WorldWideScience

Sample records for cuo codoped zno

  1. Controlled fabrication of oriented co-doped ZnO clustered nanoassemblies.

    Science.gov (United States)

    Barick, K C; Aslam, M; Dravid, Vinayak P; Bahadur, D

    2010-09-01

    Clustered nanoassemblies of Mn doped ZnO and co-doped ZnO (Mn, Sn co-doped ZnO; Mn, Sb co-doped ZnO; and Mn, Bi co-doped ZnO) were prepared by refluxing their respective precursors in diethylene glycol medium. The co-doping elements, Sn, Sb and Bi exist in multi oxidation states by forming Zn-O-M (M=Sb, Bi and Sn) bonds in hexagonal wurtzite nanostructure. The analyses of detailed structural characterization performed by XRD, X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM), show that co-doping ions are successfully incorporated into the ZnO nanostructure and do not appear as precipitates or secondary phases. HRTEM analysis also confirmed the oriented attachment of nanocrystals as well as their defect structures. The formation/activation of higher amount of intrinsic host defects, for instance, oxygen vacancies in co-doped ZnO as compared to Mn doped ZnO sample is evident from Raman spectra. The doped and co-doped samples exhibit ferromagnetic like behavior at room temperature presumably due to the presence of defects. Specifically, it has been observed that the incorporation of dopant and co-dopants into ZnO structure can modulate the local electronic structure due to the formation/activation of defects and hence, cause significant changes in their structural, vibrational, optical and magnetic properties.

  2. Room temperature ferromagnetism in Cu-doped ZnO synthesized from CuO and ZnO nanoparticles

    Science.gov (United States)

    Owens, Frank J.

    2009-11-01

    AC susceptibility and ferromagnetic resonance (FMR) measurements indicate that ZnO doped with Cu by a simple sintering process starting from nanoparticles of ZnO and CuO is ferromagnetic above room temperature. FMR measurements above room temperature indicate the ordering temperature to be above 520 K. The observation supports the recent theoretical calculations of Huang et al. which predict ferromagnetism in copper-doped ZnO.

  3. Effect of oxygen vacancy defect on the magnetic properties of Co-doped ZnO

    Institute of Scientific and Technical Information of China (English)

    Weng Zhen-Zhen; Zhang Jian-Min; Huang Zhi-Gao; Lin Wen-Xiong

    2011-01-01

    The influence of oxygen vacancy on the magnetism of Co-doped ZnO has been investigated by the first-principles calculations. It is suggested that oxygen vacancy and its location play crucial roles on the magnetic properties of Co-doped ZnO. The exchange coupling mechanism should account for the magnetism in Co-doped ZnO with oxygen vacancy and the oxygen vacancy is likely to be close to the Co atom. The oxygen vacancy (doping electrons) might be available for carrier mediation but is localized with a certain length and can strengthen the ferromagnetic exchange interaction between Co atoms.

  4. Effect of gas sensing properties by Sn-Rh codoped ZnO nanosheets

    Science.gov (United States)

    Chen, Ziwei; Lin, Zhidong; Xu, Mengying; Hong, Yuyuan; Li, Na; Fu, Ping; Chen, Ze

    2016-05-01

    The hierarchically porous Sn-Rh codoped ZnO, Sn-doped ZnO and pure ZnO nanosheets have been successfully synthesized through a simple hydrothermal reaction process without any surfactant or template at 180°C. The morphology and composition were carefully characterized by X-ray diffraction, energy dispersive X-ray spectrometer, field emission scanning electronic microscopy and BET. The gas-sensing testing results indicated that the Sn-Rh codoped ZnO nanosheets, with the specific surface area was 26.9 m2/g, exhibited enhanced gas-sensing performance compared with that of pure ZnO and Sn-doped ZnO. The high sensitivity of the sensor based on Sn-Rh codoped ZnO was 149.38 to 100 ppm ethanol and the detection limit was less than 5 ppm (5.8). The response and recovery times were measured to be ˜3 s and ˜10 s when exposed to 100 ppm ethanol at the test temperature of 300°C. The good sensing performance of the Sn-Rh codoped ZnO sensor indicated that hierarchically porous Sn-Rh codoped ZnO could be a promising candidate for highly sensitive gas sensors. [Figure not available: see fulltext.

  5. Effect of shallow donors on Curie–Weiss temperature of Co-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shuxia, E-mail: gsx0391@sina.com [Department of Physics, Jiaozuo Teachers College, Jiaozuo 454001 (China); Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Li, Jiwu [Department of Physics, Jiaozuo Teachers College, Jiaozuo 454001 (China); Du, Zuliang [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China)

    2014-12-15

    Co-doped ZnO and Al, Co co-doped ZnO polycrystalline powders were synthesized by co-precipitation method. The magnetization curves measured at 2 K show no hysteresis neither remanence for all samples. ZnO:Co grown at low temperature has a positive Curie–Weiss temperature Θ, and ZnO:Co grown at high temperature has a negative Θ. But Al-doped ZnO:Co grown at high temperature has a positive Θ. Positive Curie–Weiss temperature Θ was considered to have relation to the presence of shallow donors in the samples. - Highlights: • Co-doped ZnO and Al, Co co-doped ZnO polycrystalline powders were synthesized. • No hysteresis is observed for all samples. • The Curie–Weiss temperature Θ changes its sign by Al doping. • Positive Θ should be related to shallow donors.

  6. Influence of defects on electrical properties of electrodeposited co-doped ZnO nanocoatings

    Science.gov (United States)

    Simimol, A.; Anappara, Aji A.; Barshilia, Harish C.

    2017-01-01

    We present a systematic investigation of the electrical properties of undoped and Co-doped ZnO nanostructures at room temperature as an extensive study of the role of defects in ZnO. The ZnO nanostructures were fabricated by the electrodeposition method at low bath temperature (80 °C) and the Co concentration was varied from 0.01 to 0.2 mM. Electrical properties of the undoped and Co-doped ZnO nanostructures were studied in detail. The carrier concentration increases while the mobility reduces with increase in Co-concentration. The resistivity increases with an increase in Co-concentration and the reason is correlated with the defects in ZnO. In order to understand more details of the role of defects in the present I-V characteristic behavior of the Co-doped ZnO, high temperature vacuum annealing of ZnO sample was carried out. Electrical, optical and magnetic properties of the high temperature vacuum annealed ZnO were studied in detail. Photoluminescence spectroscopy (PL) results revealed more information of the defect levels which act as scattering centers for the carriers. Co-doping as well as annealing at high temperature in vacuum environment tunes the defects in ZnO and which influence the optical, magnetic and electrical behavior of the ZnO nanostructures.

  7. Optical and magnetic properties of Co-doped CuO flower/plates/particles-like nanostructures.

    Science.gov (United States)

    Basith, N Mohamed; Vijaya, J Judith; Kennedy, L John; Bououdina, M; Hussain, Shamima

    2014-03-01

    In this study, pure and Co-doped CuO nanostructures (0.5, 1.0, 1.5, and 2.0 at wt% of Co) were synthesized by microwave combustion method. The prepared samples were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). Powder X-ray diffraction patterns refined by the Rietveld method indicated the formation of single-phase monoclinic structure. The surface morphology and elemental analysis of Co-doped CuO nanostructures were studied by using HR-SEM and EDX. Interestingly, the morphology was found to change considerably from nanoflowers to nanoplates then to nanoparticles with the variation of Co concentration. The optical band gap calculated using DRS was found to be 2.1 eV for pure CuO and increases up to 3.4 eV with increasing cobalt content. Photoluminescence measurements also confirm these results. The magnetic measurements indicated that the obtained nanostructures were ferromagnetic at room temperature with an optimum value of saturation magnetization at 1.0 wt.% of Co-doped CuO, i.e., 970 micro emu/g.

  8. Ferromagnetism from Co-Doped ZnO Nanocantilevers above Room Temperature

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shao-Min; WANG Peng; LI Sheng; ZHANG Bin; GONG He-Chun; DU Zu-Liang

    2008-01-01

    @@ At low temperature (400° C), chemical vapour deposition (CVD) is employed to make comb-like Co-doped ZnO nanocantilever arrays (NAs). The magnetization curves of the as-synthesized Co-doped ZnO NAs indicate the existence of above-room-temperature ferromagnetism (ARTFM) (Curie temperature, Tc > 300 K) whereas un-doped ZnO NAs does not. The corresponding ferromagnetic source mechanism is discussed, in which defects play an important role due to the strong green light emission.

  9. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    Science.gov (United States)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C. S.; de Moura, Ana P.; Freire, Poliana G.; da Silva, Luis F.; Longo, Elson; Munoz, Rodrigo A. A.; Lima, Renata C.

    2015-10-01

    We report for the first time a rapid preparation of Zn1-2xCoxNixO nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green-orange-red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO.

  10. (Al, Er) co-doped ZnO nanoparticles for photodegradation of rhodamine blue

    Science.gov (United States)

    Ghomri, R.; Shaikh, M. Nasiruzzaman; Ahmed, M. I.; Bououdina, M.; Ghers, M.

    2016-10-01

    Pure and co-doped (Al, Er) ZnO nanoparticles (NPs) have been synthesized by hydrothermal method using (Zn, Er and Al) nitrates. X-ray diffraction patterns reveal the formation of single phase of ZnO würtzite-type structure. The crystallite size for pure ZnO is in the order of 26.5 nm which decreases up to the range 14.2-22.0 nm after (Al, Er) co-doping. SEM micrographs show that the specimen is composed of regular spherical particles in the nanoscale regime with homogeneous size distribution and high tendency to agglomeration. FTIR spectra exhibit absorption lines located at wavenumbers corresponding to vibration modes between the constituent atoms. Raman spectra recorded under excitation ( λ exc = 632.8 nm) reveal peaks related to modes of transverse and longitudinal optical phonons of the würtzite ZnO structure. The energy band gap E g of ZnO:(Al, Er) NPs ranges in 3.264-3.251 eV. The photocatalytic activity of pure and co-doped (Al, Er) ZnO NPs was evaluated by the photodegradation of rhodamine blue under an irradiation of wavelength 554 nm. It is found that a photodegradation rate above 90 % could be achieved for a period of time of 40 min for pure ZnO and 120 min for (Al, Er) co-doped ZnO. A photodegradation mechanism is proposed.

  11. The electronic and magnetic properties of (Mn,C)-codoped ZnO diluted magnetic semiconductor

    Institute of Scientific and Technical Information of China (English)

    Zhao Long; Lu Peng-Fei; Yu Zhong-Yuan; Ma Shi-Jia; Ding Lu; Liu Jian-Tao

    2012-01-01

    The electronic and magnetic properties of (Mn,C)-codoped ZnO are studied in the Perdew-Burke-Ernzerhof form of generalized gradient approximation of the density functional theory.By investigating five geometrical configurations,we find that Mn doped ZnO exhibits anti-ferromagnetic or spin-glass behaviour,and there are no carriers to mediate the long range ferromagnetic (FM) interaction without acceptor co-doping.We observe that the FM interaction for (Mn,C)-codoped ZnO is due to the hybridization between C 2p and Mn 3d states,which is strong enough to lead to hole-mediated ferromagnetism at room temperature.Meanwhile,we demonstrate that ZnO co-doped with Mn and C has a stable FM ground state and show that the (Mn,C)-codoped ZnO is FM semiconductor with super-high Curie temperature (TC = 5475 K).These results are conducive to the design of dilute magnetic semiconductors with codopants for spintronics applications.

  12. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Moura, Ana P. de [LIEC, Instituto de Química, Universidade Estadual Paulista, 14800-900 Araraquara, SP (Brazil); Freire, Poliana G. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Silva, Luis F. da; Longo, Elson [LIEC, Instituto de Química, Universidade Estadual Paulista, 14800-900 Araraquara, SP (Brazil); Munoz, Rodrigo A.A. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Lima, Renata C., E-mail: rclima@iqufu.ufu.br [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil)

    2015-10-15

    We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.

  13. Characterization of co-doped (In, N): ZnO by indigenous thermopower measurement system

    Science.gov (United States)

    Kedia, Sanjay Kumar; Singh, Anil; Chaudhary, Sujeet

    2016-05-01

    The thermopower measurement of (In, N) co-doped ZnO thin films have been carried out using indigenous high and low temperature thermopower measurement system. The compact thermopower measurement system has been designed, developed, tested in house. The sensitivity and accuracy of indigenous thermopower system have been investigated by measuring thermopower of standard samples like Cu, Ni, Sb etc. It has been also investigated by the comparison of carrier concentration using Hall Effect and Thermopower measurement of these (In, N) co-doped ZnO thin films. The constant temperature gradient between hot and cold junction has been maintained by using the temperature controller. The room temperature and low temperature Seebeck coefficient measurements were performed on these co-doped ZnO samples. A series of experiments have been performed to detect the p-type conductivity in co-doped ZnO thin films, particularly at low temperature. The negative Seebeck coefficient observed down to 40 K established the n-type behavior in these co-doped samples.

  14. Salts affect the interaction of ZnO or CuO nanoparticles with wheat.

    Science.gov (United States)

    Stewart, Jacob; Hansen, Trevor; McLean, Joan E; McManus, Paul; Das, Siddhartha; Britt, David W; Anderson, Anne J; Dimkpa, Christian O

    2015-09-01

    Exposure to nanoparticles (NPs) that release metals with potential phytotoxicity could pose problems in agriculture. The authors of the present study used growth in a model growth matrix, sand, to examine the influence of 5 mmol/kg of Na, K, or Ca (added as Cl salts) and root exudates on transformation and changes to the bioactivity of copper(II) oxide (CuO) and zinc oxide (ZnO) NPs on wheat. These salt levels are found in saline agricultural soils. After 14 d of seedling growth, particles with crystallinity typical of CuO or ZnO remained in the aqueous fraction from the sand; particles had negative surface charges that differed with NP type and salt, but salt did not alter particle agglomeration. Reduction in shoot and root elongation and lateral root induction by ZnO NPs were mitigated by all salts. However, whereas Na and K promoted Zn loading into shoots, Ca reduced loading, suggesting that competition with Zn ions for uptake occurred. With CuO NPs, plant growth and loading was modified equally by all salts, consistent with major interaction with the plant with CuO rather than Cu ions. Thus, for both NPs, loading into plant tissues was not solely dependent on ion solubility. These findings indicated that salts in agricultural soils could modify the phytotoxicity of NPs.

  15. Density-functional study on the ferromagnetism of (Mn,Na)-codoped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai-Cheng, E-mail: kczhang@yeah.net [College of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Li, Yong-Feng [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources Inner Mongolia University of Science and Technology, Baotou 014010 (China); School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Liu, Yong [State Key Laboratory of Metastable Materials Science and Technology and College of Science, Yanshan University, Qinhuangdao, Hebei 066004 (China); Zhu, Yan [Department of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2014-10-15

    We have investigated the magnetic properties of (Mn,Na)-codoped ZnO, which was reported to have room-temperature ferromagnetism recently, by first-principles calculation. Our results reveal that antiferromagnetic interaction dominates in the system with Mn substitution only. The antiferromagnetism arises from the superexchange interaction between Mn atoms. When Mn and Na are codoped into ZnO, holes are introduced into the orbitals of Mn and O, which leads to strong ferromagnetism. The origin of ferromagnetism can be attributed to the hole-mediated double-exchange interaction.

  16. Speciation of ZnO and CuO nanoparticles exposed to culture medium and lymphocyte cells

    Data.gov (United States)

    U.S. Environmental Protection Agency — Spectral fits and linear combination data for ZnO and CuO nanoparticles exposure during toxicity testing. This dataset is associated with the following publication:...

  17. Luminescence Properties of Sm3+/Eu3+ Co-Doped ZnO Quantum Dots.

    Science.gov (United States)

    Liu, Fengyi; Li, Hong; Hu, Yajing; Na, Jin; Mou, Yun; Yang, Kun; Ye, Zuhu; Li, Mingyue; Xie, Ya-Hong

    2016-04-01

    In order to improve luminescence properties of semiconductor ZnO quantum dots (QDs), Sm3+/Eu3+ co-doped ZnO QDs have been controllably synthesized by sol-gel method in this paper. ZnO QDs have a spherical shape with mean diameter at about 5-6 nm, which was characterized by high-resolution transmission electron microscopy (HRTEM). ZnO QDs have hexagonal wurtzite structure with parts of Sm3+ and Eu3+ incorporated into the lattice, which was demonstrated by X-ray Diffraction (XRD). Luminescence properties at room temperature (RT) of different amount of Sm3+ and 2 mol% Eu3+ doped ZnO QDs were examined in-depth by optical spectra. In contrast to the Pr3+/Eu3+ co-doped fluorescent performance researched in our previous study, the photoluminescence (PL) spectra indicates the unique luminescence properties of Sm3+/Eu3+ co-doped ZnO QDs. In addition, fluorescence lifetimes were obtained to illustrate the luminous mechanism.

  18. CuO nanoparticles supported on nitrogen and sulfur co-doped graphene nanocomposites for non-enzymatic glucose sensing

    Science.gov (United States)

    Li, Meixia; Guo, Qingbin; Xie, Juan; Li, Yongde; Feng, Yapeng

    2017-01-01

    Developing highly active catalysts to promote the electrocatalytic glucose oxidation (EGO) is a crucial demand for non-enzymatic glucose sensing. Herein, we reported the use of nitrogen and sulfur co-doped graphene (NSG) as a novel support material for anchoring CuO nanoparticles and obtained CuO/NSG was employed as an efficient EGO catalyst for non-enzymatic glucose sensing. The results showed that the NSG endowed the CuO/NSG with large surface area, increased structural defects, improved conductivity, and strong covalent coupling between NSG and CuO. Owing to the significant contribution of NSG and the synergistic effect of NSG and CuO, the CuO/NSG exhibited a remarkably higher EGO activity than CuO and CuO/reduced graphene oxide. The CuO/NSG-based sensor displayed excellent glucose sensing performances with a considerably low detection limit of 0.07 μM. These findings elucidate that the NSG is a promising support material for non-enzymatic glucose detection.

  19. Realization of Ag-S codoped p-type ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tian Ning, E-mail: xtn9886@zju.edu.cn [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Li, Xiang; Lu, Zhong [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Chen, Yong Yue [Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Sui, Cheng Hua [Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Wu, Hui Zhen [Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2014-10-15

    Highlights: • Ag-S codoped p-type ZnO thin films have been fabricated. • The films exhibit low resistivity and high Hall mobility and hole concentration. • A ZnO:(Ag, S)/i-ZnO/ZnO:Al homojunction has been fabricated and shows rectifying behaviors. - Abstract: Ag-S codoped ZnO films have been grown on quartz substrates by e-beam evaporation at low temperature (100 °C). The effects of Ag{sub 2}S content on the structural and electrical properties of the films were investigated. The results showed that 2 wt% Ag{sub 2}S doped films exhibited p-type conduction, with a resistivity of 0.0347 Ω cm, a Hall mobility of 9.53 cm{sup 2} V{sup −1} s{sup −1}, and a hole concentration of 1.89 × 10{sup 19} cm{sup −3} at room temperature. The X-ray photoelectron spectroscopy measurements showed that Ag and S have been incorporated into the films. To further confirm the p-type conduction of Ag-S codoped ZnO films, a ZnO:(Ag, S)/i-ZnO/ZnO:Al homojunction was fabricated and rectifying behaviors of which was measured. High electrical performance and low growth temperature indicate that Ag{sub 2}S is a promising dopant to fabricate p-type Ag-S codoped ZnO films.

  20. Magnetic properties in (Mn,Fe)-codoped ZnO nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huawei [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Cong, Zixiang [School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100976 (China); Yu, Zhongyuan; Cai, Ningning; Zhang, Xianlong [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Gao, Tao [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Wang, Shumin [Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden); State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2013-12-02

    Using the first-principles density functional theory, we have studied the electronic structures and magnetic properties of Mn/Fe codoped ZnO nanowires systematically. The calculated results of formation energy indicate that the configuration of the lowest energy where Mn and Fe atoms form nearest neighbors on the outer cylindrical surface layer along the [0001] direction, will be determined. The magnetic coupling of 8 types of Mn/Fe codoped ZnO nanowires was investigated and ferromagnetic state was found in certain configurations. The mechanism is from the fierce hybridization between 3d of Mn and Fe with O 2p near the Fermi level. The relative energy difference for configuration VIII is 0.221 eV, which indicates that room temperature ferromagnetism could be obtained in such a system and Mn/Fe codoped ZnO nanowires are a promising nanoscale spintronic material. - Highlights: • The stable structure prefers that Mn/Fe form nearest neighbors on the outer surface. • The fierce p–d hybridization is responsible for ferromagnetic (FM) coupling. • Mn/Fe codoped ZnO nanowire is a promising FM semiconductor material.

  1. Heterojunction characteristics of ZnO and CuO substrates formed by direct bonding

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroshi; Fujishima, Masahide; Komiyama, Takao; Chonan, Yasunori; Yamaguchi, Hiroyuki; Aoyama, Takashi [Department of Electronics and Information Systems, Akita Prefectural University, Yuri-honjo, Akita 015-0055 (Japan)

    2012-06-15

    The n-ZnO/p-CuO heterojunction characteristics have been investigated by direct bonding of ZnO and CuO substrates at room temperatures, and by post-annealing at 800 C. The ZnO substrate was fabricated by mixing of ZnO and Al{sub 2}O{sub 3} (2%) powders, pressing at 50 MPa, and sintering at 1400 C while the CuO substrate was fabricated by mixing of CuO and Li{sub 2}CO{sub 3} (1%) powders, pressing at 300 MPa, and sintering at 700 C. Rectifying behaviour with an ideality factor of 126 was observed after bonding of these substrates. Post-annealing of the heterojunction, however, significantly increased both the forward and the reverse currents, and the rectifying behaviour was lost. Symmetrical I-V curves with threshold voltages of about {+-} 1 V were observed and this degradation could be explained by impurity (Al and Li) segregation at the junction interface. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing.

    Science.gov (United States)

    Ivask, Angela; Scheckel, Kirk G; Kapruwan, Pankaj; Stone, Vicki; Yin, Hong; Voelcker, Nicolas H; Lombi, Enzo

    2017-03-01

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge structure (XANES) spectroscopy results revealed that Zn speciation profiles of 30 nm and 80 nm ZnO nanoparticles, and ZnSO4- exposed cells were almost identical with the prevailing species being Zn-cysteine. This suggests that ZnO nanoparticles are rapidly transformed during a standard in vitro toxicological assay, and are sequestered intracellularly, analogously to soluble Zn. Complete transformation of ZnO in the test conditions was further supported by almost identical Zn spectra in medium to which ZnO nanoparticles or ZnSO4 was added. Likewise, Cu XANES spectra for CuO and CuSO4-exposed cells and cell culture media were similar. These results together with our observation on similar toxicological profiles of ZnO and soluble Zn, and CuO and soluble Cu, underline the importance of dissolution and subsequent transformation of ZnO and CuO nanoparticles during toxicological testing and provide evidence that the nano-specific effect of ZnO and CuO nanoparticles is negligible in this system. We strongly suggest to account for this aspect when interpreting the toxicological results of ZnO and CuO nanoparticles.

  3. Enhanced Visible-Light Photocatalytic Activity of C/Ce-Codoped ZnO Nanoellipsoids Synthesized by Hydrothermal Method

    Science.gov (United States)

    Ha, Luu Thi Viet; Dai, Luu Minh; Nhiem, Dao Ngoc; Van Cuong, Nguyen

    2016-08-01

    C/Ce-codoped ZnO nanomaterial has been synthesized by a hydrothermal method and its physical properties and characterization investigated using thermogravimetric and differential thermal analysis (TG-DTA), x-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, energy-dispersive x-ray (EDX) spectroscopy, UV-Vis diffuse reflectance spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of the nanomaterial was examined using methylene blue as organic dye under visible-light source. The results show that the C/Ce-codoped ZnO nanomaterial exhibited higher photocatalytic activity under visible-light irradiation compared with undoped ZnO, Ce-doped ZnO or C-doped ZnO nanomaterials. Such enhancement of the photocatalytic activity of C/Ce-codoped ZnO under visible-light irradiation suggests that these nanoparticles might have good applications in optoelectronics and wastewater treatment.

  4. Room-temperature ferromagnetism in Co-doped ZnO thin films prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Belghazi, Y. [Laboratoire de Physique des Materiaux, Faculte des Sciences, B.P. 1014, Rabat (Morocco); IPCMS-GMI (UMR 7504 du CNRS) (ECPM-ULP), 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2 (France); Schmerber, G. [IPCMS-GMI (UMR 7504 du CNRS) (ECPM-ULP), 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2 (France); Colis, S. [IPCMS-GMI (UMR 7504 du CNRS) (ECPM-ULP), 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2 (France); Rehspringer, J.L. [IPCMS-GMI (UMR 7504 du CNRS) (ECPM-ULP), 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2 (France); Berrada, A. [Laboratoire de Physique des Materiaux, Faculte des Sciences, B.P. 1014, Rabat (Morocco); Dinia, A. [IPCMS-GMI (UMR 7504 du CNRS) (ECPM-ULP), 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2 (France)]. E-mail: aziz.dinia@ipcms.u-strasbg.fr

    2007-03-15

    We report on room-temperature ferromagnetism in Co-doped ZnO thin films grown onto Si(100) and SiO{sub 2} substrates using the spin-coating technique. X-ray diffraction measurements show that the films have the wurtzite structure with a preferential orientation along the c-axis. UV-Visible spectroscopy has shown that the Co{sup 2+} ions are substituted to Zn{sup 2+} ions in ZnO matrix. The analysis of the magnetization measurements indicates that the observed ferromagnetism in ZnO and Co-doped ZnO films is extrinsic and can be due to a pollution.

  5. Photoluminescence properties of Co-doped ZnO nanocrystals

    DEFF Research Database (Denmark)

    Lommens, P.; Smet, P.F.; De Mello Donega, C.

    2006-01-01

    We performed photoluminescence experiments on colloidal, Co -doped ZnO nanocrystals in order to study the electronic properties of Co in a ZnO host. Room temperature measurements showed, next to the ZnO exciton and trap emission, an additional emission related to the Co dopant. The spectral posit...

  6. Co-doped branched ZnO nanowires for ultraselective and sensitive detection of xylene.

    Science.gov (United States)

    Woo, Hyung-Sik; Kwak, Chang-Hoon; Chung, Jae-Ho; Lee, Jong-Heun

    2014-12-24

    Co-doped branched ZnO nanowires were prepared by multistep vapor-phase reactions for the ultraselective and sensitive detection of p-xylene. Highly crystalline ZnO NWs were transformed into CoO NWs by thermal evaporation of CoCl2 powder at 700 °C. The Co-doped ZnO branches were grown subsequently by thermal evaporation of Zn metal powder at 500 °C using CoO NWs as catalyst. The response (resistance ratio) of the Co-doped branched ZnO NW network sensor to 5 ppm p-xylene at 400 °C was 19.55, which was significantly higher than those to 5 ppm toluene, C2H5OH, and other interference gases. The sensitive and selective detection of p-xylene, particularly distinguishing among benzene, toluene, and xylene with lower cross-responses to C2H5OH, can be attributed to the tuned catalytic activity of Co components, which induces preferential dissociation of p-xylene into more active species, as well as the increase of chemiresistive variation due to the abundant formation of Schottky barriers between the branches.

  7. Microstructural analysis and thermoelectric properties of Sn-Al co-doped ZnO ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hoemke, Joshua, E-mail: jhoemke@sigma.t.u-tokyo.ac.jp; Tochigi, Eita; Shibata, Naoya; Ikuhara, Yuichi [Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Khan, Atta Ullah; Mori, Takao [National Institute of Materials Science (NIMS) 1-1 Namiki, Tsukuba 305-0044 (Japan); Yoshida, Hidehiro; Sakka, Yoshio [National Institute of Materials Science (NIMS), 1–2–1 Sengen, Tsukuba, 305–0047 (Japan)

    2016-08-26

    Sn-Al co-doped polycrystalline ZnO ceramics were prepared by sintering in air. Phase and microstructure analysis was performed by X-ray diffraction and SEM-EDS and thermoelectric properties were measured. XRD analysis showed a ZnO primary phase as well as secondary phase peaks due to the formation of a Zn{sub 2}SnO{sub 4} spinel phase or SnO{sub 2}(ZnO:Sn-Al){sub m} intergrowth phase. SEM analysis revealed a dense microstructure with a small number of nanometric pores, consistent with the measured density of 5.48 g/cm{sup 3}. An activated electrical conductivity characteristic of a semiconducting material was observed as well as a negative Seebeck coefficient with both values increasing in absolute value from RT to 730 °C. The power factor had a maximum value of 3.73×10{sup −4} W m{sup −1} K{sup −2} at 730 °C. Thermal conductivity measurements showed a significant reduction over the measured temperature range compared to undoped ZnO. This could be attributed to grain size reduction, the formation of a nanoscale secondary phase or a reduction in crystallinity caused by Sn-Al co-doping. A maximum ZT of 0.06 was obtained at 750 °C for the Sn-Al co-doped ZnO ceramics.

  8. Acute effects of Fe₂O₃, TiO₂, ZnO and CuO nanomaterials on Xenopus laevis.

    Science.gov (United States)

    Nations, Shawna; Wages, Mike; Cañas, Jaclyn E; Maul, Jonathan; Theodorakis, Chris; Cobb, George P

    2011-05-01

    Metal oxide nanomaterials have exhibited toxicity to a variety of aquatic organisms, especially microbes and invertebrates. To date, few studies have evaluated the toxicity of metal oxide nanomaterials on aquatic vertebrates. Therefore, this study examined effects of ZnO, TiO(2), Fe(2)O(3), and CuO nanomaterials (20-100 nm) on amphibians utilizing the Frog Embryo Teratogenesis Assay Xenopus (FETAX) protocol, a 96 h exposure with daily solution exchanges. Nanomaterials were dispersed in reconstituted moderately hard test medium. These exposures did not increase mortality in static renewal exposures containing up to 1,000 mg L(-1) for TiO(2), Fe(2)O(3), CuO, and ZnO, but did induce developmental abnormalities. Gastrointestinal, spinal, and other abnormalities were observed in CuO and ZnO nanomaterial exposures at concentrations as low as 3.16 mg L(-1) (ZnO). An EC(50) of 10.3 mg L(-1) ZnO was observed for total malformations. The minimum concentration to inhibit growth of tadpoles exposed to CuO or ZnO nanomaterials was 10 mg L(-1). The results indicate that select nanomaterials can negatively affect amphibians during development. Evaluation of nanomaterial exposure on vertebrate organisms are imperative to responsible production and introduction of nanomaterials in everyday products to ensure human and environmental safety.

  9. EPR investigation of pure and Co-doped ZnO oriented nanocrystals

    Science.gov (United States)

    Savoyant, A.; Alnoor, H.; Bertaina, S.; Nur, O.; Willander, M.

    2017-01-01

    Pure and cobalt-doped zinc oxide aligned nanorods have been grown by the low-temperature (90 °C) aqueous chemical method on amorphous ZnO seed layer, deposited on a sapphire substrate. High crystallinity of these objects is demonstrated by the electron paramagnetic resonance investigation at liquid helium temperature. The successful incorporation of Co2+ ions in substitution of Zn2+ ones in the ZnO matrix has also been confirmed. A drastic reduction of intrinsic ZnO nanorods core defects is observed in the Co-doped samples, which enhances the structural quality of the NRs. The quantification of substitutional Co2+ ions in the ZnO matrix is achieved by comparison with a reference sample. The findings in this study indicate the potential of using the low-temperature aqueous chemical approach for synthesizing material for spintronics applications.

  10. Cr-N CO-DOPED ZnO NANOPARTICLES: SYNTHESIS ...

    African Journals Online (AJOL)

    BCSE

    Here we report the synthesis of CrN co-doped ZnO for the first time. ... detoxification of organic dye effluents have taken an increasingly important ... the transition pH range 1.2-2.8, 7.8-9.8 is red to yellow and yellow to blue, respectively. ... 0.1 g of the photocatalyst was dispersed in 50 mL of deionized .... 54 cm-1 are due.

  11. Evolution of CuO poly-crystalline layers to coherent single-crystalline dots on ZnO nanorods upon annealing

    Science.gov (United States)

    Wang, Ruey-Chi; Hou, Yuan-Ru; Chen, Yi-Wen

    2017-02-01

    ZnO/CuO p-n heterojunctions have attracted much attention for device applications, but coherent junctions, which are crucial for controlling electrical properties, still remain a challenge due to different crystal structure. In this work, CuO single-crystalline dots are coherently synthesized on ZnO nanorods by using a proposed two-step process. Transmission electron microscopy images confirm the formation of CuO coherent dots on single-crystalline ZnO nanorods upon annealing the nanorods covered with a poly-crystalline CuxO layer. The coherent dots exhibit two types of epitaxial orientations: CuO [002] ǀǀ ZnO [ 10 1 bar 1 ], CuO [111] ǀǀ ZnO [0002], and CuO [002] ǀǀ ZnO [ 10 1 bar 1 bar ], CuO [111] ǀǀ ZnO [ 000 2 bar]. As the thickness of the as-deposited CuxO layer increases from 10 to 30 nm, the aspect ratio of the resulting CuO dots decreases from 0.43 to 0.21, approaching a film-like morphology. This work provides a route to prepare CuO coherent single-crystalline structures on ZnO, which is one step further toward fabricating excellent CuO/ZnO nanodevices.

  12. Observation of low field microwave absorption in co-doped ZnO system

    Science.gov (United States)

    Mahule, Tebogo S.; Srinivasu, Vijaya V.; Das, Jayashree

    2016-10-01

    Room temperature low field microwave absorption (LFMA) in magnetic materials find application in microwave absorbers and low field sensors. However not all the magnetic materials show LFMA and the phenomenon is not fully understood. We report on the observation of low field microwave absorption (LFMA) or the non-resonant microwave absorption (NRMA) in the transition metal (TM) co-doped ZnO samples of the composition Zn1-x(TM:TM)xO synthesized by solid state reaction technique. LFMA peaks and hysteresis matches very well with that of the magnetization hysteresis loop and the anisotropy fields at room temperature similar to the reports in the literature for other magnetic systems. However we show through our careful experiments that such a correlation between LFMA and the magnetization does not survive at low temperatures and particularly at 10 K the LFMA hysteresis collapses in our TM co-doped ZnO system; whereas the magnetization hysteresis loop becomes very big and anisotropy field becomes bigger in the range of kOe. We interpret the LFMA as field dependent surface impedance or eddy current losses, in terms of a possible role of anomalous hall resistivity that follows magnetization and the ordinary hall resistivity that only follows the applied field. We then argue that LFMA accordingly follows magnetization or applied field when AHE or OHE dominates respectively. Also we confirm the absence of LFMA signals in the rare earth co-doped ZnO system.

  13. Synthesis, Characterization, and Sunlight Mediated Photocatalytic Activity of CuO Coated ZnO for the Removal of Nitrophenols.

    Science.gov (United States)

    Qamar, M Tariq; Aslam, M; Ismail, Iqbal M I; Salah, Numan; Hameed, A

    2015-04-29

    CuO@ZnO core-shell catalysts, coated by varying the CuO layer density ranging from 0.5% to 10%, were synthesized with the aim to enhance the photocatalytic activity of ZnO in sunlight and control its photocorrosion. Initially, the Cu(2+) ions were impregnated on presynthesized ZnO by wet impregnation and finally converted to CuO layers by calcination. The optical and structural characterization of the synthesized powders was performed by DRS, PL, Raman spectroscopy, and XRD analysis, respectively. The homogeneity of the coated layers was explored by FESEM. The photocatalytic activity of CuO coated ZnO was investigated for the degradation of mononitrophenols (2-, 3-, and 4-nitrophenol) and dinitrophenols (2,4-, 2,5-, and 2,6-dinitrophenol) in the exposure of the complete spectrum and visible region (420-800 nm) of sunlight. The effect of the increasing density coated layers of CuO on photocatalytic activity was evaluated for the degradation of 4-NP. Compared to pristine ZnO, a substantial increase in the degradation/mineralization ability was observable for the catalysts coated with 0.5% and 1% CuO, whereas a detrimental effect was noticed for higher coating density. Prior to photocatalytic studies, as evaluated by cyclic voltammetry (CV), compared to pure ZnO, a significant suppression of photocorrosion was noticed, under illumination, for catalysts coated with lower CuO coating. The progress of the photocatalytic degradation process was monitored by HPLC while the mineralization ability of the synthesized catalysts was estimated by TOC. The estimation of the released ions and their further interaction with the excited states and the reactive oxygen was monitored by ion chromatography (IC).

  14. Improved photocatalytic activity of ZnO coupled CuO nanocomposites synthesized by reflux condensation method

    Energy Technology Data Exchange (ETDEWEB)

    Mageshwari, K. [Department of Electronic Engineering, Hanyang University, Seoul (Korea, Republic of); PG and Research Department of Physics, Kongunadu Arts and Science College, Coimbatore 641 029, Tamil Nadu (India); Nataraj, D. [Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Pal, Tarasankar [Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302 (India); Sathyamoorthy, R., E-mail: rsathya59@gmail.com [PG and Research Department of Physics, Kongunadu Arts and Science College, Coimbatore 641 029, Tamil Nadu (India); Park, Jinsub, E-mail: jinsubpark@hanyang.ac.kr [Department of Electronic Engineering, Hanyang University, Seoul (Korea, Republic of)

    2015-03-15

    Highlights: • CuO–ZnO nanocomposites were synthesized by reflux condensation method. • Photodegradation of methyl orange and methylene blue dyes was investigated. • Morphological studies show 3D flower-like CuO microspheres adorned with ZnO nanorods. • Optical analysis showed characteristic absorption bands of CuO and ZnO. • CuO–ZnO nanocomposites exhibited superior photocatalytic activity than CuO. - Abstract: Nanostructured CuO–ZnO nanocomposites were successfully synthesized for different Zn{sup 2+} concentrations by reflux condensation method without using any surfactant, and their photocatalytic activity was evaluated using methyl orange and methylene blue dyes under UV light irradiation. XRD revealed the formation of CuO–ZnO nanocomposites, composing of monoclinic CuO and hexagonal ZnO. XPS analysis revealed that CuO–ZnO nanocomposites are made up of Cu(II), Zn(II) and O. FESEM and TEM images showed that pure CuO exhibit 3D flower-like microstructure, while the CuO–ZnO nanocomposites prepared for different Zn{sup 2+} concentrations have 3D flower-like CuO, microstructure adorned with rod-like ZnO particles. UV–Vis DRS showed absorption bands corresponding to CuO and ZnO around 960 nm and 395 nm, respectively. PL spectra of CuO–ZnO nanocomposites exhibited reduced PL emissions compared to pure CuO, indicating the low recombination rate of photogenerated electrons and holes. Photodegradation assay revealed that catalytic activity of CuO–ZnO nanocomposites increased with Zn{sup 2+} concentration, and also effectively degrade methyl orange and methylene blue dyes when compared to pure CuO. The enhanced photocatalytic activity of CuO–ZnO nanocomposites were mainly ascribed to the reduced recombination and efficient separation of photogenerated charge carriers. The possible mechanism for the improved photocatalytic activity of CuO–ZnO nanocomposites was proposed.

  15. Study of Fe2O3, CuO, ZnO catalyzed efficient Hantzsch reaction under different conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Shushizadeh

    2015-05-01

    Full Text Available 1,4-dihydropyridine derivatives one-pot synthesis under different condition was described. CuO nanoparticle as a catalyst in microwave irradiation (100w gives product with excellent yields (≥87% and short reaction time. No significant difference was observed between the obtained yield by using ZnO and Fe2O3.

  16. Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing

    Science.gov (United States)

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge st...

  17. Fabrication and photoelectric properties of Er3+ and Yb3+ co-doped ZnO films

    Science.gov (United States)

    Feng, Wei; Wang, Xiangfu; Meng, Lan; Yan, Xiaohong

    2016-01-01

    In this paper, the Er3+ and Yb3+ co-doped ZnO films deposited by a novel thermal decomposition method under different annealing temperature process have been reported. The effects of annealing temperature on the morphology and properties of the films are systematically studied. The resulting spectra demonstrate that the Er3+ and Yb3+ co-doped ZnO films possessed the property of up-conversion, converting IR light into visible light that can be absorbed by amorphous silicon solar cell. After all, inner photoelectric effect of the Er3+ and Yb3+ co-doped ZnO films in the amorphous as a light scattering layer are also found with an infrared 980 nm laser as excitation source.

  18. Structural, morphological, optical, and magnetic properties of Gd-doped and (Gd, Mn) co-doped ZnO nanoparticles

    Science.gov (United States)

    Poornaprakash, B.; Chalapathi, U.; Babu, S.; Park, Si-Hyun

    2017-09-01

    Undoped, Gd doped, and (Gd, Mn) co-doped ZnO nanoparticles were fabricated via a hydrothermal method and their structural, morphological, optical, and magnetic properties were examined. X-ray diffraction and Raman spectroscopy studies confirmed that the Gd and Mn ions successfully entered the ZnO hexagonal lattice as substitute ions without changing the internal structure of the lattice. Morphology studies revealed that the synthesized nanoparticles were monodisperse and closely hexagonal shaped. The reflectance spectra showed a red shift of the absorption edge in both doped and co-doped samples. The diamagnetic ZnO sample was altered into a ferromagnetic material when doped with Gd ions, but this behavior was suppressed when Mn ions were co-doped into the matrix.

  19. Spray Deposited Pure and CuO Doped ZnO Thin Films for NH3 Sensing

    Directory of Open Access Journals (Sweden)

    L. A. Patil

    2009-09-01

    Full Text Available Pure and CuO doped ZnO thin films, were prepared using chemical spray deposition. AR grade solutions of zinc nitrate (0.1M and copper chloride were mixed in the proportion of: 99:1, 95:5 and 90:10. The solutions were sprayed on substrate heated at 350 0C temperature to obtain the films. Films were annealed for an hour at 500 0C in air medium. The electrical and gas sensing properties of these films were investigated. The CuO doped ZnO thin films showed better ammonia response as compared to undoped ZnO. The gas response was observed to be increased with increase in proportion of copper chloride in zinc nitrate.

  20. Improved photocatalytic activity of nanocrystalline ZnO by coupling with CuO

    Science.gov (United States)

    Xu, Linhua; Zhou, Yang; Wu, Zijun; Zheng, Gaige; He, Jiaojiao; Zhou, Yanjing

    2017-07-01

    Although ZnO as a photocatalyst has attracted wide attention in the word in recent years, it is still a big challenge to develop low-cost, visible-light responsive ZnO based photocatalysts which can be used on a large scale. In this work, the CuO/ZnO nanocomposites have been synthesized by a facile one-step hydrothermal method and the influence of CuO contents on the photocatalytic properties of the nanocomposites has been investigated. The crystalline phase of the CuO/ZnO nanocomposites is determined by X-ray diffraction (XRD); the morphology and microstructures of the samples are analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic performance of the samples is tested using methylene blue (MB)dyes as the simulated pollutant under irradiation of a Xe lamp. Compared with pure ZnO, the photocatalytic activity of the CuO/ZnO nanocomposites is largely improved, especially for the sample prepared by the precursor solution with the molar ratio of Zn2+: Cu2+=2:1. The improvement of the photocatalytic activity is attributed to two main factors: (1) the band coupling improves the separation efficiency of photogenerated electrons and holes; (2) the utilization efficiency for solar energy is enhanced in the CuO/ZnO coupling system.

  1. First-principles study on electronic and magnetic properties of (Mn,Fe)-codoped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huawei [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Cai, Ningning; Zhang, Xianlong; Yu, Zhongyuan [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Gao, Tao [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2014-02-15

    First-principle calculations have been performed to investigate the electronic and magnetic properties of (Mn,Fe)-codoped ZnO within the generalized gradient approximation (GGA) and GGA+U schemes. The formation energy of five different configurations is investigated and the ground state is demonstrated to be ferromagnetic ordering. By applying the U correction, the band gap energy of pure ZnO is close to the experimental values, while the ferromagnetic ordering of the ground state remains unchanged. The ferromagnetic stabilization is mediated by double exchange mechanism. In addition, defects corresponding to Zn-vacancy and O-vacancy cannot enhance the ferromagnetism obviously. These results indicate that (Mn,Fe)-codoped ZnO are promising magneto-electronic and spintronic materials. - Highlights: • We have considered 5 different configurations of Mn/Fe codoped bulk ZnO. • The formation energy is calculated to investigate the structural stability. • The double exchange mechanism is responsible for the ferromagnetic behavior. • Defects are not effective method to get room temperature ferromagnetism. • Mn/Fe codoped ZnO are promising ferromagnetic semiconductor materials.

  2. Structural, chemical and magnetic properties of secondary phases in Co-doped ZnO

    DEFF Research Database (Denmark)

    Ney, A; Kovács, András; Ney, V;

    2011-01-01

    , chemical and magnetic properties of Co-doped ZnO samples. It can be established on a quantitative basis that the superparamagnetic (SPM) behavior observed by integral superconducting quantum interference device magnetometry is not an intrinsic property of the material but stems from precipitations...... of metallic Co. Their presence is revealed by TEM as well as XAS. Annealing procedures for these SPM samples were also studied, and the observed changes in the magnetic properties found to be due to a chemical reduction or oxidation of the metallic Co species....

  3. Ecotoxicity of nanoparticles of CuO and ZnO in natural water

    Energy Technology Data Exchange (ETDEWEB)

    Blinova, I., E-mail: irina.blinova@kbfi.e [Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618 (Estonia); Ivask, A. [Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618 (Estonia); Heinlaan, M. [Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618 (Estonia); Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014 (Estonia); Mortimer, M. [Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618 (Estonia); Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618 (Estonia); Kahru, A. [Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618 (Estonia)

    2010-01-15

    The acute toxicity of CuO and ZnO nanoparticles in artificial freshwater (AFW) and in natural waters to crustaceans Daphnia magna and Thamnocephalus platyurus and protozoan Tetrahymena thermophila was compared. The L(E)C{sub 50} values of nanoCuO for both crustaceans in natural water ranged from 90 to 224 mg Cu/l and were about 10-fold lower than L(E)C{sub 50} values of bulk CuO. In all test media, the L(E)C{sub 50} values for both bulk and nanoZnO (1.1-16 mg Zn/l) were considerably lower than those of nanoCuO. The natural waters remarkably (up to 140-fold) decreased the toxicity of nanoCuO (but not that of nanoZnO) to crustaceans depending mainly on the concentration of dissolved organic carbon (DOC). The toxicity of both nanoCuO and nanoZnO was mostly due to the solubilised ions as determined by specific metal-sensing bacteria. - Natural waters remarkably reduced the toxicity of nanoCuO but not nanoZnO.

  4. Epitaxial Properties of Co-Doped ZnO Thin Films Grown by Plasma Assisted Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    CAO Qiang; DENG Jiang-Xia; LIU Guo-Lei; CHEN Yan-Xue; YAN Shi-Shen

    2007-01-01

    High quality Co-doped ZnO thin films are grown on single crystalline Al2O3(0001) and ZnO(0001) substrates by oxygen plasma assisted molecular beam epitaxy at a relatively lower substrate temperature of 450 ℃. The epitaxial conditions are examined with in-situ reflection high energy electron diffraction (RHEED) and ex-situ high resolution x-ray diffraction (HRXRD). The epitaxial thin films are single crystal at film thickness smaller than 500nm and nominal concentration of Co dopant up to 20%. It is indicated that the Co cation is incorporated into the ZnO matrix as Co2+ substituting Zn2+ ions. Atomic force microscopy shows smooth surfaces with rms roughness of 1.9nm. Room-temperature magnetization measurements reveal that the Co-doped ZnO thin films are ferromagnetic with Curie temperatures TC above room temperature.

  5. Comparison of Antibacterial Effects of ZnO and CuO Nanoparticles Coated Brackets against Streptococcus Mutans

    Directory of Open Access Journals (Sweden)

    Baratali Ramazanzadeh

    2015-09-01

    Full Text Available Statement of the Problem: During the orthodontic treatment, microbial plaques may accumulate around the brackets and cause caries, especially in high-risk patients. Finding ways to eliminate this microbial plaque seems to be essential. Purpose: The aim of this study was to compare the antibacterial effects of nano copper oxide (CuO and nano zinc oxide (ZnO coated brackets against Streptococcus mutans (S.mutans in order to decrease the risk of caries around the orthodontic brackets during the treatment. Materials and Method: Sixty brackets were coated with nanoparticles of ZnO (n=20, CuO (n=20 and CuO-ZnO (n=20. Twelve uncoated brackets constituted the control group. The brackets were bonded to the crowns of extracted premolars, sterilized and prepared for antimicrobial tests (S.mutans ATCC35668. The samples taken after 0, 2, 4, 6 and 24 hours were cultured on agar plates. Colonies were counted 24 hours after incubation. One-way ANOVA and Tukey tests were used for statistical analysis. Results: In CuO and CuO-ZnO coated brackets, no colony growth was seen after two hours. Between 0-6 hours, the mean colony counts were not significantly different between the ZnO and the control group (p>0.05. During 6-24 hours, the growth of S.mutans was significantly reduced by ZnO nanoparticles in comparison with the control group (p< 0.001. However, these bacteria were not totally eliminated. Conclusion: CuO and ZnO-CuO nanoparticles coated brackets have better antimicrobial effect on S.mutans than ZnO coated brackets.

  6. Ferromagnetism in co-doped zno particles prepared by vaporization condensation in a solar image furnace

    Science.gov (United States)

    Martínez, B.; Sandiumenge, F.; Balcells, Ll.; Fontcuberta, J.; Sibieude, F.; Monty, C.

    2005-04-01

    We report on the structural and magnetic properties of Co-doped ZnO particles prepared by vaporization-condensation in the solar furnace in Odeillo. X-ray diffraction data show no traces of Co segregation or any other phase different from ZnO. High-resolution electron microscopy (HREM) and transmision electron microscopy (TEM) techniques have also been used to characterize particles. Irrespective of their composition, the shape and size of the obtained particles, as well as their magnetic properties, clearly depend on the preparation conditions. The samples prepared in vacuum exhibit hysteretic behavior with low coercivity (about 100 Oe) at T = 5 K and saturation magnetization well below that expecte for Co2+ in a tetrahedral crystal field. On the other hand, samples prepared at high pressure (70-100 Torr inside the balloon) are paramagnetic.

  7. Synthesis and characterization of ZrO2-CuO co-doped ceria nanoparticles via chemical precipitation method

    Science.gov (United States)

    Viruthagiri, G.; Gopinathan, E.; Shanmugam, N.; Gobi, R.

    2014-10-01

    In the present study, the fluorite cubic phase of bare and ZrO2-CuO co-doped ceria (CeO2) nanoparticles have been synthesized through a simple chemical precipitation method. X-ray diffraction results revealed that average grain sizes of the samples are within 5-6 nm range. The functional groups present in the samples were identified by Fourier Transform Infrared Spectroscopy (FTIR) study. Surface area measurement was carried out for the ceria nanoparticles to characterize the surface properties of the synthesized samples. The direct optical cutoff wavelength from DRS analysis was blue-shifted evidently with respect to the bulk material and indicated quantum-size confinement effect in the nanocrystallites. PL spectra revealed the strong and sharp UV emission at 401 nm. The surface morphology and the element constitution of the pure and doped nanoparticles were studied by scanning electron microscope fitted with energy dispersive X-ray spectrometer arrangement. The thermal decomposition course was followed using thermo gravimetric and differential thermal analyses (TG-DTA).

  8. Color tunable ZnO nanorods by Eu and Tb co-doping for optoelectronic applications

    Science.gov (United States)

    Pal, Partha P.; Manam, J.

    2014-07-01

    Eu/Tb co-doped ZnO nanorods were prepared by co-precipitation method and the effect of Eu-Tb co-doping was studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy, Fourier transform infrared spectroscopy (FTIR), UV-Vis-NIR diffuse reflectance (DR) and photoluminescence (PL) spectroscopy. The XRD pattern shows typical peak pattern for pure hexagonal wurtzite structure to match with the JCPDS data. The samples are found to be consisting of nanorods of diameter 20-30 nm as revealed by the TEM image. The FTIR pattern confirms the formation of the compounds. The DR study was carried to show the variation of absorption edge and the variation in band gap values, which showed the crystal size effect in the co-doped sample of different rare-earth ratios. The room temperature PL study shows bright emission spectra for the samples with different rare-earth ratios. It shows a very good energy transfer from Tb to Eu ions. The energy transfer mechanism and color tunability were discussed thoroughly.

  9. Synthesis and structural characterization of ZnO and CuO nanoparticles supported mesoporous silica SBA-15

    Science.gov (United States)

    El-Nahhal, Issa M.; Salem, Jamil K.; Selmane, Mohamed; Kodeh, Fawzi S.; Ebtihan, Heba A.

    2017-01-01

    Zinc oxide (ZnO) and copper oxide (CuO) nanoparticles were loaded into mesoporous silica SBA-15 by post-synthesis and direct methods. The structural properties were characterized using wide and small angle X-ray diffraction (WXRD & SXRD), X-ray photoelectron spectroscopy (XPS) and N2-adsorption desorption (BET). The WXRD showed that, the loaded zinc and copper oxides were present in crystalline forms (impregnation). The mesoporosity properties of SBA-15 silica were well maintained even after the introduction of metal oxide nanoparticles. BET analysis indicate that the impregnated and condensed ZnO and CuO supported SBA-15 nanocomposites have a lower surface area than that of its parent SBA-15.

  10. Structural, optical and magnetic properties of pulsed laser deposited Co-doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Karzazi, O., E-mail: ouiame_karzazi@hotmail.fr [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); LPS, Physics Department, Faculty of Sciences, BP 1796, Fes (Morocco); Sekhar, K.C. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); El Amiri, A. [LPTA, Université Hassan II-Casablanca, Faculté des Sciences, B.P. 5366, Maârif (Morocco); Hlil, E.K. [Institut Néel, CNRS, Université J. Fourier, BP 166, 38042 Grenoble (France); Conde, O. [Departamento de Física, Faculdade de Ciências, Universidade de Lisboa and CeFEMA, Campo Grande, 1749-016 Lisboa (Portugal); Levichev, S. [Research Institute for Chemistry, Nizhni Novgorod State University, 603950 Nizhni Novgorod (Russian Federation); Agostinho Moreira, J. [IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto (Portugal); Chahboun, A. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); FST Tanger, Physics Department, BP 416, Tangier (Morocco); Almeida, A. [IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto (Portugal); Gomes, M.J.M. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-12-01

    Zn{sub 1−x}Co{sub x}O films with different Co concentrations (with x=0.00, 0.10, 0.15, and 0.30) were grown by pulsed laser deposition (PLD) technique. The structural and optical properties of the films were investigated by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and photoluminescence (PL). The magnetic properties were measured by conventional magnetometry using a SQUID and simulated by ab-initio calculations using Korring–Khon–Rostoker (KKR) method combined with coherent potential approximation (CPA). The effect of Co-doping on the GIXRD and Raman peaks positions, shape and intensity is discussed. PL studies demonstrate that Co-doping induces a decrease of the bandgap energy and quenching of the UV emission. They also suggest the presence of Zn interstitials when x≥0.15. The 10% Co-doped ZnO film shows ferromagnetism at 390 K with a spontaneous magnetic moment ≈4×10{sup −5} emu and coercive field ≈0.17 kOe. The origin of ferromagnetism is explained based on the calculations using KKR method. - Highlights: • Zn{sub 1−x}Co{sub x}O films (x=0.00, 0.10, 0.15, and 0.30) were grown by (PLD) technique. • Zn{sub 0.9}Co{sub 0.1}O film shows ferromagnetism above room temperature. • The origin of ferromagnetism behavior is attributed to the p-d hybridization. • Co-doping induces a decrease of the bandgap energy of the films.

  11. Experimental Studies on Doped and Co-Doped ZnO Thin Films Prepared by RF Diode Sputtering

    OpenAIRE

    2009-01-01

    Our research on the growing and characterizing of p-type ZnO thin films, prepared by radio frequency (RF) diode sputtering, mono-doped with nitrogen, and co-doped with aluminium and nitrogen, is a response of the need from p-type ZnO thin films for device applications. The dopants determine the conductivity type of the film and its physical properties. We obtained p-type ZnO thin films by RF diode sputtering and using a nitrogen dopant source. The novelty in our approach is in the use of a pl...

  12. Room-temperature anomalous Hall effect and magnetroresistance in (Ga, Co)-codoped ZnO diluted magnetic semiconductor films

    Institute of Scientific and Technical Information of China (English)

    Liu Xue-Chao; Chen Zhi-Zhan; Shi Er-Wei; Liao Da-Qian; Zhou Ke-Jin

    2011-01-01

    This paper reports that the (Ga, Co)-codoped ZnO thin films have been grown by inductively coupled plasma enhanced physical vapour deposition. Room-temperature ferromagnetism is observed for the as-grown thin films. The x-ray absorption fine structure characterization reveals that Co2+ and Ga3+ ions substitute for Zn2+ ions in the ZnO lattice and exclude the possibility of extrinsic ferromagnetism origin. The ferromagnetic (Ga, Co)-codoped ZnO thin films exhibit carrier concentration dependent anomalous Hall effect and positive magnetoresistance at room temperature. The mechanism of anomalous Hall effect and magneto-transport in ferromagnetic ZnO-based diluted magnetic semiconductors is discussed.

  13. Effects on the optical properties and conductivity of Ag-N co-doped ZnO

    Science.gov (United States)

    Xu, Zhenchao; Hou, Qingyu; Qu, Lingfeng

    2017-01-01

    Nowadays, the studies of the effects on the optical bandgap, absorption spectrum, and electrical properties of Ag-N co-doped ZnO have been extensively investigated. However, Ag and N atoms in doped systems are randomly doped, and the asymmetric structure of ZnO is yet to be explored. In this paper, the geometric structure, stability, density of states, absorption spectra and conductivity of pure and Ag-N co-doped Zn1‑xAgxO1‑xNx(x=0.03125, 0.0417 and 0.0625) in different orientations are calculated by using plane-wave ultrasoft pseudopotential on the basis of density functional theory with GGA+U method. Results show that the volume, equivalent total energy and formation energy of the doped system increase as the concentration of Ag-N co-doped Zn1‑xAgxO1‑xNx increases at the same doping mode. The doped systems also become unstable, and difficulty in doping. At the same concentration of Ag-N co-doped Zn1‑xAgxO1‑xNx, the systems with Ag-N along the c-axis orientation is unstable, and doping is difficult. The optical bandgap of Ag-N co-doped systems is narrower than that of the pure ZnO. At the same doping mode, the optical bandgap of the systems with Ag-N perpendicular to the c-axis orientation becomes narrow as the concentration of Ag-N co-doped Zn1‑xAgxO1‑xNx increases. The absorption spectra of the doped systems exhibit a red shift, and this red shift becomes increasingly significant as the concentration of Ag-N co-doped Zn1‑xAgxO1‑xNx increases. Under the same condition, the relative hole concentrations of the doped systems increases, the hole effective mass in valence band maximum decreases, the hole mobility decreases, the ionization energy decreases, Bohr radius increases, the conductance increases and the conductivity become better. Our results may be used as a basis for the designing and preparation of new optical and electrical materials for Ag-N co-doped ZnO applied in low temperature end of temperature difference battery.

  14. Synthesis and Field Emission of ZnO Nanostructures on CuO Catalyzed Porous Silicon Substrate

    Institute of Scientific and Technical Information of China (English)

    YU Ke; ZHANG Yong-Sheng; OUYANG Shi-Xi; ZHANG Qing-Jie; LUO Lai-Qiang; ZHANG Qiu-Xiang; CHANG Zhong-Kun; LI Li-Jun; ZHU Zi-Qiang

    2005-01-01

    @@ Ma ss production of ZnO nanobelts and hexagonal nanorods has been successfully synthesized on CuO catalyzed porous silicon (PS) using a simple vapour-solid (VS) growth method. A comparison of their morphologies is investigated by scanning electron microscopy (SEM). The transmission electron microscopy (TEM) confirms that ZnO nanobelts and nanorods are single crystalline with the growth direction of (0110) and (0001), respectively.Field emission tests indicate that the ZnO nanostructures on porous silicon have low turn-on field of about3.6 V/μm (at 1.0μA/cm2) and the threshold field of about 8.3 V/μm (at 1.0mA/cm2), high emission site density(ESD) of approximately 104 cm-2.

  15. Local fields in Co and Mn Co-doped ZnO

    Science.gov (United States)

    Sato, W.; Kano, Y.; Suzuki, T.; Nakagawa, M.; Kobayashi, Y.

    2016-12-01

    The magnetic properties of ZnO co-doped with 5 at. % Co and 5 at. % Mn(Zn0.90Co0.05Mn0.05O) synthesized by a solid-state reaction were investigated by means of 57Co emission Mössbauer spectroscopy. The majority of the probe ions (80 %) residing in defect-free substitutional Zn sites take the oxidation state of 57Fe 2+, and the others presumably form local defects taking the state of 57Fe 3+ at room temperature. Both components show doublets, and RT ferromagnetism was thus absent in the sample. For the measurement at 10 K, spectral broadening was observed, implying a possible presence of a weak magnetic component.

  16. Structural, chemical and magnetic properties of secondary phases in Co-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Ney, A; Ney, V; Ye, S; Ollefs, K; Kammermeier, T [Fakultaet fuer Physik and CeNIDE, Universitaet Duisburg-Essen, Lotharstrasse 1, D-47057 Duisburg (Germany); Kovacs, A; Dunin-Borkowski, R E [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs Lyngby (Denmark); Wilhelm, F; Rogalev, A, E-mail: andreas.ney@uni-due.de [European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, BP 220, 38043 Grenoble Cedex (France)

    2011-10-15

    We have utilized a comprehensive set of experimental techniques such as transmission electron microscopy (TEM) and synchrotron-based x-ray absorption spectroscopy (XAS) and the respective x-ray linear dichroism and x-ray magnetic circular dichroism to characterize the correlation of structural, chemical and magnetic properties of Co-doped ZnO samples. It can be established on a quantitative basis that the superparamagnetic (SPM) behavior observed by integral superconducting quantum interference device magnetometry is not an intrinsic property of the material but stems from precipitations of metallic Co. Their presence is revealed by TEM as well as XAS. Annealing procedures for these SPM samples were also studied, and the observed changes in the magnetic properties found to be due to a chemical reduction or oxidation of the metallic Co species. (paper)

  17. Synthesis of metal oxide nanoparticles (CuO and ZnO NPs) via biological template and their optical sensor applications

    Science.gov (United States)

    Maruthupandy, Muthuchamy; Zuo, Yong; Chen, Jing-Shuai; Song, Ji-Ming; Niu, He-Lin; Mao, Chang-Jie; Zhang, Sheng-Yi; Shen, Yu-Hua

    2017-03-01

    The present study is focused on employing Camellia japonica leaf extract as inductive and stabilizing agent to synthesis CuO and ZnO nanoparticles (NPs). The chemicals, such as (Cu(NO3)2·3H2O) and (Zn(NO3)2·6H2O) were converted into copper and zinc ions, respectively because of the different natural products present in the C. japonica leaf extract. The UV-vis spectra of CuO and ZnO NPs showed absorption peak at 290 nm and 301 nm, respectively. The XRD result revealed crystalline nature of the metal oxide NPs and the TEM images indicated that average sizes of the synthesized CuO and ZnO NPs were ∼17 nm and ∼20 nm, respectively. The FTIR spectra of C. japonica leaf extract showed the presence of organic groups, such as, sbnd OH, sbnd Csbnd N, and N-H, which would be responsible for forming CuO and ZnO NPs. The synthesized CuO and ZnO NPs were tested for the optical sensing of metal ions, viz. Li+ and Ag+ that illustrated excellent outcome and hence this method offers a novel lane for the synthesis of metal oxide NPs, which can be used as optical sensor for the detection of metal ions.

  18. The structural and electrical properties of Ga-doped ZnO and Ga, B-codoped ZnO thin films: The effects of additional boron impurity

    Energy Technology Data Exchange (ETDEWEB)

    Abduev, Aslan Kh.; Akhmedov, Akmed K.; Asvarov, Abil Sh. [Institute of Physics, DSC of RAS, Yaragskogo Street, 94, Makhachkala 367003 (Russian Federation)

    2007-02-15

    Transparent conducting films of Ga-doped ZnO (GZO) and Ga-, B-codoped ZnO (GZOB) were deposited by dc magnetron sputtering. The dependence of the electrical and structural properties on the type of doping (Ga-doping or Ga-, B-codoping) and substrate temperature were investigated. Microstructural analysis suggests that the substrate temperature and the type of doping modify the microstructure and surface morphology of thin films. GZOB films grown at 200{sup o}C showed a dense structure without columns, a low-resistivity value of 4.2x10{sup -4}{omega}cm, and a visible transmission of 90% with a thickness of 200nm. In addition, the thermal stability of resistivity of GZOB films was greater than one of GZO films. (author)

  19. Synthesis, structural and optical characterization of undoped, N-doped ZnO and co-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Trilok Kumar, E-mail: tpathak01@gmail.com; Kumar, R.; Purohit, L. P., E-mail: proflppurohitphys@gmail.com [Semiconductor Research Lab., Department of Physics, Gurukula Kangri University, Haridwar (India)

    2015-05-15

    ZnO, N-doped ZnO and Al-N co-doped ZnO thin films were deposited on ITO coated corning glass by spin coater using sol-gel method. The films were annealed in air at 450°C for one hour. The crystallographic structure and morphology of the films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The X-ray diffraction results confirm that the thin films are of wurtzite hexagonal with a very small distortion. The optical properties were investigated by transmission spectra of different films using spectrophotometer (Shimadzu UV-VIS-NIR 3600). The results indicate that the N doped ZnO thin films have obviously enhanced transmittance in visible region. Moreover, the thickness of the films has strong influences on the optical constants.

  20. First-principle study on the effect of high Ag–2N co-doping on the conductivity of ZnO

    Indian Academy of Sciences (India)

    Wenxue Zhang; Yuxing Bai; Cheng He; Xiaolei Wu

    2015-06-01

    The geometric structure, band structure (BS) and density of state (DOS) of pure and p-type co-doping wurtzite ZnO have been investigated by the first-principle ultrasoft pseudopotential method with the generalized gradient approximation. These structures induce fully occupied defect states above the valence-band maximum of doped ZnO. The calculation results show that in the range of high doping concentration, when the co-doping concentration is more than a certain value, the conductivity decreased with the increase of co-doping concentration of Ag–2N in ZnO. Our findings suggest that co-doping of Ag–2N could efficiently enhance the N dopant solubility and is likely to yield better p-type conductivity.

  1. Hydrogen diffusion behavior and its effect on magnetic properties in (Mn, N)-codoped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kongping, E-mail: kpwu@aust.edu.cn [School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui (China); Gu, Shulin, E-mail: slgu@nju.edu.cn [Nanjing National Laboratory of Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Tang, Kun; Ye, Jiandong; Zhu, Shunming [Nanjing National Laboratory of Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Zhou, Mengran; Huang, Yourui [School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui (China); Xu, Mingxiang [Department of Physics, Southeast University, Nanjing 210096 (China); Zhang, Rong; Zheng, Youdou [Nanjing National Laboratory of Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2014-12-01

    By first-principles, we study the magnetic properties of (Mn, N)-codoped ZnO, with various interstitial structures of H. Besides, hydrogen motion in ZnMnON has been investigated too. Results show that a mobile H in (Mn, N)-codoped ZnO may be favorably formed a stable –Mn–H–N– complex, and that the ferromagnetism strongly depends on the geometrical configurations of these impurities. The strong hybridization between H-impurity band and the Mn 3d minority spin states at the Fermi level results in the FM coupling between the spins of Mn and N, which is similar with the spin–split donor impurity band model.

  2. Tailoring the coercivity in ferromagnetic ZnO thin films by 3d and 4f elements codoping

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. J.; Xing, G. Z., E-mail: guozhong.xing@unsw.edu.au; Yi, J. B.; Li, S. [School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052 (Australia); Chen, T. [Department of Physics, The Chinese University of Hong Kong, Shatin (Hong Kong); Ionescu, M. [Australian Nuclear Science and Technology Organization, Sydney, New South Wales 2234 (Australia)

    2014-01-06

    Cluster free, Co (3d) and Eu (4f) doped ZnO thin films were prepared using ion implantation technique accompanied by post annealing treatments. Compared with the mono-doped ZnO thin films, the samples codoped with Co and Eu exhibit a stronger magnetization with a giant coercivity of 1200 Oe at ambient temperature. This was further verified through x-ray magnetic circular dichroism analysis, revealing the exchange interaction between the Co 3d electrons and the localized carriers induced by Eu{sup 3+} ions codoping. The insight gained with modulating coercivity in magnetic oxides opens up an avenue for applications requiring non-volatility in spintronic devices.

  3. Local structure analysis of diluted magnetic semiconductor Co and Al co-doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, K.; Morimoto, S.; Yamazaki, T.; Ishikawa, T.; Ichiyanagi, Y. [Department of Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501 (Japan); Utsumi, J. [Engineering Department Machine Tool Division, Machinery, Equipment & Infrastructure, Mitsubishi Heavy Industries, Ltd., Ritto, Shiga 520-3080 (Japan)

    2016-02-01

    In this study, Co and Al ions co-doped ZnO nanoparticles (Zn(Al, Co)O NPs) were prepared by our original chemical preparation method. The obtained samples prepared by this method, were encapsulated in amorphous SiO{sub 2}. X-ray diffraction (XRD) results showed Zn(Al, Co)O NPs had a single-phase nature with hexagonal wurtzite structure. These particle sizes could be controlled to be approximately 30 nm. We investigate the effect that the increase in the carrier has on the magnetization by doping Al to Co-doped ZnO NPs. The local structures were qualitatively analyzed using X-ray absorption fine structure (XAFS) measurements.

  4. Room Temperature Ferromagnetism of (Mn,Fe Codoped ZnO Nanowires Synthesized by Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Yongqin Chang

    2011-01-01

    Full Text Available (Mn,Fe codoped ZnO nanowires were synthesized on silicon substrates in situ using a chemical vapor deposition method. The structure and property of the products were investigated by X-ray, electron microscopy, Raman, photoluminescence, and superconducting quantum interference device magnetometer. The doped nanowires are of pure wurtzite phase with single crystalline, and the elements distribute homogeneously in the doped nanowires. Photoluminescence spectrum of the doped nanowires is dominated by a deep-level emission with a negligible near-band-edge emission. The magnetic hysteresis curve with a coercive field of 35 Oe is clearly observed at 300 K, resulting from room-temperature ferromagnetic ordering in the (Mn,Fe codoped ZnO nanowires, which has great potential applications for spintronics devices.

  5. Study on the effects of Ga-2N high co-doping and preferred orientation on the stability, bandgap and absorption spectrum of ZnO

    Science.gov (United States)

    Hou, Qing-Yu; Li, Wen-Cai; Qu, Ling-Feng; Zhao, Chun-Wang

    2017-06-01

    Currently, the stability and visible light properties of Ga-2N co-doped ZnO systems have been studied extensively by experimental analysis and theoretical calculations. However, previous theoretical calculations arbitrarily assigned Ga- and 2N-doped sites in ZnO. In addition, the most stable and possible doping orientations of doped systems have not been fully and systematically considered. Therefore, in this paper, the electron structure and absorption spectra of the unit cells of doped and pure systems were calculated by first-principles plane-wave ultrasoft pseudopotential with the GGA+U method. Calculations were performed for pure ZnO, Ga-2N supercells heavily co-doped with Zn1-xGaxO1-yNy (x = 0.03125 - 0.0625, y = 0.0625 - 0.125) under different co-doping orientations and conditions, and the Zn16GaN2O14 interstitial model. The results indicated that under different orientations and constant Ga-2N co-doping concentrations, the systems co-doped with Ga-N atoms vertically oriented to the c-axis and with another N atom located in the nearest-neighboring site exhibited higher stability over the others, thus lowering formation energy and facilitating doping. Moreover, Ga-interstitial- and 2N-co-doped ZnO systems easily formed chemical compounds. Increasing co-doping concentration while the co-doping method remained constant decreased doped system volume and lowered formation energies. Meantime, co-doped systems were more stable and doping was facilitated. The bandgap was also narrower and red shifting of the absorption spectrum was more significant. These results agreed with previously reported experimental results. In addition, the absorption spectra of Ga-interstitial- and 2N-co-doped ZnO both blue shifted in the UV region compared with that of the pure ZnO system.

  6. Influence of CuO and ZnO addition on the multicomponent phosphate glasses: Spectroscopic studies

    Science.gov (United States)

    Szumera, Magdalena; Wacławska, Irena; Sułowska, Justyna

    2016-06-01

    The spectra of phosphate-silicate glasses from the P2O5-SiO2-K2O-MgO-CaO system modified with the addition of CuO or ZnO have been studied by means of FTIR, Raman and 31P MAS NMR spectroscopy. All glasses were synthesized by the conventional melt-quenching technique and their homogeneous chemical composition was controlled and confirmed. By using the aforementioned research techniques, the presence of structural units with various degrees of polymerization was shown in the structure of analyzed phosphate-silicate glasses: Q3, Q2, Q1 and Q0. It was found that an increase in the content of CuO or ZnO in the composition of analyzed glasses, which are introduced at the expense of decreasing amounts of CaO and MgO, has a different influence on the phospho-oxygen network. It was shown that copper ions cause its gradual polymerization, while zinc ions cause its depolymerization. At the same time, polymerization of the silico-oxygen subnetwork was found. Additionally, in the case of glasses containing increasing amounts of ZnO, a change of the role of zinc ions in the vitreous matrix was confirmed (from the modifier to a structure-forming component).

  7. Synthesis and their enhanced photoelectrochemical performance of ZnO nanoparticle-loaded CuO dandelion heterostructures under solar light

    Science.gov (United States)

    Dong, Guanying; Du, Bin; Liu, Lei; Zhang, Weiwei; Liang, Yujie; Shi, Honglong; Wang, Wenzhong

    2017-03-01

    Here we report an easy and large-scale synthesis of three-dimensional (3D) ZnO nanoparticle-loaded CuO dandelion (denoted as n-ZnO/p-CuO nanoparticle/dandelion) heterostructures and their photoelectrochemical (PEC) water splitting under simulated solar light illumination. CuO dandelions were fabricated by a facile and cost-effective chemical strategy, in which the ribbon-like CuO nanoplates were first formed and then assembled into dandelion-like architectures. ZnO nanoparticle-loaded CuO dandelion heterostructures were fabricated by calcining Zn(Ac)2-loaded CuO dandelions. High resolution transmission electron microscope (HRTEM) studies demonstrate that intimate p-n junction is built between p-CuO and n-ZnO interface. The n-ZnO/p-CuO nanoparticle/dandelion photoelectrodes exhibit significant improvement in PEC water splitting to CuO dandelion photoelectrodes. The correlation between photocurrents and different loading contents of ZnO nanoparticles (NPs) is studied in which the n-ZnO/p-CuO nanoparticle/dandelion heterostructures with loading 4.6 wt% ZnO NPs show higher photocathodic current. The efficient separation of the photogenerated electrons and holes driven by the intimate p-n junction between p-type CuO and n-type ZnO interface is mainly contributed to the enhanced photoanode current. The achieved results in the present study offer a very useful strategy for designing p-n junction photoelectrodes for efficiency and low-cost PEC cells for clean solar hydrogen production.

  8. In and Ga Codoped ZnO Film as a Front Electrode for Thin Film Silicon Solar Cells

    OpenAIRE

    Duy Phong Pham; Huu Truong Nguyen; Bach Thang Phan; Thi My Dung Cao; Van Dung Hoang; Vinh Ai Dao; Junsin Yi; Cao Vinh Tran

    2014-01-01

    Doped ZnO thin films have attracted much attention in the research community as front-contact transparent conducting electrodes in thin film silicon solar cells. The prerequisite in both low resistivity and high transmittance in visible and near-infrared region for hydrogenated microcrystalline or amorphous/microcrystalline tandem thin film silicon solar cells has promoted further improvements of this material. In this work, we propose the combination of major Ga and minor In impurities codop...

  9. Structural, electronic, and magnetic properties of Co-doped ZnO

    Institute of Scientific and Technical Information of China (English)

    Bakhtiar Ul Haq; A. Afaq; R. Ahmed; S. Naseem

    2012-01-01

    Density functional theory based calculations have been carried out to study structural,electronic,and magnetic properties of Zn1-xCoxO (x = 0,0.25,0.50,0.75) in the zinc-blende phase,and the generalized gradient approximation proposed by Wu and Cohen has been used.Our calculated lattice constants decrease while the bulk moduli increase with the increase of Co2+ concentration.The calculated spin polarized band structures show the metallic behavior of Co-doped ZnO for both the up and the down spin cases with various doping concentrations.Moreover,the electron population is found to shift from the Zn-O bond to the Co-O bond with the increase of Co2+ concentration.The total magnetic moment,the interstitial magnetic moment,the valence and the conduction band edge spin splitting energies,and the exchange constants decrease,while the local magnetic moments of Zn,Co,O,the exchange spin splitting energies,and crystal field splitting energies increase with the increase of dopant concentration.

  10. Investigation of Structural, Magnetic, and Optical Properties of ZnO Codoped with Co and Cd

    Directory of Open Access Journals (Sweden)

    Lubna Mustafa

    2014-01-01

    Full Text Available Co and Cd have been codoped in ZnO using a simple solid state reaction technique to synthesize dilute magnetic oxide semiconductors of composition Zn0.9Co0.1−xCdxO (x = 0.0-0.1 with an increment of 0.02. Hexagonal wurtzite structure has been obtained for samples up to x = 0.06, using X-ray diffractometry. However, at x = 0.08 and 0.1, secondary peak of CdO is observed. Raman spectra of the samples have been obtained in 200–800 cm−1 range. UV-VIS spectrophotometer is used to study the optical properties, which shows that band gap energy decreases with the increase in Cd concentration. A weak ferromagnetic behavior was evident which decreased further by adding Cd in the series. Room temperature resistivity measurements performed using four-point probe technique showed that their values lie in the semiconductor range. Structural morphology of the samples has been investigated by a scanning electron microscope and grain size has been determined. Raman spectra and Fourier transform infrared spectroscopy revealed the successful incorporation of Co and Cd ions into the host ZnO lattice.

  11. Comparisons of ZnO codoped by group ⅢA elements(Al,Ga,In)and N: a first-principle study*

    Institute of Scientific and Technical Information of China (English)

    Li Ping; Deng Sheng-Hua; Zhang Li; Yu Jiang-Ying; Liu Guo-Hong

    2010-01-01

    The electronic structures and effective masses of the N mono-doped and Al-N,Ga-N,In-N codoped ZnO system have been calculated by a first-principle method,and comparisons among different doping cases are made.According to the results,the impurity states in the codoping cases are more delocalised compared to the N mono-doping case,which means a better conductive behaviour can be obtained by codoping.Besides,compared to the Al-N and Ga-N codoping cases,the hole effective mass of In-N codoped system is much smaller,indicating the p-type conductivity can be more enhanced by In-N codoping.

  12. RETRACTED: Investigation of structural, optical and electronic properties in Al-Sn co-doped ZnO thin films

    Science.gov (United States)

    Pan, Zhanchang; Tian, Xinlong; Wu, Shoukun; Yu, Xia; Li, Zhuliang; Deng, Jianfeng; Xiao, Chumin; Hu, Guanghui; Wei, Zhigang

    2013-01-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Figures 3 and 4 of this paper have also been presented as belonging to other materials in other publications. This observation is evidence of fraud and therefore it is not certain that the described research and conclusions of this paper belong to the presented images. Figures 3 and 4 of this paper can also be found in: Effect of annealing on the structures and properties of Al and F co-doped ZnO nanostructures, Materials Science in Semiconductor Processing, 2014, 17, 162-167, http://dx.doi.org/10.1016/j.mssp.2013.09.023 Highly transparent and conductive Sn/F and Al co-doped ZnO thin films prepared by sol-gel method, Journal of Alloys and Compounds, 2014,583, 32-38, http://dx.doi.org/10.1016/j.jallcom.2013.06.192 Properties of fluorine and tin co-doped ZnO thin films deposited by sol-gel method, Journal of Alloys and Compounds, 2013,576, 31-37, http://dx.doi.org/10.1016/j.jallcom.2013.04.132

  13. Sol-gel derived Al-Ga co-doped transparent conducting oxide ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Serrao, Felcy Jyothi, E-mail: jyothiserrao@gmail.com [Department of studies in Physics, Mangalore University, Mangalagangothri 574199 (India); Department of Physics, Karnataka Government Research centre SCEM, Mangalore, 575007 (India); Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M. [Department of studies in Physics, Mangalore University, Mangalagangothri 574199 (India)

    2016-05-23

    Transparent conducting ZnO doped with Al, Ga and co-doped Al and Ga (1:1) (AGZO) thin films were grown on glass substrates by cost effective sol-gel spin coating method. The XRD results showed that all the films are polycrystalline in nature and highly textured along the (002) plane. Enhanced grain size was observed in the case of AGZO thin films. The transmittance of all the films was more than 83% in the visible region of light. The electrical properties such as carrier concentration and mobility values are increased in case of AGZO compared to that of Al and Ga doped ZnO thin films. The minimum resistivity of 2.54 × 10{sup −3} Ω cm was observed in AGZO thin film. The co-doped AGZO thin films exhibited minimum resistivity and high optical transmittance, indicate that co-doped ZnO thin films could be used in transparent electronics mainly in display applications.

  14. New vision to CuO, ZnO, and TiO{sub 2} nanoparticles: their outcome and effects

    Energy Technology Data Exchange (ETDEWEB)

    Chibber, Sandesh, E-mail: sandeshchibber@gmail.com [Aligarh Muslim University, Department of Biochemistry, F/O Life Sciences (India); Ansari, Shakeel Ahmed [King Abdulaziz University, Centre of Excellence in Genomic and Medicine Research (Saudi Arabia); Satar, Rukhsana [Ibn Sina National College for Medical Sciences, Department of Biochemistry (Saudi Arabia)

    2013-04-15

    Nanomaterials and nanotechnology have attracted more and more attention due to their wide ranges of applications in various fields. With a high level of surface energy, high magnetism, high surface area, and low melting point, engineered nanoparticles (ENPs) has been widely used in industry for various applications. Metal nanoparticles, in particular, have been shown to cause significant biological effects. Review discusses cytotoxic to neurotoxic effects of CuO, ZnO, and TiO{sub 2} nanoparticles based on the scenario drawn from various in vitro and in vivo studies. ENPs such as TiO{sub 2} and ZnO NPs have great practical importance in industrial applications. CuO NPs is also widely used in biomedical applications as catalyst supports, drug carriers, and gene delivery. However, study conducted on TiO{sub 2} NPs have forecast that oxidative DNA damage could be attributed due to reduced glutathione levels with concomitant increase in lipid peroxidation and reactive oxygen species generation. Moreover, there are many evidences showing that ZnO NP and CuO NPs generates ROS production and can cause cell death in different types of cultured cell. Nanoparticle toxicity is assessed by set of tests designed to characterize a given risk and also the mechanism for related outcomes. Conclusively, it becomes more and more important for nanotechnologist to understand the potential health effects of ENPs and what new methodology can be applied to reveal problems like gene silencing and inhibition in antioxidant defense mechanism which can be occurred on severe effects to oxidative stress by ENPs.

  15. Highly transparent and conductive Sn/F and Al co-doped ZnO thin films prepared by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhanchang, E-mail: panzhanchang@163.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Luo, Junming [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Tian, Xinlong, E-mail: tianxinlong2010@163.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Wu, Shoukun; Chen, Chun; Deng, Jianfeng [Huizhou King Brother Electronic Technology Co., Ltd, Huizhou 516083 (China); Xiao, Chumin [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Hu, Guanghui, E-mail: qhxy123@126.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Wei, Zhigang [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China)

    2014-01-15

    Highlights: • F/Sn and Al co-doped ZnO thin films were synthesized by sol–gel method. • The co-doped nanocrystals exhibit good crystal quality. • The origin of the photoluminescence emissions was discussed. • The films showed high transmittance and low resistivity. -- Abstract: Al doped ZnO, Al–Sn co-doped ZnO and Al–F co-doped ZnO nanocrystals were successfully synthesized onto glass substrates by the sol–gel method. The structure and morphology of the films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The results indicated that all the films were polycrystalline with a hexagonal wurtzite structure and exhibited a c-axis preferred orientation. The electrical and optical properties were also investigated by 4-point probe device and Uv–vis spectroscopy, room temperature photoluminescence (PL) and Raman spectrum (Raman), respectively. The PL and Raman results suggested that the co-doped films with a very low defect concentration and exhibit a better crystallinity than AZO thin films. The XPS study confirmed the incorporation of Al, Sn and F ions in the ZnO lattice.

  16. The study of structural and optical properties of (Eu, La, Sm) codoped ZnO nanoparticles via a chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Jihui; Zhang, Qi; Han, Qiang; Fang, Yue; Wang, Jiaying; Li, Xiuyan; Liu, Yanqing [Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000 (China); Wang, Dandan [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China); Yang, Jinghai, E-mail: jhyang1@jlnu.edu.cn [Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000 (China); Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China)

    2017-06-15

    The (Eu, La, Sm) ions were doped into ZnO nanoparticles by a chemical route, and the substitution of (Eu, La, Sm) for Zn{sup 2+} ions was proved by analytic techniques of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, transmission electron microscope (TEM), photoluminescence (PL) and UV–vis absorption spectroscopy. The results revealed that the codoping did not change the wurtzite structure of ZnO nanoparticles, but the diameter of the nanoparticles decreased with increasing the rare earth (RE) doping concentrations. The optical bandgaps calculated through UV–visible absorption spectroscopy were found to decrease from 3.26 to 3.14 eV with increasing the RE doping concentrations, which also proved by the slight shift of UV positions in PL spectra. The sharp red emissions located at 578.2, 590.1 and 615.7 nm were originated from the 4f-4f transitions in Eu{sup 3+} ions under excitation of 325 nm. And these red emissions of Eu{sup 3+} ions showed a strong correlation with the energy storage centers of oxygen vacancies in the samples which was introduced by the other RE ions of La{sup 3+} and Sm{sup 3+} codoping. - Highlights: • Doping of (Eu, La, Sm) ions into ZnO nanoparticles is realized by a chemical route. • Eu{sup 3+}-related red emissions from intra-4f follow a similar trend as broad defect emission. • Red emissions of Eu{sup 3+} enhance with RE codoping due to oxygen vacancies as energy storage centers. • The bandgap can be tuned by RE codoping, which shows a prospect for the visible utilization.

  17. Lanthanum and zirconium co-doped ZnO nanocomposites: synthesis, characterization and study of photocatalytic activity.

    Science.gov (United States)

    Moafi, Hadi Fallah; Zanjanchi, Mohammad Ali; Shojaie, Abdollah Fallah

    2014-09-01

    Nanocomposits of zinc oxide co-doped with lanthanum and zirconium were prepared using the modified sol-gel method. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), diffuse reflectance spectroscopy (DRS), and BET surface area measurement. For comparison, the La and Zr mono doped ZnO have also been prepared under the same conditions. The XRD results revealed that all the materials showed a hexagonal wurtzite crystal structure. It was found that the particle size of La-Zr-doped ZnO is much smaller as compared to that of pure ZnO. The effect of operational parameters such as, doping concentration, catalyst loading, pH and initial concentration of methylene blue on the extent of degradation was investigated. The photocatalytic activity of the undoped ZnO, mono-doped and La-Zr-ZnO photocatalysts was evaluated by the photocatalytic degradation of methylene blue in aqueous solution. The presence of lanthanium and/or zirconium causes a red shift in the absorption band of ZnO. The results show that the photocatalytic activity of the La-Zr-ZnO photocatalyst is much higher than that of undoped and mono-doped ZnO, resulting from the La and Zr synergistic effect. The co-operation of the lanthanum and zirconium ion leads to the narrowing of the band gap and greatly improves the photocatalytic activity. The photocatalyst co-doped with lanthanum and zirconium 4 mol% shows the best photoactivity and photodecomposition efficiencies were improved by 92% under UV-Vis irradiation at the end of 30 min, compared with the pure and mono doped samples.

  18. Properties of Co/Ni codoped ZnO based nanocrystalline DMS

    Energy Technology Data Exchange (ETDEWEB)

    Aljawfi, Rezq Naji [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Mollah, S., E-mail: smollah@rediffmail.com [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India)

    2011-12-15

    Nanoparticles of Co and Ni codoped zinc oxide, Zn{sub 0.9}Co{sub 0.1-x}Ni{sub x}O (x=0.0, 0.03, 0.06 and 0.09), diluted magnetic semiconductors (DMSs) are synthesized by the sol-gel method at annealing temperature of 500 deg. C. X-ray diffraction (XRD) patterns confirm the single phase character of the samples with x=0.0 and 0.03. However, minor NiO secondary phase is detected in the samples with x=0.06 and 0.09. All of them possess the hexagonal wurtzite structure. There is no significant change in the lattice parameters due to variation of doping concentration. The average particle size is found to be 19.31-25.71 nm. FTIR and UV-vis spectroscopic results confirm the incorporation of the dopants into the ZnO lattice structure. Magnetization data reveal the presence of room temperature ferromagnetism (RTFM). The XRD patterns rule out the formation of secondary phase of either metallic Co cluster or CoO in the samples. Nevertheless, the secondary phases are a concern in any DMS system as a source of spurious magnetic signals. Therefore, we carried out the XPS studies from which the oxidation states of Co and Ni are found to be Co{sup 2+} and Ni{sup 2+}, respectively. Moreover, XPS O 1s spectra show evidence of the presence of the oxygen vacancy in the ZnO matrix. - Highlights: > Nanocrystalline Zn{sub 0.9}Co{sub 0.1-x}Ni{sub x}O is synthesized by sol-gel method. > Co/Ni doping does not change the lattice parameters. > Average particle size is {approx}20 nm. > Spectroscopic and magnetization studies confirm the formation of DMS. > XPS data corroborates the presence of Co{sup 2+} and Ni{sup 2+}.

  19. ZnO nanoparticles co-doped with Fe3+ and Eu3+ ions for solar assisted photocatalysis.

    Science.gov (United States)

    Yin, Dongguang; Zhang, Le; Song, Kailin; Ou, Yangjuan; Wang, Chengcheng; Liu, Bing; Wu, Minghong

    2014-08-01

    In this study, ZnO nanoparticles co-doped with Fe3+ and Eu3+ were prepared by a facile co-precipitation method. The structure and morphology of the as-prepared nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance absorption spectra, respectively. The photocatalytic activities of the prepared catalysts were evaluated by photocatalytic degradation of methyl orange in aqueous solution with solar light irradiation. The co-doped Fe3+ and Eu3+ showed a synergistic effect, which significantly increased the photocatalytic activity of ZnO. The influences of calcination time, photocatalytic reaction temperature and catalyst loading on the photocatalytic activity of the catalyst were also investigated. It was found that there were an optimum photocatalytic reaction temperature and an optimum catalyst loading for high photocatalytic efficiency, and the photocatalytic efficiency decreased with increase in calcination time. The results of this study demonstrate that the as-prepared product of Eu3+/Fe3+/ZnO is a promising photocatalyst for solar assisted degradation of organic pollutions.

  20. A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles.

    Science.gov (United States)

    Li, Hongbo; Qiao, Yunfei; Li, Jing; Fang, Hailin; Fan, Dahe; Wang, Wei

    2016-03-15

    Co-doped ZnO diluted magnetic semiconductor as a novel photoelectric beacon was first constructed for photoelectrochemical (PEC) aptasensor of acetamiprid. The fabricated PEC sensing is based on the specific binding of acetamiprid and its aptamer, which induces the decreasement of enhanced photocurrent produced by the electron donor of quercetin. Co(2+) doping has a beneficial effect in extending the band width of light absorption of ZnO into the visible region and to promote the separation of the photoinduced carriers due to the sp-d exchange interactions existing between the band electrons and the localized d electrons of Co(2+). The fabricated aptasensor was linear with the concentration of acetamiprid in the range of 0.5-800 nmolL(-1) with the detection limit of 0.18 nmolL(-1). The presence of same concentration of other conventional pesticides did not interfere in the detection of acetamiprid and the recovery is between 96.2% and 103.7%. This novel PEC aptasensor has good performances with high sensitivity, good selectivity, low cost and portable features. The strategy of Co-doped ZnO diluted magnetic semiconductor paves a new way to improve the performances of PEC aptasensor.

  1. Structure and properties of Co-doped ZnO films prepared by thermal oxidization under a high magnetic field.

    Science.gov (United States)

    Li, Guojian; Wang, Huimin; Wang, Qiang; Zhao, Yue; Wang, Zhen; Du, Jiaojiao; Ma, Yonghui

    2015-01-01

    The effect of a high magnetic field applied during oxidation on the structure, optical transmittance, resistivity, and magnetism of cobalt (Co)-doped zinc oxide (ZnO) thin films prepared by oxidizing evaporated Zn/Co bilayer thin films in open air was studied. The relationship between the structure and properties of films oxidized with and without an applied magnetic field was analyzed. The results show that the high magnetic field obviously changed the structure and properties of the Co-doped ZnO films. The Lorentz force of the high magnetic field suppressed the oxidation growth on nanowhiskers. As a result, ZnO nanowires were formed without a magnetic field, whereas polyhedral particles formed under a 6 T magnetic field. This morphology variation from dendrite to polyhedron caused the transmittance below 1,200 nm of the film oxidized under a magnetic field of 6 T to be much lower than that of the film oxidized without a magnetic field. X-ray photoemission spectroscopy indicated that the high magnetic field suppressed Co substitution in the ZnO lattice, increased the concentration of oxygen vacancies, and changed the chemical state of Co. The increased concentration of oxygen vacancies affected the temperature dependence of the resistivity of the film oxidized under a magnetic field of 6 T compared with that of the film oxidized without a magnetic field. The changes of oxygen vacancy concentration and Co state caused by the application of the high magnetic field also increase the ferromagnetism of the film at room temperature. All of these results indicate that a high magnetic field is an effective tool to modify the structure and properties of ZnO thin films.

  2. First-principles study on electronic and magnetic properties of N mono-doped and (N, Co) co-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Abbad, A., E-mail: am.ben@voila.fr [Laboratory of Material Valorisation, Faculty of Sciences and Technology, BP 227, Abdelhamid Ibn Badis University, Mostaganem 27000 (Algeria); Bentounes, H.A. [Signals and Systems Laboratory (LSS), Faculty of Sciences and Technology, BP 227, Abdelhamid Ibn Badis University, Mostaganem 27000 (Algeria); Benstaali, W. [Laboratory of Material Valorisation, Faculty of Sciences and Technology, BP 227, Abdelhamid Ibn Badis University, Mostaganem 27000 (Algeria); Belaidi, A. [Automatic and Systems Analysis Laboratory (LAAS), ENSET, Oran 31000 (Algeria)

    2013-01-15

    Using first principles calculations based on the density functional theory and local spin density approximation, we predict magnetic and electronic properties of N mono-doped and (N-Co) co-doped ZnO for different dopants concentration. The results show that ZnO doped with N concentration of 12.5% is p-type, semi-metallic and ferromagnetic due to the strong hybridization effect between N 2p and O 2p states, with a total magnetic moment of 1 {mu}{sub B} mainly arises from N 2p orbitals. Nevertheless we find a deep and narrow acceptor level, resulting in large acceptor ionization energy of ZnO (N). With increasing N concentration to 25% we find that the impurity energy level is shallow and shifts downward to the direction of low energy, consequentially, the acceptor binding energy is reduced. (N-Co) co-doped ZnO with a concentration of 12.5% for the two dopants is p-type and half-metallic with an important magnetic moment of 3.98 {mu}{sub B}, due to Co 3d and N 2p states. - Highlights: Black-Right-Pointing-Pointer The electronic and magnetic properties of N mono-doped and (N-Co) co-doped ZnO have been investigated. Black-Right-Pointing-Pointer ZnO doped with 12.5% of Nitrogen is p-type and semi-metallic. Black-Right-Pointing-Pointer N-doping can enhance electronic conductivity of N-doped ZnO. Black-Right-Pointing-Pointer We find narrow N-impurity band for N-doped ZnO. Black-Right-Pointing-Pointer The co-doping of Co donors with N-acceptors causes an important change from semi-metallic material to half-metallic one.

  3. Twin grain boundary mediated ferromagnetic coupling in Co-doped ZnO: First-principles calculations

    Science.gov (United States)

    Wu, Jingjing; Tang, Xin; Pu, Chunying; Long, Fei; Tang, Biyu

    2017-01-01

    First principle calculation, based on density functional theory, is applied to study the electronic and magnetic properties of Co-doped ZnO ∑7 (12 3 ̅0) twin grain boundary. Co atoms substituting Zn at the threefold-coordination sites have the lowest formation energy, compared with other sites. More importantly, the configuration can result in the stable formation of ferromagnetic state (FM). Meanwhile, the strong Co-Co interaction is found to be responsible for the ferromagnetic state. Due to the structural character of the twin grain boundary, periodical defects can be offered, which favors the macroscopic FM ordering. The result also gives us a new thinking to understand the origin of FM in transition metal doped ZnO.

  4. Al and Fe co-doped transparent conducting ZnO thin film for mediator-less biosensing application

    Directory of Open Access Journals (Sweden)

    Shibu Saha

    2011-12-01

    Full Text Available Highly c-axis oriented Al and Fe co-doped ZnO (ZAF thin film is prepared by pulsed laser deposition. Fe introduces redox centre along with shallow donor level while Al doping enhances conductivity of ZnO, thus removing the requirement of both mediator and bottom conducting layer in bioelectrode. Model enzyme (glucose oxidase, was immobilized on surface of ZAF matrix. Cyclic voltammetry and photometric assay show that prepared bio-electrode is sensitive to glucose concentration with enhanced response of 0.18 μAmM-1cm-2 and low Km ∼ 2.01 mM. The results illustrate that ZAF is an attractive matrix for realization of miniaturized mediator-less solid state biosensor.

  5. Ferromagnetism in co-doped zno particles prepared by vaporization-condensation in a solar image furnace

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, B. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, Bellaterra 08193 (Spain)]. E-mail: ben.martinez@icmab.es; Sandiumenge, F. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, Bellaterra 08193 (Spain); Balcells, Ll. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, Bellaterra 08193 (Spain); Fontcuberta, J. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, Bellaterra 08193 (Spain); Sibieude, F. [CNRS/Institut de science et genie des Materiaux et Procedes, BP5 Odeillo, 66125-cedex Font Romeu (France); Monty, C. [CNRS/Institut de science et genie des Materiaux et Procedes, BP5 Odeillo, 66125-cedex Font Romeu (France)

    2005-04-15

    We report on the structural and magnetic properties of Co-doped ZnO particles prepared by vaporization-condensation in the solar furnace in Odeillo. X-ray diffraction data show no traces of Co segregation or any other phase different from ZnO. High-resolution electron microscopy (HREM) and transmision electron microscopy (TEM) techniques have also been used to characterize particles. Irrespective of their composition, the shape and size of the obtained particles, as well as their magnetic properties, clearly depend on the preparation conditions. The samples prepared in vacuum exhibit hysteretic behavior with low coercivity (about 100Oe) at T=5K and saturation magnetization well below that expecte for Co{sup 2+} in a tetrahedral crystal field. On the other hand, samples prepared at high pressure (70-100Torr inside the balloon) are paramagnetic.

  6. CuO and ZnO Nanoparticles Modify Interkingdom Cell Signaling Processes Relevant to Crop Production.

    Science.gov (United States)

    Anderson, Anne J; McLean, Joan E; Jacobson, Astrid R; Britt, David W

    2017-05-12

    As the world population increases, strategies for sustainable agriculture are needed to fulfill the global need for plants for food and other commercial products. Nanoparticle formulations are likely to be part of the developing strategies. CuO and ZnO nanoparticles (NPs) offer potential as fertilizers, as they provide bioavailable essential metals, and as pesticides, because of dose-dependent toxicity. Effects of these metal oxide NPs on rhizosphere functions are the focus of this review. These NPs at doses of ≥10 mg metal/kg change the production of key metabolites involved in plant protection in a root-associated microbe, Pseudomonas chlororaphis O6. Altered synthesis occurs in the microbe for phenazines, which function in plant resistance to pathogens, the pyoverdine-like siderophore that enhances Fe bioavailability in the rhizosphere and indole-3-acetic acid affecting plant growth. In wheat seedlings, reprogramming of root morphology involves increases in root hair proliferation (CuO NPs) and lateral root formation (ZnO NPs). Systemic changes in wheat shoot gene expression point to altered regulation for metal stress resilience as well as the potential for enhanced survival under stress commonly encountered in the field. These responses to the NPs cross kingdoms involving the bacteria, fungi, and plants in the rhizosphere. Our challenge is to learn how to understand the value of these potential changes and successfully formulate the NPs for optimal activity in the rhizosphere of crop plants. These formulations may be integrated into developing practices to ensure the sustainability of crop production.

  7. First-principles study of p-type ZnO by S-Na co-doping

    Science.gov (United States)

    Tan, Xingyi; Li, Qiang; Zhu, Yongdan

    2017-08-01

    Using the first-principles method based on the density functional theory, the formation energy, electronic structures of S-Na co-doping in ZnO were calculated. The calculated results show that NaZn-SO have smaller formation energy than Nain-SO in energy ranges from -3.10 to 0 eV of {μ }{{O}}, indicating that it opens up a new opportunity for growth the p-type ZnO. The band structure shows that the NaZn system is a p-type direct-band-gap semiconductor material and the calculated band gap (0.84 eV) is larger than pure ZnO (0.74 eV). The NaZn-SO system is also a p-type semiconductor material with a direct band gap (0.80 eV). The influence of S-Na co-doping in ZnO on p-type conductivity is also discussed. The effective masses of NaZn-SO are larger than effective masses of NaZn and the NaZn-SO have more hole carriers than NaZn, meaning the hole in the NaZn-SO system may have a better carrier transfer character. So we inferred that NaZn-SO should be a candidate of p-type conduction. Project supported by the Natural Science Foundation of Hubei Province, China (Nos. 2014CFB342, 2014CFB619) and the Doctoral Foundation for Scientific Research of Hubei University for Nationalities (No. MY2013B020).

  8. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat

    Energy Technology Data Exchange (ETDEWEB)

    Dimkpa, Christian O., E-mail: cdimkpa@usu.edu [Utah State University, Department of Biological Engineering (United States); McLean, Joan E. [Utah State University, Utah Water Research Laboratory (United States); Latta, Drew E. [Argonne National Laboratory, Biosciences Division (United States); Manangon, Eliana [University of Utah, Department of Geology and Geophysics (United States); Britt, David W. [Utah State University, Department of Biological Engineering (United States); Johnson, William P. [University of Utah, Department of Geology and Geophysics (United States); Boyanov, Maxim I. [Argonne National Laboratory, Biosciences Division (United States); Anderson, Anne J. [Utah State University, Department of Biological Engineering (United States)

    2012-09-15

    Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (<50 nm) and ZnO (<100 nm) NPs on wheat (Triticum aestivum) grown in a solid matrix, sand. The NPs contained both metallic and non-metallic impurities to different extents. Dynamic light scattering and atomic force microscopy (AFM) assessments confirmed aggregation of the NPs to submicron sizes. AFM showed transformation of ZnO NPs from initial rhomboid shapes in water to elongated rods in the aqueous phase of the sand matrix. Solubilization of metals occurred in the sand at similar rates from CuO or ZnO NPs as their bulk equivalents. Amendment of the sand with 500 mg Cu and Zn/kg sand from the NPs significantly (p = 0.05) reduced root growth, but only CuO NPs impaired shoot growth; growth reductions were less with the bulk amendments. Dissolved Cu from CuO NPs contributed to their phytotoxicity but Zn release did not account for the changes in plant growth. Bioaccumulation of Cu, mainly as CuO and Cu(I)-sulfur complexes, and Zn as Zn-phosphate was detected in the shoots of NP-challenged plants. Total Cu and Zn levels in shoot were similar whether NP or bulk materials were used. Oxidative stress in the NP-treated plants was evidenced by increased lipid peroxidation and oxidized glutathione in roots and decreased chlorophyll content in shoots; higher peroxidase and catalase activities were present in roots. These findings correlate with the NPs causing increased production of reactive oxygen species. The accumulation of Cu and Zn from NPs into edible plants has relevance to the food chain.

  9. The uptake of ZnO and CuO nanoparticles in the water-flea Daphnia magna under acute exposure scenarios.

    Science.gov (United States)

    Adam, Nathalie; Leroux, Frédéric; Knapen, Dries; Bals, Sara; Blust, Ronny

    2014-11-01

    In this study the uptake of ZnO and CuO nanoparticles by Daphnia magna was tested. Daphnids were exposed during 48 h to acute concentrations of the nanoparticles and corresponding metal salts. The Daphnia zinc and copper concentration was measured and the nanoparticles were localized using electron microscopy. The aggregation and dissolution in the medium was characterized. A fast dissolution of ZnO in the medium was observed, while most CuO formed large aggregates and only a small fraction dissolved. The Daphnia zinc concentration was comparable for the nanoparticles and salts. Contrarily, a much higher Daphnia copper concentration was observed in the CuO exposure, compared to the copper salt. CuO nanoparticles adsorbed onto the carapace and occurred in the gut but did not internalize in the tissues. The combined dissolution and uptake results indicate that the toxicity of both nanoparticle types was caused by metal ions dissolved from the particles in the medium. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review.

    Science.gov (United States)

    Bondarenko, Olesja; Juganson, Katre; Ivask, Angela; Kasemets, Kaja; Mortimer, Monika; Kahru, Anne

    2013-07-01

    Nanoparticles (NPs) of copper oxide (CuO), zinc oxide (ZnO) and especially nanosilver are intentionally used to fight the undesirable growth of bacteria, fungi and algae. Release of these NPs from consumer and household products into waste streams and further into the environment may, however, pose threat to the 'non-target' organisms, such as natural microbes and aquatic organisms. This review summarizes the recent research on (eco)toxicity of silver (Ag), CuO and ZnO NPs. Organism-wise it focuses on key test species used for the analysis of ecotoxicological hazard. For comparison, the toxic effects of studied NPs toward mammalian cells in vitro were addressed. Altogether 317 L(E)C50 or minimal inhibitory concentrations (MIC) values were obtained for algae, crustaceans, fish, bacteria, yeast, nematodes, protozoa and mammalian cell lines. As a rule, crustaceans, algae and fish proved most sensitive to the studied NPs. The median L(E)C50 values of Ag NPs, CuO NPs and ZnO NPs (mg/L) were 0.01, 2.1 and 2.3 for crustaceans; 0.36, 2.8 and 0.08 for algae; and 1.36, 100 and 3.0 for fish, respectively. Surprisingly, the NPs were less toxic to bacteria than to aquatic organisms: the median MIC values for bacteria were 7.1, 200 and 500 mg/L for Ag, CuO and ZnO NPs, respectively. In comparison, the respective median L(E)C50 values for mammalian cells were 11.3, 25 and 43 mg/L. Thus, the toxic range of all the three metal-containing NPs to target- and non-target organisms overlaps, indicating that the leaching of biocidal NPs from consumer products should be addressed.

  11. Effect of (Li, Mn) co-doping on structural, optical and magnetic properties of chunk-shaped nano ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Rajamanickam, N., E-mail: nrajamku@gmail.com; Mariammal, R.N.; Rajashabala, S.; Ramachandran, K.

    2014-11-25

    Highlights: • Chunk-shaped nano ZnO synthesized by varying Li and Mn doping concentrations. • The growth mechanism was discussed for chunk-shaped morphologies. • Undoped and Li doped CSNS ZnO exhibit weak ferromagnetic behavior with diamagnetism. • Room temperature ferromagnetism observed for Mn doped and Li/Mn co-doped CSNS ZnO. • Verdet constants and magneto-optic properties were measured from Faraday Effect method. - Abstract: Chunk shaped ZnO nanostructures (CSNS) simultaneously doped with Li and Mn for varying Li/Mn concentrations have been synthesized using wet-chemical method. Their crystal structural, optical and magnetic properties at room temperature (RT) were then investigated, which revealed that all the samples have a single phase with the wurtzite structure. Undoped and co-doped ZnO chunk-shape structures has been demonstrated by transmission electron microscope (TEM). The Mn/Li incorporation also creates more lattice defects and disorders, which influence directly characteristic photoluminescence (PL), FTIR and UV–vis spectra of Zn{sub 1−x−y}Mn{sub y}Li{sub x}O CSNS. Where green emission due to concentration of defects is seen. Magnetic measurements by VSM and the ferro fluid of synthesized nano ZnO by Faraday optical rotation for various concentration of Mn and Li in nano ZnO are done. Change of magnetic and magneto-optic (MO) properties due to Mn and Li ions are discussed in detail.

  12. Li and Ag Co-Doped ZnO Photocatalyst for Degradation of RO 4 Dye Under Solar Light Irradiation.

    Science.gov (United States)

    Dhatshanamurthi, P; Shanthi, M

    2016-06-01

    The synthesis of Li doped Ag-ZnO (Li-Ag-ZnO) has been successfully achieved by a sonochemically assisted precipitation-decomposition method. The synthesized catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL), X-ray photoelectron spectra (XPS) and BET surface area measurements. The photocatalytic activity of Li-Ag-ZnO was investigated for the degradation of Reactive orange 4 (RO 4) dye in aqueous solution under solar light irradiation. Co-dopants shift the absorbance of ZnO to the visible region. Li-Ag-ZnO is found to be more efficient than Ag-ZnO, Li-ZnO, commercial ZnO and prepared ZnO at pH 7 for the mineralization of RO 4 dye under solar light irradiation. The influences of operational parameters such as the amount of photocatalyst, dye concentration, initial pH on photo-mineralization of RO 4 have been analyzed. The mineralization of RO 4 dye has been confirmed by COD measurements. A degradation mechanism is proposed for the degradation of RO 4 under solar light. The catalyst was found to be more stable and reusable.

  13. Morphological evolution and electronic alteration of ZnO nanomaterials induced by Ni/Fe co-doping.

    Science.gov (United States)

    Fletcher, Cameron; Jiang, Yijiao; Sun, Chenghua; Amal, Rose

    2014-07-07

    Zinc oxide (ZnO) nanocrystals mono- and co-doped with nickel/iron were prepared using a facile solvothermal procedure. A significant change in the surface morphology from nanorods to plate-like nanoparticles was observed with an increase in the dopant concentration. The variations of their optical and electronic properties induced by metal dopants were investigated using a combination of characterization techniques and ab initio calculations. It is found that both nickel and iron atoms have been successfully incorporated into the crystal lattice rather than forming a secondary phase, suggesting good dispersion of dopants within the ZnO matrix. Doping with iron has red-shifted the absorption edges of ZnO towards the visible portion resulting in lower band gap energies with increasing dopant concentration. Evidenced by Raman and EPR spectroscopy, the addition of iron has been shown to promote the formation of more oxygen vacancy and crystal defects within the host lattice as well as increasing the free-electron density of the nanomaterial. The DFT plus Hubbard model calculations confirm that low concentration Ni-doping does not induce band gap narrowing but results in localized states. The calculations show that Fe-doping has the potential to greatly improve the optical absorption characteristics and lead to structural deformation, corroborating the UV-Vis, Raman, and EPR spectra.

  14. An insight into doping mechanism in Sn–F co-doped transparent conducting ZnO films by correlating structural, electrical and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, Arindam; Sarkar, Sanjit; Ghosh, Tushar; Basak, Durga, E-mail: sspdb@iacs.res.in

    2015-10-15

    On the face of massively growing market of transparent optoelectronics, developing ZnO-based transparent conductive thin films as a promising substitute for indium-free transparent electrode is extremely important. However, the detailed function of the dopants, especially co-dopants acting on the electrical and optical properties of ZnO-based transparent conductive thin films is not clear yet. We present a detailed comparative investigation on the structural, electrical and optical properties of pulsed laser deposited ZnO thin films co-doped with Sn and F for the first time. An unexpected expansion in the lattice structure has been observed when Zn{sup 2+} are replaced by Sn{sup 4+} having smaller ionic radius. Electrical measurements show that there is no anticipated change in the carrier concentration with the dopant concentration. A minimum resistivity of 2.56 × 10{sup −3} Ohm-cm with a carrier concentration of 4.41 × 10{sup 20} cm{sup −3} has been obtained for 1 at.% each Sn–F co-doped film. Most interestingly, a significant improvement in the ultraviolet (UV)/visible (VIS) photoluminescence peak intensity in Sn doped and Sn–F co-doped films in correlation with the structural and electrical properties allows us to propose that Sn doping into ZnO lattice causes a screening of the native Zn vacancy defects. While the presence of F co-dopant induces Sn{sup 2+} to occupy the lattice sites, as evidenced from the lattice expansion, an insignificant increase in the carrier concentration as well as enhanced UV emission of the co-doped films. The results obtained in this study shed light on the development of ZnO-based transparent electrodes. - Highlights: • A comparative investigation on electrical and optical properties of F, Sn and Sn–F co-doped ZnO films has been done. • There is no significant correlation between the carrier concentration and dopant content. • The UV/vis PL peak intensity of the films gets better in Sn doped and best in the Sn

  15. Properties of In–N codoped p-type ZnO nanorods grown through a two-step chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Duta, M.; Mihaiu, S.; Munteanu, C. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Anastasescu, M., E-mail: manastasescu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Osiceanu, P.; Marin, A.; Preda, S. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Nicolescu, M., E-mail: mnicolescu2006@yahoo.com [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Modreanu, M. [Tyndall National Institute, University College, Cork (Ireland); Zaharescu, M.; Gartner, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)

    2015-07-30

    Highlights: • p-Type ZnO film codoped with In, N on glass substrate was obtained. • The films were prepared by sol–gel followed by hydrothermal method. • Influence of annealing regimes on opto-electrical properties was studied. • Thin films morphology consists of interconnected, randomly oriented nanorods. • 3.31 × 10{sup 17} cm{sup −3}carrier concentration and 85% transmission were obtained at 500 °C. - Abstract: By codoping with a donor–acceptor pair through a two-step chemical method we have succeed to obtain p-type ZnO thin films on glass. Firstly, a thin undoped ZnO seed layer was deposited by sol–gel method followed by the deposition of In–N codoped ZnO film obtained through the hydrothermal technique. The influence of post-deposition annealing temperature (100 °C, 300 °C and 500 °C) on the samples was investigated from a structural, chemical, morphological and optoelectrical point of view. X-ray diffractometry (XRD), infrared ellipsometry and X-ray photoelectron spectroscopy (XPS) analyses have confirmed the codoped nature of the ZnO thin films. The XRD pattern analysis has established the films have wurtzite nanocrystalline structure, the crystallite sizes varying between 10 nm and 13 nm with the annealing temperature. Continuous and homogenous films with nanorods surface morphology has been obtained, as visualized by scanning electron microscopy measurements. Hall Effect measurements have established that all samples, regardless of annealing temperature, showed p-type conduction due to the successful incorporation of nitrogen in the film, with the highest carrier concentration registered at 500 °C. This is in good correlation with the nitrogen content in the films as revealed from XPS. In all samples, the XPS depth profiling has shown a nitrogen gradient with higher elemental concentration at the surface.

  16. Effect of thermal treatment on room-temperature ferromagnetism in Co-doped ZnO powders

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xueyun [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Ge Shihui [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)], E-mail: zhxy06@lzu.cn; Yao Dongsheng; Zuo Yalu; Xiao Yuhua [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2008-09-01

    The Co-doped ZnO powders were synthesized by sol-gel method, and treated at different temperatures (673-873 K) in the presence or absence of NH{sub 3} atmosphere for 0.5 and 2 h, respectively. X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) show that better crystal structure can cause larger ferromagnetism and the second phase (Co{sub 3}O{sub 4}) is the reason for saturation magnetization decrease of the sample sintered at higher temperature in air. XPS and nuclear magnetic resonance (NMR) prove the existence of Co{sup 2+} ions in the Zn{sub 0.9}Co{sub 0.1}O and the absence of Co clusters, indicating intrinsic ferromagnetism of the samples treated in air. However, strong ferromagnetism of the samples annealed in NH{sub 3} is ascribed to cobalt nitride formed during annealing.

  17. Strategy for the maximum extraction of information generated from combinatorial experimentation of Co-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Suh, C., E-mail: changwon.suh@nrel.gov [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO (United States); Gorrie, C.W. [Department of Materials Science and Engineering, University of Florida, Gainesville, FL (United States); Perkins, J.D.; Graf, P.A.; Jones, W.B. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO (United States)

    2011-01-15

    By expanding our level of understanding of structure-processing-property relationships through a data-mining methodology, this study demonstrates how to remove obstructions in complex high-throughput (HT) data analyses for developing new transparent conducting oxides. The demonstration is performed with principal component analysis (PCA) as an exploratory data analysis tool in the context of Co-doped ZnO (Co:ZnO) thin films generated from combinatorial HT syntheses. With the use of minimal available information, X-ray diffraction (XRD) patterns and their corresponding processing conditions, PCA enabled effective detection of pervasive changes in intensity and peak shifts as a function of composition, processing or a combination of both. These identifications are nearly impossible to detect via normal data interpretation methods. It was also possible to identify abnormal XRD patterns, unusual composition arrays (i.e. libraries), key chemistries in compositional arrays and critical peak occurrences.

  18. Effect of Co-doping content on hydrothermal derived ZnO array films

    Energy Technology Data Exchange (ETDEWEB)

    He Xinhua, E-mail: imxhhe@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Department of Information Systems, City University of Hong Kong (Hong Kong); Yang Hu; Chen Zhiwu [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liao, Stephen S Y, E-mail: issliao@cityu.edu.hk [Department of Information Systems, City University of Hong Kong (Hong Kong)

    2012-08-01

    Cobalt doped ZnO films are synthesised using a hydrothermal process. The effect of Co{sup 2+} concentration on morphology, phase composition, crystallisation and spectroscopic characteristics of ZnO films is investigated. The results indicate that both the structure and morphology of the ZnO films evolve with the concentration of cobalt ions incorporated into the lattice. In the presence of a small amount of Co{sup 2+} ions, films are formed that comprise hexagonal ZnO nanorods, oriented with the c-axis perpendicular to the substrate. With increasing amount of Co{sup 2+}, cracks in the ZnO nanorods can be observed and growth in the [0 0 1] direction is significantly inhibited. When the Co{sup 2+} concentration exceeds 0.010 M, ZnO rods with the typical hexagonal structure are no longer observed and instead, ZnO films comprising close-packed grains with an irregular polygonal structure are formed. The epitaxial growth of ZnO films is nearly completely inhibited when the concentration of Co{sup 2+} is increased above 0.050 M. This behaviour can be explained by the selective adsorption of the organic substances in the solution onto the (0 0 1) ZnO crystal face, thus inhibiting growth in the [0 0 1] direction and disrupting the crystallisation of ZnO films. Increasing the Co content deteriorates the crystallisation of ZnO rods and increases tensile stresses present in the ZnO films.

  19. Investigation of structural and optical properties in Cobalt–Chromium co-doped ZnO thin films within the Lattice Compatibility Theory scope

    Energy Technology Data Exchange (ETDEWEB)

    Mimouni, R.; Boubaker, K., E-mail: mmbb11112000@yahoo.fr; Amlouk, M.

    2015-03-05

    Highlights: • Co/Cr co-doped ZnO thin films were synthesized by a low-cost spray technique. • Optical and morphological properties of the Co/Cr co-doped ZnO system were described. • Lattice Compatibility Theory explains Co preferential incorporation in ZnO lattice. - Abstract: (Co,Cr)-codoped zinc oxide thin films (ZnO:Cr:Co) at different percentages (0%, 1–1%, 1–2%, 2–1%) were deposited on glass substrates using a chemical low-cost spray technique. The effect of Cr and Co concentration on the structural, morphological and optical properties of the ZnO:Cr:Co thin films were investigated by means of X-ray diffraction, optical measurement, contact Atomic Force Microscopy (AFM), and Photoluminescence spectroscopy. The results revealed that all films consist of single phase ZnO and were well crystallized in würtzite phase with the crystallites preferentially oriented towards (0 0 2) direction parallel to c-axis. Also, the co-doping has effective role in the enhancement of the crystallinity and leads to an improvement of roughness of the ZnO films. Doping by chrome and cobalt resulted in a slight decrease in the optical band gap energy of the films. The optical band gap of these films is calculated. The optical absorption spectra show that the absorption mechanism is a direct transition. The UV peak positions for ZnO:Cr:Co samples slightly red shift to the longer wavelength in comparison with the pure ZnO which can be attributed to the change in the acceptor level induced by the substitutional Co{sup 2+} and Cr{sup 3+} and the band-gap narrowing of ZnO with the Cr and Co dopants. The Lattice Compatibility Theory analyses have been applied in order to give original, plausible and founded explanation to the recorded preferential incorporation of cobalt ions within ZnO lattice over chromium.

  20. Sulfur and Nitrogen co-doped graphene quantum dot decorated ZnO nanorod/polymer hybrid flexible device for photosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Hmar, Jehova Jire L.; Majumder, Tanmoy; Dhar, Saurab; Mondal, Suvra Prakash, E-mail: suvraphy@gmail.com

    2016-08-01

    S and N co-doped graphene quantum dots (S,N-GQDs) have been synthesized by a hydrothermal process. S,N-GQDs are made up of 1–5 monolayer of graphene with average diameter 13.3 nm. The absorption peaks at 336 and 621 nm, are attributed to n → Π{sup ⁎} transitions of electrons in C=O and S=O bonds, respectively. S,N-GQDs are highly luminescent and showed excitation dependent emission behaviors. Hybrid photosensing device has been fabricated with S,N-GQD sensitized ZnO nanorods and a conjugated polymer poly(3-hexylthiophene) (P3HT). S,N-GQD decorated ZnO nanorod demonstrated higher photoresponse compared to pristine ZnO nanorod based device. S,N-GQD/ZnO nanorod hybrid device showed superior incident photon to electron conversion efficiency (IPCE), photoresponsivity and detectivity compared to the control samples. The flexibility study of the samples has been monitored by measuring current-voltage characteristics at different bending angles. - Highlights: • S and N co-doped graphene quantum dots (S,N-GQDs) were synthesized. • ZnO nanorods were grown on ITO coated flexible PET substrates. • S,N-GQDs were attached with ZnO nanorods and used as a green sensitizer. • Photosensing properties of S,N-GQD/ZnO and P3HT polymer hybrid device was studied.

  1. Development of transparent conductive indium and fluorine co-doped ZnO thin films: Effect of F concentration and post-annealing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hadri, A. [University Mohammed V, Faculty of Sciences, Physics Department, LPM, B.P. 1014, Rabat (Morocco); Taibi, M. [University of Mohammed V, LPCMIN, Ecole Normale Superieure, Rabat (Morocco); Loghmarti, M.; Nassiri, C.; Slimani Tlemçani, T. [University Mohammed V, Faculty of Sciences, Physics Department, LPM, B.P. 1014, Rabat (Morocco); Mzerd, A., E-mail: mzerd@yahoo.fr [University Mohammed V, Faculty of Sciences, Physics Department, LPM, B.P. 1014, Rabat (Morocco)

    2016-02-29

    In the present work ZnO, In doped ZnO and In-F co-doped ZnO (IFZO) films were synthesized on heated glass substrates (350 °C) by the chemical spray technique. The effect of fluorine concentration on the structural, morphological, optical and electrical properties was studied. It was observed from X-ray diffraction (XRD) that the films have a polycrystalline structure and the intensity of the peaks depend on the doping and co-doping concentration. No diffraction peak related to dopants in XRD patterns along with shift in peaks angles to ZnO proved that In and F ions were doped into ZnO thin films. The Raman spectra confirm the hexagonal structure of the as-deposited films, and demonstrated an enhancement of the surface phonon mode of doped and co-doped films as compared to undoped films. The as-deposited films showed an average transmittance above 70%, in the wavelength range of 400–800 nm. A minimum electrical resistivity, in the order of 5.2 × 10{sup −} {sup 2} Ω cm was obtained for the IFZO thin film with 5 at.% F doping. Moreover, the electrical properties of doped and co-doped films were enhanced after post-deposition annealing. It was found that post-annealed thin films at 350 °C showed a decrease of one order of magnitude of the resistivity values. Such a transparent and conducting thin film can be suitable for optical and electrical applications owing to their low resistivity combined with high transmittance in the visible range. - Highlights: • Conductive transparent ZnO, IZO, IFZO thin films were deposited by spray pyrolysis. • Doping and co-doping affect morphology and optoelectrical properties. • As deposited film with high fluorine content exhibited high carrier mobility (55 cm{sup 2} V{sup −} {sup 1} s{sup −} {sup 1}). • Correlation between intrinsic defects and carrier mobility was observed. • Post-annealing in Ar atmosphere improves conductivity.

  2. Optical properties of Cu nanocomposite glass obtained via CuO and SnO co-doping

    Science.gov (United States)

    Jiménez, J. A.

    2014-03-01

    Prospective applications of plasmonic nanocomposites in photonic and optoelectronic devices demand innovative means of material syntheses, as well as a comprehensive understanding of the influence of material composition and processing on resulting properties. In this work, it is shown that a phosphate glass matrix prepared with stoichiometric amounts of CuO and SnO dopants by the melting technique may well be effective for the precipitation of Cu nanoparticles (NPs) upon heat treatment (HT). Optical absorption and photoluminescence (PL) spectroscopy, including emission decay dynamics, are employed in the characterization of the melt-quenched glass, and for investigating the influence of HT on material optical properties. The as-prepared material appeared highly luminescent; the data suggests contributions from both twofold-coordinated tin centers and Cu+ ions to light emission. The PL depends strongly on excitation wavelength; e.g. excitation at 260 nm shows a blue-white emission for which a significant contribution from tin is indicated, whereas excitation at 360 nm produces an orange emission in association with Cu+ ions. Thermal processing results in the chemical reduction of ionic copper via Sn2+ ultimately producing Cu NPs in the matrix, as evidenced by the appearance of the surface plasmon resonance around 574 nm. As a result, Cu+ PL decreases and the emission band shows a dip due to reabsorption by Cu NPs in resonance.

  3. The effects of interstitial oxygen on superconducting electronic phases in strontium and oxygen co-doped La1.937Sr0.063CuO4+δ

    Institute of Scientific and Technical Information of China (English)

    Shen Cai-xia; Shen Xiao-Li; Lu Wei; Dong Xiao-Li; Li Zheng-Cai; Xiong Ji-Wu; Zhou Fang

    2008-01-01

    Strontium and oxygen co-doped La1.937Sr0.063CuO4+δ superconductor with Tc≈40K, which is obtained by oxidizing strontium-doped starting ceramic sample La1.937Sr0.063CuO4 in NaClO solution, is annealed under different conditions to allow interstitial oxygen to redistribute. The evolution of the intrinsic superconducting property with the oxygen redistribution is studied in detail by magnetic measurements in various fields. It is found that there occurs the electronic phase separation from the single superconducting phase with Tc≈40K into two coexisting superconducting states with values of Tc: 15 and 40K or of 15 and 35K in this system, depending on annealing condition. Our results indicate that the 15, 35 and 40K superconducting phases associated with the excess oxygen redistribution are all thermodynamically meta-stable intrinsic states in this Sr/O co-doped cuprate.

  4. Designing Dual Emissions via Co-doping or Physical Mixing of Individually Doped ZnO and Their Implications in Optical Thermometry.

    Science.gov (United States)

    Senapati, Subrata; Nanda, Karuna Kar

    2017-05-17

    Here, we report on the novel design of dual emission via defect state engineering in codoped oxide microstructures and its implication in fluorescence intensity ratio (FIR) based optical temperature sensing. Eu- and Er-co-doped ZnO (EuEr:ZnO) microrods prepared by hydrothermal method. The emission peaks corresponding to Eu(3+) and Er(3+) are observed suggesting dual emission from codoped ZnO. Interestingly, Er(3+) peak intensity decreases and that of Eu(3+) increases with increase of temperature as is the case of individual doped cases and dual emission is also achieved via phyical mixing of the individual doped ZnO. The opposite trend is due to the electron transfer from the defect levels of host ZnO to Eu(3+) and not to Er(3+). Overall, our results pave the way in designing dual emission that can be exploited in FIR based temperature sensing. As an example, we probe temperature dependency of congo-red and polyvinyle alcohol (PVA) composite using EuEr:ZnO as optical probe for temperature sensing.

  5. Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects

    Energy Technology Data Exchange (ETDEWEB)

    Simimol, A. [Nanomaterials Research Lab, Surface Engineering Division, CSIR-National Aerospace Laboratories, Post Bag No. 1779, Bangalore 560017 (India); Department of Physics, National Institute of Technology Calicut, Calicut 673601 (India); Anappara, Aji A. [Department of Physics, National Institute of Technology Calicut, Calicut 673601 (India); Greulich-Weber, S. [Department of Physics, Nanophotonic Materials, Faculty of Science, University of Paderborn, 33095 Paderborn (Germany); Chowdhury, Prasanta [Nanomaterials Research Lab, Surface Engineering Division, CSIR-National Aerospace Laboratories, Post Bag No. 1779, Bangalore 560017 (India); Barshilia, Harish C., E-mail: harish@nal.res.in

    2015-06-07

    We report the growth of un-doped and cobalt doped ZnO nanostructures fabricated on FTO coated glass substrates using electrodeposition method. A detailed study on the effects of dopant concentration on morphology, structural, optical, and magnetic properties of the ZnO nanostructures has been carried out systematically by varying the Co concentration (c.{sub Co}) from 0.01 to 1 mM. For c.{sub Co }≤ 0.2 mM, h-wurtzite phase with no secondary phases of Co were present in the ZnO nanostructures. For c.{sub Co} ≤ 0.2 mM, the photoluminescence spectra exhibited a decrease in the intensity of ultraviolet emission as well as band-gap narrowing with an increase in dopant concentration. All the doped samples displayed a broad emission in the visible range and its intensity increased with an increase in Co concentration. It was found that the defect centers such as oxygen vacancies and zinc interstitials were the source of the visible emission. The X-ray photoelectron spectroscopy studies revealed, Co was primarily in the divalent state, replacing the Zn ion inside the tetrahedral crystal site of ZnO without forming any cluster or secondary phases of Co. The un-doped ZnO nanorods exhibited diamagnetic behavior and it remained up to a c.{sub Co} of 0.05 mM, while for c.{sub Co }> 0.05 mM, the ZnO nanostructures exhibited ferromagnetic behavior at room temperature. The coercivity increased to 695 G for 0.2 mM Co-doped sample and then it decreased for c.{sub Co }> 0.2 mM. Our results illustrate that up to a threshold concentration of 0.2 mM, the strong ferromagnetism is due to the oxygen vacancy defects centers, which exist in the Co-doped ZnO nanostructures. The origin of strong ferromagnetism at room temperature in Co-doped ZnO nanostructures is attributed to the s-d exchange interaction between the localized spin moments resulting from the oxygen vacancies and d electrons of Co{sup 2+} ions. Our findings provide a new insight for tuning the

  6. Effect of (Fe, Co) co-doping on the structural, electrical and magnetic properties of ZnO nanocrystals prepared by solution combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Ram, Mast, E-mail: mastram1999@yahoo.com; Negi, N.S.

    2016-01-15

    The structural, electrical and magnetic properties of Zn{sub 1−x}Co{sub 0.05}Fe{sub x}O (where, x=0, 1, 2, 3 and 5 mol%) nanoparticles prepared by solution combustion method are reported. The X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive analysis of X-rays (EDX) have been used for structural and compositional analysis. The X-ray diffraction pattern showed the existence of hexagonal wurtzite structure of parent ZnO with co-doping. The microstructural studies reveal the dense nanostructured morphology of these samples. The DC electrical conductivity measurements have been carried out in the temperature range of 300–450 K. The DC electrical conductivity decreases with the increasing Fe concentration. The magnetic studies reveal room temperature ferromagnetisation in doped ZnO nanoparticles. The magnetic properties of ZnO nanoparticles improve with increasing Fe dopant concentration.

  7. Synergistic effect of Indium and Gallium co-doping on growth behavior and physical properties of hydrothermally grown ZnO nanorods

    Science.gov (United States)

    Lim, Jun Hyung; Lee, Seung Muk; Kim, Hyun-Suk; Kim, Hyun You; Park, Jozeph; Jung, Seung-Boo; Park, Geun Chul; Kim, Jungho; Joo, Jinho

    2017-01-01

    We synthesized ZnO nanorods (NRs) using simple hydrothermal method, with the simultaneous incorporation of gallium (Ga) and indium (In), in addition, investigated the co-doping effect on the morphology, microstructure, electronic structure, and electrical/optical properties. The growth behavior of the doped NRs was affected by the nuclei density and polarity of the (001) plane. The c-axis parameter of the co-doped NRs was similar to that of undoped NRs due to the compensated lattice distortion caused by the presence of dopants that are both larger (In3+) and smaller (Ga3+) than the host Zn2+ cations. Red shifts in the ultraviolet emission peaks were observed in all doped NRs, owing to the combined effects of NR size, band gap renormalization, and the presence of stacking faults created by the dopant-induced lattice distortions. In addition, the NR/p-GaN diodes using co-doped NRs exhibited superior electrical conductivity compared to the other specimens due to the increase in the charge carrier density of NRs and the relatively large effective contact area of (001) planes. The simultaneous doping of In and Ga is therefore anticipated to provide a broader range of optical, physical, and electrical properties of ZnO NRs for a variety of opto-electronic applications. PMID:28155879

  8. Defect related microstructure, optical and photoluminescence behaviour of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method

    Science.gov (United States)

    Anbuselvan, D.; Muthukumaran, S.

    2015-04-01

    In the present study Ni-doped ZnO and Ni, Cu-doped ZnO nanoparticles were successfully synthesized by co-precipitation method. Structural studies confirmed the dominant presence of hexagonal wurtzite ZnO phase at lower Cu concentration and CuO phase was observed at higher Cu (Cu = 5%) concentration. The existence of Cu2+ ions were dominant at Cu ⩽ 3% (responsible for lattice shrinkage) and the presence of Cu+ ions were dominant at Cu > 3% (responsible for lattice expansion). The change in UV-visible absorption and energy gap were discussed by secondary phase generation and charge carrier density. The low absorption loss and high transmittance at Cu = 3% doped samples is used as potential candidate for opto-electronic devices. The increase of green band intensity and decrease of UV band at higher Cu concentration confirmed the existence of more defect related states.

  9. Biofilms Benefiting Plants Exposed to ZnO and CuO Nanoparticles Studied with a Root-Mimetic Hollow Fiber Membrane.

    Science.gov (United States)

    Bonebrake, Michelle; Anderson, Kaitlyn; Valiente, Jonathan; Jacobson, Astrid; McLean, Joan E; Anderson, Anne; Britt, David W

    2017-10-02

    Plants exist with a consortium of microbes that influence plant health, including responses to biotic and abiotic stress. While nanoparticle (NP)-plant interactions are increasingly studied, the effect of NPs on the plant microbiome is less researched. Here a root-mimetic hollow fiber membrane (HFM) is presented for generating biofilms of plant-associated microbes nurtured by artificial root exudates (AREs) to correlate exudate composition with biofilm formation and response to NPs. Two microbial isolates from field-grown wheat, a bacillus endophyte and a pseudomonad root surface colonizer, were examined on HFMs fed with AREs varying in N and C composition. Bacterial morphology and biofilm architecture were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and responses to CuO and ZnO NP challenges of 300 mg/L evaluated. The bacillus isolate sparsely colonized the HFM. In contrast, the pseudomonad formed robust biofilms within 3 days. Dependent on nutrient sources, the biofilm cells produced extensive extracellular polymeric substances (EPS) and large intracellular granules. Pseudomonad biofilms were minimally affected by ZnO NPs. CuO NPs, when introduced before biofilm maturation, strongly reduced biofilm formation. The findings demonstrate the utility of the HFM root-mimetic to study rhizoexudate influence on biofilms of root-colonizing microbes but without active plant metabolism. The results will allow better understanding of how microbe-rhizoexudate-NP interactions affect microbial and plant health.

  10. Green coloration of Co-doped ZnO explained from structural refinement and bond considerations.

    Science.gov (United States)

    Gaudon, M; Toulemonde, O; Demourgues, A

    2007-12-24

    ZnO doped with Co2+ has been prepared by a Pechini process and investigated in terms of crystallographic structure and UV-visible properties. We emphasize for the first time a splitting of the ZnO band gap in two "sub-band gaps" (never clearly mentioned until now) which is fully interpreted basing on the iono-covalent nature of the O-Zn bonds. An anticipative approach of the potential structure relaxations was discussed from exchanged effective charge per bond calculated with the purely ionic Brown and Altermatt model.

  11. Study on Co-doped ZnO comparatively by first-principles calculations and relevant experiments

    Science.gov (United States)

    Su, Y. L.; Zhang, Q. Y.; Zhou, N.; Ma, C. Y.; Liu, X. Z.; Zhao, J. J.

    2017-01-01

    Co-doped ZnO was studied using first-principles methods with comparison to experimental results taken from epitaxial Zn1-xCoxO (x 0.05) films. Density of Co2+ ions was determined using absorption spectra for the first time, and then a definite correlation between metallic Co clusters and the magnetism of the ZnCoO films was proved and the average number of Co atoms in the metallic Co clusters was estimated to be less than 200 using a superparamagnetic model. First-principles calculations of ZnCoO alloys and the relevant problems were discussed by comparing the electronic structures with absorption spectra and the results calculated by Tanabe-Sugano theory. U correction was proved to be necessary for calculating the band-gap energy of ZnCoO alloys, but other optical properties related to Co2+ ions are incorrect and the conclusion for magnetic properties is ambiguous due to uncertainty of the calculated highly localized states, which are in pressing for solution in study of material properties relevant to electronic structure.

  12. Thermal ionization induced metal-semiconductor transition and room temperature ferromagnetism in trivalent doped ZnO codoped with lithium

    Energy Technology Data Exchange (ETDEWEB)

    Sivagamasundari, A.; Chandrasekar, S.; Pugaze, R.; Kannan, R., E-mail: kannan@pec.edu [Department of Physics, Pondicherry Engineering College, Puducherry 605 014 (India); Rajagopan, S. [Department of Chemistry, Pondicherry Engineering College, Puducherry 605 014 (India)

    2014-03-07

    Thermal ionization induced metallic to semiconductor (MST) transition occurring at 460 K for Zn{sub 0.97}Al{sub 0.03}O, 463 K for Zn{sub 0.94}Al{sub 0.03}Li{sub 0.03}O, and 503 K for Zn{sub 0.91}Al{sub 0.03}Li{sub 0.03}Mn{sub 0.03}O has been found in the sol-gel synthesized (using hexamethylenetetramine), trivalent doped (Al, Mn) ZnO codoped with lithium. Increase in the thermally ionized carrier concentration due to Al doping is responsible for near band edge (NBE) peak shift causing Fermi level to move into conduction band making it metallic consistent with resistivity results. Free carrier (thermally activated) neutralization with ionized donor is responsible for semiconducting nature, which is supported from the free carrier screening produced energy shift in the NBE of photoluminescence peak. Furthermore, independently band gap shrinkage is also obtained from UV-Visible studies confirming localization induced MST. An anti-correlation is found between defect density (DLE) and room temperature ferromagnetism (RTFM) indicating intrinsic defects are not directly responsible for RTFM.

  13. Effect of Co doping concentration on structural properties and optical parameters of Co-doped ZnO thin films by sol-gel dip-coating method.

    Science.gov (United States)

    Nam, Giwoong; Yoon, Hyunsik; Kim, Byunggu; Lee, Dong-Yul; Kim, Jong Su; Leem, Jae-Young

    2014-11-01

    The structural and optical properties of Co-doped ZnO thin films prepared by a sol-gel dip-coating method were investigated. X-ray diffraction analysis showed that the thin films were grown with a c-axis preferred orientation. The position of the (002) peak was almost the same in all samples, irrespective of the Co concentration. It is thus clear that Co doping had little effect on the position of the (002) peak. To confirm that Co2+ was substituted for Zn2+ in the wurtzite structure, optical measurements were conducted at room temperature by a UV-visible spectrometer. Three absorption peaks are apparent in the Co-doped ZnO thin films that do not appear for the undoped ZnO thin film. As the Co concentration was increased, absorption related to characteristic Co2+ transitions increased because three absorption band intensities and the area underneath the absorption wells between 500 and 700 nm increased with increasing Co concentration. The optical band gap and static dielectric constant decreased and the Urbach energy and extinction coefficient increased with increasing Co concentration.

  14. N and Al co-doping as a way to p-type ZnO without post-growth annealing

    Science.gov (United States)

    Snigurenko, Dymitr; Guziewicz, Elzbieta; Krajewski, Tomasz A.; Jakiela, Rafal; Syryanyy, Yevgen; Kopalko, Krzysztof; Paszkowicz, Wojciech

    2016-12-01

    We demonstrate experimental results on p-type ZnO films grown by atomic layer deposition (ALD) and co-doped with aluminum and nitrogen (ANZO). The films were obtained at low temperature (100 °C) with different N to Al ratio and show conductivity type, which depends on the N and Al content. We applied the x-ray photoelectron spectroscopy in order to get insight into a chemical nature of dopants and we found three pronounced contributions of the N1s core level which appear at binding energies of 396.1, 397.4 and around 399 eV. Based on ANZO and undoped ZnO films, both grown by the ALD technique, the ZnO homojunction was obtained in one technological process without any post-growth high temperature processing. The rectification ratio as high as 4 × 104 at ± 2 V was achieved when an ultrathin Al2O3 layer was inserted between p- and n-type ZnO and a n-type ZnO buffer layer deposited on an insulating Si substrate was applied.

  15. Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation

    Science.gov (United States)

    Sahay, R.; Sundaramurthy, J.; Suresh Kumar, P.; Thavasi, V.; Mhaisalkar, S. G.; Ramakrishna, S.

    2012-02-01

    Electrospun copper based composite nanofibers were synthesized using the copper acetate/polyvinyl alcohol/water solution as starting material. Synthesized composite nanofibers were sintered at 500 °C to obtain CuO nanofibers. XRD, FTIR and XPS techniques were used to confirm the presence of pure CuO nanostructures. The effect of annealing cycle on the crystalline structure of the CuO nanofibers was analyzed and observed that the decrease in crystallite size with an increase in the dwelling time improved the orientation of the CuO crystallite. The blue-shift in the band-gap energies of CuO nanofibers was observed as a result of quantum confinement from bulk CuO (1.2 eV) to one dimensional (1D) nanostructures (∼1.746 eV). The catalytic activity of the CuO fibers for the degradation of methyl orange was carried out and as a blocking layer in ZnO based DSSC was fabricated and observed a ∼25% increase in the current density.

  16. Enhancement of zinc vacancies in room-temperature ferromagnetic Cr–Mn codoped ZnO nanorods synthesized by hydrothermal method under high pulsed magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Min [Laboratory for Microstructures/School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, 200072 Shanghai (China); Li, Ying, E-mail: liying62@shu.edu.cn [Laboratory for Microstructures/School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, 200072 Shanghai (China); Hu, Yemin; Zhu, Mingyuan; Li, Wenxian; Jin, Hongmin; Wang, Shiwei [Laboratory for Microstructures/School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, 200072 Shanghai (China); Li, Yibing; Zhao, Huijun [Centre for Clean Environment and Energy, Griffith School of Environment, Griffith University, Gold Coast Campus, QLD 4222 (Australia)

    2015-10-25

    Room-temperature ferromagnetic Cr–Mn codoped ZnO diluted magnetic semiconductor was synthesized by pulse magnetic field-assisted hydrothermal method. X-ray diffraction and Raman spectra analysis reveal that all the samples have hexagonal wurtzite structure. High resolution transmission electron microscopy and Energy-dispersive spectroscopy measurements ensure that the Cr and Mn ions are incorporated into the wurtzite host matrix without any detectable impurity phase. X-ray photoelectron spectroscopy confirms that Mn and Cr ions are doped into the ZnO wurtzite host matrix with divalent states in the sample without magnetic field processing. Cr ions became trivalent states in ZnO synthesized with high pulsed magnetic field, while Mn keeps its divalent state. The presence of Cr{sup 3+} is attributed to hole doping in ZnO with zinc vacancies induced by the field. Magnetization measurements reveal the appearance of ferromagnetism for the magnetic field processed sample. Comparing with oxygen vacancies, zinc vacancies (hole doping) is more effectively to stabilized ferromagnetism in Mn-doped ZnO diluted magnetic semiconductors. - Graphical abstract: This figure shows the magnetization versus magnetic field curves for ZnO–Cr–Mn-0T and ZnO–Cr–Mn-4T at 290 K. The 4 T sample was well-defined hysteresis loops, which is indicative of room-temperature ferromagnetic behavior. But for 0 T sample, no ferromagnetic response at 290 K is observed. The hole doping enhanced by high pulsed magnetic field is crucial to stabilize ferromagnetism in Mn-doped ZnO diluted magnetic semiconductor. And the presence of Cr{sup 3+} in 4 T sample is a possible signature of hole doping induced by zinc vacancies. - Highlights: • Cr–Mn codoped ZnO nanorods were synthesized by hydrothermal method. • High pulsed magnetic field was applied during the hydrothermal method. • The valence state of doped elements was investigated by XPS. • High pulsed magnetic field enhances the

  17. Structural, linear and nonlinear optical properties of co-doped ZnO thin films

    Science.gov (United States)

    Shaaban, E. R.; El-Hagary, M.; Moustafa, El Sayed; Hassan, H. Shokry; Ismail, Yasser A. M.; Emam-Ismail, M.; Ali, A. S.

    2016-01-01

    Different compositions of Co-doped zinc oxide [(Zn(1- x)Co x O) ( x = 0, 0.02, 0.04, 0.06, 0.08 and 0.10)] thin films were evaporated onto highly clean glass substrates by thermal evaporation technique using a modified source. The structural properties investigated by X-ray diffraction revealed hexagonal wurtzite ZnO-type structure. The crystallite size of the films was found to decrease with increasing Co content. The optical characterization of the films has been carried out using spectral transmittance and reflectance obtained in the wavelength range from 300 to 2500 nm. The refractive index has been found to increase with increasing Co content. It was further found that optical energy gap decreases from 3.28 to 3.03 eV with increasing Co content from x = 0 to x = 0.10, respectively. The dispersion of refractive index has been analyzed in terms of Wemple-DiDomenico (WDD) single-oscillator model. The oscillator parameters, the single-oscillator energy ( E o), the dispersion energy ( E d), and the static refractive index ( n 0), were determined. The nonlinear refractive index of the Zn(1- x)Co x O thin films was calculated and revealed well correlation with the linear refractive index and WDD parameters which in turn depend on the density and molar volume of the system.

  18. Methane oxidation and abundance of methane oxidizers in tropical agricultural soil (vertisol) in response to CuO and ZnO nanoparticles contamination.

    Science.gov (United States)

    Mohanty, Santosh Ranjan; Rajput, Parul; Kollah, Bharati; Chourasiya, Dipanti; Tiwari, Archana; Singh, Muneshwar; Rao, A Subba

    2014-06-01

    There is worldwide concern over the increase use of nanoparticles (NPs) and their ecotoxicological effect. It is not known if the annual production of tons of industrial nanoparticles (NPs) has the potential to impact terrestrial microbial communities, which are so necessary for ecosystem functioning. Here, we have examined the consequences of adding the NPs particularly the metal oxide (CuO, ZnO) on CH4 oxidation activity in vertisol and the abundance of heterotrophs, methane oxidizers, and ammonium oxidizers. Soil samples collected from the agricultural field located at Madhya Pradesh, India, were incubated with either CuO and ZnO NPs or ionic heavy metals (CuCl2, ZnCl2) separately at 0, 10, and 20 μg g(-1) soil. CH4 oxidation activity in the soil samples was estimated at 60 and 100 % moisture holding capacity (MHC) in order to link soil moisture regime with impact of NPs. NPs amended to soil were highly toxic for the microbial-mediated CH4 oxidation, compared with the ionic form. The trend of inhibition was Zn 20 > Zn 10 > Cu 20 > Cu 10. NPs delayed the lag phase of CH4 oxidation to a maximum of 4-fold and also decreased the apparent rate constant k up to 50 % over control. ANOVA and Pearson correlation analysis (α = 0.01) revealed significant impact of NPs on the CH4 oxidation activity and microbial abundance (p Biplot indicated negative impact of NPs on CH4 oxidation and microbial abundance. Our result also confirmed that higher soil moisture regime alleviates toxicity of NPs and opens new avenues of research to manage ecotoxicity and environmental hazard of NPs.

  19. Mass production and photoelectric performances of P and Al Co-doped ZnO nanocrystals under different cooling post-processes

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ya-Juan; Lu, Yi [Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai 200237 (China); Liu, Jin-Ku, E-mail: jkliu@ecust.edu.cn [Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai 200237 (China); Yang, Xiao-Hong, E-mail: yxh6110@yeah.net [Department of Chemistry, Chizhou University, Chizhou 247000 (China)

    2015-11-05

    The phosphorus and aluminum co-doped in zinc oxide (ZnO) called PAZO nano-crystals (NCs) have been mass synthesized by a combustion method, which shows a preferable photocatalytic capability and conductive ability. This article focuses on the properties of PAZO NCs experienced by three cooling-down aftertreatments, which were the normalizing, quenching and annealing process, respectively. The influences of different cooling processes on the photocatalytic and conductive performances are discussed in details. From the research, we found the quenched-PAZO NCs showed the most unappealing photocatalysis and conductivity, because excessive defects as the recombination center of electron–hole pairs were generated in the quenching process. - Graphical abstract: This research focuses on the PAZO NCs experienced by different cooling-down aftertreatments, which were the normalizing, quenching and annealing process, respectively. The quenched-PAZO NCs had the most unappealing photocatalysis and conductivity, because of generating excessive defects as the recombination center of electron–hole pairs in the quenching process. - Highlights: • We presented a method to mass synthesize co-doped P and Al in ZnO nanocrystals. • The PAZO NCs have novel photoelectric performances. • The cooling post-process influence on the photoelectric properties was studied. • The excessive defects decline the photocatalytic and conductive activities.

  20. Resistive switching characteristics and conduction mechanisms of nonvolatile memory devices based on Ga and Sn co-doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dohyun; Yun, Dong Yeol; Lee, Nam Hyun; Kim, Tae Whan, E-mail: twk@hanyang.ac.kr

    2015-07-31

    Nonvolatile memory devices were fabricated utilizing Ga and Sn co-doped ZnO (GZTO) films formed by using a solution process method. X-ray diffraction patterns showed that the crystallinity of the annealed GZTO films was an amorphous phase. X-ray photoelectron spectroscopy spectra of the GZTO films depicted Zn−O, Ga−O, and Sn−O bonds. Current–voltage measurements on the Al/GZTO/indium-tin-oxide (ITO) devices at 300 K showed bipolar resistive switching behaviors. The resistances at both the low resistance state (LRS) and high resistance state (HRS) measured at 0.5 V for the devices maintain almost constant without any damage and breakdown above 130 s, indicative of the memory stability of the devices. A difference in the resistance between the HRS and the LRS was more than 1 order of the magnitude. The conduction mechanisms of the HRS in the set process for the Al/GZTO/ITO devices were dominated by a space-charge-limited current model. - Highlights: • Nonvolatile memory devices were fabricated utilizing Ga and Sn co-doped ZnO (GZTO) films. • X-ray diffraction patterns showed that the annealed GZTO films were an amorphous phase. • Current–voltage measurements on the devices showed bipolar resistive switching behaviors. • One order magnitude difference in resistance between low and high resistance states (HRS) • Space charge limited conduction is the dominant conduction mechanisms of the HRS.

  1. Difference in magnetic properties between Co-doped ZnO powder and thin film

    Institute of Scientific and Technical Information of China (English)

    Liu Xue-Chao; Shi Er-Wei; Chen Zhi-Zhan; Zhang Hua-Wei; Zhang Tao; Song Li-Xin

    2007-01-01

    This paper reports that the Zn0.95Co0.05O polycrystalline powder and thin film were prepared by sol-gel technique under the similar preparation conditions. The former does not show typical ferromagnetic behaviour, while the latter exhibits obvious ferromagnetic properties at 5 K and room temperature. The UV-vis spectra and x-ray absorption spectra show that Co2+ ions are homogeneously incorporated into ZnO lattice without forming secondary phases. The distinct difference between film and powder sample is the c-axis (002) preferential orientation indicated by the x-ray diffraction pattern and field emission scanning electron microscopy measurement, which may be the reason why Zn0.95Co0.05O film shows ferromagnetic behaviour.

  2. Effect of substrate temperature on transparent conducting Al and F co-doped ZnO thin films prepared by rf magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fang-Hsing, E-mail: fansen@dragon.nchu.edu.tw; Chang, Chiao-Lu

    2016-05-01

    Highlights: • Al and F co-doped ZnO (AFZO) thin films were prepared by rf magnetron sputtering. • Effects of substrate temperature on properties of AFZO films were investigated. • The AFZO films show a typical hexagonal wurtzite structure and are (0 0 2) oriented. • The AFZO thin film prepared at 200 °C exhibits a low resistivity of 2.88 × 10{sup −4} Ω-cm. • The average visible transmittances of all the AFZO thin films exceed 92%. - Abstract: ZnO is a wide bandgap semiconductor that has many potential applications such as solar cells, thin film transistors, light emitting diodes, and gas/biological sensors. In this study, a composite ceramic ZnO target containing 1 wt% Al{sub 2}O{sub 3} and 1.5 wt% ZnF{sub 2} was prepared and used to deposit transparent conducting Al and F co-doped zinc oxide (AFZO) thin films on glass substrates by radio frequency magnetron sputtering. The effect of substrate temperatures ranging from room temperature (RT) to 200 °C on structural, morphological, electrical, chemical, and optical properties of the deposited thin films were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), Hall effect measurement, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and UV–vis spectrophotometer. The XRD results showed that all the AFZO thin films had a (0 0 2) diffraction peak, indicating a typical wurtzite structure with a preferential orientation of the c-axis perpendicular to the substrate. The FE-SEM and AFM analyses indicated that the crystallinity and grain size of the films were enhanced while the surface roughness decreased as the substrate temperature increased. Results of Hall effect measurement showed that Al and F co-doping decreased the resistivity more effectively than single-doping (either Al or F doping) in ZnO thin films. The resistivity of the AFZO thin films decreased from 5.48 × 10{sup −4} to 2.88 × 10{sup −4}

  3. Synthesis and characterization of Mn and Co codoped ZnO nanoparticles

    Science.gov (United States)

    Abdullahi, Sabiu Said; Köseoğlu, Yuksel; Güner, Sadik; Kazan, Sinan; Kocaman, Bayram; Ndikilar, Chifu E.

    2015-07-01

    MnxCo0.1Zn0.9-xO nanoparticles with different doping concentration (x = 0.0, 0.05, 0.1, 0.15, and 0.2) has been successfully synthesized by microwave assisted combustion synthesis method using urea as a fuel. The structural, morphological, compositional, magnetic and optical properties of these nanoparticles were investigated by X-ray diffraction (XRD), Scanning electron microscopes (FE-SEM JEOL-7001), Energy-dispersive X-ray spectroscopy (EDX), Quantum Design Physical Property Measurement System (PPMS) and UV-visible spectroscopy, respectively. The structural properties showed the formation of single phase Wurtzite structure of ZnO, with the strong diffraction peaks appear in (1 0 0), (0 0 2) and (1 0 1) respectively. The average size of the nanoparticles decreases from 32.65 to 23.69 nm as dopant concentration is increase. Scanning electron microscope (SEM) pictures showed that smaller crystallites have sizes smaller than 100 nm, no phase separation and agglomeration was observed. Moreover, Energy-dispersive X-ray spectroscopy (EDX) confirmed the synthesis results. The magnetic characterization of the samples reveals that the samples showed paramagnetic and ferromagnetic behavior, meanwhile there is no linear variation of magnetic moment with concentration of Mn ion whereby at x = 0.15 the samples show room temperature ferromagnetic behavior with coercive field and remanent magnetization of 47.70 Oe and 1.8 × 10-1 emu/g, respectively. UV-vis spectroscopy results show that the optical band gap of the nanoparticles varies between 3.24 eV and 3.02 eV.

  4. Comparative investigation on cation-cation (Al-Sn) and cation-anion (Al-F) co-doping in RF sputtered ZnO thin films: Mechanistic insight

    Science.gov (United States)

    Mallick, Arindam; Basak, Durga

    2017-07-01

    Herein, we report a comparative mechanistic study on cation-cation (Al-Sn) and cation-anion (Al-F) co-doped nanocrystalline ZnO thin films grown on glass substrate by RF sputtering technique. Through detailed analyses of crystal structure, surface morphology, microstructure, UV-VIS-NIR transmission-reflection and electrical transport property, the inherent characteristics of the co-doped films were revealed and compared. All the nanocrystalline films retain the hexagonal wurtzite structure of ZnO and show transparency above 90% in the visible and NIR region. As opposed to expectation, Al-Sn (ATZO) co-doped film show no enhanced carrier concentration consistent with the probable formation of SnO2 clusters supported by the X-ray photoelectron spectroscopy study. Most interestingly, it has been found that Al-F (AFZO) co-doped film shows three times enhanced carrier concentration as compared to Al doped and Al-Sn co-doped films attaining a value of ∼9 × 1020 cm-3 due to the respective cation and anion substitution. The carrier relaxation time increases in AFZO while it decreases significantly for ATZO film consistent with the concurrence of the impurity scattering in the latter.

  5. Study on the structural, electrical and optical properties of AI-F co-doped ZnO thin films prepared by RF magnetron sputtering

    Institute of Scientific and Technical Information of China (English)

    MA Rui-xin; WANG Mu-kong; KANG Bo; WANG Yong-gang

    2011-01-01

    @@ Al and F co-doped ZnO (ZnO:(Al, F)) thin films on glass substrates are prepared by the RF magnetron sputtering with different F doping contents.The structural, electrical and optical properties of the deposited films are sensitive to the F doping content.The X-ray analysis shows that the films are c-axis orientated along the (002) plane with the grain size ranging from 9 nm to 13 nm.Micrographs obtained by the scanning electron microscope (SEM) show a uniform surface.The best films obtained have a resistivity of 2.16× 10-3Ω · cm, while the high optical transmission is 92.0% at the F content of 2.46 wt.%.

  6. Influence of Cd doping on structural and optical properties of (Cd, Al)-codoped ZnO powders synthesized via sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Libing, E-mail: lbduan@nwpu.edu.cn; Zhao, Xiaoru; Wang, Yajun; Shen, Hao; Geng, Wangchang; Zhang, Fuli

    2015-10-05

    Highlights: • (Al, Cd) codoped ZnO powders prepared by sol–gel method. • Cd worked effectively on ZnO band gap engineering for Cd content x < 6%. • Phase segregation appears at high Cd doping concentration x ⩾ 6%. - Abstract: The effect of Cd doping on structural and optical properties of 1 at.% Al-doped Zn{sub 1−x}Cd{sub x}O (x = 0–8%) powders prepared by sol–gel method was systematically investigated. X-ray diffraction (XRD) patterns revealed the powders retained a hexagonal wurtzite structure of ZnO below x = 6%, while cubic rocksalt CdO appeared when x = 8%. The bandgap and near band emission (NBE) energies determined from ultraviolet–visible (UV–vis) absorbance and photoluminescence (PL) spectra, respectively, decreased linearly with increasing Cd content up to x = 6%, it seemed that the Cd worked effectively on ZnO bandgap engineering. However, the Stokes shift unexpectedly decreased from 136 meV to 33 meV with increasing Cd content. According to the fluctuation of integrated intensity of Cd 3d{sub 5/2} X-ray photoelectron spectroscopy (XPS), and redshift for x ⩽ 4% and then blueshift for x > 4% of the broadening A{sub 1}(LO)/E{sub 1}(LO) Raman mode, it was concluded that CdO impurity might also exist in the sample of x = 6% at least. The redshift of bandgap and NBE could not be simply ascribed to bandgap shrinkage of Zn{sub 1−x}Cd{sub x}O powders for x > 4%, but also due to the existence of CdO impurity with narrower bandgap of 2.3 eV.

  7. A comparative study of the effects of CuO, NiO, ZrO{sub 2} and CeO{sub 2} coupling on the photocatalytic activity and characteristics of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Sherly, Eluvathingal Devassy; Vijaya, John Judith [Loyola College, Chennai (India); Kennedy, Lourdusamy John [Vellore Institute of Technology (VIT) University, Chennai (India); Meenakshisundaram, Arunachalam; Lavanya, Melcureraj [Chennai Petroleum Corporation Limited, Manali (India)

    2016-04-15

    ZnO nanoparticles were coupled with CuO, NiO, ZrO{sub 2} and CeO{sub 2} in 2 : 1 molar ratio by a microwave assisted one pot solution combustion synthesis. Structural, morphological and optical properties of ZnO and coupled oxides were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), UV-Vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), Fourier transform infrared (FTIR) spectroscopy and Brunauer- Emmett-Teller (BET) surface area analysis. XRD data revealed the presence of two phases in the coupled oxides. Photocatalytic activity of pure ZnO and ZnO coupled oxides was compared for the degradation of 2,4-dichlorophenol (2,4- DCP) under near UV light (365 nm) irradiation and the rate constant (k) values were calculated from the kinetic studies. The coupled oxide, Zn{sub 2}Ce with ZnO and CeO{sub 2} in 2 : 1 molar ratio showed maximum degradation efficiency due to the efficient interparticle electron transfer between ZnO and CeO{sub 2}.

  8. Effect of substrate temperature on transparent conducting Al and F co-doped ZnO thin films prepared by rf magnetron sputtering

    Science.gov (United States)

    Wang, Fang-Hsing; Chang, Chiao-Lu

    2016-05-01

    ZnO is a wide bandgap semiconductor that has many potential applications such as solar cells, thin film transistors, light emitting diodes, and gas/biological sensors. In this study, a composite ceramic ZnO target containing 1 wt% Al2O3 and 1.5 wt% ZnF2 was prepared and used to deposit transparent conducting Al and F co-doped zinc oxide (AFZO) thin films on glass substrates by radio frequency magnetron sputtering. The effect of substrate temperatures ranging from room temperature (RT) to 200 °C on structural, morphological, electrical, chemical, and optical properties of the deposited thin films were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), Hall effect measurement, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and UV-vis spectrophotometer. The XRD results showed that all the AFZO thin films had a (0 0 2) diffraction peak, indicating a typical wurtzite structure with a preferential orientation of the c-axis perpendicular to the substrate. The FE-SEM and AFM analyses indicated that the crystallinity and grain size of the films were enhanced while the surface roughness decreased as the substrate temperature increased. Results of Hall effect measurement showed that Al and F co-doping decreased the resistivity more effectively than single-doping (either Al or F doping) in ZnO thin films. The resistivity of the AFZO thin films decreased from 5.48 × 10-4 to 2.88 × 10-4 Ω-cm as the substrate temperature increased from RT to 200 °C due to the increased carrier concentration and Hall mobility. The optical transmittances of all the AFZO thin films were over 92% in the wavelength range of 400-800 nm regardless of substrate temperature. The blue-shift of absorption edge accompanied the rise of the optical band gap, which conformed to the Burstein-Moss effect. The developed AFZO thin films are suitable as transparent conducting electrodes for various optoelectronic

  9. Photoluminescence of transparent glass-ceramics based on ZnO nanocrystals and co-doped with Eu3+, Yb3+ ions

    Science.gov (United States)

    Arzumanyan, Grigory M.; Kuznetsov, Evgeny A.; Zhilin, Aleksandr A.; Dymshits, Olga S.; Shemchuk, Daria V.; Alekseeva, Irina P.; Mudryi, Alexandr V.; Zhivulko, Vadim D.; Borodavchenko, Olga M.

    2016-12-01

    Glasses of the K2Osbnd ZnOsbnd Al2O3sbnd SiO2 system co-doped with Eu2O3 and Yb2O3 were prepared by the melt-quenching technique. Transparent zincite (ZnO) glass-ceramics were obtained by secondary heat-treatments at 680-860 °C. At 860 °C, traces of Eu oxyapatite appeared in addition to ZnO nanocrystals. The average crystal size obtained from the X-ray diffraction data was found to range between 14 and 35 nm. Absorption spectra of the initial glasses are composed of an absorption edge and absorption bands due to electronic transitions of Eu3+ ions. With heat-treatment, the absorption edge pronouncedly shifts to the visible spectral range. The luminescence properties of the glass and glass-ceramics were studied by measuring their excitation and emission spectra at 300, 78, and 4.2 K. Strong red emission of Eu3+ ions dominated by the 5D0-7F2 (612 nm) electric dipole transition was detected. Changes in the luminescence properties of the Eu3+-related excitation and emission bands were observed after heat-treatments at 680 °C and 860 °C. The ZnO nanocrystals showed both broad luminescence (400-850 nm) and free-exciton emission near 3.3 eV at room temperature. The upconversion luminescence spectrum of the initial glass was obtained under excitation of the 976 nm laser source.

  10. Microstructural characterization, optical and photocatalytic properties of bilayered CuO and ZnO based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Pizá-Ruiz, P.; Solís-Canto, O.; Ornelas-Gutiérrez, C.; Pérez-García, S.; Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx

    2014-12-05

    Highlights: • High quality bilayered Zn–Cu oxide thin films were deposited by aerosol assisted CVD. • Detailed microstructural characterization was performed by XRD and electron microscopy. • Absorbance of bilayered films shows a shift of absorption edge toward visible region. • Optical band gap or nearly 3.2 and 2 eV was determined for ZnO and Cu oxide. • High photocatalytic activity around 90% was obtained for bilayered samples. - Abstract: In this work, it is presented the synthesis, microstructural characterization and photocatalytic properties of bilayered CuO–ZnO/ZnO thin films onto borosilicate glass and fused silica substrates. The films were deposited by aerosol assisted chemical vapor deposition, using an experimental setup reported elsewhere. Deposition conditions were optimized to get high quality films; i.e. they were structurally uniform, highly transparent, non-light scattering, homogeneous, and well adhered to the substrate. Different Cu/Zn atomic ratios were tried for the upper layer. The microstructure of the films was characterized by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy. GIXRD results indicate the presence of ZnO Wurzite and Cu oxide phases. Results of SEM and HRTEM analysis of the cross sectional microstructure showed that the films were composed of compact and dense layers with no visible evidence of an interfacial boundary or porosity. Optical absorbance of the bilayered films showed a clear shift of the absorption toward the visible range. Optical band gap was determined roughly at 3.2 and 2 eV for ZnO and Cu oxide, respectively. Photocatalytic activity of the samples, for the degradation of a 10{sup −5} mol dm{sup −3} solution of methylene blue (MB), was determined after 120 and 240 min of irradiation with an UV-A source. Around 90% of MB degradation was reached by bilayered films with

  11. The effect of substrate temperatures on the structural, optical and electrical properties of N–Al codoped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, A., E-mail: afef2000@hotmail.com; Abdullah, M.J.; Qaeed, M.A.

    2015-08-15

    N–Al codoped ZnO thin films were prepared on glass and Si (100) substrates by RF sputtering. The films were deposited at different substrate temperatures ranging from 100 °C to 400 °C. The ZnO (002) peak showed the highest intensity at the substrate temperature of 400 ° C. The prepared films showed good transmission of above 72% in the visible range and the calculated values of energy band gaps were in the range (3.42±0.1–3.54±0.1 eV). Raman Peaks at 273.58 cm{sup −1} and 579.49 cm{sup −1} corresponding to ZnO:N and ZnO:AlN respectively were also observed. The Hall measurements showed that the films deposited at RT and 400 °C exhibit p-type conduction with hole concentrations of 1.52×10{sup +19} cm{sup −3} and 6.3×10{sup +17} cm{sup −3} respectively. The corresponding mobilities were 0.866 cm{sup 2} V{sup −1} s{sup −1} and 10.5 cm{sup 2} V{sup −1} s{sup −1} respectively. - Highlights: • The Hall measurements showed that the films deposited at RT and 400 °C exhibit p-type conduction. • Raman Peaks at 273.58 cm{sup -1} and 579.49 cm{sup -1} corresponding to ZnO:N and ZnO:AlN respectively.

  12. Preparation, structural, photoluminescence and magnetic studies of Cu doped ZnO nanoparticles co-doped with Ni by sol-gel method

    Science.gov (United States)

    Theyvaraju, D.; Muthukumaran, S.

    2015-11-01

    Zn0.96-xNi0.04CuxO nanoparticles have been synthesized by varying different Cu concentrations between 0% and 4% using simple sol-gel method. X-ray diffraction studies confirmed the hexagonal structure of the prepared samples. The formation of secondary phases, CuO (111) and Zn (101) at higher Cu content is due un-reacted Cu2+ and Zn2+ ions present in the solution which reduces the interaction between precursor ions and surfaces of ZnO. Well agglomerated and rod-like structure noticed at Cu=4% greatly de-generate and enhanced the particle size. The nominal elemental composition of Zn, Cu, Ni and O was confirmed by energy dispersive X-ray analysis. Even though energy gap was increased (blue-shift) from Cu=0-2% by quantum size effect, the s-d and p-d exchange interactions between the band electrons of ZnO and localized d electrons of Cu and Ni led to decrease (red-shift) the energy gap at Cu=4%. Presence of Zn-Ni-Cu-O bond was confirmed by Fourier transform infrared analysis. Ultraviolet emission by band to band electronic transition and defect related blue emission were discussed by photoluminescence spectra. The observed optical properties concluded that the doping of Cu in the present system is useful to tune the emission wavelength and hence acting as the important candidates for the optoelectronic device applications. Ferromagnetic ordering of Cu=2% sample was enhanced by charge carrier concentration where as the antiferromagnetic interaction between neighboring Cu-Cu ions suppressed the ferromagnetism at higher doping concentrations of Cu.

  13. Direct observation of hopping induced spin polarization current in oxygen deficient Co-doped ZnO by Andreev reflection technique

    Science.gov (United States)

    Yang, Kung-Shang; Huang, Tzu-Yu; Dwivedi, G. D.; Lin, Lu-Kuei; Lee, Shang-Fan; Sun, Shih-Jye; Chou, Hsiung

    2017-07-01

    Oxygen vacancy induced ferromagnetic coupling in diluted magnetic oxide (DMO) semiconductors have been reported in several studies, but technologically more crucial spin-polarized current (SPC) is still under-developed in DMOs. Few studies have claimed that VRH mechanism can originate the SPC, but, how VRH mechanism associated with percolation path, is not clearly understood. We used Point-contact Andreev reflection (PCAR) technique to probe the SPC in Co-doped ZnO (CZO) films. Since the high resistance samples cause broadening in conductance(G)-voltage(V) curves, which may result in an unreliable evaluation of spin polarization, we include two extra parameters, (i) effective temperature and (ii) spreading resistance, for the simulation to avoid the uncertainty in extracting spin polarization. The effective G-V curves and higher spin polarization can be obtained above a certain oxygen vacancy concentration. The number of completed and fragmentary percolation paths is proportional to the concentration of oxygen vacancies. For low oxygen vacancy samples, the Pb-tip has a higher probability of covering fragmentary percolation paths than the complete ones, due to its small contact size. The completed paths may remain independent of one another and get polarized in different directions, resulting in lower spin-polarization value. High oxygen vacancy samples provide a high density of completed path, most of them link to one another by crossing over, and gives rise to high spin-polarization value.

  14. Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria.

    Science.gov (United States)

    Dasari, Thabitha P; Pathakoti, Kavitha; Hwang, Huey-Min

    2013-05-01

    Cytotoxicity of selected metal oxide nanoparticles (MNPs) (ZnO, CuO, Co3O4 and TiO2) was investigated in Escherichia coli both under light and dark conditions. Cytotoxicity experiments were conducted with spread plate counting and the LC50 values were calculated. We determined the mechanism of toxicity via measurements of oxidative stress, reduced glutathione, lipid peroxidation, and metal ions. The overall ranking of the LC50 values was in the order of ZnO TiO2 under dark condition and ZnO TiO2 < Co3O4 under light condition. ZnO MNPs were the most toxic among the tested nanoparticles. Our results indicate depletion of reduced glutathione level and elevation of malondialdehyde level correlated with the increase in oxidative stress. Released metal ions were found to have partial effect on the toxicity of MNPs to E. coli. In summary, the dynamic interactions of multiple mechanisms lead to the toxicity of the tested MNPs to E. coli.

  15. Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E.coli bacteria

    Institute of Scientific and Technical Information of China (English)

    Thabitha P.Dasari; Kavitha Pathakoti; Huey-Min Hwang

    2013-01-01

    Cytotoxicity of selected metal oxide nanoparticles (MNPs) (ZnO,CuO,Co3O4 and TiO2) was investigated in Escherichia coli both under light and dark conditions.Cytotoxicity experiments were conducted with spread plate counting and the LCs0 values were calculated.We determined the mechanism of toxicity via measurements of oxidative stress,reduced glutathione,lipid peroxidation,and metal ions.The overall ranking of the LCs0 values was in the order of ZnOCuO < Co3O4 < TiO2 under dark condition and ZnOCuO < TiO2 < Co3O4 under light condition.ZnO MNPs were the most toxic among the tested nanoparticles.Our results indicate depletion of reduced glutathione level and elevation of malondialdehyde level correlated with the increase in oxidative stress.Released metal ions were found to have partial effect on the toxicity of MNPs to E.coli.In summary,the dynamic interactions of multiple mechanisms lead to the toxicity of the tested MNPs to E.coli.

  16. Cu或Sn与Fe共掺杂对ZnO晶体形貌和磁性的影响%Effects of Cu or Sn and Fe Co-Doping on the Morphology and Magnetism of ZnO Crystals

    Institute of Scientific and Technical Information of China (English)

    刘超; 刘继文; 贾利云; 张礼刚; 韦志仁

    2012-01-01

    Through adding a certain amount of analytical pure FeSO4·7H2O and CuCl2·2H2O or SnCl2·2H2O in the precursors Zn (OH)2 , the ZnO crystals were synthesized by hydrother-mal method with 3 mol/L KOH as a mineralizer, the degree of filling of 35% , reaction temperature of 430 ℃ and reaction time of 24 h. The measuring results show that the Fe doped ZnO crystals have no magnetic saturation phenomenon and hysteresis loop at room temperature, and thus have no room temperature ferromagnetism. For Cu-Fe co-doped ZnO crystals, the drop of the magnetic moment decreases with the rise of temperature, the measuring results show that the Cu-Fe co-doped ZnO crystals have magnetic saturation phenomenon and hysteresis loop at room temperature. The morphology of Fe-Sn co-doped ZnO crystals is the best. The magnetic moment of Fe-Sn co-doped ZnO crystals is bigger, and does not fall with the rise of temperature. Fe-Sn co-doped ZnO crystals have room temperature ferromagnetism and paramagnetic. By adding Cu or Sn, the magnetism and crystal morphology of Fe doped ZnO crystals are improved.%采用水热法,在前驱物Zn (OH)2中添加一定量的分析纯FeSO4·7H2O和CuCl2·2H2O或SnCl2·2H2O,以3 mol/L KOH溶液作为矿化剂,填充度为35%,反应温度430℃,经24 h反应合成ZnO晶体.掺杂Fe的ZnO晶体室温下测量无磁饱和现象和磁滞回线,不具备室温铁磁性.Cu与Fe共掺杂合成ZnO晶体,随温度的升高其比磁化强度下降的幅度减小,室温下测量具有磁饱和现象和磁滞回线.Sn与Fe共掺杂的晶体形貌最好,且比磁化强度较大,没有随温度升高而下降,存在室温铁磁性和顺磁性.Cu或Sn元素的加入增加了掺杂Fe的ZnO晶体的磁性,改善了晶体形貌.

  17. Structural and optical properties of Y, Cu co-doped ZnO nanoparticles by sol-gel method

    Science.gov (United States)

    Anandan, S.; Muthukumaran, S.; Ashokkumar, M.

    2014-10-01

    Zn.96-xY.04CuxO (x = 0, 0.05, 0.10 and 0.15) nanoparticles were successfully synthesized employing simple sol-gel method. Hexagonal wurtzite structure of the synthesized samples was not affected by Cu-doping. CuO phase was induced after Cu = 5% and it was increased by Cu-doping. The change in crystal size was discussed based on compressive stress, lattice volume and bond length. The chemical stoichiometry of Zn, Cu, Y and O was confirmed by energy dispersive X-ray spectra. The increased oxygen percentage from 57.88 (Cu = 5%) to 64.53% (Cu = 15%) by Cu-doping proved the existence of CuO and oxygen rich phase. The lower absorption and high transmittance in visible region observed at Cu = 5% described the good optical quality of the sample with low scattering or absorption losses which leads to the industrial applications especially as transparent electrode. The high energy gap at Cu = 5% could be attributed to the poor crystallinity of the sample. The red shift in energy gap after Cu = 5% was explained by the p-d spin-exchange interactions between the band electrons and the localized d electrons of Cu2+ ions. The change in intensity and peak position of infrared (IR) peaks confirmed the presence of Cu in Znsbnd Ysbnd O lattice and also expressed the perturbation generated by Cu in Znsbnd Ysbnd O lattice.

  18. Effect of hydrogen doping on the properties of Al and F co-doped ZnO films for thin film silicon solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fang-Hsing, E-mail: fansen@dragon.nchu.edu.tw; Yang, Tung-Hsin

    2016-04-30

    Aluminum and fluorine co-doped zinc oxide (AFZO) thin films were prepared in Ar + H{sub 2} atmospheres by rf magnetron sputtering at room temperature. The structural, electrical, and optical properties of the prepared films were investigated using X-ray diffraction, scanning electron microscopy, atomic force microscopy, Hall-effect measurement, X-ray photoelectron spectroscopy, and ultraviolet–visible spectrometry, and their dependence on deposition atmosphere (i.e. H{sub 2} / (H{sub 2} + Ar) ratio) was studied. The resulting films showed a (0 0 2) diffraction peak, indicating a typical wurtzite structure, and the optimal film crystallinity was obtained with the H{sub 2} / (H{sub 2} + Ar) ratio of 3%. The electrical resistivity of AFZO films decreased to 9.16 × 10{sup −4} Ω-cm, which was lower than ZnO:Al and ZnO:F films due to double doping effect of Al and F. The resistivity further decreased to below 5 × 10{sup −4} Ω-cm for the AFZO film with the H{sub 2} / (H{sub 2} + Ar) ratio of 3%–5%. All the films regardless of hydrogen content displayed high transmittances (> 92%) in the visible wavelength range. Applying the developed AFZO films as front transparent electrodes, amorphous Si thin film solar cells were fabricated and the open-circuit voltage, fill factor, and efficiency of the cell with the hydrogenated AFZO film were improved in contrast to those without the hydrogenated film. - Highlights: • H{sub 2} doping improves optoelectronic properties of Al, F co-doped ZnO (AFZO) films. • Resistivity of AFZO films decreases to 4.4 × 10{sup −4} Ω-cm with the 3% H{sub 2}/(Ar + H{sub 2}) ratio. • AFZO films show high average visible transmittances of above 92%. • Efficiency of a-Si thin film solar cells is improved by AFZO:H as front electrode.

  19. Mn、Cu共掺ZnO磁性的研究%Magnetic Properties of Mn, Cu Co-doped ZnO Crystals

    Institute of Scientific and Technical Information of China (English)

    韦志仁; 李哲; 胡志鹏; 罗小平; 高平; 王伟伟; 董国义

    2007-01-01

    In this paper, Mn, Cu co-doped ZnO crystals were synthesized by hydrothermal method with 3mol/L-1KOH as mineralizer, the fill factor of 35%, reaction temperature of 430℃, and time of 24h.When the Zn(OH)2 mixed with Mn, Cu were used as precursor, the shape of the most crystals was column. The positive polar +c{0001}, negative polar -c{000(1-)}, negative pyramidal face -p{ 10(1-)(1-)},and column face m { (1-)010 } were exposed. The length of the column crystals was 30-50μm. Some of the crystals shape were hexagonal cone. The negative polar -c{000(1-)}, positive pyramidal face +p{10(1-)1},and column face m{(1-)010} were exposed. The length of the hexagonal cone crystals was 100μm. And the length to the diameter was 5:1. When the ZnO mixed with Mn, Cu were used as precursor, the length of the column crystals was 10-30μm. The hexagonal shape of all the crystals became asymmetry. The concentration of Mn2+ in ZnO was 3.19at% ,1.62at%, respectively,when the precursor was ZnO and Zn (OH) 2 by the EDX. But the Cu ions were not found. Although the morphology of the crystals was affected by Mn, Cu doped, antiferromagnet was observed by the SQUID.%本文采用水热法,分别以ZnO、Zn(OH)2为前驱物,添加一定量的MnCl4·4H2O和CuSO4·2H2O,3mol/LKOH作矿化剂,温度430℃,填充度35%,反应24h,制备了Mn、Cu共掺ZnO晶体.当前驱物为Zn(OH)2时,所得晶体大部分为短柱状晶体,显露正负极面{0001}、{000(1-)}、负锥面-P{10(1-)(1-)}和柱面m{(1-)010},长度约为30~50 μm.少部分晶体为单锥六棱柱状,显露正锥面P{10(1-)1},柱面m{(1-)010},负极面-c{000(1-)},晶体的长度约为100μm,长径比为5∶1.当ZnO用作前驱物时,短柱状晶体长度大约为10~30μm,晶体的六棱对称性都出现较大的偏差.X射线荧光能谱分析表明,前驱物为ZnO、Zn(OH)2时,Mn离子含量在分别为3.19%和1.62%原子分数,没有检测到Cu离子.虽然Mn、Cu离子的掺入会明显影响晶体形态,磁性测量显示掺杂Mn、Cu的ZnO仍为反铁磁.

  20. Microstructure, optical and FTIR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method

    Science.gov (United States)

    Ashokkumar, M.; Muthukumaran, S.

    2014-11-01

    Zn0.96-xCu0.04NixO (0 ⩽ x ⩽ 0.04) nanoparticles were synthesized by co-precipitation method. The X-ray diffraction pattern showed the crystalline nature of prepared nanoparticles with hexagonal wurtzite structure. The average crystal size is decreased from 27 to 22.7 nm when Ni concentration is increased from 0% to 2% due to the suppression of nucleation and subsequent growth of ZnO by Ni-doping. The increased crystal size from 22.7 to 25.8 nm (ΔD ∼ 3.1 nm) by Ni-doping from 2% to 4% is due to the creation of distortion centers and Zn/Ni interstitials. The cell parameters and volume of the lattice showed solubility limit at 2% of Ni doping. The energy dispersive X-ray spectra confirmed the presence of Cu and Ni in Zn-O. The optical absorption spectra showed that the absorption was increased up to Ni = 2% due to the creation of carrier concentration by Ni-doping and decreased beyond 2% due to the presence of more defects and interstitials in the Zn-Ni-Cu-O lattice. The observed red shift of energy gap from 3.65 eV (Ni = 0%) to 3.59 eV (Ni = 2%, ΔEg ≈ 0.06 eV) is explained by sp-d exchange interactions between the band electrons and the localized d-electrons of the Ni2+ ions. The blue shift of energy gap from 3.59 eV (Ni = 2%) to 3.67 eV (Ni = 4%, ΔEg ≈ 0.08 eV) is explained by Burstein-Moss effect. Presence of chemical bonding was confirmed by FTIR spectra.

  1. Surface defect mediated magnetic interactions and ferromagnetism in Cr/Co Co-doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Aljawfi, Rezq Naji, E-mail: rizqnaji@yahoo.com [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Rahman, F. [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Batoo, Khalid Mujasam [King Abdullah Institute for Nanotechnology, King Saud University (Saudi Arabia)

    2013-04-15

    We report the structural and ferromagnetic properties of Zn{sub 0.97−x}Cr{sub x}Co{sub 0.03}O (x=0.0, 0.03, 0.06 and 0.09) nanoparticles (NPs) synthesized through citric–gel route. X-ray diffraction (XRD) and selected area electron diffraction (SAED) results show the single phase nature with hexagonal wurtzite structure, and reveal the incorporation of Cr{sup 3+} and Co{sup 2+} ions into lattice positions of Zn{sup 2+} ions in ZnO lattice. The average size of NPs decreases from ∼24 to 9 nm with increasing Cr dopant concentrations (x). Micro-Raman and X-ray photoelectron spectroscopy (XPS) studies show the presence of oxygen vacancies (V{sub O}) defects. The XPS study shows interaction between Cr–Co dopant and transfer of electrons from Cr (3d) state to unfilled (3d) state of Co. The observed ferromagnetism is intrinsic in nature, and not due to any metallic segregation or impurity phase. The oxygen vacancies mediated the dopant ions interaction, and the ferromagnetism can be elucidated by bound magnetic polaron (BMP) mechanism. - Highlights: ► Nanoparticles Zn{sub 0.97−x}Cr{sub x}Co{sub 0.03}O (x=0.0, 0.03, 0.06 and 0.09) are synthesized through sol–gel route. ► Crystalline structure and single phase character are confirmed by XRD, SEM, TEM, SAED and EDAX techniques. ► Raman and UV–vis spectra reveal the incorporation of Cr and Co into the ZnO lattice structure. ► The oxygen vacancies are observed from XPS and Raman spectra but there is no evidence of Co metallic cluster or CoO. ► The observed ferromagnetism is intrinsic in nature and not due to any metallic Co segregation or cobalt oxide which can be explained by bound magnetic polaron (BMP) theory.

  2. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat

    Science.gov (United States)

    Dimkpa, Christian O.; McLean, Joan E.; Latta, Drew E.; Manangón, Eliana; Britt, David W.; Johnson, William P.; Boyanov, Maxim I.; Anderson, Anne J.

    2012-09-01

    Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (peroxidase and catalase activities were present in roots. These findings correlate with the NPs causing increased production of reactive oxygen species. The accumulation of Cu and Zn from NPs into edible plants has relevance to the food chain.

  3. Synthesis of CuO Nanowires ZnO Heterojunction Shape Control of Quantum Dots%合成CuO纳米线ZnO量子点的异质结形态控制

    Institute of Scientific and Technical Information of China (English)

    周明

    2014-01-01

    To explore the different growth time, temperature, gas and water conditions on the thermal evaporation method is used to grow CuO nanowires in shape, length, density and diameter, etc. Simple analysis of the CuO nanowires growth process, growth mechanism, and to further grow in the CuO ZuO quantum dot is studied. By changing the experiment condition, the research in different decomposition temperature and time, the influence of the concentration of zinc acetate ZuO quantum dot shape. The study found that growth temperature will affect the CuO nanoparticles within a certain scope of diameter and density;time will affect the length of the nanowires. In addition, produce different shapes under different conditions of ZnO nanoparticles. These parameters on nucleation, growth and migration of the quantum dots have very important influence.%探索了不同的生长时间、生长温度、气体和水分条件对采用热蒸发法生长CuO纳米线在成型、长度、致密度和直径等方面的影响。简单分析了CuO纳米线的生长过程、生长机理,并进一步研究了在CuO上生长ZuO量子点。通过改变实验条件,研究在不同温度、分解时间、乙酸锌浓度对ZuO量子点外形的影响。研究发现,生长温度会在一定范围内影响CuO纳米带的直径和致密度,时间会影响纳米线的长度。此外,在不同条件下可生成不同形状的ZnO纳米颗粒。这些参数条件对量子点的成核、生长和迁移有着至关重要的影响。

  4. Growth of Co-doped ZnO nanoparticles by porous alumina assisted sol–gel route: Structural optical and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Karak, Nantu [Department of Physics, Visva-Bharati University, Santiniketan 731235, West Bengal (India); Pal, Bappaditya; Sarkar, D. [Department of Physics, Gauhati University, Guwahati 781014, Assam (India); Kundu, Tapas Kumar, E-mail: tapaskumar.kundu@visva-bharati.ac.in [Department of Physics, Visva-Bharati University, Santiniketan 731235, West Bengal (India)

    2015-10-25

    We report a simple sol–gel method with spin coating to grow Co-doped ZnO nanoparticles (NPs) using porous alumina template. X-ray diffraction analysis confirms the wurtzite hexagonal structure for the Zn{sub 1−x}Co{sub x}O NPs. Transmission electron microscopy (TEM) micrograph reveals clearly the formation of NPs with average diameter in the range 40–50 nm. High resolution TEM lattice images and the electron diffraction (SAED) pattern show that the NPs are single crystalline with lattice plane spacing of 2.47 Å for the (101) plane. UV–Vis absorption spectra show a slight blue shift in the absorption edge due to doping related modification in the band structure. PL spectra show a band edge related UV emission around 378 nm at low temperature, while defect (Zn{sub i}, O{sub V}) related visible emission dominates at room temperature. Room temperature ferromagnetism (RTFM) is observed in Zn{sub 1−x}Co{sub x}O NPs with the moment of 450–750 memu/g. The temperature dependent magnetization (M-T) curve shows high transition temperature (T{sub c}) as 750 K. The observed FM is explained using a bound magnetic polaron model and expected to arise from the intrinsic exchange interaction of Co ions and Zn{sub i}, O{sub V} related defects. This study provides an effective way to obtain HTFM with lower doping concentration as well as to have control over NP size by alumina pores in the Zn{sub 1−x}Co{sub x}O system. - Highlights: • Zn{sub 1−x}Co{sub x}O NPs of controlled sizes are grown by Sol-gel route using porus templates. • High density point defects (Zn{sub i}, O{sub V}) are observed in the RT PL spectra. • High temperature FM is observed in the Zn{sub 1−x}Co{sub x}O NPs for low doping concentration. • The observed FM is quantitatively analysed and explained using a BMP model. • FM arises from the intrinsic exchange interaction of Co ions and O{sub V}, Zn{sub i} defects.

  5. Research on Properties of Na/Mg Co-doped ZnO Thin Films Derived by Sol-Gel Method%溶胶-凝胶法制备Na/Mg共掺ZnO薄膜的特性研究

    Institute of Scientific and Technical Information of China (English)

    张彩珍; 陈永刚; 刘肃; 王永顺

    2013-01-01

    Na/Mg co-deped ZnO thin films were prepared by sol-gel spin-coating method. By comparative analysis of undoped, only Mg-doped and Na/Mg co-doped ZnO films, the structural, optical and electrical properties of the Na/Mg co-doped films were discussed in detail. The results investigated by the scanning electron microscopy (SEM) , X-ray diffraction (XRD), transmission and photoluminescence (PL) spectra show that Na/Mg co-doped ZnO films have good crystal and r-axis preferred orientation properties. The forbidden energy band width of the ZnO films will be increased by Na/Mg co-doped, but the increased extent is smaller than that increased by only Mg doped. After the oxygen vacant defects were removed, Na/Mg co-doped films will be a good kind of ultraviolet emitting material. The analysis result of the Hall effect shows that Na/Mg co-doped can change the electric conduction properties of the ZnO films from N-type to P-type, and the resistivity of the films can also be largely improved.%利用溶胶-凝胶旋涂法制备了Na/Mg共掺ZnO薄膜.通过与未掺杂及只掺Mg的ZnO薄膜的对比分析,重点研究了Na/Mg共掺ZnO薄膜的结构、光学及电学特性.扫描电子显微镜(SEM)图像、X射线衍射(XRD)图谱、透射光谱及PL谱的分析结果表明,Na/Mg共掺有利于提高ZnO薄膜的结晶特性及c轴择优取向性.Na/Mg共掺会使得ZnO薄膜的禁带宽度增加,但增加的幅度小于单独掺Mg引起的禁带宽度增加.消除氧空位缺陷后,Na/Mg共掺ZnO薄膜将是一种很好的紫外发光材料.霍尔效应分析结果表明,Na/Mg共掺杂可将ZnO薄膜导电性从N型转变为P型,且使电阻率有很大幅度的增加.

  6. In situ DRIFTS study of O3 adsorption on CaO, γ-Al2O3, CuO, α-Fe2O3 and ZnO at room temperature for the catalytic ozonation of cinnamaldehyde

    Science.gov (United States)

    Wu, Jianfeng; Su, Tongming; Jiang, Yuexiu; Xie, Xinling; Qin, Zuzeng; Ji, Hongbing

    2017-08-01

    In situ DRIFTS were conducted to identify adsorbed ozone and/or adsorbed oxygen species on CaO, ZnO, γ-Al2O3, CuO and α-Fe2O3 surfaces at room temperature. Samples were characterized by means of TG, XRD, N2 adsorption-desorption, pyridine-IR, nitrobenzene-IR, chloroform-IR, and CO2-TPD. Pyridine-DRIFTS measurements evidence two kinds of acid sites in all the samples. Nitrobenzene, chloroform-DRIFTS, and CO2-TPD reveal that there are large amounts of medium-strength base sites on all the metal oxides, and only CaO, ZnO, and γ-Al2O3 have strong base sites. And the benzaldehyde selectivity was increased in the same order of the alkalinity of the metal oxides. With weaker sites, ozone molecules form coordinative complexes bound via the terminal oxygen atom, observed by vibrational frequencies at 2095-2122 and 1026-1054 cm-1. The formation of ozonide O3- at 790 cm-1, atomic oxygen at 1317 cm-1, and superoxide O2- at 1124 cm-1 was detected; these species are believed to be intermediates of O3 decomposition on strong acid/base sites. The adsorption of ozone on metal oxides is a weak adsorption, and other gases, such as CO2, will compete with O3 adsorption. The mechanism of cinnamaldehyde ozonation at room temperature over CaO shows that cinnamaldehyde can not only be oxidized into cinnamic acid, but also be further oxidized into benzaldehyde, benzoic acid, maleic anhydride, and ultimately mineralized to CO2 in the presence of O3.

  7. CORAL and Nano-QFAR: Quantitative feature - Activity relationships (QFAR) for bioavailability of nanoparticles (ZnO, CuO, Co3O4, and TiO2).

    Science.gov (United States)

    Toropova, Alla P; Toropov, Andrey A; Leszczynska, Danuta; Leszczynski, Jerzy

    2017-05-01

    Quantitative feature - activity relationships (QFAR) approach was applied to prediction of bioavailability of metal oxide nanoparticles. ZnO, CuO, Co3O4, and TiO2 nanoxides were considered. The computational model for bioavailability of investigated species is asserted. The model was calculated using the Monte Carlo method. The CORAL free software (http://www.insilico.eu/coral) was used in this study. The developed model was tested by application of three different splits of data into the training and validation sets. So-called, quasi-SMILES are used to represent the conditions of action of metal oxide nanoparticles. A new paradigm of building up predictive models of endpoints related to nanomaterials is suggested. The paradigm is the following "An endpoint is a mathematical function of available eclectic data (conditions)". Recently, the paradigm has been checked up with endpoints related to metal oxide nanoparticles, fullerenes, and multi-walled carbon-nanotubes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Optical Spectroscopy of Er3+ and Er3+/Yb3+ Co-doped Bi2O3-GeO2-B2O3-ZnO Glasses

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The (60-x)Bi2O3-xGeO2-30B2O3-10ZnO (x=5, 10, 20, 30 molar percent) glasses doped with Er3+ and Er3+/Yb3+ were fabricated using the melting method. The thermal stability of the glasses was studied with their DTA curves. The results show that the difference between the glass transition temperature and the crystallization onset temperature increases with the increase of GeO2 content, indicating that the thermal stability of the glass has become better. The absorption spectra were recorded and the stimulated emission cross sections were calculated using the McCumber theory. The Ω2, Ω4, and Ω6 parameters,the transition probability, the radiative lifetime, and the fluorescence branch ratio of Er3+ for optical transition were calculated from their absorption spectra in terms of reduced matrix U(t) (λ=2, 4, 6) character for optical transitions. The infrared emission of Er3+ was measured upon excitation with 970 nm light and the full width at half-maximum (FWHM) was estimated from the emission spectra. The pumping efficiency and the intensity of the emission at the 1.54 μm band of Er3+ were enhanced considerably by co-doping Yb3+.

  9. Influence of Al concentration and annealing temperature on structural, optical, and electrical properties of Al co-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gürbüz, Osman [Department of Physics, Yıldız Technical University, Davutpaşa, 34210 İstanbul (Turkey); Kurt, İsmail; Çalışkan, Serkan [Department of Physics, Fatih University, Büyükçekmece, 34500 İstanbul (Turkey); Güner, Sadık, E-mail: sguner@fatih.edu.tr [Department of Physics, Fatih University, Büyükçekmece, 34500 İstanbul (Turkey)

    2015-09-15

    Highlights: • RF magnetron sputtering technique seems to be very efficient method for fabrication of Al doped ZnO (AZO) films. • Long range single crystalline structure improves with annealing process. • Optical properties became much better after annealing process especially for the AZO films that include high Al concentration. • Much greater conductivity with increasing Al concentration and annealing process. • AZO films have potential applicability in spintronic devices. - Abstract: The pure ZnO and Al-doped ZnO (AZO) thin films (thickness: 200 nm) were prepared on both side polished silica (SiO{sub 2}) substrates via RF magnetron sputtering at room temperature by using 2.5 inches high-purity ZnO (99.9%) and Al (99.9%) targets. The samples were annealed at 300 °C, 400 °C and 500 °C for 45 min in N{sub 2} ambient in quartz annealing furnace system, respectively. We investigated the effects of various Al concentrations and annealing treatment on the structural, electrical, and optical properties of films. The preferred crystallization was observed along c axis (single (0 0 2) diffraction peak) from substrate surface assigning the single crystalline Würtzite lattice for pure ZnO and AZO thin films. Although increasing Al concentration decreases the order of crystallization of as-grown films, annealing process increases the long range crystal order. The crystallite sizes vary between minimum 12.98 nm and maximum 20.79 nm for as-grown and annealed samples. The crystallite sizes decrease with increasing Al concentration but increase with increasing annealing temperature as general trend. The grain size and porosity of films change with annealing treatment. The smaller grains coalesce together to form larger grains for many films. However, a reverse behavior is seen for Al{sub 2.23}ZnO and Al{sub 12.30}ZnO samples. That is, Al concentration plays critical role as well as temperature on grain size. Low percent optical transmittance (T%) is observed due to

  10. Y-Cu共掺杂ZnO电子结构与光学性质的第一性原理计算%First-Principles Calculations of the Electronic Structure and Optical Properties of Y-Cu Co-Doped ZnO

    Institute of Scientific and Technical Information of China (English)

    袁俊辉; 高博; 汪文; 王嘉赋

    2015-01-01

    采用基于密度泛函理论(DFT)的第一性原理平面波赝势法研究了本征ZnO、Y和Cu单掺杂ZnO、Y-Cu共掺杂ZnO的电子结构和光学性质。计算结果表明,在本文的掺杂浓度下, Y和Cu单掺杂可以提高ZnO的载流子浓度,从而改善ZnO的导电性, Y-Cu共掺时ZnO半导体进入简并状态,呈现金属性。 Y掺杂ZnO可以提高体系在紫外区域的吸收,而Cu掺杂ZnO在可见光和近紫外区域发生吸收增强现象,其中由于Y离子和Cu离子之间的协同效应, Y-Cu共掺杂ZnO时体系对可见光和近紫外区域的光子能量吸收大幅增加,因此Y-Cu共掺杂ZnO可以用于制作光电感应器件。%Using the pseudo-potential plane-wave based on the density functional theory (DFT), the electronic structures and optical properties of intrinsic ZnO, Y-, Cu-, and Y-Cu co-doped ZnO were studied. The results show that the conductivity of ZnO can be improved by Y and Cu doping because of the increase in carrier concentration under the order of magnitude of the doping concentration in this paper. Y-Cu co-doping leads to degeneration and makes ZnO metal ic. Y-doped ZnO can show enhanced light absorption in the ultraviolet region, while doping with Cu enhances absorption in the visible and near ultraviolet regions. Y-Cu co-doping greatly increases the absorption of visible and near ultraviolet regions owing to the synergistic effect between Y ions and Cu ions, which can be exploited to fabricate the opto-electronic devices.

  11. Influence of Codoping on the Optical Properties of ZnO Thin Films Synthesized on Glass Substrate by Chemical Bath Deposition Method

    Directory of Open Access Journals (Sweden)

    G. Shanmuganathan

    2014-01-01

    Full Text Available Fe and K simultaneously doped ZnO thin films Zn0.99 K0.01 (Fex O (x=1, 2, 3, and 4% were synthesized by chemical bath deposition method. The XRD investigation reveals that all the doped ZnO thin films are in hexagonal wurtzite crystal structure without impurity phases. With increase in Fe concentration, the growth of thin films along c axis is evident from the XRD which indicates the increase in intensity along (002 direction. The same is visible from the surface morphology which shows the formation of hexagonal structure for higher Fe concentration. The topography shows gradual variation with Fe incorporation. The optical energy band gap obtained from the transmittance spectrum decreases from 3.42 to 3.06 eV with increase in Fe concentration indicating the red shift and this trend is consistent with the earlier experimental results. The UV emission is centered around 3.59 eV. The optical constants such as refractive index, extinction coefficient, and absorption coefficient which are essential for the optoelectronic applications were also determined.

  12. Physical Properties of ZnO Thin Films Codoped with Titanium and Hydrogen Prepared by RF Magnetron Sputtering with Different Substrate Temperatures

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2015-01-01

    Full Text Available Transparent conducting titanium-doped zinc oxide (TZO thin films were prepared on glass substrates by RF magnetron sputtering using 1.5 wt% TiO2-doped ZnO as the target. Electrical, structural, and optical properties of films were investigated as a function of H2/(Ar + H2 flow ratios (RH and substrate temperatures (TS. The optimal RH value for achieving high conducting TZO:H thin film decreased from 10% to 1% when TS increased from RT to 300°C. The lowest resistivity of 9.2×10-4 Ω-cm was obtained as TS=100°C and RH=7.5%. X-ray diffraction patterns showed that all of TZO:H films had a hexagonal wurtzite structure with a preferred orientation in the (002 direction. Atomic force microscopy analysis revealed that the film surface roughness increased with increasing RH. The average visible transmittance decreased with increasing RH for the RT-deposited film, while it had not considerably changed with different RH for the 300°C-deposited films. The optical bandgap increased as RH increased, which is consistent with the Burstein-Moss effect. The figure of merits indicated that TS=100°C and RH=7.5% were optimal conditions for TZO thin films as transparent conducting electrode applications.

  13. Optical absorption properties of SnO2 and ZnO co-doped TiO2 film%SnO2和ZnO共掺杂对TiO2薄膜吸光性能的影响

    Institute of Scientific and Technical Information of China (English)

    高延敏; 杨志磊; 吕伟刚; 陶正章

    2013-01-01

    The wide forbidden band gap has affected the development of TiO2 semiconductor materials, which leads to low utilization of solar energy. By co-doping Sn and Zn elements, the light absorption properties of TiO2 thin film will be improved effectively. The experiment scheme about the optimal sol-gel is put forward according to orthogonal design. The best anatase TiO2 thin film was prepared at the element molar ratio 1. 0= 1. 5:10 of tin, zinc and titanium, with the pH value 2. Compared with pure TiO2, co-doped TiO2 had 85nm red shift and declined its band gap. Under the circumtance that SnO2 and ZnO have no effect on TiO2 structure, XRD and SEM analysis showed that changing the way of crystallization, graining refinement and changing morphology features and so on, would improve the light absorption properties of SnO2 and ZnO co-doped TiO2 thin film.%纳米TiO2半导体材料因为禁带隙较宽而存在对太阳能的利用率较低的问题一直影响自身发展.文中研究了不同掺杂组份和制备条件对TiO2薄膜光吸收性能的影响.首先通过正交实验设计出最优溶胶-凝胶实验方案,锡、锌、钛的元素摩尔比为1.0∶0.5:10,pH值为2,制备出锐钛矿型TiO2薄膜.XRD和SEM分析表明SnO2,ZnO掺杂处理使TiO2的光吸收范围从紫外红移到可见光附近,降低其禁带宽度.在不改变TiO2晶型结构的情况下,通过改善TiO2结晶,细化晶粒,改变形貌特征等方式提高TiO2薄膜光吸收性能.

  14. Research on the Agglomeration Collision and Fragmentation Process in a Fluidized Bed of ZnO and CuO Composite Nanoparticles Added with FCC Coarse Particles%ZnO和CuO混合纳米颗粒在添加FCC粗颗粒的流态化及聚团碰撞与破碎过程研究

    Institute of Scientific and Technical Information of China (English)

    徐宝; 周涛; 罗传宝; 张金霞; 范百林

    2016-01-01

    研究混合纳米ZnO和CuO颗粒添加3种不同粒径FCC粗颗粒(催化裂化催化剂)的流化行为,用高速摄像机观察流化现象并对聚团碰撞与破碎过程、聚团成分进行分析。结果表明,添加FCC粗颗粒可显著改善纳米颗粒的流化性能,FCC3对纳米颗粒流化性能的改善效果比FCC1或FCC2更明显;且随着FCC粗颗粒添加量的增加,纳米颗粒流化行为的改善效果越好,体系的混合均匀程度是影响混合纳米ZnO和CuO流化性能的重要因素。%A research has been conducted on the fluidization behaviors of ZnO and CuO composite nanoparticles, added with FCC coarse particles of three different particle sizes (catalytic cracking catalysts). An observation of the whole fluidization process, with the aid of a high-speed camera, has been made for a detailed analysis of the agglomeration collision and fragmentation, and agglomeration components as well. The results show that the fluidization performance of the composite nanoparticles can be improved significantly with the addition of FCC coarse particles. Moreover, compared with the other two kinds of coarse particles FCC2 or FCC1, a more significant effect can be achieved with the addition of FCC3 in the process. With the increase of the addition amount of FCC coarse particles, the improvement of the fluidization performance of the composite nanoparticles becomes more obvious. Thus, it can be concluded that the mixing uniformity of nanoparticles is an important factor that influence the fluidization performance of ZnO and CuO composite nanoparticles.

  15. Enhancement in conductivity through Ga, Al dual doping of ZnO nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Minkyu; Han, Seung Min, E-mail: smhan01@kaist.ac.kr

    2015-09-01

    In this study, electrical conductivity of Al doped ZnO nanofiber was enhanced by using Ga co-doping over the maximum conductivity achievable with only Al dopants of 2 at.% in ZnO. Al and Ga have different atomic sizes that results in further doping with Ga up to 1 at.%. Al, Ga co-doped ZnO nanofiber was fabricated by using electrospinning technique and structural analysis was investigated by X-ray diffraction. X-ray analysis indicates a change in lattice parameter(a-axis) of doped ZnO from 3.2497 Å to 3.2483 Å with added 1 at.% Al and from 3.2497 Å to 3.2488 Å with co-doping of 1 at.% Ga on top of the 2 at.% of Al doped ZnO. Therefore, Ga was incorporated into Al doped ZnO nanofiber without significant lattice parameter and grain size reduction to result in the enhanced conductivity up to a maximum value of 9.57 × 10{sup −3} S/cm. - Highlights: • Al, Ga co-doped ZnO nanofiber is synthesized by electrospinning methods. • Al, Ga co-doped nanofiber shows the higher electrical conductivity compared to Al doped ZnO nanofiber. • AGZO nanofiber shows higher conductivity due to its higher crystallinity.

  16. Isoelectronic co-doping

    Science.gov (United States)

    Mascarenhas, Angelo

    2004-11-09

    Isoelectronic co-doping of semiconductor compounds and alloys with deep acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, N and Bi, to customize solar cells, thermal voltaic cells, light emitting diodes, photodetectors, and lasers on GaP, InP, GaAs, Ge, and Si substrates. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  17. Study on the Structure and Dielectric Properties of ZnO and Nb 2 O 5 Co-doped Barium Strontium Titanate Ceramics%ZnO和Nb2O5共掺杂钛酸锶钡陶瓷的结构及其介电性能研究

    Institute of Scientific and Technical Information of China (English)

    王俊岭; 周恒为; 马晓娇; 丁捷; 徐凡华; 衡晓; 雷婷; 尹红梅

    2014-01-01

    ZnO and Nb2O5 co-doped Ba0.2Sr0.8TiO3 ceramics were prepared by the method of solid state reaction. Crystalline structures and complex dielectric constant were measured by X-ray diffraction and dielectric spectra, respectively. The results show that:1) Zinc ions (Zn2+) and Niobium ion (Nb5+) enter the crystal lattice of Ba0.2Sr0.8TiO3 perovskite, and the ceramics have pure structure; 2) with the increase of Nb2O5 contents, the typical dispersion phase transition turns into the relaxation phase transition at low temperature, and a new relaxation processes has been found in the range of 300K-360K; 3) when doped certain amount of ZnO, the dielectric constant decreases and the dielectric loss increases at room temperature with the increasing of Nb 2 O 5 content.%采用固相反应法制备了ZnO、Nb 2 O 5共掺杂Ba 0.2 Sr 0.8 TiO 3陶瓷材料,并用X射线衍射(XRD)和介电谱方法,分别对系列陶瓷样品的结构和复介电常数进行了测量.结果表明:1)Zn2+、Nb5+进入Ba 0.2 Sr 0.8 TiO 3晶格后仍然为钙钛矿型固溶体;2)Nb 2 O 5会使得材料的低温弥散相变过程转变为弛豫相变过程,并在300~360K区域内会出现新的弛豫过程;3)掺入一定量的ZnO后Nb2O5掺入降低了Ba 0.2 Sr 0.8 TiO 3陶瓷材料的介电常数,增大了其介电损耗.

  18. Solution-dispersed CuO nanoparticles anode buffer layer: Effect of ultrasonic agitation duration on photovoltaic performance

    Science.gov (United States)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat; Jumali, Mohammad Hafizuddin Haji

    2016-11-01

    The performance of inverted type hybrid organic solar cell based on poly(3-hexyltheopene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) can be improved by adding an anode buffer layer of copper oxide (CuO). CuO that serves as an electron blocking layer which could effectively reduce the charge recombination at the photoactive layer (P3HT:PCBM)/silver (Ag) interfaces. At the same time, Cuo anode buffer layer could accelerate the holes collection from the photoactive layer to the top electrode. In this study we investigated the effects of ultrasonic agitation duration in preparation of solution-dispersed CuO anode buffer layer on the performance of the devices with a configuration of fluorine tin oxide (FTO)/zinc oxide (ZnO) nanorod arrays/P3HT:PCBM/ CuO/Ag. Different durations of ultrasonic agitation (0, 5, 15 and 25 min) were used for CuO nanoparticles solution dispersion to obtain the optimum particle size distribution of CuO. It was found that the smallest average particle size of CuO was obtained by applying the ultrasonic agitation for longest duration of 25 min. The highest power conversion efficiency of 1.22% was recorded from the device incorporating with CuO anode buffer layer with the smallest average particle size. It is believed that CuO anode buffer layer with the smallest average particle size had the least agglomerates, thus leading to better film formation and contact surface area.

  19. Simple preparation of scale-like CuO nanoparticles coated on tetrapod-like ZnO whisker photocatalysts%简单低温水浴法合成鳞片状氧化铜/四针状氧化锌晶须复合光催化剂

    Institute of Scientific and Technical Information of China (English)

    刘红; 邬小凤; 李湘奇; 王婕; 范希梅

    2014-01-01

    以硝酸铜为原料,聚乙二醇(PEG, Mw=400)为稳定剂和模板剂,采用简单的低温水浴合成法成功合成了四针状氧化锌晶须(T-ZnOw)表面负载鳞片状CuO的纳米复合光催化剂,系统研究了复合催化剂样品的晶体结构和形貌,通过荧光发光光谱(PL)和紫外光照射的条件下样品对阳离子污染物(亚甲蓝, MB)和阴离子污染物(甲基橙, MO)的光催化降解效率表征了样品的光催化性能,同时采用ICP-AES详细分析了PEG 400浓度对T-ZnOw表面负载CuO纳米颗粒数量的影响.结果表明, T-ZnOw表面有序地沉积了大量鳞片状CuO纳米颗粒,随着PEG 400浓度增加, T-ZnOw表面沉积的CuO纳米片数量逐渐增多,且CuO纳米片在T-ZnOw表面的排列更加有序.同时, PEG 400浓度的变化对合成样品特征发光峰的强度也有一定影响,当PEG 400浓度小于0.60 mol/L时,合成样品特征发光峰强度随着PEG 400浓度增大而减小;当PEG 400浓度大于0.60 mol/L时,样品的特征发光峰强度随之有所增加.在紫外光照射条件下, CuO/T-ZnOw纳米复合催化剂样品对MB和MO水溶液的降解均表现出优异的光催化活性,当PEG 400浓度≤0.60 mol/L时,样品的光催化活性随着PEG 400浓度的增大而增加;而当PEG 400浓度大于0.60 mol/L时,样品的光催化活性反而有所降低.此外,在相同条件下,所有样品对MB水溶液的降解效率明显高于对MO水溶液的降解效率.%Scale‐like copper oxide (CuO)/tetrapod‐like ZnO whisker (T‐ZnOw) nanocomposites were fabri‐cated using poly(ethylene glycol) (PEG;Mw=400) as a soft template by a simple and environmen‐tally friendly method without the use of hydroxide reagents at low temperatures. The structures and morphologies of the samples were investigated in detail, and the photocatalytic properties of the samples were determined using photoluminescence (PL) detection and the photocatalytic deg‐radation of cationic pollutant (methylene blue

  20. Structural and optical characterization of indium-antimony complexes in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Türker, M.; Deicher, M., E-mail: manfred.deicher@tech-phys.uni-sb.de; Johnston, K.; Wolf, H.; Wichert, Th. [Universität des Saarlandes, Experimentalphysik (Germany)

    2015-04-15

    One of the main obstacles to the technical application of the wide-gap semiconductor ZnO represents the difficulty to achieve reliable p-type doping of ZnO with group V elements (N, P, As, Sb) acting as acceptors located on O lattice sites. The theoretically proposed concepts of cluster-doping or codoping may lead to an enhanced and stable p-type conductivity of ZnO. We report on PAC results obtained by codoping experiments of ZnO by ion implantation using the donor {sup 111}In and the group-V acceptor Sb. The formation of In-Sb pairs has been observed. Based on these PAC results, there is no evidence for the formation of In-acceptor complexes involving more than one Sb acceptor. These results has been complemented by photoluminescence measurements.

  1. Optical and magnetic properties of Yb ion-doped cobalt-based ZnO nanoparticles for DMS applications

    Indian Academy of Sciences (India)

    T Thangeeswari; M Priya; J Velmurugan; N Padmanathan

    2015-09-01

    Well-crystalline structured ZnO nanoparticles with cobalt (Co) and ytterbium (Yb) multiple ions doping were successfully synthesized by the chemical precipitation technique. The structures, optical and magnetic properties of the samples were analysed with X-ray diffraction (XRD), UV–visible spectroscopy and magnetic measurements, respectively. In the XRD pattern of the pure ZnO and Yb co-doped samples, the formation of highly crystalline phase of pure ZnO was observed even at high Yb concentration. UV–vis spectra show a strong UV absorbance for all the samples with different absorbance maxima. Magnetic characterizations have shown that the sample with 1% Yb co-doped ZnO: Co nanoparticles exhibited a clear ferromagnetic (FM) behaviour at room temperature. The X-ray photoelectron spectral peaks for Yb 4f ions reveal Yb occupation of both Yb3+ as well as Yb2+ states. Hence, it can be confirmed that a clear FM behaviour at room temperature was exhibited by an imbalanced valence state of Yb that strongly interacted with the Co2+. When compared to the Co-doped ZnO, Yb co-doped ZnO exhibits a clear ferromagnetism at room temperature with high coercivity due to the contribution of both 3d and 4f exchange interaction with the host matrix.

  2. Hybrid p-type ZnO film and n-type ZnO nanorod p-n homo-junction for efficient photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hyun; Lee, Jun Seok; Lee, Sang Hyo; Nam, Hye Won [Novel Functional Materials and Device Lab, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Hong, Jin Pyo, E-mail: jphong@hanyang.ac.k [Novel Functional Materials and Device Lab, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Cha, Seoung Nam; Park, Young Jun; Kim, Jong Min [Samsung Advanced Institute of Technology, P.O. Box 11, 1 Suwon 440-600 (Korea, Republic of)

    2010-09-01

    Simple hybrid p-n homo-junctions using p-type ZnO thin films and n-type nanorods grown on fluorine tin oxide (FTO) substrates for photovoltaic applications are described. The ZnO nanorods (1.5 {mu}m) were synthesized via an aqueous solution method with zinc nitrate hexahydrate and hexamethylenetetramine on ZnO seed layers. The 10-nm-thick ZnO seed layers showed n-type conductivity on FTO substrates and were deposited with a sputtering-based method. After synthesizing ZnO nanorods, aluminum-nitride co-doped p-type ZnO films (200 nm) were efficiently grown using pre-activated nitrogen (N) plasma sources with an inductively-coupled dual-target co-sputtering system. The structural and electrical properties of hybrid p-n homo-junctions were investigated by scanning electron microscopy, transmittance spectrophotometry, and I-V measurements.

  3. Enhanced Visible Light Photocatalytic Activity of ZnO Nanowires Doped with Mn2+ and Co2+ Ions

    Science.gov (United States)

    Li, Wei; Wang, Guojing; Chen, Chienhua; Liao, Jiecui; Li, Zhengcao

    2017-01-01

    In this research, ZnO nanowires doped with Mn2+ and Co2+ ions were synthesized through a facile and inexpensive hydrothermal approach, in which Mn2+ and Co2+ ions successfully substituted Zn2+ in the ZnO crystal lattice without changing the morphology and crystalline structure of ZnO. The atomic percentages of Mn and Co were 6.29% and 1.68%, respectively, in the doped ZnO nanowires. The photocatalytic results showed that Mn-doped and Co-doped ZnO nanowires both exhibited higher photocatalytic activities than undoped ZnO nanowires. Among the doped ZnO nanowires, Co-doped ZnO, which owns a twice active visible-light photocatalytic performance compared to pure ZnO, is considered a more efficient photocatalyst material. The enhancement of its photocatalytic performance originates from the doped metal ions, which enhance the light absorption ability and inhibit the recombination of photo-generated electron-hole pairs as well. The effect of the doped ion types on the morphology, crystal lattice and other properties of ZnO was also investigated.

  4. Enhanced Visible Light Photocatalytic Activity of ZnO Nanowires Doped with Mn2+ and Co2+ Ions

    Directory of Open Access Journals (Sweden)

    Wei Li

    2017-01-01

    Full Text Available In this research, ZnO nanowires doped with Mn2+ and Co2+ ions were synthesized through a facile and inexpensive hydrothermal approach, in which Mn2+ and Co2+ ions successfully substituted Zn2+ in the ZnO crystal lattice without changing the morphology and crystalline structure of ZnO. The atomic percentages of Mn and Co were 6.29% and 1.68%, respectively, in the doped ZnO nanowires. The photocatalytic results showed that Mn-doped and Co-doped ZnO nanowires both exhibited higher photocatalytic activities than undoped ZnO nanowires. Among the doped ZnO nanowires, Co-doped ZnO, which owns a twice active visible-light photocatalytic performance compared to pure ZnO, is considered a more efficient photocatalyst material. The enhancement of its photocatalytic performance originates from the doped metal ions, which enhance the light absorption ability and inhibit the recombination of photo-generated electron-hole pairs as well. The effect of the doped ion types on the morphology, crystal lattice and other properties of ZnO was also investigated.

  5. The influence of substrate and annealing temperatures on electrical properties of p-type ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.Y. [Department of Mathematics and Physics, Shanghai Institute of technology, 120 Cao Bao Road, Shanghai 200235 (China)], E-mail: zhang_canyun@sit.edu.cn

    2009-01-15

    In this study, p-type ZnO films with excellent electrical properties were prepared by ultrasonic spray pyrolysis (USP) combining with a N-Al codoping technique. The influence of the substrate temperature and annealing temperature on electrical properties of ZnO films was investigated. The growth and doping process of ZnO films was explored by thermogravimetry, differential scanning calorimetry and mass spectrum (TG-DSC-MS) measurements. It is suggested that the variation of electrical properties of ZnO films with the substrate temperature and annealing temperature results from the removal of H element out of the films.

  6. Fabrication of ZnO Bi-crystals with twist boundaries using Co doped ZnO single crystals

    CERN Document Server

    Ohashi, N; Ohgaki, T; Tsurumi, T; Fukunaga, O; Haneda, H; Tanaka, J

    1999-01-01

    Zn O single crystals doped with Co were grown by using a flux method and their electrical properties were investigated by Hall effect. Then, these crystals were polished with diamond paste and bonded to form bi-crystal by hot pressing under a pressure of 10 MPa at 1000 .deg. C. The bi-crystals showed nonlinear I-V curves, and the curvature of I-V relation agreed with that for Co-doped polycrystalline ZnO.

  7. Optical and other spectroscopic studies of lead, zinc bismuth borate glasses doped with CuO

    Science.gov (United States)

    Rajyasree, Ch.; Vinaya Teja, P. Michael; Murthy, K. V. R.; Krishna Rao, D.

    2011-12-01

    10MO·20Bi2O3·(70-x)B2O3·xCuO [M=Pb, Zn] with x=0, 0.4 and 0.8 (wt%) glasses were synthesized by the melt-quenching technique and were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Physical parameters, like density, and spectroscopic studies (optical absorption, EPR, FTIR and photoluminescence) were used to understand the role of modifier oxide and CuO in the glass matrix. A red shift of the absorption band corresponds to 2B1g→2B2g transition of Cu2+ ions from P2 to Z4 samples and the increase of hyperfine splitting factor (A‖) from P2 to Z2 shows that with the integration of PbO by ZnO the electron density around copper ion is increased. It is also supported by the gradual increase in theoretical optical basicity values of ZnO mixed glasses, as compared to that of PbO mixed glass matrix. Reduced bismuth radicals are found in undoped and 0.4% CuO doped glasses of both the series. Analysis of the absorption and emission studies indicates that the concentration of luminescence centers of bismuth ions (Bi3+ ions in UV region) is decreased by the integration of ZnO as well as by increasing the dopant concentration. In lead series PbO4 and BiO3 units are increased from P2 to P4 and in zinc series BiO3 units are decreased from Z0 to Z4. The conductivity of the glass matrices is increased in both the series with the dopant of CuO.

  8. 溅射功率对钛镓共掺杂氧化锌透明导电薄膜光电性能的影响%Influence of Sputtering Power on the Optical and Electrical Properties of Ti and Ga Codoped ZnO Thin Films

    Institute of Scientific and Technical Information of China (English)

    张腾; 钟志有; 汪浩

    2013-01-01

    Ti and Ga codoped ZnO (TGZO) thin films were deposited on glass substrates by radiofrequency magnetron sputtering technique using a sintered ceramic target of ZnO∶TiO2∶Ga2O3 (97wt%∶1.5wt%∶1.5wt%) as sputtering source.The influence of sputtering power on structural,electrical and optical properties of the TGZO thin films was investigated by X-ray diffraction,four-point probe and UV-visible spectrophotometer.The results show that all the obtained films are polycrystalline with a hexagonal wurtzite structure and grow preferentially in the (002) direction.The sputtering power significantly affects the microstructure and electro-optical characteristics of the deposited films.The TGZO thin film prepared at the sputtering power of 200 W possesses the highest optoelectrical performance,which have the best crystal quality,the lowest resistivity,the highest average visible transmittance and the maximum figure of merit(1.22 × 10-2 Ω-1).Furthermore,the refractive index and extinction coefficient of the thin films were determined by the method of optical spectrum fitting,and the optical energy gaps were calculated using Tauc's relation.%以ZnO∶Ga2O3∶TiO2(97wt%∶1.5wt%∶1.5wt%)陶瓷靶作为溅射源,采用射频磁控溅射技术在玻璃衬底上制备了钛镓共掺杂氧化锌(TGZO)透明导电薄膜,通过X射线衍射仪、四探针仪和分光光度计测试表征,研究了溅射功率对TGZO薄膜晶体结构、电学性质和光学性能的影响.结果表明:所有TGZO薄膜均为六角纤锌矿结构,并且具有(002)择优取向,溅射功率对薄膜性能具有明显的影响.当溅射功率为200 W时,TGZO薄膜的结晶质量最好、电阻率最低、平均可见光透射率最高,品质因数最大(1.22×10-2 Ω-1),其光电综合性能最佳.另外,通过光谱拟合方法研究了溅射功率对TGZO薄膜折射率和消光系数的影响,并利用Tauc关系式计算了样品的光学能隙.

  9. Solution-based synthesis of cobalt-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vempati, Sesha [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Shetty, Amitha [Materials Research Center, Indian Institute of Science, Bangalore 560012 (India); Dawson, P., E-mail: p.dawson@qub.ac.uk [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Nanda, K.K.; Krupanidhi, S.B. [Materials Research Center, Indian Institute of Science, Bangalore 560012 (India)

    2012-12-01

    Undoped and cobalt-doped (1-4 wt.%) ZnO polycrystalline, thin films have been fabricated on quartz substrates using sequential spin-casting and annealing of simple salt solutions. X-ray diffraction (XRD) reveals a wurzite ZnO crystalline structure with high-resolution transmission electron microscopy showing lattice planes of separation 0.26 nm, characteristic of (002) planes. The Co appears to be tetrahedrally co-ordinated in the lattice on the Zn sites (XRD) and has a charge of + 2 in a high-spin electronic state (X-ray photoelectron spectroscopy). Co-doping does not alter the wurzite structure and there is no evidence of the precipitation of cobalt oxide phases within the limits of detection of Raman and XRD analysis. Lattice defects and chemisorbed oxygen are probed using photoluminescence and Raman spectroscopy - crucially, however, this transparent semiconductor material retains a bandgap in the ultraviolet (3.30-3.48 eV) and high transparency (throughout the visible spectral regime) across the doping range. - Highlights: Black-Right-Pointing-Pointer Simple solution-based method for the fabrication of Co-doped ZnO thin films. Black-Right-Pointing-Pointer Evidence for Co substitution on Zn sites in + 2 oxidation state. Black-Right-Pointing-Pointer ZnO, with up to 4% Co doping, retains high transparency across visible spectrum. Black-Right-Pointing-Pointer Quenching of exciton photoluminescence linked to chemisorbed oxygen in Co-doped ZnO.

  10. A brief review of co-doping

    Science.gov (United States)

    Zhang, Jingzhao; Tse, Kinfai; Wong, Manhoi; Zhang, Yiou; Zhu, Junyi

    2016-12-01

    Dopants and defects are important in semiconductor and magnetic devices. Strategies for controlling doping and defects have been the focus of semiconductor physics research during the past decades and remain critical even today. Co-doping is a promising strategy that can be used for effectively tuning the dopant populations, electronic properties, and magnetic properties. It can enhance the solubility of dopants and improve the stability of desired defects. During the past 20 years, significant experimental and theoretical efforts have been devoted to studying the characteristics of co-doping. In this article, we first review the historical development of co-doping. Then, we review a variety of research performed on co-doping, based on the compensating nature of co-dopants. Finally, we review the effects of contamination and surfactants that can explain the general mechanisms of co-doping.

  11. Synthesis of ZnO/CuO and TiO{sub 2}/CuO nanocomposites for light and ultrasound assisted degradation of a textile dye in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Muzakki, Afifah; Shabrany, Hesni; Saleh, Rosari, E-mail: rosari.saleh@gmail.com, E-mail: rosari.saleh@ui.ac.id [DepartemenFisika, Fakultas MIPA-Universitas Indonesia, 16424 Depok (Indonesia); Integrated Laboratory of Energy and Environment, Fakultas MIPA-Universitas Indonesia, 16424 Depok (Indonesia)

    2016-04-19

    ZnO/CuO and TiO2/CuO nanocomposites with different Zn/Cu and Ti/Cu ratios were prepared using sol-gel method. The obtained composite samples were used as catalyst. Methylene blue was used as a model of textile dye to evaluate their photocatalytic, sonocatalytic and photosonocatalytic activities. X-ray diffraction and energy dispersive X- ray analysis confirmed that only monoclinic CuO and hexagonal wurtzite ZnO structures are present in ZnO/CuO nanocomposites, while in TiO2/CuO nanocomposites monoclinic CuO and anatase TiO2 structures were observed. The degradation of methylene blue indicated that the incorporation of CuO in ZnO/CuO and TiO2/CuO nanocomposites exhibited an appreciable higher photocatalytic activity, which was mainly attributed to the extended photoresponding range and more light energy could be utilized than pure ZnO and TiO2.

  12. Magnetic properties of Co-doped ZnO nanoparticles

    Science.gov (United States)

    Franco, A.; Pessoni, H. V. S.; Ribeiro, P. R. T.; Machado, F. L. A.

    2017-03-01

    The magnetism in nanoparticulate powders of Zn1-xCoxO with 0 ≤ x ≤ 0.09 synthesized by a combustion reaction technique is investigated in a broad range of temperatures (5 ≤T ≤ 750K) for applied magnetic fields up to 85 kOe. The hysteresis loops indicated the presence of both ferromagnetic and paramagnetic ordering at room temperature. An additional antiferromagnetic phase was observed for temperatures below 260 K . A particle model that can account for the results is that the some of doping Co2+ ions are not interagent among themselves, a small quantity form clusters, leading to the ferromagnetic ordering with some of the particles in the superparamagnetic state, and few others Co2+ ions form CoO at the grain boundary yielding the antiferromagnetic phase. It was also found that a modified Langevin function can be used for describing the H - dependence for magnetization data.

  13. Gd 掺 ZnO 电子结构的第一原理研究%First-principles study on the electronic structures and absorption spectra of Gd doped ZnO

    Institute of Scientific and Technical Information of China (English)

    马延年; 张冰; 林菁菁

    2015-01-01

    Based on First-principles within density-functional theory, we establish models of Gd doped ZnO by using the plane-wave ultrasoft pseudopotential method. We calculate the densities of states,band structures and absorption spectra. The results show that Gd codoped ZnO is more stable than pure ZnO.%本文采用了第一原理方法对纯 ZnO 和 Gd 改性的 ZnO 进行了计算分析。计算结果表明,Gd 掺杂明显改变了 ZnO 的禁带宽度,从而使得 ZnO 的吸收限向红光区移动,增强其光催化活性。

  14. Oxide Nanotube Analogues: CuO Nanobarrels

    Energy Technology Data Exchange (ETDEWEB)

    H. H. Farrell; R. D. Parra

    2011-11-01

    The principle 'form follows function' which dominated much of twentieth century architechture and industrial design has its parallel on the nanolevel in the concept of 'function follows form'. This has been realized in many technologically valuable ways on this level via nanoparticles such as nanotubes and quantum dots, for example. Now, a new material, copper oxide (CuO) nanobarrels, offers still another opportunity to exploit unusual form to obtain new functionality. Recently, CuO 'rings' on the order of 100 nm diameter have been observed experimentally by El-Azab and Liang (2003). In a separate effort, we have used first principles density functional calculations to investigate smaller, single walled CuO structures that appear to be nanotubes or nanobarrels with a square unit mesh rather than the hexagonal mesh of carbon nanotubes. These structures are unique and novel, and almost certainly will yield fascinating results when studied experimentally.

  15. Transition-metal-doped ZnO nanoparticles: synthesis, characterization and photocatalytic activity under UV light.

    Science.gov (United States)

    Saleh, Rosari; Djaja, Nadia Febiana

    2014-09-15

    ZnO nanoparticles doped with transition metals (Mn and Co) were prepared by a co-precipitation method. The synthesized nanoparticles were characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-rays, Fourier transform infrared spectroscopy, electron spin resonance spectroscopy and diffuse reflectance spectroscopy. The photocatalytic activities of the transition-metal-doped ZnO nanoparticles were evaluated in the degradation of methyl orange under UV irradiation. ZnO nanoparticles doped with 12 at.% of Mn and Co ions exhibited the maximum photodegradation efficiency. The experiment also demonstrated that the photodegradation efficiency of Mn-doped ZnO nanoparticles was higher than that of Co-doped ZnO nanoparticles. These results indicate that charge trapping states due to the doping were the decisive factor rather than the average particle size and energy gap. Moreover the effect of pH values on the degradation efficiency was discussed in the photocatalytic experiments using 12 at.% Mn- and Co-doped ZnO nanoparticles.

  16. Cu-doped ZnO nanoparticles: Synthesis, structural and electrical properties

    Science.gov (United States)

    Singhal, Sonal; Kaur, Japinder; Namgyal, Tsering; Sharma, Rimi

    2012-04-01

    Pure and Cu doped ZnO nanopowders (5, 10, 15, 20, 25 and 30 at% Cu) have been synthesized using co-precipitation method. Transmission Electron Microscopic analysis has shown the morphology of ZnO nanopowders to be quasi-spherical. Powder X-ray Diffraction studies have revealed the systematic doping of Cu into the ZnO lattice up to 10% Cu, though the peaks corresponding to CuO in 10% Cu are negligibly very small. Beyond this level, there was segregation of a secondary phase corresponding to the formation of CuO. Fourier Transform Infrared spectra have shown a broad absorption band at ∼490 cm-1 for all the samples, which corresponds to the stretching vibration of Zn-O bond. DC electrical resistivity has been found to decrease with increasing Cu content. The activation energy has also been observed to decrease with copper doping i.e. from ∼0.67 eV for pure ZnO to ∼0.41 eV for 30 at% Cu doped ZnO.

  17. Cu-doped ZnO nanoparticles: Synthesis, structural and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, Sonal, E-mail: sonal1174@gmail.com [Department of Chemistry, Panjab University, Chandigarh 160014 (India); Kaur, Japinder; Namgyal, Tsering; Sharma, Rimi [Department of Chemistry, Panjab University, Chandigarh 160014 (India)

    2012-04-15

    Pure and Cu doped ZnO nanopowders (5, 10, 15, 20, 25 and 30 at% Cu) have been synthesized using co-precipitation method. Transmission Electron Microscopic analysis has shown the morphology of ZnO nanopowders to be quasi-spherical. Powder X-ray Diffraction studies have revealed the systematic doping of Cu into the ZnO lattice up to 10% Cu, though the peaks corresponding to CuO in 10% Cu are negligibly very small. Beyond this level, there was segregation of a secondary phase corresponding to the formation of CuO. Fourier Transform Infrared spectra have shown a broad absorption band at {approx}490 cm{sup -1} for all the samples, which corresponds to the stretching vibration of Zn-O bond. DC electrical resistivity has been found to decrease with increasing Cu content. The activation energy has also been observed to decrease with copper doping i.e. from {approx}0.67 eV for pure ZnO to {approx}0.41 eV for 30 at% Cu doped ZnO.

  18. Effect of Al and Fe doping in ZnO on magnetic and magneto-transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Santosh, E-mail: skphysics@yahoo.co.in [Department of Physics, College of Commerce, Arts & Science, Patna 800020, Bihar (India); Deepika [Department of Physics, College of Commerce, Arts & Science, Patna 800020, Bihar (India); Tripathi, Malvika [UGC DAE, Consortium for scientific research, Indore 452001, Madhya Pradesh (India); Vaibhav, Pratyush [Jaypee University of Engineering and Technology, Guna 473226, Madhya Pradesh (India); Kumar, Aman [Indian Institute of Technology, Roorkee (India); Kumar, Ritesh [Department of Physics, College of Commerce, Arts & Science, Patna 800020, Bihar (India); Choudhary, R.J., E-mail: ram@csr.res.in [UGC DAE, Consortium for scientific research, Indore 452001, Madhya Pradesh (India); Phase, D.M. [UGC DAE, Consortium for scientific research, Indore 452001, Madhya Pradesh (India)

    2016-12-01

    The structural, magnetic and magneto-transport of undoped ZnO, Zn{sub 0.97}Al{sub 0.03}O, Zn{sub 0.95}Fe{sub 0.05}O and Zn{sub 0.92}Al{sub 0.03}Fe{sub 0.05}O thin films grown on Si(100) substrate using pulsed laser deposition were investigated. The single phase nature of the films is confirmed by X-ray diffraction and Raman spectroscopy measurements. The possibility of Fe metal cluster in Fe doped/co-doped films is ruled out by Fe 2p core level photoelectron spectra. From O 1s core level spectra it is observed that oxygen vacancy is present in all the films. The undoped ZnO film shows magnetic ordering below ∼175 K, whereas Fe doped/codoped samples show magnetic ordering even at 300 K. The Al doped sample reveals paramagnetic behavior. The magneto-transport measurements suggest that the mobile carriers undergo exchange interaction with local magnetic moments. - Highlights: • Al, Fe, Al–Fe co-doped and undoped films of ZnO are deposited on Si by PLD. • Single phase (002) oriented Wurtzite ZnO phase is formed for all films. • Fe doped and Fe–Al co-doped ZnO films reveal magnetic hysteresis at 300 K. • Negative magnetoresistance is observed in undoped and Fe–Al co-doped ZnO film. • It is apparent that charge carriers are coupled with the local magnetic moment.

  19. Fabrication and characterization of a diluted magnetic semiconducting TM co-doped Al:ZnO (TM=Co, Ni) thin films by sol-gel spin coating method.

    Science.gov (United States)

    Siddheswaran, R; Mangalaraja, R V; Tijerina, Eduardo P; Menchaca, J-Luis; Meléndrez, M F; Avila, Ricardo E; Jeyanthi, C Esther; Gomez, M E

    2013-04-01

    Effect of transition metal oxides (TM=Co and Ni) co-doping on the crystallinity, surface morphology, grain growth and magnetic properties of nanostructure Al:ZnO thin films has been studied for diluted magnetic semiconductor applications. Al:ZnO thin films were fabricated by sol-gel spin coating on p-type Si (100) substrates. Fabrication of hexagonal wurtzite TM co-doped Al:ZnO thin films having thickness 2μm was successfully achieved. The Raman spectra of the TM co-doped Al:ZnO thin films showed a broad vibrational mode in the range 520-540cm(-1) due to crystal defects created co-doping elements in the ZnO host lattice. Scanning electron microscopy (SEM) revealed that the films are composed of uniform size, polycrystalline dense ZnO particles with defect free, smooth surfaces. The surface roughness was further verified with atomic force microscopy (AFM). The energy dispersive X-ray spectroscopic analysis (EDX) confirmed the stoichiometric compositions of the TM co-doped Al:ZnO films. The magnetic measurements exhibited that the Co, Al:ZnO and Ni, Al:ZnO thin films were ferromagnetic at room temperature.

  20. Defect Chemistry Study of Nitrogen Doped ZnO Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Miami University: Dr. Lei L. Kerr (PI, PD) Wright State University: Dr. David C. Look (PI) and Dr. Zhaoqiang Fang (Co-PI)

    2009-11-29

    Our team has investigated the defect chemistry of ZnO:N and developed a thermal evaporation (vapor-phase) method to synthesis p-type ZnO:N. Enhanced p-type conductivity of nitrogen doped ZnO via nano/micro structured rods and Zn-rich Co-doping process were studied. Also, an extended X-Ray absorption fine structure study of p-type nitrogen doped ZnO was conducted. Also reported are Hall-effect, photoluminescence, and DLTS studies.

  1. Effect of cobalt doping on structural and optical properties of ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.; Chanda, A., E-mail: anupamamatsc@gmail.com; Gupta, S.; Shukla, P. [Department of Physics, Dr. Harisingh Gour University, Sagar, M.P-470003 (India); Chandra, V. [Department of Chemistry, Dr. Harisingh Gour University, Sagar, M.P-470003 (India)

    2016-05-23

    Cobalt doped ZnO nanoparticles of uniform sizes were prepared by a chemical method using ZnCl{sub 2} and NaOH as the source materials. The formation of Co-doped ZnO nanoparticles was confirmed by transmission electron microscopy (TEM), high resolution TEM (HR-TEM) and selected area electron diffraction (SAED) studies. The optical properties of obtained products were examined using room temperature UV-visible and FTIR spectroscopy. SAED of cobalt doped ZnO nanoparticles shows homogeneous distribution of nanoparticles with hexagonal structure. The HRTEM image of the Co-doped ZnO nanoparticles reveals a clear lattice spacing of 0.52 nm corresponding to the interplanar spacing of wurtzite ZnO (002) plane. The absorption band at 857 cm{sup −1} in FTIR spectra confirmed the tetrahedral coordination of Zn and a shift of absorption peak to shorter wavelength region and decrease in absorbance with Co doping.is observed in UV-Visible spectra.

  2. Impurity sublattice localization in ZnO revealed by li marker diffusion

    DEFF Research Database (Denmark)

    Azarov, A.Yu.; Knutsen, K.E.; Neuvonen, P.T.;

    2013-01-01

    Sublattice localization of impurities in compound semiconductors, e.g., ZnO, determines their electronic and optical action. Despite that the impurity position may be envisaged based on charge considerations, the actual localization is often unknown, limiting our understanding of the incorporatio...... interstitials, related to the lattice localization of the impurities. Furthermore, Cd+O and Mg+O co-doping experiments revealed that implanted O atoms act as an efficient blocking “filter” for fast diffusing Zn interstitials....

  3. Preparation of ZnO nanoparticles showing upconversion luminescence through simple chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Anjana, R.; Subha, P. P.; Markose, Kurias K.; Jayaraj, M. K., E-mail: mkj@cusat.ac.in [Department of Physics, Cochin University of Science and Technology, Kochi, Kerala, India-682022 (India)

    2016-05-23

    Upconversion luminescence is an interesting area while considering its applications in a vast variety of fields. Rare earth ions like erbium is the most studied and efficient candidate for achieving upconversion. Erbium and ytterbium co-doped ZnO nanoparticles were prepared through co-precipitation method. A strong red emission has been obtained while exciting with 980 nm laser. Dependence of luminescence emission colour on ytterbium concentration has been studied.

  4. An optical study of the D-D neutron irradiation-induced defects in Co-and Cu-doped ZnO wafers

    Institute of Scientific and Technical Information of China (English)

    Wang Yun-Bo; Li Gong-Ping; Xu Nan-Nan; Pan Xiao-Dong

    2013-01-01

    Room-temperature photoluminescence and optical transmittance spectroscopy of Co-doped (1 × 1014,5 × 1016,and 1 × 1017 cm-2) and Cu-doped (5 × 1016 cm-2) ZnO wafers irradiated by D-D neutrons (fluence of 2.9 x 1010 cm-2) have been investigated.After irradiation,the Co or Cu metal and oxide clusters in doped ZnO wafers are dissolved,and the würtzite structure of ZnO substrate for each sample remains unchanged and keeps in high c-axis preferential orientation.The degree of irradiation-induced crystal disorder reflected from the absorption band tail parameter (E0) is far greater for doped ZnO than the undoped one.Under the same doping concentration,the Cu-doped ZnO wafer has much higher irradiation-induced disorder than the Co-doped one.Photoluminescence measurements indicate that the introduction rate of both the zinc vacancy and the zinc interstitial is much higher for the doped ZnO wafer with a high doping level than the undoped one.In addition,both crystal lattice distortion and defect complexes are suggested to be formed in doped ZnO wafers.Consequently,the Co-or Cu-doped ZnO wafer (especially with a high doping level) exhibits very low radiation hardness compared with the undoped one,and the Cu-doped ZnO wafer is much less radiation-hard than the Co-doped one.

  5. Superconductivity in Zigzag CuO Chains

    Energy Technology Data Exchange (ETDEWEB)

    Berg, E.

    2010-04-06

    Superconductivity has recently been discovered in Pr{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15-{delta}} with a maximum T{sub c} of about 15K. Since the CuO planes in this material are believed to be insulating, it has been proposed that the superconductivity occurs in the double (or zigzag) CuO chain layer. On phenomenological grounds we propose a theoretical interpretation of the experimental results in terms of a new phase for the zigzag chain, labelled by C{sub 1}S{sub 3/2}. This phase has a gap in the relative charge mode and a partial gap in the relative spin mode. It has gapless uniform charge and spin excitations and can have a divergent superconducting susceptibility, even for repulsive interactions. A microscopic model for the zigzag CuO chain is proposed, and on the basis of density matrix renormalization group (DMRG) and bosonization studies, we adduce evidence that supports our proposal.

  6. Mesoscale organization of CuO nanoslices: Formation of sphere

    Indian Academy of Sciences (India)

    Jun Wang; Shunxiao Zhang; Zhanshuang Li; Jia You; Piaoping Yang; Xiaoyan Jing; Milin Zhang

    2008-04-01

    The nanocrystalline CuO powders were prepared by precipitation method using Cu(NO$_{3})_{2}$ as copper raw material, water and ethanol as dispersants, and NaOH and ammonia solution as precipitates. The structure, particle size and morphology of resulting CuO powders were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The mechanism of CuO formation was discussed.

  7. Synthesis of Thermally Spherical CuO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Nittaya Tamaekong

    2014-01-01

    Full Text Available Copper oxide (CuO nanoparticles were successfully synthesized by a thermal method. The CuO nanoparticles were further characterized by thermogravimetric analysis (TGA, differential thermal analysis (DTA, X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray spectrometry (EDS, and high resolution transmission electron microscopy (HRTEM, respectively. The specific surface area (SSABET of CuO nanoparticles was determined by nitrogen adsorption. The SSABET was found to be 99.67 m2/g (dBET of 9.5 nm. The average diameter of the spherical CuO nanoparticles was approximately 6–9 nm.

  8. Effects of Oxide-Modified Spherical ZnO on Electrical Properties of Ag/ZnO Electrical Contact Material

    Science.gov (United States)

    Wei, Zhijun; Zhang, Lingjie; Shen, Tao; Qiao, Zhengyang; Yang, Hui; Fan, Xianping; Chen, Lawson

    2016-09-01

    Silver-zinc oxide (Ag/ZnO) electrical contact material is widely used as contacts of the medium duty switching devices. Effects of modified ZnO on properties of Ag/ZnO electrical contact material were investigated in this work. NiO and CuO were introduced to modify spherical ZnO by a chemical solution nano-coating method. Ag/ZnO contacts prepared using the modified spherical ZnO were produced by powder metallurgy (PM) method in a muffle furnace in temperature ranges from 750 to 900 °C. Results show that electrical conductivity, stability of relative density, and Vickers' hardness of Ag/ZnO electrical contact material can be improved by the addition of NiO because of the formation of NiO solid solution Zn0.2Ni0.8O. The addition of CuO to Ag/ZnO electrical contact material makes arcing energy and mass loss lower. Since this is attractive for a longer service life, using NiO and CuO co-modified ZnO as a second phase may be a promising way to improve properties of Ag/ZnO electrical contact material. Hence, the presented results could also be useful for the design of a new Ag/ZnO electrical contact material.

  9. High Performance Indium-Doped ZnO Gas Sensor

    Directory of Open Access Journals (Sweden)

    Junjie Qi

    2015-01-01

    Full Text Available Gas sensors for ethanol and acetone based on ZnO nanobelts with doping element indium were fabricated. Excellent sensitivity accompanied with short response time (10 s and recovery time (23 s to 150 ppm ethanol is obtained. For In-doped sensors, a minimum concentration of 37.5 ppm at 275°C in acetone was observed with an average sensitivity of 714.4, which is 7 times larger than that of the pure sensors and much larger than that reported response (16 of Co-doped ZnO nanofibers to acetone. These results indicate that doping elements can improve gas sensitivity, which is associated with oxygen space and valence ions. In-doped ZnO nanobelts exhibit higher sensitivity to acetone than that to ethanol. These results indicate that doped ZnO nanobelts can successfully distinguish acetone and ethanol, which can be put into various practical applications.

  10. Synthesis and characterization of Co-doped zinc oxide nanorods prepared by ultrasonic spray pyrolysis and hydrothermal methods

    Science.gov (United States)

    Febrianti, Y.; Putri, N. A.; Sugihartono, I.; Fauzia, V.; Handoko, D.

    2017-07-01

    ZnO nanorods was synthesized by using ultrasonic spray pyrolysis deposition process and grown by hydrothermal method on a glass substrate. The influences of varying Co doping in structural, morphological and optical properties were investigated by X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), and UV-Visible (UV-Vis) spectrometry, respectively. All the nanorods exhibit polycrystalline wurtzite structure with smaller crystalline size on the Co-doped nanorods. The nanorods also show no orientation alignment and random particle size. Interestingly, the nanorods with 3 wt.% Co doped shows high absorbance at UV and visible region indicating that optical properties of the ZnO nanorods have been modified by Co doping.

  11. Extraction of important electrical parameters of CuO

    Energy Technology Data Exchange (ETDEWEB)

    Serin, T. [Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Ankara (Turkey); Yildiz, A., E-mail: yildizab@gmail.co [Department of Physics, Faculty of Science and Arts, Ahi Evran University, 40040 Kirsehir (Turkey); Horzum Sahin, S.; Serin, N. [Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Ankara (Turkey)

    2011-02-01

    Conductivity, X-ray diffraction (XRD), optical absorption and atomic force microscopy (AFM) measurements of CuO thin film were presented. Three distinct electrical conduction contributions with discrete characteristic activation energies were observed. The applicability of various theoretical models was considered to explain results on electrical transport. We extracted important electrical parameters of CuO, which might be useful for its gas sensor applications. -- Research Highlights: {yields} The important electrical parameters of CuO were extracted. Three distinct activation contributions were observed. {yields} Above 200 K, conductivity was controlled by potential barrier. {yields} Below 200 K, conductivity was described in terms of hopping conduction.

  12. Defect mediated magnetic interaction and high Tc ferromagnetism in Co doped ZnO nanoparticles.

    Science.gov (United States)

    Pal, Bappaditya; Giri, P K

    2011-10-01

    Structural, optical and magnetic studies have been carried out for the Co-doped ZnO nanoparticles (NPs). ZnO NPs are doped with 3% and 5% Co using ball milling and ferromagnetism (FM) is studied at room temperature and above. A high Curie temperature (Tc) has been observed from the Co doped ZnO NPs. X-ray diffraction and high resolution transmission electron microscopy analysis confirm the absence of metallic Co clusters or any other phase different from würtzite-type ZnO. UV-visible absorption and photoluminescence studies on the doped samples show change in band structure and oxygen vacancy defects, respectively. Micro-Raman studies of doped samples shows defect related additional strong bands at 547 and 574 cm(-1) confirming the presence of oxygen vacancy defects in ZnO lattice. The field dependence of magnetization (M-H curve) measured at room temperature exhibits the clear M-H loop with saturation magnetization and coercive field of the order of 4-6 emu/g and 260 G, respectively. Temperature dependence of magnetization measurement shows sharp ferromagnetic to paramagnetic transition with a high Tc = 791 K for 3% Co doped ZnO NPs. Ferromagnetic ordering is interpreted in terms of overlapping of polarons mediated through oxygen vacancy defects based on the bound magnetic polaron (BMP) model. We show that the observed FM data fits well with the BMP model involving localised carriers and magnetic cations.

  13. Syntheses of CuO nanostructures in ionic liquids

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simple and efficient approach is developed to fabricate single-crystalline CuO nanostructures through an ionic liquid assisted one-step low-temperature solid-state route.Both nanoparticles(5 nm in size)and nanorods(5-10 nm in diameter and 50-100 nm in length)of monoclinic CuO were obtained. These synthesized CuO nanostructures were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),selected area electron diffraction(SAED),X-ray photoelectron spectros- copy(XPS),energy dispersive spectroscopy(EDS)and nitrogen adsorption analysis.The morpholo- gies of the nanostructures can be controlled by tuning the amount of NaOH and ionic liquids.The growth mechanism of CuO nanostructures is investigated.

  14. Syntheses of CuO nanostructures in ionic liquids

    Institute of Scientific and Technical Information of China (English)

    WANG Li; ZHAO Bin; YUAN ZhongYong; ZHANG XueJun; Wu QingDuan; CHANG LiXian; ZHENG WenJun

    2007-01-01

    A simple and efficient approach is developed to fabricate single-crystalline CuO nanostructures through an ionic liquid assisted one-step low-temperature solid-state route. Both nanoparticles (5 nm in size) and nanorods (5-10 nm in diameter and 50-100 nm in length) of monoclinic CuO were obtained. These synthesized CuO nanostructures were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS) and nitrogen adsorption analysis. The morphologies of the nanostructures can be controlled by tuning the amount of NaOH and ionic liquids. The growth mechanism of CuO nanostructures is investigated.

  15. Properties and local environment of p-type and photoluminescent rare earths implanted into ZnO single crystals

    CERN Document Server

    Rita, EMC; Wahl, U; Soares, JC

    This thesis presents an experimental study of the local environment of p-type and Rare- Earth dopants implanted in ZnO single-crystals (SCs). Various nuclear and bulk property techniques were combined in the following evaluations: Implantation damage annealing was evaluated in ZnO SCs implanted with Fe, Sr and Ca. P-type dopants Cu and Ag implanted ZnO SCs were studied revealing that the solubility of Cu in substituting Zn is considerably higher than that of Ag. These results are discussed within the scope of the ZnO p-type doping problematic with these elements. Experimental proofs of the As “anti-site” behavior in ZnO were for the first time attained, i.e., the majority of As atoms are substitutional at the Zn site (SZn), possibly surrounded by two Zn vacancies (VZn). This reinforces the theoretical prediction that As acts as an acceptor in ZnO via the AsZn-2VZn complex formation. The co-doping of ZnO SC with In (donor) and As (acceptor) was addressed. The most striking result is the possible In-As “p...

  16. Preparation of solar selective absorbing CuO coating for medium temperature application

    Institute of Scientific and Technical Information of China (English)

    HUANG Qunwu; WANG Yiping; LI Jinhua

    2007-01-01

    A new method of preparing CuO solar selective absorbing coating for medium temperature is presented.After pretreatment,brass was overlaid with CuO by chemical plating.The effects of reactant concentration,reaction temperature and reaction time on the absorptivity of CuO coating were investigated.The optimized condition of preparing CuO coating was obtained.The CuO coating was analyzed with X-ray photoelectron spectroscopy(XPS) and scanning electron microscopy(SEM).In order to prolong the period of use,the CuO coating was protected by TiO2.The experiment shows that the TiO2/CuO coating is more heat-resistant,acid-resistant,and wear resistant than CuO coating,without Iosing absorptivity markedly.The TiO2 coating can reduce emissivity and protect the CuO coating.

  17. Mn-Na共掺ZnO非极性薄膜的结构及其光电磁性能研究%Study on the structure,optical,electrical and magnetic properties of Mn-Na codoping ZnO nonpolar thin films

    Institute of Scientific and Technical Information of China (English)

    叶颖惠; 吕斌; 张维广; 黄宏文; 叶志镇

    2012-01-01

    Nonpolar Zn(Mn,Na)O thin films with orientation(a-plane) have been successfully grown on r-plane sapphire substrates by pulsed laser deposition(PLD) through a Mn-Na codoping route.The X-ray diffraction(XRD),field-emission scanning electron microscopy(FE-SEM),Hall-effect and X-ray photoelectron spectroscopy(XPS) measurements show that growth temperature and work pressure have significant influences on the microstructure and properties of the as-prepared nonpolar Zn(Mn,Na)O.The films prepared under the conditions of the oxygen pressure of 0.02 Pa and the growth temperature of 600℃were of high crystallinity with fine optical and electrical properties.Moreover,the influence of the growth orientation on room temperature ferromagnetism(RTFM) of the thin films has been investigated by superconducting quantum interference device(SQUID),and the possible mechanism concerning the origin of RTFM observed in the Zn(Mn,Na)O films is discussed as well.%非极性方向生长的ZnO基多量子阱消除了量子限域Stark效应,可以提高光电器件的发光效率.据此我们采用脉冲激光沉积方法在r面蓝宝石衬底上生长了高质量的α面(11(?)0)单一取向非极性Zn(Mn,Na)O薄膜.X射线衍射、场发射扫描电子显微镜、Hall测试、X射线光电子能谱等测试结果表明:衬底温度和生长气压对Zn(Mn,Na)O薄膜的非极性生长影响很大,在600℃和0.02 Pa条件下实现了Mn-Na共掺,得到了高结晶质量并具有良好光电性能的非极性Zn(Mn,Na)O薄膜.此外,我们还利用超导量子干涉仪研究了Zn(Mn,Na)O薄膜的生长取向对其室温铁磁性能的影响规律,并对引起磁性变化的机理进行了讨论.

  18. High-quality ZnO growth, doping, and polarization effect

    Science.gov (United States)

    Kun, Tang; Shulin, Gu; Jiandong, Ye; Shunming, Zhu; Rong, Zhang; Youdou, Zheng

    2016-03-01

    The authors have reported their recent progress in the research field of ZnO materials as well as the corresponding global advance. Recent results regarding (1) the development of high-quality epitaxy techniques, (2) the defect physics and the Te/N co-doping mechanism for p-type conduction, and (3) the design, realization, and properties of the ZnMgO/ZnO hetero-structures have been shown and discussed. A complete technology of the growth of high-quality ZnO epi-films and nano-crystals has been developed. The co-doping of N plus an iso-valent element to oxygen has been found to be the most hopeful path to overcome the notorious p-type hurdle. High mobility electrons have been observed in low-dimensional structures utilizing the polarization of ZnMgO and ZnO. Very different properties as well as new physics of the electrons in 2DEG and 3DES have been found as compared to the electrons in the bulk. Project supported by the National Natural Science Foundation of China (Nos. 61025020, 61274058, 61322403, 61504057, 61574075), the Natural Science Foundation of Jiangsu Province (Nos. BK2011437, BK20130013, BK20150585), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Fundamental Research Funds for the Central Universities.

  19. Structure and characterization of Sn, Al co-doped zinc oxide thin films prepared by sol–gel dip-coating process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min-I [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS - UMR STMR 6279, Université de Technologie de Troyes (France); Huang, Mao-Chia [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Legrand, David [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS - UMR STMR 6279, Université de Technologie de Troyes (France); Lerondel, Gilles [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS - UMR STMR 6279, Université de Technologie de Troyes (France); Lin, Jing-Chie, E-mail: jclin4046@gmail.com [Institute of Materials Science and Engineering, National Central University, Taiwan (China)

    2014-11-03

    Transparent conductive zinc oxide co-doped with tin and aluminum (TAZO) thin films were prepared via sol–gel dip-coating process. Non-toxic ethanol was used in this study instead of 2-methoxyethanol used in conventional work. Dip-coating was repeated several times to obtain relatively thick films consisting of six layers. The films were then annealed at 500 °C for 1 h in air or in vacuum and not subsequently as employed in other studies. The X-ray diffraction patterns indicated that all the samples revealed a single phase of hexagonal ZnO polycrystalline structure with a main peak of (002). The optical band gap and resistivity of the TAZO films were in the ranges of 3.28 to 3.32 eV and 0.52 to 575.25 Ω cm, respectively. The 1.0 at.% Sn, 1.0 at.% Al co-doped ZnO thin film annealed in vacuum was found to have a better photoelectrochemical performance with photocurrent density of about 0.28 mA/cm{sup 2} at a bias of 0.5 V vs. SCE under a 300 W Xe lamp illumination with the intensity of 100 mW/cm{sup 2}. Compared to the same dopant concentration but annealed in air (∼ 0.05 mA/cm{sup 2} bias 0.5 V vs. SCE), the photocurrent density of the film annealed in vacuum was 5 times higher than the film annealed in air. Through electrochemical measurements, we found that the dopant concentration of Sn plays an important role in TAZO that affected photocurrent density, stability of water splitting and anti-corrosion. - Highlights: • Al, Sn co-doped ZnO (TAZO) films was synthesized by sol–gel process. • The parameters of TAZO films were dopant concentration and annealed ambient. • The photoelectrochemical characteristics of TAZO films were investigated.

  20. ZnO based transparent conductive oxide films with controlled type of conduction

    Energy Technology Data Exchange (ETDEWEB)

    Zaharescu, M., E-mail: mzaharescu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Mihaiu, S., E-mail: smihaiu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Toader, A. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Atkinson, I., E-mail: irinaatkinson@yahoo.com [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Calderon-Moreno, J.; Anastasescu, M.; Nicolescu, M.; Duta, M.; Gartner, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Vojisavljevic, K.; Malic, B. [Institute Jožef Stefan, Ljubljana (Slovenia); Ivanov, V.A.; Zaretskaya, E.P. [State Scientific and Production Association “Scientific-Practical Materials Research Center of the National Academy of Science Belarus, P. Brovska str.19, 220072, Minsk (Belarus)

    2014-11-28

    The transparent conductive oxide films with controlled type of conduction are of great importance and their preparation is intensively studied. In our work, the preparation of such films based on doped ZnO was realized in order to achieve controlled type of conduction and high concentration of the charge carriers. Sol–gel method was used for films preparation and several dopants were tested (Sn, Li, Ni). Multilayer deposition was performed on several substrates: SiO{sub 2}/Si wafers, silica-soda-lime and/or silica glasses. The structural and morphological characterization of the obtained films were done by scanning electron microscopy, X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy and atomic force microscopy respectively, while spectroscopic ellipsometry and transmittance measurements were done for determination of optical properties. The selected samples with the best structural, morphological and optical properties were subjected to electrical measurement (Hall and Seebeck effect). In all studied cases, samples with good adherence and homogeneous morphology as well as monophasic wurtzite type structure were obtained. The optical constants (refractive index and extinction coefficient) were calculated from spectroscopic ellipsometry data using Cauchy model. Films with n- or p-type conduction were obtained depending on the composition, number of deposition and thermal treatment temperature. - Highlights: • Transparent conductive ZnO based thin films were prepared by the sol–gel method. • Controlled type of conduction is obtained in (Sn, Li) doped and Li-Ni co-doped ZnO films. • Hall and Seebeck measurements proved the p-type conductivity for Li-Ni co-doped ZnO films. • The p-type conductivity was maintained even after 4-months of storage. • Influence of dopant- and substrate-type on the ZnO films properties was established.

  1. Synthesis, microstructural characterization and optical properties of CuO nanorods and nanowires obtained by aerosol assisted CVD

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Ruelas, M. [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, Chihuahua, Chih. C.P. 31109 (Mexico); Universidad Autónoma de Chihuahua, Facultad de Ingeniería, Circuito No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, Chih. C.P. 31240 (Mexico); Amézaga-Madrid, P. [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, Chihuahua, Chih. C.P. 31109 (Mexico); Esquivel-Pereyra, O. [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, Chihuahua, Chih. C.P. 31109 (Mexico); Universidad Autónoma de Chihuahua, Facultad de Ingeniería, Circuito No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, Chih. C.P. 31240 (Mexico); Antúnez-Flores, W.; Pizá-Ruiz, P.; Ornelas-Gutiérrez, C. [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, Chihuahua, Chih. C.P. 31109 (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, Chihuahua, Chih. C.P. 31109 (Mexico)

    2015-09-15

    Highlights: • Nanorods and nanowires of CuO were successfully synthesized by AACVD technique. • The carrier gas velocity was a determinant factor for the growth of nanorods or nanowires. • The increase of deposition time generates the reduction in the evenness and distribution density. • The crystalline phase of nanorods and nanowires was monoclinic tenorite. - Abstract: Copper oxide is a particularly interesting material because it presents photovoltaic, electrochemical and catalytic properties. Its unique properties are very important in the area of nanotechnology and may be an advantage because these nanomaterials can be applied in the design and manufacture of nanosensors, photocatalysis area, nanolasers switches and transistors. Nowadays one-dimensional nanostructures as nanorods, nanowires, etc., have generated a great importance and have received considerable attention and study due to their unique physical and chemical properties. In this work we report the synthesis, microstructural characterization and optical properties of CuO nanorods and nanowires grown by aerosol assisted chemical vapor deposition onto a CuO, ZnO and TiO{sub 2} thin film covered and bare borosilicate glass substrate. Concentration of the precursor solution and carrier gas flux were previously optimized and fixed at 0.1 mol dm{sup −3} and 5 L min{sup −1}, respectively. Other deposition parameters such as substrate temperature, as well the carrier gas velocity and deposition time were varied from 623 to 973 K, 0.88 to 1.77 m s{sup −1} and 11 to 16 min, respectively. Their influence on the morphology, microstructure and optical properties of the nanorods and nanowires were analyzed. The crystalline structure of the materials was characterized by grazing incidence X-ray diffraction; results indicate the presence of the tenorite phase. Surface morphology and microstructure were studied by field emission scanning electron microscopy, and high resolution transmission electron

  2. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite.

    Science.gov (United States)

    Malka, Eyal; Perelshtein, Ilana; Lipovsky, Anat; Shalom, Yakov; Naparstek, Livnat; Perkas, Nina; Patick, Tal; Lubart, Rachel; Nitzan, Yeshayahu; Banin, Ehud; Gedanken, Aharon

    2013-12-09

    Zinc-doped copper oxide nanoparticles are synthesized and simultaneously deposited on cotton fabric using ultrasound irradiation. The optimization of the processing conditions, the specific reagent ratio, and the precursor concentration results in the formation of uniform nanoparticles with an average size of ≈30 nm. The antibacterial activity of the Zn-doped CuO Cu₀.₈₈Zn₀.₁₂O in a colloidal suspension or deposited on the fabric is tested against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) bacteria. A substantial enhancement of 10,000 times in the antimicrobial activity of the Zn-CuO nanocomposite compared to the pure CuO and ZnO nanoparticles (NPs) is observed after 10 min exposure to the bacteria. Similar activities are observed against multidrug-resistant bacteria (MDR), (i.e., Methicillin-resistant S. aureus and MDR E. coli) further emphasizing the efficacy of this composite. Finally, the mechanism for this enhanced antibacterial activity is presented.

  3. Preparation and characterization of electrodeposited ZnO and ZnO:Co nanorod films for heterojunction diode applications

    Energy Technology Data Exchange (ETDEWEB)

    Caglar, Yasemin, E-mail: yasemincaglar@anadolu.edu.tr [Anadolu University, Science Faculty, Physics Department, Eskisehir (Turkey); Arslan, Andaç [Eskisehir Osmangazi University, Art and Science Faculty, Chemistry Department, Eskisehir (Turkey); Ilican, Saliha [Anadolu University, Science Faculty, Physics Department, Eskisehir (Turkey); Hür, Evrim [Eskisehir Osmangazi University, Art and Science Faculty, Chemistry Department, Eskisehir (Turkey); Aksoy, Seval; Caglar, Mujdat [Anadolu University, Science Faculty, Physics Department, Eskisehir (Turkey)

    2013-10-15

    Highlights: •Undoped and Co-doped ZnO films were deposited on p-Si by electrodeposition method. •The effects of Co doping on some properties of ZnO films were investigated. •ZnO morphology was converted uniform multi-oriented rods with incorporation of Co. •Co-doped ZnO nanorod films showed a multi-oriented spear-like structure. -- Abstract: Well-aligned undoped and Co-doped nanorod ZnO films were grown by electrochemical deposition onto p-Si substrates from an aqueous route. Aqueous solution of Zn(NO{sub 3}){sub 2}⋅6H{sub 2}O and hexamethylenetetramine (HMT) were prepared using triple distilled water. Two different atomic ratios of Co(NO{sub 3}){sub 2}⋅6H{sub 2}O were used as a dopant element. Electrodepositions were carried out in a conventional three electrode cell for the working electrode (p-Si), reference electrode (Ag/AgCl, sat.) and counter electrode (platin wire). The effects of Co doping on the structural, morphological and electrical properties of ZnO films were investigated. X-ray diffraction (XRD) measurement showed that the undoped ZnO nanorod film was crystallized in the hexagonal wurtzite phase and presented a preferential orientation along the c-axis. Only one peak, corresponding to the (0 0 2) phase, appeared on the diffractograms. The lattice parameters and texture coefficient values were calculated. The nanorods were confirmed by the field emission scanning electron microscopy (FE-SEM) measurements. The FE-SEM image showed that the ZnO nanorods grow uniformly on the substrates, providing a surface with fairly homogeneous roughness. The surface morphology was transformed into uniform multi-oriented rods with incorporation of Co. Co-doped ZnO nanorod films showed a multi-oriented spear-like structure. The diffuse reflectance spectra of the films were measured and the optical band gap values were determined using Kubelka–Munk theory. The van der Pauw method was used to measure the sheet resistance of the films. The sheet resistance

  4. Structural imperfections and attendant localized/itinerant ferromagnetism in ZnO nanoparticles

    Science.gov (United States)

    Yang, Chao-Yao; Lu, Yi-Hsuan; Lin, Wei-Hao; Lee, Min-Han; Hsu, Yung-Jung; Tseng, Yuan-Chieh

    2014-08-01

    Using synchrotron-based x-ray magnetic spectroscopy, we report a study focusing on the local symmetry of Cu-dopant and resultant structural imperfections in mediating Cu-doped ZnO nanoparticles' ferromagnetism (FM). Prepared by an antisolvent method, Cu appeared to preferably populate on the basal plane of ZnO with a local symmetry of [CuO4]. This unique symmetry was antiferromagnetic in nature, while electronically and structurally coupled to surrounded oxygen vacancies (Vo) that yielded a localized FM, because of a strong dependency on the number/location of the [CuO4] symmetry. Surprisingly, the FM of undoped but oxygen-deficient ZnO appeared to be more itinerant and long-range, where Vo percolated the FM effectively and isotropically through oxygen's delocalized orbital. By adopting the approach of structural imperfection, this study clearly identifies Vo's (defect's) true characters in mediating the FM of magnetic semiconductors which has been thought of as a long-standing debate, and thus provides a different thinking about the traditional extrinsic ferromagnetic-tuning in the semiconductors. It even illuminates recent research concerning the intrinsic FM of low-dimensional systems that contain defects but non-magnetic elements.

  5. Growth of n-type ZnO thin films by using mixture gas of hydrogen and argon

    Institute of Scientific and Technical Information of China (English)

    Zhou Xin; Wang Shi-Qi; Lian Gui-Jun; Xiong Guang-Cheng

    2006-01-01

    High-quality oxide semiconductor ZnO thin films were prepared on single-crystal sapphire and LaAlO3 substrates by pulsed laser deposition (PLD) in the mixture gas of hydrogen and argon. Low resistivity n-type ZnO thin films with smoother surface were achieved by deposition at 600℃ in 1Pa of the mixture gas. In addition, ferromagnetism was observed in Co-doped ZnO thin films and rectification Ⅰ-Ⅴ curves were found in p-GaN/n-ZnO and p-CdTe/n-ZnO heterostructure junctions. The results indicated that using mixture gas of hydrogen and argon in PLD technique was a flexible method for depositing high-quality n-type oxide semiconductor films, especially for the multilayer thin film devices.

  6. Comparative study on beryllium and magnesium as a co-doping element for ZnO:N

    Science.gov (United States)

    Yu-Quan, Su; Ming-Ming, Chen; Long-Xing, Su; Yuan, Zhu; Zi-Kang, Tang

    2016-06-01

    Stable nitrogen doping is an important issue in p-type ZnO research for device applications. In this paper, beryllium and magnesium are systematically compared as a dopant in ZnO to reveal their nitrogen-stabilizing ability. Secondary ion mass spectrum shows that Be and Mg can both enhance the stability of nitrogen in ZnO while Be has a better performance. Zn 2p and O 1s electron binding energies change in both MgZnO and BeZnO thin films. Donor-acceptor luminescence is observed in the BeZnO samples. We conclude that Be is a better co-doping element than Mg for p-type ZnO:N. Project supported by the National Key Basic Research Program of China (Grant No. 2011CB302000), the National Natural Science Foundation of China (Grant Nos. 51232009 and 51202299), the Fundamental Research Funds for the Central Universities, China (Grant No. 11lgpy16), the Natural Science Foundation for Jiangsu Provincial Higher Education, Institutions of China (Grant No. 15KJB510005), and the Talent Fund of Jiangsu University, China (Grant No. 15JDG042).

  7. Tailored 3D CuO Nanogrid Formation

    Directory of Open Access Journals (Sweden)

    Jusang Lee

    2011-01-01

    Full Text Available This paper reports on the controlled synthesis of 3D CuO nanogrids by the combined use of electrospinning and thermal oxidation of a composite metal mesh/polymer mat architecture. The obtained nanogrids result from three steps encompassing: (i Cu atom clusters diffusing into the nanofibers producing polymer-metal “core-shell”-type fibers (ii decomposition of the polymeric shell; (iii oxidation of the metallic core of the nanofibers to form self-supported, open nanogrids consisting of continuous nanofibers of CuO nanoparticles with an average diameter of 20 nm. The calculated band gap energy of the cupric oxide nanogrids was determined from the UV-Vis spectrum to be 1.32 eV. The unique 3D CuO nanogrids may be used as key components of 3D nanobatteries, photocatalysts, and p-type chemosensors.

  8. Correlated barrier hopping of CuO nanoparticles

    Science.gov (United States)

    Koshy, Jiji; Soosen, Samuel. M.; Chandran, Anoop; George, K. C.

    2015-12-01

    The ac conduction mechanism in copper oxide nanoparticles with 8 nm size, synthesized by a precipitation method was studied by analyzing ac conductivity in the frequency range of 50 Hz-1 MHz and in the temperature range of 373-573 K. X-ray diffraction and transmission electron microscopy (TEM) were employed for the structural and morphological characterization of CuO nanoparticles. The experimental and theoretical investigations suggested that the ac conduction mechanism in CuO nanoparticles can be successfully explained by a correlated barrier hopping model, which provided reasonable values for the maximum barrier height and characteristic relaxation time. It was also found that bipolaron hopping become prominent up to a particular temperature and beyond that single polaron hopping predominates. Physical parameters such as hopping distance and density of defect states were also calculated. Photoluminescence studies confirm the presence of a surface defect in CuO nanoparticles.

  9. Toxicity of Nanoscale CuO and ZnO to Daphnia magna

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hai-zhou; LU Guang-hua; XIA Jun; JIN Shao-ge

    2012-01-01

    The potential effects of nanoscale CuO(nCuO),nanoscale ZnO(nZnO)and their mixtures on Daphnia magna were investigated,including 48-h acute toxicity and 21-d chronic toxicity tests as well as a feeding experiment.The results of acute toxicity show that nCuO/nZnO mixture was the most toxic followed by nCuO and nZnO.The nanoparticles(NPs)inhibited both the growth and reproduction of Daphnia magna during the testing period.Concentration dependence was apparent in all the cases and the intrinsic rate of natural increase was confirmed to be a very sensitive parameter to NPs exposure.Binary mixture appeared to be more toxic than the corresponding individual exposures at most cases except for the feeding behavior.

  10. Progress in ZnO Acceptor Doping: What Is the Best Strategy?

    Directory of Open Access Journals (Sweden)

    Judith G. Reynolds

    2014-01-01

    Full Text Available This paper reviews the recent progress in acceptor doping of ZnO that has been achieved with a focus toward the optimum strategy. There are three main approaches for generating p-type ZnO: substitutional group IA elements on a zinc site, codoping of donors and acceptors, and substitution of group VA elements on an oxygen site. The relevant issues are whether there is sufficient incorporation of the appropriate dopant impurity species, does it reside on the appropriate lattice site, and lastly whether the acceptor ionization energy is sufficiently small to enable significant p-type conduction at room temperature. The potential of nitrogen doping and formation of the appropriate acceptor complexes is highlighted although theoretical calculations predict that nitrogen on an oxygen site is a deep acceptor. We show that an understanding of the growth and annealing steps to achieve the relevant acceptor defect complexes is crucial to meet requirements.

  11. Influence of Nd:Zn codoping in near-stoichiometric lithium niobate.

    Science.gov (United States)

    Babu Reddy, J N; Ganesh Kamath, K; Vanishri, S; Bhat, H L; Elizabeth, Suja

    2008-06-28

    Near-stoichiometric lithium niobate (SLN) crystals doped with up to 1.6 mol % Zn and codoped with various Nd concentrations in the melt (0.2, 0.5, 0.9, and 1.5 mol %) (Nd:Zn:SLN) are grown from 58.6 mol % Li(2)O using conventional Czochralski technique. Crystals are pulled at the rate of 0.35 mmh with seed rotation at 9 rpm. Concentrations of Zn and Nd in the crystal are varied by adding appropriate amounts of ZnO and Nd(2)O(3) to the starting composition. Unit cell parameters of the grown crystals are calculated by Rietveld refinement method using FULLPROFF software. Domain structure studies are carried out by chemical etching followed by microscopic examination. Dielectric studies reveal the existence of piezoelectric resonance at high frequencies. Enhancement in dielectric constant and tan delta in Nd doped samples has been attributed to the space charge polarization. Nd doped samples exhibit reduction in the relative permittivity after oxygen annealing. Transmission spectra of Nd:Zn:SLN crystals in the UV region exhibit blueshift in the cutoff wavelength. In Mid Infrared (MIR) region crystals doped with 1.6 mol % Zn have shift in the OH absorption peak from 2873 to 2833 nm. Judd-Ofelt analysis carried out on the absorption spectra of codoped crystal yields the lifetime of 104 mus for the metastable state (4)F(32). The branching ratio for the electronic transition from (4)F(32) to (4)I(112) is high compared to that for (4)F(32) to (4)I(132), indicating a higher emission cross section for the former transition. Laser damage threshold evaluated using 532 nm, 5 ns pulsed neodymium doped yttrium aluminum garnet laser, shows an increase by two orders of magnitude for crystals doped with 1.6 mol % Zn. Photorefractive damage threshold for these crystals shows an enhancement of four orders of magnitude due to increase in the photoconductivity.

  12. Synthesis and Optical Properties of CuO Nanocrystals with Controllable Shapes and Size

    Directory of Open Access Journals (Sweden)

    Goraya Neelinder

    2016-01-01

    Full Text Available Highly dispersed copper oxide (CuO nanoparticles had been successfully prepared by a hydrothermal technique where different adding temperatures of NaOH were taken. The as-prepared CuO nanoparticles were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM and Raman spectroscopy. The results showed that the adding temperature of NaOH has an important influence on the shape and size of CuO nanocrystals The influence of reaction conditions on morphology of CuO nanocrystals was discussed. Furthermore, different shapes of obtained CuO nanocrystals exhibit different Raman properties.

  13. Thermal conductivity enhancement in thermal grease containing different CuO structures.

    Science.gov (United States)

    Yu, Wei; Zhao, Junchang; Wang, Mingzhu; Hu, Yiheng; Chen, Lifei; Xie, Huaqing

    2015-01-01

    Different cupric oxide (CuO) structures have attracted intensive interest because of their promising applications in various fields. In this study, three kinds of CuO structures, namely, CuO microdisks, CuO nanoblocks, and CuO microspheres, are synthesized by solution-based synthetic methods. The morphologies and crystal structures of these CuO structures are characterized by field-emission scanning electron microscope and X-ray diffractometer, respectively. They are used as thermal conductive fillers to prepare silicone-based thermal greases, giving rise to great enhancement in thermal conductivity. Compared with pure silicone base, the thermal conductivities of thermal greases with CuO microdisks, CuO nanoblocks, and CuO microspheres are 0.283, 0256, and 0.239 W/mK, respectively, at filler loading of 9 vol.%, which increases 139%, 116%, and 99%, respectively. These thermal greases present a slight descendent tendency in thermal conductivity at elevated temperatures. These experimental data are compared with Nan's model prediction, indicating that the shape factor has a great influence on thermal conductivity improvement of thermal greases with different CuO structures. Meanwhile, due to large aspect ratio of CuO microdisks, they can form thermal networks more effectively than the other two structures, resulting in higher thermal conductivity enhancement.

  14. Travelling-solvent floating-zone growth of the dilutely Co-doped spin-ladder compound Sr14(Cu, Co)24O41

    Science.gov (United States)

    Bag, Rabindranath; Karmakar, Koushik; Singh, Surjeet

    2017-01-01

    We present here crystal growth of dilutely Co-doped spin-ladder compounds Sr14(Cu 1-x, Cox)24O41 (x = 0, 0.01, 0.03, 0.05, 0.1) using the Travelling Solvent Floating Zone (TSFZ) technique associated with an image furnace. We carried out detailed microstructure and compositional analysis. The microstructure of the frozen-in FZ revealed two bands: a lower band consisting of well-aligned single-crystalline stripes of the phase Sr14(Cu, Co)24O41 embedded in the eutectic mixture of composition SrO 18% and (Cu, Co)O 82%; and an upper band consisting of a criss-crossed pattern of these stripes. These analyses were also employed to determine the distribution coefficient of the dopants in Sr14Cu24O41. The distribution coefficient turned out to be close to 1, different from Sr2CuO3 reported previously where Co tend to accumulate in the molten zone. Direct access to the composition of the frozen-in zone eliminated any previous ambiguities associated with the composition of the peritectic point of Sr14Cu24O41; and also the eutectic point in the binary SrO-CuO phase diagram. The lattice parameters show an anisotropic variation upon Co-doping with parameters a and b increasing, c decreasing; and with an overall decrease of the unit cell volume. Magnetic susceptibility measurements were carried out on the pristine and the Co-doped crystals along the principal crystallographic axes. The spin susceptibility of the x = 0.01 crystal exhibits a strong anisotropy, which is in stark contrast with the isotropic behaviour of the pristine crystal. This anisotropy seems to arise from the intradimer exchange interaction as inferred from the anisotropy of the dimer contribution to the susceptibility of the Co-doped crystal. The Curie-tail in the magnetic susceptibility of Sr14(Cu 1-x, Cox)24O41 (x = 0, 0.01, 0.03, 0.05, 0.1) crystals (field applied parallel to the ladder) was found to scale with Co-doping - the scaling is employed to confirm a homogeneous distribution of Co in a x = 0

  15. Effects of annealing on the ferromagnetism and photoluminescence of Cu-doped ZnO nanowires

    Science.gov (United States)

    Xu, H. J.; Zhu, H. C.; Shan, X. D.; Liu, Y. X.; Gao, J. Y.; Zhang, X. Z.; Zhang, J. M.; Wang, P. W.; Hou, Y. M.; Yu, D. P.

    2010-01-01

    Room temperature ferromagnetic Cu-doped ZnO nanowires have been synthesized using the chemical vapor deposition method. By combining structural characterizations and comparative annealing experiments, it has been found that both extrinsic (CuO nanoparticles) and intrinsic (Zn1-xCuxO nanowires) sources are responsible for the observed ferromagnetic ordering of the as-grown samples. As regards the former, annealing in Zn vapor led to a dramatic decrease of the ferromagnetism. For the latter, a reversible switching of the ferromagnetism was observed with sequential annealings in Zn vapor and oxygen ambience respectively, which agreed well with previous reports for Cu-doped ZnO films. In addition, we have for the first time observed low temperature photoluminescence changed with magnetic properties upon annealing in different conditions, which revealed the crucial role played by interstitial zinc in directly mediating high Tc ferromagnetism and indirectly modulating the Cu-related structured green emission via different charge transfer transitions.

  16. P-type ZnO thin films prepared by in situ oxidation of DC sputtered Zn{sub 3}N{sub 2}:Ga

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jun; Xue Shuwen; Shao Lexi, E-mail: shaolxmail@163.co [School of Physical Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China)

    2010-04-15

    The feasibility of a new fabrication route for N and Ga codoped p-type ZnO thin films on glass substrates, consisting of DC sputtering deposition of Zn{sub 3}N{sub 2}:Ga precursors followed by in situ oxidation in high purity oxygen, has been studied. The effects of oxidation temperature on the structural, optical and electrical properties of the samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), optical transmittance and Hall effect measurements. The results were compared to a control film without Ga. XRD analyses revealed that the Zn{sub 3}N{sub 2} films entirely transformed into ZnO films after annealing Zn{sub 3}N{sub 2} films in oxygen over 500 {sup 0}C for 2 h. Hall effect measurements confirmed p-type conduction in N and Ga codoped ZnO films with a low resistivity of 19.8 {Omega} {center_dot} cm, a high hole concentration of 4.6 x 10{sup 18} cm{sup -3} and a Hall mobility of 0.7 cm{sup 2}/(V{center_dot}s). These results demonstrate a promising approach to fabricate low resistivity p-type ZnO with high hole concentration. (semiconductor materials)

  17. Structural and optoelectronic properties of glucose capped Al and Cu doped ZnO nanostructures

    Directory of Open Access Journals (Sweden)

    Patwari Gunjan

    2016-03-01

    Full Text Available Al and Cu doped ZnO nanoparticles are considered as appropriate for modulation of structural and optoelectronic properties. Al atoms are found to substitute the host Zn whereas Cu dopants mainly segregate in grain boundaries and thereby determine the optical properties. The undoped as well as Al and Cu doped ZnO exhibit spherical well defined particles. The spherical nanoparticles change to rod type structures on co-doping. The average particle size decreases on doping what consequently results in an increment in band gap. Blue shift in UV absorption is governed by the functional group of glucose; further blue shift occurring on metal doping may be attributed to Burstein-Moss effect. PL spectra of doped and undoped ZnO show a dominant near band gap UV emission along with visible emission owing to the defects. The PL peak intensity increases on doping with Cu and Al. The linear I-V characteristics indicate the ohmic behavior of ZnO nanostructures.

  18. Magneto-optical studies on doped and undoped ZnO nano-structures

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Stephanie; Chen, Limei; Heimbrodt, Wolfram [Department of Physics and Material Science Center, Philipps-University Marburg, Renthof 5, D-35032 Marburg (Germany); Geburt, Sebastian; Ronning, Carsten [Physikalisch-Astronomische Fakultaet, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2011-07-01

    High quality ZnO nanowires doped with different content of Manganese and Cobalt as well as ZnO quantum wells embedded between ZnMgO barriers are investigated by magneto photoluminescence and magnetic circular dichroism (MCD) in a split-coil superconducting magnet system. The measurements have been performed in magnetic fields up to 7 Tesla in a temperature range 1.6-300 K. MCD and Zeeman-spectroscopy in the excitonic region have been used to determine the g-factors of the samples. Even in case of transition metal doped ZnO surprisingly small Zeeman-splitting has been found. The reason for the rather small values as well as the change of sign of the g-value will be discussed. The transition metal doped ZnO shows also an interesting difference concerning the optical 3d intra-ionic transitions. Whereas in the Co-doped samples the 3d transitions are observable in case of the Mn-doped samples the Mn-PL is rather vanishing. The physical reasons for the odd behaviour will be discussed.

  19. a Reexamination of the Red Band of CuO: Analysis of the [16.5] ^{2}Σ^{-} - X ^{2}Π_{i} Transition of ^{63}CuO and ^{65}CuO

    Science.gov (United States)

    Harms, Jack C.; Grames, Ethan M.; Yun, Sirkhoo; Ahmed, Bushra; O'Brien, Leah C.; O'Brien, James J.

    2017-06-01

    The red band of CuO has been observed at high resolution using Intracavity Laser Spectroscopy (ILS). The red band was rotationally analyzed in 1974 by Appelblad and Lagerqvist and a portion of the band structure was assigned as the spectrum of the [16.5] A ^{2}Σ^{+} - X ^{2}Π_{i} transition. Subsequent analyses of CuO showed that the character of the A state was ^{2}Σ^{-} in character, and thus the Λ-doubling parameter, p, was inverted, and the e/f parity assignments were reversed. In this study, the spectrum of CuO was recorded in the in the regions 16,150 \\wn - 16,270 \\wn and 16,405 \\wn - 16,545 \\wn. The CuO molecules were produced in the plasma discharge of a copper hollow cathode within the cavity of a tunable dye laser, using 0.6 torr of argon as the sputter gas and a trace amount of O_2 as the source of oxygen. The plasma spectra were recorded intermittently with spectra from an external I_2 cell, and line positions from the widely used Iodine Atlas were used for calibration. In uncongested regions of the spectrum, both ^{63}CuO and ^{65}CuO were observed with appreciable intensity. The resulting spectra were rotationally analyzed for both isotopologues, fitting the data as a ^{2}Σ^{-} - ^{2}Π_{i} transition using PGOPHER. Line positions from the millimeter wave and FTIR studies of ^{63}CuO performed in the late 1990s were included in the fit to overcome potential complications due to the ambiguous parity assignments prevalent in the CuO literature. Previously unreported molecular constants were obtained from the fit for ^{65}CuO, and the constants of ^{63}CuO are determined to at least an order of magnitude greater than the results of Appelblad and Lagerqvist. Results of this analysis will be presented.

  20. The Synthetic Effects of Iron with Sulfur and Fluorine on Photoabsorption and Photocatalytic Performance in Codoped

    Directory of Open Access Journals (Sweden)

    Xiaohua Li

    2012-01-01

    Full Text Available The structural and electronic properties of iron-fluorine (Fe-F and iron-sulfur (Fe-S codoped anatase TiO2 are investigated by first-principles based on density functional theory. Our results show that the formation energy of codoped system is lower than that of single-element doping, which indicates the synergic effect of codoping on the stability of the structure. Codopants introduced impurity gap states resulting in the electron transition energy reduction and thus the visible light absorption observed in the samples. It is concluded that Fe-S should be a better codoping pair because Fe-S codoping introduces extended impurity states resulting in stronger visible light absorption than that of Fe-F codoped compounds. This work gives understanding to the recent experiment and provides the evidence of choosing the more effective co-dopants in TiO2.

  1. Structural, chemical and optical evaluation of Cu-doped ZnO nanoparticles synthesized by an aqueous solution method

    Energy Technology Data Exchange (ETDEWEB)

    Iribarren, A., E-mail: augusto@imre.oc.uh.cu [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, Vedado, Plaza, La Habana 10400 (Cuba); Hernández-Rodríguez, E. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, Vedado, Plaza, La Habana 10400 (Cuba); Maqueira, L. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, Vedado, Plaza, La Habana 10400 (Cuba); Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza, La Habana 10400 (Cuba)

    2014-12-15

    Highlights: • Cu-doped ZnO nanoparticles obtained by chemical synthesis. • Substitutional or interstitial Cu into ZnO lead specific structural, chemical, and optical changes. • Incorporation efficiency of Cu atoms in ZnO as a function of the Cu concentration in the precursor dissolution. - Abstract: In this work a study of ZnO and Cu-doped ZnO nanoparticles obtained by chemical synthesis in aqueous media was carried out. Structural analysis gave the dominant presence of wurtzite ZnO phase forming a solid solution Zn{sub 1−x}Cu{sub x}O. For high Cu doping CuO phase is also present. For low Cu concentration the lattice shrinks due to Cu atoms substitute Zn atoms. For high Cu concentration the lattice enlarges due to predominance of interstitial Cu. From elemental analysis we determined and analyzed the incorporation efficiency of Cu atoms in Zn{sub 1−x}Cu{sub x}O as a function of the Cu concentration in the precursor dissolution. Combining structural and chemical results we described the Cu/Zn precursor concentrations r{sub w} in which the solid solution of Cu in ZnO is predominant. In the region located at r{sub w} ≈ 0.2–0.3 it is no longer valid. For Cu/Zn precursor concentration r{sub w} > 0.3 interstitial Cu dominates, and some amount of copper oxide appears. As the Cu concentration increases, the effective size of nanoparticles decreases. Photoluminescence (PL) measurements of the Cu-doped ZnO nanoparticles were carried out and analyzed.

  2. Plant Mediated Green Synthesis of CuO Nanoparticles: Comparison of Toxicity of Engineered and Plant Mediated CuO Nanoparticles towards Daphnia magna

    Directory of Open Access Journals (Sweden)

    Sadia Saif

    2016-11-01

    Full Text Available Research on green production methods for metal oxide nanoparticles (NPs is growing, with the objective to overcome the potential hazards of these chemicals for a safer environment. In this study, facile, ecofriendly synthesis of copper oxide (CuO nanoparticles was successfully achieved using aqueous extract of Pterospermum acerifolium leaves. P. acerifolium-fabricated CuO nanoparticles were further characterized by UV-Visible spectroscopy, field emission scanning electron microscopy (FE-SEM, energy dispersive X-ray (EDX, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS and dynamic light scattering (DLS. Plant-mediated CuO nanoparticles were found to be oval shaped and well dispersed in suspension. XPS confirmed the elemental composition of P. acerifolium-mediated copper nanoparticles as comprised purely of copper and oxygen. DLS measurements and ion release profile showed that P. acerifolium-mediated copper nanoparticles were more stable than the engineered CuO NPs. Copper oxide nanoparticles are used in many applications; therefore, their potential toxicity cannot be ignored. A comparative study was performed to investigate the bio-toxic impacts of plant-synthesized and engineered CuO nanoparticles on water flea Daphnia. Experiments were conducted to investigate the 48-h acute toxicity of engineered CuO NPs and plant-synthesized nanoparticles. Lower EC50 value 0.102 ± 0.019 mg/L was observed for engineered CuO NPs, while 0.69 ± 0.226 mg/L was observed for plant-synthesized CuO NPs. Additionally, ion release from CuO nanoparticles and 48-h accumulation of these nano CuOs in daphnids were also calculated. Our findings thus suggest that the contribution of released ions from nanoparticles and particles/ions accumulation in Daphnia needs to be interpreted with care.

  3. Plant Mediated Green Synthesis of CuO Nanoparticles: Comparison of Toxicity of Engineered and Plant Mediated CuO Nanoparticles towards Daphnia magna.

    Science.gov (United States)

    Saif, Sadia; Tahir, Arifa; Asim, Tayyaba; Chen, Yongsheng

    2016-11-09

    Research on green production methods for metal oxide nanoparticles (NPs) is growing, with the objective to overcome the potential hazards of these chemicals for a safer environment. In this study, facile, ecofriendly synthesis of copper oxide (CuO) nanoparticles was successfully achieved using aqueous extract of Pterospermum acerifolium leaves. P. acerifolium-fabricated CuO nanoparticles were further characterized by UV-Visible spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS). Plant-mediated CuO nanoparticles were found to be oval shaped and well dispersed in suspension. XPS confirmed the elemental composition of P. acerifolium-mediated copper nanoparticles as comprised purely of copper and oxygen. DLS measurements and ion release profile showed that P. acerifolium-mediated copper nanoparticles were more stable than the engineered CuO NPs. Copper oxide nanoparticles are used in many applications; therefore, their potential toxicity cannot be ignored. A comparative study was performed to investigate the bio-toxic impacts of plant-synthesized and engineered CuO nanoparticles on water flea Daphnia. Experiments were conducted to investigate the 48-h acute toxicity of engineered CuO NPs and plant-synthesized nanoparticles. Lower EC50 value 0.102 ± 0.019 mg/L was observed for engineered CuO NPs, while 0.69 ± 0.226 mg/L was observed for plant-synthesized CuO NPs. Additionally, ion release from CuO nanoparticles and 48-h accumulation of these nano CuOs in daphnids were also calculated. Our findings thus suggest that the contribution of released ions from nanoparticles and particles/ions accumulation in Daphnia needs to be interpreted with care.

  4. Characterization of Doped and Undoped CuO Nanoparticles

    Science.gov (United States)

    Gazioǧlu, Dilek Taşkin; Dumludaǧ, Fatih; Altindal, Ahmet

    2010-01-01

    Undoped and doped with Ti, Cd and Zn CuO nanoparticles were obtained by precipitation method. The crystal structures of the CuO nanoparticles were characterized by X-ray diffraction. Impedance spectroscopy (IS) and d.c conductivity (σd.c) measurements were performed on samples as a function of temperature and frequency (40-105 Hz.) to determine the electrical behavior of the nano powder. It was found that the Arrhenius graph of the samples consist of two linear regions and corresponding activation energies. The dependency of frequency exponent s on temperature and frequency suggests a conduction mechanism which is indication of hopping. The measured impedance spectra showed a furher semicircle at low frequencies for all temperatures. The low frequency semicirles in impedance spectra are attributted to the garin boundry effects.

  5. Investigation on CuO Dispersed PVA Polymer Films

    Directory of Open Access Journals (Sweden)

    R. Divya

    2015-05-01

    Full Text Available Addition of inorganic nanoparticles to polymers allows the modification of physical properties of polymers as well as the implementation of new features in polymer matrix. In the present work, we have made an attempt to disperse CuO nanoparticles in the polyvinyl alcohol (PVA and to understand the change in structural, optical and electrical properties of the polymer film. CuO nanoparticles were added in four different concentrations, viz. 2.5, 5.0, 7.5 and 10 wt%. A total of 5 films were prepared (including the pure PVA film, for comparison.The prepared films were subjected to XRD, FESEM, UV-Vis spectral, PL spectral and electrical analyses. The results obtained are reported.

  6. Exchange bias effect in composites of cuo nanoparticles and nanosilica glass

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan Saha, Dhriti [MLS Professor' s Unit, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032 (India); Kumar Nandi, Arun [Polymer Science Unit, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032 (India); Chakravorty, Dipankar, E-mail: mlsdc@iacs.res.in [MLS Professor' s Unit, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032 (India)

    2014-04-15

    Nanodimensional silica based glass containing iron ions was prepared within the compressed pellet of CuO nanoparicles. The nanocomposite material showed exchange bias effect. This effect arose due to ferromagnetic iron doped CuO phase and antiferromagnetic CuO interface formation within the nanocomposite during the synthesis process. Coercive field as a function of temperature was fitted with Arhenius–Neel equation and extracted blocking temperature was 511 K. The value of effective anisotropy constant for the nanocomposite was found to be 3.64x10{sup 5} erg/cc. - Highlights: • Nanoglass comprising SiO{sub 2} and Fe{sub 2}O{sub 3} was grown with pores of CuO nanoparticle compacts. • CuO (AFM)-core and Fe doped CuO (FM) shell were formed during synthesis. • The nanocomposite material showed exchange bias effect.

  7. Dynamics of Quasiparticles in CuO2 Planes

    Science.gov (United States)

    Mattis, Daniel C.

    At 5 electrons per cell, planar CuO2 is an antiferromagnetic insulator rather than a Fermi liquid. We consider the effects of adding a few electrons or holes into such an insulator and derive a relation between the insulating energy gap and effective mass m* of the added carriers. We find m{el}{*} to differ from m{hol}{*} , with both being temperature dependent.

  8. Multiphonon hopping of carriers in CuO thin films

    Science.gov (United States)

    Serin, T.; Yildiz, A.; Şahin, Ş. H.; Serin, N.

    2011-10-01

    We have performed a detailed study of the electrical conduction process in CuO thin films deposited by the sol-gel dip coating technique in a temperature range 280-420 K. The electrical conduction is analyzed within the framework of various hopping conduction models. Multiphonon hopping conduction mechanism is found to dominate the electrical transport in the entire temperature region. Our results are consistent with this model of hopping conduction mechanisms with weak carrier-lattice coupling.

  9. Transport measurements on individual CuO 2 double layers

    Science.gov (United States)

    Mößle, M.; Kleiner, R.; Gatt, R.; Onellion, M.; Müller, P.

    2000-11-01

    Oxygen loss at the surface of Bi 2Sr 2CaCu 2O 8+ x single crystals provides CuO 2 layers with different critical temperatures. Particularly for overdoped crystals this allows to achieve a T c maximum near the surface. We performed transport measurements of this oxygen depleted layer. Samples were prepared by evaporating four Pb or Ag electrodes on top of freshly cleaved Bi 2Sr 2CaCu 2O 8+ x single crystals. Using overdoped crystals with a bulk T c of 55 to 60 K, the outermost layer was found to be underdoped with T c down to 30 K while the adjacent one was near optimal doping with T c between 80 and 90 K. The T c of the third layer was close to the bulk value. For temperatures above the bulk T c often only one CuO 2 double layer was found to be superconducting. We discuss current transport measurements with current flow along the CuO 2 layers.

  10. Substrate effects on SILAR route synthesized CuO thin films

    Science.gov (United States)

    Dhanasekaran, V.; Mahalingam, T.; Ravi, G.; Rhee, Jin-Koo

    2012-06-01

    Cupric oxide (CuO) thin films are deposited using SILAR method onto various substrates. The X-ray diffraction patterns revealed that the deposited films are polycrystalline in nature with monoclinic structure. The microstructural parameters of chemical bath deposited CuO thin films are calculated using the structural studies. The optical band gap value is determined using transmission spectrum of CuO thin films and the results are discussed.

  11. Effect of CuO Addition on the Sintering Behavior and Electrical Conductivity of 3Y-TZP

    Institute of Scientific and Technical Information of China (English)

    Ahmed A.Hassan; Omar Abdelal A.; S.M. EL-Hout

    2007-01-01

    Yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) doped with CuO was prepared, to get two compositions, 0.3 and 1 mole fraction CuO, respectively. The dilatometric study of the samples showed sintering to be improved for the samples doped with 0.3 mole fraction CuO, and to be deteriorated for the samples doped with 1 mole fraction CuO. The 1 mole fraction CuO doped 3Y-TZP showed higher tetragonal/monoclinic phase transformation which was accompanied by grain growth. The electrical conductivity decreased with the addition of CuO.

  12. ZnO tetrapod nanocrystals

    Directory of Open Access Journals (Sweden)

    Marcus C. Newton

    2007-05-01

    Full Text Available ZnO has received considerable attention because of its unique optical, piezoelectric, and magnetic properties. It also readily self-assembles into a family of nanocrystalline structures. We review the current status of research into ZnO tetrapod nanocrystals. These crystals consist of a ZnO core in the zinc blende structure from which four ZnO arms in the wurtzite structure radiate. The arms are cylinders of hexagonal cross section, with each arm of equal length and diameter. Possible applications in optoelectronics, photovoltaics, spintronics, and piezoelectricity are discussed.

  13. Facile Synthesis of Colloidal CuO Nanocrystals for Light-Harvesting Applications

    Directory of Open Access Journals (Sweden)

    Yee-Fun Lim

    2012-01-01

    Full Text Available CuO is an earth-abundant, nontoxic, and low band-gap material; hence it is an attractive candidate for application in solar cells. In this paper, a synthesis of CuO nanocrystals by a facile alcohothermal route is reported. The nanocrystals are dispersible in a solvent mixture of methanol and chloroform, thus enabling the processing of CuO by solution. A bilayer solar cell comprising of CuO nanocrystals and phenyl-C61-butyric acid methyl ester (PCBM achieved a power conversion efficiency of 0.04%, indicating the potential of this material for light-harvesting applications.

  14. Facile Synthesis of Colloidal CuO Nanocrystals for Light-Harvesting Applications

    KAUST Repository

    Lim, Yee-Fun

    2012-01-01

    CuO is an earth-abundant, nontoxic, and low band-gap material; hence it is an attractive candidate for application in solar cells. In this paper, a synthesis of CuO nanocrystals by a facile alcohothermal route is reported. The nanocrystals are dispersible in a solvent mixture of methanol and chloroform, thus enabling the processing of CuO by solution. A bilayer solar cell comprising of CuO nanocrystals and phenyl-C61-butyric acid methyl ester (PCBM) achieved a power conversion efficiency of 0.04%, indicating the potential of this material for light-harvesting applications.

  15. CuO three-dimensional flowerlike nanostructures: Controlled synthesis and characterization

    Science.gov (United States)

    Zhang, Xia; Guo, Yong-Gang; Liu, Wei-Min; Hao, Jing-Cheng

    2008-06-01

    CuO three-dimensional (3D) flowerlike nanostructures were successfully synthesized on copper surface by a simple solution method. CuO nanostructure was systematically studied by scanning electron microscopy, transmission electron microscopy, x-ray powder diffraction, and x-ray photoelectron spectrum. The factors to control the morphology and size of the CuO nanostructures were explored, showing that the reaction time and the concentration of starting regents play important roles in the formation of the CuO 3D nanostructures.

  16. Isolation of copper oxide (CuO) nanoparticles resistant Pseudomonas strains from soil and investigation on possible mechanism for resistance.

    Science.gov (United States)

    Soltani Nezhad, Shahla; Rabbani Khorasgani, Mohammad; Emtiazi, Giti; Yaghoobi, Mohammad Mehdi; Shakeri, Shahryar

    2014-03-01

    The present study deals with isolation and characterization of copper oxide nanoparticles resistant Pseudomonas strains that were isolated from the soil collected from mining and refining sites of Sarcheshmeh copper mine in the Kerman Province of Iran. The three isolates were selected based on high level of copper oxide nanoparticles (CuO NPs) resistance. The isolates were authentically identified as Pseudomonas fluorescens CuO-1, Pseudomonas fluorescens CuO-2 and Pseudomonas sp. CuO-3 by morphological, biochemical and 16S rDNA gene sequencing analysis. The growth pattern of these isolates with all the studied CuO NPs concentrations was similar to that of control (without CuO NPs) indicating that CuO NPs would not affect the growth of isolated strains. A reduction in the amount of exopolysaccharides was observed after CuO NPs-P. fluorescens CuO-1 culture supernatant interaction. The Fourier transform infrared spectroscopy (FT-IR) peaks for the exopolysaccharides extracted from the bacterial culture supernatant and the interacted CuO NPs were almost similar. The exopolysaccharide capping of the CuO NPs was confirmed by FT-IR and X-ray diffraction analysis. The study of bacterial exopolysaccharides capped CuO NPs with E. coli PTCC 1338 and S. aureus PTCC 1113 showed less toxicity compared to uncoated CuO NPs. Our study suggests that the capping of nanoparticles by bacterially produced exopolysaccharides serve as the probable mechanism of tolerance.

  17. Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, Andras; Ney, A.; Duchamp, Martial; Ney, V.; Boothroyd, Chris; Galindo, Pedro L.; Kaspar, Tiffany C.; Chambers, Scott A.; Dunin-Borkowski, Rafal

    2013-12-23

    We have studied planar defects in epitaxial Co:ZnO dilute magnetic semiconductor thin films deposited on c-plane sapphire (Al2O3) and the Co:ZnO/Al2O3 interface structure at atomic resolution using aberration-corrected transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). Comparing Co:ZnO samples deposited by pulsed laser deposition and reactive magnetron sputtering, both exhibit extrinsic stacking faults, incoherent interface structures, and compositional variations within the first 3-4 Co:ZnO layers at the interface.. In addition, we have measured the local strain which reveals the lattice distortion around the stacking faults.

  18. Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, A.; Duchamp, M.; Boothroyd, C. B.; Dunin-Borkowski, R. E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich (Germany); Ney, A.; Ney, V. [Institut für Halbleiter- und Festkörperphysik, Johannes Kepler Universität, Altenberger Str. 69, 4040 Linz (Austria); Galindo, P. L. [Departamento de Ingeniería Informática, Universidad de Cádiz, 11510 Cádiz (Spain); Kaspar, T. C.; Chambers, S. A. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States)

    2013-12-28

    We study planar defects in epitaxial Co:ZnO dilute magnetic semiconductor thin films deposited on c-plane sapphire (Al{sub 2}O{sub 3}), as well as the Co:ZnO/Al{sub 2}O{sub 3} interface, using aberration-corrected transmission electron microscopy and electron energy-loss spectroscopy. Co:ZnO samples that were deposited using pulsed laser deposition and reactive magnetron sputtering are both found to contain extrinsic stacking faults, incoherent interface structures, and compositional variations within the first 3–4 Co:ZnO layers next to the Al{sub 2}O{sub 3} substrate. The stacking fault density is in the range of 10{sup 17} cm{sup −3}. We also measure the local lattice distortions around the stacking faults. It is shown that despite the relatively high density of planar defects, lattice distortions, and small compositional variation, the Co:ZnO films retain paramagnetic properties.

  19. Ab initio studies of magnetic anisotropy energy in highly Co-doped ZnO

    Science.gov (United States)

    Łusakowski, A.; Szuszkiewicz, W.

    2017-03-01

    Density functional theory (DFT) calculations of the energy of magnetic anisotropy for diluted magnetic semiconductor (Zn,Co)O were performed using OpenMX package with fully relativistic pseudopotentials. The analysis of the band spin-orbit interaction and the magnetic ion's surrounding on magnetic anisotropy have been provided. As a result, the calculations show that the magnetic anisotropy in (Zn,Co)O solid solution, mainly of the single ion anisotropy type has been caused by Co ions.

  20. Er3+-Yb3+ codoped borosilicate glass for optical thermometry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Infrared to green up-conversion emissions centered at the wavelengths of about 524 and 550 nm of the Er3+-Yb3+ codoped borosilicate glass are recorded,using a 978 nm semiconductor laser diode(LD) as an excitation source.The fluorescence intensity ratio(FIR) of the green up-conversion emissions at about 524 and 550 nm in the Er3+-Yb3+ codoped borosilicate glass has been studied as a function of temperature over the temperature range of 295-873 K.The maximum sensitivity and the temperature resolution derived from the FIR of the green up-conversion emissions are approximately 0.0038 K-1 and 0.2 K,respectively.It is demonstrated that the prototype optical temperature sensor based on the FIR technique from the green up-conversion emissions in the Er3+-Yb3+ codoped borosilicate glass plays a major role in temperature measurement.

  1. The Conductivity of Co-dopant Ceria Electrolyte

    Institute of Scientific and Technical Information of China (English)

    XIE Guang-yuan; CUI Kun; XIAO Jian-zhong; QIAN Xiao-liang

    2003-01-01

    A kind of novel ceria electrolyte was examined.Various trivalent oxides were added as co-dopants to Ce0.8Gd0.2O1.9,and their effects on the conductivity of ceria electrolyte were discussed.It has been found that the co-dopant of trivalent oxides of Sm,Nd,La and Y improves the ionic conductivity notably.Furthermore,the fine original powders,co-dopant and higher sintering temperature may hasten the sintering.

  2. Synergistic effects of Mo and F doping on the quality factor of ZnO thin films prepared by a fully automated home-made nebulizer spray technique

    Science.gov (United States)

    Ravichandran, K.; Dineshbabu, N.; Arun, T.; Manivasaham, A.; Sindhuja, E.

    2017-01-01

    Transparent conducting oxide films of undoped, Mo doped, Mo + F co-doped ZnO were deposited using a facile homemade nebulizer spray pyrolysis technique. The effects of Mo and F doping on the structural, optical, electrical and surface morphological properties were investigated using XRD, UV-vis-NIR spectroscopy, I-V and Hall probe techniques, FESEM and AFM, and XPS, respectively. The XRD analysis confirms that all the films are well crystallized with hexagonal wurtzite structure. All the synthesized samples exhibit high transmittance (above 85%) in the visible region. The current-voltage (I-V) characteristics show the ohmic conduction nature of the films. The Hall probe measurements show that the synergistic effects of Mo and F doping cause desirable improvements in the quality factor of the ZnO films. A minimum resistivity of 5.12 × 10-3 Ω cm with remarkably higher values of mobility and carrier concentration is achieved for Mo (2 at.%) + F (15 at.%) co-doped ZnO films. A considerable variation in the intensity of deep level emission caused by Mo and F doping is observed in the photoluminescence (PL) studies. The presence of the constituent elements in the samples is confirmed by XPS analysis.

  3. STRUCTURAL AND ELECTRONIC PROPERTIES OF CuO, CuO2 AND Cu2O NANOCLUSTERS – A DFT APPROACH

    Directory of Open Access Journals (Sweden)

    Chandiramouli RAMANATHAN

    2015-06-01

    Full Text Available The realistic structures of CuO, CuO2 and Cu2O were completely optimized using density functional theory approach. The different structures were optimized to study the structural stability, dipole moment, point symmetry, HOMO-LUMO gap, ionization potential, electron affinity and binding energy of CuO, CuO2 and Cu2O. The electronic properties of clusters were discussed in terms of HOMO-LUMO gap, density of states, ionization potential and electron affinity. This information will provide an insight for the synthesis of nanomaterials with proper geometry which finds its potential importance in engineering applications.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6459

  4. Photocatalytic degradation of organic dyes by Er3+: YAlO3/Co- and Fe-doped ZnO coated composites under solar irradiation

    Science.gov (United States)

    Chen, Yang; Lu, Chunxiao; Tang, Liang; Song, Yahui; Wei, Shengnan; Rong, Yang; Zhang, Zhaohong; Wang, Jun

    2016-12-01

    In this work, the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites were prepared by the sol-gel method. Then, they were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). Photo-degradation of azo fuchsine (AF) as a model dye under solar light irradiation was studied to evaluate the photocatalytic activity of the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites. It was found that the photocatalytic activity of Co- and Fe-doped ZnO composites can be obviously enhanced by upconversion luminescence agent (Er3+: YAlO3). Besides, the photocatalytic activity of Er3+: YAlO3/Fe-doped ZnO is better than that of Er3+: YAlO3/Co-doped ZnO. The influence of experiment conditions, such as the concentration of Er3+: YAlO3, heat-treatment temperature and time on the photocatalytic activity of the Er3+: YAlO3/Co- and Fe-doped ZnO coated composites was studied. In addition, the effects of solar light irradiation time, dye initial concentration, Er3+: YAlO3/Co- and Fe-doped ZnO amount on the photocatalytic degradation of azo fuchsine in aqueous solution were investigated in detail. Simultaneously, some other organic dyes, such as Methyl Orange (MO), Rhodamine B (RM-B), Acid Red B (AR-B), Congo Red (CR), and Methyl Blue (MB) were also studied. The possible excitation principle of Er3+: YAlO3/Co- and Fe-doped ZnO coated composites under solar light irradiation and the photocatalytic degradation mechanism of organic dyes were discussed.

  5. Study of the C-14-contamination potential of C-impurities in CuO and Fe

    NARCIS (Netherlands)

    Vandeputte, K; Moens, L; Dams, R; van der Plicht, Johannes

    1998-01-01

    The carbon concentration in CuO and iron was determined by isolating C. The values were in agreement with results reported in other studies. Contaminating carbon from CuO and Fe was transformed to AMS targets and measured for C-14. C-traces in CuO were shown to be the major contribution to the C-14

  6. Anomalous Raman spectra from La2CuO4

    Science.gov (United States)

    Burns, Gerald; Dacol, F. H.

    1990-03-01

    We show that some published Raman spectra from the superconductors (La2-xSrx)CuO4 and La2NiO4 are incorrect. We believe that these spectra were obtained when the samples were ``burnt'' by the focused laser beam and were actually due to La2O3. Similar anomalous results can be obtained when starting with Nd2CuO4 where the spectra come from Nd2O3. A spectrum distinctly different from those of La2O3 or Nd2O3 is obtained from Y2O3.

  7. Chronic effects of CuO Nanoparticles on Lymnaea stagnalis

    DEFF Research Database (Denmark)

    Falk, Nina; Zwicky, Julie; Rewentlow, Julie

    Due to their small size and high surface-to-volume ratio, the properties and reactivity of NPs are different from those of their bulk forms. However, these properties might cause different behaviour and effects in the environment and investigations of possible nano specific effects are thus highl...... relevant. Investigation of the long-term effects of CuO NPs on growth, mortality and precopulation of Hyalella azteca compared to CuCl2 and to further examine possible delayed effects and ability to recover from Cu exposure....

  8. Preparation of CuO Quantum Dots by Cost-Effective Ultrasonication Technique

    Science.gov (United States)

    Rathod, K. N.; Savaliya, Chirag; Babiya, K. R.; Vasvani, S. H.; Ramani, Rupeshkumar V.; Ramani, Bharat M.; Joshi, Ashvini D.; Pandya, Dhiren; Shah, N. A.; Markna, J. H.

    Due to exciting size-dependent chemical and physical properties, nanoscale materials have extensive range of applications compared with microstructural particles. CuO nanoparticles are very important among transition metal oxides because of their large number of applications. Quantum dots (QDs) of CuO (copper oxide) were prepared by the innovative ultrasonication method. Ultrasonic sound is used in this synthesis method to synthesize QDs of copper oxide. Structural and optical properties were studied in this research work. X-ray diffraction was used to study the formation of structural phase CuO QDs and found to be single phasic without any impurity. Transmission electron microscopic measurements were performed to study the morphology of QDs of CuO, which confirms spherical QDs with an average diameter of ˜4nm. In optical studies, absorption spectra of the CuO were analyzed by using UV-visible spectroscopy.

  9. The behavior and effect of CuO in Ag/SnO{sub 2} materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun, E-mail: Wangjun1983@stu.xjtu.edu.cn [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Wei, E-mail: 810779396@qq.com [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Li, Dongmei, E-mail: 946346365@qq.con [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Yaping, E-mail: ypwang@mail.xjtu.edu.cn [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China)

    2014-03-05

    Highlights: • The crystallized monoclinic CuO in CuO-doped SnO{sub 2} nanoparticles had formed. • The crystallized monoclinic CuO distributed on the surface of SnO{sub 2} nanoparticles. • Ag/SnO{sub 2} materials adding CuO exhibited denser microstructure and better hardness. • Ag/SnO{sub 2} materials adding CuO exhibited better arc erosion resistance. • The addition of CuO can obviously inhibited the spattering loss of molten droplet. -- Abstract: In this paper, the behavior of CuO in CuO-doped SnO{sub 2} nanoparticles was investigated; the effect of the addition of CuO on physical properties and arc erosion behavior of Ag/SnO{sub 2} materials were examined. The CuO-doped SnO{sub 2} nanoparticles were structurally characterized by X-ray diffraction (XRD) and High-resolution Transmission Electron Microscope (HR-TEM). The surface morphology of arc eroded Ag/SnO{sub 2} materials was characterized by Scanning Electron Microscope (SEM). The results indicated that the crystallized monoclinic CuO in CuO-doped SnO{sub 2} nanoparticles has formed and distributed on the surface of SnO{sub 2} nanoparticles. It was found that Ag/SnO{sub 2} materials adding CuO exhibited denser microstructure and better hardness as well as better arc erosion resistance compared with Ag/SnO{sub 2} materials. The arc erosion results and theoretical analysis indicated that the addition of CuO in Ag/SnO{sub 2} materials can obviously inhibited the spattering loss of molten droplets.

  10. Ho3+-Yb3+ codoped tellurite based glasses in visible lasers and optical devices: Judd-Ofelt analysis and frequency upconversion

    Science.gov (United States)

    Azam, Mohd; Rai, Vineet Kumar

    2017-04-01

    The optical absorption and frequency upconversion emission in the Ho3+/Yb3+ codoped TeO2-ZnO (TZ), TeO2-ZnO-WO3 (TZW) and TeO2-ZnO-WO3-TiO2 (TZWTi) glasses prepared by melting and quenching method has been studied. Judd-Ofelt theory has been used to calculate the Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6), transition probabilities, radiative lifetimes, absorption cross sections and the branching ratios. Upconversion (UC) emission bands centered at ∼ 549 nm, ∼658 nm and ∼754 nm are observed upon 980 nm excitation. On codoping with the Yb3+ ions at 3.0 mol% the upconversion emission intensity enhancement of about ∼57 times, ∼342 times and ∼480 times for the green band whereas for the red band arising from the Ho3+ ions it is about ∼71 times, ∼438 times and ∼707 times respectively have been observed. The enhancement observed in the UC emission intensity is explained on the basis of efficient energy transfer from Yb3+ to Ho3+, larger absorption cross section, larger oscillator strengths and increase in the local field corrections factor. The spectroscopic quality factor Ω4/Ω6 has been calculated to get the information about the developed materials for laser applications. The upconversion emission cross section determined on the basis of Judd-Ofelt analysis is found to be maximum for Ho-Yb-TZWTi glass. The nephelauxetic ratio, bonding and covalency parameters have been calculated to know the nature of bonding between the rare earth ions and neighbouring oxygen atoms. The high color purity 83.8% has been reported in the codoped glasses at ∼81.2 W/cm2 pump power density.

  11. Structural properties of Cu2O epitaxial films grown on c-axis single crystal ZnO by magnetron sputtering

    Science.gov (United States)

    Gan, J.; Gorantla, S.; Riise, H. N.; Fjellvâg, Ø. S.; Diplas, S.; Løvvik, O. M.; Svensson, B. G.; Monakhov, E. V.; Gunnæs, A. E.

    2016-04-01

    Epitaxial Cu2O films grown by reactive and ceramic radio frequency magnetron sputtering on single crystalline ZnO (0001) substrates are investigated. The films are grown on both O- and Zn-polar surface of the ZnO substrates. The Cu2O films exhibit a columnar growth manner apart from a ˜5 nm thick CuO interfacial layer. In comparison to the reactively sputtered Cu2O, the ceramic-sputtered films are less strained and appear to contain nanovoids. Irrespective of polarity, the Cu2O grown by reactive sputtering is observed to have (111)Cu2O||(0001)ZnO epitaxial relationship, but in the case of ceramic sputtering the films are found to show additional (110)Cu2O reflections when grown on O-polar surface. The observed CuO interfacial layer can be detrimental for the performance of Cu2O/ZnO heterojunction solar cells reported in the literature.

  12. Charge transport in single CuO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junnan; Yin, Bo; Wu, Fei; Myung, Yoon; Banerjee, Parag, E-mail: parag.banerjee@wustl.edu [Department of Mechanical Engineering and Materials Science, One Brookings Drive, Washington University, St. Louis, Missouri 63130 (United States)

    2014-11-03

    Charge transport in single crystal, p-type cupric oxide (CuO) nanowire (NW) was studied through temperature based (120 K–400 K) current-voltage measurements. CuO NW with a diameter of 85 nm was attached to Au electrodes 2.25 μm apart, using dielectrophoresis. At low electrical field (<0.89 × 10{sup 3 }V/cm), an ohmic conduction is observed with an activation energy of 272 meV. The injected electrons fill traps with an average energy, E{sub T} = 26.6 meV and trap density, N{sub T} = 3.4 × 10{sup 15 }cm{sup −3}. After the traps are saturated, space charge limited current mechanism becomes dominant. For 120 K ≤ T ≤ 210 K phonon scattering limits mobility. For T ≥ 220 K, a thermally activated mobility is observed and is attributed to small polaron hopping with an activation energy of 44 meV. This mechanism yields a hole mobility of 0.0015 cm{sup 2}/V s and an effective hole concentration of 4 × 10{sup 18 }cm{sup −3} at 250 K.

  13. Charge transport in single CuO nanowires

    Science.gov (United States)

    Wu, Junnan; Yin, Bo; Wu, Fei; Myung, Yoon; Banerjee, Parag

    2014-11-01

    Charge transport in single crystal, p-type cupric oxide (CuO) nanowire (NW) was studied through temperature based (120 K-400 K) current-voltage measurements. CuO NW with a diameter of 85 nm was attached to Au electrodes 2.25 μm apart, using dielectrophoresis. At low electrical field (conduction is observed with an activation energy of 272 meV. The injected electrons fill traps with an average energy, ET = 26.6 meV and trap density, NT = 3.4 × 1015 cm-3. After the traps are saturated, space charge limited current mechanism becomes dominant. For 120 K ≤ T ≤ 210 K phonon scattering limits mobility. For T ≥ 220 K, a thermally activated mobility is observed and is attributed to small polaron hopping with an activation energy of 44 meV. This mechanism yields a hole mobility of 0.0015 cm2/V s and an effective hole concentration of 4 × 1018 cm-3 at 250 K.

  14. ZnO Film Photocatalysts

    Directory of Open Access Journals (Sweden)

    Bosi Yin

    2014-01-01

    Full Text Available We have synthesized high-quality, nanoscale ultrathin ZnO films at relatively low temperature using a facile and effective hydrothermal approach. ZnO films were characterized by scanning electron microscope (SEM, X-ray diffraction (XRD, Raman spectroscopy, photoluminescence spectra (PL, and UV-vis absorption spectroscopy. The products demonstrated 95% photodegradation efficiency with Congo red (CR after 40 min irradiation. The photocatalytic degradation experiments of methyl orange (MO and eosin red also were carried out. The results indicate that the as-obtained ZnO films might be promising candidates as the excellent photocatalysts for elimination of waste water.

  15. Ultrathin willow-like CuO nanoflakes as an efficient catalyst for electro-oxidation of hydrazine

    Science.gov (United States)

    Ma, Yuanyuan; Li, Hao; Wang, Rongfang; Wang, Hui; Lv, Weizhong; Ji, Shan

    2015-09-01

    In this paper, preparation of ultrathin willow-like CuO nanoflakes via a one-step process was reported. X-ray diffraction pattern showed the formation of monoclinic CuO crystal, which was also confirmed by result of high resolution transmission electron microscopy. Scanning electron microscopy showed that ultrathin willow-like CuO nanoflakes were formed. Catalytic testing indicated that the ultrathin willow-like CuO nanoflakes exhibited high electrocatalytic activity and durability toward the electro-oxidation of hydrazine in alkaline medium. The results suggested that the as-prepared CuO nanoflakes were potential electrode materials for hydrazine fuel cell.

  16. Influence of Li-doping on structural characteristics and photocatalytic activity of ZnO nano-powder formed in a novel solution pyro-hydrolysis route

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, Ibram, E-mail: ibramganesh@arci.res.in [Laboratory for Photoelectrochemical (PEC) Cells and Advanced Ceramics, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur PO, Hyderabad 500005, A.P. (India); Sekhar, P.S. Chandra; Padmanabham, G.; Sundararajan, G. [Laboratory for Photoelectrochemical (PEC) Cells and Advanced Ceramics, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur PO, Hyderabad 500005, A.P. (India)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Li-doping improves the photocatalytic ability of ZnO. Black-Right-Pointing-Pointer The reactivation of the deactivated ZnO catalyst can be achieved by washing with H{sub 2}O. Black-Right-Pointing-Pointer 10 wt.% Li-doped ZnO completely decomposes 1 mM methylene blue solution in 40 min. Black-Right-Pointing-Pointer A simple solution pyro-hydrolysis technique can be employed to synthesize nano-sized ZnO powders. Black-Right-Pointing-Pointer Li and Al co-doped ZnO follows first order kinetics in methylene blue degradation reaction. - Abstract: Different types of Li-doped ZnO (LDZ) (Li = 0-10 wt.%) powders were prepared by following a novel pyro-hydrolysis route at 450 Degree-Sign C, and were thoroughly characterized by means of thermo-gravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR), Fourier-transform Raman (FT-Raman) spectroscopy, diffuse reflectance spectroscopy (DRS), ultra-violet visible (UV-Vis) spectroscopy, Brunauer-Emmett-Teller (BET) surface area (SA), and zeta potential ({zeta}) measurements. Photocatalytic activity of these powders was evaluated by means of methylene blue (MB) degradation experiments conducted under the irradiation of simulated and natural solar light. Characterization results suggest that both pure ZnO and LDZ powders are quite thermally stable up to a temperature of 700 Degree-Sign C and possess band gap (BG) energies in the range of 3.16-3.2 eV with a direct band to band transition and {zeta} values of -31.6 mV to -56.4 mV. The properties exhibited by LDZ powders were found to be quite comparable to those exhibited by p-type semi-conducting LDZ powders. In order to study the kinetics of MB degradation reaction under the irradiation of simulated solar light, the Li (0.2-10 wt.%) and Al (0.5 wt.%) co-doped ZnO (0.2LADZ to 10LADZ) powders were also

  17. Synthesis and concentration dependent antibacterial activities of CuO nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyarajan, T.; Udayabhaskar, R. [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India); Vignesh, S.; James, R. Arthur [Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024 (India); Karthikeyan, B., E-mail: balkarin@yahoo.com [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India)

    2013-05-01

    We report, synthesis and antibacterial activities of CuO nanoflakes. CuO nanoparticles are prepared at room temperature through sol–gel method. X-ray diffraction studies show the particles are monoclinic (crystalline) in nature. Scanning electron microscopy (SEM) images clearly show that the prepared particles are flake like in structure. Fourier transform infrared (FTIR) spectra exhibits three different bands that correspond to the A{sub u} and B{sub u} modes. Antibacterial studies were performed on Shigella flexneri, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium, Bacillus subtilis, Escherichia coli, Vibrio cholera, Pseudomonas aeruginosa and Aeromonas liquefaciens bacterial strains. Among these bacterial strains, S. flexneri and B. subtilis are most sensitive to copper oxide nanoparticles than the positive control (Penicillin G) and S. typhimurium strain shows the less sensitive. Results show that sensitivity is highly dependent on the concentrations of CuO nanoflakes. - Highlights: ► CuO nanoflakes are prepared through simple sol–gel method at room temperature. ► Bacterial strains are highly affected by CuO nanoflakes than the positive control. ► Zone of inhibition increases with an increase of CuO concentrations. ► Sensitivity is highly dependent on the concentrations of CuO nanoflakes.

  18. Effects of CuO nanoparticles on compressive strength of self-compacting concrete

    Indian Academy of Sciences (India)

    Ali Nazari; Shadi Riahi

    2011-06-01

    In the present study, the compressive strength, thermal properties and microstructure of self-compacting concrete with different amounts of CuO nanoparticles have been investigated. CuO nanoparticles with an average particle size of 15 nm were added to self-compacting concrete and various properties of the specimens were measured. The results indicate that CuO nanoparticles are able to improve the compressive strength of self-compacting concrete and reverse the negative effects of superplasticizer on compressive strength of the specimens. CuO nanoparticles as a partial replacement of cement up to 4 wt.% could accelerate C–S–H gel formation as a result of the increased crystalline Ca(OH)2 amount at the early ages of hydration. Increasing CuO nanoparticle content to more than 4 wt.%, causes reduced compressive strength because of unsuitable dispersion of nanoparticles in the concrete matrix. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of peaks related to hydrated products in X-ray diffraction results, all indicate that CuO nanoparticles up to 4 wt.% could improve the mechanical and physical properties of the specimens. Finally, CuO nanoparticles improved the pore structure of concrete and caused shifting of the distributed pores from harmless to low harm.

  19. Preparation and photocatalytic activities of 3D flower-like CuO nanostructures

    Science.gov (United States)

    Qingfei, Fan; Qi, Lan; Meili, Zhang; Ximei, Fan; Zuowan, Zhou; Chaoliang, Zhang

    2016-08-01

    Hierarchical 3D flower-like CuO nanostructures on the Cu substrates were synthesized by a wet chemical method and subsequent heat treatment. The synthesis, structure and morphologies of obtained samples under different concentrations of Na2S2O3 were investigated in detail and the possible growth mechanisms of the 3D flower-like CuO nanostructures were discussed. Na2S2O3 plays a key role in the generation of the 3D flower-like CuO nanostructures. When the concentration of Na2S2O3 is more than 0.4 mol/L, the 3D flower-like CuO nanostructures can be prepared on the Cu foils. The photocatalytic performances were studied by analyzing the degradation of methyl orange (MO) in aqueous solution in the presence of hydroxide water (H2O2). The 3D flower-like CuO nanostructures exhibit higher photocatalytic activity (96.2% degradation rate) than commercial CuO particles (36.3% degradation rate). The origin of the higher photocatalytic activity of the 3D flower-like CuO nanostructures was also discussed. Project supported by the High-Tech Research and Development Program of China (No. 2009AA03Z427).

  20. Surfactant-free Synthesis of CuO with Controllable Morphologies and Enhanced Photocatalytic Property

    OpenAIRE

    Wang, Xing; Yang, Jiao; Shi, Liuxue; Gao, Meizhen

    2016-01-01

    A green synthesis for nanoleave, nanosheet, spindle-like, rugby-like, dandelion-like and flower-like CuO nanostructures (from 2D to 3D) is successfully achieved through simply hydrothermal synthetic method without the assistance of surfactant. The morphology of CuO nanostructures can be easily tailored by adjusting the amount of ammonia and the source of copper. By designing a time varying experiment, it is verified that the flower- and dandelion-like CuO structures are synthesized by the sel...

  1. The reactions of CuO at high pressure and high temperature

    CERN Document Server

    Ren, G Z; Wang, X C; Ma, H A; Guo, X B; Liu, J T; Zou Guang Tian

    2002-01-01

    The decomposition behaviour of CuO is studied at high temperature and high pressure. Experimental pressure and temperature determine the result. In the region of higher temperature and pressure (>=5.5 GPa, >=1400 deg. C), the product is just copper. In the region of lower temperature and pressure (< 5.0 GPa, < 1100 deg. C), CuO does not decompose. Between the two regions, the product is a mixture of Cu and Cu sub 2 O or a mixture of Cu sub 2 O and CuO.

  2. Theory of phonon properties in doped and undoped CuO nanoparticles

    Science.gov (United States)

    Bahoosh, S. G.; Apostolov, A. T.; Apostolova, I. N.; Wesselinowa, J. M.

    2012-07-01

    We have studied the phonon properties of CuO nanoparticles and have shown the importance of the anharmonic spin-phonon interaction. The Raman peaks of CuO nanoparticles shift to lower frequency and become broader as the particle size decreases in comparison with those of bulk CuO crystals owing to size effects. By doping with different ions, in dependence of their radius compared to the host ionic radius the phonon energies ω could be reduced or enhanced. The phonon damping is always enhanced through the ion doping effects.

  3. Exchange bias effect in composites of cuo nanoparticles and nanosilica glass

    Science.gov (United States)

    Ranjan Saha, Dhriti; Kumar Nandi, Arun; Chakravorty, Dipankar

    2014-04-01

    Nanodimensional silica based glass containing iron ions was prepared within the compressed pellet of CuO nanoparicles. The nanocomposite material showed exchange bias effect. This effect arose due to ferromagnetic iron doped CuO phase and antiferromagnetic CuO interface formation within the nanocomposite during the synthesis process. Coercive field as a function of temperature was fitted with Arhenius-Neel equation and extracted blocking temperature was 511 K. The value of effective anisotropy constant for the nanocomposite was found to be 3.64x105 erg/cc.

  4. Transforming from paramagnetism to room temperature ferromagnetism in CuO by ball milling

    Directory of Open Access Journals (Sweden)

    Daqiang Gao

    2011-12-01

    Full Text Available In this work, we experimentally demonstrate that it is possible to induce ferromagnetism in CuO by ball milling without any ferromagnetic dopant. The magnetic measurements indicate that paramagnetic CuO is driven to the ferromagnetic state at room temperature by ball milling gradually. The saturation magnetization of the milled powders is found to increase with expanding the milling time and then decrease by annealing under atmosphere. The fitted X-ray photoelectron spectroscopy results indicate that the observed induction and weaken of the ferromagnetism shows close relationship with the valence charged oxygen vacancies (Cu1+-VO in CuO.

  5. Lattice dynamics of La 2CuO 4 and YBa 2Cu 3O 7

    Science.gov (United States)

    Kimura, Shunji; Sota, Takayuki; Suzuki, Katsuo

    1990-08-01

    We report lattice dynamics calculations of La 2CuO 4 and YBa 2Cu 3O 7 where the mode assignment is fully performed. It is found that frequencies of the in-plane bond streching 0 vibration mode phonons are much higher than those of the bond bending 0 vibration mode phonons in La 2CuO 4 while they are close in YBa 2Cu 3O 7. The bond streching mode phonons and the bond bending mode phonons can couple to electrons near E F in YBa 2Cu 3O 7 but the latter can not in La 2CuO 4.

  6. Density of states in La2CuO4+y

    Science.gov (United States)

    Gold, A.; Ghazali, A.

    1991-06-01

    We describe the excess holes in the CuO2 sheets of La2CuO4+y as a two-dimensional hole gas in a quantum well in the presence of negatively charged impurities. We calculate the density of states with a multiple-scattering approach. We discuss the broadening of the impurity band with increasing y, which corresponds to an increasing hole concentration. The spectral density, which describes for vanishing hole concentration the Fourier transform of the squared wave function, is evaluated. We compare our results with recent measurements of La2CuO4+y with y<0.007.

  7. Absence of dipolar ordering in Co doped CuO

    Science.gov (United States)

    Chaudhary, N. Vijay Prakash; Murthy, J. Krishna; Venimadhav, A.

    2016-12-01

    Polycrystalline CuO samples with Co doping were prepared by solid state method with flowing oxygen condition and examined their structural and multiferroic properties. Structural studies have confirmed single phase monoclinic crystal structure of all samples, however, in Co doped samples a decrease in volume with an increase in monoclinic distortion is found. For pristine sample, temperature dependent magnetization has confirmed two antiferromagnetic (AFM) transitions at 213 K and 230 K and frequency independent dielectric peaks at these AFM transitions suggesting the ferroelectric nature. Magnetization of the Co doped samples has showed a marginal increase in ordering temperature of the high-temperature AFM transition and decrease in low temperature AFM ordering temperature. Further, doped samples have shown giant dielectric constant with no signature of ferroelectricity. The X-ray photoelectric spectroscopy study has revealed multiple valance states for both Co and Cu in the doped samples that simultaneously explain the giant dielectric constant and suppression of ferroelectric order.

  8. ZnO UV Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation-hard UV detectors will be developed with ZnO in Phase I efforts by MOXtronics, Inc. (MOX). ZnO is a very suitable material for fabrication of high-speed,...

  9. Photocatalytic property of nitrogen and nicked codoped titanium oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Yong; Jun, Kyeong Mun; Kwon, Ki Young [Dept. of Chemistry, Research Institute of Natural Science, Gyeongsang National University, Jinju (Korea, Republic of); Ahn, Seok Hoon; Hwang, Jun Yeon [Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Wanju (Korea, Republic of)

    2016-11-15

    Nitrogen or nitrogen and nickel codoped TiO{sub 2}s are prepared by a hydrothermal method. The doped TiO{sub 2}s are applied to the photodecomposition of methylene blue (MB) under visible-light irradiation. The chemical and physical properties of catalysts are characterized by X-ray diffraction, transmission electron microscope, energy dispersive spectroscopy mapping, zeta potential, and Brunauer–Emmett–Teller. We found that nickel and nitrogen atoms are well dispersed in TiO{sub 2}. While the adsorption of MB on the TiO{sub 2} surface are improved by the nitrogen doping, the photodecomposition capability of MB is barely affected by the nitrogen doping level. Particularly, the photodegradation power of the nickel and nitrogen codoped TiO{sub 2} is better than that of commercial TiO{sub 2} (Degussa P25)

  10. Yellow luminescence of co-doped gadolinium oxyhydroxide

    Institute of Scientific and Technical Information of China (English)

    Hiroaki Samata; Shungo Imanaka; Masashi Hanioka; Tadashi C Ozawa

    2015-01-01

    Crystals of co-doped gadolinium oxyhydroxide (GdOOH), Gd0.98Eu0.02−xTbxOOH and Gd1−y−zDyyBizOOH, were synthe-sized by a flux method. The color coordinates in the Commission Internationale de I’Eclairage (CIE) chromaticity diagram of Gd0.98Eu0.02−xTbxOOH, obtained under 254 nm irradiation, shifted along a straight line with the changing values ofxto include the yellow region. The CIE coordinates of Dy3+ doped in GdOOH were located in the yellow region, while the emission intensity of Dy3+ under 286 nm irradiation increased by more than 40 times when co-doped with Bi3+.

  11. SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles.

    Science.gov (United States)

    Moon, Young-Sun; Park, Eun-Sil; Kim, Tae-Oh; Lee, Hoi-Seon; Lee, Sung-Eun

    2014-11-01

    Metal oxide nanoparticles (NPs) can inhibit plant seed germination and root elongation via the release of metal ions. In the present study, two acute phytotoxicity tests, seed germination and root elongation tests, were conducted on cucumber seeds (Cucumis sativus) treated with bulk copper oxide (CuO) and CuO NPs. Two concentrations of bulk CuO and CuO NPs, 200 and 600ppm, were used to test the inhibition rate of root germination; both concentrations of bulk CuO weakly inhibited seed germination, whereas CuO NPs significantly inhibited germination, showing a low germination rate of 23.3% at 600ppm. Root elongation tests demonstrated that CuO NPs were much stronger inhibitors than bulk CuO. SELDI-TOF MS analysis showed that 34 proteins were differentially expressed in cucumber seeds after exposure to CuO NPs, with the expression patterns of at least 9 proteins highly differing from those in seeds treated with bulk CuO and in control plants. Therefore, these 9 proteins were used to identify CuO NP-specific biomarkers in cucumber plants exposed to CuO NPs. A 5977-m/z protein was the most distinguishable biomarker for determining phytotoxicity by CuO NPs. Principal component analysis (PCA) of the SELDI-TOF MS results showed variability in the modes of inhibitory action on cucumber seeds and roots. To our knowledge, this is the first study to demonstrate that the phytotoxic effect of metal oxide NPs on plants is not caused by the same mode of action as other toxins.

  12. Surfactant-free Synthesis of CuO with Controllable Morphologies and Enhanced Photocatalytic Property

    Science.gov (United States)

    Wang, Xing; Yang, Jiao; Shi, Liuxue; Gao, Meizhen

    2016-03-01

    A green synthesis for nanoleave, nanosheet, spindle-like, rugby-like, dandelion-like and flower-like CuO nanostructures (from 2D to 3D) is successfully achieved through simply hydrothermal synthetic method without the assistance of surfactant. The morphology of CuO nanostructures can be easily tailored by adjusting the amount of ammonia and the source of copper. By designing a time varying experiment, it is verified that the flower- and dandelion-like CuO structures are synthesized by the self-assembly and Ostwald ripening mechanism. Structural and morphological evolutions are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible diffuse reflectance spectra. Additionally, the CuO nanostructures with different morphologies could serve as a potential photocatalyst on the photodecomposition of rhodamine B (RhB) aqueous solutions in the presence of H2O2 under visible light irradiation.

  13. Solution-processable carboxylate-capped CuO nanoparticles obtained by a simple solventless method

    Science.gov (United States)

    Estruga, Marc; Roig, Anna; Domingo, Concepción; Ayllón, José A.

    2012-08-01

    Carboxylate-capped CuO nanoparticles were obtained via a simple solventless route, based on the thermal decomposition at 120 °C of solid precursors. The reaction mixture consisted of copper acetate monohydrate, acting as the CuO precursor, and different organic carboxylic acids (lauric, phenylvaleric or 3,6,9-trioxadecanoic acid) used as the capping agent. The proposed method, in good agreement with environmentally friendly practices, produced dry nanoparticles, thereby totally eliminating the need of washing, filtration, or other downstream steps. Transmission electron micrographs show crystalline roughly spherical CuO nanoparticles with average diameters between 3.1 and 5.5 nm depending on the capping ligand. The laurate-capped CuO nanoparticles showed a paramagnetic behaviour at room temperature, while a weak ferromagnetic component was detected at low temperature (acid tail enabled the straightforward dispersibility of nanoparticles in common solvents and assisted in the deposition of the material as thin films.

  14. Ultrasonochemical-Assisted Synthesis of CuO Nanorods with High Hydrogen Storage Ability

    Directory of Open Access Journals (Sweden)

    Gang Xiao

    2011-01-01

    Full Text Available Uniform CuO nanorods with different size have been synthesized in a water-alcohol solution through a fast and facile ultrasound irradiation assistant route. Especially, the as-prepared CuO nanorods have shown a strong size-induced enhancement of electrochemical hydrogen storage performance and exhibit a notable hydrogen storage capacity and big BET surface area. These results further implied that the as-prepared CuO nanorods could be a promising candidate for electrochemical hydrogen storage applications. The observation of the comparison experiments with different concentrations of NaOH, ethanol, CTAB, and HTMA while keeping other synthetic parameters unchanged leads to the morphology and size change of CuO products.

  15. Flower-like CuO synthesized by CTAB-assisted hydrothermal method

    Indian Academy of Sciences (India)

    Yunling Zou; Yan Li; Nan Zhang; Xiulin Liu

    2011-07-01

    Flower-like CuO nanostructures have been synthesized by cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method. Here, CuCl2.2H2O was used as copper raw material, and sodium hydroxide was used as precipitate. The resulting CuO powders were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). X-ray diffraction (XRD) pattern exhibited the nanocrystalline nature with monoclinic structure for the as-synthesized nanostructures. FESEM images indicated that the flower-like CuO nanostructures are composed of many interconnected nanosheets in size of several micrometres in length and width and 60–80 nm in thickness. The possible formation mechanism of flower-like CuO nanostructures was discussed.

  16. Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells

    Science.gov (United States)

    Kung, Mei-Lang; Hsieh, Shu-Ling; Wu, Chih-Chung; Chu, Tian-Huei; Lin, Yu-Chun; Yeh, Bi-Wen; Hsieh, Shuchen

    2015-01-01

    Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively. Cellular fluorescence intensity using DCFH-DA staining analysis revealed significant intracellular reactive oxygen species (ROS) generation of up to 242% in SK-Hep-1 cells, compared with 86% in HepG2 cells. HPLC analysis demonstrated that a CuO NP treatment caused cellular GSH depletion of 58% and a GSH/GSSG ratio decrease to ~0.1 in SK-Hep-1 cells. The oxidative stress caused by enhanced superoxide anion production was observed in both HepG2 (146%) and SK-Hep-1 (192%) cells. The Griess assay verified that CuO NPs induced NO production (170%) in SK-Hep-1 cells. Comet assay and western blot further demonstrated that CuO NPs induced severe DNA strand breakage (70%) in SK-Hep-1 cells and caused DNA damage via increased γ-H2AX levels. These results suggest that well-differentiated HepG2 cells possess a robust antioxidant defense system against CuO NP-induced ROS stress and exhibit more tolerance to oxidative stress. Conversely, poorly differentiated SK-Hep-1 cells exhibited a deregulated antioxidant defense system that allowed accumulation of CuO NP-induced ROS and resulted in severe cytotoxicity.Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively

  17. Azide-Alkyne Huisgen [3+2] Cycloaddition Using CuO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hyunjoon Song

    2012-11-01

    Full Text Available Recent developments in the synthesis of CuO nanoparticles (NPs and their application to the [3+2] cycloaddition of azides with terminal alkynes are reviewed. With respect to the importance of click chemistry, CuO hollow NPs, CuO hollow NPs on acetylene black, water-soluble double-hydrophilic block copolymer (DHBC nanoreactors and ZnO–CuO hybrid NPs were synthesized. Non-conventional energy sources such as microwaves and ultrasound were also applied to these click reactions, and good catalytic activity with high regioselectivity was observed. CuO hollow NPs on acetylene black can be recycled nine times without any loss of activity, and water-soluble DHBC nanoreactors have been developed for an environmentally friendly process.

  18. Chlorination of iodide-containing waters in the presence of CuO: Formation of periodate

    KAUST Repository

    Liu, Chao

    2014-11-18

    It has been shown previously that the disproportionation of halogen-containing oxidants (e.g., HOCl, HOBr, and ClO2) is enhanced by a CuO-catalyzed process. In this study, the transformation of iodine during chlorination in the presence of CuO was investigated. There is no significant enhancement of the disproportionation of hypoiodous acid (HOI) in the presence of CuO. The formation rate of iodate (IO3 -) in the CuO-HOCl-I- system significantly increased when compared to homogeneous solutions, which was ascribed to the activation of HOCl by CuO enhancing its reactivity toward HOI. In this reaction system, iodate formation rates increase with increasing CuO (0-0.5 g L-1) and bromide (0-2 μM) doses and with decreasing pH (9.6-6.6). Iodate does not adsorb to the CuO surfaces used in this study. Nevertheless, iodate concentrations decreased after a maximum was reached in the CuO-HOCl-I-(-Br-) systems. Similarly, the iodate concentrations decrease as a function of time in the CuO-HOCl-IO3 - or CuO-HOBr-IO3 - system, and the rates increase with decreasing pH (9.6-6.6) due to the enhanced reactivity of HOCl or HOBr in the presence of CuO. It could be demonstrated that iodate is oxidized to periodate by a CuO-activated hypohalous acid, which is adsorbed on the CuO surface. No periodate could be measured in filtered solutions because it was mainly adsorbed to CuO. The adsorbed periodate was identified by scanning electron microscopy plus energy dispersive spectroscopy and X-ray photoelectron spectroscopy.

  19. Electronic anisotropy in single-crystal La2CuO4

    Science.gov (United States)

    Cheong, S.-W.; Fisk, Z.; Kwok, R. S.; Remeika, J. P.; Thompson, J. D.; Gruner, G.

    1988-04-01

    We have measured resistivity ρ components both parallel and perpendicular to the Cu-O planes in single-crystalline La2CuO4. Substantial anisotropy, reaching values as large as 103, is observed in the resistivity. The temperature dependence of ρ, together with Hall effect and thermoelectric power measurements, suggests hopping conduction between localized states at low temperatures, with diffusive transport at higher temperatures. These results are in contradistinction to previous reports.

  20. Chlorination of iodide-containing waters in the presence of CuO: formation of periodate.

    Science.gov (United States)

    Liu, Chao; Salhi, Elisabeth; Croué, Jean-Philippe; von Gunten, Urs

    2014-11-18

    It has been shown previously that the disproportionation of halogen-containing oxidants (e.g., HOCl, HOBr, and ClO2) is enhanced by a CuO-catalyzed process. In this study, the transformation of iodine during chlorination in the presence of CuO was investigated. There is no significant enhancement of the disproportionation of hypoiodous acid (HOI) in the presence of CuO. The formation rate of iodate (IO3(-)) in the CuO-HOCl-I(-) system significantly increased when compared to homogeneous solutions, which was ascribed to the activation of HOCl by CuO enhancing its reactivity toward HOI. In this reaction system, iodate formation rates increase with increasing CuO (0-0.5 g L(-1)) and bromide (0-2 μM) doses and with decreasing pH (9.6-6.6). Iodate does not adsorb to the CuO surfaces used in this study. Nevertheless, iodate concentrations decreased after a maximum was reached in the CuO-HOCl-I(-)(-Br(-)) systems. Similarly, the iodate concentrations decrease as a function of time in the CuO-HOCl-IO3(-) or CuO-HOBr-IO3(-) system, and the rates increase with decreasing pH (9.6-6.6) due to the enhanced reactivity of HOCl or HOBr in the presence of CuO. It could be demonstrated that iodate is oxidized to periodate by a CuO-activated hypohalous acid, which is adsorbed on the CuO surface. No periodate could be measured in filtered solutions because it was mainly adsorbed to CuO. The adsorbed periodate was identified by scanning electron microscopy plus energy dispersive spectroscopy and X-ray photoelectron spectroscopy.

  1. White-light emitting Eu3+ co-doped ZnO/Zn2SiO4:Mn2+ composite microphosphor

    Science.gov (United States)

    Ramakrishna, P. V.; Murthy, D. B. R. K.; Sastry, D. L.

    Eu3+ co-doped ZnO/Zn2SiO4:Mn2+ composites were synthesized via conventional solid state reaction route and were characterized by X-ray diffraction (XRD) scanning electron microscopy (SEM) and Fourier transform infra-red (FTIR) techniques. XRD studies reveal the presence of both ZnO and Zn2SiO4 phases. Photoluminescence properties of the samples were studied using 266 Nd-YAG laser excitations. Emission bands observed at ˜400 nm are ascribed to ZnO phosphor. The green emission bands at 530 nm is associated with the presence of Mn2+ ion, while orange (˜583) and red (615 nm) bands are supposed to be due to the presence of Eu3+ doped Zn2SiO4 phosphor. Energy transfer from power dependence of the sample for electric dipole transition (615 nm) was studied under 532 nm excitation by varying the power from 0.1 to 4.5 W. The estimated colour correlated temperature (CCT) values are found to be ˜4875 and 4458 K under 266 nm and 532 nm laser (0.5 W) excitations. These values are close to those of tubular fluorescent or cool white/daylight compact fluorescent (CFL) (˜5000 K) lamps. The present composite phosphor may have potential application in display devices.

  2. Hydrogen gas detection of Nb2O5 nanoparticle-decorated CuO nanorod sensors

    Science.gov (United States)

    Kheel, Hyejoon; Sun, Gun-Joo; Lee, Jae Kyung; Mirzaei, Ali; Choi, Seungbok; Lee, Chongmu

    2017-01-01

    Pristine and Nb2O5 nanoparticles-decorated CuO nanorods were prepared successfully by a two step process: the thermal evaporation of a Cu foil and the spin coating of NbCl5 solution on CuO nanorods followed by thermal annealing. X-ray diffraction was performed to examine the structure and purity of the synthesized nanoatuctures. Scanning electron microscopy was used to examine the morphology and shape of the nanostuctures. The Nb2O5 nanoparticles-decorated CuO nanorod sensor showed responses of 217.05-862.54%, response times of 161-199 s and recovery times of 163-171 s toward H2 gas with concentrations in a range of 0.5 - 5% at the optimal working temperature of 300 °C. The Nb2O5 nanoparticle-decorated CuO nanorod sensor showed superior sensing performance to the pristine CuO nanorod sensor for the same H2 concentration range. The underlying mechanism for the enhanced hydrogen sensing performance of the CuO nanorods decorated with Nb2O5 nanoparticles is discussed.

  3. Combination of CuO nanoparticles and fluconazole: preparation, characterization, and antifungal activity against Candida albicans

    Energy Technology Data Exchange (ETDEWEB)

    Weitz, Iris S., E-mail: irisweitz@braude.ac.il; Maoz, Michal; Panitz, Daniel [ORT Braude College, Department of Biotechnology Engineering (Israel); Eichler, Sigal; Segal, Ester [Technion – Israel Institute of Technology, Department of Biotechnology and Food Engineering (Israel)

    2015-08-15

    Combination therapy becomes an important strategy in the management of invasive fungal infections and emergence of resistant fungi mutants. In this work, we examine the combination of copper oxide (CuO) nanoparticles (NPs) with fluconazole as potential treatment against the pathogenic fungi, Candidaalbicans. CuO NPs (∼7 nm in size) were synthesized with acetate ligands assembled on their surface, as shown by both thermal gravimetric analysis and FTIR spectroscopy. Unlike the commercial CuO (both bulk and 50 nm particles), that are poorly dispersed in water, the interaction with water allows the fine dispersion of the coated CuO NPs and their excellent colloidal stability. The addition of fluconazole to the aqueous CuO dispersion induced spontaneous self-assembly of the NPs into linear pearl-like chains network, shown by cryogenic transmission electron microscopy (cryo-TEM). The antifungal activity of the CuO NPs and their combination with fluconazole (fluconazole–CuO NPs) was studied against C. albicans. The best MIC values were obtained at concentrations as low as 0.2 and 0.3 mg/mL, respectively. The results suggest that fluconazole–CuO NPs can provide a potential alternative treatment for C. albicans infections.

  4. Synthesis of CuO nanoflower and its application as a H2O2 sensor

    Indian Academy of Sciences (India)

    Aixia Gu; Guangfeng Wang; Xiaojun Zhang; Bin Fang

    2010-02-01

    CuO three-dimensional (3D) flower-like nanostructures were successfully synthesized by a simple method at 100°C with Cu(NO3)2.3H2O and NH3.H2O for 6 h in the absence of any additives. We found that NH3.H2O amount was critical for CuO morphology evolution. The phase analysis was carried out using X-ray diffraction (XRD) and the result confirmed that the CuO nanoflowers were single-phase. The morphological investigations by field emission scanning electron microscope (FESEM) revealed that the CuO nanoflowers were mono-dispersed in a large quantity and consisted of nanosheets. And then, CuO nanoflowers were successfully used to modify a gold electrode to detect H2O2 with cyclic voltammetry (CV) and amperometric (AC). It was found that CuO nanoflowers may be of great potential for H2O2 electrochemical sensing.

  5. RF sputtered CuO thin films: Structural, optical and photo-catalytic behavior

    Science.gov (United States)

    Al-Ghamdi, Attieh A.; Khedr, M. H.; Shahnawaze Ansari, M.; Hasan, P. M. Z.; Abdel-wahab, M. Sh.; Farghali, A. A.

    2016-07-01

    Nanocrystalline CuO thin films were deposited for 600, 1200 and 1800 s on glass substrate using RF magnetron sputtering technique. The films deposited at room temperature were crystalline and showed Tenorite phase of CuO. The increase in average particle size from 6.67 nm to 9.09 nm and the thickness from 160 nm to 490 nm was observed with the increase in deposition time. The optical band gap was decreased from 2.2 eV to 1.73 eV as the film thickness was increased. The intensity of PL peak showed its maximum for the film deposited for 600 s and minimum for 1800 s. Some unusual emission peaks were observed due to the quantization effect and lattice/surface defects. The CuO films with different thicknesses could be used as photo-catalysts for the degradation of Methylene blue (MB) from the wastewater. Under the exposure of 200 W energy of tungsten lamp, CuO thin films showed excellent photo-catalytic activities. CuO thin film of minimum thickness of around 160 nm responded as a best catalyst for MB degradation. The films were very stable and have a speciality to be recycled without much loss of their photo-catalytic activity. These characteristics have proved the high possibility of commercial applications of CuO thin films in environmental remediation.

  6. Synthesis and characterization of CuO nano particles using precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Malviya, Nitin; Oswal, Nidhi [Department of Applied Physics, Shri G.S. Institute of Technology & Science, Indore – 452003 (India); Carpenter, Gopal; Gupta, Nitish, E-mail: nitish.nidhi75@gmail.com [Department of Applied Chemistry, Shri G.S. Institute of Technology & Science, Indore-452003 (India)

    2015-06-24

    A simple and efficient synthesis of CuO nanoparticles was carried out by precipitation method using copper metal chips as precursor and sodium hydroxide as a stabilizing agent at different calcinations temperatures (100°C, 150°C, and 175°C). The products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR). XRD indicated monoclinic structure of CuO. SEM indicated the variation in nanostructures with the heating temperatures and FTIR inidcated Cu-O stretching frequencies. The CuO nanostructures with the average particle size of about 16.52 nm were prepared at 100°C for 3 hr. When the calcinations temperature was increased to 150°C and 175°C, CuO nanostructures with the particle size of about 17.41 nm, and 18.44 nm were obtained respectively. This aqueous precipitation method can give a large scale production of CuO nanoparticles easily.

  7. Combination of CuO nanoparticles and fluconazole: preparation, characterization, and antifungal activity against Candida albicans

    Science.gov (United States)

    Weitz, Iris S.; Maoz, Michal; Panitz, Daniel; Eichler, Sigal; Segal, Ester

    2015-08-01

    Combination therapy becomes an important strategy in the management of invasive fungal infections and emergence of resistant fungi mutants. In this work, we examine the combination of copper oxide (CuO) nanoparticles (NPs) with fluconazole as potential treatment against the pathogenic fungi, Candida albicans. CuO NPs ( 7 nm in size) were synthesized with acetate ligands assembled on their surface, as shown by both thermal gravimetric analysis and FTIR spectroscopy. Unlike the commercial CuO (both bulk and 50 nm particles), that are poorly dispersed in water, the interaction with water allows the fine dispersion of the coated CuO NPs and their excellent colloidal stability. The addition of fluconazole to the aqueous CuO dispersion induced spontaneous self-assembly of the NPs into linear pearl-like chains network, shown by cryogenic transmission electron microscopy (cryo-TEM). The antifungal activity of the CuO NPs and their combination with fluconazole (fluconazole-CuO NPs) was studied against C. albicans. The best MIC values were obtained at concentrations as low as 0.2 and 0.3 mg/mL, respectively. The results suggest that fluconazole-CuO NPs can provide a potential alternative treatment for C. albicans infections.

  8. Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Wang Juan [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China); Zhang Weide, E-mail: zhangwd@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China)

    2011-09-01

    Highlights: > Adhered growth of CuO nanoplatelets on Cu foils. > Enzyme-free glucose sensor with very high sensitivity. > Excellent stability and good anti-interference ability. - Abstract: CuO nanoplatelets were grown on Cu foils by a one step, template free process. The structure and morphology of the CuO nanoplatelets were characterized by X-ray diffraction, scanning and transmission electron microscopy. The CuO nanoplatelets grown on Cu foil were integrated to be an electrode for glucose sensing. The electrocatalytic activity of the CuO nanoplatelets electrode for glucose in alkaline media was investigated by cyclic voltammetry and chronoamperometry. The electrode exhibits a sensitivity of 3490.7 {mu}A mM{sup -1} cm{sup -2} to glucose which is much higher than that of most reported enzyme-free glucose sensors and the linear range was obtained over a concentration up to 0.80 mM with a detection limit of 0.50 {mu}M (signal/noise = 3). Exhilaratingly, the electrode based on the CuO nanoplatelets is resistant against poisoning by chloride ion, and the interference from the oxidation of common interfering species, such as uric acid, ascorbic acid, dopamine and carbonhydrate compounds, can also be effectively avoided. Finally, the electrode was applied to analyze glucose concentration in human serum samples.

  9. CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids

    Energy Technology Data Exchange (ETDEWEB)

    El-Trass, A.; ElShamy, H.; El-Mehasseb, I. [Nanochemistry Laboratory, Chemistry Department, Faculty of Science, Kafrelsheikh, University, 33516 Kafr ElSheikh (Egypt); El-Kemary, M., E-mail: elkemary@yahoo.com [Nanochemistry Laboratory, Chemistry Department, Faculty of Science, Kafrelsheikh, University, 33516 Kafr ElSheikh (Egypt)

    2012-01-15

    Cupric oxide (CuO) nanoparticles with an average size of 6 nm have been successfully prepared by an alcothermal method. The prepared CuO nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) and UV-visible absorption spectroscopy. A strong sharp emission under UV excitation is reported from the prepared CuO nanoparticles. The results show that the CuO nanoparticles have high dispersion and narrow size distribution. The fluorescence emission spectra display an intense sharp emission at 365 nm and weak broad intensity emission at 470 nm. Picosecond fluorescence measurements of the nanoparticles suggest bi-exponential function giving time constants of {tau}{sub 1} (330 ps, 94.21%) and {tau}{sub 2} (4.69 ns, 5.79%). In neutral and alkaline solutions, Zeta potential values of CuO nanoparticles are negative, due to the adsorption of COO{sup -} group via the coordination of bidentate. At low pH the zeta potential value is positive due to the increased potential of H{sup +} ions in solution. Comparative UV-visible absorption experiments with the model amino acid compounds of positive and negative charges as arginine and aspartic acid, respectively confirmed the negative surface of CuO nanoparticles. The results should be extremely useful for understanding the mode of the interaction with biological systems. This binding process also affects the particle's behavior inside the body.

  10. Efficiency enhancement in dye-sensitized solar cells with down conversion material ZnO: Eu3+, Dy3+

    Science.gov (United States)

    Yao, Nannan; Huang, Jinzhao; Fu, Ke; Liu, Shiyou; E, Dong; Wang, Yanhao; Xu, Xijin; Zhu, Min; Cao, Bingqiang

    2014-12-01

    The down conversion (DC) material ZnO: Eu3+, Dy3+ are synthesized by precipitation method and used to prepare the photo anode of dye-sensitized solar cells (DSSCs). The effects of down conversion material on the photoelectric performance of the DSSC were characterized by the X-ray diffraction (XRD), photoluminescence (PL), scanning electron microscope (SEM), current-voltage (I-V) curve, incident-photon-to-current conversion efficiency (IPCE) and UV-vis-NIR absorption spectroscopy. In this paper, Eu3+, Dy3+ codoped ZnO excited by from UV to blue light converts blue to red light emission, corresponding to the absorption region of the dye (N719). At the concentration 1.75% of ZnO: Eu3+, Dy3+ (weight ratio of DC to TiO2), the short-circuit current density and conversion efficiency of the DSSCs reached to the optimal values: 8.92 mA cm-2 and 4.48%, about 212% and 245% higher than with pure TiO2 and about 91.4% and 105% higher than with TiO2/graphene (G) structure, respectively. The research result reveals that the application of DC material can improve the efficiency of DSSCs.

  11. Enhanced photoluminescence properties of Sm3+ ions in Cu+ and Sn2+ co-doped P2O5:BaO glass

    Science.gov (United States)

    Jiménez, José A.

    2014-12-01

    Luminescent glasses activated with Sm3+ ions are of current interest given their potential for a wide range of photonic applications. In this work, Sm3+-containing P2O5:BaO glasses are prepared by a simple melt-quench method, and the influence of CuO and SnO co-doping on Sm3+ photoluminescence (PL) is investigated. Optical absorption, solid-state 31P nuclear magnetic resonance spectroscopy, and PL spectroscopy are employed in the assessment of material optical and structural properties. The data indicates that monovalent copper ions and twofold-coordinated Sn centers are successfully stabilized in the matrix and both species can enhance the orange-red emission of Sm3+ ions. The optical properties of the material after heat treatment have been also assessed. Results indicate the chemical reduction of ionic copper via Sn2+ ultimately producing Cu nanoparticles as evidenced by the surface plasmon resonance. As a result, Sm3+ PL diminishes consistent with an excitation energy transfer to plasmonic Cu particles, i.e. the "plasmonic diluent" effect prevails.

  12. Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and ionic copper in mussels Mytilus galloprovincialis.

    Science.gov (United States)

    Ruiz, Pamela; Katsumiti, Alberto; Nieto, Jose A; Bori, Jaume; Jimeno-Romero, Alba; Reip, Paul; Arostegui, Inmaculada; Orbea, Amaia; Cajaraville, Miren P

    2015-10-01

    The aim of this work was to study short-term effects on antioxidant enzyme activities and long-term genotoxic and carcinogenic potential of CuO nanoparticles (NPs) in comparison to bulk CuO and ionic copper in mussels Mytilus galloprovincialis after 21 days exposure to 10 μg Cu L(-1). Then, mussels were kept for up to 122 days in clean water. Cu accumulation depended on the form of the metal and on the exposure time. CuO NPs were localized in lysosomes of digestive cells, as confirmed by TEM and X ray microanalysis. CuO NPs, bulk CuO and ionic copper produced different effects on antioxidant enzyme activities in digestive glands, overall increasing antioxidant activities. CuO NPs significantly induced catalase and superoxide dismutase activities. Fewer effects were observed in gills. Micronuclei frequency increased significantly in mussels exposed to CuO NPs and one organism treated with CuO NPs showed disseminated neoplasia. However, transcription levels of cancer-related genes did not vary significantly. Thus, short-term exposure to CuO NPs provoked oxidative stress and genotoxicity, but further studies are needed to determine whether these early events can lead to cancer development in mussels.

  13. Room temperature ferromagnetism in Mn doped ZnO: Co nanoparticles by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Pazhanivelu, V.; Selvadurai, A. Paul Blessington [Department of Physics, Anna University, Chennai 600044 (India); Zhao, Yongsheng; Thiyagarajan, R. [Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai 201203 (China); Murugaraj, R., E-mail: r.murugaraj@gmail.com [Department of Physics, Anna University, Chennai 600044 (India)

    2016-01-15

    In this present work, the Mn{sup 2+} and Co{sup 2+} ions doping and co-doping effect on the structural, vibrational, morphological, optical and magnetic behaviors of ZnO based dilute magnetic semiconductors are reported. The Zn{sub 0.95}Co{sub 0.05}O (ZC), Zn{sub 0.95}Mn{sub 0.05}O (ZM) and Zn{sub 0.90}Co{sub 0.05}Mn{sub 0.05}O (ZCM) samples were prepared by co-precipitation method. From the XRD analysis, it was observed that on the doping of Mn{sup 2+} ion in ZnO matrix, decreases their crystalline nature as well as the crystallite size significantly. The Raman spectra, Photoluminescence and electron paramagnetic resonance spectroscopy measurements reveal that the presence of defects in prepared samples. The UV-DRS spectroscopic exhibits the incorporation of dopant ions and their effect on the band gap subsequently. The magnetization measurements suggest the room temperature ferromagnetism (RTFM) in the prepared samples. The observed RTFM phenomenon was discussed based on the defects and grain confinement.

  14. The effect of cetyltrimethylammonium bromide on size and morphology of ZnO and CuO

    Directory of Open Access Journals (Sweden)

    Anantha N. Subba Rao

    2014-09-01

    Full Text Available The nanoparticles (NP ZnO and CuO were synthesized by electrochemical-thermal method. The influence ofcetyltrimethylammonium bromide (CTAB on size and morphology of NP was evaluated. They were characterized by powder X-ray diffraction spectroscopy (XRD, scanning electron microscopy (SEM, UV-Visible absorption spectroscopy. The average crystallite size and the average grain size of NP decreased with CTAB concentration. The CTAB significantly affected the morphology of CuO and ZnO NP. The regular spindle shape of CuO transformed into irregular spherical shape and the homogeneity in the morphology of spherical ZnO NP was lost with increase in CTAB concentration. The effect of morphology and size of ZnO on its photocatalytic activity was evaluated by subjecting methylene blue (MB dye to photocatalytic degradation under the irradiation of UV light. The color removal of MB dye during electrolysis was monitored by UV-Visible spectroscopy. The highest photocatalytic activity was noticed for ZnO 10 mM CTAB.

  15. A Comparison of ZnO and ZnO(-)

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Arnold, James (Technical Monitor)

    1998-01-01

    Ab initio electronic structure calculations are performed to support and to help interpret the experimental work reported in the proceeding manuscript. The CCSD(T) approach, in conjunction with a large basis set, is used to compute spectroscopic constants for the X(exp 1)Epsilon(+) and (3)II states of ZnO and the X(exp 2)Epsilon(+) state of ZnO(-). The spectroscopic constants, including the electron affinity, are in good agreement with experiment. The ZnO EA is significantly larger than that of O, thus relative to the atomic ground state asymptotes, ZnO(-) has a larger D(sub o) than the (1)Epsilon(+) state, despite the fact that the extra electron goes into an antibonding orbital. The changes in spectroscopic constants can be understood in terms of the X(exp 1)Epsilon(+) formally dissociating to Zn (1)S + O (1)D while the (3)II and (2)Epsilon(+) states dissociate to Zn (1)S + O (3)P and Zn (1) and O(-) (2)P, respectively.

  16. Synthesis and characterization of CuO nanoparticles using strong base electrolyte through electrochemical discharge process

    Indian Academy of Sciences (India)

    PURUSHOTTAM KUMAR SINGH; PANKAJ KUMAR; MANOWAR HUSSAIN; ALOK KUMAR DAS; GANESH CHANDRA NAYAK

    2016-04-01

    In the present study, cupric oxide (CuO) nanoparticles were synthesized by electrochemical discharge process using strong base electrolytes. The experiments were carried out separately using NaOH and KOH electrolytes.The mass output rate and the crystal size were obtained with variation of the rotation speed of magnetic stirrer for both types of electrolytes. The mass output rate of CuO nanoparticles increased with the increase in the speed of rotation, and, after an optimum speed, it started decreasing. However, the size of the particles reduced with the increase of the rotation speed. The crystal plane of the obtained CuO nanoparticles was similar for both the electrolytes whereas the yield of nanoparticles was higher in KOH as compared with NaOH under the sameexperiment conditions. In this set of experiments, the maximum output rates obtained were 21.66 mg h$^{−1}$ for NaOH and 24.66 mg h$^{−1}$ for KOH at 200 rpm for a single discharge arrangement. The average crystal size of CuO particles obtained was in the range of 13–18 nm for KOH electrolyte and 15–20 nm for NaOH electrolyte. Scanning electron microscopy images revealed that flower-like and caddice clew-shaped CuO nanocrystalline particles weresynthesized by the electrochemical discharge process. Fourier transform infrared spectrum showed that the CuO nanoparticles have a pure and monolithic phase. UV–vis–NIR spectroscopy was used to monitor oxidation course of Cu→CuO and the band gap energy was measured as 2 and 2.6 eV for CuO nanoparticle synthesized in NaOH and KOH solutions, respectively.

  17. Synthesis and electrochemical properties of SnO2-CuO nanocomposite powders

    Institute of Scientific and Technical Information of China (English)

    MA Ming-you; HE Ze-qiang; XIAO Zhuo-bing; HUANG Ke-long; XIONG Li-zhi; WU Xian-ming

    2006-01-01

    SnO2-CuO nanocomposite powders were prepared by chemical coprecipitation method using SnCl4·5H2O, NH3·H2O and Cu(NO3)2·3H2O as raw materials. The powders were characterized by thermogravimertric(TG) analysis and differential thermal analysis(DTA), X-ray diffraction(XRD), and scanning electron microscope(SEM). The electrochemical properties of SnO2-CuO and undoped SnO2 powders as anode materials of lithium ion batteries were investigated comparatively by galvanostatic charge-discharge experiments and AC impedance. The results show that SnO2-CuO nanocomposite powders with the average particle size of 87 nm can be obtained by this method. The structure of SnO2 does not change with the introduction of CuO, but the average particle size of nano-SnO2 decreases. SnO2-CuO nanocomposite powders show a reversible capacity of 752 mA·h/g and better cycleability compared with nano-SnO2. The capacity retention rates after 60 cycles of nano-SnO2-CuO and SnO2 are 93.6% and 92.0% at the chargedischarge rate of 0.1 C, respectively, which suggests that the introduction of CuO into SnO2 can improve the cycleability of nanoSnO2.

  18. On the low-lying states of CuO

    Science.gov (United States)

    Bagus, P. S.; Nelin, C. J.; Bauschlicher, C. W., Jr.

    1984-01-01

    Self consistent field and correlated wave functions have been computed for the ground and for several low-lying states of CuO. The ground state is X(2)PI and the lowest excited state, at approximately 8,000/cm above X(2)PI, is a previously unidentified 2-sigma(+) state. The separation of these states is compared to that for the similar states of KO and is analysed in terms of integrals between orbitals of the separated free ions. A classification of the states of the molecule based on states of Cu(+) and O(-) which leads to a division into manifolds of states arising from Cu(+) 3d(10) and Cu(+) 3d(9) 4s(1) is considered. It is predicted that the state of the 3d(9) 4s(1) manifold are 10,000 to 30,000/cm above the ground state and assign the observed A2-sigma(+) state at 16,500/cm to this manifold.

  19. An EXAFS and XANES study of MBE grown Cu-doped ZnO

    CERN Document Server

    Fons, P; Iwata, K; Matsubara, K; Niki, S; Nakahara, K; Takasu, H

    2003-01-01

    The wide bandgap semiconductor, ZnO, is intrinsically n-type and one of the remaining hurdles to be overcome before it can be used for optoelectronic applications is achieving p-type doping. A potential candidate for a p-type dopant is Cu. Towards this end, X-ray near-edge absorption (XANES) has been used to determine changes in valency of Cu in molecular beam epitaxial grown ZnO as a function of growth parameters. Growth parameters varied include the Cu flux which was varied over roughly three orders of magnitude T sub C sub u =800-1000 deg. C and two substrate temperatures: 300 and 600 deg. C. XANES measurements confirmed that Cu was in the +1 valence state for all as-grown samples. Preliminary EXAFS measurements also demonstrated that Cu incorporated into a Zn-atom position substitutionally. X-ray diffraction also indicated significant phase separation with the presence of both metallic Cu and CuO indicated for Cu concentrations >3x10 sup 2 sup 1 cm sup - sup 3.

  20. Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method

    Science.gov (United States)

    Elilarassi, R.; Chandrasekaran, G.

    2013-06-01

    Nanocrystalline Zn1 - x Cu x O ( x = 0, 0.02, 0.04, 0.06, 0.08) samples were synthesized by a novel auto-combustion method using glycine as the fuel material. The structural, optical and magnetic properties of the samples were characterized using XRD, SEM, photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies. The XRD spectra of samples reveal the hexagonal wurtzite structures of ZnO. As the copper content increases, a diffraction peak at 2 θ = 39° corresponding to secondary phase of CuO ([111] crystalline face) appears when x ⩽ 6 mol.%. PL spectra of the samples show a strong ultraviolet (UV) emission and defect related visible emissions. Cu-doping in ZnO can effectively adjust the energy level in ZnO, which leads to red shift in the emission peak position in UV region. The EPR spectra of Cu-doped ZnO nanoparticles show a distinct and broad signal at room temperature, suggesting that it may be attributed to the exchange interactions within Cu2+ ions.

  1. Acceptors in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  2. Acceptors in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, Matthew D., E-mail: mattmcc@wsu.edu; Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Walter, Eric D. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Norton, M. Grant; Harrison, Kale W. [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 (United States); Ha, Su [Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164-6515 (United States)

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  3. Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells

    Energy Technology Data Exchange (ETDEWEB)

    Morales, J.; Sanchez, L. [Cordoba Univ. (Spain). Departamento de Qumica Inorganica e Ingenieria Quimica; Martin, F.; Ramos-Barrado, J.R.; Sanchez, M. [Malaga Univ. (Spain). Lab. de Materiales y Superficie

    2004-10-15

    Nanostructured CuO thin films were prepared by using a spray pyrolysis method, copper acetate as precursor and stainless steel as substrate. The textural and structural properties of the films were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed thorough coating of the substrate and thickness of 450-1250 nm; the average particle size as determined from the AFM images ranged from 30 to 160 nm. The XRD patterns revealed the formation of CuO alone and the XPS spectra confirmed the presence of Cu{sup 2+} as the main oxidation state on the surface. The films were tested as electrodes in lithium cells and their electrochemical properties evaluated from galvanostatic and step potential electrochemical spectroscopy (SPES) measurements. The discharge STEP curves exhibited various peaks consistent with the processes CuO {r_reversible} Cu{sub 2}O {r_reversible}Cu and with decomposition of the electrolyte, a reversible process in the light of the AFM images. The best electrode exhibited capacity values of 625 Ah kg{sup -1} over more than 100 cycles. This value, which involves a CuO {r_reversible} Cu reversible global reaction, is Ca. 50% higher than that reported for bulk CuO. The nanosize of the particles and the good adherence of the active material to the substrate are thought to be the key factors accounting for the enhanced electrochemical activity found. (author)

  4. Safe-by-Design CuO Nanoparticles via Fe-Doping, Cu-O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos.

    Science.gov (United States)

    Naatz, Hendrik; Lin, Sijie; Li, Ruibin; Jiang, Wen; Ji, Zhaoxia; Chang, Chong Hyun; Köser, Jan; Thöming, Jorg; Xia, Tian; Nel, Andre E; Mädler, Lutz; Pokhrel, Suman

    2017-01-24

    The safe implementation of nanotechnology requires nanomaterial hazard assessment in accordance with the material physicochemical properties that trigger the injury response at the nano/bio interface. Since CuO nanoparticles (NPs) are widely used industrially and their dissolution properties play a major role in hazard potential, we hypothesized that tighter bonding of Cu to Fe by particle doping could constitute a safer-by-design approach through decreased dissolution. Accordingly, we designed a combinatorial library in which CuO was doped with 1-10% Fe in a flame spray pyrolysis reactor. The morphology and structural properties were determined by XRD, BET, Raman spectroscopy, HRTEM, EFTEM, and EELS, which demonstrated a significant reduction in the apical Cu-O bond length while simultaneously increasing the planar bond length (Jahn-Teller distortion). Hazard screening was performed in tissue culture cell lines and zebrafish embryos to discern the change in the hazardous effects of doped vs nondoped particles. This demonstrated that with increased levels of doping there was a progressive decrease in cytotoxicity in BEAS-2B and THP-1 cells, as well as an incremental decrease in the rate of hatching interference in zebrafish embryos. The dissolution profiles were determined and the surface reactions taking place in Holtfreter's solution were validated using cyclic voltammetry measurements to demonstrate that the Cu(+)/Cu(2+) and Fe(2+)/Fe(3+) redox species play a major role in the dissolution process of pure and Fe-doped CuO. Altogether, a safe-by-design strategy was implemented for the toxic CuO particles via Fe doping and has been demonstrated for their safe use in the environment.

  5. Defect evolution and its impact on the ferromagnetism of Cu-doped ZnO nanocrystals upon thermal treatment: A positron annihilation study

    Science.gov (United States)

    Chen, Zhi-Yuan; Chen, Yuqian; Zhang, Q. K.; Qi, N.; Chen, Z. Q.; Wang, S. J.; Li, P. H.; Mascher, P.

    2017-01-01

    CuO/ZnO nanocomposites with 4 at. % CuO were annealed in air at various temperatures between 100 and 1200 °C to produce Cu-doped ZnO nanocrystals. X-ray diffraction shows that a CuO phase can be observed in the CuO/ZnO nanocomposites annealed at different temperatures, and the Cu-doped ZnO nanocrystals are identified to be of wurtzite structure. The main peak (101) appears at slightly lower diffraction angles with increasing annealing temperature from 400 up to 1200 °C, which confirms the successful doping of Cu into the ZnO lattice above 400 °C. Scanning electron microscopy indicates that most particles in the CuO/ZnO nanocomposites are isolated when annealing at 100-400 °C, but these particles have a tendency to form clusters or aggregates as the annealing temperature increases from 700 to 1000 °C. Positron annihilation measurements reveal a large number of vacancy defects in the interface region of the nanocomposites, and they are gradually recovered with increasing annealing temperature up to 1000 °C. Room-temperature ferromagnetism can be observed in the CuO/ZnO nanocomposites, and the magnetization decreases continuously with increasing annealing temperature. However, there may be several different origins of ferromagnetism in the CuO/ZnO nanocomposites. At low annealing temperatures, the ferromagnetism originates from the CuO nanograins, and the ferromagnetism of CuO nanograins decreases with an increase in the grain size after subsequent higher temperature annealing, which leads to the weakening of ferromagnetism in the CuO/ZnO nanocomposites. After annealing from 400 to 1000 °C, the ferromagnetism gradually vanishes. The ferromagnetism is probably induced by Cu substitution but is mediated by vacancy defects in the CuO/ZnO nanocomposites. The disappearance of ferromagnetism coincides well with the recovery of vacancy defects. It can be inferred that the ferromagnetism is mediated by vacancy defects that are distributed in the interface region.

  6. Induced growth of high quality ZnO thin films by crystallized amorphous ZnO

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Jun; Song Li-Jun; Li Shou-Chun; Lu You-Ming; Tian Yun-Xia; Liu Jia-Yi; Wang Lian-Yuan

    2006-01-01

    This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as seeds (buffer layer), ZnO thin films have been grown in diethyene glycol solution of zinc acetate at 80℃. X-ray Diffraction curve indicates that the films were preferentially oriented [001] out-of-plane direction of the ZnO. Atomic force microscopy and scanning electron microscopy were used to evaluate the surface morphology of the ZnO thin film. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. The results indicate that high quality ZnO thin film was obtained.

  7. Nanostructured CuO Thin Films Prepared through Sputtering for Solar Selective Absorbers

    Directory of Open Access Journals (Sweden)

    Senthuran Karthick Kumar

    2013-01-01

    Full Text Available Nanostructured cupric oxide (CuO thin films have been deposited on copper (Cu substrates at different substrate temperatures and oxygen to argon gas ratios through direct current (DC reactive magnetron sputtering. The deposited CuO thin films are characterized by using X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, profilometry, and spectrophotometry techniques. The crystalline phases, morphology, optical properties, and photothermal conversion efficiency of the CuO thin films are found to be significantly influenced by the change in substrate temperature and oxygen to argon gas ratio. The variations in the substrate temperature and oxygen to argon gas ratio have induced changes in Cu+ and Cu2+ concentrations of the CuO thin films that result in corresponding changes in their optical properties. The CuO thin film prepared at a substrate temperature of 30°C and O2 to Ar gas ratio of 1 : 1 has exhibited high absorptance and low emittance; thus, it could be used as a solar selective absorber in solar thermal gadgets.

  8. Optical and structural properties of CuO nanofilm: Its diode application

    Energy Technology Data Exchange (ETDEWEB)

    Erdogan, Ibrahim Y. [Bingoel University, Faculty of Sciences and Arts, Department of Chemistry, 12000 Bingoel (Turkey); Guellue, O., E-mail: omergullu@gmail.co [Batman University, Faculty of Sciences and Arts, Department of Physics, 72060 Batman (Turkey)

    2010-03-04

    The high crystalline CuO nanofilms have been prepared by spin coating and annealing combined with a simple chemical method. The obtained films have been characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-vis (UV-vis) spectroscopy and photoluminescence (PL) spectroscopy. Structural analysis results demonstrate that the single phase CuO on Si (1 0 0) substrate is of high a crystalline structure with a dominant in monoclinic (1 1 1) orientation. FT-IR results confirm the formation of pure CuO phase. UV-vis absorption measurements indicate that the band gap of the CuO films is 2.64 eV. The PL spectrum of the CuO films shows a broad emission band centered at 467 nm, which is consistent with absorption measurement. Also, Au/CuO/p-Si metal/interlayer/semiconductor (MIS) diodes have been fabricated. Electronic properties (current-voltage) of these structures were investigated. In addition, the interfacial state properties of the MIS diode were obtained. The interface-state density of the MIS diode was found to vary from 6.21 x 10{sup 12} to 1.62 x 10{sup 12} eV{sup -1} cm{sup -2}.

  9. Cutin-derived CuO reaction products from purified cuticles and tree leaves

    Science.gov (United States)

    Goñi, Miguel A.; Hedges, John I.

    1990-11-01

    Long chain (C 16-C 18) hydroxy fatty acids are obtained among the nonlignin-derived reaction products from the CuO oxidation of a variety of geochemical samples. In order to investigate the origin of these acids, the CuO reaction products of isolated cuticles and whole leaves were investigated. The reaction products from the CuO oxidation of purified apple ( Malus pumila) cuticle include 16-hydroxy-hexadecanoic acid, 10,16-dihydroxyhexadecanoic acid, 9,10,18-trihydroxyoctadec-12-enoic acid, and 9,10,18-trihydroxyoctadecanoic acid as major components. The distribution of these cutin-derived CuO reaction products is similar to the monomer compositions deduced from traditional methods of cutin analysis. Oxidation of whole English Holly ( Ilex aquifolium) leaves yields cutin-derived acidic reaction products (in addition to lignin-derived phenols) similar to those obtained from oxidation of the corresponding isolated cuticles, indicating that CuO oxidation of bulk plant tissue is a viable procedure of cutin analysis in geochemical applications.

  10. Preparation and characterization of CuO catalyst for the thermolysis treatment of distillery wastewater.

    Science.gov (United States)

    Sharma, Deepak; Prajapati, Abhinesh Kumar; Choudhary, Rumi; Kaushal, Rajesh Kumar; Pal, Dharm; Sawarkar, Ashish N

    2017-08-16

    CuO catalyst was prepared from copper sulfate by alkali precipitation method followed by drying and calcination. Characterization of CuO catalyst using X-ray diffraction, Brunauer-Emmett-Teller, and Barrett-Joyner-Halenda surface area analysis envisaged the effectiveness of CuO as a catalyst for the treatment of biodigester effluent (BDE) emanated from distilleries. The catalytic thermolysis is an efficient advance treatment method for distillery biodigester effluent (BDE). CT treatment of BDE was carried out in a 0.5 dm(3) thermolytic batch reactor using CuO as a catalyst at different pH (1-9), temperatures (80-110°C), and catalyst loadings (1-4 kg/m(3)). With CuO catalyst, a temperature of 110°C, catalyst loading of 4 kg/m(3), and pH of 2 was found to be optimal, providing a maximum reduction in chemical oxygen demand of 65%. The settling characteristics at different temperatures of CT-treated sludge were also presented.

  11. Structural, optical and room-temperature ferromagnetic properties of Fe-doped CuO nanostructures

    Science.gov (United States)

    Mohamed Basith, N.; Judith Vijaya, J.; John Kennedy, L.; Bououdina, M.

    2013-09-01

    Pure CuO and Fe-doped CuO nanostructures with different weight ratios (0.5, 1.0, 1.5, and 2.0 at wt% of Fe) were synthesized via the microwave combustion method. The synthesized samples were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). XRD patterns refined by the Rietveld method indicated the formation of single-phase monoclinic structure and also confirmed that Fe ions successfully incorporated into CuO crystal lattice by occupying Cu ionic sites. Interestingly, the morphology was found to change considerably from nanoflowers to nano-rod and disk-shaped then to nanoparticles with the variation of Fe content. The optical band gap calculated using DRS was found to be 2.8 eV for pure CuO and increases up to 3.4 eV with increasing ‘Fe’ content. Photoluminescence measurements also confirm these results. The magnetic measurements indicated that the obtained nanostructures are found to be room temperature ferromagnetism (RTF) with an optimum value of saturation magnetization at 2.0 wt% of Fe-doped CuO, i.e. 1.2960×10-3 emu/g.

  12. CuO nanostructures: optical properties and morphology control by pyridinium-based ionic liquids.

    Science.gov (United States)

    Sabbaghan, Maryam; Shahvelayati, Ashraf Sadat; Madankar, Kamelia

    2015-01-25

    Copper oxide nanostructures have been synthesized by a simple reflux method in aqueous medium of pyridinium based ionic liquids. The structural and optical properties of CuO nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectroscopy (PL) and UV-visible. The morphologies of the nanostructures can be controlled by changing the amount of NaOH and ionic liquids. The results show that the use identical pyridinium based ionic liquids in ratio of 4:1 NaOH/Cu(OAc)2⋅H2O yield minor differences in morphology of CuO nanostructures. Different morphologies of CuO nanostructures were obtained by changing the ratio NaOH/Cu(OAc)2⋅H2O to 2:1. Ionic liquids play an important role on optical properties of CuO nanostructures. The results of optical measurements of the CuO nanostructures illustrate that band gaps are estimated to be 1.67-1.85 eV. PL patterns studies show that the ionic liquids can be effect on PL patterns of the samples. The reasons of these phenomena are discussed.

  13. Toxicity of CuO Nanoparticles to Structure and Metabolic Activity of Allium cepa Root Tips.

    Science.gov (United States)

    Deng, Fei; Wang, Shuling; Xin, Hua

    2016-11-01

    Roots of Allium cepa were exposed to six CuO NPs suspensions (0, 5, 10, 20, 40, 80 mg L(-1)) in this study. Results revealed that with the increase of CuO NPs concentration, the Cu content in roots increased significantly. Compared to control, onion roots treated with CuO NPs (except 5 mg L(-1) suspension) grew slowly after 24 h. The surface of the root cap and meristematic zone were obviously damaged. The apical meristem of roots treated by 10 mg L(-1) and above concentrations stopped division. The nucleus of meristematic cells deformed, and nucleoli number increased. The plasmolysis occurred, and the cell membrane and nuclear membrane fractured. With the increase of CuO NPs concentration, the MDA content increased, and the root activity decreased. When dealt with 80 mg L(-1) CuO NPs for 72 h, onion roots appeared to be corroded.

  14. Chemical Quenching of Positronium in CUO/Al2O3 Catalysts

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-Jun; LIU Zhe-Wen; CHEN Zhi-Quan; WANG Shao-Jie

    2011-01-01

    CuO/Al2O3 catalysts were prepared by mixing CuO and γ-Al2O3 nanopowders. Microstructure and chemical environment of the catalysts are characterized by positron annihilation spectroscopy. The positron annihilation lifetime measurements reveal two long lifetime components τ3 and τ4, which correspond to ortho-positronium (o-Ps) annihilating in microvoids and large pores, respectively. With increasing CuO content from 0 to 40 wt%, both τ4 and its intensity I4 show significant decrease, which indicates quenching effect of o-Ps. The para-positronium (p-Ps) intensities derived from multi-Gaussian fitting of the coincidence Doppler broadening spectra also decreases gradually with increasing CuO content. This excludes the possibility of spin-conversion of positronium. Therefore, the chemical quenching by CuO is probably responsible for the decrease of o-Ps lifetime. Variation in the o-Ps annihilation rate λ4 (1/τ4) as a function of CuO content can be well fitted by a straight line, and the slope of the fitting Jine is (1.83 ± 0.05) × 107 s-1.

  15. Direct electrochemistry of hemoglobin immobilized in CuO nanowire bundles.

    Science.gov (United States)

    Li, Yueming; Zhang, Qian; Li, Jinghong

    2010-11-15

    It is one of main challenges to find the suitable materials to enhance the direct electron transfer between the electrode and redox protein for direct electrochemistry field. Nano-structured metal oxides have attracted considerable interest because of unique properties, well biocompatibility, and good stability. In this paper, the copper oxide nanowire bundles (CuO NWBs) were prepared via a template route, and the bioelectrochemical performances of hemoglobin (Hb) on the CuO NWBs modified glass carbon electrodes (denoted as Hb-CuO NWBs/GC) were studied. TEM and XRD were used to characterize the morphology and structure of the as synthesized CuO NWBs. Fourier transform-infrared spectroscopy (FT-IR) proved that Hb in the CuO NWBs matrix could retain its native secondary structure. A pair of well-defined and quasi-reversible redox peaks at approximately -0.325 V (vs. Ag/AgCl saturated KCl) were shown in the cyclic voltammogram curve for the Hb-CuO NWBs/GC electrode, which indicated the direct electrochemical behavior. The Hb-CuO NWBs/GC electrode also displayed a good electrocatalytic activity toward the reduction of hydrogen peroxide. These results indicate that the CuO NWBs are good substrates for immobilization of biomolecules and might be promising in the fields of (bio) electrochemical analysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Javed, E-mail: tariqjan84@gmail.com, E-mail: javed.suggau@iiu.edu.pk; Jan, Tariq, E-mail: tariqjan84@gmail.com, E-mail: javed.suggau@iiu.edu.pk; Ul-Hassan, Sibt; Umair Ali, M.; Abbas, Fazal [Laboratory of Nanoscience and Technology, Department of Physics, International Islamic University, H-10, Islamabad (Pakistan); Ahmed, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan); Mansoor, Qaisar; Ismail, Muhammad [Institute of Biomedical and Genetic Engineering (IBGE), Islamabad (Pakistan)

    2015-12-15

    Zn{sub x}Cu{sub 1−x}O (where x= 0, 0.01, 0.03, 0.05, 0.07 and 0.1 mol%) hierarchical nanostructures have been prepared via soft chemical route. X-ray diffraction (XRD) results of the synthesized samples reveal the monoclinic structure of CuO without any impurity related phases. The micro-structural parameters such as crystallite size and microstrain have been strongly influenced by Zn doping. Scanning electron microscope (SEM) analyses depict the formation of hierarchical nanostructures having average particle size in the range of 26-43 nm. The surface area of CuO nanostructures has been reduced systematically with the increase in Zn content which is linked with the variations in particle size. An obvious decrease in the optical band gap energy of the synthesized CuO hierarchical nanostructures has been observed with Zn doping which is assigned to the formation of shallow levels in the band gap of CuO and combined transition from oxygen 2p states to d sates of Cu and Zn ions. The bactericidal potency of the CuO hierarchical nanostructures have been found to be enhanced remarkably with Zn doping.

  17. X-ray transmission through nanostructured and microstructured CuO materials

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, M.Z. [Area de Ciencias Tecnologicas, Centro Universitario Franciscano, Rua dos Andradas, 1614, CEP 97010-032 Santa Maria, RS (Brazil); Kuenzel, R., E-mail: roselikunzel@gmail.co [Universidade de Sao Paulo, Instituto de Fisica, Departamento de Fisica Nuclear, Cidade Universitaria, CEP 05508-090 Sao Paulo, SP (Brazil); Okuno, E. [Universidade de Sao Paulo, Instituto de Fisica, Departamento de Fisica Nuclear, Cidade Universitaria, CEP 05508-090 Sao Paulo, SP (Brazil); Levenhagen, R.S. [Universidade Federal de Sao Paulo, Departamento de Ciencias Exatas e da Terra, Rua Arthur Ridel, 275, Jardim Eldorado, CEP 09941-510 Diadema, SP (Brazil); Basegio, T.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Materiais, Avenida Osvaldo Aranha, 99, CEP 90035-190 Porto Alegre, RS (Brazil)

    2011-02-15

    This study presents a comparison of the X-ray transmission through microsized and nanosized materials. For this purpose CuO nanoparticles, with 13.4 nm average grain size, and CuO microparticles, with a mean particle size of 56{mu}m, were incorporated separately to beeswax in a concentration of 5%. Results show that the transmission through the above material plates with microsized and nanosized CuO was almost the same for X-ray beams generated at 60 and 102 kV tube voltages. However, for the radiation beams generated at 26 and 30 kV tube voltages the X-rays are more attenuated by the nanostructured CuO plates by a factor of at least 14%. Results suggest that the difference in the low energy range may be due to the higher number of particles/gram in the plates designed with CuO nanoparticles and due to the grain size effect on the X-ray transmission.

  18. Fine CuO anisotropic nanoparticles supported on mesoporous SBA-15 for selective hydrogenation of nitroaromatics.

    Science.gov (United States)

    Sareen, Shweta; Mutreja, Vishal; Singh, Satnam; Pal, Bonamali

    2016-01-01

    SBA-15 modified with APTMS (3-aminopropyl trimethoxysilane) having pore diameter (∼8 nm) has been synthesized and impregnated with 1-10 wt.% Cu using Cu(NO3)2 as a metal source followed by calcination at 350 °C. As-prepared CuO/ap-SBA-15 powder showed changes in the color from white for bare SBA-15 to light green due to formation of anisotropic CuO nanoparticles that exhibited a characteristic plasmon absorption band at 359 and 747 nm. TEM studies showed a change in the morphology of CuO NPs as a function of increased Cu loading. Moreover, well dispersed CuO nanospheres (∼5-6 nm) and nanorods (aspect ratio ∼11-20 nm) having monoclinic crystal phase were observed within the mesoporous channels of SBA-15. Elemental mapping studies confirmed uniform distribution of CuO nanoparticles on the surface of SBA-15. An increase in surface area was also observed from 694 m(2) g(-1) for SBA-15 to 762 m(2) g(-1) for 10 wt.% Cu loading probably due to the deposition of excess of CuO nanoparticles on the outer siliceous surface. The catalytic activity also increased with Cu loading and 10 wt.% CuO/ap-SBA-15 catalyst displayed the highest catalytic activity for the reduction of m-chloronitrobenzene and m-nitrotoluene with 83% and 100% selectivity for m-chloroaniline and m-aminotoluene respectively.

  19. Highly efficient photocatalytic activity of CuO quantum dot decorated rGO nanocomposites

    Science.gov (United States)

    Dutta, Shibsankar; Das, Kajari; Chakrabarti, Kaushik; Jana, D.; De, S. K.; De, Sukanta

    2016-08-01

    CuO quantum dots (QD) of size 4.5 nm decorated on a rGO sheet to form nanocomposites with different weight percentages via a simple soft chemical route was reported here. Tuning of CuO QD absorption towards the visible region from the UV region in the presence of rGO was also observed. The luminescence of rGO was found to be quenched in rGO-CuO nanocomposites due to charge transfer from the lowest unoccupied molecular orbital of the rGO layer to the conduction band of CuO. Systematic and concise studies of photocatalytic performance towards degradation of methylene blue (MB) dye by CuO QD along with rGO-CuO nanocomposites were presented in this work. A nanocomposite with an equal weight percentage of rGO and CuO degrades almost 99% of MB under irradiation of visible light for 50 min, showing maximum degradation efficiency.

  20. Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants.

    Science.gov (United States)

    Peng, Cheng; Duan, Dechao; Xu, Chen; Chen, Yongsheng; Sun, Lijuan; Zhang, Hai; Yuan, Xiaofeng; Zheng, Lirong; Yang, Yuanqiang; Yang, Jianjun; Zhen, Xiangjun; Chen, Yingxu; Shi, Jiyan

    2015-02-01

    Metal-based nanoparticles (MNPs) may be translocated and biochemically modified in vivo, which may influence the fate of MNPs in the environment. Here, synchrotron-based techniques were used to investigate the behavior of CuO NPs in rice plants exposed to 100 mg/L CuO NPs for 14 days. Micro X-ray fluorescence (μ-XRF) and micro X-ray absorption near edge structure (μ-XANES) analysis revealed that CuO NPs moved into the root epidermis, exodermis, and cortex, and they ultimately reached the endodermis but could not easily pass the Casparian strip; however, the formation of lateral roots provided a potential pathway for MNPs to enter the stele. Moreover, bulk-XANES data showed that CuO NPs were transported from the roots to the leaves, and that Cu (II) combined with cysteine, citrate, and phosphate ligands and was even reduced to Cu (I). CuO NPs and Cu-citrate were observed in the root cells using soft X-ray scanning transmission microscopy (STXM).

  1. Synergistic effects on band gap-narrowing in titania by codoping from first-principles calculations

    OpenAIRE

    2010-01-01

    The large intrinsic band gap in TiO2 has hindered severely its potential application for visible-light irradiation. In this study, we have used a passivated approach to modify the band edges of anatase-TiO2 by codoping of X (N, C) with transition metals (TM=W, Re, Os) to extend the absorption edge to longer visible-light wavelengths. It was found that all the codoped systems can narrow the band gap significantly; in particular, (N+W)-codoped systems could serve as remarkably better photocatal...

  2. Dynamics of iron-acceptor-pair formation in co-doped silicon

    Energy Technology Data Exchange (ETDEWEB)

    Bartel, T.; Gibaja, F.; Graf, O.; Gross, D.; Kaes, M.; Heuer, M.; Kirscht, F. [Calisolar GmbH, Magnusstrasse 11, 12489 Berlin (Germany); Möller, C. [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany); TU Ilmenau, Institut für Physik, Weimarer Str. 32, 98693 Ilmenau (Germany); Lauer, K. [CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany)

    2013-11-11

    The pairing dynamics of interstitial iron and dopants in silicon co-doped with phosphorous and several acceptor types are presented. The classical picture of iron-acceptor pairing dynamics is expanded to include the thermalization of iron between different dopants. The thermalization is quantitatively described using Boltzmann statistics and different iron-acceptor binding energies. The proper understanding of the pairing dynamics of iron in co-doped silicon will provide additional information on the electronic properties of iron-acceptor pairs and may become an analytical method to quantify and differentiate acceptors in co-doped silicon.

  3. Coupling of codoped In and N impurities in ZnS:Ag: Experiment and theory

    OpenAIRE

    Kohiki, Shigemi; Suzuka, Takayuki; Oku, Masaoki; Yamamoto, Tetsuya; Kishimoto, Seiichi; Iida, Seishi

    2002-01-01

    A vapor-phase-grown epitaxial ZnS:Ag layer simultaneously codoped with In and N on GaAs substrate exhibited a 436-nm light emission and p-type conduction with a low resistivity. X-ray photoemission spectroscopy revealed that the In 3d5/2 electron binding energy of the codoped ZnS:In,N layer was smaller by 0.5 eV than that of the ZnS:In independently doped layer, although the 2p3/2 electron binding energies of Zn and S of the codoped layer agreed well with those of the independently doped laye...

  4. Green synthesis of copper oxide (CuO) nanoparticles using banana peel extract and their photocatalytic activities

    Science.gov (United States)

    Aminuzzaman, Mohammod; Kei, Leong Mei; Liang, Wong Hong

    2017-04-01

    Copper oxide nanoparticles (CuO NPs) are interesting class of materials having multifunctional properties with promising applications in the areas of catalysts, gas sensors, batteries, magnetic storage media, solar energy, superconductors etc. Thus synthesis of CuO NPs has attracted tremendous interest to scientists and researchers Herein, we reported a green and simple method for biosynthesizing CuO NPs using banana peel extract as reducing and stabilizing agent. XRD, EDX, FE-SEM, FTIR have been used for characterization of biosynthesized CuO NPs. The results indicating that the CuO NPs synthesized by banana peel extract have high purity and the average particles size is 60 nm. The photocatalytic activity of the CuO NPs has been investigated by degradation of Congo red (CR) dye under solar irradiation. The extent of CR dye degradation by CuO NPs is monitored by using a UV-visible spectrophotometer. Due to the smaller size and high purity, the biosynthesized CuO NPs showed an excellent photocatlytic activity.

  5. Improved electrochemical performances of CuO nanotube array prepared via electrodeposition as anode for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-10-15

    Graphical abstract: CuO nanotube array electrodes prepared by electrodeposition method exhibit an excellent lithium ion storage ability as anode of Li-ion battery. - Highlights: • CuO nanotube arrays are synthesized by an electrodeposition method. • CuO nanotube shows a high-rate performance. • CuO nanotube shows an excellent cycling performance. - Abstract: We report a facile strategy to prepared CuO nanotube arrays directly grown on Cu plate through the electrodeposition method. The as-prepared CuO nanotubes show a quasi-cylinder nanostructure with internal diameters of ca. ∼100 nm, external diameters of ca. ∼120 nm, and average length of ∼3 μm. As an anode for lithium ion batteries, the electrochemical properties of the CuO nanotube arrays are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. Due to the unique nanotube nanostructure, the as-prepared CuO electrodes exhibit good rate performance (550 mAh g{sup −1} at 0.1 C and 464 mAh g{sup −1} at 1 C) and cycling performance (581 mAh g{sup −1} at 0.1 C and 538 mAh g{sup −1} at 0.5 C)

  6. Inhibition of anaerobic wastewater treatment after long-term exposure to low levels of CuO nanoparticles.

    Science.gov (United States)

    Otero-González, Lila; Field, Jim A; Sierra-Alvarez, Reyes

    2014-07-01

    CuO nanoparticles (NPs) are released into wastewater due to the widespread use and generation as by-product in various applications (e.g. semiconductor manufacturing). However, information on the behavior and impact of CuO NPs on wastewater treatment processes is very limited. The objective of this study was to evaluate the fate and long-term effect of CuO NPs (average size = 37 nm) on high-rate anaerobic bioreactors. A laboratory-scale upflow anaerobic sludge blanket reactor was operated with a synthetic wastewater containing low concentrations of CuO NPs (1.4 mg Cu L(-1)) and a mixture of volatile fatty acids for 107 days. CuO NPs were largely removed during anaerobic treatment and on the average only 20-32% of the NPs fed to the reactor escaped with the effluent. Scanning electron microscopy and chemical analysis confirmed that CuO NPs were partitioned into the anaerobic sludge. While short-term exposure to CuO NPs (1.4 mg Cu L(-1)) only caused minor inhibition to methanogenesis, extended exposure caused severe toxicity and reduced the acetoclastic methanogenic activity by more than 85%. Moreover, the reactor performance was completely disrupted and the methane production decreased by more than 50%. The study is the first to demonstrate a significant long-term effect of low levels of CuO NPs on methanogenesis.

  7. Investigation of structural, surface morphological, optical properties and first-principles study on electronic and magnetic properties of (Ce, Fe)-co doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Arul Mary, J. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry Loyola College, Chennai 600 034 (India); Judith Vijaya, J., E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry Loyola College, Chennai 600 034 (India); Bououdina, M. [Departments of Physics, College of Science, University of Bahrain, PO Box 32038 Kingdom of Bahrain (Bahrain); John Kennedy, L. [Materials Division, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Chennai Campus, Chennai 600 127 (India); Daie, J.H.; Song, Y. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weiahi 264209 (China)

    2015-01-01

    We report on the synthesis of ((Zn{sub 1−2x}Ce{sub x}Fe{sub x}) O (x=0.00, 0.01, 0.02, 0.03, 0.04 and 0.05)) nanoparticles via microwave combustion by using urea as a fuel. To understand how the dopant influenced the structural, magnetic and optical properties of nanoparticles, it was characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). The stability and magnetic properties of Ce and Fe co-doped ZnO were probed by first principle calculations. From the analysis of X-ray diffraction, the samples are identified with the wurtzite crystal structure. The change in lattice parameters, micro-strain, and a small shift in XRD peaks confirms the substitution of co dopants into the ZnO lattice. Morphological investigation of the products revealed the existence of irregular shapes, such as spherical, spherodial and hexagonal. DRS measurements showed a decrease in the energy gap with increasing dopants contents, probably due to an increase in the lattice parameters. PL spectra consist of visible emission, due to the electronic defects, which are related to deep level emissions, such as oxide antisite (O{sub Zn}), interstitial zinc (Zn{sub i}), interstitial oxygen (O{sub i}) and zinc vacancy (V{sub Zn}). Magnetic measurements showed a ferromagnetic behavior for all the doped samples at room temperature. The first principle calculation results showed that the Ce governs the stability, while the Fe adjusts the magnetic characteristics in the Ce and Fe co-doped ZnO.

  8. Investigation of structural, surface morphological, optical properties and first-principles study on electronic and magnetic properties of (Ce, Fe)-co doped ZnO

    Science.gov (United States)

    Arul Mary, J.; Judith Vijaya, J.; Bououdina, M.; John Kennedy, L.; Daie, J. H.; Song, Y.

    2015-01-01

    We report on the synthesis of ((Zn1-2xCexFex) O (x=0.00, 0.01, 0.02, 0.03, 0.04 and 0.05)) nanoparticles via microwave combustion by using urea as a fuel. To understand how the dopant influenced the structural, magnetic and optical properties of nanoparticles, it was characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectra and vibrating sample magnetometer (VSM). The stability and magnetic properties of Ce and Fe co-doped ZnO were probed by first principle calculations. From the analysis of X-ray diffraction, the samples are identified with the wurtzite crystal structure. The change in lattice parameters, micro-strain, and a small shift in XRD peaks confirms the substitution of co dopants into the ZnO lattice. Morphological investigation of the products revealed the existence of irregular shapes, such as spherical, spherodial and hexagonal. DRS measurements showed a decrease in the energy gap with increasing dopants contents, probably due to an increase in the lattice parameters. PL spectra consist of visible emission, due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial zinc (Zni), interstitial oxygen (Oi) and zinc vacancy (VZn). Magnetic measurements showed a ferromagnetic behavior for all the doped samples at room temperature. The first principle calculation results showed that the Ce governs the stability, while the Fe adjusts the magnetic characteristics in the Ce and Fe co-doped ZnO.

  9. Effect of CuO on the Formation Mechanism of Calcium Sulphoaluminate

    Institute of Scientific and Technical Information of China (English)

    MA Suhua; SHEN Xiaohong; HUANG Yeping; ZHONG Baiqian

    2008-01-01

    Calcium sulphoaluminate was prepared with chemical reagents in this paper.The formation mechanism of calcium sulphoaluminate and effect of CuO on the formation mechanism of calcium sulphoaluminate were investigated by the chemical analysis,X-ray diffraction(XRD),and differential scanning calorimetry(DSC).The results show that there are three ways in the formation of calcium sulphoaluminate.CuO can promote the decomposition of calcium carbonate and decrease the formation temperature of calcium sulphoaluminate(C4A3S).When the burning temperature is below 1000℃,the addition of CuO can promote the formation of calcium sulphoaluminate,while CuO can not favor the formation of calcium sulphoaluminate above 1000℃.

  10. Magnetodielectric effect in composites of nanodimensional glass and CuO nanoparticles

    Science.gov (United States)

    Ranjan Saha, Dhriti; Mukherjee, Manabendra; Chakravorty, Dipankar

    2012-11-01

    Nanocomposites comprising CuO particles of average diameter 21 nm coated with 5 nm silica glass containing iron ions were synthesized by a chemical route. An ion exchange reaction at the nanoglass/CuO interface produced iron-doped CuO with copper ion vacancies within the nanoparticles. Room temperature ferromagnetic-like behavior was observed in the nanocomposites. This was ascribed to uncompensated spins contributed by Fe ions with associated copper ion vacancies. A rather high value of magnetodielectric parameter in the range 16-26% depending on the measuring frequency was exhibited by these nanocomposites at a magnetic field of 10 KOe. This was caused by a magnetoresistance of 33% in the iron doped CuO nanoparticles. The experimental results were fitted to the Maxwell-Wagner Capacitor model developed by Catalan. These materials will be suited for magnetic sensor applications.

  11. Synthesis and Structural Study of Sr2CuO3+δ Superconductor under High Pressure

    Institute of Scientific and Technical Information of China (English)

    LIU Qing-Qing; WANG Fu-Ren; LI Feng-Ying; CHEN Liang-Chen; YU Ri-Cheng; JIN Chang-Qing; LI Yan-Chun; LIU Jing

    2008-01-01

    A single-phase Sr2CuO3+δ superconductor is synthesized under high temperature and high pressure, in which oxygen atoms only partially occupy the apical sites next to the CuO2 planes and act as hole-dopants. The superconducting transition temperature with Tcmax = 75 K is achieved in the material. Structure analysis from x-ray powder diffraction data show that this material crystallizes into a K2NiF4 structure with tetragonal unit cell of α = 3.795(3) (A) and c = 12.507(1) (A). Energy-dispersive synchrotron x-ray-diffraction studies at ambient are performed on powder samples of St2CuO3+δ in a diamond-anvil cell at pressure up to 35 GPa. Anisotropic compressibility is found. Pressure-induced isostructural phase transition might exist as revealed by the discontinuous change of crystal cell volume V with pressure.

  12. Electronic structure of CuO2 planes: From insulator to superconductor

    Science.gov (United States)

    Larosa, S.; Vobornik, I.; Zwick, F.; Berger, H.; Grioni, M.; Margaritondo, G.; Kelley, R. J.; Onellion, M.; Chubukov, A.

    1997-07-01

    Using angle-resolved photoemission and linearly polarized synchrotron radiation, we measured the electronic band structure of electronic states of CuO2 plane materials ranging from insulators (Sr2CuO2Cl2) to overdoped superconductors (Bi2Sr2CaCu2O8+x). We report three results: (i) The CuO2 containing insulator possesses a spin-density-wave (SDW) ground state; (ii) there are precursors of the SDW state for underdoped Bi2Sr2CaCu2O8+x; (iii) an extended saddle-point-type van Hove singularity is neither a necessary nor a sufficient condition for a high superconducting transition temperature, Tc.

  13. High performance HTPB-based energetic nanomaterial with CuO nanoparticles.

    Science.gov (United States)

    de la Fuente, José Luis; Mosquera, Gonzalo; París, Rodrigo

    2009-12-01

    This work describes the first example to demonstrate the enhancement of performances of composite highly energetic materials by mean of employing standard CuO nano-powder as burning rate catalyst in comparison to micro-fillers. The solid composite propellants with CuO microparticles are less stable due to oversensitivity to pressure variations, but the nano-structured composite propellant yields high stable burning rates over a broad pressure range. In addition, the incorporation of CuO nanoparticles in the formulations of these energetic materials also improves their combustion and thermal properties, according to the characterization obtained by differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). These results indicate the excellent benefits found in using these nanoparticles as additive for solid rocket propulsion applications.

  14. Structure and magnetic properties of Mn-doped CuO solids

    Institute of Scientific and Technical Information of China (English)

    FAN Chong-fei; PAN Li-qing; ZHU Hao; QIU Hong-mei; WANG Feng-ping; WU Ping; QIU Hong; ZHANG Yue; J. Q. XIAO

    2005-01-01

    The CuO doped with 5%-20% Mn(molar fraction) solids were sintered from CuO and MnO2 powder at high temperature (1 273 K) for 8 h. X-ray diffraction was used to determine the solid crystallinity and to address the formation of secondary phases. It is found that it is difficult to achieve pure Cu1-xMnxO phase using standard solid phase reaction. However, sintering under a pressure of 27.7 MPa significantly reduces the undesirable second phase CuMn2O4, providing a route to achieve pure Cu1-xMnx O phase. SQUID magnetometry was employed to characterize the magnetic properties. Mn-doped CuO presents ferromagnetic characteristics below 70 K. Electrical transport properties were measured in a current-perpendicular-to-plane(CPP) geometry using the PPMS, which suggests variable-range hopping mechanism.

  15. Nonlinear optical properties of laser deposited CuO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chen Aiping [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang Guang, E-mail: gyang@mail.hust.edu.c [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Long Hua; Li Fang; Li Yuhua [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu Peixiang, E-mail: lupeixiang@mail.hust.edu.c [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2009-06-01

    In this work we investigate the third-order optical nonlinearities in CuO films by Z-scan method using a femtosecond laser (800 nm, 50 fs, 200 Hz). Single-phase CuO thin films have been obtained using pulsed laser deposition technique. The structure properties, surface image, optical transmittance and reflectance of the films were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and UV-vis spectroscopy. The Z-scan results show that laser-deposited CuO films exhibit large nonlinear refractive coefficient, n{sub 2} = - 3.96 x 10{sup -17} m{sup 2}/W, and nonlinear absorption coefficient, {beta} = - 1.69 x 10{sup -10} m/W, respectively.

  16. Growth and humidity sensing properties of plate-like CuO nanostructures

    Science.gov (United States)

    Bayansal, F.; Çetinkara, H. A.; Çankaya, G.

    2014-03-01

    This paper describes a simple, low-temperature and cost-effective liquid-phase method to synthesize homogenous plate-like CuO nanostructures and their sensitivity to humidity. Scanning electron microscopy illustrated that the synthesized CuO nanoplates have thicknesses of ~100 nm. X-ray diffraction measurements showed that the CuO nanostructures have high crystallinity with monoclinic crystal structure preferentially in ? and ? directions. From the temperature-dependant dark electrical resistivity measurements, the ionization energies of the impurity levels and thermal band gap energies of the films are found as 0.30, 0.32 and 1.37, 1.39 for as-synthesized and annealed films, respectively. Gas sensing characteristics of the films were investigated for different concentrations of humidity, isopropyl alcohol, methanol, ethanol, chloroform and acetone vapours. It was found that the sensor is sensitive to humidity but not to the other volatile organic compounds.

  17. Organometallic Synthesis of CuO Nanoparticles: Application in Low-Temperature CO Detection.

    Science.gov (United States)

    Jońca, Justyna; Ryzhikov, Andrey; Palussière, Ségolène; Esvan, Jérome; Fajerwerg, Katia; Menini, Philippe; Kahn, Myrtil L; Fau, Pierre

    2017-08-24

    A metal-organic approach has been employed for the preparation of anisotropic CuO nanoparticles. These nanostructures have been characterized by transmission and high resolution transmission electron microscopy, field-emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The CuO nanoparticles have been deposited as gas-sensitive layers on miniaturized silicon devices. At an operating temperature of 210 °C, the sensors present an optimum response toward carbon monoxide correlated with a fast response (Rn) and short recovery time. A high sensitivity to CO (Rn≈150 %, 100 ppm CO, RH 50 %) is achieved. These CuO nanoparticles serve as a very promising sensing layer for the fabrication of selective CO gas sensors working at a low temperature. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Morphology- and facet-controlled synthesis of CuO micro/nanomaterials and analysis of their lithium ion storage properties

    Science.gov (United States)

    Liu, Xiaodi; Liu, Guangyin; Wang, Lijuan; Li, Yinping; Ma, Yupei; Ma, Jianmin

    2016-04-01

    Hierarchical CuO architectures and monodisperse CuO nanoplates are synthesized via a hydrothermal method with the assistance of ionic liquid 1-butyl-3-methylimidazolium chloride ([Bmim]Cl). The products are characterized by XRD, SEM, TEM, HRTEM, BET, and XPS, and the results indicate that the CuO architectures are composed of nanosheets with exposed (001) facets and the CuO nanoplates are single crystals enclosed by (200) facets. More specially, it is found that [Bmim]Cl serves as an effective template for the synthesis of CuO nanoplates by adsorbing on the (200) planes of monoclinic CuO. When evaluated as anode materials for lithium-ion batteries, CuO architectures possess higher discharge capacity, better cycling stability, and better rate capability than CuO nanoplates. The initial discharge capacity of CuO architectures is 1096 mAh g-1 at a rate of 0.5 C, whereas CuO nanoplates exhibit a lower capacity of 878.4 mAh g-1. Moreover, after 50 cycles, CuO architectures and CuO nanoplates can deliver discharge capacities of 465.6 and 281.6 mAh g-1, respectively.

  19. Low temperature synthesis of seed mediated CuO bundle of nanowires, their structural characterisation and cholesterol detection

    Energy Technology Data Exchange (ETDEWEB)

    Ibupoto, Z.H., E-mail: zafar.hussin.ibupoto@liu.se [Department of Science and Technology, Linköping University, Campus Norrköping, SE-60174 Norrköping (Sweden); Khun, K. [Department of Science and Technology, Linköping University, Campus Norrköping, SE-60174 Norrköping (Sweden); Liu, X. [Department of Physics, Chemistry, and Biology (IFM), Linköping University, 58183 Linköping Sweden (Sweden); Willander, M. [Department of Science and Technology, Linköping University, Campus Norrköping, SE-60174 Norrköping (Sweden)

    2013-10-15

    In this study, we have successfully synthesised CuO bundle of nanowires using simple, cheap and low temperature hydrothermal growth method. The growth parameters such as precursor concentration and time for duration of growth were optimised. The field emission scanning electron microscopy (FESEM) has demonstrated that the CuO bundles of nanowires are highly dense, uniform and perpendicularly oriented to the substrate. The high resolution transmission electron microscopy (HRTEM) has demonstrated that the CuO nanostructures consist of bundle of nanowires and their growth pattern is along the [010] direction. The X-ray diffraction (XRD) technique described that CuO bundle of nanowires possess the monoclinic crystal phase. The surface and chemical composition analyses were carried out with X-ray photoelectron spectroscopy (XPS) technique and the obtained results suggested the pure crystal state of CuO nanostructures. In addition, the CuO nanowires were used for the cholesterol sensing application by immobilising the cholesterol oxidase through electrostatic attraction. The infrared reflection absorption spectroscopy study has also revealed that CuO nanostructures are consisting of only Cu-O bonding and has also shown the possible interaction of cholesterol oxidase with the sharp edge surface of CuO bundle of nanowires. The proposed cholesterol sensor has demonstrated the wide range of detection of cholesterol with good sensitivity of 33.88 ± 0.96 mV/decade. Moreover, the CuO bundle of nanowires based sensor electrode has revealed good repeatability, reproducibility, stability, selectivity and a fast response time of less than 10 s. The cholesterol sensor based on the immobilised cholesterol oxidase has good potential applicability for the determination of cholesterol from the human serum and other biological samples. - Highlights: • This study describes the synthesis of bundle of CuO nanowires by hydrothermal method. • CuO nanostructures exhibit good alignment and

  20. Influence of strain on Mn codoped 2DHGs

    Energy Technology Data Exchange (ETDEWEB)

    Wurstbauer, Ursula [Institut fuer Angewandte Physik, Universitaet Hamburg (Germany); Institut fuer Experimentelle und Angewandet Physik, Universitaet Regensburg (Germany); Knott, Stefan; Hansen, Wolfgang [Institut fuer Angewandte Physik, Universitaet Hamburg (Germany); Wegscheider, Werner [Institut fuer Experimentelle und Angewandet Physik, Universitaet Regensburg (Germany)

    2009-07-01

    The properties of two-dimensional hole gases (2DHG) in a strained InAs quantum well structure strongly depend on the interaction of magnetic moments with itinerant holes. For low-temperature magnetotransport experiments weakly Mn codoped InAs QWs with InGaAs/InAlAs barriers and modulation-doped with Mn and/or C are grown on (001)GaAs substrates by means of molecular beam epitaxy. Metamorphic step graded buffer layers are used for strain engineering. The strain in the doping layer and QW can be precisely tailored by changing the In concentration in the buffer and the distance between buffer and active region. In the magnetic 2DHGs the strain plays an important role because band structure, incorporation of the Mn ions as well as orientation of their magnetic moments are strongly affected by the strain situation in the active QW region. We report on a detailed study of the impact of strain on morphology, doping efficiency and low-temperature magnetoresistance behaviour of such Mn co-doped 2DHGs.

  1. Nitrogen and Phosphorous Co-Doped Graphene Monolith for Supercapacitors.

    Science.gov (United States)

    Wen, Yangyang; Rufford, Thomas E; Hulicova-Jurcakova, Denisa; Wang, Lianzhou

    2016-03-08

    The co-doping of heteroatoms has been regarded as a promising approach to improve the energy-storage performance of graphene-based materials because of the synergetic effect of the heteroatom dopants. In this work, a single precursor melamine phosphate was used for the first time to synthesise nitrogen/phosphorus co-doped graphene (N/P-G) monoliths by a facile hydrothermal method. The nitrogen contents of 4.27-6.58 at% and phosphorus levels of 1.03-3.00 at% could be controlled by tuning the mass ratio of melamine phosphate to graphene oxide in the precursors. The N/P-G monoliths exhibited excellent electrochemical performances as electrodes for supercapacitors with a high specific capacitance of 183 F g(-1) at a current density of 0.05 A g(-1), good rate performance and excellent cycling performance. Additionally, the N/P-G electrode was stable at 1.6 V in 1 m H2 SO4 aqueous electrolyte and delivered a high energy density of 11.33 Wh kg(-1) at 1.6 V. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Lingzhan; Wang, Chao; Hou, Jun, E-mail: hhuhjyhj@126.com; Wang, Peifang; Ao, Yanhui; Li, Yi; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi [Hohai University, Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education (China)

    2015-10-15

    Stability of engineered nanoparticles in aquatic environment is an essential parameter to evaluate their fate, bioavailability, and potential toxic effects toward living organisms. As CuO NPs enter the wastewater systems, they will encounter extracellular polymeric substances (EPS) from microbial community before directly interacting with bacterial cells. EPS may play an important role in affecting the stability and the toxicity of CuO NPs in aquatic environment. In this study, the influences of flocculent sludge-derived EPS, as well as model protein (BSA) and natural polysaccharides (alginate) on the dissolution kinetics and colloidal stability of CuO NPs were investigated. Results showed that the presence of NOMs strongly suppressed CuO NPs aggregation, confirmed by DLS, zeta potentials, and TEM analysis. The enhanced stability of CuO NPs in the presence of EPS and alginate were attributed to the electrostatic combined with steric repulsion, while the steric-hindrance effect may be the predominant mechanism retarding nano-CuO aggregation for BSA. Higher degrees of copper release were achieved with the increasing concentrations of NOMs. EPS are more effective than alginate and BSA in releasing copper, probably due to the abundant functional groups and the excellent metal-binding capacity. The ratio of free-Cu{sup 2+}/total dissolved Cu significantly decreased in the presence of EPS, indicating that EPS may affect the speciation and Cu bioavailability in aqueous environment. These results may be important for assessing the fate and transport behaviors of CuO NPs in the environment as well as for setting up usage regulation and treatment strategy.

  3. Local and CMOS-compatible synthesis of CuO nanowires on a suspended microheater on a silicon substrate.

    Science.gov (United States)

    Zhang, Kaili; Yang, Yang; Pun, E Y B; Shen, Ruiqi

    2010-06-11

    This paper presents the synthesis of CuO nanowires using a localized thermal heating method in ambient air. It employs local heat sources defined in micro-resistive heaters fabricated by a standard polysilicon-based surface micromachining process instead of a global furnace heating. Since the synthesis is performed globally at room temperature, the presented process is compatible with standard CMOS. The synthesized CuO nanowires are characterized by scanning electron microscopy, transmission electron microscopy and high resolution transmission electron microscopy. It is found that this approach provides a simple method to locally synthesize suspended CuO nanowires on polysilicon microbridges on silicon substrates, thus allowing for integration of CuO nanowires into silicon-based devices. It provides a significant step towards the process integration of CuO nanowires with MEMS to realize functional devices.

  4. Facile synthesis of Fe-incorporated CuO nanoarrays with enhanced electrochemical performance for lithium ion full batteries

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Bojun [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China); Department of Applied Physics, Wuhan University of Science and Technology, Wuhan, 430065 (China); Qing, Chen; Wang, Hai; Sun, Daming; Wang, Bixiao [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China); Tang, Yiwen, E-mail: ywtang@phy.ccnu.edu.cn [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China)

    2015-11-15

    CuO nanoarrays (CNAs) and Fe-incorporated CuO nanoarrays (FCNAs) were fabricated by hydrothermal method. Addition of Fe salt to the reaction mixture allowed the introduction of iron oxide onto the CNAs surface, which was characterized by XPS and HRTEM. Introducing Fe ion into reaction precursor significantly affected not only the morphologies of as-prepared products but also their electrochemical performance as anode for lithium ion full battery. The FCNAs electrodes showed higher specific capacity and better capacity retention at different current densities than that of CNAs. - Highlights: • Fe-incorporated CuO nanoarrays were fabricated by hydrothermal method. • Fe salt in reaction mixture leads to iron oxides forming on the surface of CuO. • Fe-incorporating improves the lithium ion battery performance of CuO anodes.

  5. Cumene Liquid Oxidation to Cumene Hydroperoxide over CuO Nanoparticle with Molecular Oxygen under Mild Condition

    Institute of Scientific and Technical Information of China (English)

    Meiying Zhang; Lefu Wang; Hongbing Ji; Bing Wu; Xiaoping Zeng

    2007-01-01

    CuO nanoparticle was synthesized via wet chemical method and was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, and scanning electron microscopy (SEM). Catalytic oxidation of cumene with molecular oxygen was studied over CuO nanoparticle. The catalysts showed markedly higher activities as compared to CuO prepared by conventional method, CUO/AI2O3, or homogeneous copper catalyst under comparable reaction conditions. The cumene conversion, cumene hydroperoxide (CHP) yield, and selectivity using 0.25 g CuO nanoparticle catalyst and 0.1 mol cumene at 358 K for 7 h were 44.2%, 41.2% and 93.2%, respectively. The catalyst can be recycled. After 6 recycled experiments, no loss of catalytic activity was observed.

  6. Multi-functional CuO nanowire/TiO2 nanotube arrays photoelectrode synthesis, characterization, photocatalysis and SERS applications.

    Science.gov (United States)

    Sheng, Pengtao; Li, Weili; Du, Pengwei; Cao, Kesheng; Cai, Qingyun

    2016-11-01

    Vertically aligned single crystalline CuO nanowire arrays (NWs) grown directly on TiO2 nanotube arrays (NTAs) supporting by Ti foil have been successfully fabricated using facile thermal oxidation of Cu nanocrystals in static air. CuO NWs growth behavior dependent on parent Cu nanocrystals sizes has been well investigated. Mass transport channel of Cu ions in horizontal and vertical for supporting CuO NWs diameter and length changes has been confirmed through a novel step-by-step surface diffusion process. CuO NWs, nano-mushrooms and nanosheets can be easily obtained by varying growth conditions. After photocatalytic synthesis of snow-like Ag nanocrystals upon CuO NWs/TiO2 NTAs, the hybrid photoelectrode exhibits superior catalytic property and detection sensitivity, which can clean themselves by photocatalytic degradation of RhB molecules adsorbed to the substrate under irradiation using surface enhanced Raman scattering (SERS) detection, a recycling can been achieved.

  7. CHARACTERISATION OF Cr DOPED CuO NANOPARTICLES AND ITS PERFORMANCE IN SOLAR CELL

    OpenAIRE

    2016-01-01

    Pure and Cr2+doped Copper oxide (CuO) nanoparticles were synthesized by simple precipitation method and subjected to photovoltaic activity by forming nanopowder –thin film as light absorbing  layer  on an  indigenously fabricated heterojunction by Doctor-Blade method.  Effect of concentration of the dopant (2, 4, and 6 mol%)  on the properties of CuO was analyzed from X-Ray Diffraction pattern (XRD), Scanning Electron Microscopy(SEM) Energy Dispersive Analysis (EDAX), UV-Vis studies and Photo...

  8. Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose.

    Science.gov (United States)

    Meher, Sumanta Kumar; Rao, G Ranga

    2013-03-07

    In the quest to enhance the selectivity and sensitivity of novel structured metal oxides for electrochemical non-enzymatic sensing of glucose, we report here a green synthesis of unique sandwich-structured CuO on a large scale under microwave mediated homogeneous precipitation conditions. The physicochemical studies carried out by XRD and BET methods show that the monoclinic CuO formed via thermal decomposition of Cu(2)(OH)(2)CO(3) possesses monomodal channel-type pores with largely improved surface area (~43 m(2) g(-1)) and pore volume (0.163 cm(3) g(-1)). The fascinating surface morphology and pore structure of CuO is formulated due to homogeneous crystallization and microwave induced self assembly during synthesis. The cyclic voltammetry and chronoamperometry studies show diffusion controlled glucose oxidation at ~0.6 V (vs. Ag/AgCl) with extremely high sensitivity of 5342.8 μA mM(-1) cm(-2) and respective detection limit and response time of ~1 μM and ~0.7 s, under a wide dynamic concentration range of glucose. The chronoamperometry measurements demonstrate that the sensitivity of CuO to glucose is unaffected by the absence of dissolved oxygen and presence of poisoning chloride ions in the reaction medium, which essentially implies high poison resistance activity of the sandwich-structured CuO. The sandwich-structured CuO also shows insignificant interference/significant selectivity to glucose, even in the presence of high concentrations of other sugars as well as reducing species. In addition, the sandwich-structured CuO shows excellent reproducibility (relative standard deviation of ~2.4% over ten identically fabricated electrodes) and outstanding long term stability (only ~1.3% loss in sensitivity over a period of one month) during non-enzymatic electrochemical sensing of glucose. The unique microstructure and suitable channel-type pore architecture provide structural stability and maximum accessible electroactive surface for unimpeded mobility of glucose

  9. Outcome of temperature variation on sol-gel prepared CuO nanostructure properties (optical and dielectric)

    Energy Technology Data Exchange (ETDEWEB)

    Bibi, Maryam [Nano Synthesis Laboratory, Department of Physics, National University of Sciences and Technology, Islamabad (Pakistan); Javed, Qurat-ul-Ain, E-mail: quratulain@sns.nust.edu.pk [Nano Synthesis Laboratory, Department of Physics, National University of Sciences and Technology, Islamabad (Pakistan); Abbas, Hussain [Institute of Avionics & Aeronautics (IAA), Air University, Islamabad (Pakistan); Baqi, Sabah [Nano Synthesis Laboratory, Department of Physics, National University of Sciences and Technology, Islamabad (Pakistan)

    2017-05-01

    The optical and dielectric properties of Copper Oxide (CuO) have made it a fascinating material to be used in solar energy harvesting, gas sensing, optoelectronics and catalytical applications. Focusing on the cost-effectiveness of Sol-gel method, it is employed for nanostructured CuO production. Effect of changing temperature is observed on the formation mechanism of CuO and its properties. The temperature range of 300 °C–500 °C was used in annealing of samples to produce defect free CuO nanomaterial. Prepared material was investigated using phase characterization (X-ray diffraction ‘XRD’) technique, scanning electron microscopy (SEM), UV–Visible absorption spectroscopy and LCR meter. A structural change in prepared CuO was observed from cluster formation to Nano-fibrils by increase in annealing temperature. 11.99 nm–29.17 nm crystallites of CuO were attained by using Debye Scherer formula. A large band gap of 3.15 eV was achieved by increasing the annealing temperature upto 400 °C. For better solar energy harvest, wide band gapped CuO structures are proved to be functional and practical materials. The fabricated CuO nanostructures were found suitable to be used in devices for stabilizing circuit designs for sensitive appliances as well as micro electromechanical systems (mems). - Highlights: • CuO was synthesized by using sol gel method post growth annealing process. • XRD and SEM characterizations confirm the successful synthesis of CuO. • Change in morphology was observed with varying annealing temperature. • Improved optical and dielectric properties were observed.

  10. Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties

    Energy Technology Data Exchange (ETDEWEB)

    Duman, Fatih, E-mail: fduman@erciyes.edu.tr [Erciyes University, Science Faculty, Biology Department, Kayseri 38039, Kayseri (Turkey); Ocsoy, Ismail [Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039, Kayseri (Turkey); Erciyes University, Nanotechnology Research Center, 38039, Kayseri (Turkey); Kup, Fatma Ozturk [Erciyes University, Science Faculty, Biology Department, Kayseri 38039, Kayseri (Turkey)

    2016-03-01

    In this study, we report the synthesis of copper oxide nanoparticles (CuO NPs) using a medicinal plant (Matricaria chamomilla) flower extract as both reducing and capping agent and investigate their antioxidant activity and interaction with plasmid DNA (pBR322).The CuO NPs were characterized using Uv–Vis spectroscopy, FT-IR (Fourier transform infrared spectroscopy), DLS (dynamic light scattering), XRD (X-ray diffraction), EDX (energy-dispersive X-ray) spectroscopy and SEM (scanning electron microscopy). The CuO NPs exhibited nearly mono-distributed and spherical shapes with diameters of 140 nm size. UV–Vis absorption spectrum of CuO NPs gave a broad peak around 285 and 320 nm. The existence of functional groups on the surface of CuO NPs was characterized with FT-IR analysis. XRD pattern showed that the NPs are in the form of a face-centered cubic crystal. Zeta potential value was measured as − 20 mV due to the presence of negatively charged functional groups in plant extract. Additionally, we demonstrated concentration-dependent antioxidant activity of CuO NPs and their interaction with plasmid DNA. We assumed that the CuO NPs both cleave and break DNA double helix structure. - Highlights: • The synthesis of microwave assisted green synthesis of CuO nanoparticles • The synthesized nanoparticles were analyzed by FT-IR, DLS, XRD, EDX and SEM. • Concentration-dependent antioxidant activity of CuO NPs was determined. • CuO NPs cause both cleavage in the DNA double helix structure and breaks as well.

  11. Synthesis, Characterization, and Photocatalysis of ZnO and Er-Doped ZnO

    OpenAIRE

    Yu, Kai-sheng; Shi, Jian-ying; Zhang, Zai-Li; Liang, Yong-Mei; LIU Wei

    2013-01-01

    ZnO and Er-doped ZnO with different molar ratios of Er/Zn were prepared using the homogeneous precipitation method. The photocatalysts prepared were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), UV-vis spectroscopy, and photoluminescence spectroscopy. The results showed that the Er-doped ZnO displayed characteristic wurtzite-type peaks in the XRD spectra. The Er-doped ZnO absorbed much more light than ZnO in the ultraviolet region...

  12. Fe + N Noncompensated Codoping TiO2 Nanowires: The Enhanced Visible Light Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Zhongpo Zhou

    2014-01-01

    Full Text Available The Fe + N codoped nanowire samples are prepared by hydro-thermal method and annealed in NH3 atmosphere. The XRD (X-ray diffraction, SEM (Scanning electron microscope, UV-vis absorption spectroscopy, and BET (Brunauer, Emmett, and Teller results indicate that the samples are pure anatase nanowires. The Fe + N codoped samples have the highest specific surface area, the largest red-shift, and the largest absorption enhancement in the visible light range compared with Fe doped, N doped, and undoped nanowires. The measurements of XPS (X-ray photoelectron spectroscopy show that N content of Fe + N codoped TiO2 is about two times as large as that of the N doped TiO2. It is assumed that nitrogen doping plays a very important role for the photocatalytic activity increase and hence the Fe + N codoped nanowire TiO2 shows the most effective photocatalytic activity under the visible light irradiation.

  13. Photocatalytic oxidation of propylene on La and N codoped TiO2 nanoparticles

    Science.gov (United States)

    Liu, Jinfeng; Li, Haiyan; Zong, Lanlan; Li, Qiuye; Wang, Xiaodong; Zhang, Min; Yang, Jianjun

    2015-02-01

    Lanthanum- and nitrogen-codoped TiO2 photocatalysts was synthesized using orthorhombic nanotubes titanic acid as the precursor by a simple impregnation and subsequent calcination method. The morphology, phase structure, and properties of La- and N-codoped TiO2 were well characterized by transmission electron microscopy, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra. The La-/N-codoped TiO2 showed excellent photoactivity of propylene oxidation compared with the single-doped TiO2 and La-/N-codoped P25 TiO2 nanoparticles under visible light irradiation. The origin of the enhancement of the visible light-responsive photocatalytic activity was discussed in detail.

  14. Photocatalytic oxidation of propylene on La and N codoped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinfeng; Li, Haiyan; Zong, Lanlan; Li, Qiuye, E-mail: lqybys@163.com; Wang, Xiaodong; Zhang, Min; Yang, Jianjun, E-mail: yangjianjun@henu.edu.cn [Henan University, Key Laboratory for Special Functional Materials (China)

    2015-02-15

    Lanthanum- and nitrogen-codoped TiO{sub 2} photocatalysts was synthesized using orthorhombic nanotubes titanic acid as the precursor by a simple impregnation and subsequent calcination method. The morphology, phase structure, and properties of La- and N-codoped TiO{sub 2} were well characterized by transmission electron microscopy, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflectance spectra. The La-/N-codoped TiO{sub 2} showed excellent photoactivity of propylene oxidation compared with the single-doped TiO{sub 2} and La-/N-codoped P25 TiO{sub 2} nanoparticles under visible light irradiation. The origin of the enhancement of the visible light-responsive photocatalytic activity was discussed in detail.

  15. Band gap narrowing of TiO2 by compensated codoping for enhanced photocatalytic activity

    Institute of Scientific and Technical Information of China (English)

    Jindou Huang; Shuhao Wen; Jianyong Liu; Guozhong He

    2012-01-01

    In this study,we have performed first-principles screened exchanged hybrid density function theory with the HSE06 function calculations of the C-Mo,C-W,N-Nb and N-Ta codoped anatase TiO2 systems to investigate the effect of codoping on the electronic structure of TiO2.The calculated results demonstrate that (W(s)+C(s)) codoped TiO2 narrows the band gap significantly,and have little influence on the position of conduction band edges,therefore,enhances the efficiency of the photocatalytic hydrogen generation from water and the photodegradation of organic pollutants.Moreover,the proper oxygen pressure and temperature are two key factors during synthesis which should be carefully under control so that the desired (W(s)+C(s)) codoped TiO2 can be obtained.

  16. Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Idil Uysal

    2014-08-01

    Full Text Available Hydroxyapatite (HA co-doped with Zn2+ and F− ions was synthesized by precipitation method for the first time in this study. FTIR spectroscopy revealed Zn2+ and F− ions incorporation into HA structure. Co-doping of Zn2+ and F− ions decreased unit cell volume of HA and decreased grain sizes. Zn2+ or 5 mol% F− addition into HA significantly improved its density. Microhardness was increased with Zn2+ addition and further increase was detected with F− co-doping. Zn2+ and F− co-doped samples had higher fracture toughness than pure HA. Zn2+ incorporation to the structure resulted in an increase in cell proliferation and ALP activity of cells, and further increase was observed with 1 mol% F− addition. With superior mechanical properties and biological response 2Zn1F is a good candidate for biomedical applications.

  17. Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    Idil Uysal; Feride Severcana; Aysen Tezcanera; Zafer Evisa

    2014-01-01

    Hydroxyapatite (HA) co-doped with Zn2+ and F- ions was synthesized by precipitation method for the first time in this study. FTIR spectroscopy revealed Zn2+ and F- ions incorporation into HA structure. Co-doping of Zn2 + and F- ions decreased unit cell volume of HA and decreased grain sizes. Zn2+ or 5 mol% F- addition into HA significantly improved its density. Microhardness was increased with Zn2 + addition and further increase was detected with F- co-doping. Zn2+ and F- co-doped samples had higher fracture toughness than pure HA. Zn2+incorporation to the structure resulted in an increase in cell proliferation and ALP activity of cells, and further increase was observed with 1 mol%F- addition. With superior mechanical properties and biological response 2Zn1F is a good candidate for biomedical applications.

  18. Er3+/Ho3+-Codoped Fluorotellurite Glasses for 2.7 µm Fiber Laser Materials

    Directory of Open Access Journals (Sweden)

    Junjie Zhang

    2013-08-01

    Full Text Available This work reports the enhanced emission at 2.7 µm in Er3+/Ho3+-codoped fluorotellurite glass upon a conventional 980 nm laser diode. The significantly reduced green upconversion and 1.5 µm emission intensity in Er3+/Ho3+-codoped samples are observed. The results suggest that the Er3+: 4I13/2 state can be efficiently depopulated via energy transfer from Er3+ to Ho3+ and the detailed energy transfer mechanisms are discussed qualitatively. The energy transfer efficiency from Er3+: 4I13/2 to Ho3+: 5I7 is calculated to be as high as 67.33%. The calculated emission cross-section in Er3+/Ho3+-codoped fluorotellurite glass is 1.82 × 10−20 cm2. This suggests that Er3+/Ho3+-codoped fluorotellurite glass is a potential material for 2.7 µm fiber laser.

  19. Hydrogen in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Lavrov, E.V., E-mail: edward.lavrov@physik.tu-dresden.d [Technische Universitaet Dresden, 01062 Dresden (Germany)

    2009-12-15

    The results of a combined study of Raman scattering, IR absorption, photoluminescence, and photoconductivity on ZnO are presented. Two shallow donors-hydrogen at the bond-centered lattice site, H{sub BC}, and hydrogen bound in an oxygen vacancy, H{sub O}-were identified. Donor H{sub BC} has an ionization energy of 53 meV. The recombination of an exciton bound to H{sub BC} gives rise to the 3360.1+-0.2meV photoluminescence line. The 1s->2p donor transition at 330cm{sup -1} is detected in the Raman scattering and photoconductivity spectra. The stretch mode of the associated O-H bond is detected in IR absorption at 3611cm{sup -1}. The H{sub O} donor in ZnO has an ionization energy of 47 meV. The excitonic recombination at H{sub O} leads to the previously labeled I{sub 4} line at 3362.8 meV. Photoconductivity and Raman spectra reveal the 1s->2p donor transition at 265cm{sup -1}. It is shown that H{sub BC} migrating through the ZnO lattice forms electrically inactive interstitial H{sub 2}. Vibrational modes of H{sub 2}, HD, and D{sub 2} were identified at 4145, 3628, and 2985cm{sup -1}, respectively. These results suggest that interstitial H{sub 2} is responsible for the 'hidden' hydrogen in ZnO.

  20. Photoelectrocatalytic Degradation of Humic Acids Using Codoped TiO2 Film Electrodes under Visible Light

    Directory of Open Access Journals (Sweden)

    Xiao Zhou

    2014-01-01

    Full Text Available Cu/N codoped TiO2 films on Ti substrates were successfully prepared by electrochemical method with the goal of enhancing the photoelectrocatalytic activity under visible light. The morphology and composition of the Cu/N codoped films were characterized using field emission scanning electron microscopy (FESEM, X-ray diffraction (XRD, energy dispersive X-ray (EDX, and UV-Vis diffusion reflection spectroscopy (UV-Vis DRS. The photocatalytic activities of the Cu/N codoped TiO2 films were evaluated by the degradation of humic acid. The visible light photocatalytic degradation of humic acid (HA was tested and Cu/N codoped TiO2 films showed the highest degradation efficiency up to 41.5% after 210 minutes of treatment. It showed that Cu2+ and NH4+ codoped TiO2 film significantly improved the photocatalytic efficiency under the visible light. When +5.0 V anodic bias potential and visible light were simultaneously applied, the degradation efficiency of HA over the Cu/N codoped TiO2 films significantly improved to 93.5% after 210 minutes of treatment.

  1. Eu/Tb codoped spindle-shaped fluorinated hydroxyapatite nanoparticles for dual-color cell imaging.

    Science.gov (United States)

    Ma, Baojin; Zhang, Shan; Qiu, Jichuan; Li, Jianhua; Sang, Yuanhua; Xia, Haibing; Jiang, Huaidong; Claverie, Jerome; Liu, Hong

    2016-06-02

    Lanthanide doped fluorinated hydroxyapatite (FAp) nanoparticles are promising cell imaging nanomaterials but they are excited at wavelengths which do not match the light sources usually found in a commercial confocal laser scanning microscope (CLSM). In this work, we have successfully prepared spindle-shaped Eu/Tb codoped FAp nanoparticles by a hydrothermal method. Compared with single Eu doped FAp, Eu/Tb codoped FAp can be excited by a 488 nm laser, and exhibit both green and red light emission. By changing the amounts of Eu and Tb peaks, the emission in the green region (500-580 nm) can be decreased to the benefit of the emission in the red region (580-720 nm), thus reaching a balanced dual color emission. Using MC3T3-E1 cells co-cultured with Eu/Tb codoped FAp nanoparticles, it is observed that the nanoparticles are cytocompatible even at a concentration as high as 800 μg ml(-1). The Eu/Tb codoped FAp nanoparticles are located in the cytoplasm and can be monitored by dual color-green and red imaging with a single excitation light at 488 nm. At a concentration of 200 μg ml(-1), the cytoplasm is saturated in 8 hours, and Eu/Tb codoped FAp nanoparticles retain their fluorescence for at least 3 days. The cytocompatible Eu/Tb codoped FAp nanoparticles with unique dual color emission will be of great use for cell and tissue imaging.

  2. Enhanced Photoactivity of Fe + N Codoped Anatase-Rutile Nanowire Film under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Kewei Li

    2012-01-01

    Full Text Available Rutile-anatase phase mixed codoped TiO2 nanowires were designed and prepared by a two-step anodic oxidation method. The results of X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy confirm that the prepared codoped TiO2 nanowires exhibit intimately contacted anatase-rutile heterostructure with the rutile content of 21.89%. The X-ray photoelectron spectroscopy measurements show that nitrogen and iron atoms are incorporated into the titania oxide lattice, and the UV-visible absorption spectra show that the codoping of iron and nitrogen atoms could extend the absorption to visible light region. The photocatalytic activities of all the samples were evaluated by photocatalytic degradation of methylene blue under visible light irradiation. The codoped sample achieves the best response to visible light and the highest photocatalytic activities. The enhancement of photocatalytic activity for codoped sample should be ascribed to the synergistic effects of codoped nitrogen and iron ions and the anatase-rutile heterostructure.

  3. Defect Engineering by Codoping in KCaI3 :Eu2 + Single-Crystalline Scintillators

    Science.gov (United States)

    Wu, Yuntao; Li, Qi; Jones, Steven; Dun, Chaochao; Hu, Sheng; Zhuravleva, Mariya; Lindsey, Adam C.; Stand, Luis; Loyd, Matthew; Koschan, Merry; Auxier, John; Hall, Howard L.; Melcher, Charles L.

    2017-09-01

    Eu2 + -doped alkali or alkali earth iodide scintillators with energy resolutions ≤3 % at 662 keV promise the excellent discrimination ability for radioactive isotopes required for homeland-security and nuclear-nonproliferation applications. To extend their applications to x-ray imaging, such as computed tomography scans, the intense afterglow which delays the response time of such materials is an obstacle that needs to be overcome. However, a clear understanding of the origin of the afterglow and feasible solutions is still lacking. In this work, we present a combined experimental and theoretical investigation of the physical insights of codoping-based defect engineering which can reduce the afterglow effectively in KCaI3:Eu2 + single-crystal scintillators. We illustrate that Sc3 + codoping greatly suppresses the afterglow, whereas Y3 + , Gd3 + , or La3 + codoping enhances the afterglow. Meanwhile, a light yield of 57 000 photons / MeV and an energy resolution of 3.4% at 662 keV can be maintained with the appropriate concentration of Sc3 + codoping, which makes the material promising for medical-imaging applications. Through our thermoluminescence techniques and density-functional-theory calculations, we are able to identify the defect structures and understand the mechanism by which codoping affects the scintillation performance of KCaI3:Eu2 + crystals. The proposed defect-engineering strategy is further validated by achieving afterglow suppression in Mg2 + codoped KCaI3:Eu2 + single crystals.

  4. ZnO UV Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-efficiency UV detectors will be developed in the Phase II program with ZnO and its alloy (ZnBeO). ZnO and ZnBeO are a very suitable material for fabrication of...

  5. Comparison of stripe modulations in La1.875Ba0.125CuO4 and La1.48Nd0.4Sr0.12CuO4

    Science.gov (United States)

    Wilkins, S. B.; Dean, M. P. M.; Fink, Jörg; Hücker, Markus; Geck, J.; Soltwisch, V.; Schierle, E.; Weschke, E.; Gu, G.; Uchida, S.; Ichikawa, N.; Tranquada, J. M.; Hill, J. P.

    2011-11-01

    We report combined soft and hard x-ray scattering studies of the electronic and lattice modulations associated with stripe order in La1.875Ba0.125CuO4 and La1.48Nd0.4Sr0.12CuO4. We find that the amplitude of both the electronic modulation of the hole density and the strain modulation of the lattice is significantly larger in La1.875Ba0.125CuO4 than in La1.48Nd0.4Sr0.12CuO4 and is also better correlated. The in-plane correlation lengths are isotropic in each case; for La1.875Ba0.125CuO4, ξhole=255±5 Å, whereas for La1.48Nd0.4Sr0.12CuO4, ξhole=111±7 Å. We find that the modulations are temperature independent in La1.875Ba0.125CuO4 in the low temperature tetragonal phase. In contrast, in La1.48Nd0.4Sr0.12CuO4, the amplitude grows smoothly from zero, beginning 13 K below the LTT phase transition. We speculate that the reduced average tilt angle in La1.875Ba0.125CuO4 results in reduced charge localization and incoherent pinning, leading to the longer correlation length and enhanced periodic modulation amplitude.

  6. Synthesis of High-Density Poinsettia-Like Microstructure of CuO by the Hydrothermal Method and Its Ethanol Sensing Properties

    Science.gov (United States)

    Hien, Vu Xuan; Minh, Vu Duy; Phuoc, Luong Huu; Vuong, Dang Duc; Heo, Young-Woo; Chien, Nguyen Duc

    2017-06-01

    Highly uniform and dense poinsettia-like microstructures of CuO were synthesized by a facile hydrothermal method. The effect of the treatment time on the growth of the CuO microstructures was investigated. The CuO microflowers with diameters in the range 3-5 μm were composed of many interconnected nanoleaves (1-2 μm in diameter and 20-30 nm in thickness). A plausible growth mechanism for the formation of the CuO microstructures has been proposed and discussed. In addition, the ethanol sensing properties of the CuO microflowers were characterized at 150-350°C. The poinsettia-like microstructures of CuO exhibited better response to ethanol when compared to the sensing properties of the CuO nanoleaves. The sensing mechanism based on the models of carrier transport and leaf-to-leaf contact has been proposed and discussed.

  7. In-plane optical response of $Bi_{2}Sr_{2}CuO_{6}$

    NARCIS (Netherlands)

    Tsvetkov, A. A.; Schützmann, J.; Marel, D. van der

    1997-01-01

    Published in: Phys. Rev. B 55 (1997) 14152 Citing articles (CrossRef) citations recorded in [Science Citation Index] Abstract: We report on infrared reflectivity measurements of the $ab$-plane response of superconducting Bi$_2$Sr$_2$CuO$_6$ single crystals. The frequency dependent conductivity has a

  8. Solution-processable carboxylate-capped CuO nanoparticles obtained by a simple solventless method

    Energy Technology Data Exchange (ETDEWEB)

    Estruga, Marc [Universitat Autonoma de Barcelona, Department of Chemistry (Spain); Roig, Anna; Domingo, Concepcion [CSIC, Institut de Ciencia de Materials de Barcelona (Spain); Ayllon, Jose A., E-mail: joseantonio.ayllon@uab.es [Universitat Autonoma de Barcelona, Department of Chemistry (Spain)

    2012-08-15

    Carboxylate-capped CuO nanoparticles were obtained via a simple solventless route, based on the thermal decomposition at 120 Degree-Sign C of solid precursors. The reaction mixture consisted of copper acetate monohydrate, acting as the CuO precursor, and different organic carboxylic acids (lauric, phenylvaleric or 3,6,9-trioxadecanoic acid) used as the capping agent. The proposed method, in good agreement with environmentally friendly practices, produced dry nanoparticles, thereby totally eliminating the need of washing, filtration, or other downstream steps. Transmission electron micrographs show crystalline roughly spherical CuO nanoparticles with average diameters between 3.1 and 5.5 nm depending on the capping ligand. The laurate-capped CuO nanoparticles showed a paramagnetic behaviour at room temperature, while a weak ferromagnetic component was detected at low temperature (<40 K). It was also proved that the chemical structure of the carboxylic acid tail enabled the straightforward dispersibility of nanoparticles in common solvents and assisted in the deposition of the material as thin films.

  9. Effect of triethanolamine:ethylenediamine ratios on CuO nanoparticles prepared by ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ayob, M. T. M.; Ahmad, A. F.; Mohd, H. M. K.; Rahman, I. Abdul; Radiman, S. [School of Applied Physics, Faculty of Science and Technology (FST), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2014-09-03

    Coral-spherical-shaped of copper oxide nanoparticles have been successfully synthesized with different ratios of triethanolamine:ethylenediamine surfactant under ultrasonic condition. By controlling the amplitude of the ultrasonic radiation and concentration of metal salt precursors and surfactant, the formation of CuO nanospheres was obtained. Energy dispersive X-ray spectrum confirmed that Cu and O are the only elementary components present with a ratio of approximately 1:1. Furthermore, X-ray powder diffraction spectra for all the examined ratios of CuO showed well crystalline structures. UV-Vis spectroscopy was utilized to estimate the band gap energies of the CuO nanoparticles produced, which were found to be in the range of 2.74 eV to 2.95 eV. The field emission scanning electron micrographs of these nanospheres showed that their dimensions were in the range of 5-30 nm. These results indicate that the triethanolamine:ethylenediamine ratio plays an important role in the formation of different sized CuO nanoparticles, displaying a decrement in particle size with the increment in amount of triethanolamine ratios. This might be the key to synthesizing nanoparticles with specific sizes for various applications.

  10. Spin Dynamics of $La_{2}CuO_{4}$ and the Two-Dimensional Heisenberg Model

    CERN Document Server

    Sandvik, A W; Barbara, U C S; Barbara, UC Santa

    1994-01-01

    The spin-lattice relaxation rate $1/T_1$ and the spin echo decay rate $1/T_{2G}$ for the 2D Heisenberg model are calculated using quantum Monte Carlo and maximum entropy analytic continuation. The results are compared to recent experiments on La$_2$CuO$_4$, as well as predictions based on the non-linear $\\sigma$-model.

  11. Room temperature ferromagnetism in Fe-doped CuO nanoparticles.

    Science.gov (United States)

    Layek, Samar; Verma, H C

    2013-03-01

    The pure and Fe-doped CuO nanoparticles of the series Cu(1-x)Fe(x)O (x = 0.00, 0.02, 0.04, 0.06 and 0.08) were successfully prepared by a simple low temperature sol-gel method using metal nitrates and citric acid. Rietveld refinement of the X-ray diffraction data showed that all the samples were single phase crystallized in monoclinic structure of space group C2/c with average crystallite size of about 25 nm and unit cell volume decreases with increasing iron doping concentration. TEM micrograph showed nearly spherical shaped agglomerated particles of 4% Fe-doped CuO with average diameter 26 nm. Pure CuO showed weak ferromagnetic behavior at room temperature with coercive field of 67 Oe. The ferromagnetic properties were greatly enhanced with Fe-doping in the CuO matrix. All the doped samples showed ferromagnetism at room temperature with a noticeable coercive field. Saturation magnetization increases with increasing Fe-doping, becomes highest for 4% doping then decreases for further doping which confirms that the ferromagnetism in these nanoparticles are intrinsic and are not resulting from any impurity phases. The ZFC and FC branches of the temperature dependent magnetization (measured in the range of 10-350 K by SQUID magnetometer) look like typical ferromagnetic nanoparticles and indicates that the ferromagnetic Curie temperature is above 350 K.

  12. Magnetodielectric effect in composites of nanodimensional glass and CuO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan Saha, Dhriti [MLS Professor' s Unit, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Kolkata- 700032 (India); Mukherjee, Manabendra [Surface Physics Division, Saha Institute of Nuclear Physics, 1/AF BidhanNagar, Kolkata- 700064, India. (India); Chakravorty, Dipankar, E-mail: mlsdc@iacs.res.in [MLS Professor' s Unit, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Kolkata- 700032 (India)

    2012-11-15

    Nanocomposites comprising CuO particles of average diameter 21 nm coated with 5 nm silica glass containing iron ions were synthesized by a chemical route. An ion exchange reaction at the nanoglass/CuO interface produced iron-doped CuO with copper ion vacancies within the nanoparticles. Room temperature ferromagnetic-like behavior was observed in the nanocomposites. This was ascribed to uncompensated spins contributed by Fe ions with associated copper ion vacancies. A rather high value of magnetodielectric parameter in the range 16-26% depending on the measuring frequency was exhibited by these nanocomposites at a magnetic field of 10 KOe. This was caused by a magnetoresistance of 33% in the iron doped CuO nanoparticles. The experimental results were fitted to the Maxwell-Wagner Capacitor model developed by Catalan. These materials will be suited for magnetic sensor applications. - Highlights: Black-Right-Pointing-Pointer Synthesis of nanocomposites comprising CuO nanoparticles and interfacial nanodimensional silica glass. Black-Right-Pointing-Pointer These exhibited ferromagnetic-like behavior at room temperature. Black-Right-Pointing-Pointer High value of magnetodielectric parameter was obtained in the range 16-26% depending on the measuring frequency. Black-Right-Pointing-Pointer The Maxwell-Wagner Capacitor model of Catalan was used satisfactorily to explain the results.

  13. Theory of phonon properties in doped and undoped CuO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bahoosh, S.G. [Institute of Physics, Martin-Luther-University, D-06099 Halle (Germany); Apostolov, A.T. [University of Architecture, Civil Engineering and Geodesy Faculty of Hydrotechnics, Department of Physics, 1, Hristo Smirnenski Blvd., 1046 Sofia (Bulgaria); Apostolova, I.N. [University of Forestry, Faculty of Forest Industry, 10, Kl. Ohridsky Blvd., 1756 Sofia (Bulgaria); Wesselinowa, J.M., E-mail: julia@phys.uni-sofia.bg [University of Sofia, Department of Physics, 5 J. Bouchier Blvd., 1164 Sofia (Bulgaria)

    2012-07-02

    We have studied the phonon properties of CuO nanoparticles and have shown the importance of the anharmonic spin–phonon interaction. The Raman peaks of CuO nanoparticles shift to lower frequency and become broader as the particle size decreases in comparison with those of bulk CuO crystals owing to size effects. By doping with different ions, in dependence of their radius compared to the host ionic radius the phonon energies ω could be reduced or enhanced. The phonon damping is always enhanced through the ion doping effects. -- Highlights: ► The phonon properties of CuO nanoparticles are studied using a miscroscopic model. ► The phonon energy decreases whereas the damping increases with decreasing of particle size. ► It is shown the importance of the anharmonic spin–phonon interaction. ► By doping with RE-ions the phonon energy is reduced, whereas with TM-ions it is enhanced. ► The phonon damping is always enhanced through the ion doping effects.

  14. Green synthesis of CuO nanoparticles using Cassia auriculata leaf ...

    African Journals Online (AJOL)

    Methods: CuO NPs were prepared by heating a mixture of 10 mL of 0.01 M CuSO4 ... Results: The gradual change in color of the reaction solution from brownish yellow to ... variety of applications, including in catalysts, gas .... that the surface charge and size distribution play .... in providing the funds and lab facilities for this.

  15. Growth of Horizontal Nanopillars of CuO on NiO/ITO Surfaces

    Directory of Open Access Journals (Sweden)

    Siddharth Joshi

    2014-01-01

    Full Text Available We have demonstrated hydrothermal synthesis of rectangular pillar-like CuO nanostructures at low temperature (~60°C by selective growth on top of NiO porous structures film deposited using chemical bath deposition method at room temperature using indium tin oxide (ITO coated glass plate as a substrate. The growth of CuO not only filled the NiO porous structures but also formed the big nanopillars/nanowalls on top of NiO surface. These nanopillars could have significant use in nanoelectronics devices or can also be used as p-type conducting wires. The present study is limited to the surface morphology studies of the thin nanostructured layers of NiO/CuO composite materials. Structural, morphological, and absorption measurement of the CuO/NiO heterojunction were studied using state-of-the-art techniques like X-ray diffraction (XRD, transmission electron microscopy (SEM, atomic force microscopy (AFM, and UV spectroscopy. The CuO nanopillars/nanowalls have the structure in order of (5 ± 1.0 μm × (2.0 ± 0.3 μm; this will help to provide efficient charge transport in between the different semiconducting layers. The energy band gap of NiO and CuO was also calculated based on UV measurements and discussed.

  16. CuO nanorods/graphene nanocomposites for high-performance lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi; Zhao, Jun; Shan, Wanfei; Xia, Xinbei; Xing, Lili; Xue, Xinyu, E-mail: xuexinyu@mail.neu.edu.cn

    2014-03-25

    Highlights: • CuO/GNS nanocomposites are synthesized by a hydrothermal method. • CuO/GNSs as LIB anodes exhibit much higher cyclability and capacity than CuO nanostructures. • Such excellent performances can be attributed to the synergistic effect between CuO and GNSs. -- Abstract: CuO/graphene nanocomposites are synthesized by a hydrothermal method, and their application as anodes of lithium-ion batteries has been investigated. CuO nanorods are uniformly coating on the surface of graphene nanosheets. CuO/graphene nanocomposites exhibit high cyclability and capacity. After 50 cycles, the capacity can maintain at 692.5 mA h g{sup −1} at 0.1 C rate (10 h per half cycle). Such a high performance can be attributed to the synergistic effect between graphene nanosheets and CuO nanorods. The present results indicate that CuO/graphene nanocomposites have potential applications in the anodes of lithium-ion battery.

  17. Synthesis and evaluation of bactericidal properties of CuO nanoparticles against Aeromonas hydrophila

    Directory of Open Access Journals (Sweden)

    Sayedeh Fatemeh Shaffiey

    2014-04-01

    Full Text Available   Objective(s: CuO is one of the most important transition metal oxides due to its captivating properties. It is used in various technological applications such as high critical temperature superconductors, gas sensors, in photoconductive applications, and so on. Recently, it has been used as an antimicrobial agent against various bacterial species.   Materials and Methods: Here, we synthesized CuO nanoparticles (NPs and explored the antibacterial activity of CuO NPs preparation. Results: Single crystalline nanoparticles of copper oxide having almost uniform particle size of 5-6 nm has been synthesized by a facile and versatile route. XRD spectra confirmed the formation of single phase CuO NPs. Transmission electron microscopy results corroborate well with XRD results. The technique employed is free from toxic solvents, organics and amines, is based on a simple reaction of copper sulfate and de-ionized water (DI, and their bactericidal effects against of Aeromonas hydrophila ATCC 7966T bacteria were investigated. Minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC with liquid culture for all of the Aeromonas hydrophila culture Medias was done. Conclusion: Present study confirms that Copper oxide nanoparticles have great promise as antimicrobial agent against Aeromonas hydrophila

  18. In-plane optical response of $Bi_{2}Sr_{2}CuO_{6}$

    NARCIS (Netherlands)

    Tsvetkov, A. A.; Schützmann, J.; Marel, D. van der

    1997-01-01

    Published in: Phys. Rev. B 55 (1997) 14152 Citing articles (CrossRef) citations recorded in [Science Citation Index] Abstract: We report on infrared reflectivity measurements of the $ab$-plane response of superconducting Bi$_2$Sr$_2$CuO$_6$ single crystals. The frequency dependent conductivity has a

  19. Preparation and Characterization of CuO Nanoparticles by Novel Sol-Gel Technique

    Directory of Open Access Journals (Sweden)

    Y. Aparna

    2012-10-01

    Full Text Available Recent developments of nanosize materials of metal and metal oxide particles are intensively pursued because of their prominence in different fields of applications. Among all the transition metal oxides, CuO is a potential candidate for the application of magnetic storage devices, solar energy transfer, sensors, and super capacitors etc. Moreover CuO nanoparticles act as a good catalyst in some of the chemical reactions. CuO nanoparticles were prepared by novel sol-gel method. In this technique CuCl2.6H2O is added with acetic acid and heated to 100 °C with continuous stirring. To control the ph of the above solution, NaOH is added to the solution till ph reached desired value. The color of the solution changed from blue to black with precipitation. The black precipitation was washed 3 – 4 times with distilled water. Finally the solution was centrifuged and dried in air for one day. The CuO nanoparticles were characterized by studying their structure with X-ray diffraction and composition by energy dispersive X-ray analysis. The size of the nanoparticles is estimated by particle size analyzer and transmission electron microscopy. The optical studies were carried out with Uv-Vis spectrophotometer.

  20. Oxygen Isotope Effect and Structural Phase Transitions in La2CuO4-Based Superconductors.

    Science.gov (United States)

    Crawford, M K; Farneth, W E; McCarronn, E M; Harlow, R L; Moudden, A H

    1990-12-07

    The oxygen isotope effect on the superconducting transition temperature (alpha(o)) varies as a function of x in La2-xSrxCuO(4) and La2-xBaxCuO(4), with the maximum alpha(o) values (alpha(o) >/= 0.5) found for x near 0.12. This unusual x dependence implies that the isotope effect is influenced by proximity to the Abma --> P4(2)/ncm structural phase transition in these systems. Synchrotron x-ray difaction measurements reveal little change in lattice parameters or orthorhombicity due to isotope exchange in strontium-doped materials where alpha(o) > 0.5, eliminating static structural distortion as a cause of the large isotope effects. The anomalous behavior of alpha(o) in both strontium- and barium-doped materials, in combination with the previously discovered Abma --> P4(2)/ncm structural phase-transition in La(1.88)B(0.12)CuO(4), suggests that an electronic contribution to the lattice instability is present and maximizes at approximately 1/8 hole per copper atom. These observations indicate a dose connection between hole doping of the Cu-O sheets, tilting instabilities of the CuO(6) octahedra, and superconductivity in La(2)CuO(4)-based superconductors.

  1. Slave Boson Description of CuO2 Planes of the High-Temperature Superconductors

    Science.gov (United States)

    Mrkonjic, Ivana; Barisic, Slaven

    Slave-boson mean-field calculation is carried out analytically for doped CuO2 conduction planes, described by the extended Emery model which is parameterized by Cu-O charge transfer energy Δpd, Cu-O hopping t0, O-O hopping t' and Coulomb repulsion U localized on Cu site, taken as infinite. At zero doping δ, finite small t' expands the range of stability of the covalent, conducting state, characterized by renormalized band parameters Δpf and t, on the expense of insulating t=0 state, which, however, remains stable at larger Δpd. For sufficiently large Δpd, Δpf saturates at 4|t'|. Finite doping suppresses the insulating state nearly symmetrically with respect to its sign. The regime with Δpf close to 4|t'| fits remarkably well ARPES spectra of Y123, Bi2212 and LSCO, and, in the latter case, explains the observed strong doping-dependence of the effective Cu-O hopping.

  2. Magnetic fluctuations in La1.95Ba0.05CuO4

    DEFF Research Database (Denmark)

    Hayden, S.M.; Aeppli, G.; Mook, H.;

    1991-01-01

    Neutron-scattering and resistivity experiments on single crystals of La1.95Ba0.05CuO4 are described. On warming to as high as 250 K, the correlation length does not change, and the temperature dependence of the generalized susceptibility chi(Q, omega) is due solely to the temperature dependence o...

  3. Legionella pneumophila transcriptional response following exposure to CuO nanoparticles

    Science.gov (United States)

    Copper ions are an effective antimicrobial agent used to control Legionnaires’ disease and Pontiac fever arising from institutional drinking water systems. Here we present data on an alternative bactericidal agent, CuO nanoparticles (CuO-NPs), and test its efficacy at three conce...

  4. Separation of Arsenic from the Antimony-Bearing Dust through Selective Oxidation Using CuO

    Science.gov (United States)

    Zhong, Da-Peng; Li, Lei; Tan, Cheng

    2017-04-01

    A pyrometallurgical process of selective oxidation roasting of the antimony-bearing dust using CuO is put forward, in which the antimony component is oxidized to Sb2O4 staying in the roasted residue, and arsenic is volatilized in the form of As2O3. The addition of CuO has an active effect on the arsenic volatilization, because structures of some complicated As-Sb phases in the dust are destroyed after the "Sb" component in them is oxidized to Sb2O4, and this part of arsenic might be transformed to As2O3, which continues to volatilize. However, the arsenic volatilization rate decreases with the CuO amount in a certain range, which is attributed to the greater formation of Cu3 (AsO4)2 and Cu3As. Under the conditions of roasting temperature of 673 K (400 °C), roasting time of 100 minutes, CuO amount of 34.54 mass pct, and N2 flow rate of 30 mL/min, 91.50 pct arsenic and only 8.63 pct antimony go into the smoke.

  5. Separation of Arsenic from the Antimony-Bearing Dust through Selective Oxidation Using CuO

    Science.gov (United States)

    Zhong, Da-Peng; Li, Lei; Tan, Cheng

    2017-01-01

    A pyrometallurgical process of selective oxidation roasting of the antimony-bearing dust using CuO is put forward, in which the antimony component is oxidized to Sb2O4 staying in the roasted residue, and arsenic is volatilized in the form of As2O3. The addition of CuO has an active effect on the arsenic volatilization, because structures of some complicated As-Sb phases in the dust are destroyed after the "Sb" component in them is oxidized to Sb2O4, and this part of arsenic might be transformed to As2O3, which continues to volatilize. However, the arsenic volatilization rate decreases with the CuO amount in a certain range, which is attributed to the greater formation of Cu3 (AsO4)2 and Cu3As. Under the conditions of roasting temperature of 673 K (400 °C), roasting time of 100 minutes, CuO amount of 34.54 mass pct, and N2 flow rate of 30 mL/min, 91.50 pct arsenic and only 8.63 pct antimony go into the smoke.

  6. Polymer-Controlled Growth of CuO Nanodiscs in the Mild Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    PENG Yin; LIU Zhengyin; YANG Zihui

    2009-01-01

    CuO nanodiscs have been synthesized on a large scale by a facile solution-based method using polymers as crystal growth modifiers. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and high resolu-tion transmission electron microscopy (HRTEM) were carded out to characterize the structures and morphologies of the obtained products. The effects of reaction temperature, concentrations of polyacrylamide (PAM) and reac-tants on the morphology and size of the product were studied. The results revealed that the CuO nanodisc had sin-gle-crystal monoclinic structures, and grew along (002) and (110) planes. Experimental conditions had all influence on the shape and size of the final products, but polymer PAM played the key role in formation of the CuO nanodisc.A possible growth mechanism of the CuO nanostructures based on typical polymer-crystal interactions in a mild aqueous solution was given. Polymer-directed crystal growth may provide promising routes to rational synthesis of various ordered inorganic and inorganic-organic hybrid materials with complex forms and structural specialization.

  7. Use of Vegetable Waste Extracts for Controlling Microstructure of CuO Nanoparticles: Green Synthesis, Characterization, and Photocatalytic Applications

    Directory of Open Access Journals (Sweden)

    Hameed Ullah

    2017-01-01

    Full Text Available Chemical syntheses involve either hazardous reactants or byproducts which adversely affect the environment. It is, therefore, desirable to develop synthesis processes which either do not involve hazardous reactants or consume all the reactants giving no byproducts. We have synthesized CuO nanoparticles (NPs adhering to some of the principles of green chemistry. The CuO NPs have been synthesized exploiting extracts of vegetable wastes, that is, Cauliflower waste and Potatoes and Peas peels. The extracts were aimed to work as capping agents to get control over the microstructure and morphology of the resulting CuO NPs. The green synthesized CuO NPs were characterized to explore the microstructure, morphology, optical bandgaps, and photocatalytic performances. XRD revealed that the CuO NPs of all the samples crystallized in a single crystal system, that is, monoclinic. However, the morphologies and the optical bandgaps energies varied as a function of the extract of vegetable waste. Similarly, the CuO NPs obtained through different extracts have shown different photocatalytic activities. The CuO NPs produced with extract of Cauliflower have shown high degradation of MB (96.28% compared to obtained with Potatoes peels (87.37% and Peas peels (79.11%.

  8. Characterization and adsorption performance of Pb(II) on CuO nanorods synthesized by the hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Arfaoui, Lobna; Kouass, Salah [Laboratoire des matériaux utiles, Institut National de Recherche et d' Analyse Physico-Chimique (INRAP) Sidi Thabet, 2020 Tunis (Tunisia); Dhaouadi, Hassouna, E-mail: dhaouadihassouna@yahoo.fr [Laboratoire Matériaux Traitement et Analyse, Institut National de Recherche et d' Analyse Physico-Chimique (INRAP) Sidi Thabet, 2020 Tunis (Tunisia); Jebali, Raouf [Laboratoire des matériaux utiles, Institut National de Recherche et d' Analyse Physico-Chimique (INRAP) Sidi Thabet, 2020 Tunis (Tunisia); Touati, Fathi [Laboratoire Matériaux Traitement et Analyse, Institut National de Recherche et d' Analyse Physico-Chimique (INRAP) Sidi Thabet, 2020 Tunis (Tunisia)

    2015-10-15

    Highlights: • The nanorods of CuO were synthesized by a hydrothermal route without any surfactant. • X-ray diffraction showed monoclinic structure with space group C{sub 2/c}. • The nanorods show relatively high adsorption capacity for the removal of Pb(II). • The adsorption kinetics could be fitted well by the pseudo-second-order model. • The equilibrium data can be fitted well using the Langmuir isotherm model - Abstract: Copper oxide (CuO) nanorods were synthesized by hydrothermal method. The detailed structural, compositional and optical characterization of this material was also evaluated with XRD, FT-IR, EDS, and UV–vis spectroscopy, which confirmed that the obtained nanorods are well-crystallized CuO and possess good optical properties. SEM and TEM studies revealed that the as-synthesized CuO nanorods are uniform with an average diameter of 17 nm. The adsorption activity of the CuO nanostructures was studied. The adsorption results showed that the CuO nanorods are an effective and efficient adsorbent for the removal of Pb(II) ions. The influence of various operational parameters such as the pH of the solution, the contact time and the initial concentrations were also studied and the results were discussed. The estimated maximum lead ion adsorption capacity of the CuO nanorods was found to be 188.67 mg g{sup −1} at an optimum pH of 6.

  9. Effects of CuO Nanoparticles on Microstructure, Physical, Mechanical and Thermal Properties of Self-Compacting Cementitious Composites

    Institute of Scientific and Technical Information of China (English)

    Ali Nazari; Shadi Riahi

    2011-01-01

    In the present study, split tensile strength of self-compacting concrete with different amount of CuO nanoparticles has been investigated. CuO nanoparticles with the average particle size of 15 nm were added partially to self compacting concrete and split tensile strength of the specimens has been measured. The results indicate that CuO nanoparticles are able to improve the split tensile strength of self compacting concrete and recover the negative effects of polycarboxylate superplasticizer on split tensile strength. CuO nanoparticle as a partial replacement of cement up to 4 wt% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH)2 amount at the early ages of hydration. The increase of the CuO nanoparticles more than 4 wt% causes the decrease of the split tensile strength because of unsuitable dispersion of nanoparticles in the concrete matrix. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of related peaks to hydrated products in X-ray diffraction (XRD) results all also indicate that CuO nanoparticles up to 4 wt% could improve the mechanical and physical properties of the specimens. Finally, CuO nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and few-harm pores.

  10. Preparation and characterization of nanocrystalline CuO powders with the different surfactants and complexing agent mediated precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, V.; Gajendiran, J., E-mail: gaja.nanotech@gmail.com

    2014-08-15

    Highlights: • CuO nanostructures by surfactants mediated method. • Structural and optical properties of CuO nanostructures changes under the effect of surface modifier. • Citric acid assisted is the best, in terms of size, morphology and optical properties than that of CTAB, SDS and PEG-400. - Abstract: Nanostructures of copper oxide (CuO) was synthesized into crystallite sized ranging from 20 to 50 nm in the presence of different surfactants, and complex agent such as cityl tri methyl ammonium bromide (CTAB), sodium do decyl sulfate (SDS), poly ethylene glycol (PEG-400) and citric acid via a precipitation route. Variations in several parameters and their effects on the structural and optical properties of CuO nanostructures (crystallite size, morphology and band gap) were investigated by XRD, FTIR, SEM and UV analysis. The UV–visible absorption spectra of the different surfactants and complexing agent assisted CuO nanostructures indicates that the estimated optical band gap energy value (1.94–1.98 eV) is higher than that of the bulk CuO value (1.4 eV), which is attributed to the quantum confinement effect. The formation mechanism of different surfactants and complexing agent assisted CuO nanostructures is also proposed.

  11. Novel β-C3N4/CuO nanoflakes: facile synthesis and unique photocatalytic performance

    Science.gov (United States)

    Zou, Lan-Rong; Huang, Gui-Fang; Li, Dong-Feng; Tian, Qing-Nan; Yang, Ke; Si, Yuan; Chang, Shengli; Zhang, Xue-Ao; Huang, Wei-Qing

    2017-09-01

    For the first time, novel β-C3N4/CuO composites with superior photocatalytic activity are successfully fabricated via a facile reflux method followed by a thermal process. The morphologies, particle size and microstructure of the synthesized β-C3N4/CuO composites largely depended upon copper chloride and the volume ratio of V water:V ethanol in the mixed precursors. The fabricated β-C3N4/CuO nanoflakes exhibited obviously enhanced visible light photocatalytic activity for the degradation of methylene blue (MB) with an  ∼3.4 and 1.9 fold increase in efficiency over that of pure g-C3N4 and commercial P25, respectively. The β-C3N4/CuO composite photocatalyst also showed photocatalytic activity for the degradation of methyl orange (MO). Moreover, the β-C3N4/CuO nanoflakes showed almost no loss of photocatalytic activity after three recycles of the degradation of the MB. A multiple synergetic mechanism in β-C3N4/CuO nanoflakes, which is featured by the highly reactive {0 0 2} facets, exposed many active sites of nanoflakes and the efficient charge separation are proposed to account for the distinguished photocatalytic activity. This work provides a facile and cost-effective strategy for designing novel β-C3N4/CuO photocatalysts for application in environmental purification.

  12. The electronic, magnetic and optical properties of ZnO doped with doubles impurities (Cr, Fe): An LDA-SIC and Monte Carlo study

    Science.gov (United States)

    Salmani, El Mehdi; Laghrissi, Ayoub; Lamouri, Rachida; Ez-Zahraouy, Hamid; Benyoussef, Abdelilah

    2017-01-01

    Electronic structure, magnetic and optical properties of ZnO doped with single and double impurities Zn1-xCrxO, Zn1-xFexO, and Zn1-2xCrxFexO (x=0.03 and 0.06) are investigated using first-principles calculations. Based on the Korringa-Kohn-Rostoker method combined with the coherent potential approximation, we investigated the half-metallic ferromagnetic behavior of doubles impurities (Cr, Fe) doped ZnO. To support our results, we apply the self-interaction-corrected local density approximation (SIC-LDA) to study the electronic structure, optical and magnetic properties of Co-doped ZnO with doubles impurities (Cr, Fe) showing that the half-metallic ferromagnetic state still persists. The stability of the ferromagnetic state compared with the spin-glass state is investigated by comparing their total energies. The exchange interactions obtained from first principle calculations and used in a classical Ising model by a Monte Carlo approach resulted in ferromagnetic states with high Neel temperature.

  13. First-principles study of the electronic structures and optical properties of C-F-Be doped wurtzite ZnO

    Institute of Scientific and Technical Information of China (English)

    Zuo Chunying; Wen Jing; Zhong Cheng

    2012-01-01

    The electronic structure and optical properties of pure,C-doped,C-F codoped and C-F-Be clusterdoped ZnO with a wurtzite structure were calculated by using the density functional theory with the plane-wave ultrasofi pseudopotentials method.The results indicate that p-type ZnO can be obtained by C incorporation,and the energy level of Co above the valence band maximum is 0.36 eV.The ionization energy of the complex Zn16O14CF and Zn15BeO14CF can be reduced to 0.23 and 0.21 eV,individually.These results suggest that the defect complex of Zn15 BeO14CF is a better candidate for p-type ZnO.To make the optical properties clear,we investigated the imaginary part of the complex dielectric function ofundoped and C-F-Be doped ZnO.We found that there is strong absorption in the energy region lower than 2.7 eV for the C-F-Be doped system compared to pure ZnO.

  14. Electrochemical properties of CuO hollow nanopowders prepared from formless Cu–C composite via nanoscale Kirkendall diffusion process

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Min [Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713 (Korea, Republic of); Kim, Jong Hwa [Daegu Center, Korea Basic Science Institute, 80 Daehakro Bukgu, Daegu 702-701 (Korea, Republic of); Choi, Yun Ju [Suncheon Center, Korea Basic Science Institute, Suncheon 540-742 (Korea, Republic of); Cho, Jung Sang [Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713 (Korea, Republic of); Kang, Yun Chan, E-mail: yckang@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713 (Korea, Republic of)

    2016-06-25

    Hollow CuO nanopowders are prepared using a simple spray drying process that relied on nanoscale Kirkendall diffusion; these nanopowders have potential applications in lithium-ion batteries. Citric acid is used as both the carbon source material and chelating agent and plays a key role in the preparation of the hollow nanopowders. The formless Cu–C composite that formed as an intermediate product transforms into slightly aggregated CuO hollow nanopowders after post-treatment at 300 and 400 °C under an air atmosphere. The CuO hollow nanopowders exhibit higher initial discharge capacities and better cycling performances than those of the filled-structured CuO nanopowders, which are prepared at a post-treatment temperature of 500 °C under an air atmosphere. The discharge capacities of the CuO nanopowders post-treated at 300, 400, and 500 °C for the 150{sup th} cycle at a current density of 1 A g{sup −1} are 793, 632, and 464 mA h g{sup −1}, respectively, and their capacity retentions calculated from the maximum discharge capacities are 88, 80, and 73%, respectively. The CuO nanopowders with hollow structures exhibit better structural stability for repeated lithium insertion and desertion processes than those with filled structures. - Highlights: • Hollow CuO nanopowders are prepared using a simple spray drying process. • Cu–C composite transforms into CuO hollow nanopowders by Kirkendall diffusion. • Hollow CuO nanopowders show good electrochemical properties for lithium-ion storage.

  15. High-performance nanothermite composites based on aloe-vera-directed CuO nanorods.

    Science.gov (United States)

    Patel, Vinay Kumar; Bhattacharya, Shantanu

    2013-12-26

    In this work, we demonstrate the development of high-performance nanothermite composites derived from super-reactive CuO nanorods oxidizers fabricated by simple biogenic routes using Aloe vera plant extracts. Nanorods of various length scales have been realized via simple sonoemulsion and solid-state biosynthesis routes using Aloe vera gel as a green surfactant promoting the directional growth of CuO nanorods in both solid and emulsion phase. The biosynthesized CuO nanorods (oxidizers)/fuel (nanoaluminum) composites ignited vigorously with abundant gas generation, developing high heat of reaction of 1.66 kJ g(-1) and very high pressurization rate of around 1.09 MPa μs(-1) and peak pressure of 65.4 MPa when blasted inside a constant volume pressure cell with a charge density of 0.2 g cm(-3). The pressurization rates so obtained are four times higher with twice the peak pressure in comparison to such nanothermites formulated via other available state of the art wet-chemical techniques, which reflects the catalytic role of Aloe vera surface functional groups (A. vera-sfg) enhancing the reactivity of CuO oxidizers with excess gas release rate during exothermic reaction with nanoaluminum. Through this work, Aloe vera gel has for the first time been identified as a novel biotemplate for green synthesis of nanorod structures of metal oxides, and we have also studied the utility of A. vera-sfg in the creation of super-reactive CuO oxidizers producing excellent heat of reaction and dynamic pressure characteristics as demanded in propellants, explosives, and pyrotechnics.

  16. Effect of Al and Fe doping in ZnO on magnetic and magneto-transport properties

    Science.gov (United States)

    Kumar, Santosh; Deepika; Tripathi, Malvika; Vaibhav, Pratyush; Kumar, Aman; Kumar, Ritesh; Choudhary, R. J.; Phase, D. M.

    2016-12-01

    The structural, magnetic and magneto-transport of undoped ZnO, Zn0.97Al0.03O, Zn0.95Fe0.05O and Zn0.92Al0.03Fe0.05O thin films grown on Si(100) substrate using pulsed laser deposition were investigated. The single phase nature of the films is confirmed by X-ray diffraction and Raman spectroscopy measurements. The possibility of Fe metal cluster in Fe doped/co-doped films is ruled out by Fe 2p core level photoelectron spectra. From O 1s core level spectra it is observed that oxygen vacancy is present in all the films. The undoped ZnO film shows magnetic ordering below ∼175 K, whereas Fe doped/codoped samples show magnetic ordering even at 300 K. The Al doped sample reveals paramagnetic behavior. The magneto-transport measurements suggest that the mobile carriers undergo exchange interaction with local magnetic moments.

  17. The origin of room temperature ferromagnetism mediated by Co–VZn complexes in the ZnO grain boundary

    KAUST Repository

    Devi, Assa Aravindh Sasikala

    2016-05-20

    Ferromagnetism in polycrystalline ZnO doped with Co has been observed to be sustainable in recent experiments. We use first-principle calculations to show that Co impurities favorably substitute at the grain boundary (GB) rather than in the bulk. We reveal that room-temperature ferromagnetism (RTFM) at the Co-doped ZnO GB in the presence of Zn vacancies is due to ferromagnetic exchange coupling of a pair of closely associated Co atoms in the GB, with a ferromagnetic exchange coupling energy of ∼300 meV, which is in contrast to a previous study that suggested the O vacancy-Co complex induced ferromagnetism. Electronic structure analysis was used to predict the exchange coupling mechanism, showing that the hybridization of O p states with Co and Zn d states enhances the magnetic polarization originating from the GB. Our results indicate that RTFM originates from Co clusters at interfaces or in GBs. © 2016 The Royal Society of Chemistry.

  18. Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose

    Science.gov (United States)

    Meher, Sumanta Kumar; Rao, G. Ranga

    2013-02-01

    In the quest to enhance the selectivity and sensitivity of novel structured metal oxides for electrochemical non-enzymatic sensing of glucose, we report here a green synthesis of unique sandwich-structured CuO on a large scale under microwave mediated homogeneous precipitation conditions. The physicochemical studies carried out by XRD and BET methods show that the monoclinic CuO formed via thermal decomposition of Cu2(OH)2CO3 possesses monomodal channel-type pores with largely improved surface area (~43 m2 g-1) and pore volume (0.163 cm3 g-1). The fascinating surface morphology and pore structure of CuO is formulated due to homogeneous crystallization and microwave induced self assembly during synthesis. The cyclic voltammetry and chronoamperometry studies show diffusion controlled glucose oxidation at ~0.6 V (vs. Ag/AgCl) with extremely high sensitivity of 5342.8 μA mM-1 cm-2 and respective detection limit and response time of ~1 μM and ~0.7 s, under a wide dynamic concentration range of glucose. The chronoamperometry measurements demonstrate that the sensitivity of CuO to glucose is unaffected by the absence of dissolved oxygen and presence of poisoning chloride ions in the reaction medium, which essentially implies high poison resistance activity of the sandwich-structured CuO. The sandwich-structured CuO also shows insignificant interference/significant selectivity to glucose, even in the presence of high concentrations of other sugars as well as reducing species. In addition, the sandwich-structured CuO shows excellent reproducibility (relative standard deviation of ~2.4% over ten identically fabricated electrodes) and outstanding long term stability (only ~1.3% loss in sensitivity over a period of one month) during non-enzymatic electrochemical sensing of glucose. The unique microstructure and suitable channel-type pore architecture provide structural stability and maximum accessible electroactive surface for unimpeded mobility of glucose as well as the

  19. RETRACTED: P-type Zno thin films fabricated by Al-N co-doping method at different substrate temperature

    Science.gov (United States)

    Yuan, Guodong; Ye, Zhizhen; Qian, Qing; Zhu, Liping; Huang, Jingyun; Zhao, Binghui

    2005-01-01

    This article has been retracted at the request of the Editor-in-Chief. Please see Elsevier Policy on Article Withdrawal ( http://www.elsevier.com/locate/withdrawalpolicy). The editors and publisher would like to confirm the retraction of this paper at the request of the author Guodong Yuan. Reason: The SIMS profile published in this paper had already been included in articles published in Mater. Lett., 58 (2004) 3741-3744, and Thin Solid Films, 484 (2005) 420-425 describing a sample prepared under different conditions. The author did not notify either the Journal of Crystal Growth Editors or the coauthors of this fact. The author apologizes sincerely to the readers, referees, and Editors for violating the guidelines of ethical publication.Also the author apologizes to the coauthors for mishandling of the manuscript.

  20. Growth and Magnetic Properties of Sol-Gel Derived Co-Doped ZnO Thin Film

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Zn1-xCoxO films were grown on glass by sol-gel spin coating process. A homogeneous and stable Zn1-xCoxO sol was prepared by dissolving zinc acetate dihydrate, cobalt acetate tetrahydrate and aluminium chloride hexahydrate as solutes in solution of isopropanol and monoethanolamine. The films were postheated and vacuum annealed, and investigated for c-axis preferred orientation and electromagnetic properties. Zn1-xCoxO films with different Co concentrations were oriented well along the c-axis, especially the Zn1-xCoxO film with 10% Co(atom fraction) was highly c-axis oriented. The transmittance spectra show that Zn1-xCoxO films occur d-d transition and sp-d exchange interaction between Co2+ ions. The electrical resistivity of the films at 10% Co had the lowest value because the crystallite size became largest and the crystallinity of the c-axis was improved. X-ray photoelectron spectroscopy and alternating gradient magnetometer analyses indicated that no Co metal cluster was formed, and the ferromagnetism at room temperature appeared. The characteristics of the electrical resistivity and room temperature ferromagnetism of sol-gel derived Zn1-xCoxO films suggest a potential application of dilute magnetic semiconductor devices.

  1. Eu{sup 3+} luminescence properties of Eu- and Mg-codoped AlGaN

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Masayoshi [Department of Electrical and Electronics Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Aichi (Japan); Sekiguchi, Hiroto, E-mail: sekiguchi@ee.tut.ac.jp [Department of Electrical and Electronics Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Aichi (Japan); Yamane, Keisuke [Department of Electrical and Electronics Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Aichi (Japan); Okada, Hiroshi [Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Aichi (Japan); Department of Electrical and Electronics Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Aichi (Japan); Wakahara, Akihiro [Department of Electrical and Electronics Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Aichi (Japan); Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Aichi (Japan)

    2015-10-15

    We investigated the effect of Mg codoping on luminescence properties of AlGaN:Eu to improve emission through synergy effect between an increase in bandgap by AlGaN and the Mg codoping technique. The luminescence properties of AlGaN:(Eu, Mg) are strongly influenced by the Mg concentration and Al composition. Mg codoping in AlGaN was observed to contribute to increasing photoluminescence (PL) integrated intensity and to improve thermal quenching from 7.3% to 60% while the dominant optical site remained site B (622.3-nm peak) with low excitation cross section. The total concentration of optically activated Eu at 25 K was a constant at for either optical site, indicating that Mg codoping did not affect the formation of optical sites. The PL decay times at room temperature (RT) increased with Mg concentration because of suppression of the back-transfer process. For optimized Mg concentration, an increase in the Al composition contributed to the total activated Eu concentration and changed the dominant optical site from A (620.3-nm peak) to B. The activation energy E{sub a}, which is the difference in energy between the {sup 5}D{sub 0} energy level and the trap level in the host material, was estimated from temperature dependence of PL decay time. The E{sub a} for site A was larger than that for site B, suggesting that the back-transfer rate for site A was less than that for site B. - Highlights: • Eu and Mg codoped AlGaN was grown on GaN template by NH{sub 3}-MBE. • The effect of Mg codoping on optical properties of Eu doped AlGaN was investigated. • Mg codoping contributed to increase PL intensity at RT and improve thermal quenching. • An increase in the Al content affected total activated N{sub Eu} and dominant optical site.

  2. Rocksalt ZnO nanocrystal formation by beam irradiation of wurtzite ZnO in a transmission electron microscope

    Science.gov (United States)

    Lee, Sung Bo

    2016-10-01

    Under ambient conditions, ZnO crystallizes in a hexagonal wurtzite structure, but undergoes a phase transformation into a rocksalt structure with increasing hydrostatic pressure. However, in the present study, I have successfully demonstrated that intense beam irradiation of a wurtzite ZnO specimen in a transmission electron microscope produces nanoparticles of rocksalt ZnO as well as wurtzite ZnO, suggesting that the application of pressures is not a necessary condition for the formation of rocksalt ZnO.

  3. Effects of Yb3+ codoping on visible and near infrared emissions of Er3+-Yb3+ codoped AI203 powders by the sol-sol method

    Institute of Scientific and Technical Information of China (English)

    DONG Bin; SUN Min; FENG ZhiOing; SONG ZhaoYuan; LIU XiaoDong

    2008-01-01

    The 0.1 mol% Er3+ and 0-2 mol% Yb3+ codoped AI2O3 powders were prepared by the sol-gel method, and the phase structure, including only two crystalline types of doped AI2O3 phase, γ-(AI,Er, Yb)2O3 andO-(AI,Er, Yb)2O3, was detected at the sintering temperature of 1000. The visible and near infrared emissions properties depended strongly on the Yb3+ codoping, and the corresponding maximal peak intensities centered at about 523, 545, 660 and 1533 nm were obtained respectively for the 0.1 mol% Er3+ and 0.5 mol% Yb3+ codoped AI2O3 powders, which were composed of 0-(AI,Er, Yb)O3 and a smallamount of γ-(AI,Er, Yb)2O3 phases. The two-photon absorption process was responsible for the visible up-conversion emissions, and the one-photon absorption process was involved in the near infrared emissions of the Er3+-Yb3+ codoped AI2O3 powders.

  4. Indium-Nitrogen Codoped Zinc Oxide Thin Film Deposited by Ultrasonic Spray Pyrolysis on n-(111 Si Substrate: The Effect of Film Thickness

    Directory of Open Access Journals (Sweden)

    Cheng-Chang Yu

    2014-01-01

    Full Text Available Indium-nitrogen codoped zinc oxide (INZO thin films were fabricated by spray pyrolysis deposition technique on n-(111 Si substrate with different film thicknesses at 450°C using a precursor containing zinc acetate, ammonium acetate, and indium nitrate with 1 : 3 : 0.05 at.% concentration. The morphology and structure studies were carried out by scanning electron microscopy (SEM and X-ray diffraction (XRD. The grain size of the films increased when increasing the film thickness. From XRD spectra, polycrystalline ZnO structure can be observed and the preferred orientation behavior varied from (002 to (101 as the film thickness increased. The concentration and mobility were investigated by Hall effect measurement. the p-type films with a hole mobility around 3 cm2V−1s−1 and hole concentration around 3×1019 cm−3 can be achieved with film thickness less than 385 nm. The n-type conduction with concentration 1×1020 cm−3 is observed for film with thickness 1089 nm. The defect states were characterized by photoluminescence. With temperature-dependent conductivity analysis, acceptor state with activation energy 0.139 eV dominate the p type conduction for thin INZO film. And the Zn-related shallow donors with activation energy 0.029 eV dominate the n-type conduction for the thick INZO film.

  5. Fabrication of Transparent Conductive Zinc Oxide Co-Doped with Fluorine and Zirconium Thin Solid Films by Ultrasonic Chemical Pyrolysis: Effects of Precursor Solution Aging and Substrate Temperature

    Directory of Open Access Journals (Sweden)

    Luis Castañeda

    2013-01-01

    Full Text Available Highly transparent, conducting zinc oxide [ZnO] thin films co-doped with fluorine and zirconium have been deposited on glass substrates by the ultrasonic chemical spraying technique. The effects of aging of the starting solution and substrate temperature on the structural, morphological, and electrical properties of the ZnO:F:Zr films have been studied. The resistivity of the films decreases with the aging time of the starting solution until the seventeenth day reaching a minimum of about 1.2×10−2 Ω cm and then increases. Though all the samples are of polycrystalline hexagonal wurtzite type and grow preferentially with (002 plane parallel to the substrate, their morphology depends strongly on the aging time of the reaction solution. The optical transmittance of all the films remained around 80% in the visible spectral range. These highly transparent, low resistive thin films are expected to be highly useful as transparent electrodes in the fabrication of thin film solar cells.

  6. Low temperature synthesis of radio frequency magnetron sputtered gallium and aluminium co-doped zinc oxide thin films for transparent electrode fabrication

    Science.gov (United States)

    Muchuweni, E.; Sathiaraj, T. S.; Nyakotyo, H.

    2016-12-01

    Gallium and aluminium co-doped zinc oxide (GAZO) thin films were prepared on glass substrates at low temperatures by radio frequency (rf) magnetron sputtering and their physical properties were investigated. All films possessed a hexagonal wurtzite crystal structure with a strong growth orientation along the (0 0 2) c-axis. The (0 0 2) peak intensity and mean crystallite size increased with substrate temperature from room temperature (RT) to 75 °C and then decreased at 100 °C, indicating an improvement in crystallinity up to 75 °C and its deterioration at 100 °C. Scanning electron microscopy (SEM) micrographs revealed the strong dependency of surface morphology on substrate temperature and energy dispersive spectroscopy (EDS) confirmed the incorporation of Ga and Al into the ZnO films. All films exhibited excellent transmittances between 85 and 90% in the visible region and their optical band gap increased from 3.22 eV to 3.28 eV with substrate temperature. The Urbach energy decreased from 194 meV to 168 meV with increasing substrate temperature, indicating a decrease in structural disorders which was consistent with X-ray Diffraction (XRD) analysis. Films deposited at 75 °C exhibited the lowest electrical resistivity (2.4 Ωcm) and highest figure of merit (7.5 × 10-5 Ω-1), proving their potential as candidates for transparent electrode fabrication.

  7. Post-annealing effect on the room-temperature ferromagnetism in Cu-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yu-Min, E-mail: ymhu@nuk.edu.tw; Kuang, Chein-Hsiun; Han, Tai-Chun; Yu, Chin-Chung [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Li, Sih-Sian [Institute of Electro-Optical Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2015-05-07

    In this work, we investigated the structural and magnetic properties of both as-deposited and post-annealed Cu-doped ZnO thin films for better understanding the possible mechanisms of room-temperature ferromagnetism (RT-FM) in ZnO-based diluted magnetic oxides. All of the films have a c-axis-oriented wurtzite structure and display RT-FM. X-ray photoelectron spectroscopy results showed that the incorporated Cu ions in as-deposited films are in 1+ valence state merely, while an additional 2+ valence state occurs in post-annealed films. The presence of Cu{sup 2+} state in post-annealed film accompanies a higher magnetization value than that of as-deposited film and, in particular, the magnetization curves at 10 K and 300 K of the post-annealed film separate distinctly. Since Cu{sup 1+} ion has a filled 3d band, the RT-FM in as-deposited Cu-doped ZnO thin films may stem solely from intrinsic defects, while that in post-annealed films is enhanced due to the presence of CuO crystallites.

  8. Spectral features and antibacterial properties of Cu-doped ZnO nanoparticles prepared by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    Alireza Samavati; A F Ismail; Hadi Nur; Z Othaman; M K Mustafa

    2016-01-01

    Zn1−x Cux O (x=0.00, 0.01, 0.03, and 0.05) nanoparticles are synthesized via the sol-gel technique using gelatin and nitrate precursors. The impact of copper concentration on the structural, optical, and antibacterial properties of these nanoparticles is demonstrated. Powder x-ray diffraction investigations have illustrated the organized Cu doping into ZnO nanoparticles up to Cu concentration of 5% (x=0.05). However, the peak corresponding to CuO for x=0.01 is not distinguishable. The images of field emission scanning electron microscopy demonstrate the existence of a nearly spherical shape with a size in the range of 30–52 nm. Doping Cu creates the Cu–O–Zn on the surface and results in a decrease in the crystallite size. Photoluminescence and absorption spectra display that doping Cu causes an increment in the energy band gap. The antibacterial activities of the nanoparticles are examined against Escherichia coli (Gram negative bacteria) cultures using optical density at 600 nm and a comparison of the size of inhibition zone diameter. It is found that both pure and doped ZnO nanoparticles indicate appropriate antibacterial activity which rises with Cu doping.

  9. Spectral features and antibacterial properties of Cu-doped ZnO nanoparticles prepared by sol-gel method

    Science.gov (United States)

    Alireza, Samavati; A, F. Ismail; Hadi, Nur; Z, Othaman; M, K. Mustafa

    2016-07-01

    Zn1-x Cu x O (x = 0.00, 0.01, 0.03, and 0.05) nanoparticles are synthesized via the sol-gel technique using gelatin and nitrate precursors. The impact of copper concentration on the structural, optical, and antibacterial properties of these nanoparticles is demonstrated. Powder x-ray diffraction investigations have illustrated the organized Cu doping into ZnO nanoparticles up to Cu concentration of 5% (x = 0.05). However, the peak corresponding to CuO for x = 0.01 is not distinguishable. The images of field emission scanning electron microscopy demonstrate the existence of a nearly spherical shape with a size in the range of 30-52 nm. Doping Cu creates the Cu-O-Zn on the surface and results in a decrease in the crystallite size. Photoluminescence and absorption spectra display that doping Cu causes an increment in the energy band gap. The antibacterial activities of the nanoparticles are examined against Escherichia coli (Gram negative bacteria) cultures using optical density at 600 nm and a comparison of the size of inhibition zone diameter. It is found that both pure and doped ZnO nanoparticles indicate appropriate antibacterial activity which rises with Cu doping. Project supported by the Universiti Teknologi Malaysia (UTM) (Grant No. R. J1300000.7809.4F626). Dr. Samavati is thankful to RMC for postdoctoral grants.

  10. ZnO nanocrystals and allied materials

    CERN Document Server

    Okada, Tatsuo

    2014-01-01

    ZnO has been the central theme of research in the past decade due to its various applications in band gap engineering, and textile and biomedical industries. In nanostructured form, it offers ample opportunities to realize tunable optical and optoelectronic properties and it was also termed as a potential material to realize room temperature ferromagnetism. This book presents 17 high-quality contributory chapters on ZnO related systems written by experts in this field. These chapters will help researchers to understand and explore the varied physical properties to envisage device applications of ZnO in thin film, heterostructure and nanostructure forms.

  11. Toxicity of CuO nanoparticles and Cu ions to tight epithelial cells from Xenopus laevis (A6)

    DEFF Research Database (Denmark)

    Thit, Amalie; Selck, Henriette; Bjerregaard, Henning F.

    2013-01-01

    ) was used to investigate toxicity of copper (Cu) in 3 different forms; Cu ions (Cu2+), CuO NPs (6 nm) and poly-dispersed CuO NPs (100 nm, poly-CuO). Continuous exposures at concentrations of 143–200 μM demonstrated that cytotoxicity differed among the 3 Cu forms tested and that the effects depend on cell...... state (dividing or differentiated). Dividing cells treated with poly-CuO, CuO NPs (6 nm) or Cu2+ showed cell cycle arrest and caused significant increase in cell death via apoptosis after 48 h, 6 and 7 days of treatment, respectively. Treatment with either CuO NPs (6 nm) or Cu2+ caused significant...... decrease in cell proliferation. Treatments of differentiated cells, revealed the same patterns of toxicity for Cu forms tested, but after shorter exposure periods....

  12. CuFe2 O4 -CuO Nanocomposites as Promising Materials for Solar Hydrogen Generation

    Science.gov (United States)

    Razavi, Mehdi; Amrollahi, Pouya; Yazdimamaghani, Mostafa; Tayebi, Lobat; Vashaee, Daryoosh

    2014-03-01

    Currently, hydrogen is produced, almost exclusively, by waterelectrolysis. This method can take advantage of economies of scale and most established techniques of producing hydrogen. We developed a nanocomposite material system composed of CuFe2O4 and CuO semiconductor particles to produce hydrogen by electrolysis of water. The nanocomposite powder was prepared using the sol-gel method. Techniques of X-ray diffraction, scanning electron microscopy with energy dispersive spectroscopy, transmission electron microscopy and UV diffuse reflectance analysis were employed to characterize the synthesized products.The results confirmed the formation of CuFe2O4-CuO nanocomposite powder. The hydrogen evolution was successfully observed over the new hetero-system of CuFe2O4-CuO. The electrolysis activity depended on the concentration of CuO in the system. In order to enhance the hydrogen production, we further optimized the composite material versus the concentration of the compounds.

  13. Characterization and DC Conductivity of Novel CuO doped Polyvinyl Alcohol (PVA Nano-composite Films

    Directory of Open Access Journals (Sweden)

    Chivukula Srikanth

    2014-10-01

    Full Text Available DC conductivity of PVA-CuO nano-composite films have been studied in the present work. The composites were prepared by solution-casting technique. The prepared PVA-CuO composites have been characterized by X-ray diffraction (XRD analysis, Fourier Transform Infrared Spectroscopy (FT-IR, Scanning Electron Microscopy (SEM and Energy Dispersive X-ray Spectroscopy (EDXS; which confirmed the presence of CuO in polyvinyl alcohol and the formation of the composite. DC conductivity studies show thermally activated behavior of all the composites. The conductivity was found to increase with the increase in temperature indicating the semiconducting behavior of all the compositions. The activation energy increases as the content of CuO nanoparticles increases from 1 to 4 in wt% in the PVA- CuO nano-composites. Maximum conductivity was observed in 4 wt% of CuO in polyvinyl alcohol.

  14. Formation of Hierarchical CuO Nanostructures on Copper Foil by Chemical Bath Deposition for Applications in Superhydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Felizco Jenichi Clairvaux

    2016-01-01

    Full Text Available Hierarchical CuO nanostructures (urchin-like and grassy island structure were successfully synthesized by a simple chemical bath deposition method at low temperature of 70°C in a short reaction time of 1h. XRD analysis revealed the presence of pure crystalline monoclinic CuO. Morphological analysis revealed the formation of spherical structures composed of numerous hair-like structures. The pH of the solution was also investigated to have a great effect on the morphology of the CuO nanostructures. At lower pH, the structures tend to form urchin-like structures; while at higher pH, the structures tend to form grass-like islands. A growth mechanism was also proposed in this paper. Lastly, wettability test proved the stable superhydrophobic property of the CuO nanostructured thin film surface.

  15. Magnetoresistive study of the antiferromagnetic-weak ferromagnetic transition in single-crystal La2CuO4+δ

    Science.gov (United States)

    Belevtsev, B. I.; Dalakova, N. V.; Savitsky, V. N.; Panfilov, A. S.; Braude, I. S.; Bondarenko, A. V.

    2004-05-01

    Resistive measurements were made to study the magnetic field-induced antiferromagnetic (AF)—weak ferromagnetic (WF) transition in the La2CuO4 single crystal. The magnetic field (dc or pulsed) was applied normally to the CuO2 layers. The transition manifested itself in a drastic decrease of the resistance in critical fields of 5-7 T. The study is the first to display the effect of the AF-WF transition on the conductivity of the La2CuO4 single crystal in the direction parallel to the CuO2 layers. The results provide support for the three-dimensional nature of the hopping conduction of this layered oxide.

  16. Synthesis of chrysalis-like CuO nanocrystals and their catalytic activity in the thermal decomposition of ammonium perchlorate

    Indian Academy of Sciences (India)

    Jun Wang; Shanshan He; Zhanshuang Li; Xiaoyan Jing; Milin Zhang; Zhaohua Jiang

    2009-11-01

    Chrysalis-like morphologies of CuO have been synthesized in large-quantity via a simple chemical deposition method without the use of any complex instruments and reagents. CuO nanocrystals showed a different morphology at three different temperatures, 25, 60 and 100°C. The particle size, morphology and crystal structure of the samples were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectra. The catalytic effect of CuO nanoparticles on the decomposition of ammonium perchlorate (AP) was investigated by STA 409 PC thermal analyzer at a heating rate of 10°C min-1 from 35 to 500°C. Compared with the thermal decomposition of pure AP, the addition of CuO nanoparticles decreased the decomposition temperature of AP by about 85°C.

  17. Preparation and sonocatalytic activity of monodisperse porous bread-like CuO via thermal decomposition of copper oxalate precursors

    Science.gov (United States)

    Zhang, Lihui; Liu, Rong; Yang, Heqing

    2012-04-01

    Porous bread-like CuO have been obtained via the thermal decomposition of copper oxalate precursor synthesized by the room temperature reaction of Cu(NO3)2 with Na2C2O4 in water. These bread-like CuO with the monoclinic structure are well dispersed with good monodispersity, their diameters are about 1.5 μm. The sonocatalytic activity of porous CuO for the degradation of acid scarlet dye was studied. It was found that the as-prepared porous CuO nanostructures exhibit efficient sonocatalytic ability for the degradation of acid scarlet dye in the presence of H2O2, which are expected to be useful in the treatment of non- or low-transparent wastewaters.

  18. Unravelling the quantum-entanglement effect of noble gas coordination on the spin ground state of CUO

    CERN Document Server

    Tecmer, Pawel; Legeza, Ors; Reiher, Markus

    2013-01-01

    The accurate description of the complexation of the CUO molecule by Ne and Ar noble gas matrices represents a challenging task for present-day quantum chemistry. Especially, the accurate prediction of the spin ground state of different CUO--noble-gas complexes remains elusive. In this work, the interaction of the CUO unit with the surrounding noble gas matrices is investigated in terms of complexation energies and dissected into its molecular orbital quantum entanglement patterns. Our analysis elucidates the anticipated singlet--triplet ground-state reversal of the CUO molecule diluted in different noble gas matrices and demonstrates that the strongest uranium-noble gas interaction is found for CUOAr4 in its triplet configuration.

  19. Cupric Oxide (CuO) Oxidation Detects Pyrogenic Carbon in Burnt Organic Matter and Soils.

    Science.gov (United States)

    Hatten, Jeff; Goñi, Miguel

    2016-01-01

    Wildfire greatly impacts the composition and quantity of organic carbon stocks within watersheds. Most methods used to measure the contributions of fire altered organic carbon-i.e. pyrogenic organic carbon (Py-OC) in natural samples are designed to quantify specific fractions such as black carbon or polyaromatic hydrocarbons. In contrast, the CuO oxidation procedure yields a variety of products derived from a variety of precursors, including both unaltered and thermally altered sources. Here, we test whether or not the benzene carboxylic acid and hydroxy benzoic acid (BCA) products obtained by CuO oxidation provide a robust indicator of Py-OC and compare them to non-Py-OC biomarkers of lignin. O and A horizons from microcosms were burned in the laboratory at varying levels of fire severity and subsequently incubated for 6 months. All soils were analyzed for total OC and N and were analyzed by CuO oxidation. All BCAs appeared to be preserved or created to some degree during burning while lignin phenols appeared to be altered or destroyed to varying extents dependent on fire severity. We found two specific CuO oxidation products, o-hydroxybenzoic acid (oBd) and 1,2,4-benzenetricarboxylic acid (BTC2) that responded strongly to burn severity and withstood degradation during post-burning microbial incubations. Interestingly, we found that benzene di- and tricarboxylic acids (BDC and BTC, respectively) were much more reactive than vanillyl phenols during the incubation as a possible result of physical protection of vanillyl phenols in the interior of char particles or CuO oxidation derived BCAs originating from biologically available classes of Py-OC. We found that the ability of these compounds to predict relative Py-OC content in burned samples improved when normalized by their respective BCA class (i.e. benzene monocarboxylic acids (BA) and BTC, respectively) and when BTC was normalized to total lignin yields (BTC:Lig). The major trends in BCAs imparted by burning

  20. Single-dot spectroscopy of boron and phosphorus codoped silicon quantum dots

    Science.gov (United States)

    Kanno, Takashi; Sugimoto, Hiroshi; Fucikova, Anna; Valenta, Jan; Fujii, Minoru

    2016-10-01

    Boron (B) and phosphorous (P) codoped silicon quantum dots (Si QDs) are dispersible in polar solvents without organic ligands, and exhibit size controllable photoluminescence (PL) from 0.85 to 1.85 eV due to the electronic transitions between the donor and the acceptor states. We study the PL spectra of the codoped Si QDs at room temperature and at 77 K. We show that the broad PL band of codoped colloidal Si QDs (full width at half maximum is over 400 meV) is composed of narrower PL bands of individual QDs with different PL energies. We also show that the PL linewidth of individual codoped Si QDs is almost twice as large as those of undoped Si QDs. In contrast to the significant narrowing of the PL linewidth of undoped Si QDs at low temperatures, that of codoped Si QDs is almost independent of the temperature except for a few very small QDs. These results suggest that a large number of B and P are doped in a QD and there are a number of non-identical luminescence centers in each QD.

  1. Preparation and photocatalytic activity of nonmetal Co-doped titanium dioxide photocatalyst

    Science.gov (United States)

    Sun, Xiaogang; Xing, Jun; Qiu, Jingping

    2016-06-01

    A series of boron and sulfur co-doped titanium dioxide (TiO2) photocatalysts were prepared by a sol-gel method using boric acid, thiourea and tetrabutyl titanate [Ti(OC4H9)4] as precursors. The photoabsorbance of as-prepared photocatalysts was measured by UV-Vis diffuse reflectance spectroscopy (DRS), and its microstructure was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and N2 adsorption-desorption measurements. The prepared photocatalysts consisted of the anatase phase mainly in the form of spherical particles. The photocatalytic performance was studied by photodegradation of methyl blue (MB) in water under UV and visible light irradiation. The calcination temperature and the codoping content influenced the photoactivity. The synergistic effect of boron and sulfur co-doping played an important role in improving the photocatalytic activity. In addition, the possibility of cyclic usage of codoped TiO2 was also confirmed, the photocatalytic activity of TiO2 remained above 91% of that of the fresh sample after being used four times. It was shown that the co-doped TiO2 could be activated by visible light and could thus be potentially applied for the treatment of water contaminated by organic pollutants.

  2. CdS quantum dots modified CuO inverse opal electrodes for ultrasensitive electrochemical and photoelectrochemical biosensor

    OpenAIRE

    2015-01-01

    The CuO inverse opal photonic crystals (IOPCs) were synthesized by the sol-gel method and modified with CdS quantum dots by successive ionic layer adsorption and reaction (SILAR). CdS QDs modified CuO IOPCs FTO electrodes of different SILAR cycles were fabricated and their electrochemical properties were studied by cyclic voltammetry (CV) and chronoamperometry (I–t). Structure and morphology of the samples were characterized by transmission electron microscopy (TEM), scanning electron microsc...

  3. The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice.

    Science.gov (United States)

    Wang, Shuling; Liu, Hanzhu; Zhang, Yuxi; Xin, Hua

    2015-03-01

    To evaluate the effect of CuO nanoparticles (NPs) on root growth, root reactive oxygen species (ROS) production, and the expression of 2 genes (OsCDC2 and OsCYCD) associated with root growth of Oryza sativa (rice), rice roots were treated with 5 mg/L CuO NP suspension, 5 mg/L CuO bulk particle suspension, and 0.27 mg/L CuSO4  · 5H2 O solution, with distilled water as control. The results indicated that CuO NPs and Cu(2+) severely inhibited the elongation and biomass of rice roots after 72-h exposure. Dyeing with 7'-dichlorodihydrofluorescein-diacetate (DCFH-DA) showed that in all 3 treatment groups, the fluorescence was primarily located in the meristem zone, demonstrating that the meristem zone was where ROS were primarily generated. In addition, a significant increase in ROS was detected in the meristem zone of roots treated with the CuO NP suspension and the CuSO4  · 5H2 O solution, both of which greatly influenced the expression level of OsCDC2 and OsCYCD. The impact of Cu(2+) on these 2 genes was smaller than that of CuO NPs. The Cu content in roots of rice after treatment with CuO NPs was much higher than that found after the other treatments, which indicated that CuO NPs may have been absorbed into root tissue. Collectively, these data suggest that growth inhibition, higher ROS production, and gene expression inhibition may be caused not only by the ions themselves, but also the NPs. © 2014 SETAC.

  4. Magnetic properties of doped and undoped CuO nanoparticles taking into account spin-phonon interactions

    Science.gov (United States)

    Wesselinowa, J. M.

    2011-03-01

    We have studied the influence of doping effects on magnetization M and Neel temperature T of CuO nanoparticles based on the Heisenberg model including spin-phonon interactions. The experimentally obtained room temperature magnetization M is due to surface or/and doping effects in CuO nanoparticles. We have shown the importance of the effect of the spin-phonon interaction on different properties.

  5. Shape-controlled synthesis of Sn-doped CuO nanoparticles for catalytic degradation of Rhodamine B.

    Science.gov (United States)

    Vomáčka, Petr; Štengl, Václav; Henych, Jiří; Kormunda, Martin

    2016-11-01

    The uniform Sn-doped CuO nanoparticles were synthesized by a simple solution method at a low temperature. The prepared samples were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy techniques (HRSEM, HRTEM, SAED, STEM and EDS elemental mapping), atomic force microscopy (AFM), UV/Vis spectroscopy, nitrogen physisorption (BET) and by evaluation of the catalytic activity on the degradation of Rhodamine B. The tin doping had a considerable influence on the morphology of CuO. The gradual narrowing of the particles morphology in the crystallographic [010] direction was observed with increasing the dopant concentration. The plate-like, rectangularsquare and rod-like CuO nanoparticles were obtained. The mechanism of a crystal growth of CuO associated with doping is proposed. The tin doping also affected the structural and optical properties of CuO. Increasing the amount of a dopant led to a red-shift of a band gap from 1.33 to 1.18eV. The incorporation of tin into the structure of copper oxide was confirmed by XRD and distribution of tin mapped by EDS analysis. The good catalytic properties of the as-prepared doped material were demonstrated by the enhanced catalytic removal of Rhodamine B in the presence of H2O2. The undoped CuO nanosheets reached only 24% efficiency in the removal of Rhodamine B within two hours. The best result exhibited CuO_050Sn sample containing 4at.% of tin and the degradation of Rhodamine B reached 99% within the same time. We have demonstrated a simple, scalable process for the preparation of catalytically very active Sn-doped CuO nanoparticles with varying properties.

  6. Magnetic properties of doped and undoped CuO nanoparticles taking into account spin-phonon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wesselinowa, J.M., E-mail: julia@phys.uni-sofia.b [University of Sofia, Department of Physics, 5 J. Bouchier Blvd., 1164 Sofia (Bulgaria)

    2011-03-14

    We have studied the influence of doping effects on magnetization M and Neel temperature T{sub N} of CuO nanoparticles based on the Heisenberg model including spin-phonon interactions. The experimentally obtained room temperature magnetization M is due to surface or/and doping effects in CuO nanoparticles. We have shown the importance of the effect of the spin-phonon interaction on different properties.

  7. One-dimensional variable range hopping conduction in a single crystal of La 2CuO 4+y

    Science.gov (United States)

    Corraze, B.; Ribault, M.

    1993-02-01

    We have measured the resistivity perpendicular to the CuO 2 planes, in the magnetically ordered phases of a single crystal of La 2CuO 4+y as a function of temperature. Within a limited temperature range a one-dimensional variable range hopping conduction mechanism is identified, in zero magnetic field. The analysis of both the temperature range and the magnetic field variation shows that this mechanism is strongly dependent on the intraplane and on the interplane couplings.

  8. Preparation, characterization and visible light photocatalytic activity of silver, nitrogen co-doped TiO2 photocatalyst

    Science.gov (United States)

    Khan, Matiullah; Ramin Gul, Sahar; Li, Jing; Cao, Wenbin; Mamalis, Athanasios G.

    2015-06-01

    TiO2 photocatalyst codoped with Silver (Ag) and Nitrogen (N) with different Ag doping concentrations is successfully synthesized by hydrothermal method. The as-synthesized samples are characterized through x-ray diffraction (XRD), Transmission electron microscopy (TEM), UV-vis. absorption spectra and x-ray photoelectron spectroscopy (XPS). The photocatalytic response is evaluated by the photodegradation of methylene blue under visible light irradiations. All synthesized samples are composed of pure anatase phase with good crystallinity. The absorption edge of codoped TiO2 is shifted towards visible light region. X-ray photoelectron spectroscopy confirmed the existence of silver and nitrogen in the codoped samples. All the codoped samples demonstrated improved photocatalytic activity compared to pure TiO2. Among the different codoped samples, the one with silver doping concentration of 4 at. % exhibited the highest photoactivity.

  9. Co-doping effects on luminescence and scintillation properties of Ce doped Lu{sub 3}Al{sub 5}O{sub 12} scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kei, E-mail: kamada@imr.tohoku.ac.jp [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); C& A Corporation, T-Biz, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Nikl, Martin [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Kurosawa, Shunsuke [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan); Beitlerova, Alena [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Nagura, Aya [Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan); Shoji, Yasuhiro [C& A Corporation, T-Biz, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan); Pejchal, Jan [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Ohashi, Yuji [Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan); Yokota, Yuui [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Yoshikawa, Akira [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); C& A Corporation, T-Biz, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan)

    2015-05-11

    The Mg, Ca, Sr and Ba 200 ppm co-doped Ce:Lu{sub 3}Al{sub 5}O{sub 12} single crystals were prepared by micro pulling down method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of the co-doping. The scintillation decays were accelerated by both Mg and Ca co-dopants. The Mg co-doped samples showed the fastest decay and the highest light yield among the co-doped samples.

  10. One dimensional CuO nanocrystals synthesis by electrical explosion: A study on structural, optical and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Shutesh, E-mail: shutesh.k@onsemi.com [Department of Mechanical Engineering University of Malaya, 50603 Kuala Lumpur (Malaysia); ON Semiconductor Package Innovation and Development Center, 70450 Seremban (Malaysia); Haseeb, A.S.M.A.; Johan, Mohd Rafie [Department of Mechanical Engineering University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-02-15

    Highlights: • One-dimensional CuO nanoflakes were synthesized by novel wire explosion technique. • A physical synthesis method capable of producing high aspect ratio (1:16) nanocrystals. • Most energy efficient and eco-friendly synthesis of low-dimensional transition metal oxide nanocrystals. -- Abstract: One-dimensional (1D) copper oxide (CuO) nanocrystals were synthesized using a novel wire explosion in de-ionized (DI) water without any chemical additives. Highly crystalline 1D CuO nanocrystals with 1:16 aspect ratio were successfully synthesized using this technique. The chemical nature and physical structure of the nanocrystals were controlled by simply modulating the exploding medium temperature. The results showed that nanocrystals produced at explosion temperatures 65 °C and 95 °C are pure CuO with optical band-gap energy of 2.38 eV. High Resolution Transmission Electron Microscope analysis (HRTEM) indicates that the CuO nanocrystals are with growth in [1{sup ¯}11] and [1 1 1] directions. The epitaxial crystal growth kinetics of the 1D nanostructure by aggregation was discussed. The incorporation of microstructural features like edge dislocations and porosity in the growth mechanism was examined. X-ray photoelectron spectroscopy (XPS) characterization indicates the formation of high purity CuO nanocrystals with valence state +2. This study provides an energy efficient and eco-friendly synthesis method of 1D transition metal oxide nanocrystals for electronic applications.

  11. Novel CuCr2O4 embedded CuO nanocomposites for efficient photodegradation of organic dyes

    Science.gov (United States)

    Mageshwari, K.; Sathyamoorthy, R.; Lee, Jeong Yong; Park, Jinsub

    2015-10-01

    Novel photocatalyst based on CuO-CuCr2O4 nanocomposites was synthesized for different Cr3+ concentration by reflux condensation method, and their photocatalytic activity was evaluated by monitoring the photodegradation of methyl orange (MO) and methylene blue dyes (MB) under UV light irradiation. Phase evolution by X-ray diffraction showed monoclinic CuO and tetragonal CuCr2O4 as the components of the prepared nanocomposites. Morphological analysis by scanning electron microscope and transmission electron microscope revealed that the incorporation of Cr3+ in CuO lattice alters the morphology of CuO from microsphere to cluster shape. Photoluminescence spectra of CuO-CuCr2O4 nanocomposites exhibited reduced PL emissions compared to pure CuO, indicating the low recombination rate of photogenerated electrons and holes. As expected, the CuCr2O4 loaded CuO showed enhanced photocatalytic activity for MO and MB dyes, and the kinetic studies suggest that the degradation follows pseudo-first-order kinetics. The enhanced photocatalytic activity of CuO-CuCr2O4 nanocomposites can be attributed to the presence of CuCr2O4 as an electron acceptor, which improves the effective charge separation in CuO.

  12. Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and dietborne exposures

    Science.gov (United States)

    Croteau, Marie-Noele; Misra, Superb K.; Luoma, Samuel N.; Valsami-Jones, Eugenia

    2014-01-01

    The incidental ingestion of engineered nanoparticles (NPs) can be an important route of uptake for aquatic organisms. Yet, knowledge of dietary bioavailability and toxicity of NPs is scarce. Here we used isotopically modified copper oxide (65CuO) NPs to characterize the processes governing their bioaccumulation in a freshwater snail after waterborne and dietborne exposures. Lymnaea stagnalis efficiently accumulated 65Cu after aqueous and dietary exposures to 65CuO NPs. Cu assimilation efficiency and feeding rates averaged 83% and 0.61 g g–1 d–1 at low exposure concentrations (–1), and declined by nearly 50% above this concentration. We estimated that 80–90% of the bioaccumulated 65Cu concentration in L. stagnalis originated from the 65CuO NPs, suggesting that dissolution had a negligible influence on Cu uptake from the NPs under our experimental conditions. The physiological loss of 65Cu incorporated into tissues after exposures to 65CuO NPs was rapid over the first days of depuration and not detectable thereafter. As a result, large Cu body concentrations are expected in L. stagnalis after exposure to CuO NPs. To the degree that there is a link between bioaccumulation and toxicity, dietborne exposures to CuO NPs are likely to elicit adverse effects more readily than waterborne exposures.

  13. A chemical reaction controlled mechanochemical route to construction of CuO nanoribbons for high performance lithium-ion batteries.

    Science.gov (United States)

    Chen, Kunfeng; Xue, Dongfeng

    2013-12-07

    We reported a chemical reaction controlled mechanochemical route to synthesize mass CuO nanosheets by manual grinding in a mortar and pestle, which does not require any solvent, complex apparatus and techniques. The activation of chemical reactions by milling reactants was thus proved, and the energy from mechanical grinding promotes the fast formation of CuO nanoribbons. The resultant materials have preferential nanoscale ribbon-like morphology that can show large capacity and high cycle performance as lithium-ion battery anodes. After 50 cycles, the discharge capacity of CuO nanoribbon electrodes is 614.0 mA h g(-1), with 93% retention of the reversible capacity. The thermodynamic reactions of the CuO battery showed size-dependent characterization. The microstructures of CuO nanosheets and reaction routes can be controlled by the ratio of NaOH/CuAc2 according to the chemical reactions involved. The intact nanoribbon structure, thin-layer, and hierarchical structures endow present CuO materials with high reversible capacity and excellent cycling performances. The simple, economical, and environmentally friendly mechanochemical route is of great interest in modern synthetic chemistry.

  14. Cobalt-doped ZnO nanowires on quartz: Synthesis by simple chemical method and characterization

    Science.gov (United States)

    Vempati, Sesha; Shetty, Amitha; Dawson, P.; Nanda, Karunakar; Krupanidhi, S. B.

    2012-03-01

    The synthesis of cobalt-doped ZnO nanowires is achieved using a simple, metal salt decomposition growth technique. A sequence of drop casting on a quartz substrate held at 100 °C and annealing results in the growth of nanowires of average (modal) length ˜200 nm and diameter of 15±4 nm and consequently an aspect ratio of ˜13. A variation in the synthesis process, where the solution of mixed salts is deposited on the substrate at 25 °C, yields a grainy film structure which constitutes a useful comparator case. X-ray diffraction shows a preferred [0001] growth direction for the nanowires while a small unit cell volume contraction for Co-doped samples and data from Raman spectroscopy indicate incorporation of the Co dopant into the lattice; neither technique shows explicit evidence of cobalt oxides. Also the nanowire samples display excellent optical transmission across the entire visible range, as well as strong photoluminescence (exciton emission) in the near UV, centered at 3.25 eV.

  15. Doped Colloidal ZnO Nanocrystals

    Directory of Open Access Journals (Sweden)

    Yizheng Jin

    2012-01-01

    Full Text Available Colloidal ZnO nanocrystals are promising for a wide range of applications due to the combination of unique multifunctional nature and remarkable solution processability. Doping is an effective approach of enhancing the properties of colloidal ZnO nanocrystals in well-controlled manners. In this paper, we analyzed two synthetic strategies for the doped colloidal ZnO nanocrystals, emphasizing our understanding on the critical factors associated with the high temperature and nonaqueous approach. Latest advances of three topics, bandgap engineering, n-type doping, and dilute magnetic semiconductors related to doped ZnO nanocrystals were discussed to reveal the effects of dopants on the properties of the nanocrystalline materials.

  16. Effect of Cobalt Doping on Nanostructured CuO Thin Films

    Science.gov (United States)

    Bayansal, Fatih; Taşköprü, Turan; Şahin, Bünyamin; Çetinkara, Hacı Ali

    2014-07-01

    The growth of cobalt-doped nanostructured CuO thin films using the successive ionic layer adsorption and reaction (SILAR) method is presented. It is found that Co doping considerably influences the structural (X-ray diffraction (XRD)), morphological (finite-element-scanning electron microscopy (FESEM)), and optical (ultraviolet/visible (UV/vis.) and Raman) properties of the films. XRD experiments evidence that the crystallite size of the films decreased with increasing Co doping. FESEM images reveal that the grain size of the nanostructures decreased with increasing doping concentration. By UV/vis. analysis, it is found that Co doping has a decreasing effect on band gap energy. The broadening and downshift of the Raman peaks are mainly attributed to the quantum confinement effect of CuO nanostructures.

  17. Realistic electronic structure calculations for magnetic insulators like La2CuO4

    Science.gov (United States)

    Grant, J. B.; McMahan, A. K.

    1991-01-01

    We suggest that Hartree-Fock theory is a good starting point for the solution of ab initio-derived extended Hubbard Hamiltonians for magnetic insulators like La2CuO4, as indicated by surprisingly accurate results for the superchange frequencies and insulating gaps for this material and isostructural La2NiO4, K2CuF4, and K2NiF4. Limited configuration interaction beyond Hartree-Fock theory is then used to demonstrate that admixtures of a1- (d23z-r2 -) symmetry states at energies somewhat away from the gap edge are essential to the dispersion of the first quasiparticle branch in La2CuO4 for doped-in holes.

  18. Study of Optical Band Gap of CuO Using Fermi's Golden Rule

    Science.gov (United States)

    Nemade, K. R.; Waghuley, S. A.

    2012-05-01

    Quantum size effect where the electronic and optical properties of solids are altered due to changes in the band structures, enhanced the surface/volume ratio in nano dimensions forces more than 33% of the atoms to be on the surface (for 10nm dot 35), which drastically altering the physical properties such as having lower melting temperature and lower sintering temperature, and higher diffusion force at elevated temperatures. Consequently, its Fermi's golden rule analysis becomes crucial. Cupric oxide (CuO) is an important transition metal oxide with the basis of several high temperature superconductors and giant magnetoresistance materials. In present investigation, optical Band Gap from UV data using Fermi's golden rule for single step chemically synthesized CuO was computed.

  19. Preparation and characterization of nanostructured CuO thin films for photoelectrochemical splitting of water

    Indian Academy of Sciences (India)

    Diwakar Chauhan; V R Satsangi; Sahab Dass; Rohit Shrivastav

    2006-12-01

    Nanostructured copper oxide thin films (CuO) were prepared on conducting glass support (SnO2: F overlayer) via sol–gel starting from colloidal solution of copper (II) acetate in ethanol. Films were obtained by dip coating under room conditions (temperature, 25–32°C) and were subsequently sintered in air at different temperatures (400–650°C). The evolution of oxide coatings under thermal treatment was studied by glancing incidence X-ray diffraction and scanning electron microscopy. Average particle size, resistivity and band gap energy were also determined. Photoelectrochemical properties of thin films and their suitability for splitting of water were investigated. Study suggests that thin films of CuO sintered at lower temperatures (≈ 400°C) are better for photoconversion than thick films or the films sintered at much higher temperatures. Plausible explanations have been provided.

  20. Controlled synthesis of CuO nanostructures on Cu foil, rod and grid

    Energy Technology Data Exchange (ETDEWEB)

    Vanithakumari, S.C.; Shinde, S.L. [Materials Research Centre, Indian Institute of Science, C.V. Raman Avenue, Malleswaram, Bangalore 560012, Karnataka (India); Nanda, K.K., E-mail: nanda@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, C.V. Raman Avenue, Malleswaram, Bangalore 560012, Karnataka (India)

    2011-05-15

    CuO nanowires are synthesized by heating Cu foil, rod and grid in ambient without employing a catalyst or gas flow at temperatures ranging from 400 to 800 deg. C for a duration of 1-12 h. Scanning electron microscopy (SEM) investigation reveals the formation of nanowires. The structure, morphology and phase of the as-synthesized nanowires are analyzed by various techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). It is found that these nanowires are composed of CuO phase and the underlying film is of Cu{sub 2}O. A systematic study is carried out to find the possibilities for the transformation of one phase to another completely. A possible growth mechanism for the nanowires is also discussed.

  1. ZnO nanostructures and their applications

    CERN Document Server

    Xiaowei, Sun

    2011-01-01

    This book focuses on the various functional properties and potential applications of one-dimensional ZnO nanostructures, from basic principles to our most recent discoveries. It comprises experimental analysis of various properties of ZnO nanostructures, preparation techniques, research methods, and some promising applications. The areas of focus include ZnO-based gas/biochemical sensing devices, field emitters, solar cells, light-emitting diodes, e-papers, and single-nanowire-based transistors.

  2. ZnO: growth, doping & processing

    Directory of Open Access Journals (Sweden)

    D.P. Norton

    2004-06-01

    Full Text Available A review is given here of recent results in developing improved control of growth, doping, and fabrication processes for ZnO devices with possible applications to ultraviolet (UV light emitters, spin functional devices, gas sensors, transparent electronics, and surface acoustic wave devices. ZnO can be grown on cheap substrates such as glass at relatively low temperatures and may have advantages over the GaN system in some of these applications.

  3. Superhydrophobicity of Hierarchical and ZNO Nanowire Coatings

    Science.gov (United States)

    2014-01-01

    KOH (3 wt%), distilled water and isopropyl alcohol (10% vol%) at 95 C for 50 min. Subsequently, a 10 nm ZnO seed layer wasThis journal is © The Royal...ZnO have been widely used in sensors, piezo-nanogenerators, and solar cells. The hierarchical structures of ZnO nanowires grown on Si pyramid surfaces...exhibiting superhydrophobicity in this work will have promising applications in the next generation photovoltaic devices and solar cells

  4. Consequences of Ca Codoping in YAlO3 :Ce Single Crystals.

    Science.gov (United States)

    Moretti, Federico; Hovhannesyan, Karine; Derdzyan, Marina; Bizarri, Gregory A; Bourret, Edith D; Petrosyan, Ashot G; Dujardin, Christophe

    2017-03-03

    The influence of Ca codoping on the optical absorption, photo-, radio-, and thermo-luminescence properties of YAlO3 :Ce (YAP:Ce) crystals has been studied for four different calcium concentrations ranging from 0 to 500 ppm. Ca codoping results in a partial oxidation of Ce(3+) into Ce(4+) , The luminescence time response under pulsed X-ray excitation of the Ce(3+) /Ce(4+) admixure clearly demonstrates the role of hole migration on both the rise time and the generally observed slow components. From an application point of view, Ca codoping significantly improves the timing performances, but the induced presence of Ce(4+) ions is also the cause of a reduction in scintillation efficiency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Subpicosecond luminescence rise time in magnesium codoped GAGG:Ce scintillator

    Science.gov (United States)

    Tamulaitis, G.; Vaitkevičius, A.; Nargelas, S.; Augulis, R.; Gulbinas, V.; Bohacek, P.; Nikl, M.; Borisevich, A.; Fedorov, A.; Korjik, M.; Auffray, E.

    2017-10-01

    The influence of co-doping of Gd3Al2GA3O12:Ce (GAGG:Ce) scintillator with magnesium on the rise time of luminescence response was studied in two GAGG:Ce crystals grown in nominally identical conditions except of Mg co-doping in one of them. Time-resolved photoluminescence spectroscopy and free carrier absorption techniques were exploited. It is evidenced that the Mg co-doping decreases the rise time down to sub-picosecond domain. Meanwhile, the light yield decreases by ∼20%. Thus, the feasibility of exploitation of the fast rise edge in luminescence response for ultrafast timing in scintillation detectors is demonstrated. The role of Mg impurities in facilitating the excitation transfer to radiative recombination centers is discussed.

  6. Fabrication of visible-light responsive S-F-codoped TiO2 nanotubes

    Institute of Scientific and Technical Information of China (English)

    CHEN XiuQin; SU YaLing; ZHANG XingWang; LEI LeCheng

    2008-01-01

    Fabrication and S-F-codoping of TiO2 nanotubes were carried out by a one-step electrochemical ano-dization process to extend the photoresponse of TiO2 to the visible-light region. The prepared samples were annealed in air and deteoted by SEM, XRD, XPS and UV-vis DRS speotrophotometer. The results showed that the average tube diameter of the nanotubes was 150 nm and the average tube length was 400 nm. The doped TiO2 nanotubes exhibited strong absorption in visible-light region. Photoelectro- catalytic degradation efficiency of 4-CP over S-F-codoped TiO2 nanotubes was 39.7% higher than that of only-F-doped sample. Moreover, sulfur and fluorine codoped into substitutional sites of TiO2 had been proven to be indispensable for strong response and high photocatalytic activity under visible light, as assessed by XPS.

  7. Studies on codoping behavior of Nd:Mg:LiNbO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kar, S. [Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Choubey, R.K. [Department of Applied Physics, SGSITS, Indore 452 003 (India); Sen, P. [Department of Applied Physics, SGSITS, Indore 452 003 (India); Bhagavannarayana, G. [Crystal Growth Section, National Physical Laboratory, New Delhi 110 012 (India); Bartwal, K.S. [Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)]. E-mail: bartwalks@yahoo.co.in

    2007-04-30

    Undoped, Mg doped and Mg, Nd codoped LiNbO{sub 3} single crystals were grown by Czochralski technique. Powder X-ray diffraction (XRD) analysis shows that doping does not change the basic structure of LiNbO{sub 3} crystal. Optical transmission study shows the blue shift in the cutoff frequency in Mg doped and Mg, Nd codoped LiNbO{sub 3} crystals. Five absorption peaks are observed in Nd:Mg:LiNbO{sub 3} crystals corresponding to transitions from {sup 4}I{sub 9/2} ground state of Nd{sup 3+} ions. Crystalline perfection of these crystals examined using high-resolution X-ray diffraction (HRXRD) technique. The Mg, Nd codoped crystals show better crystalline perfection.

  8. Photoluminescence of an Yb3+/Al3+-codoped microstructured optical fibre

    Institute of Scientific and Technical Information of China (English)

    Xia Chang-Ming; Zhou Gui-Yao; Han Ying; Hou Lan-Tian

    2011-01-01

    An Yb3+/Al3+-codoped microstructured optical fibre is prepared based on photonic crystal fibre technology.The characteristic spectra of preforms and fibres are experimentally investigated.The results show that under a 971 nm excitation,besides the known infrared fluorescence luminescence around 1050 nm,a blue luminescence peak at 486 nm is obtained.Moreover,an unexpected emission peak at 730 nm is also observed.The photoluminescence mechanism of an Yb3+/Al3+-codoped microstructured optical fibre is discussed.The emission peak at 486 nm is attributed to the cooperative upconversion resulting from pairs of Yb3+ions,and the emission peak around 730 nm is ascribed to the stimulated Raman scattering because of nonlinear effects of microstructured optical fibre.The Yb3+/Al3+-codoped microstructured optical fibre is promising for varieties of applications from laser printing and optical recording to cancer treatments,such as photodynamic therapy.

  9. DFT study of Ag and La codoped BaTiO3

    Science.gov (United States)

    Maldonado, Frank; Stashans, Arvids

    2017-03-01

    Density functional theory and generalized gradient approximation including a Hubbard-like term was used in the present work to analyse structure as well as electronic and electrical properties of Ag and La codoped BaTiO3 material. Intrinsic oxygen vacancy defect has been taken into consideration throughout the calculations. Results on atomic shifts indicate the significance of Coulomb electrostatic interaction in finding equilibrium state of the system. It is shown that the n-type electrical conductivity should be expected as a result of codoping. Computed concentrations of free-carriers manifest the advantage of codoping procedure compared to the single impurity doping in the BaTiO3 crystal. It is also shown that oxygen vacancy alone can produce the n-type conductivity.

  10. Multi-Rare-Earth Ions Codoped Tellurite Glasses for Potential Dual Wavelength Fibre-Optic Amplifiers

    Institute of Scientific and Technical Information of China (English)

    DAI Shi-Xun; YANG Jian-Hu; XU Shi-Qing; DAI Neng-Li; WEN Lei; HU Li-Li; JIANG Zhong-Hong

    2003-01-01

    A novel co-doping method of multi-rare-earth (RE) ions was demonstrated in tellurite glasses for fibre amplifiers. Fluorescence emissions at both 1.53 and 1.63 fj,m communication windows were Brstly observed from Er3+ /Yb3+ /Tm3+ -codoped tellurite glasses under a single wavelength pumping at 980 nm. The full width at half maximum of Suorescence at 1.53 and 1.63 [im are 55 nm and 50 urn, respectively. Tm's codoping method of three RE ions could be applied to other low photon energy glasses, which would be possibly used for potential dual wavelength fibre-optic amplifiers to broaden the communication windows.

  11. Growth and characterisation of bulk Sr2CuO2Cl2 single crystals

    NARCIS (Netherlands)

    Hien, NT; Franse, JJM; Pothuizen, JJM; Li, TW; Menovsky, AA

    1997-01-01

    Large bulk single crystals of the Sr2CuO2Cl2 compound with dimensions of 15 x 6 x 4 mm(3) have been grown directly from the melt by the floating-zone method using a light-image furnace. The optimal growth conditions are found in a mixed atmosphere of 0.2 bar oxygen and 1.2 bar argon. Results of the

  12. Spontaneous ferromagnetic spin ordering at the surface of La$_2$CuO$_4$

    OpenAIRE

    2007-01-01

    Magnetic properties of high purity stoichiometric La$_2$CuO$_4$ nanoparticles are systematically investigated as a function of particle size. Ferromagnetic single-domain spin clusters are shown to spontaneously form at the surface of fine grains as well as paramagnetic defects. Hysteresis loops and thermomagnetic irreversibility are observed in a wide temperature range $5 - 350$ K with the remnant moment and coercivity gradually decreasing with increasing temperature. Possible origins of the ...

  13. Solid-State Thermal Decoposition Method for the Preparation of CuO Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Dehno Khalaji

    2012-12-01

    Full Text Available In this paper, CuO nanoparticles  have been synthesized via solid- state thermal decomposition using copper(II Schiff base complexes as new precursors at 600ºC under air atmosphere for 3 h. Surface morphology of the products were characterized by Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD and scanning electron microscopy (SEM.

  14. The structure and energies of peroxy bipolarons in La sub 2 CuO sub 4

    CERN Document Server

    Catlow, C R A; Zhang, X

    1998-01-01

    We present calculations of the binding energies of peroxy (O sub 2 sup 2 sup -) bipolarons in La sub 2 CuO sub 4. Our results strongly suggest that these species are weakly bound with respect to isolated hole species. Estimates of the effective mass of the bipolaronic species based on our calculated relaxed geometries are consistent with experimental observation for the superconducting state of the material. (author). Letter-to-the-editor

  15. Fluctuating in the hopping rate of CuO thin films with respect to substrate temperature

    Science.gov (United States)

    Serin, N.; Yildiz, A.; Çam, E.; Uzun, Ş.; Serin, T.

    2012-10-01

    Electrical transport properties in CuO thin films processed using d.c. magnetron sputtering technique is investigated to understand the correlation between the processing conditions and electrical properties. It is identified that the temperature dependent conductivity of the investigated films is controlled by the multi-phonon hopping conduction mechanism. A detailed analysis in terms of carrier hopping parameters is used to correlate electrical transport properties with the d.c. magnetron sputtering conditions.

  16. Proximity-induced superconductivity in monolayer CuO2 on cuprate substrates

    Science.gov (United States)

    Zhu, Guo-Yi; Zhang, Fu-Chun; Zhang, Guang-Ming

    2016-11-01

    To understand the recently observed high temperature superconductivity in the monolayer CuO2 grown on the Bi2Sr2CaCu2O8 + δ substrates, we propose a two-band model of the hybridized oxygen px and py orbitals with the proximity effect of the substrate. We demonstrate that both the nodal and nodeless superconducting states can be induced by the proximity effect, depending on the strengths of the pairing parameters.

  17. Microwave absorption and resistively shunted Josephson junctions in high temperature CuO superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, J.S.; Huang, M.X.; Bhagat, S.M. (Dept. of Physics, Univ. of Maryland, College Park, MD (United States)); Kish, K.; Tyagi, S. (Dept. of Physics and Atmospheric Science, Drexel Univ., Philadelphia, PA (United States))

    1992-11-01

    We report that the field dependence of the magnetoabsorption (virgin curve) in all pristine granular CuO type (HTSC) superconductors follows a one-parameter expression. This ''universal'' result is combined with previous measurements on field and temperature dependences of microwave absorption in HTSC to demonstrate that a simple model based on resistively shunted Josehpson junctions is adequate to qualitatively account for almost all the observations on powders, pellets, thin films and single crystals. (orig.).

  18. Building Selectivity for NO Sensing in a NOx Mixture with Sonochemically Prepared CuO Structures

    Directory of Open Access Journals (Sweden)

    Max R. Mullen

    2015-12-01

    Full Text Available Several technologies are available for decreasing nitrogen oxide (NOx emissions from combustion sources, including selective catalytic reduction methods. In this process, ammonia reacts with nitric oxide (NO and nitrogen dioxide (NO2. As the stoichiometry of the two reactions is different, electrochemical sensor systems that can distinguish between NO and NO2 in a mixture of these two gases are of interest. Since NO and NO2 can be brought to equilibrium, depending on the temperature and the surfaces that they are in contact with, the detection of NO and NO2 independently is a difficult problem and has not been solved to date. In this study, we explore a high surface area sonochemically prepared CuO as the resistive sensing medium. CuO is a poor catalyst for NOx equilibration, and requires temperatures of 500 C to bring about equilibration. Thus, at 300 C, NO and NO2 retain their levels after interaction with CuO surface. In addition, NO adsorbs more strongly on the CuO over NO2. Using these two concepts, we can detect NO with minimal interference from NO2, if the latter gas concentration does not exceed 20% in a NOx mixture over a range of 100–800 ppm. Since this range constitutes most of the range of total NOx concentrations in diesel and other lean burn engines, this sensor should find application in selective detection of NO in this combustion application. A limitation of this sensor is the interference with CO, but with combustion in excess air, this problem should be alleviated.

  19. Photoelectrochemical Properties of CuO Grown by Using a Modified Chemical Bath Deposition Method

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jin-wook; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2016-06-15

    In this study, cupric oxide (CuO) nanorods were grown on the fluorine-doped tin oxide (FTO) glass substrate using a modified-chemical bath deposition (M-CBD) method. We investigated the morphology, structural, optical and photoelectrochemical properties of the cupric oxide nanorods with various growth durations by using field-emission scanning-electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy (UV-vis) and three-electrode potentiostat, respectively. In this work, we found that the morphologies, thickness, growth rate, crystallinities, grain sizes and optical bandgap were controllable on the growth duration, which affected photocurrent density and photo-stability. The highest growth rate of CuO nanorods was 126 nm/min. From the XRD measurement, we also confirmed that (020) directional growth affected the growth of the CuO nanorods. A maximum photocurrent density of-1.88 mA/cm² at -0.55 V (vs. SCE) and high photo-stability value about 40% was obtained with 10 minutes growth duration.

  20. Spectral studies on CuO in sodium–calcium borophosphate glasses

    Indian Academy of Sciences (India)

    S SHAILAJHA; K GEETHA; P VASANTHARANI

    2016-08-01

    Transparent borophosphate glasses doped with CuO were prepared by melt quenching technique. X-ray diffraction (XRD), optical and luminescence properties of sodium–calcium borophosphate glasses doped with CuO have been studied. The XRD results showed the amorphous nature of the sample. The introduction of CuO was favourable for the colour changes from light blue to dark bluish green colour. Direct optical energy bandgaps before and after doping with different percents of copper oxide obtained in the range 4.81–2.99 eV indicated the role of copper in the glassy matrix by ultraviolet (UV) spectra. The glasses have more than 80% transparency for emission wavelength range, and strong absorption bands due to the charge transition of the Cu$^+$ and Cu$^{2+}$ ions were observed. The emission bands observed in the UV and blue regions are attributed to 3d$^9$4s–3d$^{10}$ triplet transition in Cu$^+$ ion.

  1. Synthesis and characterization of tenorite (CuO nanoparticles from smelting furnace dust(SFD

    Directory of Open Access Journals (Sweden)

    Darezereshki E.

    2013-01-01

    Full Text Available Tenorite (CuO nanoparticles were prepared from a dilute CuSO4 solution. The solution was obtained by leaching (pH=1.5 of smelting furnace dust of Sarcheshmeh Copper Complex, Iran. The recovery of copper from the acidic sulphate solution was carried out by solvent extraction using Lix 984-N. Tenorite nanoparticles were synthesized by direct thermal decomposition of Langite [Cu4(OH6SO4(H2O2] as a precursor which was calcinated in air for 2 h at 750°C. The Samples were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The average diameter of the spherical pure CuO nanoparticles and their crystallite size were estimated to be 92 nm and 40nm, respectively. The simplicity of the present method suggests its potential application at industrial scale as a cheap and convenient way to produce pure CuO nanoparticles from dilute CuSO4 solutions obtained from leaching of smelting furnace dust.

  2. CuO and Co3O4 Nanoparticles: Synthesis, Characterizations, and Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Rashad

    2013-01-01

    Full Text Available Copper oxide and cobalt oxide (CuO, Co3O4 nanocrystals (NCs have been successfully prepared in a short time using microwave irradiation without any postannealing treatment. Both kinds of nanocrystals (NCs have been prepared using copper nitrate and cobalt nitrate as the starting materials and distilled water as the solvent. The resulted powders of nanocrystals (NCs were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and atomic force microscopy (AFM measurements. The obtained results confirm the presence of the both of oxides nanopowders produced during chemical precipitation using microwave irradiation. A strong emission under UV excitation is obtained from the prepared CuO and Co3O4 nanoparticles. The results show that the nanoparticles have high dispersion and narrow size distribution. The line scans of atomic force microscopy (AFM images of the nanocrystals (NCs sprayed on GaAs substrates confirm the results of both X-ray diffraction and transmission electron microscopy. Furthermore, vibrational studies have been carried out using Raman spectroscopic technique. Specific Raman peaks have been observed in the CuO and Co3O4 nanostructures, and the full width at half maximum (FWHM of the peaks indicates a small particle size of the nanocrystals.

  3. Effect of Extracellular Polymeric Substances on CuO Nanoparticle Dissolution and Colloidal Stability

    Science.gov (United States)

    Adeleye, A. S.; Keller, A. A.

    2013-12-01

    Extracellular polymeric substances (EPS) are high molecular weight polymers produced by microorganisms growing in natural as well as artificial environments. EPS may interact with engineered nanomaterials (ENMs) in aquatic systems via electrostatic and/or hydrophobic associations, therefore, influencing the fate and transport of ENMs. In this study the effect of soluble EPS isolated from Isochrysis galbana, a marine phytoplankton, on the dissolution kinetics and colloidal stability of CuO nanoparticles was investigated. EPS was characterized by measuring hydrodynamic diameter, total organic carbon, carbohydrate, and protein concentrations. CuO nanoparticles were more stable in the presence of EPS in aqueous media as indicated by hydrodynamic size and average count rate measurements. The effect of pH and ionic strength on dissolution was also studied. [Cu2+] and [Cu]total detected after a week were 5.70 mg L-1 and 7.08 mg L-1 respectively when 10 mg L-1 CuO nanoparticles was kept in 10 mM NaCl at pH 4. In the presence of 5 mg-C EPS L-1, [Cu2+] and [Cu]total were slightly lower at 5.0 mg L-1 and 5.53 mg L-1 respectively. Although observed [Cu2+] and [Cu]total were significantly lower at neutral and alkaline pH conditions, a similar pattern was observed.

  4. Growth of vertically aligned ZnO nanorods using textured ZnO films

    Directory of Open Access Journals (Sweden)

    Meléndrez Manuel

    2011-01-01

    Full Text Available Abstract A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100 substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells. PACS 61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.

  5. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains

    Directory of Open Access Journals (Sweden)

    Azam A

    2012-07-01

    Full Text Available Ameer Azam,1,2 Arham S Ahmed,2 M Oves,3 MS Khan,3 Adnan Memic11Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia; 2Center of Excellence in Materials Science (Nanomaterials, Department of Applied Physics, 3Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, IndiaBackground: CuO is one of the most important transition metal oxides due to its captivating properties. It is used in various technological applications such as high critical temperature superconductors, gas sensors, in photoconductive applications, and so on. Recently, it has been used as an antimicrobial agent against various bacterial species. Here we synthesized different sized CuO nanoparticles and explored the size-dependent antibacterial activity of each CuO nanoparticles preparation.Methods: CuO nanoparticles were synthesized using a gel combustion method. In this approach, cupric nitrate trihydrate and citric acid were dissolved in distilled water with a molar ratio of 1:1. The resulting solution was stirred at 100°C, until gel was formed. The gel was allowed to burn at 200°C to obtain amorphous powder, which was further annealed at different temperatures to obtain different size CuO nanoparticles. We then tested the antibacterial properties using well diffusion, minimum inhibitory concentration, and minimum bactericidal concentration methods.Results: XRD spectra confirmed the formation of single phase CuO nanoparticles. Crystallite size was found to increase with an increase in annealing temperature due to atomic diffusion. A minimum crystallite size of 20 nm was observed in the case of CuO nanoparticles annealed at 400°C. Transmission electron microscopy results corroborate well with XRD results. All CuO nanoparticles exhibited inhibitory effects against both Gram-positive and -negative bacteria. The size of the particles was correlated with its antibacterial activity.Conclusion: The antibacterial activity of CuO nanoparticles

  6. Electrochemical Properties for Co-Doped Pyrite with High Conductivity

    Directory of Open Access Journals (Sweden)

    Yongchao Liu

    2015-09-01

    Full Text Available In this paper, the hydrothermal method was adopted to synthesize nanostructure Co-doped pyrite (FeS2. The structural properties and morphology of the synthesized materials were characterized using X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. Co in the crystal lattice of FeS2 could change the growth rate of different crystal planes of the crystal particles, which resulted in various polyhedrons with clear faces and sharp outlines. In addition, the electrochemical performance of the doping pyrite in Li/FeS2 batteries was evaluated using the galvanostatic discharge test, cyclic voltammetry and electrochemical impedance spectroscopy. The results showed that the discharge capacity of the doped material (801.8 mAh·g−1 with a doping ratio of 7% was significantly higher than that of the original FeS2 (574.6 mAh·g−1 because of the enhanced conductivity. Therefore, the doping method is potentially effective for improving the electrochemical performance of FeS2.

  7. Solid State Dye Lasers Based on Coumarin 440 and Pyrromethene 567 Codoped Polymethyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    FAN Rong-Wei; LI Xiao-Hui; XIA Yuan-Qin; JIANG Yu-Gang; HE Wei-Ming; CHEN De-Ying

    2008-01-01

    Laser dye coumarin 440(C440) is codoped with pyrromethene 567 (PM567) into polymethyl methacrylate (PMMA ).The effects of C440 concentration on the performance of the solid state dye medium,including spectra property,slope efficiency and photostability,are studied.When C440 is codoped with PM567 at the same concentration 1 × 10-4 mol/L,the highest efficiency and photostability can be obtained.Compared with the medium based on pure PM567 doped PMMA,about 50% increase in slope efficiency and at least five-fold enhancement in the photostabifity are observed.

  8. Preparation and photocatalytic activity of B, Y co-doped nanosized TiO_2 catalyst

    Institute of Scientific and Technical Information of China (English)

    石中亮; 刘富梅; 姚淑华

    2010-01-01

    The catalysts of un-doped, single-doped and co-doped titanium dioxide (TiO2) powders were prepared by sol-gel method with Ti(OC4H9)4 as a raw material. The photocatalytic decomposition of phenol in aqueous solution under UV light was used as a probe reaction to evaluate their photocatalytic activities. The effects of B, Y co-doping on the crystallite sizes, crystal pattern, surface composition, and optical property of the catalyst were investigated by thermogravimetric differential thermal analysis, X-ray d...

  9. Growth and optical properties of ZnO nanostructures grown on ZnO seed layers

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yong; Feneberg, Martin; Reiser, Anton; Tischer, Ingo; Wiedenmann, Michael; Frey, Reinhard; Roeder, Uwe; Sauer, Rolf; Thonke, Klaus [Institut fuer Halbleiterphysik, Universitaet Ulm (Germany)

    2009-07-01

    Using a ZnO seed layer, we grow well-aligned ZnO nanopillars on different substrates including a-plane sapphire, c-plane GaN, and (100) silicon. We use Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) to characterize the morphology of the ZnO seed layers and of the ZnO nanopillars. Layers and nanopillars were also investigated by optical spectroscopy. For all kinds of substrates used, we find well-faceted nanopillars which are uniform along the whole length. The data indicate that they grow via the vapour-solid (VS) mechanism under well-controlled growth conditions. The photoluminescence of the ZnO nanopillars shows sharp near-band-edge luminescence and nearly no green or yellow band luminescence, indicating very low contamination.

  10. Influence of Se/N Codoping on the Structural, Optical, Electronic and Photocatalytic Properties of TiO2

    Directory of Open Access Journals (Sweden)

    Yelda Y. Gurkan

    2017-03-01

    Full Text Available Se4+ and N3− ions were used as codopants to enhance the photocatalytic activity of TiO2 under sunlight irradiation. The Se/N codoped photocatalysts were prepared through a simple wet-impregnation method followed by heat treatment using SeCl4 and urea as the dopant sources. The prepared photocatalysts were well characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, UV-diffuse reflectance spectroscopy (UV-DRS, scanning electron microscopy (SEM and Raman spectroscopy. The codoped samples showed photoabsorption in the visible light range from 430 nm extending up to 580 nm. The photocatalytic activity of the Se/N codoped photocatalysts was evaluated by degradation of 4-nitrophenol (4-NP. The degradation of 4-NP was highly increased for the Se/N codoped samples compared to the undoped and single doped samples under both UV-A and sunlight irradiation. Aiming to determine the electronic structure and dopant locations, quantum chemical modeling of the undoped and Se/N codoped anatase clusters was performed using Density Functional Theory (DFT calculations with the hybrid functional (B3LYP and double-zeta (LanL2DZ basis set. The results revealed that Se/N codoping of TiO2 reduces the band gap due to mixing of N2p with O2p orbitals in the valence band and also introduces additional electronic states originating from Se3p orbitals in the band gap.

  11. Influence of Se/N Codoping on the Structural, Optical, Electronic and Photocatalytic Properties of TiO₂.

    Science.gov (United States)

    Gurkan, Yelda Y; Kasapbasi, Esra; Turkten, Nazli; Cinar, Zekiye

    2017-03-07

    Se(4+) and N(3-) ions were used as codopants to enhance the photocatalytic activity of TiO₂ under sunlight irradiation. The Se/N codoped photocatalysts were prepared through a simple wet-impregnation method followed by heat treatment using SeCl₄ and urea as the dopant sources. The prepared photocatalysts were well characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-diffuse reflectance spectroscopy (UV-DRS), scanning electron microscopy (SEM) and Raman spectroscopy. The codoped samples showed photoabsorption in the visible light range from 430 nm extending up to 580 nm. The photocatalytic activity of the Se/N codoped photocatalysts was evaluated by degradation of 4-nitrophenol (4-NP). The degradation of 4-NP was highly increased for the Se/N codoped samples compared to the undoped and single doped samples under both UV-A and sunlight irradiation. Aiming to determine the electronic structure and dopant locations, quantum chemical modeling of the undoped and Se/N codoped anatase clusters was performed using Density Functional Theory (DFT) calculations with the hybrid functional (B3LYP) and double-zeta (LanL2DZ) basis set. The results revealed that Se/N codoping of TiO₂ reduces the band gap due to mixing of N2p with O2p orbitals in the valence band and also introduces additional electronic states originating from Se3p orbitals in the band gap.

  12. Great blue-shift of luminescence of ZnO nanoparticle array constructed from ZnO quantum dots

    Directory of Open Access Journals (Sweden)

    Wang Nengwen

    2011-01-01

    Full Text Available Abstract ZnO nanoparticle array has been fabricated on the Si substrate by a simple thermal chemical vapor transport and condensation without any metal catalysts. This ZnO nanoparticles array is constructed from ZnO quantum dots (QDs, and half-embedded in the amorphous silicon oxide layer on the surface of the Si substrate. The cathodoluminescence measurements showed that there is a pronounced blue-shift of luminescence comparable to those of the bulk counterpart, which is suggested to originate from ZnO QDs with small size where the quantum confinement effect can work well. The fabrication mechanism of the ZnO nanoparticle array constructed from ZnO QDs was proposed, in which the immiscible-like interaction between ZnO nuclei and Si surface play a key role in the ZnO QDs cluster formation. These investigations showed the fabricated nanostructure has potential applications in ultraviolet emitters.

  13. Intrinsic Ferromagnetism in Eu doped ZnO

    OpenAIRE

    Assadi, M. H. N.; Zhang,Y.B.; Ionescu, M.; Photongkam, P.; Li, S.

    2010-01-01

    We report room temperature ferromagnetism in as-implanted Eu doped ZnO (ZnO:Eu). To address the origin of ferromagnetism ab initio calculations of ZnO:Eu system are performed. Results show that the ferromagnetism is induced by ZnO point defects as Eu ions in perfect ZnO tend to align antiferromagnetically.

  14. Anomalous enhancement of the thermoelectric figure of merit by V co-doping of Nb-SrTiO3

    KAUST Repository

    Ozdogan, K.

    2012-05-10

    The effect of V co-doping of Nb-SrTiO3 is studied by full-potential density functional theory. We obtain a stronger increase of the carrier density for V than for Nbdopants. While in Nb-SrTiO3 a high carrier density counteracts a high thermoelectric figure of merit, the trend is inverted by V co-doping. The mechanism leading to this behavior is explained in terms of a local spin-polarization introduced by the V ions. Our results indicate that magnetic co-doping can be a prominent tool for improving the thermoelectric figure of merit.

  15. Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices

    Energy Technology Data Exchange (ETDEWEB)

    Mascarenhas, Angelo

    2017-08-01

    Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  16. Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices

    Science.gov (United States)

    Mascarenhas, Angelo

    2015-07-07

    Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is sued to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  17. Flexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: in situ engineered versus ex situ piled

    Science.gov (United States)

    Huang, Jianfei; Zhu, Yihua; Yang, Xiaoling; Chen, Wei; Zhou, Ying; Li, Chunzhong

    2014-12-01

    Convenient determination of glucose in a sensitive, reliable and cost-effective way has aroused sustained research passion, bringing along assiduous investigation of high-performance electroactive nanomaterials to build enzymeless sensors. In addition to the intrinsic electrocatalytic capability of the sensing materials, electrode architecture at the microscale is also crucial for fully enhancing the performance. In this work, free-standing porous CuO nanowire (NW) was taken as a model sensing material to illustrate this point, where an in situ formed 3D CuO nanowire array (NWA) and CuO nanowires pile (NWP) immobilized with polymer binder by conventional drop-casting technique were both studied for enzymeless glucose sensing. The NWA electrode exhibited greatly promoted electrochemistry characterized by decreased overpotential for electro-oxidation of glucose and over 5-fold higher sensitivity compared to the NWP counterpart, benefiting from the binder-free nanoarray structure. Besides, its sensing performance was also satisfying in terms of rapidness, selectivity and durability. Further, the CuO NWA was utilized to fabricate a flexible sensor which showed excellent performance stability against mechanical bending. Thanks to its favorable electrode architecture, the CuO NWA is believed to offer opportunities for building high-efficiency flexible electrochemical devices.Convenient determination of glucose in a sensitive, reliable and cost-effective way has aroused sustained research passion, bringing along assiduous investigation of high-performance electroactive nanomaterials to build enzymeless sensors. In addition to the intrinsic electrocatalytic capability of the sensing materials, electrode architecture at the microscale is also crucial for fully enhancing the performance. In this work, free-standing porous CuO nanowire (NW) was taken as a model sensing material to illustrate this point, where an in situ formed 3D CuO nanowire array (NWA) and CuO nanowires

  18. Solid state green synthesis and catalytic activity of CuO nanorods in thermal decomposition of potassium periodate

    Science.gov (United States)

    Patel, Vinay Kumar; Bhattacharya, Shantanu

    2017-09-01

    The present study reports a facile solid state green synthesis process using the leaf extracts of Hibiscus rosa-sinensis to synthesize CuO nanorods with average diameters of 15–20 nm and lengths up to 100 nm. The as-synthesized CuO nanorods were characterized by x-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and selected area electron diffraction. The formation mechanism of CuO nanorods has been explained by involving the individual role of amide I (amino groups) and carboxylate groups under excess hydroxyl ions released from NaOH. The catalytic activity of CuO nanorods in thermal decomposition of potassium periodate microparticles (µ-KIO4) microparticles was studied by thermo gravimetric analysis measurement. The original size (~100 µm) of commercially procured potassium periodate was reduced to microscale length scale to about one-tenth by PEG200 assisted emulsion process. The CuO nanorods prepared by solid state green route were found to catalyze the thermal decomposition of µ-KIO4 with a reduction of 18 °C in the final thermal decomposition temperature of potassium periodate.

  19. Effect of CuO addition on structure and electrical properties of low temperature sintered quaternary piezoelectric ceramics

    Indian Academy of Sciences (India)

    Jianhua Li

    2013-10-01

    The ceramics were prepared successfully by CuO additions to Pb[(Mn1/3Sb2/3)0.06(Ni1/2W1/2)0.02-(Zr0.49Ti0.51)0.92]O3. Effect of the addition on sintering temperature, structure and electrical properties of ceramics was investigated. The piezoelectric ceramics was prepared by solid-state reaction. Sintering experiments were accomplished at temperature between 950 and 1100 °C added 0.3–1.0 wt% CuO. The sintering temperature was reduced from 1250 °C (without CuO additions) to 970 °C when CuO-doped. The ceramics sintered at 970 °C for 2 h with 0.7 wt% CuO exhibited r = 1845, tan = 0.15%, 33 = 395 pC/N, p = 0.58 and m = 1830, which were the highest values. With increasing CuO doping, c becomes lower. Jahn–Teller effect was used to explain the contraction of -axis and simultaneous extension of -axis in the lattice.

  20. Structural studies of Nd$_{1.85}$Ce$_{0.15}$CuO$_{4}$ $+$ Ag superconducting system

    Indian Academy of Sciences (India)

    N RADHIKESH RAVEENDRAN; A K SINHA; R RAJARAMAN; M PREMILA; E P AMALADASS; K VINOD; J JANAKI; S KALAVATHI; AWADHESH MANI

    2016-06-01

    We have studied for the first time the effect of Ag addition (0–15 wt%) to the superconducting system, Nd$_{1.85}$Ce$_{0.15}$CuO$_{4}$, on its crystal structure and local structural features, using synchrotron X-ray diffraction(SXRD) and Raman spectroscopy, respectively. SXRD and subsequent Rietveld refinement studies on powders of Nd$_{1.85}$Ce$_{0.15}$CuO$_4$ $+$ Ag system indicate a small but significant change in lattice parameter upon Ag addition, showing evidence for possible incorporation of Ag to the extent of $\\sim$1 wt%. Raman spectroscopic studies indicate that the parent structure of Nd$_{1.85}$Ce$_{0.15}CuO$_{4}$ remains unaffected with no major local structural changes on doping with silver. However, all Raman modes show minor phonon hardening upon Ag addition, which is consistent with the unit cell volume reduction as is observed in XRD. A systematic bleaching out of the apical oxygen defect mode was also observed with increased Ag addition. Polarized Raman measurements helped to identify the asymmetric nature of the B1g Raman mode. X-ray diffraction studies on pellets of Nd$_{1.85}$Ce$_{0.15}CuO$_4$ $+$ Ag system further indicate a randomization of preferred orientation upon Ag addition. The superconductivity of the Nd$_{1.85}$Ce$_{0.15}$CuO$_4$ $+$ Ag system has been well characterized for all the compositions studied.

  1. Onion-like carbon coated CuO nanocapsules: A highly reversible anode material for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianguo, E-mail: liuxianguohugh@gmail.com [Anhui Key Laboratory of Metal Materials and Processing, School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Bi, Nannan; Feng, Chao [Anhui Key Laboratory of Metal Materials and Processing, School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Or, Siu Wing [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Sun, Yuping [Center for Engineering practice and Innovation Education, Anhui University of Technology, Maanshan 243002 (China); Jin, Chuangui; Li, Weihuo; Xiao, Feng [Anhui Key Laboratory of Metal Materials and Processing, School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China)

    2014-02-25

    Highlights: • Onion-like carbon–coated CuO nanocapsules have been synthesized. • Onion-like carbon leads to the improved stability and electric conductivity. • CuO/C nanocapsules maintain a reversible capacity of 628.7 mA h g{sup −1} after 50 cycles. -- Abstract: The synthesis and characterization of CuO/C nanocapsules for application as anode material in lithium ion batteries are reported. Introduction of onion-like carbon shell on the CuO nanoparticles leads to the improved stability, electric conductivity and electrochemical performance. When evaluated as potential anode materials for lithium-ion batteries, the novel CuO/C nanocapsules deliver an initial discharge capacity of 1043.9 mA h g{sup −1} at 100 mA g{sup −1} and maintain a high reversible capacity of 628.7 mA h g{sup −1} after 50 charge–discharge cycles, much higher than those of the CuO nanoparticles. A postmortem analysis of the CuO and CuO/C anodes subjected to prolonged cycling reveals the existence of a lower degree of surface cracking and particle breakage in the CuO/C anode than the CuO anode.

  2. Morphology-controllable synthesis of CuO nanostructures and their catalytic activity for the reduction of 4-nitrophenol

    Science.gov (United States)

    Che, Wei; Ni, Yonghong; Zhang, Yuxing; Ma, Yue

    2015-02-01

    The investigation on the correlation between properties and shapes of nanomaterials always draws increased interest. However, the correlation between properties and shapes of CuO nanostructures was rarely reported in the previous works. The shape-controlled preparation of CuO nanostructures was successfully realized in the present work via a simple oil-bath route in air at 170 °;C for 30 min, employing CuCl2•2H2O and NaOH as the reactants. It was found that CuO nanocrystals with leaf-like, dumbbell-like and flowerlike structures were obtained through introducing various additives. At the same time, the correlation between properties and shapes was investigated. It was found that the catalytic performances of the as-prepared CuO nanostructures for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in NaBH4 aqueous solution were dependent on its morphologies. Experiments showed that the first-order rate constants for CuO nanostructures with various shapes were in turn 35.5‧ 10-3 s-1 (leaf-like nanosheets), 4.77‧ 10-3 s-1 (dumbbell-like architectures), 10.6‧ 10-3 s-1 (flowerlike nanostructures). The present research provides a new catalyst selection for the reduction of 4-NP to 4-AP in excess NaBH4 aqueous solution, which has potential application in industrial production.

  3. Free-standing CuO nanoflake arrays coated Cu foam for advanced lithium ion battery anodes

    Science.gov (United States)

    Yang, Wanfeng; Wang, Jiawei; Ma, Wensheng; Dong, Chaoqun; Cheng, Guanhua; Zhang, Zhonghua

    2016-11-01

    For lithium ion batteries (LIBs), low electronic conductivity of CuO leads to rapid capacity decay and poor structural stability. Herein, we successfully fabricate three-dimensional CuO nanoflake arrays coated Cu foam by facile and efficient electrochemical oxidation. When being applied as anode material for LIBs, the CuO electrodes deliver stable reversible capacities of 523.9 mA h g-1 at 0.5 A g-1, 376.1 mA h g-1 at 1.0 A g-1 and 322.7 mA h g-1 at 2.0 A g-1 with high coulombic efficiency (>99%) after 100 cycles. A long cycle life of up to 400 cycles at 2.0 A g-1 is also achieved with the retention capacity of 193.5 mA h g-1. Moreover, the electrode exhibits excellent rate capability and can regain its original capacities as reversing to the low current densities. Noticeably, on-line differential electrochemical mass spectrometry and in situ Raman measurements confirm the formation of solid electrolyte interface film and the conversion mechanism for the CuO electrodes, respectively. The superior lithium storage performance can be attributed to the favorable nanoflake structures with high surface area and the perfect electrical contact between CuO and Cu substrate.

  4. Nanocrystal formation and photoluminescence in the Yb3+/Er3+ codoped phosphosilicate glasses

    DEFF Research Database (Denmark)

    Liu, S.J.; Fu, G.Z.; Shan, Z.T.

    2014-01-01

    In the paper we show that the Yb3+/Er3+ codoped transparent nanocrystal containing phosphosilicate glasses can be obtained by the melt-quenching devitrification approach. We find that the type of alkali oxides has a strong impact on the crystallization in phosphosilicate melts during cooling. The...

  5. Origins of electronic band gap reduction in Cr/N codoped TiO2.

    Science.gov (United States)

    Parks Cheney, C; Vilmercati, P; Martin, E W; Chiodi, M; Gavioli, L; Regmi, M; Eres, G; Callcott, T A; Weitering, H H; Mannella, N

    2014-01-24

    Recent studies indicated that noncompensated cation-anion codoping of wide-band-gap oxide semiconductors such as anatase TiO2 significantly reduces the optical band gap and thus strongly enhances the absorption of visible light [W. Zhu et al., Phys. Rev. Lett. 103, 226401 (2009)]. We used soft x-ray spectroscopy to fully determine the location and nature of the impurity levels responsible for the extraordinarily large (∼1 eV) band gap reduction of noncompensated codoped rutile TiO2. It is shown that Cr/N codoping strongly enhances the substitutional N content, compared to single element doping. The band gap reduction is due to the formation of Cr 3d3 levels in the lower half of the gap while the conduction band minimum is comprised of localized Cr 3d and delocalized N 2p states. Band gap reduction and carrier delocalization are critical elements for efficient light-to-current conversion in oxide semiconductors. These findings thus raise the prospect of using codoped oxide semiconductors with specifically engineered electronic properties in a variety of photovoltaic and photocatalytic applications.

  6. Er3+/Yb3+ Codoped Phosphate Glass for Ion-Exchanged Planar Waveguide Amplifiers

    Institute of Scientific and Technical Information of China (English)

    Shilong Zhao; Baoyu Chen; Zhuping Liu; Lili Hu

    2003-01-01

    A novel Er3+/Yb3+ codoped phosphate glass was developed, which exhibited good chemical durability in molten salts and excellent spectroscopic properties. Preliminary results of ion exchange at different time and temperature, and with varying melt concentrations indicated that WM4 glass was suitable for ion-exchange experiments and there was no deterioration of surface quality.

  7. Er~(3+)/Yb~(3+) Codoped Phosphate Glass for Ion-Exchanged Planar Waveguide Amplifiers

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel Er3+/Yb3+ codoped phosphate glass was developed, which exhibited good chemical durability in molten salts and excellent spectroscopic properties. Preliminary results of ion exchange at different time and temperature, and with varying melt concentrations indicated that WM4 glass was suitable for ion-exchange experiments and there was no deterioration of surface quality.

  8. Re-dispersible Li+ and Eu3+ co-doped CdS nanoparticles: Luminescence studies

    Indian Academy of Sciences (India)

    N S Gajbhiye; Raghumani Singh Ninghoujam; Asar Ahmed; D K Panda; S S Umare; S J Sharma

    2008-02-01

    Re-dispersible CdS, 5 at.% Eu3+-doped CdS, 2 at.% Li+ and 5 at.% Eu3+ co-doped CdS nanoparticles in organic solvent are prepared by urea hydrolysis in ethylene glycol medium at a low temperature of 170°C. CdS nanoparticles have spherical shape with a diameter of ∼ 80 nm. The asymmetric ratio (21) of the integrated intensities of the electrical dipole transition to the magnetic dipole transition for 5 at.% Eu3+-doped CdS is found to be 3.8 and this ratio is significantly decreased for 2 at.% Li+ and 5 at.% Eu3+ co-doped CdS (21 = 2.6). It establishes that the symmetry environment of Eu3+ ion is more favored by Li-doping. Extra peak at 550 nm (green emission) could be seen for 2 and 5 at.% Eu3+ co-doped CdS. Also, the significant energy transfer from host CdS to Eu3+ is found for 5 at.% Eu3+-doped CdS compared to that for 2 at.% Li+ and 5 at.% Eu3+ co-doped CdS.

  9. Wideband Erbium-Ytterbium Co-Doped Phosphate Glass Waveguide Amplifier

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new '(?)' type of wideband erbium-ytterbium co-doped phosphate glass waveguide amplifier integrated with medium thin film filter is proposed, Average gain about 15.5dB between 1530nm and 1570nm with gain difference of below 2 dB is obtained.

  10. Visible-Light Photodegradation of Dye on Co-Doped Titania Nanotubes Prepared by Hydrothermal Synthesis

    Directory of Open Access Journals (Sweden)

    Jung-Pin Wang

    2012-01-01

    Full Text Available Highly porous Co-doped TiO2 nanotubes synthesized from a hydrothermal treatment were used to photodecompose methylene blue (MB in liquid phase under visible light irradiation. The anatase-type titania nanotubes were found to have high specific surface areas of about 289–379 m2/g. These tubes were shown to be hollow scrolls with outer diameter of about 10–15 nm and length of several micrometers. UV absorption confirmed that Co doping makes the light absorption of nanotubes shift to visible light region. With increasing the dopant concentration, the optical band gap of nanotubes became narrower, ranging from 2.4 eV to 1.8 eV, determined by Kubelka-Munk plot. The Co-doped nanotubes exhibit not only liquid-phase adsorption ability, but also visible-light-derived photodegradation of MB in aqueous solution. The synergetic effect involves two key factors in affecting the photocatalytic activity of Co-doped titania nanotubes under fluorescent lamp, that is, high porosity and optical band gap. The merit of the present work is to provide an efficient route for preparing Co-doped TiO2 nanotubes and to clarifying their adsorption and photocatalytic activity under fluorescent lamp.

  11. Ferromagnetism at room temperature in Co-doped KNbO{sub 3} bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Astudillo, A., E-mail: jaastudillo@unicauca.edu.co [Low Temperature Laboratory, Department of Physics, University of Cauca, Calle 5 No. 4-70, Popayán (Colombia); Izquierdo, J.L. [Universidad Nacional de Colombia, Campus Medellín, Departamento de Física, Laboratorio de Materiales Cerámicos y Vítreos, A.A. 568, Medellín (Colombia); Gómez, A. [Universidad Nacional de Colombia, Campus Medellín, Facultad de Minas, Laboratorio de Caracterización de Materiales, A.A. 568, Medellín (Colombia); Bolaños, G. [Low Temperature Laboratory, Department of Physics, University of Cauca, Calle 5 No. 4-70, Popayán (Colombia); Morán, O. [Universidad Nacional de Colombia, Campus Medellín, Departamento de Física, Laboratorio de Materiales Cerámicos y Vítreos, A.A. 568, Medellín (Colombia)

    2015-01-01

    In this work, polycrystalline KNb{sub 1−x}Co{sub x}O{sub 3} (x=0, 0.05 and 0.1) samples were synthesized through standard solid-state reaction, and their structural and magnetic properties were carefully studied. The X-ray powder diffraction (XRD) patterns show reflections of a pure orthorhombic structure (space group Bmm2) with lattice parameters being very close to those reported in the literature. The most important point here is that all the samples ended up being single-phase with no affectation by impurities or segregates. The XRD peaks of Co-doped samples are broadened and shifted to the right side as compared to those of the pristine compound (x=0) suggesting effective substitution of Nb by Co ions. The Co-doped samples exhibit ferromagnetic properties at room temperature, which contrasts starkly with the paramagnetic behavior exhibited by the undoped sample. Interactions between bound magnetic polarons are considered as a possible scenario to explain the appearance of the ferromagnetic signal in the Co-doped samples. - Highlights: • Polycrystalline KNb{sub 1−x}Co{sub x}O{sub 3} (x=0, 0.05 and 0.1) is synthesized by physical route. • XRD patterns show reflections of a pure orthorhombic structure. • No affectation by impurities or segregates is verified by XRD analysis. • The Co-doped samples exhibit ferromagnetic properties at room temperature.

  12. Mo + C codoped TiO(2) using thermal oxidation for enhancing photocatalytic activity.

    Science.gov (United States)

    Zhang, Jun; Pan, Chunxu; Fang, Pengfei; Wei, Jianhong; Xiong, Rui

    2010-04-01

    The photocatalytic activity of TiO(2) is enhanced mainly through heightening absorption of UV-vis light and improving the separation efficiency of photoinduced electrons and holes. The recent new theoretical research revealed that the TiO(2) codoped with Mo + C is considered to be an optimal doping system. On the basis of this theory, the Mo + C codoped TiO(2) powders were first experimentally synthesized by thermal oxidizing a mixture of TiC and MoO(3) powders in the air. The XRD patterns and the XPS survey spectrum showed that carbon (C) acted as a Ti-O-C band structure and molybdenum (Mo) existed as Mo(6+) in anatase TiO(2). The Mo+C codoped TiO(2) had a 32 nm red shift of the spectrum onset compared with pure anatase TiO(2), and its band gap was reduced from 3.20 to 2.97 eV. The photocurrent of the Mo + C codoped TiO(2) was about 4 times as high as that of pure anatase TiO(2), and its photocatalytic activity on decomposition of methylene blue was enhanced.

  13. Preparation, characterization and photoluminescent studies of Cr and Nd co-doped Ce:YAG compounds

    Energy Technology Data Exchange (ETDEWEB)

    Naik, S.R. [Department of Chemistry, Goa University, Goa 403206 (India); Shripathi, T. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452017 (India); Salker, A.V., E-mail: sal_arun@rediffmail.com [Department of Chemistry, Goa University, Goa 403206 (India)

    2015-05-15

    Sol–gel autocombustion as an efficient method in the preparation of monophasic Cr and Nd co-doped Ce:YAG compounds has been demonstrated. A reduction in the formation temperature to 1000 °C as compared to the classical ceramic method has been effectively shown. Monophasic formation of the compounds has been confirmed from the X-ray diffraction study which is equally supported by the Raman spectroscopy. The TEM analysis confirms the formation of submicron sized particles (around 100 nm) which are equally supported by SEM micrographs revealing the granular morphology for the compounds. Photoluminescence (excitation) studies carried out for the compounds at 468, 341 and 685 nm display excellent emission intensity for the compounds with similar emission pattern pointing towards a common emission centre in all the three cases. Decrease in Ce{sup 3+} emission intensity for the Cr and Nd co-doped Ce:YAG is observed. Energy transfer mechanism is suggested for the lowering of emission intensity confirming the activity of Ce{sup 3+} as a sensitizer. - Highlights: • Nd and Cr co-doped Ce:YAG are prepared by the sol–gel autocombustion. • Monophasic preparation proves the method to be efficient. • Formation of particles around 100 nm is confirmed from TEM. • Singly doped Ce:YAG exhibits maximum emission intensity. • Energy transfer between ions in excited state is in co-doped samples.

  14. Transient Dynamics of Fluoride-Based High Concentration Erbium/Cerium Co-Doped Fiber Amplifier

    Institute of Scientific and Technical Information of China (English)

    S. S-H. Yam; Y. Akasaka; Y. Kubota; R. Huang; D. L. Harris; J. Pan

    2003-01-01

    We designed and evaluated a fluoride-based high concentration erbium/ cerium co-doped fiber amplifier. It is suitable for Metropolitan Area Networks due to faster transient, flatter (unfiltered) gain, smaller footprint and gain excursion than its silica-based counterpart.

  15. Magnetic properties of gadolinium and carbon co-doped gallium nitride

    Science.gov (United States)

    Syed Kaleemullah, N.; Ramsubramanian, S.; Mohankumar, R.; Munawar Basha, S.; Rajagopalan, M.; Kumar, J.

    2017-01-01

    Investigations have been carried out to study the ferromagnetic properties of Gadolinium (Gd) Carbon (C) co-doped wurtzite Gallium Nitride (GaN) using full-potential linear augmented plane wave (FP-LAPW) method within the density functional theory. The system shows half-metallic nature when single Gd is substituted in Ga36N36 supercell. The presence of carbon in GaN supercell is found to generate weak magnetic moment (Ms) in the neighbouring atoms. When Carbon is codoped in the Gd-GaN, it increased the total magnetic moment of the system (Mtot). The cause of ferromagnetism in the Gd and C co-doped GaN has been explained by Zener's p-d exchange mechanism. The role of defects in the magnetic property of this system is also investigated. The results indicate the gallium vacancy influences the magnetic moment of the Gd and C codoped GaN more than the nitrogen vacancy. The presence of holes is effective than electrons in achieving the ferromagnetism in the considered system.

  16. Phosphorus and boron codoping of silicon nanocrystals by ion implantation: Photoluminescence properties

    Science.gov (United States)

    Nakamura, Toshihiro; Adachi, Sadao; Fujii, Minoru; Miura, Kenta; Yamamoto, Shunya

    2012-01-01

    The photoluminescence (PL) properties of P or B single-doped Si nanocrystals (Si-nc's) and P and B co-doped Si-nc's are studied. In the single-doped Si-nc samples, PL quenching occurs as a result of the Auger nonradiative recombination process between the photoexcited excitons and free carriers supplied by doped impurities. In the (P, B) co-doped sample, on the other hand, the donor-acceptor (D-A)-pair recombination emission is clearly observed on the long-wavelength side of the intrinsic Si-nc emission peak at ˜900 nm. The D-A-pair recombination energy is found to be smaller than the band-gap energy of bulk Si and is strongly dependent on the number of P and B impurities doped in a Si-nc. PL spectra are measured at 50 and 300 K and found to indicate that strong thermal quenching occurs in a (P, B) co-doped sample at 300 K. This quenching effect is probably because of carrier migration among the donor and acceptor states. The PL decay rate is determined as a function of the emitted-light wavelength for the pure and (P, B) co-doped Si-nc samples.

  17. Energy-transfer processes in Er3+-doped and Er3+,Pr3+-codoped ZBLAN glasses

    NARCIS (Netherlands)

    Golding, P.S.; Jackson, S.D.; King, T.A.; Pollnau, Markus

    2000-01-01

    We present a detailed characterization of energy transfer processes in Er3+-doped and Er3+,Pr3+-codoped ZBLAN bulk glasses. For several Er3+ (0.25–8.75 mol%) and Pr3+ (0.25–1.55 mol%) concentrations, we investigate energy transfer upconversion (ETU) and cross relaxation in Er3+ as well as energy

  18. Strain-dependent electronic and magnetic of Co-doped monolayer of WSe2

    Science.gov (United States)

    Wu, Ninghua; Zhao, Xu; Wang, Tianxing

    2016-10-01

    We perform first-principles calculation to investigate electronic and magnetic properties of Co-doped WSe2 monolayer with strains from -10% to 10%. We find that Co can induce magnetic moment about 0.894 μB, the Co-doped WSe2 monolayer is a magnetic semiconductor material without strain. The doped system shows half-metallic properties under tensile strain, and the largest half-metal gap is 0.147 eV at 8% strain. The magnetic moment (0.894 μB) increases slightly from 0% to 6%, and jumps into about 3 μB at 8% and 10%, which presents high-spin state configurations. When we applied compressive strain, the doped system shows a half-metallic feature at -2% strain, and the magnetic moment jumps into 1.623 μB at -4% strain, almost two times as the original moment 0.894 μB at 0% strain. The magnetic moment vanishes at -7% strain. The Co-doped WSe2 can endure strain from -6% to 10%. Strain changes the redistribution of charges and magnetic moment. Our calculation results show that the Co-doped WSe2 monolayer can transform from magnetic semiconductor to half-metallic material under strain.

  19. Yb~(3+)/Er~(3+)-Codoped Tungsten-Tellurite Glasses for Broadband Optical Amplifier

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Emission spectra and fluorescence lifetime of Er3+ in Yb3+/Er3+-codoped tungsten-tellurite glasses were measured. Effects of Yb3+concentration on 1.5μm emission intensity and bandwidth of Er3+ were investigated and a FWHM of 81 nm was demonstrated.

  20. On Cu diffusion in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Herklotz, F.; Lavrov, E.V.; Weber, J. [Technische Universitaet Dresden (Germany)

    2009-07-01

    Copper in ZnO is of special interest since recent theoretical and experimental studies found ferromagnetic behavior of ZnO:Cu at room temperature. In addition, Cu is a deep acceptor in ZnO and one of the causes of the green emission band. Experimental studies of Cu diffusion in bulk ZnO single crystals were carried out in the temperature range 1030 to 1180 C. Concentration profiles of substitutional Cu were determined via IR absorption at 5817 cm{sup -1}. Our findings reveal that the diffusion coefficient of Cu is 7.6 x 10{sup 7} exp(-4.56 eV/k{sub B}T) cm{sup 2}s{sup -1}. This is about a factor of 25 higher than reported in the earlier studies, which probed the total Cu concentration. The discrepancy is explained by the formation of Cu complexes, which occurs at high concentrations. Diffusion mechanisms are discussed.