WorldWideScience

Sample records for cupola wet scrubber

  1. Design Aspects of Wet Scrubber System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun-Chul; Bang, Young-suk; Jung, Woo-Young; Lee, Doo-Yong [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    The water pool in the wet scrubber system has advantage to cope with decay heat based on the thermal hydraulic balance such as condensation and evaporation inside it. This study focuses on the design aspects of the wet scrubber system to estimate the required water pool mass during the mission time and size of the scrubbing tank including inner structures. The design of the wet scrubber system include the estimation of the required water mass during the mission time and sizing of the scrubber vessel to contain the water pool. The condensation due to the inlet steam and evaporation due to the steam and non-condensable gas superheat and decay heat from filtered fission products should be considered to estimate the water mass required to maintain its function during the mission time. On the other hand, the level swelling due to the noncondensable gas is another important design aspect on the sizing of the scrubber vessel and determination of the entry elevation of the filtration components such as the droplet separator or filter. The minimum water level based on the minimum collapsed water level should be higher than the exit of scrubber nozzle.

  2. Hydrodynamics of a Multistage Wet Scrubber Incineration Conditions

    Science.gov (United States)

    Said, M. M.; Manyele, S. V.; Raphael, M. L.

    2012-01-01

    The objective of the study was to determine the hydrodynamics of the two stage counter-current cascade wet scrubbers used during incineration of medical waste. The dependence of the hydrodynamics on two main variables was studied: Inlet air flow rate and inlet liquid flow rate. This study introduces a new wet scrubber operating features, which are…

  3. Experimental approach and techniques for the evaluation of wet flue gas desulfurization scrubber fluid mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Strock, T.W. [Babcock and Wilcox Co., Alliance, OH (United States). Research and Development Div.; Gohara, W.F. [Babcock and Wilcox Co., Barberton, OH (United States)

    1994-12-01

    The fluid mechanics within wet flue desulfurization (FGD) scrubbers involve several complex two-phase gas/liquid interactions. The fluid flow directly affects scrubber pressure drop, mist eliminator water removal, and the SO{sub 2} mass transfer/chemical reaction process. Current industrial efforts to develop cost-effective high-efficiency wet FGD scrubbers are focusing, in part, on optimizing the fluid mechanics. The development of an experimental approach and test facility for understanding and optimizing wet scrubber flow characteristics is discussed in this paper. Specifically, scaling procedures for downsizing a wet scrubber for the laboratory environment with field data comparisons are summarized. Furthermore, experimental techniques for the measurement of wet scrubber flow distribution, pressure drop, spray nozzle droplet size characteristics and wet scrubber liquid-to-gas ratio are discussed. Finally, the characteristics and capabilities of a new hydraulic test facility for wet FGD scrubbers are presented. (author)

  4. Scrubber-Integrated Wet Electrostatic Precipitator; Skrubberintegrerat vaatt elektrofilter, WESP

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven; Baefver, Linda; Davidsson, Kent; Pettersson, Jens; Schmidt, Hans; Strand, Michael; Yngvesson, Johan

    2011-07-01

    Combustion processes for heat and power production are an important source of sub-micron particle emissions, which cause enhanced health risks and premature deaths. To meet future requirements of economical and robust dust cleaning equipment, the Wet Electrostatic Precipitation (WESP) technology has been further developed in this project. A pilot scale slip stream WESP unit, installed by Goetaverken Miljoe, has been successfully installed and tested at the Renova Waste-to-Energy plant in Goeteborg, Sweden. The particles in the gas are charged by an ionizing electrode and collected in a concentric cylinder geometry. The WESP pilot consists of a unique combination of several existing technologies: it is integrated with a packed bed scrubber which means an ideally uniformly distributed gas flow in the WESP inlet. Furthermore, the WESP unit has a water cooled condensing collector, which facilitates continuous formation of a water film. The downward flowing water film transports the collected dust counter current to the upward flowing flue gas in order to minimize particle re-entrainment. The WESP is equipped with a high frequency transformer for stable voltage output and is fabricated in electrically conductive corrosion resistant Fibre Reinforced Plastic (FRP). The concentration of dust upstream of the WESP unit varied between 6.2 and 28 mg/Nm{sup 3} dry gas. All measured outlet dust concentrations were below 0.3 mg/Nm{sup 3} (dry gas, 11% O{sub 2}), which equals 3% of the applicable emission limit. The dust removal efficiency has been higher than 97% in all the dust measurements. The mean value of all the dust measurements was 15.2 mg/Nm{sup 3} upstream and 0.14 mg/Nm{sup 3} in downstream (both as dry gas, 11% O{sub 2}), which gives an average removal efficiency of slightly more than 99%. The removal efficiency increased with increasing inlet dust concentration, SO{sub 2} concentration and {Delta}T of the collector cooling. Chlorine, potassium, sodium, silicon and

  5. A field demonstration of a modified wet scrubber for dust control in an Illinois coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y.P.; Alam, M.M.; Patwardhan, A.; Thatavarthy, K.K. [Southern Illinois University, Carbondale, IL (United States). Department of Mining and Mineral Resources Engineering

    2005-07-01

    A commercial wet scrubber was used in the SIU-Joy dust control laboratory to test several concepts for improving the dust control efficiency of a wet scrubber. The concepts tested included two filter-two-spray systems, hollow and full-cone sprays, horizontal and vertical sprays, different layer filters and addition of surfactant. The optimised scrubber configuration had water-only vertical sprays for pre-wetting coarse dust, and vertical surfactant-laden water sprays for wetting ultrafine particles. This scrubber configuration reduced dust concentrations from 250 mg/m{sup 3} to 1.8 mg/m{sup 3}. Upon successful testing and optimisation of parameters in the laboratory, field demonstration of the concepts was conducted at an Illinois coal mine. The optimised scrubber configuration was tested in the field with good results in terms of improved visibility in the face area and reduced respirable and quartz dust concentrations. Additional modifications in the field involved relocation of the scrubber suction inlets from the bottom to the side and changing the water spray configuration on the miner head. These additional changes were based on a conceptualised spatial dust distribution profile in the face area. The results of these laboratory development and field demonstration studies are presented in this paper. 6 refs., 11 figs., 4 tabs.

  6. Laboratory Evaluation of Electrostatic Spray Wet Scrubber to Control Particulate Matter Emissions from Poultry Facilities

    Science.gov (United States)

    Particulate matter (PM) is a major air pollutant emitted from animal production and has significant impacts on health and the environment. Abatement of PM emissions is imperative and effective PM control technologies are strongly needed. In this work, an electrostatic spray wet scrubber (ESWS) techn...

  7. Pilot-scale field study for ammonia removal from lagoon biogas using an acid wet scrubber.

    Science.gov (United States)

    Lin, Hongjian; Wu, Xiao; Miller, Curtis; Zhu, Jun; Hadlocon, Lara Jane; Manuzon, Roderick; Zhao, Lingying

    2014-01-01

    The anaerobic activities in swine slurry storage and treatment generate biogas containing gaseous ammonia component which is a chemical agent that can cause adverse environmental impacts when released to the atmosphere. The aim of this pilot plant study was to remove ammonia from biogas generated in a covered lagoon, using a sulfuric acid wet scrubber. The data showed that, on average, the biogas contained 43.7 ppm of ammonia and its concentration was found to be exponentially related to the air temperature inside the lagoon. When the air temperature rose to 35°C and the biogas ammonia concentration reached 90 ppm, the mass transfer of ammonia/ammonium from the deeper liquid body to the interface between the air and liquid became a limiting factor. The biogas velocity was critical in affecting ammonia removal efficiency of the wet scrubber. A biogas flow velocity of 8 to 12 mm s(-1) was recommended to achieve a removal efficiency of greater than 60%. Stepwise regression revealed that the biogas velocity and air temperature, not the inlet ammonia concentration in biogas, affected the ammonia removal efficiency. Overall, when 73 g L(-1) (or 0.75 M) sulfuric acid solution was used as the scrubber solution, removal efficiencies varied from 0% to 100% with an average of 55% over a 40-d measurement period. Mass balance calculation based on ammonium-nitrogen concentration in final scrubber liquid showed that about 21.3 g of ammonia was collected from a total volume of 1169 m(3) of biogas, while the scrubber solution should still maintain its ammonia absorbing ability until its concentration reaches up to 1 M. These results showed promising use of sulfuric acid wet scrubber for ammonia removal in the digester biogas.

  8. Wet scrubber analysis of volatile organic compound removal in the rendering industry.

    Science.gov (United States)

    Kastner, James R; Das, K C

    2002-04-01

    The promulgation of odor control rules, increasing public concerns, and U.S. Environmental Protection Agency (EPA) air regulations in nonattainment zones necessitates the remediation of a wide range of volatile organic compounds (VOCs) generated by the rendering industry. Currently, wet scrubbers with oxidizing chemicals are used to treat VOCs; however, little information is available on scrubber efficiency for many of the VOCs generated within the rendering process. Portable gas chromatography/mass spectrometry (GC/MS) units were used to rapidly identify key VOCs on-site in process streams at two poultry byproduct rendering plants. On-site analysis was found to be important, given the significant reduction in peak areas if samples were held for 24 hr before analysis. Major compounds consistently identified in the emissions from the plant included dimethyl disulfide, methanethiol, octane, hexanal, 2-methylbutanal, and 3-methylbutanal. The two branched aldehydes, 2-methylbutanal and 3-methylbutanal, were by far the most consistent, appearing in every sample and typically the largest fraction of the VOC mixture. A chlorinated hydrocarbon, methanesulfonyl chloride, was identified in the outlet of a high-intensity wet scrubber, and several VOCs and chlorinated compounds were identified in the scrubbing solution, but not on a consistent basis. Total VOC concentrations in noncondensable gas streams ranged from 4 to 91 ppmv. At the two plants, the odor-causing compound methanethiol ranged from 25 to 33% and 9.6% of the total VOCs (v/v). In one plant, wet scrubber analysis using chlorine dioxide (ClO2) as the oxidizing agent indicated that close to 100% of the methanethiol was removed from the gas phase, but removal efficiencies ranged from 20 to 80% for the aldehydes and hydrocarbons and from 23 to 64% for total VOCs. In the second plant, conversion efficiencies were much lower in a packed-bed wet scrubber, with a measurable removal of only dimethyl sulfide (20-100%).

  9. Converting SDAP into gypsum in a wet limestone scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Fogh, F. [Faelleskemikerne, Elsamprojekt A/S, Fredericia (Denmark)

    1996-12-01

    The ELSAM power pool has an installed electrical capacity of approx. 5 GW{sub e}, mainly firing import coal. The major base load units are equipped with desulphurization units and three different desulphurization technologies are used: the wet limestone gypsum process, the spray dry absorption process and a sulphuric acid process. Gypsum and sulphuric acid are commercialized, whereas it has been difficult to utilize the spray dry absorption product (SDAP). The main constituents of SDAP are calcium sulphide, calcium chloride, hydrated lime and impurities mainly originating from fly ash. Sulphide can be oxidized into sulphate in acidic solution - the reaction is utilized in the wet limestone gypsum process - and the possibility of using any spare capacity in the wet limestone gypsum units to oxidize the sulphide content of SDAP into sulphate and produce usable gypsum has been investigated in the laboratory and in a 400 MW{sub e} equivalent wet limestone unit. The limestone inhibition effect of the addition of SDAP is currently being studied in the laboratory in order to determine the effect of different SDAP types (plant/coal sources) on limestone reactivity before further long-term full-scale tests are performed and permanent use of the process planned. (EG)

  10. MODERNIZATION OF CUPOLA EQUIPMENT

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2015-01-01

    Full Text Available This article presents an automated cupola complex, developed by scientific-production enterprise «Technolit» together with GSTU named after P. O. Sukhoi, launched in the spring of 2015 at the plant «Stroiex» in the city of Chelyabinsk (the Russian Federation. The old cupolas (open type have been replaced by the new cupolas of the closed type, equipped with automatic control and management system and multistage wet gas treatment system. Cupolas are equipped with systems of post-combustion gases and the batch charging, the separate systems of air blast, systems of sludge removal and recirculation of water, the slag granulation installations, mechanized cleaning of cupola furnace and automatic safety system. These activities allowed the company to increase production and improve the quality of cast iron, reduce the coke consumption by 20% and reducing emissions of pollutants into the atmosphere almost 30 times.

  11. Integration of advanced oxidation processes at mild conditions in wet scrubbers for odourous sulphur compounds treatment.

    Science.gov (United States)

    Vega, Esther; Martin, Maria J; Gonzalez-Olmos, Rafael

    2014-08-01

    The effectiveness of different advanced oxidation processes on the treatment of a multicomponent aqueous solution containing ethyl mercaptan, dimethyl sulphide and dimethyl disulphide (0.5 mg L(-1) of each sulphur compound) was investigated with the objective to assess which one is the most suitable treatment to be coupled in wet scrubbers used in odour treatment facilities. UV/H2O2, Fenton, photo-Fenton and ozone treatments were tested at mild conditions and the oxidation efficiency obtained was compared. The oxidation tests were carried out in magnetically stirred cylindrical quartz reactors using the same molar concentration of oxidants (hydrogen peroxide or ozone). The results show that ozone and photo-Fenton are the most efficient treatments, achieving up to 95% of sulphur compounds oxidation and a mineralisation degree around 70% in 10 min. Furthermore, the total costs of the treatments taking into account the capital and operational costs were also estimated for a comparative purpose. The economic analysis revealed that the Fenton treatment is the most economical option to be integrated in a wet scrubber to remove volatile organic sulphur compounds, as long as there are no space constraints to install the required reactor volume. In the case of reactor volume limitation or retrofitting complexities, the ozone and photo-Fenton treatments should be considered as viable alternatives.

  12. 40 CFR 60.2680 - What if I do not use a wet scrubber to comply with the emission limitations?

    Science.gov (United States)

    2010-07-01

    ... Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units that... air pollution control device other than a wet scrubber, or limit emissions in some other manner, to... comply with the emission limitations? 60.2680 Section 60.2680 Protection of Environment...

  13. IDENTIFICATION AND RESPONSES TO POTENTIAL EFFECTS OF SCR AND WET SCRUBBERS ON SUBMICRON PARTICULATE EMISSIONS AND PLUME CHARACTERISTICS

    Science.gov (United States)

    Applications of selective catalytic reduction (SCR) systems and wet flue gas desulfurization (FGD) scrubbers on coal-fired boilers have led to substantial reductions in emissions of nitrogen oxides (NOX) and sulfur dioxide (SO2). However, observations of pilot- and full-scale tes...

  14. Toluene removal by oxidation reaction in spray wet scrubber: experimental, modeling and optimization

    Directory of Open Access Journals (Sweden)

    Roumporn Nikom

    2006-11-01

    Full Text Available Toluene, an important volatile organic compound (VOC, is used in many kinds of industries, such as painting, printing, coating, and petrochemical industries. The emission of toluene causes serious air pollution, odor problem, flammability problem and affects human health. This paper proposes the removal of toluene from waste air using a spray wet scrubber combining the absorption and oxidation reaction. Aqueous sodium hypochlorite (NaOCl solution was used as the scrubbing liquid in the system. NaOCl, the strongest oxidative agent, presents an effective toluene removal. As the scrubbed toluene is reacted, recirculation of the scrubbing liquid could be operated with a constant removal efficiency throughout the operting time. The investigated variables affecting the removal efficiency were air flow rate, inlet toluene concentration, NaOCl concentration, scrubbing liquid flow rate and size of spray nozzle. Influence of the scrubbing parameters was experimentally studied to develop a mathematical model of the toluene removal efficiency. The removal model reveals that the increase of scrubbing liquid flow rate, toluene concentration, and NaOCl concentration together with the decrease of air flow rate and size of spray nozzle can increase the toluene removal efficiency. Optimization problem with an objective function and constraints was set to provide the maximum toluene removal efficiency and solved by Matlab optimization toolbox. The optimization constraints were formed from the mathematical model and process limitation. The solution of the optimization was an air flow rate of 100 m3/h, toluene concentration of 1500 ppm, NaOCl concentration of 0.02 mol/l, NaOCl solution feed rate of 0.8 m3/h, and spray nozzle size of 0.5 mm. Solution of the optimization gave the highest toluene removal efficiency of 91.7%.

  15. Analysis of a wet scrubber network in the air remediation of industrial workplaces: benefit for the city air quality

    CERN Document Server

    Avveduto, Alessandro; Pace, Lorenzo; Curci, Gabriele; Monaco, Alessio; De Giovanni, Marina; Giammaria, Franco; Spanto, Giuseppe; Tripodi, Paolo

    2015-01-01

    Industrial activities carried out in confined spaces are characterized by a very specific type of air pollution. The extended exposure to this kind of pollution is often highly harmful, resulting in dramatic effects both on health and safety aspects. The indoor industrial abatement systems, adopted to purify the air, are typically applied to the emission points. The processed air is subsequently emitted outside. In this study we present the experimental results of three-stage wet scrubber systems installed in the industrial workplace of a (i) fiberglass processing plant, where the highest exposure levels to volatile compounds are nowadays today monitored,and of a (ii) waste-to-energy plant, characterized by a very high particulate matter level. The adopted technology, to be used as complementing strategy,does not require special disposal procedures and the processed air is re-emitted in the same work environment for the benefit of the work operators. The operation of the scrubbers network during the working a...

  16. 40 CFR 60.2115 - What if I do not use a wet scrubber to comply with the emission limitations?

    Science.gov (United States)

    2010-07-01

    ... scrubber to comply with the emission limitations? If you use an air pollution control device other than a... comply with the emission limitations? 60.2115 Section 60.2115 Protection of Environment ENVIRONMENTAL... Standards of Performance for Commercial and Industrial Solid Waste Incineration Units for Which...

  17. Semi-mechanistic modelling of ammonia absorption in an acid spray wet scrubber based on mass balance

    Science.gov (United States)

    A model to describe reactive absorption of ammonia (NH3) in an acid spray scrubber was developed as a function of the combined overall mass transfer coefficient K. An experimental study of NH3 absorption using 1% dilute sulphuric acid was carried out under different operating conditions. An empiric...

  18. Simultaneous treatment of NO and SO{sub 2} with aqueous NaClO{sub 2} solution in a wet scrubber combined with a plasma electrostatic precipitator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun-Woo [Department of Chemistry and Chemical Engineering and Regional Innovation Center for Environmental Technology of Thermal Plasma (RIC-ETTP), INHA University, 100 Inha-ro, Nam-gu, Incheon 402-751 (Korea, Republic of); Choi, Sooseok, E-mail: sooseok@jejunu.ac.kr [Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 690-756 (Korea, Republic of); Park, Dong-Wha, E-mail: dwpark@inha.ac.kr [Department of Chemistry and Chemical Engineering and Regional Innovation Center for Environmental Technology of Thermal Plasma (RIC-ETTP), INHA University, 100 Inha-ro, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2015-03-21

    Highlights: • This study was conducted to investigate simultaneous removal of NO and SO{sub 2}. • Proposed process consists of wet chemical reactor and non-thermal plasma reactor. • In the wet chemical reactor, NO and SO{sub 2} were absorbed and oxidized by NaClO{sub 2}. • In the non-thermal plasma reactor, aerosol particles were collected on anode surface. • NO and SO{sub 2} were removed more efficiently by proposed process than other methods. - Abstract: NO and SO{sub 2} gases that are generally produced in thermal power plants and incinerators were simultaneously removed by using a wet scrubber combined with a plasma electrostatic precipitator. The wet scrubber was used for the absorption and oxidation of NO and SO{sub 2}, and non-thermal plasma was employed for the electrostatic precipitation of aerosol particles. NO and SO{sub 2} gases were absorbed and oxidized by aerosol particles of NaClO{sub 2} solution in the wet scrubber. NO and SO{sub 2} reacted with the generated NaClO{sub 2} aerosol particles, NO{sub 2} gas, and aqueous ions such as NO{sub 2}{sup −}, NO{sub 3}{sup −}, HSO{sub 3}{sup −}, and SO{sub 4}{sup 2−}. The aerosol particles were negatively charged and collected on the surface of grounded anode in the plasma electrostatic precipitator. The NO and SO{sub 2} removal efficiencies of the proposed system were 94.4% and 100% for gas concentrations of 500 mg/m{sup 3} and a total gas flow rate of 60 Nm{sup 3}/h, when the molar flow rate of NaClO{sub 2} and the gas–liquid contact time were 50 mmol/min and 1.25 s, respectively. The total amount and number of aerosol particles in the exhaust gas were reduced to 7.553 μg/m{sup 3} and 210 /cm{sup 3} at the maximum plasma input power of 68.8 W, which are similar to the values for clean air.

  19. Experimental study on performance of flow & desulfurisation of a gas-liquid screen scrubber for wet flue gas desulfurization

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the paper, the gas-liquid two-phase flow performance and desulfurisation performance of the gasliquid screen scrubber were experimentally studied when limestone wag used as absorbent. Experiments were carried out at varying the flue gas velocity and slurry flux in concurrent and countercurrent tower respectively. The experimental results showed that the flow resistance of absorber increased rapidly with an increase of the flue gas velocity whether in concurrent or in countercurrent tower, and the up trend of the flow resistance in the countercurrent tower was higher than those in the concurrent one. The influence of the flue gas velocity on the flow resistance of absorber was more than those of the slurry flux density. Whether in the concurrent tower or in the countercurrent one, increasing the flue gas velocity or the slurry flux density would enhance the desulphurization efficiency. The influence of the slurry flux density on the desulfurisation efficiency was greater than those of the flue gas velocity.

  20. Removal of H2S pollutant from gasifier syngas by a multistage dual-flow sieve plate column wet scrubber.

    Science.gov (United States)

    Kurella, Swamy; Bhukya, Pawan Kishan; Meikap, B C

    2017-05-12

    The objective of this study was to observe the performance of a lab-scale three-stage dual-flow sieve plate column scrubber for hydrogen sulfide (H2S) gas removal from a gas stream, in which the H2S concentration was similar to that of gasifier syngas. The tap water was used as scrubbing liquid. The gas and liquid were operated at flow rates in the range of 16.59 × 10(-4)-27.65 × 10(-4) Nm(3)/s and 20.649 × 10(-6)-48.183 × 10(-6) m(3)/s, respectively. The effects of gas and liquid flow rates on the percentage removal of H2S were studied at 50-300 ppm inlet concentrations of H2S. The increase in liquid flow rate, gas flow rate and inlet H2S concentration increased the percentage removal of H2S. The maximum of 78.88% removal of H2S was observed at 27.65 × 10(-4) Nm(3)/s gas flow rate and 48.183 × 10(-6) m(3)/s liquid flow rate for 300 ppm inlet concentration of H2S. A model has also been developed to predict the H2S gas removal by using the results from the experiments and adding the parameters that affect the scrubber's performance. The deviations between experimental and predicted H2S percentage removal values were observed as less than 16%.

  1. Plasma on a foundry cupola

    Science.gov (United States)

    Pineau, Didier

    An experiment of a plasma torch on a production foundry cupola is reported. The test runs were conducted on a hot blast cupola, the blast temperature in the absence of plasma being 400 C. With the torch, the temperature of the blast was increased to 1000 C. The experiment was conducted for the manufacture of car engines with a 2.5 MW transportable plasma system. The cupola was boosted with a 4 MW torch and results included an increase in production of 45 percent, a decrease in coke rate and no more new iron in the loads. The plasma torch and hot air cupola furnace are described.

  2. Designing a scrubber for maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Mahlmeister, M.E.; Baron, E.S. [New York State Electric and Gas Corp., Binghamton, NY (United States); Watts, J. [USDOE Pittsburgh Energy Technology Center, PA (United States)

    1996-12-01

    Under Round 4 of the U.S. Department of Energy`s (DOE) Clean Coal Technology program, New York State Electric & Gas Corporation (NYSEG), in partnership with Saarberg-Holter-Umwelttechnik (SHU), Consolidation Coal Company and Stebbins Engineering and Manufacturing Company, has retrofitted a formic acid enhanced forced oxidation wet limestone scrubber on Units I and 2 at the Milliken Steam Electric Station. Units I and 2 are 1950s vintage Combustion Engineering tangentially fired pulverized coal units, which are rated at nominal 150 MW each and operate in balanced draft mode. The Flue Gas Desulfurization (FGD) system for Unit 2 was placed into operation in January 1995 and the Unit I system in June 1995. The project incorporates several unique aspects: low pH operation; a ceramic tile-lined cocurrent/countercurrent, split module absorber; a wet stack supported on the roof of the FGD building; and closed loop, zero liquid discharge operation that produces commercial grade gypsum and calcium chloride brine. The project objectives include 98% SO{sub 2} removal efficiency while burning high sulfur coal, the production of marketable byproducts to minimize solid waste disposal, zero wastewater discharge, space-saving design, and minimization of maintenance requirements of a wet scrubber. The paper provides a brief overview of the project scrubber design relating to maintenance considerations. A discussion of the early results of the maintenance history is also provided. Repair techniques that have been developed and tested for ceramic tile lined modules are included. 1 fig.

  3. Cupola Furnace Computer Process Model

    Energy Technology Data Exchange (ETDEWEB)

    Seymour Katz

    2004-12-31

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  4. Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum

    Energy Technology Data Exchange (ETDEWEB)

    Hensman, Carl, E., P.h.D; Baker, Trevor

    2008-06-16

    Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

  5. Removal of fly-ash and dust particulate matters from syngas produced by gasification of coal by using a multi-stage dual-flow sieve plate wet scrubber.

    Science.gov (United States)

    Kurella, Swamy; Meikap, Bhim Charan

    2016-08-23

    In this work, fly-ash water scrubbing experiments were conducted in a three-stage lab-scale dual-flow sieve plate scrubber to observe the performance of scrubber in fly-ash removal at different operating conditions by varying the liquid rate, gas rate and inlet fly-ash loading. The percentage of fly-ash removal efficiency increases with increase in inlet fly-ash loading, gas flow rate and liquid flow rate, and height of the scrubber; 98.55% maximum percentage of fly-ash removal efficiency (ηFA) is achieved at 19.36 × 10(-4) Nm(3)/s gas flow rate (QG) and 48.183 × 10(-6) m(3)/s liquid flow rate (QL) at 25 × 10(-3) kg/Nm(3) inlet fly-ash loading (CFA,i). A model has also been developed for the prediction of fly-ash removal efficiency of the column using the experimental results. The predicted values calculated using the correlation matched well with the experimental results. Deviations observed between the experimental and the predicted values were less than 20%.

  6. Cupolas minimize the energy required to melt ferrous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Draper, A B

    1979-05-01

    Historically the cupola has been the most effective furnace for melting cast irons. Although its supremacy was challenged by electric melting furnaces in the 1960's, persisting energy scarcity and high cost have encouraged a resurgence of interest in cupola technology. Using the optimum design features of modern cupolas and the best melting practices, they can achieve melting efficiencies of 45% or more based on the energy value of the original coal. In contrast, electric melting only uses 21% of the energy in coal. Despite these facts, many foundrymen fear that there will be problems because of poor metallurgical control if they use cupolas. Yet experience has proven otherwise. In terms of energy conservation and economy it is better to use large cupolas as scrap melters in the steel industry. Yet there is still a deep rooted prejudice against the cupola plus basic oxygen furnace route to steel making.

  7. Tendencies to the Improvement of the Cupola Process

    Directory of Open Access Journals (Sweden)

    A. Jopkiewicz

    2007-07-01

    Full Text Available Despite the fact of the big development of the technology of melting cast iron in electrical furnaces an essential part of it is still obtained in cupolas. In the paper actual tendencies of the improvement of the cupola process with special consideration of the structure principles of cupolas and their automatic control are presented. The rules of coke cupola processes for cold atmospheric and with oxygen enriched blast, with divided blast as well as for hot wind are presented. The technology of running long-campaign cupolas and the advantages of cokeless cupolas were presented as well. Among new solutions the FAR-system, the cupola with a partial recycling of gases and with using the plasma burners were described. There also were indicated possibilities of using pulsating gas flows as well as ecological problems and principles of complex controlling the cupola processes. The in this paper presented tendencies to improve the cupola process shall aid the foundrymen to make right choice by investment or modernization activities. The diversity of technical, economic and environmental conditions as well as of conditions related to the supply does not allow indicating one best solution.

  8. PERFORMANCE TESTING AND ANALYSIS OF CUPOLA FURNACE

    Directory of Open Access Journals (Sweden)

    PROF.HEMANT R. BHAGAT-PATIL

    2013-05-01

    Full Text Available In today’s industrial scenario huge losses/wastage occur in the manufacturing shop floor and foundry industries. The efficiency of any foundry largely depends on the efficiency of the melting process amulti-step operation where the metal is heated, treated, alloyed, and transported into die or mold cavities to form a casting. In this paper we represents the performance testing and analysis of Cupola Furnace, and reduces the problems occurs to give the best results. Our main focus in this work is to improve continuous working hours,reducing preparation time, reducing losses in melting, reducing slag formation and to increase the combustion efficiency of coke and overall productivity and to improve the quality and Mechanical properties of steel using Cupola.

  9. Value-Added Products From FGD Sulfite-Rich Scrubber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Vivak M. Malhotra

    2006-09-30

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber materials are produced every year in the USA. In fact, at present, the production of wet sulfite-rich scrubber cake outstrips the production of wet sulfate-rich scrubber cake by about 6 million tons per year. However, most of the utilization focus has centered on FGD gypsum. Therefore, we have recently initiated research on developing new strategies for the economical, but environmentally-sound, utilization of sulfite-rich scrubber material. In this exploratory project (Phase I), we attempted to ascertain whether it is feasible to develop reconstituted wood replacement products from sulfite-rich scrubber material. In pursuit of this goal, we characterized two different wet sulfite-rich scrubber materials, obtained from two power plants burning Midwestern coal, for their suitability for the development of value-added products. The overall strategy adopted was to fabricate composites where the largest ingredient was scrubber material with additional crop materials as additives. Our results suggested that it may be feasible to develop composites with flexural strength as high as 40 MPa (5800 psi) without the addition of external polymers. We also attempted to develop load-bearing composites from scrubber material, natural fibers, and phenolic polymer. The polymer-to-solid ratio was limited to {le} 0.4. The formulated composites showed flexural strengths as high as 73 MPa (10,585 psi). We plan to harness the research outcomes from Phase I to develop parameters required to upscale our value-added products in Phase II.

  10. Exhaust Gas Scrubber Washwater Effluent

    Science.gov (United States)

    2011-11-01

    Kent by Newcastle University and the Terramare Institute. Samples of raw seawater and scrubber washwater were collected at the inlet and discharge of...from Ships. Research Centre Terramare . Wilhelmshaven, Germany. Couple Systems. 2010. Dry EGCS Process Dry Exhaust Gas Cleaning System (http...BP Marine. Research Centre Terramare , Wilhelmshaven, Germany and School of Marine Science and Technology, University of Newcastle, Newcastle upon

  11. Energy conservation in cupolas and annealing furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Takeno, S.; Kumagaya, M.; Azuma, T.

    1984-01-01

    Successive reductions in the amount of coke and fuel oil used in cupolas and annealing furnaces are reported. In the cupolas, 2% oxygen enrichment resulted in a 0.9% drop in coke ratio and a 13.3% increase in output of pig iron. Coke ratios of 9.3-9.5% were obtained by tuyere blow-in of inexpensive carbon materials instead of expensive coke, by the use of formed coke, and by employing a dehumidified blast. In the case of the fuel oil-fired annealing furnaces, fuel oil consumption rates were reduced by treating two charges per heat instead of one. Energy consumption was successively reduced by 25-71% by 1) adopting a ceramic fibre heat-insulating material, 2) changing to low-oxygen combustion by increasing the number of burners, 3) lengthening the time during which the furnace high-temperature zone is maintained, 4) raising the combustion chamber load by using ceramic fibres in the furnace casing. 3 references.

  12. Investigation on the Potentials of Cupola Furnace Slag in Concrete

    Directory of Open Access Journals (Sweden)

    Stephen Adeyemi Alabi

    2013-12-01

    Full Text Available The compressive strength of the concrete designed using blast cupola furnace slag and granulated cupola slag as a coarse aggregate and partial replacement for cement was investigated. A series of experimental studies were conducted involve concrete production in two stages. The first stage comprised of normal aggregate concrete (NAC produced with normal aggregates and 100% ordinary Portland cement (OPC. Meanwhile, the second stage involved production of concrete comprising of cupola furnace slag an aggregates with 100% ordinary Portland cement (OPC and subsequently with 2%, 4%, 6%, 8% and 10% cementitious replacement with granulated cupola furnace slag that had been grounded and milled to less than 75 µm diameter. The outcomes of compressive strength test conducted on the slag aggregate concrete (SAC with and without granulated slag cementitious replacement were satisfactory compared to normal aggregate concretes (NAC.

  13. Separation of Flue-Gas Scrubber Sludge into Marketable Products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-28

    The reduction of sulfur oxides from high sulfur coal burning utility companies has resulted in the production of huge quantities of wet flue-gas desulfurization scrubber sludge. A typical 400 MW power station burning a coal containing 3.5% sulfur by weight and using a limestone absorbent would produce approximately 177,000 tons (dry weight) of scrubber sludge per year. This brownish colored, finely divided material contains calcium sulfite (CaSO{sub 3} {center_dot} 1/2 H{sub 2}O), calcium sulfate (CaSO{sub 4} {center_dot} 2H{sub 2}O), unreacted limestone (CaCO{sub 3}), and various other impurities such as fly-ash and iron oxide particles. The physical separation of the components of scrubber sludge would result in the re-use of this material. The primary use would be conversion to a highly pure synthetic gypsum. This technical report concentrates on the effect of baffle configuration on the separation of calcium sulfite/sulfate from limestone. The position of the baffles as they related to the feed inlet, and the quantity of the baffles were examined. A clean calcium sulfite/sulfate (less than 2.0% limestone by weight) was achieved with the combination of water-only cyclone and horizontally baffled column.

  14. Separation of flue-gas scrubber sludge into marketable products

    Energy Technology Data Exchange (ETDEWEB)

    Kawatra, S.K.; Eisele, T.C.

    1997-08-31

    A tremendous amount of wet flue-gas desulfurization scrubber sludge (estimated 20 million metric tons per year in the US) is currently being landfilled at a huge cost to utility companies. Scrubber sludge is the solid precipitate produced during desulfurization of flue-gas from burning high sulfur coal. The amount of this sludge is expected to increase in the near future due to ever increasing governmental regulation concerning the amount of sulfur emissions. Scrubber sludge is a fine, grey colored powder that contains calcium sulfite hemihydrate (CaSO{sub 3} {center_dot} 1/2H{sub 2}), calcium sulfate dihydrate (CaSO{sub 4} {center_dot} 2H{sub 2}O), limestone (CaCO{sub 3}), silicates, and iron oxides. This material can continue to be landfilled at a steadily increasing cost, or an alternative for utilizing this material can be developed. This study explores the characteristics of a naturally oxidized wet flue-gas desulfurization scrubber sludge and uses these characteristics to develop alternatives for recycling this material. In order for scrubber sludge to be used as a feed material for various markets, it was necessary to process it to meet the specifications of these markets. A physical separation process was therefore needed to separate the components of this sludge into useful products at a low cost. There are several physical separation techniques available to separate fine particulates. These techniques can be divided into four major groups: magnetic separation, electrostatic separation, physico-chemical separation, and density-based separation. The properties of this material indicated that two methods of separation were feasible: water-only cycloning (density-based separation), and froth flotation (physico-chemical separation). These processes could be used either separately, or in combination. The goal of this study was to reduce the limestone impurity in this scrubber sludge from 5.6% by weight to below 2.0% by weight. The resulting clean calcium

  15. Feedback control of a cupola - concepts and experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Moore, K.L. [Idaho State Univ., Pocatello, ID (United States); Abdelrahman, M.A. [Tenn. Technological Univ., Cookeville, TN (United States); Larsen, E.; Clark, D. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); King, P. [US Dept. of Energy Albany Research Center, Albany, OR (United States)

    1998-10-01

    In this paper we present some final results from a research project focused on introducing automatic control to the operation of cupola iron furnaces. The main aim of this research is to improve the operational efficiency and performance of the cupola furnace, an important foundry process used to melt iron. Previous papers have described the development of appropriate control system architectures for the cupola. These results are summarized. Then we describe the experimental results obtained with the U.S. Department of Energy Albany Research Center`s research cupola. First, experimental data is used to calibrate the model, which is taken as a first-order multivariable system with time delay. Then relative gain analysis is used to select loop pairings to be used in a multi-loop controller. The resulting controller pairs meltrate with blast volume, iron temperature with oxygen addition, and carbon composition with percent coke. Special (nonlinear) filters are used to compute meltrate from actual scale readings of the amount of iron produced and to smooth the temperature measurement. The temperature and meltrate loops use single-loop PI control. The composition loop uses a Smith predictor to discount the deadtime associated with mass transport through the furnace. Experimental results validate the conceptual controller design and provide proof-of-concept of the idea of controlling a foundry cupola. Future research directions are discussed, including the concept of an integrated, intelligent industrial process controller, or I{sup 3}PC.

  16. Cupola modeling research: Phase 2 (Year one), Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-20

    Objective was to develop a mathematical model of the cupola furnace (cast iron production) in on-line and off-line process control and optimization. In Phase I, the general structure of the heat transfer, fluid flow, and chemical models were laid out, providing reasonable descriptions of cupola behavior with a one-dimensional representation. Work was also initiated on a two-dimensional model. Phase II was focused on perfecting the one-dimensional model. The contributions include these from MIT, Michigan University, and GM.

  17. Statistical analysis of the operating parameters which affect cupola emissions

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.W.; Draper, A.B.

    1977-12-01

    A sampling program was undertaken to determine the operating parameters which affected air pollution emission from gray iron foundry cupolas. The experimental design utilized the analysis of variance routine. Four independent variables were selected for examination on the basis of previous work reported in the literature. These were: (1) blast rate; (2) iron-coke ratio; (3) blast temperature; and (4) cupola size. The last variable was chosen since it most directly affects melt rate. Emissions from cupolas for which concern has been expressed are particle matter and carbon monoxide. The dependent variables were, therefore, particle loading, particle size distribution, and carbon monoxide concentration. Seven production foundries were visited and samples taken under conditions prescribed by the experimental plan. The data obtained from these tests were analyzed using the analysis of variance and other statistical techniques where applicable. The results indicated that blast rate, blast temperature, and cupola size affected particle emissions and the latter two also affected the particle size distribution. The particle size information was also unique in that it showed a consistent particle size distribution at all seven foundaries with a sizable fraction of the particles less than 1.0 micrometers in diameter.

  18. The Dynamics of Aerosols in Condensational Scrubbers

    DEFF Research Database (Denmark)

    Johannessen, Jens Tue; Christensen, Jan A.; Simonsen, Ole;

    1997-01-01

    A mathematical model for the simulation of the dynamics of aerosol change in condensational scrubbers and scrubbing condensers is proposed. The model is applicable for packed column gas/liquid contact when plug flow can be assumed. The model is compared with experimental data for particle removal...... in a pilot plant condensational scrubber. The model can satisfactorily predict particle growth and particle deposition by diffusional, convective and inertial mechanisms for a wide range of conditions. The parameters of principal importance for the model precision are identified and a procedure...

  19. Separation of flue-gas scrubber sludge into marketable products. Quarterly technical progress report, March 1, 1996--May 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kawatra, S.K.; Eisele, T.C.

    1996-06-01

    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of. This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite, gypsum, and unreacted limestone or lime, with miscellaneous objectionable impurities such as iron oxides, silicates, and magnesium, sodium, and potassium oxides or salts. These impurities prevent many sludges from being utilized as a replacement for natural gypsum, and as a result they must be disposed of in landfills, which presents a serious disposal problem.

  20. Possibilities of rationalization of the melting process proceeding in Ø 700 cupola

    Directory of Open Access Journals (Sweden)

    M.S. Soiński

    2010-01-01

    Full Text Available An attempt of rationalization of the cast iron melting process proceeding in a cupola has been taken on, based on the working parameters recorded during the first several hours of the cupola work. Examinations have been centred around the melting process taking place in a Ø 700 hot-blast cupola with a fixed receiver (forehearth. It has been found that a significant reduction in coke consumption is possible due to changes in cupola burdening without a detriment to furnace efficiency or the temperature of molten cast iron.

  1. Compacting of fly dusts from cupola and electric arc furnace

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-01-01

    Full Text Available Recycling and utilization of dust waste is important not only from the point of view of its usage as an alternative source of raw materials, but regarding the environmental problems also. Dust emissions arise from thermal and chemical or physical processes and mechanical actions. Two kinds of fl y dusts from cupola furnaces (hot and cold blast cupola furnace and fl y dust from electric arc furnace were used by experiments. They were pelletized only with addition of water and briquetted with diff erent addition of water glass, bentonite and cement. Quality of briquettes was tested by compression – strength test and by break down test in green state, after drying and afterstoring (1 month.

  2. Modelling air pollution abatement in deep street canyons by means of air scrubbers

    CERN Document Server

    De Giovanni, Marina; Avveduto, Alessandro; Pace, Lorenzo; Salisburgo, Cesare Dari; Giammaria, Franco; Monaco, Alessio; Spanto, Giuseppe; Tripodi, Paolo

    2015-01-01

    Deep street canyons are characterized by weak ventilation and recirculation of air. In such environment, the exposure to particulate matter and other air pollutants is enhanced, with a consequent worsening of both safety and health. The main solution adopted by the international community is aimed at the reduction of the emissions. In this theoretical study, we test a new solution: the removal of air pollutants close to their sources by a network of Air Pollution Abatement (APA) devices. The APA technology depletes gaseous and particulate air pollutants by a portable and low-consuming scrubbing system, that mimics the processes of wet and dry deposition. We estimate the potential pollutant abatement efficacy of a single absorber by Computational Fluid Dynamics (CFD) method. The presence of the scrubber effectively creates an additional sink at the bottom of the canyon, accelerating its cleaning process by up to 70%, when an almost perfect scrubber (90% efficiency) is simulated. The efficacy of absorber is not...

  3. Evaluation of a Zirconium Recycle Scrubber System

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A hot-cell demonstration of the zirconium recycle process is planned as part of the Materials Recovery and Waste Forms Development (MRWFD) campaign. The process treats Zircaloy® cladding recovered from used nuclear fuel with chlorine gas to recover the zirconium as volatile ZrCl4. This releases radioactive tritium trapped in the alloy, converting it to volatile tritium chloride (TCl). To meet regulatory requirements governing radioactive emissions from nuclear fuel treatment operations, the capture and retention of a portion of this TCl may be required prior to discharge of the off-gas stream to the environment. In addition to demonstrating tritium removal from a synthetic zirconium recycle off-gas stream, the recovery and quantification of tritium may refine estimates of the amount of tritium present in the Zircaloy cladding of used nuclear fuel. To support these objectives, a bubbler-type scrubber was fabricated to remove the TCl from the zirconium recycle off-gas stream. The scrubber was fabricated from glass and polymer components that are resistant to chlorine and hydrochloric acid solutions. Because of concerns that the scrubber efficiency is not quantitative, tests were performed using DCl as a stand-in to experimentally measure the scrubbing efficiency of this unit. Scrubbing efficiency was ~108% ± 3% with water as the scrubber solution. Variations were noted when 1 M NaOH scrub solution was used, values ranged from 64% to 130%. The reason for the variations is not known. It is recommended that the equipment be operated with water as the scrubbing solution. Scrubbing efficiency is estimated at 100%.

  4. Durability and acoustics of concrete with slag of cupola furnace as fine aggregate replacement

    Directory of Open Access Journals (Sweden)

    Ricardo Alfredo Cruz Hernández

    2015-01-01

    Full Text Available In this paper, it was evaluated the performance of concrete with crushed slag of cupola furnace (SCF as sand replacement in percentages of 0 %, 10 %, 15 % and 20 %, subjected to accelerated chemical attacks of carbonation, sulfation and alkali-aggregate reaction (AAR. The sound absorption characteristics of the material were determined through the sound absorption coefficient (α, and the noise reduction coefficient (NRC. Carbonation was evaluated through a closed camera with the 70 % concentration of carbon dioxide and conditions of relative humidity between 50 % and 70 %. The results indicated that the penetration depth of CO2 is lower when greater the percentage of substitution is. To accelerate the attack by sulfates, specimens were immersed in aqueous solution of sodium sulfate anhydrous (Na2SO4 1N with cycles of wetting and drying. It determined that the impairment presented in concrete paste is directly proportional to the percentage of sand replacement. The acceleration of the AAR in the concrete was carried out by immersing specimens in an aqueous solution of sodium hydroxide (NaOH for 16 days. The test concluded that the inclusion of SCF is not favorable for AAR. The measurement of sound absorption coefficient was taken by the method of impedance tube, relating minimum and maximum values of stationary wave amplitude. The results showed that SCF with higher sand replacement are favorable for the noise absorption in buildings.

  5. Investing in Marine Scrubber under Uncertainty with Real Option Thinking

    DEFF Research Database (Denmark)

    Jiang, Liping; Hansen, Carsten Ørts

    works that examine the economic feasibility of scrubber retrofitting through the net present value rule, this paper applies the Real Option Analysis to find the optimal investment strategies. The proposed decision-making framework addresses the uncertainty and the value of deferral option embedded......Scrubber technology is one of the valid alternatives to comply with the tightening sulphur regulation. Due to the high uncertainty associated with the oil price and shipping market, making decision about whether and when to invest in marine scrubber is very difficult. In contrast to the previous...... in the scrubber investment. The multiple sources of investment uncertainties are explicitly analyzed and integrated in the modeling by using Rainbow option. The results demonstrate that the value of the scrubber investment has significantly increased for several cases by considering the deferral option...

  6. Separation of flue-gas scrubber sludge into marketable products. Second year, third quarterly technical progress report, March 1, 1995--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Kawatra, S.K.; Eisele, T.C.

    1995-06-01

    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite (CaSO{sub 3}{sm_bullet}0.5H{sub 2}O), gypsum (CaSO{sub 4}{sm_bullet}2H{sub 2}O), and unreacted limestone (CaCO{sub 3}) or lime (Ca(OH){sub 2}), with miscellaneous objectionable impurities such as iron oxides, silica, and magnesium, sodium, and potassium oxides or salts. These impurities prevent many sludges from being utilized as a replacement for natural gypsum, and as a result they must be disposed of in landfills, which presents a serious disposal problem. This project is studying the characteristics of flue-gas scrubber sludges from several sources. Knowledge of scrubber sludge characteristics is necessary for the development of purification technologies which will make it possible to directly utilize scrubber sludges rather than landfilling them. This purification will consist of minimal-reagent froth flotation, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified calcium sulfite/gypsum product.

  7. Separation of flue-gas scrubber sludge into marketable products. Quarterly technical progress report No. 12, June 1, 1996--August 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kawatra, S.K.; Eisele, T.C.

    1996-09-01

    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of. This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite, gypsum, and unreacted limestone or lime, with miscellaneous objectionable impurities such as iron oxides, silicates, and magnesium, sodium, and potassium oxides or salts. These impurities prevent many sludges from being utilized as a replacement for natural gypsum, and as a result they must be disposed of in landfills, which presents a serious disposal problem. Knowledge of scrubber sludge characteristics is necessary for the development of purification technologies which will make it possible to directly utilize scrubber sludges rather then landfilling them. This project is studying the use of minimal-reagent froth flotation as the purification process, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified calcium sulfite/gypsum product. In this quarter, the installation of a laboratory-scale flotation column was completed. In addition to the installation of the flotation column, research on the determination of the surface properties of the components of the scrubber sludge was continued. Auger electron spectroscopy was investigated as a method for determining the composition of the first few monolayers of unreacted limestone and calcium sulfite/sulfate particles.

  8. Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study

    Energy Technology Data Exchange (ETDEWEB)

    Pajunen, A. J.; Tedeschi, A. R.

    2012-09-18

    This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

  9. Assessment of Industrial VOC Gas-Scrubber Performance

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H

    2004-02-13

    Gas scrubbers for air-pollution control of volatile organic compounds (VOC) cover a wide range of technologies. In this review, we have attempted to evaluate the single-pass scrubber destruction and removal efficiencies (DREs) for a range of gas-scrubber technologies. We have focused primarily on typical industrial DREs for the various technologies, typical problems, and any DRE-related experiential information available. The very limited literature citations found suggest significant differences between actual versus design performance in some technologies. The potentially significant role of maintenance in maintaining DREs was also investigated for those technologies. An in-depth portrayal of the entire gas scrubbing industry is elusive. Available literature sources suggest significant differences between actual versus design performance in some technologies. Lack of scrubber system maintenance can contribute to even larger variances. ''Typical'' industrial single-pass performance of commonly used VOC gas scrubbers generally ranged from {approx}80 to 99%. Imperfect solid and/or liquid particulates capture (possibly as low as 95% despite design for 99+% capture efficiency) can also lead to VOC releases. Changing the VOC composition in the gas stream without modifying scrubber equipment or operating conditions could also lead to significant deterioration in attainable destruction and removal efficiencies.

  10. Comparison of possibilities the blast furnace and cupola slag utilization by concrete production

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2010-04-01

    Full Text Available In process of pig iron and cast iron production secondary raw materials and industrial wastes are formed The most abundant secondaryproduct originating in these processes are furnace slag. Blast furnace slag and cupola furnace slag originates from melting of gangue parts of metal bearing materials, slag forming additions and coke ash. In general, slag are compounds of oxides of metallic and non-metallic elements, which form chemical compounds and solutions with each other and also contain small volume of metals, sulfides of metals and gases. Chemical, mineralogical and physical properties of slag determinate their utilisation in different fields of industry.The paper presents results from the research of the blast furnace and cupola furnace slag utilization in the concrete production. Pilotexperiments of the concrete production were performed, by that the blast furnace and cupola furnace slag with a fractions of 0–4mm;4–8mm; 8–16mm were used as a natural substitute. A cupola furnace slag and combination of the blast furnace and cupola furnace slagwere used in the experiments. The analysis results show that such concretes are suitable for less demanding applications.

  11. Energy efficiency improvement and pollution reduction in a cupola route foundry

    Energy Technology Data Exchange (ETDEWEB)

    Pal, P.; Bhattacherjee, S. [Tata Energy Research Institute, New Delhi (India)

    2001-07-01

    Coke is the major source of fuel used in foundries, primarily to melt the metallic charges in a vertical shaft furnace called cupola. Most of the cupolas operating in the small-scale foundries have very low energy efficiencies and poor environmental performances. The paper describes a technological upgradation initiative undertaken to improve the energy efficiency environmental performance of small-scale foundry units in India. Technology upgradation of the melting plant leads to reduced energy consumption, which in turn leads to savings in operating cost and has the added attraction of reduction in emissions generation at source. The reduction of pollution at source reduces the size of the pollution control system necessary to meet the statutory emission standards. Till recently, most of the foundries had conventional cupolas. The DBC (divided blast cupola) is an attractive option of reducing coke consumption at a modest investment. The design of a suitable flue gas cleaning system along with DBC was undertaken to provide a viable solution to small-scale foundries. The paper describes the design features as regards energy efficiency, pollution, and melting of a demonstration cupola plant that was set up at a foundry in Howrah. Results of the demonstration project reveal that there is a huge potential for energy saving and pollution reduction in foundries of India. However, the compliance to environmental standards will be better if the emission limits are made more pragmatic and a better rapport is established between the industry associations and controlling authorities. 3 refs., 2 figs., 2 tabs.

  12. Maestranze e organizzazione del lavoro negli Anni della Cupola

    Directory of Open Access Journals (Sweden)

    Pierluigi Terenzi

    2015-09-01

    Full Text Available This essay analyses the workforce of the Opera di Santa Maria del Fiore during the construction of Filippo Brunelleschi’s dome through a systematic approach to the vast documentary corpus offered by the edition The Years of the Cupola. The analysis is based on the rolls of individuals authorized to work each semester, contained in serial administrative sources, and on all the documents regarding every worker listed. The prosopographic method permits the reconstruction of essential elements for the study of the workforce (fluctuation of the number of workers employed over time, their provenances, roles, wages, the days worked, and these aspects are examined in a comparative perspective to identify similarities and differences with other known building sites. Furthermore, some peculiarities of the Florentine Opera are highlighted, starting with the nature and the use of the sources themselves, followed by the recruitment system, the composition of the workforce according to the qualifications recorded, the importance of steady work, career opportunities and parallel entrepreneurial activity undertaken by some master workmen. The discussion is supported by tables and graphs in the text as well as by eleven appendices containing basic facts, statistics and exemplary individual profiles, useful both as systematic documentation of the analysis and as a convenient digest of the issues examined.

  13. Separation of flue-gas scrubber sludge into marketable products. Fourth year, first quarterly technical progress report, September 1, 1996--December 31, 1996 (Quarter No. 13)

    Energy Technology Data Exchange (ETDEWEB)

    Kawatra, S.K.; Eisele, T.C.

    1996-12-01

    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of. This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite (CaSO{sub 3}{circ}0.5H{sub 2}O), gypsum (CaSO{sub 4}{circ}2H{sub 2}O), and unreacted limestone (CaCO{sub 3}) or lime (Ca(OH)2), with miscellaneous objectionable impurities such as iron oxides, silicates, and magnesium, sodium, and potassium oxides or salts. These impurities prevent many sludges from being utilized as a replacement for natural gypsum, and as a result they must be disposed of in landfills, which presents a serious disposal problem. Knowledge of scrubber sludge characteristics is necessary for the development of purification technologies which will make it possible to directly utilize scrubber sludges rather than landfilling them. This project is studying the use of minimal-reagent froth flotation as the purification process, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified calcium sulfite/gypsum product.

  14. Separation of flue-gas scrubber sludge into marketable products. Third year, second quarterly technical progress report, December 1, 1995--February 29, 1996 (Quarter {number_sign}10)

    Energy Technology Data Exchange (ETDEWEB)

    Kawatra, S.K.; Eisele, T.C.

    1996-03-01

    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of. Knowledge of scrubber sludge characteristics is necessary for the development of purification technologies which will make it possible to directly utilize scrubber sludges rather than landfilling them. This project is studying the use of minimal-reagent froth flotation as the purification process, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified calcium sulfite/gypsum product. In the current quarter, research was focused on two different areas. The first part of this quarter the optimization of the feed slurry percent solids for the two inch water-only cyclone was completed. The optimization of the vortex finder, spigot diameter and inlet feed pressure was completed in the previous quarter. The second part of this quarter began the investigation of why water-only cycloning helps froth flotation performance. The hypothesis is that water-only cycloning scrubs the surface of the unreacted limestone. This scrubbing effect provides a clean calcium carbonate surface, which results in better flotation reagent adsorption. This study used the scanning electron microscope to investigate the surface of the unreacted limestone particles.

  15. Separation of flue-gas scrubber sludge into marketable products. Second year, fourth quarterly technical progress report, Quarter No. 8, June 1, 1995--August 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Kawatra, S.K.; Eisele, T.C.

    1995-09-01

    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of. This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite (CaSO{sub 3}{sm_bullet}0.5H{sub 2}O), gypsum (CaSO{sub 4}{sm_bullet}2H{sub 2}O), and unreacted limestone (CaCO{sub 3}) or lime (Ca(OH){sub 2}), with miscellaneous objectionable impurities such as iron oxides, silica, and magnesium, sodium, and potassium oxides or salts. These impurities prevent many sludges from being utilized as a replacement for natural gypsum, and as a result they must be disposed of in landfills, which presents a serious disposal problem. Knowledge of scrubber sludge characteristics is necessary for the development of purification technologies which will make it possible to directly utilize scrubber sludges rather than landfilling them. This project is studying the use of minimal-reagent froth flotation as the purification process, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified calcium sulfite/gypsum product.

  16. Separation of flue-gas scrubber sludge into marketable products. Third year, first quarterly technical progress report Quarter No. 9, September 1, 1995--November 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Kawatra, S.K.; Eisele, T.C.

    1995-12-01

    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite (CaSO{sub 3}{center_dot}0.5H{sub 2}O), gypsum (CaSO{sub 4}{center_dot}2H{sub 2}O), and unreacted limestone (CaCO{sub 3}) or lime (Ca(OH){sub 2}), with miscellaneous objectionable impurities such as iron oxides, silicates, and magnesium, sodium, and potassium oxides or salts. These impurities prevent many sludges from being utilized as a replacement for natural gypsum, and as a result they must be disposed of in landfills, which presents a serious disposal problem. Knowledge of scrubber sludge characteristics is necessary for the development of purification technologies which will make it possible to directly utilize scrubber sludges rather than landfilling them. This project is studying the use of minimal-reagent froth flotation as the purification process, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified calcium sulfite/gypsum product.

  17. Smelting in cupola furnace for re carburization of direct reduction iron (DRI)

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez, J. L.; Tremps, E.; Ruiz-Bustinza, I.; Moron, C.; GarciaGarcia, A.; Robla, J. I.; Gonzalez-Gasca, C.

    2015-07-01

    Herein the synthesis of iron-carbon saturated alloys (foundries) melting in cupola furnaces from direct reduction iron is described. The fundamentals are reviewed and combinations undertaken are discussed along with their results, including conclusions and recommendations for follow up. (Author)

  18. Investigation of a mineral melting cupola furnace. Part II. Mathematical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Leth-Miller, R.; Jensen, A.D.; Glarborg, P.; Jensen, L.M.; Hansen, P.B.; Jorgensen, S.B. [Rockwool International AS, Hedehusene (Denmark)

    2003-12-24

    A mathematical model of a mineral melting cupola furnace for stone wool production has been developed for improving cupola operation. The 1-D, first-engineering-principles model includes mass and heat balances for the gas phase, five solid phases, and four liquid phases. The gas and solid/liquid phases flow countercurrently. Seven chemical reactions account for the conversions of coke, iron oxide, limestone, and gaseous species. The heterogeneous reactions of coke conversion are limited by both kinetics and mass transport. Heat transfer between phases is modeled including both convection and radiation. The model predicts gas concentrations; mass flow rates; and temperature profiles of the solid, melt, and gas in the cupola, as well as heat loss to the water-cooled walls. Inputs to the model include the coke, rock, and blast air properties, the blast air amount, and the coke percentage in the charge. The unknown model parameters are estimated on the basis of input/output measurements. A comparison of the predicted and measured concentration and temperature profiles inside the cupola shows good agreement.

  19. design and testing of a cupola furnace for michael okpara university ...

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... of air supplied to the cupola furnace with an available volumetric capacity of 0.01378m3 at the ... this novelty design be used as a foundation for building bigger furnaces and for the sensitisation ..... Number of blades. 12. 2.

  20. Investing in Marine Scrubber under Uncertainty with Real Option Thinking

    DEFF Research Database (Denmark)

    Jiang, Liping; Hansen, Carsten Ørts

    works that examine the economic feasibility of scrubber retrofitting through the net present value rule, this paper applies the Real Option Analysis to find the optimal investment strategies. The proposed decision-making framework addresses the uncertainty and the value of deferral option embedded...

  1. Natural gas for melting in foundries. Pt. 1. Gas cupola furnace. Naturgas til smelteprocesser i stoeberier. Del 1. Gasfyret kupolovn

    Energy Technology Data Exchange (ETDEWEB)

    Strande, K.

    1986-01-01

    Because of the relatively large amounts of nautral gas from the Danish North Sea a collection and analysis of information has been carried out in order to assess the possibilities of using natural gas for smelting of cast iron. Especially the English coke-less cupola furnace is analysed. Though it has some obvious environmental and metallurgical advantages calculations of operating cost show that the gas cupola furnace is not a convincing alternative to the smelting plants already in existence. Also the use of gas in the cupola furnace is assessed. Results have been obtained that has lead to installation of several gas/coke furnaces. But the development of the divided blast concept has made the cold-blast cupola furnace nearly as efficient as the gas/coke cupula furnace. EFP-85. 17 refs.

  2. FEASIBILITY STUDY OF GAS TREATMENT PLANT BASED ON AN EJECTOR SCRUBBER

    Directory of Open Access Journals (Sweden)

    S. Iu. Panov

    2014-01-01

    Full Text Available Summary. The article executed the feasibility study of various options for gas treatment. Rapid development of industry and transport worldwide in recent times raises the problem in the protection of habitat environment from harmful waste. In solving problems of flue gas treatment great attention is given to the economic characteristics and recycling techniques for capturing emissions and disposal must also meet the sanitary health requirements: flue gas treatment plants should not cause air or water pollution. The set objective is solved by developing a two-stage wet treatment system for pyrolysis gas based on ejector scrubbers. Their advantage - a central nozzle supply that allows the scrubber to operate on the principle of an ejector pump. Projected plant can be used in enterprises for processing of solid domestic and industrial waste, where there are steam and hot water boilers, whose operations result in contaminated gases emissions obtained with high temperatures. In particular, this installation can be applied at a cement plant in which a large amount of waste gases containing sulfur oxides is emitted. Assessment of market potential for the plant designed to treat waste gases in the cement factory is performed through a SWOT analysis. SWOT analysis results indicate the possibility of the treatment of exhaust gases without a high cost and with high gas treatment efficiency. Plant competitive analysis was done using an expert method in comparison with market competitors. Technical and economic indicators of the plant are presented. Return on investments is 46% and payback period of capital investments - 2.7 years.

  3. Imaging Brunelleschi's cupola wall using muon scattering radiography

    Energy Technology Data Exchange (ETDEWEB)

    Guardincerri, Elena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-16

    This PowerPoint presentation describes the cupola's structure and current reinforcements, reasoning behind why muon radiography would be helpful. A demonstration project is described where a similar wall was constructed to illustrate the potential benefits to Italian authorities; Requirements and a potential plan were created and collaboration to make it happen was deemed to be possible among LANL, Toshiba, the Parma and Florence Universities and the Opera del Duomo,

  4. Removing Ambiguities of IP Telephony Traffic Using Protocol Scrubbers

    Directory of Open Access Journals (Sweden)

    Bazara I. A. Barry

    2012-10-01

    Full Text Available Network intrusion detection systems (NIDSs face the serious challenge of attacks such as insertion and evasion attacks that are caused by ambiguous network traffic. Such ambiguity comes as a result of the nature of network traffic which includes protocol implementation variations and errors alongside legitimate network traffic. Moreover, attackers can intentionally introduce further ambiguities in the traffic. Consequently, NIDSs need to be aware of these ambiguities when detection is performed and make sure to differentiate between true attacks and protocol implementation variations or errors; otherwise, detection accuracy can be affected negatively. In this paper we present the design and implementation of tools that are called protocol scrubbers whose main functionality is to remove ambiguities from network traffic before it is presented to the NIDS. The proposed protocol scrubbers are designed for session initiation and data transfer protocols in IP telephony systems. They guarantee that the traffic presented to NIDSs is unambiguous by eliminating ambiguous behaviors of protocols using well-designed protocol state machines, and walking through packet headers of protocols to make sure packets will be interpreted in the desired way by the NIDS. The experimental results shown in this paper demonstrate the good quality and applicability of the introduced scrubbers.

  5. Effectiveness of multi-stage scrubbers in reducing emissions of air pollutants from pig houses

    OpenAIRE

    Zhao, Y.; Aarnink, A.J.A.; Jong, de, P.; Ogink, N. W. M.; Groot Koerkamp, P.W.G.

    2011-01-01

    Emissions of air pollutants from livestock houses may raise environmental problems and pose hazards to public health. They can be reduced by scrubbers installed at the air outlets of livestock houses. In this study, three multi-stage scrubbers were evaluated in terms of their effectiveness in reducing emissions of airborne dust, total bacteria, ammonia, and CO2 from pig houses in winter. The three multi-stage scrubbers were one double-stage scrubber (acid stage+ bio-filter), one double-stage ...

  6. Numerical Study on Shape of Liquid Inlet for Venturi Scrubber in Self-Priming Mode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. W.; Kim, H. S.; Kim, W. S. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, the simulation was developed for different design of liquid inlet to improve injection in submerged self-priming mode venturi scrubber. 1. A hole type is easy to discharged gas from liquid inlet for submerged self-priming mode. 2. A spit type, the liquid is injected into venturi scrubber for all gas volume rate in submerged self-priming mode. 3. A spit type is better than a hole type on improving injection of liquid inlet for submerged self-priming mode in venturi scrubber.The gas accelerate in convergent segment and reach maximum velocity at throat. The liquid is injected into venturi scrubber depends on static pressure difference between outside and inside of the venturi throat, then liquid is atomized into fine droplet when it contacts with high speed airflow. Aerosol removal occur in the diverging section as the inlet gas stream mixes with the fog of tiny liquid droplets. Many studies dealing with the non-submerged selfpriming venturi scrubber. In a non-submerged condition, outlet nozzle of venturi scrubber is not immersed in water pool of a tank whereas in a submerged condition, the outlet of a venturi scrubber is immersed in water pool. The scrubbing liquid is supplied by water reservoir surrounding the throat and is drawn in due to a pressure difference between the outside and the inside of the venturi throat that arises out of the hydrostatic pressure of the liquid and static pressure of the flowing gas. The performance of a venturi scrubber is improved with high gas velocities and high liquid flow rate. Therefore, it is important to study the liquid fraction in venturi scrubber operated at different condition. The venturi scrubber is used to a submerged self-priming mode because the system operates in a passive mode in CFVS. The present study focuses on the liquid flow characteristics for various shapes of liquid inlet in submerged self-priming venturi scrubber.

  7. Characterization of Coal Combustion Residues from Electric Utilities Using Wet Scrubbers for Multi-Pollutant Control

    Science.gov (United States)

    This report evaluates changes that may occur to coal combustion residues (CCRs) in response to changes in air pollution control technology at coal-fired power plants, which will reduce emissions from the flue gas stack by transferring pollutants to fly ash and other air pollution...

  8. Experience with natural gas/oxygen burners on a cupola furnace; Erfahrungen mit Erdgas/Sauerstoff-Brennern an einem Kupolofen

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J. [Ruhrgas AG, Essen (Germany); Lemperle, M. [Kuettner GmbH und Co. KG, Essen (Germany); Wieting, T. [RWTH Aachen (Germany). Inst. fuer Eisenhuettenkunde; Wilczek, M [Frauenhofer Inst. UMSICHT (Germany); Struening, H. [Fritz Winter Eisengiesserei GmbH und Co. KG, Stadtallendorf (Germany); Frielingsdorf, O. [Air Products GmbH, Hattingen (Germany)

    2003-11-01

    The 'KUPOLOPT' joint research project has as its target the economic and ecological optimization of cupola furnaces in foundries. The use of natural gas/oxygen burners during foundry operation is being studied on Fritz Winter Eisengiesserei GmbH and Co. KG's cupola furnace with the objective of enhancing melting rate, reducing emissions and permitting re-utilization of foundry and other particulates. This work is also intended to improve the cupola-furnace process in economic terms, in order to enhance its competitiveness. This article presents the results of the first project phase, which served to investigate the natural gas/oxygen burner as an external supplier of energy. (orig.)

  9. Micro- and Nanostructural Characteristics of Particles Before and After an Exhaust Gas Recirculation System Scrubber

    DEFF Research Database (Denmark)

    Lieke, Kirsten Inga; Rosenørn, Thomas; Pedersen, Jannik

    2013-01-01

    atomic scale such as layer distance, lamella length, and tortuosity were not observed to be influenced by the scrub-ber. We also found that particles in the size range between 30 and 50 nm, which were abundant in the exhaust before and after scrubber, were not graphitic soot. Furthermore, we found...

  10. Effectiveness of multi-stage scrubbers in reducing emissions of air pollutants from pig houses

    NARCIS (Netherlands)

    Zhao, Y.; Aarnink, A.J.A.; Jong, de M.C.M.; Ogink, N.W.M.; Groot Koerkamp, P.W.G.

    2011-01-01

    Emissions of air pollutants from livestock houses may raise environmental problems and pose hazards to public health. They can be reduced by scrubbers installed at the air outlets of livestock houses. In this study, three multi-stage scrubbers were evaluated in terms of their effectiveness in reduci

  11. Apex-to-Cupola Distance Following VATS Predicts Recurrence in Patients With Primary Spontaneous Pneumothorax.

    Science.gov (United States)

    Chang, Jia-Ming; Lai, Wu-Wei; Yen, Yi-Ting; Tseng, Yau-Lin; Chen, Ying-Yuan; Wu, Ming-Ho; Chen, Wei; Light, Richard W

    2015-09-01

    Our study sought to determine whether the size of the residual apical pleural space in young patients with primary spontaneous pneumothorax (PSP) following video-assisted thoracoscopic surgery is associated with the risk of recurrence. We retrospectively reviewed patients (≤30 years' old) with primary spontaneous pneumothorax following thoracoscopic surgery (2002-2010) in a university-affiliated hospital. The size of residual apical pleural space was estimated by measuring the apex-to-cupola distance on a postoperative chest radiograph at 2 time windows: first between postoperative day (POD) 0 and 3, and second between POD 4 and 14. A total of 149 patients were enrolled with a median follow-up of 11.2 months (interquartile range, 0.95-29.5 months), of whom 141 (94.6%) were male with a mean age of 20 years. The postoperative recurrence rate was 11.4%. Comparing the characteristics between the patients with and without recurrent pneumothorax, the patients with recurrence were younger (18.2 + 2.4 vs 20.7 + 3.7 years, P = 0.008), with a lower rate of pleurodesis (35% vs1 69%, P = 0.037), longer apex-to-cupola distance at POD 0 to 3 (22.41 ± 19.56 vs 10.07 ± 10.83 mm, P 10 mm (P = 0.027, OR: 5.319), and no pleurodesis during VATS (P = 0.022, OR: 5.042) were independent risk factors for recurrent pneumothorax. The recurrence rate was not low (11.4%) in young patients with PSP following VATS. Residual apical pleural space with apex-to-cupola distance of 10 mm or greater at POD 0 to 3, younger age, and no pleurodesis would increase postoperative recurrence of primary spontaneous pneumothorax.

  12. Evaluation of Decontamination Factor of Aerosol in Pool Scrubber according to Bubble Shape and Size

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyun Joung; Ha, Kwang Soon; Jang, Dong Soon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The scrubbing pool could play an important role in the wet type FCVS because a large amount of aerosol is captured in the water pool. The pool scrubbing phenomena have been modelled and embedded in several computer codes, such as SPARC (Suppression Pool Aerosol Removal Code), BUSCA (BUbble Scrubbing Algorithm) and SUPRA (Suppression Pool Retention Analysis). These codes aim at simulating the pool scrubbing process and estimating the decontamination factors (DFs) of the radioactive aerosol and iodine gas in the water pool, which is defined as the ratio of initial mass of the specific radioactive material to final massy after passing through the water pool. The pool scrubbing models were reviewed and an aerosol scrubbing code has been prepared to calculate decontamination factor through the pool. The developed code has been verified using the experimental results and parametric studies the decontamination factor according to bubble shape and size. To evaluate the decontamination factor more accurate whole pool scrubber phenomena, the code was improved to consider the variety shape and size of bubbles. The decontamination factor were largely evaluated in ellipsoid bubble rather than in sphere bubble. The pool scrubbing models will be enhanced to apply more various model such as aerosol condensation of hygroscopic. And, it is need to experiment to measure to bubble shape and size distribution in pool to improve bubble model.

  13. Smelting in cupola furnace for recarburization of direct reduction iron (DRI

    Directory of Open Access Journals (Sweden)

    Enríquez, José L.

    2015-12-01

    Full Text Available Herein the synthesis of iron-carbon saturated alloys (foundries melting in cupola furnaces from direct reduction iron is described. The fundamentals are reviewed and combinations undertaken are discussed along with their results, including conclusions and recommendations for follow up.Se describe la síntesis de aleaciones saturadas hierro-carbono (fundiciones en hornos de cubilote a partir de hierro de reducción directa. Se revisan sus fundamentos, operaciones realizadas, resultados y conclusiones. Finalmente se ofrecen recomendaciones para su implantación industrial.

  14. Development of a manufacturing technology of compacted graphite iron castings from a cupola furnace

    Directory of Open Access Journals (Sweden)

    O. Bouska

    2012-01-01

    Full Text Available Compacted graphite iron, also known as vermicular cast iron or semiductile cast iron is a modern material, the production of which is increasing globaly. Recently this material has been very often used in automotive industry. This paper reviews some findigs gained during the development of the manufacturing technology of compacted graphite iron under the conditions in Slévárna Heunisch Brno, Ltd. The new technology assumes usage of cupola furnace for melting and is beeing developed for production of castings weighing up to 300 kilograms poured into bentonite sand moulds.

  15. Scrubber capabilities to remove airborne microorganisms and other aerial pollutants from the exhaust air of animal houses

    NARCIS (Netherlands)

    Aarnink, A.J.A.; Landman, W.J.M.; Melse, R.W.; Zhao, Y.; Ploegaert, J.P.M.; Huynh, T.T.T.

    2011-01-01

    Two studies were conducted to assess the efficiency of air scrubbers to reduce airborne microorganisms in the exhaust air from animal houses. First, in a field study, the effects of a bio-scrubber and an acid scrubber on total bacterial counts were assessed. Higher bacterial counts were found in the

  16. EVALUATION OF AEROSOL EMISSIONS DOWNSTREAM OF AN AMMONIA-BASED SO2 SCRUBBER

    Energy Technology Data Exchange (ETDEWEB)

    Dennis L. Laudal

    2002-04-01

    Center (EERC) was contracted by MET and the U.S. Department of Energy (DOE) to evaluate the potential of a wet ESP for reducing SO{sub 3} emissions. The work consisted of pilot-scale tests using the EERC's slagging furnace system (SFS) to determine the effectiveness of a wet ESP to control SO{sub 3}/H{sub 2}SO{sub 4} aerosol emissions in conjunction with a dry ESP and MET's NH{sub 3}-based FGD. Because these compounds are in the form of fine particles, it is speculated that a relatively small, highly efficient wet ESP following the MET scrubber would remove these fine aerosol particles. The performance target for the wet ESP was a particulate mass collection efficiency of >90%; this level of performance would likely ensure a stack opacity of <10%.

  17. Numerical Simulation of Flow Behavior within a Venturi Scrubber

    Directory of Open Access Journals (Sweden)

    M. M. Toledo-Melchor

    2014-01-01

    Full Text Available The present work details the three-dimensional numerical simulation of single-phase and two-phase flow (air-water in a venturi scrubber with an inlet and throat diameters of 250 and 122.5 mm, respectively. The dimensions and operating parameters correspond to industrial applications. The mass flow rate conditions were 0.483 kg/s, 0.736 kg/s, 0.861 kg/s, and 0.987 kg/s for the gas only simulation; the mass flow rate for the liquid was 0.013 kg/s and 0.038 kg/s. The gas flow was simulated in five geometries with different converging and diverging angles while the two-phase flow was only simulated for one geometry. The results obtained were validated with experimental data obtained by other researchers. The results show that the pressure drop depends significantly on the gas flow rate and that water flow rate does not have significant effects neither on the pressure drop nor on the fluid maximum velocity within the scrubber.

  18. Characterizing toxic emissions from a coal-fired power plant demonstrating the AFGD ICCT Project and a plant utilizing a dry scrubber/baghouse system: Bailly Station Units 7 and 8 and AFGD ICCT Project. Final report. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dismukes, E.B.

    1994-10-20

    This report describes results of assessment of the risk of emissions of hazardous air pollutants at one of the electric power stations, Bailly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process (wet limestone). This station represents the configuration of no NO{sub x} reduction, particulate control with electrostatic precipitators, and SO{sub 2} control with a wet scrubber. The test was conducted September 3--6, 1993. Sixteen trace metals were determined along with 5 major metals. Other inorganic substances and organic compounds were also determined.

  19. Wetting Splashing

    CERN Document Server

    Tsai, Peichun; Dijkstra, Remko; Lohse, Detlef

    2010-01-01

    We present fluid dynamics videos illustrating wetting splashing-produced by water drop impact onto hydrophobic microstructures at high impact velocity ($\\sim 3$ ms$^{-1}$). The substrate consists of regular and transparent microtextures in square or hexagonal lattice, yielding a high contact angle of $\\sim 150 ^\\circ$. Our high speed top-or-bottom view recordings through the transparent surface shed light on the solid-liquid-air interfaces at impact. Despite the superhydrophobicity of the latticed micropillars (of a periodicity of $10 {\\mu}m), water droplet wets a certain central area and moreover entraps an air bubble beneath the droplet. Besides the central wet area, lamella surf on air splashing outward at high impinging velocity. The effects of micropatterns and air pressure on the impact outcome are also examined. We show that microscopic boundary condition, imposed by the solid texture, profoundly influences the macroscopic flow dynamics upon superhydrophobic surfaces at high impinging velocity. In addi...

  20. 中央热送风冲天炉的应用%Application of Central Blast-heating Cupola

    Institute of Scientific and Technical Information of China (English)

    冯英宇; 苏文生

    2011-01-01

    为提高冲天炉的综合性能,通过采取中央集中送风,合理控制风口风速,合理的炉膛结构,防止风嘴熔化等措施.强化焦炭燃烧,增加了焦炭的燃烧比,提高了冲天炉熔炼铁液的出炉温度;能适用混合焦炭,简化了焦炭处理;使炉衬侵蚀减小,修炉简便.通过多年实践改进,完善了中央送风冲天炉的相关工艺参数.该炉型操作简单,有利于降低硅、锰烧损和节能,打炉方便,生产稳定,可在同行业推广.%To improve the overall performance of cupola, taking the measures of centralized air supply, reasonable air control speed, reasonable furnace structurc and preventing the tuyere from mclting, the process of coke combustion is enhanced, the combustion ratio of coke increases and the tapping temperature of cupola melting iron improves. Mixed coke can be applied under the above measures, so the coke processing is simplified, which reduces lining erosion, makes repairing furnace simple. Through practicing and improving in years, the relevant process parameters of central blast-heating cupola are perfected. The cupola is simple in work and stable in production, which can reduce silicon-manganese melting loss and save energy. The cupola is worth of spreading in the same industry.

  1. Selenium Speciation and Management in Wet FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    Searcy, K; Richardson, M; Blythe, G; Wallschlaeger, D; Chu, P; Dene, C

    2012-02-29

    This report discusses results from bench- and pilot-scale simulation tests conducted to determine the factors that impact selenium speciation and phase partitioning in wet FGD systems. The selenium chemistry in wet FGD systems is highly complex and not completely understood, thus extrapolation and scale-up of these results may be uncertain. Control of operating parameters and application of scrubber additives have successfully demonstrated the avoidance or decrease of selenite oxidation at the bench and pilot scale. Ongoing efforts to improve sample handling methods for selenium speciation measurements are also discussed. Bench-scale scrubber tests explored the impacts of oxidation air rate, trace metals, scrubber additives, and natural limestone on selenium speciation in synthetic and field-generated full-scale FGD liquors. The presence and concentration of redox-active chemical species as well as the oxidation air rate contribute to the oxidation-reduction potential (ORP) conditions in FGD scrubbers. Selenite oxidation to the undesirable selenate form increases with increasing ORP conditions, and decreases with decreasing ORP conditions. Solid-phase manganese [Mn(IV)] appeared to be the significant metal impacting the oxidation of selenite to selenate. Scrubber additives were tested for their ability to inhibit selenite oxidation. Although dibasic acid and other scrubber additives showed promise in early clear liquor (sodium based and without calcium solids) bench-scale tests, these additives did not show strong inhibition of selenite oxidation in tests with higher manganese concentrations and with slurries from full-scale wet FGD systems. In bench-tests with field liquors, addition of ferric chloride at a 250:1 iron-to-selenium mass ratio sorbed all incoming selenite to the solid phase, although addition of ferric salts had no impact on native selenate that already existed in the field slurry liquor sample. As ORP increases, selenite may oxidize to selenate more

  2. Organic neem compounds inhibit soft‐rot fungal growth and improve the strength of anthracite bricks bound with collagen and lignin for use in iron foundry cupolas

    National Research Council Canada - National Science Library

    Kelsey, D.J; Nieto‐Delgado, C; Cannon, F.S; Brennan, R.A

    2015-01-01

    To examine organic neem compounds for their effective growth inhibition of saprotrophic soft-rot fungi on anthracite bricks bound with collagen and lignin for use in iron foundry cupolas as an alternative fuel source...

  3. Reducing float coal dust: Field evaluation of an inline auxiliary fan scrubber.

    Science.gov (United States)

    Patts, J R; Colinet, J F; Janisko, S J; Barone, T L; Patts, L D

    2016-12-01

    Controlling float coal dust in underground coal mines before dispersal into the general airstream can reduce the risk of mine explosions while potentially achieving a more effective and efficient use of rock dust. A prototype flooded-bed scrubber was evaluated for float coal dust control in the return of a continuous miner section. The scrubber was installed inline between the face ventilation tubing and an exhausting auxiliary fan. Airborne and deposited dust mass measurements were collected over three days at set distances from the fan exhaust to assess changes in float coal dust levels in the return due to operation of the scrubber. Mass-based measurements were collected on a per-cut basis and normalized on the basis of per ton mined by the continuous miner. The results show that average float coal dust levels measured under baseline conditions were reduced by more than 90 percent when operating the scrubber.

  4. Analysis of Liquid Fraction in Venturi Scrubber by E-E Method Using CFX

    Directory of Open Access Journals (Sweden)

    Majid Ali

    2012-09-01

    Full Text Available In this research, the distribution of liquid fraction in cylindrical venturi scrubber is analyzed in ANSYS CFX by Eulerian-Eulerian regime. Liquid gaps allow the aerosols to escape from the venturi scrubber. Therefore, it is vital to investigate the liquid fraction in venturi scrubber at different operating condition. The mesh model is developed in ANSYS ICEM and simulation is conducted in ANSYS CFX. k- ε turbulence model is used for simulation of two phase flow in venturi scrubber. The analysis is based on the boundary condition of mass flow rate for air inlet and static pressure for water inlet. For air mass flow rate 0.11, 0.14, 0.17 and 0.2 kg/s, respectively whereas static pressure 245 and 588 Pa for water inlet is used.

  5. Interated Intelligent Industrial Process Sensing and Control: Applied to and Demonstrated on Cupola Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud; Kevin Moore; Denis Clark; Eric Larsen; Paul King

    2003-02-12

    The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysis and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms

  6. Structural architecture and glacitectonic evolution of the Mud Buttes cupola hill complex, southern Alberta, Canada

    Science.gov (United States)

    Phillips, Emrys; Evans, David J. A.; Atkinson, Nigel; Kendall, Allison

    2017-05-01

    This paper presents the results of a detailed multidisciplinary study of the deformed bedrock and overlying Quaternary sediments exposed at the Mud Buttes in southern Alberta, Canada. This large, arcuate cupola hill is composed of intensely folded and thrust sandstones, siltstones and mudstones of the Cretaceous Belly River Group. Glacitectonism responsible for the development of this internally complex landform occurred at the margin of the newly defined Prospect Valley lobe of the Laurentide Ice Sheet. Analysis of the deformation structures reveals that construction of this landform occurred in response to at least two phases of south-directed ice sheet advance separated by a period of retreat. The first phase led to the formation of a forward propagating imbricate thrust stack leading to polyphase deformation of the Belly River Group. D1 thrusting led to the detachment of thrust-bound slices of bedrock which were accreted to the base of the developing imbricate stack. This process resulted in the structurally higher and older thrust-slices being progressively ;back-rotated; (tilted), accompanied by D2 thrusting and folding. Further thrusting during D3 was restricted to the core of the Mud Buttes as the deforming sequence accommodated further compression imposed by the advancing ice. Minor oscillations of the ice margin led to localised brittle-ductile shearing (D4) of the bedrock immediately adjacent to the ice contact part of the thrust stack. The second phase of ice advance led to the accretion of a relatively simple thrust and folded sequence seen the northern side of Mud Buttes. The resulting composite thrust moraine was subsequently overridden by ice advancing from the NNW to form a dome-like cupola-hill. This readvance of the Prospect Valley lobe led to the formation of a thin carapace of Quaternary sediments mantling the Mud Buttes which include glacitectonite, till and an organic-rich clay-silt (?palaeosol).

  7. Value-Added Products from FGD Sulfite-Rich Scrubber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Vivak Malhotra

    2010-01-31

    According to the American Coal Ash Association, about 29.25 million tons of flue gas desulfurization (FGD) byproducts were produced in the USA in 2003. Out of 29.25 million tons, 17.35 million tons were sulfite-rich scrubber materials. At present, unlike its cousin FGD gypsum, the prospect for effective utilization of sulfite-rich scrubber materials is not bright. In fact, almost 16.9 million tons are leftover every year. In our pursuit to mitigate the liability of sulfite-rich FGD scrubber materials' disposal, we are attempting to develop value-added products that can commercially compete. More specifically, for this Innovative Concept Phase I project, we have the following objectives: to characterize the sulfite-rich scrubber material for toxic metals; to optimize the co-blending and processing of scrubber material and natural byproducts; to formulate and develop structural composites from sulfite-rich scrubber material; and to evaluate the composites' mechanical properties and compare them with current products on the market. After successfully demonstrating the viability of our research, a more comprehensive approach will be proposed to take these value-added materials to fruition.

  8. Task 2.8 -- Mercury speciation and capture in scrubber solutions. Semi-annual report, July 1--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ness, S.R.

    1997-08-01

    Investigations into mercury control across conventional scrubber systems have precipitated questions concerning (1) the initial speciation between oxidized and elemental forms of mercury in flue gas from coal-fired boilers and, subsequently, (2) the effects of scrubber slurry composition and pH on the mercury forms. Mercury capture in scrubber slurry is highly dependent on its form. Oxidized mercury is highly water-soluble and can be removed by scrubber slurry, whereas elemental mercury is not and passes through the scrubber to the stack. The objectives of this project are to determine whether scrubber solutions convert either form of mercury to another and whether mercury capture is affected by pH.

  9. CFD simulation on performance of new type umbrella plate scrubber

    Institute of Scientific and Technical Information of China (English)

    LI Shan-hong; LI Cai-ting; ZENG Guang-ming; LI Si-min; WANG Fei; WANG Da-yong

    2008-01-01

    A new type of umbrella plate scrubber was developed to address the pollution due to the dust, dioxide sulfur and other harmful gases, which were emitted from coal-burning boilers. The performance of the new device was studied through computational fluid dynamics(CFD) simulation and experiment methods. Initial work included experimental measurement of inlet-velocity, and gas phase simulation using Reynolds stress model(RSM). After gas phase was converged, particles were injected from the inlet of the new device. Discrete phase model(DPM) was used for particle trajectories determination. The pressure drop and the collection efficiency of the new device were predicted through simulation. The simulation results show that the pressure drop of the new devices is 230-250 Pa and the efficiency is 84%-86%, with the inlet velocity equal to 10.6 m/s and the dust concentration ranging from 2 to 22 g/m3. The CFD simulation results of the new device show good agreement with experimental data. The relative error of the pressure drop and the efficiency is approximately 4% and 10% respectively. The results obtained both from the numerical simulation and from the experiment demonstrate that CFD simulation is an effective method for this type of study.

  10. Melting Process and Application of Cupola%冲天炉熔炼特点与技术应用

    Institute of Scientific and Technical Information of China (English)

    任树勇; 郑喜龙

    2011-01-01

    分析了冲天炉底焦燃烧时焦炭质量的影响因素、炉型结构与风机性能的关系,介绍了冲天炉送风网状图的使用、炉型结构与余热利用、工频感应前炉双炉熔炼等技术的应用。相关技术的应用有利于提高冲天炉熔炼铁液的质量。%Some techniques related with application of cupola have been introduced, such as influence of quality to burning of bottom coke, relation of furnace type with performance of blower, application of air blast net chart, furnace type and waste heat collection, double melting with induction heating ladle and others. These techniques can help to boost melting quality of cupola.

  11. Development of a NO{sub 2} scrubber for accurate sampling of ambient levels of terpenes

    Energy Technology Data Exchange (ETDEWEB)

    Pommer, L.; Fick, J.; Andersson, B. [Umeaa Univ. (Sweden). Dept. of Chemistry; National Inst. for Working Life, Umeaa (Sweden). Centre for Musculoskeletal Research; Nilsson, C. [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Unit for Biomass Technology and Chemistry

    2002-07-01

    The result of pumping air containing 56ppb NO{sub 2} through a terpene-spiked adsorbent (90-130ng, 90-100mlmin{sup -1}), Tenax TA, for 20min (1.8-2.0l) was that 8% of {sup {alpha}}-pinene, 7% of {sup {beta}}-pinene, 21% of {sup {delta}}{sup 3}-carene and 5% of limonene were oxidised. In similar experiments with air containing 56ppb O{sub 3}, 3% of {sup {alpha}}-pinene, 4% of {sup {beta}}-pinene, 10% of {sup {delta}}{sup 3}-carene and 38% of limonene were oxidised. Sampling a mixture of a terpene and NO{sub 2} using Tenax TA can give unwanted overestimation of the amount of reaction products from the terpene-NO{sub 2} reaction or underestimation of the original terpene levels. A scrubber was needed to reduce the problems caused by interfering reactions on the adsorbent of NO{sub 2} and to reduce discrimination of reactive compounds due to their relatively fast decay on the adsorbent. Several chemicals have been tested for their ability of removing NO{sub 2} and our objective was to develop a well functioning, reusable, easy to handle, easy manufactured NO{sub 2} scrubber. The result of the experiments was a scrubber consisting of two glass fibre filters coated with Na{sub 2}SO{sub 3} assembled in a dust collector. The recovery of the terpenes through the scrubber varied between 75% and 97% at 15-75% relative humidity, and the scrubber is a one-use scrubber due to memory effects. The Na{sub 2}SO{sub 3} scrubber could be stored in room air for at least one month without loosing the capacity of removing NO{sub 2}. (Author)

  12. Separation of flue-gas scrubber sludge into marketable products. Second quarterly technical progress report, December 1, 1993--February 28, 1994 (Quarter No. 2)

    Energy Technology Data Exchange (ETDEWEB)

    Kawatra, S.K.; Eisele, T.C.

    1994-03-01

    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite (CaSO{sub 3}{lg_bullet}0.5H{sub 2}0), gypsum (CaSO{sub 4}{lg_bullet}2H{sub 2}0), and unreacted limestone (CaCO{sub 3}) or lime (Ca(OH){sub 2}), with miscellaneous objectionable impurities such as iron oxides; silica; and magnesium, sodium, and potassium oxides or salts. Currently, the only market for scrubber sludge is for manufacture of gypsum products, such as wallboard and plaster, and for cement. However, the quality of the raw sludge is often not high enough or consistent enough to satisfy manufacturers, and so the material is difficult to sell. This project is developing a process that can produce a high-quality calcium sulfite or gypsum product while keeping process costs low enough that the material produced will be competitive with that from other, more conventional sources. This purification will consist of minimal-reagent froth flotation, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified gypsum or calcium sulfite product. The separated limestone will be a useful by-product, as it can be recycled to the scrubber, thus boosting the limestone utilization and improving process efficiency. Calcium sulfite will then be oxidized to gypsum, or separated as a salable product in its own right from sludges where it is present in sufficient quantity. The main product of the process will be either gypsum or calcium sulfite, depending on the characteristics of the sludge being processed. These products will be sufficiently pure to be easily marketed, rather that being landfilled.

  13. Fine and ultrafine emission dynamics from a ferrous foundry cupola furnace.

    Science.gov (United States)

    Meléndez, Antton; García, Estibaliz; Carnicer, Pedro; Pena, Egoitz; Larrión, Miren; Legarreta, Juan Andres; Gutiérrez-Cañas, Cristina

    2010-05-01

    Aerosol size distributions from ferrous foundry cupola furnaces vary depending on semicontinuous process dynamics, time along the tap-to-tap cycle, dilution ratio, and the physical and chemical nature of the charge and fuel. All of these factors result in a highly time-dependent emission of particulate matter (PM) 2.5 pm or less in aerodynamic diameter (PM2.5)--even on a mass concentration basis. Control measures are frequently taken on the basis of low-reliability parameters such as emission factors and loosely established mass ratios of PM2.5 to PM 10 microm or less in aerodynamic diameter (PM1.0). The new environmental requirements could entail unexpected and undesired drawbacks and uncertainties in the meaning and effectiveness of process improvement measures. The development of process-integrated and flue-gas cleaning measures for reduction of particle emissions requires a better knowledge of generation mechanisms during melting. Available aerosol analyzers expand the range of control issues to be tackled and contribute to greatly reduce the uncertainty of engineering decisions on trace pollutant control. This approach combines real-time size distribution monitoring and cascade impactors as preseparators for chemical or morphological analysis. The results allow for establishing a design rationale and performance requirement for control devices. A number size distribution below 10 microm in aerodynamic equivalent diameter was chosen as the main indicator of charge influence and filter performance. Size distribution is trimodal, with a coarse mode more than 12 microm that contributes up to 30% of the total mass. A temporal series for these data leads to identification of the most relevant size ranges for a specific furnace (e.g., the most penetrating size range). In this cupola, this size range is between 0.32 and 0.77 microm of aerodynamic equivalent diameter and defines the pollution control strategy for metals concentrating within this size range. Scrap

  14. Size reduction of ammonia scrubbers for pig and poultry houses: Use of conditional bypass vent at high air loading rates

    NARCIS (Netherlands)

    Melse, R.W.; Wagenberg, van A.V.; Mosquera, J.

    2006-01-01

    In The Netherlands, both acid and biological air scrubbers are used for removal of ammonia from exhaust air at pig and poultry houses. Current regulations require that scrubbers are dimensioned for treating the maximum airflow rate that may occur, so on average these systems are overdimensioned and

  15. Second generation rotary furnaces, an even more viable alternative to cupola and electric induction furnaces; La seconde generation de fours rotatifs, un appareil qui peut se substituer avantageusement au cubilot et au four electrique a induction

    Energy Technology Data Exchange (ETDEWEB)

    Lever, D. [Air Liquide 38 - Sassenage (France)

    2001-10-01

    Rotary furnaces are a well established alternative to cupola furnaces. Recent innovations in oxygas furnaces have made them the preferred choice even over medium-frequency electric furnaces in many European foundries. The article explains in what respects the rotary furnace is a new iron smelting concept, as different from the cupola furnace as the medium-frequency electric furnace. (author)

  16. Numerical Simulations of Airflow and Droplet Dispersion in a Horizontal Ammonia Scrubber

    DEFF Research Database (Denmark)

    Liu, Li; Nielsen, Peter Vilhelm; Heiselberg, Per Kvols;

    2015-01-01

    Ammonia released in pig production industries can lead to eutrophication of surface waters, soil acidification, fertilization of vegetation and changes in ecosystems, etc. Air scrubbers with spray of aerosolized sulphur solution were used to remove the ammonia mixed in the airflow ventilated out......, and they were simulated by Eularian-Lagrangian method of Computation Fluid Dynamics (CFD). Realizable k-ε turbulence model were used to simulate airflow turbulence. Strong vortex rotating around the main stream direction were found along the scrubber. To weaken the vortex, the impact of adding a regulating...

  17. Performance of a Venturi scrubber in the removal of fine powder from a confined gas stream

    Directory of Open Access Journals (Sweden)

    Maria Angélica Martins Costa

    2005-06-01

    Full Text Available Experimental results on the performance of a laboratory scale rectangular Venturi scrubber in the removal of fine mineral particles from a confined air stream are presented, and a new correlation is proposed and evaluated. The scrubber was operated with air velocities in the throat varying from 58 m/s to 75 m/s and liquid flow rates varying from 280 ml/min to 900 ml/min. Liquid was injected as a jet emerging from a 1.0 mm orifice at the throat. Results for dust collection grade efficiency varied from 87% to 98% for particles from 0.1 µm to 2.0 µm.

  18. FULL-SCALE TESTING OF ENHANCED MERCURY CONTROL TECHNOLOGIES FOR WET FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    D.K. McDonald; G.T. Amrhein; G.A. Kudlac; D. Madden Yurchison

    2003-05-07

    Wet flue gas desulfurization (wet FGD) systems are currently installed on about 25% of the coal-fired utility generating capacity in the U.S., representing about 15% of the number of coal-fired units. Depending on the effect of operating parameters such as mercury content of the coal, form of mercury (elemental or oxidized) in the flue gas, scrubber spray tower configuration, liquid-to-gas ratio, and slurry chemistry, FGD systems can provide cost-effective, near-term mercury emissions control options with a proven history of commercial operation. For boilers already equipped with FGD systems, the incremental cost of any vapor phase mercury removal achieved is minimal. To be widely accepted and implemented, technical approaches that improve mercury removal performance for wet FGD systems should also have low incremental costs and have little or no impact on operation and SO{sub 2} removal performance. The ultimate goal of the Full-scale Testing of Enhanced Mercury Control for Wet FGD Systems Program was to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The program was funded by the U.S. Department of Energy's National Energy Technology Laboratory, the Ohio Coal Development Office within the Ohio Department of Development, and Babcock & Wilcox. Host sites and associated support were provided by Michigan South Central Power Agency (MSCPA) and Cinergy. Field-testing was completed at two commercial coal-fired utilities with wet FGD systems: (1) MSCPA's 55 MW{sub e} Endicott Station and (2) Cinergy's 1300 MW{sub e} Zimmer Station. Testing was conducted at these two locations because of the large differences in size and wet scrubber chemistry. Endicott employs a limestone, forced oxidation (LSFO) wet FGD system, whereas Zimmer uses Thiosorbic{reg_sign} Lime (magnesium enhanced lime) and ex situ oxidation. Both locations burn Ohio bituminous coal.

  19. Vegetation history since the last glacial maximum in the Ozark highlands (USA): A new record from Cupola Pond, Missouri

    Science.gov (United States)

    Jones, Rachel A.; Williams, John W.; Jackson, Stephen T.

    2017-08-01

    The timing and drivers of vegetation dynamics and formation of no-analog plant communities during the last deglaciation in the unglaciated southeastern US are poorly understood. We present a multi-proxy record spanning the past 19,800 years from Cupola Pond in the Ozarks Mountains, consisting of replicate high-resolution pollen records, 25 AMS radiocarbon dates, and macrofossil, charcoal, and coprophilous spore analyses. Full-glacial Pinus and Picea forests gave way to no-analog vegetation after 17,400 yr BP, followed by development of Quercus-dominated Holocene forests, with late Holocene rises in Pinus and Nyssa. Vegetation transitions, replicated in different cores, are closely linked to hemispheric climate events. Rising Quercus abundances coincide with increasing Northern Hemisphere temperatures and CO2 at 17,500 yr BP, declining Pinus and Picea at 14,500 yr BP are near the Bølling-Allerød onset, and rapid decline of Fraxinus and rise of Ostrya/Carpinus occur 12,700 yr BP during the Younger Dryas. The Cupola no-analog vegetation record is unusual for its early initiation (17,000 yr BP) and for its three vegetation zones, representing distinct rises of Fraxinus and Ostrya/Carpinus. Sporormiella was absent and sedimentary charcoal abundances were low throughout, suggesting that fire and megaherbivores were not locally important agents of disturbance and turnover. The Cupola record thus highlights the complexity of the late-glacial no-analog communities and suggests direct climatic regulation of their formation and disassembly.

  20. Comparing environmental impact of air scrubbers for ammonia abatement at pig houses

    NARCIS (Netherlands)

    Vries, De Jerke W.; Melse, Roland W.

    2017-01-01

    Intensive livestock production involves environmental emissions and impacts, including emission of greenhouse gases and ammonia leading to climate change and terrestrial acidification. Ammonia emission from animal housing systems can be reduced by introducing air scrubbers for cleaning the exhaus

  1. Dust captures effectiveness of scrubber systems on mechanical miners operating in larger roadways.

    CSIR Research Space (South Africa)

    Hole, BJ

    1998-03-01

    Full Text Available The project was directed towards bord and pillar working by mechanised miners operating in larger section roadways, where the problem of scrubber capture tends to be greatest owing to the limited size of the zone of influence around exhaust...

  2. Removal of nitrogen by Algal Turf Scrubber Technology in recirculating aquaculture system

    NARCIS (Netherlands)

    Valeta, J.; Verdegem, M.C.J.

    2015-01-01

    Ongoing research in recirculation aquaculture focuses on evaluating and improving the purification potential of different types of filters. Algal Turf Scrubber (ATS) are special as they combine sedimentation and biofiltration. An ATS was subjected to high nutrient loads of catfish effluent to examin

  3. Removal of nitrogen by Algal Turf Scrubber Technology in recirculating aquaculture system

    NARCIS (Netherlands)

    Valeta, J.; Verdegem, M.C.J.

    2015-01-01

    Ongoing research in recirculation aquaculture focuses on evaluating and improving the purification potential of different types of filters. Algal Turf Scrubber (ATS) are special as they combine sedimentation and biofiltration. An ATS was subjected to high nutrient loads of catfish effluent to

  4. CFD simulation with enhancement factor of sulfur dioxide absorption in the spray scrubber

    Institute of Scientific and Technical Information of China (English)

    Xiang GAO; Wang HUO; Zhong-yang LUO; Ke-fa CEN

    2008-01-01

    A model describing the absorption process of SO2 into limestone slurry with a spray scrubber is presented.Both the physical performance of the spray liquid in the scrubber and the involved chemical reactions are analyzed in the model.A con-tinuous concentration change of H+ was solved by iterative coupling using Matlab,and it was found that there was a remarkable influence on the concentration of the other elements in the process of SO2 absorption.The calculations show that the enhancement factor exponentially grows with an increasing value ofpH and logarithmically decays with an increasing value of the driving force.To verify the accuracy of the model,experiments were also carried out,and the results suggest that the model,after combining the physical performance of the spray and the enhancement factor,can more precisely describe SO2 absorption in a spray scrubber.Furthermore,a commercial computational fluid dynamics(CFD)tool is used to perform several simulations which describe and clarify the effects of variables on SO2 absorption.The results of numerical simulation can provide a basis for further design and optimization of the scrubber.

  5. Un’altra storia: Nuove prospettive sul cantiere della cupola di Santa Maria del Fiore

    Directory of Open Access Journals (Sweden)

    Gabriella Battista

    2015-09-01

    Full Text Available ‘Un’altra storia’ (Another History is a first attempt to test the potential of detailed administrative documentation to deepen and, where necessary, modify our understanding of the creative process around the great worksite of Florence Cathedral. It treats two case studies chosen to exemplify possible strategies of navigation in the vast documentary corpus now accessible online in the website, The Years of the Cupola. The first study centers upon the person of Jacopo di Sandro, a hitherto scarcely known master stonecutter employed in the Opera di Santa Maria del Fiore workforce during the entire documented period. He distinguished himself from the very beginning for exceptional flexibility of services rendered, from day labor to a series of special assignments, including the supervision of separate worksites and of the forests in Casentino; Jacopo also emerges as an occasional entrepreneur whose independent contracts coexisted with his status as daily wage earner. At the end of the period he entered the ranks of salaried executive personnel as the administrator of the Brunelleschian fortress of Vico Pisano, demonstrating a notable fluidity amongst labor typologies which are often treated as non-communicating vessels. The second query is dedicated to the documentation on the stone components commissioned for the ‘serraglio’, or closing ring, at the top of the dome, believed to function as stabilizer of the whole self-supporting structure up to the base of the lantern. A census of the sources reveals the number, dimensions, price and delivery dates of the various orders of sandstone blocks, typically supplied in multiples of eight, the number of segments of the octagonal structure. The results are presented as an invitation to look below the surface of the masonry and consider the rationale for so much strength and weight when analyzing the dynamics of this area.

  6. Shipping and the environment: Smokestack emissions, scrubbers and unregulated oceanic consequences

    Directory of Open Access Journals (Sweden)

    David R. Turner

    2017-08-01

    Full Text Available While shipping has long been recognised as a very carbon-efficient transport medium, there is an increasing focus on its broader environmental consequences. The International Maritime Organisation is responsible for the regulation of ship emissions arising from fuel combustion. Their current regulations are, however, much less strict than those applying to land-based transport within the European Union. Five different groups of pollutant emission from ship smokestacks are addressed in this paper: sulphur oxides, nitrogen oxides, particulate matter, organic matter and metals. The reduction of sulphur oxide emissions into the atmosphere using scrubber technology adds another dimension to the discussion, as this approach results in focused discharge of some pollutants to the surface water. A scoping calculation shows that an open-loop scrubber on a medium-sized ship could discharge more copper and zinc daily to the surface water than the ship’s antifouling paint. The use of antifouling paint in the European Union is subject to a prior risk assessment, but scrubber discharges are not subject to any such risk assessment. This situation presents a problem from the perspective of the Marine Strategy Framework Directive, as environmental monitoring programmes in some coastal areas of the Baltic Sea have shown that levels of both copper and zinc exceed environmental quality standards. To fulfil the Marine Strategy Framework Directive requirements and achieve Good Environmental Status, having knowledge of the magnitude of different anthropogenic pressures is important. Metal inputs from open-loop scrubbers have been largely neglected until now: some metals have the potential to serve as tracers for monitoring scrubber discharges.

  7. Selenium Speciation and Management in Wet FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    Searcy, K; Richardson, M; Blythe, G; Wallschlaeger, D; Chu, P; Dene, C

    2012-02-29

    This report discusses results from bench- and pilot-scale simulation tests conducted to determine the factors that impact selenium speciation and phase partitioning in wet FGD systems. The selenium chemistry in wet FGD systems is highly complex and not completely understood, thus extrapolation and scale-up of these results may be uncertain. Control of operating parameters and application of scrubber additives have successfully demonstrated the avoidance or decrease of selenite oxidation at the bench and pilot scale. Ongoing efforts to improve sample handling methods for selenium speciation measurements are also discussed. Bench-scale scrubber tests explored the impacts of oxidation air rate, trace metals, scrubber additives, and natural limestone on selenium speciation in synthetic and field-generated full-scale FGD liquors. The presence and concentration of redox-active chemical species as well as the oxidation air rate contribute to the oxidation-reduction potential (ORP) conditions in FGD scrubbers. Selenite oxidation to the undesirable selenate form increases with increasing ORP conditions, and decreases with decreasing ORP conditions. Solid-phase manganese [Mn(IV)] appeared to be the significant metal impacting the oxidation of selenite to selenate. Scrubber additives were tested for their ability to inhibit selenite oxidation. Although dibasic acid and other scrubber additives showed promise in early clear liquor (sodium based and without calcium solids) bench-scale tests, these additives did not show strong inhibition of selenite oxidation in tests with higher manganese concentrations and with slurries from full-scale wet FGD systems. In bench-tests with field liquors, addition of ferric chloride at a 250:1 iron-to-selenium mass ratio sorbed all incoming selenite to the solid phase, although addition of ferric salts had no impact on native selenate that already existed in the field slurry liquor sample. As ORP increases, selenite may oxidize to selenate more

  8. WFGD Sieve Tray Spray Scrubber%湿法烟气脱硫筛板式喷淋塔阻力特性的试验研究

    Institute of Scientific and Technical Information of China (English)

    王惠挺; 钟毅; 高翔; 陈湘文; 骆仲泱; 倪明江; 岑可法

    2009-01-01

    Experimental study on pressure drop characteristics in a wet flue gas desulfurization (WFGD) sieve tray spray scrubber was carried out by taking water and air as the medium, during which factors influencing the pressure drop characteristics were discussed, such as the diameter and percentage of the openings, the thickness and location of the tray and the liquid spray rate etc. Results show that the diameter ratio of the opening to the scrubber in the WFGD sieve tray spray scrubber system should be big enough so that it can satisfy the high-speed flue gas requirements. Under low flue gas velocity conditions, the smaller the openings' diameter, the higher the pressure drop will be, and under high flue gas velocity conditions, the variation is just the opposite. Thickness of the tray has little influence on the pressure drop, and the pressure drop can be effectively reduced by raising the percentage of openings, lifting up the location of the tray and lowering the spray rates.%采用水-空气作为介质对湿法烟气脱硫(WFGD)筛板式喷淋塔阻力特性进行了试验研究,分析了筛板孔径、开孔率、厚度、安装位置以及液相喷淋量等因素对筛板喷淋塔内阻力特性的影响.结果表明:在WFGD系统筛板式喷淋塔中必须保证足够大的孔径与塔径比,以适合高速烟气条件;在烟气流速较低条件下,筛板孔径越小,压降越大,而烟气流速较高时则相反;筛板厚度对于压降影响较小;提高开孔率和筛板安装高度以及减少喷淋量均能降低塔内阻力.

  9. Compliance Testing of Phosphoric Acid Anodizing Line Wet Scrubber, Metal Bonding Facility, Building 375, Kelly AFB, Texas

    Science.gov (United States)

    1989-06-01

    8217’TY CASS FICA.T’,J4 O T T.IS P-’AT , • i I Form App, oved REPORT DOCUMENTATION PAGE oN 0O;ided lSE C U $JT Y C l A S I IC T O Ib R ESTR IC TIV E M A...SAMPLE FROM LAI OTO-I TESI FOR UEHL NUMBER __ _ __ __ __ _ _ .?0o3_ __ _ _ BASE NUM-BERS 7 2 1 N-ra § gw 23 5 - o / RESULTS ZQ5 I Comn.ents:) UEHL

  10. A new process and equipment for waste minimization: Conversion of NO(x) scrubber liquor to fertilizer

    Science.gov (United States)

    Parrish, Clyde F.; Barile, Ronald G.; Gamble, Paul H.; Lueck, Dale E.; Young, Rebecca C.

    1995-01-01

    A new emissions control system for the oxidizer scrubbers that eliminates the current oxidizer liquor waste and lowers the NO(x) emissions is described. Since fueling and deservicing spacecraft constitute the primary operations in which environmental emissions occur, this will eliminate the second largest waste stream at KSC. This effort is in accord with Executive Order No. 12856 (Federal Compliance with Right-to-Know Laws and Pollution Prevention Requirements, data 6 Aug. 1993) and Executive Order No. 12873 (Federal Acquisition, Recycling, and Waste Prevention, dated 20 Oct. 1993). A recent study found that the efficiencies of the oxidizer scrubbers during normal operations ranged from 70 percent to 99 percent. The new scrubber liquor starts with 1% hydrogen peroxide at a pH of 7 and the process control system adds hydrogen peroxide and potassium hydroxide to the scrubber liquor to maintain those initial conditions. The result is the formation of a solution of potassium nitrate, which is sold as a fertilizer. This report describes the equipment and procedures used to monitor and control the conversion of the scrubber liquor to fertilizer, while reducing the scrubber emissions.

  11. Optimization of selection of chain amine scrubbers for CO2 capture.

    Science.gov (United States)

    Al-Marri, Mohammed J; Khader, Mahmoud M; Giannelis, Emmanuel P; Shibl, Mohamed F

    2014-12-01

    In order to optimize the selection of a suitable amine molecule for CO2 scrubbers, a series of ab initio calculations were performed at the B3LYP/6-31+G(d,p) level of theory. Diethylenetriamine was used as a simple chain amine. Methyl and hydroxyl groups served as examples of electron donors, and electron withdrawing groups like trifluoromethyl and nitro substituents were also evaluated. Interaction distances and binding energies were employed as comparison operators. Moreover, natural bond orbital (NBO) analysis, namely the second order perturbation approach, was applied to determine whether the amine-CO2 interaction is chemical or physical. Different sizes of substituents affect the capture ability of diethylenetriamine. For instance, trifluoromethyl shields the nitrogen atom to which it attaches from the interaction with CO2. The results presented here provide a means of optimizing the choice of amine molecules for developing new amine scrubbers.

  12. CFD analysis on gas distribution for different scrubber redirection configurations in sump cut.

    Science.gov (United States)

    Zheng, Y; Organiscak, J A; Zhou, L; Beck, T W; Rider, J P

    2015-01-01

    The National Institute for Occupational Safety and Health's Office of Mine Safety and Health Research recently developed a series of models using computational fluid dynamics (CFD) to study the gas distribution around a continuous mining machine with various fan-powered flooded bed scrubber discharge configurations. CFD models using Species Transport Model without reactions in FLUENT were constructed to evaluate the redirection of scrubber discharge toward the mining face rather than behind the return curtain. The following scenarios are considered in this study: 100 percent of the discharge redirected back toward the face on the off-curtain side of the continuous miner; 100 percent of the discharge redirected back toward the face, but divided equally to both sides of the machine; and 15 percent of the discharge redirected toward the face on the off-curtain side of the machine, with 85 percent directed into the return. These models were compared against a model with a conventional scrubber discharge, where air is directed away from the face into the return. The CFD models were calibrated and validated based on experimental data and accurately predicted sulfur hexafluoride (SF6) gas levels at four gas monitoring locations. One additional prediction model was simulated to consider a different scrubber discharge angle for the 100 percent redirected, equally divided case. These models identified relatively high gassy areas around the continuous miner, which may not warrant their use in coal mines with medium to high methane liberation rates. This paper describes the methodology used to develop the CFD models, and the validation of the models based on experimental data.

  13. Droplet dispersion angle measurements on a Pease-Antony Venturi scrubber

    Directory of Open Access Journals (Sweden)

    N. A. G. Puentes

    2012-03-01

    Full Text Available A Pease-Anthony Venturi scrubber is a gas cleaning device that uses liquid, injected in the equipment as jets, to remove contaminants from the gas. The liquid jet is atomized into droplets, which are dispersed throughout the equipment due to the turbulence. The performance of the scrubber is affected by the spatial distribution of the droplets. Although CFD models have been used to predict the droplet dispersion, these models are expensive. Alternatively, the concept of "jet spreading angle" could be used as a simple and quick way to estimate droplet dispersion. The purpose of this paper is to measure the spreading angle of jets transversally injected into the throat of a Venturi scrubber and correlate it with both gas and jet velocities. The throat gas velocities varied between 59 and 74 m/s and the jet velocity between 3.18 and 19.1 m/s. The angles were measured through image analysis, obtained with high velocity photography. The spreading angle was found to be strongly dependent on jet velocity.

  14. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  15. Vaginitis test - wet mount

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003916.htm Vaginitis test - wet mount To use the sharing features on this page, please enable JavaScript. The vaginitis wet mount test is a test to detect ...

  16. Generating electricity and heat from lean gas. Dual fuel engine generates electricity and process heat from cupola furnace gas; Strom und Waerme aus Schwachgas gewinnen. Zuendstrahlmotor erzeugt Strom und Prozesswaerme aus Kupolofengas

    Energy Technology Data Exchange (ETDEWEB)

    Hirn, Gerhard

    2012-07-01

    White-hot molten iron flows into the launder. The blast of heat released provides visitors with an impressive demonstration of the amount of energy flowing in foundries. Large volumes of carbon (coke) are used for the melting process in the cupola furnace, whereby a combustible process gas is formed as a by-product. This so-called cupola furnace gas has a low heating value and has previously been completely combusted for generating the hot blast in the cupola furnace's recuperator. However, in this process only around 35 % of the contained energy is used thermally. Now it is possible to utilise the remaining 65 % of the chemically bound energy that was previously not used in most foundries: a modified biogas combined heat and power plant runs with cupola furnace gas (CFG) from the melting furnace. (orig.)

  17. New Understand of Cupola Effective Height%对冲天炉有效高度的重新认识

    Institute of Scientific and Technical Information of China (English)

    张明

    2011-01-01

    Some existing problems of the old definition on the cupola effective height were pointed out, and the new definition was put forward. In condition that ignore the furnace boundary factors'action, and according to six hypotheses the basic relationship between the effective height and inner diameter of the hearth was discussed. The results show that there is no relationship between effective height and inner diameter. This viewpoint was further proved by analysis of the relationship between furnace boundary and other factors and effective height. Then the above view was clarified further by using the similarity theory and the reason of getting the wrong ideas about the effective height and diameter was analyzed. Finally, some problems about the cupola effective height in the current national standards were pointed out.%指出了冲天炉有效高度旧式定义存在的一些问题,提出有效高度的新定义.在忽略了炉膛边界因素作用的条件下,根据六项假设讨论了有效高度与炉膛内径的基本关系,提出了有效高度与炉膛内径无关的观点.其次分析了炉膛边界和其他因素与有效高度间的关系,进一步论证了本文提出的观点.然后用相似理论进一步阐明了该观点,分析了有效高度与炉膛内径有关的错误观念的缘由.最后简要指出了国家现行有关标准中涉及到冲天炉有效高度的一些问题.

  18. Incorporation of alpha-Ketoglutaric Acid as a Fixed Bed Scrubber Media for the Neutralization of Hydrazine Family Hypergolic Fuels

    Science.gov (United States)

    DeVor, R. W.; Santiago-Maldonado, E.; Parkerson, J. K.

    2010-01-01

    A candidate scrubber media, alpha-ketoglutaric acid (aKGA) adsorbed onto a silica-based substrate was examined as a potential alternative to the hydrazine-family hypergolic fuel neutralization techniques currently utilized at NASA/Kennedy Space Center (KSC). Helvenson et. al. has indicated that aKGA will react with hydrazines to produce non-hazardous, possibly biodegradable products. Furthermore, the authors have previously tested and demonstrated the use of aKGA aqueous solutions as a replacement neutralizing agent for citric acid, which is currently used as a scrubbing agent in liquid scrubbers at KSC. Specific properties examined include reaction efficiency, the loading capacity of aKGA onto various silica substrates, and the comparison of aKGA media performance to that of the citric acid vapor scrubber systems at KSC and a commercial vapor scrubber media. Preliminary investigations showed hydrophobic aerogel particles to be an ideal substrate for the deposition of the aKGA. Current studies have shown that the laboratory produced aKGA-Aerogel absorbent media are more efficient and cost effective than a commercially available fixed bed scrubber media, although much less cost effective than liquid-based citric acid scrubbers (although possibly safer and less labor intensive). A comparison of all three alternative scrubber technologies (liquid aKGA, solid-phase aKGA, and commercially available sorbent materials) is given considering both hypergolic neutralization capabilities and relative costs (as compared to the current citric acid scrubbing technology in use at NASA/KSC).

  19. Influence of brick air scrubber by-product on growth and development of corn and hybrid poplar.

    Science.gov (United States)

    Thomas, Carla N; Bauerle, William L; Owino, Tom O; Chastain, John P; Klaine, Stephen J

    2007-03-01

    Studies were conducted to determine the effects of spent reagent from air pollution control scrubbers used at a brick manufacturing facility on emergence, growth, and physiological responses of corn and hybrid poplar plants. Scrubber by-product was obtained from General Shale Brick, Louisville, KY. Potting substrate was weighed and quantities of scrubber by-product were added to the substrate to obtain treatments of 0%, 6.25%, 12.5%, 25%, 50%, 75%, and 100% scrubber by-product (w:w) for the corn study. Each treatment mix was potted into nine replicate polyethylene pots and four corn seeds were sown per pot. The pots were randomized in a greenhouse at Clemson University and the number of seedlings emerging from each treatment, dark-adapted leaf chlorophyll a fluorescence, and shoot heights were measured at the end of a 21-day growth period. Then, dry shoot biomass was determined for plants from each treatment and plant tissues were analyzed for selected constituents. For the poplar study, nine-inch cuttings of hybrid poplar clone 15-29 (Populus trichocarpa x P. deltoides) and clone OP367 (P. deltoides x P. nigra) were planted in treatments of scrubber by-product-potting soil mixes of 0% , 5% , 10% , and 25% w:w. Leaf chlorophyll a fluorescence was measured over six weeks and cumulative leaf area, dry biomass, and nutrient content of tissues were determined upon harvest. Results of these studies indicate that percent seedling emergence for corn plants decreased with increasing scrubber by-product application rates. Application rates up to 12.5% scrubber by-product w:w had no adverse effect on corn seedling emergence. Shoot elongation, biomass production, and the status of the photosynthetic apparatus of the seedlings were also not severely impaired at applications below this level. A critical value of 58.2% w:w scrubber by-product was estimated to cause 25% inhibition of seedling emergence. Biomass production, cumulative leaf area, and chlorophyll a fluorescence of

  20. Development of Domestic Cupola and Dust Removal Technology%国内冲天炉及除尘技术的发展

    Institute of Scientific and Technical Information of China (English)

    刘新江; 苏见波

    2012-01-01

    The cupola furnace and smelting technology development, current status and trend; the application of dust removal system, current status and development have been introduced. It has been pointed out that the cupola development trend would be large capacity, long service life and automatation, with some problems of the dust removal technology needed to be resolved.%介绍了冲天炉炉型及熔炼技术的发展、现况及趋势,除尘系统的应用、现况及发展.指出了冲天炉向大容量、长炉龄、自动化发展的必然趋势和除尘环保需要解决的问题.

  1. CTIF`s contribution to enhance cupola furnace smoke de-dusting; Contribution du CTIF a l`amelioration du depoussierage des fumees de cubilot

    Energy Technology Data Exchange (ETDEWEB)

    Charbonnier, M. [Centre Technique des Industries de la Fonderie (CTIF), 92 - Sevres (France)

    1996-12-31

    Two industrial prototypes for enhancing subsequent smoke dust extraction in cupola furnaces have been developed by the CTIF French Foundry research center: processes involve post-combustion of smokes inside the furnace, which allow for a strong reduction in carbon monoxide emissions and a lower hydrocarbon content, and smoke conditioning by evaporative cooling, which regulates the smoke flow and stimulates filtration condition optimization before de-dusting. Prototypes have been installed in two foundries and results are discussed

  2. Wet oxidation of quinoline

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Kilen, H.H.

    1998-01-01

    The influence of oxygen pressure (0.4 and 2 MPa). reaction time (30 and 60 min) and temperature (260 and 280 degrees C) on the wet oxidation of quinoline has been studied. The dominant parameters for the decomposition of quinoline were oxygen pressure and reaction temperature. whereas the reaction...... time was less important within the range studied. Nitrifying bacteria were used to measure the inhibition from wet oxidative-treated samples to study the effect of the (wet oxidation) reaction conditions. Wet oxidation made quinoline more toxic to Nitrosomonas. This was observed for Nitrobacter as well....... The combined wet oxidation and biological treatment of reaction products resulted in 91% oxidation of the parent compound to CO2 and water. Following combined wet oxidation and biological treatment the sample showed low toxicity towards Nitrosomonas and no toxicity towards Nitrobacter. (C) 1998 Elsevier...

  3. Semiautomatic technique for defining the internal gross tumor volume of lung tumors close to liver/spleen cupola by 4D-CT

    Energy Technology Data Exchange (ETDEWEB)

    Mancosu, Pietro; Sghedoni, Roberto; Bettinardi, Valentino; Aquilina, Mark Anthony; Navarria, Piera; Cattaneo, Giovanni Mauro; Di Muzio, Nadia; Cozzi, Luca; Scorsetti, Marta [Department of Radiotherapy, IRCCS Istituto Clinico Humanitas, Rozzano, 20089 Milano (Italy); Department of Medical Physics, Arcispedale S. Maria Nuova, Reggio, 42100 Emilia (Italy); Department of Nuclear Medicine, Scientific Institute H. S. Raffaele, 20089 Milan (Italy); Department of Radiotherapy, IRCCS Istituto Clinico Humanitas, 20089 Rozzano, Milano (Italy); Department of Medical Physics, San Raffaele Scientific Institute, 20133 Milan (Italy); Department of Radiotherapy, San Raffaele Scientific Institute, 20133 Milan (Italy); Medical Physics Unit, Oncology Institute of Southern Switzerland, 6504 Bellinzona (Switzerland); Department of Radiotherapy, IRCCS Istituto Clinico Humanitas, 20089 Rozzano, Milano (Italy)

    2010-09-15

    Purpose: It has been shown that in cases of lung tumors close to the liver cupola, the four dimensional (4D)-CT postprocessing maximum intensity projection (MIP) algorithm does not fully recover the radiotherapy internal gross tumor volume (IGTV). In this work, a semiautomatic technique was evaluated by which the residual IGTV that was not included into the IGTV by MIP algorithm was actually added. Methods: A moving phantom and five selected patients were considered. The various IGTVs produced by the semiautomatic approach were compared to those generated by 4D-CT manual contouring. Results: In all cases, the radiation oncologist qualitatively concurred with the semiautomatic IGTV. A quantitative difference in volume of 2.6% was found in the phantom study, whereas a mean difference of 0.1{+-}4.6% was obtained in the patient studies. Conclusions: A semiautomatic technique to include the residual part of IGTV covered by liver/spleen cupola when using MIP algorithm was validated on phantom and on selected patients, revealing the possibility of defining the IGTV for patients with lesions located near liver/spleen cupola by performing only the contours on the MIP series.

  4. Development and evaluation of a full-scale spray scrubber for ammonia recovery and production of nitrogen fertilizer at poultry facilities.

    Science.gov (United States)

    Hadlocon, Lara Jane S; Manuzon, Roderick B; Zhao, Lingying

    2015-01-01

    Significant ammonia emissions from animal facilities need to be controlled due to its negative impacts on human health and the environment. The use of acid spray scrubber is promising, as it simultaneously mitigates and recovers ammonia emission for fertilizer. Its low pressure drop contribution on axial fans makes it applicable on US farms. This study develops a full-scale acid spray scrubber to recover ammonia emissions from commercial poultry facilities and produce nitrogen fertilizer. The scrubber performance and economic feasibility were evaluated at a commercial poultry manure composting facility that released ammonia from exhaust fans with concentrations of 66-278 ppmv and total emission rate of 96,143 kg yr(-1). The scrubber consisted of 15 spray scrubber modules, each equipped with three full-cone nozzles that used dilute sulphuric acid as the medium. Each nozzle was operated at 0.59 MPa with a droplet size of 113 μm and liquid flow rate of 1.8 L min(-1). The scrubber was installed with a 1.3-m exhaust fan and field tested in four seasons. Results showed that the scrubber achieved high NH3 removal efficiencies (71-81%) and low pressure drop (fertilizer. Preliminary economic analysis indicated that the break-even time is one year. This study demonstrates that acid spray scrubbers can economically and effectively recover NH3 from animal facilities for fertilizer.

  5. WetVegEurope

    NARCIS (Netherlands)

    Landucci, Flavia; Řezníčková, Marcela; Šumberová, Kateřina; Hennekens, S.M.; Schaminée, J.H.J.

    2015-01-01

    WetVegEurope is a research project (http://www.sci.muni.cz/botany/vegsci/wetveg) whose goal is to provide a synthesized formalized classification of the aquatic and marsh vegetation across Europe at the level of phytosociological associations. In order to achieve the project objective, a WetVegEu

  6. Concept for a cyclonic spray scrubber as a fission product removal system for filtered containment venting

    Energy Technology Data Exchange (ETDEWEB)

    Lebel, Luke S., E-mail: Luke.Lebel@cnl.ca; Piro, Markus H., E-mail: Markus.Piro@cnl.ca; MacCoy, Reilly, E-mail: Reilly.MacCoy@cnl.ca; Clouthier, Anthony, E-mail: Tony.Clouthier@cnl.ca; Chin, Yu-Shan, E-mail: Sammy.Chin@cnl.ca

    2016-02-15

    Graphical abstract: - Highlights: • A new cyclonic spray scrubber concept for filtered containment venting is presented. • Mechanistic particle removal model paired with discrete particle CFD simulations. • Calculations predict that very high decontamination factors can be achieved. - Abstract: The application of a cyclonic spray scrubber as a technology for filtered containment venting is proposed in this paper. This study has paired a mechanistic model for the kinetic particle coagulation of with Euler–Lagrange discrete particle simulations in order to predict particle decontamination factors. The continuous phase behavior has been investigated using computational fluid dynamics simulations together with phase Doppler anemometry measurements. Calculations show that spray scrubbing of radionuclide-bearing aerosols could be very effective, and predict that decontamination factors can be in excess of 10{sup 6} for micron sized particles and excess of 10{sup 3} for submicron particles. In the wake of the accident at the Fukushima Daiichi Nuclear Power Plant, filtered containment venting is being viewed as an increasingly important severe accident mitigation technology. Cyclonic spray scrubbing could be implemented as a passive technology for decontaminating containment gases in an emergency prior to their discharge to the atmosphere, and is a novel approach for this application.

  7. Oxidation of North Dakota scrubber sludge for soil amendment and production of gypsum. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hassett, D.J.; Moe, T.A.

    1997-10-01

    Cooperative Power`s Coal Creek Station (CCS) the North Dakota Industrial Commission, and the US Department of Energy provided funds for a research project at the Energy and Environmental Research Center. The goals of the project were (1) to determine conditions for the conversion of scrubber sludge to gypsum simulating an ex situ process on the laboratory scale; (2) to determine the feasibility of scaleup of the process; (3) if warranted, to demonstrate the ex situ process for conversion on the pilot scale; and (4) to evaluate the quality and handling characteristics of the gypsum produced on the pilot scale. The process development and demonstration phases of this project were successfully completed focusing on ex situ oxidation using air at low pH. The potential to produce a high-purity gypsum on a commercial scale is excellent. The results of this project demonstrate the feasibility of converting CCS scrubber sludge to gypsum exhibiting characteristics appropriate for agricultural application as soil amendment as well as for use in gypsum wallboard production. Gypsum of a purity of over 98% containing acceptable levels of potentially problematic constituents was produced in the laboratory and in a pilot-scale demonstration.

  8. Wetting Transition in Water

    Science.gov (United States)

    Friedman, S. R.; Khalil, M.; Taborek, P.

    2013-11-01

    Optical images were used to study the wetting behavior of water on graphite, sapphire, and quartz along the liquid vapor coexistence curve from room temperature to 300°C. Wetting transitions were identified by the temperature at which the contact angle decreased to zero and also by the disappearance of dropwise condensation. These two methods yielded consistent values for the wetting temperatures, which were 185°C, 234°C, and 271°C for water on quartz, sapphire, and graphite, respectively. We compare our results with the theoretical predictions based on a simplified model of the water-substrate potential and sharp interfaces.

  9. Elektronische monitoring van luchtwassers op veehouderijbedrijven = Automated process monitoring and data logging of air scrubbers at animal houses

    NARCIS (Netherlands)

    Melse, R.W.; Franssen, J.C.T.J.

    2010-01-01

    At 6 animal houses air scrubbers equipped with an automated process monitoring and data logging system were tested. The measured values were successfully stored but the measured values, especially the pH and EC of the recirculation water, appeared not to be correct at all times.

  10. Inactivation of airborne Enterococcus faecalis and infectious bursal disease virus using a pilot-scale ultraviolet photocatalytic oxidation scrubber

    NARCIS (Netherlands)

    Zhao, Y.; Aarnink, A.J.A.; Xin, H.

    2014-01-01

    High microbial concentrations and emissions associated with livestock houses raise health and environmental concerns. A pilot-scale ultraviolet photocatalytic (UV-PCO) scrubber was tested for its efficacy to inactivate aerosolized Enterococcus faecalis and infectious bursal disease virus (IBDV). Mic

  11. Adsorption and wetting.

    NARCIS (Netherlands)

    Schlangen, L.J.M.

    1995-01-01

    Adsorption and wetting are related phenomena. In order to improve knowledge of both and their relations, experiments, thermodynamics and a theoretical interpretation have been connected, starring n-alkanes.Starting from the Gibbs adsorption equation thermodynamic relations between vapour adsorption

  12. Wet hydrate dissolution plant

    OpenAIRE

    Stanković Mirjana S.; Kovačević Branimir T.; Pezo Lato L.

    2003-01-01

    The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant with capacity of 50,000 t/y was manufactured, at "Zeolite Mira", Mira (VE), Italy, in 1997, for increasing detergent zeolite production from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate ...

  13. Chemistry of flyash scrubber sludge components in plant-soil-water systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.

    1993-01-01

    Flyash scrubber sludge (FASS) is a by-product from coal combustion at power plants. Land application and burial beneath wetlands have been suggested as more cost efficient disposal methods than burial in old mines. The FASS from the Associated Electric Power Plant at Thomas Hill, MO was added, 2.5 or 5.0% FASS by weight, to an acidic topsoil. FASS increased soil pH and salt level, and increased growth of alfalfa (Medicago sativa L.), birdsfoot trefoil (Lotus corniculatus L.) and tall fescue (Festuca aroundinacea L.). Concentrations of Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Ni, P, Si, Sr, Ti, and Zn in plant tissues were either unaffected or reduced due to FASS addition. The concentrations of B, Cl, Mo, Mn, and S were higher in tissues of plants grown on FASS treated than untreated soil. Boron content limited the amount of FASS that could be applied to soil.

  14. Development of construction materials using sulfite-rich scrubber sludge and fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Yoginder Chugh; Amit Patwardhan; Santosh Munish; Francois Botha [Southern Illinois University, Carbondale, IL (United States). Department of Mining and Mineral Resources Engineering

    2006-11-15

    Construction materials with characteristics suitable for a variety of applications have been developed using up to 95% of coal combustion by-products comprising of sulfite-rich scrubber sludge and fly ash. These materials can be produced as soil-like mixes that can be prepared at the power plant, transported to the deployment site and compacted using conventional road building equipment without a need for forms. These developed materials provide an early strength of 5.8-8.3 MPa after 7-14 d and are environmentally benign. For a cattle feeding pad application, which is the focus of this paper, the cost is estimated be about 25-30% of the cost of developing a conventional concrete feeding pad. Following mix development and establishment of quality assurance/quality control protocols, a commercial cattle feeding pad has been designed and demonstrated using the developed mix. 15 refs., 3 figs., 7 tabs.

  15. Numerical simulation of two-phase flow behavior in Venturi scrubber by interface tracking method

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Naoki, E-mail: s1430215@u.tsukuba.ac.jp [Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Yoshida, Hiroyuki [Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Abe, Yutaka [University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan)

    2016-12-15

    Highlights: • Self-priming occur because of pressure balance between inside and outside of throat is confirmed. • VS has similar flow with a Venturi tube except of disturbance and burble flow is considered. • Some of atomization simulated are validated qualitatively by comparison with previous studies. - Abstract: From the viewpoint of protecting a containment vessel of light water reactor and suppressing the diffusion of radioactive materials from a light water reactor, it is important to develop the device which allows a filtered venting of contaminated high pressure gas. In the filtered venting system that used in European reactors, so called Multi Venturi scrubbers System is used to realize filtered venting without any power supply. This system is able to define to be composed of Venturi scrubbers (VS) and a bubble column. In the VS, scrubbing of contaminated gas is promoted by both gas releases through the submerged VS and gas-liquid contact with splay flow formed by liquid suctioned through a hole provided by the pressure difference between inner and outer regions of a throat part of the VS. However, the scrubbing mechanism of the self-priming VS including effects of gas mass flow rate and shape of the VS are understood insufficiently in the previous studies. Therefore, we started numerical and experimental study to understand the detailed two-phase flow behavior in the VS. In this paper, to understand the VS operation characteristics for the filtered venting, we performed numerical simulations of two-phase flow behavior in the VS. In the first step of this study, we perform numerical simulations of supersonic flow by the TPFIT to validate the applicability of the TPFIT for high velocity flow like flow in the VS. In the second step, numerical simulation of two-phase flow behavior in the VS including self-priming phenomena. As the results, dispersed flow in the VS was reproduced in the numerical simulation, as same as the visualization experiments.

  16. Novel Adsorbent-Reactants for Treatment of Ash and Scrubber Pond Effluents

    Energy Technology Data Exchange (ETDEWEB)

    Bill Batchelor; Dong Suk Han; Eun Jung Kim

    2010-01-31

    The overall goal of this project was to evaluate the ability of novel adsorbent/reactants to remove specific toxic target chemicals from ash and scrubber pond effluents while producing stable residuals for ultimate disposal. The target chemicals studied were arsenic (As(III) and As(V)), mercury (Hg(II)) and selenium (Se(IV) and Se(VI)). The adsorbent/reactants that were evaluated are iron sulfide (FeS) and pyrite (FeS{sub 2}). Procedures for measuring concentrations of target compounds and characterizing the surfaces of adsorbent-reactants were developed. Effects of contact time, pH (7, 8, 9, 10) and sulfate concentration (0, 1, 10 mM) on removal of all target compounds on both adsorbent-reactants were determined. Stability tests were conducted to evaluate the extent to which target compounds were released from the adsorbent-reactants when pH changed. Surface characterization was conducted with x-ray photoelectron spectroscopy (XPS) to identify reactions occurring on the surface between the target compounds and surface iron and sulfur. Results indicated that target compounds could be removed by FeS{sub 2} and FeS and that removal was affected by time, pH and surface reactions. Stability of residuals was generally good and appeared to be affected by the extent of surface reactions. Synthesized pyrite and mackinawite appear to have the required characteristics for removing the target compounds from wastewaters from ash ponds and scrubber ponds and producing stable residuals.

  17. Analysis of naturally-occurring radionuclides in coal combustion fly ash, gypsum, and scrubber residue samples.

    Science.gov (United States)

    Roper, Angela R; Stabin, Michael G; Delapp, Rossane C; Kosson, David S

    2013-03-01

    Coal combustion residues from coal-fired power plants can be advantageous for use in building and construction materials. These by-products contain trace quantities of naturally occurring radionuclides from the uranium and thorium series, as well as other naturally occurring radionuclides such as K. Analysis was performed on samples of coal fly ash, flue gas desulfurization, gypsum and scrubber sludges, fixated scrubber sludges, and waste water filter cakes sampled from multiple coal-fired power plants in the United States. The radioactive content of U and Th decay series nuclides was determined using gamma photopeaks from progeny Pb at 352 keV and Tl at 583 keV, respectively; K specific activities were determined using the 1,461 keV photopeak. The samples were hermetically sealed to allow for secular equilibrium between the radium parents and the radon and subsequent progeny. Samples were analyzed in a common geometry using two high purity germanium photon detectors with low energy detection capabilities. The specific activities (Bq kg) were compared to results from literature studies including different building materials and fly ash specific activities. Fly ash from bituminous and subbituminous coals had U specific activities varying from 30-217 Bq kg (mean + 1 s.d. 119 ± 45 Bq kg) and 72-209 Bq kg (115 ± 40 Bq kg), respectively; Th specific activities from 10-120 Bq kg (73 ± 26 Bq kg) and 53-110 Bq kg (81 ± 18 Bq kg), respectively; and K specific activities from 177 to 928 Bq kg (569 ± 184 Bq kg) and 87-303 Bq kg (171 ± 69 Bq kg), respectively. Gypsum samples had U, Th, and K specific activities approximately one order of magnitude less than measured for fly ash samples.

  18. Wet storage integrity update

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.; Johnson, A.B. Jr.

    1983-09-01

    This report includes information from various studies performed under the Wet Storage Task of the Spent Fuel Integrity Project of the Commercial Spent Fuel Management (CSFM) Program at Pacific Northwest Laboratory. An overview of recent developments in the technology of wet storage of spent water reactor fuel is presented. Licensee Event Reports pertaining to spent fuel pools and the associated performance of spent fuel and storage components during wet storage are discussed. The current status of fuel that was examined under the CSFM Program is described. Assessments of the effect of boric acid in spent fuel pool water on the corrosion and stress corrosion cracking of stainless steel and the stress corrosion cracking of stainless steel piping containing stagnant water at spent fuel pools are discussed. A list of pertinent publications is included. 84 references, 21 figures, 11 tables.

  19. Wrinkling of wet paper

    Science.gov (United States)

    Kim, Ho-Young; Kim, Jungchul; Mahadevan, L.

    2011-11-01

    It is a mundane experience that paper stained with water wrinkles. It is because a wetted portion of paper, which swells due to the hygroexpansive nature of the cellulose fiber network, deforms out of its original plane. Here we quantify the dynamics of wrinkling of wet paper coupled to the capillary imbibition of water into paper using a combination of experiment and theory. While supplying water from a capillary tube that touches the center of a paper strip, we measure the spreading rate of the wet area, wait time for the out-of-plane buckling, and temporal growth of a wrinkling magnitude. Using a theoretical model assuming a linear increase of the strain and an exponential decay of the elastic modulus with the water concentration, we construct scaling laws to predict the simultaneous capillary imbibition and wrinkling rates. This work was supported by the Wyss Institute of Harvard University.

  20. Wetting of real surfaces

    CERN Document Server

    Bormashenko, Edward Yu

    2013-01-01

    The problem of wetting and drop dynamics on various surfaces is very interesting from both the scientificas well as thepractical viewpoint, and subject of intense research.The results are scattered across papers in journals, sothis workwill meet the need for a unifying, comprehensive work.

  1. Wet Macular Degeneration

    Science.gov (United States)

    ... macular degeneration Overview By Mayo Clinic Staff Wet macular degeneration is a chronic eye disease that causes blurred vision or a blind spot in your visual field. It's generally caused by abnormal blood vessels that leak fluid or blood into ... macular degeneration is one of two types of age-related ...

  2. Combustion Simulation and Quick-freeze Observation of a Cupola-furnace Process Using a Bio-coke Fuel Based on Tea Scum

    Science.gov (United States)

    Ishii, Kazuyoshi; Murata, Hirotoshi; Kuwana, Kazunori; Mizuno, Satoru; Morita, Akihiro; Ida, Tamio

    Global environment problems have become more and more serious in recent years, and reduction of greenhouse gas emission based on Kyoto Protocol adopted at the 3rd conference of the parties of the United nations Framework Convention on Climate Change (COP3); securement of primary energy source and development of clean and renewable energy sources have been pressingly needed in consideration of the predicted depletion of fossil fuel in the future. In this study, we explore the use of a solidified biomass-derived fuel, having the maximum compressive strength of 100MPa and calorific value of 21MJ/kg, in iron-casting or iron-making processes as an alternative fuel to be mixed with coal coke. This study, carried out for internal observation using a quick-freeze technique, observed an actual working cupola furnace under the 20% alternative coal coke operation condition. After quick freeze of the cupola furnace, the solidified biomass fuel was found to inhabit near the iron-melting zone. Especially, this solidified biomass fuel smoothly changes carbonized fuel through high-density state during the operating process. On the other hand, this study tried to simulate gasification combustion under a high temperature environment instead of actual internal combustion of solidified biomass fuel. These combustion mechanisms were confirmed to be similar to diffusion-flame phenomena in general.

  3. 多项专利在冲天炉上应用效果的分析%Analyse of Applied Results of Several Patents on the Cupola

    Institute of Scientific and Technical Information of China (English)

    姜永录; 陈朝云

    2001-01-01

    介绍了空冷、预热、标准化风口砖及双风箱龙卷风供风在冲天炉上应用的效果;生产实践表明,这种由1项发明专利,2项实用新型专利和3项专有技术组成的冲天炉,已经显示出优越的性能;出铁温度达到1 500 ℃,铁焦比下降,合金元素烧损减少,生产成本大幅度降低,劳动条件得到改善。%This paper introduces the application effects of air cooling and preheating and standard tuyere brich as well as double air box tornado on the cupola. Production practice has proved that the cupola emplays one invention patent and two practical patent and three special technology patent is superior on the technical properties. Iron liquid can reach over 1 500 ℃, iron coke ratio was cut down and alloy element loss and production cost was reduced, the working condition was also improved.

  4. WET SOLIDS FLOW ENHANCEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-03-25

    The yield locus, tensile strength and fracture mechanisms of wet granular materials were studied. The yield locus of a wet material was shifted to the left of that of the dry specimen by a constant value equal to the compressive isostatic stress due to pendular bridges. for materials with straight yield loci, the shift was computed from the uniaxial tensile strength, either measured in a tensile strength tester or calculated from the correlation, and the angle of internal friction of the material. The predicted shift in the yield loci due to different moisture contents compare well with the measured shift in the yield loci of glass beads, crushed limestone, super D catalyst and Leslie coal. Measurement of the void fraction during the shear testing was critical to obtain the correct tensile strength theoretically or experimentally.

  5. Writing on wet paper

    Science.gov (United States)

    Fridrich, Jessica; Goljan, Miroslav; Lisonek, Petr; Soukal, David

    2005-03-01

    In this paper, we show that the communication channel known as writing in memory with defective cells is a relevant information-theoretical model for a specific case of passive warden steganography when the sender embeds a secret message into a subset C of the cover object X without sharing the selection channel C with the recipient. The set C could be arbitrary, determined by the sender from the cover object using a deterministic, pseudo-random, or a truly random process. We call this steganography "writing on wet paper" and realize it using low-density random linear codes with the encoding step based on the LT process. The importance of writing on wet paper for covert communication is discussed within the context of adaptive steganography and perturbed quantization steganography. Heuristic arguments supported by tests using blind steganalysis indicate that the wet paper steganography provides improved steganographic security for embedding in JPEG images and is less vulnerable to attacks when compared to existing methods with shared selection channels.

  6. Phoenix's Wet Chemistry Lab

    Science.gov (United States)

    2008-01-01

    This is an illustration of the analytical procedure of NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL can determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Phoenix's Wet Chemistry Lab

    Science.gov (United States)

    2008-01-01

    This is an illustration of soil analysis on NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL will attempt to determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Wetting in Color

    Science.gov (United States)

    Burgess, Ian Bruce

    Colorimetric litmus tests such as pH paper have enjoyed wide commercial success due to their inexpensive production and exceptional ease of use. However, expansion of colorimetry to new sensing paradigms is challenging because macroscopic color changes are seldom coupled to arbitrary differences in the physical/chemical properties of a system. In this thesis I present in detail the development of Wetting in Color Technology, focusing primarily on its application as an inexpensive and highly selective colorimetric indicator for organic liquids. The technology exploits chemically-encoded inverse-opal photonic crystals to control the infiltration of fluids to liquid-specific spatial patterns, projecting minute differences in liquids' wettability to macroscopically distinct, easy-to-visualize structural color patterns. It is shown experimentally and corroborated with theoretical modeling using percolation theory that the high selectivity of wetting, upon-which the sensitivity of the indicator relies, is caused by the highly symmetric structure of our large-area, defect-free SiO2 inverse-opals. The regular structure also produces a bright iridescent color, which disappears when infiltrated with liquid - naturally coupling the optical and fluidic responses. Surface modification protocols are developed, requiring only silanization and selective oxidation, to facilitate the deterministic design of an indicator that differentiates a broad range of liquids. The resulting tunable, built-in horizontal and vertical chemistry gradients allow the wettability threshold to be tailored to specific liquids across a continuous range, and make the readout rely only on countable color differences. As wetting is a generic fluidic phenomenon, Wetting in Color technology could be suitable for applications in authentication or identification of unknown liquids across a broad range of industries. However, the generic nature of the response also ensures chemical non-specificity. It is shown

  9. Combined wet electrostatic aerosol removal and energy recovery; Energigenvinding med samtidig fjernelse af sure komponenter og aerosoler fra roeggas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The objective of this project, entitled 'Combined Wet Electrostatic Aerosol Removal and Energy Recovery', was to develop and test a low-cost process for removal of fine and ultrafine particles as well as acid gases and other pollutants from flue gases. The process is based on a combination of electrostatic precipitation and wet scrubbing in a single unit. This has several potential advantages compared to traditional bag filtering such as lower operational costs, energy recovery by condensation, elimination of fire risk, as well as the possibility of reducing emissions of acid gases and organic compounds in the scrubber section. Moreover, the electrostatic section could be retrofitted on existing wet scrubbers, thus enhancing their particulate removal efficiency significantly. A pilot-plant (approx. 1:10 of full scale, operated at about 60 kV) was constructed at the 2.5 MW straw-fired district heating plant of Hals. During straw firing a large number of submicron particles are generated that are not removed by the existing wet scrubber at Hals. The particle removal efficiency of the process was monitored on-line using SMPS equipment (Scanning Mobility Particle Sizers). Special dilution probes were constructed due to a high moisture content of the gas and high particle number concentrations. Two complete SMPS equipments were operated simultaneously on the raw and clean gas side, respectively. The particle removal efficiency of the process relies on the presence of a strong electric field. The results obtained (up to 40% removal efficiency of particles below 0.8 {mu}m mobile diameter) indicate that the strength and stability of the field is insufficient. The reason for this is not exactly known, because loss of current may occur due to several factors such as particulate build-up on electrode and reactor surfaces, condensation of water on surfaces, variations in gas and particulate composition etc. The efforts were concentrated on the electrostatic section

  10. Selection of amine combination for CO2 capture in a packed bed scrubber

    Directory of Open Access Journals (Sweden)

    Aruna Singh

    2016-12-01

    Full Text Available This investigation was to test different blends of tertiary amine; triethanolamine (TEA into primary amine; Monoethanolamine (MEA used to capture CO2 in packed bed scrubber with recycle stream. Four different operating parameters: Amine Combination (A, Dilution Water (B, Liquid Flow rate (C, and Gas Flow rate (D were varied to study the behavior of the system. Moreover, Taguchi method was employed to establish the order of importance of different parameters in the process. A 4 factor and 3 level was chosen for the study and it was explored using L9 (34 orthogonal array design. According to 3-level design 0%, 20% and 30% were chosen for A, 10%, 20% and 30% for B, 1 Lmin−1, 1.5 Lmin−1 and 2 Lmin−1 for C, 8 Lmin−1, 16 Lmin−1 and 20 Lmin−1 for D. To understand the effectiveness order of different operating parameters, three factors namely Absorption efficiency (E, Absorption Rate (RA, and Scrubbing Factor (E were calculated upon which the order was compared. The highest efficiency of 92.2% was achieved with 20% TEA. However, with 30% of TEA and 20% solvent mix maximum scrubbing factor (E of 0.63 mol-CO2/mol-Solvent was achieved. As per Taguchi analysis the significance sequence for absorption efficiency (ϕ was B > C > D > A; for absorption rate C > B > D > A and for scrubbing factor it was C > B > D > A. The blending of tertiary amine seemed advantageous for carbon dioxide capture process.

  11. Effects of the methyltrimethoxysilane coupling agent on phenolic and miscanthus composites containing calcium sulfite scrubber material

    Science.gov (United States)

    Jones, Sean

    The purpose of this research is to test the effects of methyltrimethoxysilane coupling agent on composite material containing calcium sulfite obtained from the Southern Illinois Power Co-operative. This scrubber material and the miscanthus plant are of interest due to their use in coal burning power plants to reduce toxic emission. When calcium sulfate is passed through coal fire gas emissions it absorbs mercury and sulfur. In these composites it is used as filler to reduce cost. Miscanthus is a source of both cellulose reinforcement and some natural resin. This plant has low care requirements, little mineral content, useful energy return, and positive environmental effects. Under investigation is whether a post-cure procedure or a silane coupling agent will positively impact the composite. Hot pressing alone may not be enough to fully cure the phenolic. It is hoped that the silane will increase the strength characteristics of the composite by enhancing adhesion between the calcium sulfite and phenolic resin. Possible effects on the miscanthus by the silane will also be tested. Phenolic is being utilized because of its recycling and biodegradable properties along with cost effectiveness in mass production. Composite mechanical performance was measured through 3-point bending to measure flexural strength and strain at breakage. A dynamic mechanical analyzer (DMA) was used to find thermomechanical properties. The post-cure was found to be effective, particularly on the final composite containing silane. When methyltrimethoxysilane was added to the miscanthus prior to fabrication, it was found to reduce flexural strength and density. However the addition of methyltrimethoxysilane to the calcium sulfite altered thermo-mechanical properties to a state more like pure phenolic, with added flexibility and thermal stability.

  12. Combined nitrogen oxides/sulfur dioxide control in dry scrubber systems

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, J. B.L.; Gorski, A. J.; Huang, H. S.

    1989-02-01

    Argonne National Laboratory (ANL) is investigating alternative control concepts that involve modifying existing SO{sub 2}-removal processes and sorbents, with the objective of achieving simultaneous removal of nitrogen oxides (NO{sub x}) and sulfur dioxide (SO{sub 2}). Laboratory-scale research conducted using a fixed-bed reactor and a spray-dryer/fabric-filter system has been paralleled by field tests at ANL's commercial-scale (20-MW electric equivalent) dry scrubber. In the fixed-bed experiments, a range of chemical reagents was surveyed, and the best-performing additives were studied in detail. Sodium chloride, sodium bisulfite, sodium hydroxide, and Fe(II)*EDTA were found to increase both NO{sub x} and SO{sub 2} removals; the additives did not appear to increase NO{sub x} removal directly, but they interacted strongly with the other primary variables to improve sorbent performance. The laboratory spray-dryer system was used to study the effects on combined NO{sub x}/SO{sub 2} removal of the best-performing fixed-bed additives and certain process modifications. The tests showed that sodium chloride increased NO{sub x} removal at all temperatures; sodium bisulfite was generally less effective, and calcium chloride was effective only at 65{degree}C. Up to 80{degree}C, all three additives significantly improved SO{sub 2} removal, but improvement ceased at higher temperatures. This report discusses the experimental results in terms of the effects the additives and principal process variables had on NO{sub x} and SO{sub 2} removals and the mechanistic implications. 14 refs., 74 figs., 33 tabs.

  13. Wet steam wetness measurement in a 10 MW steam turbine

    Directory of Open Access Journals (Sweden)

    Kolovratník Michal

    2014-03-01

    Full Text Available The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  14. Wet steam wetness measurement in a 10 MW steam turbine

    OpenAIRE

    Kolovratník Michal; Bartoš Ondřej

    2014-01-01

    The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  15. Wet solids flow enhancemant

    Energy Technology Data Exchange (ETDEWEB)

    Caram, H.S.; Foster, N.; Wildman, D.J. [USDOE Pittsburgh Energy Technology Center, PA (United States)

    1996-12-31

    WE used glass beads of different sizes as.a model system to study the flow enhancing properties of Octadecyltrichlorosilane (OTS). 0TS provides Si(CH{sub 2}){sub 17}CH{sub 3} groups that bind with the surface hydrox groups to make it hydrophobic. Experimental data showed, indeed, that surface hydrophobicity promotes the flow of wet granular materials. Mixtures of different percentage of silanized/unsilanized particles were prepared for tensile strength measurements. The tensile strength decreased as more silanized particles were added to the samples. The relationship between dimensionless tensile strength and void fraction followed the correlation found by Pierrat (1994). Contact angles were larger for the silanized particles, as compared with unsilanized ones.

  16. Wetting and Minimal Surfaces

    CERN Document Server

    Bachas, C; Wiese, K J; Bachas, Constantin; Doussal, Pierre Le; Wiese, Kay Joerg

    2006-01-01

    We study minimal surfaces which arise in wetting and capillarity phenomena. Using conformal coordinates, we reduce the problem to a set of coupled boundary equations for the contact line of the fluid surface, and then derive simple diagrammatic rules to calculate the non-linear corrections to the Joanny-de Gennes energy. We argue that perturbation theory is quasi-local, i.e. that all geometric length scales of the fluid container decouple from the short-wavelength deformations of the contact line. This is illustrated by a calculation of the linearized interaction between contact lines on two opposite parallel walls. We present a simple algorithm to compute the minimal surface and its energy based on these ideas. We also point out the intriguing singularities that arise in the Legendre transformation from the pure Dirichlet to the mixed Dirichlet-Neumann problem.

  17. Simultaneous Removal of SO2, NOx, and Hg from Coal Flue Gas Using a NaClO2-Enhanced Wet Scrubber

    Science.gov (United States)

    On March 10,2005, the EPA issued the Clean Air Interstate Rule which, when fully implemented in 2015, will reduce sulfur dioxide and nitrogen oxides emissions in the eastern United States by over 70% and 60%, respectively, from 2003 levels. On March 15, 2005, the Clean Air Mercur...

  18. Separation of submicron particles from biofuel combustion with flue gas condensation or wet condensing electrostatic precipitator. Analysis of possibilities; Avskiljning av submikrona partiklar vid biobraenslefoerbraenning med roekgaskondensering eller kondenserande vaata elfilter. Analys av moejligheterna

    Energy Technology Data Exchange (ETDEWEB)

    Roennbaeck, Marie; Gustavsson, Lennart [Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-11-15

    Dust particles in flue gas larger than 1 {mu}m are well separated by conventional techniques, while submicron particles are poorly separated. As the use of biofuels with high ash content is increasing, as well as knowledge about negative health effects from inhalation of submicron particles, the interest for reduction of emissions of submicron particles will probably increase. The aim of this project is to investigate possible techniques for separation of submicron particles during flue gas condensation through modification of conventional technique, or with available techniques not usually used with combustion of biofuels, e.g. a wet electrostatic precipitator. Mechanisms for separation of dust particles are briefly described. Cyclones separates particles larger than about 1 {mu}m. Fabric filters separates all particles sizes, but the efficiency reduces as the size reduces. In flue gas condensers and scrubbers the speed and size of water droplets are important for the reduction efficiency. Dry electrostatic precipitators work for all particle sizes, but with reduced efficiency for sizes between 0.1 and 3 {mu}m. Wet electrostatic precipitators separates submicron particles much better. One reason for this is that the potential between the electrodes can be higher. Among conventional flue gas condensers and scrubbers there are two types that, properly designed, can separate submicron particles, namely 'type venturi scrubbers', i.e. a scrubber where a high flue gas velocity is used to form many, small water droplets by friction forces in a nozzle, and 'type scrubber with nozzles', i.e. a scrubber where nozzles supply droplets to the flue gas. For a scrubber with nozzles, the falling velocity of the droplets must be lower and the size smaller than is common today. Also the wet electrostatic precipitator separates submicron particles with high efficiency. They are used today mainly for problematic particles, e.g. sticky or corrosive ones, or for

  19. Wetting front instability in an initially wet unsaturated fracture

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.J.; Glass, R.J.; Nguyen, H.A.

    1992-12-31

    Experimental results exploring gravity-driven wetting front instability in a pre-wetted, rough-walled analog fracture are presented. Initial conditions considered include a uniform moisture field wetted to field capacity of the analog fracture and the structured moisture field created by unstable infiltration into an initially dry fracture. As in previous studies performed under dry initial conditions, instability was found to result both at the cessation of stable infiltration and at flux lower than the fracture capacity under gravitational driving force. Individual fingers were faster, narrower, longer, and more numerous than observed under dry initial conditions. Wetting fronts were found to follow existing wetted structure, providing a mechanism for rapid recharge and transport.

  20. Ecological effects of scrubber water discharge on coastal plankton: Potential synergistic effects of contaminants reduce survival and feeding of the copepod Acartia tonsa

    DEFF Research Database (Denmark)

    Koski, Marja; Stedmon, Colin; Trapp, Stefan

    2017-01-01

    and hydrocarbons. We investigated 1) the threshold concentrations of scrubber discharge water for survival, feeding and reproduction of the copepod Acartia tonsa, 2) whether the effects depend on the exposure route and 3) whether exposure to discharge water can be detected in field-collected organisms. A direct...... exposure to discharge water increased adult copepod mortality and reduced feeding at metal concentrations which were orders of magnitude lower than the lethal concentrations in previous single-metal studies. In contrast, reproduction was not influenced by dietary uptake of contaminants. Scrubber water...

  1. CHARACTERIZATION OF DWPF MELTER OFF-GAS QUENCHER AND STEAM ATOMIZED SCRUBBER DEPOSIT SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Zeigler, K; Ned Bibler, N

    2007-06-06

    This report summarizes the results from the characterization of deposits from the inlets of the primary off-gas Quencher and Steam Atomized Scrubber (SAS) in the Defense Waste Processing Facility (DWPF), as requested by a technical assistance request. DWPF requested elemental analysis and compound identification to help determine the potential causes for the substance formation. This information will be fed into Savannah River National Laboratory modeling programs to determine if there is a way to decrease the formation of the deposits. The general approach to the characterization of these samples included x-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical analysis. The following conclusions are drawn from the analytical results found in this report: (1) The deposits are not high level waste glass from the DWPF melt pool based on comparison of the compositions of deposits to the composition of a sample of glass taken from the pour stream of the melter during processing of Sludge Batch 3. (2) Chemical composition results suggest that the deposits are probably a combination of sludge and frit particles entrained in the off-gas. (3) Gamma emitters, such as Co-60, Cs-137, Eu-154, Am-241, and Am-243 were detected in both the Quencher and SAS samples with Cs-137 having the highest concentration of the gamma emitters. (4) No evidence existed for accumulation of fissile material (U-233, U-235, and Pu-239) relative to Fe in either deposit. (5) XRD results indicated both samples were primarily amorphorous and contained some crystals of the iron oxides, hematite and magnetite (Fe{sub 2}O{sub 3} and Fe(Fe{sub 2}O{sub 4})), along with sodium nitrate (NaNO{sub 3}). The other main crystalline compound in the SAS deposit was mercurous chloride. The main crystalline compound in the Quencher deposit was a uranium oxide compound. These are all sludge components. (6) SEM analysis of the Quencher deposit revealed crystalline uranium compounds within the sample

  2. Heat and Mass Transfer Processes in Scrubber of Flue Gas Heat Recovery Device

    OpenAIRE

    Veidenbergs, I; Blumberga, D; Vīgants, E; Kozuhars, G

    2010-01-01

    The paper deals with the heat and mass transfer process research in a flue gas heat recovery device, where complicated cooling, evaporation and condensation processes are taking place simultaneously. The analogy between heat and mass transfer is used during the process of analysis. In order to prepare a detailed process analysis based on heat and mass process descriptive equations, as well as the correlation for wet gas parameter calculation, software in the Microsoft Office Excel environment...

  3. Industry-Government-University Cooperative Research Program for the Development of Structural Materials from Sulfate-Rich FGD Scrubber Sludge

    Energy Technology Data Exchange (ETDEWEB)

    V. M. Malhotra; Y. P. Chugh

    2003-08-31

    The main aim of our project was to develop technology, which converts flue gas desulfurization (FGD) sulfate-rich scrubber sludge into value-added decorative materials. Specifically, we were to establish technology for fabricating cost effective but marketable materials, like countertops and decorative tiles from the sludge. In addition, we were to explore the feasibility of forming siding material from the sludge. At the end of the project, we were to establish the potential of our products by generating 64 countertop pieces and 64 tiles of various colors. In pursuit of our above-mentioned goals, we conducted Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) measurements of the binders and co-processed binders to identify their curing behavior. Using our 6-inch x 6-inch and 4-inch x 4-inch high pressure and high temperature hardened stainless steel dies, we developed procedures to fabricate countertop and decorative tile materials. The composites, fabricated from sulfate-rich scrubber sludge, were subjected to mechanical tests using a three-point bending machine and a dynamic mechanical analyzer (DMA). We compared our material's mechanical performance against commercially obtained countertops. We successfully established the procedures for the development of countertop and tile composites from scrubber sludge by mounting our materials on commercial boards. We fabricated more than 64 pieces of countertop material in at least 11 different colors having different patterns. In addition, more than 100 tiles in six different colors were fabricated. We also developed procedures by which the fabrication waste, up to 30-weight %, could be recycled in the manufacturing of our countertops and decorative tiles. Our experimental results indicated that our countertops had mechanical strength, which was comparable to high-end commercial countertop materials and contained substantially larger inorganic content than the commercial products. Our

  4. Organic neem compounds inhibit soft-rot fungal growth and improve the strength of anthracite bricks bound with collagen and lignin for use in iron foundry cupolas.

    Science.gov (United States)

    Kelsey, D J; Nieto-Delgado, C; Cannon, F S; Brennan, R A

    2015-07-01

    To examine organic neem compounds for their effective growth inhibition of saprotrophic soft-rot fungi on anthracite bricks bound with collagen and lignin for use in iron foundry cupolas as an alternative fuel source. Azadirachtin, crude neem oil (NO), and clarified neem oil extract (CNO) were combined with copper to inhibit the growth of the soft-rot fungus, Chaetomium globosum. A synergistic interaction was observed between CNO and a low dose of copper on nutrient media (two-factor anova with triplicate replication: P < 0·05). Interaction was confirmed on lab-scale collagen-lignin-anthracite briquettes by measuring their unconfined compressive (UC) strength. The effective collagen strength of the briquettes was enhanced by applying CNO to their surface prior to inoculation: the room temperature UC strength of the briquettes was 28 ± 4·6% greater when CNO (0·4 mg cm(-2) ) was surface-applied, and was 43 ± 3·0% greater when CNO plus copper (0·14 μg cm(-2) ) were surface-applied. Surface application of CNO and copper synergistically prevents fungal growth on bindered anthracite briquettes and increases their room temperature strength. This novel organic fungicidal treatment may increase the storage and performance of anthracite bricks in iron foundries, thereby saving 15-20% of the energy used in conventional coke production. © 2015 The Society for Applied Microbiology.

  5. Investigations on process design and fuel substitution in a cokeless, natural-gas-fuelled cupola furnace; Untersuchung zur Prozessgestaltung und Brennstoffsubstitution an einem kokslosen erdgasbefeuerten Kupolofen (KLKO)

    Energy Technology Data Exchange (ETDEWEB)

    Davies, M.; Scholz, R.

    2001-07-01

    A process model is presented and used for identifying options for controlling the cupola furnace process and for investigating natural gas substitutes. Fuel substitution will affect temperature curves (i.e. tapping temperatures and melting capacity), outlet temperatures and gas mass flow out of the preheating zone. The contribution presents several process variations to overcome these problems and compares them with the natural gas process. [German] Mit dem Prozessmodell werden zunaechst Moeglichkeiten der Steuerung von Abstichtemperatur und Schmelzleistung, insbesondere unter Beruecksichtigung der Schrottqualitaet (spezifische Oberflaeche a{sub G}), untersucht. Es wird gezeigt, dass das Prozessmodell die Ergebnisse aus der Praxis wiedergibt. Daran anschliessend wird mit dem Prozessmodell die Substitution von Erdgas durch minderwertige Gase untersucht (Brennstoffsubstitution, Ressourcenschonung). Durch die Brennstoffsubstitution veraendern sich die Temperaturverlaeufe und damit auch Abstichtemperatur und Schmelzleistung ganz erheblich. Auch die Austrittstemperaturen und der Massenstrom des Gases aus der als Gegenstromwaermetauscher ausgebildeten Vorwaermzone nehmen in Substitutionsfall zu. Beim KLKO besteht zur Zeit keine Moeglichkeit, die durch Brennstoffsubstitution entstandene Zunahme des Kapazitaetsstromverhaeltnisses in einer zweiten Prozessstufe zu kompensieren. Man koennte nun bei Einsatz von Ersatzbrennstoff daran denken, den Abgasstrom aus der Vorwaermzone abzuziehen und fuer eine weitere Waermerueckgewinnung (z.B. Abgasbypaesse, Abgasrueckfuehrung, Luftvorwaermung, O{sub 2}-Anreicherung) zu nutzen, um so die Energieausnutzung zu verbessern. Es werden moegliche Schaltungsvarianten fuer den Prozess des KLKO's zur Waermerueckgewinnung bei Einsatz von Ersatzbrennstoff vorgestellt und dem Prozess bei reinem Erdgasbetrieb vergleichend gegenuebergestellt. (orig.)

  6. Numerical Simulation of Three-dimensional Heat and Mass Transfer in Spray Cooling of Converter Gas in a Venturi Scrubber

    Institute of Scientific and Technical Information of China (English)

    LU Tao; WANG Kuisheng

    2009-01-01

    In order to predict the pressure drop, collection efficiency, velocity, temperature and mole fraction of vapor in an industrial venturi scrubber with water spraying for converter gas cooling, a three-dimensional model of heat and mass transfer with phase change is established. The gas flow and liquid droplets are treated as a continuous phase with a Eulerian approach and as a discrete phase with a Lagrangian approach, respectively. The coupled problem of heat, force, and mass transfers between gas flow and liquid droplets is solved by a commercial computational fluid dynamics(CFD) package, FLUENT. The numerical results show that the water injections have an important influence on the distributions of pressure, velocity, temperature, and mole fraction of vapor, especially for the spraying region in the throat. In the spraying region, the pressure drop is higher and the velocity is lower than in other regions due to the gas-droplet drag, while the temperature is lower because the droplet absorbs large amounts of heat from the high temperature gas and the mole fraction of vapor is higher due to the phase change of the liquid droplet. A number of cases with different water-to-gas volume flow ratios and baffle openings were simulated. The dependence of pressure drop, velocity, temperature, mole fraction of vapor, and collection efficiency on both the water-to-gas volume flow ratio and baffle opening are analyzed. The good agreements between simulation results and experiment data of pressure drop, temperature, and collection efficiency validate the model. The model should facilitate optimization of the venturi scrubber design in order to give better performance with lower pressure drops and higher collection efficiency.

  7. Large-Scale Mercury Control Technology Testing for Lignite-Fired Utilities - Oxidation Systems for Wet FGD

    Energy Technology Data Exchange (ETDEWEB)

    Steven A. Benson; Michael J. Holmes; Donald P. McCollor; Jill M. Mackenzie; Charlene R. Crocker; Lingbu Kong; Kevin C. Galbreath

    2007-03-31

    Mercury (Hg) control technologies were evaluated at Minnkota Power Cooperative's Milton R. Young (MRY) Station Unit 2, a 450-MW lignite-fired cyclone unit near Center, North Dakota, and TXU Energy's Monticello Steam Electric Station (MoSES) Unit 3, a 793-MW lignite--Powder River Basin (PRB) subbituminous coal-fired unit near Mt. Pleasant, Texas. A cold-side electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber are used at MRY and MoSES for controlling particulate and sulfur dioxide (SO{sub 2}) emissions, respectively. Several approaches for significantly and cost-effectively oxidizing elemental mercury (Hg{sup 0}) in lignite combustion flue gases, followed by capture in an ESP and/or FGD scrubber were evaluated. The project team involved in performing the technical aspects of the project included Babcock & Wilcox, the Energy & Environmental Research Center (EERC), the Electric Power Research Institute, and URS Corporation. Calcium bromide (CaBr{sub 2}), calcium chloride (CaCl{sub 2}), magnesium chloride (MgCl{sub 2}), and a proprietary sorbent enhancement additive (SEA), hereafter referred to as SEA2, were added to the lignite feeds to enhance Hg capture in the ESP and/or wet FGD. In addition, powdered activated carbon (PAC) was injected upstream of the ESP at MRY Unit 2. The work involved establishing Hg concentrations and removal rates across existing ESP and FGD units, determining costs associated with a given Hg removal efficiency, quantifying the balance-of-plant impacts of the control technologies, and facilitating technology commercialization. The primary project goal was to achieve ESP-FGD Hg removal efficiencies of {ge}55% at MRY and MoSES for about a month.

  8. SETAC-U.S. EPA WET INITIATIVES: ALL WET AND NOTHING BUT WET

    Science.gov (United States)

    To ensure that sould scientific principles and sound science are applied to the challenging issues in t he Whole Effluent Toxicity (WET) process, the Society of Environmental Toxicology and Chemistry (SETAC) Foundation for Environmental Education was awarded a cooperative agreem...

  9. SETAC-U.S. EPA WET INITIATIVES: ALL WET AND NOTHING BUT WET

    Science.gov (United States)

    To ensure that sould scientific principles and sound science are applied to the challenging issues in t he Whole Effluent Toxicity (WET) process, the Society of Environmental Toxicology and Chemistry (SETAC) Foundation for Environmental Education was awarded a cooperative agreem...

  10. Squeezing wetting and nonwetting liquids.

    Science.gov (United States)

    Samoilov, V N; Persson, B N J

    2004-01-22

    We present molecular-dynamics results for the squeezing of octane (C8H18) between two approaching solid elastic walls with different wetting properties. The interaction energy between the octane bead units and the solid walls is varied from a very small value (1 meV), corresponding to a nonwetting surface with a very large contact angle (nearly 180 degrees), to a high value (18.6 meV) corresponding to complete wetting. When at least one of the solid walls is wetted by octane we observe well defined molecular layers develop in the lubricant film when the thickness of the film is of the order of a few atomic diameters. An external squeezing-pressure induces discontinuous, thermally activated changes in the number n of lubricant layers (n-->n-1 layering transitions). With increasing interaction energy between the octane bead units and the solid walls, the transitions from n to n-1 layers occur at higher average pressure. This results from the increasing activation barrier to nucleate the squeeze-out with increasing lubricant-wall binding energy (per unit surface area) in the contact zone. Thus, strongly wetting lubricant fluids are better boundary lubricants than the less wetting ones, and this should result in less wear. We analyze in detail the effect of capillary bridge formation (in the wetting case) and droplets formation (in the nonwetting case) on the forces exerted by the lubricant on the walls. For the latter case small liquid droplets may be trapped at the interface, resulting in a repulsive force between the walls during squeezing, until the solid walls come into direct contact, where the wall-wall interaction may be initially attractive. This effect is made use of in some practical applications, and we give one illustration involving conditioners for hair care application.

  11. Wet flue gas desulfurization processes

    Directory of Open Access Journals (Sweden)

    Hayrunnisa Çavuşoğlu

    2013-04-01

    Full Text Available The wet flue gas desulfurization process is widely used for the treatment of exhaust gases in power stations. Due to its high level of effectiveness over the already available processes, it has also been the mostly preferred method by industry. Its high SO2 removal efficiency, wide applicability of absorption chemicals and the ease of the chemical process handling which does not require comprehensive konowledge are among the main advantages of this process. In this article, various wet flue gas desulfurization processes such as lime/limestone have beendiscussed.

  12. New advances in use of natural gas/oxygen burners for replacement of coke in cupola furnaces; Neue Erkenntnisse ueber den Einsatz von Erdgas-Sauerstoff-Brenner in einem Kupolofen zur Kokssubstitution

    Energy Technology Data Exchange (ETDEWEB)

    Frielingsdorf, O. [Air Products GmbH, Hattingen (Germany); Breidenbach, W. [Saint Gobain Gussrohr GmbH und Co. KG, Saarbruecken (Germany)

    2005-12-01

    Air Products GmbH's APCOS-Technology has frequently been featured on these pages. The most recent cooperation program implemented with Saint-Gobain Gussrohr GmbH has yielded significant new discoveries in this field. In addition to the potential for replacement of a considerable percentage of coke and thus attainment of greater independence from this energy source, it also became apparent that the cupola furnace melting process achieves superior operating parameters, thanks to a drastic reduction in combustion draft without any loss in melting performance or iron quality. (orig.)

  13. 40 CFR Table 3 to Subpart Ec of... - Operating Parameters To Be Monitored and Minimum Measurement and Recording Frequencies

    Science.gov (United States)

    2010-07-01

    ... flow rate Hourly 1×hour ✔ ✔ Minimum pressure drop across the wet scrubber or minimum horsepower or... scrubber followed by fabric filter Wet scrubber Dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge rate Continuous 1×hour ✔ ✔ ✔ Maximum fabric filter...

  14. 40 CFR Table 3 to Subpart Hhh of... - Operating Parameters To Be Monitored and Minimum Measurement and Recording Frequencies

    Science.gov (United States)

    2010-07-01

    ... mercury (Hg) sorbent flow rate Hourly Once per hour ✔ ✔ Minimum pressure drop across the wet scrubber or... rural HMIWI HMIWI a with dry scrubber followed by fabric filter HMIWI a with wet scrubber HMIWI a with dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum...

  15. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2006-03-01

    - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

  16. Oil condensation boilers and problems with sulphur. Sulphur separation for oil-fired condensation boilers and flue gas scrubbers - six measurements at different boilers

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1988-11-01

    Three condensation boilers, one condensating scrubber boiler and two waste gas scrubbers were the objects of measurements made to determine to what degree sulphur is separated. The three condensation boilers which are only equipped with a condenser for the condensation of the combustion water shaved separation levels of between 0.5 and 3.5%. They are therefore not suitable for cutting the SO/sub 2/-emissions from the combustion of sulphur-containing fuel oil. The washer boilers showed better results (40-45%) despite the fact that it works with acid washing liquid (2.85 pH). To explain the high level of separation one must assume that under oxygen influence a large part of the sulphur dioxide is further oxidised to sulphuric acid. Alkaline washers showed very good separations of up to 90%. Here again a large part of the sulphur dioxide further oxidises to sulfates.

  17. Models for wet scrubbing of SO{sub 2} and NO{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Brogren, C.

    1997-02-01

    Combustion of fossil fuels is the main source for emissions of sulfur dioxide and nitrogen oxides. Emission regulations and the growing environmental awareness will make great demands upon cost-effective deSO{sub 2} and deNO{sub x} techniques in the future. To be able to optimize existing techniques it is crucial to increase the understanding of the processes taking place within the scrubber, i.e. chemistry, mass transfer and fluid dynamics. Mathematical modeling is an important tool for increasing the understanding. This research work was divided into two different parts: the first part focused on identifying suitable absorbents for wet NO{sub x} removal and the second part focused on deriving a model for absorption of SO{sub 2} into a limestone slurry, wet flue gas desulfurization. The ability to absorb NO{sub x} were tested in a bubbler for the most common oxidizing agents and EDTA. Further experiments were done with the most promising absorbents, NaClO{sub 2} and KMnO{sub 4}, in a packed column where the chemistry was studied in more detail. The absorption process was modeled and rate constants describing the absorption were estimated. A model based on the penetration theory was derived to calculate the absorption of SO{sub 2} into a limestone slurry droplet. The model includes instantaneous acid-base reactions as well as reactions with finite rates, e.g. limestone dissolution, CO{sub 2} hydrolysis, etc. The model was used to quantify the extent of spatial variations in mass transfer within a spray scrubber and the impact of the reactions with finite rate on SO{sub 2} mass transfer. Due to the significance of limestone dissolution a separate model taking into account the impact of the residence time distribution of a continuous system on the particle size distribution was derived. The model was verified by dissolution experiments in a continuous stirred tank reactor. 81 refs, 34 figs, 10 tabs

  18. Inhibiting Wet Oxidation of Ammonia

    Science.gov (United States)

    Onisko, D. B. L.

    1985-01-01

    Simple modification of wet-oxidation process for treating organicwaste reduces loss of fixed nitrogen, potentially valuable byproduct of process. Addition of sufficient sulfuric acid to maintain reaction pH below 3 greatly reduces oxidation of ammonia to free nitrogen. No equipment modification required.

  19. Wedge wetting by electrolyte solutions

    Science.gov (United States)

    Mußotter, Maximilian; Bier, Markus

    2017-09-01

    The wetting of a charged wedgelike wall by an electrolyte solution is investigated by means of classical density functional theory. As in other studies on wedge wetting, this geometry is considered as the most simple deviation from a planar substrate, and it serves as a first step toward more complex confinements of fluids. By focusing on fluids containing ions and surface charges, features of real systems are covered that are not accessible within the vast majority of previous theoretical studies concentrating on simple fluids in contact with uncharged wedges. In particular, the filling transition of charged wedges is necessarily of first order, because wetting transitions of charged substrates are of first order and the barrier in the effective interface potential persists below the wetting transition of a planar wall; hence, critical filling transitions are not expected to occur for ionic systems. The dependence of the critical opening angle on the surface charge, as well as the dependence of the filling height, of the wedge adsorption, and of the line tension on the opening angle and on the surface charge are analyzed in detail.

  20. Intensification of volatile organic compounds mass transfer in a compact scrubber using the O3/H2O2 advanced oxidation process: kinetic study and hydroxyl radical tracking.

    Science.gov (United States)

    Biard, Pierre-François; Couvert, Annabelle; Renner, Christophe; Levasseur, Jean-Pierre

    2011-11-01

    This study assesses the potential of ozonation and advanced oxidation process O(3)/H(2)O(2) to enhance the dimethyldisulfide (DMDS) mass transfer in a compact chemical scrubber developed for air treatment applications. Theoretical calculations, through Hatta number and enhancement factor evaluations for two parallel irreversible reactions, were compared to experimental data and enabled the description of the mass transfer mechanisms. These calculations required the determination of the kinetic constant of the DMDS oxidation by molecular ozone ( [Formula: see text] ) and the measurement of the hydroxyl radical concentration within the scrubber. The competitive kinetic method using the 1,2-dihydroxybenzene (resorcinol) enabled to determine a value of the kinetic constant [Formula: see text] of 1.1×10(6)M(-1)s(-1) at 293K. Then, experiments using para-chlorobenzoic acid in solution allowed measuring the average hydroxyl concentration in the scrubber between the inlet and the outlet depending on the chemical conditions (pH and inlet O(3) and H(2)O(2) concentrations). High hydroxyl radical concentrations (10(-8)M) and ratio of the HO°-to-O(3) exposure (R(ct)≈10(-4)) were put in evidence.

  1. 槽式擦洗机在红土矿中的应用和改进%Application and Improvement of Trough Type Scrubber in Lateritic Ore

    Institute of Scientific and Technical Information of China (English)

    余晓光

    2014-01-01

    Since the ore of a certain overseas open-pit lateritic mine project belongs to refractory ore, secondary ore washing process circuit of drum washer+trough type scrubber shall be adopted. But because of difference adaptability of lateritic ore on the structure of trough type scrubber, such problems as insufficient lifting capacity of sand return and short service life of bearing parts at tail end will be occurred. This paper elaborates a good solution of these problems through improvement on seal structure of water sealing box of equipment structure and trough type scrubber.%国外某露天红土矿项目因其矿石属难洗矿石,采用圆筒洗矿机+槽式擦洗机二段洗矿的工艺流程,但由于槽式擦洗机结构上对红土矿适应性的差异,出现了返砂提升量不足和尾端轴承部件使用寿命短暂等问题,通过对设备结构和槽式擦洗机水密封箱密封结构的改造,很好地解决了这些问题。

  2. Wetting hysteresis induced by nanodefects.

    Science.gov (United States)

    Giacomello, Alberto; Schimmele, Lothar; Dietrich, Siegfried

    2016-01-19

    Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles.

  3. Wetting of flexible fibre arrays.

    Science.gov (United States)

    Duprat, C; Protière, S; Beebe, A Y; Stone, H A

    2012-02-23

    Fibrous media are functional and versatile materials, as demonstrated by their ubiquity both in natural systems such as feathers and adhesive pads and in engineered systems from nanotextured surfaces to textile products, where they offer benefits in filtration, insulation, wetting and colouring. The elasticity and high aspect ratios of the fibres allow deformation under capillary forces, which cause mechanical damage, matting self-assembly or colour changes, with many industrial and ecological consequences. Attempts to understand these systems have mostly focused on the wetting of rigid fibres or on elastocapillary effects in planar geometries and on a fibre brush withdrawn from an infinite bath. Here we consider the frequently encountered case of a liquid drop deposited on a flexible fibre array and show that flexibility, fibre geometry and drop volume are the crucial parameters that are necessary to understand the various observations referred to above. We identify the conditions required for a drop to remain compact with minimal spreading or to cause a pair of elastic fibres to coalesce. We find that there is a critical volume of liquid, and, hence, a critical drop size, above which this coalescence does not occur. We also identify a drop size that maximizes liquid capture. For both wetting and deformation of the substrates, we present rules that are deduced from the geometric and material properties of the fibres and the volume of the drop. These ideas are applicable to a wide range of fibrous materials, as we illustrate with examples for feathers, beetle tarsi, sprays and microfabricated systems.

  4. Wet water glass production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant of a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE, Italy, in 1997. and 1998, increasing detergent zeolite production, from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate dissolution plant. The main goal was increasing the detergent zeolite production. The technological cycle of NaOH was closed, and no effluents emitted, and there is no pollution (except for the filter cake. The wet water glass production process is fully automatized, and the product has uniform quality. The production process can be controlled manually, which is necessary during start - up, and repairs. By installing additional process equipment (centrifugal pumps and heat exchangers technological bottlenecks were overcome, and by adjusting the operation of autoclaves, and water glass filters and also by optimizing the capacities of process equipment.

  5. European wet deposition maps based on measurements

    NARCIS (Netherlands)

    Leeuwen EP van; Erisman JW; Draaijers GPJ; Potma CJM; Pul WAJ van; LLO

    1995-01-01

    To date, wet deposition maps on a European scale have been based on long-range transport model results. For most components wet deposition maps based on measurements are only available on national scales. Wet deposition maps of acidifying components and base cations based on measurements are needed

  6. European wet deposition maps based on measurements

    NARCIS (Netherlands)

    Leeuwen EP van; Erisman JW; Draaijers GPJ; Potma CJM; Pul WAJ van; LLO

    1995-01-01

    To date, wet deposition maps on a European scale have been based on long-range transport model results. For most components wet deposition maps based on measurements are only available on national scales. Wet deposition maps of acidifying components and base cations based on measurements are needed

  7. 49 CFR 173.159 - Batteries, wet.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Batteries, wet. 173.159 Section 173.159... Batteries, wet. (a) Electric storage batteries, containing electrolyte acid or alkaline corrosive battery fluid (wet batteries), may not be packed with other materials except as provided in paragraphs (g)...

  8. 感应电炉熔炼与双联熔炼成本比较%Cost Comparison between Induction Furnace Melting and Cupola + Induction Furnace Duplex Melting

    Institute of Scientific and Technical Information of China (English)

    徐万里; 陈凯; 谢桂平; 邹卫

    2013-01-01

    The induction furnace melting process was adopted as the substitute for the former cupola + induction furnace duplex melting process.The melting cost accounting of two melting processes showed that as the result of using induction furnace melting,the cost of melting materials was reduced by 475 yuan/t,standard coal consumption of castings reduced by 279.6 kgce/t,fuel and power cost was reduced by 521 yuar/t,the emission of CO2、SO2 was scarcely eliminated,the labor strength was reduced and the working environment was improved.In addition,the main problems occurring during this reformation process and trial-production process was introduced included:treatment of water steam from the cooling tower,slag crusting,cleaning of returned metal charge,chilling tendency increasing of ductile iron,etc.,as well as the relative improving measures to solve above problems were also introduced.%采用感应电炉熔炼取代“冲天炉+电炉”双联熔炼工艺.2种工艺成本核算结果显示:采用电炉熔炼后材料成本节约475元/t,铸件单吨标煤消耗下降279.6 kgce/t,车间燃动成本降低521元/t,基本消除了CO2、SO2排放,减少了炉渣的排放,降低了工人的劳动强度,改善了工作环境.此外还介绍了该项改造及试产过程中出现的主要问题,包括冷却塔水蒸气、炉渣结壳、回炉料清理、球铁白口倾向增大等,以及相应的改进措施.

  9. Wet Work and Barrier Function.

    Science.gov (United States)

    Fartasch, Manigé

    2016-01-01

    Wet work defined as unprotected exposure to humid environments/water; high frequencies of hand washing procedures or prolonged glove occlusion is believed to cause irritant contact dermatitis in a variety of occupations. This review considers the recent studies on wet-work exposure and focuses on its influence on barrier function. There are different methods to study the effect of wet work on barrier function. On the one hand, occupational cohorts at risk can be monitored prospectively by skin bioengineering technology and clinical visual scoring systems; on the other hand, experimental test procedures with defined application of water, occlusion and detergents are performed in healthy volunteers. Both epidemiological studies and the results of experimental procedures are compared and discussed. A variety of epidemiological studies analyze occupational cohorts at risk. The measurement of transepidermal water loss, an indicator of the integrity of the epidermal barrier, and clinical inspection of the skin have shown that especially the frequencies of hand washing and water contact/contact to aqueous mixtures seem to be the main factors for the occurrence of barrier alterations. On the other hand, in a single cross-sectional study, prolonged glove wearing (e.g. occlusion for 6 h per shift in clean-room workers) without exposure to additional hazardous substances seemed not to affect the skin negatively. But regarding the effect of occlusion, there is experimental evidence that previously occluded skin challenged with sodium lauryl sulfate leads to an increased susceptibility to the irritant with an aggravation of the irritant reaction. These findings might have relevance for the real-life situation in so far as after occupational glove wearing, the skin is more susceptible to potential hazards to the skin even during leisure hours.

  10. Growth responses of selected freshwater algae to trace elements and scrubber ash slurry generated by coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Vocke, R.W.

    1979-01-01

    The development and implementation of standard toxicity tests is a necessity if consistent and reliable data are to be obtained for water quality criteria. The adapted EPA AAPBT is an ideal static algal toxicity test system. The algal test medium has a chemical composition similar to natural unpolluted waters of low ionic strength. It is appropriate to use MATC water quality criteria when assessing the potential impact of pollutants generated by coal-fired power stations because these energy-generated pollutants typically enter aquatic systems in small quantities over long periods. The MATC water quality criteria are estimates of trace element and SASE levels, based on the most sensitive alga investigated, that will not cause significant changes in naturally-functioning algal populations. These levels are 0.016f mg L/sup -1/ As(V), 0.001 mg L/sup -1/ Cd(II), 0.004 mg L/sup -1/ Hg(II), 0.006 mg L/sup -1/ Se(VI), and 0.344% SASE. To provide viable working water quality criteria, an extrapolation from the laboratory to the natural environment must be made. Therefore, those oxidation states of the trace elements were selected which are the dominant states occurring in natural, unpolluted, slightly alkaline freshwaters. It must be pointed out that these MATC values are based on algal responses to single toxicants and no allowance is made for synergistic, additive, or antagonistic relationships which could occur in natural aquatic systems. Additionally, natural chelation may influence toxicity. The highly toxic nature of potential pollutants from coal-fired generating plants emphasizes the need for minimizing stack effluent pollutants and retaining scrubber ash slurry for proper disposal in an effort to maintain trace elements in concentration ranges compatible with naturally-functioning ecosystems.

  11. Polycyclic aromatic hydrocarbon emission profiles and removal efficiency by electrostatic precipitator and wetfine scrubber in an iron ore sintering plant

    Energy Technology Data Exchange (ETDEWEB)

    Ettore Guerriero; Antonina Lutri; Rosanna Mabilia; Maria Concetta Tomasi Sciano; Mauro Rotatori [Istituto sull' Inquinamento Atmosferico, Monterotondo Scalo (Italy). Consiglio Nazionale delle Ricerche

    2008-11-15

    A monitoring campaign of polychlorinated dibenzo-p-dioxins and dibenzofurans, polyaromatic hydrocarbons (PAHs), and polychlorinated biphenyl was carried out in an Italian iron ore sintering plant by sampling the combustion gases at the electrostatic precipitator (ESP) outlet, at the Wetfine scrubber (WS) outlet, and by collecting the ESP dust. Few data are available on these micropollutants produced in iron ore sintering plants, particularly from Italian plants. This study investigates the PAH emission profiles and the removal efficiency of ESPs and WS. PAHs were determined at the stack, ESP outlet flue gases, and in ESP dust to characterize the emission profiles and the performance of the ESP and the WS for reducing PAH emission. The 11 PAHs monitored are listed in the Italian legislative decree 152/2006. The mean total PAH sum concentration in the stack flue gases is 3.96 {mu}g/N m{sup 3}, in ESP outlet flue gases is 9.73 {mu}g/N m{sup 3}, and in ESP dust is 0.53 {mu}g/g. Regarding the emission profiles, the most abundant compound is benzo(b)fluoranthene, which has a relative low BaP toxic equivalency factors (TEF) value, followed by dibenzo(a,l)pyrene, which has a very high BaP(TEF) value. The emission profiles in ESP dust and in the flue gases after the ESP show some changes, whereas the fingerprint in ESP and stack flue gases is very similar. The removal efficiency of the ESP and of WS on the total PAH concentration is 5.2 and 59.5%, respectively. 2 figs., 5 tabs.

  12. Wetting properties of nanostructured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Canut, S. [Laboratoire de Physique de la Matiere Condensee et Nanostructures (UMR CNRS 5586), Universite Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France)]. E-mail: ramos@lpmcn.univ-lyon1.fr

    2006-04-15

    Swift heavy ion irradiation is a powerful tool to tailor surfaces under controlled conditions at a nanometric scale. The growing importance of nanostructured surfaces for a wide variety of applications and fundamental investigations is now well established. In this paper I will mainly discuss the interest of such surfaces for investigations concerning solid-liquid interfaces. The role played by topographical defects on wetting properties of solid surfaces, and both the dissipative and the confinement effects on the interface will be demonstrated by simple examples.

  13. Single-metalloprotein wet biotransistor

    Science.gov (United States)

    Alessandrini, Andrea; Salerno, Marco; Frabboni, Stefano; Facci, Paolo

    2005-03-01

    Metalloproteins are redox molecules naturally shuttling electrons with high efficiency between molecular partners. As such, they are candidates of choice for bioelectronics. In this work, we have used bacterial metalloprotein azurin, hosted in a nanometer gap between two electrically biased gold electrodes, to demonstrate an electrochemically gated single-molecule transistor operating in an aqueous environment. Gold-chemisorbed azurin shows peaks in tunneling current upon changing electrode potential and a related variation in tunneling barrier transparency which can be exploited to switch an electron current through it. These results suggest the wet approach to molecular electronics as a viable method for exploiting electron transfer of highly specialized biomolecules.

  14. 大批量生产条件下冲天炉与电炉熔炼成本比较%Electrical Furnace and Cupola Furnace Melting Cost Comparison under Mass Production Conditions

    Institute of Scientific and Technical Information of China (English)

    周军; 王冬; 方异锋

    2013-01-01

    With a foundry shop having productive capacity of 100 000 t of gray iron cylinder block and cylinder head castings as object of analysis,the problem whether the cupola + electrical holding furnace duplex melting or the single medium frequency induction furnace melting to be adopted for the casting production was comparatively analyzed in the aspects of the characteristics of melting furnace itself,raw materials requirements,usage possibility of the afterheat,operation and maintenance difficulties,investment and running cost,etc. It was considered that, although the initial investment of the cupola is relatively higher,however its melting running cost is lower,its melting charge requirements are lower,it can supply molten iron continuously,metallurgical properties of its molten iron are better, its afterheat and solid emissions are reusable,its energy consumption is less. It was suggested finally to adopt the cupola + electrical holding furnace duplex melting.%以年产10万t灰铸铁缸体、缸盖铸件的车间为对象,针对铸造生产是采用冲天炉+保温电炉的双联熔炼方式还是采用中频感应电炉的单一熔炼方式问题,从熔炉自身特点、对原料要求、余热利用可行性、操作维护难度、投资及运行成本等方面进行了综合对比;认为,虽然冲天炉的初期投资较高,但其熔化运行成本低、对炉料要求低、供液连续、铁液冶金性能好、余热和固体排放物可回收利用、能源消耗少,建议采用冲天炉+保温电炉双联熔炼方式.

  15. Mold management of wetted carpet.

    Science.gov (United States)

    Ong, Kee-Hean; Dixit, Anupma; Lewis, Roger D; MacDonald Perkins, Maureen; Backer, Denis; Condoor, Sridhar; Emo, Brett; Yang, Mingan

    2014-01-01

    This study evaluated the growth and removal of fungi on wetted carpet using newly designed technologies that rely on physical principles of steam, heat, and fluid flow. Sixty samples of carpet were embedded with heat-treated house dust, followed by embedding, wearing with a hexapod, and wetting. Samples were inoculated using a liquid suspension of Cladosporium sphaerospermum prior to placement over a water-saturated foam pad. Incubation times were 24 hr, 7 days, and 30 days. Cleaning was performed using three methods; high-flow hot water extraction, hot water and detergent, and steam. Fungal loading increased from approximately 1500 colony forming units per area (CFU/cm(2)) in 24 hr to a maximum of approximately 10,200 CFU/cm(2) after 7 days with a slight decline to 9700 CFU/cm(2) after 30 days incubation. Statistically significant differences were found among all three methods for removal of fungi for all three time periods (p Steam-vapor was significantly better than the alternative methods (p steam has a consistent fungal removal rate, the detergent and high-flow, hot water methods decline in efficiency with increasing incubation time.

  16. Elucidating the mysteries of wetting.

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Edmund Blackburn, III (,; ); Bourdon, Christopher Jay; Grillet, Anne Mary; Sackinger, Philip A.; Grest, Gary Stephen; Emerson, John Allen; Ash, Benjamin Jesse; Heine, David R.; Brooks, Carlton, F.; Gorby, Allen D.

    2005-11-01

    Nearly every manufacturing and many technologies central to Sandia's business involve physical processes controlled by interfacial wetting. Interfacial forces, e.g. conjoining/disjoining pressure, electrostatics, and capillary condensation, are ubiquitous and can surpass and even dominate bulk inertial or viscous effects on a continuum level. Moreover, the statics and dynamics of three-phase contact lines exhibit a wide range of complex behavior, such as contact angle hysteresis due to surface roughness, surface reaction, or compositional heterogeneities. These thermodynamically and kinetically driven interactions are essential to the development of new materials and processes. A detailed understanding was developed for the factors controlling wettability in multicomponent systems from computational modeling tools, and experimental diagnostics for systems, and processes dominated by interfacial effects. Wettability probed by dynamic advancing and receding contact angle measurements, ellipsometry, and direct determination of the capillary and disjoining forces. Molecular scale experiments determined the relationships between the fundamental interactions between molecular species and with the substrate. Atomistic simulations studied the equilibrium concentration profiles near the solid and vapor interfaces and tested the basic assumptions used in the continuum approaches. These simulations provide guidance in developing constitutive equations, which more accurately take into account the effects of surface induced phase separation and concentration gradients near the three-phase contact line. The development of these accurate models for dynamic multicomponent wetting allows improvement in science based engineering of manufacturing processes previously developed through costly trial and error by varying material formulation and geometry modification.

  17. Wetting and Non-Wetting Models of Black Carbon Activation

    Science.gov (United States)

    Henson, B. F.; Laura, S.

    2006-12-01

    We present the results of recent modeling studies on the activation of black carbon (BC) aerosol to form cloud condensation nuclei (CCN). We use a model of BC activation based on a general modification of the Koehler equation for insoluble activation in which we introduce a term based on the activity of water adsorbed on the particle surface. We parameterize the model using the free energy of adsorption, a parameter directly comparable to laboratory measurements of water adsorption on carbon. Although the model of the water- surface interaction is general, the form of the activation equation that results depends upon a further model of the distribution of water on the particle. One possible model involves the symmetric growth of a water shell around the isoluble particle core (wetting). This model predicts upper and lower bounding curves for the activation supersaturation given by the range of water interaction energies from hydrophobic to hydrophilic which are in agreement with a large body of recent activation data. The resulting activation diameters are from 3 to 10 times smaller than activation of soluble particles of identical dry diameter. Another possible model involves an exluded liquid droplet growing in contact with the particle (non-wetting). The geometry of this model much more resembles classic assumptions of heterogeneous nucleation theory. This model can yield extremely high activation supersaturation as a function of diameter, as has been observed in some experiments, and enables calculations in agreement with some of these results. We discuss these two geometrical models of water growth, the different behaviors predicted by the resulting activation equation, and the means to determine which model of growth is appropriate for a given BC particle characterized by either water interaction energy or morphology. These simple models enable an efficient and physically reasonable means to calculate the activation of BC aerosol to form CCN based upon a

  18. Drop splashing is independent of substrate wetting

    CERN Document Server

    Latka, Andrzej; Nagel, Sidney R; de Pablo, Juan J

    2016-01-01

    A liquid drop impacting a dry solid surface with sufficient kinetic energy will splash, breaking apart into numerous secondary droplets. This phenomenon shows many similarities to forced wetting, including the entrainment of air at the contact line. Because of these similarities and the fact that forced wetting has been shown to depend on the wetting properties of the surface, existing theories predict splashing to depend on wetting properties as well. However, using high-speed interference imaging we observe that wetting properties have no effect on splashing for various liquid-surface combinations. Additionally, by fully resolving the Navier-Stokes equations at length and time scales inaccessible to experiments, we find that the shape and motion of the air-liquid interface at the contact line are independent of wettability. We use these findings to evaluate existing theories and to compare splashing with forced wetting.

  19. Optimized wet clutches:simulation and tribotesting

    OpenAIRE

    2006-01-01

    Wet clutches are used in a variety of different machinery. Wet clutches and brakes are frequently used to distribute torque in vehicle drive-trains. The clutches can be located in e.g. automatic transmissions or limited slip differentials. Their frictional behavior is of great importance for the overall vehicle behavior and has to be thoroughly investigated when designing new wet clutch applications. Frictional behavior is normally investigated in test rigs where complete friction discs are t...

  20. The Wet-Dog Shake

    CERN Document Server

    Dickerson, Andrew; Bauman, Jay; Chang, Young-Hui; Hu, David

    2010-01-01

    The drying of wet fur is a critical to mammalian heat regulation. In this fluid dynamics video, we show a sequence of films demonstrating how hirsute animals to rapidly oscillate their bodies to shed water droplets, nature's analogy to the spin cycle of a washing machine. High-speed videography and fur-particle tracking is employed to determine the angular position of the animal's shoulder skin as a function of time. X-ray cinematography is used to track the motion of the skeleton. We determine conditions for drop ejection by considering the balance of surface tension and centripetal forces on drops adhering to the animal. Particular attention is paid to rationalizing the relationship between animal size and oscillation frequency required to self-dry.

  1. Externally Wetted Ionic Liquid Thruster

    Science.gov (United States)

    Lozano, P.; Martinez-Sanchez, M.; Lopez-Urdiales, J. M.

    2004-10-01

    This paper presents initial developments of an electric propulsion system based on ionic liquid ion sources (ILIS). Propellants are ionic liquids, which are organic salts with two important characteristics; they remain in the liquid state at room temperature and have negligible vapor pressure, thus allowing their use in vacuum. The working principles of ILIS are similar to those of liquid metal ion sources (LMIS), in which a Taylor cone is electrostatically formed at the tip of an externally wetted needle while ions are emitted directly from its apex. ILIS have the advantage of being able to produce negative ions that have similar masses than their positive counterparts with similar current levels. This opens up the possibility of achieving plume electrical neutrality without electron emitters. The possible multiplexing of these emitters is discussed in terms of achievable thrust density for applications other than micro-propulsion.

  2. Wet granular walkers and climbers

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Z S; Steinberger, A; Seemann, R; Herminghaus, S, E-mail: audrey.steinberger@ens-lyon.fr [Max Planck Institute for Dynamics and Self-Organization, Bunsenstrasse 10, D-37073 Goettingen (Germany)

    2011-05-15

    Mechanisms of locomotion in microscopic systems are of great interest not only for technological applications but also for the sake of understanding, and potentially harnessing, processes far from thermal equilibrium. Downscaling is a particular challenge and has led to a number of interesting concepts, including thermal ratchet systems and asymmetric swimmers. Here we present a granular ratchet system employing a particularly robust mechanism that can be implemented in various settings. The system consists of wetted spheres of different sizes that adhere to each other, and are subject to a symmetric oscillating, zero average external force field. An inherent asymmetry in the mutual force network leads to force rectification and hence to locomotion. We present a simple model that accounts for the observed behaviour, underscores its robustness and suggests a potential scalability of the concept.

  3. Carbon nanotube fiber spun from wetted ribbon

    Science.gov (United States)

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  4. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe

    2007-05-01

    Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.

  5. Recycling municipal incinerator fly- and scrubber-ash into fused slag for the substantial replacement of cement in cement-mortars.

    Science.gov (United States)

    Lee, Tzen-Chin; Rao, Ming-Kang

    2009-06-01

    Fly- and scrubber-ash (weight ratio of approximately 1:3) from municipal solid waste incinerators (MSWI) are a major land-fill disposal problem due to their leaching of heavy metals. We uniformly mixed both types of ash with optimal amounts of waste glass frit, which was then melted into a glassy slag. The glassy slag was then pulverized to a particle size smaller than 38microm for use as a cement substitute (20-40% of total cement) and blended with sand and cement to produce slag-blended cement-mortar (SCM) specimens. The toxicity characteristics of the leaching procedure tests on the pulverized slag samples revealed that the amount of leached heavy metals was far below regulatory thresholds. The compressive strength of the 28-day cured SCM specimens was comparable to that of ordinary Portland cement mortars, while the compressive strength of specimens cured for 60 or 90 days were 3-11% greater. The observed enhanced strength is achieved by Pozzolanic reaction. Preliminary evaluation shows that the combination of MSWI fly- and scrubber-ash with waste glass yields a cost effective and environmentally friendly cement replacement in cement-mortars.

  6. SUBMERGED GRAVEL SCRUBBER DEMONSTRATION AS A PASSIVE AIR CLEANER FOR CONTAINMENT VENTING AND PURGING WITH SODIUM AEROSOLS -- CSTF TESTS AC7 - AC10

    Energy Technology Data Exchange (ETDEWEB)

    HILLIARD, R K.; MCCORMACK, J D.; POSTMA, A K.

    1981-11-01

    Four large-scale air cleaning tests (AC7 - AC10) were performed in the Containment Systems Test Facility (CS'lF) to demonstrate the performance of a Submerged Gravel Scrubber for cleaning the effluent gas from a vented and purged breeder reactor containment vessel. The test article, comprised of a Submerged Gravel Scrubber (SGS) followed by a high efficiency fiber demister, had a design gas flow rate of 0.47 m{sup 3}/s (1000 ft{sup 3}/min) at a pressure drop of 9.0 kPa (36 in. H{sub 2}O). The test aerosol was sodium oxide, sodium hydroxide, or sodium carbonate generated in the 850-m{sup 3} CSTF vessel by continuously spraying sodium into the air-filled vessel while adding steam or carbon dioxide. Approximately 4500 kg (10,000 lb) of sodium was sprayed over a total period of 100 h during the tests. The SGS/Demister system was shown to be highly efficient (removing ~99.98% of the entering sodium aerosol mass), had a high mass loading capacity, and operated in a passive manner, with no electrical requirement. Models for predicting aerosol capture, gas cooling, and pressure drop are developed and compared with experimental results.

  7. 7 CFR 29.2570 - Wet (W).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Wet (W). 29.2570 Section 29.2570 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2570 Wet (W). Any sound tobacco...

  8. 7 CFR 29.3567 - Wet (W).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Wet (W). 29.3567 Section 29.3567 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3567 Wet (W). Any sound tobacco containing excessive moisture to the extent that it is...

  9. 7 CFR 29.2316 - Wet (W).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Wet (W). 29.2316 Section 29.2316 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2316 Wet...

  10. 7 CFR 29.3077 - Wet (W).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Wet (W). 29.3077 Section 29.3077 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Wet (W). Any sound tobacco containing excessive moisture to the extent that it is in an unsafe...

  11. 7 CFR 29.1083 - Wet (W).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Wet (W). 29.1083 Section 29.1083 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1083 Wet (W). Any sound tobacco containing excessive moisture to the extent that it is...

  12. Characteristics of wet work in nurses

    NARCIS (Netherlands)

    Jungbauer, FHW; Steenstra, FB; Groothoff, JW; Coenraads, PJ

    Background objectives: Nursing is known for its high prevalence of hand dermatitis, mainly caused by the intense exposure to wet work in nursing activities. We aimed to study the characteristics of wet work exposure in nursing. Method: Trained observers monitored the duration and frequency of

  13. Curvature controlled wetting in two dimensions

    DEFF Research Database (Denmark)

    Gil, Tamir; Mikheev, Lev V.

    1995-01-01

    . As the radius of the substrate r0→∞, the leading effect of the curvature is adding the Laplace pressure ΠL∝r0-1 to the pressure balance in the film. At temperatures and pressures under which the wetting is complete in planar geometry, Laplace pressure suppresses divergence of the mean thickness of the wetting...

  14. Forced wetting of a reactive surface.

    Science.gov (United States)

    Blake, T D

    2012-11-01

    The dynamic wetting of water on gelatin-coated poly(ethylene terephthalate) (GC-PET) has been investigated by forced wetting over a wide speed range and compared with earlier data obtained with unmodified PET. The results were analysed according to the molecular-kinetic theory of dynamic wetting (MKT). Both substrates show complex behaviour, with separate low- and high-speed modes. For the GC-PET, this is attributed to a rapid change in the wettability of the substrate on contact with water, specifically a surface molecular transformation from hydrophobic to hydrophilic. This results in a smooth wetting transition from one mode to the other. For the PET, the bimodal behaviour is attributed to surface heterogeneity, with the low-speed dynamics dominated by interactions with polar sites on the substrate that become masked at higher speeds. In this case, the transition is discontinuous. The study has general ramifications for the investigation of any wetting processes in which a physicochemical transformation takes place at the solid surface on contact with the liquid. In particular, it shows how forced wetting, combined with the MKT, can reveal subtle details of the processes involved. It is unlikely that similar insight could be gained from spontaneous wetting studies, such as spreading drops.

  15. A Ta-rich low-P peraluminous granite: the Rechla cupola (Hoggar, Algeria) and associated pegmatites, the result of extreme fractionation of a A2-type magma.

    Science.gov (United States)

    Kesraoui, M.; Marignac, C.; Hamis, A.; Cuney, M.

    2012-04-01

    In the c. 525 Ma RMG province of the Laouni terrane of the Pan-African Tuareg Shield (Hoggar), the small N20°E elliptic Rechla cupola (200x100 m) is particularized by a rim of Qtz-Kfs-Znw pegmatite. It is a medium-grained Na-Li-F granite, with quartz, albite (An01), rare microcline, topaz, Mn-lepidolite (≤ 8% MnO) and Hf-zircon, and: 71.4 % SiO2, 0.93% FeO+MgO+MnO (Mg # 0.19, Mg/Mg+Fe+Mn 0.09), 9.22% Na2O+K2O (Na # 0.7), Al-Na-K-2Ca from 55 to 85, and low P2O5 (0.05%) and ∑ REE (23 ppm) contents, with a pronounced tetrad effect and <0 Eu anomaly in the REE pattern. Such a composition is typical of a low-P peraluminous RMG deriving from highly potassic calcalkaline suites (A2 type) (Linnen & Cuney 2005), enriched in F (1.6%), Li (1,600 ppm), Zn (300 ppm), Be (7 ppm), Sn (740 ppm), W (40 ppm) and specially Ta (165 ppm, Ta/Nb between 2.4 and 2.6), the latter as columbo-tantalite and Mn-wodginite (Ta # 0.8). The pegmatite rim comprises, towards the intrusion (i) thick Kfs lenses (palissadic crystals ≥ 50 cm), (ii) a laminated quartz-zinnwaldite-(beryl) sequence , and (iii) a discontinuous band of fine-grained granite, with quartz, albite, topaz, Mn-lepidolite and beryl, equally fractionated: 69.4% SiO2, 0.85% FeO+MgO+MnO (Mg# 0.06, Mg/Mg+Fe+Mn 0.02), Al-Na-K-2Ca = 32, F 0.4%, Li 610 ppm, Ta 240 ppm (Ta/Nb = 2.4), Be 500 ppm. The laminated sequence overprints the Kfs lenses. It comprises thick (≤ 20 m) quartz lenses cross-cut by 10 cm-sized alternating bands of euhedral quartz and Mn-zinnwaldite (≤ 6.5% MnO). REE-patterns of the Mn-Znw display a clear inverse tetrad effect, symmetrical of the granite pattern. At the boundary with the fine-grained internal band, euhedral quartz crystals are projecting toward the inner wall. The Rechla body and its surrounding pegmatites are intrusive into a porphyritic biotite-granite representative of the evolved magmas of the A2-type Taourirt suite (Azzouni-Sekkal & Boissonnas 1993), with a classical "seagull" pattern and a

  16. Field Testing of a Wet FGD Additive for Enhanced Mercury Control

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; MariJon Owens

    2007-12-31

    6 involved management and reporting. The other four tasks involved field testing on FGD systems, either at pilot or full scale. These four tasks included: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and the full-scale test using high-sulfur coal was completed in 2006; only the TMT-15 additive was tested in these efforts. The Task 5 full-scale additive tests conducted at Southern Company's Plant Yates Unit 1 were completed in 2007, and both the TMT-15 and Nalco 8034 additives were tested.

  17. Wetting transitions at soft, sliding interfaces

    Science.gov (United States)

    Martin, A.; Clain, J.; Buguin, A.; Brochard-Wyart, F.

    2002-03-01

    We observe (by optical interferometry) the contact of a rubber cap squeezing a nonwetting liquid against a plate moving at velocity U. At low velocities, the contact is dry. It becomes partially wet above a threshold velocity Vc1, with two symmetrical dry patches on the rear part. Above a second velocity Vc2, the contact is totally wet. This regime U>Vc2 corresponds to the hydroplaning of a car (decelerating on a wet road). We interpret the transitions at Vc1, Vc2 in terms of a competition between (a) liquid invasion induced by shear (b) spontaneous dewetting of the liquid (between nonwettable surfaces).

  18. Catalytic wet oxidation of black liquor

    OpenAIRE

    Viader Riera, Gerard

    2012-01-01

    The major aspects of wet air oxidation and catalytic wet air oxidation have been reviewed in this work paying special attention to the reaction mechanisms, kinetics and the industrial process. In the experimental section a set of heterogeneous catalysts have been tested in the wet oxidation of non-wood black liquor. The oxidation runs were performed batchwise in a laboratory-scale mechanically stirred slurry reactor for 1 h at a temperature of 170°C and total pressure of 12 bar. Pure oxygen w...

  19. Our experience with wet-wrap treatment.

    Science.gov (United States)

    Albarrán-Planelles, C; Jiménez-Gallo, D; Linares-Barrios, M; Martínez-Rodríguez, A

    2014-04-01

    A wide range of treatments are currently available for severe atopic dermatitis, including systemic therapies such as ciclosporin, corticosteroids, azathioprine, methotrexate, mofetil mycophenolate, and omalizumab. In patients who can no longer take systemic drugs or who need a dose reduction, wet-wrap treatment can be an excellent option. To date, wet wraps have mostly been used in severe cases of childhood atopic dermatitis. We report our experience with wet-wrap treatment in 5 adults with atopic dermatitis and 2 with nodular prurigo. The results were satisfactory and there were few adverse effects. Copyright © 2013 Elsevier España, S.L. and AEDV. All rights reserved.

  20. Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460

    Energy Technology Data Exchange (ETDEWEB)

    Yanochko, Ronald M [Washington River Protection Solutions, Richland, WA (United States); Corcoran, Connie [AEM Consulting, LLC, Richland, WA (United States)

    2012-11-15

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

  1. Structure of Wet Specimens in Electron Microscopy

    Science.gov (United States)

    Parsons, D. F.

    1974-01-01

    Discussed are past work and recent advances in the use of electron microscopes for viewing structures immersed in gas and liquid. Improved environmental chambers make it possible to examine wet specimens easily. (Author/RH)

  2. National Ignition Facility wet weather construction plan

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, A N

    1998-01-01

    This report presents a wet weather construction plan for the National Ignition Facility (NIF) construction project. Construction of the NIF commenced in mid- 1997, and excavation of the site was completed in the fall. Preparations for placing concrete foundations began in the fall, and above normal rainfall is expected over the tinter. Heavy rainfall in late November impacted foundation construction, and a wet weather construction plan was determined to be needed. This wet weather constiction plan recommends a strategy, techniques and management practices to prepare and protect the site corn wet weather effects and allow construction work to proceed. It is intended that information in this plan be incorporated in the Stormwater Pollution Prevention Plan (SWPPP) as warranted.

  3. ROE Wet Sulfate Deposition 2009-2011

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 2009 to 2011. Summary data in this indicator were provided by EPA’s...

  4. ROE Wet Nitrate Deposition 1989-1991

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet nitrate deposition in kilograms per hectare from 1989 to 1991. Summary data in this indicator were provided by EPA’s...

  5. ROE Wet Nitrate Deposition 2011-2013

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet nitrate deposition in kilograms per hectare from 2011 to 2013. Summary data in this indicator were provided by EPA’s...

  6. Wet granular matter a truly complex fluid

    CERN Document Server

    Herminghaus, Stephan

    2013-01-01

    This is a monograph written for the young and advanced researcher who is entering the field of wet granular matter and keen to understand the basic physical principles governing this state of soft matter. It treats wet granulates as an instance of a ternary system, consisting of the grains, a primary, and a secondary fluid. After addressing wetting phenomena in general and outlining the basic facts on dry granular systems, a chapter on basic mechanisms and their effects is dedicated to every region of the ternary phase diagram. Effects of grain shape and roughness are considered as well. Rather than addressing engineering aspects such as existing books on this topic do, the book aims to provide a generalized framework suitable for those who want to understand these systems on a more fundamental basis. Readership: For the young and advanced researcher entering the field of wet granular matter.

  7. Tualatin River - Wet Prairie Restoration Phase III

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Forty five acres of wet prairie and 11 acres of adjacent lands were treated for reed canarygrass in this ongoing project. Federally threatened Nelson’s...

  8. Structure of Wet Specimens in Electron Microscopy

    Science.gov (United States)

    Parsons, D. F.

    1974-01-01

    Discussed are past work and recent advances in the use of electron microscopes for viewing structures immersed in gas and liquid. Improved environmental chambers make it possible to examine wet specimens easily. (Author/RH)

  9. Critical point wetting drop tower experiment

    Science.gov (United States)

    Kaukler, W. F.; Tcherneshoff, L. M.; Straits, S. R.

    1984-01-01

    Preliminary results for the Critical Point Wetting CPW Drop Tower Experiment are produced with immiscible systems. Much of the observed phenomena conformed to the anticipated behavior. More drops will be needed to test the CPW theory with these immiscible systems.

  10. Wetting behavior of alternative solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, F.M.; Vianco, P.T.; Hernandez, C.L.; Rejent, J.A.

    1993-07-01

    Recent economic and environmental issues have stimulated interest in solder alloys other than the traditional Sn-Pb eutectic or near eutectic composition. Preliminary evaluations suggest that several of these alloys approach the baseline properties (wetting, mechanical, thermal, and electrical) of the Sn-Pb solders. Final alloy acceptance will require major revisions to existing industrial and military soldering specifications. Bulk alloy and solder joint properties are consequently being investigated to validate their producibility and reliability. The work reported in this paper examines the wetting behavior of several of the more promising commercial alloys on copper substrates. Solder wettability was determined by the meniscometer and wetting balance techniques. The wetting results suggest that several of the alternative solders would satisfy pretinning and surface mount soldering applications. Their use on plated through hole technology might be more difficult since the alloys generally did not spread or flow as well as the 60Sn-40Pb solder.

  11. Adult Bed-Wetting: A Concern?

    Science.gov (United States)

    ... D. Bed-wetting that starts in adulthood (secondary enuresis) is uncommon and requires medical evaluation. Causes of ... Erik P. Castle, M.D. References Adult nocturnal enuresis. National Association for Continence. http://www.nafc.org/ ...

  12. A WET TALE: TOXICITY OF COMPLEX EFFLUENTS

    Science.gov (United States)

    This course covers standards, regulations, policy, guidance and technical aspects of implementing the whole effluent toxicity program. The curriculum incorporates rationale and information on WET test requirements from USEPA documents, such as the Technical Support Document for W...

  13. Wetting and phase separation at surfaces

    Indian Academy of Sciences (India)

    Sanjay Puri; Kurt Binder

    2005-06-01

    We study the problem of surface-directed spinodal decomposition, viz., the dynamical interplay of wetting and phase separation at surfaces. In particular, we focus on the kinetics of wetting-layer growth in a semi-infinite geometry for arbitrary surface potentials and mixture compositions. We also present representative results for phase separation in confined geometries, e.g., cylindrical pores, thin films, etc.

  14. Biodegradation of wet-white leather

    OpenAIRE

    Ollé Otero, Lluís; Jorba Rafart, Montse; Font Vallès, Joaquim; Shendrik, Alexander; Bacardit Dalmases, Anna

    2011-01-01

    This paper deals with the study of the physical, chemical and biological processes associated with the deterioration of wet-white leather. The samples of leather were exposed for eight months to outdoor weathering and then their properties were subsequently evaluated. The results indicate that resistance and dimensional stability of wet-white (THPS-syntan) leather is higher than that of chrometanned leather. The comparative work with chrome leather was described earlier.

  15. Operating experience with the FGD wet scrubbing process and gypsum processing at VEAG`s Jaenschwalde power station; Erste Betriebserfahrungen mit dem REA-Nasswaschverfahren und der Gipsverwertung im VEAG-Kraftwerk Jaenschwalde

    Energy Technology Data Exchange (ETDEWEB)

    Sparmann, A.; Liebmann, V. [VEAG Vereinigte Energiewerke AG, Kraftwerk Jaenschwalde, Peitz (Germany); Lemke, D. [VEAG Vereinigte Energiewerke AG, Hauptlabor, KTHZ, Berlin (Germany)

    1998-12-31

    The flue gas desulphurization plant with a dual-circuit wet-scrubbing process operating in the Jaenschwalde power station meets the scrubber efficiency requirement of >95% for the SO{sub 2} minimization. The caking encountered in the absorber and absorber supply tank was reduced leaving only a negligible residue. Specific changes to the gypsum crystal morphology by adjusting the dwell time stabilized the gypsum quality. Continuation of absorber systems after failure of the limestone supply is ensured for a period of 15 to 20 hours. (orig.) [Deutsch] Die im Zweikreis-Waschverfahren arbeitende Rauchgasentschwefelungsanlage (REA) im Kraftwerk Jaenschwalde erfuellt den Waescherwirkungsgrad zur SO{sub 2}-Minimierung von > 95%. Die im Absorber und Absorberversorgungsbehaelter aufgetretenen Anbackungen wurden bis auf unbedeutende Reste reduziert. Eine gezielte Veraenderung der Gipskristallmorphologie durch Verweilzeitanpassung fuehrte zur Stabilisierung der Gipsqualitaet. Der Weiterbetrieb der Absorbersysteme ist bei Ausfall der Kalksteinversorgung fuer 15 bis 20 Stunden gesichert. (orig.)

  16. Improvement of Heating Method for Measuring the Wetness of Flowing Wet Steam

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    In this paper,an improvement of heating method for measuring wetness of the flowing wet steam is developed,the basic principle of the heating method is presented and the mathematical model has been built for analyzing the thermodynamics problems during the process of heating,Moreover,an instrument for measuring wetness of wet steam flow was designed and made out.This instument has been used for measuring wetness of the wet steam flow at the outlet of the nozzle rig in Thermal Turbine Laboratory,Xi'an Jiaotong University,By analyzing the relative error of the result,it was found that this instrument has fairly high accuracy,it can be used as the prototype of practical instrument and has an important applicable value in engineering.

  17. Epimacular brachytherapy for wet AMD: current perspectives.

    Science.gov (United States)

    Casaroli-Marano, Ricardo P; Alforja, Socorro; Giralt, Joan; Farah, Michel E

    2014-01-01

    Age-related macular degeneration (AMD) is considered the most common cause of blindness in the over-60 age group in developed countries. There are basically two forms of presentation: geographic (dry or atrophic) and wet (neovascular or exudative). Geographic atrophy accounts for approximately 85%-90% of ophthalmic frames and leads to a progressive degeneration of the retinal pigment epithelium and the photoreceptors. Wet AMD causes the highest percentage of central vision loss secondary to disease. This neovascular form involves an angiogenic process in which newly formed choroidal vessels invade the macular area. Today, intravitreal anti-angiogenic drugs attempt to block the angiogenic events and represent a major advance in the treatment of wet AMD. Currently, combination therapy for wet AMD includes different forms of radiation delivery. Epimacular brachytherapy (EMBT) seems to be a useful approach to be associated with current anti-vascular endothelial growth factor agents, presenting an acceptable efficacy and safety profile. However, at the present stage of research, the results of the clinical trials carried out to date are insufficient to justify extending routine use of EMBT for the treatment of wet AMD.

  18. Performance of some surfactants as wetting agents

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, M.N.; El-Shanny, O.A.A. [Egyptian Petroleum Research Institute (EPRI), Cairo (Egypt). Evaluation and Analysis Dept.

    2005-12-01

    The wetting power of anionic surfactant: sodium dodecyl sulfate (SDS), and nonionic surfactants: polyoxyethelene(14)monolaurate [La(EO){sub 14}] and polyoxyethelene(14)monoeleate [OI(EO){sub 14}] has been studied to determine their performance as wetting agents. The study reveals that the nonionic compound with a long hydrophobic chain exhibits higher wettability than the shorter one when used at very low cocentrations (below CMC) and the reverse is shown with high concentrations (above CMC). the wetting power of the investigated surfactants increases as the CMC values increases. In case of the nonionic compounds and at surfactant concentrations equal their CMC values, OI(EO){sub 14} shows a higher wetting power than La(EO){sub 14} while is possesses a lower HLB value. The anionic surfactant shows an optimum wetting in comparison with the tested nonionic one. The wettability of all the investigated samples increases as the surface tension of their solutions increases to the allowed limit that can be reached in the presence of surfactant. (orig.)

  19. Membrane-based wet electrostatic precipitation.

    Science.gov (United States)

    Bayless, David J; Shi, Liming; Kremer, Gregory; Stuart, Ben J; Reynolds, James; Caine, John

    2005-06-01

    Emissions of fine particulate matter, PM2.5, in both primary and secondary form, are difficult to capture in typical dry electrostatic precipitators (ESPs). Wet (or water-based) ESPs are well suited for collection of acid aerosols and fine particulates because of greater corona power and virtually no re-entrainment. However, field disruptions because of spraying (misting) of water, formation of dry spots (channeling), and collector surface corrosion limit the applicability of current wet ESPs in the control of secondary PM2.5. Researchers at Ohio University have patented novel membrane collection surfaces to address these problems. Water-based cleaning in membrane collectors made of corrosion-resistant fibers is facilitated by capillary action between the fibers, maintaining an even distribution of water. This paper presents collection efficiency results of lab-scale and pilot-scale testing at FirstEnergy's Bruce Mansfield Plant for the membrane-based wet ESP. The data indicate that a membrane wet ESP was more effective at collecting fine particulates, acid aerosols, and oxidized mercury than the metal-plate wet ESP, even with approximately 15% less collecting area.

  20. Energy and heat balance in wet DCT

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Viren; Moser, Alexander; Schaefer, Michael; Ritschel, Michael [BorgWarner Drivetrain Engineering GmbH, Ketsch (Germany)

    2012-11-01

    Wet clutch systems are well known for their thermal robustness and versatility in a wide range of automotive applications. Conventional automatics have used them for a long time as torque converter lock-up clutches, shift elements and launch clutches. With the development of DCTs, wet clutch technology has evolved in terms of launch and shift performance, controllability, robustness and efficiency. This paper discusses improvements in the wet clutch and their impact on today's vehicle applications in terms of heat and energy management. Thermal robustness is a crucial aspect for an automatic transmission. In addition to the clutch thermal performance, the influence of transmission oil cooler and oil sump warm-up behavior are discussed. Based on our latest development activities, test results and simulations, we shall discuss the latest friction material enhancement and its impact on DCTs in terms of efficiency and performance. Drag loss is a much-discussed topic during the development of wet clutch systems. This paper discusses in detail the cause and break-up of various energy losses in a wet DCT. Efficient energy management strategies for actuation systems, cooling, and lubrication, clutch apply, and pre-selection in modern power trains with engine start / stop are evaluated based on the latest test and simulation results. Finally, the paper summarizes the performance and efficiency optimized moist clutch system. (orig.)

  1. Wetting and adsorption modification in the system

    Directory of Open Access Journals (Sweden)

    Yuliya Bogdanova

    2015-09-01

    Full Text Available Regularities of wetting and adsorption modification of surfaces of continual membranes made from highly permeable glassy polymers poly[1-(trimethylsilyl-1-propyne] (PTMSP and poly(4-methyl-2-pentyn (PMP with aqueous ethanol solutions and alcohol solutions containing organic dyes (Solvent Blue 35 and Remazol Brilliant Blue were investigated. Isotherms of stress wetting of polymer membrane surface by etanol solutions were found out to have maximums in the range of concentrations corresponding to the beginning of liquid sorption into the membrane and polymer swelling. Thus, the principal possibility of optimization of nanofiltration experiments by liquid wetting angle measurements on continuous polymer membrane surfaces was shown. The presence of the dye was shown not to affect PMP wetting. But in the case of PTMSP, it leads to shear of the maximum of stress wetting isotherms to the range of higher concentrations. It was found out the effectiveness of the adsorption surface modification of continuous polymer membrane surfaces by ethanol solutions containing dyes does not dependent on chemical nature of the dye. At the same time, there are different trends in the energy characteristics of the membrane surface.

  2. WET STRENGTH PAPER REPULPING:LABORATORY EVALUATION

    Institute of Scientific and Technical Information of China (English)

    Nishi K. Bhardwaj; Vikas Rajan; A.G. Kulkarni

    2004-01-01

    The recycling of wet strength papers in a normal recycling mill is often troublesome due to the severe operating conditions required to defibre wet strength papers. The various methods are presented which will quickly allow mills to determine the most effective pulping aids to use when repulping wet strength papers. The repulping of wet strength paper with inorganic chemicals was investigated in the laboratory. The effects of major variables, that is,repulping time, pulp consistency, soaking time,temperature, and reactant concentration in the repulping stage were examined using Plackett-Burman design. The repulping time was the most crucial & influential process variable affecting repulping characteristic and formation related properties. The more significant repulping process variables affecting pulp yield were repulping time,soaking temperature and pulp consistency whereas for formation index and feature size, repulping time,pulp consistency, soaking temperature and time were the more important variables. The formation index is increased by an increase in repulping time, pulp consistency and soaking time whereas the feature size is decreased by an increase in repulping time,soaking temperature and pulp consistency. The formation index and the rejects were more sensitive to changes in process variables than were the feature size or the pulp yield. The pulp recycled from wet strength waste paper had good physical strength properties.

  3. Tunable Reactive Wetting of Sn on Microporous Cu Layer

    Institute of Scientific and Technical Information of China (English)

    Qingquan Lai; Lei Zhang; Cai Chen; J.K. Shang

    2012-01-01

    Wetting of microporous Cu layer by liquid Sn resulted in contact angles from 0 to 33 deg., tunable by varying wetting temperature and porous microstructure. The wetting was dominated by the interracial metallurgical reaction, which can lead to pore closure phenomenon, as the liquid infiltration facilitating the wetting process.

  4. Evaporation from rain-wetted forest in relation to canopy wetness, canopy cover, and net radiation

    NARCIS (Netherlands)

    Klaassen, W.

    2001-01-01

    Evaporation from wet canopies is commonly calculated using E-PM, the Penman-Monteith equation with zero surface resistance. However, several observations show a lower evaporation from rain-wetted forest. Possible causes for the difference between E-PM and experiments are evaluated to provide rules f

  5. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1993-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  6. Evaporation from rain-wetted forest in relation to canopy wetness, canopy cover, and net radiation

    NARCIS (Netherlands)

    Klaassen, W.

    2001-01-01

    Evaporation from wet canopies is commonly calculated using E-PM, the Penman-Monteith equation with zero surface resistance. However, several observations show a lower evaporation from rain-wetted forest. Possible causes for the difference between E-PM and experiments are evaluated to provide rules

  7. Experimental investigation of the link between static and dynamic wetting by forced wetting of nylon filament.

    Science.gov (United States)

    Vega, M J; Gouttière, C; Seveno, D; Blake, T D; Voué, M; De Coninck, J; Clarke, A

    2007-10-09

    Forced wetting experiments with various liquids were conducted to study the dynamic wetting properties of nylon filament. The molecular-kinetic theory of wetting (MKT) was used to interpret the dynamic contact angle data and evaluate the contact-line friction zeta0 at the microscopic scale. By taking account of the viscosity of the liquid, zeta0 could be related exponentially to the reversible work of adhesion. This clearly establishes an experimental link between the static and dynamic wetting properties of the material. Moreover, statistical analysis of the equilibrium molecular displacement frequency K0 and the length of the displacements lambda reveals that these two fundamental parameters of the MKT are strongly correlated, not only in the linearized form of the theory (valid close to equilibrium) but also when the nonlinear form of the equations has to be considered at higher wetting speeds.

  8. Using wet FGD systems to absorb mercury

    Energy Technology Data Exchange (ETDEWEB)

    Renninger, S.A.; Farthing, G.A.; Ghorishi, S.B. (and others) [Babcock and Wilcox Co. (US)

    2004-10-01

    For the past 12 years, the Babcock and Wilcox Company has been striving to develop mercury-reduction techniques that utilize, whenever possible, existing plant pollution control devices. This article discusses one such technique, which has demonstrated the potential for removing more than 95% of oxidized mercury in a wet flue gas desulfurization system at a low incremental cost and with little or no impact on the system's operation or SO{sub 2} removal performance. B & W's techniques enhance the mercury control ability of wet FGD systems using sodium hydrosulfide injection. This has been tested in a combined air quality control system at Mt. Storm Power Station in West Virginia comprising an SCR system and ESP with a wet FGD system. 6 figs.

  9. Molecular Dynamics Simulations for Predicting Surface Wetting

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2014-06-01

    Full Text Available The investigation of wetting of a solid surface by a liquid provides important insights; the contact angle of a liquid droplet on a surface provides a quantitative measurement of this interaction and the degree of attraction or repulsion of that liquid type by the solid surface. Molecular dynamics (MD simulations are a useful way to examine the behavior of liquids on solid surfaces on a nanometer scale. Thus, we surveyed the state of this field, beginning with the fundamentals of wetting calculations to an examination of the different MD methodologies used. We highlighted some of the advantages and disadvantages of the simulations, and look to the future of computer modeling to understand wetting and other liquid-solid interaction phenomena.

  10. Handling of wet residues in industry

    DEFF Research Database (Denmark)

    Villanueva, Alejandro

    In countries with high prices of fresh water use and wastewater discharge, water recycling has become an alternative to traditional water consumption and discharge for industries with water-based processes. Industrial water recycling means in many cases that water has to be treated and cleaned......, to remove from it the substances which presence impedes reusing the water. These substances accumulate in a by-product called wet residue. An integral part of water recycling projects in the industry is the handling and disposal of the wet residues generated. The treatment, utilisation and disposal of wet...... residues depend totally on the industrial sector of origin and the composition of the water to be recycled. Treatment is more problematic in some cases than in others, but in all water recycling applications it is an issue of concern. The present study addresses this concern by providing a package...

  11. Mechanical Properties of Sheared Wet Granular Piles

    Science.gov (United States)

    Seemann, Ralf; Schaber, Marc; Karmakar, Somnath; Hippler, Anna-Lena; Scheel, Mario; di Michiel, Marco; Brinkmann, Martin

    2015-03-01

    The mechanical properties of dry and wet granulates are explored when being sheared with a parabolic profile at constant shear volume. The dissipated energy increase linearly with external pressure both for a wet and a dry granulate. However, the dissipated energy for wet a granulate has a finite value for the limiting case of vanishing external pressure and increases slower with external pressure compared to the dry granulate. Using a down sized version of the shear cell the reorganization of a granulate and liquid is additionally imaged in real time using x-ray micro-tomography. With the insight from x-ray tomography the contribution of the breaking capillary bridges to the dissipated energy can be analyzed. We could also shed light on the influence of dilatation effects on the dissipated energy upon inverting the shear direction.

  12. NANOFILLERS FOR PAPERMAKING WET END APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2010-05-01

    Full Text Available The papermaking industry can benefit a lot from nanotechnology. This versatile technology can also be used in the area of fillers for papermaking wet end applications. In such applications the main technological examples currently available include wet end addition of commercially available nanofillers, formation of nanofiller/fiber or nanofiller/fibril hybrids, development of novel categories of nanofillers such as high aspect ratio nanofillers, and combination of microfillers with nanostructures by specially controlled routes to obtain composite nanofillers. It is worth noting that there are certain challenges associated with nanofillers, such as high cost, difficulty in structure and performance control, poor dispersability and retention, possible severe negative effects on paper strength, possible detrimental interactions between nanofillers with some wet end additives, and the industry-related limitations. However, in the long run, the research and development in the area of nanofillers will surely create many fruitful results.

  13. Divergence of the point tension at wetting

    Science.gov (United States)

    Abraham, D. B.; Latrémolière, F.; Upton, P. J.

    1993-07-01

    To determine the behavior of the line-point tension τ^ at the wetting transition, we consider a two-dimensional Ising model with appropriate boundary conditions and investigate suitable definitions of τ^ associated with the junction of an interface tilted with average angle θc and another lying along the substrate. Size-dependent fluctuations in the point of contact require that τ^ be defined through a convolution sum. Hence τ^~=ln(1/θc) as θc-->0 (wetting transition), which can be understood as a consequence of the entropic repulsion of the tilted part of the interface against the substrate.

  14. Traction of Pneumatic Tires on Wet Runways

    Science.gov (United States)

    Horne, Walter B.; Joyner, Upshur T.

    1965-01-01

    Recent work on the traction of pneumatic tires on wet runways is discussed, and it is shown that a loss of tire traction adversely affects cross-wind landings. The effect of runway surface texture is discussed,, and a simple method for measuring surface texture is described. A preliminary correlation of tire traction with surface texture is shown. Results of work at Langley Research Center on the use of air jets to improve tire traction on wet or flooded runways indicate that this is a promising approach for alleviating the large losses in tire braking and sideways traction that occur when tire hydroplaning occurs on a flooded runway.

  15. Sphere impact and penetration into wet sand

    Science.gov (United States)

    Marston, J. O.; Vakarelski, I. U.; Thoroddsen, S. T.

    2012-08-01

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  16. Sphere impact and penetration into wet sand

    KAUST Repository

    Marston, J. O.

    2012-08-07

    We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

  17. Grain boundary wetness of partially molten dunite

    Science.gov (United States)

    Mu, S.; Faul, U.

    2013-12-01

    The grain scale melt distribution plays a key role for physical properties of partially molten regions in Earth's upper mantle, but our current understanding of the distribution of basaltic melt at the grain scale is still incomplete. A recent experimental study shows that wetted two-grain boundaries are a common feature of partially molten dunite at small melt fractions (Garapic et al., G3, 2013). In early ideal models which assume isotropic surface energy, the grain scale melt distribution is uniquely determined by knowing the melt fraction and the dihedral angle between two crystalline grains and the melt (von Bargen and Waff, JGR, 1986). Olivine is anisotropic in surface energy, hence the grain scale melt distribution at given melt fraction cannot be characterized by the dihedral angle alone. The grain boundary wetness, which is defined as the ratio of solid-liquid boundary area over the total interfacial area (Takei, JGR, 1998), is a more objective measure of the grain scale melt distribution. The aim of this study is to quantify the relationship between grain size, melt fraction, temperature and grain boundary wetness of partially molten dunite under dry conditions. We annealed olivine-basalt aggregates with melt fractions from 0.03% to 6% at a range of temperatures and 1 GPa in a piston cylinder for 1 to 336 hours, with resulting mean grain sizes of 10 to 60 μm. The samples were sectioned, polished and imaged at high resolution by using a field emission SEM. Each image had a size of 2048 x 1536 pixels with a resolution of 0.014 to 0.029 μm/pixel, depending on magnification. For each sample, depending on grain sizes, we made mosaics of 3 x 3 or 6 x 6 overlapping images. Measurements of melt fraction, grain boundary wetness and grain size were carried out on these high resolution mosaics by using ImageJ software. Analyses of mosaics show that grain boundary wetness increases with increasing melt fraction at constant grain size to values well above those

  18. Towards hydrodynamic simulations of wet particle systems

    NARCIS (Netherlands)

    Roy, S.; Luding, S.; Weinhart, T.

    2015-01-01

    This paper presents the rheology of weakly wetted granular materials in the slow frictional regime, using Discrete Element Method (DEM) simulations. In a split-bottom ring shear cell geometry a slow, quasi-static deformation leads to wide shear bands away from the walls. Dry non-cohesive and cohesiv

  19. Aqueous Wetting Films on Fused Quartz.

    Science.gov (United States)

    Mazzoco; Wayner

    1999-06-15

    Using an image analyzing interferometer, IAI, the interfacial characteristics of an isothermal constrained vapor bubble, CVB, in a quartz cuvette were studied as a precursor to heat transfer research. The effects of pH and electrolyte concentration on the meniscus properties (curvature and adsorbed film thickness) and the stability of the aqueous wetting films were evaluated. The surface potential in the electric double layer was a function of the cleaning and hydroxylation of the quartz surface. The disjoining pressure isotherm for pure water was very close to that predicted by the Langmuir equation. For aqueous solutions of moderate electrolyte concentration, the Gouy-Chapman theory provided a good representation of the electrostatic effects in the film. The effect of temperature on the film properties of aqueous solutions and pure water was also evaluated: The meniscus curvature decreased with increasing temperature, while Marangoni effects, intermolecular forces, and local evaporation and condensation enhanced waves on the adsorbed film layer. Pure water wetting films were mechanically metastable, breaking into droplets and very thin films (less than 10 nm) after a few hours. Aqueous wetting films with pH 12.4 proved to be stable during a test of several months, even when subjected to temperature and mechanical perturbations. The mechanical stability of wetting films can explain the reported differences between the critical heat fluxes of pure water and aqueous solutions. The IAI-CVB technique is a simple and versatile experimental technique for studying the characteristics of interfacial systems. Copyright 1999 Academic Press.

  20. Wet oxidation of salicylic acid solutions.

    Science.gov (United States)

    Collado, Sergio; Garrido, Laura; Laca, Adriana; Diaz, Mario

    2010-11-15

    Salicylic acid is a frequent pollutant in several industrial wastewaters. Uncatalyzed wet air oxidation, which is a promising technique for the treatment of phenolic effluents, has not been analyzed yet for the removal of salicylic acid. The effect of different conditions of pH (1.3-12.3), pressure (1.0-4.1 MPa), temperature (413-443 K), and initial concentrations (1.45-14.50 mM) on the wet oxidation of salicylate/salicylic acid solutions have here been investigated. The pH value of the reaction media was found to be a key parameter for the rate of the oxidation process with an optimum at pH 3.1, when the concentrations of salicylic acid and salicylate were similar. The oxidation reaction followed pseudofirst-order kinetics with respect to salicylic acid and 0.82 order with respect to dissolved oxygen. Additionally, the evolution of the color during the wet oxidation was analyzed and discussed in relation with the formation of intermediate compounds. Then, a reaction pathway for the noncatalytic wet oxidation of the salicylic acid was proposed.

  1. Wet oxidation of a spacecraft model waste

    Science.gov (United States)

    Johnson, C. C.; Wydeven, T.

    1985-01-01

    Wet oxidation was used to oxidize a spacecraft model waste under different oxidation conditions. The variables studied were pressure, temperature, duration of oxidation, and the use of one homogeneous and three heterogeneous catalysts. Emphasis is placed on the final oxidation state of carbon and nitrogen since these are the two major components of the spacecraft model waste and two important plant nutrients.

  2. Accretion Dynamics on Wet Granular Materials.

    Science.gov (United States)

    Saingier, Guillaume; Sauret, Alban; Jop, Pierre

    2017-05-19

    Wet granular aggregates are common precursors of construction materials, food, and health care products. The physical mechanisms involved in the mixing of dry grains with a wet substrate are not well understood and difficult to control. Here, we study experimentally the accretion of dry grains on a wet granular substrate by measuring the growth dynamics of the wet aggregate. We show that this aggregate is fully saturated and its cohesion is ensured by the capillary depression at the air-liquid interface. The growth dynamics is controlled by the liquid fraction at the surface of the aggregate and exhibits two regimes. In the viscous regime, the growth dynamics is limited by the capillary-driven flow of liquid through the granular packing to the surface of the aggregate. In the capture regime, the capture probability depends on the availability of the liquid at the saturated interface, which is controlled by the hydrostatic depression in the material. We propose a model that rationalizes our observations and captures both dynamics based on the evolution of the capture probability with the hydrostatic depression.

  3. Catalytic gasification of dry and wet biomass

    NARCIS (Netherlands)

    van Rossum, G.; Potic, B.; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria

    2009-01-01

    Catalytic gasification of dry biomass and of wet biomass streams in hot compressed water are reviewed and discussed as potential technologies for the production of synthesis gas, hydrogen- and methane-rich gas. Next to literature data also new experimental results from our laboratory on catalytic

  4. Epimacular brachytherapy for wet AMD: current perspectives

    Directory of Open Access Journals (Sweden)

    Casaroli-Marano RP

    2014-08-01

    Full Text Available Ricardo P Casaroli-Marano,1,2 Socorro Alforja,1 Joan Giralt,1 Michel E Farah2 1Instituto Clínic de Oftalmología (Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain; 2Department of Ophthalmology and Visual Sciences, Universidade Federal de Sao Paulo, Escola Paulista de Medicina, Sao Paulo, Brazil Abstract: Age-related macular degeneration (AMD is considered the most common cause of blindness in the over-60 age group in developed countries. There are basically two forms of presentation: geographic (dry or atrophic and wet (neovascular or exudative. Geographic atrophy accounts for approximately 85%–90% of ophthalmic frames and leads to a progressive degeneration of the retinal pigment epithelium and the photoreceptors. Wet AMD causes the highest percentage of central vision loss secondary to disease. This neovascular form involves an angiogenic process in which newly formed choroidal vessels invade the macular area. Today, intravitreal anti-angiogenic drugs attempt to block the angiogenic events and represent a major advance in the treatment of wet AMD. Currently, combination therapy for wet AMD includes different forms of radiation delivery. Epimacular brachytherapy (EMBT seems to be a useful approach to be associated with current anti-vascular endothelial growth factor agents, presenting an acceptable efficacy and safety profile. However, at the present stage of research, the results of the clinical trials carried out to date are insufficient to justify extending routine use of EMBT for the treatment of wet AMD. Keywords: macular degeneration, radiation, vascular endothelial growth factor, combined therapy, intravitreal therapy, vitrectomy

  5. Studies of chemical reduction of Fe(III)*EDTA in an SO{sub 2}/NO{sub x} aqueous scrubber system

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Keener, T.C. [Univ. of Cincinnati, OH (United States). Dept. of Civil and Environmental Engineering; Mendelsohn, M.; Harkness, J.B.L.; Livengood, C.D. [Argonne National Lab., IL (United States)

    1996-03-01

    Ferrous*EDTA has been found to be an effective scrubbing agent for nitric oxide gas. A major process problem is oxidation of the iron to the ferric species, leading to a significant decrease in NO{sub x}-removal capability. Argonne National Laboratory discovered a class of organic compounds that, when used with ferrous*EDTA in a sodium carbonate chemistry, could maintain high levels of NO{sub x} removal. However, those antioxidant/reducing agents (A/R) are not effective in a lime-based chemistry. In recent reports, it has been found that ascorbic acid and related compounds are capable of maintaining stable NO{sub x} removals of about 50% (compared with about 15% without the agent) in a lime-based FGD chemistry with Fe(II)*EDTA. It is believed that the improved performance of Fe(II)*EDTA is due to the catalytic action of ascorbate in the Fe(III)*EDTA reduction system, where Fe(III)*EDTA is reduced by ascorbate and oxidized ascorbate is then reduced back to the ascorbate by sulfite/bisulfite anions, which come from the dissolution of SO{sub 2} in the flue gas. In the present work, the kinetics of the reduction of ferric chelate by ascorbate and reduction of oxidized ascorbate by sulfite/bisulfite anions at a typical flue-gas scrubber-system operating temperature ({approximately}55 C) have been determined.

  6. Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: From laboratory flask to outdoor Algal Turf Scrubber (ATS).

    Science.gov (United States)

    Liu, Junzhuo; Danneels, Bram; Vanormelingen, Pieter; Vyverman, Wim

    2016-04-01

    Benthic filamentous algae have evident advantages in wastewater treatment over unicellular microalgae, including the ease in harvesting and resistance to predation. To assess the potentials of benthic filamentous algae in treating horticultural wastewater under natural conditions in Belgium, three strains and their mixture with naturally wastewater-borne microalgae were cultivated in 250 ml Erlenmeyer flasks in laboratory as well as in 1 m(2) scale outdoor Algal Turf Scrubber (ATS) with different flow rates. Stigeoclonium competed well with the natural wastewater-borne microalgae and contributed to most of the biomass production both in Erlenmeyer flasks and outdoor ATS at flow rates of 2-6 L min(-1) (water velocity 3-9 cm s(-1)), while Klebsormidium was not suitable for growing in horticultural wastewater under the tested conditions. Flow rate had great effects on biomass production and nitrogen removal, while phosphorus removal was less influenced by flow rate due to other mechanisms than assimilation by algae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Osteotomia femoral em cúpula para correção do ângulo de inclinação do colo do fémur Femoral cupola osteotomy for correction of femoral neck inclination angle

    Directory of Open Access Journals (Sweden)

    Paulo lamaguti

    1996-04-01

    Full Text Available Utilizou-se a osteotomia femoral em cúpula em um cão que apresentava aumento do ângulo de inclinação do colo do fêmur e subluxação da articulação coxofemoral. A linha de osteotomia situou-se cerca de 1 cm distal ao trocanter menor, no sentido látero-medial. Para a imobilização utilizou-se um fio de Steinmann passando pelo trocanter maior e por toda a extensão do fêmur. Um fio de aço foi colocado em orifícios ósseos produzidos nos segmentos proximal e distal do fêmur para a realização de sutura óssea. A técnica empregada culminou em: diminuição de 35° no ângulo de inclinação, rebaixamento da cabeça do fêmur, elevação do trocanter maior, congruência da articulação e encurtamento de 3cm do membro. A consolidação ocorreu cerca de 90 dias após a cirurgia.Femoral cupola osteotomy was performed in a dog with a large femoral inclination angie and hip subluxation. Osteotomy owas performed 1 cm distal to the lesser trochanter from lateral to medial cortex. Immobilization was performed owith a Steinamnnpin drivenfrom the greater trochanter and through two boles drilled proximal and distal to the osteotomy line. The technique produced: 35° decrease on inclination angle, lowering of the femoral head, elevation of the greater trochanter, congruity of the hip and 3cm limb shortening. Consolidation occured 90 days after the surgery.

  8. Wetting and Roughening of Interfaces with Disorder

    Science.gov (United States)

    Alava, M. J.; Duxbury, P. M.; Seppälä, E. T.

    1997-03-01

    The properties of Ising interfaces change with the introduction of disorder. The roughening and scaling of these ``minimum energy surfaces'' is studied numerically at T=0 using exact optimization techniques. In 3D random-bond systems there is a disorder driven roughening transition for 100 oriented lattices, whereas 111 interfaces are algebraically rough for any non-zero disorder. However, in the 111 case there is an anomalous singular behavior in the parrow 1 limit of random dilution. The wetting of surfaces in the 3-d Ising model depends on whether the bulk interface is rough or (almost) flat. This is analyzed for both complete wetting and for disordered substrates. The results are compared with scaling theory.

  9. Wet spinning of solid polyamic acid fibers

    Science.gov (United States)

    Dorogy, William E., Jr. (Inventor); St.clair, Anne K. (Inventor)

    1991-01-01

    The invention is a process for the production of solid aromatic polyamic acid and polyimide fibers from a wet gel or coagulation bath wet gel using N,N-dimethylacetamide (DMAc) solutions of the polyamic acid derived from aromatic dianhydrides such as 3,3',4,4' benzophenonetetra carboxylic dianhydride (BTDA) and aromatic diamines such as 4,4'-oxydianiline (4,4'-ODA). By utilizing the relationship among coagulation medium and concentration, resin inherent viscosity, resin percent solids, filament diameter, and fiber void content, it is possible to make improved polyamic acid fibers. Solid polyimide fibers, obtained by the thermal cyclization of the polyamic acid precursor, have increased tensile properties compared to fibers containing macropores from the same resin system.

  10. Erosion dynamics of a wet granular medium.

    Science.gov (United States)

    Lefebvre, Gautier; Jop, Pierre

    2013-09-01

    Liquid may give strong cohesion properties to a granular medium, and confer a solidlike behavior. We study the erosion of a fixed circular aggregate of wet granular matter subjected to a flow of dry grains inside a half-filled rotating drum. During the rotation, the dry grains flow around the fixed obstacle. We show that its diameter decreases linearly with time for low liquid content, as wet grains are pulled out of the aggregate. This erosion phenomenon is governed by the properties of the liquids. The erosion rate decreases exponentially with the surface tension while it depends on the viscosity to the power -1. We propose a model based on the force fluctuations arising inside the flow, explaining both dependencies: The capillary force acts as a threshold and the viscosity controls the erosion time scale. We also provide experiments using different flowing grains, confirming our model.

  11. Versatile wetting measurement of microplate wells

    Science.gov (United States)

    Ng, Enoch Ming Wei; Cheong, Brandon Huey-Ping; Yu, Yang; Liew, Oi Wah; Ng, Tuck Wah

    2016-11-01

    A method to measure the contact angle, which is indicative of wetting, using small liquid volumes dispensed directly on microplate wells is described and demonstrated. Experiments with enhanced green protein samples of volumes 4.4-6 μl showed no measured variance in the contact angle. Experiments with phosphate buffer solution with varied concentrations of a non-ionic detergent (Tween 20) dissolved, however, revealed smaller contact angles with increased detergent concentration. It is experimentally shown that drops can be located up to 7° from the lowest position of the well without affecting the accuracy of contact angle measurements. Numerical simulations confirm the ability of the drops to manifest the correct contact angle despite the lack of axis-symmetry in their shape while residing on a circular surface. This method offers a convenient means to determine the wetting characteristics of different liquid samples in different microplates.

  12. Compaction dynamics of wet granular packings

    Science.gov (United States)

    Vandewalle, Nicolas; Ludewig, Francois; Fiscina, Jorge E.; Lumay, Geoffroy

    2013-03-01

    The extremely slow compaction dynamics of wet granular assemblies has been studied experimentally. The cohesion, due to capillary bridges between neighboring grains, has been tuned using different liquids having specific surface tension values. The characteristic relaxation time for compaction τ grows strongly with cohesion. A kinetic model, based on a free volume kinetic equations and the presence of a capillary energy barrier (due to liquid bridges), is able to reproduce quantitatively the experimental curves. This model allows one to describe the cohesion in wet granular packing. The influence of relative humidity (RH) on the extremely slow compaction dynamics of a granular assembly has also been investigated in the range 20 % - 80 % . Triboelectric and capillary condensation effects have been introduced in the kinetic model. Results confirm the existence of an optimal condition at RH ~ 45 % for minimizing cohesive interactions between glass beads.

  13. Progress of catalytic wet air oxidation technology

    Directory of Open Access Journals (Sweden)

    Guolin Jing

    2016-11-01

    Full Text Available Catalytic wet air oxidation (CWAO is one of the most economical and environmental-friendly advanced oxidation process for high strength, toxic, hazardous and non-biodegradable contaminants under milder conditions, which is developed on the basic of wet air oxidation. Various heterogeneous catalysts including noble metals and metal oxides have been extensively studied to enhance the efficiency of CWAO. The advances in the research on wastewater treatment by CWAO process are summarized in aspects of reaction mechanism investigation, reaction kinetics study and catalyst development. It is pointed out that the preparation of active and stable catalysts, the investigation on reaction mechanisms and the study on reaction kinetics models are very important for the promotion of CWAO application.

  14. Pipe flow of pumping wet shotcrete based on lubrication layer

    National Research Council Canada - National Science Library

    Chen, Lianjun; Liu, Guoming; Cheng, Weimin; Pan, Gang

    2016-01-01

    .... The paper studied the pipe flow law of wet shotcrete based on lubrication layer by build the experimental pumping circuit of wet shotcrete that can carry out a number of full-scale pumping tests...

  15. Making Activated Carbon by Wet Pressurized Pyrolysis

    Science.gov (United States)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb

  16. Wet flue gas desulphurization and new fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kiil, S.; Dam-Johansen, K.; Michelsen, M.L.

    1998-04-01

    This thesis describes experimental and theoretical investigations of wet flue gas desulphurization (FGD). A review of the current knowledge of the various rate determining steps in wet FDG plants is presented. The mechanism underlying the rate of dissolution of finely grained limestone particles was examined in a laboratory batch apparatus using acid titration. Three Danish limestones of different origin were tested. A transient, mass transport controlled, mathematical model was developed to describe the dissolution process. Model predictions were found to be qualitatively in good agreement with experimental data. Empirical correlations for the dimensionless mass transfer coefficients in a pilot plant (falling-film column) were determined. The presence of inert particles in the liquid phase was found to decrease the rate of gas phase mass transport with up to 15%, though the effect could not be correlated. A detailed model for a wet FGD pilot plant, based on the falling film principle, was developed. All important rate determining steps, absorption of SO{sub 2}, oxidation of HSO{sub 3}{sup -}, dissolution of limestone, and crystallisation of gypsum were included. Model predictions were compared to experimental data such as gas phase concentration profiles of SO{sub 2}, slurry pH-profiles, solids contents of slurry, liquid phase concentrations, and residual limestone in the gypsum. The possibility of co-firing straw and coal was investigated in a full-scale power plant. No effects on the overall performance of the wet FGD plant were observed, though laboratory experiments with fine dust and fly ash from the full-scale experiments showed a decrease in limestone reactivity. (EG) EFP-95. 45 refs.; Also ph.d. thesis of Soeren Kiil

  17. Wetting properties of molecularly rough surfaces

    Science.gov (United States)

    Svoboda, Martin; Malijevský, Alexandr; Lísal, Martin

    2015-09-01

    We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties by measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel's law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.

  18. Fluidization of wet granulates under shear.

    Science.gov (United States)

    Rahbari, S H Ebrahimnazhad; Vollmer, J; Herminghaus, S; Brinkmann, M

    2010-12-01

    Small amounts of a wetting liquid render sand a stiff and moldable material. The cohesive forces between the sand grains are caused by capillary bridges at the points of contact. Due to the finite strength of these bridges wet sand undergoes a transition from an arrested (i.e., solidified) to a fluidized state under an externally applied shear force. The transition between these two dynamic states is studied in a MD-type simulation of a two-dimensional assembly of bidisperse frictionless disks under the action of a cosine force profile. In addition to soft core repulsion the disks interact through a hysteretic and short ranged attractive force modeling the effect of the capillary bridges. In this model the transition between the fluidized and the arrested state is discontinuous and hysteretic. The parameter dependence of the critical force for solidification is modeled by combining theoretical arguments with a detailed numerical exploration of the transition. We address a range of densities from slightly below close packing until slightly above densities where the system approaches a shear-banded state. Differences and similarities of the transition in wet granulates to the jamming transition are also addressed.

  19. Study of polycaprolactone wet electrospinning process

    Directory of Open Access Journals (Sweden)

    E. Kostakova

    2014-08-01

    Full Text Available Wet electrospinning is a useful method for 3-dimensional structure control of nanofibrous materials. This innovative technology uses a liquid collector instead of the metal one commonly used for standard electrospinning. The article compares the internal structural features of polycaprolactone (PCL nanofibrous materials prepared by both technologies. We analyze the influence of different water/ethanol compositions used as a liquid collector on the morphology of the resultant polycaprolactone nanofibrous materials. Scanning electron micro-photographs have revealed a bimodal structure in the wet electrospun materials composed of micro and nanofibers uniformly distributed across the sample bulk. We have shown that the full-faced, twofold fiber distribution is due to the solvent composition and is induced and enhanced by increasing the ethanol weight ratio. Moreover, the comparison of fibrous layers morphology obtained by wet and dry spinning have revealed that beads that frequently appeared in dry spun materials are created by Plateau-Rayleigh instability of the fraction of thicker fibers. Theoretical conditions for spontaneous and complete immersion of cylindrical fibers into a liquid collector are also derived here.

  20. STUDY ON WET STRENGTH PERFORMANCE OF KENAF MULCH

    Institute of Scientific and Technical Information of China (English)

    Jinghui Zhou; Xinge Wu; Hongwei Zhu

    2004-01-01

    Optimum applied technical conditions of wet strength agent for kenaf mulch were studied in this article. Breaking length, wet-dry strength ratio, tear index and burst index of kenaf mulch were measured and optimum wet strength agent was selected. The aim is to make mulch have properties of heat preservation, humidity preservation, growth prompting, biodegradation and maximum wet strength and to improve impact resistance of mulch to rainwater so as to assure growth of plant and replace plastic film.

  1. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; MariJon Owens

    2007-12-01

    involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.

  2. Characteristics of wet work in the cleaning industry

    NARCIS (Netherlands)

    Jungbauer, F H W; Van Der Harst, J J; Schuttelaar, M L; Groothoff, J W; Coenraads, P J

    Wet work is the main cause of occupational contact dermatitis in the cleaning industry. Dermatologists and occupational physicians need to base their primary and secondary prevention for workers in the cleaning industry on the characteristics of wet work exposures. We quantified the burden of wet

  3. A new remote optical wetness sensor and its applications

    NARCIS (Netherlands)

    Heusinkveld, B.G.; Berkowicz, S.M.; Jacobs, A.F.G.; Hillen, W.C.A.M.; Holtslag, A.A.M.

    2008-01-01

    An optical wetness sensor (OWS) was developed for continuous surface wetness measurements. The sensor is an all-weather instrument that does not interfere with the surface wetting and drying process and is unaffected by solar radiation. It is equipped with its own light source with which it can scan

  4. A study of toxic emissions from a coal-fired power plant utilizing an ESP/Wet FGD system. Volume 1, Sampling, results, and special topics: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE-PETC in 1993 as mandated by the 1990 Clean Air Act. It is organized into 2 volumes; Volume 1 describes the sampling effort, presents the concentration data on toxic chemicals in several power plant streams, and reports the results of evaluations and calculations. The study involved solid, liquid, and gaseous samples from input, output, and process streams at Coal Creek Station Unit No. 1, Underwood, North Dakota (1100 MW mine-mouth plant burning lignite from the Falkirk mine located adjacent to the plant). This plant had an electrostatic precipitator and a wet scrubber flue gas desulfurization unit. Measurements were conducted on June 21--24, 26, and 27, 1993; chemicals measured were 6 major and 16 trace elements (including Hg, Cr, Cd, Pb, Se, As, Be, Ni), acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate), ammonia and cyanide, elemental C, radionuclides, VOCs, semivolatiles (incl. PAH, polychlorinated dioxins, furans), and aldehydes. Volume 2: Appendices includes process data log sheets, field sampling data sheets, uncertainty calculations, and quality assurance results.

  5. Wetting heterogeneity in mixed-wet porous media controls flow dissipation

    CERN Document Server

    Murison, Julie; Baret, Jean-Christophe; Herminghaus, Stephan; Schröter, Matthias; Brinkmann, Martin

    2013-01-01

    Wettability is crucial for multiphase flow in porous media. However, the effect of spatial distribution of wetting domains has previously only been dealt with by averaging contact angles over several pores. By preparing tailored bead packings with the same average surface wettability, but differing in the typical spatial extension of the same-type wetting domains, we show that models based solely on averages do not capture the dynamics of two phase flow in such systems. Using X-ray tomography we measure the typical length scale xi of the wetting domains in our samples. In capillary pressure saturation (CPS) experiments we find that xi controls the width of the hysteresis loop for xi <= d, d being the bead diameter. X-Ray tomography of the samples during both water and oil invasion shows that the front morphology is smoothened at small values of xi. Both observations are consistent with an increase of dissipation for small correlation length.

  6. Control wetting state transition by micro-rod geometry

    Science.gov (United States)

    He, Yang; Jiang, Chengyu; Wang, Shengkun; Yin, Hengxu; Yuan, Weizheng

    2013-11-01

    Understanding the effect of micro-structure geometry on wetting state transition is important to design and control surface wettability. Micro-rod model was proposed and the relationship between micro-rod geometry and wetting state was investigated in the paper taking into account only the surface roughness and neglecting the chemistry interaction. Micro-rods with different geometric parameters were fabricated using micro-fabrication technology. Their contact angles were measured and compared with theoretical ones. The experimental results indicated that increasing the height and decreasing the space of micro-rod may result in Cassie wetting state, while decreasing the height and increasing the space may result in Wenzel wetting state. A suspended wetting state model due to scallops was proposed. The wetting state transition was interpreted by intruding height, de-pinning and sag mechanism. It may offer a facile way to control the surface wetting state transition by changing the geometry of micro-rod.

  7. Collapse of granular media subjected to wetting

    Directory of Open Access Journals (Sweden)

    El Korchi Fatima Zahra

    2017-01-01

    Full Text Available This paper focuses on the collapse of granular materials subjected to wetting action. For soils, the collapse potential depends on several parameters such as liquid limit, matric suction, compactness, initial water content and the amount of fine particles. The effect of grain size, which plays a key role in the rearrangement of grains, remains little studied and poorly understood. To investigate the capillary origin of the collapse phenomenon, we present an experimental study on macroscopic and local scales. Our results show the effect of grain size and water content on collapse.

  8. Microwave emission from dry and wet snow

    Science.gov (United States)

    Chang, T. C.; Gloersen, P.

    1975-01-01

    A microscopic model was developed to study the microwave emission from snow. In this model, the individual snow particles are considered to be the scattering centers. Mie scattering theory for spherical particles is then used to compute the volume scattering and extinction coefficients of the closely packed scattering spheres, which are assumed not to interact coherently. The results of the computations show significant volume scattering effects in the microwave region which result in low observed emissivities from cold, dry snow. In the case of wet snow, the microwave emissivities are increased considerably, in agreement with earlier experimental observations in which the brightness temperatures have increased significantly at the onset of melting.

  9. Phoenix Carries Soil to Wet Chemistry Lab

    Science.gov (United States)

    2008-01-01

    This image taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the lander's Robotic Arm scoop positioned over the Wet Chemistry Lab delivery funnel on Sol 29, the 29th Martian day after landing, or June 24, 2008. The soil will be delivered to the instrument on Sol 30. This image has been enhanced to brighten the scene. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Stable, Electroinactive Wetting Agent For Fuel Cells

    Science.gov (United States)

    Prakash, Surya G.; Olah, George A.; Narayanan, Sekharipuram R.; Surampudi, Subbarao; Halpert, Gerald

    1994-01-01

    Straight-chain perfluorooctanesulfonic acid (C8 acid) identified as innocuous and stable wetting agent for use with polytetrafluoroethylene-containing electrodes in liquid-feed direct-oxidation fuel cells suggested for use in vehicles and portable power supplies. C8 acid in small concentrations in aqueous liquid solutions of methanol, trimethoxymethane, dimethoxymethane, and trioxane enables oxidation of these substances by use of commercially available electrodes of type designed originally for use with gases. This function specific to C8 acid molecule and not achieved by other related perfluorolkanesulfonic acids.

  11. 低压洗涤塔在尿素装置低压尾气回收中的应用%Application of low-pressure scrubber in low-pressure exhaust gas recycling of urea plant

    Institute of Scientific and Technical Information of China (English)

    侯立志

    2014-01-01

    简要介绍二氧化碳汽提尿素装置低压回收工序采用低压洗涤塔工艺,有效降低了尾气中氨、二氧化碳的排放,大大降低了生产成本。%The paper briefly introduces low-pressure scrubber process in low-pressure exhaust gas recycling of CO2 stripping urea plant,reducing ammonia and carbon dioxide emissions effectively in tail gas,and reducing the cost of production greatly.

  12. A wetting and drying scheme for ROMS

    Science.gov (United States)

    Warner, John C.; Defne, Zafer; Haas, Kevin; Arango, Hernan G.

    2013-01-01

    The processes of wetting and drying have many important physical and biological impacts on shallow water systems. Inundation and dewatering effects on coastal mud flats and beaches occur on various time scales ranging from storm surge, periodic rise and fall of the tide, to infragravity wave motions. To correctly simulate these physical processes with a numerical model requires the capability of the computational cells to become inundated and dewatered. In this paper, we describe a method for wetting and drying based on an approach consistent with a cell-face blocking algorithm. The method allows water to always flow into any cell, but prevents outflow from a cell when the total depth in that cell is less than a user defined critical value. We describe the method, the implementation into the three-dimensional Regional Oceanographic Modeling System (ROMS), and exhibit the new capability under three scenarios: an analytical expression for shallow water flows, a dam break test case, and a realistic application to part of a wetland area along the Georgia Coast, USA.

  13. The Underlying Physics in Wetted Particle Collisions

    Science.gov (United States)

    Donahue, Carly; Hrenya, Christine; Davis, Robert

    2008-11-01

    Wetted granular particles are relevant in many industries including the pharmaceutical and chemical industries and has applications to granulation, filtration, coagulation, spray coating, drying and pneumatic transport. In our current focus, we investigate the dynamics of a three-body normal wetted particle collision. In order to conduct collisions we use an apparatus called a ``Stokes Cradle,'' similar to the Newton's Cradle (desktop toy) except that the target particles are covered with oil. Here, we are able to vary the oil thickness, oil viscosity, and material properties. With a three particle collision there are four possible outcomes: fully agglomerated (FA); Newton's Cradle (NC), the striker and the first target ball are agglomerated and the last target ball is separated; Reverse Newton's Cradle (RNC), the striker is separated and the two targets are agglomerated; and fully separated (FS). Varying the properties of the collisions, we have observed all four outcomes. We use elastohydrodynamics as a theoretical basis for modeling the system. We also have considered the glass transition of the oil as the pressure increases upon impact and the cavitation of the oil as the pressure drops below the vapor pressure upon rebound. A toy model has been developed where the collision is modeled as a series of two-body collisions. A qualitative agreement between the toy model and experiments gives insight into the underlying physics.

  14. Wenzel Wetting on Slippery Rough Surfaces

    Science.gov (United States)

    Stogin, Birgitt; Dai, Xianming; Wong, Tak-Sing

    2015-11-01

    Liquid repellency is an important surface property used in a wide range of applications including self-cleaning, anti-icing, anti-biofouling, and condensation heat transfer, and is characterized by apparent contact angle (θ*) and contact angle hysteresis (Δθ*). The Wenzel equation (1936) predicts θ* of liquids in the Wenzel state, and is one of the most fundamental equations in the wetting field. However, droplets in the Wenzel state on conventional rough surfaces exhibit large Δθ* , making it difficult to experimentally verify the model with precision. As a result, precise verification of the Wenzel wetting model has remained an open scientific question for the past 79 years. Here we introduce a new class of liquid-infused surfaces called slippery rough surfaces -- surfaces with significantly reduced Δθ* compared to conventional rough surfaces--and use them to experimentally assess the Wenzel equation with the highest precision to date. We acknowledge the funding support by National Science Foundation (NSF) CAREER Award #: 1351462 and Office of Navy Research MURI Award #: N00014-12-1-0875. Stogin acknowledges the support from the NSF Graduate Research Fellowship (Grant No. DGE1255832).

  15. Wet sipping system at Wolsong-1

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.Y.; Shin, J.C.; Kim, Y.C.; Park, C.H.; Choi, T.Y.; Park, C.J., E-mail: jyoulpark@knfc.co.kr [Korea Nuclear Fuel Co. Ltd. (KNF), Yousong, Daejeon (Korea, Republic of); Manger, A.M. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    2010-07-01

    After many years of operation, the on-power failed fuel detection and location systems along with alarm area gamma monitors at Wolsong-1 have successfully demonstrated that most, if not all, defective and suspect fuel bundles can be located before discharge to the fuel bay. Today, discharged bundles are now being transferred from the fuel bay to the AECL designed Modular Air-Cooled Storage (MACSTOR) canister facilities. Since these canisters are licensed for storing intact fuel bundles only, a procedure was needed at Wolsong-1 to separate any suspect or defective bundles that do not release fission products in detectable quantities. Therefore, KNF designed and built a wet sipper to enclose an irradiated bundle inside a sealed container at the bottom of the fuel bay. Various techniques were then used to enhance the release of water soluble fission products from defective fuel elements before circulating water samples from the immediate vicinity of an irradiated fuel bundle to an inspection station located at the top of the fuel bay. Any water samples with elevated levels of gamma activity were direct indications of a fuel cladding breach. The presence of defective fuel elements were then verified by visual inspection. The system performance test was performed in the Wolsong-1 nuclear power plant on March 2009.This paper describes the results of the wet sipping tests. (author)

  16. WetLab-2: Wet Lab RNA SmartCycler Providing PCR Capability on ISS

    Science.gov (United States)

    Parra, Macarena; Schonfeld, Julie

    2015-01-01

    The WetLab-2 system will provide sample preparation and qRT-PCR analysis on-board the ISS, a capability to enable using the ISS as a real laboratory. The system will be validated on SpX-7, and is planned for its first PI use on SpX-9.

  17. Droplet activation of wet particles: development of the Wet CCN approach

    Science.gov (United States)

    Nakao, S.; Suda, S. R.; Camp, M.; Petters, M. D.; Kreidenweis, S. M.

    2014-07-01

    Relationships between critical supersaturation required for activation and particle dry diameter have been the primary means for experimentally characterizing cloud condensation nuclei (CCN) activity; however, use of the dry diameter inherently limits the application to cases where the dry diameter can be used to accurately estimate solute volume. This study challenges the requirement and proposes a new experimental approach, Wet CCN, for studying CCN activity without the need for a drying step. The new approach directly measures the subsaturated portion of the Köhler curves. The experimental setup consists of a humidity-controlled differential mobility analyzer and a CCN counter; wet diameter equilibrated at known relative humidity is used to characterize CCN activity instead of the dry diameter. The experimental approach was validated against ammonium sulfate, glucose, and nonspherical ammonium oxalate monohydrate. Further, the approach was applied to a mixture of nonspherical iodine oxide particles. The Wet CCN approach successfully determined the hygroscopicity of nonspherical particles by collapsing them into spherical, deliquesced droplets. We further show that the Wet CCN approach offers unique insights into the physical and chemical impacts of the aqueous phase on CCN activity; a potential application is to investigate the impact of evaporation/co-condensation of water-soluble semivolatile species on CCN activity.

  18. Droplet activation of wet particles: development of the Wet CCN approach

    Directory of Open Access Journals (Sweden)

    S. Nakao

    2014-01-01

    Full Text Available Relationships between critical supersaturation required for activation and particle dry diameter have been the primary means for experimentally characterizing cloud condensation nuclei (CCN activity; however, use of the dry diameter inherently limits the application to cases where the dry diameter can be used to accurately estimate solute volume. This study challenges the requirement and proposes a new experimental approach, Wet CCN, for studying CCN activity without the need for a drying step. The new approach directly measures Köhler curves under sub-saturated conditions. The experimental setup consists of a humidity-controlled differential mobility analyzer and a CCN counter; wet diameter equilibrated at known relative humidity is used to characterize CCN activity instead of the dry diameter. The experimental approach was validated against ammonium sulfate, glucose and non-spherical ammonium oxalate monohydrate. Further, the approach was applied to a mixture of non-spherical iodine oxide particles. The Wet CCN approach successfully determined the hygroscopicity of non-spherical particles by collapsing them into spherical, deliquesced droplets. We further show that the Wet CCN approach offers unique insights to the physical and chemical impacts of the aqueous phase on CCN activity; a potential application is to investigate the impact of evaporation/co-condensation of water-soluble semi-volatile species on CCN activity.

  19. Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces

    KAUST Repository

    Domingues, Eddy

    2017-06-05

    Omniphobic surfaces, i.e. which repel all known liquids, have proven of value in applications ranging from membrane distillation to underwater drag reduction. A limitation of currently employed omniphobic surfaces is that they rely on perfluorinated coatings, increasing cost and environmental impact, and preventing applications in harsh environments. There is, thus, a keen interest in rendering conventional materials, such as plastics, omniphobic by micro/nano-texturing rather than via chemical make-up, with notable success having been achieved for silica surfaces with doubly reentrant micropillars. However, we found a critical limitation of microtextures comprising of pillars that they undergo catastrophic wetting transitions (apparent contact angles, θr → 0° from θr > 90°) in the presence of localized physical damages/defects or on immersion in wetting liquids. In response, a doubly reentrant cavity microtexture is introduced, which can prevent catastrophic wetting transitions in the presence of localized structural damage/defects or on immersion in wetting liquids. Remarkably, our silica surfaces with doubly reentrant cavities could exhibited apparent contact angles, θr ≈ 135° for mineral oil, where the intrinsic contact angle, θo ≈ 20°. Further, when immersed in mineral oil or water, doubly reentrant microtextures in silica (θo ≈ 40° for water) were not penetrated even after several days of investigation. Thus, microtextures comprising of doubly reentrant cavities might enable applications of conventional materials without chemical modifications, especially in scenarios that are prone to localized damages or immersion in wetting liquids, e.g. hydrodynamic drag reduction and membrane distillation.

  20. Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces.

    Science.gov (United States)

    Domingues, Eddy M; Arunachalam, Sankara; Mishra, Himanshu

    2017-06-28

    Omniphobic surfaces, that is, which repel all known liquids, have proven of value in applications ranging from membrane distillation to underwater drag reduction. A limitation of currently employed omniphobic surfaces is that they rely on perfluorinated coatings, increasing cost and environmental impact and preventing applications in harsh environments. Thus, there is a keen interest in rendering conventional materials, such as plastics, omniphobic by micro/nanotexturing rather than via chemical makeup, with notable success having been achieved for silica surfaces with doubly reentrant micropillars. However, we found a critical limitation of microtextures comprising pillars that they undergo catastrophic wetting transitions (apparent contact angles, θr → 0° from θr > 90°) in the presence of localized physical damages/defects or on immersion in wetting liquids. In response, a doubly reentrant cavity microtexture is introduced, which can prevent catastrophic wetting transitions in the presence of localized structural damage/defects or on immersion in wetting liquids. Remarkably, our silica surfaces with doubly reentrant cavities could exhibit apparent contact angles, θr ≈ 135° for mineral oil, where the intrinsic contact angle, θo ≈ 20°. Further, when immersed in mineral oil or water, doubly reentrant microtextures in silica (θo ≈ 40° for water) were not penetrated even after several days of investigation. Thus, microtextures comprising doubly reentrant cavities might enable applications of conventional materials without chemical modifications, especially in scenarios that are prone to localized damages or immersion in wetting liquids, for example, hydrodynamic drag reduction and membrane distillation.

  1. Wetting failure of hydrophilic surfaces promoted by surface roughness

    Science.gov (United States)

    Zhao, Meng-Hua; Chen, Xiao-Peng; Wang, Qing

    2014-06-01

    Wetting failure is of vital importance to many physical phenomena, such as industrial coating and drop emission. Here we show when and how the surface roughness promotes the destabilization of a moving contact line on a hydrophilic surface. Beyond the balance of the driving force and viscous resistance where a stable wetting interface is sustained, wetting failure occurs and is modified by the roughness of the surface. The promoting effect arises only when the wetting velocity is high enough to create a gas-liquid-solid composite interface in the vicinity of the moving contact line, and it is a function of the intrinsic contact angle and proportion of solid tops. We propose a model to explain splashes of rough solid spheres impacting into liquids. It reveals a novel concept that dynamic wetting on hydrophilic rough surfaces can be similar to that on hydrophobic surfaces, and brings a new way to design surfaces with specific wetting properties.

  2. Dynamic wetting with viscous Newtonian and non-Newtonian fluids.

    Science.gov (United States)

    Wei, Y; Rame, E; Walker, L M; Garoff, S

    2009-11-18

    We examine various aspects of dynamic wetting with viscous Newtonian and non-Newtonian fluids. Rather than concentrating on the mechanisms that relieve the classic contact line stress singularity, we focus on the behavior in the wedge flow near the contact line which has the dominant influence on wetting with these fluids. Our experiments show that a Newtonian polymer melt composed of highly flexible molecules exhibits dynamic wetting behavior described very well by hydrodynamic models that capture the critical properties of the Newtonian wedge flow near the contact line. We find that shear thinning has a strong impact on dynamic wetting, by reducing the drag of the solid on the fluid near the contact line, while the elasticity of a Boger fluid has a weaker impact on dynamic wetting. Finally, we find that other polymeric fluids, nominally Newtonian in rheometric measurements, exhibit deviations from Newtonian dynamic wetting behavior.

  3. Mathematical model and general laws of wet compression

    Institute of Scientific and Technical Information of China (English)

    王永青; 刘铭; 廉乐明; 何健勇; 严家騄

    2002-01-01

    Wet compression is an effective way to enhance the performance of gas turbines and it has attracted a good deal of attention in recent years. The one-sidedness and inaccuracy of previous studies,which took concentration gradient as mass transfer potential are discussed. The mass transfer process is analyzed from the viewpoint of non-equilibrium thermodynamics,by taking generalized thermodynamic driving force as mass transfer potential,and the corresponding mass-transfer coefficient is obtained using the heat and mass transfer equilibrium occurring between moist air and water droplets at wet-bulb temperature for the sake of avoiding complex tests and providing more accurate formulas. A mathematical model of wet compression is therefore established,and the general laws of wet compression are investigated. The results show that the performance of atomizer is critical for wet compression and wet compression is more suitable for compressors with higher pressure ratio and longer compression time.

  4. Tympanoplasty: does dry or wet temporalis fascia graft matter?

    Science.gov (United States)

    Singh, G B; Kumar, D; Aggarwal, K; Garg, S; Arora, R; Kumar, S

    2016-08-01

    To evaluate the success rate of dry and wet temporalis fascia grafts in type I underlay tympanoplasty. A prospective, randomised study was conducted. One hundred adult patients (males and females) with chronic suppurative otitis media (mucosal type) were divided into 2 groups of 50 each: one group underwent dry graft tympanoplasty and the other underwent wet graft tympanoplasty. Fibroblast count was calculated in dry and wet grafts. The dry graft and wet graft groups had overall surgical success rates of 82 and 90 per cent, respectively; this finding was not statistically significant. A statistically significant high fibroblast count was observed in wet grafts, but it did not correlate with surgical success. A dry or wet temporalis fascia graft does not influence the outcome of tympanoplasty type I.

  5. Wetting and evaporation studies on molecularly modified surfaces

    OpenAIRE

    Soolaman, Dinah Michele

    2007-01-01

    Wetting and evaporation of liquid microdroplets on solid surfaces are ubiquitous in nature. Two of the many important factors that influence how a droplet wets and “escapes”, are the chemical composition and roughness of the solid surface. In order to gain a better understanding of these processes as a whole, a systematic study on the factors that influence wetting/evaporation behaviour, including the liquid’s composition, the liquid-solid interface, and the substrate morphology has been carr...

  6. A review of ethanol wet-bonding: Principles and techniques.

    Science.gov (United States)

    Ayar, Muhammet Kerim

    2016-01-01

    Conventional water wet-bonding technique has been advocated by many scientists, but the excess water will induce suboptimal polymerization of dental adhesives, phase separation, and nanoleakage, which will influence the longevity of resin-dentin interfaces. Recent studies have put forward a new concept, ethanol wet-bonding. This technique can increase in dentin bond durability. This review focuses on the principles of ethanol wet-bonding, its surface treatment methods.

  7. A review of ethanol wet-bonding: Principles and techniques

    OpenAIRE

    Ayar, Muhammet Kerim

    2016-01-01

    Conventional water wet-bonding technique has been advocated by many scientists, but the excess water will induce suboptimal polymerization of dental adhesives, phase separation, and nanoleakage, which will influence the longevity of resin-dentin interfaces. Recent studies have put forward a new concept, ethanol wet-bonding. This technique can increase in dentin bond durability. This review focuses on the principles of ethanol wet-bonding, its surface treatment methods.

  8. 浅析尿素装置高压洗涤器的本质安全%Plain Analysis of Essential Safety of High-Pressure Scrubber of Urea Unit

    Institute of Scientific and Technical Information of China (English)

    牛斌

    2012-01-01

    对CO2汽提法尿素装置高压洗涤器防爆筒爆裂事故进行探讨,提出提高尿素装置高压洗涤器本质安全管理理念.采用CO2原料气脱氢技术后,扩大了尿素装置主要参数的调节范围,彻底消除了安全隐患,而且吨尿素一般可降低氨耗2 kg左右.%An inquiry is made into rupture accident of explosion-proof cylinder of high-pressure scrubber of urea unit adopting carbon dioxide stripping process, and it is proposed to improve essential safety management concept of high-pressure scrubber of urea unit. With the adoption of CO2 raw gas dehydrogenation technology, adjustment range of main parameters of urea unit are extended, hidden perils in safety are eliminated thoroughly, and ammonia consumption generally reduces about 2 kg per ton of urea.

  9. The experimental study on sodium aerosol removal efficiency of water bath scrubber%水浴除尘器对钠气溶胶除尘效率试验研究

    Institute of Scientific and Technical Information of China (English)

    王荣东; 杜海鸥; 高耀鹏; 刘晨; 王密; 王国芝

    2012-01-01

    This article introduced the structure and the dust removal principle of the water bath scrubber (WBS), which used in the accident ventilation system of China Experimental Fast Reactor (CEFR). Through experiment the dust removal efficiency of the WBS with different air flow rate is measured, and the main factors that influence the dust removal efficiency of the WBS are analyzed. The results show that the water bath scrubber can effectively remove sodium aerosol under certain condition. The results of series experiments are valuable for the selection of dust removal equipment and design of the dust removal system of fast reactor nuclear plant.%本文介绍了中国实验快堆钠工艺间事故通风系统使用的水浴除尘器的结构、除尘原理,试验流程的设计等.通过试验研究测量了不同风量条件下水浴除尘器的除尘效率,分析了影响水浴除尘器除尘效率的因素.试验结果表明,水浴除尘器在特定条件下,对钠气溶胶除尘效率效果较好.该试验研究结果对快堆核电站除尘设备选择及除尘系统的设计有参考价值.

  10. Wet-Bulb-Globe Temperature Data Report

    Science.gov (United States)

    2015-03-01

    ARL‐SR‐0317 ● MAR 2015          US Army Research Laboratory      Wet‐Bulb– Globe  Temperature Data Report    by David P Sauter...originator.         ARL‐SR‐0317 ● MAR 2015      US Army Research Laboratory      Wet‐Bulb– Globe  Temperature Data Report    by David P Sauter...March 2015 2. REPORT TYPE  Special Report 3. DATES COVERED (From ‐ To)  11 Aug 2014–23 Aug 2014 4. TITLE AND SUBTITLE  Wet-Bulb– Globe Temperature

  11. Influence of surface charge on wetting kinetics.

    Science.gov (United States)

    Puah, Lee San; Sedev, Rossen; Fornasiero, Daniel; Ralston, John; Blake, Terry

    2010-11-16

    The wettability of a titania surface, partially covered with octadecyltrihydrosilane, has been investigated as a function of solution pH. The results show that surface charge affects both static wettability and wetting kinetics. The static contact angle decreases above and below the point of zero charge of the titania surface in a Lippman-like manner as the pH is altered. The dependence of dynamic contact angle on velocity is also affected by pH. The molecular-kinetic theory (MKT) is used to interpret the dynamic contact angle data. The frequency of molecular displacement κ(0) strongly varies with surface charge, whereas the mean molecular displacement length λ is essentially unaffected. There is an exponential dependence of contact-line friction upon work of adhesion, which is varied simply by altering the pH.

  12. BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES

    Energy Technology Data Exchange (ETDEWEB)

    Youmans-Mcdonald, L.

    2011-02-18

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  13. Coefficient of Restitution of Wet Tennis Balls

    Directory of Open Access Journals (Sweden)

    Eugene Jang

    2014-12-01

    Full Text Available The coefficient of restitution of a damp tennis ball is of interest to tennis players. Using a spray bottle, water was added to a tennis ball and the mass of water on the wet ball was determined. The ball was then dropped from a fixed height of 0.86 m. The motion was recorded with a video camera and the bounce height was measured. Using the bounce height and the original height, the coefficient of restitution for that mass of added water was determined. The research found the mass of water added to the tennis ball to have a negatively linear relationship with the coefficient of restitution of the tennis ball.

  14. Coefficient of Restitution of Wet Tennis Balls

    Directory of Open Access Journals (Sweden)

    Eugene Jang

    2014-01-01

    Full Text Available The coefficient of restitution of a damp tennis ball is of interest to tennis players. Using a spray bottle, water was added to a tennis ball and the mass of water on the wet ball was determined. The ball was then dropped from a fixed height of 0.86 m. The motion was recorded with a video camera and the bounce height was measured. Using the bounce height and the original height, the coefficient of restitution for that mass of added water was determined. The research found the mass of water added to the tennis ball to have a negatively linear relationship with the coefficient of restitution of the tennis ball.

  15. Ensuring message embedding in wet paper steganography

    CERN Document Server

    Augot, Daniel; Fontaine, Caroline

    2011-01-01

    Syndrome coding has been proposed by Crandall in 1998 as a method to stealthily embed a message in a cover-medium through the use of bounded decoding. In 2005, Fridrich et al. introduced wet paper codes to improve the undetectability of the embedding by nabling the sender to lock some components of the cover-data, according to the nature of the cover-medium and the message. Unfortunately, almost all existing methods solving the bounded decoding syndrome problem with or without locked components have a non-zero probability to fail. In this paper, we introduce a randomized syndrome coding, which guarantees the embedding success with probability one. We analyze the parameters of this new scheme in the case of perfect codes.

  16. The geometry and wetting of capillary folding

    CERN Document Server

    Péraud, Jean-Philippe

    2014-01-01

    Capillary forces are involved in a variety of natural phenomena, ranging from droplet breakup to the physics of clouds. The forces from surface tension can also be exploited in industrial application provided the length scales involved are small enough. Recent experimental investigations showed how to take advantage of capillarity to fold planar structures into three-dimensional configurations by selectively melting polymeric hinges joining otherwise rigid shapes. In this paper we use theoretical calculations to quantify the role of geometry and fluid wetting on the final folded state. Considering folding in two and three dimensions, studying both hydrophilic and hydrophobic situations with possible contact angle hysteresis, and addressing the shapes to be folded to be successively infinite, finite, curved, kinked, elastic, we are able to derive an overview of the geometrical parameter space available for capillary folding.

  17. THERMAL TRANSFERS IN WET HYPERBARIC ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Tamara STANCIU

    2014-05-01

    Full Text Available The heat losses of human body are greater in underwater environment than in dry, normal atmosphere, due to the great heat capacity of water. Body temperature of divers in immersion was studied taking into account the pressure the divers are subjected to. The theoretic equation that describes the total heat transfer- at both levels: skin and respiratory system- was established, considering conduction, convection and respiratory gas heating and humidification. The body temperature of the divers was measured in a series of dives at different depths of immersion, conducted in the wet simulator of the Diving Center, in Constanta. The experimental results were in good accordance with the temperature predicted by the mathematical model.

  18. Textile UWB Antenna Bending and Wet Performances

    Directory of Open Access Journals (Sweden)

    Mai A. R. Osman

    2012-01-01

    Full Text Available The vision and ideas of wearable computing systems describe future electronic systems as an integral part of our everyday clothing that provides the wearer with such intelligent personal assistants. Recently, there has been growing interest in the antenna community to merge between wearable systems technology, ultrawideband (UWB technology and textile technology. This work aimed to make closer steps towards real wearability by investigating the possibilities of designing wearable UWB antenna where textile materials are used for the substrate as well as the conducting parts of the designed antenna. Two types of conducting materials have been used for conducting parts, while a nonconducting fabric has been used as antenna substrate material. A set of comparative results of the proposed design were presented and discussed. Moreover, effects on the return loss by means of measurements for each fabricated antenna prototype under bent and fully wet conditions were discussed in more details.

  19. Flow studies in a wet steam turbine

    Science.gov (United States)

    Evans, D. H.; Pouchot, W. D.

    1974-01-01

    The design and test results of a four stage wet vapor turbine operating with slightly superheated inlet steam and expanding to 10% exit moisture are presented. High speed movies at 3000 frames per second of liquid movement on the pressure side and along the trailing edge of the last stator blade are discussed along with back lighted photographs of moisture drops as they were torn from the stator blade trailing edge. Movies at lower framing rates were also taken of the exit of the last rotating blade and the casing moisture removal slot located in line with the rotor blade shroud. Also moisture removal data are presented of casing slot removal at the exit of the third and fourth rotor blades and for slots located in the trailing edge of the last stator blade. Finally, the degradation of turbine thermodynamic performance due to condensation formation and movement is discussed.

  20. Wetting dynamics of a collapsing fluid hole

    Science.gov (United States)

    Bostwick, Joshua; Dijksman, Joshua; Shearer, Michael

    2016-11-01

    An axisymmetric fluid cavity at the bottom of a rotating bucket bound by vertical sidewalls is studied, as it is filled in by the wetting fluid. Lubrication theory is applied to reduce the governing equations to a single evolution equation for the film thickness. In the quasi-static regime the contact-line motion is governed by a constitutive law relating the effective contact angle to the contact-line speed. The dependence of the collapse time on the initial hole size is calculated. For small holes, surface tension dominates the dynamics, leading to a universal power law that compares favorably to experiments in the literature. Further verification of the model is obtained through comparison of volume dependence with experimental results.

  1. Wetting dynamics of a collapsing fluid hole

    Science.gov (United States)

    Bostwick, J. B.; Dijksman, J. A.; Shearer, M.

    2017-01-01

    The collapse dynamics of an axisymmetric fluid cavity that wets the bottom of a rotating bucket bound by vertical sidewalls are studied. Lubrication theory is applied to the governing field equations for the thin film to yield an evolution equation that captures the effect of capillary, gravitational, and centrifugal forces on this converging flow. The focus is on the quasistatic spreading regime, whereby contact-line motion is governed by a constitutive law relating the contact-angle to the contact-line speed. Surface tension forces dominate the collapse dynamics for small holes with the collapse time appearing as a power law whose exponent compares favorably to experiments in the literature. Gravity accelerates the collapse process. Volume dependence is predicted and compared with experiment. Centrifugal forces slow the collapse process and lead to complex dynamics characterized by stalled spreading behavior that separates the large and small hole asymptotic regimes.

  2. Kinetics of wet sodium vapor complex plasma

    Science.gov (United States)

    Mishra, S. K.; Sodha, M. S.

    2014-04-01

    In this paper, we have investigated the kinetics of wet (partially condensed) Sodium vapor, which comprises of electrons, ions, neutral atoms, and Sodium droplets (i) in thermal equilibrium and (ii) when irradiated by light. The formulation includes the balance of charge over the droplets, number balance of the plasma constituents, and energy balance of the electrons. In order to evaluate the droplet charge, a phenomenon for de-charging of the droplets, viz., evaporation of positive Sodium ions from the surface has been considered in addition to electron emission and electron/ion accretion. The analysis has been utilized to evaluate the steady state parameters of such complex plasmas (i) in thermal equilibrium and (ii) when irradiated; the results have been graphically illustrated. As a significant outcome irradiated, Sodium droplets are seen to acquire large positive potential, with consequent enhancement in the electron density.

  3. Wick wetting for water condensation systems

    Energy Technology Data Exchange (ETDEWEB)

    Hering, Susanne Vera; Spielman, Steven Russel; Lewis, Gregory Stephen; Kreisberg, Nathan Michael

    2017-04-04

    A system and method for particle enlargement with continuously wetted wicks includes a container into which a flow of particle-laden air is introduced in a laminar manner through an inlet and to an outlet. The container has a first section, a second section and a third section though which the particle-laden air flows between the inlet and the outlet. The temperature of the second section is warmer than that of the first section at the inlet and the third section at the outlet. In one embodiment, a continuous wick spanning an interior wall of the first second, second section and third section, said wick being capable of internally transporting liquid water along its length is provided.

  4. Modeling of AC arc inside wet snow

    Energy Technology Data Exchange (ETDEWEB)

    Hemmatjou, H.

    2006-07-01

    Overhead transmission lines cover long distances over a broad range of topographic relief, climates, and environments. As such, the high voltage equipment is subject to pollution, wet snow and atmospheric icing. Each of these factors have been the source of power outages recorded on power transmission lines. Electric arcs can develop on outdoor insulators until they cause a total flashover. This study involved the modeling of flashover in snow-covered insulators to better understand how electric discharges initiate inside snow and how they develop into flashover. The main objective of this thesis was to develop a mathematical model to predict the flashover voltage of snow-covered insulator surfaces and to ultimately design adequate insulators for cold regions. The results obtained through mathematical modeling were in good agreement with those obtained in experiments.

  5. Toward a predictive theory of wetting dynamics.

    Science.gov (United States)

    Duvivier, Damien; Blake, Terence D; De Coninck, Joël

    2013-08-13

    The molecular kinetic theory (MKT) of dynamic wetting, first proposed nearly 50 years ago, has since been refined to account explicitly for the effects of viscosity and solid-liquid interactions. The MKT asserts that the systematic deviation of the dynamic contact angle from its equilibrium value quantitatively reflects local energy dissipation (friction) at the moving contact line as it traverses sites of solid-liquid interaction. Specifically, it predicts that the coefficient of contact-line friction ζ will be proportional to the viscosity of the liquid ηL and exponentially dependent upon the strength of solid-liquid interactions as measured by the equilibrium work of adhesion Wa(0). Here, we analyze a very large set of dynamic wetting data drawn from more than 20 publications and representative of a very wide range of systems, from molecular-dynamics-simulated Lenard-Jones liquids and substrates, through conventional liquids and solids, to molten glasses and liquid metals on refractory solids. The combined set spans 9 decades of viscosity and 11 decades of contact-line friction. Our analysis confirms the predicted dependence of ζ upon ηL and Wa(0), although the data are scattered. In particular, a plot of ln(ζ/ηL) versus Wa(0)/n (i.e., the work of adhesion per solid-liquid interaction site) is broadly linear, with 85% of the data falling within a triangular envelope defined by Wa(0) and 0.25Wa(0). Various reasons for this divergence are explored, and a semi-empirical approach is proposed to predict ζ. We suggest that the broad agreement between the MKT and such a wide range of data is strong evidence that the local microscopic contact angle is directly dependent upon the velocity of the contact line.

  6. Strongly anisotropic wetting on one-dimensional nanopatterned surfaces.

    Science.gov (United States)

    Xia, Deying; Brueck, S R J

    2008-09-01

    This communication reports strongly anisotropic wetting behavior on one-dimensional nanopatterned surfaces. Contact angles, degree of anisotropy, and droplet distortion are measured on micro- and nanopatterned surfaces fabricated with interference lithography. Both the degree of anisotropy and the droplet distortion are extremely high as compared with previous reports because of the well-defined nanostructural morphology. The surface is manipulated to tune with the wetting from hydrophobic to hydrophilic while retaining the structural wetting anisotropy with a simple silica nanoparticle overcoat. The wetting mechanisms are discussed. Potential applications in microfluidic devices and evaporation-induced pattern formation are demonstrated.

  7. Wet explosion og wheat straw and codigestion with swine manure

    DEFF Research Database (Denmark)

    Wang, Guangtao; Gavala, Hariklia N.; Skiadas, Ioannis V.

    2009-01-01

    with wheat straw in a continuous operated system was investigated, as a method to increase the efficiency of biogas plants that are based on anaerobic digestion of swine manure. Also, the pretreatment of wheat straw with the wet explosion method was studied and the efficiency of the wet explosion process...... was evaluated based on (a) the sugars release and (b) the methane potential of the pretreated wheat straw compared to that of the raw biomass. It was found that, although a high release of soluble sugars was observed after wet explosion, the methane obtained from the wet-exploded wheat straw was slightly lower...

  8. Letting Wet Spots be Wet: Restoring Natural Bioreactors in the Dissected Glacial Landscape

    Science.gov (United States)

    Schilling, Keith E.; McLellan, Eileen; Bettis, E. Arthur

    2013-12-01

    In this paper, we argue that there is tremendous potential for nitrate-N reductions to occur throughout the Corn Belt region of the USA if we simply let naturally occurring wet spots on the landscape be wet. Geologic and hydrologic data gathered in the Walnut Creek watershed located in south-central Iowa provides compelling evidence that substantial nutrient-processing capacity exists in this dissected glacial landscape. Self-similarity of stratigraphy, sedimentology and hydrology observed at all spatial scales in the watershed suggests that Holocene alluvial fill deposits provide a natural bioreactor for denitrification of upland groundwater nitrate-N; the occurrence of such deposits can be mapped to identify potential nitrogen sinks across the landscape. This approach to identifying potential nitrogen sinks is geology focused and extends potential locations for nutrient processing upstream into the headwater catchments of individual fields.

  9. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 6, Field study conducted in fulfillment of Phase 3 titled. Use of FGD by-product gypsum enriched with magnesium hydroxide as a soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Bigham, J. M. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research Development Center; Soto, U. I. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research Development Center; Stehouwer, R. C. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research Development Center; Yibirin, H. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research Development Center

    1999-04-30

    A variety of flue gas desulfurization (FGD) technologies have been developed to meet environmental restrictions imposed by the federal Clean Air Act and its amendments. These technologies include wet scrubber systems that dramatically reduce sulfur dioxide (SO2) emissions. Although such systems are effective, they also produce large volumes of sludge that must be dewatered, stabilized, and disposed of in landfills. Disposal is an expensive and environmentally questionable process for which suitable alternatives are needed. Wet scrubbing of flue gases with magnesium (Mg)-enhanced lime has the potential to become a leading FGD technology. When combined with aforced oxidation system, the wet sludges resulting from this process can be modified and refined to produce gypsum (CaS04∙2H2O) and magnesium hydroxide [Mg(OH)2] of sufficient purity for beneficial re-use in the construction (wallboard) and pharmaceutical industries. The pilot plant at the CINERGY Zimmer Station near Cincinnati can also produce gypsum by-products formulated to contain varying amounts of Mg(OH)2- Such materials may have value to the agriculture, forestry, and lawn-care industries as soil "conditioners", liming agents, and nutritional supplements capable of supplying calcium (Ca), Mg, and sulfur (S) for plant growth. This report describes three field studies designed to evaluate by-product gypsum and Mg-gypsum from the Zimmer Station power plant as amendments for improving the quality of mine spoils and agricultural soils that were unproductive because of phytotoxic levels of dissolved aluminum (Al) and low pH. The technical literature suggests that gypsum may be more effective than agricultural limestone for ameliorating Al toxicity below the immediate zone of application. Such considerations are important for deep-rooted plant species that attempt to utilize water and nutrients occurring at depth in the spoil/soil.

  10. FPGA Boot Loader and Scrubber

    Science.gov (United States)

    Wade, Randall S.; Jones, Bailey

    2009-01-01

    A computer program loads configuration code into a Xilinx field-programmable gate array (FPGA), reads back and verifies that code, reloads the code if an error is detected, and monitors the performance of the FPGA for errors in the presence of radiation. The program consists mainly of a set of VHDL files (wherein "VHDL" signifies "VHSIC Hardware Description Language" and "VHSIC" signifies "very-high-speed integrated circuit").

  11. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.

    Science.gov (United States)

    Chen, Ching-Lung; Huang, Chien-Chang; Ho, Kao-Chia; Hsiao, Ping-Xuan; Wu, Meng-Shan; Chang, Jo-Shu

    2015-10-01

    Although producing biodiesel from microalgae seems promising, there is still a lack of technology for the quick and cost-effective conversion of biodiesel from wet microalgae. This study was aimed to develop a novel microalgal biodiesel producing method, consisting of an open system of microwave disruption, partial dewatering (via combination of methanol treatment and low-speed centrifugation), oil extraction, and transesterification without the pre-removal of the co-solvent, using Chlamydomonas sp. JSC4 with 68.7 wt% water content as the feedstock. Direct transesterification with the disrupted wet microalgae was also conducted. The biomass content of the wet microalgae increased to 56.6 and 60.5 wt%, respectively, after microwave disruption and partial dewatering. About 96.2% oil recovery was achieved under the conditions of: extraction temperature, 45°C; hexane/methanol ratio, 3:1; extraction time, 80 min. Transesterification of the extracted oil reached 97.2% conversion within 15 min at 45°C and 6:1 solvent/methanol ratio with simultaneous Chlorophyll removal during the process. Nearly 100% biodiesel conversion was also obtained while conducting direct transesterification of the disrupted oil-bearing microalgal biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. GPD+ wet tropospheric correctionsfor eight altimetric missions

    Science.gov (United States)

    Fernandes, Joana; Benveniste, Jérôme; Lázaro, Clara

    2016-07-01

    Due to its large space-temporal variability, the delay induced by the water vapour and liquid water content of the atmosphere in the altimeter signal or wet tropospheric delay (WTD) is still one of the largest sources of uncertainty in satellite altimetry. In the scope of the Sea Level Climate Change Initiative (SL-cci) project, the University of Porto (UPorto) has been developing methods to improve the wet tropospheric correction (WTC), which corrects for the effect of the WPD in the altimetric measurements. Developed as a coastal algorithm to remove land effects in the microwave radiometers (MWR) on board altimeter missions, the GNSS-derived Path Delay (GPD) methodology evolved over time, currently correcting for invalid observations due to land, ice and rain contamination, band instrument malfunction in open ocean, coastal and polar regions. The most recent version of the algorithm, GPD Plus (GPD+) computes wet path delays based on: i) WTC from the on-board MWR measurements, whenever they exist and are valid; ii) new WTC values estimated through space-time objective analysis of all available data sources, whenever the previous are considered invalid. In the estimation of the new WTC values, the following data sets are used: valid measurements from the on-board MWR, water vapour products derived from a set of 17 scanning imaging radiometers (SI-MWR) on board various remote sensing satellites and tropospheric delays derived from Global Navigation Satellite Systems (GNSS) coastal and island stations. In the estimation process, WTC derived from an atmospheric model such as the European Centre for Medium-range Weather Forecasts (ECMWF) ReAnalysis (ERA) Interim or the operational (Op) model are used as first guess, which is the adopted value in the absence of measurements. The corrections are provided for the most recent products of all missions used to generate the SL Essential Climate Variable (ECV): TOPEX/Poseidon- T/P, Jason-1, Jason-2, ERS-1, ERS-2, CryoSat-2

  13. Wetting theory for small droplets on textured solid surfaces

    Science.gov (United States)

    Kim, Donggyu; Pugno, Nicola M.; Ryu, Seunghwa

    2016-11-01

    Conventional wetting theories on rough surfaces with Wenzel, Cassie-Baxter, and Penetrate modes suggest the possibility of tuning the contact angle by adjusting the surface texture. Despite decades of intensive study, there are still many experimental results that are not well understood because conventional wetting theory, which assumes an infinite droplet size, has been used to explain measurements of finite-sized droplets. Here, we suggest a wetting theory applicable to a wide range of droplet size for the three wetting modes by analyzing the free energy landscape with many local minima originated from the finite size. We find that the conventional theory predicts the contact angle at the global minimum if the droplet size is about 40 times or larger than the characteristic scale of the surface roughness, regardless of wetting modes. Furthermore, we obtain the energy barrier of pinning which can induce the contact angle hysteresis as a function of geometric factors. We validate our theory against experimental results on an anisotropic rough surface. In addition, we discuss the wetting on non-uniformly rough surfaces. Our findings clarify the extent to which the conventional wetting theory is valid and expand the physical understanding of wetting phenomena of small liquid drops on rough surfaces.

  14. Fingerlike wetting patterns in two water-repellent loam soils

    NARCIS (Netherlands)

    Dekker, L.W.; Ritsema, C.J.

    1995-01-01

    In soils with fingered flow, surface-applied solutes can reach the groundwater more rapidly than in the case of homogeneous wetting. This study was undertaken to demonstrate the occurrence of finger-like wetting patterns in a silt loam soil and a silty clay loam soil, and to investigate the

  15. Wetting dynamics of a water nanodrop on graphene.

    Science.gov (United States)

    Andrews, Joseph Eugene; Sinha, Shayandev; Chung, Peter W; Das, Siddhartha

    2016-09-14

    Water-graphene wetting interactions are central to several applications such as desalination, water filtration, electricity generation, biochemical sensing, fabrication of fuel cells, and many more. While substantial attention has been devoted to probe the wetting statics of a water drop on graphene, unraveling the possible wetting translucency nature of graphene, very little research has been done on the dynamics of wetting of water drops on graphene-coated solids or free-standing graphene layers. In this paper, we employ molecular dynamics (MD) simulations to study the contact and the spreading of a water nanodrop, quantifying its wetting dynamics, on supported and free-standing graphene. We demonstrate that nanoscale water drops establish contact with graphene by forming patches on graphene, and this patch formation is hastened for graphene layer(s) supported on hydrophilic solids. More importantly, our results demonstrate that the nanodrop spreading dynamics, regardless of the number of graphene layers or the nature of the underlying solid, obey the half-power law, i.e., r∼t(1/2) (where r is the wetting contact radius and t is the spreading time) for the entire timespan of spreading except towards the very end of the spreading lifetime when the spreading stops. Such a spreading behavior is exactly analogous to the spreading dynamics of nanodroplets for standard solids - this is in sharp contrast to the wetting statics of graphene where the wetting translucency effect makes graphene different from other standard solids.

  16. Analysis on Wetting Deformation Properties of Silty Clay

    Directory of Open Access Journals (Sweden)

    Xinrong Liu

    2014-06-01

    Full Text Available Changes in water level that cause deformation and stability problems often occur in foundation pit engineering. Water damage is one of the main problems that will lead to disasters in foundation pit engineering. Research findings with regard to properties of wetting deformation due to water damage can be applied not only in foundation pit engineering, slope engineering, hydraulic engineering, and mining engineering but also in related issues in the field of theoretical research and practice. In this study, the characteristics of silty clay deformation after wetting are examined from the perspective of the effect of wetting on the side wall of foundation pit, and wetting experiments on silty clay of a selected area’s stratum located in Chongqing Municipality are conducted under different confining pressures and stress levels through a multi-function triaxial apparatus. Then, laws of silty clay wetting deformation are obtained, and the relationship between wetting stress level and wetting deformation amount is also figured out. The study reveals that the maximum values of wetting deformation under different confining pressures have appear at a particular stress level; therefore, the related measures should be taken to avoid this deformation in the process of construction.

  17. Phase change materials and the perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kosters, N.D.; Kappers, A.M.L.; Daanen, H.A.M.

    2012-01-01

    Phase change materials (PCMs) are increasingly incorporated in textiles in order to serve as a thermal buffer when humans change from a hot to a cold environment and the reverse. Due to the absence of wetness sensors in the skin, cooling of the skin may be perceived as a sensation of wetness instead

  18. Contact angle and local wetting at contact line.

    Science.gov (United States)

    Li, Ri; Shan, Yanguang

    2012-11-06

    This theoretical study was motivated by recent experiments and theoretical work that had suggested the dependence of the static contact angle on the local wetting at the triple-phase contact line. We revisit this topic because the static contact angle as a local wetting parameter is still not widely understood and clearly known. To further clarify the relationship of the static contact angle with wetting, two approaches are applied to derive a general equation for the static contact angle of a droplet on a composite surface composed of heterogeneous components. A global approach based on the free surface energy of a thermodynamic system containing the droplet and solid surface shows the static contact angle as a function of local surface chemistry and local wetting state at the contact line. A local approach, in which only local forces acting on the contact line are considered, results in the same equation. The fact that the local approach agrees with the global approach further demonstrates the static contact angle as a local wetting parameter. Additionally, the study also suggests that the wetting described by the Wenzel and Cassie equations is also the local wetting of the contact line rather than the global wetting of the droplet.

  19. Enzymatic corn wet milling: engineering process and cost model

    Science.gov (United States)

    Enzymatic Corn Wet Milling (E-Milling) is a proposed alternative process to conventional wet milling for the recovery and purification of starch and coproducts using proteases to eliminate the need for sulfites and to decrease the steeping time. In 2005, the total starch production in USA by conven...

  20. Global variations in droughts and wet spells: 1900–1995

    National Research Council Canada - National Science Library

    Dai, Aiguo; Trenberth, Kevin E; Karl, Thomas R

    1998-01-01

    ...., over the Sahel, eastern Asia and southern Africa) or both the drought and wet areas (e.g., over the U.S. and Europe). Although the high percentages of the dry and wet areas in the recent decades are not unprecedented during this century...

  1. Tactile cues significantly modulate the perception of sweat-induced skin wetness independently of the level of physical skin wetness.

    Science.gov (United States)

    Filingeri, Davide; Fournet, Damien; Hodder, Simon; Havenith, George

    2015-06-01

    Humans sense the wetness of a wet surface through the somatosensory integration of thermal and tactile inputs generated by the interaction between skin and moisture. However, little is known on how wetness is sensed when moisture is produced via sweating. We tested the hypothesis that, in the absence of skin cooling, intermittent tactile cues, as coded by low-threshold skin mechanoreceptors, modulate the perception of sweat-induced skin wetness, independently of the level of physical wetness. Ten males (22 yr old) performed an incremental exercise protocol during two trials designed to induce the same physical skin wetness but to induce lower (TIGHT-FIT) and higher (LOOSE-FIT) wetness perception. In the TIGHT-FIT, a tight-fitting clothing ensemble limited intermittent skin-sweat-clothing tactile interactions. In the LOOSE-FIT, a loose-fitting ensemble allowed free skin-sweat-clothing interactions. Heart rate, core and skin temperature, galvanic skin conductance (GSC), and physical (w(body)) and perceived skin wetness were recorded. Exercise-induced sweat production and physical wetness increased significantly [GSC: 3.1 μS, SD 0.3 to 18.8 μS, SD 1.3, P 0.05). However, the limited intermittent tactile inputs generated by the TIGHT-FIT ensemble reduced significantly whole-body and regional wetness perception (P < 0.01). This reduction was more pronounced when between 40 and 80% of the body was covered in sweat. We conclude that the central integration of intermittent mechanical interactions between skin, sweat, and clothing, as coded by low-threshold skin mechanoreceptors, significantly contributes to the ability to sense sweat-induced skin wetness.

  2. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions.

    Science.gov (United States)

    Nosonovsky, Michael; Bhushan, Bharat

    2008-02-19

    Nonadhesive and water-repellent surfaces are required for many tribological applications. We study mechanisms of wetting of patterned superhydrophobic Si surfaces, including the transition between various wetting regimes during microdroplet evaporation in environmental scanning electron microscopy (ESEM) and for contact angle and contact angle hysteresis measurements. Wetting involves interactions at different scale levels: macroscale (water droplet size), microscale (surface texture size), and nanoscale (molecular size). We propose a generalized formulation of the Wenzel and Cassie equations that is consistent with the broad range of experimental data. We show that the contact angle hysteresis involves two different mechanisms and how the transition from the metastable partially wetted (Cassie) state to the homogeneously wetted (Wenzel) state depends upon droplet size and surface pattern parameters.

  3. Using wet microalgae for direct biodiesel production via microwave irradiation.

    Science.gov (United States)

    Cheng, Jun; Yu, Tao; Li, Tao; Zhou, Junhu; Cen, Kefa

    2013-03-01

    To address the large energy consumption of microalgae dewatering and to simplify the conventional two-step method (cellular lipid extraction and lipid transesterification) for biodiesel production, a novel process for the direct conversion of wet microalgae biomass into biodiesel by microwave irradiation is proposed. The influences of conventional thermal heating and microwave irradiation on biodiesel production from wet microalgae biomass were investigated. The effects of using the one-step (simultaneous lipid extraction and transesterification) and two-step methods were also studied. Approximately 77.5% of the wet microalgal cell walls were disrupted under microwave irradiation. The biodiesel production rate and yield from wet microalgae biomass obtained through the one-step process using microwave irradiation were 6-fold and 1.3-fold higher than those from wet microalgae obtained through the two-step process using conventional heating.

  4. Wetting hysteresis of nanodrops on nanorough surfaces

    Science.gov (United States)

    Chang, Cheng-Chung; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2016-10-01

    Nanodrops on smooth or patterned rough surfaces are explored by many-body dissipative particle dynamics to demonstrate the influence of surface roughness on droplet wetting. On a smooth surface, nanodrops exhibit the random motion and contact angle hysteresis is absent. The diffusivity decays as the intrinsic contact angle (θY) decreases. On a rough surface, the contact line is pinned and the most stable contact angle (θY') is acquired. The extent of contact angle hysteresis (Δ θ ) is determined by two approaches, which resemble the inflation-deflation method and inclined plane method for experiments. The hysteresis loop is acquired and both approaches yield consistent results. The influences of wettability and surface roughness on θY' and Δ θ are examined. θY' deviates from that estimated by the Wenzel or Cassie-Baxter models. This consequence can be explained by the extent of impregnation, which varies with the groove position and wettability. Moreover, contact angle hysteresis depends more on the groove width than the depth.

  5. Morphological clues to wet granular pile stability

    Science.gov (United States)

    Scheel, M.; Seemann, R.; Brinkmann, M.; di Michiel, M.; Sheppard, A.; Breidenbach, B.; Herminghaus, S.

    2008-03-01

    When a granular material such as sand is mixed with a certain amount of liquid, the surface tension of the latter bestows considerable stiffness to the material, which enables, for example, sand castles to be sculpted. The geometry of the liquid interface within the granular pile is of extraordinary complexity and strongly varies with the liquid content. Surprisingly, the mechanical properties of the pile are largely independent of the amount of liquid over a wide range. We resolve this puzzle with the help of X-ray microtomography, showing that the remarkable insensitivity of the mechanical properties to the liquid content is due to the particular organization of the liquid in the pile into open structures. For spherical grains, a simple geometric rule is established, which relates the macroscopic properties to the internal liquid morphologies. We present evidence that this concept is also valid for systems with non-spherical grains. Hence, our results provide new insight towards understanding the complex physics of a large variety of wet granular systems including land slides, as well as mixing and agglomeration problems.

  6. Wetting hysteresis of nanodrops on nanorough surfaces.

    Science.gov (United States)

    Chang, Cheng-Chung; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2016-10-01

    Nanodrops on smooth or patterned rough surfaces are explored by many-body dissipative particle dynamics to demonstrate the influence of surface roughness on droplet wetting. On a smooth surface, nanodrops exhibit the random motion and contact angle hysteresis is absent. The diffusivity decays as the intrinsic contact angle (θ_{Y}) decreases. On a rough surface, the contact line is pinned and the most stable contact angle (θ_{Y}^{'}) is acquired. The extent of contact angle hysteresis (Δθ) is determined by two approaches, which resemble the inflation-deflation method and inclined plane method for experiments. The hysteresis loop is acquired and both approaches yield consistent results. The influences of wettability and surface roughness on θ_{Y}^{'} and Δθ are examined. θ_{Y}^{'} deviates from that estimated by the Wenzel or Cassie-Baxter models. This consequence can be explained by the extent of impregnation, which varies with the groove position and wettability. Moreover, contact angle hysteresis depends more on the groove width than the depth.

  7. Novel applications of biomass wet pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Sillanpaa, M. [Lappeenranta Univ. of Technology (Finland)], email: mika.sillanpaa@lut.fi

    2012-07-01

    Production of carbonaceous material from unconventional wet biomass sources by thermal processing offers interesting novel opportunities and application possibilities in different fields. Thermal treatment at low temperatures refers to torrefication in general. Disadvantage in this technique is that biomass has to be dried first which consumes a lot energy and time and limits use of biomass materials widely. In wetpyrolysis (hydrothermal carbonization, HTC), biomass source can be wetter, like wood, household wastes, manure or industrial wastewater sludge. Reaction takes place in water environment at higher temperature (180-250 deg C) and pressure which is self-generated. Typically reaction system is high pressure reactor also called autoclave. Comparing to torrefaction HTC produces more solid yield, water soluble organic compounds but formation is low during reaction. Properties of the product can be easily modified by changing reaction conditions, utilization of additives or catalysts. Novel materials obtained by this technique will be used in different applications in water treatment and it will be also interesting to compare purification efficiency of these materials to activated carbon.

  8. Photochemical organonitrate formation in wet aerosols

    Science.gov (United States)

    Lim, Yong Bin; Kim, Hwajin; Kim, Jin Young; Turpin, Barbara J.

    2016-10-01

    Water is the most abundant component of atmospheric fine aerosol. However, despite rapid progress, multiphase chemistry involving wet aerosols is still poorly understood. In this work, we report results from smog chamber photooxidation of glyoxal- and OH-containing ammonium sulfate or sulfuric acid particles in the presence of NOx and O3 at high and low relative humidity. Particles were analyzed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). During the 3 h irradiation, OH oxidation products of glyoxal that are also produced in dilute aqueous solutions (e.g., oxalic acids and tartaric acids) were formed in both ammonium sulfate (AS) aerosols and sulfuric acid (SA) aerosols. However, the major products were organonitrogens (CHNO), organosulfates (CHOS), and organonitrogen sulfates (CHNOS). These were also the dominant products formed in the dark chamber, indicating non-radical formation. In the humid chamber (> 70 % relative humidity, RH), two main products for both AS and SA aerosols were organonitrates, which appeared at m / z- 147 and 226. They were formed in the aqueous phase via non-radical reactions of glyoxal and nitric acid, and their formation was enhanced by photochemistry because of the photochemical formation of nitric acid via reactions of peroxy radicals, NOx and OH during the irradiation.

  9. Numerical simulation of thermocapillary wetting suppression

    Science.gov (United States)

    Chen, Jyh-Chen; Kuo, C.-W.; Neitzel, G. Paul

    2002-11-01

    The commercial code FIDAP, based on the finite-element method, is used to investigate a nonwetting phenomenon that occurs when a liquid drop is pressed against a solid wall held at a sufficiently lower temperature. In this situation, an interstitial gas film is induced by thermocapillary convection and separates the drop from the wall, forming a self-lubricating system. The flow in both the gas and liquid phases must be computed to simulate the non-wetting phenomenon. We explore the velocity and thermal fields of both the interstitial film and the liquid drop. A steady-state solution is discussed, with many parameters being considered, i.e., drop/wall temperature differences and relative displacement from the point of first apparent contact, as well as varying drop liquids. The results of the present study indicate that a silicone-oil drop may experience nonwetting while a water drop may not. The mechanism promoting the existence or non-existence of the nonwetting state is also discussed.

  10. Wetting Characteristics of Insect Wing Surfaces

    Institute of Scientific and Technical Information of China (English)

    Doyoung Byun; Jongin Hong; Saputra; Jin Hwan Ko; Young Jong Lee; Hoon Cheol Park; Bong-Kyu Byun; Jennifer R. Lukes

    2009-01-01

    Biological tiny structures have been observed on many kinds of surfaces such as lotus leaves, which have an effect on the coloration of Morpho butterflies and enhance the hydrophobicity of natural surfaces. We investigated the micro-scale and nano-scale structures on the wing surfaces of insects and found that the hierarchical multiple roughness structures help in enhancing the hydrophobicity. After examining 10 orders and 24 species of flying Pterygotan insects, we found that micro-scale and nano-scale structures typically exist on both the upper and lower wing surfaces of flying insects. The tiny structures such as denticle or setae on the insect wings enhance the hydrophobicity, thereby enabling the wings to be cleaned more easily. And the hydrophobic insect wings undergo a transition from Cassie to Wenzel states at pitch/size ratio of about 20. In order to examine the wetting characteristics on a rough surface, a biomimetic surface with micro-scale pillars is fabricated on a silicon wafer,which exhibits the same behavior as the insect wing, with the Cassie-Wenzel transition occurring consistently around a pitch/width value of 20.

  11. Green Gasification Technology for Wet Biomass

    Directory of Open Access Journals (Sweden)

    W. H. Chong

    2010-12-01

    Full Text Available The world now is facing two energy related threats which are lack of sustainable, secure and affordable energy supplies and the environmental damage acquired in producing and consuming ever-increasing amount of energy. In the first decade of the twenty-first century, increasing energy prices reminds us that an affordable energy plays an important role in economic growth and human development. To overcome the abovementioned problem, we cannot continue much longer to consume finite reserves of fossil fuels, the use of which contributes to global warming. Preferably, the world should move towards more sustainable energy sources such as wind energy, solar energy and biomass. However, the abovementioned challenges may not be met solely by introduction of sustainable energy forms. We also need to use energy more efficiently. Developing and introducing more efficient energy conversion technologies is therefore important, for fossil fuels as well as renewable fuels. This assignment addresses the question how biomass may be used more efficiently and economically than it is being used today. Wider use of biomass, a clean and renewable feedstock may extend the lifetime of our fossil fuels resources and alleviate global warming problems. Another advantage of using of biomass as a source of energy is to make developed countries less interdependent on oil-exporting countries, and thereby reduce political tension. Furthermore, the economies of agricultural regions growing energy crops benefit as new jobs are created. Keywords: energy, gasification, sustainable, wet biomass

  12. Wetting, prewetting and surface transitions in type-I superconductors

    Science.gov (United States)

    Indekeu, J. O.; van Leeuwen, J. M. J.

    1995-02-01

    Within the Ginzburg-Landau theory, which is quantitatively correct for classical superconductors, it is shown that a type-I superconductor can display an interface delocalization or “wetting” transition, in which a macroscopically thick superconducting layer intrudes from the surface into the bulk normal phase. The condition for this transition to occur is that the superconducting order parameter | ψ| 2 is enhanced at the surface. This corresponds to a negative surface extrapolation length b. The wetting transition takes place at bulk two-phase coexistence of normal and superconducting phases, at a temperature TD below the critical temperature Tc, and at magnetic field HD = Hc( TD). The field is applied parallel to the surface. Surprisingly, the order of the wetting transition is controlled by a bulk material constant, the Ginzburg-Landau parameter κ. This is very unusual, since in other systems (fluids, Ising magnets,…) the order of the wetting transition depends on surface parameters that are difficult to determine or control. For superconductors, first-order wetting is predicted for 0 ≤ κ wetting for 0.374 wetting, the prewetting extension is also found. Unlike in standard wetting problems, the prewetting line does not terminate at a critical point but changes from first to second order at a tricritical point. Twinning-plane superconductivity (TPS) is reinterpreted as a prewetting phenomenon. The possibility of critical wetting in superconductors is especially interesting because this phenomenon has largely eluded experimental verification in any system until now. Furthermore, superconductors provide a realization of wetting in systems with short-range (exponentially decaying) interactions. This is very different from the usual long-range (algebraically decaying) interactions, such as van der Waals forces, and has important consequences for the wetting characteristics.

  13. Precipitation chemistry and wet deposition in a remote wet savanna site in West Africa: Djougou (Benin)

    Science.gov (United States)

    Akpo, A. B.; Galy-Lacaux, C.; Laouali, D.; Delon, C.; Liousse, C.; Adon, M.; Gardrat, E.; Mariscal, A.; Darakpa, C.

    2015-08-01

    In the framework of the IDAF (IGAC/DEBITS/AFrica) international program, this study aims to study the chemical composition of precipitation and associated wet deposition at the rural site of Djougou in Benin, representative of a West and Central African wet savanna. Five hundred and thirty rainfall samples were collected at Djougou, Benin, from July 2005 to December 2009 to provide a unique database. The chemical composition of precipitation was analyzed for inorganic (Ca2+, Mg2+, Na+, NH4+, K+, NO3-, Cl-, SO42-) and organic (HCOO-, CH3COO-, C2H5COO-, C2O42-) ions, using ion chromatography. The 530 collected rain events represent a total of 5706.1 mm of rainfall compared to the measured pluviometry 6138.9 mm, indicating that the collection efficiency is about 93%. The order of total annual loading rates for soluble cations is NH4+ > Ca2+ > Mg2+ > K+. For soluble anions the order of loading is carbonates > HCOO- > NO3- > CH3COO- > SO4,SUP>2- > Cl- > C2O42- > C2H5COO-. In the wet savanna of Djougou, 86% of the measured pH values range between 4.7 and 5.7 with a median pH of 5.19, corresponding to a VWM (Volume Weighed Mean) H+ concentration of 6.46 μeq·L-1. This acidity results from a mixture of mineral and organic acids. The annual sea salt contribution was computed for K+, Mg2+, Ca2+ and SO42- and represents 4.2% of K+, 41% of Mg2+, 1.3% of Ca2+, and 7.4% of SO42-. These results show that K+, Ca2+, SO42-, and Mg2+ were mainly of non-marine origin. The marine contribution is estimated at 9%. The results of the chemical composition of rainwater of Djougou indicates that, except for the carbonates, ammonium has the highest VWM concentration (14.3 μeq·L-1) and nitrate concentration is 8.2 μeq·L-1. The distribution of monthly VWM concentration for all ions is computed and shows the highest values during the dry season, comparing to the wet season. Identified nitrogenous compound sources (NOx and NH3) are domestic animals, natural emissions from savanna soils

  14. Comment on "The role of wetting heterogeneities in the meandering instability of a partial wetting rivulet"

    CERN Document Server

    Fathi, Nima; Putkaradze, Vakhtang; Vorobieff, Peter

    2014-01-01

    Rivulets and their meandering on a partially wetting surface present an interesting problem, as complex behavior arises from a deceptively simple setup. Recently Couvreur and Daerr suggested that meandering is caused by an instability developing as the flow rate $Q$ increases to a critical value $Q_c$, with stationary (pinned) meandering being the final state of the flow. We tried to verify this assertion experimentally, but instead produced results contradicting the claim of Couvreur and Daerr. The likely reason behind the discrepancy is the persistence of flow-rate perturbations. Moreover, the theory presented in this paper cannot reproduce the states as considered and disagrees with other theories.

  15. Wetted foam liquid fuel ICF target experiments

    Science.gov (United States)

    Olson, R. E.; Leeper, R. J.; Yi, S. A.; Kline, J. L.; Zylstra, A. B.; Peterson, R. R.; Shah, R.; Braun, T.; Biener, J.; Kozioziemski, B. J.; Sater, J. D.; Biener, M. M.; Hamza, A. V.; Nikroo, A.; Berzak Hopkins, L.; Ho, D.; LePape, S.; Meezan, N. B.

    2016-05-01

    We are developing a new NIF experimental platform that employs wetted foam liquid fuel layer ICF capsules. We will use the liquid fuel layer capsules in a NIF sub-scale experimental campaign to explore the relationship between hot spot convergence ratio (CR) and the predictability of hot spot formation. DT liquid layer ICF capsules allow for flexibility in hot spot CR via the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density. Our hypothesis is that the predictive capability of hot spot formation is robust and 1D-like for a relatively low CR hot spot (CR∼15), but will become less reliable as hot spot CR is increased to CR>20. Simulations indicate that backing off on hot spot CR is an excellent way to reduce capsule instability growth and to improve robustness to low-mode x-ray flux asymmetries. In the initial experiments, we will test our hypothesis by measuring hot spot size, neutron yield, ion temperature, and burn width to infer hot spot pressure and compare to predictions for implosions with hot spot CR's in the range of 12 to 25. Larger scale experiments are also being designed, and we will advance from sub-scale to full-scale NIF experiments to determine if 1D-like behavior at low CR is retained as the scale-size is increased. The long-term objective is to develop a liquid fuel layer ICF capsule platform with robust thermonuclear burn, modest CR, and significant α-heating with burn propagation.

  16. Wet deposition in the northeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J; Mohnen, V; Kadlecek, J

    1980-12-01

    Attempts are made to examine concentration and wet deposition of pollutant material at selected stations within the northeastern United States and to characterize as many events as possible with respect to air mass origin. Further attempts are made to develop a regional pattern for the deposition of dominant ion species. MAP3S (US Multistate Atmospheric Power Production Pollution Study) data for 1977 to 1979 are used to determine concentration and deposition on an event basis from which monthly, seasonal, annual, and cumulative averages are developed. The ARL-ATAD trajectory model is used to characterize individual events as to air mass origin. Case studies are examined to illustrate variability in the chemical composition of precipitation originating from distinctly different air mass trajectories. A difference in concentration of pollution-related ions in precipitation is noted between Midwest/Ohio Valley and Great Lakes/Canadian air mass origins for carefully selected cases. Total deposition of the major ions is examined in an effort to develop a regional pattern for deposition over a period of at least one year. For that purpose, total deposition is normalized to remove the variability in precipitation amounts for inter-station comparison. No marked gradient is noted in the normalized deposition totals within the northeast of the United States. The Adirondack region exhibited the lowest normalized ion deposition value, while the Illinois station showed the highest of the MAP3S network. The data analysis suggest that the acid rain phenomena covers the entire northeast. The concept of large scale mixing emerges to account for the lack of a significant gradient in the normalized deposition.

  17. Device for measuring flow of wet steam

    Energy Technology Data Exchange (ETDEWEB)

    Turchaninov, Yu.N.; Dichenko, M.A.; Irodenko, V.V.; Nikiforov, Yu.V.; Vestelesnyy, A.G.

    1982-01-01

    A device is proposed for measuring the flow of wet steam into productive beds of injection wells during thermal modification. It contains a housing with measurement channel, straightblade blade wheel installed on the shaft and electric motor; rotor of the electric motor is arranged on the blade wheel, and the stator of the housing. The device guarantees the possibility of measuring flow in the well with the use of a flexible cable suspension. For this purpose it is equipped with an inertia brake arranged on one end of the housing made in the form of a bushing freely installed in the housing with pins. On the pins there are spring-loaded brake shoes interacting with the supports attached to the housing. In order to improve transverse stability of the housing, the device is equipped with an additional inertia brake installed on the other end of the housing, and in order to guarantee packing of the well, an initial inertia brake installed under the first with shifting in relation to the axis to cover by the brake shoes the section of the well. After lowering of the flow meter into the well to the required depth, an electrical current is fed into the winding of the electric motor on the cable; the blade wheel begins to turn, simultaneously on the stator attached in the instrument housing a reactive rotating momentum develops. The housing sharply turns to the side opposite the direction of rotation of the blade wheel, the brake shoes are separated up to the support in the well wall. The flow of controllable medium loads the electric motor rotating the blade wheel by the momentum of resistance to rotation that is proportional to mass flow. The magnitude of the momentum (flow) is judged from the magnitude of consumed current.

  18. Wet deposition in the northeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J; Mohnen, V; Kadlecek, J

    1980-12-01

    Attempts are made to examine concentration and wet deposition of pollutant material at selected stations within the northeastern United States and to characterize as many events as possible with respect to air mass origin. Further attempts are made to develop a regional pattern for the deposition of dominant ion species. MAP3S (US Multistate Atmospheric Power Production Pollution Study) data for 1977 to 1979 are used to determine concentration and deposition on an event basis from which monthly, seasonal, annual, and cumulative averages are developed. The ARL-ATAD trajectory model is used to characterize individual events as to air mass origin. Case studies are examined to illustrate variability in the chemical composition of precipitation originating from distinctly different air mass trajectories. A difference in concentration of pollution-related ions in precipitation is noted between Midwest/Ohio Valley and Great Lakes/Canadian air mass origins for carefully selected cases. Total deposition of the major ions is examined in an effort to develop a regional pattern for deposition over a period of at least one year. For that purpose, total deposition is normalized to remove the variability in precipitation amounts for inter-station comparison. No marked gradient is noted in the normalized deposition totals within the northeast of the United States. The Adirondack region exhibited the lowest normalized ion deposition value, while the Illinois station showed the highest of the MAP3S network. The data analysis suggest that the acid rain phenomena covers the entire northeast. The concept of large scale mixing emerges to account for the lack of a significant gradient in the normalized deposition.

  19. Thermally activated depinning motion of contact lines in pseudopartial wetting.

    Science.gov (United States)

    Du, Lingguo; Bodiguel, Hugues; Colin, Annie

    2014-07-01

    We investigate pressure-driven motion of liquid-liquid menisci in circular tubes, for systems in pseudopartial wetting conditions. The originality of this type of wetting lies in the coexistence of a macroscopic contact angle with a wetting liquid film covering the solid surface. Focusing on small capillary numbers, we report observations of an apparent contact angle hysteresis at first sight similar to the standard partial wetting case. However, this apparent hysteresis exhibits original features. We observe very long transient regimes before steady state, up to several hundreds of seconds. Furthermore, in steady state, the velocities are nonzero, meaning that the contact line is not strongly pinned to the surface defects, but are very small. The velocity of the contact line tends to vanish near the equilibrium contact angle. These observations are consistent with the thermally activated depinning theory that has been proposed to describe partial wetting systems on disordered substrates and suggest that a single physical mechanism controls both the hysteresis (or the pinning) and the motion of the contact line. The proposed analysis leads to the conclusion that the depinning activated energy is lower with pseudopartial wetting systems than with partial wetting ones, allowing the direct observation of the thermally activated motion of the contact line.

  20. Wet season range fidelity in a tropical migratory ungulate.

    Science.gov (United States)

    Morrison, Thomas A; Bolger, Douglas T

    2012-05-01

    1. In migratory populations, the degree of fidelity and dispersal among seasonal ranges is an important population process with consequences for demography, management, sensitivity to habitat change and adaptation to local environmental conditions. 2. Characterizing patterns of range fidelity in ungulates, however, has remained challenging because of the difficulties of following large numbers of marked individuals across multiple migratory cycles and of identifying the appropriate scale of analysis. 3. We examined fidelity to wet season (i.e. breeding) ranges in a recently declining population of wildebeest Connochaetes taurinus Burchell in northern Tanzania across 3 years. We used computer-assisted photographic identification and capture-recapture to characterize return patterns to three wet season ranges that were ecologically discrete and topographically isolated from one another. 4. Among 2557 uniquely identified adult wildebeest, we observed 150 recaptures across consecutive wet seasons. Between the two migratory subpopulations, the probability of remaining faithful to wet season areas ranged between 0·82 and 1·00. Animals from a non-migratory segment of the population (near Lake Manyara National Park) were rarely observed in other wet season ranges, despite proximity to one of the migratory pathways. 5. We found no effect of sex on an individuals' probability of switching wet season ranges. However, the breeding status of females in year i had a strong influence on patterns of range selection in year i + 1, with surviving breeders over three times as likely to switch ranges as non-breeders. 6. Social-group associations between pairs of recaptured animals were random with respect to an individual's wet season range during the previous or forthcoming wet seasons, suggesting that an individual's herd identity during the dry season does not predict wet season range selection. 7. Examining fidelity and dispersal in terrestrial migrations improves

  1. Corner wetting transition in the two-dimensional Ising model

    Science.gov (United States)

    Lipowski, Adam

    1998-07-01

    We study the interfacial behavior of the two-dimensional Ising model at the corner of weakened bonds. Monte Carlo simulations results show that the interface is pinned to the corner at a lower temperature than a certain temperature Tcw at which it undergoes a corner wetting transition. The temperature Tcw is substantially lower than the temperature of the ordinary wetting transition with a line of weakened bonds. A solid-on-solid-like model is proposed, which provides a supplementary description of the corner wetting transition.

  2. Wet combing for the eradication of head lice.

    Science.gov (United States)

    2013-03-01

    Manual removal (using conditioner and comb or a wet comb) can be used in the treatment of head lice. Head lice infestation (Pediculosis humanus capitis) is a common problem. It is diagnosed by visualising the lice. As half of people infested with head lice will not scratch, all people in contact with a person affected with head lice should be manually checked for infestations. Wet combing is easily and safely performed at home, but persistence is needed. This article describes the process of head lice removal using a wet comb. It has NHMRC Level 2 evidence of efficacy and no serious adverse effects have been reported.

  3. Wet peroxide oxidation and catalytic wet oxidation of stripped sour water produced during oil shale refining.

    Science.gov (United States)

    Prasad, Jaidev; Tardio, James; Jani, Harit; Bhargava, Suresh K; Akolekar, Deepak B; Grocott, Stephen C

    2007-07-31

    Catalytic wet oxidation (CWO) and wet peroxide oxidation (WPO) of stripped sour water (SSW) from an oil shale refinery was investigated. Greater than 70% total organic carbon (TOC) removal from SSW was achieved using Cu(NO(3))(2) catalysed WO under the following conditions using a glass lined reaction vessel: 200 degrees C, pO(2)=0.5MPa, 3h, [Cu(NO(3))(2)]=67mmol/L. Significant TOC removal ( approximately 31%) also occurred in the system without added oxygen. It is proposed that this is predominantly due to copper catalysed oxidative decarboxylation of organics in SSW based on observed changes in copper oxidation state. Greater than 80% TOC removal was achieved using WPO under the following conditions: 150 degrees C, t=1.5h, [H(2)O(2)]=64g/L. Significantly more TOC could be removed from SSW by adding H(2)O(2) in small doses as opposed to adding the same total amount in one single dose. It was concluded that WPO was a far more effective process for removing odorous compounds from SSW.

  4. Imaging of oil layers, curvature and contact angle in a mixed-wet and a water-wet carbonate rock

    Science.gov (United States)

    Singh, Kamaljit; Bijeljic, Branko; Blunt, Martin J.

    2016-03-01

    We have investigated the effect of wettability of carbonate rocks on the morphologies of remaining oil after sequential oil and brine injection in a capillary-dominated flow regime at elevated pressure. The wettability of Ketton limestone was altered in situ using an oil phase doped with fatty acid which produced mixed-wet conditions (the contact angle where oil contacted the solid surface, measured directly from the images, θ=180°, while brine-filled regions remained water-wet), whereas the untreated rock (without doped oil) was weakly water-wet (θ=47 ± 9°). Using X-ray micro-tomography, we show that the brine displaces oil in larger pores during brine injection in the mixed-wet system, leaving oil layers in the pore corners or sandwiched between two brine interfaces. These oil layers, with an average thickness of 47 ± 17 µm, may provide a conductive flow path for slow oil drainage. In contrast, the oil fragments into isolated oil clusters/ganglia during brine injection under water-wet conditions. Although the remaining oil saturation in a water-wet system is about a factor of two larger than that obtained in the mixed-wet rock, the measured brine-oil interfacial area of the disconnected ganglia is a factor of three smaller than that of oil layers.

  5. Reclamation of acid, toxic coal spoils using wet flue gas desulfurization by-product, fly ash and sewage sludge. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.A.; Vimmerstedt, J.P.; Stehouwer, R.C.

    1997-03-01

    Establishment of vegetation on acid abandoned minelands requires modification of soil physical and chemical conditions. Covering the acid minesoil with topsoil or borrow soil is a common practice but this method may be restricted by availability of borrow soil and cause damage to the borrow site. An alternative approach is to use waste materials as soil amendments. There is a long history of using sewage sludge and fly ash as amendments for acid minesoils. Flue gas desulfurization (FGD) by-products are newer materials that are also promising amendments. Most flue gas sludges are mixtures of Calcium sulfate (CaSO{sub 4}), calcium sulfite (CaSO{sub 3}), calcium carbonate (CaCO{sub 3}), calcium hydroxide [Ca(OH){sub 2}], and fly ash. Some scrubbing processes produce almost pure gypsum (CaSO{sub 4}2H{sub 2}O). The primary purpose of the project is to evaluate two wet FGD by-products for effects on vegetation establishment and surface and ground water quality on an acid minesoil. One by-product from the Conesville, OH power plant (American Electric Power Service Corporation) contains primarily calcium sulfite and fly ash. The other by-product (Mg-gypsum FGD) from an experimental scrubber at the Zimmer power plant (Cincinnati Gas and Electric Company) is primarily gypsum with 4% magnesium hydroxide. These materials were compared with borrow soil and sewage sludge as minesoil amendments. Combinations of each FGD sludge with sewage sludge were also tested. This report summarizes two years of measurements of chemical composition of runoff water, ground water at two depths in the subsoil, soil chemical properties, elemental composition and yield of herbaceous ground cover, and elemental composition, survival and height of trees planted on plots treated with the various amendments. The borrow soil is the control for comparison with the other treatments.

  6. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 5, A laboratory greenhouse study conducted in fulfillment of Phase 2, Objective 2 titled. Use of FGD by-product gypsum enriched with magnesium hydroxide as a soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Yibirin, H. [Ohio State Univ., Wooster, OH (United States); Stehouwer, R. C. [Ohio State Univ., Wooster, OH (United States); Bigham, J. M. [Ohio State Univ., Wooster, OH (United States); Soto, U. I. [Ohio State Univ., Wooster, OH (United States)

    1997-01-31

    The Clean Air Act, as revised in 1992, has spurred the development of flue gas desulfurization (FGD) technologies that have resulted in large volumes of wet scrubber sludges. In general, these sludges must be dewatered, chemically treated, and disposed of in landfills. Disposal is an expensive and environmentally questionable process for which suitable alternatives must be found. Wet scrubbing with magnesium (Mg)-enhanced lime has emerged as an efficient, cost effective technology for SO2 removal. When combined with an appropriate oxidation system, the wet scrubber sludge can be used to produce gypsum (CaSO4-2H2O) and magnesium hydroxide [Mg(OH)2] of sufficient purity for beneficial re-use. Product value generally increases with purity of the by-product(s). The pilot plant at the CINERGY Zimmer Station near Cincinnati produces gypsum by products that can be formulated to contain varying amounts of Mg(OH)2. Such materials may have agricultural value as soil conditioners, liming agents and sources of plant nutrients (Ca, Mg, S). This report describes a greenhouse study designed to evaluate by-product gypsum and Mg gypsum from the Zimmer Station pilot plant as amendments for improving the quality of agricultural soils and mine spoils that are currently unproductive because of phytotoxic conditions related to acidity and high levels of toxic dissolved aluminum (Al). In particular, the technical literature contains evidence to suggest that gypsum may be more effective than agricultural limestone in modifying soil chemical conditions below the immediate zone of application. Representative samples of by-product gypsum and Mg(OH)2 from the Zimmer Station were initially characterized. The gypsum was of high chemical purity and consisted of well crystalline, lath-shaped particles of low specific surface area. By contrast, the by-product Mg(OH)2 was a high surface area material (50 m2 g

  7. Characterizing mercury emissions from a coal-fired power plant utilizing a venturi wet FGD system

    Energy Technology Data Exchange (ETDEWEB)

    Vann Bush, P.; Dismukes, E.B.; Fowler, W.K.

    1995-11-01

    Southern Research Institute (SRI) conducted a test program at a coal-fired utility plant from October 24 to October 29, 1994. The test schedule was chosen to permit us to collect samples during a period of consecutive days with a constant coal source. SRI collected the samples required to measured concentrations of anions and trace elements around two scrubber modules and in the stack. Anions of interest were CI{sup -}, F{sup -}, and SO{sub 4}{sup =}. We analyzed samples for five major elements (Al, Ca, Fe, Mg, and Ti) and 16 trace elements (As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and V). SRI made measurements across two scrubber modules, each treating nominally 20% of the total effluent from the boiler. Across one module we examined the effects of changes in the liquid-to-gas ratio (L/G) on the efficiency with which the scrubber removes trace elements and anions from the flue gas. Across another module we examined the effects of slurry pH on the removal of trace elements and anions from the flue gas. Measurements in the stack quantified emissions rates of anions and trace elements.

  8. Stability of Cassie-Baxter wetting states on microstructured surfaces

    Science.gov (United States)

    Guo, Hao-Yuan; Li, Bo; Feng, Xi-Qiao

    2016-10-01

    A stable Cassie-Baxter (CB) wetting state is indispensable for the superhydrophobicity of solid surfaces. In this paper, we analyze the equilibrium and stability of CB wetting states. Using an energy approach, the stability criteria of CB wetting states are established for solid surfaces with either two- or three-dimensional symmetric microstructures. A generic method is presented to calculate the critical pressure at which the CB state on a microstructured solid surface collapses. The method holds for microstructures with arbitrary generatrix, and explicit solutions are derived for a few representative microstructures with a straight or circular generatrix. In addition, some possible strategies are proposed to design surface structures with stable CB wetting states from the viewpoints of geometry and chemistry.

  9. ROE Wet Sulfate Deposition Raster 2011-2013

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 2011 to 2013. Summary data in this indicator were provided by EPA’s...

  10. ROE Wet Sulfate Deposition Raster 1989-1991

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 1989 to 1991. Summary data in this indicator were provided by EPA’s...

  11. C-phycocyanin extraction from Spirulina platensis wet biomass

    National Research Council Canada - National Science Library

    Moraes, C. C; Sala, Luisa; Cerveira, G. P; Kalil, S. J

    2011-01-01

    C-Phycocyanin is a natural blue dye used in food and pharmaceutical industry. In the present study, a simple and efficient method to extract C-phycocyanin from Spirulina platensis wet biomass is reported...

  12. Fluidization of granular media wetted by liquid 4He.

    Science.gov (United States)

    Huang, K; Sohaili, M; Schröter, M; Herminghaus, S

    2009-01-01

    We explore experimentally the fluidization of vertically agitated polymethylmethacrylate spheres wetted by liquid 4He . By controlling the temperature around the lambda point, we change the properties of the wetting liquid from a normal fluid (helium I) to a superfluid (helium II). For wetting by helium I, the critical acceleration for fluidization (Gamma_{c}) shows a steep increase close to the saturation of the vapor pressure in the sample cell. For helium II wetting, Gamma_{c} starts to increase at about 75% saturation, indicating that capillary bridges are enhanced by the superflow of the unsaturated helium film. Above saturation, Gamma_{c} enters a plateau regime where the capillary force between particles is independent of the bridge volume. The plateau value is found to vary with temperature and shows a peak at 2.1K , which we attribute to the influence of the specific heat of liquid helium.

  13. Combined wet oxidation and alkaline hydrolysis of polyvinylchloride

    DEFF Research Database (Denmark)

    Sørensen, E.; Bjerre, A.B.

    1992-01-01

    In view of the widespread aversion to burning polyvinylchloride (PVC) together with municipal waste, we have attempted an alternative approach to its decomposition. This paper describes a combined wet oxidation/alkaline hydrolysis yielding water soluble, biodegradable products. Experiments were...

  14. wet oxidation of maleic acid by a pumice supported copper

    African Journals Online (AJOL)

    Mgina

    materials were tested in a wet oxidation of maleic acid using air or hydrogen peroxide as an oxidant. Results ... textile, pharmaceuticals, paper and pulp .... Fourier Transform Infrared (FTIR). The ... to analysis and then run at room temperature.

  15. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1962

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1962. The estimates were derived from inorganic nitrogen...

  16. Mercury Wet Scavenging and Deposition Differences by Precipitation Type.

    Science.gov (United States)

    Kaulfus, Aaron S; Nair, Udaysankar; Holmes, Christopher D; Landing, William M

    2017-03-07

    We analyze the effect of precipitation type on mercury wet deposition using a new database of individual rain events spanning the contiguous United States. Measurements from the Mercury Deposition Network (MDN) containing single rainfall events were identified and classified into six precipitation types. Mercury concentrations in surface precipitation follow a power law of precipitation depth that is modulated by precipitation system morphology. After controlling for precipitation depth, the highest mercury deposition occurs in supercell thunderstorms, with decreasing deposition in disorganized thunderstorms, quasi-linear convective systems (QLCS), extratropical cyclones, light rain, and land-falling tropical cyclones. Convective morphologies (supercells, disorganized, and QLCS) enhance wet deposition by a factor of at least 1.6 relative to nonconvective morphologies. Mercury wet deposition also varies by geographic region and season. After controlling for other factors, we find that mercury wet deposition is greater over high-elevation sites, seasonally during summer, and in convective precipitation.

  17. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Science.gov (United States)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  18. The Geologic Evidence for a Warm and Wet Early Mars

    Science.gov (United States)

    Craddock, R. A.; Irwin, R. P.; Howard, A. D.; Morgan, A. M.

    2017-10-01

    The geologic evidence supporting a warm and wet climate on early Mars is presented. The case against an "icy highlands" scenario is also made. Climate models are converging to a solution, but any theoretical data must explain the empirical data.

  19. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1984

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1984. The estimates were derived from inorganic nitrogen...

  20. STUDY ON THE INFLUENCE OF WETTING HEAT ON COAL SLURRYABILITY

    Institute of Scientific and Technical Information of China (English)

    朱书全; 付晓恒; 刘昀; 王祖讷; 李颖

    1997-01-01

    Wetting Heat of various ranks of coals in water was measured by using SETARAM C80D Calorimeter. The data were correlated to coals' slurryability which is characterized by the solid load at the viscosity of 1 Pa·s and 25℃. The results showed that the heat of wetting by water decreases as coal rank increases in the range of brawn coal to bituminous coal with carbon content of 89%~90% (daf), and then, increases a little for anthracite. This trend fitted well to the relationship of slurryability to coal rank. The heat of wetting was also correlated to the inherent moisture content and the oxygen content of coal, which are commonly considered as slurryability indication parameters. Hence, the wetting heat is another measure of coal's slurryability.

  1. Helminths in rodents from Wet Markets in Thailand

    National Research Council Canada - National Science Library

    A. Ribas; W. Saijuntha; T. Agatsuma; C. Thongjun; K. Lamsan; S. Poonlaphdecha

    2016-01-01

    ... ( and ) were surveyed in eight traditional wet markets in Udon Thani, Thailand. Thirteen species of helminths were recovered, seven of which are potentially zoo-notic, with an overall prevalence of 89.8...

  2. Advanced Wet Tantalum Capacitors: Design, Specifications and Performance

    Science.gov (United States)

    Teverovsky, Alexander

    2017-01-01

    Insertion of new types of commercial, high volumetric efficiency wet tantalum capacitors in space systems requires reassessment of the existing quality assurance approaches that have been developed for capacitors manufactured to MIL-PRF-39006 requirements. The specifics of wet electrolytic capacitors is that leakage currents flowing through electrolyte can cause gas generation resulting in building up of internal gas pressure and rupture of the case. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. This presentation gives a review of specifics of the design, performance, and potential reliability risks associated with advanced wet tantalum capacitors. Problems related to setting adequate requirements for DPA, leakage currents, hermeticity, stability at low and high temperatures, ripple currents for parts operating in vacuum, and random vibration testing are discussed. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  3. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1963

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1963. The estimates were derived from inorganic nitrogen...

  4. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1983

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1983. The estimates were derived from inorganic nitrogen...

  5. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1961

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1961. The estimates were derived from inorganic nitrogen...

  6. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1964

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1964. The estimates were derived from inorganic nitrogen...

  7. Advance of Wetting Front in Silt Loam Soil

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmood

    2013-04-01

    Full Text Available Under drip irrigation , the plant's root is concentrated inside the wetted bulb (region. Thus, the development of these roots and the plant production are greatly affected by the wetting pattern. Therefore, the wetting pattern of soil under drip irrigation must be taken into consideration in the design of drip irrigation system for both single dripping source or multi-overlapping wetting patterns of dripping water sources.2The aim of this study is to evaluate the effect of initial water content of the soil and spacing between two adjacent dripping sources with different flow rate on the movement of the wetting front.This study included 16 tests for monitoring the advancement of the wetting front with time during and after the water application phase. The water advance and water distribution measurement are carried out for two cases of the soil profile: for the first case with initial volumetric water content of 4.08% and for the second case with initial volumetric water content of 12.24%. Two spacing between the emitter were tested 25cm and 50 cm using application flow rates of 0.606, 1.212, 1.818, and 2.424 cm3 /min/cm to show the combined effect of spacing and flow rate on the performance of two adjacent emitter.The study proposed a method for determining the spacing between the two emitting sources , the water application rate and watering time. The proposed method depends on a wetted zone whose depth is equal to the root zone depth with a values equals to the maximum vertical advance of the wetting front underneath the drip line at time when this depth is equal to the depth of wetting at mid­point between the drip line. the study revealed that both the vertical water advance in soil underneath the emitter and the horizontal advance of the wetting front is larger than those in the case of single emitter.Furthermore, the vertical water advance increases with the decrease spacing between the two drip lines. Also, the horizontal advance of the

  8. Free cooling of the one-dimensional wet granular gas.

    Science.gov (United States)

    Zaburdaev, V Yu; Brinkmann, M; Herminghaus, S

    2006-07-07

    The free cooling behavior of a wet granular gas is studied in one dimension. We employ a particularly simple model system in which the interaction of wet grains is characterized by a fixed energy loss assigned to each collision. Macroscopic laws of energy dissipation and cluster formation are studied on the basis of numerical simulations and mean-field analytical calculations. We find a number of remarkable scaling properties which may shed light on earlier unexplained results for related systems.

  9. Microbial community composition of transiently wetted Antarctic Dry Valley soils

    Directory of Open Access Journals (Sweden)

    Thomas D. Neiderberger

    2015-01-01

    Full Text Available During the summer months, wet (hyporheic soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DV become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and to compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~ 5 µg/cm3 for chlorophyll a, respectively. Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas.

  10. Estimating soil wetting patterns for drip irrigation using genetic programming

    Energy Technology Data Exchange (ETDEWEB)

    Samadianfard, S.; Sadraddini, A. A.; Nazemi, A. H.; Provenzano, G.; Kisi, O.

    2012-07-01

    Drip irrigation is considered as one of the most efficient irrigation systems. Knowledge of the soil wetted perimeter arising from infiltration of water from drippers is important in the design and management of efficient irrigation systems. To this aim, numerical models can represent a powerful tool to analyze the evolution of the wetting pattern during irrigation, in order to explore drip irrigation management strategies, to set up the duration of irrigation, and finally to optimize water use efficiency. This paper examines the potential of genetic programming (GP) in simulating wetting patterns of drip irrigation. First by considering 12 different soil textures of USDA-SCS soil texture triangle, different emitter discharge and duration of irrigation, soil wetting patterns have been simulated by using HYDRUS 2D software. Then using the calculated values of depth and radius of wetting pattern as target outputs, two different GP models have been considered. Finally, the capability of GP for simulating wetting patterns was analyzed using some values of data set that were not used in training. Results showed that the GP method had good agreement with results of HYDRUS 2D software in the case of considering full set of operators with R{sup 2} of 0.99 and 0.99 and root mean squared error of 2.88 and 4.94 in estimation of radius and depth of wetting patterns, respectively. Also, field experimental results in a sandy loam soil with emitter discharge of 4 L h{sup -}1 showed reasonable agreement with GP results. As a conclusion, the results of the study demonstrate the usefulness of the GP method for estimating wetting patterns of drip irrigation. (Author) 40 refs.

  11. Coupled Hamiltonians and Three Dimensional Short-Range Wetting Transitions

    OpenAIRE

    Parry, A. O.; Swain, P S

    1997-01-01

    We address three problems faced by effective interfacial Hamiltonian models of wetting based on a single collective coordinate \\ell representing the position of the unbinding fluid interface. Problems (P1) and (P2) refer to the predictions of non-universality at the upper critical dimension d=3 at critical and complete wetting respectively which are not borne out by Ising model simulation studies. (P3) relates to mean-field correlation function structure in the underlying continuum Landau mod...

  12. Study on flaking of wet corn by heating

    Institute of Scientific and Technical Information of China (English)

    WANG Mingming; WANG Defu

    2007-01-01

    Flaking on high-moisture corn (wet corn) by hot-air heating was studied in the paper. The wet-heating approach was beneficial to improve corn gelatinization by experimental results. By the experiments, a set of optimal parameters was obtained: hot-air temperature 120-130 ℃, heating duration 70 min, gap between rollers 0.5-1.0 mm, 150-200 r·min-1 for rotational speed of rollers.

  13. Wet Paper Coding for Watermarking of Binary Images

    CERN Document Server

    Zubarev, Michail; Morales-Luna, Guillermo

    2008-01-01

    We propose a new method to embed data in binary images, including scanned text, figures, and signatures. Our method relies on the concept of wet paper codes. The shuffling before embedding is used in order to equalize irregular embedding capacity from diverse areas in the image. The hidden data can be extracted without the original binary image. We illustrate some examples of watermarked binary images after wet paper coding.

  14. Wetting properties of liquid lithium on lithium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krat, S.A., E-mail: stepan.krat@gmail.com [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Popkov, A.S. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Gasparyan, Yu. M.; Pisarev, A.A. [National Research Nuclear University MEPhI, Moscow (Russian Federation); Fiflis, Peter; Szott, Matthew; Christenson, Michael; Kalathiparambil, Kishor; Ruzic, David N. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States)

    2017-04-15

    Highlights: • Contact angles of liquid lithium and Li{sub 3}N, Li{sub 2}O, Li{sub 2}CO{sub 3} were measured. • Liquid lithium wets lithium compounds at relatively low temperatures: Li{sub 3}N at 257 °C, Li{sub 2}O at 259 °C, Li{sub 2}CO{sub 3} at 323 °C. • Li wets Li{sub 2}O and Li{sub 3}N better than previously measured fusion-relevant materials (W, Mo, Ta, TZM, stainless steel). • Li wets Li{sub 2}CO{sub 3} better than most previously measured fusion-relevant materials (W, Mo, Ta). - Abstract: Liquid metal plasma facing components (LMPFC) have shown a potential to supplant solid plasma facing components materials in the high heat flux regions of magnetic confinement fusion reactors due to the reduction or elimination of concerns over melting, wall damage, and erosion. To design a workable LMPFC, one must understand how liquid metal interacts with solid underlying structures. Wetting is an important factor in such interaction, several designs of LMPFC require liquid metal to wet the underlying solid structures. The wetting of lithium compounds (lithium nitride, oxide, and carbonate) by 200 °C liquid lithium at various surface temperature from 230 to 330 °C was studied by means of contact angle measurements. Wetting temperatures, defined as the temperature above which the contact angle is less than 90°, were measured. The wetting temperature was 257 °C for nitride, 259 °C for oxide, and 323 °C for carbonate. Surface tensions of solid lithium compounds were calculated from the contact angle measurements.

  15. STUDY ON WET STRENGTH PERFORMANCE OF KENAF MULCH

    Institute of Scientific and Technical Information of China (English)

    JinghuiZhou; XingeWu; HongweiZhu

    2004-01-01

    Optimum applied technical conditions of wetstrength agent for kenaf mulch were studied in thisarticle. Breaking length, wet-dry strength ratio, tearindex and burst index of kenaf mulch were measuredand optimum wet strength agent was selected. Theaim is to make mulch have properties of heatpreservation, humidity preservation, growthprompting, biodegradation and maximum wetstrength and to improve impact resistance of mulchto rainwater so as to assure growth of plant andreplace plastic film.

  16. Landfill Mining - Wet mechanical treatment of fine MSW with a wet jigger.

    Science.gov (United States)

    Wanka, Sebastian; Münnich, Kai; Fricke, Klaus

    2017-01-01

    The motives for landfill mining are various. In the last couple of years Enhanced Landfill Mining (ELFM) has become increasingly important in academic discourse and practical implementation. The main goal of ELFM is to recover as much material as possible from deposited municipal solid waste (MSW). In most of the projects carried out so far, the main focus has been set on coarse materials such as plastics, woods, papers and metals. These fractions can be separated easily by sieving in combination with magnetic separation. In these projects most of the fine materials, which might represent as much as 60-70% of the total mass of the landfill body, had to be deposited again. A further treatment aiming at reducing the masses of these fine materials, which are still a conglomerate of soil, calorific fractions, metals, minerals and residues, usually did not take place. One topic in the framework of the landfill mining project TÖNSLM, in addition to the separation of the calorific fraction and metals has been the treatment of fine materials with the goal to re-use these e.g. for construction purposes. This paper shows the results obtained after the wet mechanical treatment of fine MSW 10-60mm with a wet jigger. The physical principle of this process is the separation of the mass flux due to the different densities of the waste constituents. As a result, three main waste fluxes are obtained: Dense inert and dense fine fraction with a high content of minerals and a lightweight fraction with a high calorific value between 16 and 20MJ/kg. An additional positive effect of wet mechanical treatment is the removal of the finest particles from the surface of the waste material, thus increasing the quality of the generated waste fluxes. The mass fluxes of the different fractions and their qualities as well as possible recovery paths are described below. An economical and ecological consideration of the treatment of the fine materials does not take place within the framework of

  17. Pipe flow of pumping wet shotcrete based on lubrication layer.

    Science.gov (United States)

    Chen, Lianjun; Liu, Guoming; Cheng, Weimin; Pan, Gang

    2016-01-01

    Wet shotcrete can reduce dust and improve supporting strength, however, safe and efficient pipage is a key technical part of wet shotcrete process. The paper studied the pipe flow law of wet shotcrete based on lubrication layer by build the experimental pumping circuit of wet shotcrete that can carry out a number of full-scale pumping tests. The experimental results show there was a linear relationship between pressure loss and flow rate. Combined with the Buckingham rheological equation, the computing equations of the yield shear stress and plastic viscosity were deduced through linear regression. A simple analytical method allowing for a rough estimation of the pumping pressure was proposed and used when considering the lubrication layer of wet shotcrete in pipes. In addition, two kinds of particulate distributive models were established along the time axial to analyze the formation of lubrication layer which is related with particles migration. By computational fluid dynamics simulation, the lubrication layer thickness of different mix proportions was estimated. A new method for measuring the thickness of lubrication layer was proposed to verify it by binarization processing. Finally, according to the comparative analysis of experiments, simulation and computed value, it can be seen that the lubrication layer plays a key role in the process of wet shotcrete flow and with the increase of lubrication layer thickness pipe pressure declines gradually.

  18. Near Axisymmetric Partial Wetting Using Interface-Localized Liquid Dielectrophoresis.

    Science.gov (United States)

    Brabcova, Zuzana; McHale, Glen; Wells, Gary George; Brown, Carl V; Newton, Michael Ian; Edwards, Andrew M J

    2016-10-03

    The wetting of solid surfaces can be modified by altering the surface free energy balance between the solid, liquid, and vapour phases. Liquid dielectrophoresis (L-DEP) can produce wetting on normally non-wetting surfaces, without modification of the surface topography or chemistry. L-DEP is a bulk force acting on the dipoles of a dielectric liquid and is not normally considered to be a localized effect acting at the interface between the liquid and a solid or other fluid. However, if this force is induced by a non-uniform electric field across a solid-liquid interface, it can be used to enhance and control the wetting of a dielectric liquid. Recently, it was reported theoretically and experimentally that this approach can cause a droplet of oil to spread along parallel interdigitated electrodes thus forming a stripe of liquid. Here we show that by using spiral shaped electrodes actuated with four 90º successive phase shifted signals, a near axisymmetric spreading of droplets can be achieved. Experimental observations show that the induced wetting can achieve film formation, an effect not possible with electrowetting. We show that the spreading is reversible thus enabling a wide range of partial wetting droplet states to be achieved in a controllable manner. Furthermore, we find that the cosine of the contact angle has a quadratic dependence on applied voltage during spreading and deduce a scaling law for the dependence of the strength of the effect on the electrode size. .

  19. Stiffness instability in short-range critical wetting

    Science.gov (United States)

    Jin, Albert J.; Fisher, Michael E.

    1993-07-01

    Recent theoretical work has shown that an interface separating two fluid phases suffers changes in its (bare) effective stiffness, Σ~(l)=Σ~∞+ΔΣ~(l), when located at a distance l from a planar wall: terms varying as lke-jκl appear in ΔΣ~ (where 0wetting the wall). This may induce first-order wetting transitions when critical wetting had been expected. This general behavior of ΔΣ~(l) is confirmed using an integral/adsorption constraint to determine l, in place of the original crossing constraint. The exact linearized functional renormalization-group technique is used to analyze the full wetting-phase diagram as a function of T, of ω=kBTcWκ2/4πΣ~(TcW), and of q, the amplitude of the -le-2κl term in ΔΣ~. For dimensions d>3, any positive q (as generally expected) yields first-order wetting. The same is true for d=3 provided ω1/2 nonclassical critical behavior is still found for small q0. Detailed expressions are obtained for , ξ∥, etc., in the various critical and first-order regions. Numerical estimates show that previous Ising-model simulations probably encountered weakly first-order wetting transitions which might explain discrepancies with earlier renormalization-group predictions.

  20. High-frequency acoustic for nanostructure wetting characterization.

    Science.gov (United States)

    Li, Sizhe; Lamant, Sebastien; Carlier, Julien; Toubal, Malika; Campistron, Pierre; Xu, Xiumei; Vereecke, Guy; Senez, Vincent; Thomy, Vincent; Nongaillard, Bertrand

    2014-07-01

    Nanostructure wetting is a key problem when developing superhydrophobic surfaces. Conventional methods do not allow us to draw conclusions about the partial or complete wetting of structures on the nanoscale. Moreover, advanced techniques are not always compatible with an in situ, real time, multiscale (from macro to nanoscale) characterization. A high-frequency (1 GHz) acoustic method is used for the first time to characterize locally partial wetting and the wetting transition between nanostructures according to the surface tension of liquids (the variation is obtained by ethanol concentration modification). We can see that this method is extremely sensitive both to the level of liquid imbibition and to the impalement dynamic. We thus demonstrate the possibility to evaluate the critical surface tension of a liquid for which total wetting occurs according to the aspect ratio of the nanostructures. We also manage to identify intermediate states according to the height of the nanotexturation. Finally, our measurements revealed that the drop impalement depending on the surface tension of the liquid also depends on the aspect ratio of the nanostructures. We do believe that our method may lead to new insights into nanoscale wetting characterization by accessing the dynamic mapping of the liquid imbibition under the droplet.

  1. Wetting transition on patterned surfaces: transition states and energy barriers.

    Science.gov (United States)

    Ren, Weiqing

    2014-03-18

    We study the wetting transition on microstructured hydrophobic surfaces. We use the string method [J. Chem. Phys. 2007, 126, 164103; J. Chem. Phys. 2013, 138, 134105] to accurately compute the transition states, the energy barriers, and the minimum energy paths for the wetting transition from the Cassie-Baxter state to the Wenzel state. Numerical results are obtained for the wetting of a hydrophobic surface textured with a square lattice of pillars. It is found that the wetting of the solid substrate occurs via infiltration of the liquid in a single groove, followed by lateral propagation of the liquid front. The propagation of the liquid front proceeds in a stepwise manner, and a zipping mechanism is observed during the infiltration of each layer. The minimum energy path for the wetting transition goes through a sequence of intermediate metastable states, whose wetted areas reflect the microstructure of the patterned surface. We also study the dependence of the energy barrier on the drop size and the gap between the pillars.

  2. Development of Wet Noodles Based on Cassava Flour

    Directory of Open Access Journals (Sweden)

    Akhmad Z. Abidin

    2013-04-01

    Full Text Available Cassava is one of Indonesia’s original commodities and contains good nutrition and has high productivity and a relatively low price. Cassava flour has a high potential as a substitute for imported wheat flour that is widely used in noodle production. The main purpose of this research was to develop wet noodles from cassava flour that can compete with wet noodles from wheat flour. The research consisted of experiments with several variations of composition and production method for producing cassava flour-based wet noodles. The best result was then examined for its nutritional value, economical value, and market response, and also a comparison was made between the prepared wet noodles and the standard noodles made from wheat flour. The analysis was based on five characteristics: taste, texture, chewiness, aroma, and appearance. Relations between these characteristics with composition, materials used, and methods applied are discussed. The developed cassava flour-based wet noodle meets physical, nutritional, and economical standards. Raw materials of the noodle were cassava flour and a wheat flour composite with a 5:1 ratio, egg, gluten, soda-ash, water, and vegetable oil, while the process was completed in multiple stages. Market response showed that the cassava flour-based wet noodles were 80% similar to wheat-flour noodles.

  3. Stretched exponential relaxation of piezovoltages in wet bovine bone.

    Science.gov (United States)

    Xu, Lianyun; Hou, Zhende; Fu, Donghui; Qin, Qing-Hua; Wang, Yihan

    2015-01-01

    It is important to determine the amplitude and variation characteristics of piezovoltage in wet bone, which can, in turn, be taken as a basis for studying whether electrical signals induced by external forces can affect the growth of bone cells. This work measured the characteristics of piezoelectric effects under dynamic and static loading. The results show that the variations of piezovoltage in wet bone in both loading and load holding periods follow a stretched exponential relaxation law, and the relaxation time constants of the piezovoltages are much larger than those of dry bone. This finding means that the active time of piezovoltage in wet bone is much longer than that of dry bone. Regardless of the loading and load holding processes, continuously increasing deformation in wet bone caused piezoelectric charges to be continuously induced and increased the dielectric constant of wet bone along with the deformation process. In general, compared with piezovoltage in dry bone, that in wet bone had lower amplitude and could exist for a longer duration. It can be inferred, therefore, that piezoelectricity might create coupling with the streaming potential in bone by changing the thickness of the double electrode layer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Biomimetic wet-stable fibres via wet spinning and diacid-based crosslinking of collagen triple helices

    CERN Document Server

    Arafat, M Tarik; Yin, Jie; Wood, David J; Russell, Stephen J

    2015-01-01

    One of the limitations of electrospun collagen as bone-like fibrous structure is the potential collagen triple helix denaturation in the fibre state and the corresponding inadequate wet stability even after crosslinking. Here, we have demonstrated the feasibility of accomplishing wet-stable fibres by wet spinning and diacid-based crosslinking of collagen triple helices, whereby fibre ability to act as bone-mimicking mineralisation system has also been explored. Circular dichroism (CD) demonstrated nearly complete triple helix retention in resulting wet-spun fibres, and the corresponding chemically crosslinked fibres successfully preserved their fibrous morphology following 1-week incubation in phosphate buffer solution (PBS). The presented novel diacid-based crosslinking route imparted superior tensile modulus and strength to the resulting fibres indicating that covalent functionalization of distant collagen molecules is unlikely to be accomplished by current state-of-the-art carbodiimide-based crosslinking. ...

  5. Wet air and catalytic wet air oxidation of several azodyes from wastewaters: the beneficial role of catalysis.

    Science.gov (United States)

    Rodríguez, A; García, J; Ovejero, G; Mestanza, M

    2009-01-01

    Degradation of several azo dyes, Acid Orange 7 (AO7), Acid Orange 74 (AO74), Direct Blue 71 (DB71), Reactive Black 5 (RB5) and Eriochrome Blue Black B (EBBB), well-known non-biodegradable mono, di and tri azo dyes has been studied using, wet-air oxidation (WAO) and catalytic wet air oxidation (CWAO). The efficiency of substrate decolorization and mineralization in each process has been comparatively discussed by evolution concentration, chemical oxygen demand, total organic carbon content and toxicity of dyes solutions. The most efficient method on decolorization and mineralization (TOC) was observed to be CWAO process. Mineralization efficiency with wet air and catalytic wet air oxidation essays was observed in the order of mono-azo > di-azo > tri-azo dye. Final solutions of CWAO applications after 180 min treatment can be disposed safely to environment.

  6. Time-varying wetting behavior on copper wafer treated by wet-etching

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Sheng-Hung; Wu, Chuan-Chang [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan, ROC (China); Wu, Hsing-Chen [Advanced Technology Materials Inc, Hsinchu 310, Taiwan, ROC (China); Cheng, Shao-Liang [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan, ROC (China); Sheng, Yu-Jane, E-mail: yjsheng@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China); Tsao, Heng-Kwong, E-mail: hktsao@cc.ncu.edu.tw [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan, ROC (China)

    2015-06-30

    Graphical abstract: - Highlights: • A thin oxide layer always remains on surfaces of Cu wafers after aqueous etching. • A pure Cu wafer is obtained by the HAc treatment and the water CA is about 45°. • The oxide layer and CA grow with time after the Cu wafer is exposed to air. • Surface roughness and hydrophobicity of pure Cu wafers grow rapidly in vacuum. - Abstract: The wet cleaning process in semiconductor fabrication often involves the immersion of the copper wafer into etching solutions and thereby its surface properties are significantly altered. The wetting behavior of a copper film deposited on silicon wafer is investigated after a short dip in various etching solutions. The etchants include glacial acetic acid and dilute solutions of nitric acid, hydrofluoric acid, and tetramethylammonium hydroxide. It was found that in most cases a thin oxide layer still remains on the surface of as-received Cu wafers when they are subject to etching treatments. However, a pure Cu wafer can be obtained by the glacial acetic acid treatment and its water contact angle (CA) is about 45°. As the pure Cu wafer is placed in the ambient condition, the oxide thickness grows rapidly to the range of 10–20 Å within 3 h and the CA on the hydrophilic surface also rises. In the vacuum, it is surprising to find that the CA and surface roughness of the pure Cu wafer can grow significantly. These interesting results may be attributed to the rearrangement of surface Cu atoms to reduce the surface free energy.

  7. 76 FR 15553 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Science.gov (United States)

    2011-03-21

    ... controlled with a wet scrubber, you must monitor pressure drop and liquid flow rate of the scrubber and... the boiler is controlled with a fabric filter, the fabric filter may be continuously operated...

  8. Identification of Potential Strain Heterogeneities During Wetting-Induced Compaction

    Directory of Open Access Journals (Sweden)

    Mihalache Constance

    2016-01-01

    Full Text Available Compaction upon wetting has been reported to occur in various types of unsaturated soils with damaging consequences for infrastructure in field applications. This deformation process is often referred to as “wetting-collapse”, implying that it may be unstable in nature. Recent evidences also indicate that compaction localization represents a possible mode of deformation during wetting, even in the presence of oedometric loading paths. Despite this, little work has been done from a mechanistic perspective to assess the susceptibility of these processes to localization instability. Here we assess the potential for strain localization during wetting through controllability analyses defined in light of a second-order work expression for unsaturated soils. A hydro-mechanical constitutive model with suction-dependent hardening is used to simulate classic experimental data, and the controllability criteria are specialized to capture the potential for shear band formation for a range of band inclinations under water content-controlled and suction-controlled wetting paths. The effect of changes in material characteristics was evaluated, showing that the potential for strain localization upon water-injection increases with increasing values of suction-induced hardening, and that non-associativity may have an effect on both the potential for localization under rapid wetting, as well as on the range of band angles over which it may occur. Specifically, it is possible to distinguish two well-defined stress regions, one within which strain localization is first possible with horizontal band inclinations and another in which inclined localization zones tend to be more critical. Such results provide insight on the factors that may contribute to strain localization during wetting and find general applicability in the interpretation of the response of geo-structures subjected to intense hydrologic forcing.

  9. Improved hydrogen sorption kinetics in wet ball milled Mg hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Li

    2011-05-04

    In this work, wet ball milling method is used in order to improve hydrogen sorption behaviour due to its improved microstructure of solid hydrogen materials. Compared to traditional ball milling method, wet ball milling has benefits on improvement of MgH{sub 2} microstructure and further influences on its hydrogen sorption behavior. With the help of solvent tetrahydrofuran (THF), wet ball milled MgH{sub 2} powder has much smaller particle size and its specific surface area is 7 times as large as that of dry ball milled MgH{sub 2} powder. Although after ball milling the grain size is decreased a lot compared to as-received MgH{sub 2} powder, the grain size of wet ball milled MgH{sub 2} powder is larger than that of dry ball milled MgH{sub 2} powder due to the lubricant effect of solvent THF during wet ball milling. The improved particle size and specific surface area of wet ball milled MgH{sub 2} powder is found to be determining its hydrogen sorption kinetics especially at relatively low temperatures. And it also shows good cycling sorption behavior, which decides on its industrial applicability. With three different catalysts MgH{sub 2} powder shows improved hydrogen sorption behavior as well as the cyclic sorption behavior. Among them, the Nb{sub 2}O{sub 5} catalyst is found to be the most effective one in this work. Compared to the wet ball milled MgH{sub 2} powder, the particle size and specific surface area of the MgH{sub 2} powder with catalysts are similar to the previous ones, while the grain size of the MgH{sub 2} with catalysts is much finer. In this case, two reasons for hydrogen sorption improvement are suggested: one is the reduction of the grain size. The other may be as pointed out in some literatures that formation of new oxidation could enhance the hydrogen sorption kinetics, which is also the reason why its hydrogen capacity is decreased compared to without catalysts. After further ball milling, the specific surface area of wet ball milled Mg

  10. Wetting theory for small droplets on textured solid surfaces

    CERN Document Server

    Kim, Donggyu; Ryu, Seunghwa

    2016-01-01

    Conventional wetting theories on rough surfaces with Wenzel, Cassie-Baxter, and Penetrate modes suggest the possibility of tuning the contact angle by adjusting the surface texture. Despite decades of intensive study, there are still many experimental results that are not well understood because conventional wetting theory, which assume an infinite droplet size, has been used to explain measurements of finite-sized droplets. In this study, we suggest a wetting theory that is applicable to any droplet size based on the free energy landscape analysis of various wetting modes of finite-sized droplets on a 2D textured surface. The key finding of our study is that there are many quantized wetting angles with local free energy minima; the implication of this is remarkable. We find that the conventional theories can predict the contact angle at the global free energy minimum if the droplet size is 40 times or larger than the characteristic scale of the surface roughness. Furthermore, we confirm that the pinning orig...

  11. An analysis of Simpson's notebook data on the wet nurse.

    Science.gov (United States)

    Mander, Rosemary

    2003-03-01

    to understand the meaning of the qualitative data included in the Notebook of wet nurses kept by James Young Simpson. quantitative and qualitative analysis of data in an historical document. a list of wet nurses kept by a 'Professor of Midwifery' in mid-19th century Edinburgh. the Notebook lists the names and other details of 749 women. the Notebook indicates how the wet nurse was recruited, the implications for her baby, how she negotiated her role and the decision-making around her recruitment. the ambiguity of this medical pioneer's decision-making is demonstrated. Simpson's scientific credentials may have featured much rhetoric. While in the forefront of many obstetric and medical developments, Simpson was regressive in his support for wet nursing. The social input into the selection of the wet nurse has not been identified previously. the woman's ability to negotiate her terms of employment emerges. The social determinants of baby feeding decisions, identified in this document, have assumed greater significance since the time that this Notebook was written.

  12. Impacts of "wet seasons get wetter, dry seasons get drier"

    Science.gov (United States)

    Chou, C.; Lan, C.; Lee, C.; Chung, C.; Laio, Y.; Chiang, J. C.

    2012-12-01

    Global temperatures have increased for the past few decades. Changes to the global hydrological cycle have also been observed, but with a greater uncertainty and a strong spatial variation. The most robust change is that wet regions get wetter and dry regions get drier. Here we demonstrate that the tendency of wet-get-wetter and dry-get-drier occurs over the course of the seasonal cycle: wet seasons get wetter and dry seasons get drier, enhancing the annual precipitation range. Over 1979-2010, the globally-averaged changes in precipitation are 13.64±2.86%°C-1, -39.73±7.38%°C-1 and 33.03±6.42%°C-1 respectively for wet seasons, dry seasons, and the annual range. The trend magnitudes vary over a shorter evaluation period (1988-2010), but the sign of the tendencies remain the same. The magnitudes of these globally-averaged trends imply an inconclusive change in the strength of the corresponding tropical circulation. Regionally, the "wet seasons get wetter (dry seasons get drier)" tendency occurs over areas with greater (less) annual mean precipitation. The enhanced annual precipitation range may strongly impact local agriculture and water resources even in situations where the annual mean precipitation does not change significantly.

  13. Fundamentals of wetting and spreading with emphasis on soldering

    Energy Technology Data Exchange (ETDEWEB)

    Yost, F.G.

    1991-01-01

    Soldering is often referred to as a mature technology whose fundamentals were established long ago. Yet a multitude of soldering problems persist, not the least of which are related to the wetting and spreading of solder. The Buff-Goodrich approach to thermodynamics of capillarity is utilized in a review of basic wetting principles. These thermodynamics allow a very compact formulation of capillary phenomena which is used to calculate various meniscus shapes and wetting forces. These shapes and forces lend themselves to experimental techniques, such as the sessile drop and the Wilhelmy plate, for measuring useful surface and interfacial energies. The familiar equations of Young, Wilhelmy, and Neumann are all derived with this approach. The force-energy duality of surface energy is discussed and the force method is developed and used to derive the Herring relations for anisotropic surfaces. The importance of contact angle hysteresis which results from surface roughness and chemical inhomogeneity is presented and Young's equation is modified to reflect these ever present effects. Finally, an analysis of wetting with simultaneous metallurigical reaction is given and used to discuss solder wetting phenomena. 60 refs., 13 figs.

  14. Changes in extreme dry and wet precipitation spell

    Science.gov (United States)

    Papalexiou, Simon Michael; Foufoula-Georgiou, Efi; Onof, Chris

    2016-04-01

    Global warming is expected to alter the behavior of hydroclimatic variables in various ways. Therefore, it is of great importance not only to identify which hydroclimatic variables are going through changes but also which of their specific characteristics change and in what way. For example the major focus regarding precipitation has been on changes or trends in extreme events or in annual totals, obviously, not without a reason. Yet one of the aspects of precipitation we believe is of equal importance and has not been extensively studied is extreme dry and wet spells. Changes in dry and wet spells can severely impact all aspects of human lives, ranging from infrastructure planning and water resources management to agriculture and infectious disease spread. In this study we perform an extensive analysis of extreme dry and wet precipitation spells using tenths of thousands of daily precipitation records in order to identify trends or variability changes in the maximum number of consecutive dry or wet days of each year. Our final goal is to evaluate the percentage of stations globally with positive/negative trends either in the mean value or in variability of extreme dry and wet spells and assess if this percentage is statistically justifiable.

  15. Physicochemical properties and combustion behavior of duckweed during wet torrefaction.

    Science.gov (United States)

    Zhang, Shuping; Chen, Tao; Li, Wan; Dong, Qing; Xiong, Yuanquan

    2016-10-01

    Wet torrefaction of duckweed was carried out in the temperature range of 130-250°C to evaluate the effects on physicochemical properties and combustion behavior. The physicochemical properties of duckweed samples were investigated by ultimate analysis, proximate analysis, FTIR, XRD and SEM techniques. It was found that wet torrefaction improved the fuel characteristics of duckweed samples resulting from the increase in fixed carbon content, HHVs and the decrease in nitrogen and sulfur content and atomic ratios of O/C and H/C. It can be seen from the results of FTIR, XRD and SEM analyses that the dehydration, decarboxylation, solid-solid conversion, and condensation polymerization reactions were underwent during wet torrefaction. In addition, the results of thermogravimetric analysis (TGA) in air indicated that wet torrefaction resulted in significant changes on combustion behavior and combustion kinetics parameters. Duckweed samples after wet torrefaction behaved more char-like and gave better combustion characteristics than raw sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Wet or dry bandages for plaster back-slabs?

    Science.gov (United States)

    Baliga, Santosh; Finlayson, D

    2012-12-01

    Cotton crêpe and stretch bandages are commonly used in back-slabs and casts in orthopaedic practice. In theory they allow swelling to occur after injury while splinting the fracture. The application of a wet bandage prevents the Plaster-of-Paris (POP) setting too rapidly, giving time to apply a mould or attain correct limb position. However, we hypothesised that a wet bandage contracts upon drying and may cause constriction of the splint. This study aimed at determining whether there was any significant change in length of commonly used bandages when wet as well as any further change when left to dry again. Two types of bandage were evaluated. 250 mm strips of bandage were dipped into water, gently squeezed and laid flat on a bench. The bandage was then immediately measured in length. The strips were then left to dry and re-measured. This experimental study shows that both cotton crepe and cling significantly shrink by around 7% when wet. This phenomenon has the potential to significantly increase the pressure exerted on the limb by a back-slab. We speculate that the application of wet bandages is why some back-slabs may need released. It is therefore recommended that bandages should be applied only in the dry form. Copyright © 2011 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  17. Can I Stop Myself From Having a Wet Dream? (For Teens)

    Science.gov (United States)

    ... Can I Stop Myself From Having a Wet Dream? KidsHealth > For Teens > Can I Stop Myself From Having a Wet Dream? Print A A A Can I stop myself from having a wet dream? – Tom* You really can't stop wet dreams, ...

  18. 动力波洗涤器中碱液吸收低浓CO2的传质特性%Mass transfer properties of dilute CO2 absorption into NaOH solution in dynawave scrubber

    Institute of Scientific and Technical Information of China (English)

    占旺兵; 李秋萍; 程建伟; 邵国兴

    2012-01-01

    The experiment of dilute CO2 absorption into NaOH solution was carried out to study the gas-liquid mass transfer characteristics in a dynawave scrubber. Based on the mass transfer model of dilute CO2 absorption into NaOH solution in a packed tower, the volumetric mass transfer coefficient Kga of dilute CO2 absorption into NaOH solution and the absorption efficiency 77 in dynawave scrubber were investigated. The effects of gas flow velocity, the mass fraction of NaOH solution, and liquid-gas ratio on Kca were investigated. The result shows that Kca increases with the increase of gas flow velocity and the mass fraction of NaOH solution, but the effect of the mass fraction of NaOH solution on Kca is less than that of gas flow velocity. With the increasing of liquid-gas ratio, the Kca decreases gradually, and the C02 absorption efficiency 77 increases at the beginning, but to a certain value, the effect is not obvious. The correlations for the Kca were worked out. Based on the comprehensive effect of liquid-gas ratio on Kca and 77, it is proposed that when the diameter of scrubbing pipe is 100 mm, the mass fraction of NaOH is 10% and the operating range of liquid-gas ratio is about 0.005-0.025, the dynawave scrubber has a high mass transfer performance. It can be used as a reference for industry application.%为研究动力波洗涤器内的气液传质特性,在动力波洗涤器中,进行NaOH溶液吸收混合气体中微量CO2气体的吸收实验.参考填料塔中钠碱溶液吸收低浓气体的传质模型,测定了动力波洗涤器中NaOH溶液吸收低浓CO2的气相体积总传质系数KGα及吸收效率η.研究了气相速度、NaOH溶液质量分数及液气比对Kcα的影响,结果表明:Kcα随着气相速度及NaOH溶液质量分数的增加而增大,但NaOH溶液质量分数小于气相速度对Kca的影响;随着液气比的提高,kcα逐渐减小,η开始随着液气比的提高而增加,但到一定数值后,效果不明显;回归了Kcα的

  19. Wet Refractivity Tomography with an hnproved Kalman-Filter Method

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An improved retrieval method, which uses the solution with a Gaussian constraint as the initial state variables for the Kalman Filtering (KF) method, was developed to retrieve the wet refractivity profiles from slant wet delays (SWD) extracted by the double-differenced (DD) GPS method. The accuracy of the GPS-derived SWDs is also tested in this study against the measurements of a water vapor radiometer (WVR) and a weather model. It is concluded that the GPS-derived SWDs have similar accuracy to those measured with WVR and are much higher in quality than those derived from the weather model used. The developed method is used to retrieve the 3D wet refractivity distribution in the Hong Kong region. The retrieved profiles agree well with the radiosonde observations, with a difference of about 4 mm km-1 in the low levels. The accurate profiles obtained with this method are applicable in a number of meteorological applications.

  20. Strengthening contrast between precipitation in tropical wet and dry regions

    Science.gov (United States)

    Polson, D.; Hegerl, G. C.

    2017-01-01

    The wet-gets-wetter, dry-gets-drier paradigm (WWDD) is widely used to summarize the expected response of the hydrological cycle to global warming. While some studies find that changes in observations and climate models support the WWDD paradigm, others find that it is more complicated at local scales and over land. This discrepancy is partly explained by differences in model climatologies and by movement of the wet and dry regions. Here we show that by tracking changes in wet and dry regions as they shift over the tropics and vary in models, mean precipitation changes follow the WWDD pattern in observations and models over land and ocean. However, this signal is reduced and disappears in model dry regions, when these factors are not accounted for. Accounting for seasonal and interannual shifts of the regions and climatological differences between models reduces uncertainty in predictions of future precipitation changes and makes these changes detectable earlier.

  1. Some specificities of wetting by cyanobiphenyl liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Delabre, U; Richard, C; Cazabat, A M, E-mail: cazabat@lps.ens.f [Laboratoire de Physique Statistique, Ecole Normale Superieure, Universite Pierre et Marie Curie, CNRS, 24 rue Lhomond, 75231 Paris Cedex 05 (France)

    2009-11-18

    The present paper provides an up to date restatement of the wetting behaviour of the series of cyanobiphenyl liquid crystals (LCs) on usual substrates, i.e. oxidized silicon wafers, water and glycerol, at both the macroscopic and microscopic scale, in the nematic range of temperature. We show that on water the systems are close to a wetting transition, especially 5CB and 7CB. In that case, the wetting behaviour is controlled by the presence of impurities. On a mesoscopic scale, we observe for all our (thin LC film-substrate) systems an identical, complex, but well defined general scenario, not accounted for by the available models. In the last part, we present a study on line tension which results from the specific organization of LCs at the edge of the nematic film. We report preliminary results on two-dimensional film coalescence where this line tension plays a major role.

  2. Structural topography-mediated high temperature wetting symmetry breaking

    CERN Document Server

    Li, Jing; Liu, Yahua; Hao, Chonglei; Li, Minfei; Chaudhury, Manoj K; Yao, Shuhuai

    2015-01-01

    Directed motion of liquid droplets is of considerable importance in various industrial processes. Despite extensive advances in this field of research, our understanding and the ability to control droplet dynamics at high temperature remain limited, in part due to the emergence of complex wetting states intertwined by the phase change process at the triple-phase interfaces. Here we show that two concurrent wetting states (Leidenfrost and contact boiling) can be manifested in a single droplet above its boiling point rectified by the presence of asymmetric textures. The breaking of the wetting symmetry at high temperature subsequently leads to the preferential motion towards the region with higher heat transfer coefficient. We demonstrate experimentally and analytically that the droplet vectoring is intricately dependent on the interplay between the structural topography and its imposed thermal state. Our fundamental understanding and the ability to control the droplet dynamics at high temperature represent an ...

  3. Controlling macrovoid formation in wet-spun polyaniline fibers

    Science.gov (United States)

    Yang, Dali; Fadeev, Andrei; Adams, Phillip N.; Mattes, Benjamin R.

    2001-07-01

    The mesoscopic morphology of wet-spun polyaniline fibers determines their mechanical strength. Macrovoid formation in the coagulation bath is responsible for poor mechanical properties of these fibers. The effects of polymer concentration, coagulation bath temperature, polymer molecular weight and coagulant on the morphology of wet-spun polyaniline fibers have been investigated. The fibers were spun from concentrated solutions of low/medium and medium molecular weight emeraldine base dissolved in N-methyl-2- pyrrolidinone containing heptamethyleneimine as a gel inhibitor. The impact of the fiber morphology on the mechanical properties of the fibers prepared under different conditions is studied. A wet-spinning method, which minimizes macrovoid formation in the polyaniline fiber, is reported, and consequently the strength of the unstretched polyaniline fibers increased dramatically.

  4. Drying and wetting of building materials and components

    CERN Document Server

    2014-01-01

    This book, Drying and Wetting of Building Materials and Components, provides a collection of recent contributions in the field of drying and wetting in porous building materials. The main benefit of the book is that it discusses some of the most important topics related to the drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

  5. Dry reusing and wet reclaiming of used sodium silicate sand

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on the characteristics of used sodium silicate sand and the different use requirements for recycled sand, "dry reusing and wet reclaiming of used sodium silicate sand" is considered as the most suitable technique for the used sand. When the recycled sand is used as support sand, the used sand is only reused by dry process including breaking, screening, dust-removal, etc., and it is not necessary that the used sand is reclaimed with strongly rubbing and scraping method, but when the recycled sand is used as facing sand (or single sand), the used sand must be reclaimed by wet method for higher removal rate of the residual binders. The characteristics and the properties of the dry reused sand are compared with the wet reclaimed sand after combining the different use requirements of support sand and facing sand (or single sand), and above the most adaptive scheme has also been validated.

  6. Regulated wet nursing: managed care or organized crime?

    Science.gov (United States)

    Obladen, Michael

    2012-01-01

    Wet nursing was widely practiced from antiquity. For the wealthy, it was a way to overcome the burdens of breastfeeding and increase the number of offspring. For the poor, it was an organized industry ensuring regular payment, and in some parishes the major source of income. The abuse of wet nursing, especially the taking in of several nurslings, prompted legislation which became the basis of public health laws in the second half of the 19th century. The qualifications demanded from a mercenary nurse codified by Soran in the 2nd century CE remained unchanged for 1,700 years. When artificial feeding lost its threat thanks to sewage disposal, improved plumbing, the introduction of rubber teats, cooling facilities and commercial formula, wet nursing declined towards the end of the 19th century.

  7. Wetting of crossed fibers: multiple steady states and symmetry breaking

    CERN Document Server

    Sauret, Alban; Duprat, Camille; Stone, Howard A

    2014-01-01

    We investigate the wetting properties of the simplest element of an array of random fibers: two rigid fibers crossing with an inclination angle and in contact with a droplet of a perfectly wetting liquid. We show experimentally that the liquid adopts different morphologies when the inclination angle is increased: a column shape, a mixed morphology state where a drop lies at the end of a column, or a drop centered at the node. An analytical model is provided that predicts the wetting length as well as the presence of a non-symmetric state in the mixed morphology regime. The model also highlights a symmetry breaking at the transition between the column state and the mixed morphology. The possibility to tune the morphology of the liquid could have important implications for drying processes.

  8. Catalytic wet Air Oxidation of o-Chlorophenol in Wastewater

    Institute of Scientific and Technical Information of China (English)

    徐新华; 汪大翬

    2003-01-01

    Catalytic wet air oxidation (CWAO) was investigated in laboratory-scale experiments for the treatment of o-chlorophenol in wastewater. Experimental results showed that wet air oxidation (WAO) process in the absence of catalyst was also effective for o-chlorophenol in wastewater treatment. Up to 80% of the initial CODCr was removed by wet air oxidation at 270℃ with twice amount of the required stoichiometric oxygen supply. At temperature of 150℃, the removal rate of CODCr was only 30%. Fe2(SO4)3, CuSO4, Cu(NO3)2 and MnSO4 exhibited high catalytic activity. Higher removal rate of CODCr was obtained by CWAO. More than 96% of the initial CODCr was removed at 270℃ and 84.6%-93.6% of the initial CODCr was removed at 150℃. Mixed catalysts had better catalytic activity for the degradation of o-chlorophenol in wastewater.

  9. Helminths in rodents from Wet Markets in Thailand

    Directory of Open Access Journals (Sweden)

    Ribas A.

    2016-12-01

    Full Text Available Only a few surveys have ever been carried out of the helminths of the commensal rodents found in the traditional wet markets that play such an important part of daily life in South-east Asia. The potential of rodents as reservoirs of zoonoses including helminths is of great interest since in these markets humans and rodents come into closer contact than in other environments and food may be indirectly contaminated via rodent faeces. Helminths in a total of 98 rats belonging to two species (Rattus norvegicus and Rattus exulans were surveyed in eight traditional wet markets in Udon Thani, Thailand. Thirteen species of helminths were recovered, seven of which are potentially zoo-notic, with an overall prevalence of 89.8 %. Our results show that rodents in wet markets could pose a threat to human health as potential reservoirs of zoonotic helminthiases.

  10. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Sera Shin

    2016-02-01

    Full Text Available Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed.

  11. Ranibizumab vs. aflibercept for wet age-related macular degeneration

    DEFF Research Database (Denmark)

    Szabo, Shelagh M; Hedegaard, Morten; Chan, Keith;

    2015-01-01

    , a Bayesian network meta-analysis (NMA) was conducted to indirectly compare posologies of aflibercept and ranibizumab (0.5 mg). The efficacy outcome, mean change from baseline in best-corrected visual acuity (BCVA) on the ETDRS chart, was evaluated at 3 and 12 months; and safety data at 12 months. Standard...... for wet AMD. Reduced frequency aflibercept was associated with the poorest visual outcomes, and sample sizes were small. Findings from these analyses provide novel evidence of the comparative efficacy and safety of aflibercept and ranibizumab for wet AMD.......OBJECTIVE: Although a reduced aflibercept (2.0 mg) injection frequency relative to the approved dosing posology is included in national treatment guidelines for wet age-related macular degeneration (AMD), there is limited evidence of its comparative efficacy. The objective was to compare...

  12. Application of Algal Turf Scrubber on Cultured Water Purification of Chiloscyllium plagiosum%条纹斑竹鲨养殖藻丛刷系统水质净化技术的应用

    Institute of Scientific and Technical Information of China (English)

    张达娟; 张树林; 孙茂军; 戴伟

    2015-01-01

    In order to investigate effects of algal turf scrubber(ATS)on cultivated water purification of orna-mental fish,artificial ATS was used to purify cultivated water of Chiloscyllium plagiosum and water quality indicators,including NO3--N,NO2--N,NH4+-N and PO43--P,were measured.The experiment lasted for 60d and water was not renewed.The results showed that contents of NO3--N,NO2--N,NH4+-N and PO43--P were kept in the range of 5.64~9.87mg/L,0.03~0.07mg/L,0.03~0.07mg/L and 1.33~1.78mg/L respectively dur-ing the whole experiment.It was indicated that ATS could purify cultivated water of Chiloscyllium plagio-sum effectively and maintain stabilization of water quality when shark were cultured with appropriate densi-ty and feeding dose.%利用人工构建的藻丛刷(Algal Turf Scrubber,ATS)系统处理条纹斑竹鲨养殖用水,并对水中NO3--N、NO2--N、NH4+-N和PO43--P等水质指标进行监测,以确定藻丛刷系统对观赏鱼养殖用水水质的净化效果.试验为期60d,试验期间不换水.结果表明,整个试验期间,水中NO3--N含量维持在5.64~9.87mg/L范围内,NO2--N含量维持在0.03~0.07mg/L范围内,NH4+-N含量维持在0.03~0.07mg/L范围内,PO43--P含量维持在1.33~1.78mg/L范围内.由此可见,在合适的养殖密度和适当的投饵条件下,藻丛刷系统能够有效净化鲨鱼养殖用水水质,使其在不换水情况下维持在稳定范围内.

  13. Dynamic wetting and de-wetting of thin films of water under the influence of MHz surface acoustic waves

    CERN Document Server

    Altshuler, Gennady

    2015-01-01

    We use both theory and experiment to study the response of partially wetting films of water and surfactant solutions to a propagating MHz vibration in the solid substrate in the form of a Rayleigh surface acoustic wave (SAW). The SAW invokes a drift of mass in the liquid film that, balanced by capillary stress, may support dynamic wetting and de-wetting along the path of the SAW. The motion of the film is governed by a non-dimensional parameter, $\\theta^3/{\\rm We}$, where $\\theta$ is the three phase contact angle and ${\\rm We}\\equiv \\rho U^2H/\\gamma$; $\\rho,~\\gamma$, $H$, and $U$ are the liquid density, liquid/vapour surface tension, film thickness, and the intensity of the SAW at the solid surface, respectively. We show partially wetting films of water and surfactant solutions atop a lithium niobate substrate, for which $\\theta^3/{\\rm We}>1$, undergo qualitatively different dynamics to fully wetting films of silicon oil, for which $\\theta^3/{\\rm We}\\ll1$, and further explore an intermediate parameter region ...

  14. Near-critical fluid boiling: overheating and wetting films.

    Science.gov (United States)

    Hegseth, J; Oprisan, A; Garrabos, Y; Lecoutre-Chabot, C; Nikolayev, V S; Beysens, D

    2008-08-01

    The heating of coexisting gas and liquid phases of pure fluid through its critical point makes the fluid extremely compressible, expandable, slows the diffusive transport, and decreases the contact angle to zero (perfect wetting by the liquid phase). We have performed experiments on near-critical fluids in a variable volume cell in the weightlessness of an orbiting space vehicle, to suppress buoyancy-driven flows and gravitational constraints on the liquid-gas interface. The high compressibility, high thermal expansion, and low thermal diffusivity lead to a pronounced adiabatic heating called the piston effect. We have directly visualized the near-critical fluid's boundary layer response to a volume quench when the external temperature is held constant. We have found that when the system's temperature T is increased at a constant rate past the critical temperature T(c), the interior of the fluid gains a higher temperature than the hot wall (overheating). This extends previous results in temperature quenching experiments in a similarly prepared system when the gas is clearly isolated from the wall. Large elliptical wetting film distortions are also seen during these ramps. By ray tracing through the elliptically shaped wetting film, we find very thick wetting film on the walls. This wetting film is at least one order of magnitude thicker than films that form in the Earth's gravity. The thick wetting film isolates the gas bubble from the wall allowing gas overheating to occur due to the difference in the piston effect response between gas and liquid. Remarkably, this overheating continues and actually increases when the fluid is ramped into the single-phase supercritical phase.

  15. Kinetics of wetting of liquid on a solid surface

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    To consider a sessile drop on an ideal solid surface in equilibrium with a vapor phase, the classic Young equation was given. The derivation of the Young equation was based on both the mechanics and the energy knowledge. According to the constant volume of the liquid in the wetting process of the liquid on a smooth and homogeneous solid surface and the low energy law, Young equation was ob-tained through the mathematic method in this paper. The previous work indicated that the contact angle θ was a function of time, but the coefficient can be obtained only through experiments. It was assumed that the liquid was steady Newtonian flow. Then the relationships between the dynamic contact angles and the wetting time were found in terms of the equilibrium of the spreading force and the restoring force. An immediate theoretical justification for the dependence of contact angles and the time was given. It was assumed that the effect of the gravity on wetting was negligible in the investigation. Under what conditions was the gravity negligible? The criterion of the gravity on the wetting process of the liquid was proposed when contact angles were greater than 90°. If the criterion, I, was much smaller than 1, the effect of the gravity on the wetting process could be ignored. If the criterion, I, was equal to or larger than 1, the effect of the gravity on the wetting process could not be ignored. On mercury-mica systems, the gravity may be considered only when the equilibrium contact radius reached 1.5 mm.

  16. Kinetics of wetting of liquid on a solid surface

    Institute of Scientific and Technical Information of China (English)

    YANG Chuang; LI BangSheng; REN MingXing; FU HengZhi

    2009-01-01

    To consider a sessile drop on an ideal solid surface In equilibrium with a vapor phase,the classic Young equation was given.The derivation of the Young equation was based on both the mechanics and the energy knowledge.According to the constant volume of the liquid in the wetting process of the liquid on a smooth and homogeneous solid surface and the low energy law,Young equation was obtained through the mathematic method in this paper.The previous work indicated that the contact angle θ was a function of time,but the coefficient can be obtained only through experiments.It was assumed that the liquid was steady Newtonian flow.Then the relationships between the dynamic contact angles and the wetting time were found in terms of the equilibrium of the spreading force and the restoring force.An immediate theoretical justification for the dependence of contact angles and the time was given.It was assumed that the effect of the gravity on wetting was negligible in the investigation.Under what conditions was the gravity negligible? The criterion of the gravity on the wetting process of the liquid was proposed when contact angles were greater than 90°.If the criterion,Ⅰ,was much smaller than 1,the effect of the gravity on the wetting process could be ignored.If the criterion,Ⅰ,was equal to or larger than 1,the effect of the gravity on the wetting process could not be ignored.On mercury-mica systems,the gravity may be considered only when the equilibrium contact radius reached 1.5 mm.

  17. Wetting of doped carbon nanotubes by water droplets

    DEFF Research Database (Denmark)

    Kotsalis, E. M.; Demosthenous, E.; Walther, Jens Honore

    2005-01-01

    We study the wetting of doped single- and multi-walled carbon nanotubes by water droplets using molecular dynamics simulations. Chemisorbed hydrogen is considered as a model of surface impurities. We study systems with varying densities of surface impurities and we observe increased wetting......, as compared to the pristine nanotube case, attributed to the surface dipole moment that changes the orientation of the interfacial water. We demonstrate that the nature of the impurity is important as here hydrogen induces the formation of an extended hydrogen bond network between the water molecules...

  18. The critical wetting saga: how to draw the correct conclusion

    Science.gov (United States)

    Parry, A. O.; Rascón, C.; Bernardino, N. R.; Romero-Enrique, J. M.

    2008-12-01

    A long-standing problem in condensed matter physics concerns the nature of the critical wetting phase transition in the Ising model or, more generally, in 3D systems with short-ranged forces. This is of fundamental interest because 3D corresponds to the upper critical dimension of the transition and it is not clear a priori whether the behaviour of the system will be mean-field-like or fluctuation-dominated. Renormalization group studies of the standard coarse-grained effective interfacial Hamiltonian model famously predict strong non-universal critical exponents which depend on the value of the so-called wetting parameter ω. However, these predictions are at odds with extensive Monte Carlo simulations of wetting in the Ising model, due to Binder, Landau and coworkers, which appear to be more mean-field-like. Further amendments to the interfacial Hamiltonian, which included the presence of a position-dependent stiffness, worsened the problem by paradoxically predicting fluctuation-induced first-order wetting behaviour. Here we show from re-analysis of a microscopic Landau-Ginzburg-Wilson model of 3D short-ranged wetting that correlation functions are characterized by two diverging parallel length scales, not one, as previously thought. This has a simple diagrammatic explanation using a non-local interfacial Hamiltonian and yields a thermodynamically consistent theory of wetting in keeping with exact sum rules. The non-local model crucially contains long-ranged two-body interfacial interactions, characterized by the new length scale, which were missing in earlier treatments. For critical wetting the second length cuts off the spectrum of interfacial fluctuations determining the repulsion from the wall. We show how this corrects previous renormalization group predictions for fluctuation effects, based on local interfacial Hamiltonians. In particular, lowering the cut-off leads to a substantial reduction in the effective value of the wetting parameter controlling the

  19. Wetting of soap bubbles on hydrophilic, hydrophobic and superhydrophobic surfaces

    CERN Document Server

    Arscott, Steve

    2013-01-01

    Wetting of sessile bubbles on solid and liquid surfaces has been studied. A model is presented for the contact angle of a sessile bubble based on a modified Young equation - the experimental results agree with the model. A hydrophilic surface results in a bubble contact angle of 90 deg whereas on a superhydrophobic surface one observes 134 deg. For hydrophilic surfaces, the bubble angle diminishes with bubble radius - whereas on a superhydrophobic surface, the bubble angle increases. The size of the Plateau borders governs the bubble contact angle - depending on the wetting of the surface.

  20. Review of factors affecting aircraft wet runway performance

    Science.gov (United States)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from investigations conducted at the Langley Aircraft Landing Loads and Traction Facility and from tests with instrumented ground vehicles and aircraft are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  1. Effect of wet grinding on structural properties of ball clay

    Science.gov (United States)

    Purohit, A.; Hameed, A.; Chander, S.; Nehra, S. P.; Singh, P.; Dhaka, M. S.

    2015-05-01

    In this paper, the effect of wet grinding on structural properties of ball clay is undertaken. The wet grinding treatment was performed employing ball and vibro mills for different time spells of 2, 4, 8 and 16 hours. The structural properties were carried out using X-ray diffraction (XRD). The structure of ground samples is found to be simple cubic. The crystallographic parameters are calculated and slight change in lattice constant, inter planner spacing and particle size is observed with grinding treatment. The results are in agreement with the available literature.

  2. Topographical Anisotropy and Wetting of Ground Stainless Steel Surfaces

    Directory of Open Access Journals (Sweden)

    Cornelia Bellmann

    2012-12-01

    Full Text Available Microscopic and physico-chemical methods were used for a comprehensive surface characterization of different mechanically modified stainless steel surfaces. The surfaces were analyzed using high-resolution confocal microscopy, resulting in detailed information about the topographic properties. In addition, static water contact angle measurements were carried out to characterize the surface heterogeneity of the samples. The effect of morphological anisotropy on water contact angle anisotropy was investigated. The correlation between topography and wetting was studied by means of a model of wetting proposed in the present work, that allows quantifying the air volume of the interface water drop-stainless steel surface.

  3. A COUPLED MORPHODYNAMIC MODEL FOR APPLICATIONS INVOLVING WETTING AND DRYING*

    Institute of Scientific and Technical Information of China (English)

    LIANG Qiuhua

    2011-01-01

    This work presents a new finite volume Godunov-type model for predicting morphological changes under the rapidly varying flood conditions with wetting and drying. The model solves the coupled shallow water and Exner equations, with the interface fluxes evaluated by an Harten-Lax-van Leer-Contact (HLLC) approximate Riemann solver. Well-balanced solution is achieved using the surface gradient method and wetting and drying are handled by a non-negative reconstruction approach. The new model is validated against several theoretical benchmark tests and promising results are obtained.

  4. Effect of Atmospheric Press on Wet Bulb Depression

    Science.gov (United States)

    Wheeler, Raymond M.; Stasiak, Michael A.; Lawson, Jamie; Wehkamp, Cara Ann P.; Dixon, Michael A.

    2008-01-01

    Our measurements of wet bulb depression at different pressures matched the modeled adiabatic saturation temps reasonably well. At a dry bulb temp of 25 C, the normal wet bulb temp for 30% RH and 100 kPa is approx.15 C, but this dropped to approx.8 C at 10 kPa. The results suggest that psychrometers need direct calibration at the target pressures or that pressure corrected charts are required. For a given vapour pressure deficit, any moist surfaces, including transpiring plant leaves, will be cooler at lower pressures due to the increased evaporation rates.

  5. Wetting layer of copper on the tantalum (001) surface

    Science.gov (United States)

    Dupraz, Maxime; Poloni, Roberta; Ratter, Kitti; Rodney, David; De Santis, Maurizio; Gilles, Bruno; Beutier, Guillaume; Verdier, Marc

    2016-12-01

    The heteroepitaxial interface formed by copper deposited onto the tantalum (001) surface is studied by surface x-ray diffraction and ab initio calculations. The analysis of the crystal truncation rods reveals the presence of a wetting layer of copper made of two atomic planes pseudomorphic to the tantalum substrate, with the upper most atomic planes significantly deformed. These findings are in total agreement with the results of density-functional-theory calculations. The presence of the wetting layer confirms a Stranski-Krastanov growth mode and is thought to explain the extremely fast atomic diffusion of copper during the dewetting process in the solid state at high temperature.

  6. Final Report: Wetted Cathodes for Low-Temperature Aluminum Smelting

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Craig W

    2002-09-30

    A low-temperature aluminum smelting process being developed differs from the Hall-Heroult process in several significant ways. The low-temperature process employs a more acidic electrolyte than cryolite, an alumina slurry, oxygen-generating metal anodes, and vertically suspended electrodes. Wetted and drained vertical cathodes are crucial to the new process. Such cathodes represent a significant portion of the capital costs projected for the new technology. Although studies exist of wetted cathode technology with Hall-Heoult cells, the differences make such a study desirable with the new process.

  7. Wet-air oxidation cleans up black wastewater

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Sterling Organics produces the analgesic paracetamol (acetaminophen) at its Dudley, England, plant. The wastewater from the batch process contains intermediates such as para-aminophenol (PAP) and byproducts such as thiosulfates, sulfites and sulfides. To stay ahead of increasingly strict environmental legislation, Sterling Organics installed a wet-air oxidation system at the Dudley facility in August 1992. The system is made by Zimpro Environmental Inc. (Rothschild, Wis.). Zimpro's wet-air oxidation system finds a way around the limitations of purely chemical or physical processes. In the process, compressed air at elevated temperature and pressure oxidizes the process intermediates and byproducts and removes the color from the wastewater.

  8. Electro-osmotic transport in wet processing of textiles

    Science.gov (United States)

    Cooper, John F.

    1998-01-01

    Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1-5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric.

  9. Coupling between drainage and coarsening in wet foam

    Indian Academy of Sciences (India)

    S Saha; S Bhaumik; A Roy

    2009-06-01

    Drainage and coarsening are two coupled phenomena during the evolution of wet foam. We show the variation in the growth rate of bubble size, along the height in a column of Gillette shaving foam, by microscope imaging. Simultaneously, the drainage of liquid at the same heights has been investigated by Raman spectroscopic measurements. The observations made in these two sets of experiments indicate the coupling between drainage and coarsening in wet foam. We could explain the correlation between our observed data on drainage and coarsening by the empirical relation, proposed by others, in the literature.

  10. Energy and exergy analysis of counter flow wet cooling towers

    Directory of Open Access Journals (Sweden)

    Saravanan Mani

    2008-01-01

    Full Text Available Cooling tower is an open system direct contact heat exchanger, where it cools water by both convection and evaporation. In this paper, a mathematical model based on heat and mass transfer principle is developed to find the outlet condition of water and air. The model is solved using iterative method. Energy and exergy analysis infers that inlet air wet bulb temperature is found to be the most important parameter than inlet water temperature and also variation in dead state properties does not affect the performance of wet cooling tower. .

  11. The critical wetting saga: how to draw the correct conclusion

    Energy Technology Data Exchange (ETDEWEB)

    Parry, A O [Department of Mathematics, Imperial College London, London SW7 2BZ (United Kingdom); Rascon, C [Departamento de Matematicas, Universidad Carlos III de Madrid, E-28911 Leganes (Spain); Bernardino, N R [Max-Planck-Institut fuer Metallforschung, D-70569 Stuttgart (Germany); Romero-Enrique, J M [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, E-41080 Seville (Spain)

    2008-12-10

    A long-standing problem in condensed matter physics concerns the nature of the critical wetting phase transition in the Ising model or, more generally, in 3D systems with short-ranged forces. This is of fundamental interest because 3D corresponds to the upper critical dimension of the transition and it is not clear a priori whether the behaviour of the system will be mean-field-like or fluctuation-dominated. Renormalization group studies of the standard coarse-grained effective interfacial Hamiltonian model famously predict strong non-universal critical exponents which depend on the value of the so-called wetting parameter {omega}. However, these predictions are at odds with extensive Monte Carlo simulations of wetting in the Ising model, due to Binder, Landau and coworkers, which appear to be more mean-field-like. Further amendments to the interfacial Hamiltonian, which included the presence of a position-dependent stiffness, worsened the problem by paradoxically predicting fluctuation-induced first-order wetting behaviour. Here we show from re-analysis of a microscopic Landau-Ginzburg-Wilson model of 3D short-ranged wetting that correlation functions are characterized by two diverging parallel length scales, not one, as previously thought. This has a simple diagrammatic explanation using a non-local interfacial Hamiltonian and yields a thermodynamically consistent theory of wetting in keeping with exact sum rules. The non-local model crucially contains long-ranged two-body interfacial interactions, characterized by the new length scale, which were missing in earlier treatments. For critical wetting the second length cuts off the spectrum of interfacial fluctuations determining the repulsion from the wall. We show how this corrects previous renormalization group predictions for fluctuation effects, based on local interfacial Hamiltonians. In particular, lowering the cut-off leads to a substantial reduction in the effective value of the wetting parameter

  12. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suite Gas Processing System (GPS) Carbon Dioxide Scrubber

    Science.gov (United States)

    Hoffman, Christopher; Munoz, Bruno; Gundersen, Cynthia; Thomas, Walter, III; Stephenson, Timothy

    2008-01-01

    In support of the GPS for the SAM instrument suite built by NASA/GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr alloy wire, 0.0142 cm diameter, for use as a heater element for the carbon dioxide scrubber. The element would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The element also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni- 20Cr in low pressure CO2, coupled with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the element reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  13. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suit Gas Processing System (GPS) Carbon Dioxide Scrubber

    Science.gov (United States)

    Gundersen, Cynthia; Hoffman, Christopher; Munoz, Bruno; Steohenson, Timothy; Thomas, Walter

    2008-01-01

    In support of the GPS for the SAM instrument suite built by GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr wire, 0.0056 inches in diameter, for use as a heater element for the carbon dioxide scrubber. The wire would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The wire also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni-20Cr in low pressure CO2, together with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the wire reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  14. Locomotion and drag in wet and dry granular media

    Science.gov (United States)

    Goldman, Daniel; Kuckuk, Robyn; Sharpe, Sarah

    2015-03-01

    Many animals move within substrates such as soil and dry sand; the resistive properties of such granular materials (GM) can depend on water content and compaction, but little is known about how such parameters affect locomotion or the relevant physics of drag and penetration. We developed a system to create homogeneous wet GM of varying moisture content and compaction in quantities sufficient to study the burial and subsurface locomotion of the Ocellated skink (C. ocellatus) a desert-generalist lizard. X-ray imaging revealed that in wet and dry GM the lizard slowly buried (~ 30 seconds) propagating a wave from head to tail, while moving in a start-stop motion. During forward movement, the head oscillated, and the forelimb on the convex side of the body propelled the animal. Although body kinematics (and ``slip'') were similar in both substrates, the burial depth was smaller in wet GM. Penetration and drag force experiments on smooth cylinders revealed that wet GM was ~ 3 × more resistive than dry GM, suggesting that during burial the lizard operated near its maximum force producing capability and was thus constrained by environmental properties. work supported by NSF PoLS.

  15. Static and dynamic wetting measurements of single carbon nanotubes.

    Science.gov (United States)

    Barber, Asa H; Cohen, Sidney R; Wagner, H Daniel

    2004-05-07

    Individual carbon nanotubes were immersed and removed from various organic liquids using atomic force microscopy. The carbon nanotube-liquid interactions could be monitored in situ, and accurate measurements of the contact angle between liquids and the nanotube surface were made. These wetting data were used to produce Owens and Wendt plots giving the dispersive and polar components of the nanotube surface.

  16. Surface tension and reactive wetting in solder connections

    Energy Technology Data Exchange (ETDEWEB)

    Wedi, Andre; Schmitz, Guido [Institut fuer Materialphysik, Westf. Wilhelms-Universitaet, Wilhelm-Klemm-Strasse 10, 48149 Muenster (Germany)

    2011-07-01

    Wetting is an important pre-requisite of a reliable solder connection. However, it is only an indirect measure for the important specific energy of the reactive interface between solder and base metallization. In order to quantify this energy, we measured wetting angles of solder drops as well as surface tension of SnPb solders under systematic variation of composition and gaseous flux at different reflow temperatures. For the latter, we used the sessile drop method placing a solder drop on a glas substrate. From the two independent data sets, the important energy of the reactive interface is evaluated based on Young's equation. Remarkably, although both, the tension between the solder and flux and the wetting angle, reveal significant dependence on solder composition. So the adhesion energy reveals distinguished plateaus which are related to different reaction products in contact to the solder. TEM analysis and calculations of phase stabilities show that there is no Cu6Sn5 for high lead concentrations. The experiments confirm a model of reactive wetting by Eustathopoulos.

  17. Dough Rheology and Wet Milling of Hard Waxy Wheat Flours

    Science.gov (United States)

    To realize the full potential of waxy wheat (Triticum aestivum L.), wet milling of waxy wheat flour to produce gluten and waxy wheat starch was investigated. Flours of six advanced lines of waxy hard wheats, one normal hard wheat (‘Karl 92’), and one partial waxy wheat (‘Trego’) were fractionated by...

  18. In silico and wet lab approaches to study transcriptional regulation

    NARCIS (Netherlands)

    Hestand, Matthew Scott

    2010-01-01

    Gene expression is a complicated process with multiple types of regulation, including binding of proteins termed transcription factors. This thesis looks at transcription factors and transcription factor binding site discovery through computational predictions and wet lab work to better elucidate th

  19. Dynamic trapping of sliding drops on wetting defects

    NARCIS (Netherlands)

    Cavalli, A.; Musterd, M.; Mannetje, 't D.J.C.M.; Ende, van den H.T.M.; Mugele, F.

    2014-01-01

    Abstract Submitted for the DFD14 Meeting of The American Physical Society Dynamic trapping of sliding drops on wetting defects ANDREA CAVALLI, University of Twente, MICHIEL MUSTERD, TU Delft, DIETER ’T MANNETJE, DIRK VAN DEN ENDE, FRIEDER MUGELE, University of Twente —We present a numerical analysi

  20. Complete wetting of Pt(111) by nanoscale liquid water films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuntao; Dibble, Collin J.; Petrik, Nikolay G.; Smith, R. Scott; Kay, Bruce D.; Kimmel, Gregory A.

    2016-02-04

    The melting and wetting of nanoscale crystalline ice films on Pt(111) that are transiently heated above the melting point using nanosecond laser pulses are studied with infrared refection absorption spectroscopy (IRAS) and Kr temperature programmed desorption (TPD). The as-grown crystalline ice films consist of isolated nanoscale ice crystallites embedded in a hydrophobic water monolayer. Upon heating above the melting point, these ice crystallites rapidly melt to form nanoscale droplets of liquid water. Rapid cooling of the system to cryogenic temperatures after each laser pulse quenches the water films and allows them to be interrogated with IRAS, Kr TPD and other ultrahigh vacuum surface science techniques. With each successive heat pulse, these liquid drops spread across the surface until it is entirely covered with multilayer water films after several pulses. These results, which show that nanoscale water films completely wet Pt(111), are in contrast to molecular dynamics simulations predicting partial wetting of nanoscale water drops on a hydrophobic water monolayer. The results provide valuable new insights into the wetting characteristics of nanoscale water films on a clean, well-characterized single crystal surface.

  1. INFLUENCE OF SURFACE-ROUGHNESS ON THE WETTING ANGLE

    NARCIS (Netherlands)

    Zhou, X.B; de Hosson, J.T.M.

    1995-01-01

    In this paper the influence of surface roughness on contact angles in the system of liquid Al wetting solid surfaces of Al2O3 has been studied. It was observed that contact angles of liquid Al vary significantly on different rough surfaces of Al2O3 A model is proposed to correlate contact angles wit

  2. Neuropeptide Y inhibits hippocampal seizures and wet dog shakes

    DEFF Research Database (Denmark)

    Woldbye, D P; Madsen, T M; Larsen, P J;

    1996-01-01

    effects in the dentate gyrus and subiculum, but also in areas to which epileptiform EEG activity spreads before reverberating. In addition, NPY strongly reduced seizure-related 'wet dog shakes' (WDS). This is consistent with previous studies showing that the dentate gyrus is essential for the generation...

  3. Robust non-wetting PTFE surfaces by femtosecond laser machining.

    Science.gov (United States)

    Liang, Fang; Lehr, Jorge; Danielczak, Lisa; Leask, Richard; Kietzig, Anne-Marie

    2014-08-08

    Nature shows many examples of surfaces with extraordinary wettability,which can often be associated with particular air-trapping surface patterns. Here,robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE). The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters,both of which make it a strong candidate for industrial applications.

  4. Subcritical water extraction of lipids from wet algal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Shuguang; Reddy, Harvind K.; Schaub, Tanner; Holguin, Francisco Omar

    2016-05-03

    Methods of lipid extraction from biomass, in particular wet algae, through conventionally heated subcritical water, and microwave-assisted subcritical water. In one embodiment, fatty acid methyl esters from solids in a polar phase are further extracted to increase biofuel production.

  5. Wet spinning of asymmetric hollow fibre membranes for gas separation

    NARCIS (Netherlands)

    Hof, van 't Jacob Adriaan

    1988-01-01

    This thesis describes the spinning and characterizatin of hollow fibre membranes for gas separation. The type of fibres studied here are made by a wet spinning process. A homogeneous solution is prepared, consisting of a polymer in a suitable organic solvent, and extruded as a hollow fibre. Both the

  6. Making cassava flour safe using the wetting method

    African Journals Online (AJOL)

    neuropathy in older people, and aggravation of iodine deficiency disorders (such as goitre and cretinism) in iodine deficient areas. The wetting ..... associated nutritional factors in the Popokabaka District,. DRC. PhD Thesis, 2005. ... processing and risk of dietary cyanide exposure in Zaire. Food Nutrition Bulletin 1992; 14: ...

  7. ANALYSIS OF FAILURE MECHANISM IN MULTIPLE DISC WET BRAKES

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    By the numberical calculation of dynamic lining pressure distributions,temperature fields and thermal stress fields of steel plates,a method using nonlinear finite element techniques to analyze failure mechanism of a multiple disc wet brake is detailed ,and some measures for combatting these failures are provided.

  8. Wet spinning of asymmetric hollow fibre membranes for gas separation

    NARCIS (Netherlands)

    van 't Hof, Jacob Adriaan

    1988-01-01

    This thesis describes the spinning and characterizatin of hollow fibre membranes for gas separation. The type of fibres studied here are made by a wet spinning process. A homogeneous solution is prepared, consisting of a polymer in a suitable organic solvent, and extruded as a hollow fibre. Both the

  9. Subcritical water extraction of lipids from wet algal biomass

    Science.gov (United States)

    Deng, Shuguang; Reddy, Harvind K.; Schaub, Tanner; Holguin, Francisco Omar

    2016-05-03

    Methods of lipid extraction from biomass, in particular wet algae, through conventionally heated subcritical water, and microwave-assisted subcritical water. In one embodiment, fatty acid methyl esters from solids in a polar phase are further extracted to increase biofuel production.

  10. Magnetically actuated patterns for bioinspired reversible adhesion (dry and wet).

    Science.gov (United States)

    Drotlef, Dirk-Michael; Blümler, Peter; del Campo, Aránzazu

    2014-02-01

    A facile strategy to obtain magnetically actuated arrays of micropillars able to undergo reversible, homogeneous, drastic, and tunable geometrical changes upon application of a magnetic field with variable strength is demonstrated. A magnetically tunable gecko-inspired adhesive that works under dry and wet conditions is realized using elastomeric micropatterns containing magnetic microparticles.

  11. Deformation of fine-grained synthetic peridotite under wet conditions

    NARCIS (Netherlands)

    McDonnell, R.D.

    1997-01-01

    Fine-grained hydrated peridotite mylonites have been proposed to play an important role in controlling the strength of the continental lithosphere during rifting. For this reason, the deformation behaviour of wet fine-grained forsterite and forsterite-enstatite materials and the underlying deformati

  12. Soil aeration status in a lowland wet grassland

    Science.gov (United States)

    Barber, K. R.; Leeds-Harrison, P. B.; Lawson, C. S.; Gowing, D. J. G.

    2004-02-01

    The maintenance or development of plant community diversity in species-rich wet grasslands has been a focus of water management considerations in the UK for the past 20 years. Much attention has been given to the control of water levels in the ditch systems within these wet grassland systems. In this paper we report measurements of aeration status and water-table fluctuation made on a peat soil site at Tadham Moor in Somerset, UK, where water management has focused on the maintenance of wet conditions that often result in flooding in winter and wet soil conditions in the spring and summer. Measurement and modelling of the water-table fluctuation indicates the possibility of variability in the aeration of the root environment and anoxic conditions for much of the winter period and for part of the spring and summer. We have used water content and redox potential measurements to characterize the aeration status of the peat soil. We find that air-filled porosity is related to water-table depth in these situations. Redox potentials in the spring were generally found to be low, implying a reducing condition for nitrate and iron. A significant relationship (p < 0.01) between redox potential and water-table depth exists for data measured at 0.1 m depth, but no relationship could be found for data from 0.4 m depth.

  13. Semi-wet selective pulverizing system: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K.; Hirayama, Y.

    1975-05-01

    The operation of the semi-wet selective pulverizing system for recovering materials from municipal waste is described. In this system both pulverization and classification of materials is accomplished in one machine. This process can be used to recover paper, plastics, metals, and compostable materials. (LCL)

  14. STORMWATER TREATMENT: WET/DRY PONDS VS. CONSTRUCTED WETLANDS

    Science.gov (United States)

    Extant data were used to assess the relative effectiveness of ponds vs. wetland-type BMPs. Compared to wet ponds, wetlands tended toward higher constituent concentrations in effluent, were inefficient at nitrogen removal, and appeared to preferentially retain phosphorous. These d...

  15. Elastocapillary instability under partial wetting conditions: Bending versus buckling

    NARCIS (Netherlands)

    Andreotti, Bruno; Marchand, Antonin; Das, Siddhartha; Snoeijer, Jacco H.

    2011-01-01

    The elastocapillary instability of a flexible plate plunged in a liquid bath is analyzed theoretically. We show that the plate can bend due to two separate destabilizing mechanisms, when the liquid is partially wetting the solid. For contact angles θe>π/2, the capillary forces acting tangential to t

  16. Comparison of Tympanoplasty Results in Dry and Wet Ears

    Directory of Open Access Journals (Sweden)

    Nikzad Shahidi

    2016-05-01

    Full Text Available Introduction: Tympanoplasty is the standard and well established procedure for closure of tympanic membrane perforations .This paper compares the results of tympanoplasty in terms of hearing improvement and graft incorporation in patients with chronic perforation of the tympanic membrane between two groups with and without active drainage at the time of surgery.  Materials and Methods: Sixty referring patients to specialty and subspecialty clinics between the age 15 to 60 years-old were selected. All patients suffered from Chronic Otitis Media and they were categorized into two groups: a those with wet ears and b those with dry ears. Tympanoplasty surgery was performed through the use of embedding technique of temporalis fascia graft and in medial position (Medial Graft Technique. Finally, the data about the level of hearing improvement and the repair of tympanic membrane were analyzed.  Results: Although there was hearing improvement in both groups - with wet or dry ear - no statistically significant difference was observed between two groups. Following the surgery, tympanic membrane in two patients with wet ear and one with dry ear was not repaired, however according to the statistical analysis this difference was not significant.  Conclusion:  The results of this study showed that in contrast to the common perception that tympanoplasty results in the patients with wet ear is poorer than those with dry ear, there was little difference in the results of the operations performed on two groups.

  17. Capillary Contact Angle in a Completely Wet Groove

    Science.gov (United States)

    Parry, A. O.; Malijevský, A.; Rascón, C.

    2014-10-01

    We consider the phase equilibria of a fluid confined in a deep capillary groove of width L with identical side walls and a bottom made of a different material. All walls are completely wet by the liquid. Using density functional theory and interfacial models, we show that the meniscus separating liquid and gas phases at two phase capillary coexistence meets the bottom capped end of the groove at a capillary contact angle θcap(L) which depends on the difference between the Hamaker constants. If the bottom wall has a weaker wall-fluid attraction than the side walls, then θcap>0 even though all the isolated walls are themselves completely wet. This alters the capillary condensation transition which is now first order; this would be continuous in a capped capillary made wholly of either type of material. We show that the capillary contact angle θcap(L) vanishes in two limits, corresponding to different capillary wetting transitions. These occur as the width (i) becomes macroscopically large, and (ii) is reduced to a microscopic value determined by the difference in Hamaker constants. This second wetting transition is characterized by large scale fluctuations and essential critical singularities arising from marginal interfacial interactions.

  18. Wetting phase diagrams of polyacid brush with a triple point.

    NARCIS (Netherlands)

    Mercurieva, A.A.; Iakovlev, P.A.; Zhulina, E.B.; Birshtein, T.M.; Leermakers, F.A.M.

    2006-01-01

    The (pre)wetting behavior of an annealed polyelectrolyte (PE) brush by an electrolyte solution that is strongly segregated from an apolar phase is analyzed. In this complex interface, there are interactions on various length scales. There are short-range interactions with the (uncharged) surface, an

  19. Best Management Practice Fact Sheet. 11, Wet Swale

    OpenAIRE

    2013-01-01

    This fact sheet is one of a 15-part series on urban stormwater management practices. This fact sheet discusses wet swales, what they are, where they are used, how they work, maintenance, limitations, performance, expected costs and includes a glossary of terms.

  20. Robust Non-Wetting PTFE Surfaces by Femtosecond Laser Machining

    Directory of Open Access Journals (Sweden)

    Fang Liang

    2014-08-01

    Full Text Available Nature shows many examples of surfaces with extraordinary wettability, which can often be associated with particular air-trapping surface patterns. Here, robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE. The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters, both of which make it a strong candidate for industrial applications.

  1. Removal of ammonia solutions used in catalytic wet oxidation processes.

    Science.gov (United States)

    Hung, Chang Mao; Lou, Jie Chung; Lin, Chia Hua

    2003-08-01

    Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.

  2. Wet Oxidation of PVA-Containing Desizing Wastewater

    Institute of Scientific and Technical Information of China (English)

    雷乐成; 汪大翬

    2000-01-01

    Polyvinyl alcohol (PVA)-containing desizing wastewater was treated by various wet oxidation methods.Parameters such as reaction temperature, initial solution pH, and the dosage of H2O2 were investigated in terms of chemical oxygen demand (CODcr) and total organic carbon (TOC) removal rate. Up to 90% of the initial CODcr was removed by wet air oxidation(WAO) at 270℃ with stoichiometric oxygen supply, while at temperature of 200℃, the CODcr removal rate was found to be 80%. Similar results were obtained by Promoted WAO (PWAO) and wet peroxide oxidation(WPO) at a lower temperature of 150℃. Reaction temperature was found to have a significant effect on the oxidation performance for all the methods. Initial solution pH was observed to play a significant role in PWAO and WPO where H2O2 was employed. Comparison of WAO, CWAO(catalytic wet air oxidation), PWAO and WPO shows that the rate of CODcr removal increases in the order: WAO, CWAO, PWAO and WPO.

  3. Wet explosion pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Biswas, Rajib; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2014-01-01

    Wet explosion pretreatment of sugarcane bagasse was investigated in pilot-scale with the aim of obtaining the highest possible sugar yield after pretreatment. The temperatures used were 155, 170, 185 and 200 C with or without addition of oxygen (0.6 MPa pressure). Enzymatic hydrolysis of washed...

  4. Adsorption and wetting : experiments, thermodynamics and molecular aspects

    NARCIS (Netherlands)

    Schlangen, L.J.M.

    1995-01-01

    Adsorption and wetting are related phenomena. In order to improve knowledge of both and their relations, experiments, thermodynamics and a theoretical interpretation have been connected, starring n-alkanes.

    Starting from the Gibbs adsorption equation thermodynamic relations between

  5. Preparation of tools for lithographically controlled wetting and soft lithography

    OpenAIRE

    2015-01-01

    Authors: Massmiliano Cavallini, Denis Gentili, Pierpaolo Greco, Francesco Valle & Fabio Biscarini ### Abstract This protocol provides the instructions for designing and fabricating stamping tools with features ranging from nanometer to micrometer scale, including the fabrication using commercial tools such as compact disks or digital video disks. In particular the reported procedures are oriented towards the tools fabrication for lithographically controlled wetting and soft lithog...

  6. Teach Battery Technology with Class-Built Wet Cells

    Science.gov (United States)

    Roman, Harry T.

    2011-01-01

    With some simple metal samples and common household liquids, teachers can build wet cell batteries and use them to teach students about batteries and how they work. In this article, the author offers information that is derived from some simple experiments he conducted in his basement workshop and can easily be applied in the classroom or lab. He…

  7. Enzymatic corn wet milling: engineering process and cost model

    Directory of Open Access Journals (Sweden)

    McAloon Andrew J

    2009-01-01

    Full Text Available Abstract Background Enzymatic corn wet milling (E-milling is a process derived from conventional wet milling for the recovery and purification of starch and co-products using proteases to eliminate the need for sulfites and decrease the steeping time. In 2006, the total starch production in USA by conventional wet milling equaled 23 billion kilograms, including modified starches and starches used for sweeteners and ethanol production 1. Process engineering and cost models for an E-milling process have been developed for a processing plant with a capacity of 2.54 million kg of corn per day (100,000 bu/day. These models are based on the previously published models for a traditional wet milling plant with the same capacity. The E-milling process includes grain cleaning, pretreatment, enzymatic treatment, germ separation and recovery, fiber separation and recovery, gluten separation and recovery and starch separation. Information for the development of the conventional models was obtained from a variety of technical sources including commercial wet milling companies, industry experts and equipment suppliers. Additional information for the present models was obtained from our own experience with the development of the E-milling process and trials in the laboratory and at the pilot plant scale. The models were developed using process and cost simulation software (SuperPro Designer® and include processing information such as composition and flow rates of the various process streams, descriptions of the various unit operations and detailed breakdowns of the operating and capital cost of the facility. Results Based on the information from the model, we can estimate the cost of production per kilogram of starch using the input prices for corn, enzyme and other wet milling co-products. The work presented here describes the E-milling process and compares the process, the operation and costs with the conventional process. Conclusion The E-milling process

  8. IMMEDIATE HUMAN PULP RESPONSE TO ETHANOL-WET BONDING TECHNIQUE

    Science.gov (United States)

    Scheffel, Débora Lopes Salles; Sacono, Nancy Tomoko; Ribeiro, Ana Paula Dias; Soares, Diana Gabriela; Basso, Fernanda Gonçalves; Pashley, David Henry; Costa, Carlos Alberto de Souza; Hebling, Josimeri

    2016-01-01

    Objective To evaluate the short-term response of human pulps to ethanol-wet bonding technique associated with an etch-and-rinse adhesive system. Methods Deep class V cavities were prepared on the buccal surface of 17 sound premolars scheduled for extraction for orthodontics. The teeth were assigned into three groups: Ethanol-wet bonding (G1), water-wet bonding (G2) and calcium hydroxide (G3, control). Two teeth were used as intact control. After acid-etching, the cavities from G1 were filled with 100% ethanol for 60s and blot-dried before the application of Single Bond 2. In G2, the cavities were filled with distilled water for 60s previously to adhesive application and in G3, the cavity floor was lined with calcium hydroxide before etching and bonding. All cavities were restored with resin composite. The teeth were extracted 48h after the clinical procedures. From each tooth 6 μm-thick serial sections were obtained and stained with hematoxylin and eosin (H/E) and Masson's trichrome. Bacteria microleakage was assessed using Brown & Brenn. All sections were blindly evaluated and scored for five histological features. Results Mean remaining dentin thickness was 463±65μm (G1); 425±184μm (G2); and 348±194μm (G3). Similar pulp reactions followed ethanol- or water-wet bonding techniques. Slight inflammatory responses and disruption of the odontoblast layer related to the cavity floor were seen in all groups. Stained bacteria were not detected in any cavities. Normal pulp tissue was observed in G3 except for one case. Conclusions After 48 h, ethanol-wet bonding technique applied on deep cavities prepared in vital teeth does not increase pulpal damage compared to water-wet bonding technique. Clinical significance Ethanol-wet bonding has been considered an experimental technique that may increase resin-dentin bond durability. This study reported the in vivo response of human pulp tissue when 100% ethanol was applied previously to an etch-and-rinse simplified adhesive

  9. Quantitative phase-field modeling for wetting phenomena.

    Science.gov (United States)

    Badillo, Arnoldo

    2015-03-01

    A new phase-field model is developed for studying partial wetting. The introduction of a third phase representing a solid wall allows for the derivation of a new surface tension force that accounts for energy changes at the contact line. In contrast to other multi-phase-field formulations, the present model does not need the introduction of surface energies for the fluid-wall interactions. Instead, all wetting properties are included in a unique parameter known as the equilibrium contact angle θeq. The model requires the solution of a single elliptic phase-field equation, which, coupled to conservation laws for mass and linear momentum, admits the existence of steady and unsteady compact solutions (compactons). The representation of the wall by an additional phase field allows for the study of wetting phenomena on flat, rough, or patterned surfaces in a straightforward manner. The model contains only two free parameters, a measure of interface thickness W and β, which is used in the definition of the mixture viscosity μ=μlϕl+μvϕv+βμlϕw. The former controls the convergence towards the sharp interface limit and the latter the energy dissipation at the contact line. Simulations on rough surfaces show that by taking values for β higher than 1, the model can reproduce, on average, the effects of pinning events of the contact line during its dynamic motion. The model is able to capture, in good agreement with experimental observations, many physical phenomena fundamental to wetting science, such as the wetting transition on micro-structured surfaces and droplet dynamics on solid substrates.

  10. Grain Boundary Microstructures of Wet and Dry Recrystallizing Marble

    Science.gov (United States)

    de Bresser, H.; Urai, J.; Olgaard, D.

    2003-12-01

    We analyzed 2D grain boundary maps of samples of marble that were deformed at high temperature with and without added water. Our aim was to relate the grain boundary geometry of wet and dry marble to the observed mechanical behavior, and to obtain criteria that can help interpretation of natural calcite rocks in terms of the influence of water on their deformation. We made use of cylindrical samples of pure white, microporous Carrara marble that were axially compressed in a gas medium deformation apparatus at temperatures (T) ranging 600-1000° C, a constant confining pressure of 300 MPa and strain rates around 10-5 s-1. Samples were jacketed in sealed Pt-capsules with or without the addition of 0.4-2.1 wt% water. Microstructural analysis was carried out using Scanning Electron Microscopy (SEM) and Light Optical Microscopy. Traced grain boundary maps were made from ultra thin sections of samples, and were quantitatively analyzed using Image Analysis techniques. The strength of water-added samples was found to be slightly less than of dry samples at all temperatures investigated (weakening ~40% at T=600° C, decreasing to ˜10% at higher T), with one exception at T=800° C. Microstructurally, the samples showed grain flattening and twinning at T=600° C and development of new grains by dynamic recrystallization at higher T, dominated by grain boundary migration. Grain boundaries in wet samples showed isolated or locally continuous remnants of fluid pockets in SEM. Quantitatively, the mean grain size and grain size distribution were found to only marginally vary between dry and wet samples. Average roundness of grains in wet recrystallized samples is systematically better than in dry samples. The fractal dimension D for the relationship between grain diameter d and grain perimeter P (expressed P ˜dD) for wet samples is systematically lower than for dry samples. Thus, grain boundaries in wet-deformed samples have less irregular shapes than in dry samples. Average

  11. Study of wet blasting of components in nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Hall, J

    1999-12-01

    This report looks at the method of wet blasting radioactive components in nuclear power stations. The wet blaster uses pearl shaped glass beads with the dimensions of 150-250 {mu}m mixed with water as blasting media. The improved design, providing outer operator's positions with proper radiation protection and more efficient blasting equipment has resulted in a lesser dose taken by the operators. The main reason to decontaminate components in nuclear power plants is to enable service on these components. On components like valves, pump shafts, pipes etc. oxides form and bind radiation. These components are normally situated at some distance from the reactor core and will mainly suffer from radiation from so called activation products. When a component is to be decontaminated it can be decontaminated to a radioactive level where it will be declassified. This report has found levels ranging from 150-1000 Bq/kg allowing declassification of radioactive materials.This difference is found between different countries and different organisations. The report also looks at the levels of waste generated using wet blasting. This is done by tracking the contamination to determine where it collects. It is either collected in the water treatment plant or collected in the blasting media. At Barsebaeck the waste levels, from de-contaminating nearly 800 components in one year, results in a waste volume of about 0,250 m{sup 3}. This waste consists of low and medium level waste and will cost about 3 600 EURO to store. The conclusions of the report are that wet blasting is an indispensable way to treat contaminated components in modern nuclear power plants. The wet blasting equipment can be improved by using a robot enabling the operators to remotely treat components from the outer operator's positions. There they will benefit from better radiation protection thus further reduce their taken dose. The wet blasting equipment could also be used to better control the levels of

  12. Wet brewers grains for lactating dairy cows during hot, humid weather.

    Science.gov (United States)

    West, J W; Ely, L O; Martin, S A

    1994-01-01

    Twenty lactating Jersey cows were offered diets containing 0, 15, or 30% wet brewers grains or 30% wet brewers grains plus liquid brewers' yeast during hot, humid weather. The DMI was not different, even though diets with 30% wet brewers grains contained only 35.5% DM and approximately 50 versus 36.8% NDF for the control diet. Yields of milk and FCM did not differ for cows offered the control diet versus wet brewers grains or diets with 15 versus 30% wet brewers grains, but milk yield for diets with 30% wet brewers grains was greater with added liquid brewers' yeast than without it. Milk fat percentage was not different, but milk protein percentage was lower, for diets with wet brewers grains than for controls and for 30% wet brewers grains than for 15% wet brewers grains. Serum urea N was lower for control cows than for cows receiving the diets with wet brewers grains. Feed cost per cow was lower for wet brewers grains versus the control diet, and income over feed cost was greater for diets with 30 versus 15% wet brewers grains. Large quantities of wet brewers grains can be added to the diet during hot weather without depressing DMI.

  13. The characteristics of wet and dry spells for the diverse climate in China

    Science.gov (United States)

    Li, Zhi; Li, Yanping; Shi, Xiaoping; Li, Jingjing

    2017-02-01

    Using a large precipitation dataset from 692 gauge stations across China for the period of 1960-2013, this study analyzed the characteristics of wet/dry spells related to four types of climate including arid, semiarid, semiarid to subhumid, and humid climate. A wet/dry spell is defined as the consecutive days with precipitation amount greater/less than a threshold. The frequency of wet/dry spells, the contributions of wet/dry spells with different lengths to the total number of wet/dry days and total precipitation amount were analyzed for different climate types. The wet/dry spells with the greatest contributions to the total wet/dry days or total precipitation amount vary with climate. For drier climate, long-duration dry spells contribute more to the total number of dry days, while short-duration wet spells contribute more to the total number of wet days and the total precipitation amount. The characteristics of wet/dry spells are closely related to local climate. Good regression relationships were obtained for the number of dry/wet spell versus spell length, and precipitation amount versus wet spell length. Although the correlation between precipitation amount and wet spell length has rarely been considered in stochastic precipitation generation, the relationships identified in this study justify the necessity of taking it into account.

  14. Wetting and free surface flow modeling for potting and encapsulation.

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Carlton, F.; Brooks, Michael J. (Los Alamos National Laboratory, Los Alamos, NM); Graham, Alan Lyman (Los Alamos National Laboratory, Los Alamos, NM); Noble, David F. (David Frederick) (.; )); Notz, Patrick K.; Hopkins, Matthew Morgan; Castaneda, Jaime N.; Mahoney, Leo James (Kansas City Plant, Kansas City, MO); Baer, Thomas A.; Berchtold, Kathryn (Los Alamos National Laboratory, Los Alamos, NM); Adolf, Douglas Brian; Wilkes, Edward Dean; Rao, Rekha Ranjana; Givler, Richard C.; Sun, Amy Cha-Tien; Cote, Raymond O.; Mondy, Lisa Ann; Grillet, Anne Mary; Kraynik, Andrew Michael

    2007-06-01

    As part of an effort to reduce costs and improve quality control in encapsulation and potting processes the Technology Initiative Project ''Defect Free Manufacturing and Assembly'' has completed a computational modeling study of flows representative of those seen in these processes. Flow solutions are obtained using a coupled, finite-element-based, numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. In addition, two commercially available codes, ProCAST and MOLDFLOW, are also used on geometries representing encapsulation processes at the Kansas City Plant. Visual observations of the flow in several geometries are recorded in the laboratory and compared to the models. Wetting properties for the materials in these experiments are measured using a unique flowthrough goniometer.

  15. Dentinal tubules driven wetting of dentin: Cassie-Baxter modelling

    Science.gov (United States)

    Ramos, S. M. M.; Alderete, L.; Farge, P.

    2009-10-01

    We investigate the wetting properties of dentin surfaces submitted to a phosphoric acid etching followed by an air drying procedure, as in clinical situations of adhesive dentistry. The surface topography of the etched surfaces was characterized by AFM, and the wetting properties of water on these rough and heterogeneous surfaces were studied, by contact angle measurements. We showed that the contact angle increases with the acid exposure time and consequently with both surface roughness and the organic-mineral ratio of the dentin components. From the whole results, obtained on dentin and also on synthesized hydroxyapatites samples, we inferred a water contact angle of ˜ 133° on the dentinal tubule. These experimental results may be described by the Cassie-Baxter approach, and it is suggested that small air pockets could be formed inside the dentinal tubules.

  16. Numerical analysis of wet separation of particles by density differences

    CERN Document Server

    Markauskas, Darius

    2016-01-01

    Wet particle separation is widely used in mineral processing and plastic recycling to separate mixtures of particulate materials into further usable fractions due to density differences. This work presents efforts aiming to numerically analyze the wet separation of particles with different densities. In the current study the discrete element method (DEM) is used for the solid phase while the smoothed particle hydrodynamics (SPH) is used for modeling of the liquid phase. The two phases are coupled by the use of a volume averaging technique. In the current study, simulations of spherical particle separation were performed. In these simulations, a set of generated particles with two different densities is dropped into a rectangular container filled with liquid. The results of simulations with two different mixtures of particles demonstrated how separation depends on the densities of particles.

  17. Simultaneous hydrolysis-esterification of wet microalgal lipid using acid.

    Science.gov (United States)

    Takisawa, Kenji; Kanemoto, Kazuyo; Kartikawati, Muliasari; Kitamura, Yutaka

    2013-12-01

    This research demonstrated hydrolysis of wet microalgal lipid and esterification of free fatty acid (FFA) using acid in one-step process. The investigation of simultaneous hydrolysis-esterification (SHE) of wet microalgal lipid was conducted by using L27 orthogonal design and the effects of water content, volume of sulphuric acid, volume of methanol, temperature and time on SHE were examined. As a result, water content was found to be the most effective factor. The effects of various parameters on fatty acid methyl ester (FAME) content and equilibrium relation between FAME and FFA were also examined under water content 80%. Equimolar amounts of sulphuric acid and hydrochloric acid showed similar results. This method has great potential in terms of biodiesel production from microalgae since no organic solvents are used.

  18. Analysis Groove Characteristics of Friction Dishes in Wet Speeding Clutch

    Institute of Scientific and Technical Information of China (English)

    HongYue; LiuJin; JinShiliang

    2004-01-01

    The impacts of different groove shapes, numbers, and angle of friction dish on transmitting torque, speed, push pressure in wet speeding clutch are discussed in this paper. Since the wet speeed governing clutch works within hydrodynamic lubrication mixture lubrication. boundary, lubrication and contact situation, the oils combining with a-hydrocarbon or polyester are getting widely used as lubricant.The power-law fluid model with Patir-Cheng average flow model, GT asperity contact model and oil film inertia are applied for average Reynolds equation setting, In order to investigate the relationship between average push pressure within hydrodynamic lubrication and mixture lubrication, average transmitting torque and output speed, the numeral calculation and analysis are presented. According to calculation, it is found that the groove shape, groove angle and groove numbers affect the average transfer torque and push pressure with the speed rate.

  19. Wet paper codes and the dual distance in steganography

    CERN Document Server

    Munuera, Carlos

    2011-01-01

    In 1998 Crandall introduced a method based on coding theory to secretly embed a message in a digital support such as an image. Later Fridrich et al. improved this method to minimize the distortion introduced by the embedding; a process called wet paper. However, as previously emphasized in the literature, this method can fail during the embedding step. Here we find sufficient and necessary conditions to guarantee a successful embedding by studying the dual distance of a linear code. Since these results are essentially of combinatorial nature, they can be generalized to systematic codes, a large family containing all linear codes. We also compute the exact number of solutions and point out the relationship between wet paper codes and orthogonal arrays.

  20. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood

    DEFF Research Database (Denmark)

    Palonen, H.; Thomsen, A.B.; Tenkanen, M.

    2004-01-01

    , and the compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58-64% cellulose, 2-16% hemicellulose, and 24-30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature......The wet oxidation pretreatment (water, oxygen, elevated temperature, and pressure) of softwood (Picea abies) was investigated for enhancing enzymatic hydrolysis. The pretreatment was preliminarily optimized. Six different combinations of reaction time, temperature, and pH were applied...... of the pretreatment, the residual hemicellulose content of the substrate, and the type of the commercial cellulase preparation used were the most important factors affecting the enzymatic hydrolysis. The highest sugar yield in a 72-h hydrolysis, 79% of theoretical, was obtained using a pretreatment of 200degrees...