offering opportunities for controlling them in an analogous fashion to other stimuli such as pressure and magnetic fields. The main goal of this thesis work is to use intense transient light fields to control the interlayer superconducting transport on ultrafast time scales. This was achieved by tuning the wavelength of such light pulses to completely different ranges, in order to either directly excite Josephson Plasma Waves in the nonlinear regime, or efficiently melt the competing charge and spin order phase, which in certain cuprates quenches the Josephson tunneling at equilibrium. In a first study, I have utilized strong field terahertz transients with frequencies tuned to the Josephson plasma resonance (JPR) to coherently control the c-axis superconducting transport. The Josephson relations have a cubic nonlinearity which is exploited to achieve two related, albeit slightly different, phenomena. Depending on the driving pulse, solitonic breathers were excited with narrow-band multi-cycle pulses in La{sub 1.84}Sr{sub 0.16}CuO{sub 4} while broad-band half-cycle pulses were employed to achieve a parametric amplification of Josephson Plasma Waves in La{sub 1.905}Ba{sub 0.095}CuO{sub 4}. These experiments are supported by extensive modeling, showing exceptional agreement. A comprehensive study illustrates the strong enhancement of the nonlinear effects near the JPR frequency. Then, I turned to investigate the competition between

  8. Structural design of the toroidal configuration of the HTS SMES cooling system

    International Nuclear Information System (INIS)

    Yeom, H.K.; Koh, D.Y.; Ko, J.S.; Kim, H.B.; Hong, Y.J.; Kim, S.H.; Seong, K.C.

    2011-01-01

    The superconducting magnetic energy storage (SMES) system is working on around 30 K, because the magnet is made of high temperature superconductor. To maintain the cryogenic temperature, the superconducting coil is cooled by cryogen, helium gas or liquid neon. But there are some weak points in the cryogen cooling system. For example periodic charge of the cryogen and size is big and so on. So, we have designed the conduction cooling system for toroidal configuration HTS SMES. The toroidal type HTS SMES has some merits, so it is very small magnetic field leakage, and magnetic field applied perpendicular to the tape surface can be reduced. Our system has 28 numbers of HTS double pancake coils and they are arrayed toroidal configuration. The toroidal inner radius is 162 mm, and outer radius is 599 mm, and height is about 162 mm. In this study, we have designed the cooling structure and analyzed temperature distribution of cooling path, thermal stress and deformation of the cooling structure.

  9. Conceptual design of cooling anchor for current lead on HTS field coils

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon, C. J.; Kim, J. H.; Quach, H. L. [Dept. of Electrical Engineering, Jeju National University, Jeju (Korea, Republic of); and others

    2017-06-15

    The role of current lead in high-temperature superconducting synchronous machine (HTSSM) is to function as a power supply by connecting the power supply unit at room temperature with the HTS field coils at cryogenic temperature. Such physical and electrical connection causes conduction and Joule-heating losses, which are major thermal losses of HTSSM rotors. To ensure definite stability and economic feasibility of HTS field coils, quickly and smoothly cooling down the current lead is a key design technology. Therefore, in this paper, we introduce a novel concept of a cooling anchor to enhance the cooling performance of a metal current lead. The technical concept of this technology is the simultaneously chilling and supporting the current lead. First, the structure of the current lead and cooling anchor were conceptually designed for field coils for a 1.5 MW-class HTSSM. Then, the effect of this installation on the thermal characteristics of HTS coils was investigated by 3D finite element analysis.

  10. Electronic bound states in parity-preserving QED3 applied to high-Tc cuprate superconductors

    International Nuclear Information System (INIS)

    Christiansen, H.R.; Cima, O.M. Del; Ferreira Junior, M.M.; Maranhao Univ., Sao Luis, MA; Helayel-Neto, J.A.; Centro Brasileiro de Pesquisas Fisicas

    2001-08-01

    We consider a parity-preserving QED 3 model with spontaneous breaking of the gauge symmetry as a framework for the evaluation of the electron-electron interaction potential underlying high-T e superconductivity. The fact that resulting potential, - C s K o (Mr), is non-confining and weak (in the sense of Kato) strongly suggests the mechanism of pair-condensation. This potential, compatible with an s-wave order parameters, is then applied to the Schrodinger equation for the sake of numerical calculations, thereby enforcing the existence of bound states. The results worked out by means of our theoretical framework are checked by considering a number of phenomenological data extracted from different copper oxide superconductors. The agreement may motivate a deeper analysis of our model viewing an application to quasi-planar cuprate superconductors. The data analyzed here suggest an energy scale of 1-10 meV for the breaking of the U(1)-symmetry. (author)

  11. Magnetic evaluation of a solar panel using HTS-SQUID

    Energy Technology Data Exchange (ETDEWEB)

    Kiwa, Toshihiko, E-mail: kiwa@okayama-u.ac.jp; Fukudome, Yohei; Miyazaki, Shingo; Saari, Mohd Mawardi; Sakai, Kenji; Tsukada, Keiji

    2013-11-15

    Highlights: •The magnetic evaluation system of a solar panel using HTS-SQUID has been developed. •The electric circuits made by the discrete devices on the circuit board were visualized. •The electric properties of the commercial solar panels were demonstrated. -- Abstract: The magnetic evaluation system of a solar panel using HTS-SQUID has been proposed and developed. A normal pick-up coil was applied to detect the tangential magnetic field to the panel surface. Since the detected field could be related to the currents of the solar panels, the electric properties of the solar panels could be evaluated. In this work, the evaluation of the electric properties of the commercial solar panels as well as the electric circuits made by the discrete devices on the circuit board was visualized.

  12. Magnetic evaluation of a solar panel using HTS-SQUID

    International Nuclear Information System (INIS)

    Kiwa, Toshihiko; Fukudome, Yohei; Miyazaki, Shingo; Saari, Mohd Mawardi; Sakai, Kenji; Tsukada, Keiji

    2013-01-01

    Highlights: •The magnetic evaluation system of a solar panel using HTS-SQUID has been developed. •The electric circuits made by the discrete devices on the circuit board were visualized. •The electric properties of the commercial solar panels were demonstrated. -- Abstract: The magnetic evaluation system of a solar panel using HTS-SQUID has been proposed and developed. A normal pick-up coil was applied to detect the tangential magnetic field to the panel surface. Since the detected field could be related to the currents of the solar panels, the electric properties of the solar panels could be evaluated. In this work, the evaluation of the electric properties of the commercial solar panels as well as the electric circuits made by the discrete devices on the circuit board was visualized

  13. Simulation of magnetization and levitation characteristics of HTS tape stacks

    Science.gov (United States)

    Anischenko, I. V.; Pokrovskii, S. V.; Mineev, N. A.

    2017-12-01

    In this work it is presented a computational model of a magnetic levitation system based on stacks of high-temperature second generation superconducting tapes (HTS) GdBa2Cu3O7-x. Calculated magnetic field and the current distributions in the system for different stacks geometries in the zero-field cooling mode are also presented. The magnetization curves of the stacks in the external field of a permanent NdFeB magnet and the levitation force dependence on the gap between the magnet and the HTS tapes stack were obtained. A model of the magnetic system, oriented to levitation application, is given. Results of modeling were compared with the experimental data.

  14. High quality factor HTS Josephson junctions on low loss substrates

    Energy Technology Data Exchange (ETDEWEB)

    Stornaiuolo, D; Longobardi, L; Massarotti, D; Barone, A; Tafuri, F [CNR-SPIN Napoli, Complesso Universitario di Monte Sant' Angelo, via Cinthia, 80126 Napoli (Italy); Papari, G; Carillo, F [NEST, CNR-NANO and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa (Italy); Cennamo, N [Dipartimento Ingegneria dell' Informazione, Seconda Universita degli Studi di Napoli, via Roma 29, 81031 Aversa (Italy)

    2011-04-15

    We have extended the off-axis biepitaxial technique to produce YBCO grain boundary junctions on low loss substrates. Excellent transport properties have been reproducibly found, with remarkable values of the quality factor I{sub c}R{sub n} (with I{sub c} the critical current and R{sub n} the normal state resistance) above 10 mV, far higher than the values commonly reported in the literature for high temperature superconductor (HTS) based Josephson junctions. The outcomes are consistent with a picture of a more uniform grain boundary region along the current path. This work supports a possible implementation of grain boundary junctions for various applications including terahertz sensors and HTS quantum circuits in the presence of microwaves.

  15. Images of interlayer Josephson vortices in single-layer cuprates

    International Nuclear Information System (INIS)

    Moler, K. A.; Kirtley, J. R.; Liang, R.; Bonn, D. A.; Hardy, W. N.; Williams, J. M.; Schlueter, J. A.; Hinks, D.; Villard, G.; Maignan, A.; Nohara, M.; Takagi, H.

    2000-01-01

    The interlayer penetration depth in layered superconductors may be determined from scanning Superconducting QUantum Interference Device (SQUID) microscope images of interlayer Josephson vortices. The authors compare their findings at 4 K for single crystals of the organic superconductor κ-(BEDT-TTF) 2 Cu(NCS) 2 and three near-optimally doped cuprate superconductors: La 2-x Sr x CuO 4 , (Hg, Cu)Ba 2 CuO 4+δ , and Tl 2 Ba 2 CuO 6+δ

  16. Levitation characteristics of HTS tape stacks

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskiy, S. V.; Ermolaev, Y. S.; Rudnev, I. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-03-15

    Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing of tapes and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.

  17. Phonons and charge-transfer excitations in HTS superconductors

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1989-01-01

    Some of the experimental and theoretical evidence implicating phonons and charge-transfer excitations in HTS superconductors is reviewed. It is suggested that superconductivity may be driven by a synergistic interplay of (anharmonic) phonons and electronic degrees of freedom (e.g., charge fluctuations, excitons). 47 refs., 5 figs

  18. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    Science.gov (United States)

    Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin

    2015-11-01

    High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  19. Experimental study of the effects of alternating fields on HTS coils according to the winding insulation conditions

    International Nuclear Information System (INIS)

    Hwang, Y J; Lee, T S; Lee, W S; Ko, T K; Ahn, M C

    2013-01-01

    This paper examines the effects of alternating fields on high-temperature superconducting (HTS) coils according to the winding insulation condition. Alternating fields can occur in synchronous machines (armature reaction, faults) and other devices. In superconducting synchronous machines, alternating fields affect the operational characteristics of the machine and the superconducting field coil. Therefore, a method of reducing the effects of alternating fields is necessary in superconducting synchronous design. In this study, the effects of alternating fields on the HTS field coil according to the winding insulation condition were experimentally evaluated. The experimental results show that HTS coils made using the no-insulation technique can be a solution for reducing the effects of the alternating field. These results are expected to suggest useful data for applications of HTS field coils in superconducting synchronous machines. (paper)

  20. Two band model for the cuprates

    Science.gov (United States)

    Liu, Shiu; White, Steven

    2009-03-01

    We use a numerical canonical transformation approach to derive an effective two-band model for the hole-doped cuprates, which keeps both oxygen and copper orbitals but removes double occupancy from each. A similar model was considered previously by Frenkel, Gooding, Shraiman, and Siggia (PRB 41, number 1, page 350). We compare the numerically derived model with previously obtained analytical results. In addition to the usual hopping terms between oxygens tpp and Cu-Cu exchange terms Jdd, the model also includes a strong copper-oxygen exchange interaction Jpd and a Kondo-like spin-flip oxygen-oxygen hopping term Kpdp. We use the density matrix renormalization group to study the charge, spin, and pairing properties of the derived model on ladder systems.

  1. Magnetizing of permanent magnet using HTS bulk magnet

    International Nuclear Information System (INIS)

    Oka, Tetsuo; Muraya, Tomoki; Kawasaki, Nobutaka; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Terasawa, Toshihisa

    2011-01-01

    A demagnetized Nd-Fe-B permanent magnet was scanned just above the magnetic pole containing the HTS bulk magnet, generating a magnetic field of 3.27 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. We examined the magnetic field distributions when the magnetic poles were scanned twice to activate the magnetic plates inversely with various overlap distances between the tracks of the HTS bulk magnet. The magnetic field of the 'rewritten' magnet reached the values of the magnetically saturated region of the material, showing steep gradients at the border of each magnetic pole. As a replacement for conventional pulse field magnetizing methods, this technique is proposed to expand the degree of freedom in the design of electromagnetic devices, and is proposed as a novel practical method for magnetizing rare-earth magnets, which have excellent magnetic performance and require intense fields of more than 3 T to be activated. (author)

  2. 'Leak Current' correction for critical current measurement of no-insulation HTS coil

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jung Bin [Laboratoire National des Champs Magnétiques Intenses, CNRS, Grenoble (France); Hahn, Seung Yong [Dept. of Electrical and Computer Engineering, Seoul National University, Seoul (Korea, Republic of)

    2017-06-15

    Discrepancy between a power supply current and an actual “spiral” coil current makes the conventional 4-probe measurement of a critical current (I{sub c}) of a no-insulation (NI) high temperature superconductor (HTS) coil inaccurate and time-consuming. This paper presents a fast and accurate approach for I{sub c} measurement of NI HTS coils. With an NI HTS coil energized at a constant ramping rate, a complete analytic expression for the spiral coil current was obtained from a first-order partial differential equation that derived from an equivalent circuit model of the NI coil. From the analytic solution, both spiral coil current and radial leak current can be obtained simultaneously, which enables fast and accurate measurement of the NI coil I{sub c}. To verify the proposed approach, an NI double-pancake (DP) coil, wound with GdBCO tapes of 6 mm × 0.1 mm, was constructed and its Ic was repeatedly measured with various ramping rates in a bath of liquid nitrogen at 77 K. The measured results agreed well with the calculated ones, which validates the proposed approach to measure I{sub c} of an NI HTS coil.

  3. Proceedings of the IS-HTS-TP'94: 2nd international symposium on high temperature superconductivity and tunneling phenomena

    International Nuclear Information System (INIS)

    Svistunov, V.M.

    1995-01-01

    The main purpose of this symposium is to discuss a problem of the current transfer in HTS: direct and tunneling mechanisms. It was proposed to consider a series of questions concerning spectral function of the electron-phonon interactions in HTS, the linear background conductance, the critical current in magnetic fields in bulk materials, studying in details the role of the weak superconducting links and the different natural contributions in current transfer of HTS

  4. Current distribution evaluation of dye-sensitized solar cell using HTS-SQUID-based magnetic measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Kenji, E-mail: Sakai-k@okayama-u.ac.jp; Tanaka, Kohei; Kiwa, Toshihiko; Tsukada, Keiji

    2016-11-15

    Highlights: • Current distribution and direction of dye-sensitized solar cell (DSSC) was measured. • Electrical current flowing in the indium tin oxide (ITO) glass substrate was uniform. • The distribution of electrical current depended on I–V characteristic. • Current direction changed when the performance of DSSC is low. - Abstract: The current flowing inside a dye-sensitized solar cell (DSSC) was measured using a high-temperature superconductor superconducting quantum interference device (HTS-SQUID)-based magnetic measurement system. Further, a new evaluation method of the DSSC, which is difficult to measure using the conventional method, was investigated to improve the characteristics of the DSSC. The tangential components of the magnetic field generated from the DSSC were measured using two HTS-SQUIDs, and the intensity and direction related to the electrical current were obtained by the measured magnetic field. The DSSCs prepared with different dyes and catalytic substances showed different current-intensity mapping. The current direction was different for the DSSC with low performance. In addition, the current flowing in the ITO layer of the ITO glass substrate was also measured and the results confirmed that it had uniform distribution. These results show that the current mapping and the direction of the electrical current depend on the internal factors of the DSSC, and the detection of the magnetic field distribution generated from it is expected to lead to its new evaluation method.

  5. Investigation of renormalization effects in high temperature cuprate superconductors

    International Nuclear Information System (INIS)

    Zabolotnyy, Volodymyr B.

    2008-01-01

    It has been found that the self-energy of high-T C cuprates indeed exhibits a well pronounced structure, which is currently attributed to coupling of the electrons either to lattice vibrations or to collective magnetic excitations in the system. To clarify this issue, the renormalization effects and the electronic structure of two cuprate families Bi 2 Sr 2 CaCu 2 O 8+δ and YBa 2 Cu 3 O 7-δ were chosen as the main subject for this thesis. With a simple example of an electronic system coupled to a collective mode unusual renormalization features observed in the photoemission spectra are introduced. It is shown that impurity substitution in general leads to suppression of the unusual renormalization. Finally an alternative possibility to obtain a purely superconducting surface of Y-123 via partial substitution of Y atoms with Ca is introduced. It is shown that renormalization in the superconducting Y-123 has similar strong momentum dependence as in the Bi-2212 family. It is also shown that in analogy to Bi-2212 the renormalization appears to have strong dependence on the doping level (no kinks for the overdoped component) and practically vanishes above T C suggesting that coupling to magnetic excitations fits much better than competing scenarios, according to which the unusual renormalization in ARPES spectra is caused by the coupling to single or multiple phononic modes. (orig.)

  6. Cooling concepts for HTS components

    International Nuclear Information System (INIS)

    Binneberg, A.; Buschmann, H.; Neubert, J.

    1993-01-01

    HTS components require that low-cost, reliable cooling systems be used. There are no general solutions to such systems. Any cooling concept has to be tailored to the specific requirements of a system. The following has to he taken into consideration when designing cooling concepts: - cooling temperature - constancy and controllability of the cooling temperature - cooling load and refrigerating capacity - continuous or discontinuous mode - degree of automation - full serviceability or availability before evacuation -malfunctions caused by microphonic, thermal or electromagnetic effects -stationary or mobile application - investment and operating costs (orig.)

  7. Universal spectral signatures in pnictides and cuprates: the role of quasiparticle-pair coupling.

    Science.gov (United States)

    Sacks, William; Mauger, Alain; Noat, Yves

    2017-11-08

    Understanding the physical properties of a large variety of high-T c superconductors (SC), the cuprate family as well as the more recent iron-based superconductors, is still a major challenge. In particular, these materials exhibit the 'peak-dip-hump' structure in the quasiparticle density of states (DOS). The origin of this structure is explained within our pair-pair interaction (PPI) model: The non-superconducting state consists of incoherent pairs, a 'Cooper-pair glass' which, due to the PPI, undergoes a Bose-like condensation below T c to the coherent SC state. We derive the equations of motion for the quasiparticle operators showing that the DOS 'peak-dip-hump' is caused by the coupling between quasiparticles and excited pair states, or 'super-quasiparticles'. The renormalized SC gap function becomes energy-dependent and non retarded, reproducing accurately the experimental spectra of both pnictides and cuprates, despite the large difference in gap value.

  8. Methods to reduce AC losses in HTS coated conductors with magnetic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, O. [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)], E-mail: osami-t@ynu.ac.jp; Sekizawa, S.; Alamgir, A.K.M. [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Miyagi, D. [Okayama University, 1-1, Tsushima-Naka, 1-Chome, Okayama 700-8530 (Japan)

    2007-10-01

    HTS coated conductors (CCs) have high potentials as low-cost and long length conductors. However, a question remains as to what influence the magnetic property of the substrates has on the AC losses. In this paper, the influence of magnetic property of substrates on the AC losses in HTS CCs is studied. Based on the study methods to reduce the AC transport current losses and magnetization losses in CCs with magnetic substrates are investigated. It is shown that the losses can be reduced to the same level of those in CCs with non-magnetic substrates.

  9. Methods to reduce AC losses in HTS coated conductors with magnetic substrates

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Sekizawa, S.; Alamgir, A.K.M.; Miyagi, D.

    2007-01-01

    HTS coated conductors (CCs) have high potentials as low-cost and long length conductors. However, a question remains as to what influence the magnetic property of the substrates has on the AC losses. In this paper, the influence of magnetic property of substrates on the AC losses in HTS CCs is studied. Based on the study methods to reduce the AC transport current losses and magnetization losses in CCs with magnetic substrates are investigated. It is shown that the losses can be reduced to the same level of those in CCs with non-magnetic substrates

  10. Prospects on the application of HTS SQUID magnetometry to nondestructive evaluation (NDE)

    Science.gov (United States)

    Weinstock, H.

    1993-04-01

    In light of recent advances in the fabrication of low-noise HTS SQUIDs, a review is presented on the use of LTS SQUID magnetometry for nondestructive evaluation (NDE). Examples are given on applications relating to defects in steel, subsurface cracks in aircraft frames, and voids in non-metallic structures. HTS SQUIDs may make a significant difference in the acceptance of these applications because sensing coils will be closer to a sample under test, there will be greater instrument portability and the problem of bringing liquid helium to remote locations will be eliminated.

  11. Giant superconductivity-induced modulation of the ferromagnetic magnetization in a cuprate-manganite superlattice.

    Science.gov (United States)

    Hoppler, J; Stahn, J; Niedermayer, Ch; Malik, V K; Bouyanfif, H; Drew, A J; Rössle, M; Buzdin, A; Cristiani, G; Habermeier, H-U; Keimer, B; Bernhard, C

    2009-04-01

    Artificial multilayers offer unique opportunities for combining materials with antagonistic orders such as superconductivity and ferromagnetism and thus to realize novel quantum states. In particular, oxide multilayers enable the utilization of the high superconducting transition temperature of the cuprates and the versatile magnetic properties of the colossal-magnetoresistance manganites. However, apart from exploratory work, the in-depth investigation of their unusual properties has only just begun. Here we present neutron reflectometry measurements of a [Y(0.6)Pr(0.4)Ba(2)Cu(3)O(7) (10 nm)/La(2/3)Ca(1/3)MnO(3) (10 nm)](10) superlattice, which reveal a surprisingly large superconductivity-induced modulation of the vertical ferromagnetic magnetization profile. Most surprisingly, this modulation seems to involve the density rather than the orientation of the magnetization and is highly susceptible to the strain, which is transmitted from the SrTiO(3) substrate. We outline a possible explanation of this unusual superconductivity-induced phenomenon in terms of a phase separation between ferromagnetic and non-ferromagnetic nanodomains in the La(2/3)Ca(1/3)MnO(3) layers.

  12. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    International Nuclear Information System (INIS)

    Longcai, Zhang

    2014-01-01

    Highlights: • The guidance force was decayed by the application of the AC external magnetic field. • The guidance force was higher for the bulk with bigger radius. • The guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. - Abstract: Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius

  13. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Longcai, Zhang, E-mail: zhlcai2000@163.com

    2014-07-15

    Highlights: • The guidance force was decayed by the application of the AC external magnetic field. • The guidance force was higher for the bulk with bigger radius. • The guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. - Abstract: Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  14. A tale of two metals: contrasting criticalities in the pnictides and hole-doped cuprates

    Science.gov (United States)

    Hussey, N. E.; Buhot, J.; Licciardello, S.

    2018-05-01

    The iron-based high temperature superconductors share a number of similarities with their copper-based counterparts, such as reduced dimensionality, proximity to states of competing order, and a critical role for 3d electron orbitals. Their respective temperature-doping phase diagrams also contain certain commonalities that have led to claims that the metallic and superconducting (SC) properties of both families are governed by their proximity to a quantum critical point (QCP) located inside the SC dome. In this review, we critically examine these claims and highlight significant differences in the bulk physical properties of both systems. While there is now a large body of evidence supporting the presence of a (magnetic) QCP in the iron pnictides, the situation in the cuprates is much less apparent, at least for the end point of the pseudogap phase. We argue that the opening of the normal state pseudogap in cuprates, so often tied to a putative QCP, arises from a momentum-dependent breakdown of quasiparticle coherence that sets in at much higher doping levels but which is driven by the proximity to the Mott insulating state at half filling. Finally, we present a new scenario for the cuprates in which this loss of quasiparticle integrity and its evolution with momentum, temperature and doping plays a key role in shaping the resultant phase diagram. This key issues review is dedicated to the memory of Dr John Loram whose pioneering measurements, analysis and ideas inspired much of its content.

  15. Non-destructive inspection using HTS-SQUID on aluminum liner covered by CFRP

    International Nuclear Information System (INIS)

    Hatsukade, Y.; Yotsugi, K.; Sakaguchi, Y.; Tanaka, S.

    2007-01-01

    An eddy-current-based SQUID non-destructive inspection (NDI) system to detect deep-lying cracks in multi-layer composite-Al vessels was developed taking advantage of the uncontested sensitivity of HTS-SQUID in low-frequency range. An HTS-SQUID gradiometer was mounted in a pulse tube cryocooler. A pair of differential coils with C-shaped ferrite cores was employed to induce an enhanced eddy current in an Al vessel wrapped in a carbon fiber reinforced plastic (CFRP) cover. Ellipsoidal dome-shaped Al liners containing through cracks, which were made by pressure cycle tests, in the CFRP covers with total thickness of 6 mm (CFPR 3 mm, and Al 3 mm) were inspected by the system. While inducing eddy currents in the vessels with excitation fields at 100 Hz or 7 kHz, the vessels were rotated under the HTS-SQUID. Above the cracks, anomalous signals due to the cracks were clearly detected at both frequencies. These results suggested the SQUID-NDI technique would be a possible candidate for inspection of high-pressure multi-layer composite-Al vessels

  16. Non-destructive inspection using HTS-SQUID on aluminum liner covered by CFRP

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukade, Y. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)], E-mail: hatukade@eco.tut.ac.jp; Yotsugi, K. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Sakaguchi, Y. [SAMTECH Corporation, 1000-18 Enmyo-cho, Kashiwara City, Osaka 582-0027 (Japan); Tanaka, S. [Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2007-10-01

    An eddy-current-based SQUID non-destructive inspection (NDI) system to detect deep-lying cracks in multi-layer composite-Al vessels was developed taking advantage of the uncontested sensitivity of HTS-SQUID in low-frequency range. An HTS-SQUID gradiometer was mounted in a pulse tube cryocooler. A pair of differential coils with C-shaped ferrite cores was employed to induce an enhanced eddy current in an Al vessel wrapped in a carbon fiber reinforced plastic (CFRP) cover. Ellipsoidal dome-shaped Al liners containing through cracks, which were made by pressure cycle tests, in the CFRP covers with total thickness of 6 mm (CFPR 3 mm, and Al 3 mm) were inspected by the system. While inducing eddy currents in the vessels with excitation fields at 100 Hz or 7 kHz, the vessels were rotated under the HTS-SQUID. Above the cracks, anomalous signals due to the cracks were clearly detected at both frequencies. These results suggested the SQUID-NDI technique would be a possible candidate for inspection of high-pressure multi-layer composite-Al vessels.

  17. Angle-resolved photoelectron spectroscopy studies of the many-body effects in the electronic structure of high-Tc cuprates

    International Nuclear Information System (INIS)

    Inosov, Dmytro S.

    2008-01-01

    In the present work some steps are done towards understanding the anomalous effects observed in the single-particle excitation spectra of cuprates. First, the electronic properties of BSCCO are considered. The main result of this part of the work is a model of the Green's function that is later used for calculating the two-particle excitation spectrum. Then, the matrix element effects in the photoemission spectra of cuprates are discussed. After a general introduction to the problem, the thesis focuses on the recently discovered anomalous behavior of the ARPES spectra that partially originates from the momentum-dependent photoemission matrix element. The momentum- and excitation energy dependence of the anomalous high-energy dispersion, termed ''waterfalls'', is covered in full detail. Understanding the role of the matrix element effects in this phenomenon proves crucial, as they obstruct the view of the underlying excitation spectrum that is of indisputable interest. For the optimally doped bilayer Bi-based cuprate, the renormalized two-particle correlation function in the superconducting state is calculated from ARPES data within an itinerant model based on the random phase approximation (RPA). (orig.)

  18. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    International Nuclear Information System (INIS)

    Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun

    2016-01-01

    Highlights: • A large-scale HTS generator module has been suggested to avoid issues such as a huge vacuum vessel and higher reliability. • The challenging heat loss analysis of a large-scale HTS generator has successfully been performed, enabling the design of an optimal support structure having a total heat loss of 43 W/400 kW. • The results prove the potential of a large-scale superconducting wind-power generator to operate efficiently, and support further development of the concept. - Abstract: The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  19. Heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Hae-Jin, E-mail: haejin0216@gmail.com [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Go, Byeong-Soo [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Jiang, Zhenan [Robinson Research Institute, Victoria University of Wellington, PO Box 33436 (New Zealand); Park, Minwon [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 20 Changwondaehak-ro, Changwon, 641-773 (Korea, Republic of)

    2016-11-15

    Highlights: • A large-scale HTS generator module has been suggested to avoid issues such as a huge vacuum vessel and higher reliability. • The challenging heat loss analysis of a large-scale HTS generator has successfully been performed, enabling the design of an optimal support structure having a total heat loss of 43 W/400 kW. • The results prove the potential of a large-scale superconducting wind-power generator to operate efficiently, and support further development of the concept. - Abstract: The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.

  20. Thermal transport in cuprates, cobaltates, and manganites

    International Nuclear Information System (INIS)

    Berggold, K.

    2006-09-01

    The subject of this thesis is the investigation of the thermal transport properties of three classes of transition-metal oxides: Cuprates, cobaltates, and manganites. The layered cuprates R 2 CuO 4 with R=La, Pr, Nd, Sm, Eu, and Gd show an anomalous thermal conductivity κ. Two maxima of κ are observed as a function of temperature for a heat current within the CuO 2 planes, whereas for a heat current perpendicular to the CuO 2 planes only a conventional phononic low-temperature maximum of κ is present. Evidence is provided that the high-temperature maximum is caused by heat-carrying excitations on the CuO 2 square lattice. Moreover, it is shown that the complex low-temperature and magnetic-field behavior of κ in Nd 2 CuO 4 is most likely caused by additional phonon scattering rather than by heat-carrying Nd magnons, as it was proposed in the literature. In the cobaltates RCoO 3 with R=La, Pr, Nd, and Eu, a temperature-induced spin-state transition of the Co 3+ ions occurs. It is shown that the additional lattice disorder caused by the random distribution of populated higher spin states causes a large suppression of the thermal conductivity of LaCoO 3 for T>25 K. The effect is much weaker in PrCoO 3 and NdCoO 3 due to the increased spin gap. A quantitative analysis of the responsible mechanisms based on EuCoO 3 as a reference compound is provided. A main result is that the static disorder is sufficient to explain the suppression of κ. No dynamical Jahn-Teller distortion, as proposed in the literature, is necessary to enhance the scattering strength. Below 25 K, k is mainly determined by resonant phonon scattering on paramagnetic impurity levels, e.g. caused by oxygen non-stoichiometry. Such a suppression of the thermal conductivity by resonant scattering processes is e.g. known from Holmium ethylsulfate. This effect is most pronounced in LaCoO 3 , presumably due to magnetic polaron formation. In the doped compounds La 1-x Sr x CoO 3 with 0≤x≤0.25, a large

  1. Role of Coulomb repulsion in multilayer cuprate superconductor

    International Nuclear Information System (INIS)

    Singh Chauhan, Ekta; Singh, Vipul; Masih, Piyush

    2012-01-01

    Although BCS theory completely neglects coulomb repulsion; Anderson and Morel showed very early that it plays a central role in superconductivity. Since all high T c superconductors are based on the structure of closely spaced square planner CuO 2 layers and role of interlayer interaction plays important role in enhancement of T c . Therefore the work has been dealt with 'Role of Coulomb repulsion in Multilayer Cuprate Superconductors'. An expression for transition temperature T c is obtained by using simple integration technique and is numerically solved. It has found that T c decreases with electronic repulsion. (author)

  2. Cycle Design of Reverse Brayton Cryocooler for HTS Cable Cooling Using Exergy Analysis

    Science.gov (United States)

    Gupta, Sudeep Kumar; Ghosh, Parthasarathi

    2017-02-01

    The reliability and price of cryogenic refrigeration play an important role in the successful commercialization of High Temperature Superconducting (HTS) cables. For cooling HTS cable, sub-cooled liquid nitrogen (LN2) circulation system is used. One of the options to maintain LN2 in its sub-cooled state is by providing refrigeration with the help of Reverse Brayton Cryo-cooler (RBC). The refrigeration requirement is 10 kW for continuously sub-cooling LN2 from 72 K to 65 K for cooling 1 km length of HTS cable [1]. In this paper, a parametric evaluation of RBC for sub-cooling LN2 has been performed using helium as a process fluid. Exergy approach has been adopted for this analysis. A commercial process simulator, Aspen HYSYS® V8.6 has been used for this purpose. The critical components have been identified and their exergy destruction and exergy efficiency have been obtained for a given heat load condition.

  3. Controller design and test results for a four axis HTS coil based Maglev system

    International Nuclear Information System (INIS)

    Zhou Tong; Xing Huawei

    2007-01-01

    Controller design and experimental results are reported in this paper for a four axis high temperature superconductivity (HTS) coil based electromagnetic levitation (Maglev) system. The HTS coils are made of Bi2223/Ag multifilamentary tapes. It has been experimentally proved that the designed controller works satisfactorily, although the physical parameters of a HTS coil based electromagnet (HTSEM) vary significantly with the frequency of the input voltage. A performance comparison has also been made between the classical lead-lag compensator and the modern H ∼ loop-shaping controller. It becomes clear that robust control theories are capable of providing a controller with better performances, which is in a good agreement with numerical simulations. Moreover, it implies that the particular parameter variation characteristics can be simply dealt with by the available robust control theories that are naturally existent in a HTSEM

  4. Controller design and test results for a four axis HTS coil based Maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tong [Department of Automation, Tsinghua University, Beijing 100084 (China)]. E-mail: tzhou@mail.tsinghua.edu.cn; Xing Huawei [Department of Automation, Tsinghua University, Beijing 100084 (China)

    2007-04-15

    Controller design and experimental results are reported in this paper for a four axis high temperature superconductivity (HTS) coil based electromagnetic levitation (Maglev) system. The HTS coils are made of Bi2223/Ag multifilamentary tapes. It has been experimentally proved that the designed controller works satisfactorily, although the physical parameters of a HTS coil based electromagnet (HTSEM) vary significantly with the frequency of the input voltage. A performance comparison has also been made between the classical lead-lag compensator and the modern H{sub {approx}} loop-shaping controller. It becomes clear that robust control theories are capable of providing a controller with better performances, which is in a good agreement with numerical simulations. Moreover, it implies that the particular parameter variation characteristics can be simply dealt with by the available robust control theories that are naturally existent in a HTSEM.

  5. High-T{sub c} cuprate superconductivity in a nutshell

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hyekyung [Department of Physics, Hallym University, Chuncheon 200-702 (Korea); Haas, Stephan; Parker, David; Maki, Kazumi [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States)

    2005-02-01

    Since the discovery of high-T{sub c} cuprate superconductivity in 1986 many new experimental techniques and theoretical concepts have been developed. In particular it was shown that the BCS theory of d-wave superconductivity describes semi-quantitatively the high-T{sub c} superconductivity. Furthermore, it was demonstrated that Volovik's approach is extremely useful for finding the quasiparticle properties in the vortex state. Here we survey these developments and forecast future directions. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Development of Prototype HTS Components for Magnetic Suspension Applications

    Science.gov (United States)

    Haldar, P.; Hoehn, J., Jr.; Selvamanickam, V.; Farrell, R. A.; Balachandran, U.; Iyer, A. N.; Peterson, E.; Salazar, K.

    1996-01-01

    We have concentrated on developing prototype lengths of bismuth and thallium based silver sheathed superconductors by the powder-in-tube approach to fabricate high temperature superconducting (HTS) components for magnetic suspension applications. Long lengths of mono and multi filament tapes are presently being fabricated with critical current densities useful for maglev and many other applications. We have recently demonstrated the prototype manufacture of lengths exceeding 1 km of Bi-2223 multi filament conductor. Long lengths of thallium based multi-filament conductor have also been fabricated with practical levels of critical current density and improved field dependence behavior. Test coils and magnets have been built from these lengths and characterized over a range of temperatures and background fields to determine their performance. Work is in progress to develop, fabricate and test HTS windings that will be suitable for magnetic suspension, levitation and other electric power related applications.

  7. Heavy fermions and superconductivity in doped cuprates

    International Nuclear Information System (INIS)

    Tornow, S.; Zevin, V.; Zwicknagl, G.

    1996-01-01

    We present a Fermi liquid description for the low-energy excitations in rare Earth cuprates Nd 2-x Ce x CuO 4 . The strongly renormalized heavy quasiparticles which appear in the doped samples originate from the coherent decoupling of rare earth spins and correlated conduction electrons. The correlations among the conduction electrons are simulated by assuming a spin density wave ground state. We discuss results for the thermodynamic properties in the insulating, normal metallic and superconducting phases which are in fair agreement with experimental data. In addition, the model predicts interesting behaviour for the superconducting state of samples with low transition temperature T c which may help to assess the validity of the underlying assumptions. (orig.)

  8. Spatial distribution of superconducting and charge-density-wave order parameters in cuprates and its influence on the quasiparticle tunnel current (Review Article)

    International Nuclear Information System (INIS)

    Cabovich, Alexander M.; Voitenko, Alexander I.

    2016-01-01

    The state of the art concerning tunnel measurements of energy gaps in cuprate oxides has been analyzed. A detailed review of the relevant literature is made, and original results calculated for the quasiparticle tunnel current J(V) between a metallic tip and a disordered d-wave superconductor partially gapped by charge density waves (CDWs) are reported, because it is this model of high-temperature superconductors that becomes popular owing to recent experiments in which CDWs were observed directly. The current was calculated suggesting the scatter of both the superconducting and CDW order parameters due to the samples intrinsic inhomogeneity. It was shown that peculiarities in the current-voltage characteristics inherent to the case of homogeneous super-conducting material are severely smeared, and the CDW-related features transform into experimentally observed peak-dip-hump structures. Theoretical results were used to fit data measured for YBa_2Cu_3O_7_-_d_e_l_t_a and Bi_2Sr_2CaCu_2O_8_+_d_e_l_t_a. The fitting demonstrated a good qualitative agreement between the experiment and model calculations. The analysis of the energy gaps in high-Tc superconductors is important both per se and as a tool to uncover the nature of superconductivity in cuprates not elucidated so far despite of much theoretical effort and experimental progress.

  9. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    Science.gov (United States)

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  10. Mottness in high-temperature copper-oxide superconductors

    International Nuclear Information System (INIS)

    Phillips, Philip; Choy, T.-P.; Leigh, Robert G

    2009-01-01

    The standard theory of metals, Fermi liquid theory, hinges on the key assumption that although the electrons interact, the low-energy excitation spectrum stands in a one-to-one correspondence with that of a non-interacting system. In the normal state of the copper-oxide high-temperature superconductors, drastic deviations from the Fermi liquid picture are obtained, highlighted by a pseudogap, broad spectral features and T-linear resistivity. A successful theory in this context must confront the highly constraining scaling argument which establishes that all 4-Fermi interactions are irrelevant (except for pairing) at a Fermi surface. This argument lays plain that new low-energy degrees of freedom are necessary. This paper focuses on the series of experiments on copper-oxide superconductors which reveal that the number of low-energy addition states per electron per spin exceeds unity, in direct violation of the key Fermi liquid tenet. These experiments point to new degrees of freedom, not made out of the elemental excitations, as the key mechanism by which Fermi liquid theory breaks down in the cuprates. A recent theoretical advance which permits an explicit integration of the high-energy scale in the standard model for the cuprates reveals the source of the new dynamical degrees of freedom at low energies, a charge 2e bosonic field which has nothing to do with pairing but rather represents the mixing with the high-energy scales. We demonstrate explicitly that at half-filling, this new degree of freedom provides a dynamical mechanism for the generation of the charge gap and antiferromagnetism in the insulating phase. At finite doping, many of the anomalies of the normal state of the cuprates including the pseudogap, T-linear resistivity and the mid-infrared band are reproduced. A possible route to superconductivity is explored

  11. Identification of Raman peaks of high-Tc cuprates in normal state through density of states

    International Nuclear Information System (INIS)

    Bishoyi, K.C.; Rout, G.C.; Behera, S.N.

    2007-01-01

    We present a microscopic theory to explain and identify the Raman spectral peaks of high-T c cuprates R 2-x M x CuO 4 in the normal state. We used electronic Hamiltonian prescribed by Fulde in presence of anti-ferromagnetism. Phonon interaction to the hybridization between the conduction electrons of the system and the f-electrons has been incorporated in the calculation. The phonon spectral density is calculated by the Green's function technique of Zubarev at zero wave vector and finite (room) temperature limit. The four Raman active peaks (P 1 -P 4 ) representing the electronic states of the atomic sub-systems of the cuprate system are identified by the calculated quasi-particle energy bands and electron density of states (DOS). The effect of interactions on these peaks are also explained

  12. Field gradient calculation of HTS double-pancake coils considering the slanted turns and the splice

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Geon Woo; Kim, Jin Sub; Song, Seung Hyun; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Lee, Woo Seung [JH ENGINEERING CO., LTD., Gunpo (Korea, Republic of); Lee, On You [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-03-15

    To obtain Nuclear Magnetic Resonance (NMR) measurement of membrane protein, an NMR magnet is required to generate high intensity, homogeneity, and stability of field. A High-Temperature Superconducting (HTS) magnet is a promising alternative to a conventional Low-Temperature Superconducting (LTS) NMR magnet for high field, current density, and stability margin. Conventionally, an HTS coil has been wound by several winding techniques such as Single-Pancake (SP), Double-Pancake (DP), and layer-wound. The DP winding technique has been frequently used for a large magnet because long HTS wire is generally difficult to manufacture, and maintenance of magnet is convenient. However, magnetic field generated by the slanted turns and the splice leads to field inhomogeneity in Diameter of Spherical Volume (DSV). The field inhomogeneity degrades performance of NMR spectrometer and thus effect of the slanted turns and the splice should be analyzed. In this paper, field gradient of HTS double-pancake coils considering the slanted turns and the splice was calculated using Biot-Savart law and numerical integration. The calculation results showed that magnetic field produced by the slanted turns and the splice caused significant inhomogeneity of field.

  13. Het raadselspel als rituele handeling | Obbink | HTS Teologiese ...

    African Journals Online (AJOL)

    HTS Teologiese Studies / Theological Studies. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 10, No 3 (1954) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Download this PDF file. The PDF file you selected should ...

  14. Investigation of renormalization effects in high temperature cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zabolotnyy, Volodymyr B.

    2008-04-16

    It has been found that the self-energy of high-T{sub C} cuprates indeed exhibits a well pronounced structure, which is currently attributed to coupling of the electrons either to lattice vibrations or to collective magnetic excitations in the system. To clarify this issue, the renormalization effects and the electronic structure of two cuprate families Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} and YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} were chosen as the main subject for this thesis. With a simple example of an electronic system coupled to a collective mode unusual renormalization features observed in the photoemission spectra are introduced. It is shown that impurity substitution in general leads to suppression of the unusual renormalization. Finally an alternative possibility to obtain a purely superconducting surface of Y-123 via partial substitution of Y atoms with Ca is introduced. It is shown that renormalization in the superconducting Y-123 has similar strong momentum dependence as in the Bi-2212 family. It is also shown that in analogy to Bi-2212 the renormalization appears to have strong dependence on the doping level (no kinks for the overdoped component) and practically vanishes above T{sub C} suggesting that coupling to magnetic excitations fits much better than competing scenarios, according to which the unusual renormalization in ARPES spectra is caused by the coupling to single or multiple phononic modes. (orig.)

  15. Simulation of ion-beam induced defects in cuprate superconductors

    International Nuclear Information System (INIS)

    Dineva, M.; Marksteiner, M.; Lang, W.

    2005-01-01

    Full text: Heavy-ion irradiation of cuprate superconductors is well known to produce columnar defect tracks along which magnetic vortices can be pinned. Hence, this effect has a large potential for practical applications and can enhance the critical current of the high-temperature superconducting materials. On the other hand, little work has been devoted to light-ion irradiation of the new superconductors. Our previous experimental results have indicated a systematic change of electric transport properties when irradiating YBa 2 Cu 3 O 7 (YBCO) with 75 KEXV He + ions. The purpose of the present study is the investigation of the ion-target interactions with computer simulation programs based on the binary collision approximation. The program package SRIM (Stopping and Range of Ions in Matter) is widely used to simulate the impact of energetic ions (10 eV to 2 GeV) on a solid target using a quantum mechanical treatment of ion-atom collisions under the assumption of an unstructured target material. A similar program, MARLOWE, includes the exact crystalline structure of the target and, thus, is able to calculate ion channeling effects and angle dependences. Detailed results of the penetration range of ions into YBCO, scattering cascades, creation of vacancies and interstitials, are reported for various kinds of ions. One of the central results is that light ions with energy of about 80 KEXV can penetrate through thin films of the cuprate superconductors and create point defects, mainly by oxygen displacement. (author)

  16. Pseudogap temperature T* of cuprate superconductors from the Nernst effect

    Science.gov (United States)

    Cyr-Choinière, O.; Daou, R.; Laliberté, F.; Collignon, C.; Badoux, S.; LeBoeuf, D.; Chang, J.; Ramshaw, B. J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Yan, J.-Q.; Cheng, J.-G.; Zhou, J.-S.; Goodenough, J. B.; Pyon, S.; Takayama, T.; Takagi, H.; Doiron-Leyraud, N.; Taillefer, Louis

    2018-02-01

    We use the Nernst effect to delineate the boundary of the pseudogap phase in the temperature-doping phase diagram of hole-doped cuprate superconductors. New data for the Nernst coefficient ν (T ) of YBa2Cu3Oy (YBCO), La1.8 -xEu0.2SrxCuO4 (Eu-LSCO), and La1.6 -xNd0.4SrxCuO4 (Nd-LSCO) are presented and compared with previously published data on YBCO, Eu-LSCO, Nd-LSCO, and La2 -xSrxCuO4 (LSCO). The temperature Tν at which ν /T deviates from its high-temperature linear behavior is found to coincide with the temperature at which the resistivity ρ (T ) deviates from its linear-T dependence, which we take as the definition of the pseudogap temperature T★—in agreement with the temperature at which the antinodal spectral gap detected in angle-resolved photoemission spectroscopy (ARPES) opens. We track T★ as a function of doping and find that it decreases linearly vs p in all four materials, having the same value in the three LSCO-based cuprates, irrespective of their different crystal structures. At low p ,T★ is higher than the onset temperature of the various orders observed in underdoped cuprates, suggesting that these orders are secondary instabilities of the pseudogap phase. A linear extrapolation of T★(p ) to p =0 yields T★(p →0 ) ≃TN (0), the Néel temperature for the onset of antiferromagnetic order at p =0 , suggesting that there is a link between pseudogap and antiferromagnetism. With increasing p ,T★(p ) extrapolates linearly to zero at p ≃pc 2 , the critical doping below which superconductivity emerges at high doping, suggesting that the conditions which favor pseudogap formation also favor pairing. We also use the Nernst effect to investigate how far superconducting fluctuations extend above the critical temperature Tc, as a function of doping, and find that a narrow fluctuation regime tracks Tc, and not T★. This confirms that the pseudogap phase is not a form of precursor superconductivity, and fluctuations in the phase of the

  17. Development of 66 kV/6.9 kV 2 MV A prototype HTS power transformer

    International Nuclear Information System (INIS)

    Bohno, T.; Tomioka, A.; Imaizumi, M.; Sanuki, Y.; Yamamoto, T.; Yasukawa, Y.; Ono, H.; Yagi, Y.; Iwadate, K.

    2005-01-01

    We have developed the technology of the producing a HTS magnet for the power transformer. Three subjects have been mainly studied, high voltage technologies, large current and low AC loss technologies and sub-cooling system technologies to establish the technology of 66 kV/6.9 kV 10 MV A class HTS power transformer. In order to verify the validity of elemental technologies, such as high voltage technologies, large current and low AC loss technologies and sub-cooling system technologies, single-phase 2 MV A class 66 kV/6.9 kV prototype HTS transformer was manufactured and tested. In the load loss (AC loss) measurement, it was obtained that the measured value of 633 W was almost corresponding to the calculated value of 576 W at the rated operation of 2 MV A. Moreover, the breakdown was not found all voltage withstand test. These test results indicate that elemental technologies were established for the development of 66 kV/6.9 kV 10 MV A class HTS power transformer

  18. Influence of experimental methods on crossing in magnetic force-gap hysteresis curve of HTS maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yiyun, E-mail: luyiyun6666@vip.sohu.co [Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China); Qin Yujie; Dang Qiaohong [Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China); Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)

    2010-12-01

    The crossing in magnetic levitation force-gap hysteresis curve of melt high-temperature superconductor (HTS) vs. NdFeB permanent magnet (PM) was experimentally studied. One HTS bulk and PM was used in the experiments. Four experimental methods were employed combining of high/low speed of movement of PM with/without heat insulation materials (HIM) enclosed respectively. Experimental results show that crossing of the levitation force-gap curve is related to experimental methods. A crossing occurs in the magnetic force-gap curve while the PM moves approaching to and departing from the sample with high or low speed of movement without HIM enclosed. When the PM is enclosed with HIM during the measurement procedures, there is no crossing in the force-gap curve no matter high speed or low speed of movement of the PM. It was found experimentally that, with the increase of the moving speed of the PM, the maximum magnitude of levitation force of the HTS increases also. The results are interpreted based on Maxwell theories and flux flow-creep models of HTS.

  19. Influence of experimental methods on crossing in magnetic force-gap hysteresis curve of HTS maglev system

    International Nuclear Information System (INIS)

    Lu Yiyun; Qin Yujie; Dang Qiaohong; Wang Jiasu

    2010-01-01

    The crossing in magnetic levitation force-gap hysteresis curve of melt high-temperature superconductor (HTS) vs. NdFeB permanent magnet (PM) was experimentally studied. One HTS bulk and PM was used in the experiments. Four experimental methods were employed combining of high/low speed of movement of PM with/without heat insulation materials (HIM) enclosed respectively. Experimental results show that crossing of the levitation force-gap curve is related to experimental methods. A crossing occurs in the magnetic force-gap curve while the PM moves approaching to and departing from the sample with high or low speed of movement without HIM enclosed. When the PM is enclosed with HIM during the measurement procedures, there is no crossing in the force-gap curve no matter high speed or low speed of movement of the PM. It was found experimentally that, with the increase of the moving speed of the PM, the maximum magnitude of levitation force of the HTS increases also. The results are interpreted based on Maxwell theories and flux flow-creep models of HTS.

  20. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    International Nuclear Information System (INIS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-01-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  1. HTS 63_4_ KRITZINGER.TambacH _REVISED.AUTHOR

    African Journals Online (AJOL)

    p1243322

    This article analyses Karl Barth's 1919 Tambach lecture on “The. Christian in society” in the context of post ... “The Christian in society”:Reading Barth's Tambach lecture. 1664. HTS 63(4) 2007. Tambach lecture ..... Lord of the universe, a critical No and a creative Yes in regard to all the content of our thought, a facing away ...

  2. Statistical correlations for thermophysical properties of Supercritical Argon (SCAR) used in cooling of futuristic High Temperature Superconducting (HTS) cables

    International Nuclear Information System (INIS)

    Kalsia, Mohit; Dondapati, Raja Sekhar; Usurumarti, Preeti Rao

    2017-01-01

    Highlights: • The developed correlations can be integrated into thermohydraulic analysis of HTS cables. • This work also explains the phenomenon of flow with less pumping power and maximum heat transfer in HTS cables. • Pumping power required to circulate the SCAR for cooling of HTS cables would be significantly lower. • For Hg-based high temperature superconductors (T_c > 134 K), SCAR found to be a suitable coolant. - Abstract: High Temperature Superconducting (HTS) cables are emerging as an alternative to conventional cables in efficient power transmission. However, these HTS cables require cooling below the critical temperature of superconductors used to transmit larger currents. With the invention of high temperature superconductors whose critical temperatures are up to 134 K (Hg based), it is a great challenge to identify a suitable coolant which can carry away the heating load on the superconductors. In order to accomplish such challenge, an attempt has been made in the present work to propose supercritical Argon (SCAR) as the alternative to cool the HTS cables. Further, a statistical correlation has been developed for the thermophysical properties such as density, viscosity, specific heat and thermal conductivity of SCAR. In addition, the accuracy of developed correlations is established with the help of few statistical parameters and validated with standard database available in the literature. These temperature dependent accurate correlations are useful in predicting the pressure drop and heat transfer behaviour in HTS cables using numerical or computational techniques. In recent times, with the sophistication of computer technology, solving of various complex transport equations along with the turbulence models became popular and hence the developed correlations would benefit the technological community. It is observed that, a decrease in pressure, density and viscosity are found to be decreasing whereas the thermal conductivity and specific heat

  3. Statistical correlations for thermophysical properties of Supercritical Argon (SCAR) used in cooling of futuristic High Temperature Superconducting (HTS) cables

    Energy Technology Data Exchange (ETDEWEB)

    Kalsia, Mohit [School of Mechanical Engineering, Lovely Professional University, Phagwara, 144 401 (India); Dondapati, Raja Sekhar, E-mail: drsekhar@ieee.org [School of Mechanical Engineering, Lovely Professional University, Phagwara, 144 401 (India); Usurumarti, Preeti Rao [Department of Mechanical Engineering, PVK Institute of Technology, Anantpur, 515 001 (India)

    2017-05-15

    Highlights: • The developed correlations can be integrated into thermohydraulic analysis of HTS cables. • This work also explains the phenomenon of flow with less pumping power and maximum heat transfer in HTS cables. • Pumping power required to circulate the SCAR for cooling of HTS cables would be significantly lower. • For Hg-based high temperature superconductors (T{sub c} > 134 K), SCAR found to be a suitable coolant. - Abstract: High Temperature Superconducting (HTS) cables are emerging as an alternative to conventional cables in efficient power transmission. However, these HTS cables require cooling below the critical temperature of superconductors used to transmit larger currents. With the invention of high temperature superconductors whose critical temperatures are up to 134 K (Hg based), it is a great challenge to identify a suitable coolant which can carry away the heating load on the superconductors. In order to accomplish such challenge, an attempt has been made in the present work to propose supercritical Argon (SCAR) as the alternative to cool the HTS cables. Further, a statistical correlation has been developed for the thermophysical properties such as density, viscosity, specific heat and thermal conductivity of SCAR. In addition, the accuracy of developed correlations is established with the help of few statistical parameters and validated with standard database available in the literature. These temperature dependent accurate correlations are useful in predicting the pressure drop and heat transfer behaviour in HTS cables using numerical or computational techniques. In recent times, with the sophistication of computer technology, solving of various complex transport equations along with the turbulence models became popular and hence the developed correlations would benefit the technological community. It is observed that, a decrease in pressure, density and viscosity are found to be decreasing whereas the thermal conductivity and specific

  4. Doping dependence of charge order in electron-doped cuprate superconductors

    Science.gov (United States)

    Mou, Yingping; Feng, Shiping

    2017-12-01

    In the recent studies of the unconventional physics in cuprate superconductors, one of the central issues is the interplay between charge order and superconductivity. Here the mechanism of the charge-order formation in the electron-doped cuprate superconductors is investigated based on the t-J model. The experimentally observed momentum dependence of the electron quasiparticle scattering rate is qualitatively reproduced, where the scattering rate is highly anisotropic in momentum space, and is intriguingly related to the charge-order gap. Although the scattering strength appears to be weakest at the hot spots, the scattering in the antinodal region is stronger than that in the nodal region, which leads to the original electron Fermi surface is broken up into the Fermi pockets and their coexistence with the Fermi arcs located around the nodal region. In particular, this electron Fermi surface instability drives the charge-order correlation, with the charge-order wave vector that matches well with the wave vector connecting the hot spots, as the charge-order correlation in the hole-doped counterparts. However, in a striking contrast to the hole-doped case, the charge-order wave vector in the electron-doped side increases in magnitude with the electron doping. The theory also shows the existence of a quantitative link between the single-electron fermiology and the collective response of the electron density.

  5. HTS Teologiese Studies / Theological Studies - Vol 1, No 4 (1944)

    African Journals Online (AJOL)

    Die heidelbergse kategismus as kerklike simbool · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. SP Engelbrecht, 160-173. http://dx.doi.org/10.4102/hts.v1i4.3327 ...

  6. HTS Teologiese Studies / Theological Studies - Vol 46, No 3 (1990)

    African Journals Online (AJOL)

    Paradigma-verandering, relativisme en rasionaliteit · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. A.J. Antonites, 312-322. http://dx.doi.org/10.4102/hts.v46i3.2320 ...

  7. Two types of charge transfer excitations in low dimensional cuprates: an electron energy-loss study

    Czech Academy of Sciences Publication Activity Database

    Knupfer, M.; Fink, J.; Drechsler, S.-L.; Hayn, R.; Málek, Jiří; Moskvin, A.S.

    137-140, - (2004), s. 469-473 ISSN 0368-2048 Institutional research plan: CEZ:AV0Z1010914 Keywords : cuprates * electronic excitations * electron energy-loss spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.069, year: 2004

  8. Probing the singlet character of the two-hole states in cuprate superconductors

    NARCIS (Netherlands)

    Ghiringhelli, G; Brookes, NB; Tjeng, LH; Mizokawa, T; Tjernberg, O; Menovsky, AA; Steeneken, P.G.

    Using spin-resolved resonant photoemission we have probed the singlet vs. triplet character of the two-hole state in the layered cuprates Bi2Sr2CaCu2O8+delta La2-xSrxCuO4 and Sr2CuO2Cl2. The combination of the photon circular polarization with the photoelectron spin detection gives access to the

  9. Multi-Pole HTS Generators for Direct Drive Wind Turbines

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Abrahamsen, Asger Bech; Seiler, Eugen

    or the performance of the coated conductor has to improve significantly (by a factor of 10 or more) in order for HTS generators to become feasible in direct drive offshore wind turbines. This price/performance improvement is not unrealistic in the coming decade. Additionally the reliability of such machines...

  10. Influence of the ramp angle on levitation characteristics of HTS maglev

    International Nuclear Information System (INIS)

    He Qingyong; Wang Jiasu; Zhang Longcai; Wang Suyu; Pan Siting

    2008-01-01

    The gradeability is one of the advantages of the high-temperature superconducting (HTS) maglev vehicle, and it is relative to the levitation characteristic of the maglev system on the ramp. The influence of the ramp angle on the levitation characteristics of the HTS maglev model was investigated. Some levitation characteristic parameters on the uphill guideway with different ramp angles were studied by the equivalent experiment, such as the levitation force, the levitation gap, the levitation stiffness and the guidance force. Compared with the experimental results on the horizontal guideway, it was found that the levitation gap increased, but the levitation force and the levitation stiffness decreased. The levitation gap and the levitation stiffness are considered as the main maglev characteristic parameters needed to be taken into account

  11. Heavy fermions and superconductivity in doped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, S. [Max-Planck-Inst. fur Phys. Komplexer Syst., Stuttgart (Germany). Aussenstelle Stuttgart; Zevin, V. [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Zwicknagl, G. [Max-Planck-Inst. fur Phys. Komplexer Syst., Stuttgart (Germany). Aussenstelle Stuttgart

    1996-10-01

    We present a Fermi liquid description for the low-energy excitations in rare Earth cuprates Nd{sub 2-x}Ce{sub x}CuO{sub 4}. The strongly renormalized heavy quasiparticles which appear in the doped samples originate from the coherent decoupling of rare earth spins and correlated conduction electrons. The correlations among the conduction electrons are simulated by assuming a spin density wave ground state. We discuss results for the thermodynamic properties in the insulating, normal metallic and superconducting phases which are in fair agreement with experimental data. In addition, the model predicts interesting behaviour for the superconducting state of samples with low transition temperature T{sub c} which may help to assess the validity of the underlying assumptions. (orig.)

  12. The decay properties of the trapped magnetic field in HTS bulk superconducting actuator by AC controlled magnetic field

    International Nuclear Information System (INIS)

    Kim, S.B.; Uwani, Y.; Joo, J.H.; Kawamoto, R.; Jo, Y.S.

    2011-01-01

    The electric device applications of a high temperature superconducting (HTS) bulk magnet, having stable levitation and suspension properties according to their strong flux pinning force, have been proposed and developed. We have been investigating a three-dimensional (3-D) superconducting actuator using HTS bulks to develop a non-contract transportation device which moves freely in space. It is certain for our proposed 3-D superconducting actuator to be useful as a transporter used in a clean room where silicon wafers, which do not like mechanical contact and dust, are manufactured. The proposed actuator consists of the trapped HTS bulk as a mover and two-dimensionally arranged electromagnets as a stator. Up to now, the electromagnets consisted with iron core and copper coil were used as a stator, and each electromagnet was individually controlled using DC power supplies. In our previous work, the unstable movement characteristics of HTS bulk were observed under the DC operation, and the AC electromagnets driven with AC controlled current was proposed to solve these problems. In general, the trapped magnetic field in HTS bulk was decayed by a time-varying external magnetic field. Thus, it needs to optimize the shapes of AC electromagnets and operating patterns, the decay properties of the trapped magnetic field in the HTS bulk mover by the AC magnetic field should be cleared. In this paper, the influences of the frequency, the overall operating time, the strength of magnetization field and drive current against the decay of trapped magnetic field were experimentally studied using the fabricated AC electromagnets.

  13. A Possible Path from BCS through HTS to VHTS

    Science.gov (United States)

    Chu, C. W.

    2010-03-01

    Three years after celebrating the 50th anniversary of the BCS theory and the 20th anniversary of the discovery of high temperature superconductivity (HTS), it appears to be most fitting for us to contemplate the possibility of very high temperature superconductivity (VHTS). VHTS, preferably at room temperature, if achieved, could change the world both scientifically and technologically. Unfortunately, it has long been considered by some to belong to the domain of science fiction and to occur only ``at an astronomical distance and under an astronomical pressure.'' With the advent of liquid nitrogen superconductivity in 1987, the outlook has become much brighter. Currently, there appears to be no reason, either theoretical or experimental, why VHTS would be impossible, in spite of the 2006 prediction of the death of HTS by 2010-2015 through the so-called scientometric analysis of the publication record of the previous 20 years. The recent discovery of the new class of Fe-pnictide HTSs fuels more cautious optimism. Since its inception, BCS theory has provided the basic framework for the occurrence and understanding of superconductivity, but it has failed to show where and how to find superconductivity at a higher temperature. This may be attributed to the small energy scale of superconductivity in comparison with those of other excitations in the solids. After examining existing data, we believe that a holistic multidisciplinary enlightened empirical approach appears to be the most effective way to discover novel superconductors with higher transition temperatures. In this talk, I shall present several possible approaches toward VHTS that we are currently pursuing, after briefly summarizing what has happened in the long search for HTS and VHTS.

  14. Microscopic Superconductivity and Room Temperature Electronics of High-Tc Cuprates

    International Nuclear Information System (INIS)

    Liu Fusui; Chen Wanfang

    2008-01-01

    This paper points out that the Landau criterion for macroscopic superfluidity of He II is only a criterion for microscopic superfluidity of 4 He, extends the Landau criterion to microscopic superconductivity in fermions (electron and hole) system and system with Cooper pairs without long-range phase coherence. This paper gives another three non-superconductive systems that are of microscopic superconductivity. This paper demonstrates that one application of microscopic superconductivity is to establish room temperature electronics of the high-T c cuprates

  15. Non-BCS superconductivity for underdoped cuprates by spin-vortex attraction

    OpenAIRE

    Marchetti, P. A.; Ye, F.; Su, Z. B.; Yu, L.

    2011-01-01

    Within a gauge approach to the t-J model, we propose a new, non-BCS mechanism of superconductivity for underdoped cuprates. The gluing force of the superconducting mechanism is an attraction between spin vortices on two different N\\'eel sublattices, centered around the empty sites described in terms of fermionic holons. The spin fluctuations are described by bosonic spinons with a gap generated by the spin vortices. Due to the no-double occupation constraint, there is a gauge attraction betwe...

  16. Strong Three-magnon Scattering in Cuprates by Resonant X-rays

    OpenAIRE

    Ament, Luuk J. P.; Brink, Jeroen van den

    2010-01-01

    We show that Resonant Inelastic X-ray scattering (RIXS) is sensitive to three-magnon excitations in cuprates. Even if it requires three electrons to simultaneously flip their spin, the RIXS tri-magnon scattering amplitude is not small. At the Cu $L$-edge its intensity is generally larger than the bi-magnon one and at low transferred momentum even larger than the single-magnon intensity. At the copper $M$-edge the situation is yet more extreme: in this case three-magnon scattering is dominatin...

  17. Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

    Energy Technology Data Exchange (ETDEWEB)

    In, Se Hwan; Hong, Yong Jun; Yeom, Han Kil; Ko, Hyo Bong; Park, Seong Je [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-03-15

    The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

  18. Investigation of DC current injection effect on the microwave characteristics of HTS YBCO microstrip resonators

    Energy Technology Data Exchange (ETDEWEB)

    Nurgaliev, T., E-mail: timur@ie.bas.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Blagoev, B.; Mateev, E.; Neshkov, L. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Strbik, V. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Uspenskaya, L. [Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow (Russian Federation); Nedkov, I. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Chromik, Š. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava (Slovakia)

    2014-03-15

    Highlights: • Current (spin) injection effect in LSMO/YBCO was studied by impedance measurements. • Complex impedance of YBCO increases at current injection from LSMO to YBCO at 77 K. • This increase is due to an increase of the quasiparticle conductivity of YBCO. • Injection does not significantly affect the relaxation time of the quasiparticles. - Abstract: The DC current injection effect from a ferromagnetic (FM) La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) to a high temperature superconducting (HTS) Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7−x} (YBCO) thin film was investigated by the microwave surface impedance measurements in a FM/HTS structure, formed as a microstrip resonator for improving the sensitivity of the experiments. The quality factor and the resonance frequency of this structure were found to strongly depend on the current strength, injected from the LSMO electrode into the HTS microstrip electrode. The magnetic penetration depth and the quasiparticle conductivity of the HTS component were determined to increase under DC current injection process, which in all probability stimulated breaking of Cooper pairs and led to a decrease of the superfluid concentration and an increase of the normal fluid concentration without significantly affecting the relaxation time of the quasiparticles.

  19. Optimization of a condensed-neon cooling system for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Felder, B; Miki, M; Tsuzuki, K; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchujima, Koto-ku, Tokyo 135-8533 (Japan); Hayakawa, H, E-mail: d082028@kaiyodai.ac.j [Kitano Seiki Co. Ltd., 7-17-3, Chuo, Ota-ku, Tokyo 143-0024 (Japan)

    2010-06-01

    The axial-gap synchronous machine developed in our laboratory is based on Gd-bulk HTS field-pole magnets, able to trap a part of the magnetic flux they are submitted to when cooled down below T{sub c}. At the liquid nitrogen temperature, by the Pulsed-Field Magnetization (PFM), 1.04 T was trapped in 60 mm-diameter and 20 mm-thickness magnets, leading to an output power of the motor of 10 kW at 720 rpm. To enhance this performance, we have to increase the total amount of trapped flux in the bulk, the shortest way being to decrease the temperature of the bulk HTS. Thus, we focused on the improvement of the condensed-neon cooling system, a closed-cycle thermosyphon, so that it provided enough cooling power to lead the rotor plate enclosing the magnets to a low temperature. The present study implied coming out with a new fin-oriented design of the condensation chamber; hence, the numeric calculations and FEM software (ANSYS) heat transfer simulations were conducted for various shapes and positions of the fins. The trapezoidal design offering the best efficiency was then manufactured for testing in a heat-load test configuration, leading to cooling times divided by three and a maximum heat load endured of 55 W.

  20. Optimization of a condensed-neon cooling system for a HTS synchronous motor with Gd-bulk HTS field-pole magnets

    Science.gov (United States)

    Felder, B.; Miki, M.; Tsuzuki, K.; Izumi, M.; Hayakawa, H.

    2010-06-01

    The axial-gap synchronous machine developed in our laboratory is based on Gd-bulk HTS field-pole magnets, able to trap a part of the magnetic flux they are submitted to when cooled down below Tc. At the liquid nitrogen temperature, by the Pulsed-Field Magnetization (PFM), 1.04 T was trapped in 60 mm-diameter and 20 mm-thickness magnets, leading to an output power of the motor of 10 kW at 720 rpm. To enhance this performance, we have to increase the total amount of trapped flux in the bulk, the shortest way being to decrease the temperature of the bulk HTS. Thus, we focused on the improvement of the condensed-neon cooling system, a closed-cycle thermosyphon, so that it provided enough cooling power to lead the rotor plate enclosing the magnets to a low temperature. The present study implied coming out with a new fin-oriented design of the condensation chamber; hence, the numeric calculations and FEM software (ANSYS) heat transfer simulations were conducted for various shapes and positions of the fins. The trapezoidal design offering the best efficiency was then manufactured for testing in a heat-load test configuration, leading to cooling times divided by three and a maximum heat load endured of 55 W.

  1. Design Challenges and Potentials of HTS Synchronous Motor for Superbus

    NARCIS (Netherlands)

    Ani, S.O.; Polinder, H.; Ferreira, J.A.; Ockels, W.J.

    2009-01-01

    This paper discusses the possibilities of applying high temperature superconducting (HTS) synchronous motor to Superbus, an alternative and sustainable type of public transportation developed at TU Delft. Two important factors within the Superbus drive that influence the operating range are weight

  2. Low-energy charge excitations in an undoped cuprate:Description beyond the standard pdĺ-model?

    Czech Academy of Sciences Publication Activity Database

    Drechsler, S.L.; Málek, Jiří; Hayn, R.; Knupfer, M.; Moskvin, A. S.; Fink, J.

    2003-01-01

    Roč. 17, 18, 19 & 20 (2003), s. 3324-3328 ISSN 0217-9792 Institutional research plan: CEZ:AV0Z1010914 Keywords : cuprates * EELS * loss function exact diagonalization Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.473, year: 2003

  3. Study of apical oxygen atoms in a spin-ladder cuprate compound by X-ray absorption spectroscopy near the Cu K edge

    Energy Technology Data Exchange (ETDEWEB)

    Hatterer, C.J.; Eustache, B.; Collin, L.; Beuran, C.F.; Partiot, C.; Germain, P.; Xu, X.Z.; Lagues, M. [CNRS, Paris (France). Surfaces et Supraconducteurs; Michalowicz, A. [Laboratoire de Physique des Milieux Desordonnes, Universite Paris XII Val-de-Marne, 61 avenue du general de Gaulle, 94010, Creteil Cedex (France)]|[LURE, Universite Paris Sud, 91405, Orsay Cedex (France); Moscovici, J. [Laboratoire de Physique des Milieux Desordonnes, Universite Paris XII Val-de-Marne, 61 avenue du general de Gaulle, 94010, Creteil Cedex (France); Deville Cavellin, C. [CNRS, Paris (France). Surfaces et Supraconducteurs]|[Laboratoire d`Electronique, Universite Paris XII Val-de-Marne, 61 av. du general de Gaulle, 94010, Creteil Cedex (France); Traverse, A. [LURE, Universite Paris Sud, 91405, Orsay Cedex (France)

    1997-04-01

    The structure of high-T{sub c} superconducting cuprate compounds is based on CuO{sub 2} planes alternating with blocks that behave as charge reservoirs. The apical oxygen atoms which belong to these reservoirs are suspected to play a role in the mechanism of superconductivity. It thus seems necessary to measure the amount of apical oxygen atoms in various compounds, as a function of the superconducting properties. Polarisation dependent X-ray absorption spectroscopy (XAS) measurements were performed near the Cu K-edge on three types of phases. We collected information about the neighbourhood of the copper atom in the cuprate planes and in the direction perpendicular to these planes. Two of these phases have well known structures: Bi2212 in which copper atoms are on a pyramidal site and infinite layer phase, a square planar cuprate without apical oxygen. We used the obtained results as reference data to study a new copper-rich phase related to the spin-ladder series. (orig.)

  4. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    International Nuclear Information System (INIS)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  5. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiufang [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Nie, Xinyi [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liang, Yilang [School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Lu, Falong [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Yan, Zhongming, E-mail: wangxiufanghappy@163.com [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Wang, Yu [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2017-01-15

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  6. Angle-resolved photoemission spectroscopy of band tails in lightly doped cuprates

    OpenAIRE

    Alexandrov, A. S.; Reynolds, K.

    2007-01-01

    We amend ab initio strongly-correlated band structures by taking into account the band-tailing phenomenon in doped charge-transfer Mott-Hubbard insulators. We show that the photoemission from band tails accounts for sharp "quasi-particle" peaks, rapid loss of their intensities in some directions of the Brillouin zone ("Fermi-arcs") and high-energy "waterfall" anomalies as a consequence of matrix-element effects of disorder-localised states in the charge-transfer gap of doped cuprates.

  7. Thermal transport in cuprates, cobaltates, and manganites

    Energy Technology Data Exchange (ETDEWEB)

    Berggold, K.

    2006-09-15

    The subject of this thesis is the investigation of the thermal transport properties of three classes of transition-metal oxides: Cuprates, cobaltates, and manganites. The layered cuprates R{sub 2}CuO{sub 4} with R=La, Pr, Nd, Sm, Eu, and Gd show an anomalous thermal conductivity {kappa}. Two maxima of {kappa} are observed as a function of temperature for a heat current within the CuO{sub 2} planes, whereas for a heat current perpendicular to the CuO{sub 2} planes only a conventional phononic low-temperature maximum of {kappa} is present. Evidence is provided that the high-temperature maximum is caused by heat-carrying excitations on the CuO{sub 2} square lattice. Moreover, it is shown that the complex low-temperature and magnetic-field behavior of {kappa} in Nd{sub 2}CuO{sub 4} is most likely caused by additional phonon scattering rather than by heat-carrying Nd magnons, as it was proposed in the literature. In the cobaltates RCoO{sub 3} with R=La, Pr, Nd, and Eu, a temperature-induced spin-state transition of the Co{sup 3+} ions occurs. It is shown that the additional lattice disorder caused by the random distribution of populated higher spin states causes a large suppression of the thermal conductivity of LaCoO{sub 3} for T>25 K. The effect is much weaker in PrCoO{sub 3} and NdCoO{sub 3} due to the increased spin gap. A quantitative analysis of the responsible mechanisms based on EuCoO{sub 3} as a reference compound is provided. A main result is that the static disorder is sufficient to explain the suppression of {kappa}. No dynamical Jahn-Teller distortion, as proposed in the literature, is necessary to enhance the scattering strength. Below 25 K, k is mainly determined by resonant phonon scattering on paramagnetic impurity levels, e.g. caused by oxygen non-stoichiometry. Such a suppression of the thermal conductivity by resonant scattering processes is e.g. known from Holmium ethylsulfate. This effect is most pronounced in LaCoO{sub 3}, presumably due to

  8. Phonon-induced anomalous Raman spectra in undoped high-Tc cuprates

    International Nuclear Information System (INIS)

    Lee, J.D.; Min, B.I.

    1997-01-01

    In order to describe a shoulder peak structure near 4J in the magnon Raman spectra of undoped high-T c cuprates, we have explored the phonon contribution to the Raman spectra. Incorporating the magnon-phonon Hamiltonian in the spin-wave theory, we have evaluated the two-magnon Raman spectral function originating from the lowest-order magnon-phonon-magnon scattering. It is found that phonons induce a shoulder peak near 4J besides the dominant two-magnon peak near 3J, in agreement with experiments. (orig.)

  9. Influence of Off-Centre Operation on the Performance of HTS Maglev

    Science.gov (United States)

    Gou, Y.; He, D.; Zheng, J.; Ye, C.; Xu, Y.; Sun, R.; Che, T.; Deng, Z.

    2014-03-01

    Owing to instinctive self-stable levitation characteristics, high-temperature superconducting (HTS) maglev using bulk high-temperature superconductors attracts more and more attention from scientists and engineers around the world. In this paper, the levitation force relaxation and guidance force characteristics of a Y-Ba-Cu-O levitation unit with different eccentric distances (EDs) off the center of the permanent magnet guideway were experimentally investigated under field-cooling (FC) conditions. Experimental results indicate that the levitation force slightly increases at small EDs firstly, but degrades with further increasing of EDs. However, the maximum guidance force and its stiffness exhibit enhancement in moderate ED range. The results demonstrate that a properly designed initial FC eccentric distance is important for the practical applications of HTS maglev according to specific requirements like running in curve lines.

  10. Hypertonic saline (HTS versus standard (isotonic fluid therapy for traumatic brain injuries: a systematic review

    Directory of Open Access Journals (Sweden)

    Andrit Lourens

    2014-12-01

    Full Text Available Traumatic Brain Injury (TBI is one of the foremost causes of mortality secondary to trauma. Poorer outcomes are associated with secondary insults, after the initial brain injury occurred. The management goal of TBI is to prevent or minimise the effects of secondary brain injuries. The primary objective of this systematic review/meta-analysis was to assess the effects of Hypertonic Saline (HTS compared to Standard Fluid Therapy (SFT in the treatment and resuscitation of TBI patients. We searched CENTRAL, MEDLINE (from 1966, EBSCOhost, Scopus, ScienceDirect, Proquest Medical Library and EMBASE (from 1980 in May 2010 and updated searches in February 2011. Data were assessed and extracted by two independent authors. Risk ratios (RR with a 95% confidence interval (CI were used as the effect measure. The review included three RCTs (1184 participants of which two were of high to moderate quality (1005 participants. HTS was not found to be associated with a reduction in mortality (3 RCTs, 1184 participants, RR 0.91, 95%CI 0.76 to 1.09 and morbidity in TBI patients. No significant improvement in haemodynamical stability was found whereas insufficient data were available to indicate a reduction in the intracranial pressure (ICP. In the HTS group, cerebral perfusion pressure (CPP (MD 3.83 mmHg, 95%CI 1.08 to 6.57 and serum sodium level (MD 8 mEq/L, 95%CI 7.47 to 8.53 were higher. Existing studies show no indication that HTS, in comparison to SFT, reduces mortality or morbidity after the occurrence of TBI. Against this backdrop, some uncertainties still exist in terms of the use of different concentrations and volumes of HTS, the timing of administration as well as the benefit in specific injury profiles. As a result, formulating conclusive recommendations is complex.

  11. Development of an HTS hydroelectric power generator for the hirschaid power station

    Energy Technology Data Exchange (ETDEWEB)

    Fair, Ruben; Lewis, Clive; Eugene, Joseph; Ingles, Martin, E-mail: ruben.fair@converteam.co [Advanced Technology Group, Converteam, Rugby, CV21 1BD (United Kingdom)

    2010-06-01

    This paper describes the development and manufacture of a 1.7MW, 5.25kV, 28pole, 214rpm hydroelectric power generator consisting of superconducting HTS field coils and a conventional stator. The generator is to be installed at a hydro power station in Hirschaid, Germany and is intended to be a technology demonstrator for the practical application of superconducting technology for sustainable and renewable power generation. The generator is intended to replace and uprate an existing conventional generator and will be connected directly to the German grid. The HTS field winding uses Bi-2223 tape conductor cooled to about 30K using high pressure helium gas which is transferred from static cryocoolers to the rotor via a bespoke rotating coupling. The coils are insulated with multi-layer insulation and positioned over laminated iron rotor poles which are at room temperature. The rotor is enclosed within a vacuum chamber and the complete assembly rotates at 214rpm. The challenges have been significant but have allowed Converteam to develop key technology building blocks which can be applied to future HTS related projects. The design challenges, electromagnetic, mechanical and thermal tests and results are presented and discussed together with applied solutions.

  12. HTS Teologiese Studies / Theological Studies - Vol 49, No 3 (1993)

    African Journals Online (AJOL)

    The production of the Gospel of Mark: An essay on intertextuality · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. W.S. Vorster, 385-396. http://dx.doi.org/10.4102/hts.v49i3.2499 ...

  13. Wyle Prof H G Viljoen | Geyser | HTS Teologiese Studies ...

    African Journals Online (AJOL)

    HTS Teologiese Studies / Theological Studies. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 9, No 2 (1953) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Download this PDF file. The PDF file you selected should ...

  14. Wyle Prof H G Viljoen | Geyser | HTS Teologiese Studies ...

    African Journals Online (AJOL)

    HTS Teologiese Studies / Theological Studies. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 9, No 2 (1953) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Wyle Prof H G Viljoen. A S Geyser. Abstract. No Abstract ...

  15. The Inward Dispersion of the Neutron Scattering Experiments in HTSC Cuprates

    OpenAIRE

    Dayan, Moshe

    2016-01-01

    The theory of the high temperature superconducting cuprates, which is based on the condensation of holes into strings in checker-board geometry, was successful to explain the elastically scattered Neutrons by spin waves. Here it is extended to analyze the inward dispersion curve of its inelastic counterpart, up to the resonance energy- . This extension is done by applying the perturbation theory of the linear response to the condensed strings. The approximated susceptibility is derived by mea...

  16. Mechanisms for Superconductivity in Cuprates compared with results from the Generalized MacMillan-Rowell Analysis of High Resolution Laser- ARPES

    Science.gov (United States)

    Varma, Chandra; Choi, Han-Yong; Zhang, Wentao; Zhou, Xingjiang

    2012-02-01

    The spectra of fluctuations and their coupling to fermions has been deduced from extensive high resolution laser ARPES in several BISCCO samples and quantitatively analyzed. We ask the question whether some of the theories for superconductivity in Cuprates are consistent or inconsistent with the frequency and the momentum dependence of the deductions. We find that any fluctuation spectra, for example that of Antiferromagnetic Fluctuations, whose frequency dependence depends significantly on momentum dependence are excluded. We consider the quantum-critical spectra of the loop-current order observed in under-doped cuprates and its coupling to fermions and find it consistent with the data.

  17. Characteristics of the Mott transition and electronic states of high-temperature cuprate superconductors from the perspective of the Hubbard model

    Science.gov (United States)

    Kohno, Masanori

    2018-04-01

    A fundamental issue of the Mott transition is how electrons behaving as single particles carrying spin and charge in a metal change into those exhibiting separated spin and charge excitations (low-energy spin excitation and high-energy charge excitation) in a Mott insulator. This issue has attracted considerable attention particularly in relation to high-temperature cuprate superconductors, which exhibit electronic states near the Mott transition that are difficult to explain in conventional pictures. Here, from a new viewpoint of the Mott transition based on analyses of the Hubbard model, we review anomalous features observed in high-temperature cuprate superconductors near the Mott transition.

  18. Results of KEPCO HTS cable system tests and design of hybrid cryogenic system

    International Nuclear Information System (INIS)

    Lim, J.H.; Sohn, S.H.; Yang, H.S.; Hwang, S.D.; Kim, D.L.; Ryoo, H.S.; Choi, H.O.

    2010-01-01

    In order to investigate the compatibility as a power utility facility, Korea Electric Power Corporation (KEPCO) had installed a 22.9 kV, 1250 A, 100 m long high temperature superconducting (HTS) power cable system. Using the HTS cable, various tests have been performed to investigate electrical and thermo-mechanical properties. Since 2005, a series of thermal cycle tests between liquid nitrogen (LN 2 ) and ambient temperatures have been conducted using a vacuum-pump driven open-loop cryogenic system with a capacity of 3 kW. In the tests, although the open-loop cryogenic system was reliable to operate the HTS cable system, it was not effective in economic view point because LN 2 consumption was larger than expected. In order to secure against unexpected emergencies and solve the problem of LN 2 consumption, a hybrid cryogenic system was designed and installed. A stirling cryocooler was employed and combined with the open-loop cryogenic system. Considering the average heat load at rated condition, the cooling capacity of the cryocooler was determined to 4 kW at 77 K. In this paper, results of performance tests and the design of the hybrid cooling system are presented.

  19. Electronic bound states in parity-preserving QED{sub 3} applied to high-T{sub c} cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, H.R. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: hugo@cbpf.br; Cima, O.M. Del [Universidade Catolica de Petropolis, RJ (Brazil). Grupo de Fisica Teorica]. E-mail: delcima@gft.ucp.br; Ferreira Junior, M.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica]. E-mail: manojr@cbpf.br; Helayel-Neto, J.A. [Universidade Catolica de Petropolis, RJ (Brazil). Grupo de Fisica Teorica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: helayel@gft.ucp.br

    2001-08-01

    We consider a parity-preserving QED{sub 3} model with spontaneous breaking of the gauge symmetry as a framework for the evaluation of the electron-electron interaction potential underlying high-T{sub e} superconductivity. The fact that resulting potential, - C{sub s} K{sub o} (Mr), is non-confining and weak (in the sense of Kato) strongly suggests the mechanism of pair-condensation. This potential, compatible with an s-wave order parameters, is then applied to the Schrodinger equation for the sake of numerical calculations, thereby enforcing the existence of bound states. The results worked out by means of our theoretical framework are checked by considering a number of phenomenological data extracted from different copper oxide superconductors. The agreement may motivate a deeper analysis of our model viewing an application to quasi-planar cuprate superconductors. The data analyzed here suggest an energy scale of 1-10 meV for the breaking of the U(1)-symmetry. (author)

  20. Doping evolution of the electronic structure in the single-layer cuprates Bi2Sr2−xLaxCuO6 delta: Comparison with other single-layer cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, M.

    2010-04-30

    We have performed angle-resolved photoemission and core-level x-ray photoemission studies of the single-layer cuprate Bi{sub 2}Sr{sub 2-x}La{sub x}CuO{sub 6+{delta}} (Bi2201) and revealed the doping evolution of the electronic structure from the lightly-doped to optimally-doped regions. We have observed the formation of the dispersive quasi-particle band, evolution of the Fermi 'arc' into the Fermi surface and the shift of the chemical potential with hole doping as in other cuprates. The doping evolution in Bi2201 is similar to that in Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2} (Na-CCOC), where a rapid chemical potential shift toward the lower Hubbard band of the parent insulator has been observed, but is quite different from that in La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO), where the chemical potential does not shift, yet the dispersive band and the Fermi arc/surface are formed around the Fermi level already in the lightly-doped region. The (underlying) Fermi surface shape and band dispersions are quantitatively analyzed using tightbinding fit, and the deduced next-nearest-neighbor hopping integral t also confirm the similarity to Na-CCOC and the difference from LSCO.

  1. Direct measurement of the Cu oxidation number of cuprate superconductor ceramics

    International Nuclear Information System (INIS)

    Dankhazi, Z.; Szasz, A.; Kojnok, J.; Gal, M.; Torkos, K.; Solymos, K.; Kirchmayr, H.; Mueller, H.; Watson, L.M.

    1991-01-01

    The Cu oxidation number of YBa 2 Cu 3 O 7 was measured directly by soft X-ray fluorescent spectroscopy both at room temperature and at liquid N 2 temperature. The measurements are based on a calibration curve from different Ba-O compounds. The effects of changes in oxidation number above and below the transition temperature and its role in high-T c superconductivity are discussed

  2. Theory of high-Tc superconducting cuprates based on experimental evidence

    International Nuclear Information System (INIS)

    Abrikosov, A. A.

    1999-01-01

    A model of superconductivity in layered high-temperature superconducting cuprates is proposed, based on the extended saddle point singularities in the electron spectrum, weak screening of the Coulomb interaction and phonon-mediated interaction between electrons plus a small short-range repulsion of Hund's, or spin-fluctuation, origin. This permits to explain the large values of Tc, features of the isotope effect on oxygen and copper, the existence of two types of the order parameter, the peak in the inelastic neutron scattering, the positive curvature of the upper critical field, as function of temperature etc

  3. HTS Teologiese Studies / Theological Studies - Vol 64, No 2 (2008)

    African Journals Online (AJOL)

    Die hermeneutiek van kerkgeskiedenis en “teologiegeskiedenis”: 'n “Nuwe paradigma” vir kerkgeskiedenis · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. JP Labuschagne, 861-883. http://dx.doi.org/10.4102/hts.v64i2.48 ...

  4. Numerical studies on the force characteristic of superconducting linear synchronous motor with HTS bulk magnet

    Science.gov (United States)

    Tang, Junjie; Li, Jing; Li, Xiang; Han, Le

    2018-03-01

    High temperature superconductor (HTS) bulks have significant potential use in linear motor application act as quasi-permanent magnet to replace traditional magnets. Force characteristic between HTS bulk magnet and traveling magnetic field was investigated with numerical simulation and experimental measurement in this paper. Influences of bulk height and number on the force characteristic were studied by the finite element model considering the nonlinear E-J relationship. Study was also made on addition of a back iron plate to the bulk magnet. Besides, force characteristic of bulk was compared with the permanent magnet results. The small initial decrease of the thrust could be explained by inside superconducting current redistribution. It was found that efficiency of linear motor did not increase by adding more bulk magnets. The bulk magnet will be remagnetized instead of erasing trapped field with the increase of the traveling magnetic field strength. The conclusions are helpful in prediction and design the linear motor with HTS bulk magnet.

  5. Design of HTS tri-axial cable in steady-state operation

    International Nuclear Information System (INIS)

    Hu, N.; Toda, M.; Ozcivan, A.N.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2010-01-01

    By the advantage of more compact structure, small leakage field, and low heat loss, tri-axial cable become to be mainstream design in recently HTS practical project. However, the imbalance current problem was also reported by some practice experiments. Since the HTS tri-axial cable is composed of three concentric phases, an unsymmetrical inductance and capacitance distribution which is determined by twist pitches and radii, gives an inherent imbalance in three-phase currents distribution. In our previous research, we proposed a two sections structure design to overcome this limitation. Inductance has been balanced by twist pitch adjusting. In that case, the imbalance ratio of current only can be caused by capacitance distribution which is depending on voltage and line length. In this paper, we evaluate the thickness of insulation, the unsymmetrical capacitance distribution and cable fabrication error. Then we investigate the imbalance ratio due to the capacitance as functions of voltage and length by using Electromagnetic Transients Program (EMTP).

  6. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Science.gov (United States)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  7. A method to enhance the curve negotiation performance of HTS Maglev

    Science.gov (United States)

    Che, T.; Gou, Y. F.; Deng, Z. G.; Zheng, J.; Zheng, B. T.; Chen, P.

    2015-09-01

    High temperature superconducting (HTS) Maglev has attracted more and more attention due to its special self-stable characteristic, and much work has been done to achieve its actual application, but the research about the curve negotiation is not systematic and comprehensive. In this paper, we focused on the change of the lateral displacements of the Maglev vehicle when going through curves under different velocities, and studied the change of the electromagnetic forces through experimental methods. Experimental results show that setting an appropriate initial eccentric distance (ED), which is the distance between the center of the bulk unit and the center of the permanent magnet guideway (PMG), when cooling the bulks is favorable for the Maglev system’s curve negotiation. This work will provide some available suggestions for improving the curve negotiation performance of the HTS Maglev system.

  8. Two energy scales and two quasiparticle dynamics in the superconducting state of under-doped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Le Tacon, M.; Sacuto, A. [Paris-7 Univ., Lab. Mat riaux et Ph nom nes Quantiques (UMR 7162 CNRS), 75 (France); Laboratoire de Physique du Solide, ESPCI, 75 - Paris (France); Georges, A. [Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France); Kotliar, G. [Centre de Physique Theorique, Ecole Polytechnique, 91 - Palaiseau (France); Rutgers Univ., Serin Physics Lab. (United States); Gallais, Y. [Columbia Univ. New York, Dept. of Physics and Applied Physics, NY (United States); Colson, D.; Forget, A. [CEA Saclay, Service de Physique de l' Etat Condense, 91 - Gif-sur-Yvette (France)

    2006-07-01

    The superconducting state of under-doped cuprates is often described in terms of a single energy scale, associated with the maximum of the (d-wave) gap. Here, we report on electronic Raman scattering results, which show that the gap function in the under-doped regime is characterized by two energy scales, depending on doping in opposite manners. Their ratios to the maximum critical temperature are found to be universal in cuprates. Our experimental results also reveal two different quasiparticle dynamics in the under-doped superconducting state, associated with two regions of momentum space: nodal regions near the zeros of the gap and anti-nodal regions. While anti-nodal quasiparticles quickly loose coherence as doping is reduced, coherent nodal quasiparticles persist down to low doping levels. A theoretical analysis using a new sum-rule allows us to relate the low-frequency-dependence of the Raman response to the temperature-dependence of the superfluid density, both controlled by nodal excitations. (authors)

  9. HTS Teologiese Studies / Theological Studies - Vol 64, No 1 (2008)

    African Journals Online (AJOL)

    Sexuality and partnership: Aspects of theological ethics in the field of marriage, unmarried and homosexual couples · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. UHJ Körtner, 209-225. http://dx.doi.org/10.4102/hts.v64i1.18 ...

  10. Novel trimming technique for tunable HTS microstrip filters

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, N. [Department of Electrical Engineering, Yamanashi University, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan)], E-mail: nsekiya@yamanashi.ac.jp; Nakagawa, Y. [Department of Electrical Engineering, Yamanashi University, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Saito, A.; Ohshima, S. [Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)

    2008-09-15

    We have developed a method using additional electric pads for trimming tunable high-temperature superconducting (HTS) microstrip filters. These filters are generally tuned by adjusting the gap between a dielectric floating plate above the filter. When the floating plate approached the filter, the center frequency was shifted to a lower frequency. However, the insertion loss increases due to variation in the external quality factors varying from the design parameter. The external quality factors are usually controlled by adjusting the length of the input/output (I/O) coupled-line elements and the gap between the elements and the resonator. In our method, additional electric pads are distributed at the open-end of the I/O coupled-line elements of a 3-pole hairpin bandpass filter to enable adjustment of the external quality factors so as to reduce insertion loss. The electric pads consist of line-and-space patterns. They are eclectically connected to the coupled-line elements to adjust the line length and gap width and thereby control the external quality factors. An electromagnetic simulator was used for the design and analysis. The simulation results showed that the additional electric pads are effective in improving the insertion loss of the HTS bandpass filter after tuning.

  11. Novel trimming technique for tunable HTS microstrip filters

    International Nuclear Information System (INIS)

    Sekiya, N.; Nakagawa, Y.; Saito, A.; Ohshima, S.

    2008-01-01

    We have developed a method using additional electric pads for trimming tunable high-temperature superconducting (HTS) microstrip filters. These filters are generally tuned by adjusting the gap between a dielectric floating plate above the filter. When the floating plate approached the filter, the center frequency was shifted to a lower frequency. However, the insertion loss increases due to variation in the external quality factors varying from the design parameter. The external quality factors are usually controlled by adjusting the length of the input/output (I/O) coupled-line elements and the gap between the elements and the resonator. In our method, additional electric pads are distributed at the open-end of the I/O coupled-line elements of a 3-pole hairpin bandpass filter to enable adjustment of the external quality factors so as to reduce insertion loss. The electric pads consist of line-and-space patterns. They are eclectically connected to the coupled-line elements to adjust the line length and gap width and thereby control the external quality factors. An electromagnetic simulator was used for the design and analysis. The simulation results showed that the additional electric pads are effective in improving the insertion loss of the HTS bandpass filter after tuning

  12. Microscopic theory of longitudinal sound velocity in CDW and SDW ordered cuprate systems

    International Nuclear Information System (INIS)

    Rout, G.C.; Panda, S.K.

    2011-01-01

    Research highlights: → Reported the study of the interplay of the CDW and SDW interactions in the high-Tc cuprates. → The longitudinal velocity of sound is studied in the under-doped region. → The velocity of sound exhibits suppression in both the CDW and SDW phases. → Strong electron-phonon interaction is observed in normal phases. - Abstract: We address here the self-consistent calculation of the spin density wave and the charge density wave gap parameters for high-T c cuprates on the basis of the Hubbard model. In order to describe the experimental observations for the velocity of sound, we consider the phonon coupling to the conduction band in the harmonic approximation and then the expression for the temperature dependent velocity of sound is calculated from the real part of the phonon Green's function. The effects of the electron-phonon coupling, the frequency of the sound wave, the hole doping concentration, the CDW coupling and the SDW coupling parameters on the sound velocity are investigated in the pure CDW phase as well as in the co-existence phase of the CDW and SDW states. The results are discussed to explain the experimental observations.

  13. Microscopic theory of longitudinal sound velocity in CDW and SDW ordered cuprate systems

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group, PG Dept. of Applied Physics and Ballistics, FM University, Balasore 756 019 (India); Panda, S K [KD Science College, Pochilima, Hinjilicut 761 101, Ganjam, Orissa (India)

    2011-02-15

    Research highlights: {yields} Reported the study of the interplay of the CDW and SDW interactions in the high-Tc cuprates. {yields} The longitudinal velocity of sound is studied in the under-doped region. {yields} The velocity of sound exhibits suppression in both the CDW and SDW phases. {yields} Strong electron-phonon interaction is observed in normal phases. - Abstract: We address here the self-consistent calculation of the spin density wave and the charge density wave gap parameters for high-T{sub c} cuprates on the basis of the Hubbard model. In order to describe the experimental observations for the velocity of sound, we consider the phonon coupling to the conduction band in the harmonic approximation and then the expression for the temperature dependent velocity of sound is calculated from the real part of the phonon Green's function. The effects of the electron-phonon coupling, the frequency of the sound wave, the hole doping concentration, the CDW coupling and the SDW coupling parameters on the sound velocity are investigated in the pure CDW phase as well as in the co-existence phase of the CDW and SDW states. The results are discussed to explain the experimental observations.

  14. Microscopic theory of longitudinal sound velocity in CDW and SDW ordered cuprate systems

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group, PG Dept. of Applied Physics and Ballistics, FM University, Balasore 756 019 (India); Panda, S.K. [KD Science College, Pochilima, Hinjilicut 761 101, Ganjam, Orissa (India)

    2011-02-15

    Research highlights: {yields} Reported the study of the interplay of the CDW and SDW interactions in the high-Tc cuprates. {yields} The longitudinal velocity of sound is studied in the under-doped region. {yields} The velocity of sound exhibits suppression in both the CDW and SDW phases. {yields} Strong electron-phonon interaction is observed in normal phases. - Abstract: We address here the self-consistent calculation of the spin density wave and the charge density wave gap parameters for high-T{sub c} cuprates on the basis of the Hubbard model. In order to describe the experimental observations for the velocity of sound, we consider the phonon coupling to the conduction band in the harmonic approximation and then the expression for the temperature dependent velocity of sound is calculated from the real part of the phonon Green's function. The effects of the electron-phonon coupling, the frequency of the sound wave, the hole doping concentration, the CDW coupling and the SDW coupling parameters on the sound velocity are investigated in the pure CDW phase as well as in the co-existence phase of the CDW and SDW states. The results are discussed to explain the experimental observations.

  15. Angle-resolved photoelectron spectroscopy studies of the many-body effects in the electronic structure of high-T{sub c} cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Inosov, Dmytro S.

    2008-06-18

    In the present work some steps are done towards understanding the anomalous effects observed in the single-particle excitation spectra of cuprates. First, the electronic properties of BSCCO are considered. The main result of this part of the work is a model of the Green's function that is later used for calculating the two-particle excitation spectrum. Then, the matrix element effects in the photoemission spectra of cuprates are discussed. After a general introduction to the problem, the thesis focuses on the recently discovered anomalous behavior of the ARPES spectra that partially originates from the momentum-dependent photoemission matrix element. The momentum- and excitation energy dependence of the anomalous high-energy dispersion, termed ''waterfalls'', is covered in full detail. Understanding the role of the matrix element effects in this phenomenon proves crucial, as they obstruct the view of the underlying excitation spectrum that is of indisputable interest. For the optimally doped bilayer Bi-based cuprate, the renormalized two-particle correlation function in the superconducting state is calculated from ARPES data within an itinerant model based on the random phase approximation (RPA). (orig.)

  16. Theory of antiferromagnetic pairing in cuprate superconductors

    International Nuclear Information System (INIS)

    Plakida, N.M.

    2006-01-01

    A review of the antiferromagnetic exchange and spin-fluctuation pairing theory in the cuprate superconductors is given. We briefly discuss a phenomenological approach and a theory in the limit of weak Coulomb correlations. A microscopic theory in the strong correlation limit is presented in more detail. In particular, results of our recently developed theory for the effective p-d Hubbard model and the reduced t-J model are given. We have proved that retardation effects for the antiferromagnetic exchange interaction are unimportant that results in pairing of all charge carriers in the conduction band and high Tc proportional to the Fermi energy. The spin-fluctuation interaction caused by kinematic interaction gives an additional contribution to the d-wave pairing. Dependence of Tc on the hole concentration and the lattice constant (or pressure) and an oxygen isotope shift are discussed

  17. First operation experiences from a 30 kV 104 MVA HTS power cable installed in a utility substation

    DEFF Research Database (Denmark)

    Willen, D.; Hansen, F.; Daumling, M.

    2002-01-01

    realistic conditions in the substation of Amager (AMK). Approximately 50 000 private and business customers are supplied from this cable. The load can be adjusted from 20% to 100% of the power supplied and the number of branches connected can be altered. This and other early HTS power installations...... are expected to act as ice-breakers for the HTS technology...

  18. HTS planar gradiometer consisting of SQUID with multi-turn input coil and large pickup coil made of GdBCO coated conductor

    International Nuclear Information System (INIS)

    Tsukamoto, Akira; Adachi, Seiji; Oshikubo, Yasuo; Hato, Tsunehiro; Enpuku, Keiji; Sugisaki, Masaki; Arai, Eiichi; Tanabe, Keiichi

    2013-01-01

    Highlights: ► We fabricated a large HTS gradiometer with 350-mm-long baseline. ► A 6-turn gradiometric planar pickup was made of a HTS coated conductor. ► A 26-turn HTS input coil chip was stacked on a HTS thin film gradiometer chip. ► A mechanical balancing structure was also implemented. ► The fabricated gradiometer showed a gradient field noise of 0.8 fT/cm Hz 1/2 . -- Abstract: We have investigated the fabrication of a high-temperature superconducting (HTS) gradiometer with long baseline for geophysical applications. The proof-of-concept gradiometer using a 1-turn pickup coil made of a GdBa 2 Cu 3 O y coated conductor (GCC) and 5.5-turn input coil integrated on a SQUID was fabricated in our previous work. In this study, we have optimized the device structure to improve the frequency response, gradient field sensitivity and gradiometer balance. The fabricated flux transformer consists of a 6-turn planar gradiometric pickup coil and a 26-turn input coil made of an HTS thin film. A low-melting-point alloy was used to connect polished Ag surfaces of the CGG pickup coil and Au pads of the input coil. An HTS SQUID was formed on another substrate and stacked on the input coil. A mechanical balancing structure using three pieces of GCC as a superconducting shield was also implemented. The fabricated gradiometer showed a gradient field noise of 0.8 fT/cm Hz 1/2 in the white noise regions, a gradiometer balance of 1/142, and a cutoff frequency of 9 Hz corresponding to a 2 mΩ contact resistance between the pickup coil and the input coil

  19. In situ XANES cell used for the study of lanthanum strontium cuprate deNOx catalysts

    DEFF Research Database (Denmark)

    Hagen, Anke

    2011-01-01

    , maintaining charge neutrality, with the concentration of oxygen vacancies likely increasing at substitution ratios larger than Sr/La>0.08. During heating in air, the valence of copper ions in the structure increased. Upon exposure to NO at 500 °C the valence of copper ions in a lanthanum strontium cuprate...

  20. Obtention of superconductivity by room temperature electrochemical oxidation of La2CuO4

    International Nuclear Information System (INIS)

    Casan-Pastor, N.; Fuertes, A.; Gomez-Romero, P.

    1993-01-01

    The undoped oxide La2CuO4 has required traditionally synthesis under high pressure of oxygen (and high temperatures) to incorporate excess oxygen into its structure and become a superconductor. The electrochemical oxidation of this same oxide at room temperature and pressure constitutes a striking example of the use of an alternative driving force for the oxidation of oxides to become superconductors. Electrochemical treatment of oxides has been frequently applied to their reduction with cationic intercalation. Oxidations of these solid with the concomitant intercalation of anions into their lattice shows also great promises. The paper reports recent results in the electrochemical oxidation of La2CuO4 and other cuprates, showing also the important role of post-oxidation thermal treatments on the properties of the resulting solids

  1. Identification of Raman peaks of high-T{sub c} cuprates in normal state through density of states

    Energy Technology Data Exchange (ETDEWEB)

    Bishoyi, K.C. [P.G. Department of Physics, F.M. College (Auto.), Balasore 756 001 (India)]. E-mail: bishoyi@iopb.res.in; Rout, G.C. [Condensed Matter Physics Group, Govt. Science College, Chatrapur 761 020, Orissa (India); Behera, S.N. [Physics Enclave, H.I.G.-23/1, Housing Board Phase-I, Chandrasekharpur, Bhubaneswar 7510016 (India)

    2007-05-31

    We present a microscopic theory to explain and identify the Raman spectral peaks of high-T{sub c} cuprates R{sub 2-x}M{sub x}CuO{sub 4} in the normal state. We used electronic Hamiltonian prescribed by Fulde in presence of anti-ferromagnetism. Phonon interaction to the hybridization between the conduction electrons of the system and the f-electrons has been incorporated in the calculation. The phonon spectral density is calculated by the Green's function technique of Zubarev at zero wave vector and finite (room) temperature limit. The four Raman active peaks (P{sub 1}-P{sub 4}) representing the electronic states of the atomic sub-systems of the cuprate system are identified by the calculated quasi-particle energy bands and electron density of states (DOS). The effect of interactions on these peaks are also explained.

  2. HTS Teologiese Studies / Theological Studies - Vol 65, No 1 (2009)

    African Journals Online (AJOL)

    Responsibility, God and society: The cry of the other in the sacred texts as a challenge towards responsible global citizenship · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. J-A Meylahn. http://dx.doi.org/10.4102/hts.v65i1.131 ...

  3. Oxygen stoichiometry and the high Tc superconducting oxides

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Bagley, B.G.

    1989-01-01

    Methods for determining the oxygen content in high Tc materials, such as thermogravimetric analysis and chemical analysis, are discussed. Consideration is given to La-based cuprates, Y-based cuprates, and Bi-based cuprates. Superconducting transition temperatures are analyzed as a function of the Cu(1)-O(4) bond lengths for several different compositions in the Y-based system. 28 references

  4. A study on electromagnetic and mechanical characteristics of the field coil in HTS motor

    International Nuclear Information System (INIS)

    Kim, S.B.; Kadota, T.; Joo, J.H.; Sano, H.; Murase, S.; Lee, S.H.; Hong, J.P.; Kim, H.M.; Kwon, Y.K.; Jo, Y.S.

    2010-01-01

    High temperature superconducting (HTS) motors electromagnetically consist of a rotator wound with HTS wires and an armature with conventional copper wires like Litz wire. The HTS rotor windings, as field coils, consist of a straight part and an end-ring part. Because a major rotation torque is induced by an interaction between magnetic fields and current-carrying conductors in the straight part, most of mechanical stresses in the motor occur at the straight part. An end-ring is placed in the edge of the straight part and used to connect to each adjacent straight-part coils. The magnetic fields by coil currents concentrate on the end-ring part, therefore, it is expected that the critical current of the entire coil, straight and end-ring, can be determined by the magnitude of the field in the end-ring. This paper deals with the overall J c degradation in the end-ring part by self-field generated from the coil. In addition to electromagnetic analyses, we have performed a numerical analysis in order to evaluate mechanical stresses in the straight part of field coil by armature reaction on steady-state operation. The analytical results will be presented in this paper.

  5. Experience of 12 kA / 16 V SMPS during the HTS Current Leads Test

    Science.gov (United States)

    Panchal, P.; Christian, D.; Panchal, R.; Sonara, D.; Purwar, G.; Garg, A.; Nimavat, H.; Singh, G.; Patel, J.; Tanna, V.; Pradhan, S.

    2017-04-01

    As a part of up gradation plans in SST-1 Tokamak, one pair of 3.3 kA rated prototype hybrid current leads were developed using Di-BSCCO as High Temperature Superconductors (HTS) and the copper heat exchanger. In order to validate the manufacturing procedure prior to go for series production of such current leads, it was recommended to test these current leads using dedicated and very reliable DC switch mode power supply (SMPS). As part of test facility, 12 kA, 16 VDC programmable SMPS was successfully installed, commissioned and tested. This power supply has special features such as modularity, N+1 redundancy, very low ripple voltage, precise current measurements with Direct Current Current Transformer, CC/CV modes with auto-crossover and auto-sequence programming. As a part of acceptance of this converter, A 5.8 mΩ water-cooled resistive dummy load and PLC based SCADA system is designed, developed for commissioning of power supply. The same power supply was used for the testing of the prototype HTS current leads. The paper describes the salient features and experience of state-of-art of power supply and results obtained from this converter during the HTS current leads test.

  6. Development and test of an axial flux type PM synchronous motor with liquid nitrogen cooled HTS armature windings

    International Nuclear Information System (INIS)

    Sugimoto, H; Morishita, T; Tsuda, T; Takeda, T; Togawa, H; Oota, T; Ohmatsu, K; Yoshida, S

    2008-01-01

    We developed an axial gap permanent magnet type superconducting synchronous motor cooled by liquid nitrogen (LN 2 ). The motor includes 8 poles and 6 armature windings. The armature windings are made from BSCCO wire operated at the temperature level between 66K∼70K. The design of the rated output is 400kW at 250rpm. Because HTS wires produce AC loss, there are few motors developed with a superconducting armature winding. In a large capacity motor, HTS windings need to be connected in parallel way. However, the parallel connection causes different current flowing to each HTS winding. To solve this problem, we connected a current distributor to the motor. As a result, not only the current difference can be suppressed, but also the current of each winding can be adjusted freely. The low frequency and less flux penetrating HTS wire because of current distributor contribute to low AC loss. This motor is an axial gap rotating-field one, the cooling parts are fixed. This directly leads to simple cooling system. The motor is also brushless. This paper presents the structure, the analysis of the motor and the tests

  7. Manipulating oxygen sublattice in ultrathin cuprates: a new direction to engineer oxides

    NARCIS (Netherlands)

    Samal, D.; Koster, Gertjan

    2015-01-01

    Atomic engineering of complex oxide thin films is now reaching a new paradigm: the possibility to control the cation coordination by oxygen anions. Here, we show two examples of stabilization of novel structural phases by manipulating the oxygen sublattices in complex Cu-based oxide thin films grown

  8. HTS Teologiese Studies / Theological Studies - Vol 15, No 2-4 (1959)

    African Journals Online (AJOL)

    Die ontwerp van 'n sendingbeleid in die huidige situasie · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. P.S. Dreyer, 56-66. http://dx.doi.org/10.4102/hts.v15i2/3/4.3781 ...

  9. High-temperature superconductivity in solid solutions based on mixed yttrium and barium cuprate

    International Nuclear Information System (INIS)

    Bazuev, G.V.; Kirsanov, N.A.; Makarova, O.V.; Zubkov, V.G.; Shveikin, G.P.

    1990-01-01

    The discovery of high-temperature superconductivity (T c = 30-40 K) in mixed lanthanum and alkaline earth cuprates La 2-x M x CuO 4 , where M = Ba and Ca (1-3) stimulated an extensive search for new superconducting phases based on mixed oxides of these elements. The superconducting transition temperature T c in LnBa 2 Cu 3 O 7-z phases is practically independent of the REE and lies between 90-96 K. The crystal structure of superconducting YBa 2 Cu 3 O 7-z is similar to perovskite, has orthorhombic symmetry (4,5), and is related to the lanthanum barium cuprite tetragonal defect structure La 3 Ba 3 Cu 6 O 14.1 (8). A study of possible solid solutions (SS) based on YBa 2 Cu 3 O 7-z through iso- or heterovalent substitution for Y 3+ and Ba 2+ and of their electrical properties seems warranted. In the present work, the authors report the synthesis, x-ray diffraction study, and specific electric resistivity of SS Y 1-x M x (Ba 1-y M y ') 2 Cu 3 O 7-z , where M = La, Lu, Sc, In, K, Zr, and Ce and M' = Ca, Sr, Mg, K, and La

  10. A Low Heat Inleak Cryogenic Station for Testing HTS Current Leads for the Large Hadron Collider

    CERN Document Server

    Ballarino, A; Gomes, P; Métral, L; Serio, L; Suraci, A

    1999-01-01

    The LHC will be equipped with about 8000 superconducting magnets of all types. The total current to be transported into the cryogenic enclosure amounts to some 3360 kA. In order to reduce the heat load into the liquid helium, CERN intends to use High Temperature Superconducting (HTS) material for leads having current ratings up to 13 kA. The resistive part of the leads is cooled by forced flow of gaseous helium between 20 K and 300 K. The HTS part of the lead is immersed in a 4.5 K liquid helium bath, operates in self cooling conditions and is hydraulically separated from the resistive part. A cryogenic test station has been designed and built in order to assess the thermal and electrical performances of 13 kA prototype current leads. We report on the design, commissioning and operation of the cryogenic test station and illustrate its performance by typical test results of HTS current leads.

  11. Levitation or suspension: Which one is better for the heavy-load HTS maglev transportation

    Science.gov (United States)

    Liu, Wei; Kang, Dong; Yang, X. F.; Wang, Fei; Peng, G. H.; Zheng, Jun; Ma, G. T.; Wang, J. S.

    2015-09-01

    Because of the limitation of permanent magnet (PM), the efficient of bulk high-Tc superconductor (HTSC) in a high-Tc superconducting (HTS) maglev system is not very high. It is better to magnetize the bulk HTSC with a high trapped field to increase the force density. The different application type of magnetized bulk HTSC in a maglev system, namely, levitation or suspension type, will bring quite different operation performance. This paper discusses the influence of application type on operation performance of magnetized bulk HTSC by experiments and simulations. From the discussion, it can be found which application type is better for the heavy-load HTS maglev system.

  12. Levitation characteristics in an HTS maglev launch assist test vehicle

    International Nuclear Information System (INIS)

    Yang Wenjiang; Qiu Ming; Liu Yu; Wen Zheng; Duan Yi; Chen Xiaodong

    2007-01-01

    With the aim of finding a low-cost, safe, and reliable way to reduce costs of space launch, a maglev launch assist vehicle (Maglifter) is proposed. We present a permanent magnet-high temperature superconductor (PM-HTS) interaction maglev system for the Maglifter, which consists of a cryostat with multi-block YBaCuO bulks and a flux-collecting PM guideway. We obtain an optimum bulk arrangement by measuring and analysing the typical locations of HTSs above the PM guideway. We also measure the levitation abilities of the arrangement at different field cooled heights (FCHs) and different measuring distances (MDs), and find that the lower FCH and the lower MD both cause more magnetic flux to penetrate the HTSs, and then cause stronger lateral stability. A demonstration PM-HTS maglev test vehicle is built with four maglev units and two PM guideways with the length of 7 m. Its levitation characteristics in different FC and loading conditions are demonstrated. By analysing the maglev launch assist process, we assess that the low FC is useful for increasing the lateral stability of the Maglifter

  13. Thermodynamic and nonstoichiometric behavior of promising Hi-Tc cuprate systems via EMF measurements: a short review

    International Nuclear Information System (INIS)

    Tetenbaum, M.

    1999-01-01

    Electromotive force (EMF) measurements of oxygen fugacities as a function of stoichiometry have been made on the YBa 2 Cu 3 O x , GdBa 2 Cu 3 O x , NdBa 2 Cu 3 O x and bismuth cuprate systems in the temperature range ∼400-750 C by means of an oxygen titration technique with an yttria-stabilized zirconia electrolyte. The shapes of the 400 C isotherms as a function of oxygen stoichiometry for the Gd and Nd cuprate systems suggest the presence of miscibility gaps at values of x that are higher than those in the YBa 2 Cu 3 O x system. For a given oxygen stoichiometry, oxygen partial pressures above GdBa 2 Cu 3 O x and NdBa 2 Cu 3 O x are higher (above x=6.5) than that for the promising YBa 2 Cu 3 O x system. A thermodynamic assessment and intercomparison of our partial pressure measurements with the results of related measurements will be presented

  14. The Origin of Tc Enhancement in Heterostructure Cuprate Superconductors

    Directory of Open Access Journals (Sweden)

    Doron L. Bergman

    2011-10-01

    Full Text Available Recent experiments on heterostructures composed of two or more films of cuprate superconductors of different oxygen doping levels have shown a remarkable Tc enhancement (up to 50% relative to single compound films. We provide a simple explanation of the enhancement which arises naturally from a collection of experimental works. We show that the enhancement could be caused by a structural change in the lattice, namely an increase in the distance of the apical oxygen from the copper-oxygen plane. This increase modifies the effective off-site interaction in the plane which in turn enhances the d-wave superconductivity order parameter. To illustrate this point we study the extended Hubbard model using the fluctuation exchange approximation.

  15. Spin dynamics in high-T{sub C} superconducting cuprates; Dynamique de spins dans les oxydes de cuivre supraconducteurs a haute temperature critique

    Energy Technology Data Exchange (ETDEWEB)

    Bourges, Ph

    2003-07-01

    This work is dedicated to the detailed investigations of the magnetic resonance peak in the superconducting state of cuprates. The existence of such a peak could be the signature of a mechanism linked to magnetism that could explain high critical temperature superconductivity. Inelastic neutron scattering is an adequate tool for the understanding of cuprate properties because it reveals magnetic fluctuations whose behaviour and variety depend strongly on temperature and on the level of doping. The last part of this work is dedicated to the study of spin dynamics in YBa{sub 2}Cu{sub 3}O{sub 6+x} system.

  16. Electron energy-loss spectroscopy of quasi-one-dimensional cuprates and vanadates

    International Nuclear Information System (INIS)

    Atzkern, S.

    2001-01-01

    In a combination of experimental and theoretical methods in this thesis the electronic structures of quasi-one-dimensional cuprates and vanadates were studied. For this the momentum-dependent loss function was measured by means of the electron energy-loss spectroscopy in transmission on monocrystals of Li 2 CuO 2 , CuGeO 3 , V 2 O 5 and α'-NaVO 5 . The comparison of the experimental data with results from band-structure and cluster calculations allowed conclusions on the mobility and correlations of the electrons in these systems

  17. Critical current densities in thick yttrium-barium cuprate (1-2-3) films

    International Nuclear Information System (INIS)

    Ryvkina, G.G.; Gorlanov, S.F.; Vedernikov, G.E.; Telegin, A.B.; Ryabin, V.A.; Khodos, M.Ya.

    1993-01-01

    The study of critical current densities j c of oxide superconductors and their thick films is a very important practical task because the value of j c is one of the main criteria for their utilization in modern cryoelectronics. For most devices based on the Josephson effect, the value of j c ∼ 10 2 - 10 3 A/cm 2 is acceptable, which is easily attainable for polycrystalline thick films obtained by stenciling. The study of the current-transport phenomenon involves a number of difficulties, especially for direct current, because both the sample itself and the lead-in contacts are resistance-heated during the measurements, which, in turn, results in lower values of the j c . Measurements with pulsed currents allow one to lower the power that is applied to the sample; the heat that is released in the sample is reduced, in comparison to measurements with direct current, by a factor of the pulsed-current duty cycle. In addition, measurements with direct current detects only the appearance of resistance; it provides no information on the rest of the transition from the normal to the superconductive state, i.e., on the so-called 'tail' of the transition. In this work, the authors studied critical current densities of thick HTSC yttrium-barium cuprate films of the 1-2-3 composition using pulsed current

  18. The Development and Demonstration of a 360m/10 kA HTS DC Power Cable

    Science.gov (United States)

    Xiao, Liye

    With the quick development of renewable energy, it is expected that the electric power from renewable energy would be the dominant one for the future power grid. Due to the specialty of the renewable energy, the HVDC power transmission would be very useful for the transmission of electric power from renewable energy. DC power cable made of High Tc Superconductor (HTS) would be a possible alternative for the construction of HVDC power transmission system. In this chapter, we report the development and demonstration of a 360 m/10 kA HTS DC power cable and the test results.

  19. Magnetic field induced incommensurate resonance in cuprate superconductors

    International Nuclear Information System (INIS)

    Zhang Jingge; Cheng Li; Guo Huaiming; Feng Shiping

    2009-01-01

    The influence of a uniform external magnetic field on the dynamical spin response of cuprate superconductors in the superconducting state is studied based on the kinetic energy driven superconducting mechanism. It is shown that the magnetic scattering around low and intermediate energies is dramatically changed with a modest external magnetic field. With increasing the external magnetic field, although the incommensurate magnetic scattering from both low and high energies is rather robust, the commensurate magnetic resonance scattering peak is broadened. The part of the spin excitation dispersion seems to be an hourglass-like dispersion, which breaks down at the heavily low energy regime. The theory also predicts that the commensurate resonance scattering at zero external magnetic field is induced into the incommensurate resonance scattering by applying an external magnetic field large enough

  20. HTS Teologiese Studies / Theological Studies - Vol 41, No 4 (1985)

    African Journals Online (AJOL)

    Die funksie van die belydenis en die dogma in die struktuur van die Nederduitsch Hervormde Kerk en die implikasies daarvan vir die predikant · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. A.D. Pont, 519-546. http://dx.doi.org/10.4102/hts.v41i4.2171 ...

  1. Long-term test of the 22.9kV HTS power cable system in LS Cable Ltd

    International Nuclear Information System (INIS)

    Jang, Hyun Man; Lee, Chang Young; Kim, Choon Dong; Kim, Do Hyung; Park, In Son; Ji, Bong Ki; Kim, Dong Wook; Cho, Jeonwook

    2006-01-01

    Since 2001, LS cable Ltd. has been developing the design, manufacturing and evaluation technologies for high temperature superconducting (HTS) power cable system as a member of DAPAS (Dream for Advanced Power system by Applied Superconductivity technology) program in Korea. The 30 m HTS cable system that is rated at 22.9 kV and 1.2 kA giving a rated capacity of 50 MVA had been developed and tested. The cable was designed as a cold dielectric type employing Bi-2223 HTS tapes and polypropylene (PP) laminated paper as the conductor and electrical insulation, respectively. The cable is cooled with sub-cooled liquid nitrogen at temperature from 75 to 77 K. The manufacturing and the installation of the cable system were completed in 2004. Long-term performance test of the cable system has been conducted for six months to verify its electric and mechanical properties in 2005

  2. Quasi-particles ultrafastly releasing kink bosons to form Fermi arcs in a cuprate superconductor.

    Science.gov (United States)

    Ishida, Y; Saitoh, T; Mochiku, T; Nakane, T; Hirata, K; Shin, S

    2016-01-05

    In a conventional framework, superconductivity is lost at a critical temperature (Tc) because, at higher temperatures, gluing bosons can no longer bind two electrons into a Cooper pair. In high-Tc cuprates, it is still unknown how superconductivity vanishes at Tc. We provide evidence that the so-called ≲ 70-meV kink bosons that dress the quasi-particle excitations are playing a key role in the loss of superconductivity in a cuprate. We irradiated a 170-fs laser pulse on Bi2Sr2CaCu2O(8+δ) and monitored the responses of the superconducting gap and dressed quasi-particles by time- and angle-resolved photoemission spectroscopy. We observe an ultrafast loss of superconducting gap near the d-wave node, or light-induced Fermi arcs, which is accompanied by spectral broadenings and weight redistributions occurring within the kink binding energy. We discuss that the underlying mechanism of the spectral broadening that induce the Fermi arc is the undressing of quasi-particles from the kink bosons. The loss mechanism is beyond the conventional framework, and can accept the unconventional phenomena such as the signatures of Cooper pairs remaining at temperatures above Tc.

  3. Square Helmholtz coil with homogeneous field for magnetic measurement of longer HTS tapes

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir, A.K.M. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China)]. E-mail: alam643@hotmail.com; Fang, J. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China); Gu, C. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China); Han, Z. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China)

    2005-08-01

    Magnetic ac loss measurement of HTS tapes and films at various magnetic field orientations becomes a crucial issue from the view point of measurement precision. In principle, due to tiny loss component and anisotropic properties, longer HTS sample subjected to very good homogeneous field could facilitate the accuracy of this kind of measurement. We investigated field profile of Helmholtz coils with square winding as a magnetizer for HTS tape and films. It is found that square winding exhibits better field-homogeneity than that of conventional circular winding with the similar coil dimensions for ideal condition. Being apart from ideal condition, we investigated field profile of square Helmholtz coil with various combinations of coil parameters and made a conclusion for the best combination based on the field homogeneity and field intensity. The design also provides noise reduction facilities by allowing compact and identical pick up-compensation coil arrangement. In addition, we optimized the final design of Helmholtz coil to compensate the influence of difficulties in square winding on the field distribution. Finally, as small as 0.5% field variation was estimated for 50 mm long sample to be magnetized under a proper combination of fabrication parameters. Investigation of field homogeneity, noise effect and a practical design of square Helmholtz coil as a pick-up coil based magnetizer will be reported.

  4. Square Helmholtz coil with homogeneous field for magnetic measurement of longer HTS tapes

    International Nuclear Information System (INIS)

    Alamgir, A.K.M.; Fang, J.; Gu, C.; Han, Z.

    2005-01-01

    Magnetic ac loss measurement of HTS tapes and films at various magnetic field orientations becomes a crucial issue from the view point of measurement precision. In principle, due to tiny loss component and anisotropic properties, longer HTS sample subjected to very good homogeneous field could facilitate the accuracy of this kind of measurement. We investigated field profile of Helmholtz coils with square winding as a magnetizer for HTS tape and films. It is found that square winding exhibits better field-homogeneity than that of conventional circular winding with the similar coil dimensions for ideal condition. Being apart from ideal condition, we investigated field profile of square Helmholtz coil with various combinations of coil parameters and made a conclusion for the best combination based on the field homogeneity and field intensity. The design also provides noise reduction facilities by allowing compact and identical pick up-compensation coil arrangement. In addition, we optimized the final design of Helmholtz coil to compensate the influence of difficulties in square winding on the field distribution. Finally, as small as 0.5% field variation was estimated for 50 mm long sample to be magnetized under a proper combination of fabrication parameters. Investigation of field homogeneity, noise effect and a practical design of square Helmholtz coil as a pick-up coil based magnetizer will be reported

  5. An HTS-compatible 3D colony formation assay to identify tumor-specific chemotherapeutics.

    Science.gov (United States)

    Horman, Shane R; To, Jeremy; Orth, Anthony P

    2013-12-01

    There has been increasing interest in the development of cellular behavior models that take advantage of three-dimensional (3D) cell culture. To enable assessment of differential perturbagen impacts on cell growth in 2D and 3D, we have miniaturized and adapted for high-throughput screening (HTS) the soft agar colony formation assay, employing a laser-scanning cytometer to image and quantify multiple cell types simultaneously. The assay is HTS compatible, providing high-quality, image-based, replicable data for multiple, co-cultured cell types. As proof of concept, we subjected colorectal carcinoma colonies in 3D soft agar to a mini screen of 1528 natural product compounds. Hit compounds from the primary screen were rescreened in an HTS 3D co-culture matrix containing colon stromal cells and cancer cells. By combining tumor cells and normal, nontransformed colon epithelial cells in one primary screening assay, we were able to obtain differential IC50 data, thereby distinguishing tumor-specific compounds from general cytotoxic compounds. Moreover, we were able to identify compounds that antagonized tumor colony formation in 3D only, highlighting the importance of this assay in identifying agents that interfere with 3D tumor structural growth. This screening platform provides a fast, simple, and robust method for identification of tumor-specific agents in a biologically relevant microenvironment.

  6. Magnet design with 100-kA HTS STARS conductors for the helical fusion reactor

    Science.gov (United States)

    Yanagi, N.; Terazaki, Y.; Ito, S.; Tamura, H.; Hamaguchi, S.; Mito, T.; Hashizume, H.; Sagara, A.

    2016-12-01

    The high-temperature superconducting (HTS) option is employed for the conceptual design of the LHD-type helical fusion reactor FFHR-d1. The 100-kA-class STARS (Stacked Tapes Assembled in Rigid Structure) conductor is used for the magnet system including the continuously wound helical coils. Protection of the magnet system in case of a quench is a crucial issue and the hot-spot temperature during an emergency discharge is estimated based on the zero-dimensional and one-dimensional analyses. The number of division of the coil winding package is examined to limit the voltage generation. For cooling the HTS magnet, helium gas flow is considered and its feasibility is examined by simple analysis as a first step.

  7. Electrical and thermal characteristics of Bi2212/Ag HTS coils for conduction-cooled SMES

    Science.gov (United States)

    Hayakawa, N.; Noguchi, S.; Kurupakorn, C.; Kojima, H.; Endo, F.; Hirano, N.; Nagaya, S.; Okubo, H.

    2006-06-01

    In this paper, we investigated the electrical and thermal performance of conduction-cooled Bi2212/Ag HTS coils with 4K-GM cryocooler system. First, we measured the critical current Ic for different ambient temperatures T0 at 4.2 K - 40 K. Experimental results revealed that Ic increased with the decrease in T0 and was saturated at T0 account of temperature dependence of specific heat and thermal conductivity of the materials. We also measured the temperature rise of Bi2212/Ag HTS coil for different continuous current levels at T0 = 4.8 K. Experimental results revealed the criterion of thermal runaway, which was discussed in terms of heat generation and propagation in the test coil.

  8. Theoretical and FEM analysis of suspension and propulsion system with HTS hybrid electromagnets in an EMS Maglev model

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y.D., E-mail: ydchung@suwon.ac.kr [Department of Electrical Engineering, Suwon University, Bongdang Eup, Hwaseong Si 445-743 (Korea, Republic of); Lee, C.Y. [Korea Railroad Research Institute, Woram Dong, Uiwang Si 437-757 (Korea, Republic of); Jang, J.Y. [Department of Electrical Engineering, Ansan College of Technology, Choji-Dong, Ansan Si 425-792 (Korea, Republic of); Yoon, Y.S. [Department of Electrical and Electronic Engineering, Yonsei University, Sinchon-dong, Seoul 120-749 (Korea, Republic of); Ko, T.K. [Department of Electrical Engineering, Ansan College of Technology, Choji-Dong, Ansan Si 425-792 (Korea, Republic of)

    2011-11-15

    We examine levitation and propulsion forces of the proto-type maglev vehicle system based on 3D FEM. The levitation force increases over 15% due to AC current of the guideway. The levitation force by HTS electromagnet (EM) and AC current is larger over 30% than that of only HTS EM. We have been constructed a proto-type electromagnetic suspension (EMS) based maglev vehicle system. The maglev concept utilizes magnetic forces for noncontact suspension, guidance and propulsion. The suspension system with high temperature superconducting (HTS) hybrid electromagnet (EM) is composed of HTS coils and normal coils, which consume little power to keep large suspension gap. The magnetic forces realize to guide the vehicle, propel the vehicle along the guide-way and assist in braking action. The proto-type EMS-based Maglev model is designed to keep the suspension gap of 20 mm. This paper presents the theoretical analysis of the maglev vehicle based on the EMS model to obtain the designing parameters for levitation and propulsion forces. The magnetic field distributions of the electromagnetic forces with hybrid EM and propulsion stator coils are analyzed based on three dimension (3D) finite element method (FEM) analysis. From the simulation results, appropriately design parameters of the suspension, guidance and propulsion were obtained.

  9. Theoretical and FEM analysis of suspension and propulsion system with HTS hybrid electromagnets in an EMS Maglev model

    International Nuclear Information System (INIS)

    Chung, Y.D.; Lee, C.Y.; Jang, J.Y.; Yoon, Y.S.; Ko, T.K.

    2011-01-01

    We examine levitation and propulsion forces of the proto-type maglev vehicle system based on 3D FEM. The levitation force increases over 15% due to AC current of the guideway. The levitation force by HTS electromagnet (EM) and AC current is larger over 30% than that of only HTS EM. We have been constructed a proto-type electromagnetic suspension (EMS) based maglev vehicle system. The maglev concept utilizes magnetic forces for noncontact suspension, guidance and propulsion. The suspension system with high temperature superconducting (HTS) hybrid electromagnet (EM) is composed of HTS coils and normal coils, which consume little power to keep large suspension gap. The magnetic forces realize to guide the vehicle, propel the vehicle along the guide-way and assist in braking action. The proto-type EMS-based Maglev model is designed to keep the suspension gap of 20 mm. This paper presents the theoretical analysis of the maglev vehicle based on the EMS model to obtain the designing parameters for levitation and propulsion forces. The magnetic field distributions of the electromagnetic forces with hybrid EM and propulsion stator coils are analyzed based on three dimension (3D) finite element method (FEM) analysis. From the simulation results, appropriately design parameters of the suspension, guidance and propulsion were obtained.

  10. Design study of superconducting sextupole magnet using HTS coated conductor for neutron-focusing device

    International Nuclear Information System (INIS)

    Tosaka, T.; Koyanagi, K.; Ono, M.; Kuriyama, T.; Watanabe, I.; Tsuchiya, K.; Suzuki, J.; Adachi, T.; Shimizu, H.M.

    2006-01-01

    We performed a design study of sextupole magnet using high temperature superconducting (HTS) wires. The sextupole magnet is used as a focusing lens for neutron-focusing devices. A neutron-focusing device is desired to have a large aperture and a high magnetic field gradient of G, where G = 2B/r 2 , B is the magnetic field and r is a distance from the sextupole magnet axis. Superconducting magnets offer promising prospects to meet the demands of a neutron-focusing device. Recently NbTi coils of low temperature superconducting (LTS) have been developed for a sextupole magnet with a 46.8 mm aperture. The maximum magnetic field gradient G of this magnet is 9480 T/m 2 at 4.2 K and 12,800 T/m 2 at 1.8 K. On the other hand, rapid progress on second generation HTS wire has been made in increasing the performance of critical current and in demonstrating a long length. The second generation HTS wire is referred to as coated conductor. It consists of tape-shaped base upon which a thin coating of superconductor, usually YBCO, is deposited or grown. This paper describes a design study of sextupole magnet using coated conductors

  11. Study of electromagnetic interference on quench detecting system of HTS current leads for EAST

    International Nuclear Information System (INIS)

    Hu, Yanlan; Li, Jiangang; Ji, Zhenshan; Zhu, C.M.; Zhen, L.G.; Xiao, Y.Z.

    2013-01-01

    Highlights: • EAST HTS superconducting magnet system shall be operating in a very noisy environment. • Voltage taps will have a lot of inductive voltage induced on them which makes quench detection very difficult. • The noise comes from the coupling between rapid pulsed poloidal coils, and radiation coupling interference associated with EAST heating systems;. • A series of related electromagnetic compatibility simulation tests have been carried out. • Electromagnetic noises are well restrained by choosing proper anti-interference means. -- Abstract: High temperature superconducting (HTS) material B-2223/Ag-Au has been used for EAST poloidal field (PF) coil current leads for reducing construction and operation cost of cryogenic system. The quench propagation velocity of HTS superconducting material is several orders of magnitude lower than that of normal low temperature current leads. It is difficult to detect weak signal of quench which is easily influenced by strong electromagnetic interference (EMI). In this paper, the sources of EMI from quench detecting system of high temperature current leads have been introduced. And we have chosen reasonable methods for good transformation and protection on the basis of electromagnetic compatibility simulation diagnosis experiments. Recent experimental results showed that the restraint of EMI has been achieved and has met the requirements of experiment

  12. Superconductivity and antiferromagnetism in cuprates and pnictides: Evidence of the role of Coulomb correlation

    International Nuclear Information System (INIS)

    Fan, J.D.; Malozovsky, Y.M.

    2013-01-01

    Highlights: • In a layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity. • The long-range antiferromagnetism quickly disappear with doping away from the Van Hove singularity. • For pnictides the antiferromagnetism exists as a result of the nesting condition. • Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist. -- Abstract: We consider the Hubbard model in terms of the perturbative diagrammatic approach (UN F ⩽1) where the interaction between two electrons with antiparallel spins in the lowest order of perturbation is described by the short-range repulsive contact (on-site) interaction (U>0). We argue that in layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity, whereas in the case of pnictides the antiferromagnetism exists as a result of the nesting condition. We show that when the interaction is quite strong (UN F ≈1) in the case of the Van Hove singularity the electron system undergoes the antiferromagnetic phase transition with the log-range order parameter and large insulating gap. The long-range antiferromagnetism quickly disappear, as shown, with the doping away from the Van Hove singularity, but the antiferromagnetic short-range correlation persists (UN F < 1) due to Coulomb repulsive interaction which is the mechanism for superconductivity in cuprates. We argue that in the case of pnictides the antiferromagnetism appears when the nesting conditions for the Fermi surface are met. Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist as has been observed in pnictides. We show that the proximity of the antiferromagnetism and superconductivity implies the repulsive interaction between electrons, which turns into attractive between quasiparticles as shown by the authors in the article published on the same issue as this one

  13. HTS cables open the window for large-scale renewables

    International Nuclear Information System (INIS)

    Geschiere, A; Willen, D; Piga, E; Barendregt, P

    2008-01-01

    In a realistic approach to future energy consumption, the effects of sustainable power sources and the effects of growing welfare with increased use of electricity need to be considered. These factors lead to an increased transfer of electric energy over the networks. A dominant part of the energy need will come from expanded large-scale renewable sources. To use them efficiently over Europe, large energy transits between different countries are required. Bottlenecks in the existing infrastructure will be avoided by strengthening the network. For environmental reasons more infrastructure will be built underground. Nuon is studying the HTS technology as a component to solve these challenges. This technology offers a tremendously large power transport capacity as well as the possibility to reduce short circuit currents, making integration of renewables easier. Furthermore, power transport will be possible at lower voltage levels, giving the opportunity to upgrade the existing network while re-using it. This will result in large cost savings while reaching the future energy challenges. In a 6 km backbone structure in Amsterdam Nuon wants to install a 50 kV HTS Triax cable for a significant increase of the transport capacity, while developing its capabilities. Nevertheless several barriers have to be overcome

  14. Dynamic response of HTS composite tapes to pulsed currents

    International Nuclear Information System (INIS)

    Meerovich, V; Sokolovsky, V; Prigozhin, L; Rozman, D

    2006-01-01

    Dynamic voltage-current characteristics of an HTS Ag/BiSCCO composite tape are studied both experimentally and theoretically. The tape is subjected to pulsed currents with different shapes and magnitudes and voltage traces are measured using the four-point method with different locations of potential taps on the sample surface. Clockwise and anticlockwise hysteresis loops are obtained for the same sample depending on the location of the potential taps. The dynamic characteristics deviate substantially from the DC characteristic, especially in the range of low voltages where a criterion for the critical current value is usually chosen (1-10 μV cm -1 ). The critical current determined from dynamic characteristics and its change with the pulse magnitude depend on the location of the potential taps and on the curve branch chosen for the critical current determination (ascending or descending). The theoretical analysis is based on a model of the magnetic flux diffusion into a composite tape for a superconductor described by the flux creep characteristic. Numerical simulation based on this model gives results in good agreement with the experimental ones and explains the observed peculiarities of the dynamic characteristics of HTS composite tapes. The difference between the magnetic diffusion into a tape and a slab is discussed

  15. Progress in scale-up of second-generation HTS conductor

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Chen, Y.; Xiong, X.; Xie, Y.; Zhang, X.; Qiao, Y.; Reeves, J.; Rar, A.; Schmidt, R.; Lenseth, K.

    2007-01-01

    Tremendous progress has been recently made in the achievement of high-performance, high-speed, long-length second-generation (2G) HTS conductors. Using ion beam assisted deposition (IBAD) MgO and metal organic chemical vapor deposition (MOCVD), SuperPower has scaled up tape lengths to 427 m with a minimum critical current value of 191 A/cm corresponding to a critical current x length performance of 81,550 m. Tape speeds up to 120 m/h have been reached with IBAD MgO, up to 80 m/h with buffer deposition and up to 45 m/h with MOCVD, all in single pass processing of 12 mm wide tape. Critical current value of 227 A/cm has been achieved in a 203 m long tape produced in an all-high-speed fabrication process. Critical current values have been raised to 721 A/cm, 592 A/cm and 486 A/cm in short, reel-to-reel processed tape, over 1 m length and over 11.1 m, respectively, using thicker MOCVD HTS films. Finally, over 10,000 m of copper-stabilized, 4 mm wide conductor has been produced and tested for delivery to the Albany Cable project. The average critical current of the 10,000 m lot was 81 A

  16. Progress in scale-up of second-generation HTS conductor

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V. [SuperPower Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)], E-mail: vselva@igc.com; Chen, Y.; Xiong, X.; Xie, Y.; Zhang, X.; Qiao, Y.; Reeves, J.; Rar, A.; Schmidt, R.; Lenseth, K. [SuperPower Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2007-10-01

    Tremendous progress has been recently made in the achievement of high-performance, high-speed, long-length second-generation (2G) HTS conductors. Using ion beam assisted deposition (IBAD) MgO and metal organic chemical vapor deposition (MOCVD), SuperPower has scaled up tape lengths to 427 m with a minimum critical current value of 191 A/cm corresponding to a critical current x length performance of 81,550 m. Tape speeds up to 120 m/h have been reached with IBAD MgO, up to 80 m/h with buffer deposition and up to 45 m/h with MOCVD, all in single pass processing of 12 mm wide tape. Critical current value of 227 A/cm has been achieved in a 203 m long tape produced in an all-high-speed fabrication process. Critical current values have been raised to 721 A/cm, 592 A/cm and 486 A/cm in short, reel-to-reel processed tape, over 1 m length and over 11.1 m, respectively, using thicker MOCVD HTS films. Finally, over 10,000 m of copper-stabilized, 4 mm wide conductor has been produced and tested for delivery to the Albany Cable project. The average critical current of the 10,000 m lot was 81 A.

  17. HTS-DB: an online resource to publish and query data from functional genomics high-throughput siRNA screening projects.

    Science.gov (United States)

    Saunders, Rebecca E; Instrell, Rachael; Rispoli, Rossella; Jiang, Ming; Howell, Michael

    2013-01-01

    High-throughput screening (HTS) uses technologies such as RNA interference to generate loss-of-function phenotypes on a genomic scale. As these technologies become more popular, many research institutes have established core facilities of expertise to deal with the challenges of large-scale HTS experiments. As the efforts of core facility screening projects come to fruition, focus has shifted towards managing the results of these experiments and making them available in a useful format that can be further mined for phenotypic discovery. The HTS-DB database provides a public view of data from screening projects undertaken by the HTS core facility at the CRUK London Research Institute. All projects and screens are described with comprehensive assay protocols, and datasets are provided with complete descriptions of analysis techniques. This format allows users to browse and search data from large-scale studies in an informative and intuitive way. It also provides a repository for additional measurements obtained from screens that were not the focus of the project, such as cell viability, and groups these data so that it can provide a gene-centric summary across several different cell lines and conditions. All datasets from our screens that can be made available can be viewed interactively and mined for further hit lists. We believe that in this format, the database provides researchers with rapid access to results of large-scale experiments that might facilitate their understanding of genes/compounds identified in their own research. DATABASE URL: http://hts.cancerresearchuk.org/db/public.

  18. Analytical approximations for thermophysical properties of supercritical nitrogen (SCN) to be used in futuristic high temperature superconducting (HTS) cables

    Energy Technology Data Exchange (ETDEWEB)

    Dondapati, Raja Sekhar, E-mail: drsekhar@ieee.org [School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab 144401 (India); Ravula, Jeswanth [School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab 144401 (India); Thadela, S. [Department of Mechanical Engineering, Andhra University, Visakhapatnam, Andhra Pradesh (India); Usurumarti, Preeti Rao [Department of Mechanical Engineering, P.V.K. Institute of Technology, Anantapur, Andhra Pradesh (India)

    2015-12-15

    Future power transmission applications demand higher efficiency due to the limited resources of energy. In order to meet such demand, a novel method of transmission is being developed using High Temperature Superconducting (HTS) cables. However, these HTS cables need to be cooled below the critical temperature of superconductors used in constructing the cable to retain the superconductivity. With the advent of new superconductors whose critical temperatures having reached up to 134 K (Hg based), a need arises to find a suitable coolant which can accommodate the heating loads on the superconductors. The present work proposes, Supercritical Nitrogen (SCN) to be a feasible coolant to achieve the required cooling. Further, the feasibility of proposed coolant to be used in futuristic HTS cables is investigated by studying the thermophysical properties such as density, viscosity, specific heat and thermal conductivity with respect to temperature (T{sub C} + 10 K) and pressure (P{sub C} + 10 bar). In addition, few temperature dependent analytical functions are developed for thermophysical properties of SCN which are useful in predicting thermohydraulic performance (pressure drop, pumping power and cooling capacity) using numerical or computational techniques. Also, the developed analytical functions are used to calculate the pumping power and the temperature difference between inlet and outlet of HTS cable. These results are compared with those of liquid nitrogen (LN2) and found that the circulating pumping power required to pump SCN is significantly smaller than that to pump LN2. Further, it is found that the temperature difference between the inlet and outlet is smaller as compared to that when LN2 is used, SCN can be preferred to cool long length Hg based HTS cables. - Highlights: • Analytical functions are developed for thermophysical properties of Supercritical Nitrogen. • Error analysis shows extremely low errors in the developed analytical functions.

  19. Analytical approximations for thermophysical properties of supercritical nitrogen (SCN) to be used in futuristic high temperature superconducting (HTS) cables

    International Nuclear Information System (INIS)

    Dondapati, Raja Sekhar; Ravula, Jeswanth; Thadela, S.; Usurumarti, Preeti Rao

    2015-01-01

    Future power transmission applications demand higher efficiency due to the limited resources of energy. In order to meet such demand, a novel method of transmission is being developed using High Temperature Superconducting (HTS) cables. However, these HTS cables need to be cooled below the critical temperature of superconductors used in constructing the cable to retain the superconductivity. With the advent of new superconductors whose critical temperatures having reached up to 134 K (Hg based), a need arises to find a suitable coolant which can accommodate the heating loads on the superconductors. The present work proposes, Supercritical Nitrogen (SCN) to be a feasible coolant to achieve the required cooling. Further, the feasibility of proposed coolant to be used in futuristic HTS cables is investigated by studying the thermophysical properties such as density, viscosity, specific heat and thermal conductivity with respect to temperature (T_C + 10 K) and pressure (P_C + 10 bar). In addition, few temperature dependent analytical functions are developed for thermophysical properties of SCN which are useful in predicting thermohydraulic performance (pressure drop, pumping power and cooling capacity) using numerical or computational techniques. Also, the developed analytical functions are used to calculate the pumping power and the temperature difference between inlet and outlet of HTS cable. These results are compared with those of liquid nitrogen (LN2) and found that the circulating pumping power required to pump SCN is significantly smaller than that to pump LN2. Further, it is found that the temperature difference between the inlet and outlet is smaller as compared to that when LN2 is used, SCN can be preferred to cool long length Hg based HTS cables. - Highlights: • Analytical functions are developed for thermophysical properties of Supercritical Nitrogen. • Error analysis shows extremely low errors in the developed analytical functions.

  20. Design and development of 500 m long HTS cable system in the KEPCO power grid, Korea

    Science.gov (United States)

    Sohn, S. H.; Lim, J. H.; Yang, B. M.; Lee, S. K.; Jang, H. M.; Kim, Y. H.; Yang, H. S.; Kim, D. L.; Kim, H. R.; Yim, S. W.; Won, Y. J.; Hwang, S. D.

    2010-11-01

    In Korea, two long-term field demonstrations for high temperature superconducting (HTS) cable have been carried out for several years; Korea Electric Power Corporation (KEPCO) and LS Cable Ltd. (LSC) independently. Encouraged at the result of the projects performed in parallel, a new project targeting the real grid operation was launched in the fourth quarter of 2008 with the Korean government's financial support. KEPCO and LSC are jointly collaborating in the selection of substation, determination of cable specification, design of cryogenic system, and the scheme of protection coordination. A three phase 500 m long HTS cable at a distribution level voltage of 22.9 kV is to be built at 154/22.9 kV Icheon substation located in near Seoul. A hybrid cryogenic system reflecting the contingency plan is being designed including cryocoolers. The HTS cable system will be installed in the second quarter of 2010, being commissioned by the fall of 2010. This paper describes the objectives of the project and design issues of the cable and cryogenic system in detail.

  1. Understanding the superconductivity in copper oxides

    CERN Document Server

    2019-01-01

    The aim of this book is to clarify the situation by adopting a very different approach from the above electronic/magnetic models, where explicitly local dynamical distortions are considered. These are distinctly different from conventional phonons which are a property of the infinite translational invariant symmetric lattice. The local dynamical distortions are shown to account for bulk properties and provide consistent and quantitative agreement with experimental data together with explicit predictions. Selected published experimental and theoretical papers are presented which support the above arguments, but have been ignored on purpose by the originators of the RVB/t-J bubble. To summarize the scope of this book, comprising nine chapters, it is shown, that the phenomenon of HTS in copper oxides is much better understood than publically claimed by RVB/t-J followers. Using the words of B. Laughlin, the presence of the antiferromagnetism in HTS masks the underlying physics where vibronic bipolarons with spin...

  2. Effects of magnetic field on the cuprate high-Tc superconductor La2-xSrxCuO4

    DEFF Research Database (Denmark)

    Lake, B.; Aeppli, G.; Christensen, N.B.

    2004-01-01

    This article discusses neutron scattering measurements on the cuprate, high transition temperature superconductor La2-xSrxCuO4 (LSCO) in an applied magnetic field. LSCO is a type-II superconductor and magnetic flux can penetrate the material via the formation of vorticies. Phase coherent...

  3. Development of a multiple HTS current lead assembly for corrector magnets application

    International Nuclear Information System (INIS)

    Wu, J.L.; Dederer, J.T.; Singh, S.K.

    1994-01-01

    Vapor-cooled current leads used for transmitting power to superconducting power equipment such as the corrector magnets in the SSC spools can introduce a significant heat leak into the cryostat which results in cryogen boil-off. Replenishing the boil-off or refrigerating and liquefying the vapors associated with the cooling of these leads may constitute a significant portion of the operating cost and/or the capital investment of the power equipment. Theoretical studies and experiments have demonstrated that the heat leak introduced by a current lead can be significantly reduced by using ceramic high temperature superconductor (HTSC) as part of the conductor in the current leads. A HTSC reduces heat leak in a current lead by being superconducting in the temperature range below its critical temperature and by having a low temperature thermal conductivity which is generally orders of magnitude lower than the copper alloys commonly used as the current lead conductors. This combination reduces Joule heating and heat conduction, resulting in lower heat leak to the cryostat. To demonstrate the advantages and large scale application of this technology, Westinghouse Science ampersand Technology Center has continued its efforts in High Temperature Superconducting (HTS) current lead development. The efforts include qualification testing and selection of commercial sources of HTSC for current leads and the successful development of a 12 x 100 A multiple HTS current lead assembly prototype for SSC Corrector Element Power Lead application. The efforts on the design, fabrication and testing of the multiple HTS lead assembly is reported below

  4. Problems of synthesis and thermal treatment of bismuth-strontium-calcium superconducting cuprates

    International Nuclear Information System (INIS)

    Tret'yakov, Yu.D.; Os'kina, T.E.; Putlyaev, V.I.

    1990-01-01

    The results, which have recently appeared in literature on synthesis and high-temperature treatment of Bi-Sr-Ca superconducting cuprates, are generalized. The review will contribute to the overcoming of experimental difficulties in the process of synthesis of monophase superconducting materials with a high transition temperature T c , including optimization of cation composition and heat treatment regime. Radional selection of synthesis conditions (component ratio, temperature, time, reactive area geometry, medium, cooling) was realized, taking into account the newest achievements in crystallochemistry of the phases

  5. Bec Model of HIGH-Tc Superconductivity in Layered Cuprates

    Science.gov (United States)

    Lomnitz, M.; Villarreal, C.; de Llano, M.

    2013-11-01

    High-Tc superconductivity in layered cuprates is described in a BCS-BEC formalism with linearly-dispersive s- and d-wave Cooper pairs moving in quasi-2D finite-width layers around the CuO2 planes. This yields a closed formula for Tc involving the layer width, the Debye frequency, the pairing energy and the in-plane penetration depth. The new formula has no free parameters and reasonably reproduces empirical values of superconducting Tcs for 11 different layered superconductors over a wide doping regime including YBCO itself as well as other compounds like LSCO, BSCCO and TBCCO. In agreement with the London formalism, the formula also yields a fair description of the Tc dependence of the lower critical magnetic field in highly underdoped YBCO.

  6. Modeling and Dynamics of HTS Motors for Aircraft Electric Propulsion

    Directory of Open Access Journals (Sweden)

    Ranjan Vepa

    2018-02-01

    Full Text Available In this paper, the methodology of how a dynamic model of a conventional permanent magnet synchronous motor (PMSM may be modified to model the dynamics of a high-temperature superconductor (HTS machine is illustrated. Simulations of a typical PMSM operating under room temperature conditions and also at temperatures when the stator windings are superconducting are compared. Given a matching set of values for the stator resistance at superconducting temperature and flux-trapped rotor field, it is shown that the performance of the HTS PMSM is quite comparable to a PMSM under normal room temperature operating conditions, provided the parameters of the motor are appropriately related to each other. From these simulations, a number of strategies for operating the motor so as to get the propeller to deliver thrust with maximum propulsive efficiency are discussed. It is concluded that the motor–propeller system must be operated so as to deliver thrust at the maximum propulsive efficiency point. This, in turn, necessitates continuous tracking of the maximum propulsive efficiency point and consequently it is essential that the controller requires a maximum propulsive efficiency point tracking (MPEPT outer loop.

  7. Systematics of c-axis phonons in the thallium- and bismuth-based cuprate superconductors

    NARCIS (Netherlands)

    Tsvetkov, A.A.; Dulic, Diana; Marel, D. van der; Damascelli, A.; Kaljushnaia, G.A.; Gorina, J.I.; Senturina, N.N.; Kolesnikov, N.N.; Ren, Z.F.; Wang, J.H.; Menovsky, A.A.; Palstra, T.T.M.

    1999-01-01

    We present grazing incidence reflectivity measurements in the far-infrared region at temperatures above and below Tc for a series of thallium- (Tl2Ba2CuO6, Tl2Ba2CaCu2O8) and bismuth- (Bi2Sr2CuO6, Bi2Sr2CaCu2O8, and Bi2-xPbxSr2CaCu2O8) based cuprate superconductors. From the spectra, which are

  8. Bosonic excitations and electron pairing in an electron-doped cuprate superconductor

    Science.gov (United States)

    Wang, M. C.; Yu, H. S.; Xiong, J.; Yang, Y.-F.; Luo, S. N.; Jin, K.; Qi, J.

    2018-04-01

    By applying ultrafast optical spectroscopy to electron-doped La1.9Ce0.1CuO4 ±δ , we discern a bosonic mode of electronic origin and provide the evolution of its coupling with the charge carriers as a function of temperature. Our results show that it has the strongest coupling strength near Tc and can fully account for the superconducting pairing. This mode can be associated with the two-dimensional antiferromagnetic spin correlations emerging below a critical temperature T† larger than Tc. Our work may help to establish a quantitative relation between bosonic excitations and superconducting pairing in electron-doped cuprates.

  9. Influence of AC external magnetic field on guidance force relaxation between HTS bulk and NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: zhlcai2000@163.com; Wang Suyu; Wang Jiasu; Zheng Jun [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2007-12-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to time-varying external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. So it is required to study whether the guidance force of the bulks is influenced by the inhomogeneity. In this paper, we studied the characteristics of the guidance force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet was used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experiment results, it was found that the guidance force was decreased with the application of the AC external magnetic field, and the decay increased with the amplitude and was almost independent of the frequency.

  10. In memory Prof. Dr. L.H.K Bleeker | Gemser | HTS Teologiese ...

    African Journals Online (AJOL)

    HTS Teologiese Studies / Theological Studies. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 3 (1944) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. In memory Prof. Dr. L.H.K Bleeker. B Gemser ...

  11. Complex study of transport AC loss in various 2G HTS racetrack coils

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiran, E-mail: yc315@cam.ac.uk [University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Zhang, Min; Chudy, Michal; Matsuda, Koichi; Coombs, Tim [University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2013-04-15

    Highlights: ► Comparing transport AC losses of two types of 2G HTS racetrack coils. ► The magnetic substrate in the MAG RABITS coil is the main difference. ► Experimental data agree well with simulation results. ► The transport AC loss in the MAG RABITS coil is 36% higher than that in the IBAD coil. ► It is better to keep all the substrate non-magnetic. -- Abstract: HTS racetrack coils are becoming important elements of an emerging number of superconducting devices such as generators or motors. In these devices the issue of AC loss is crucial, as performance and cooling power are derived from this quantity. This paper presents a comparative study of transport AC loss in two different types of 2G HTS racetrack coils. In this study, both experimental measurements and computer simulation approaches were employed. All the experiments were performed using classical AC electrical method. The finite-element computer model was used to estimate electromagnetic properties and calculate transport AC loss. The main difference between the characterized coils is covered inside tape architectures. While one coil uses tape based on RABITS magnetic substrate, the second coil uses a non-magnetic tape. Ferromagnetic loss caused by a magnetic substrate is an important issue involved in the total AC loss. As a result, the coil with the magnetic substrate surprised with high AC loss and rather low performance.

  12. Device-quality tunnel junctions on the high Tc superconductor HgBa2CuO4+δ

    International Nuclear Information System (INIS)

    Zasadzinski, J.; Chen, J.; Romano, P.; Gray, K.E.; Wagner, J.L.; Hinks, D.G.

    1995-01-01

    SIN and SIS tunnel junction devices (e.g. photon detectors, logic elements) require quasiparticle characteristics that exhibit sharp current onsets at the gap voltage and very low sub-gap conductances. Progress is reported on the development of such junctions on High Tc cuprates using mechanical point contacts. In general, these contacts display the optimum characteristics that can be obtained from HTS native-surface tunnel barriers. Most cuprates display a sub-gap conductance which monotonically increases with voltage about the minimum value at zero bias. However, tunneling data of unusually high quality have been obtained for the recently discovered Hg-based cuprate, HgBa 2 CuO 4 (T c =96K). SIS' tunneling data using a Nb tip are presented which exhibit very low and flat sub-gap conductances and sharp conductance peaks as expected from a BCS density of states. These results are slightly improved over earlier published results with SIN junctions. Use of the experimental data to simulate the performance of a quasiparticle mixer demonstrates that noise temperatures approaching the quantum limit are possible for SIS and SIN mixers in the range 1-5 THz

  13. Issues relating to airborne applications of HTS SQUIDs

    International Nuclear Information System (INIS)

    Foley, C P; Leslie, K E; Binks, R A; Lam, S H K; Du, J; Tilbrook, D L; Mitchell, E E; Macfarlane, J C; Lee, J B; Turner, R; Downey, M; Maddever, A

    2002-01-01

    Airborne application of HTS SQUIDs is the most difficult environment for their successful deployment. In order to operate with the sensitivity required for a particular application, there are many issues to be addressed such as the need for very wide dynamic range electronics, motion noise elimination, immunity to large changing magnetic fields and cultural noise sources. This paper reviews what is necessary to achieve an airborne system giving examples in geophysical mineral exploration. It will consider issues relating to device design and fabrication, electronics, dewar design, suspension system requirements and noise elimination methods

  14. Issues relating to airborne applications of HTS SQUIDs

    CERN Document Server

    Foley, C P; Binks, R A; Lam, S H K; Du, J; Tilbrook, D L; Mitchell, E E; MacFarlane, J C; Lee, J B; Turner, R; Downey, M; Maddever, A

    2002-01-01

    Airborne application of HTS SQUIDs is the most difficult environment for their successful deployment. In order to operate with the sensitivity required for a particular application, there are many issues to be addressed such as the need for very wide dynamic range electronics, motion noise elimination, immunity to large changing magnetic fields and cultural noise sources. This paper reviews what is necessary to achieve an airborne system giving examples in geophysical mineral exploration. It will consider issues relating to device design and fabrication, electronics, dewar design, suspension system requirements and noise elimination methods.

  15. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors.

    Science.gov (United States)

    Hinton, J P; Thewalt, E; Alpichshev, Z; Mahmood, F; Koralek, J D; Chan, M K; Veit, M J; Dorow, C J; Barišić, N; Kemper, A F; Bonn, D A; Hardy, W N; Liang, Ruixing; Gedik, N; Greven, M; Lanzara, A; Orenstein, J

    2016-04-13

    In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic "pseudogap" phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO(4+δ) (Hg-1201) and YBa2Cu3O(6+x) (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.

  16. Pseudogap-generated a coexistence of Fermi arcs and Fermi pockets in cuprate superconductors

    Science.gov (United States)

    Zhao, Huaisong; Gao, Deheng; Feng, Shiping

    2017-03-01

    One of the most intriguing puzzle is why there is a coexistence of Fermi arcs and Fermi pockets in the pseudogap phase of cuprate superconductors? This puzzle is calling for an explanation. Based on the t - J model in the fermion-spin representation, the coexistence of the Fermi arcs and Fermi pockets in cuprate superconductors is studied by taking into account the pseudogap effect. It is shown that the pseudogap induces an energy band splitting, and then the poles of the electron Green's function at zero energy form two contours in momentum space, however, the electron spectral weight on these two contours around the antinodal region is gapped out by the pseudogap, leaving behind the low-energy electron spectral weight only located at the disconnected segments around the nodal region. In particular, the tips of these disconnected segments converge on the hot spots to form the closed Fermi pockets, generating a coexistence of the Fermi arcs and Fermi pockets. Moreover, the single-particle coherent weight is directly related to the pseudogap, and grows linearly with doping. The calculated result of the overall dispersion of the electron excitations is in qualitative agreement with the experimental data. The theory also predicts that the pseudogap-induced peak-dip-hump structure in the electron spectrum is absent from the hot-spot directions.

  17. Two-particle self-consistent analysis for the electron-hole asymmetry of superconductivity in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Daisuke; Kuroki, Kazuhiko [Department of Physics, Graduate School of Science, Osaka University, Toyonaka (Japan)

    2017-06-15

    In the hole-doped type cuprate superconductors, it is well-known that the superconducting transition temperature T{sub c} exhibits a dome-like structure against doping. On the other hand, recent experiments unveil that T{sub c} in the electron-doped compounds shows a monotonic increase with decreasing the doping, at least down to a very small doping rate. Our recent study for the three-band d-p model has unveiled that this asymmetric behavior can be explained as a combined effect of the intrinsic electron-hole asymmetry in systems comprising Cu3 d and O2 p orbitals and the band-filling-dependent vertex correction. In the present study, we study another compound Tl{sub 2} Ba{sub 2} CuO{sub 6} to show that this explanation can be applied to other cuprate superconductors with the small d{sub z{sup 2}} orbital mixture. By varying the d-p offset, we also study how the strength of the d-p hybridization controls the spin fluctuation and hence the pairing interaction. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft

    Science.gov (United States)

    Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    2015-02-01

    This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.

  19. Improved magnetic-field homogeneity of NMR HTS bulk magnet using a new stacking structure and insertion of an HTS film cylinder into a bulk bore

    International Nuclear Information System (INIS)

    Itoh, Yoshitaka; Yanagi, Yousuke; Nakamura, Takashi

    2017-01-01

    A new type of superconducting bulk magnet for compact nuclear magnetic resonance (NMR) devices with high magnetic-field homogeneity has been developed by inserting an HTS film cylinder into a bulk superconductor bore. Annular 60 mmϕ Eu-Ba-Cu-O bulk superconductors with a larger inner diameter (ID) of 36 mm were sandwiched between bulk superconductors with a smaller ID of 28 mm, and the total height of the bulk superconductor set was made to be 120 mm. The inner height of central wide bore space was optimized by magnetic-field simulation so that the influence of the bulk superconductor's paramagnetic moment on applied field homogeneity was minimized during the magnetization process. An HTS film cylinder, in which Gd-Ba-Cu-O tapes were wound helically in three layers around a copper cylinder, was inserted into the bulk bore in order to compensate for the inhomogeneous field trapped by the bulk superconductor. The superconducting bulk magnet composed of the above bulk superconductor set and the film cylinder were cooled by a GM pulse tube refrigerator and magnetized at 4.747 T using the field cooling (FC) method and a conventional superconducting coil magnet adjusted to below 0.5 ppm in magnetic-field homogeneity. The NMR measurement was conducted for an H_2O sample with a diameter of 6.9 mm and a length of 10 mm by setting the sample in the center of the 20 mm ID room-temperature bore of the bulk magnet. The magnetic-field homogeneity derived from the full width at half maximum (FWHM) of the "1H spectrum of H_2O was 0.45 ppm. We confirmed that the HTS film inner cylinder was effective in maintaining the homogeneity of the magnetic field applied in the magnetization process, and as a result, a magnetic field with a homogeneity of less than 1 ppm can be generated in the bore of the bulk magnet without using shim coils. (author)

  20. Development of a compact HTS lead unit for the SC correction coils of the SuperKEKB final focusing magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Zhanguo, E-mail: zhanguo.zong@kek.jp; Ohuchi, Norihito; Tsuchiya, Kiyosumi; Arimoto, Yasushi

    2016-09-11

    Forty-three superconducting (SC) correction coils with maximum currents of about 60 A are installed in the SuperKEKB final focusing magnet system. Current leads to energize the SC correction coils should have an affordable heat load and fit the spatial constraints in the service cryostat where the current leads are installed. To address the requirements, design optimization of individual lead was performed with vapor cooled current lead made of a brass material, and a compact unit was designed to accommodate eight current leads together in order to be installed with one port in the service cryostat. The 2nd generation high temperature SC (HTS) tape was adopted and soldered at the cold end of the brass current lead to form a hybrid HTS lead structure. A prototype of the compact lead unit with HTS tape was constructed and tested with liquid helium (LHe) environment. This paper presents a cryogenic measurement system to simulate the real operation conditions in the service cryostat, and analysis of the experimental results. The measured results showed excellent agreement with the theoretical analysis and numerical simulation. In total, 11 sets of the compact HTS lead units were constructed for the 43 SC correction coils at KEK. One set from the mass production was tested in cryogenic conditions, and exhibited the same performance as the prototype. The compact HTS lead unit can feed currents to four SC correction coils simultaneously with the simple requirement of controlling and monitoring helium vapor flow, and has a heat load of about 0.762 L/h in terms of LHe consumption. - Highlights: • The requirements of the SC correction coils on current leads are introduced. • The optimum design of the brass vapor cooled current lead is described. • The compact structure of eight leads with HTS tape is presented. • The theoretical, numerical, and experimental results are compared. • The current lead heat load is evaluated for cryogenic system.

  1. Strong-coupling approach to nematicity in the cuprates

    Science.gov (United States)

    Orth, Peter Philipp; Jeevanesan, Bhilahari; Schmalian, Joerg; Fernandes, Rafael

    The underdoped cuprate superconductor YBa2Cu3O7-δ is known to exhibit an electronic nematic phase in proximity to antiferromagnetism. While nematicity sets in at large temperatures of T ~ 150 K, static spin density wave order only emerges at much lower temperatures. The magnetic response shows a strong in-plane anisotropy, displaying incommensurate Bragg peaks along one of the crystalline directions and a commensurate peak along the other one. Such an anisotropy persists even in the absence of long-range magnetic order at higher temperatures, marking the onset of nematic order. Here we theoretically investigate this situation using a strong-coupling method that takes into account both the localized Cu spins and the holes doped into the oxygen orbitals. We derive an effective spin Hamiltonian and show that charge fluctuations promote an enhancement of the nematic susceptibility near the antiferromagnetic transition temperature.

  2. Fermi surface of underdoped high-Tc superconducting cuprates

    International Nuclear Information System (INIS)

    Dai, X.; Su, Z.; Yu, L.

    1997-01-01

    The coexistence of a π-flux state and a d-wave resonant-valance-bond (RVB) state is considered in this paper within the slave-boson approach. A critical value of doping concentration δ c is found, below which the coexisting π-flux and d-wave RVB state is favored in energy. The pseudo-Fermi surface of spinons and the physical electron spectral function are calculated. A clear Fermi-level crossing is found along the (0,0) to (π, π) direction, but no such crossing is detected along the (π, 0) to (π, π) direction. Also, an energy gap of d-wave symmetry appears at the Fermi level in our calculation. The above results are in agreement with the angle-resolved photoemission experiments which indicate at a d-wave pseudogap and a half-pocket-like Fermi surface in underdoped cuprates. copyright 1997 The American Physical Society

  3. Review of core technologies for development of 2G HTS NMR/MRI magnet: A status report of progress in Korea University

    Directory of Open Access Journals (Sweden)

    J.B. Song

    Full Text Available In this paper, we briefly review our recent progress on development of core technologies for 2G HTS NMR/MRI magnets at Korea University. To outperform the current state-of-art NMR/MRI magnet systems, we have developed the following technologies: 1 a REBCO-REBCO superconducting joint for operation of persistent current mode; 2 partial and grease-insulation winding techniques for self-protection of the HTS magnets; 3 pre-shimming to reduce the screening-current-induced-field; and 4 optimization of multi-width winding to minimize conductor consumption and volume of the HTS magnets. The test results demonstrated the feasibility of employing the developed techniques to achieve ultra-high-field and LHe-free 2G NMR/MRI magnets possessing self-protecting feature.

  4. Design of high–order HTS dual–band bandpass filters with receiver subsystem for future mobile communication systems

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, N., E-mail: nsekiya@yamanashi.ac.jp

    2016-08-15

    Highlights: • We have developed two high-order HTS dual-band BPFs with a receiver subsystem for future mobile communication systems. • We developed a method for flexibly adjusting the coupling coefficient for the two passbands. • We demonstrated an HTS dual-band BPF receiver subsystem that uses a pulse tube cryocooler and a wideband LNA. • The proposed BPF is evaluated by simulation and measurement with good agreement. - Abstract: We have developed two high-order high-temperature superconducting (HTS) dual-band bandpass filters (BPFs) with a receiver subsystem for future mobile communication systems. They feature stub-loaded hair-pin resonators with two types of microstrip lines between them. One has a six-pole design, and the other has an eight-pole design. Both were designed to operate at 2.15 GHz with a 43-MHz (2%) bandwidth for the lower passband and at 3.50 GHz with a 70-MHz (2%) bandwidth for the upper one. They were fabricated using YBa{sub 2}Cu{sub 3}O{sub y} thin film on a CeO{sub 2}-bufferd r-Al{sub 2}O{sub 3} substrate. The measured results for both filters agree well with the simulated ones. The HTS dual-band BPF receiver subsystem uses a pulse tube cryocooler and a wideband low noise amplifier (LNA). We measured the frequency response of the six-pole dual-band BPF with and without a wideband LNA with a gain of 10 dB. The measured return losses were close.

  5. Exact mapping of the dx2-y2 Cooper-pair wavefunction onto the spin fluctuations in cuprates: the Fermi surface as a driver for 'high Tc' superconductivity

    International Nuclear Information System (INIS)

    McDonald, Ross D; Harrison, Neil; Singleton, John

    2009-01-01

    We propose that the extraordinarily high superconducting transition temperatures in the cuprates are driven by an exact mapping of the d x 2 -y 2 Cooper-pair wavefunction onto the incommensurate spin fluctuations observed in neutron-scattering experiments. This is manifested in the direct correspondence between the inverse of the incommensurability factor δ seen in inelastic neutron-scattering experiments and the measured superconducting coherence length ξ 0 . Strikingly, the relationship between ξ 0 and δ is valid for both La 2-x Sr x CuO 4 and YBa 2 Cu 3 O 7-x , suggesting a common mechanism for superconductivity across the entire hole-doped cuprate family. Using data from recent quantum-oscillation experiments in the cuprates, we propose that the fluctuations responsible for superconductivity are driven by a Fermi-surface instability. On the basis of these findings, one can specify the optimal characteristics of a solid that will exhibit 'high T c ' superconductivity. (fast track communication)

  6. A perspective on 10-years HTS experience at the Walter and Eliza Hall Institute of Medical Research - eighteen million assays and counting.

    Science.gov (United States)

    Lackovic, Kurt; Lessene, Guillaume; Falk, Hendrik; Leuchowius, Karl-Johan; Baell, Jonathan; Street, Ian

    2014-03-01

    The Walter and Eliza Hall Institute of Medical Research (WEHI) is Australia's longest serving medical research institute. WEHI's High Throughput Screening (HTS) Facility was established in 2003 with $5 million of infrastructure funds invested by WEHI, and the Victorian State Government's Strategic Technology Initiative through Bio21 Australia Ltd. The Facility was Australia's first truly academic HTS facility and was one of only a handful operating in publicly funded institutions worldwide at that time. The objectives were to provide access to enabling HTS technologies, such as assay design, liquid handling automation, compound libraries and expertise to promote translation of basic research in a national setting that has a relatively young biotech sector and does not have a big Pharma research presence. Ten years on and the WEHI HTS Facility has participated in over 92 collaborative projects, generated over 18 million data points, and most importantly, projects that began in the Facility have been commercialized successfully (due to strong ties with Business Development and emphasis on intellectual property management) and now have molecules progressing in clinical trials.

  7. In situ deposition of thallium-containing oxides

    International Nuclear Information System (INIS)

    Myers, K.E.

    1996-01-01

    The number and variety of thallium based materials that can be made by in situ methods have grown consistently since the first report of successful thallium cuprate deposition by Face and Nestlerode in 1992. Processes for the deposition of superconductors, normal metals, and insulators have been developed. Most work to date has been done on the Tl-1212 phases, TlBa 2 CaCu 2 O 7 and (Tl,Pb)Sr 2 CaCu 2 O 7 . Recently however, the in situ thallium technique has been extended to other materials. For example, epitaxial thin films of thallium tantalate, an insulator of the pyrochlore structure and a potential buffer layer for thallium cuprate films, have been grown. Multilayers, important in the fabrication of Josephson junctions, have been demonstrated with the thallium lead cuprates. This paper reviews progress in the area of in situ thallium deposition technology which will make more complex thallium cuprate multilayer structures and devices possible

  8. MECHANISTIC STUDIES AND DESIGN OF HIGHLY ACTIVE CUPRATE CATALYSTS FOR THE DIRECT DECOMPOSITION AND SELECTIVE REDUCTION OF NITRIC OXIDE AND HYDROCARBONS TO NITROGEN FOR ABATEMENT OF STACK EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-04-30

    A flow trough type catalytic reactor system was adequately modified for NO related catalytic and adsorption measurements, including the on-line connection of a digital chemiluminescent NO-NO{sub x} analyzer to the reactor outlet system. Moreover, we have largely completed the installation of an FTIR coupled catalytic system containing a HTEC cell for high temperature DRIFT studies. Three different barium cuprate samples, Ba{sub 2}CuO{sub 3}, BaCuO{sub 2}, and Ba{sub 2}Cu{sub 3}O{sub 5} were synthesized and characterized by powder XRD for catalytic tests. Prior to catalytic studies over these cuprates, a new, liquid indium based supported molten metal catalyst (In-SMMC) was tested in the reduction of NO by various reductants. In the presence of excess O{sub 2} and H{sub 2}O, the In-SMMC proved to be more active for the selective catalytic reduction (SCR) of NO to N{sub 2} by ethanol than most other catalysts. Using C{sub 1}-C{sub 3} alcohols as reductants, self sustained periodic oscillations observed in the NO{sub x} concentrations of reactor effluents indicated the first time that radical intermediates can be involved in the SCR of NO by alcohols. Further, In-SMMC is the only effective and water tolerant SCR catalyst reported thus far which contains SiO{sub 2} support. Thus, this novel catalyst opens up a promising new alternative for developing an effective and durable catalyst for NO{sub x} abatement in stack emission.

  9. A comparison on the heat load of HTS current leads with respect to uniform and non-uniform cross-sectional areas

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Hak; Nam, Seok Ho; Lee, Je Yull; Song, Seung Hyun; Jeon, Hae Ryong; Baek, Geon Woo; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Kang, Hyoung Ku [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-09-15

    Current lead is a device that connects the power supply and superconducting magnets. High temperature superconductor (HTS) has lower thermal conductivity and higher current density than normal metal. For these reasons, the heat load can be reduced by replacing the normal metal of the current lead with the HTS. Conventional HTS current lead has same cross-sectional area in the axial direction. However, this is over-designed at the cold-end (4.2 K) in terms of current. The heat load can be reduced by reducing this part because the heat load is proportional to the cross-sectional area. Therefore, in this paper, heat load was calculated from the heat diffusion equation of HTS current leads with uniform and non-uniform cross-sectional areas. The cross-sectional area of the warm-end (65K) is designed considering burnout time when cooling system failure occurs. In cold-end, Joule heat and heat load due to current conduction occurs at the same time, so the cross-sectional area where the sum of the two heat is minimum is obtained. As a result of simulation, current leads for KSTAR TF coils with uniform and non-uniform cross-sectional areas were designed, and it was confirmed that the non-uniform cross-sectional areas could further reduce the heat load.

  10. Tevatron HTS power lead test

    International Nuclear Information System (INIS)

    Feher, S.; Carcagno, R.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.

    2004-01-01

    Two pairs of ASC 6 kA power leads developed for the Tevatron were successfully tested at Fermilab at over-current conditions. Stable operation was achieved while operating at a current of 9.56 kA for five hours and while continuously ramping between 0-9.56 kA at a ramp rate of 200 A/s for one hour. The minimum required liquid nitrogen flow rate was measured to be 1.5 g/s at 10 kA. After ramping up to 10 kA at 200A/s, it took only 15 minutes to stabilize the upper copper section of the lead with a flow of 1.8 g/s of liquid nitrogen vapor. Testing under extreme operating conditions--270-370 kPa liquid nitrogen vapor pressure and over 0.1 T external magnetic field--demonstrated that the HTS part of the lead can safely operate in the current sharing mode and that this design has large operating margin

  11. Toroidal HTS transformer with cold magnetic core - analysis with FEM software

    International Nuclear Information System (INIS)

    Grzesik, B; Stepien, M; Jez, R

    2010-01-01

    The aim of this paper is to present a thorough characterization of the toroidal HTS transformer by means of FEM analysis. The analysis was a 2D/3D harmonic electromagnetic and thermal analysis. The toroidal transformer operated in LN2 by being immersed together with the magnetic core in it, for which its power losses were acceptable. Two extreme variants of windings were analysed. The first one called parallel and the second called perpendicular. Three variants of the magnetic core were considered. In the first one the core was put outside of the windings, in the second the core was inside of the windings and in the third variant the core was outside as well as inside of the windings. The windings were made of HTS tape BiSCCO-2223/Ag while the magnetic core was made of the nanocrystalline material Finemet. The two windings, with a 1:1 turn-to-turn ratio, were uniformly distributed along the whole torus circumference. The output power, efficiency and power density are in the results of the analysis. The temperature distribution was also calculated. In summary, the performance of the transformer is better than those currently known.

  12. Applied Hts Bulks and Wires to Rotating Machines for Marine Propulsion

    Science.gov (United States)

    Miki, M.; Felder, B.; Kimura, Y.; Tsuzuki, K.; Taguchi, R.; Shiliang, Y.; Xu, Y.; Ida, T.; Izumi, M.

    2010-04-01

    High-temperature superconductors allow a compact and efficient way to provide high-torque density to rotating machines with excellent operation. A field pole, providing flux density of more than 1.5 T around the armature, was initially designed for an axial-gap type with the flux parallel to the rotor axis. Melt-growth Gd-123 bulks as well as Bi-2223 wire windings have been successfully assembled on the rotor disk. No iron core was used, though being an auxiliary flux control found in most HTS motors. Both bulk and wire types have realized a practical motor operation within a limited output range. For bulks, a 15 kW, 720 rpm, synchronous motor was designed and tested in the group of TUMSAT, Kitano Seiki and University of Fukui. A bulk field pole was cooled down by liquid nitrogen and was magnetized in the motor. To enhance the output power to more than 30 kW, we developed a thermosyphon system using condensed neon. Another field pole with HTS wire for large-scale marine propulsion is also discussed on a 100 kW, 230 rpm tested machine. A closed-cycle condensed neon associated with thermal insulation is also reported.

  13. Theory of High-T{sub c} Superconducting Cuprates Based on Experimental Evidence

    Science.gov (United States)

    Abrikosov, A. A.

    1999-12-10

    A model of superconductivity in layered high-temperature superconducting cuprates is proposed, based on the extended saddle point singularities in the electron spectrum, weak screening of the Coulomb interaction and phonon-mediated interaction between electrons plus a small short-range repulsion of Hund's, or spin-fluctuation, origin. This permits to explain the large values of T{sub c}, features of the isotope effect on oxygen and copper, the existence of two types of the order parameter, the peak in the inelastic neutron scattering, the positive curvature of the upper critical field, as function of temperature etc.

  14. Interplay of structural transition and superconductivity in cuprates

    International Nuclear Information System (INIS)

    Ghosh, Haranath; Mitra, Manidipa; Behera, S.N.; Ghatak, S.K.

    1997-01-01

    The presence of lattice distortion is known to suppress the superconducting (SC) transition in the cuprates. It is now accepted that electron correlation plays a dominant role in shaping the properties of these undoped and doped systems. Furthermore, since the Fermi level in these systems lies in a degenerate band of Cu : d and O : p orbitals the structural transition can be modeled as a band Jahn-Teller effect. We study the coexistence of superconductivity and band Jahn-Teller (J-T) distortion, taking into account the electron correlation within the slave boson formalism. It is shown that with increasing dopant concentration (δ), the structural transition temperature (T s ) remains constant up to a certain value and then vanishes, while the SC transition temperature (T c ) increases to a maximum value. The highest value of T c corresponds to that value of δ where T s vanishes. Besides with increasing lattice distortion superconductivity is suppressed. These findings are in qualitative agreement with the experimental results. (author)

  15. Accelerator Quality HTS Dipole Magnet Demonstrator designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet

    CERN Document Server

    Kirby, G; Ballarino, A; Bottura, L; Chouika, N; Clement, S; Datskov, V; Fajardo, L; Fleiter, J; Gauthier, R; Lambert, L; Lopes, M; Perez, J; DeRijk, G; Rijllart, A; Rossi, L; Ten Kate, H; Durante, M; Fazilleau, P; Lorin, C; Haro, E; Stenvall, A; Caspi, S; Marchevsky, M; Goldacker, W; Kario, A

    2014-01-01

    Future high-energy accelerators will need very high magnetic fields in the range of 20 T. The EuCARD-2 work-package-10 is a collaborative push to take HTS materials into an accelerator quality demonstrator magnet. The demonstrator will produce 5 T standalone and between 17 T and 20 T, when inserted into the 100 mm aperture of Fresca-2 high field out-sert magnet. The HTS magnet will demonstrate the field strength and field quality that can be achieved. An effective quench detection and protection system will have to be developed to operate with the HTS superconducting materials. This paper presents a ReBCO magnet design using multi strand Roebel cable that develops a stand-alone field of 5 T in a 40 mm clear aperture and discusses the challenges associated with good field quality using this type of material. A selection of magnet designs is presented as result of a first phase of development.

  16. Accelerator Quality HTS Dipole Magnet Demonstrator Designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet

    CERN Document Server

    Kirby, G A; Ballarino, A; Bottura, L; Chouika, N; Clement, S; Datskov, V; Fajardo, L; Fleiter, J; Gauthier, R; Gentini, L; Lambert, L; Lopes, M; Perez, J C; de Rijk, G; Rijllart, A; Rossi, L; ten Kate, H; Durante, M; Fazilleau, P; Lorin, C; Härö, E; Stenvall, A; Caspi, S; Marchevsky, M; Goldacker, W; Kario, A

    2015-01-01

    Future high-energy accelerators will need very high magnetic fields in the range of 20 T. The EuCARD-2 work-package-10 is a collaborative push to take HTS materials into an accelerator quality demonstrator magnet. The demonstrator will produce 5 T standalone and between 17 T and 20 T, when inserted into the 100 mm aperture of Fresca-2 high field out-sert magnet. The HTS magnet will demonstrate the field strength and field quality that can be achieved. An effective quench detection and protection system will have to be developed to operate with the HTS superconducting materials. This paper presents a ReBCO magnet design using multi strand Roebel cable that develops a stand-alone field of 5 T in a 40 mm clear aperture and discusses the challenges associated with good field quality using this type of material. A selection of magnet designs is presented as result of a first phase of development.

  17. HTS Transmission Cable System for installation in the Long Island Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Frank [American Superconductor Corporation, Devens, MA (United States); Durand, Fabien [American Superconductor Corporation, Devens, MA (United States); Maguire, James [American Superconductor Corporation, Devens, MA (United States)

    2015-10-05

    Department of Energy (DOE) Award DE-FC26-07NT43240 was issued on October 1, 2007. Referred to as LIPA2, the principal objectives of the project were to develop key components required to deploy and demonstrate second-generation (2G) high temperature superconductor (HTS) cables in a 600 meter (2000 feet) underground segment of a 138kV three-phase transmission circuit of the Long Island Power Authority (LIPA) power grid. A previous effort under DOE Award DE-FC36-03GO13032 (referred to as LIPA1) resulted in installation (and subsequent successful operation) of first-generation (1G) HTS cables at the LIPA site. As with LIPA1, American Superconductor (AMSC) led the effort for LIPA2 and was responsible for overall management of the project and producing sufficient 2G wire to fabricate the required cable. Nexans' tasks included design/manufacture/installation of the cable, joint (splice), cable terminations and field repairable cryostat; while work by Air Liquide involved engineering and installation support for the refrigeration system modifications.

  18. Development of quench protection system for HTS coils by active power method

    International Nuclear Information System (INIS)

    Nanato, N.; Tsumiyama, Y.; Kim, S.B.; Murase, S.; Seong, K.-C.; Kim, H.-J.

    2007-01-01

    Recently, HTS coils have been developed for electric power apparatuses. In superconducting coils, local and excessive joule heating may give damage to the superconducting windings when a quench occurs and therefore it is essential that the quench is detected quickly and precisely so that the coils can be safely discharged. Resistive voltage measurement method is universally used for the quench detection, however, it is vulnerable to an electromagnetic noise which causes insufficient quench detection and at least needs a central voltage tap in windings. In a large superconducting coil, a lead-wire from the central voltage tap may cause a short-circuit when high voltage will be applied. In this paper, we present a quench protection system based on the active power method which detects a quench by measuring the instantaneous active power generated in a superconducting coil. The protection system based on this method is very strong against to the noise and no more needs a central voltage tap. The performance of system developed by us is confirmed by using test coil wound with Bi-2223 HTS tapes

  19. Waste water purification by magnetic separation technique using HTS bulk magnet system

    International Nuclear Information System (INIS)

    Oka, T.; Kanayama, H.; Tanaka, K.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Terasawa, T.; Itoh, Y.; Yabuno, R.

    2009-01-01

    We have investigated the feasibility of strong magnetic field generators composed of the high temperature superconducting (HTS) bulk magnet systems to the magnetic separation techniques for the waste water including thin emulsion bearing the cutting oil. Two types of the strong field generators were prepared by the face-to-face HTS bulk magnet systems, which emit the magnetic field density of 1 and 2 T in the open spaces between the magnetic poles activated by the pulsed field magnetization and the field cooling methods, respectively. A couple of water channels containing iron balls were settled in the strong field to trap the magnetized flocks in the waste water. The separation ratios of flocks containing 200 ppm magnetite powder were evaluated with respect to the flow rates of the waste water. The performances of bulk magnet system have kept showing values of around 100% until the flowing rate reached up to 18 l/min. This suggests that the magnetic separation by using bulk magnets is effective for the practical water purification systems.

  20. Correlations Between Magnetic Flux and Levitation Force of HTS Bulk Above a Permanent Magnet Guideway

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2017-10-01

    In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.

  1. Integrated design of cryogenic refrigerator and liquid-nitrogen circulation loop for HTS cable

    Science.gov (United States)

    Chang, Ho-Myung; Ryu, Ki Nam; Yang, Hyung Suk

    2016-12-01

    A new concept of cryogenic cooling system is proposed and investigated for application to long-length HTS cables. One of major obstacles to the cable length of 1 km or longer is the difficulty in circulating liquid nitrogen (LN) along the cables, since the temperature rise and pressure drop of LN flow could be excessively large. This study attempts a breakthrough by integrating the refrigerator with the LN circulation loop in order to eliminate the cryogenic LN pumps, and generate a large LN flow with the power of compressors at ambient temperature. A variety of thermodynamic structures are investigated on standard and modified Claude cycles, where nitrogen is used as refrigerant and the LN circulation loop is included as part of the closed cycle. Four proposed cycles are fully analyzed and optimized with a process simulator (Aspen HYSYS) to evaluate the FOM (figure of merit) and examine the feasibility. The modified dual-pressure cycle cooled with expander stream is recommended for long HTS cables.

  2. Temperature dependence of levitation force and its relaxation in a HTS levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Jun; Zhang Xingyi [Key Laboratory of Mechanics on Western Disaster and Environment, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou Youhe, E-mail: zhouyh@lzu.edu.c [Key Laboratory of Mechanics on Western Disaster and Environment, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2010-03-01

    Using a modified Gifford-McMahon refrigerator to cool the cylindrical bulk YBaCuO superconductor within the region of 100-10 K, and using an updated high-temperature superconductor (HTS) maglev measurement system, the levitation force and its time relaxation at different temperatures between a YBaCuO bulk superconductor and a permanent magnet (PM) have been measured under zero-field cooling. It is found that decrease the cooling temperature of HTS can decrease the hysteresis of magnetization and increase the maximum levitation force of each hysteresis loop. For the relaxation of levitation force, if the temperature is continually lowered to 10 K after the relaxation measurement at given cooling temperature is performed for 600 s, the levitation force will continue to decrease sharply with the lowering of temperature even though it will get stable if the temperature is not lowered. Our results shown in this work are a benefit to the understanding of levitation systems.

  3. Theoretical Modeling of Various Spectroscopies for Cuprates and Topological Insulators

    Science.gov (United States)

    Basak, Susmita

    Spectroscopies resolved highly in momentum, energy and/or spatial dimensions are playing an important role in unraveling key properties of wide classes of novel materials. However, spectroscopies do not usually provide a direct map of the underlying electronic spectrum, but act as a complex 'filter' to produce a 'mapping' of the underlying energy levels, Fermi surfaces (FSs) and excitation spectra. The connection between the electronic spectrum and the measured spectra is described as a generalized 'matrix element effect'. The nature of the matrix element involved differs greatly between different spectroscopies. For example, in angle-resolved photoemission (ARPES) an incoming photon knocks out an electron from the sample and the energy and momentum of the photoemitted electron is measured. This is quite different from what happens in K-edge resonant inelastic X-ray scattering (RIXS), where an X-ray photon is scattered after inducing electronic transitions near the Fermi energy through an indirect second order process, or in Compton scattering where the incident X-ray photon is scattered inelastically from an electron transferring energy and momentum to the scattering electron. For any given spectroscopy, the matrix element is, in general, a complex function of the phase space of the experiment, e.g. energy/polarization of the incoming photon and the energy/momentum/spin of the photoemitted electron in the case of ARPES. The matrix element can enhance or suppress signals from specific states, or merge signals of groups of states, making a good understanding of the matrix element effects important for not only a robust interpretation of the spectra, but also for ascertaining optimal regions of the experimental phase space for zooming in on states of the greatest interest. In this thesis I discuss a comprehensive scheme for modeling various highly resolved spectroscopies of the cuprates and topological insulators (TIs) where effects of matrix element, crystal

  4. High-Throughput Screening by Nuclear Magnetic Resonance (HTS by NMR) for the Identification of PPIs Antagonists.

    Science.gov (United States)

    Wu, Bainan; Barile, Elisa; De, Surya K; Wei, Jun; Purves, Angela; Pellecchia, Maurizio

    2015-01-01

    In recent years the ever so complex field of drug discovery has embraced novel design strategies based on biophysical fragment screening (fragment-based drug design; FBDD) using nuclear magnetic resonance spectroscopy (NMR) and/or structure-guided approaches, most often using X-ray crystallography and computer modeling. Experience from recent years unveiled that these methods are more effective and less prone to artifacts compared to biochemical high-throughput screening (HTS) of large collection of compounds in designing protein inhibitors. Hence these strategies are increasingly becoming the most utilized in the modern pharmaceutical industry. Nonetheless, there is still an impending need to develop innovative and effective strategies to tackle other more challenging targets such as those involving protein-protein interactions (PPIs). While HTS strategies notoriously fail to identify viable hits against such targets, few successful examples of PPIs antagonists derived by FBDD strategies exist. Recently, we reported on a new strategy that combines some of the basic principles of fragment-based screening with combinatorial chemistry and NMR-based screening. The approach, termed HTS by NMR, combines the advantages of combinatorial chemistry and NMR-based screening to rapidly and unambiguously identify bona fide inhibitors of PPIs. This review will reiterate the critical aspects of the approach with examples of possible applications.

  5. Numerical evaluation of guidance force decay of HTS bulk exposed to AC magnetic field over a NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai [P.O. Box 152, Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: zhlcai2000@163.com; Wang Jiasu; Wang Suyu; Zheng Jun; He Qingyong [P.O. Box 152, Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2007-12-01

    The guidance force of the YBCO bulk over a NdFeB guideway used in the high-temperature superconducting maglev vehicle system was decayed by the application of the AC external magnetic field. In our previous work, we explained that the decay was due to the temperature rise of the HTS bulk caused by AC losses. In this paper, we adopted an analytic model to evaluate the decay of the critical current density of the bulk. And based on the analytic results and the Bean critical-state model, we calculated the guidance force as a function of times. Compared with the experimental results, the calculation results have almost the same trend and can qualitatively reveal the characteristics of guidance force of HTS bulk in this situation. Therefore, the guidance force decay of HTS bulk in the maglev vehicle system can be evaluated simply by this numerical method.

  6. A Simplified Model to Calculate AC Losses in Large 2G HTS Coils

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Jensen, Bogi Bech

    2015-01-01

    . The model presented uses H formulation which directly solves magnetic fields, and the general partial differential equations (PDEs) module in Comsol Multiphysics is used to implement the model. Afterwards, the model is used to simulate the excitation stage of a racetrack HTS coil with 350 tapes. The AC...

  7. Performance and analysis of wireless power charging system from room temperature to HTS magnet via strong resonance coupling method

    International Nuclear Information System (INIS)

    Chung, Y. D.; Lee, S. Y.; Lee, T. W.; Kim, J. S.; Lee, C. Y.

    2016-01-01

    The technology of supplying the electric power by wireless power transfer (WPT) is expected for the next generation power feeding system since it can supply the power to portable devices without any connectors through large air gap. As such a technology based on strongly coupled electromagnetic resonators is possible to deliver the large power and recharge them seamlessly; it has been considered as a noble option to wireless power charging system in the various power applications. Recently, various HTS wires have now been manufactured for demonstrations of transmission cables, motors, MAGLEV, and other electrical power components. However, since the HTS magnets have a lower index n value intrinsically, they are required to be charged from external power system through leads or internal power system. The portable area is limited as well as the cryogen system is bulkier. Thus, we proposed a novel design of wireless power charging system for superconducting HTS magnet (WPC4SM) based on resonance coupling method. As the novel system makes possible a wireless power charging using copper resonance coupled coils, it enables to portable charging conveniently in the superconducting applications. This paper presented the conceptual design and operating characteristics of WPC4SM using different shapes' copper resonance coil. The proposed system consists of four components; RF generator of 370 kHz, copper resonance coupling coils, impedance matching (IM) subsystem and HTS magnet including rectifier system

  8. Performance and analysis of wireless power charging system from room temperature to HTS magnet via strong resonance coupling method

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. D.; Lee, S. Y.; Lee, T. W.; Kim, J. S. [Suwon Science College, Suwon (Korea, Republic of); Lee, C. Y. [Korea Railroad Institute, Uiwang (Korea, Republic of)

    2016-03-15

    The technology of supplying the electric power by wireless power transfer (WPT) is expected for the next generation power feeding system since it can supply the power to portable devices without any connectors through large air gap. As such a technology based on strongly coupled electromagnetic resonators is possible to deliver the large power and recharge them seamlessly; it has been considered as a noble option to wireless power charging system in the various power applications. Recently, various HTS wires have now been manufactured for demonstrations of transmission cables, motors, MAGLEV, and other electrical power components. However, since the HTS magnets have a lower index n value intrinsically, they are required to be charged from external power system through leads or internal power system. The portable area is limited as well as the cryogen system is bulkier. Thus, we proposed a novel design of wireless power charging system for superconducting HTS magnet (WPC4SM) based on resonance coupling method. As the novel system makes possible a wireless power charging using copper resonance coupled coils, it enables to portable charging conveniently in the superconducting applications. This paper presented the conceptual design and operating characteristics of WPC4SM using different shapes' copper resonance coil. The proposed system consists of four components; RF generator of 370 kHz, copper resonance coupling coils, impedance matching (IM) subsystem and HTS magnet including rectifier system.

  9. Doping and temperature dependence of incommensurate antiferromagnetism in underdoped lanthanum cuprates

    International Nuclear Information System (INIS)

    Yuan Feng; Feng Shiping; Su Zhaobin; Yu Lu

    2001-08-01

    The doping, temperature and energy dependence of the dynamical spin structure factors of the underdoped lanthanum cuprates in the normal state is studied within the t-J model using the fermion-spin transformation technique. Incommensurate peaks are found at [(1±δ)π, π], [π, (1±δ)π] at relatively low temperatures with δ linearly increasing with doping at the beginning and then saturating at higher dopings. These peaks broaden and weaken in amplitude with temperature and energy, in good agreement with experiments. The theory also predicts a rotation of these peaks by π/4 at even higher temperatures, being shifted to [(1±δ/√2)π, (1±δ/√2)π]. (author)

  10. Study of recovery characteristics of 2nd generation HTS tapes with different stabilizers for resistive type superconducting fault current limiters

    International Nuclear Information System (INIS)

    Sheng, Jie; Zeng, Weina; Ma, Jun; Yao, Zhihao; Li, Zhuyong; Jin, Zhijian; Hong, Zhiyong

    2016-01-01

    Highlights: • Three methods of measuring the recovery time of HTS tapes are compared. • Four tapes with different stabilizers were tested to compare their recovery characteristics. • The HTS tapes with thinner stabilizers have better recovery characteristics. • Encapsulation makes the recovery characteristics of HTS tapes worse. • The results can be reference of the re-reclosed operation time interval. - Abstract: The resistive type superconducting fault current limiter (SFCL) is one of the most important superconducting power applications nowadays. As known, this type of SFCL is settled directly in the power transmission line. When a short fault happens, the temperature of the superconductors in the SFCL will increase sharply due to the huge generated heat. This means the superconductors need time to recover the superconducting properties and be ready for the next short fault. So the recovery characteristics become one of the most crucial features of the resistive type SFCL. In this paper, several different kinds of measuring methods are presented to calculate the recovery time of the HTS tapes, and comparison of these methods is also carried out by a standard test. On basis of this, samples with different kinds of stabilizers are used to explore the influence of stabilizer on their recovery characteristics. In addition, the influence of the encapsulation technology is also discussed in this paper.

  11. Comprehensive Study of the Model Mercury-Based Cuprate Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Greven, Martin [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-11-13

    This is the Final Report on DE-SC0006858, which opened 15 August 2011 and closed 14 August 2017. The Principal Investigator is Martin Greven, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 555455 (email: greven@umn.edu). The Administrative Point of Contact is Patricia Jondahl, phone: 612-624-5599, email: awards@umn.edu. The DOE Program is the Office of Basic Energy Sciences, Program manager is Dr. P. Thiyagarajan, Neutron Scattering SC-22.2/ Germantown Bldg. (email: Thiyagarajan@science.doe.gov). The chief activity was the crystal growth, characterization, neutron and X-ray scattering study of the mercury-based cuprates, arguably the most desirable high-Tc superconductors for experimental study due to their record values of Tc and their relatively simple crystal structures. It is thought that the unusual magnetic and charge degrees of freedom of the copper-oxygen sheets that form the fundamental building block of all cuprate superconductors give rise to the high Tc and to many other unusual properties exhibited by the class of quantum materials. Neutron scattering experiments were performed to reveal the nature of the magnetic degrees of freedom of the copper-oxygen sheets, whereas X-ray scattering experiments and complementary charge-transport experiments were performed to reveal the nature of the charge degrees of freedom. In addition, collaborations were initiated with experts in the use of complementary experimental techniques. The primary products are (i) scientific articles published in peer-reviewed scientific journals, (ii) scientific presentations at national and international conferences, and (iii) education of postdoctoral researchers, PhD graduate students and undergraduate researchers by providing a research experience in crystal growth, characterization and scattering. Twenty scientific papers were published in peer-reviewed journals, thirty-one invited talks were presented at national or international conferences, or as

  12. Theory of the c-axis penetration depth in the cuprates

    International Nuclear Information System (INIS)

    Radtke, R.J.; Kostur, V.N.; Levin, K.

    1996-01-01

    Recent measurements of the London penetration-depth tensor in the cuprates find a weak temperature dependence along the c direction that is seemingly inconsistent with evidence for d-wave pairing deduced from in-plane measurements. We demonstrate in this paper that these disparate results are not in contradiction, but can be explained within a theory based on incoherent quasiparticle hopping between the CuO 2 layers. By relating the calculated temperature dependence of the penetration depth λ c (T) to the c-axis resistivity, we show how the measured ratio λ 2 c (0)/λ 2 c (T) can provide insight into the behavior of c-axis transport below T c and the related issue of open-quote open-quote confinement.close-quote close-quote copyright 1996 The American Physical Society

  13. Influence of AC external magnetic field perturbation on the guidance force of HTS bulk over a NdFeB guideway

    International Nuclear Information System (INIS)

    Zhang Longcai; Wang Jiasu; Wang Suyu; He Qingyong

    2007-01-01

    Superconducting maglev vehicle system requires that the surface magnetic field of the guideway is uniform along the forward direction. But in practice the surface magnetic field of the NdFeB permanent magnet guideway is not always immutable. So the HTS bulks in this case are exposed to AC external magnetic field, which may induce the energy loss in the bulk and influence the guidance force between the HTS bulks and the NdFeB guideway. In this paper, we experimentally studied the influence of the AC external magnetic field perturbation on the guidance force of a HTS bulk over the NdFeB guideway. The experimental results showed that the guidance force was influenced by the application of the AC external magnetic. The guidance fore hysteresis became more evident with the amplitude of the AC field and was independent of the frequency in the range 90-400 Hz. We attributed the reason to magnetic hysteresis loss in the superconductor

  14. Influence of AC external magnetic field perturbation on the guidance force of HTS bulk over a NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)]. E-mail: zhlcai2000@163.com; Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China); Wang Suyu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China); He Qingyong [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)

    2007-08-01

    Superconducting maglev vehicle system requires that the surface magnetic field of the guideway is uniform along the forward direction. But in practice the surface magnetic field of the NdFeB permanent magnet guideway is not always immutable. So the HTS bulks in this case are exposed to AC external magnetic field, which may induce the energy loss in the bulk and influence the guidance force between the HTS bulks and the NdFeB guideway. In this paper, we experimentally studied the influence of the AC external magnetic field perturbation on the guidance force of a HTS bulk over the NdFeB guideway. The experimental results showed that the guidance force was influenced by the application of the AC external magnetic. The guidance fore hysteresis became more evident with the amplitude of the AC field and was independent of the frequency in the range 90-400 Hz. We attributed the reason to magnetic hysteresis loss in the superconductor.

  15. A phenomenological model for the structure-composition relationship of the high Tc cuprates based on simple chemical principles

    International Nuclear Information System (INIS)

    Alarco, J.A.; Talbot, P.C.

    2012-01-01

    A simple phenomenological model for the relationship between structure and composition of the high Tc cuprates is presented. The model is based on two simple crystal chemistry principles: unit cell doping and charge balance within unit cells. These principles are inspired by key experimental observations of how the materials accommodate large deviations from stoichiometry. Consistent explanations for significant HTSC properties can be explained without any additional assumptions while retaining valuable insight for geometric interpretation. Combining these two chemical principles with a review of Crystal Field Theory (CFT) or Ligand Field Theory (LFT), it becomes clear that the two oxidation states in the conduction planes (typically d 8 and d 9 ) belong to the most strongly divergent d-levels as a function of deformation from regular octahedral coordination. This observation offers a link to a range of coupling effects relating vibrations and spin waves through application of Hund’s rules. An indication of this model’s capacity to predict physical properties for HTSC is provided and will be elaborated in subsequent publications. Simple criteria for the relationship between structure and composition in HTSC systems may guide chemical syntheses within new material systems.

  16. Exploring the phase diagram of the Bi-cuprates by photoemission

    International Nuclear Information System (INIS)

    Janowitz, C.

    2004-01-01

    High temperature superconductivity is achieved by hole doping of parent compounds, which undergo a phase transition from the antiferromagnetic, insulating state to the metallic and superconducting state. This development can only be studied continuously on few members of the cuprate family: Bi 2 Sr 2 Ca 1-x Y x Cu 2 O 8+δ single crystals, where the hole concentration in the two CuO 2 -planes per unit cell (n=2) is controlled by the substitution of Ca by Y, and Bi 2 Sr 2 Ca 1- x La x CuO 6+δ single crystals, where this concentration in the one CuO 2 -plane per unit cell (n=1) is controlled by the substitution of Sr by La enable this study of the doping dependence over a wide range of hole concentrations with ARPES. Investigations of antiferromagnetic parent compounds have so far mostly been reported for oxychlorides, like e.g. Sr 2 CuO 2 Cl 2 and discussed within the t-t'-t'''-J model. Since the character of the CuO derived states near the Fermi level is decisive for the electronic structure, it will be discussed, whether this or other models like the generalized tight binding method (GTBM) give an appropriate description. A detailed treatment by this method with a five band Hubbard Hamiltonian, i.e. involving planar and off planar states of the CuO-planes shows, that the first removal state is composed not only from the Zhang-Rice singlet state but also from states with spin triplet character. In the second part of the talk the electronic structure for hole concentrations in the vicinity of the optimum transition temperature is addressed. It is general consensus that in this region the electronic structure can no longer be described by Fermi liquid (FL) theory. Instead various other non-FL theories are discussed. A class of these models deals with reduced dimensionality in the CuO 2 - planes, leading to Luttinger liquid like behaviour with spin and charge separation. Another route to one-dimensionality comes from the so called striped phase with spin and charge

  17. Several alternative approaches to the manufacturing of HTS Josephson junctions

    OpenAIRE

    Villegier , J.; Boucher , H.; Ghis , A.; Levis , M.; Méchin , Laurence; Moriceau , H.; Pourtier , F.; Vabre , M.; Nicoletti , S.; Correra , L.

    1994-01-01

    In this work we describe comparatively the fabrication and the characterization of various types of HTS Josephson junctions manufactured using different processes : grain boundary junctions have been studied both by the way of junctions on bicrystal substrates and of bi-epitaxial junctions. Ramp-edge types have been elaborated and characterized using mainly N-YBaCuO thin film as a barrier while the trilayer approach has been investigated through a-axis structures. YBaCuO or GdBaCuO supercondu...

  18. Helimagnetism and weak ferromagnetism in edge-shared chain cuprates

    International Nuclear Information System (INIS)

    Drechsler, S.-L.; Richter, J.; Kuzian, R.; Malek, J.; Tristan, N.; Buechner, B.; Moskvin, A.S.; Gippius, A.A.; Vasiliev, A.; Volkova, O.; Prokofiev, A.; Rakoto, H.; Broto, J.-M.; Schnelle, W.; Schmitt, M.; Ormeci, A.; Loison, C.; Rosner, H.

    2007-01-01

    The present understanding of a novel growing class of chain cuprates with intriguing magnetic properties is reviewed. Among them, several undoped edge-shared CuO 2 chain compounds show at low temperature a clear tendency to helicoidal magnetical ordering with acute pitch angles and sometimes also to weak ferromagnetism. Our analysis is based on the isotropic 1D frustrated J 1 -J 2 Heisenberg model with ferromagnetic (FM) 1st neighbor and antiferromagnetic 2nd neighbor exchange. The achieved assignment is supported by microscopic calculations of the electronic and magnetic structure. We consider Na(Li)Cu 2 O 2 , LiVCuO 4 as the best studied helimagnets, Li 2 ZrCuO 4 and other systems close to a FM quantum critical point, as well as Li 2 CuO 2 with FM inchain ordering. The interplay of frustrated inchain couplings, anisotropy and interchain exchange is discussed

  19. Novel attempt to create uniform magnetic-field space generated by face-to-face settled HTS bulk magnets

    International Nuclear Information System (INIS)

    Oka, Tetsuo; Ichiju, Kana; Higa, Kazuya; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Yokoyama, Kazuya; Nakamura, Takashi

    2017-01-01

    Various experimental attempts have been made to obtain a uniform magnetic field in the space between face-to-face HTS bulk magnets that could possibly be utilized as NMR magnets. In general, the magnetic fields emitted from the magnetic pole surfaces containing HTS bulk magnets are characterized as non-uniform field distributions. Since the NMR magnets require highly uniform magnetic-field spaces, it has been assumed to be difficult to form uniform magnetic-field spaces between magnetic poles placed face-to-face. The authors modified the shapes of the magnetic-field distribution from convex to concave by attaching ferromagnetic iron plates to the pole surfaces. The magnets were then set face-to-face with various gaps of 30-70 mm, and the experimental data on magnetic-field uniformity was precisely measured in the space. In order to detect the NMR signals, the target performance for uniformity was set as 1,500 ppm throughout the 4-mm span on the x-axis, which is equivalent to performance in the past when the world's first detection of NMR signals was observed in the bore of hollow-type HTS bulk magnets. When we combined the concave and convex field distributions to compensate the uneven field distributions, the data of the best uniformity reached 358 ppm and 493 ppm in the 30 mm and 50 mm gaps, respectively, which exceeded the target value for the purpose of detecting the NMR signals within the space. Furthermore, it was shown that the field distributions change from concave to convex shape without any change at 1.1 T in the range from 7 to 11 mm in the 30-mm gap, indicating that the distributions are uniform. This suggests the possibility that the uniform magnetic-field space between the HTS bulk magnets set face-to-face expands. (author)

  20. Behaviour of superconductivity energetic characteristics in electron-doped cuprates. A simple model

    International Nuclear Information System (INIS)

    Kristoffel, N.; Rubin, P.

    2008-01-01

    A simple model to describe the energetic phase diagram of electron-doped cuprate superconductor is developed. Interband pairing operates between the UHB and the defect states created by doping and supplied by both extincting HB-s. Two defect subbands correspond to the (π,0) and (π/2,π/2) momentum regions. Extended doping quenches the bare normal state gaps (pseudogaps). Maximal transition temperature corresponds to overlapping bands ensemble intersected by the chemical potential. Illustrative results for T c , pseudo- and superconducting gaps are calculated on the whole doping scale. Major characteristic features on the phase diagram are reproduced. Anticipated manifestation of gaps doping dynamics is discussed