WorldWideScience

Sample records for cumulus cells electronic

  1. The beneficial effects of cumulus cells and oocyte-cumulus cell gap junctions depends on oocyte maturation and fertilization methods in mice

    Directory of Open Access Journals (Sweden)

    Cheng-Jie Zhou

    2016-03-01

    Full Text Available Cumulus cells are a group of closely associated granulosa cells that surround and nourish oocytes. Previous studies have shown that cumulus cells contribute to oocyte maturation and fertilization through gap junction communication. However, it is not known how this gap junction signaling affects in vivo versus in vitro maturation of oocytes, and their subsequent fertilization and embryonic development following insemination. Therefore, in our study, we performed mouse oocyte maturation and insemination using in vivo- or in vitro-matured oocyte-cumulus complexes (OCCs, which retain gap junctions between the cumulus cells and the oocytes, in vitro-matured, denuded oocytes co-cultured with cumulus cells (DCs, which lack gap junctions between the cumulus cells and the oocytes, and in vitro-matured, denuded oocytes without cumulus cells (DOs. Using these models, we were able to analyze the effects of gap junction signaling on oocyte maturation, fertilization, and early embryo development. We found that gap junctions were necessary for both in vivo and in vitro oocyte maturation. In addition, for oocytes matured in vivo, the presence of cumulus cells during insemination improved fertilization and blastocyst formation, and this improvement was strengthened by gap junctions. Moreover, for oocytes matured in vitro, the presence of cumulus cells during insemination improved fertilization, but not blastocyst formation, and this improvement was independent of gap junctions. Our results demonstrate, for the first time, that the beneficial effect of gap junction signaling from cumulus cells depends on oocyte maturation and fertilization methods.

  2. Role of cumulus cells during vitrification and fertilization of mature bovine oocytes

    NARCIS (Netherlands)

    Ortiz-Escribano, N.; Smits, K.; Piepers, S.; Abbeel, Van den E.; Woelders, H.; Soom, Van A.

    2016-01-01

    This study was designed to determine the role of cumulus cells during vitrification of bovine oocytes. Mature cumulus-oocyte complexes (COCs) with many layers of cumulus cells, corona radiata oocytes (CRs), with a few layers of cumulus cells, and denuded oocytes (DOs) without cumulus cells were

  3. Mitochondrial dysfunction and apoptosis in cumulus cells of type I diabetic mice.

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2010-12-01

    Full Text Available Impaired oocyte quality has been demonstrated in diabetic mice; however, the potential pathways by which maternal diabetes exerts its effects on the oocyte are poorly understood. Cumulus cells are in direct contact with the oocyte via gap junctions and provide essential nutrients to support oocyte development. In this study, we investigated the effects of maternal diabetes on the mitochondrial status in cumulus cells. We found an increased frequency of fragmented mitochondria, a decreased transmembrane potential and an aggregated distribution of mitochondria in cumulus cells from diabetic mice. Furthermore, while mitochondrial biogenesis in cumulus cells was induced by maternal diabetes, their metabolic function was disrupted as evidenced by lower ATP and citrate levels. Moreover, we present evidence suggesting that the mitochondrial impairments induced by maternal diabetes, at least in part, lead to cumulus cell apoptosis through the release of cytochrome c. Together the deleterious effects on cumulus cells may disrupt trophic and signaling interactions with the oocyte, contributing to oocyte incompetence and thus poor pregnancy outcomes in diabetic females.

  4. BMP15 Prevents Cumulus Cell Apoptosis Through CCL2 and FBN1 in Porcine Ovaries

    Directory of Open Access Journals (Sweden)

    Bo Zhai

    2013-07-01

    Full Text Available Background: Bone morphogenetic protein-15 (BMP15 is a maternal gene necessary for mammalian reproduction. BMP15 expression increased in oocytes accompanied by follicle growth and development. The function and regulation mechanism of BMP15 in porcine cumulus cell apoptosis process is still unclear now. Methods: In this study, flow cytometry (FCM was used to analyze the effects of BMP15 with different concentrations to cumulus cell apoptosis. High-throughput sequencing technology was carried out to screen regulatory genes linked closely with BMP15. In order to confirm the function of (MCP-1/CCL2 and FBN1 in cumulus cell apoptosis, RNA interference (RNAi method was used to inhibit the expression of (MCP-1/CCL2 and FBN1. Apoptosis and proliferation of cumulus cell treated with siRNA transfection technology were measured by FCM, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, quantitative real time-PCR (RT-qPCR and western blotting. Results: The results showed that the apoptosis levels of cumulus cell treated by BMP15 decreased significantly in a dose-dependent manner. The expression of related genes protein 1 (MCP-1/CCL2 and fibrillin1 (FBN1 were both regulated by BMP15. After transfection, the proliferation of porcine cumulus cells increased significantly and apoptosis of cumulus cells was prevented while FBN1 was silenced after BMP15 treatment. The proliferation of cumulus cells decreased significantly and apoptosis rate of cumulus cells increased significantly while CCL2 was silenced. Conclusion: The results obtained in this study firstly demonstrated that CCL2 and FBN1 are important regulatory factors of BMP15 in preventing cumulus cell apoptosis in porcine ovaries.

  5. Melatonin-Mediated Development of Ovine Cumulus Cells, Perhaps by Regulation of DNA Methylation

    Directory of Open Access Journals (Sweden)

    Yi Fang

    2018-02-01

    Full Text Available Cumulus cells of pre-pubertal domestic animals are dysfunctional, perhaps due to age-specific epigenetic events. This study was designed to determine effects of melatonin treatment of donors on methylation modification of pre-pubertal cumulus cells. Cumulus cells from germinal vesicle stage cumulus oocyte complexes (COCs were collected from eighteen lambs which were randomly divided into control group (C and melatonin group given an 18 mg melatonin implant subcutaneous (M. Compared to the C group, the M group had higher concentrations of melatonin in plasma and follicular fluid (p < 0.05, greater superovulation, a higher proportion of fully expanded COCs, and a lower proportion of apoptotic cumulus cells (p < 0.05. Real-time PCR results showed that melatonin up-regulated expression of genes MT1, Bcl2, DNMT1, DNMT3a and DNMT3b, but down-regulated expression of genes p53, Caspase 3 and Bax (p < 0.05. Furthermore, melatonin increased FI of FITC (global methylation level on cumulus cells (p < 0.05. To understand the regulation mechanism, the DNMTs promoter methylation sequence were analyzed. Compared to the C group, although there was less methylation at two CpG sites of DNMT1 (p < 0.05 and higher methylation at two CpG sites of DNMT3a (p < 0.05, there were no significant differences in methylation of the detected DNMT1 and DNMT3a promoter regions. However, there were lower methylation levels at five CpG sites of DNMT3b, which decreased methylation of detected DNMT3b promoter region on M group (p < 0.05. In conclusion, alterations of methylation regulated by melatonin may mediate development of cumulus cells in lambs.

  6. Effect of Acrylamide on Oocyte Nuclear Maturation and Cumulus Cells Apoptosis in Mouse In Vitro.

    Directory of Open Access Journals (Sweden)

    Shuzhen Liu

    Full Text Available Acrylamide (ACR is a chemical compound with severe neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. Recent studies showed that ACR impairs the function of reproductive organs, e.g., epididymis and testes. In vitro maturation of mouse oocyte is a sensitive assay to identify potential chemical hazard to female fertility. The aim of this study was to evaluate the adverse effects of ACR on the nuclear maturation and cumulus cells apoptosis of mouse oocytes in vitro. Cumulus-oocyte complexes were incubated in a maturation medium containing 0, 5, 10 and 20 μM of ACR. Chromosome alignment and spindle morphology of oocytes was determined by immunofluorescence and confocal microscopy. Our results showed that oocytes exposed to different doses of ACR in vitro were associated with a significant decrease of oocyte maturation, significant increase of chromosome misalignment rate, occurrence of abnormal spindle configurations, and the inhibition of oocyte parthenogenetic activation. Furthermore, apoptosis of cumulus cells was determined by TUNEL and CASPASE-3 assay. Results showed that apoptosis in cumulus cells was enhanced and the expression of CASPASE-3 was increased after cumulus-oocyte complexes were exposed to ACR. Therefore, ACR may affect the nuclear maturation of oocytes via the apoptosis of cumulus cells in vitro.

  7. Cumulus Cell Expansion, Its Role in Oocyte Biology and Perspectives of Measurement: A Review

    Directory of Open Access Journals (Sweden)

    Nevoral J.

    2015-01-01

    Full Text Available Cumulus expansion of the cumulus-oocyte complex is necessary for meiotic maturation and acquiring developmental competence. Cumulus expansion is based on extracellular matrix synthesis by cumulus cells. Hyaluronic acid is the most abundant component of this extracellular matrix. Cumulus expansion takes place during meiotic oocyte maturation under in vivo and in vitro conditions. Quantification and measurement of cumulus expansion intensity is one possible method of determining oocyte quality and optimizing conditions for in vitro cultivation. Currently, subjective methods of expanded area and more exact cumulus expansion measurement by hyaluronic acid assessment are available. Among the methods of hyaluronic acid measurement is the use of radioactively labelled synthesis precursors. Alternatively, immunological and analytical methods, including enzyme-linked immunosorbent assay (ELISA, spectrophotometry, and high-performance liquid chromatography (HPLC in UV light, could be utilized. The high sensitivity of these methods could provide a precise analysis of cumulus expansion without the use of radioisotopes. Therefore, the aim of this review is to summarize and compare available approaches of cumulus expansion measurement, respecting special biological features of expanded cumuli, and to suggest possible solutions for exact cumulus expansion analysis.

  8. Expression of apoptotic genes in immature and in vitro matured equine oocytes and cumulus cells.

    Science.gov (United States)

    Leon, P M M; Campos, V F; Kaefer, C; Begnini, K R; McBride, A J A; Dellagostin, O A; Seixas, F K; Deschamps, J C; Collares, T

    2013-08-01

    The gene expression of Bax, Bcl-2, survivin and p53, following in vitro maturation of equine oocytes, was compared in morphologically distinct oocytes and cumulus cells. Cumulus-oocyte complexes (COC) were harvested and divided into two groups: G1 - morphologically healthy cells; and G2 - less viable cells or cells with some degree of atresia. Total RNA was isolated from both immature and in vitro matured COC and real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to quantify gene expression. Our results showed there was significantly higher expression of survivin (P < 0.05) and lower expression of p53 (P < 0.01) in oocytes compared with cumulus cells in G1. No significant difference in gene expression was observed following in vitro maturation or in COC derived from G1 and G2. However, expression of the Bax gene was significantly higher in cumulus cells from G1 (P < 0.02).

  9. Spermatozoa of the shrew, Suncus murinus, undergo the acrosome reaction and then selectively kill cells in penetrating the cumulus oophorus.

    Science.gov (United States)

    Kaneko, T; Iida, H; Bedford, J M; Mōri, T

    2001-08-01

    In the musk shrew, Suncus murinus (and other shrews), the cumulus oophorus is ovulated as a discrete, compact, matrix-free ball of cells linked by specialized junctions. In examining how they penetrate the cumulus, Suncus spermatozoa were observed to first bind consistently by the ventral face over the acrosomal region to the exposed smooth surface of a peripheral cumulus cell. This was apparently followed by point fusions between the plasma and outer acrosomal membranes. Thereafter, spermatozoa without acrosomes were observed within cumulus cells that displayed signs of necrosis, as did some radially neighboring cumulus cells linked by zona adherens and gap junctions. Eventually, penetration of spermatozoa as far as the perizonal space around the zona pellucida left linear tracks of locally necrotic cells flanked by normal cumulus cells. Based on these and previous observations, we conclude that the acrosome reaction in Suncus is always induced by cumulus cells, and that reacted spermatozoa penetrate the cumulus by selective invasion and killing of cumulus cells along a linear track. Loss of the acrosome also exposes an apical body/perforatorium that is covered with barbs that appear to assist reacted fertilizing spermatozoa in binding to the zona pellucida. Because fertilized eggs displayed no other spermatozoa within or bound to the zona, an efficient block to polyspermy must prevent such binding of additional spermatozoa.

  10. Effects of Mitochondrial Uncoupling Protein 2 Inhibition by Genipin in Human Cumulus Cells

    Directory of Open Access Journals (Sweden)

    Hongshan Ge

    2015-01-01

    Full Text Available UCP2 plays a physiological role by regulating mitochondrial biogenesis, maintaining energy balance, ROS elimination, and regulating cellular autophagy in numerous tissues. But the exact roles of UCP2 in cumulus cells are still not clear. Genipin, a special UCP2 inhibitor, was added into the cultural medium to explore the roles of UCP2 in human cumulus cells. There were no significant differences in ATP and mitochondrial membrane potential levels in cumulus cells from UCP2 inhibiting groups as compared with the control. The levels of ROS and Mn-SOD were markedly elevated after UCP2 inhibited Genipin. However, the ratio of reduced GSH to GSSG significantly declined after treatment with Genipin. UCP2 inhibition by Genipin also resulted in obvious increase in the active caspase-3, which accompanied the decline of caspase-3 mRNA. The level of progesterone in culture medium declined obviously after Genipin treatment. But there was no significant difference in estradiol concentrations. This study indicated that UCP2 is expressed in human cumulus cells and plays important roles on mediate ROS production, apoptotic process, and steroidogenesis, suggesting UCP2 may be involved in regulation of follicle development and oocyte maturation and quality.

  11. Bovine cumulus-oocyte disconnection in vitro

    DEFF Research Database (Denmark)

    Maddox-Hyttel, Poul

    1987-01-01

    Cumulus-oocyte complexes were obtained from cows by aspiration of small (1-6 mm in diameter) antral follicles after slaughter. Complexes with a compact multilayered cumulus investment were cultured and processed for transmission electron microscopy after different periods of culture including a 0...

  12. Bovine cumulus-granulosa cells contain biologically active retinoid receptors that can respond to retinoic acid

    Directory of Open Access Journals (Sweden)

    Malayer Jerry

    2003-11-01

    Full Text Available Abstract Retinoids, a class of compounds that include retinol and its metabolite, retinoic acid, are absolutely essential for ovarian steroid production, oocyte maturation, and early embryogenesis. Previous studies have detected high concentrations of retinol in bovine large follicles. Further, administration of retinol in vivo and supplementation of retinoic acid during in vitro maturation results in enhanced embryonic development. In the present study, we hypothesized that retinoids administered either in vivo previously or in vitro can exert receptor-mediated effects in cumulus-granulosa cells. Total RNA extracted from in vitro cultured cumulus-granulosa cells was subjected to reverse transcription polymerase chain reaction (RT-PCR and mRNA expression for retinol binding protein (RBP, retinoic acid receptor alpha (RARalpha, retinoic acid receptor beta (RARbeta, retinoic acid receptor gamma (RARgamma, retinoid X receptor alpha (RXRalpha, retinoid X receptor beta (RXRbeta, retinaldehyde dehydrogenase-2 (RALDH-2, and peroxisome proliferator activated receptor gamma (PPARgamma. Transcripts were detected for RBP, RARalpha, RARgamma, RXRalpha, RXRbeta, RALDH-2, and PPARgamma. Expression of RARbeta was not detected in cumulus-granulosa cells. Using western blotting, immunoreactive RARalpha, and RXRbeta protein was also detected in bovine cumulus-granulosa cells. The biological activity of these endogenous retinoid receptors was tested using a transient reporter assay using the pAAV-MCS-betaRARE-Luc vector. Addition of 0.5 and 1 micro molar all-trans retinoic acid significantly (P trans retinol stimulated a mild increase in reporter activity, however, the increase was not statistically significant. Based on these results we conclude that cumulus cells contain endogenously active retinoid receptors and may also be competent to synthesize retinoic acid using the precursor, retinol. These results also indirectly provide evidence that retinoids

  13. Cumulus cell mitochondrial activity in relation to body mass index in women undergoing assisted reproductive therapy

    Directory of Open Access Journals (Sweden)

    Victoria K. Gorshinova

    2017-06-01

    Full Text Available Most studies have considered the negative influence of obesity on fertility in both genders. In the present study, we assessed mitochondrial activity expressed as the mitochondrial potential index (MPI in cumulus cells from obese women and women with a normal body mass index (BMI during assisted reproductive therapy. The results revealed a significant reduction of MPI with increased body mass. The lower MPI levels in cumulus cells from obese women may reflect mitochondrial dysfunction caused by oxidative stress, which can affect the cumulus-oocyte complex and have an impact on oocyte development.

  14. Cumulus cells steroidogenesis is influenced by the degree of oocyte maturation

    Directory of Open Access Journals (Sweden)

    Barboni Barbara

    2003-05-01

    Full Text Available Abstract Background The possibility to predict the ability of a germ cell to properly sustain embryo development in vitro or in vivo as early as possible is undoubtedly the main problem of reproductive technologies. To date, only the achievement of nuclear maturation and cumulus expansion is feasible, as all the studies on cytoplasmic maturation are too invasive and have been complicated by the death of the cells analyzed. The authors studied the possibility to test the cytoplasmic quality of pig oocytes by evaluating their ability to produce steroidogenesis enabling factor(s. To this aim, oocytes matured under different culture conditions that allowed to obtain gradable level of cytoplasmic maturation, were used to produce conditioned media (OCM. The secretion of the factor(s in conditioned media was then recorded by evaluating the ability of the spent media to direct granulosa cells (GC steroidogenesis. Methods In order to obtain germ cells characterized by a different degree of developmental competence, selected pig oocytes from prepubertal gilts ovaries were cultured under different IVM protocols; part of the matured oocytes were used to produce OCM, while those remaining were submitted to in vitro fertilization trials to confirm their ability to sustain male pronuclear decondensation. The OCM collected were finally used on cumulus cells grown as monolayers for 5 days. The demonstration that oocytes secreted factor(s can influence GC steroidogenesis in the pig was confirmed in our lab by studying E2 and P4 production by cumulus cells monolayers using a radioimmunoassay technique. Results Monolayers obtained by growing GC surrounding the oocytes for five days represent a tool, which is practical, stable and available in most laboratories; by using this bioassay, we detected the antiluteal effect of immature oocytes, and for the first time, demonstrated that properly matured germ cells are able to direct cumulus cells steroidogenesis by

  15. The possible FAT1-mediated apoptotic pathways in porcine cumulus cells

    NARCIS (Netherlands)

    Wu, Xinhui; Fu, Yao; Liu, Chang; Chai, Menglong; Chen, Chengzhen; Dai, Lisheng; Gao, Yan; Jiang, Hao; Zhang, Jiabao

    Porcine cumulus cells are localized around oocytes and act as a specific type of granulosa that plays essential roles in the development and maturation of oocytes, the development and atresia of follicles, and the development of embryos. Studies of FAT1 have demonstrated its functions in cell-cell

  16. Effects of TGF-beta and GDF-9 on cumulus expension and progesterone production by oocytectomized oocyte-cumulus cell complexes

    Czech Academy of Sciences Publication Activity Database

    Vanderhyden, B. C.; Nagyová, Eva; Dhawan, D.

    2001-01-01

    Roč. 64, č. 1 (2001), s. 56 ISSN 0006-3363. [Society for the Study of Reproduction - Annual Meeting /34./. 28.07.2001-01.08.2001, Ottawa] Institutional research plan: CEZ:AV0Z5045916 Keywords : cumulus cells * oocytes Subject RIV: EB - Genetics ; Molecular Biology

  17. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model*

    OpenAIRE

    Tong, Guo-qing; Heng, Boon-chin; Ng, Soon-chye

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 µmol/L strontium chloride for 5 h and sub...

  18. Aberrant expression of long noncoding RNAs in cumulus cells isolated from PCOS patients.

    Science.gov (United States)

    Huang, Xin; Hao, Cuifang; Bao, Hongchu; Wang, Meimei; Dai, Huangguan

    2016-01-01

    To describe the long noncoding RNA (lncRNA) profiles in cumulus cells isolated from polycystic ovary syndrome (PCOS) patients by employing a microarray and in-depth bioinformatics analysis. This information will help us understand the occurrence and development of PCOS. In this study, we used a microarray to describe lncRNA profiles in cumulus cells isolated from ten patients (five PCOS and five normal women). Several differentially expressed lncRNAs were chosen to validate the microarray results by quantitative RT-PCR (qRT-PCR). Then, the differentially expressed lncRNAs were classified into three subgroups (HOX loci lncRNA, enhancer-like lncRNA, and lincRNA) to deduce their potential features. Furthermore, a lncRNA/mRNA co-expression network was constructed by using the Cytoscape software (V2.8.3, http://www.cytoscape.org/ ). We observed that 623 lncRNAs and 260 messenger RNAs (mRNAs) were significantly up- or down-regulated (≥2-fold change), and these differences could be used to discriminate cumulus cells of PCOS from those of normal patients. Five differentially expressed lncRNAs (XLOC_011402, ENST00000454271, ENST00000433673, ENST00000450294, and ENST00000432431) were selected to validate the microarray results using quantitative RT-PCR (qRT-PCR). The qRT-PCR results were consistent with the microarray data. Further analysis indicated that many differentially expressed lncRNAs were transcribed from chromosome 2 and may act as enhancers to regulate their neighboring protein-coding genes. Forty-three lncRNAs and 29 mRNAs were used to construct the coding-non-coding gene co-expression network. Most pairs positively correlated, and one mRNA correlated with one or more lncRNAs. Our study is the first to determine genome-wide lncRNA expression patterns in cumulus cells isolated from PCOS patients by microarray. The results show that clusters of lncRNAs were aberrantly expressed in cumulus cells of PCOS patients compared with those of normal women, which revealed

  19. The human cumulus--oocyte complex gene-expression profile

    Science.gov (United States)

    Assou, Said; Anahory, Tal; Pantesco, Véronique; Le Carrour, Tanguy; Pellestor, Franck; Klein, Bernard; Reyftmann, Lionel; Dechaud, Hervé; De Vos, John; Hamamah, Samir

    2006-01-01

    BACKGROUND The understanding of the mechanisms regulating human oocyte maturation is still rudimentary. We have identified transcripts differentially expressed between immature and mature oocytes, and cumulus cells. METHODS Using oligonucleotides microarrays, genome wide gene expression was studied in pooled immature and mature oocytes or cumulus cells from patients who underwent IVF. RESULTS In addition to known genes such as DAZL, BMP15 or GDF9, oocytes upregulated 1514 genes. We show that PTTG3 and AURKC are respectively the securin and the Aurora kinase preferentially expressed during oocyte meiosis. Strikingly, oocytes overexpressed previously unreported growth factors such as TNFSF13/APRIL, FGF9, FGF14, and IL4, and transcription factors including OTX2, SOX15 and SOX30. Conversely, cumulus cells, in addition to known genes such as LHCGR or BMPR2, overexpressed cell-tocell signaling genes including TNFSF11/RANKL, numerous complement components, semaphorins (SEMA3A, SEMA6A, SEMA6D) and CD genes such as CD200. We also identified 52 genes progressively increasing during oocyte maturation, comprising CDC25A and SOCS7. CONCLUSION The identification of genes up and down regulated during oocyte maturation greatly improves our understanding of oocyte biology and will provide new markers that signal viable and competent oocytes. Furthermore, genes found expressed in cumulus cells are potential markers of granulosa cell tumors. PMID:16571642

  20. Progesterone from the cumulus cells is the sperm chemoattractant secreted by the rabbit oocyte cumulus complex.

    Directory of Open Access Journals (Sweden)

    Héctor Alejandro Guidobaldi

    Full Text Available Sperm chemotaxis in mammals have been identified towards several female sources as follicular fluid (FF, oviduct fluid, and conditioned medium from the cumulus oophorus (CU and the oocyte (O. Though several substances were confirmed as sperm chemoattractant, Progesterone (P seems to be the best chemoattractant candidate, because: 1 spermatozoa express a cell surface P receptor, 2 capacitated spermatozoa are chemotactically attracted in vitro by gradients of low quantities of P; 3 the CU cells produce and secrete P after ovulation; 4 a gradient of P may be kept stable along the CU; and 5 the most probable site for sperm chemotaxis in vivo could be near and/or inside the CU. The aim of this study was to verify whether P is the sperm chemoattractant secreted by the rabbit oocyte-cumulus complex (OCC in the rabbit, as a mammalian animal model. By means of videomicroscopy and computer image analysis we observed that only the CU are a stable source of sperm attractants. The CU produce and secrete P since the hormone was localized inside these cells by immunocytochemistry and in the conditioned medium by enzyme immunoassay. In addition, rabbit spermatozoa express a cell surface P receptor detected by western blot and localized over the acrosomal region by immunocytochemistry. To confirm that P is the sperm chemoattractant secreted by the CU, the sperm chemotactic response towards the OCC conditioned medium was inhibited by three different approaches: P from the OCC conditioned medium was removed with an anti-P antibody, the attractant gradient of the OCC conditioned medium was disrupted by a P counter gradient, and the sperm P receptor was blocked with a specific antibody. We concluded that only the CU but not the oocyte secretes P, and the latter chemoattract spermatozoa by means of a cell surface receptor. Our findings may be of interest in assisted reproduction procedures in humans, animals of economic importance and endangered species.

  1. Effect of intraovarian factors on porcine follicular cells: cumulus expansion, granulosa and cumulus cell progesterone production

    Czech Academy of Sciences Publication Activity Database

    Ježová, M.; Scsuková, S.; Nagyová, Eva; Vranová, J.; Procházka, Radek; Kolena, J.

    2001-01-01

    Roč. 65, - (2001), s. 115-126 ISSN 0378-4320 R&D Projects: GA ČR GA524/98/0231; GA AV ČR KSK5052113 Keywords : pig-ovary * cumulus expansion * luteinization stimulator Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.196, year: 2001

  2. Research resources: comparative microRNA profiles in human corona radiata cells and cumulus oophorus cells detected by next-generation small RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Xian-Hong Tong

    Full Text Available During folliculogenesis, cumulus cells surrounding the oocyte differentiate into corona radiata cells (CRCs and cumulus oophorus cells (COCs, which are involved in gonadal steroidogenesis and the development of germ cells. Several studies suggested that microRNAs (miRNAs play an important regulatory role at the post-transcriptional level in cumulus cells. However, comparative miRNA profiles and associated processes in human CRCs and COCs have not been reported before. In this study, miRNA profiles were obtained from CRCs and COCs using next generation sequencing in women undergoing controlled ovarian stimulation for IVF. A total of 785 and 799 annotated miRNAs were identified in CRCs and COCs, while high expression levels of six novel miRNAs were detected both in CRCs and in COCs. In addition, different expression patterns in CRCs and COCs were detected in 72 annotated miRNAs. To confirm the miRNA profile in COCs and CRCs, quantitative real-time PCR was used to validate the expression of annotated miRNAs, differentially expressed miRNAs, and novel miRNAs. The miRNAs in the let-7 family were found to be involved in the regulation of a broad range of biological processes in both cumulus cell populations, which was accompanied by a large amount of miRNA editing. Bioinformatics analysis showed that amino acid and energy metabolism were targeted significantly by miRNAs that were differentially expressed between CRCs and COCs. Our work extends the current knowledge of the regulatory role of miRNAs and their targeted pathways in folliculogenesis, and provides novel candidates for molecular biomarkers in the research of female infertility.

  3. Enhancement of Bovine oocyte maturation by leptin is accompanied by an upregulation in mRNA expression of leptin receptor isoforms in cumulus cells

    NARCIS (Netherlands)

    van Tol, Helena T A; van Eerdenburg, Frank J C M; Colenbrander, Ben; Roelen, Bernard A J

    In this study, the mechanisms of supposed leptin action on oocyte maturation were examined. Expression of leptin mRNA, as determined with RT-PCR, was present in oocytes but not in cumulus cells. The long isoform of the leptin receptor (ObR-L) was expressed exclusively in cumulus cells after 7 and 23

  4. Effect of Cumulus cell co-culture and Protein Supplement on Success of in vitro Fertilization and Development of Pre-implanted Embryos in mice

    Directory of Open Access Journals (Sweden)

    Muhammad-Baqir M-R. Fakhrildin

    2005-06-01

    Full Text Available Successful oocyte fertilization and normal embryonic development of mice were considered the most important diagnostic criteria for the safety of materials and tools used for human in vitro fertilization and embryo transfer (IVF-ET. Therefore, we studied the influence of cumulus cells co-culture and protein supplement within culture medium on percentages of in vitro fertilization (IVF and normal development of early stages of mouse embryo later. Oocytes were collected and treated with hyaluronidase to remove cumulus cells. Oocytes were divided into four groups namely: Group-1: Oocytes incubated within modified Earl’s medium (MEM supplied with 10% inactivated bovine amniotic fluid as a protein source and cumulus cells; Group-2: Oocytes incubated with MEM supplied with cumulus cells only; Group-3: Oocytes incubated with MEM supplied with 10% inactivated bovine amniotic fluid only; and Group-4: Oocytes  incubated with MEM free of both protein source and cumulus cells. For IVF, 5-6 oocytes were incubated with active spermatozoa under paraffin oil for 18-20 hours at 37° oC in 5% CO2. Percentages of IVF and embryonic development were then recorded. Best results for IVF and normal embryonic development were achieved from oocytes of Group-1 when compared to the other groups. As compared to Group-1, the percentage of IVF for Group-2 and Group-3 were decreased insignificantly and significantly (P<0.002, respectively. Significant (P<0.01 reduction in the percentages of IVF and normal embryonic development were reported in Group-4 as compared to Group-1. Therefore, it was concluded that the presence of cumulus cells co-culture and bovine amniotic fluid as a protein source within culture medium may have an important role on the fertilizing capacity of spermatozoa and oocytes and normal development of pre-implanted mouse embryo later.

  5. Effect of cumulus-oocyte complexes (COCs) culture duration on in ...

    African Journals Online (AJOL)

    We investigated and optimized the cumulus-oocyte complexes (COCs) culture duration for pig oocyte in vitro maturation and produced a number of high-quality metaphase-II (M-II) oocytes for generation of parthenotes. The present study graded the COCs into levels A, B and C according to layers of cumulus cells, which ...

  6. Heat stress effects on the cumulus cells surrounding the bovine oocyte during maturation: altered matrix metallopeptidase 9 and progesterone production.

    Science.gov (United States)

    Rispoli, L A; Payton, R R; Gondro, C; Saxton, A M; Nagle, K A; Jenkins, B W; Schrick, F N; Edwards, J L

    2013-08-01

    When the effects of heat stress are detrimental during maturation, cumulus cells are intimately associated with the oocyte. To determine the extent to which heat stress affects these cells, in this study, transcriptome profiles of the cumulus that surrounded control and heat-stressed oocytes (41 °C during the first 12 h only and then shifted back to 38.5 °C) during in vitro maturation (IVM) were compared using Affymetrix bovine microarrays. The comparison of cumulus-derived profiles revealed a number of transcripts whose levels were increased (n=11) or decreased (n=13) ≥ twofold after heat stress exposure (P1.7-fold decrease in the protein levels of latent matrix metallopeptidase 9 (proMMP9). Heat-induced reductions in transcript levels were noted at 6 h IVM with reductions in proMMP9 protein levels at 18 h IVM (P=0.0002). Independent of temperature, proMMP9 levels at 24 h IVM were positively correlated with the development rate of blastocysts (R²=0.36; P=0.002). The production of progesterone increased during maturation; heat-induced increases were evident by 12 h IVM (P=0.002). Both MMP9 and progesterone are associated with the developmental competence of the oocyte; thus, it seems plausible for some of the negative consequences of heat stress on the cumulus-oocyte complex to be mediated through heat-induced perturbations occurring in the surrounding cumulus.

  7. Expression pattern of G protein‑coupled estrogen receptor 1 (GPER) in human cumulus granulosa cells (CGCs) of patients with PCOS.

    Science.gov (United States)

    Zang, Lili; Zhang, Quan; Zhou, Yi; Zhao, Yan; Lu, Linlin; Jiang, Zhou; Peng, Zhen; Zou, Shuhua

    2016-06-01

    Estradiol mediates its actions by binding to classical nuclear receptors, estrogen receptor α (ER-α) and estrogen receptor β (ER-β), and the non-classical G protein-coupled estrogen receptor 1(GPER). Several gene knockdown models have shown the importance of the receptors for growth of the oocyte and for ovulation. The aim of our study was to identify the pattern of GPER expression in human cumulus granulosa cells (CGCs) from ovarian follicles at different stages of oocyte maturation, and the differences of GPER expression between polycystic ovary syndrome (PCOS) patients and non-PCOS women. Thirty-eight cases of PCOS patients and a control group of thirty-two infertile women without PCOS were used in this study. GPER's location in CGCs was investigated by immunohistochemistry. Quantitative RT-PCR and western blot were used to identify the quantify GPER expression. Here we demonstrated that GPER was expressed in CGCs of both PCOS patients and non-PCOS women, and the expression of GPER was decreased significantly during oocyte maturation. But the expression levels of GPER in CGCs of PCOS patients and non-PCOS women were not significantly different. The data indicate that GPER may play a role during human oocyte maturation through its action in cumulus granulosa cells. AMHRIIs: anti-Mullerian hormone type II receptors; BMI: body mass index; CGCs: cumulus granulosa cells; COH: controlled ovarian hyperstimulation; E2: estradiol; EGFR: epidermal growth factor receptor; ER-α: estrogen receptor; ER-β: estrogen receptor β; FF: follicular fluid; FSH: follicle-stimulating hormone; GCs: granulosa cells; GPER: G protein-coupled estrogen receptor 1; GV: germinal vesicle; GVBD: germinal vesicle breakdown; HCG: human chorionic gonadotropin; IRS: immunoreactive score; IVF-ET: in vitro fertilization and embryo transfer; MI: metaphase I; MII: metaphase II; MAPK: mitogen-activated protein kinase; OCCCs: oocyte corona cumulus complexes; PCOS: polycystic ovarian syndrome; q

  8. Anti-Müllerian hormone remains highly expressed in human cumulus cells during the final stages of folliculogenesis

    DEFF Research Database (Denmark)

    Grøndahl, M L; Nielsen, M Eilsø; Dal Canto, M B

    2011-01-01

    This study evaluated whether anti-Müllerian hormone (AMH) was differentially expressed in cumulus (CC) and granulosa (GC) cells from large antral and pre-ovulatory follicles collected from individual follicles in women undergoing in-vitro maturation (IVM) or IVF treatment. Expression studies of A...

  9. Cumulus expansion, nuclear maturation and connexin 43, cyclooxygenase-2 and FSH receptor mRNA expression in equine cumulus-oocyte complexes cultured in vitro in the presence of FSH and precursors for hyaluronic acid synthesis

    Directory of Open Access Journals (Sweden)

    Aiudi Giulio

    2004-06-01

    Full Text Available Abstract The aim of this study was to investigate cumulus expansion, nuclear maturation and expression of connexin 43, cyclooxygenase-2 and FSH receptor transcripts in equine cumuli oophori during in vivo and in vitro maturation in the presence of equine FSH (eFSH and precursors for hyaluronic acid synthesis. Equine cumulus-oocyte complexes (COC were cultured in a control defined medium supplemented with eFSH (0 to 5 micrograms/ml, Fetal Calf Serum (FCS, precursors for hyaluronic acid synthesis or glutamine according to the experiments. After in vitro maturation, the cumulus expansion rate was increased with 1 microgram/ml eFSH, and was the highest with 20% FCS. It was not influenced by precursors for hyaluronic acid synthesis or glutamine. The expression of transcripts related to cumulus expansion was analyzed in equine cumulus cells before maturation, and after in vivo and in vitro maturation, by using reverse transcription-polymerase chain reaction (RT-PCR with specific primers. Connexin 43, cyclooxygenase-2 (COX-2 and FSH receptor (FSHr mRNA were detected in equine cumulus cells before and after maturation. Their level did not vary during in vivo or in vitro maturation and was influenced neither by FSH nor by precursors for hyaluronic acid synthesis. Results indicate that previously reported regulation of connexin 43 and COX-2 proteins during equine COC maturation may involve post-transcriptional mechanisms.

  10. Effect of exogenous progesterone on cumulus characteristics of buffalo oocytes by allowing passage of more number of sperm through cumulus but not essentially fertilization

    Directory of Open Access Journals (Sweden)

    Madhusmita Panda

    2018-03-01

    Full Text Available Objective: To understand the level of progesterone (P4 in different quality of buffalo cumulus oocyte complexes (COCs and further to evaluate the effect of exogenous P4 supplementation on maturation and subsequent developmental ability of poor quality brilliant cresyl blue (BCB- COCs. Methods: Progesterone secreted by different quality of buffalo oocytes was estimated by enzyme linked immunosorbent assay and the concentration differences were translated into P4 doses to be incorporated in the maturation medium of BCB-ve COCs followed by expression analysis of genes involved in the cumulus expansion, extracellular matrix disintegration and progesterone receptor signalling. In addition, the study also evaluated the effect of exogenous P4 on sperm-cumulus interaction. Results: More than 10-fold upregulated expression of progesterone receptor in P4 supplemented oocytes signified that P4 might be acting predominantly through this receptor. Also, exogenous P4 supplementation had significant effect on transcatheter arterial chemoembolization protease regulated by P4- progesterone receptor pathway which in turn had an important role in extracellular matrix disintegration. On the contrary, cumulus expansion genes HAS2, TNFAIP6, AREG were not altered upon P4 supplementation. Also, it was observed that P4 addition did facilitate passage of significantly more number of spermatozoa through P4 treated cumulus cells. Further, incorporation of different doses of P4 did not improve significantly the cleavage and blastocyst rates of BCB-ve COCs. Conclusions: Different qualities of buffalo COCs secrete substantially diverse levels of P4, and its supplementation has a role in oocyte maturation via modulation of cumulus characteristics but perhaps not fertilization.

  11. Activation of PKA, p38 MAPK and ERK1/2 by gonadotropins in cumulus cells is critical for induction of EGF-like factor and TACE/ADAM17 gene expression during in vitro maturation of porcine COCs

    Directory of Open Access Journals (Sweden)

    Yamashita Yasuhisa

    2009-12-01

    Full Text Available Abstract Objectives During ovulation, it has been shown that LH stimulus induces the expression of numerous genes via PKA, p38 MAPK, PI3K and ERK1/2 in cumulus cells and granulosa cells. Our recent study showed that EGF-like factor and its protease (TACE/ADAM17 are required for the activation of EGF receptor (EGFR, cumulus expansion and oocyte maturation of porcine cumulus-oocyte complexes (COCs. In the present study, we investigated which signaling pathways are involved in the gene expression of EGF-like factor and in Tace/Adam17 expression in cumulus cells of porcine COC during in vitro maturation. Methods Areg, Ereg, Tace/Adam17, Has2, Tnfaip6 and Ptgs2 mRNA expressions were detected in cumulus cells of porcine COCs by RT-PCR. Protein level of ERK1/2 phosphorylation in cultured cumulus cells was analyzed by westernblotting. COCs were visualized using a phase-contrast microscope. Results When COCs were cultured with FSH and LH up to 2.5 h, Areg, Ereg and Tace/Adam17 mRNA were expressed in cumulus cells of COCs. Areg, Ereg and Tace/Adam17 gene expressions were not suppressed by PI3K inhibitor (LY294002, whereas PKA inhibitor (H89, p38 MAPK inhibitor (SB203580 and MEK inhibitor (U0126 significantly suppressed these gene expressions. Phosphorylation of ERK1/2, and the gene expression of Has2, Tnfaip6 and Ptgs2 were also suppressed by H89, SB203580 and U0126, however, these negative effects were overcome by the addition of EGF to the medium, but not in the U0126 treatment group. Conclusion The results showed that PKA, p38 MAPK and ERK1/2 positively controlled the expression of EGF-like factor and TACE/ADMA17, the latter of which impacts the cumulus expansion and oocyte maturation of porcine COCs via the EGFR-ERK1/2 pathway in cumulus cells.

  12. Cumulus convection and the terrestrial water-vapor distribution

    Science.gov (United States)

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  13. The presence of acylated ghrelin during in vitro maturation of bovine oocytes induces cumulus cell DNA damage and apoptosis, and impairs early embryo development.

    Science.gov (United States)

    Sirini, Matias A; Anchordoquy, Juan Mateo; Anchordoquy, Juan Patricio; Pascua, Ana M; Nikoloff, Noelia; Carranza, Ana; Relling, Alejandro E; Furnus, Cecilia C

    2017-10-01

    The aim of this study was to investigate the effects of acylated ghrelin supplementation during in vitro maturation (IVM) of bovine oocytes. IVM medium was supplemented with 20, 40 or 60 pM acylated ghrelin concentrations. Cumulus expansion area and oocyte nuclear maturation were studied as maturation parameters. Cumulus-oocyte complexes (COC) were assessed with the comet, apoptosis and viability assays. The in vitro effects of acylated ghrelin on embryo developmental capacity and embryo quality were also evaluated. Results demonstrated that acylated ghrelin did not affect oocyte nuclear maturation and cumulus expansion area. However, it induced cumulus cell (CC) death, apoptosis and DNA damage. The damage increased as a function of the concentration employed. Additionally, the percentages of blastocyst yield, hatching and embryo quality decreased with all acylated ghrelin concentrations tested. Our study highlights the importance of acylated ghrelin in bovine reproduction, suggesting that this metabolic hormone could function as a signal that prevents the progress to reproductive processes.

  14. Interação entre células do cumulus e atividade da proteína quinase C em diferentes fases da maturação nuclear de oócitos bovinos Interaction between cumulus cells and the activity of protein kinase C at different stages of bovine oocyte nuclear maturation

    Directory of Open Access Journals (Sweden)

    A.C. Bertagnolli

    2004-08-01

    Full Text Available Verificou-se a influência da proteína quinase C (PK-C no reinício e na progressão da meiose em oócitos bovinos, determinando se as células do cumulus são mediadoras da PK-C na regulação da maturação dos oócitos. Complexos cumulus-oócitos (CCO e oócitos desnudos (OD, distribuídos aleatoriamente em seis tratamentos (T com base na presença de um ativador da PK-C (PMA (T1 e T2, de um forbol éster incapaz de ativar a PK-C (4alfa-PDD-controle (T3 e T4 ou de apenas o meio básico (TCM-199-controle (T5 e T6, foram cultivados por 7, 9, 12, 18 e 22 horas. A percentagem de rompimento da vesícula germinativa no grupo cultivado com PMA foi maior do que nos dois grupos controle, com e sem células do cumulus. O cultivo de CCO e OD por 12 e 18 horas demonstrou que a PK-C influencia a progressão para os estádios de metáfase I (MI e metáfase II (MII de maneira dependente das células do cumulus. Nos períodos de 9 e 22 horas, não foi possível observar diferença entre os grupos quanto aos diferentes estádios de maturação. A ativação da PK-C acelera o reinício da meiose independentemente das células somáticas e acelera a progressão até os estádios de MI e MII na dependência das células do cumulus.The aim of this study was to evaluate the effect of protein kinase C (PK-C on the meiotic resumption and progression in bovine oocyte, and to determine if the cumulus cells mediate the PK-C action in the regulation of bovine oocyte nuclear maturation. Cumulus-oocyte complexes (COC and denuded oocytes (DO, randomly allotted to 6 treatments (T based on the presence of an activator of PK-C (PMA (T1 and T2, or a phorbol ester unable to activate PK-C (4alphaPDD-control (T3 and T4 or a basic culture medium (T5 and T6, were cultivated for 7, 9, 12, 18 and 22 hours. The percentage of germinal vesicle breakdown (GVBD was higher when the oocytes were cultured with PMA than in the control groups with and without cumulus cells. However, PK-C was

  15. Comparison of gene expression patterns between porcine cumulus ...

    African Journals Online (AJOL)

    These results suggest that the aberrant of gene expression patterns detected in the oocytes of NOs compared with COCs explains their reduced quality in terms of development and maturation. In conclusion, these differentially expressed mRNAs may be involved in cellular interactions between oocytes and cumulus cells ...

  16. Visualizing Cumulus Clouds in Virtual Reality

    NARCIS (Netherlands)

    Griffith, E.J.

    2010-01-01

    This thesis focuses on interactively visualizing, and ultimately simulating, cumulus clouds both in virtual reality (VR) and with a standard desktop computer. The cumulus clouds in question are found in data sets generated by Large-Eddy Simulations (LES), which are used to simulate a small section

  17. Remodeling of Donor Nuclei, DNA-Synthesis, and Ploidy of Bovine Cumulus Cell Nuclear Transfer Embryos: Effect of Activation Protocol

    Czech Academy of Sciences Publication Activity Database

    Alberio, R.; Brero, A.; Motlík, Jan; Cremer, T.; Wolf, E.; Zakhartchenko, V.

    2001-01-01

    Roč. 59, č. 2 (2001), s. 371-379 ISSN 1040-452X R&D Projects: GA AV ČR KSK5052113 Grant - others:WO(DE) 685/2-1; WO(DE) 685/3-1 Keywords : nuclear transfer * cumulus cells * activation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.296, year: 2001

  18. Single-cell analysis of differences in transcriptomic profiles of oocytes and cumulus cells at GV, MI, MII stages from PCOS patients.

    Science.gov (United States)

    Liu, Qiwei; Li, Yumei; Feng, Yun; Liu, Chaojie; Ma, Jieliang; Li, Yifei; Xiang, Huifen; Ji, Yazhong; Cao, Yunxia; Tong, Xiaowen; Xue, Zhigang

    2016-12-22

    Polycystic ovary syndrome (PCOS) is a common frequent endocrine disorder among women of reproductive age. Although assisted reproductive techniques (ARTs) are used to address subfertility in PCOS women, their effectiveness is not clear. Our aim was to compare transcriptomic profiles of oocytes and cumulus cells (CCs) between women with and without PCOS, and assess the effectiveness of ARTs in treating PCOS patients. We collected oocytes and CCs from 16 patients with and without PCOS patients to categorize them into 6 groups according to oocyte nuclear maturation. Transcriptional gene expression of oocyte and CCs was determined via single-cell RNA sequencing. The ratio of fertilization and cleavage was higher in PCOS patients than in non-PCOS patients undergoing ARTs, and there was no difference in the number of high-quality embryos between the groups. Differentially expressed genes including PPP2R1A, PDGFRA, EGFR, GJA1, PTGS2, TNFAIP6, TGF-β1, CAV1, INHBB et al. were investigated as potential causes of PCOS oocytes and CCs disorder at early stages, but their expression returned to the normal level at the metaphase II (MII) stage via ARTs. In conclusion, ARTs can improve the quality of cumulus-oocyte complex (COC) and increase the ratio of fertilization and cleavage in PCOS women.

  19. Transcriptomic Analysis and Meta-Analysis of Human Granulosa and Cumulus Cells.

    Directory of Open Access Journals (Sweden)

    Tanja Burnik Papler

    Full Text Available Specific gene expression in oocytes and its surrounding cumulus (CC and granulosa (GC cells is needed for successful folliculogenesis and oocyte maturation. The aim of the present study was to compare genome-wide gene expression and biological functions of human GC and CC. Individual GC and CC were derived from 37 women undergoing IVF procedures. Gene expression analysis was performed using microarrays, followed by a meta-analysis. Results were validated using quantitative real-time PCR. There were 6029 differentially expressed genes (q < 10-4; of which 650 genes had a log2 FC ≥ 2. After the meta-analysis there were 3156 genes differentially expressed. Among these there were genes that have previously not been reported in human somatic follicular cells, like prokineticin 2 (PROK2, higher expressed in GC, and pregnancy up-regulated nonubiquitous CaM kinase (PNCK, higher expressed in CC. Pathways like inflammatory response and angiogenesis were enriched in GC, whereas in CC, cell differentiation and multicellular organismal development were among enriched pathways. In conclusion, transcriptomes of GC and CC as well as biological functions, are distinctive for each cell subpopulation. By describing novel genes like PROK2 and PNCK, expressed in GC and CC, we upgraded the existing data on human follicular biology.

  20. In vitro production of bovine embryos: cumulus/granulosa cell gene expression patterns point to early atresia as beneficial for oocyte competence

    DEFF Research Database (Denmark)

    Mazzoni, Gianluca; Razza, Eduardo; Pedersen, Hanne S.

    2017-01-01

    In vitro production (IW) of bovine embryos has become widespread technology implemented in cattle breeding and production. Here, we review novel data on cumulus/granulosa cell gene expression, as determined by RNAseq on cellular material from pooled follicular fluids at the single animal level...

  1. Stratocumulus to Cumulus Transition by Drizzle

    Science.gov (United States)

    Yamaguchi, Takanobu; Feingold, Graham; Kazil, Jan

    2017-10-01

    The stratocumulus to cumulus transition (SCT) is typically considered to be a slow, multiday process, caused primarily by dry air entrainment associated with overshooting cumulus, with minor influence of drizzle. This study revisits the role of drizzle in the SCT with large eddy simulations coupled with a two-moment bulk microphysics scheme that includes a budget on aerosol (Na) and cloud droplet number concentrations (Nc). We show a strong precipitation-induced modulation of the SCT by drizzle initiated in penetrative cumulus under stratocumulus. Lagrangian SCT simulations are initiated with various, moderate Na (100-250 cm-3), which produce little to no drizzle from the stratocumulus. As expected, drizzle formation in cumuli is regulated by cloud depth and Nc, with stronger dependence on cloud depth, so that, for the current case, drizzle is generated in all simulations once cumulus clouds become sufficiently deep. The drizzle generated in the cumuli washes out stratocumulus cloud water and much of the aerosol, and a cumulus state appears for approximately 10 h. With additional simulations with a fixed Nc (100 cm-3), we show that prediction of Nc is necessary for this fast SCT since it is a result of a positive feedback of collision-coalescence-induced aerosol depletion that enhances drizzle formation. A fixed Nc does not permit this feedback, and thus results in weak influence of drizzle on the SCT. Simulations with fixed droplet concentrations that bracket the time varying aerosol/drop concentrations are therefore not representative of the role of drizzle in the SCT.

  2. DNA Double-Strand Breaks Induce the Nuclear Actin Filaments Formation in Cumulus-Enclosed Oocytes but Not in Denuded Oocytes.

    Directory of Open Access Journals (Sweden)

    Ming-Hong Sun

    Full Text Available As a gamete, oocyte needs to maintain its genomic integrity and passes this haploid genome to the next generation. However, fully-grown mouse oocyte cannot respond to DNA double-strand breaks (DSBs effectively and it is also unable to repair them before the meiosis resumption. To compensate for this disadvantage and control the DNA repair events, oocyte needs the cooperation with its surrounding cumulus cells. Recently, evidences have shown that nuclear actin filament formation plays roles in cellular DNA DSB repair. To explore whether these nuclear actin filaments are formed in the DNA-damaged oocytes, here, we labeled the filament actins in denuded oocytes (DOs and cumulus-enclosed oocytes (CEOs. We observed that the nuclear actin filaments were formed only in the DNA-damaged CEOs, but not in DOs. Formation of actin filaments in the nucleus was an event downstream to the DNA damage response. Our data also showed that the removal of cumulus cells led to a reduction in the nuclear actin filaments in oocytes. Knocking down of the Adcy1 gene in cumulus cells did not affect the formation of nuclear actin filaments in oocytes. Notably, we also observed that the nuclear actin filaments in CEOs could be induced by inhibition of gap junctions. From our results, it was confirmed that DNA DSBs induce the nuclear actin filament formation in oocyte and which is controlled by the cumulus cells.

  3. Effect of glycine and alanine supplementation on development of cattle embryos cultured in CR1aa medium with or without cumulus cells

    Directory of Open Access Journals (Sweden)

    Kr. BREDBACKA

    2008-12-01

    Full Text Available The effect of alanine (1 mM and glycine (10 mM supplementation on bovine embryo development in vitro was investigated. Presumptive bovine zygotes, produced by in vitro maturation and insemination of oocytes, were cultured for 144 h in CR1aa medium in the absence (Experiments 1 and 2 or presence of cumulus cells (Experiment 3. In Experiment 1, the proportion of morulae and blastocysts of cleaved embryos in glycine-supplemented medium was not different from that of the control medium (34% in both mediaglycine-enriched medium (69.5 vs. 53.3, P = 0.016. In Experiment 2, addition of alanine did not improve the formation of morulae and blastocysts (13% vs. 21% in control medium, and the mean cell numbers in morulae and blastocysts were lower than those in the control group (34.3 vs. 68.7, P = 0.007. In the presence of cumulus cells, the combined supplementation of glycine and alanine increased the proportion of morulae and blastocysts over that in the control medium (31% vs. 14%, P = 0.003.;

  4. Increased expression of pentraxin 3 after in vivo and in vitro stimulation with gonadotropins in porcine oocyte-cumulus complexes and granulosa cells

    Czech Academy of Sciences Publication Activity Database

    Nagyová, Eva; Kalous, Jaroslav; Němcová, Lucie

    2016-01-01

    Roč. 56, č. 1 (2016), s. 29-35 ISSN 0739-7240 R&D Projects: GA ČR GA305/05/0960 Institutional support: RVO:67985904 Keywords : oocyte-cumulus complex * granulosa cells * pentraxin 3 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.644, year: 2016

  5. Role of Fas-Mediated Apoptosis and Follicle-Stimulating Hormone on the Developmental Capacity of Bovine Cumulus Oocyte Complexes in Vitro

    NARCIS (Netherlands)

    Pomar, F.J.; Roelen, B.A.J.; Slot, K.A.; Tol, van H.T.A.; Colenbrander, B.; Teerds, K.J.

    2004-01-01

    Follicular atresia is believed to be largely regulated by apoptosis. To further understand how apoptosis can affect cumulus cells and oocytes we have evaluated the incidence and regulation of apoptosis affecting bovine cumulus oocyte complexes in vitro. Expression of components of the Fas signaling

  6. Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications.

    Science.gov (United States)

    Da Broi, M G; Giorgi, V S I; Wang, F; Keefe, D L; Albertini, D; Navarro, P A

    2018-03-02

    An equilibrium needs to be established by the cellular and acellular components of the ovarian follicle if developmental competence is to be acquired by the oocyte. Both cumulus cells (CCs) and follicular fluid (FF) are critical determinants for oocyte quality. Understanding how CCs and FF influence oocyte quality in the presence of deleterious systemic or pelvic conditions may impact clinical decisions in the course of managing infertility. Given that the functional integrities of FF and CCs are susceptible to concurrent pathological conditions, it is important to understand how pathophysiological factors influence natural fertility and the outcomes of pregnancy arising from the use of assisted reproduction technologies (ARTs). Accordingly, this review discusses the roles of CCs and FF in ensuring oocyte competence and present new insights on pathological conditions that may interfere with oocyte quality by altering the intrafollicular environment.

  7. Gene expression microarray profiles of cumulus cells in lean and overweight-obese polycystic ovary syndrome patients.

    Science.gov (United States)

    Kenigsberg, Shlomit; Bentov, Yaakov; Chalifa-Caspi, Vered; Potashnik, Gad; Ofir, Rivka; Birk, Ohad S

    2009-02-01

    The aim of this work was to study gene expression patterns of cultured cumulus cells from lean and overweight-obese polycystic ovary syndrome (PCOS) patients using genome-wide oligonucleotide microarray. The study included 25 patients undergoing in vitro fertilization and intra-cytoplasmic sperm injection: 12 diagnosed with PCOS and 13 matching controls. Each of the groups was subdivided into lean (body mass index (BMI) 27) subgroups. The following comparisons of gene expression data were made: lean PCOS versus lean controls, lean PCOS versus overweight PCOS, all PCOS versus all controls, overweight PCOS versus overweight controls, overweight controls versus lean controls and all overweight versus all lean. The largest number of differentially expressed genes (DEGs), with fold change (FC) |FC| >or= 1.5 and P-value lean PCOS versus lean controls comparison (487) with most of these genes being down-regulated in PCOS. The second largest group of DEGs originated from the comparison of lean PCOS versus overweight PCOS (305). The other comparisons resulted in a much smaller number of DEGs (174, 109, 125 and 12, respectively). In the comparison of lean PCOS with lean controls, most DEGs were transcription factors and components of the extracellular matrix and two pathways, Wnt/beta-catenin and mitogen-activated protein kinase. When comparing overweight PCOS with overweight controls, most DEGs were of pathways related to insulin signaling, metabolism and energy production. The finding of unique gene expression patterns in cumulus cells from the two PCOS subtypes is in agreement with other studies that have found the two to be separate entities with potentially different pathophysiologies.

  8. Transition Metal Chelator Induces Progesterone Production in Mouse Cumulus-Oocyte Complexes and Corpora Lutea.

    Science.gov (United States)

    Tian, X; Anthony, K; Diaz, Francisco J

    2017-04-01

    Progesterone production is upregulated in granulosa cells (cumulus and mural) after the LH surge, but the intra-follicular mechanisms regulating this transition are not completely known. Recent findings show that the transition metal chelator, N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN), impairs ovarian function. In this study, we provide evidence that chelating transition metals, including zinc, enhances progesterone production. The findings show that TPEN (transition metal chelator) increases abundance of Cyp11a1 and Star messenger RNA (mRNA) between 8- and 20-fold and progesterone production more than 3-fold in cultured cumulus-oocyte complexes (COC). Feeding a zinc-deficient diet for 10 days, but not 3 days, increased Star, Hsd3b, and prostaglandin F2 alpha receptor (Ptgfr) mRNA ~2.5-fold, suggesting that the effect of TPEN is through modulation of zinc availability. Progesterone from cumulus cells promotes oocyte developmental potential. Blocking progesterone production with epostane during maturation reduced subsequent blastocyst formation from 89 % in control to 18 % in epostane-treated complexes, but supplementation with progesterone restored blastocyst developmental potential to 94 %. Feeding a zinc-deficient diet for 5 days before ovulation did not affect the number of CL, STAR protein, or serum progesterone. However, incubating luteal tissue with TPEN increased abundance of Star, Hsd3b, and Ptgfr mRNA 2-3-fold and increased progesterone production 3-fold. TPEN is known to abolish SMAD2/3 signaling in cumulus cells. However, treatment of COC with the SMAD2/3 phosphorylation inhibitor, SB421542, did not by itself induce steroidogenic transcripts but did potentiate EGF-induced Star mRNA expression. Collectively, the results show that depletion of transition metals with TPEN acutely enhances progesterone biosynthesis in COC and luteal tissue.

  9. Effects of selected endocrine disruptors on meiotic maturation, cumulus expansion, syntesis of hyaluronan and progesterone by porcine oocyte-cumulus complexes

    Czech Academy of Sciences Publication Activity Database

    Mlynarčíková, A.; Nagyová, Eva; Ficková, M.; Scsuková, S.

    2009-01-01

    Roč. 23, - (2009), s. 371-377 ISSN 0887-2333 R&D Projects: GA ČR GA305/05/0960 Grant - others:VEGA(SK) 2/6171/26; EU(XE) QLK4-CT-2002-02637 Institutional research plan: CEZ:AV0Z50450515 Keywords : oocyte-cumulus complex * meiotic maturation * cumulus expansion Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.060, year: 2009

  10. INFLUÊNCIA DA TEMPERATURA DE FECUNDAÇÃO IN VITRO E DAS CÉLULAS DO Cumulus oophorus SOBRE A TAXA DE POLISPERMIA E DESENVOLVIMENTO EMBRIONÁRIO

    Directory of Open Access Journals (Sweden)

    Melissa Savoia Castilho Cunha

    2010-06-01

    Full Text Available Effects of in vitro fertilization (IVF temperature andcumulus oophorus cells removal after IVF or 12 h of embryoculture (IVC on polyspermy and embryo development rates wereevaluated in swine. Oocytes and spermatozoa were incubated at37 or 38.5ºC during IVF procedure. Cumulus oophorus cells wereremoved from 50% of zygotes of each group 8 hours after IVF andall zygotes were cultured with NCSU23 media. Polyspermy rateswere assessed after 12 hours of IVC, when cumulus oophorus cellswere removed from the rest of zygotes. In a second experiment,embryos remained in culture for the evaluation of embryodevelopment. No effects of IVF temperature or cumulus oophoruscells removal were observed after 12 hours of IVC on polyspermyand embryo development (p<0.05. In conclusion, IVF temperatureand the presence of cumulus oophorus cells after IVF do notinterfere on polyspermy and embryo development rates.

  11. Comparative Gene Expression Profiling in Human Cumulus Cells according to Ovarian Gonadotropin Treatments

    Directory of Open Access Journals (Sweden)

    Said Assou

    2013-01-01

    Full Text Available In in vitro fertilization cycles, both HP-hMG and rFSH gonadotropin treatments are widely used to control human follicle development. The objectives of this study are (i to characterize and compare gene expression profiles in cumulus cells (CCs of periovulatory follicles obtained from patients stimulated with HP-hMG or rFSH in a GnRH antagonist cycle and (ii to examine their relationship with in vitro embryo development, using Human Genome U133 Plus 2.0 microarrays. Genes that were upregulated in HP-hMG-treated CCs are involved in lipid metabolism (GM2A and cell-to-cell interactions (GJA5. Conversely, genes upregulated in rFSH-treated CCs are implicated in cell assembly and organization (COL1A1 and COL3A1. Interestingly, some genes specific to each gonadotropin treatment (NPY1R and GM2A for HP-hMG; GREM1 and OSBPL6 for rFSH were associated with day 3 embryo quality and blastocyst grade at day 5, while others (STC2 and PTX3 were related to in vitro embryo quality in both gonadotropin treatments. These genes may prove valuable as biomarkers of in vitro embryo quality.

  12. APOPTOSIS RATE IN CUMULUS CELLS AS POSSIBLE MOLECULAR BIOMARKER FOR OOCYTE COMPETENCE.

    Directory of Open Access Journals (Sweden)

    Liana Bosco

    2017-04-01

    Full Text Available Several lines of evidence showed that apoptosis rate of cumulus cells in oocytes derived by assisted reproductive technologies could be used as an indicator of fertilizing gamete quality. Aim of the study was to investigate the effects of three different ovarian stimulation protocols on the biological and clinical outcome in hyporesponder patients. Collected data showed a higher significant rate of DNA fragmentation index (DFI in U group (patients treated with Highly Purified human Menopausal Gonadotrophin than in P group (treated with recombinant human Follicle Stimulating Hormone (r-hFSH combined with recombinant human Luteinizing Hormone (r-hLH. Both groups R (treated with r-hFSH alone and P showed a significant increase in collected and fertilized oocytes number, embryo quality number. This study showed that combined r-hFSH/r-hLH therapy could represent the best pharmacological strategy for controlled ovarian stimulation and suggests to use DFI as a biomarker of ovarian function in hyporesponder patients.

  13. Comparison of Different Vitrification Procedures on Developmental Competence of Mouse Germinal Vesicle Oocytes in the Presence or Absence of Cumulus Cells

    Directory of Open Access Journals (Sweden)

    Mojdeh Salehnia

    2009-01-01

    Full Text Available Background: An evaluation of the developmental competence of vitrified mouse germinal vesicle(GV oocytes with various equilibration and vitrification times; in the presence or absence ofcumulus cells and by comparison between the cryotop method and straws was performed.Materials and Methods: Mouse GV oocytes were considered in cumulus-denuded oocytes(CDOs and cumulus-oocyte complexes (COCs groups. Their survival and developmental rateswere studied in the following experiments: (I exposure to different equilibration times (0, 3 and5 minutes and vitrification (1, 3 and 5 minutes without plunging in LN2 as toxicity tests, (IIoocytes were vitrified using straws followed by exposure to equilibration solution for 0, 3 and 5minutes and vitrification solution for 1 and 3 minutes, and (III oocytes were vitrified by cryotopfollowing exposure to equilibration for 5 minutes and vitrification for 1 minute, respectively.Results: Maturation and developmental rates of the COCs were higher than CDOs in the nonvitrifiedgroup (p<0.05. The survival and maturation rates were low in all oocytes exposed tovitrification solution for 5 minutes (p <0.05. In vitrified CDOs and COCs using straws, the survivalrates ranged from 56.9% to 85.4% and 44.0% to 84.5%, and the maturation rates from 35.3% to56.8% and 25.8% to 56.2%, respectively; which were lower than non-vitrified samples (p <0.05.Cryotop vitrified oocytes showed higher survival, maturation and fertilization rates when comparedto straw in both CDOs and COCs (p <0.05.Conclusion: The presence of cumulus cells improves developmental competence of GV oocytesin control groups but it did not affect the vitrified group. Vitrification of mouse GV oocytes usingcryotop was more effective than straws, however both vitrification techniques did not improve thecleavage rate.

  14. Hotelli Cumulus Mikkelin majoitusasiakkaiden tyytyväisyys

    OpenAIRE

    Kinnunen, Jenni Ljuba

    2016-01-01

    Tämän opinnäytetyön tavoitteena on tutkia majoitusasiakkaiden tyytyväisyyttä hotelli Cumulus Mikkelissä keskittyen pääosin hotellin vastaanottoon, hotellihuoneeseen, Huviretki-ravintolaan ja aamiaiseen. Opinnäytetyön toimeksiantaja on hotelli Cumulus Mikkeli. Tässä opinnäytetyössä käytetään kvalitatiivista tutkimusmenetelmää ja tutkimusaineisto kerättiin haastattelemalla hotellin majoitusasiakkaita yksitellen kyselylomakkeen kanssa. Haastateltujen asiakkaiden määrä oli 20, joista 10 ...

  15. Estudo estereológico comparativo de complexos cumulus-ovócito aspirados de folículos durante o ciclo estral em bovinos Comparative stereological study of cumulus-oocyte complexes aspirated from follicles during the estrous cycle in bovine

    Directory of Open Access Journals (Sweden)

    A.M. Calado

    2005-08-01

    Full Text Available Realizou-se uma análise estereológica comparativa de complexos cumulus-ovócito (COCs de bovino da raça Holtein-Friesian aspirados de folículos antrais pequenos (com diâmetro de 1-4mm e médios (com diâmetro de 4-8mm durante as fases de metaestro, diestro e de proestro. Foram estimados o volume médio dos COCs, dos ovócitos (com e sem zona pelúcida, dos núcleos dos ovócitos e das células foliculares e seus respectivos núcleos. Estimou-se a espessura da zona pelúcida e calculou-se a percentagem relativa da freqüência dos diferentes tipos de células foliculares encontradas no cumulus. Os folículos pequenos apresentaram crescimento acelerado e sem sincronia entre o volume do citoplasma e o do núcleo. No folículo médio ocorreu expansão harmoniosa núcleo-citoplasmática. Identificaram-se três populações de células foliculares (C1, C2 e C3, cuja distribuição na massa do cumulus é independente de sua posição relativamente ao ovócito. Durante o ciclo estral, as células C1 foram progressivamente substituídas por C2 e estas, por C3.A comparative stereological analysis was performed in cumulus-oocyte complexes from Holstein-Friesian cows, aspirated from small (with diameter of 1-4mm and medium (with diameter of 4-8mm antral follicles during metestrous, diestrous and proestrous. The mean volumes of COCs, oocytes (with and without zona pellucida, nucleus of the oocyte, as well as the volumes of the follicular cells and their nucleus were estimated. The mean thickness of the zona pellucida and the relative percentage of the three follicular cell types in the cumulus mass were also obtained. Small antral follicles had an accelerate growth without synchrony between the volume of the oocyte and the respective nucleus, while in medium antral follicles an harmonious nucleus-cytoplasmic expansion was observed. These follicular cell populations were classified in their types, C1, C2 and C3, which the distribution in the cumulus mass

  16. Competence Classification of Cumulus and Granulosa Cell Transcriptome in Embryos Matched by Morphology and Female Age.

    Directory of Open Access Journals (Sweden)

    Rehannah Borup

    Full Text Available By focussing on differences in the mural granulosa cell (MGC and cumulus cell (CC transcriptomes from follicles resulting in competent (live birth and non-competent (no pregnancy oocytes the study aims on defining a competence classifier expression profile in the two cellular compartments.A case-control study.University based facilities for clinical services and research.MGC and CC samples from 60 women undergoing IVF treatment following the long GnRH-agonist protocol were collected. Samples from 16 oocytes where live birth was achieved and 16 age- and embryo morphology matched incompetent oocytes were included in the study.MGC and CC were isolated immediately after oocyte retrieval. From the 16 competent and non-competent follicles, mRNA was extracted and expression profile generated on the Human Gene 1.0 ST Affymetrix array. Live birth prediction analysis using machine learning algorithms (support vector machines with performance estimation by leave-one-out cross validation and independent validation on an external data set.We defined a signature of 30 genes expressed in CC predictive of live birth. This live birth prediction model had an accuracy of 81%, a sensitivity of 0.83, a specificity of 0.80, a positive predictive value of 0.77, and a negative predictive value of 0.86. Receiver operating characteristic analysis found an area under the curve of 0.86, significantly greater than random chance. When applied on 3 external data sets with the end-point outcome measure of blastocyst formation, the signature resulted in 62%, 75% and 88% accuracy, respectively. The genes in the classifier are primarily connected to apoptosis and involvement in formation of extracellular matrix. We were not able to define a robust MGC classifier signature that could classify live birth with accuracy above random chance level.We have developed a cumulus cell classifier, which showed a promising performance on external data. This suggests that the gene signature at

  17. An artificially induced follicle stimulating hormone surge at the time of human chorionic gonadotrophin administration in controlled ovarian stimulation cycles has no effect on cumulus expansion, fertilization rate, embryo quality and implantation rate

    NARCIS (Netherlands)

    Vermeiden, J. P.; Roseboom, T. J.; Goverde, A. J.; Suchartwatnachai, C.; Schoute, E.; Braat, D. D.; Schats, R.

    1997-01-01

    In the spontaneous menstrual cycle, the mid-cycle gonadotrophin surge causes maturation of the cumulus-oocyte complex, mucification of cumulus cells and expansion of the cumulus oophorus, resumption of meiosis and maturation of the cytoplasm of the oocyte. Whether this is an effect purely of

  18. The unusual state of the cumulus oophorus and of sperm behaviour within it, in the musk shrew, Suncus murinus.

    Science.gov (United States)

    Bedford, J M; Mori, T; Oda, S

    1997-05-01

    In the musk shrew, Suncus murinus, the behaviour of the cumulus-egg complex and its interaction with spermatozoa were unusual in several respects. The cumulus oophorus was ovulated about 15.5 h after mating or treatment with hCG as a hyaluronidase-insensitive matrix-free ball of cells which remained for relatively long periods of about 14 h around fertilized, and for about 24 h around unfertilized eggs. As a probable function of the small number of up to about 10 or 20 spermatozoa that generally reached the oviduct ampulla from isthmic crypts, there was often a delay of up to 10 h after ovulation before most eggs were penetrated. Soon after ovulation, however, the corona radiata retreated progressively from the zona pellucida, creating a closed perizonal space within the cumulus oophorus. Usually, most spermatozoa that did reach the ampulla were found within a cumulus and generally within that perizonal space. However, whereas the acrosome was intact among the few free ampullary spermatozoa, and in those adhering to the zona of cumulus-free eggs after delayed mating, all spermatozoa seen moving within the cumulus or adhering to the zona of unfertilized eggs had shed the giant acrosome. In accord with current observations in other shrews, the cumulus in Suncus may therefore function not only to sequester spermatozoa, but also as an essential mediator of fertilization-probably by inducing the acrosome reaction. In the absence of the acrosomal carapace that expresses the zona receptors in most mammals, fertilizing Suncus spermatozoa could use an unusual array of barbs on the exposed perforatorium to attach to the zona pellucida.

  19. Association between expression of cumulus expansion markers and real-time proliferation of porcine follicular granulosa cells in a primary cell culture model.

    Science.gov (United States)

    Ciesiółka, S; Budna, J; Bryja, A; Kranc, W; Chachuła, A; Dyszkiewicz-Konwińska, M; Piotrowska, H; Bukowska, D; Antosik, P; Bruska, M; Brüssow, K P; Nowicki, M; Zabel, M; Kempisty, B

    2016-01-01

    Folliculogenesis is a compound process that involves both ovarian follicle growth and oocyte development, which is tightly attached to the follicular wall. During this process, cells that form the follicle structure undergo substantial morphological and molecular modifications that finally lead to differentiation and specialization of ovarian follicular cells. The differentiation of ovarian cells encompasses formation of follicle, which is composed of theca (TCs), mural granulosa (GCs), and cumulus cells (CCs). It was previously hypothesized that GCs and CCs represent undifferentiated and highly specialized follicular cells, respectively, which may have similar primordial cell origins. In this study, we investigated the expression pattern of cumulus expansion markers such as COX2, HAS2, PTX3, and TSG6 in porcine GCs during short-term, in vitro culture. We hypothesized that these genes may display an important function in GCs in relation to cellular real-time proliferation. The expression pattern of COX2, HAS2, PTX3, and TSG6 was evaluated after using RT-qPCR in relation to confocal microscopy observations of protein expression and distribution during real-time proliferation of porcine follicular GCs. The COX2 and HAS2 mRNAs were highly expressed after 120 h of in vitro culture (IVC), whereas PTX3 and TSG6 mRNAs were increased during the first 24-48 h of IVC (P less than 0.001, P less than 0.01). Conversely, all of the encoded proteins were highly expressed after 144-168 h of IVC as compared to other culture periods (P less than 0.001, P less than 0.01). When analyzing the realtime proliferation of GCs in vitro, we observed a logarithmic increase of cell proliferation between 0 h and 120 h of IVC. However, after 120-168 h of IVC, the cells reached the lag phase of proliferation. Since it is well accepted that porcine GCs undergo luteinization shortly after 24-48 h of IVC, the expression pattern of investigated genes indicated that Cox2 and Has2 are independent from

  20. A Heuristic Parameterization for the Integrated Vertical Overlap of Cumulus and Stratus

    Science.gov (United States)

    Park, Sungsu

    2017-10-01

    The author developed a heuristic parameterization to handle the contrasting vertical overlap structures of cumulus and stratus in an integrated way. The parameterization assumes that cumulus is maximum-randomly overlapped with adjacent cumulus; stratus is maximum-randomly overlapped with adjacent stratus; and radiation and precipitation areas at each model interface are grouped into four categories, that is, convective, stratiform, mixed, and clear areas. For simplicity, thermodynamic scalars within individual portions of cloud, radiation, and precipitation areas are assumed to be internally homogeneous. The parameterization was implemented into the Seoul National University Atmosphere Model version 0 (SAM0) in an offline mode and tested over the globe. The offline control simulation reasonably reproduces the online surface precipitation flux and longwave cloud radiative forcing (LWCF). Although the cumulus fraction is much smaller than the stratus fraction, cumulus dominantly contributes to precipitation production in the tropics. For radiation, however, stratus is dominant. Compared with the maximum overlap, the random overlap of stratus produces stronger LWCF and, surprisingly, more precipitation flux due to less evaporation of convective precipitation. Compared with the maximum overlap, the random overlap of cumulus simulates stronger LWCF and weaker precipitation flux. Compared with the control simulation with separate cumulus and stratus, the simulation with a single-merged cloud substantially enhances the LWCF in the tropical deep convection and midlatitude storm track regions. The process-splitting treatment of convective and stratiform precipitation with an independent precipitation approximation (IPA) simulates weaker surface precipitation flux than the control simulation in the tropical region.

  1. Entrainment in Laboratory Simulations of Cumulus Cloud Flows

    Science.gov (United States)

    Narasimha, R.; Diwan, S.; Subrahmanyam, D.; Sreenivas, K. R.; Bhat, G. S.

    2010-12-01

    A variety of cumulus cloud flows, including congestus (both shallow bubble and tall tower types), mediocris and fractus have been generated in a water tank by simulating the release of latent heat in real clouds. The simulation is achieved through ohmic heating, injected volumetrically into the flow by applying suitable voltages between diametral cross-sections of starting jets and plumes of electrically conducting fluid (acidified water). Dynamical similarity between atmospheric and laboratory cloud flows is achieved by duplicating values of an appropriate non-dimensional heat release number. Velocity measurements, made by laser instrumentation, show that the Taylor entrainment coefficient generally increases just above the level of commencement of heat injection (corresponding to condensation level in the real cloud). Subsequently the coefficient reaches a maximum before declining to the very low values that characterize tall cumulus towers. The experiments also simulate the protected core of real clouds. Cumulus Congestus : Atmospheric cloud (left), simulated laboratory cloud (right). Panels below show respectively total heat injected and vertical profile of heating in the laboratory cloud.

  2. Differential expression and localization of glycosidic residues in in vitro- and in vivo-matured cumulus-oocyte complexes in equine and porcine species.

    Science.gov (United States)

    Accogli, Gianluca; Douet, Cécile; Ambruosi, Barbara; Martino, Nicola Antonio; Uranio, Manuel Filioli; Deleuze, Stefan; Dell'Aquila, Maria Elena; Desantis, Salvatore; Goudet, Ghylène

    2014-12-01

    Glycoprotein oligosaccharides play major roles during reproduction, yet their function in gamete interactions is not fully elucidated. Identification and comparison of the glycan pattern in cumulus-oocyte complexes (COCs) from species with different efficiencies of in vitro spermatozoa penetration through the zona pellucida (ZP) could help clarify how oligosaccharides affect gamete interactions. We compared the expression and localization of 12 glycosidic residues in equine and porcine in vitro-matured (IVM) and preovulatory COCs by means of lectin histochemistry. The COCs glycan pattern differed between animals and COC source (IVM versus preovulatory). Among the 12 carbohydrate residues investigated, the IVM COCs from these two species shared: (a) sialo- and βN-acetylgalactosamine (GalNAc)-terminating glycans in the ZP; (b) sialylated and fucosylated glycans in cumulus cells; and (c) GalNAc and N-acetylglucosamine (GlcNAc) glycans in the ooplasm. Differences in the preovulatory COCs of the two species included: (a) sialoglycans and GlcNAc terminating glycans in the equine ZP versus terminal GalNAc and internal GlcNAc in the porcine ZP; (b) terminal galactosides in equine cumulus cells versus terminal GlcNAc and fucose in porcine cohorts; and (c) fucose in the mare ooplasm versus lactosamine and internal GlcNAc in porcine oocyte cytoplasm. Furthermore, equine and porcine cumulus cells and oocytes contributed differently to the synthesis of ZP glycoproteins. These results could be attributed to the different in vitro fertilization efficiencies between these two divergent, large-animal models. © 2014 Wiley Periodicals, Inc.

  3. Early Detection of Rapidly Developing Cumulus Area using HIMAWARI-8

    Science.gov (United States)

    Yamada, Y.; Kadosaki, G.

    2017-12-01

    In recent years, many disasters have been occured by influence of meteorological change in Japan. So, it becomes more important to inform rapid weather change caused by cumulus which brings concentrated heavy rain/hail, wind gust, lightning in a short period. These severe events should inclease in the future by global warming. Therefore we are developping the alert system for Rapidly Developing Cumulus Area (RDCA) detection using Japanese new satellite. At July 2015, Japan Meteorological Agency started operation of new geostationary meteorological satellite "Himawari-8". This satellite has optical imager named Advanced Himawari Imager (AHI). It can observe Japan area every 2.5 minutes. The frequently infrared image with high resolution (2km) is the key of our alert system. We took some special functions in the algorithm of this system. One of the points is cloud location which shifts to north from true location around Japan by viewing angle from the satellite above the equator. We moved clouds to the correct position using geometric correction method according to its height and latitude. This algorithm also follows a movement of cloud every 2.5 minutes during several observations. It derives the information about degree of the development of cumulus. The prototype system gives the alert before 30 to 60 minutes in advance to the first lightning in typical cumulus case. However, we understand that there are some difficult cases to alert. For example, winter low cloud over the Japan Sea which brings a winter lightning, and tornado (although it is not cumulus). Now, we are adjusting some parameters of the algorithm. In the near future, our algorithm will be used in weather information delivery service to the customer.

  4. Laboratory simulations of cumulus cloud flows explain the entrainment anomaly

    Science.gov (United States)

    Narasimha, Roddam; Diwan, Sourabh S.; Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.

    2010-11-01

    In the present laboratory experiments, cumulus cloud flows are simulated by starting plumes and jets subjected to off-source heat addition in amounts that are dynamically similar to latent heat release due to condensation in real clouds. The setup permits incorporation of features like atmospheric inversion layers and the active control of off-source heat addition. Herein we report, for the first time, simulation of five different cumulus cloud types (and many shapes), including three genera and three species (WMO Atlas 1987), which show striking resemblance to real clouds. It is known that the rate of entrainment in cumulus cloud flows is much less than that in classical plumes - the main reason for the failure of early entrainment models. Some of the previous studies on steady-state jets and plumes (done in a similar setup) have attributed this anomaly to the disruption of the large-scale turbulent structures upon the addition of off-source heat. We present estimates of entrainment coefficients from these measurements which show a qualitatively consistent variation with height. We propose that this explains the observed entrainment anomaly in cumulus clouds; further experiments are planned to address this question in the context of starting jets and plumes.

  5. Continuous growth of cloud droplets in cumulus cloud

    International Nuclear Information System (INIS)

    Gotoh, Toshiyuki; Suehiro, Tamotsu; Saito, Izumi

    2016-01-01

    A new method to seamlessly simulate the continuous growth of droplets advected by turbulent flow inside a cumulus cloud was developed from first principle. A cubic box ascending with a mean updraft inside a cumulus cloud was introduced and the updraft velocity was self-consistently determined in such a way that the mean turbulent velocity within the box vanished. All the degrees of freedom of the cloud droplets and turbulence fields were numerically integrated. The box ascended quickly inside the cumulus cloud due to the updraft and the mean radius of the droplets grew from 10 to 24 μ m for about 10 min. The turbulent flow tended to slow down the time evolutions of the updraft velocity, the box altitude and the mean cloud droplet radius. The size distribution of the cloud droplets in the updraft case was narrower than in the absence of the updraft. It was also found that the wavenumeber spectra of the variances of the temperature and water vapor mixing ratio were nearly constant in the low wavenumber range. The future development of the new method was argued. (paper)

  6. Co-culture of human embryos with autologous cumulus cell clusters and its beneficial impact of secreted growth factors on preimplantation development as compared to standard embryo culture in assisted reproductive technologies (ART

    Directory of Open Access Journals (Sweden)

    Alexandros Vithoulkas

    2017-12-01

    Conclusion(s: The investigated factors, among other substances, may be causally connected to the beneficial effect observed on embryo development. Our findings suggest that co-culture with autologous cumulus cell clusters improves the outcome of embryo culture in IVF programs.

  7. Cumulus Microphysics and Climate Sensitivity.

    Science.gov (United States)

    del Genio, Anthony D.; Kovari, William; Yao, Mao-Sung; Jonas, Jeffrey

    2005-07-01

    Precipitation processes in convective storms are potentially a major regulator of cloud feedback. An unresolved issue is how the partitioning of convective condensate between precipitation-size particles that fall out of updrafts and smaller particles that are detrained to form anvil clouds will change as the climate warms. Tropical Rainfall Measuring Mission (TRMM) observations of tropical oceanic convective storms indicate higher precipitation efficiency at warmer sea surface temperature (SST) but also suggest that cumulus anvil sizes, albedos, and ice water paths become insensitive to warming at high temperatures. International Satellite Cloud Climatology Project (ISCCP) data show that instantaneous cirrus and deep convective cloud fractions are positively correlated and increase with SST except at the highest temperatures, but are sensitive to variations in large-scale vertical velocity. A simple conceptual model based on a Marshall-Palmer drop size distribution, empirical terminal velocity-particle size relationships, and assumed cumulus updraft speeds reproduces the observed tendency for detrained condensate to approach a limiting value at high SST. These results suggest that the climatic behavior of observed tropical convective clouds is intermediate between the extremes required to support the thermostat and adaptive iris hypotheses.

  8. Embryo quality predictive models based on cumulus cells gene expression

    Directory of Open Access Journals (Sweden)

    Devjak R

    2016-06-01

    Full Text Available Since the introduction of in vitro fertilization (IVF in clinical practice of infertility treatment, the indicators for high quality embryos were investigated. Cumulus cells (CC have a specific gene expression profile according to the developmental potential of the oocyte they are surrounding, and therefore, specific gene expression could be used as a biomarker. The aim of our study was to combine more than one biomarker to observe improvement in prediction value of embryo development. In this study, 58 CC samples from 17 IVF patients were analyzed. This study was approved by the Republic of Slovenia National Medical Ethics Committee. Gene expression analysis [quantitative real time polymerase chain reaction (qPCR] for five genes, analyzed according to embryo quality level, was performed. Two prediction models were tested for embryo quality prediction: a binary logistic and a decision tree model. As the main outcome, gene expression levels for five genes were taken and the area under the curve (AUC for two prediction models were calculated. Among tested genes, AMHR2 and LIF showed significant expression difference between high quality and low quality embryos. These two genes were used for the construction of two prediction models: the binary logistic model yielded an AUC of 0.72 ± 0.08 and the decision tree model yielded an AUC of 0.73 ± 0.03. Two different prediction models yielded similar predictive power to differentiate high and low quality embryos. In terms of eventual clinical decision making, the decision tree model resulted in easy-to-interpret rules that are highly applicable in clinical practice.

  9. Evaluating The Effect of Melatonin on HAS2, and PGR expression, as well as Cumulus Expansion, and Fertility Potential in Mice.

    Science.gov (United States)

    Ezzati, Maryam; Roshangar, Leila; Soleimani Rad, Jafar; Karimian, Nahid

    2018-04-01

    Infertility is a worldwide health problem which affects approximately 15% of sexually active couples. One of the factors influencing the fertility is melatonin. Also, protection of oocytes and embryos from oxidative stress inducing chemicals in the culture medium is important. The aim of the present study was to investigate if melatonin could regulate hyaluronan synthase-2 (HAS2) and Progesterone receptor (PGR) expressions in the cumulus cells of mice oocytes and provide an in vitro fertilization (IVF) approach. In this experimental study, for this purpose, 30 adult female mice and 15 adult male mice were used. The female mice were superovulated using 10 U of pregnant mare serum gonadotropin (PMSG) and 24 hours later, 10 U of human chorionic gonadotropin (hCG) were injected. Next, cumulus oocyte complexes (COCs) were collected from the oviducts of the female mice by using a matrix-flushing method. The cumulus cells were cultured with melatonin 10 μM for 6 hours and for real-time reverse transcription-polymerase chain reaction (RT-PCR) was used for evaluation of HAS2 and PGR expression levels. The fertilization rate was evaluated through IVF. All the data were analyzed using a t test. The results of this study showed that HAS2 and PGR expressions in the cumulus cells of the mice receiving melatonin increased in comparison to the control groups. Also, IVF results revealed an enhancement in fertilization rate in the experimental groups compared to the control groups. To improve the oocyte quality and provide new approaches for infertility treatment, administration of melatonin as an antioxidant, showed promising results. Thus, it is concluded that fertility outcomes can be improved by melatonin it enhances PGR. Copyright© by Royan Institute. All rights reserved.

  10. Data, Meet Compute: NASA's Cumulus Ingest Architecture

    Science.gov (United States)

    Quinn, Patrick

    2018-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) houses nearly 30PBs of critical Earth Science data and with upcoming missions is expected to balloon to between 200PBs-300PBs over the next seven years. In addition to the massive increase in data collected, researchers and application developers want more and faster access - enabling complex visualizations, long time-series analysis, and cross dataset research without needing to copy and manage massive amounts of data locally. NASA has looked to the cloud to address these needs, building its Cumulus system to manage the ingest of diverse data in a wide variety of formats into the cloud. In this talk, we look at what Cumulus is from a high level and then take a deep dive into how it manages complexity and versioning associated with multiple AWS Lambda and ECS microservices communicating through AWS Step Functions across several disparate installations

  11. New pathway of stratocumulus to cumulus transition via aerosol-cloud-precipitation interaction

    Science.gov (United States)

    Yamaguchi, T.; Feingold, G.; Kazil, J.

    2017-12-01

    The stratocumulus to cumulus transition (SCT) is typically considered to be a slow, multi-day process, caused primarily by dry air entrainment associated with overshooting cumulus rising under stratocumulus, with minor influence of precipitation. In this presentation, we show rapid SCT induced by a strong precipitation-induced modulation with Lagrangian SCT large eddy simulations. A large eddy model is coupled with a two-moment bulk microphysics scheme that predicts aerosol and droplet number concentrations. Moderate aerosol concentrations (100-250 cm-3) produce little to no drizzle from the stratocumulus deck. Large amounts of rain eventually form and wash out stratocumulus and much of the aerosol, and a cumulus state appears for approximately 10 hours. Initiation of strong rain formation is identified in penetrative cumulus clouds which are much deeper than stratocumulus, and they are able to condense large amounts of water. We show that prediction of cloud droplet number is necessary for this fast SCT since it is a result of a positive feedback of collision-coalescence induced aerosol depletion enhancing drizzle formation. Simulations with fixed droplet concentrations that bracket the time varying aerosol/drop concentrations are therefore not representative of the role of drizzle in the SCT.

  12. Simulation of solar radiative transfer in cumulus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.E.; Titov, G.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)

    1996-04-01

    This work presents a 3-D model of radiative transfer which is used to study the relationship between the spatial distribution of cumulus clouds and fluxes (albedo and transmittance) of visible solar radiation.

  13. Fluctuations in a quasi-stationary shallow cumulus cloud ensemble

    Directory of Open Access Journals (Sweden)

    M. Sakradzija

    2015-01-01

    Full Text Available We propose an approach to stochastic parameterisation of shallow cumulus clouds to represent the convective variability and its dependence on the model resolution. To collect information about the individual cloud lifecycles and the cloud ensemble as a whole, we employ a large eddy simulation (LES model and a cloud tracking algorithm, followed by conditional sampling of clouds at the cloud-base level. In the case of a shallow cumulus ensemble, the cloud-base mass flux distribution is bimodal, due to the different shallow cloud subtypes, active and passive clouds. Each distribution mode can be approximated using a Weibull distribution, which is a generalisation of exponential distribution by accounting for the change in distribution shape due to the diversity of cloud lifecycles. The exponential distribution of cloud mass flux previously suggested for deep convection parameterisation is a special case of the Weibull distribution, which opens a way towards unification of the statistical convective ensemble formalism of shallow and deep cumulus clouds. Based on the empirical and theoretical findings, a stochastic model has been developed to simulate a shallow convective cloud ensemble. It is formulated as a compound random process, with the number of convective elements drawn from a Poisson distribution, and the cloud mass flux sampled from a mixed Weibull distribution. Convective memory is accounted for through the explicit cloud lifecycles, making the model formulation consistent with the choice of the Weibull cloud mass flux distribution function. The memory of individual shallow clouds is required to capture the correct convective variability. The resulting distribution of the subgrid convective states in the considered shallow cumulus case is scale-adaptive – the smaller the grid size, the broader the distribution.

  14. Impacts of Wind Farms on Cumulus Cloud Development in the Central Great Plains

    Science.gov (United States)

    Mahoney, L. C.; Wagner, T. J.; L'Ecuyer, T. S.; Kulie, M.

    2014-12-01

    Cumulus clouds have a net cooling effect on the surface radiative balance by reflecting more downwelling solar radiation than absorbing upwelling terrestrial radiation. As boundary layer cumuli form from buoyant, moist plumes ascending from the surface, their growth may be hindered by the turbulent deformation of the plume by wind farms. A natural laboratory to study the impact of wind farms on cumulus formation are the states of Iowa and Nebraska. Despite their prime location for wind resources and similar synoptic forcings, regulatory issues cause these two states to vary vastly in their wind power offerings. In 2013, Iowa ranked 3rd in the nation for total megawatts installed and generates over a quarter of its electricity from wind energy, more than any other state. In contrast, Nebraska has an order of magnitude fewer turbines installed, and less than five percent of the state's electrical load is wind-generated. This variance in wind power in close proximity makes Iowa and Nebraska a prime area for initial research. This study uses Geostationary Operational Environmental Satellite (GOES) visible satellite imagery from the summer of 2009 to 2013 to investigate cumulus development in these adjacent states, as the majority of large-scale wind farms in Iowa were completed by 2009. Image reflectances in Nebraska and Iowa are compared to determine the magnitude of cumulus growth. Preliminary analysis indicates a reduction in cumulus development near the existing wind farms; a synoptic investigation of these cases will be completed to determine causality.

  15. Proteasomal activity has multiple functions in oocyte meiosis, in cumulus expansion, in synthesis and processing of cumulus extracellular matrix and steroidogenesis

    Czech Academy of Sciences Publication Activity Database

    Nagyová, Eva

    2014-01-01

    Roč. 3, č. 2 (2014), s. 163-163 ISSN 2161-1017. [International Conference on Endocrinology /2./. 20.10.2014-22.10.2014, Chicago] Institutional support: RVO:67985904 Keywords : oocyte-cumulus complexes Subject RIV: EB - Genetics ; Molecular Biology

  16. An Economical Analytical Equation for the Integrated Vertical Overlap of Cumulus and Stratus

    Science.gov (United States)

    Park, Sungsu

    2018-03-01

    By extending the previously proposed heuristic parameterization, the author derived an analytical equation computing the overlap areas between the precipitation (or radiation) areas and the cloud areas in a cloud system consisting of cumulus and stratus. The new analytical equation is accurate and much more efficient than the previous heuristic equation, which suffers from the truncation error in association with the digitalization of the overlap areas. Global test simulations with the new analytical formula in an offline mode showed that the maximum cumulus overlap simulates more surface precipitation flux than the random cumulus overlap. On the other hand, the maximum stratus overlap simulates less surface precipitation flux than random stratus overlap, which is due to the increase in the evaporation rate of convective precipitation from the random to maximum stratus overlap. The independent precipitation approximation (IPA) marginally decreases the surface precipitation flux, implying that IPA works well with other parameterizations. In contrast to the net production rate of precipitation and surface precipitation flux that increase when the cumulus and stratus are maximally and randomly overlapped, respectively, the global mean net radiative cooling and longwave cloud radiative forcing (LWCF) increase when the cumulus and stratus are randomly overlapped. On the global average, the vertical cloud overlap exerts larger impacts on the precipitation flux than on the radiation flux. The radiation scheme taking the subgrid variability of water vapor between the cloud and clear portions into account substantially increases the global mean LWCF in tropical deep convection and midlatitude storm track regions.

  17. Molecular mechanisms of insulin-like growth factor 1 promoted synthesis and retention of hyaluronic acid in porcine oocyte-cumulus complexes

    Czech Academy of Sciences Publication Activity Database

    Němcová, Lucie; Nagyová, Eva; Petlach, Michal; Tománek, M.; Procházka, Radek

    2007-01-01

    Roč. 76, - (2007), s. 1016-1024 ISSN 0006-3363 R&D Projects: GA ČR GA523/04/0574 Institutional research plan: CEZ:AV0Z50450515 Keywords : cumulus cells * expansion * follicle-stimulating hormone Subject RIV: ED - Physiology Impact factor: 3.670, year: 2007

  18. Organization of the expanded cumulus-extracellular matrix in preovulatory follicles: arole for inter-alpha-trypsin inhibitor.

    Czech Academy of Sciences Publication Activity Database

    Nagyová, Eva

    2015-01-01

    Roč. 49, č. 1 (2015), s. 37-45 ISSN 1210-0668 R&D Projects: GA ČR GA305/05/0960 Institutional support: RVO:67985904 Keywords : cumulus expansion * cumulus-extracellular matrix * hyaluronan Subject RIV: ED - Physiology

  19. Impact of cloud microphysics and cumulus parameterization on ...

    Indian Academy of Sciences (India)

    2007-10-09

    Oct 9, 2007 ... Bangladesh. Weather Research and Forecast (WRF–ARW version) modelling system with six dif- .... tem intensified rapidly into a land depression over southern part of ... Impact of cloud microphysics and cumulus parameterization on heavy rainfall. 261 .... tent and temperature and is represented as a sum.

  20. Expression of the bone morphogenetic protein-2 (BMP2 in the human cumulus cells as a biomarker of oocytes and embryo quality

    Directory of Open Access Journals (Sweden)

    Sirin B Demiray

    2017-01-01

    Full Text Available Background: The members of the transforming growth factor-B superfamily, as the bone morphogenetic proteins (BMPs subfamily and anti-Müllerian hormone (AMH, play a role during follicular development, and the bone morphogenetic protein-2 (BMP2, AMH, and THY1 are expressed in ovaries. Aim: This study was designed to define whether or not the expressions of these proteins in human cumulus cells (CCs can be used as predictors of the oocyte and embryo competence. Settings and Design: The study included nine female patients who were diagnosed as idiopathic infertility, aged 25–33 years (median 30 years and underwent Assisted Reproductive Technologies. Materials and Methods: The CCs from 60 oocyte–cumulus complexes obtained from the nine patients were evaluated with immunofluorescence staining in respect of BMPs, AMH and THY1 markers. The CCs surrounding the same oocytes were evaluated separately according to the oocyte and embryo quality. Statistical Analysis: Quantitative data were statistically analyzed for differences using the two-sided Mann–Whitney U test (P < 0.05. Results and Conclusions: Significant differences in immunofluorescence staining were observed in oocyte quality and embryo quality for the BMP2 only (P < 0.05. No significant differences were observed for AMH or CD90/THY1. Conclusion: These results demonstrated that there is a significant difference in the expression of BMP2 in the CCs of good quality oocytes and subsequently a good embryo.

  1. Gene expression analysis of pig cumulus-oocyte complexes stimulated in vitro with follicle stimulating hormone or epidermal growth factor-like peptides

    Czech Academy of Sciences Publication Activity Database

    Blaha, Milan; Němcová, Lucie; Vodičková Kepková, Kateřina; Vodička, P.; Procházka, Radek

    2015-01-01

    Roč. 13, č. 113 (2015) ISSN 1477-7827 R&D Projects: GA ČR GAP502/11/0593; GA MZe(CZ) QJ1510138 Institutional support: RVO:67985904 Keywords : FSH * growth factors * cumulus cell Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.147, year: 2015

  2. Implication of the oligomeric state of the N-terminal PTX3 domain in cumulus matrix assembly.

    Science.gov (United States)

    Ievoli, Elena; Lindstedt, Ragnar; Inforzato, Antonio; Camaioni, Antonella; Palone, Francesca; Day, Anthony J; Mantovani, Alberto; Salvatori, Giovanni; Salustri, Antonietta

    2011-06-01

    Pentraxin 3 (PTX3) plays a key role in the formation of the hyaluronan-rich matrix of the cumulus oophorus surrounding ovulated eggs that is required for successful fertilization and female fertility. PTX3 is a multimeric protein consisting of eight identical protomers held together by a combination of non-covalent interactions and disulfide bonds. Recent findings suggest that the oligomeric status of PTX3 is important for stabilizing the cumulus matrix. Because the role of PTX3 in the cumulus resides in the unique N-terminal sequence of the protomer, we investigated further this issue by testing the ability of distinct Cys/Ser mutants of recombinant N-terminal region of PTX3 (N(_)PTX3) with different oligomeric arrangement to promote in vitro normal expansion in cumuli from Ptx3-null mice. Here we report that the dimer of the N(_)PTX3 is unable to rescue cumulus matrix organization, and that the tetrameric assembly of the protein is the minimal oligomeric state required for accomplishing this function. We have previously demonstrated that PTX3 binds to HCs of IαI and TSG-6, which are essential for cumulus matrix formation and able to interact with hyaluronan. Interestingly, here we show by solid-phase binding experiments that the dimer of the N(_)PTX3 retains the ability to bind to both IαI and TSG-6, suggesting that the octameric structure of PTX3 provides multiple binding sites for each of these ligands. These findings support the hypothesis that PTX3 contributes to cumulus matrix organization by cross-linking HA polymers through interactions with multiple HCs of IαI and/or TSG-6. The N-terminal PTX3 tetrameric oligomerization was recently reported to be also required for recognition and inhibition of FGF2. Given that this growth factor has been detected in the mammalian preovulatory follicle, we wondered whether FGF2 negatively influences cumulus expansion and PTX3 may also serve in vivo to antagonize its activity. We found that a molar excess of FGF2, above

  3. Laboratory Studies of Anomalous Entrainment in Cumulus Cloud Flows

    Science.gov (United States)

    Diwan, Sourabh S.; Narasimha, Roddam; Bhat, G. S.; Sreenivas, K. R.

    2011-12-01

    Entrainment in cumulus clouds has been a subject of investigation for the last sixty years, and continues to be a central issue in current research. The development of a laboratory facility that can simulate cumulus cloud evolution enables us to shed light on the problem. The apparatus for the purpose is based on a physical model of cloud flow as a plume with off-source diabatic heating that is dynamically similar to the effect of latent-heat release in natural clouds. We present a critical review of the experimental data so far obtained in such facilities on the variation of the entrainment coefficient in steady diabatic jets and plumes. Although there are some unexplained differences among different data sets, the dominant trend of the results compares favourably with recent numerical simulations on steady-state deep convection, and helps explain certain puzzles in the fluid dynamics of clouds.

  4. Laboratory Studies of Anomalous Entrainment in Cumulus Cloud Flows

    International Nuclear Information System (INIS)

    Diwan, Sourabh S; Narasimha, Roddam; Sreenivas, K R; Bhat, G S

    2011-01-01

    Entrainment in cumulus clouds has been a subject of investigation for the last sixty years, and continues to be a central issue in current research. The development of a laboratory facility that can simulate cumulus cloud evolution enables us to shed light on the problem. The apparatus for the purpose is based on a physical model of cloud flow as a plume with off-source diabatic heating that is dynamically similar to the effect of latent-heat release in natural clouds. We present a critical review of the experimental data so far obtained in such facilities on the variation of the entrainment coefficient in steady diabatic jets and plumes. Although there are some unexplained differences among different data sets, the dominant trend of the results compares favourably with recent numerical simulations on steady-state deep convection, and helps explain certain puzzles in the fluid dynamics of clouds.

  5. No specific gene expression signature in human granulosa and cumulus cells for prediction of oocyte fertilisation and embryo implantation.

    Directory of Open Access Journals (Sweden)

    Tanja Burnik Papler

    Full Text Available In human IVF procedures objective and reliable biomarkers of oocyte and embryo quality are needed in order to increase the use of single embryo transfer (SET and thus prevent multiple pregnancies. During folliculogenesis there is an intense bi-directional communication between oocyte and follicular cells. For this reason gene expression profile of follicular cells could be an important indicator and biomarker of oocyte and embryo quality. The objective of this study was to identify gene expression signature(s in human granulosa (GC and cumulus (CC cells predictive of successful embryo implantation and oocyte fertilization. Forty-one patients were included in the study and individual GC and CC samples were collected; oocytes were cultivated separately, allowing a correlation with IVF outcome and elective SET was performed. Gene expression analysis was performed using microarrays, followed by a quantitative real-time PCR validation. After statistical analysis of microarray data, there were no significantly differentially expressed genes (FDR<0,05 between non-fertilized and fertilized oocytes and non-implanted and implanted embryos in either of the cell type. Furthermore, the results of quantitative real-time PCR were in consent with microarray data as there were no significant differences in gene expression of genes selected for validation. In conclusion, we did not find biomarkers for prediction of oocyte fertilization and embryo implantation in IVF procedures in the present study.

  6. Female Aging Alters Expression of Human Cumulus Cells Genes that Are Essential for Oocyte Quality

    Directory of Open Access Journals (Sweden)

    Tamadir Al-Edani

    2014-01-01

    Full Text Available Impact of female aging is an important issue in human reproduction. There was a need for an extensive analysis of age impact on transcriptome profile of cumulus cells (CCs to link oocyte quality and developmental potential with patient’s age. CCs from patients of three age groups were analyzed individually using microarrays. RT-qPCR validation was performed on independent CC cohorts. We focused here on pathways affected by aging in CCs that may explain the decline of oocyte quality with age. In CCs collected from patients >37 years, angiogenic genes including ANGPTL4, LEPR, TGFBR3, and FGF2 were significantly overexpressed compared to patients of the two younger groups. In contrast genes implicated in TGF-β signaling pathway such as AMH, TGFB1, inhibin, and activin receptor were underexpressed. CCs from patients whose ages are between 31 and 36 years showed an overexpression of genes related to insulin signaling pathway such as IGFBP3, PIK3R1, and IGFBP5. A bioinformatic analysis was performed to identify the microRNAs that are potential regulators of the differentially expressed genes of the study. It revealed that the pathways impacted by age were potential targets of specific miRNAs previously identified in our CCs small RNAs sequencing.

  7. Extending prematuration with cAMP modulators enhances the cumulus contribution to oocyte antioxidant defence and oocyte quality via gap junctions.

    Science.gov (United States)

    Li, H J; Sutton-McDowall, M L; Wang, X; Sugimura, S; Thompson, J G; Gilchrist, R B

    2016-04-01

    Can bovine oocyte antioxidant defence and oocyte quality be improved by extending the duration of pre-in vitro maturation (IVM) with cyclic adenosine mono-phosphate (cAMP) modulators? Lengthening the duration of cAMP-modulated pre-IVM elevates intra-oocyte reduced glutathione (GSH) content and reduces hydrogen peroxide (H2O2) via increased cumulus cell-oocyte gap-junctional communication (GJC), associated with an improvement in subsequent embryo development and quality. Oocytes are susceptible to oxidative stress and the oocyte's most important antioxidant glutathione is supplied, at least in part, by cumulus cells. A temporary inhibition of spontaneous meiotic resumption in oocytes can be achieved by preventing a fall in cAMP, and cyclic AMP-modulated pre-IVM maintains cumulus-oocyte GJC and improves subsequent embryo development. This study consisted of a series of 10 experiments using bovine oocytes in vitro, each with multiple replicates. A range of pre-IVM durations were examined as the key study treatments which were compared with a control. The study was designed to examine if one of the oocyte's major antioxidant defences can be enhanced by pre-IVM with cAMP modulators, and to examine the contribution of cumulus-oocyte GJC on these processes. Immature bovine cumulus-oocyte complexes were treated in vitro without (control) or with the cAMP modulators; 100 µM forskolin (FSK) and 500 µM 3-isobutyl-1-methyxanthine (IBMX), for 0, 2, 4 or 6 h (pre-IVM phase) prior to IVM. Oocyte developmental competence was assessed by embryo development and quality post-IVM/IVF. Cumulus-oocyte GJC, intra-oocyte GSH and H2O2 were quantified at various time points during pre-IVM and IVM, in the presence and the absence of functional inhibitors: carbenoxolone (CBX) to block GJC and buthionine sulfoximide (BSO) to inhibit glutathione synthesis. Pre-IVM with FSK + IBMX increased subsequent blastocyst formation rate and quality compared with standard IVM (P gap junctions between

  8. A MODIFIED CUMULUS PARAMETERIZATION SCHEME AND ITS APPLICATION IN THE SIMULATIONS OF THE HEAVY PRECIPITATION CASES

    Institute of Scientific and Technical Information of China (English)

    PING Fan; TANG Xi-ba; YIN Lei

    2016-01-01

    According to the characteristics of organized cumulus convective precipitation in China,a cumulus parameterization scheme suitable for describing the organized convective precipitation in East Asia is presented and modified.The Kain-Fristch scheme is chosen as the scheme to be modified based on analyses and comparisons of simulated precipitation in East Asia by several commonly-used mesoscale parameterization schemes.A key dynamic parameter to dynamically control the cumulus parameterization is then proposed to improve the Kain-Fristch scheme.Numerical simulations of a typhoon case and a Mei-yu front rainfall case are carried out with the improved scheme,and the results show that the improved version performs better than the original in simulating the track and intensity of the typhoons,as well as the distribution of Mei-yu front precipitation.

  9. Understanding aerosol-cloud interactions in the development of orographic cumulus congestus during IPHEx

    Science.gov (United States)

    Barros, A. P.; Duan, Y.

    2017-12-01

    A new cloud parcel model (CPM) including activation, condensation, collision-coalescence, and lateral entrainment processes is presented here to investigate aerosol-cloud interactions (ACI) in cumulus development prior to rainfall onset. The CPM was employed along with ground based radar and surface aerosol measurements to predict the vertical structure of cloud formation at early stages and evaluated against airborne observations of cloud microphysics and thermodynamic conditions during the Integrated Precipitation and Hydrology Experiment (IPHEx) over the Southern Appalachian Mountains. Further, the CPM was applied to explore the space of ACI physical parameters controlling cumulus congestus growth not available from measurements, and to examine how variations in aerosol properties and microphysical processes influence the evolution and thermodynamic state of clouds over complex terrain via sensitivity analysis. Modeling results indicate that simulated spectra with a low value of condensation coefficient (0.01) are in good agreement with IPHEx aircraft observations around the same altitude. This is in contrast with high values reported in previous studies assuming adiabatic conditions. Entrainment is shown to govern the vertical development of clouds and the change of droplet numbers with height, and the sensitivity analysis suggests that there is a trade-off between entrainment strength and condensation process. Simulated CDNC also exhibits high sensitivity to variations in initial aerosol concentration at cloud base, but weak sensitivity to aerosol hygroscopicity. Exploratory multiple-parcel simulations capture realistic time-scales of vertical development of cumulus congestus (deeper clouds and faster droplet growth). These findings provide new insights into determinant factors of mid-day cumulus congestus formation that can explain a large fraction of warm season rainfall in mountainous regions.

  10. NASA's EOSDIS Cumulus: Ingesting, Archiving, Managing, and Distributing from Commercial Cloud

    Science.gov (United States)

    Baynes, K.; Ramachandran, R.; Pilone, D.; Quinn, P.; Schuler, I.; Gilman, J.; Jazayeri, A.

    2017-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been working towards a vision of a cloud-based, highly-flexible, ingest, archive, management, and distribution system for its ever-growing and evolving data holdings. This system, Cumulus, is emerging from its prototyping stages and is poised to make a huge impact on how NASA manages and disseminates its Earth science data. This talk will outline the motivation for this work, present the achievements and hurdles of the past 18 months and will chart a course for the future expansion of the Cumulus expansion. We will explore on not just the technical, but also the socio-technical challenges that we face in evolving a system of this magnitude into the cloud and how we are rising to meet those challenges through open collaboration and intentional stakeholder engagement.

  11. Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review

    Science.gov (United States)

    Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela

    2017-11-01

    Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using

  12. Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review

    Science.gov (United States)

    Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela

    Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using

  13. The role of cloud-scale resolution on radiative properties of oceanic cumulus clouds

    International Nuclear Information System (INIS)

    Kassianov, Evgueni; Ackerman, Thomas; Kollias, Pavlos

    2005-01-01

    Both individual and combined effects of the horizontal and vertical variability of cumulus clouds on solar radiative transfer are investigated using a two-dimensional (x- and z-directions) cloud radar dataset. This high-resolution dataset of typical fair-weather marine cumulus is derived from ground-based 94GHz cloud radar observations. The domain-averaged (along x-direction) radiative properties are computed by a Monte Carlo method. It is shown that (i) different cloud-scale resolutions can be used for accurate calculations of the mean absorption, upward and downward fluxes; (ii) the resolution effects can depend strongly on the solar zenith angle; and (iii) a few cloud statistics can be successfully applied for calculating the averaged radiative properties

  14. Proteolytic Activity of the 26S Proteasome is required for the Meiotic Resumption, Germinal Vesicle Breakdown and Cumulus Expansion of Porcine Cumulus-Oocyte Complexes Matured In Vitro

    Czech Academy of Sciences Publication Activity Database

    Yi, Y. J.; Nagyová, Eva; Manandhar, G.; Procházka, Radek; Šutovsky, M.; Park, C. S.; Šutovský, P.

    2008-01-01

    Roč. 78, - (2008), s. 115-126 ISSN 0006-3363 R&D Projects: GA ČR GA305/05/0960 Institutional research plan: CEZ:AV0Z50450515 Keywords : cumulus expansion * FSH * germinal vesicle breakdown Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.469, year: 2008

  15. A simple method for assessing hyaluronic acid production by cumulus-oocyte complexes

    Czech Academy of Sciences Publication Activity Database

    Zámostná, K.; Nevoral, J.; Kott, T.; Procházka, Radek; Orsák, M.; Šulc, M.; Pajkošová, V.; Pavlík, V.; Žalmanová, T.; Hošková, K.; Jílek, F.; Klein, P.

    2016-01-01

    Roč. 61, č. 6 (2016), s. 251-261 ISSN 1212-1819 R&D Projects: GA MZe(CZ) QJ1510138 Institutional support: RVO:67985904 Keywords : oocyte * meiotic maturation * cumulus expanssion Subject RIV: GI - Animal Husbandry ; Breeding Impact factor: 0.741, year: 2016

  16. Cumulus Kuopion työmatkustajien asiakastyytyväisyys

    OpenAIRE

    Lampinen, Miia; Lamminmäki, Roosa-Maria

    2015-01-01

    Eri hotelliryhmissä asiakkaat erotellaan heidän tarpeidensa ja toiveidensa mukaan. Asiakas on se, joka määrittelee yrityksen laadun. Business-asiakkaat valitsevat usein kansallisen tai kansainvälisen ketjuhotellin, joka täyttää tietyt laatustandardit. Yleensä he myös sitoutuvat ketjun kanta-asiakasohjelmiin. Kanta-asiakasjärjestelmät sisältävät yleensä edullisempien majoitusten lisäksi muitakin etuja. Cumulus Kuopio on hotelli hyvien kulkuyhteyksien päässä, aivan Kuopion rautatieaseman vieres...

  17. Covalent transfer of heavy chains of inter-alpha-trypsin inhibitor family proteins to hyaluronan in in vivo and in vitro expanded porcine oocyte-cumulus complexes

    Czech Academy of Sciences Publication Activity Database

    Nagyová, Eva; Camaioni, A.; Procházka, Radek; Salustri, A.

    2004-01-01

    Roč. 71, - (2004), s. 1838-1843 ISSN 0006-3363 R&D Projects: GA AV ČR IAA5045102; GA ČR GA523/04/0574; GA AV ČR KSK5052113 Institutional research plan: CEZ:AV0Z5045916 Keywords : cumulus cells * fertilization * follicle-stimulating Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.550, year: 2004

  18. The Effect of Cumulus Cloud Field Anisotropy on Domain-Averaged Solar Fluxes and Atmospheric Heating Rates

    Science.gov (United States)

    Hinkelman, Laura M.; Evans, K. Franklin; Clothiaux, Eugene E.; Ackerman, Thomas P.; Stackhouse, Paul W., Jr.

    2006-01-01

    Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam.

  19. Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells

    Directory of Open Access Journals (Sweden)

    Looft C

    2011-01-01

    Full Text Available Abstract Background The bi-directional communication between the oocyte and its companion cumulus cells (CCs is crucial for development and functions of both cell types. Transcripts that are exclusively expressed either in oocytes or CCs and molecular mechanisms affected due to removal of the communication axis between the two cell types is not investigated at a larger scale. The main objectives of this study were: 1. To identify transcripts exclusively expressed either in oocyte or CCs and 2. To identify those which are differentially expressed when the oocyte is cultured with or without its companion CCs and vice versa. Results We analyzed transcriptome profile of different oocyte and CC samples using Affymetrix GeneChip Bovine Genome array containing 23000 transcripts. Out of 13162 genes detected in germinal vesicle (GV oocytes and their companion CCs, 1516 and 2727 are exclusively expressed in oocytes and CCs, respectively, while 8919 are expressed in both. Similarly, of 13602 genes detected in metaphase II (MII oocytes and CCs, 1423 and 3100 are exclusively expressed in oocytes and CCs, respectively, while 9079 are expressed in both. A total of 265 transcripts are differentially expressed between oocytes cultured with (OO + CCs and without (OO - CCs CCs, of which 217 and 48 are over expressed in the former and the later groups, respectively. Similarly, 566 transcripts are differentially expressed when CCs mature with (CCs + OO or without (CCs - OO their enclosed oocytes. Of these, 320 and 246 are over expressed in CCs + OO and CCs - OO, respectively. While oocyte specific transcripts include those involved in transcription (IRF6, POU5F1, MYF5, MED18, translation (EIF2AK1, EIF4ENIF1 and CCs specific ones include those involved in carbohydrate metabolism (HYAL1, PFKL, PYGL, MPI, protein metabolic processes (IHH, APOA1, PLOD1, steroid biosynthetic process (APOA1, CYP11A1, HSD3B1, HSD3B7. Similarly, while transcripts over expressed in OO + CCs

  20. A Mass-Flux Scheme View of a High-Resolution Simulation of a Transition from Shallow to Deep Cumulus Convection.

    Science.gov (United States)

    Kuang, Zhiming; Bretherton, Christopher S.

    2006-07-01

    In this paper, an idealized, high-resolution simulation of a gradually forced transition from shallow, nonprecipitating to deep, precipitating cumulus convection is described; how the cloud and transport statistics evolve as the convection deepens is explored; and the collected statistics are used to evaluate assumptions in current cumulus schemes. The statistical analysis methodologies that are used do not require tracing the history of individual clouds or air parcels; instead they rely on probing the ensemble characteristics of cumulus convection in the large model dataset. They appear to be an attractive way for analyzing outputs from cloud-resolving numerical experiments. Throughout the simulation, it is found that 1) the initial thermodynamic properties of the updrafts at the cloud base have rather tight distributions; 2) contrary to the assumption made in many cumulus schemes, nearly undiluted air parcels are too infrequent to be relevant to any stage of the simulated convection; and 3) a simple model with a spectrum of entraining plumes appears to reproduce most features of the cloudy updrafts, but significantly overpredicts the mass flux as the updrafts approach their levels of zero buoyancy. A buoyancy-sorting model was suggested as a potential remedy. The organized circulations of cold pools seem to create clouds with larger-sized bases and may correspondingly contribute to their smaller lateral entrainment rates. Our results do not support a mass-flux closure based solely on convective available potential energy (CAPE), and are in general agreement with a convective inhibition (CIN)-based closure. The general similarity in the ensemble characteristics of shallow and deep convection and the continuous evolution of the thermodynamic structure during the transition provide justification for developing a single unified cumulus parameterization that encompasses both shallow and deep convection.

  1. Bovine ovarian cells have (pro)renin receptors and prorenin induces resumption of meiosis in vitro.

    Science.gov (United States)

    Dau, Andressa Minussi Pereira; da Silva, Eduardo Pradebon; da Rosa, Paulo Roberto Antunes; Bastiani, Felipe Tusi; Gutierrez, Karina; Ilha, Gustavo Freitas; Comim, Fabio Vasconcellos; Gonçalves, Paulo Bayard Dias

    2016-07-01

    The discovery of a receptor that binds prorenin and renin in human endothelial and mesangial cells highlights the possible effect of renin-independent prorenin in the resumption of meiosis in oocytes that was postulated in the 1980s.This study aimed to identify the (pro)renin receptor in the ovary and to assess the effect of prorenin on meiotic resumption. The (pro)renin receptor protein was detected in bovine cumulus-oocyte complexes, theca cells, granulosa cells, and in the corpus luteum. Abundant (pro)renin receptor messenger ribonucleic acid (mRNA) was detected in the oocytes and cumulus cells, while prorenin mRNA was identified in the cumulus cells only. Prorenin at concentrations of 10(-10), 10(-9), and 10(-8)M incubated with oocytes co-cultured with follicular hemisections for 15h caused the resumption of oocyte meiosis. Aliskiren, which inhibits free renin and receptor-bound renin/prorenin, at concentrations of 10(-7), 10(-5), and 10(-3)M blocked this effect (Pmeiosis resumption, cumulus-oocyte complexes and follicular hemisections were treated with prorenin and with angiotensin II or saralasin (angiotensin II antagonist). Prorenin induced the resumption of meiosis independently of angiotensin II. Furthermore, cumulus-oocyte complexes cultured with forskolin (200μM) and treated with prorenin and aliskiren did not exhibit a prorenin-induced resumption of meiosis (Pmeiosis in cattle. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Components of Cigarette Smoke Inhibit Expansion of Oocyte-Cumulus Comlexes from Porcine Follicles

    Czech Academy of Sciences Publication Activity Database

    Vršanská, S.; Nagyová, Eva; Mlynarčíková, A.; Ficková, M.; Kolena, J.

    2003-01-01

    Roč. 52, č. 3 (2003), s. 383-387 ISSN 0862-8408 R&D Projects: GA AV ČR IAA5045102 Institutional research plan: CEZ:AV0Z5045916 Keywords : porcine ovary * cigarette alkaloids * cumulus expansion Subject RIV: ED - Physiology Impact factor: 0.939, year: 2003

  3. GHI calculation sensitivity on microphysics, land- and cumulus parameterization in WRF over the Reunion Island

    Science.gov (United States)

    De Meij, A.; Vinuesa, J.-F.; Maupas, V.

    2018-05-01

    The sensitivity of different microphysics and dynamics schemes on calculated global horizontal irradiation (GHI) values in the Weather Research Forecasting (WRF) model is studied. 13 sensitivity simulations were performed for which the microphysics, cumulus parameterization schemes and land surface models were changed. Firstly we evaluated the model's performance by comparing calculated GHI values for the Base Case with observations for the Reunion Island for 2014. In general, the model calculates the largest bias during the austral summer. This indicates that the model is less accurate in timing the formation and dissipation of clouds during the summer, when higher water vapor quantities are present in the atmosphere than during the austral winter. Secondly, the model sensitivity on changing the microphysics, cumulus parameterization and land surface models on calculated GHI values is evaluated. The sensitivity simulations showed that changing the microphysics from the Thompson scheme (or Single-Moment 6-class scheme) to the Morrison double-moment scheme, the relative bias improves from 45% to 10%. The underlying reason for this improvement is that the Morrison double-moment scheme predicts the mass and number concentrations of five hydrometeors, which help to improve the calculation of the densities, size and lifetime of the cloud droplets. While the single moment schemes only predicts the mass for less hydrometeors. Changing the cumulus parameterization schemes and land surface models does not have a large impact on GHI calculations.

  4. Cumulus cells gene expression profiling in terms of oocyte maturity in controlled ovarian hyperstimulation using GnRH agonist or GnRH antagonist.

    Science.gov (United States)

    Devjak, Rok; Fon Tacer, Klementina; Juvan, Peter; Virant Klun, Irma; Rozman, Damjana; Vrtačnik Bokal, Eda

    2012-01-01

    In in vitro fertilization (IVF) cycles controlled ovarian hyperstimulation (COH) is established by gonadotropins in combination with gonadotropin-releasing hormone (GnRH) agonists or antagonists, to prevent premature luteinizing hormone (LH) surge. The aim of our study was to improve the understanding of gene expression profile of cumulus cells (CC) in terms of ovarian stimulation protocol and oocyte maturity. We applied Affymetrix gene expression profiling in CC of oocytes at different maturation stages using either GnRH agonists or GnRH antagonists. Two analyses were performed: the first involved CC of immature metaphase I (MI) and mature metaphase II (MII) oocytes where 359 genes were differentially expressed, and the second involved the two GnRH analogues where no differentially expressed genes were observed at the entire transcriptome level. A further analysis of 359 differentially genes was performed, focusing on anti-Müllerian hormone receptor 2 (AMHR2), follicle stimulating hormone receptor (FSHR), vascular endothelial growth factor C (VEGFC) and serine protease inhibitor E2 (SERPINE2). Among other differentially expressed genes we observed a marked number of new genes connected to cell adhesion and neurotransmitters such as dopamine, glycine and γ-Aminobutyric acid (GABA). No differential expression in CC between the two GnRH analogues supports the findings of clinical studies where no significant difference in live birth rates between both GnRH analogues has been proven.

  5. Laboratory simulations show diabatic heating drives cumulus-cloud evolution and entrainment

    Science.gov (United States)

    Narasimha, Roddam; Diwan, Sourabh Suhas; Duvvuri, Subrahmanyam; Sreenivas, K. R.; Bhat, G. S.

    2011-01-01

    Clouds are the largest source of uncertainty in climate science, and remain a weak link in modeling tropical circulation. A major challenge is to establish connections between particulate microphysics and macroscale turbulent dynamics in cumulus clouds. Here we address the issue from the latter standpoint. First we show how to create bench-scale flows that reproduce a variety of cumulus-cloud forms (including two genera and three species), and track complete cloud life cycles—e.g., from a “cauliflower” congestus to a dissipating fractus. The flow model used is a transient plume with volumetric diabatic heating scaled dynamically to simulate latent-heat release from phase changes in clouds. Laser-based diagnostics of steady plumes reveal Riehl–Malkus type protected cores. They also show that, unlike the constancy implied by early self-similar plume models, the diabatic heating raises the Taylor entrainment coefficient just above cloud base, depressing it at higher levels. This behavior is consistent with cloud-dilution rates found in recent numerical simulations of steady deep convection, and with aircraft-based observations of homogeneous mixing in clouds. In-cloud diabatic heating thus emerges as the key driver in cloud development, and could well provide a major link between microphysics and cloud-scale dynamics. PMID:21918112

  6. NASA's EOSDIS Cumulus: Ingesting, Archiving, Managing, and Distributing Earth Science Data from the Commercial Cloud

    Science.gov (United States)

    Baynes, Katie; Ramachandran, Rahul; Pilone, Dan; Quinn, Patrick; Gilman, Jason; Schuler, Ian; Jazayeri, Alireza

    2017-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been working towards a vision of a cloud-based, highly-flexible, ingest, archive, management, and distribution system for its ever-growing and evolving data holdings. This system, Cumulus, is emerging from its prototyping stages and is poised to make a huge impact on how NASA manages and disseminates its Earth science data. This talk will outline the motivation for this work, present the achievements and hurdles of the past 18 months and will chart a course for the future expansion of the Cumulus expansion. We will explore on not just the technical, but also the socio-technical challenges that we face in evolving a system of this magnitude into the cloud and how we are rising to meet those challenges through open collaboration and intentional stakeholder engagement.

  7. A treatment for the stratocumulus-to-cumulus transition in GCMs

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Heng; Mechoso, C.R. [University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); Wu, Chien-Ming [National Taiwan University, Department of Atmospheric Sciences, Taipei (China); Ma, Hsi-Yen [Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison, Livermore, CA (United States)

    2012-12-15

    Numerical models of climate have great difficulties with the simulation of marine low clouds in the subtropical Pacific and Atlantic Oceans. It has been especially difficult to reproduce the observed geographical distributions of the different cloud regimes in those regions. The present study discusses mechanisms proposed in previous works for changing one regime into another. One criterion is based on the theory of stratocumulus destruction through cloud top entrainment instability due to buoyancy reversal - situations in which the mixture of two air parcels becomes denser than either of the original parcels due to evaporation of cloud water. Another criterion is based on the existence of decoupling in the boundary layer. When decoupled, the stratocumulus regime changes to another in which these clouds can still exist together with cumulus. In a LES study, the authors have suggested that a combination of those two criteria can be used to diagnose whether, at a location, the cloud regime corresponds to a well-mixed stratocumulus regime, a shallow cumulus regime, or to a transitional regime where the boundary layer is decoupled. The concept is tested in the framework of an atmospheric general circulation model (GCM). It is found that several outstanding features of disagreement between simulation and observation can be interpreted as misrepresentations of the cloud regimes by the GCM. A novel criterion for switching among regimes is proposed to alleviate the effects of these misrepresentations. (orig.)

  8. Clustering, randomness, and regularity in cloud fields: 2. Cumulus cloud fields

    Science.gov (United States)

    Zhu, T.; Lee, J.; Weger, R. C.; Welch, R. M.

    1992-12-01

    During the last decade a major controversy has been brewing concerning the proper characterization of cumulus convection. The prevailing view has been that cumulus clouds form in clusters, in which cloud spacing is closer than that found for the overall cloud field and which maintains its identity over many cloud lifetimes. This "mutual protection hypothesis" of Randall and Huffman (1980) has been challenged by the "inhibition hypothesis" of Ramirez et al. (1990) which strongly suggests that the spatial distribution of cumuli must tend toward a regular distribution. A dilemma has resulted because observations have been reported to support both hypotheses. The present work reports a detailed analysis of cumulus cloud field spatial distributions based upon Landsat, Advanced Very High Resolution Radiometer, and Skylab data. Both nearest-neighbor and point-to-cloud cumulative distribution function statistics are investigated. The results show unequivocally that when both large and small clouds are included in the cloud field distribution, the cloud field always has a strong clustering signal. The strength of clustering is largest at cloud diameters of about 200-300 m, diminishing with increasing cloud diameter. In many cases, clusters of small clouds are found which are not closely associated with large clouds. As the small clouds are eliminated from consideration, the cloud field typically tends towards regularity. Thus it would appear that the "inhibition hypothesis" of Ramirez and Bras (1990) has been verified for the large clouds. However, these results are based upon the analysis of point processes. A more exact analysis also is made which takes into account the cloud size distributions. Since distinct clouds are by definition nonoverlapping, cloud size effects place a restriction upon the possible locations of clouds in the cloud field. The net effect of this analysis is that the large clouds appear to be randomly distributed, with only weak tendencies towards

  9. Inhibitory effect of cadmium and tobacco alkaloids on expansion of porcine oocyte-cumulus complexes

    Czech Academy of Sciences Publication Activity Database

    Mlynarčíková, A.; Scsuková, S.; Vršanská, S.; Nagyová, Eva; Ficková, M.; Kolena, J.

    2004-01-01

    Roč. 12, - (2004), S62-64 ISSN 1210-7778 R&D Projects: GA AV ČR IAA5045102 Grant - others:VEGA(XX) 2/7179/20; VEGA(XX) 2/3052/23 Institutional research plan: CEZ:AV0Z5045916 Keywords : porcine follicles * cumulus expansion * hyaluronic acid Subject RIV: ED - Physiology

  10. RACORO Continental Boundary Layer Cloud Investigations: 3. Separation of Parameterization Biases in Single-Column Model CAM5 Simulations of Shallow Cumulus

    Science.gov (United States)

    Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; Fridlind, Ann; Endo, Satoshi; Song, Hua; Feng, Sha; Toto, Tami; Li, Zhijin; Zhang, Minghua

    2015-01-01

    Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) Project has constructed case studies from the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only a relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.

  11. Experimental study of starting plumes simulating cumulus cloud flows in the atmosphere

    Science.gov (United States)

    Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.; Diwan, S. S.; Narasimha, Roddam

    2009-11-01

    Turbulent jets and plumes subjected to off-source volumetric heating have been studied experimentally and numerically by Narasimha and co-workers and others over the past two decades. The off-source heating attempts to simulate the latent heat release that occurs in cumulus clouds on condensation of water vapour. This heat release plays a crucial role in determining the overall cloud shape among other things. Previous studies investigated steady state jets and plumes that had attained similarity upstream of heat injection. A better understanding and appreciation of the fluid dynamics of cumulus clouds should be possible by study of starting plumes. Experiments have been set up at JNCASR (Bangalore) using experimental techniques developed previously but incorporating various improvements. Till date, experiments have been performed on plumes at Re of 1000 and 2250, with three different heating levels in each case. Axial sections of the flow have been studied using standard PLIF techniques. The flow visualization provides us with data on the temporal evolution of the starting plume. It is observed that the broad nature of the effect of off-source heating on the starting plumes is generally consistent with the results obtained previously on steady state flows. More complete results and a critical discussion will be presented at the upcoming meeting.

  12. Assessing the Resolution Adaptability of the Zhang-McFarlane Cumulus Parameterization With Spatial and Temporal Averaging: RESOLUTION ADAPTABILITY OF ZM SCHEME

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Yuxing [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing China; Fan, Jiwen [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Xiao, Heng [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Zhang, Guang J. [Scripps Institution of Oceanography, University of California, San Diego CA USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Xu, Kuan-Man [NASA Langley Research Center, Hampton VA USA; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Gustafson, William I. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2017-11-01

    Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32 km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.

  13. Project Overview: Cumulus Humilis Aerosol Processing Study (CHAPS): Proposed Summer 2007 ASP Field Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, Carl M.; Berg, Larry K.; Ogren, J. A.; Hostetler, Chris A.; Ferrare, Richard

    2006-05-18

    This white paper presents the scientific motivation and preliminary logistical plans for a proposed ASP field campaign to be carried out in the summer of 2007. The primary objective of this campaign is to use the DOE Gulfstream-1 aircraft to make measurements characterizing the chemical, physical and optical properties of aerosols below, within and above large fields of fair weather cumulus and to use the NASA Langley Research Center’s High Spectral Resolution Lidar (HSRL) to make independent measurements of aerosol backscatter and extinction profiles in the vicinity of these fields. Separate from the science questions to be addressed by these observations will be information to add in the development of a parameterized cumulus scheme capable of including multiple cloud fields within a regional or global scale model. We will also be able to compare and contrast the cloud and aerosol properties within and outside the Oklahoma City plume to study aerosol processes within individual clouds. Preliminary discussions with the Cloud and Land Surface Interaction Campaign (CLASIC) science team have identified overlap between the science questions posed for the CLASIC Intensive Operation Period (IOP) and the proposed ASP campaign, suggesting collaboration would benefit both teams.

  14. RESEARCHES REGARDING THE INFLUENCE OF THE NUMBER OF CUMULAR CELLS LAYER OVER THE OOCYTE MATURATION EFFICIENCY

    Directory of Open Access Journals (Sweden)

    V. CARABĂ

    2009-05-01

    Full Text Available During the experiments we have carried out with imature oocyte collected from the ovarian follicles, wefound a variety of oocyte-cumulus complexes. We got the following experiment in order to understand therole of cumular cells on the achievement of the cytoplasma and oocyte nucleus maturation. We select theoocyte-cumulus complexes collected both from cows and sows according to the number of cumular celllayers and we watched their development to the blastocyst stade. Thus, we achieved three groups of COC(oocyte-cumulus complexes.One group was made of oocyte without cumular cells, the second group had a layer of cumular cells andthe third group had many layers of cumular cells. we performed an incubation of all these types of COCin TCM-199 enriched with 20% of bovine fetal serum. Because only 1,2 oocyte of the ones who lack thecumular cells layer had maturation signs during cultivation in the thermostat versus 55 and 115,respectively, of the ones that had many cellular layers, presents a solid evidence that cumular cells areindispensable for the maturation and even to the fecundation process. The cumular cells perform adecisive role on the cytoplasma and oocyte nucleus maturation process.

  15. Ecological Promises and Execution in hotel chains. Case: Restel Cumulus and Scandic

    OpenAIRE

    Järvenpää, Mona

    2012-01-01

    During the last decade the terms ‘eco’ and ‘green’ have created a trend in the tourism indus-try. This research focuses on two hotel chains that operate in Finland. One of the target chains is Finnish Restel Cumulus hotels and the other chain is originally Swedish, Scandic. This research studies the basic facts and the eco promises of these two hotel chains and the terms that this topic includes, for example sustainability, eco-label, ecological and eco-tourism. This research aims to find th...

  16. Effects of exogenous hyaluronic acid and serum on matrix organization and stability in the mouse cumulus cell-oocyte complex.

    Science.gov (United States)

    Camaioni, A; Hascall, V C; Yanagishita, M; Salustri, A

    1993-09-25

    Compact cumulus cell-oocyte complexes (COCs) isolated from preovulatory mouse follicles undergo expansion in vitro when high levels of hyaluronic acid (HA) are synthesized and organized into an extracellular matrix. We studied the effects of fetal bovine serum (FBS) and of exogenous HA and HA-oligomers on the expansion process. Maximum retention of HA in the COC matrix, and hence complete COC expansion, occurs when 1% FBS is continuously present during the first 18 h of culture. Irrespective of the culture time, HA synthesized when serum is absent is primarily in the medium, whereas HA synthesized when serum is present is primarily in the cell matrix. These findings support the hypothesis that the serum factor, identified as an inter-alpha-trypsin inhibitor by Chen et al. (Chen, L., Mao, S. J., and Larsen, W. J. (1992) J. Biol. Chem. 267, 12380-12386), is a structural component of the matrix. Addition of exogenous HA or of HA oligomers of decasaccharide size (GlcUA-GlcNAc)5 or larger effectively displaces endogenously synthesized HA from the matrix into the medium, thereby preventing COC expansion. Addition of exogenous chondroitin sulfate affects neither matrix organization nor COC expansion, thus indicating specificity of the binding of some structural component(s) to HA. Fully expanded COCs disassemble when cultured longer than 18 h, a process which occurs also in vivo and which correlates with loss of oocyte fertilizability both in vivo and in vitro. This process involves release of macromolecular HA from the matrix into the medium, with loss of 50% of the HA in the first 8 h of incubation after full expansion. The release is not facilitated when HA oligomers, long enough to prevent matrix formation, are added to the culture medium after the COCs are fully expanded. This suggests that cooperative binding to HA of either the serum factor, an endogenously synthesized factor(s), or both is required to stabilize the fully expanded COC matrix.

  17. Structural characterization of PTX3 disulfide bond network and its multimeric status in cumulus matrix organization.

    Science.gov (United States)

    Inforzato, Antonio; Rivieccio, Vincenzo; Morreale, Antonio P; Bastone, Antonio; Salustri, Antonietta; Scarchilli, Laura; Verdoliva, Antonio; Vincenti, Silvia; Gallo, Grazia; Chiapparino, Caterina; Pacello, Lucrezia; Nucera, Eleonora; Serlupi-Crescenzi, Ottaviano; Day, Anthony J; Bottazzi, Barbara; Mantovani, Alberto; De Santis, Rita; Salvatori, Giovanni

    2008-04-11

    PTX3 is an acute phase glycoprotein that plays key roles in resistance to certain pathogens and in female fertility. PTX3 exerts its functions by interacting with a number of structurally unrelated molecules, a capacity that is likely to rely on its complex multimeric structure stabilized by interchain disulfide bonds. In this study, PAGE analyses performed under both native and denaturing conditions indicated that human recombinant PTX3 is mainly composed of covalently linked octamers. The network of disulfide bonds supporting this octameric assembly was resolved by mass spectrometry and Cys to Ser site-directed mutagenesis. Here we report that cysteine residues at positions 47, 49, and 103 in the N-terminal domain form three symmetric interchain disulfide bonds stabilizing four protein subunits in a tetrameric arrangement. Additional interchain disulfide bonds formed by the C-terminal domain cysteines Cys(317) and Cys(318) are responsible for linking the PTX3 tetramers into octamers. We also identified three intrachain disulfide bonds within the C-terminal domain that we used as structural constraints to build a new three-dimensional model for this domain. Previously it has been shown that PTX3 is a key component of the cumulus oophorus extracellular matrix, which forms around the oocyte prior to ovulation, because cumuli from PTX3(-/-) mice show defective matrix organization. Recombinant PTX3 is able to restore the normal phenotype ex vivo in cumuli from PTX3(-/-) mice. Here we demonstrate that PTX3 Cys to Ser mutants, mainly assembled into tetramers, exhibited wild type rescue activity, whereas a mutant, predominantly composed of dimers, had impaired functionality. These findings indicate that protein oligomerization is essential for PTX3 activity within the cumulus matrix and implicate PTX3 tetramers as the functional molecular units required for cumulus matrix organization and stabilization.

  18. Inhibition of proteasomal proteolysis affects expression of extracellular matrix components and steroidogenesis in porcine oocyte-cumulus complexes

    Czech Academy of Sciences Publication Activity Database

    Nagyová, Eva; Scsuková, S.; Němcová, Lucie; Mlynarčíková, A.; Yi, Y.J.; Sutovky, M.; Sutovsky, P.

    2012-01-01

    Roč. 42, č. 1 (2012), s. 50-62 ISSN 0739-7240 R&D Projects: GA ČR GAP502/11/0593 Institutional research plan: CEZ:AV0Z50450515 Keywords : Oocyte-cumulus complex * TNFAIP6 * HAS2 * Progesterone * Ubiquitin * Proteasome Subject RIV: ED - Physiology Impact factor: 2.377, year: 2012

  19. The extracellular matrix of porcine mature oocytes: Origin, composition and presumptive roles

    Directory of Open Access Journals (Sweden)

    Pivko Juraj

    2003-12-01

    Full Text Available Abstract The extracellular matrix (ECM of porcine mature oocytes was revealed by transmission electron microscopy (TEM after treatment with tannic acid and ruthenium red. Present in the perivitelline space (PVS and on the surface of the zona pellucida (ZP, it appeared to be composed of thin filaments and granules at the interconnections of the filaments, which were interpreted respectively as hyaluronic acid chains and bound proteoglycans. In order to determine whether this material is produced by the corona cells (the same ECM was found also on the surface of the zona pellucida and between cumulus cells or by the oocyte itself, the synthesis of glycoproteins and glycosaminoglycans was checked by autoradiography on semi-thin and thin sections observed by light and electron microscopy. Immature oocytes within or without cumulus cells, were incubated with L [3H-] fucose or L [3H-] glucosamine – precursors respectively of glycoproteins and hyaluronic acid or hyaluronan (HA bound to proteoglycans – for various times (with or without chase and at different stages during in vitro maturation. In the first case, incorporation was found in both cumulus cells and ooplasm (notably in the Golgi area for 3H-fucose and labeled material accumulated in the ECM of the PVS and of the ZP surface. Labeling in the PVS with both precursors was maximum between metaphase I (MI and metaphase II (MII and was partially extracted by hyaluronidase but not by neuraminidase. Tunicamycin, an inhibitor of glycoprotein synthesis, significantly decreased the amount of 3H-fucose labeled molecules in the PVS and increased the incidence of polyspermic penetration during subsequent in vivo fertilization. Since cumulus-free oocytes also secreted 3H-glucosamine containing compounds, both oocyte and cumulus cells probably contribute to the production of the ECM found in the PVS of mature oocytes. ECM and particularly its HA moiety present on both sides of the ZP may constitute a

  20. Effect of Somatic Cell Types and Culture Medium on in vitro Maturation, Fertilization and Early Development Capability of Buffalo Oocytes

    Directory of Open Access Journals (Sweden)

    H. Jamil*, H. A. Samad, N. Rehman, Z. I. Qureshi and L. A. Lodhi

    2011-04-01

    Full Text Available This study was designed to evaluate the efficacy of different somatic cell types and media in supporting in vitro maturation (IVM, in vitro fertilization (IVF and early embryonic development competence of buffalo follicular oocytes. Cumulus oocyte complexes were collected for maturation from follicles (>6mm of buffalo ovaries collected at the local abattoir. Oocytes were co-cultured in tissue culture medium (TCM-199 with either granulosa cells, cumulus cells, or buffalo oviductal epithelial cells (BOEC @ 3x106 cells/ml or in TCM-199 without helper cells (control at 39°C and 5%CO2 in humidified air. Fresh semen was prepared in modified Ca++ free Tyrode medium. Fertilization was carried out in four types of media: i Tyrode lactate albumin pyruvate (TALP, ii TALP+BOEC, iii modified Ca++ free Tyrode and iv modified Ca++ free Tyrode+BOEC. Fertilized oocytes were cultured for early embryonic development in TCM-199 with and without BOEC. Higher maturation rates were observed in the granulosa (84.24% and cumulus cells (83.44% than BOEC co culture system (73.37%. Highest fertilization rate was obtained in modified Ca++ free Tyrode with BOEC co culture (70.42%, followed by modified Ca++ free Tyrode alone (63.77%, TALP with BOEC (36.92% and TALP alone (10.94%. Development of early embryos (8-cell stage improved in TCM-199 with BOEC co culture than TCM-199 alone. From the results of this study, it can be concluded that addition of somatic cells (granulosa cells, cumulus cells results in higher maturation rates of buffalo follicular oocytes than BOEC co culture system, while fertilization rate improved in modified Ca++ free Tyrode with and without BOEC. Addition of BOEC to TCM-199 improved the developmental capacity of early embryo.

  1. Hydrostatic pressure affects in vitro maturation of oocytes and follicles and increases granulosa cell death.

    Science.gov (United States)

    Rashidi, Zahra; Azadbakht, Mehri; Amini, Ali; Karimi, Isac

    2014-01-01

    This study examines the effects of hydrostatic pressure on in vitro maturation (IVM) of oocytes derived from in vitro grown follicles. In this experimental study, preantral follicles were isolated from 12-day-old female NMRI mice. Each follicle was cultured individually in Alpha Minimal Essential Medium (α-MEM) under mineral oil for 12 days. Then, follicles were induced for IVM and divided into two groups, control and experiment. In the experiment group follicles were subjected to 20 mmHg pressure for 30 minutes and cultured for 24-48 hours. We assessed for viability and IVM of the oocytes. The percentage of apoptosis in cumulus cells was determined by the TUNEL assay. A comparison between groups was made using the student's t test. The percentage of metaphase II oocytes (MII) increased in hydrostatic pressuretreated follicles compared to controls (phydrostatic pressure-treated follicles compared to controls (pHydrostatic pressure, by inducing apoptosis in cumulus cells, participates in the cumulus oocyte coupled relationship with oocyte maturation.

  2. Macrophysical properties of continental cumulus clouds from active and passive remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, Evgueni I.; Riley, Erin A.; Kleiss, Jessica; Long, Charles N.; Riihimaki, Laura D.; Flynn, Donna M.; Flynn, Connor J M.; Berg, Larry K.

    2017-10-06

    Cloud amount is an essential and extensively used macrophysical parameter of cumulus clouds. It is commonly defined as a cloud fraction (CF) from zenith-pointing ground-based active and passive remote sensing. However, conventional retrievals of CF from the remote sensing data with very narrow field-of-view (FOV) may not be representative of the surrounding area. Here we assess its representativeness using an integrated dataset collected at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site in Oklahoma, USA. For our assessment with focus on selected days with single-layer cumulus clouds (2005-2016), we include the narrow-FOV ARM Active Remotely Sensed Clouds Locations (ARSCL) and large-FOV Total Sky Imager (TSI) cloud products, the 915-MHz Radar Wind Profiler (RWP) measurements of wind speed and direction, and also high-resolution satellite images from Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS). We demonstrate that a root-mean-square difference (RMSD) between the 15-min averaged ARSCL cloud fraction (CF) and the 15-min averaged TSI fractional sky cover (FSC) is large (up to 0.3). We also discuss how the horizontal distribution of clouds can modify the obtained large RMSD using a new uniformity metric. The latter utilizes the spatial distribution of the FSC over the 100° FOV TSI images obtained with high temporal resolution (30 sec sampling). We demonstrate that cases with more uniform spatial distribution of FSC show better agreement between the narrow-FOV CF and large-FOV FSC, reducing the RMSD by up to a factor of 2.

  3. Dynamics, thermodynamics, radiation, and cloudiness associated with cumulus-topped marine boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, Virendra P. [Argonne National Lab. (ANL), Argonne, IL (United States); Miller, Mark [Rutgers Univ., New Brunswick, NJ (United States)

    2016-11-01

    The overall goal of this project was to improve the understanding of marine boundary clouds by using data collected at the Atmospheric Radiation Measurement (ARM) sites, so that they can be better represented in global climate models (GCMs). Marine boundary clouds are observed regularly over the tropical and subtropical oceans. They are an important element of the Earth’s climate system because they have substantial impact on the radiation budget together with the boundary layer moisture, and energy transports. These clouds also have an impact on large-scale precipitation features like the Inter Tropical Convergence Zone (ITCZ). Because these clouds occur at temporal and spatial scales much smaller than those relevant to GCMs, their effects and the associated processes need to be parameterized in GCM simulations aimed at predicting future climate and energy needs. Specifically, this project’s objectives were to (1) characterize the surface turbulent fluxes, boundary layer thermodynamics, radiation field, and cloudiness associated with cumulus-topped marine boundary layers; (2) explore the similarities and differences in cloudiness and boundary layer conditions observed in the tropical and trade-wind regions; and (3) understand similarities and differences by using a simple bulk boundary layer model. In addition to working toward achieving the project’s three objectives, we also worked on understanding the role played by different forcing mechanisms in maintaining turbulence within cloud-topped boundary layers We focused our research on stratocumulus clouds during the first phase of the project, and cumulus clouds during the rest of the project. Below is a brief description of manuscripts published in peer-reviewed journals that describe results from our analyses.

  4. MicroRNAs: From Female Fertility, Germ Cells, and Stem Cells to Cancer in Humans

    Czech Academy of Sciences Publication Activity Database

    Virant-Klun, I.; Stahlberg, A.; Kubista, Mikael; Skutella, T.

    2016-01-01

    Roč. 2016, č. 2016 (2016), č. článku 3984937. E-ISSN 1687-9678 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : PREMATURE OVARIAN FAILURE * CUMULUS-OOCYTE COMPLEX * HUMAN GRANULOSA-CELLS Subject RIV: EB - Genetics ; Molecular Biology

  5. Exposure to α-Tocopherol, Lutein or Ascorbic Acid improve Cumulus Expansion, Viability and Maturation of Swine Oocytes

    Directory of Open Access Journals (Sweden)

    Ileana Miclea

    2010-05-01

    Full Text Available Protection of the fatty acid and lipid components of oocytes that render them susceptible to free radical or other oxidative injury may prevent the damage currently associated with culture. The goal of this study was to establish the influence of several α-tocopherol, lutein and ascorbic acid concentrations on swine oocyte maturation, viability and the function of cumulus cells in order to improve culture media. Pig oocytes were cultured for 45 hours at 37°C in 5% CO2 atmosphere; in M199 containing several α-tocopherol (5, 10, 20, 40, 80 μM, lutein (2.5, 4, 5, 8, 10 M or ascorbic acid (50, 150, 250, 500, 750 μM concentrations and cumulus expansion was assessed. Afterwards oocytes were coloured using FDA, PI and Hoechst 33258. The differences between treatments were analyzed by the analysis of variance and interpreted using the Newman-Keuls method. When cultured in α-tocopherol supplemented medium the number of expanded COCs to be scored as 3 was significantly greater (p<0.05 for the 5 and 40 μM concentrations. The addition of 8 M lutein to the maturation medium lead to a significant (p<0.05 increase in the number of COCs that were scored at 4. For both α-tocopherol and lutein additions the numbers of oocytes stained by FDA, as well as those stained by Hoechst were greater than the control without being statistically significant. When cultured in 150 and 500 μM ascorbic acid the percentages of COCs scored at 4 were significantly lower (p<0.05 than the control. Also, significantly (p<0.05 fewer oocytes were stained with FDA when matured in 500 μM. Differences between the control and the several concentrations were significant (p<0.05 for 150 and 750 μM and distinctly significant (p<0.01 for 250 μM.

  6. Electron microbeam specifications for use in cell irradiation experiments

    International Nuclear Information System (INIS)

    Kim, E.-H.; Choi, M.-C.; Lee, D.-H.; Chang, M.; Kang, C.-S.

    2003-01-01

    The microbeam irradiation system was devised originally to identify the hit and unhit cells by confining the beam within the target cell. The major achievement through the microbeam experiment studies has turned out to be the discovery of the 'bystander effect'. Microbeam experiments have been performed with alpha and proton beams in major and with soft x-rays in minor. The study with electron microbeam has been deferred mainly due to the difficulty in confining the electron tracks within a single target cell. In this paper, the electron microbeam irradiation system under development in Korea is introduced in terms of the beam specifications. The KIRAMS electron microbeam irradiation system consists of an electron gun, a vacuum chamber for beam collimation into 5 μm in diameter and a biology stage. The beam characteristics in terms of current and energy spectrum of the electrons entering a target cell and its neighbor cells were investigated by Monte Carlo simulation for the electron source energies of 25, 50, 75 and 100 keV. Energy depositions in the target cell and the neighbor cells were also calculated. The beam attenuation in current and energy occurs while electrons pass through the 2 μm-thick Mylar vacuum window, 100 μm-thick air gap and the 2 μm-thick Mylar bottom of cell dish. With 25 keV electron source, 80 % of decrease in current and 30 % of decrease in average energy were estimated before entering the target cell. With 75 keV electron source, on the other hand, 55 % of decrease in current and less than 1 % of decrease in average energy were estimated. Average dose per single collimated electron emission was 0.067 cGy to the target cell nucleus of 5 μm in diameter and 0.030 cGy to the cytoplasm of 2.5 μm in thickness with 25 keV electron source while they were 0.15 cGy and 0.019 cGy, respectively, with 75 keV electron source. The multiple scattering of electrons resulted in energy deposition in the neighbor cells as well. Dose to the first

  7. Electron Microscopy of Ebola Virus-Infected Cells.

    Science.gov (United States)

    Noda, Takeshi

    2017-01-01

    Ebola virus (EBOV) replicates in host cells, where both viral and cellular components show morphological changes during the process of viral replication from entry to budding. These steps in the replication cycle can be studied using electron microscopy (EM), including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which is one of the most useful methods for visualizing EBOV particles and EBOV-infected cells at the ultrastructural level. This chapter describes conventional methods for EM sample preparation of cultured cells infected with EBOV.

  8. CHEMERIN (RARRES2) decreases in vitro granulosa cell steroidogenesis and blocks oocyte meiotic progression in bovine species.

    Science.gov (United States)

    Reverchon, Maxime; Bertoldo, Michael J; Ramé, Christelle; Froment, Pascal; Dupont, Joëlle

    2014-05-01

    CHEMERIN, or RARRES2, is a new adipokine that is involved in the regulation of adipogenesis, energy metabolism, and inflammation. Recent data suggest that it also plays a role in reproductive function in rats and humans. Here we studied the expression of CHEMERIN and its three receptors (CMKLR1, GPR1, and CCRL2) in the bovine ovary and investigated the in vitro effects of this hormone on granulosa cell steroidogenesis and oocyte maturation. By RT-PCR, immunoblotting, and immunohistochemistry, we found CHEMERIN, CMKLR1, GPR1, and CCRL2 in various ovarian cells, including granulosa and theca cells, corpus luteum, and oocytes. In cultured bovine granulosa cells, INSULIN, IGF1, and two insulin sensitizers-metformin and rosiglitazone-increased rarres2 mRNA expression whereas they decreased cmklr1, gpr1, and cclr2 mRNA expression. Furthermore, TNF alpha and ADIPONECTIN significantly increased rarres2 and cmklr1 expression, respectively. In cultured bovine granulosa cells, human recombinant CHEMERIN (hRec, 200 ng/ml) reduced production of both progesterone and estradiol, cholesterol content, STAR abundance, CYP19A1 and HMGCR proteins, and the phosphorylation levels of MAPK3/MAPK1 in the presence or absence of FSH (10(-8) M) and IGF1 (10(-8) M). All of these effects were abolished by using an anti-CMKLR1 antibody. In bovine cumulus-oocyte complexes, the addition of hRec (200 ng/ml) in the maturation medium arrested most oocytes at the germinal vesicle stage, and this was associated with a decrease in MAPK3/1 phosphorylation in both oocytes and cumulus cells. Thus, in cultured bovine granulosa cells, hRec decreases steroidogenesis, cholesterol synthesis, and MAPK3/1 phosphorylation, probably through CMKLR1. Moreover, in cumulus-oocyte complexes, it blocked meiotic progression at the germinal vesicle stage and inhibited MAPK3/1 phosphorylation in both the oocytes and cumulus cells during in vitro maturation. © 2014 by the Society for the Study of Reproduction, Inc.

  9. Effects of stratocumulus, cumulus, and cirrus clouds on the UV-B diffuse to global ratio: Experimental and modeling results

    International Nuclear Information System (INIS)

    López, María Laura; Palancar, Gustavo G.; Toselli, Beatriz M.

    2012-01-01

    Broadband measurements of global and diffuse UV-B irradiance (280-315 nm) together with modeled and measured diffuse to global ratios (DGR) have been used to characterize the influence of different types of clouds on irradiance at the surface. Measurements were carried out during 2000-2001 in Córdoba City, Argentina. The Tropospheric Ultraviolet Visible (TUV) model was used to analyze the behavior of the modeled DGRs for different cloud optical depths and at different altitudes and solar zenith angles (SZA). Different cloud altitudes were also tested, although only the results for a cloud placed at 1.5-2.5 km of altitude are shown. A total of 16 day with stratocumulus, 12 with cumulus, and 16 with cirrus have been studied and compared among them and also against 21 clear sky days. Different behaviors were clearly detected and also differentiated through the analysis of the averages and the standard deviations of the DGRs: 1.02±0.06 for stratocumulus, 0.74±0.18 for cumulus, 0.63±0.12 for cirrus, and 0.60±0.13 for the clear sky days, respectively. Stratocumulus clouds showed a low variability in the DGR values, which were concentrated close to one at all SZAs. DGR values for cumulus clouds presented a large variability at all SZAs, mostly associated with the different optical depths. Finally, the closeness between the DGR values for cirrus clouds and the DGR values for clear days showed that these clouds generally do not strongly affect the UV-B irradiance at the surface at any SZA. In the opposite side, stratocumulus clouds were identified as those with the largest effects, at all SZAs, on the UV-B irradiance at the surface.

  10. Electron Microscopy of Nanostructures in Cells

    DEFF Research Database (Denmark)

    Købler, Carsten

    with cells is therefore increasingly more relevant from both an engineering and a toxicological viewpoint. My work involves developing and exploring electron microscopy (EM) for imaging nanostructures in cells, for the purpose of understanding nanostructure-cell interactions in terms of their possibilities...... in science and concerns in toxicology. In the present work, EM methods for imaging nanostructure-cell interactions have been explored, and the complex interactions documented and ordered. In particular the usability of the focused ion beam scanning electron microscope (FIB-SEM) was explored. Using EM...... in literature. Furthermore, EM proved valuable as it revealed an unnoticed CNT effect. FIB-SEM helped establish that the effect was linked to eosionophilic crystalline pneumonia (ECP)....

  11. Effects of RU486 and indomethacin on meiotic maturation, formation of extracellular matrix, and progesterone production by porcine oocyte-cumulus complexes.

    Science.gov (United States)

    Nagyova, E; Scsukova, S; Kalous, J; Mlynarcikova, A

    2014-07-01

    This study was designed to determine whether inhibition of either cyclooxygenase-2 (COX-2) by indomethacin or progesterone receptor (PR) by PR antagonist, RU486, affects oocyte maturation, progesterone production, and covalent binding between hyaluronan (HA) and heavy chains of inter-α trypsin inhibitor, as well as expression of cumulus expansion-associated proteins (HA-binding protein, tumor necrosis factor α-induced protein 6, pentraxin 3) in oocyte-cumulus complexes (OCCs). The experiments were based on freshly isolated porcine OCC cultures in which the consequences of PR and COX-2 inhibition on the final processes of oocyte maturation were determined. Granulosa cells (GCs) and OCCs were cultured in medium supplemented with FSH/LH (both 100 ng/mL) in the presence/absence of RU486 or indomethacin. Western blot analysis, (3)H-glucosamine hydrochloride assay, immunofluorescence, and radioimmunoassay were performed. Only treatment with RU486 (25 μM) caused a decrease in the number of oocytes that reached germinal vesicle breakdown and metaphase II stage compared with indomethacin (100 μM) or FSH/LH treatment alone after 44 h. All treated OCCs synthesized an almost equal amount of HA. Heavy chains (of inter-α trypsin inhibitor)-HA covalent complexes were formed during in vitro FSH/LH-stimulated expansion in RU486- or indomethacin-treated OCCs. Follicle-stimulating hormone/LH-induced progesterone production by OCCs was increased in the presence of RU486 after 44 h. In contrast, a decrease of FSH/LH-stimulated progesterone production by GCs was detected in the presence of either RU486 or indomethacin after 72 h. We suggest that the PR-dependent pathway may be involved in the regulation of oocyte maturation. Both PR and COX-2 regulate FSH/LH-stimulated progesterone production by OCCs and GCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The role of electron irradiation history in liquid cell transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Trevor H.; Mehta, Hardeep S.; Park, Chiwoo; Kelly, Ryan T.; Shokuhfar, Tolou; Evans, James E.

    2018-04-20

    In situ liquid cell transmission electron microscopy (LC-TEM) allows dynamic nanoscale characterization of systems in a hydrated state. Although powerful, this technique remains impaired by issues of repeatability that limit experimental fidelity and hinder the identification and control of some variables underlying observed dynamics. We detail new LC- TEM devices that improve experimental reproducibility by expanding available imaging area and providing a platform for investigating electron flux history on the sample. Irradiation history is an important factor influencing LC-TEM results that has, to this point, been largely qualitatively and not quantitatively described. We use these devices to highlight the role of cumulative electron flux history on samples from both nanoparticle growth and biological imaging experiments and demonstrate capture of time zero, low-dose images on beam-sensitive samples. In particular, the ability to capture pristine images of biological samples, where the acquired image is the first time that the cell experiences significant electron flux, allowed us to determine that nanoparticle movement compared to the cell membrane was a function of cell damage and therefore an artifact rather than visualizing cell dynamics in action. These results highlight just a subset of the new science that is accessible with LC-TEM through the new multiwindow devices with patterned focusing aides.

  13. Prostaglandin E2 stimulates the expression of cumulus expansion-related genes in pigs: the role of protein kinase B

    Czech Academy of Sciences Publication Activity Database

    Blaha, Milan; Procházka, Radek; Adámková, K.; Nevoral, J.; Němcová, Lucie

    2017-01-01

    Roč. 130, č. 2 (2017), s. 38-46 ISSN 1098-8823 R&D Projects: GA MZe(CZ) QJ1510138; GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : cumulus * oocyte * prostaglandin E2 * protein kinase B Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Reproductive biology (medical aspects to be 3) Impact factor: 2.640, year: 2016

  14. Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells

    KAUST Repository

    Ali, Haider; Yang, Xinbo; Weber, Klaus; Schoenfeld, Winston V.; Davis, Kristopher O.

    2017-01-01

    In this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21

  15. Skill of ship-following large-eddy simulations in reproducing MAGIC observations across the northeast Pacific stratocumulus to cumulus transition region

    Science.gov (United States)

    McGibbon, J.; Bretherton, C. S.

    2017-06-01

    During the Marine ARM GPCI Investigation of Clouds (MAGIC) in October 2011 to September 2012, a container ship making periodic cruises between Los Angeles, CA, and Honolulu, HI, was instrumented with surface meteorological, aerosol and radiation instruments, a cloud radar and ceilometer, and radiosondes. Here large-eddy simulation (LES) is performed in a ship-following frame of reference for 13 four day transects from the MAGIC field campaign. The goal is to assess if LES can skillfully simulate the broad range of observed cloud characteristics and boundary layer structure across the subtropical stratocumulus to cumulus transition region sampled during different seasons and meteorological conditions. Results from Leg 15A, which sampled a particularly well-defined stratocumulus to cumulus transition, demonstrate the approach. The LES reproduces the observed timing of decoupling and transition from stratocumulus to cumulus and matches the observed evolution of boundary layer structure, cloud fraction, liquid water path, and precipitation statistics remarkably well. Considering the simulations of all 13 cruises, the LES skillfully simulates the mean diurnal variation of key measured quantities, including liquid water path (LWP), cloud fraction, measures of decoupling, and cloud radar-derived precipitation. The daily mean quantities are well represented, and daily mean LWP and cloud fraction show the expected correlation with estimated inversion strength. There is a -0.6 K low bias in LES near-surface air temperature that results in a high bias of 5.6 W m-2 in sensible heat flux (SHF). Overall, these results build confidence in the ability of LES to represent the northeast Pacific stratocumulus to trade cumulus transition region.Plain Language SummaryDuring the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign in October 2011 to September 2012, a cargo container ship making regular cruises between Los Angeles, CA, and Honolulu, HI, was fitted with tools to

  16. Fate and role of macromolecules synthesized during mammalian oocyte meiotic maturation. II. - Autoradiographic topography of (/sup 3/H)-fucose incorporation in pig oocytes cultured in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Pivko, J. (Animal Production Research Institute, Nitra (Czechoslovakia)); Motlik, J. (Institute of Animal Physiology and Genetics, Libechov (Czechoslovakia)); Kopecny, V. (University J.E. Purkyne, Brno (Czechoslovakia)); Flechon, J.E. (I.N.R.A., Station Centrale de Physiologie Animale, Jouy-en-Josas (France))

    1982-01-01

    Pig oocytes in different maturational stages--germinal vesicle (GV), metaphase I (MI) and metaphase II (MII)- were cultured in vitro with (/sup 3/H)-fucose. The incorporation of the precursor was followed by LM or EM autoradiography on air-dried preparations and on semithin or thin sections. The cumulus cells connected with oocytes at the GV stage were intensely labelled, while the labelling of the cumulus of MI and MII oocytes was lower. The cytoplasm of oocytes in the GV stage was characterized by nests of silver grains located mainly in a juxtanuclear position. The accumulation of label in the cortical region, observed in oocytes cultured with an intact cumulus, was less evident in cumulus-deprived oocytes. Lower labelling of the ooplasm, together with uniform distribution of the grains, was observed in later stages of meiosis. EM autoradiographs demonstrated the main localization, at the GV stage, of label in the Golgi apparatus and near the cell surface of oocytes and cumulus cells, as well as in the cytoplasmic processes of corona radiata cells. It is concluded that a relatively intense glycoprotein synthesis takes place in pig oocytes and cumulus cells during resumption of meiosis, at least before GV breakdown. Metabolic cooperation may occur as long as oocytes and cumulus cells keep membrane junctions.

  17. Spectral cumulus parameterization based on cloud-resolving model

    Science.gov (United States)

    Baba, Yuya

    2018-02-01

    We have developed a spectral cumulus parameterization using a cloud-resolving model. This includes a new parameterization of the entrainment rate which was derived from analysis of the cloud properties obtained from the cloud-resolving model simulation and was valid for both shallow and deep convection. The new scheme was examined in a single-column model experiment and compared with the existing parameterization of Gregory (2001, Q J R Meteorol Soc 127:53-72) (GR scheme). The results showed that the GR scheme simulated more shallow and diluted convection than the new scheme. To further validate the physical performance of the parameterizations, Atmospheric Model Intercomparison Project (AMIP) experiments were performed, and the results were compared with reanalysis data. The new scheme performed better than the GR scheme in terms of mean state and variability of atmospheric circulation, i.e., the new scheme improved positive bias of precipitation in western Pacific region, and improved positive bias of outgoing shortwave radiation over the ocean. The new scheme also simulated better features of convectively coupled equatorial waves and Madden-Julian oscillation. These improvements were found to be derived from the modification of parameterization for the entrainment rate, i.e., the proposed parameterization suppressed excessive increase of entrainment, thus suppressing excessive increase of low-level clouds.

  18. Investigating the Variability in Cumulus Cloud Number as a Function of Subdomain Size and Organization using large-domain LES

    Science.gov (United States)

    Neggers, R.

    2017-12-01

    Recent advances in supercomputing have introduced a "grey zone" in the representation of cumulus convection in general circulation models, in which this process is partially resolved. Cumulus parameterizations need to be made scale-aware and scale-adaptive to be able to conceptually and practically deal with this situation. A potential way forward are schemes formulated in terms of discretized Cloud Size Densities, or CSDs. Advantages include i) the introduction of scale-awareness at the foundation of the scheme, and ii) the possibility to apply size-filtering of parameterized convective transport and clouds. The CSD is a new variable that requires closure; this concerns its shape, its range, but also variability in cloud number that can appear due to i) subsampling effects and ii) organization in a cloud field. The goal of this study is to gain insight by means of sub-domain analyses of various large-domain LES realizations of cumulus cloud populations. For a series of three-dimensional snapshots, each with a different degree of organization, the cloud size distribution is calculated in all subdomains, for a range of subdomain sizes. The standard deviation of the number of clouds of a certain size is found to decrease with the subdomain size, following a powerlaw scaling corresponding to an inverse-linear dependence. Cloud number variability also increases with cloud size; this reflects that subsampling affects the largest clouds first, due to their typically larger neighbor spacing. Rewriting this dependence in terms of two dimensionless groups, by dividing by cloud number and cloud size respectively, yields a data collapse. Organization in the cloud field is found to act on top of this primary dependence, by enhancing the cloud number variability at the smaller sizes. This behavior reflects that small clouds start to "live" on top of larger structures such as cold pools, favoring or inhibiting their formation (as illustrated by the attached figure of cloud mask

  19. Microphysical imprint of entrainment in warm cumulus

    Directory of Open Access Journals (Sweden)

    Jennifer D. Small

    2013-07-01

    Full Text Available We analyse the cloud microphysical response to entrainment mixing in warm cumulus clouds observed from the CIRPAS Twin Otter during the GoMACCS field campaign near Houston, Texas, in summer 2006. Cloud drop size distributions and cloud liquid water contents from the Artium Flight phase-Doppler interferometer in conjunction with meteorological observations are used to investigate the degree to which inhomogeneous versus homogeneous mixing is preferred as a function of height above cloud base, distance from cloud edge and aerosol concentration. Using four complete days of data with 101 cloud penetrations (minimum 300 m in length, we find that inhomogeneous mixing primarily explains liquid water variability in these clouds. Furthermore, we show that there is a tendency for mixing to be more homogeneous towards the cloud top, which we attribute to the combination of increased turbulent kinetic energy and cloud drop size with altitude which together cause the Damköhler number to increase by a factor of between 10 and 30 from cloud base to cloud top. We also find that cloud edges appear to be air from cloud centres that have been diluted solely through inhomogeneous mixing. Theory predicts the potential for aerosol to affect mixing type via changes in drop size over the range of aerosol concentrations experienced (moderately polluted rural sites to highly polluted urban sites. However, the observations, while consistent with this hypothesis, do not show a statistically significant effect of aerosol on mixing type.

  20. Chemical UV Filters Mimic the Effect of Progesterone on Ca(2+) Signaling in Human Sperm Cells

    DEFF Research Database (Denmark)

    Rehfeld, A; Dissing, S; Skakkebæk, N E

    2016-01-01

    Progesterone released by cumulus cells surrounding the egg induces a Ca(2+) influx into human sperm cells via the cationic channel of sperm (CatSper) Ca(2+) channel and controls multiple Ca(2+)-dependent responses essential for fertilization. We hypothesized that chemical UV filters may mimic...

  1. Expressão do mRNA para IGF-2 em oócitos e células do cumulus extraídos de folículos antrais e pré-antrais de ovelhas nativas do Estado de Pernambuco

    Directory of Open Access Journals (Sweden)

    Arthur N. Melo

    Full Text Available RESUMO: Objetivou-se avaliar a expressão do mRNA para o gene do fator de crescimento IGF-2 em oócitos e células do cumulus de ovelhas em diferentes estágios do desenvolvimento folicular. Os folículos classificados morfologicamente como antrais (terciários e pré-ovulatórios foram aspirados manualmente para obtenção dos oócitos e células do cumulus. Os folículos pré-antrais (secundários foram extraídos do córtex ovariano, por microdissecção, e os oócitos retirados. Nos dois grupos, os oócitos foram desnudados e agrupados em “pools” de dez células cada (Grupo A, n=10; Grupo B, n=10 e dez amostras com grupos de células do cumulus (Grupo A1, n=10, B1, n=10. O mRNA foi extraído e convertido em cDNA utilizando a técnica da RT-PCR, utilizando Oligo DT randômico para o mRNA. A análise da expressão confirmou a expressão gênica para IGF-2 nos grupos de oócitos e células do cumulus. Houve um aumento da expressão relativa do mRNA para IGF-2 nos grupos de oócitos durante a fase mais tardia do desenvolvimento folicular e as diferenças foram consideradas significantes (p<0,05. Não houve variação significante da expressão de IGF2 entre os grupos de células do cumulus. Conclui-se que o fator de crescimento IGF-2 tem níveis mais elevados de expressão em oócitos ovinos, na segunda fase do desenvolvimento folicular, mas expressão semelhante em células do cumulus durante as fases estudadas do desenvolvimento folicular.

  2. Hand-made cloned goat (Capra hircus) embryos—a comparison of different donor cells and culture systems.

    Science.gov (United States)

    Akshey, Yogesh S; Malakar, Dhruba; De, Arun K; Jena, Manoj K; Garg, Shweta; Dutta, Rahul; Pawar, Sachin Kumar; Mukesh, Manisha

    2010-10-01

    Nuclear transfer is a very effective method for propagation of valuable, extinct, and endangered animals. Hand-made cloning (HMC) is an efficient alternative to the conventional micromanipulator-based technique in some domestic species. The present study was carried out for the selection of suitable somatic cells as a nuclear donor and development of an optimum culture system for in vitro culture of zona-free goat cloned embryos. Cleavage and blastocyst rates were observed 72.06 ± 2.94% and 0% for fresh cumulus cells, 81.95 ± 3.40% and 12.74 ± 2.12% for cultured cumulus cells, and 92.94 ± 0.91% and 23.78 ± 3.33% for fetal fibroblast cells, respectively. There was a significant (p cloned embryos and donor cells. In conclusion, the present study describes that the fetal fibroblast cell is a suitable candidate as nuclear donor, and the flat surface culture system is suitable for zona-free blastocyst development by the hand-made cloning technique in the goat.

  3. Human sperm bioassay has potential in evaluating the quality of cumulus-oocyte complexes.

    Science.gov (United States)

    Hossain, A M; Rizk, B; Huff, C; Helvacioglu, A; Thorneycroft, I H

    1996-01-01

    Human sperm bioassay is routinely used as a quality control check for the culture media. This is one of the three bioassays chosen by the College of American Pathologists (CAP) for interlaboratory proficiency testing to assess the standards of in vitro fertilization (IVF) and andrology laboratories. This study utilized sperm bioassay to assess the quality of cumulus-oocyte complexes (COCs) retrieved in IVF procedures COCs, harvested from the female partner of IVF couples, undergoing identical ovarian stimulation protocols, were individually inseminated with the sperm of the corresponding male partner. Sperm motility in sperm-COC cocultures were compared. Cocultures were established by inseminating the 103 COCs, retrieved from 18 IVF couples with 1 x 10(5) to 2 x 10(5) sperm of the corresponding male partners of the couples. In all 18 cases, the sperm were prepared identically using the Percoll wash method. The cocultures were maintained for 48 h but the oocytes were removed immediately after the fertilization check (approximately 16 h). The motility of sperm in the cocultures and in the insemination stocks were noted and 17 of 18 sperm stocks used for insemination had similar high preinsemination motility (90.2 +/- 5.0%). At 48 h the sperm motility had significantly decreased in the cocultures compared to the insemination stocks; 52.7 +/- 19.9% versus 67.2 +/- 10.4%. There was no difference in the motility among the small, medium, and large COCs (56.4 +/- 24.6%, 52.5 +/- 17.9%, and 50.8 +/- 20.9%, respectively). In 45% of IVF cases, the motility in cocultures varied widely, falling below as well as above that of their corresponding insemination stocks. Furthermore, the sperm motility varied among the cocultures in both pregnant and nonpregnant patients but the extent of variation appears to be greater in the latter. The inter-COC coculture sperm motility variation most likely is due to the differences in the quality of cumulus-oocyte complexes.

  4. In vitro maturation of cumulus-oocyte complexes for efficient isolation of oocytes from outbred deer mice.

    Directory of Open Access Journals (Sweden)

    Jung Kyu Choi

    Full Text Available The outbred (as with humans deer mice have been a useful animal model of research on human behavior and biology including that of the reproductive system. One of the major challenges in using this species is that the yield of oocyte isolation via superovulation is dismal according to the literature to date less than ∼5 oocytes per animal can be obtained so far.The goal of this study is to improve the yield of oocyte isolation from outbred deer mice close to that of most laboratory mice by in vitro maturation (IVM of cumulus-oocyte complexes (COCs.Oocytes were isolated by both superovulation and IVM. For the latter, COCs were obtained by follicular puncture of antral follicles in both the surface and inner cortical layers of ovaries. Immature oocytes in the COCs were then cultured in vitro under optimized conditions to obtain metaphase II (MII oocytes. Quality of the oocytes from IVM and superovulation was tested by in vitro fertilization (IVF and embryo development.Less than ∼5 oocytes per animal could be isolated by superovulation only. However, we successfully obtained 20.3±2.9 oocytes per animal by IVM (16.0±2.5 and superovulation (4.3±1.3 in this study. Moreover, IVF and embryo development studies suggest that IVM oocytes have even better quality than that from superovulation The latter never developed to beyond 2-cell stage as usual while 9% of the former developed to 4-cells.We have successfully established the protocol for isolating oocytes from deer mice with high yield by IVM. Moreover, this is the first ever success to develop in vitro fertilized deer mice oocytes beyond the 2-cell stage in vitro. Therefore, this study is of significance to the use of deer mice for reproductive biology research.

  5. Effect of pulsed electron beam on cell killing

    International Nuclear Information System (INIS)

    Acharya, Santhosh; Joseph, Praveen; Sanjeev, Ganesh; Narayana, Y.; Bhat, N.N.

    2009-01-01

    The extent of repairable and irreparable damage in a living cell produced by ionizing radiation depends on the quality of the radiation. In the case of sparsely ionizing radiation, the dose rate and the pattern of energy deposition of the radiation are the important physical factors which can affect the amount of damage in living cells. In the present study, radio-sensitive and radioresistive bacteria cells were exposed to 8 MeV pulsed electron beam and the efficiency of cell-killing was investigated to evaluate the Do, the mean lethal dose. The dose to the cell was delivered in micro-second pulses at an instantaneous dose rate of 2.6 x 10 5 Gy s -1 . Fricke dosimeter was used to measure the absorbed dose of electron beam. The results were compared with those of gamma rays. The survival curve of radio-resistive Deinococcus-radiodurans (DR) is found to be sigmoidal and the survival response for radio-sensitive Escherichia-coli (E-coli) is found to be exponential without any shoulder. Comparison of Do values indicate that irradiation with pulsed electron beam resulted in more cell-killing than was observed for gamma irradiation. (author)

  6. Cloning mice and ES cells by nuclear transfer from somatic stem cells and fully differentiated cells.

    Science.gov (United States)

    Wang, Zhongde

    2011-01-01

    Cloning animals by nuclear transfer (NT) has been successful in several mammalian species. In addition to cloning live animals (reproductive cloning), this technique has also been used in several species to establish cloned embryonic stem (ntES) cell lines from somatic cells. It is the latter application of this technique that has been heralded as being the potential means to produce isogenic embryonic stem cells from patients for cell therapy (therapeutic cloning). These two types of cloning differ only in the steps after cloned embryos are produced: for reproductive cloning the cloned embryos are transferred to surrogate mothers to allow them to develop to full term and for therapeutic cloning the cloned embryos are used to derive ntES cells. In this chapter, a detailed NT protocol in mouse by using somatic stem cells (neuron and skin stem cells) and fully differentiated somatic cells (cumulus cells and fibroblast cells) as nuclear donors is described.

  7. Activation of Cumulus Cell SMAD2/3 and Epidermal Growth Factor Receptor Pathways Are Involved in Porcine Oocyte-Cumulus Cell Expansion and Steroidogenesis

    Czech Academy of Sciences Publication Activity Database

    Nagyová, Eva; Camaioni, A.; Scsuková, S.; Mlynarčíková, A.; Procházka, Radek; Němcová, Lucie; Salustri, A.

    2011-01-01

    Roč. 78, č. 6 (2011), s. 391-402 ISSN 1040-452X R&D Projects: GA ČR GA523/08/0111 Institutional research plan: CEZ:AV0Z50450515 Keywords : MURAL GRANULOSA -CELLS * IN-VITRO MATURATION * PREOVULATORY OVARIAN-FOLLICLES Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.532, year: 2011

  8. In Vitro Maturation and Fertilization of Cryopreserved Germinal Vesicle Stage Oocytes in NMRI Mice, Using Ethylene Glycol and DMSO

    Directory of Open Access Journals (Sweden)

    O Mayahi

    2011-10-01

    Full Text Available Background & Aim: Cryopreservation of oocytes is an essential part of reproductive biotechnology. The objective of the present study was to investigate the effects of exposure to combination of cryoprotectants and vitrification on immature mouse oocytes with or without cumulus cells. Methods: This was an experimental study conducted at Yasouj University of Medical Sciences in 2010. Immature oocytes with and without cumulus cells were isolated from ovaries of mice 4-6 weeks of age. They were vitrified in conventional straw using ethylene glycol (EG, dimethyl sulfoxide (DMSO and sucrose as vitrification solution or exposed to vitrification solution without subjected to liquid nitrogen. After warming, oocytes were assessed for nuclear maturation and fertilization. The collected data were analyzed with one-way ANOVA and Tukey test. Results: Survival and fertilization rates in vitrified oocytes with cumulus cells were significantly lower than the control group (p<0.05. Maturation rates in exposure groups were significantly lower than the vitrified and control groups (p<0.05. The fertilization rate increased significantly in all experiment and control groups with cumulus cells in comparison with denuded oocytes (p<0.05. Conclusion: Germinal vesicle stage oocytes in the presence or absence of cumulus cells can be vitrified successfully. Exposure to cryoprotectants can decrease the developmental competence of GV oocytes. Presence of cumulus cells can increase the fertilization rate in IVF procedure.

  9. Influence of Insulin-like Growth Factor 1 on Nuclear Maturation of Germinal Vesicle Mouse Oocytes

    Directory of Open Access Journals (Sweden)

    R mahmoudi

    2014-09-01

    Full Text Available Background & aim: In vitro maturation and fertilization of oocytes play an important role in reproductive biotechnology. The aim of this study is to define the IGF-1 effect on in vitro maturation, fertilization and development of mice immature oocytes to 2-cells in TCM199 medium cultures. Methods: In this study 4 week old NMRI mice were used. Ovaries stimulation carried out using PMSG. GV oocytes with or without cumulus cells were isolated from ovaries and cultured in TCM199 in presence of 100 ng IGF-1 for 24hr.The oocytes (MII were inseminated with sperm in T6 medium for fertilization and development of 2-cells stage and they were investigated under inverted microscope. Data analysis was performed by using Chi- 2 test. Results: In cumulus cell group and in the presence of insulin-like growth factor fertilization of oocytes, forming embryos and the formation of 2-cells compared to the group without cumulus cells significantly increased (p < 0.05. Conclusion: As the results showed oocytes with cumulus cells in the presence of insulin-like growth factor enhances maturation, fertilization and embryonic development in 2-cells oocytes compared to group without cumulus cells TCM199.

  10. Somatic cell nuclear transfer using transported in vitro-matured oocytes in cynomolgus monkey.

    Science.gov (United States)

    Chen, N; Liow, S-L; Abdullah, R Bin; Embong, W Khadijah Wan; Yip, W-Y; Tan, L-G; Tong, G-Q; Ng, S-C

    2007-02-01

    Somatic cell nuclear transfer (SCNT) is not successful so far in non-human primates. The objective of this study was to investigate the effects of stimulation cycles (first and repeat) on oocyte retrieval and in vitro maturation (IVM) and to evaluate the effects of stimulation cycles and donor cell type (cumulus and fetal skin fibroblasts) on efficiency of SCNT with transported IVM oocytes. In this study, 369 immature oocytes were collected laparoscopically at 24 h following human chorionic gonadotrophin (hCG) treatment from 12 cynomolgus macaque (Macaca fascicularis) in 24 stimulation cycles, and shipped in pre-equilibrated IVM medium for a 5 h journey, placed in a dry portable incubator (37 degrees C) without CO(2) supplement. A total of 70.6% (247/350) of immature oocytes reached metaphase II (MII) stage at 36 h after hCG administration, MII spindle could be seen clearly in 80.6% (104/129) of matured IVM oocytes under polarized microscopy. A total of 50.0% (37/74) of reconstructive SCNT embryos cleaved after activation; after cleavage, 37.8% (14/37) developed to the 8-cell stage and 8.1% (3/37) developed to morula, but unfortunately none developed to the blastocyst stage. Many more oocytes could be retrieved per cycle from monkeys in the first cycle than in repeated cycles (19.1 vs. 11.7, p vs. 71.4%, p > 0.05) and MII spindle rate under polarized microscopy (76.4 vs. 86.0%, p > 0.05) between the first and repeat cycles. There were also no significant differences in the cleavage rate, and the 4-cell, 8-cell and morula development rate of SCNT embryos between the first and repeat cycles. When fibroblast cells and cumulus cells were used as the donor cells for SCNT, first cleavage rate was not significantly different, but 4-cell (50.0 vs. 88.9%, p vs. 51.9%, p < 0.01) development rate were significantly lower for the former. In conclusion, the number of stimulation cycles has a significant effect on oocyte retrieval, but has no effect on maturation and SCNT embryo

  11. One electron-based smallest flexible logic cell

    Science.gov (United States)

    Kim, S. J.; Lee, J. J.; Kang, H. J.; Choi, J. B.; Yu, Y.-S.; Takahashi, Y.; Hasko, D. G.

    2012-10-01

    A one electron-based operating half-adder, the smallest arithmetic block, has been implemented on silicon-on-insulator structure whose basic element is a nanoscale single-electron transistor (SET) with two symmetrical side-wall gates. Grayscale contour plots of the resulting cell output voltages exhibit the Coulomb blockade-induced periodic alternating high/low features. Their voltage transfer characteristics display typical Sum and Carry-Out functions for binary, multi-valued (MV), and binary-MV mixed input voltages. Moreover, the half-adder function converts into a subtraction mode by adjusting control gates of the SET element. This flexible multi-valued cell provides an arithmetic block for the SET MV logic family of high density integration, operating with ultra-low power.

  12. Electron microscopy study of antioxidant interaction with bacterial cells

    Science.gov (United States)

    Plotnikov, Oleg P.; Novikova, Olga V.; Konnov, Nikolai P.; Korsukov, Vladimir N.; Gunkin, Ivan F.; Volkov, Uryi P.

    2000-10-01

    To maintain native microorganisms genotype and phenotype features a lyophylization technique is widely used. However in this case cells are affected by influences of vacuum and low temperature that cause a part of the cells population to be destruction. Another factor reduced microorganisms vitality is formation of reactive oxygen forms that damage certain biological targets (such as DNA, membranes etc.) Recently to raise microorganism's resistance against adverse condition natural and synthetic antioxidants are used. Antioxidant- are antagonists of free radicals. Introduction of antioxidants in protective medium for lyophylization increase bacteria storage life about 2,0-4,8 fold in comparison with reference samples. In the article the main results of our investigation of antioxidants interaction with microorganism cells is described. As bacteria cells we use vaccine strain yersinia pestis EV, that were grown for 48 h at 28 degree(s)C on the Hottinger agar (pH 7,2). Antioxidants are inserted on the agar surface in specimen under test. To investigate a localization of antioxidants for electron microscopy investigation, thallium organic antioxidants were used. The thallium organic compounds have an antioxidant features if thallium is in low concentration (about 1(mu) g/ml). The localization of the thallium organic antioxidants on bacteria Y. pestis EV is visible in electron microscopy images, thallium being heavy metal with high electron density. The negatively stained bacteria and bacteria thin sections with thallium organic compounds were investigated by means of transmission electron microscopy. The localization of the thallium organic compounds is clearly visible in electron micrographs as small dark spots with size about 10-80nm. Probably mechanisms of interaction of antioxidants with bacteria cells are discussed.

  13. Study of cell cycle and apoptosis after radiation with electron linear accelerator injury

    International Nuclear Information System (INIS)

    Xu Lan; Zhou Yinghui; Shi Ning; Peng Miao; Wu Shiliang

    2002-01-01

    Purpose: To determine the cell cycle and apoptosis of the injured cells after radiation with the electron linear accelerator. Methods: NIH 3T3 cells were irradiated by the radiation with the electron linear accelerator. In the experiment the condition of the cell cycle and apoptosis of the injured cells were measured. The expression of p53 was also tested. Results: After exposure to radiation, the number of apoptotic cells as well as the expression of p53 increased. Conclusion: The electron linear accelerator radiation injury can induce cell apoptosis

  14. Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells

    KAUST Repository

    Ali, Haider

    2017-08-15

    In this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21.6% obtained on n-type cells, featuring SiO2/TiO2/Al rear contacts and after forming gas annealing (FGA) at 350°C, is due to strong surface passivation of SiO2/TiO2 stack as well as low contact resistivity at the Si/SiO2/TiO2 heterojunction. This can be attributed to the transformation of amorphous TiO2 to a conducting TiO2-x phase. Conversely, the low efficiency (9.8%) obtained on cells featuring an a-Si:H/TiO2/Al rear contact is due to severe degradation of passivation of the a-Si:H upon FGA.

  15. NREL Scientists Report First Solar Cell Producing More Electrons In

    Science.gov (United States)

    measured in operating quantum dot solar cells at low light intensity; these cells showed significant power Photocurrent Than Solar Photons Entering Cell | News | NREL NREL Scientists Report First Solar Cell Producing More Electrons In Photocurrent Than Solar Photons Entering Cell News Release: NREL

  16. Sensing lymphoma cells based on a cell-penetrating/apoptosis-inducing/electron-transfer peptide probe

    International Nuclear Information System (INIS)

    Sugawara, Kazuharu; Shinohara, Hiroki; Kadoya, Toshihiko; Kuramitz, Hideki

    2016-01-01

    To electrochemically sense lymphoma cells (U937), we fabricated a multifunctional peptide probe that consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. Electron-transfer peptides derive from cysteine residue combined with the C-terminals of four tyrosine residues (Y_4). A peptide whereby Y_4C is bound to the C-terminals of protegrin 1 (RGGRLCYCRRRFCVCVGR-NH_2) is known to be an apoptosis-inducing agent against U937 cells, and is referred to as a peptide-1 probe. An oxidation response of the peptide-1 probe has been observed due to a phenolic hydroxyl group, and this response is decreased by the uptake of the peptide probe into the cells. To improve the cell membrane permeability against U937 cells, the RGGR at the N-terminals of the peptide-1 probe was replaced by RRRR (peptide-2 probe). In contrast, RNRCKGTDVQAWY_4C (peptide-3 probe), which recognizes ovalbumin, was constructed as a control. Compared with the other probes, the change in the peak current of the peptide-2 probe was the greatest at low concentrations and occurred in a short amount of time. Therefore, the cell membrane permeability of the peptide-2 probe was increased based on the arginine residues and the apoptosis-inducing peptides. The peak current was linear and ranged from 100 to 1000 cells/ml. The relative standard deviation of 600 cells/ml was 5.0% (n = 5). Furthermore, the membrane permeability of the peptide probes was confirmed using fluorescent dye. - Highlights: • We constructed a multifunctional peptide probe for the electrochemical sensing of lymphoma cells. • The peptide probe consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. • The electrode response of the peptide probe changes due to selective uptake into the cells.

  17. Sensing lymphoma cells based on a cell-penetrating/apoptosis-inducing/electron-transfer peptide probe

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Kazuharu, E-mail: kzsuga@maebashi-it.ac.jp [Maebashi Institute of Technology, Gunma 371-0816 (Japan); Shinohara, Hiroki; Kadoya, Toshihiko [Maebashi Institute of Technology, Gunma 371-0816 (Japan); Kuramitz, Hideki [Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555 (Japan)

    2016-06-14

    To electrochemically sense lymphoma cells (U937), we fabricated a multifunctional peptide probe that consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. Electron-transfer peptides derive from cysteine residue combined with the C-terminals of four tyrosine residues (Y{sub 4}). A peptide whereby Y{sub 4}C is bound to the C-terminals of protegrin 1 (RGGRLCYCRRRFCVCVGR-NH{sub 2}) is known to be an apoptosis-inducing agent against U937 cells, and is referred to as a peptide-1 probe. An oxidation response of the peptide-1 probe has been observed due to a phenolic hydroxyl group, and this response is decreased by the uptake of the peptide probe into the cells. To improve the cell membrane permeability against U937 cells, the RGGR at the N-terminals of the peptide-1 probe was replaced by RRRR (peptide-2 probe). In contrast, RNRCKGTDVQAWY{sub 4}C (peptide-3 probe), which recognizes ovalbumin, was constructed as a control. Compared with the other probes, the change in the peak current of the peptide-2 probe was the greatest at low concentrations and occurred in a short amount of time. Therefore, the cell membrane permeability of the peptide-2 probe was increased based on the arginine residues and the apoptosis-inducing peptides. The peak current was linear and ranged from 100 to 1000 cells/ml. The relative standard deviation of 600 cells/ml was 5.0% (n = 5). Furthermore, the membrane permeability of the peptide probes was confirmed using fluorescent dye. - Highlights: • We constructed a multifunctional peptide probe for the electrochemical sensing of lymphoma cells. • The peptide probe consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. • The electrode response of the peptide probe changes due to selective uptake into the cells.

  18. Burst annealing of electron damage in silicon solar cells

    International Nuclear Information System (INIS)

    Day, A.C.; Horne, W.E.; Thompson, M.A.; Lancaster, C.A.

    1985-01-01

    A study has been performed of burst annealing of electron damage in silicon solar cells. Three groups of cells consisting of 3 and 0.3 ohm-cm silicon were exposed to fluences of 2 x 10 to the 14th power, 4 x 10 to the 14th power, and 8 x 10 to the 14th power 1-MeV electrons/sq cm, respectively. They were subsequently subjected to 1-minute bursts of annealing at 500 C. The 3 ohm-cm cells showed complete recovery from each fluence level. The 0.3 ohm-cm cells showed complete recovery from the 2 x 10 to the 14th power e/sq cm fluence; however, some of the 0.3 ohm-cm cells did not recover completely from the higher influences. From an analysis of the results it is concluded that burst annealing of moderate to high resistivity silicon cell arrays in space is feasible and that with more complete understanding, even the potentially higher efficiency low resistivity cells may be usable in annealable arrays in space

  19. Particle-in-cell Simulations with Kinetic Electrons

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2004-01-01

    A new scheme, based on an exact separation between adiabatic and nonadiabatic electron responses, for particle-in-cell (PIC) simulations of drift-type modes is presented. The (linear and nonlinear) elliptic equations for the scalar fields are solved using a multi-grid solver. The new scheme yields linear growth rates in excellent agreement with theory and it is shown to conserve energy well into the nonlinear regime. It is also demonstrated that simulations with few electrons are reliable and accurate, suggesting that large-scale, PIC simulations with electron dynamics in toroidal geometry (e.g., tokamaks and stellarators plasmas) are within reach of present-day massively parallel supercomputers

  20. Influence of electron transport on the efficiency of polymer-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuxhaus, Viktor; Jaiser, Frank; Neher, Dieter [Institute of Physics and Astronomy, University Potsdam (Germany); Voges, Frank [Merck KGaA, Darmstadt (Germany)

    2010-07-01

    Recently, we showed that the mobility of electrons in polymer-based solar cells has a large influence on the overall performance of such devices. Here, we investigate the correlation between electron mobility and charge generation efficiency in organic bilayer solar cells for a series of electron transporting materials (ETMs) with comparable HOMO and LUMO levels. The electron mobility was measured by transient electroluminescence. Here, a thin M3EH-PPV was used as a sensing layer. The interface between M3EH-PPV and ETM acted as a recombination zone of electrons transported through the ETM layer and holes that are blocked at the interface. Therefore, the electron mobility can easily be determined from the onset of M3EH-PPV emission which is spectrally well separated from the ETM emission. To determine the charge generation efficiency, the different ETMs were combined in bilayer solar cell with PFB as donator.

  1. Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors

    Directory of Open Access Journals (Sweden)

    Annette R. Rowe

    2018-02-01

    Full Text Available While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2 pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited.

  2. Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors

    Science.gov (United States)

    Rajeev, Pournami; Jain, Abhiney; Pirbadian, Sahand; Okamoto, Akihiro; Gralnick, Jeffrey A.; El-Naggar, Mohamed Y.; Nealson, Kenneth H.

    2018-01-01

    ABSTRACT While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2) pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited. PMID:29487241

  3. The different electron transport of two nanotubes incorporated in working electrode of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaobo, E-mail: zhangxiaobo@chnu.edu.cn [School of Physics, Huaibei Normal University, Huaibei 235000, Anhui (China); Eco-Materials and Renewable Energy Research Centre (ERERC), Nanjing University, Nanjing 210093 (China); Tian, Hanmin; Wang, Xiangyan; Xue, Guogang; Tian, Zhipeng; Zhang, Jiyuan; Yuan, Shikui [Eco-Materials and Renewable Energy Research Centre (ERERC), Nanjing University, Nanjing 210093 (China); Yu, Tao; Zou, Zhigang [Eco-Materials and Renewable Energy Research Centre (ERERC), Nanjing University, Nanjing 210093 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

    2013-11-25

    Highlights: •Two TiO{sub 2} nanotubes are separately incorporated in working electrode of DSSCs. •The 6-μm-tubes incorporation improves electron transport in the cell. •The 1-μm-tubes incorporation impedes electron transport in the cell. •Both 1-D electron diffusion and nanotube percolation promote electron transport. •Electron residing at the end of 1-μm-tubes maybe impedes electron transport. -- Abstract: Two different-length (6 μm and 1 μm) TiO{sub 2} nanotubes were prepared and incorporated in working electrode of dye-sensitized solar cells (DSSCs). The analyses of the electrochemical impedance spectra of cells demonstrate that, the electron transport resistance R{sub w} decreases and increases separately to 0.3 Ω in 6-μm-tubes-cell and to 15.1 Ω in 1-μm-tubes-cell comparing with that 1.4 Ω in P25-cell, reflecting the improved electron transport in 6-μm-tubes-cell and impeded electron transport in 1-μm-tubes-cell. The reason is ascribed to the different electron transport in working electrode due to the incorporation of nanotubes. For the 6-μm-tubes incorporation, both 1-D electron diffusion along nanotubes and nanotube percolation improve electron transport in working electrode, but they cannot improve electron transport for the 1-μm-tubes incorporation. On the contrary, the 1-μm-tubes incorporation may impede electron transport because of electron residing occurring seriously at the end of 1-μm-tubes. The results of this work will help to understand the specific nature of electron transport in TiO{sub 2} nanotubes in DSSCs.

  4. Treatment of basal cell epithelioma with high energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Y. (Hyogo-ken Cancer Center, Kobe (Japan)); Kumano, M.; Kumano, K.

    1981-11-01

    Thirty patients with basal cell epithelioma received high energy electron beam therapy. They were irradiated with a dose ranging from 4,800 rad (24 fractions, 35 days) to 12,000 rad (40 fractions, 57 days). Tumors disappeared in all cases. These were no disease-related deaths; in one patient there was recurrence after 2 years. We conclude that radiotherapy with high energy electron beam is very effective in the treatment of basal cell epithelioma.

  5. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    Science.gov (United States)

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  6. Stimulatory Effects of Melatonin on Porcine In Vitro Maturation Are Mediated by MT2 Receptor

    Directory of Open Access Journals (Sweden)

    Sanghoon Lee

    2018-05-01

    Full Text Available Melatonin is a multifunctional molecule with numerous biological activities. The fact that melatonin modulates the functions of porcine granulosa cells via the MT2 receptor suggests the possibility of MT2 receptor-mediation for melatonin to promote cumulus expansion of porcine cumulus-oocyte complexes (COCs. Therefore, we investigated the presence of MT2 in porcine COCs, and the effects of melatonin with or without selective MT2 antagonists (luzindole and 4-P-PDOT on this process; COCs underwent in vitro maturation culturing with six different conditions (control, melatonin, luzindole, 4-P-PDOT, melatonin + luzindole or melatonin + 4-P-PDOT. Cumulus expansion, oocyte nuclear maturation, and subsequent embryo development after parthenogenetic activation (PA were evaluated. In experiment 1, MT2 was expressed in both oocytes and cumulus cells. In experiment 2, melatonin significantly increased the proportion of complete cumulus expansion (degree 4, which was inhibited by simultaneous addition of either luzindole or 4-P-PDOT. A similar pattern was observed in the expression of genes related to cumulus expansion, apoptosis, and MT2. In experiment 3, no significant difference was observed in immature, degenerate, and MII oocyte rates among the groups. In experiment 4, melatonin significantly increased blastocyst formation rates and total blastocyst cell numbers after PA, but these effects were abolished when either luzindole or 4-P-PDOT was added concomitantly. In conclusion, our results indicate that the MT2 receptor mediated the stimulatory effects of melatonin on porcine cumulus expansion and subsequent embryo development.

  7. Design of a microfluidic cell using microstereolithography for electronic tongue applications

    Science.gov (United States)

    Jacesko, Stefany L.; Ji, Taeksoo; Abraham, Jose K.; Varadan, Vijay K.; Gardner, Julian W.

    2003-07-01

    In this paper we present design, fabrication and integration of a micro fluidic cell for use with the electronic tongue. The cell was machined using microstereo lithography on a Hexanediol Diacrylate (HDDA) liquid monomer. The wet cell was designed to confine the liquid under test to the sensing area and insure complete isolation of the interdigital transducers (IDTs). The electronic tongue is a shear horizontal surface acoustic wave (SH-SAW) device. Shear horizontally polarized Love-waves are guided between transmitting and receiving IDTs, over a piezoelectric substrate, which creates an electronic oscillator effect. This device has a dual delay line configuration, which accounts for the measuring of both mechanical and electrical properties of a liquid, simultaneously, with the ability to eliminate environmental factors. The data collected is distinguished using principal components analysis in conjunction with pre-processing parameters. The experiments show that the micro fluidic cell for this electronic tongue does not affect the losses or phase of the device to any extent of concern. Experiments also show that liquids such as Strawberry Hi-C, Teriyaki Sauce, DI Water, Coca Cola, and Pepsi are distinguishable using these methods.

  8. OBSERVATIONS REGARDING OOCYTES STORAGE POST MENDING FROM SLAUGHTER FEMALES

    Directory of Open Access Journals (Sweden)

    CARABA V.

    2008-01-01

    Full Text Available The oocytes viability must be taken as an important selection parameter for successful in vitrocultivation. The ovaries were collected from the slaughterhouse and maintained at 4°C for 7days. Fallowing cumulus -oocytes complexes recovery the viability was tested by two stainingmethods. For the first experiment we used 27 cumulus - oocytes complexes, stained withNeutral red and for the second experiment we used 11 cumulus - oocytes complexes stainedwith Trypan blue. Fallowing staining with Neutral red 23 cumulus - oocytes complexes wereassessed as viable (were stained in red – enzymatic activity within the cells and for the Trypanblue staining 11 cumulus - oocytes complexes were assessed as viable (remained unstained –integers cellular membranes.

  9. Electron beam welding of high-purity copper accelerator cells

    International Nuclear Information System (INIS)

    Delis, K.; Haas, H.; Schlebusch, P.; Sigismund, E.

    1986-01-01

    The operating conditions of accelerator cells require high thermal conductivity, low gas release in the ultrahigh vacuum, low content of low-melting metals and an extremely good surface quality. In order to meet these requirements, high-purity copper (OFHC, Grade 1, according to ASTM B 170-82 and extra specifications) is used as structural material. The prefabricated components of the accelerator cells (noses, jackets, flanges) are joined by electron beam welding, the weld seam being assessed on the basis of the same criteria as the base material. The welding procedures required depend, first, on the material and, secondly, on the geometries involved. Therefore experimental welds were made first on standardized specimens in order to study the behaviour of the material during electron beam welding and the influence of parameter variations. The welded joints of the cell design were planned on the basis of these results. Seam configuration, welding procedures and the parameters were optimized on components of original geometry. The experiments have shown that high-quality joints of this grade of copper can be produced by the electron beam welding process, if careful planning and preparation of the seams and adequate containment of the welding pool are assured. (orig.)

  10. Improvement and implementation of a parameterization for shallow cumulus in the global climate model ECHAM5-HAM

    Science.gov (United States)

    Isotta, Francesco; Spichtinger, Peter; Lohmann, Ulrike; von Salzen, Knut

    2010-05-01

    Convection is a crucial component of weather and climate. Its parameterization in General Circulation Models (GCMs) is one of the largest sources of uncertainty. Convection redistributes moisture and heat, affects the radiation budget and transports tracers from the PBL to higher levels. Shallow convection is very common over the globe, in particular over the oceans in the trade wind regions. A recently developed shallow convection scheme by von Salzen and McFarlane (2002) is implemented in the ECHAM5-HAM GCM instead of the standard convection scheme by Tiedtke (1989). The scheme of von Salzen and McFarlane (2002) is a bulk parameterization for an ensemble of transient shallow cumuli. A life cycle is considered, as well as inhomogeneities in the horizontal distribution of in-cloud properties due to mixing. The shallow convection scheme is further developed to take the ice phase and precipitation in form of rain and snow into account. The double moment microphysics scheme for cloud droplets and ice crystals implemented is consistent with the stratiform scheme and with the other types of convective clouds. The ice phase permits to alter the criterion to distinguish between shallow convection and the other two types of convection, namely deep and mid-level, which are still calculated by the Tiedtke (1989) scheme. The lunching layer of the test parcel in the shallow convection scheme is chosen as the one with maximum moist static energy in the three lowest levels. The latter is modified to the ``frozen moist static energy'' to account for the ice phase. Moreover, tracers (e.g. aerosols) are transported in the updraft and scavenged in and below clouds. As a first test of the performance of the new scheme and the interaction with the rest of the model, the Barbados Oceanographic and Meteorological EXperiment (BOMEX) and the Rain In Cumulus over the Ocean experiment (RICO) case are simulated with the single column model (SCM) and the results are compared with large eddy

  11. Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells.

    Science.gov (United States)

    Granger, D L; Lehninger, A L

    1982-11-01

    Previous work has shown that injury of neoplastic cells by cytotoxic macrophages (CM) in cell culture is accompanied by inhibition of mitochondrial respiration. We have investigated the nature of this inhibition by studying mitochondrial respiration in CM-injured leukemia L1210 cells permeabilized with digitonin. CM-induced injury affects the mitochondrial respiratory chain proper. Complex I (NADH-coenzyme Q reductase) and complex II (succinate-coenzyme Q reductase) are markedly inhibited. In addition a minor inhibition of cytochrome oxidase was found. Electron transport from alpha-glycerophosphate through the respiratory chain to oxygen is unaffected and permeabilized CM-injured L1210 cells oxidizing this substrate exhibit acceptor control. However, glycerophosphate shuttle activity was found not to occur within CM-injured or uninjured L1210 cells in culture hence, alpha-glycerophosphate is apparently unavailable for mitochondrial oxidation in the intact cell. It is concluded that the failure of respiration of intact neoplastic cells injured by CM is caused by the nearly complete inhibition of complexes I and II of the mitochondrial electron transport chain. The time courses of CM-induced electron transport inhibition and arrest of L1210 cell division are examined and the possible relationship between these phenomena is discussed.

  12. Integrated cumulus ensemble and turbulence (ICET): An integrated parameterization system for general circulation models (GCMs)

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.L.; Frank, W.M.; Young, G.S. [Pennsylvania State Univ., University Park, PA (United States)

    1996-04-01

    Successful simulations of the global circulation and climate require accurate representation of the properties of shallow and deep convective clouds, stable-layer clouds, and the interactions between various cloud types, the boundary layer, and the radiative fluxes. Each of these phenomena play an important role in the global energy balance, and each must be parameterized in a global climate model. These processes are highly interactive. One major problem limiting the accuracy of parameterizations of clouds and other processes in general circulation models (GCMs) is that most of the parameterization packages are not linked with a common physical basis. Further, these schemes have not, in general, been rigorously verified against observations adequate to the task of resolving subgrid-scale effects. To address these problems, we are designing a new Integrated Cumulus Ensemble and Turbulence (ICET) parameterization scheme, installing it in a climate model (CCM2), and evaluating the performance of the new scheme using data from Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Testbed (CART) sites.

  13. The effect of flavin electron shuttles in microbial fuel cells current production

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Orta, Sharon B. [Newcastle Univ., Newcastle upon Tyne (United Kingdom). School of Civil Engineering and Geosciences; Newcastle Univ., Newcastle upon Tyne (United Kingdom). School of Chemical Engineering and Advanced Materials; Head, Ian M.; Curtis, Thomas P. [Newcastle Univ., Newcastle upon Tyne (United Kingdom). School of Civil Engineering and Geosciences; Scott, Keith [Newcastle Univ., Newcastle upon Tyne (United Kingdom). School of Chemical Engineering and Advanced Materials; Lloyd, Jonathan R.; Canstein, Harald von [Manchester Univ. (United Kingdom). School of Earth, Atmospheric and Environmental Sciences

    2010-02-15

    The effect of electron shuttles on electron transfer to microbial fuel cell (MFC) anodes was studied in systems where direct contact with the anode was precluded. MFCs were inoculated with Shewanella cells, and flavins used as the electron shuttling compound. In MFCs with no added electron shuttles, flavin concentrations monitored in the MFCs' bulk liquid increased continuously with FMN as the predominant flavin. The maximum concentrations were 0.6 {mu}M for flavin mononucleotide and 0.2 {mu}M for riboflavin. In MFCs with added flavins, micro-molar concentrations were shown to increase current and power output. The peak current was at least four times higher in MFCs with high concentrations of flavins (4.5-5.5 {mu}M) than in MFCs with low concentrations (0.2-0.6 {mu}M). Although high power outputs (around 150 mW/m{sup 2}) were achieved in MFCs with high concentrations of flavins, a Clostridium-like bacterium along with other reactor limitations affected overall coulombic efficiencies (CE) obtained, achieving a maximum CE of 13%. Electron shuttle compounds (flavins) permitted bacteria to utilise a remote electron acceptor (anode) that was not accessible to the cells allowing current production until the electron donor (lactate) was consumed. (orig.)

  14. The Effect of Insulin-like Growth Factor-1, Cysteamine and β-Mercaptoethanol on the In Vitro Maturation of Immature Mice Oocytes

    Directory of Open Access Journals (Sweden)

    A Dehghan Manshadi

    2015-11-01

    Full Text Available Background & aim: In vitro maturation of oocytes is a promising technique for reducing the costs and complications of ovarian stimulation by gonadotropins. The aim of this study was to investigate the effects of combination of insulin-like growth factor-1 and antioxidant cysteamine and &beta-Mercaptoethanol on maturation and fertilization of immature oocytes. Methods: in this experimental study, following 48 hrs injection of 7.5 IU PMSG to immature female mice, the germinal vesicle oocytes from ovaries were removed and transferred to TCM199 culture medium containing 50 ng /ml insulin-like growth factor-1 and 100 &mumol Cysteamine and &beta -Mercaptoethanol. After 24 hrs of culture, the oocytes of MII in IVF were fertilized and embryonic development to the two cells was studied under an inverted microscope. Data analysis was performed by using ANOVA and Post hoc Tukey test. Results: The results showed that the rate of maturation, fertilization and 2-cell embryo formation in GV oocytes with cumulus cells in TCM199 medium containing insulin-like growth factor-1, Cysteamine and BME were 92.10, 93.30, 80.60% and in the GV oocytes without Cumulus cells were cultured in the same medium were 65.80, 64.00, 58.60% respectively which were statistically significant (P <0.001. Conclusion: In the present study, the simultaneous combination of insulin-like growth factor-1, &beta-Mercaptoethanol and CYS increased maturation, fertilization and developmental rate to 2-cells stage with cumulus cells more than the oocyte without cumulus cells to a greater extent. This represented the need of adding supplemental growth factors and antioxidants to the medium and is associated with cumulus cells.

  15. Observations Regardin Oocyte in Vitro Maturation after Recovery from Slaughter House Females

    Directory of Open Access Journals (Sweden)

    Valeriu Carabă

    2011-05-01

    Full Text Available The oocytes viability must be taken as an important selection parameter for successful in vitro cultivation. The ovaries were collected from the slaughterhouse and maintained at 4°C for 7 days. Fallowing cumulus -oocytes complexes recovery the viability was tested using two staining methods. For the first experiment we used 27 cumulus - oocytes complexes, stained with Neutral red and for the second experiment we used 11 cumulus - oocytes complexes stained with Trypan blue. Fallowing staining with Neutral red 23 cumulus - oocytes complexes were assessed as viable (were stained in red – enzymatic activity within the cells and for the Trypan blue staining 11 cumulus - oocytes complexes were assessed as viable (remained unstained – integers cellular membranes.

  16. CIF2Cell: Generating geometries for electronic structure programs

    Science.gov (United States)

    Björkman, Torbjörn

    2011-05-01

    The CIF2Cell program generates the geometrical setup for a number of electronic structure programs based on the crystallographic information in a Crystallographic Information Framework (CIF) file. The program will retrieve the space group number, Wyckoff positions and crystallographic parameters, make a sensible choice for Bravais lattice vectors (primitive or principal cell) and generate all atomic positions. Supercells can be generated and alloys are handled gracefully. The code currently has output interfaces to the electronic structure programs ABINIT, CASTEP, CPMD, Crystal, Elk, Exciting, EMTO, Fleur, RSPt, Siesta and VASP. Program summaryProgram title: CIF2Cell Catalogue identifier: AEIM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL version 3 No. of lines in distributed program, including test data, etc.: 12 691 No. of bytes in distributed program, including test data, etc.: 74 933 Distribution format: tar.gz Programming language: Python (versions 2.4-2.7) Computer: Any computer that can run Python (versions 2.4-2.7) Operating system: Any operating system that can run Python (versions 2.4-2.7) Classification: 7.3, 7.8, 8 External routines: PyCIFRW [1] Nature of problem: Generate the geometrical setup of a crystallographic cell for a variety of electronic structure programs from data contained in a CIF file. Solution method: The CIF file is parsed using routines contained in the library PyCIFRW [1], and crystallographic as well as bibliographic information is extracted. The program then generates the principal cell from symmetry information, crystal parameters, space group number and Wyckoff sites. Reduction to a primitive cell is then performed, and the resulting cell is output to suitably named files along with documentation of the information source generated from any bibliographic information contained in the CIF

  17. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Millaku, Agron, E-mail: agron.mi@hotmail.com [Limnos-Company for Applied Ecology Ltd, Podlimbarskega 31, 1000 Ljubljana (Slovenia); Drobne, Damjana [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Centre of Excellence, Advanced Materials and Technologies for the Future (CO NAMASTE), Jamova cesta 39, 1000 Ljubljana (Slovenia); Centre of Excellence, Nanoscience and Nanotechnology (Nanocentre), Jamova cesta 39, 1000 Ljubljana (Slovenia); Torkar, Matjaz [Institute of Metals and Technology IMT, Lepi pot 11, 1000 Ljubljana (Slovenia); Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Novak, Sara [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Remškar, Maja [Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Pipan-Tkalec, Živa [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia)

    2013-09-15

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells.

  18. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    International Nuclear Information System (INIS)

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-01-01

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells

  19. Improving the Osteoblast Cell Adhesion on Electron Beam Controlled TiO2 Nanotubes

    Directory of Open Access Journals (Sweden)

    Sung Wook Yoon

    2014-01-01

    Full Text Available Here we investigate the osteogenesis and synostosis processes on the surface-modified TiO2 nanotubes via electron beam irradiation. The TiO2 nanotubes studied were synthesized by anodization process under different anodizing voltage. For the anodization voltage of 15, 20, and 25 V, TiO2 nanotubes with diameters of 59, 82, and 105 nm and length of 115, 276, and 310 nm were obtained, respectively. MC3T3-E1 osteoblast cell line was incubated on the TiO2 nanotubes to monitor the change in the cell adhesion before and after the electron beam irradiation. We observe that the electron beam irradiation affects the number of surviving osteoblast cells as well as the cultivation time. In particular, the high adhesion rate of 155% was obtained when the osteoblast cells were cultivated for 2 hours on the TiO2 nanotube, anodized under 20 V, and irradiated with 5,000 kGy of electron beam.

  20. Scanning electron microscopy of cells from periapical lesions.

    Science.gov (United States)

    Farber, P A

    1975-09-01

    Examination of lymphocytes from peripheral blood with the scanning electron microscope (SEM) has shown differences between B cells and T cells on the basis of their surface architecture. This study was initiated to determine whether the cellular components of periapical lesions could be identified with the use of similar criteria. Cells were dispersed from lesions by aspiration of fragments of tissue through syringe needles of decreasing diameters. The liberated cells were filtered on silver-coated Flotronic membranes and examined under the SEM. Lymphocytes, macrophages, epithelial cells, and mast cells were observed in granulomas and cysts. Most of the lymphocytes had smooth surfaces similar to that of T cells; others had villous projections similar to that of B cells. Epithelial nests were seen in the cyst linings while the cyst fluid was rich in lymphocytes. These findings suggest that SEM examination of periapical lesions can be a useful adjunct in studying cellular composition and possible immunological reactions in these tissues.

  1. Cell for studying electron-adsorbed gas interactions; Cellule d'etudes des interactions electron-gaz adsorbe

    Energy Technology Data Exchange (ETDEWEB)

    Golowacz, H; Degras, D A [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, Deptartement de Physique des Plasmas et de la Fusion Controlee, Service de Physique Appliquee, Service de Physique des Interractions Electroniques, Section d' Etude des Interactions Gaz-Solides

    1967-07-01

    The geometry and the technology of a cell used for investigations on electron-adsorbed gas interactions are described. The resonance frequencies of the surface ions which are created by the electron impact on the adsorbed gas are predicted by simplified calculations. The experimental data relative to carbon monoxide and neon are in good agreement with these predictions. (authors) [French] Les caracteristiques geometriques et technologiques generales d'une cellule d'etude des interactions entre un faisceau d'electrons et un gaz adsorbe sont donnees. Un calcul simplifie permet de prevoir les frequences de resonance des ions de surface crees par l'impact des electrons sur le gaz adsorbe. Les donnees experimentales sur l'oxyde de carbone et le neon confirment les previsions du calcul. (auteurs)

  2. Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection

    NARCIS (Netherlands)

    Belikov, D.A.; Maksyutov, S.; Krol, M.C.; Fraser, A.; Rigby, M.; Bian, H.; Agusti-Panareda, A.; Bergmann, D.; Bousquet, P.; Cameron-Smith, P.; Chipperfield, M.P.; Fortems-Cheiney, A.; Gloor, E.; Haynes, K.; Hess, P.; Houweling, S.; Kawa, S.R.; Law, R.M.; Loh, Z.; Meng, L.; Palmer, P.I.; Patra, P.K.; Prinn, R.G.; Saito, R.; Wilson, C.

    2013-01-01

    A modified cumulus convection parametrisation scheme is presented. This scheme computes the mass of air transported upward in a cumulus cell using conservation of moisture and a detailed distribution of convective precipitation provided by a reanalysis dataset. The representation of vertical

  3. Simultaneous electron-proton irradiation of crucible grown and float-zone silicon solar cells

    International Nuclear Information System (INIS)

    Bernard, J.

    1974-01-01

    The realisation of an irradiation chamber which permits simultaneous irradiations by electrons, protons, photons and in-situ measurements of solar cells main parameters (diffusion length, I.V. characteristics) is described. Results obtained on 20 solar cells n/p 10Ωcm made in silicon pulled crystals and 20 solar cells n/p 10Ωcm made in silicon float-zone simultaneously irradiated with electrons and photons are given [fr

  4. Nonplasmonic Hot-Electron Photocurrents from Mn-Doped Quantum Dots in Photoelectrochemical Cells.

    Science.gov (United States)

    Dong, Yitong; Rossi, Daniel; Parobek, David; Son, Dong Hee

    2016-03-03

    We report the measurement of the hot-electron current in a photoelectrochemical cell constructed from a glass/ITO/Al2 O3 (ITO=indium tin oxide) electrode coated with Mn-doped quantum dots, where hot electrons with a large excess kinetic energy were produced through upconversion of the excitons into hot electron hole pairs under photoexcitation at 3 eV. In our recent study (J. Am. Chem. Soc. 2015, 137, 5549), we demonstrated the generation of hot electrons in Mn-doped II-VI semiconductor quantum dots and their usefulness in photocatalytic H2 production reaction, taking advantage of the more efficient charge transfer of hot electrons compared with band-edge electrons. Here, we show that hot electrons produced in Mn-doped CdS/ZnS quantum dots possess sufficient kinetic energy to overcome the energy barrier from a 5.4-7.5 nm thick Al2 O3 layer producing a hot-electron current in photoelectrochemical cell. This work demonstrates the possibility of harvesting hot electrons not only at the interface of the doped quantum dot surface, but also far away from it, thus taking advantage of the capability of hot electrons for long-range electron transfer across a thick energy barrier. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enhanced Electronic Properties of SnO2 via Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Xie, Jiangsheng; Huang, Kun; Yu, Xuegong; Yang, Zhengrui; Xiao, Ke; Qiang, Yaping; Zhu, Xiaodong; Xu, Lingbo; Wang, Peng; Cui, Can; Yang, Deren

    2017-09-26

    Tin dioxide (SnO 2 ) has been demonstrated as an effective electron-transporting layer (ETL) for attaining high-performance perovskite solar cells (PSCs). However, the numerous trap states in low-temperature solution processed SnO 2 will reduce the PSCs performance and result in serious hysteresis. Here, we report a strategy to improve the electronic properties in SnO 2 through a facile treatment of the films with adding a small amount of graphene quantum dots (GQDs). We demonstrate that the photogenerated electrons in GQDs can transfer to the conduction band of SnO 2 . The transferred electrons from the GQDs will effectively fill the electron traps as well as improve the conductivity of SnO 2 , which is beneficial for improving the electron extraction efficiency and reducing the recombination at the ETLs/perovskite interface. The device fabricated with SnO 2 :GQDs could reach an average power conversion efficiency (PCE) of 19.2 ± 1.0% and a highest steady-state PCE of 20.23% with very little hysteresis. Our study provides an effective way to enhance the performance of perovskite solar cells through improving the electronic properties of SnO 2 .

  6. Electron microscopic radioautography of the cell

    International Nuclear Information System (INIS)

    Sarkisov, D.S.; Pal'tsyn, A.A.; Vtyurin, B.V.

    1980-01-01

    This monograph is the first one in the world literature that gives th generalised experience in application of the up-to-date method of structural and functional analysis, i.e. of electron-microscopic autography to study the dynamics of intracellular processes under normal conditions as well as under some pathogenic effects. Given herein are the data on synthesis of DNA and RNA in various structures of the nucleus, particularly in nucleoli, the regularities of the synthesis processes in the organellae of the same name are discussed; illustrated are the possibilities of structure analysis of biosynthesis intensity variations in the nucleus and cytoplasma in cells of liver miocardium, granulation tissue at different stages of morphological process; the results of electron-microscopic radioautography application in study of clinical biopsy material are given and the data obtained are discussed in the light of general pathology problems

  7. Short circuit current changes in electron irradiated GaAlAs/GaAs solar cells

    Science.gov (United States)

    Walker, G. H.; Conway, E. J.

    1978-01-01

    Heteroface p-GaAlAs/p-GaAs/n-GaAs solar cells with junction depths of 0.8, 1.5, and 4 microns were irradiated with 1 MeV electrons. The short-circuit current for the 4 micron junction depth cells is significantly reduced by the electron irradiation. Reduction of the junction depth to 1.5 microns improves the electron radiation resistance of the cells while further reduction of the junction depth to 0.8 microns improves the stability of the cells even more. Primary degradation is in the blue region of the spectrum. Considerable recovery of lost response is obtained by annealing the cells at 200 C. Computer modeling shows that the degradation is caused primarily by a reduction in the minority carrier diffusion length in the p-GaAs.

  8. Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells

    Science.gov (United States)

    Martell, Jeffrey D; Deerinck, Thomas J; Lam, Stephanie S; Ellisman, Mark H; Ting, Alice Y

    2018-01-01

    Electron microscopy (EM) is the premiere technique for high-resolution imaging of cellular ultrastructure. Unambiguous identification of specific proteins or cellular compartments in electron micrographs, however, remains challenging because of difficulties in delivering electron-dense contrast agents to specific subcellular targets within intact cells. We recently reported enhanced ascorbate peroxidase 2 (APEX2) as a broadly applicable genetic tag that generates EM contrast on a specific protein or subcellular compartment of interest. This protocol provides guidelines for designing and validating APEX2 fusion constructs, along with detailed instructions for cell culture, transfection, fixation, heavy-metal staining, embedding in resin, and EM imaging. Although this protocol focuses on EM in cultured mammalian cells, APEX2 is applicable to many cell types and contexts, including intact tissues and organisms, and is useful for numerous applications beyond EM, including live-cell proteomic mapping. This protocol, which describes procedures for sample preparation from cell monolayers and cell pellets, can be completed in 10 d, including time for APEX2 fusion construct validation, cell growth, and solidification of embedding resins. Notably, the only additional steps required relative to a standard EM sample preparation are cell transfection and a 2- to 45-min staining period with 3,3′-diaminobenzidine (DAB) and hydrogen peroxide (H2O2). PMID:28796234

  9. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  10. Embodied Making and Design Learning - Special Issue from the Learn X Design-conference DRS/CUMULUS, Chicago 2015

    Directory of Open Access Journals (Sweden)

    Marte Sørebø Gulliksen

    2016-06-01

    Full Text Available This issue of FORMakademisk features selected articles developed from papers presented at the symposium Embodied Making and Design Learning at the DRS/CUMULUS-conference LearnXDesign in Chicago, Illinois, June 28–30, 2015. This special issue was developed as an initiative by the symposium conveners. The symposium was developed by researchers from research groups in Norway, Finland and Canada to explore various aspects of embodied making in relation to design learning. The symposium was a full-day event with four sessions, seven paper presentations, a roundtable discussion, a plenary discussion and a workshop. The symposium received positive feedback, attracting many participants and stimulating engaged discussions throughout the conference. This indicates a growing awareness of the topic of embodied making and design learning. This special issue features five articles that together highlight a variety of approaches and examples of current research endeavours in relation to the theme. 

  11. Temperature profiles from MBT casts from the CIRRUS and CUMULUS from Ocean Weather Station K (OWS-K) and M (OWS-M) in the North Atlantic Ocean from 1969-01-01 to 1970-01-16 (NODC Accession 7000939)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CIRRUS and CUMULUS within a 1-mile radius of Ocean Weather Station K (4500N 01600W), M (6600N 00200E), and in transit....

  12. Optimizing the Betts-Miller-Janjic cumulus parameterization with Intel Many Integrated Core (MIC) architecture

    Science.gov (United States)

    Huang, Melin; Huang, Bormin; Huang, Allen H.-L.

    2015-10-01

    The schemes of cumulus parameterization are responsible for the sub-grid-scale effects of convective and/or shallow clouds, and intended to represent vertical fluxes due to unresolved updrafts and downdrafts and compensating motion outside the clouds. Some schemes additionally provide cloud and precipitation field tendencies in the convective column, and momentum tendencies due to convective transport of momentum. The schemes all provide the convective component of surface rainfall. Betts-Miller-Janjic (BMJ) is one scheme to fulfill such purposes in the weather research and forecast (WRF) model. National Centers for Environmental Prediction (NCEP) has tried to optimize the BMJ scheme for operational application. As there are no interactions among horizontal grid points, this scheme is very suitable for parallel computation. With the advantage of Intel Xeon Phi Many Integrated Core (MIC) architecture, efficient parallelization and vectorization essentials, it allows us to optimize the BMJ scheme. If compared to the original code respectively running on one CPU socket (eight cores) and on one CPU core with Intel Xeon E5-2670, the MIC-based optimization of this scheme running on Xeon Phi coprocessor 7120P improves the performance by 2.4x and 17.0x, respectively.

  13. Porcine cumulus and mural granulosa cells secrete cumulus expansion enabling factor (CEEF)

    Czech Academy of Sciences Publication Activity Database

    Procházka, Radek; Nagyová, Eva; Motlík, Jan

    1996-01-01

    Roč. 39, special issue (1996), s. 86 ISSN 0003-9438. [Satelite Symposium of the Central European Conference on Animal Reproduction /1./. Kühlungsborn, 22.09.1996-23.09.1996] R&D Projects: GA ČR GA505/93/2010; GA AV ČR IAA745401 Grant - others:GZ 45379/1-IV/3a/94 Source of funding: AT

  14. Cumulus parameterizations in chemical transport models

    Science.gov (United States)

    Mahowald, Natalie M.; Rasch, Philip J.; Prinn, Ronald G.

    1995-12-01

    Global three-dimensional chemical transport models (CTMs) are valuable tools for studying processes controlling the distribution of trace constituents in the atmosphere. A major uncertainty in these models is the subgrid-scale parametrization of transport by cumulus convection. This study seeks to define the range of behavior of moist convective schemes and point toward more reliable formulations for inclusion in chemical transport models. The emphasis is on deriving convective transport from meteorological data sets (such as those from the forecast centers) which do not routinely include convective mass fluxes. Seven moist convective parameterizations are compared in a column model to examine the sensitivity of the vertical profile of trace gases to the parameterization used in a global chemical transport model. The moist convective schemes examined are the Emanuel scheme [Emanuel, 1991], the Feichter-Crutzen scheme [Feichter and Crutzen, 1990], the inverse thermodynamic scheme (described in this paper), two versions of a scheme suggested by Hack [Hack, 1994], and two versions of a scheme suggested by Tiedtke (one following the formulation used in the ECMWF (European Centre for Medium-Range Weather Forecasting) and ECHAM3 (European Centre and Hamburg Max-Planck-Institut) models [Tiedtke, 1989], and one formulated as in the TM2 (Transport Model-2) model (M. Heimann, personal communication, 1992). These convective schemes vary in the closure used to derive the mass fluxes, as well as the cloud model formulation, giving a broad range of results. In addition, two boundary layer schemes are compared: a state-of-the-art nonlocal boundary layer scheme [Holtslag and Boville, 1993] and a simple adiabatic mixing scheme described in this paper. Three tests are used to compare the moist convective schemes against observations. Although the tests conducted here cannot conclusively show that one parameterization is better than the others, the tests are a good measure of the

  15. The effects of electron and proton radiation on GaSb infrared solar cells

    Science.gov (United States)

    Gruenbaum, P. E.; Avery, J. E.; Fraas, L. M.

    1991-01-01

    Gallium antimonide (GaSb) infrared solar cells were exposed to 1 MeV electrons and protons up to fluences of 1 times 10(exp 15) cm (-2) and 1 times 10(exp 12) cm (-2) respectively. In between exposures, current voltage and spectral response curves were taken. The GaSb cells were found to degrade slightly less than typical GaAs cells under electron irradiation, and calculations from spectral response curves showed that the damage coefficient for the minority carrier diffusion length was 3.5 times 10(exp 8). The cells degraded faster than GaAs cells under proton irradiation. However, researchers expect the top cell and coverglass to protect the GaSb cell from most damaging protons. Some annealing of proton damage was observed at low temperatures (80 to 160 C).

  16. Cumulus cell transcripts transit to the bovine oocyte in preparation for maturation

    DEFF Research Database (Denmark)

    Macaulay, Angus D.; Gilbert, Isabelle; Scantland, Sara

    2016-01-01

    So far, the characteristics of a good quality egg have been elusive, similar to the nature of the physiological, cellular, and molecular cues leading to its production both in vivo and in vitro. Current understanding highlights a strong and complex interdependence between the follicular cells and...

  17. Outward electron transfer by Saccharomyces cerevisiae monitored with a bi-cathodic microbial fuel cell-type activity sensor.

    Science.gov (United States)

    Ducommun, Raphaël; Favre, Marie-France; Carrard, Delphine; Fischer, Fabian

    2010-03-01

    A Janus head-like bi-cathodic microbial fuel cell was constructed to monitor the electron transfer from Saccharomyces cerevisiae to a woven carbon anode. The experiments were conducted during an ethanol cultivation of 170 g/l glucose in the presence and absence of yeast-peptone medium. First, using a basic fuel-cell type activity sensor, it was shown that yeast-peptone medium contains electroactive compounds. For this purpose, 1% solutions of soy peptone and yeast extract were subjected to oxidative conditions, using a microbial fuel cell set-up corresponding to a typical galvanic cell, consisting of culture medium in the anodic half-cell and 0.5 M K(3)Fe(CN)(6) in the cathodic half-cell. Second, using a bi-cathodic microbial fuel cell, it was shown that electrons were transferred from yeast cells to the carbon anode. The participation of electroactive compounds in the electron transport was separated as background current. This result was verified by applying medium-free conditions, where only glucose was fed, confirming that electrons are transferred from yeast cells to the woven carbon anode. Knowledge about the electron transfer through the cell membrane is of importance in amperometric online monitoring of yeast fermentations and for electricity production with microbial fuel cells. Copyright (c) 2009 John Wiley & Sons, Ltd.

  18. Macrophages and mast cells in dystrophic masseter muscle: a light and electron microscopic study

    DEFF Research Database (Denmark)

    Kirkeby, S; Mikkelsen, H

    1988-01-01

    Macrophages and mast cells in masseter muscle from normal and dystrophic mice were studied by light and electron microscopy. Acid phosphatase activity and FITC-dextran were used to identify and describe macrophages. Toluidine blue was used as a marker for mast cells. In dystrophic muscle, the num......Macrophages and mast cells in masseter muscle from normal and dystrophic mice were studied by light and electron microscopy. Acid phosphatase activity and FITC-dextran were used to identify and describe macrophages. Toluidine blue was used as a marker for mast cells. In dystrophic muscle...

  19. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring

    Science.gov (United States)

    2016-01-01

    Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR). The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers’ oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris. PMID:26928288

  20. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring.

    Directory of Open Access Journals (Sweden)

    Desislava Abadjieva

    Full Text Available Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP 15 and growth differentiation factor (GDF 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR. The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers' oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris.

  1. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring.

    Science.gov (United States)

    Abadjieva, Desislava; Kistanova, Elena

    2016-01-01

    Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR). The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers' oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris.

  2. Effects of MiR-375-BMPR2 as a Key Factor Downstream of BMP15/GDF9 on the Smad1/5/8 and Smad2/3 Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2018-03-01

    Full Text Available Background/Aims: Bone morphogenetic protein 15 (BMP15 and growth differentiation factor 9 (GDF9, which are secreted by oocytes, are important regulators of follicular growth and development and ovarian function. These two factors can regulate the proliferation and apoptosis of cumulus cells via modulation of the Smad signaling pathway. Studies have shown that BMP15 and GDF9 can affect the level of miR-375, whereas the target gene of miR-375 is BMPR2, the type II receptor of BMP15 and GDF9. However, whether or how the BMP15/ GDF9-miR-375-BMPR2 pathway affects the proliferation and apoptosis of bovine cumulus cells through regulation of the Smad signaling pathway remains unclear. Methods: In this study, cumulus cells were first obtained from cumulus-oocyte complexes (COCs. Appropriate concentrations of BMP15 and GDF9 were added during the in vitro culture process. Cell Counting Kit-8 (CCK-8 analyses and flow cytometry were used to determine the effects of BMP15/GDF9 on bovine cumulus cells proliferation and apoptosis. Subsequently, miR-375 mimics, miR-375 inhibitor and BMPR2 siRNA were synthesized and used for transfection experiments. Western Blot analysis was used to detect changes before and after transfection in the expression levels of the BMP15/GDF9 type I receptors ALK4, ALK5 and ALK6; the phosphorylation levels of Smad2/3 and Smad1/5/8, which are key signaling pathway proteins downstream of BMP15/GDF9; the expression levels of PTX3, HAS2 and PTGS2, which are key genes involved in cumulus cells proliferation; and Bcl2/Bax, which are genes involved in apoptosis. Results: The addition of 100 ng/mL BMP15 or 200 ng/mL GDF9 or the combined addition of 50 ng/mL BMP15 and 100 ng/mL GDF9 effectively inhibited bovine cumulus cell apoptosis and promoted cell proliferation. BMP15/GDF9 negatively regulated miR-375 expression and positively regulated BMPR2 expression. High levels of miR-375 and inhibition of BMPR2 resulted in increased expression of ALK

  3. Rapid assay for cell age response to radiation by electronic volume flow cell sorting

    International Nuclear Information System (INIS)

    Freyer, J.P.; Wilder, M.E.; Raju, M.R.

    1987-01-01

    A new technique is described for measuring cell survival as a function of cell cycle position using flow cytometric cell sorting on the basis of electronic volume signals. Sorting of cells into different cell age compartments is demonstrated for three different cell lines commonly used in radiobiological research. Using flow cytometric DNA content analysis and [ 3 H]thymidine autoradiography of the sorted cell populations, it is demonstrated that resolution of the age compartment separation is as good as or better than that reported for other cell synchronizing techniques. Variation in cell survival as a function of position in the cell cycle after a single dose of radiation as measured by volume cell sorting is similar to that determined by other cell synchrony techniques. Advantages of this method include: (1) no treatment of the cells is required, thus, this method is noncytotoxic; (2) no cell cycle progression is needed to obtain different cell age compartments; (3) the cell population can be held in complete growth medium at any desired temperature during sorting; (4) a complete radiation age - response assay can be plated in 2 h. Applications of this method are discussed, along with some technical limitations. (author)

  4. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells.

    Science.gov (United States)

    Koh, Ai Leen; Shachaf, Catherine M; Elchuri, Sailaja; Nolan, Garry P; Sinclair, Robert

    2008-12-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  5. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells

    International Nuclear Information System (INIS)

    Koh, Ai Leen; Shachaf, Catherine M.; Elchuri, Sailaja; Nolan, Garry P.; Sinclair, Robert

    2008-01-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  6. MOS current gain cells with electronically variable gain and constant bandwidth

    NARCIS (Netherlands)

    Klumperink, Eric A.M.; Seevinck, Evert

    1989-01-01

    Two MOS current gain cells are proposed that provide linear amplification of currents supplied by several linear MOS V-I converters. The gain is electronically variable by a voltage or a current and can be made insensitive to temperature and IC processing. The gain cells have a constant

  7. The 'grey area' between small cell and non-small cell lung carcinomas. Light and electron microscopy versus clinical data in 14 cases

    NARCIS (Netherlands)

    Mooi, W. J.; van Zandwijk, N.; Dingemans, K. P.; Koolen, M. G.; Wagenvoort, C. A.

    1986-01-01

    We studied 14 lung tumours which on light microscopy had posed difficulties on classification as either small cell or non-small cell carcinomas. The light and electron microscopical features were compared with patient follow-up data. Electron microscopy showed neuroendocrine granules in 12 cases,

  8. Diffraction-unlimited optical imaging of unstained living cells in liquid by electron beam scanning of luminescent environmental cells.

    Science.gov (United States)

    Miyazaki, Hideki T; Kasaya, Takeshi; Takemura, Taro; Hanagata, Nobutaka; Yasuda, Takeshi; Miyazaki, Hiroshi

    2013-11-18

    An environmental cell with a 50-nm-thick cathodoluminescent window was attached to a scanning electron microscope, and diffraction-unlimited near-field optical imaging of unstained living human lung epithelial cells in liquid was demonstrated. Electrons with energies as low as 0.8 - 1.2 kV are sufficiently blocked by the window without damaging the specimens, and form a sub-wavelength-sized illumination light source. A super-resolved optical image of the specimen adhered to the opposite window surface was acquired by a photomultiplier tube placed below. The cells after the observation were proved to stay alive. The image was formed by enhanced dipole radiation or energy transfer, and features as small as 62 nm were resolved.

  9. Dosimetry of laser-accelerated electron beams used for in vitro cell irradiation experiments

    International Nuclear Information System (INIS)

    Richter, C.; Kaluza, M.; Karsch, L.; Schlenvoigt, H.-P.; Schürer, M.; Sobiella, M.; Woithe, J.; Pawelke, J.

    2011-01-01

    The dosimetric characterization of laser-accelerated electrons applied for the worldwide first systematic radiobiological in vitro cell irradiation will be presented. The laser-accelerated electron beam at the JeTi laser system has been optimized, monitored and controlled in terms of dose homogeneity, stability and absolute dose delivery. A combination of different dosimetric components were used to provide both an online beam as well as dose monitoring and a precise absolute dosimetry. In detail, the electron beam was controlled and monitored by means of an ionization chamber and an in-house produced Faraday cup for a defined delivery of the prescribed dose. Moreover, the precise absolute dose delivered to each cell sample was determined by an radiochromic EBT film positioned in front of the cell sample. Furthermore, the energy spectrum of the laser-accelerated electron beam was determined. As presented in a previous work of the authors, also for laser-accelerated protons a precise dosimetric characterization was performed that enabled initial radiobiological cell irradiation experiments with laser-accelerated protons. Therefore, a precise dosimetric characterization, optimization and control of laser-accelerated and therefore ultra-short pulsed, intense particle beams for both electrons and protons is possible, allowing radiobiological experiments and meeting all necessary requirements like homogeneity, stability and precise dose delivery. In order to fulfill the much higher dosimetric requirements for clinical application, several improvements concerning, i.e., particle energy and spectral shaping as well as patient safety are necessary.

  10. Conditional Dispersive Readout of a CMOS Single-Electron Memory Cell

    Science.gov (United States)

    Schaal, S.; Barraud, S.; Morton, J. J. L.; Gonzalez-Zalba, M. F.

    2018-05-01

    Quantum computers require interfaces with classical electronics for efficient qubit control, measurement, and fast data processing. Fabricating the qubit and the classical control layer using the same technology is appealing because it will facilitate the integration process, improving feedback speeds and offering potential solutions to wiring and layout challenges. Integrating classical and quantum devices monolithically, using complementary metal-oxide-semiconductor (CMOS) processes, enables the processor to profit from the most mature industrial technology for the fabrication of large-scale circuits. We demonstrate a CMOS single-electron memory cell composed of a single quantum dot and a transistor that locks charge on the quantum-dot gate. The single-electron memory cell is conditionally read out by gate-based dispersive sensing using a lumped-element L C resonator. The control field-effect transistor (FET) and quantum dot are fabricated on the same chip using fully depleted silicon-on-insulator technology. We obtain a charge sensitivity of δ q =95 ×10-6e Hz-1 /2 when the quantum-dot readout is enabled by the control FET, comparable to results without the control FET. Additionally, we observe a single-electron retention time on the order of a second when storing a single-electron charge on the quantum dot at millikelvin temperatures. These results demonstrate first steps towards time-based multiplexing of gate-based dispersive readout in CMOS quantum devices opening the path for the development of an all-silicon quantum-classical processor.

  11. An electronic apparatus for early detection of changes in red cell ...

    African Journals Online (AJOL)

    1989-08-19

    Aug 19, 1989 ... An electronic apparatus was developed for anaesthetists to use to detect changes in red cell concentration during sur- gery. The mechanism is based on the relationship between the red cell content and the electrical conductivity of blood. In a pilot study of 170 blood samples, a correlation coefficient.

  12. Investigating the use of in situ liquid cell scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nguy, Amanda [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Engineering nanoparticles with desired shape-dependent properties is the key to many applications in nanotechnology. Although many synthetic procedures exist to produce anisotropic gold nanoparticles, the dynamics of growth are typically unknown or hypothetical. In the case of seed-mediated growth in the presence of DNA into anisotropic nanoparticles, it is not known exactly how DNA directs growth into specific morphologies. A series of preliminary experiments were carried out to contribute to the investigation of the possible mechanism of DNA-mediated growth of gold nanoprisms into gold nanostars using liquid cell scanning transmission electron microscopy (STEM). Imaging in the liquid phase was achieved through the use of a liquid cell platform and liquid cell holder that allow the sample to be contained within a “chip sandwich” between two electron transparent windows. Ex situ growth experiments were performed using Au-T30 NPrisms (30-base thymine oligonucleotide-coated gold nanoprisms) that are expected to grow into gold nanostars. Growth to form these nanostars were imaged using TEM (transmission electron microscopy) and liquid cell STEM (scanning transmission electron microscopy). An attempt to perform in situ growth experiments with the same Au-T30 nanoprisms revealed challenges in obtaining desired morphology results due to the environmental differences within the liquid cell compared to the ex situ environment. Different parameters in the experimental method were explored including fluid line set up, simultaneous and alternating reagent addition, and the effect of different liquid cell volumes to ensure adequate flow of reagents into the liquid cell. Lastly, the binding affinities were compared for T30 and A30 DNA incubated with gold nanoparticles using zeta potential measurements, absorption spectroscopy, and isothermal titration calorimetry (ITC). It was previously reported thymine bases have a lower binding affinity to gold surfaces than adenine

  13. An electronic apparatus for early detection of changes in red cell ...

    African Journals Online (AJOL)

    An electronic apparatus was developed for anaesthetists to use to detect changes in red cell concentration during surgery. The mechanism is based on the relationship between the red cell content and the electrical conductivity of blood. In a pilot study of 170 blood samples, a correlation coefficient of 0,9806 was obtained ...

  14. Theoretical study of electronic transfer current rate at dye-sensitized solar cells

    Science.gov (United States)

    AL-Agealy, Hadi J. M.; AlMaadhede, Taif Saad; Hassooni, Mohsin A.; Sadoon, Abbas K.; Ashweik, Ahmed M.; Mahdi, Hind Abdlmajeed; Ghadhban, Rawnaq Qays

    2018-05-01

    In this research, we present a theoretical study of electronic transfer kinetics rate in N719/TiO2 and N719/ZnO dye-sensitized solar cells (DSSC) systems using a simple model depending on the postulate of quantum mechanics theory. The evaluation of the electronic transition current rate in DSSC systems are function of many parameters such that; the reorientation transition energies ΛSe m D y e , the transition coupling parameter ℂT(0), potential exponential effect e-(E/C-EF ) kBT , unit cell volume VSem, and temperature T. Furthermore, the analysis of electronic transfer current rate in N719/TiO2 and N719/ZnO systems show that the rate upon dye-sensitization solar cell increases with increases of transition coupling parameter, decreasing potential that building at interface a results of different material in this devices and increasing with reorientation transition energy. On the other hand, we can find the electronic transfer behavior is dependent of the dye absorption spectrum and mainly depending on the reorientation of transition energy. The replacement of the solvents in both DSSC system caused increasing of current rates dramatically depending on polarity of solvent in subset devices. This change in current rate of electron transfer were attributed to much more available of recombination sites introduced by the solvents medium. The electronic transfer current dynamics are shown to occurs in N719/TiO2 system faster many time compare to ocuures at N719/ZnO system, this indicate that TiO2 a is a good and active material compare with ZnO to using in dye sensitized solar cell devices. In contrast, the large current rate in N719/TiO2 comparing to ZnO of N719/ZnO systems indicate that using TiO2 with N719 dye lead to increasing the efficiency of DSSC.

  15. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls

    Science.gov (United States)

    Sun, Yuliang; Juzenas, Kevin

    2017-01-01

    Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585

  16. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    Science.gov (United States)

    Boronat, Susanna; Domènech, Alba; Carmona, Mercè; García-Santamarina, Sarela; Bañó, M Carmen; Ayté, José; Hidalgo, Elena

    2017-06-01

    The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  17. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    Directory of Open Access Journals (Sweden)

    Susanna Boronat

    2017-06-01

    Full Text Available The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR. RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  18. Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Liu, Huan

    2011-07-15

    Lead sulfide colloidal quantum dot (CQD) solar cells with a solar power conversion efficiency of 5.6% are reported. The result is achieved through careful optimization of the titanium dioxide electrode that serves as the electron acceptor. Metal-ion-doped sol-gel-derived titanium dioxide electrodes produce a tunable-bandedge, well-passivated materials platform for CQD solar cell optimization. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of electron beam irradiation on pollen mother cells of gladiolus 'chaoji'

    International Nuclear Information System (INIS)

    Zhang Zhiwei; Wang Dan; Wen Fangping Zhang Xiaoxue

    2008-01-01

    In order to test the effects of various doses of electron beam on M1 generation pollen mother cells (PMC), the corm of gladiolus 'chaoji' was irradiated by electron beam with 3 MeV energy. Some abnormalities of meiosis of pollen mother cells were studied and the bands of protein subunit were analyzed by SDS-PAGE for the irradiated corm. The genetic damage at meiosis of gladiolus is observed, and the types of chromosomal aberrations are laggard chromosomes, chromosomal bridge, chromosome outside nucleus, unequal separation of chromosome, micronuclei and so on. Some trispores and paraspores are viewed at tetraspore period. The shape and size of the microspores vary in some treated materials, and most of microspores display little volume. The statistic of aberrance types and frequencies in PMCs show that aberrance types are chromosome outside nucleus and micronuclei mostly. The SDS-PAGE result shows that protein expression of M1 generation pollen is obviously changed by electron beam irradiation. Low dose of electron beam has obvious effects, and some special proteins subunit bands are found among varieties of irradiation dosage respectively. The protein bands are absent at the dose more than 160 Gy compared to low dose of electron beam. The results indicate that electron beam irradiation is an effective way for gladiolus breeding. (authors)

  20. Interstitial cells of Cajal and Auerbach's plexus. A scanning electron microscopical study of guinea-pig small intestine

    DEFF Research Database (Denmark)

    Jessen, Harry; Thuneberg, Lars

    1991-01-01

    Anatomy, interstitial cells of Cajal, myenteric plexus, small intestine, guinea-pig, scanning electron microscopy......Anatomy, interstitial cells of Cajal, myenteric plexus, small intestine, guinea-pig, scanning electron microscopy...

  1. IMIDAZOLE-BASED IONIC LIQUIDS FOR USE IN POLYMER ELECTROLYTE MEMBRANE FUEL CELLS: EFFECT OF ELECTRON-WITHDRAWING AND ELECTRON-DONATING SUBSTITUENTS

    Energy Technology Data Exchange (ETDEWEB)

    Chang, E.; Fu, Y.; Kerr, J.

    2009-01-01

    Current polymer electrolyte membrane fuel cells (PEMFCs) require humidifi cation for acceptable proton conductivity. Development of a novel polymer that is conductive without a water-based proton carrier is desirable for use in automobiles. Imidazole (Im) is a possible replacement for water as a proton solvent; Im can be tethered to the polymer structure by means of covalent bonds, thereby providing a solid state proton conducting membrane where the solvating groups do not leach out of the fuel cell. These covalent bonds can alter the electron availability of the Im molecule. This study investigates the effects of electron-withdrawing and electron-donating substituents on the conductivity of Im complexed with methanesulfonic acid (MSA) in the form of ionic liquids. Due to the changes in the electronegativity of nitrogen, it is expected that 2-phenylimidazole (2-PhIm, electron-withdrawing) will exhibit increased conductivity compared to Im, while 2-methylimidazole (2-MeIm, electron-donating) will exhibit decreased conductivity. Three sets of ionic liquids were prepared at defi ned molar ratios: Im-MSA, 2-PhIm-MSA, and 2-MeIm- MSA. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and 1H-NMR were used to characterize each complex. Impedance analysis was used to determine the conductivity of each complex. Both the 2-PhIm-MSA and 2-MeIm-MSA ionic liquids were found to be less conductive than the Im-MSA complex at base-rich compositions, but more conductive at acid-rich compositions. 1H-NMR data shows a downfi eld shift of the proton on nitrogen in 2-PhIm compared to Im, suggesting that other factors may diminish the electronic effects of the electron withdrawing group at base-rich compositions. Further studies examining these effects may well result in increased conductivity for Im-based complexes. Understanding the conductive properties of Im-derivatives due to electronic effects will help facilitate the development of a new electrolyte

  2. Fetuin and fetuin messenger RNA in granulosa cells of the rat ovary

    DEFF Research Database (Denmark)

    Høyer, Poul Erik; Terkelsen, O B; Grete Byskov, A

    2001-01-01

    during maturation of the oocyte. We demonstrated fetuin mRNA in the rat ovary by reverse transcriptase-polymerase chain reaction and localized it by in situ hybridization. Fetuin mRNA was present in all granulosa cells of growing and large follicles. Immunohistochemical analysis revealed that the fetuin...... protein was only present in some of the small, growing follicles. In large, healthy follicles, fetuin protein was confined to cumulus cells and granulosa cells bordering the antrum. Fetuin was present in atretic follicles, but the staining pattern differed from that of healthy follicles. The follicular...... antrum contained a substantial amount of fetuin, but whether granulosa cells secreted it or it originated in the ovarian blood supply could not be confirmed. We concluded that at least a portion of the fetuin is produced by granulosa cells of growing and large follicles, suggesting that fetuin may...

  3. Proposed suitable electron reflector layer materials for thin-film CuIn1-xGaxSe2 solar cells

    Science.gov (United States)

    Sharbati, Samaneh; Gharibshahian, Iman; Orouji, Ali A.

    2018-01-01

    This paper investigates the electrical properties of electron reflector layer to survey materials as an electron reflector (ER) for chalcopyrite CuInGaSe solar cells. The purpose is optimizing the conduction-band and valence-band offsets at ER layer/CIGS junction that can effectively reduce the electron recombination near the back contact. In this work, an initial device model based on an experimental solar cell is established, then the properties of a solar cell with electron reflector layer are physically analyzed. The electron reflector layer numerically applied to baseline model of thin-film CIGS cell fabricated by ZSW (efficiency = 20.3%). The improvement of efficiency is achievable by electron reflector layer materials with Eg > 1.3 eV and -0.3 AsS4 as well as CuIn1-xGaxSe (x > 0.5) are efficient electron reflector layer materials, so the potential improvement in efficiency obtained relative gain of 5%.

  4. Cloud Properties Simulated by a Single-Column Model. Part II: Evaluation of Cumulus Detrainment and Ice-phase Microphysics Using a Cloud Resolving Model

    Science.gov (United States)

    Luo, Yali; Krueger, Steven K.; Xu, Kuan-Man

    2005-01-01

    This paper is the second in a series in which kilometer-scale-resolving observations from the Atmospheric Radiation Measurement program and a cloud-resolving model (CRM) are used to evaluate the single-column model (SCM) version of the National Centers for Environmental Prediction Global Forecast System model. Part I demonstrated that kilometer-scale cirrus properties simulated by the SCM significantly differ from the cloud radar observations while the CRM simulation reproduced most of the cirrus properties as revealed by the observations. The present study describes an evaluation, through a comparison with the CRM, of the SCM's representation of detrainment from deep cumulus and ice-phase microphysics in an effort to better understand the findings of Part I. It is found that detrainment occurs too infrequently at a single level at a time in the SCM, although the detrainment rate averaged over the entire simulation period is somewhat comparable to that of the CRM simulation. Relatively too much detrained ice is sublimated when first detrained. Snow falls over too deep of a layer due to the assumption that snow source and sink terms exactly balance within one time step in the SCM. These characteristics in the SCM parameterizations may explain many of the differences in the cirrus properties between the SCM and the observations (or between the SCM and the CRM). A possible improvement for the SCM consists of the inclusion of multiple cumulus cloud types as in the original Arakawa-Schubert scheme, prognostically determining the stratiform cloud fraction and snow mixing ratio. This would allow better representation of the detrainment from deep convection, better coupling of the volume of detrained air with cloud fraction, and better representation of snow field.

  5. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells.

    Science.gov (United States)

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-09-15

    We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Cell wall and DNA cosegregation in Bacillus subtilis studied by electron microscope autoradiography

    International Nuclear Information System (INIS)

    Schlaeppi, J.M.; Schaefer, O.; Karamata, D.

    1985-01-01

    Cells of a Bacillus subtilis mutant deficient in both major autolytic enzyme activities were continuously labeled in either cell wall or DNA or both cell wall and DNA. After appropriate periods of chase in minimal as well as in rich medium, thin sections of cells were autoradiographed and examined by electron microscopy. The resolution of the method was adequate to distinguish labeled DNA units from cell wall units. The latter, which could be easily identified, were shown to segregate symmetrically, suggesting a zonal mode of new wall insertion. DNA units could also be clearly recognized despite a limited fragmentation; they segregated asymmetrically with respect to the nearest septum. Analysis of cells simultaneously labeled in cell wall and DNA provided clear visual evidence of their regular but asymmetrical cosegregation, confirming a previous report obtained by light microscope autoradiography. In addition to labeled wall units, electron microscopy of thin sections of aligned cells has revealed fibrillar networks of wall material which are frequently associated with the cell surface. Most likely, these structures correspond to wall sloughed off by the turnover mechanism but not yet degraded to filterable or acid-soluble components

  7. An overview of electron acceptors in microbial fuel cells

    DEFF Research Database (Denmark)

    Ucar, Deniz; Zhang, Yifeng; Angelidaki, Irini

    2017-01-01

    Microbial fuel cells (MFC) have recently received increasing attention due to their promising potential in sustainable wastewater treatment and contaminant removal. In general, contaminants can be removed either as an electron donor via microbial catalyzed oxidization at the anode or removed at t...... acceptors (e.g., nitrate, iron, copper, perchlorate) and mediators....

  8. Mapping boron in silicon solar cells using electron energy-loss spectroscopy

    DEFF Research Database (Denmark)

    in the energies of plasmon peaks in the low loss region [5]. We use these approaches to characterize both a thick n-p junction and the 10-nm-thick p-doped layer of a working solar cell. [1] U. Kroll, C. Bucher, S. Benagli, I. Schönbächler, J. Meier, A. Shah, J. Ballutaud, A. Howling, Ch. Hollenstein, A. Büchel, M......Amorphous silicon solar cells typically consist of stacked layers deposited on plastic or metallic substrates making sample preparation for transmission electron microscopy (TEM) difficult. The amorphous silicon layer - the active part of the solar cell - is sandwiched between 10-nm-thick n- and p...... resolution using TEM is highly challenging [3]. Recently, scanning TEM (STEM) combined with electron energy-loss spectroscopy (EELS) and spherical aberration-correction has allowed the direct detection of dopant concentration of 10^20cm-3 in 65-nm-wide silicon devices [4]. Here, we prepare TEM samples...

  9. Computer programs for unit-cell determination in electron diffraction experiments

    International Nuclear Information System (INIS)

    Li, X.Z.

    2005-01-01

    A set of computer programs for unit-cell determination from an electron diffraction tilt series and pattern indexing has been developed on the basis of several well-established algorithms. In this approach, a reduced direct primitive cell is first determined from experimental data, in the means time, the measurement errors of the tilt angles are checked and minimized. The derived primitive cell is then checked for possible higher lattice symmetry and transformed into a proper conventional cell. Finally a least-squares refinement procedure is adopted to generate optimum lattice parameters on the basis of the lengths of basic reflections in each diffraction pattern and the indices of these reflections. Examples are given to show the usage of the programs

  10. 3D Aerosol-Cloud Radiative Interaction Observed in Collocated MODIS and ASTER Images of Cumulus Cloud Fields

    Science.gov (United States)

    Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.

    2007-01-01

    3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.

  11. Conventional and 360 degree electron tomography of a micro-crystalline silicon solar cell

    DEFF Research Database (Denmark)

    Duchamp, Martial; Ramar, Amuthan; Kovács, András

    2011-01-01

    Bright-field (BF) and annular dark-field (ADF) electron tomography in the transmission electron microscope (TEM) are used to characterize elongated porous regions or cracks (simply referred to as cracks thereafter) in micro-crystalline silicon (μc-Si:H) solar cell. The limitations of inferring...

  12. Effect of GnRHa ovulation trigger dose on follicular fluid characteristics and granulosa cell gene expression profiles

    DEFF Research Database (Denmark)

    Vuong, Thi Ngoc Lan; Ho, M T; Ha, T Q

    2017-01-01

    in oocyte donors undergoing a single stimulation cycle at IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam, from August 2014 to March 2015. A total of 165 women aged 18-35 years with body mass index 1.25 ng/mL, and antral follicle count ≥6 were randomised to three...... granulosa cells were investigated in a subset of women from each group. RESULTS: Progesterone and oestradiol levels in FF did not differ significantly by trigger doses; findings were similar for 3βHSD, LHR and INHB-A gene expression in both cumulus and mural granulosa cells. CONCLUSIONS: In women co...

  13. Electrochemical Detection of Circadian Redox Rhythm in Cyanobacterial Cells via Extracellular Electron Transfer.

    Science.gov (United States)

    Nishio, Koichi; Pornpitra, Tunanunkul; Izawa, Seiichiro; Nishiwaki-Ohkawa, Taeko; Kato, Souichiro; Hashimoto, Kazuhito; Nakanishi, Shuji

    2015-06-01

    Recent research on cellular circadian rhythms suggests that the coupling of transcription-translation feedback loops and intracellular redox oscillations is essential for robust circadian timekeeping. For clarification of the molecular mechanism underlying the circadian rhythm, methods that allow for the dynamic and simultaneous detection of transcription/translation and redox oscillations in living cells are needed. Herein, we report that the cyanobacterial circadian redox rhythm can be electrochemically detected based on extracellular electron transfer (EET), a process in which intracellular electrons are exchanged with an extracellular electrode. As the EET-based method is non-destructive, concurrent detection with transcription/translation rhythm using bioluminescent reporter strains becomes possible. An EET pathway that electrochemically connected the intracellular region of cyanobacterial cells with an extracellular electrode was constructed via a newly synthesized electron mediator with cell membrane permeability. In the presence of the mediator, the open circuit potential of the culture medium exhibited temperature-compensated rhythm with approximately 24 h periodicity. Importantly, such circadian rhythm of the open circuit potential was not observed in the absence of the electron mediator, indicating that the EET process conveys the dynamic information regarding the intracellular redox state to the extracellular electrode. These findings represent the first direct demonstration of the intracellular circadian redox rhythm of cyanobacterial cells. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Electron transport limitation in P3HT:CdSe nanorods hybrid solar cells.

    Science.gov (United States)

    Lek, Jun Yan; Xing, Guichuan; Sum, Tze Chien; Lam, Yeng Ming

    2014-01-22

    Hybrid solar cells have the potential to be efficient solar-energy-harvesting devices that can combine the benefits of solution-processable organic materials and the extended absorption offered by inorganic materials. In this work, an understanding of the factors limiting the performance of hybrid solar cells is explored. Through photovoltaic-device characterization correlated with transient absorption spectroscopy measurements, it was found that the interfacial charge transfer between the organic (P3HT) and inorganic (CdSe nanorods) components is not the factor limiting the performance of these solar cells. The insulating original ligands retard the charge recombination between the charge-transfer states across the CdSe-P3HT interface, and this is actually beneficial for charge collection. These cells are, in fact, limited by the subsequent electron collection via CdSe nanoparticles to the electrodes. Hence, the design of a more continuous electron-transport pathway should greatly improve the performance of hybrid solar cells in the future.

  15. Influence of electron-donating polymer addition on the performance of polymer solar cells

    International Nuclear Information System (INIS)

    Kim, Youngkyoo; Shin, Minjung; Kim, Hwajeong; Ha, Youri; Ha, Chang-Sik

    2008-01-01

    Here we report the influence of electron-donating polymer addition on the performance of poly(3-hexylthiophene) (P3HT) : 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C 61 (PCBM) solar cells. Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) was chosen as the electron-donating polymer to improve the open circuit voltage (V OC ) due to its higher level of the highest occupied molecular orbital energy compared with P3HT. Results showed that the MDMO-PPV addition led to an improved V OC for ternary blend (P3HT : MDMO-PPV : PCBM) solar cells. In particular, after thermal annealing at 110 deg. C, the short circuit current density of ternary blend solar cells was greatly improved, close to that of comparative binary blend (P3HT : PCBM) solar cells.

  16. Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport

    Science.gov (United States)

    Velez, Juliana; Pan, Rongqing; Lee, Jason T.C.; Enciso, Leonardo; Suarez, Marta; Duque, Jorge Eduardo; Jaramillo, Daniel; Lopez, Catalina; Morales, Ludis; Bornmann, William; Konopleva, Marina; Krystal, Gerald; Andreeff, Michael; Samudio, Ismael

    2016-01-01

    Metformin displays antileukemic effects partly due to activation of AMPK and subsequent inhibition of mTOR signaling. Nevertheless, Metformin also inhibits mitochondrial electron transport at complex I in an AMPK-independent manner, Here we report that Metformin and rotenone inhibit mitochondrial electron transport and increase triglyceride levels in leukemia cell lines, suggesting impairment of fatty acid oxidation (FAO). We also report that, like other FAO inhibitors, both agents and the related biguanide, Phenformin, increase sensitivity to apoptosis induction by the bcl-2 inhibitor ABT-737 supporting the notion that electron transport antagonizes activation of the intrinsic apoptosis pathway in leukemia cells. Both biguanides and rotenone induce superoxide generation in leukemia cells, indicating that oxidative damage may sensitize toABT-737 induced apoptosis. In addition, we demonstrate that Metformin sensitizes leukemia cells to the oligomerization of Bak, suggesting that the observed synergy with ABT-737 is mediated, at least in part, by enhanced outer mitochondrial membrane permeabilization. Notably, Phenformin was at least 10-fold more potent than Metformin in abrogating electron transport and increasing sensitivity to ABT-737, suggesting that this agent may be better suited for targeting hematological malignancies. Taken together, our results suggest that inhibition of mitochondrial metabolism by Metformin or Phenformin is associated with increased leukemia cell susceptibility to induction of intrinsic apoptosis, and provide a rationale for clinical studies exploring the efficacy of combining biguanides with the orally bioavailable derivative of ABT-737, Venetoclax. PMID:27283492

  17. Evaluation of bovine (Bos indicus ovarian potential for in vitro embryo production in the Adamawa plateau (Cameroon

    Directory of Open Access Journals (Sweden)

    J. Kouamo

    2014-12-01

    Full Text Available An abattoir study was conducted to evaluate the ovarian potential of 201 local zebu cattle from Ngaoundere, Adamawa region (Cameroon for in vitro embryo production (IVEP. The ovaries were excised, submerged in normal saline solution (0.9% and transported to the laboratory for a detailed evaluation. Follicles on each ovary were counted, their diameters (Φ measured and were grouped into 3 categories: small (Φ 8 mm. Each ovary was then sliced into a petri dish; the oocytes were recovered in Dulbecco’s phosphate buffered saline, examined under a stereoscope (x10 and graded into four groups based on the morphology of cumulus oophorus cells and cytoplasmic changes of the oocytes. Grade I (GI: oocytes with more than 4 layers of bunch of compact cumulus cells mass with evenly granulated cytoplasm; grade II (GII: oocyte with at least 2-4 layers of compact cumulus cell mass with evenly granulated cytoplasm; grade III (GIII: oocyte with at least one layer of compact cumulus cell mass with evenly granulated cytoplasm; grade IV (GIV: denuded oocyte with no cumulus cells or incomplete layer of cumulus cell or expanded cells and having dark or unevenly granulated cytoplasm. The effects of both ovarian (ovarian localization, corpus luteum, size and weight of ovary and non-ovarian factors (breed, age, body condition score (BCS and pregnancy status of cow on the follicular population and oocyte recovery rate were determined. There were an average of 16.75±0.83 follicles per ovary. The small, medium and large follicles were 8.39±0.60, 8.14±0.43 and 0.21±0.02 respectively. Oocyte recovery was 10.97±0.43 per ovary (65%. Oocytes graded I, II, III and IV were 3.53±0.19 (32.21%, 2.72±0.15 (24.82%, 2.24±0.15 (20.43% and 2.47±0.20 (22.54% respectively. The oocyte quality index was 2.26. Younger non pregnant cows having BCS of 3 and large ovaries presented higher number of follicles and oocyte quality (P < 0.05 compared with other animals. Oocytes with

  18. Electron Debye scale Kelvin-Helmholtz instability: Electrostatic particle-in-cell simulations

    International Nuclear Information System (INIS)

    Lee, Sang-Yun; Lee, Ensang; Kim, Khan-Hyuk; Lee, Dong-Hun; Seon, Jongho; Jin, Ho

    2015-01-01

    In this paper, we investigated the electron Debye scale Kelvin-Helmholtz (KH) instability using two-dimensional electrostatic particle-in-cell simulations. We introduced a velocity shear layer with a thickness comparable to the electron Debye length and examined the generation of the KH instability. The KH instability occurs in a similar manner as observed in the KH instabilities in fluid or ion scales producing surface waves and rolled-up vortices. The strength and growth rate of the electron Debye scale KH instability is affected by the structure of the velocity shear layer. The strength depends on the magnitude of the velocity and the growth rate on the velocity gradient of the shear layer. However, the development of the electron Debye scale KH instability is mainly determined by the electric field generated by charge separation. Significant mixing of electrons occurs across the shear layer, and a fraction of electrons can penetrate deeply into the opposite side fairly far from the vortices across the shear layer

  19. Passive direct methanol fuel cells for portable electronic devices

    International Nuclear Information System (INIS)

    Achmad, F.; Kamarudin, S.K.; Daud, W.R.W.; Majlan, E.H.

    2011-01-01

    Due to the increasing demand for electricity, clean, renewable energy resources must be developed. Thus, the objective of the present study was to develop a passive direct methanol fuel cell (DMFC) for portable electronic devices. The power output of six dual DMFCs connected in series with an active area of 4 cm 2 was approximately 600 mW, and the power density of the DMFCs was 25 mW cm -2 . The DMFCs were evaluated as a power source for mobile phone chargers and media players. The results indicated that the open circuit voltage of the DMFC was between 6.0 V and 6.5 V, and the voltage under operating conditions was 4.0 V. The fuel cell was tested on a variety of cell phone chargers, media players and PDAs. The cost of energy consumption by the proposed DMFC was estimated to be USD 20 W -1 , and the cost of methanol is USD 4 kW h. Alternatively, the local conventional electricity tariff is USD 2 kW h. However, for the large-scale production of electronic devices, the cost of methanol will be significantly lower. Moreover, the electricity tariff is expected to increase due to the constraints of fossil fuel resources and pollution. As a result, DMFCs will become competitive with conventional power sources.

  20. Highly Efficient Flexible Quantum Dot Solar Cells with Improved Electron Extraction Using MgZnO Nanocrystals.

    Science.gov (United States)

    Zhang, Xiaoliang; Santra, Pralay Kanti; Tian, Lei; Johansson, Malin B; Rensmo, Håkan; Johansson, Erik M J

    2017-08-22

    Colloidal quantum dot (CQD) solar cells have high potential for realizing an efficient and lightweight energy supply for flexible or wearable electronic devices. To achieve highly efficient and flexible CQD solar cells, the electron transport layer (ETL), extracting electrons from the CQD solid layer, needs to be processed at a low-temperature and should also suppress interfacial recombination. Herein, a highly stable MgZnO nanocrystal (MZO-NC) layer is reported for efficient flexible PbS CQD solar cells. Solar cells fabricated with MZO-NC ETL give a high power conversion efficiency (PCE) of 10.4% and 9.4%, on glass and flexible plastic substrates, respectively. The reported flexible CQD solar cell has the record efficiency to date of flexible CQD solar cells. Detailed theoretical simulations and extensive characterizations reveal that the MZO-NCs significantly enhance charge extraction from CQD solids and diminish the charge accumulation at the ETL/CQD interface, suppressing charge interfacial recombination. These important results suggest that the low-temperature processed MZO-NCs are very promising for use in efficient flexible solar cells or other flexible optoelectronic devices.

  1. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility (open-quotes OHBISclose quotes, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility

  2. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Shimakawa, S.; Akiba, M.; Kawamura, H.

    1996-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop plasma facing components which can resist these. We have established electron beam heat facility ('OHBIS', Oarai hot-cell electron beam irradiating system) at a hot cell in JMTR (Japan materials testing reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50 kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30 kV (constant) and 1.7 A, respectively. The loading time of the electron beam is more than 0.1 ms. The shape of vacuum vessel is cylindrical, and the main dimensions are 500 mm in inside diameter, 1000 mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for the thermal shock test has been established in a hot cell. The performance of the electron beam is being evaluated at this time. In the future, the equipment for conducting static heat loadings will be incorporated into the facility. (orig.)

  3. Extremely thin layer plastification for focused-ion beam scanning electron microscopy: an improved method to study cell surfaces and organelles of cultured cells.

    Science.gov (United States)

    VAN Donselaar, E G; Dorresteijn, B; Popov-Čeleketić, D; VAN DE Wetering, W J; Verrips, T C; Boekhout, T; Schneijdenberg, C T W M; Xenaki, A T; VAN DER Krift, T P; Müller, W H

    2018-03-25

    Since the recent boost in the usage of electron microscopy in life-science research, there is a great need for new methods. Recently minimal resin embedding methods have been successfully introduced in the sample preparation for focused-ion beam scanning electron microscopy (FIB-SEM). In these methods several possibilities are given to remove as much resin as possible from the surface of cultured cells or multicellular organisms. Here we introduce an alternative way in the minimal resin embedding method to remove excess of resin from two widely different cell types by the use of Mascotte filter paper. Our goal in correlative light and electron microscopic studies of immunogold-labelled breast cancer SKBR3 cells was to visualise gold-labelled HER2 plasma membrane proteins as well as the intracellular structures of flat and round cells. We found a significant difference (p flat cell contained 2.46 ± 1.98 gold particles, and a round cell 5.66 ± 2.92 gold particles. Moreover, there was a clear difference in the subcellular organisation of these two cells. The round SKBR3 cell contained many organelles, such as mitochondria, Golgi and endoplasmic reticulum, when compared with flat SKBR3 cells. Our next goal was to visualise crosswall associated organelles, septal pore caps, of Rhizoctonia solani fungal cells by the combined use of a heavy metal staining and our extremely thin layer plastification (ETLP) method. At low magnifications this resulted into easily finding septa which appeared as bright crosswalls in the back-scattered electron mode in the scanning electron microscope. Then, a septum was selected for FIB-SEM. Cross-sectioned views clearly revealed the perforate septal pore cap of R. solani next to other structures, such as mitochondria, endoplasmic reticulum, lipid bodies, dolipore septum, and the pore channel. As the ETLP method was applied on two widely different cell types, the use of the ETLP method will be beneficial to correlative studies of other cell

  4. Realization of an Electronic Load for Testing Low Power PEM Fuel Cells

    Directory of Open Access Journals (Sweden)

    Djordje Šaponjić

    2011-06-01

    Full Text Available A realized electronic load system intended for testing and characterization of hydrogen fuel sells is described. The system is based on microcontroller PIC16F877 by applying the concept of virtual instrumentation. The accomplished accuracy of the developed electronic system allows performing efficiently investigations of the electro-chemical phenomena involved in the process of designing hydrogen fuel cells.

  5. Optical and electrical properties of electron-irradiated Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Y.; Warasawa, M. [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Takakura, K. [Department of Information, Communication and Electrical Engineering, Kumamoto National College of Technology, 2659-2 Suya, Koshi, Kumamoto 861-1102 (Japan); Kimura, S. [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Chichibu, S.F. [CANTech, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Ohyama, H. [Department of Information, Communication and Electrical Engineering, Kumamoto National College of Technology, 2659-2 Suya, Koshi, Kumamoto 861-1102 (Japan); Sugiyama, M., E-mail: mutsumi@rs.noda.tus.ac.jp [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan)

    2011-08-31

    The optical and electrical properties of electron-irradiated Cu(In,Ga)Se{sub 2} (CIGS) solar cells and the thin films that composed the CIGS solar cell structure were investigated. The transmittance of indium tin oxide (ITO), ZnO:Al, ZnO:Ga, undoped ZnO, and CdS thin films did not change for a fluence of up to 1.5 x 10{sup 18} cm{sup -2}. However, the resistivity of ZnO:Al and ZnO:Ga, which are generally used as window layers for CIGS solar cells, increased with increasing irradiation fluence. For CIGS thin films, the photoluminescence peak intensity due to Cu-related point defects, which do not significantly affect solar cell performance, increased with increasing electron irradiation. In CIGS solar cells, decreasing J{sub SC} and increasing R{sub s} reflected the influence of irradiated ZnO:Al, and decreasing V{sub OC} and increasing R{sub sh} mainly tended to reflect the pn-interface properties. These results may indicate that the surface ZnO:Al thin film and several heterojunctions tend to degrade easily by electron irradiation as compared with the bulk of semiconductor-composed solar cells.

  6. 75 FR 64248 - Approval for Manufacturing Authority Foreign-Trade Zone 196 ATC Logistics & Electronics (Cell...

    Science.gov (United States)

    2010-10-19

    ... Authority Foreign-Trade Zone 196 ATC Logistics & Electronics (Cell Phone Kitting) Fort Worth, TX Pursuant to... Foreign-Trade Zones Board (the Board) adopts the following Order: Whereas, ATC Logistics & Electronics... Logistics & Electronics, as described in the application and Federal Register notice, is approved, subject...

  7. The effects of platelet lysate on maturation, fertilization and embryo development of NMRI mouse oocytes at germinal vesicle stage.

    Science.gov (United States)

    Pazoki, Hassan; Eimani, Hussein; Farokhi, Farah; Shahverdi, Abdol-Hossein; Tahaei, Leila Sadat

    2016-04-01

    Improving in vitro maturation could increase the rate of pregnancy from oocytes matured in vitro. Consequently, patients will be prevented from using gonadotropin with its related side effects. In this study, the maturation medium was enriched by platelet lysate (PL), then maturation and subsequent developments were monitored. Oocytes at germinal vesicle stage with cumulus cells (cumulus-oocyte complex) and without cumulus cells (denuded oocytes) were obtained from mature female mice. The maturation medium was enriched by 5 and 10 % PL and 5 % PL + 5 % fetal bovine serum (FBS) as experimental groups; the control groups' media consisted of 5 and 10 % FBS. After 18 h, the matured oocytes were collected and, after fertilization, subsequent development was monitored. The rates of maturation, fertilization and 2-cell embryo development for the denuded oocyte groups in experimental media 5 % PL and 5 % PL + 5 % FBS were significantly higher than those of the control groups ( P platelet lysate could improve the maturation rate in the absence of granulosa cells compared to media with FBS. This extract also had positive effects on fertilization and embryo development.

  8. Copolymer semiconductors comprising thiazolothiazole or benzobisthiazole, or benzobisoxazole electron acceptor subunits, and electron donor subunits, and their uses in transistors and solar cells

    Science.gov (United States)

    Jenekhe, Samson A; Subramaniyan, Selvam; Ahmed, Eilaf; Xin, Hao; Kim, Felix Sunjoo

    2014-10-28

    The inventions disclosed, described, and/or claimed herein relate to copolymers comprising copolymers comprising electron accepting A subunits that comprise thiazolothiazole, benzobisthiazole, or benzobisoxazoles rings, and electron donating subunits that comprise certain heterocyclic groups. The copolymers are useful for manufacturing organic electronic devices, including transistors and solar cells. The invention also relates to certain synthetic precursors of the copolymers. Methods for making the copolymers and the derivative electronic devices are also described.

  9. EPR and transient capacitance studies on electron-irradiated silicon solar cells

    Science.gov (United States)

    Lee, Y. H.; Cheng, L. J.; Mooney, P. M.; Corbett, J. W.

    1977-01-01

    One and two ohm-cm solar cells irradiated with 1 MeV electrons at 30 C were studied using both EPR and transient capacitance techniques. In 2 ohm-cm cells, Si-G6 and Si-G15 EPR spectra and majority carrier trapping levels at (E sub V + 0.23) eV and (E sub V + 0.38) eV were observed, each of which corresponded to the divacancy and the carbon-oxygen-vacancy complex, respectively. In addition, a boron-associated defect with a minority carrier trapping level at (E sub C -0.27) eV was observed. In 1 ohm-cm cells, the G15 spectrum and majority carrier trap at (E sub V + 0.38) eV were absent and an isotropic EPR line appeared at g = 1.9988 (+ or - 0.0003); additionally, a majority carrier trapping center at (E sub V + 0.32) eV, was found which could be associated with impurity lithium. The formation mechanisms of these defects are discussed according to isochronal annealing data in electron-irradiated p-type silicon.

  10. Cell lineage analysis of the mammalian female germline.

    Directory of Open Access Journals (Sweden)

    Yitzhak Reizel

    Full Text Available Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote. We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development.

  11. Correlations for damage in diffused-junction InP solar cells induced by electron and proton irradiation

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Takamoto, T.; Taylor, S.J.; Walters, R.J.; Summers, G.P.; Flood, D.J.; Ohmori, M.

    1997-01-01

    The damage to diffused-junction n + -p InP solar cells induced by electron and proton irradiations over a wide range of energy from 0.5 to 3 MeV and 0.015 to 20 MeV, respectively, has been examined. The experimental electron and proton damage coefficients have been analyzed in terms of displacement damage dose, which is the product of the particle fluence and the calculated nonionizing energy loss [G. P. Summers, E. A. Burke, R. Shapiro, S. R. Messenger, and R. J. Walters, IEEE Trans. Nucl. Sci. 40, 1300 (1993).] Degradation of InP cells due to irradiation with electrons and protons with energies of more than 0.5 MeV show a single curve as a function of displacement damage dose. Based on the deep-level transient spectroscopy analysis, damage equivalence between electron and proton irradiation is discussed. InP solar cells are confirmed to be substantially more radiation resistant than Si and GaAs-on-Ge cells. copyright 1997 American Institute of Physics

  12. PRODUCTION OF EMBBRYONIC STEM CELLS FROM INNER CELL MASS OF BLASTOCYST ISOLATED BY ENZYMATIC AND IMMUNOSURGERY METHODS

    Directory of Open Access Journals (Sweden)

    Thomas Mata Hine

    2008-03-01

    Full Text Available The objective of the research is determining the ICM isolation method to produce ESC. Blastocyst stage of DDy mice embryos were used in this study. Zona pellucida of blastocysts were removed by 0.25% pronase, the ICM isolation were done by enzimatic or immunosurgery method, and then they were cultured in DMEM-high glucose supplemented with mercaptoethanol, gentamycin, fetal bovine serum, and cumulus cells as feeder layer. The result of the research indicated that immunosurgery method yielding attachment rate and number ESC colony 93.85% and 43.08%, respectively, higher (P<0.05 than enzimatic method that weree 79.63% and 18.52%, respectively, but the viability of ICM cells were equal (P >0.05 that are 93.59% in enzymatic method and 98.56% in immunosurgery method. This research concluded that immunosurgery more effective method for isolation of ICM and ESC production than enzymatic method.

  13. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope.

    Science.gov (United States)

    Bäcke, Olof; Lindqvist, Camilla; de Zerio Mendaza, Amaia Diaz; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R; Müller, Christian; Kristiansen, Per Magnus; Olsson, Eva

    2017-05-01

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV-vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000kGy. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Enhanced Performance of Dye-Sensitized Solar Cells with Nanostructure Graphene Electron Transfer Layer

    Directory of Open Access Journals (Sweden)

    Chih-Hung Hsu

    2014-01-01

    Full Text Available The utilization of nanostructure graphene thin films as electron transfer layer in dye-sensitized solar cells (DSSCs was demonstrated. The effect of a nanostructure graphene thin film in DSSC structure was examined. The nanostructure graphene thin films provides a great electron transfer channel for the photogenerated electrons from TiO2 to indium tin oxide (ITO glass. Obvious improvements in short-circuit current density of the DSSCs were observed by using the graphene electron transport layer modified photoelectrode. The graphene electron transport layer reduces effectively the back reaction in the interface between the ITO transparent conductive film and the electrolyte in the DSSC.

  15. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    Science.gov (United States)

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.

  16. Quantitative analysis of bone morphogenetic protein 15 (BMP15 and growth differentiation factor 9 (GDF9 gene expression in calf and adult bovine ovaries

    Directory of Open Access Journals (Sweden)

    Hayashi Ken-go

    2011-03-01

    Full Text Available Abstract Background It has been reported that calf oocytes are less developmentally competent than oocytes obtained from adult cows. Bone morphogenetic protein 15 (BMP15 and growth and differentiation factor 9 (GDF9 play critical roles in folliculogenesis, follicular development and ovulation in mammalian ovaries. In the present study, we attempted to compare the expression patterns of BMP15 and GDF9 in the cells of calf and cow ovaries to determine a relationship between the level of these genes and the low developmental competence of calf oocytes. Methods Bovine tissues were collected from 9-11 months-old calves and from 4-6 years-old cows. We characterized the gene expression of BMP15 and GDF9 in calf and adult bovine oocytes and cumulus cells using quantitative real-time reverse transcriptase polymerase chain reaction (QPCR and in situ hybridization. Immunohistochemical analysis was also performed. Results The expression of BMP15 and GDF9 in cumulus cells of adult ovaries was significantly higher than that in calf ovaries, as revealed by QPCR. GDF9 expression in the oocytes of calf ovaries was significantly higher than in those of the adult ovaries. In contrast, BMP15 expression in the oocytes of calf and adult ovaries was not significantly different. The localization of gene expression and protein were ascertained by histochemistry. Conclusions Our result showed for the first time BMP15 and GDF9 expression in bovine cumulus cells. BMP15 and GDF9 mRNA expression in oocytes and cumulus cells was different in calves and cows.

  17. Degradation of Cu(In, Ga)Se{sub 2} thin-film solar cells due to the ionization effect of low-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Shirou, E-mail: kawakita.shirou@jaxa.jp [Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505 (Japan); Imaizumi, Mitsuru [Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505 (Japan); Ishizuka, Shogo; Shibata, Hajime; Niki, Shigeru [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Okuda, Shuichi [Osaka Prefecture University (OPU), Sakai, Osaka 599-8570 (Japan); Kusawake, Hiroaki [Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505 (Japan)

    2015-05-01

    Cu (In, Ga)Se{sub 2} (CIGS) solar cells were irradiated with 100 keV electrons to reveal the characteristics of created radiation defects. 100 keV electrons cannot produce any displacement defects in CIGS. Low-fluence electrons improve the electrical performance of the CIGS solar cells due to the change in the conductive type of donor to acceptor in a metastable defect, which is equivalent to the light-soaking effect. However, high fluence electrons cause the cell performance to decline. From analysis based on changes in carrier density and electroluminescence, defects causing the decline in performance include donor- and non-radiative types. In addition, red-on-bias experiments showed an increase in III{sub Cu} defects due to electron irradiation. Based on these results, the degradation in the electrical performance of the CIGS solar cells irradiated with high electron fluence would be attributable to a change in the conductive type of III{sub Cu} defects. - Highlights: • Cu(In,Ga)Se2 Solar cells were irradiated with 100 and 250 keV electrons at low temperature. • These electrons degraded the electrical performance of Cu(In,Ga)Se2 sola cells. • The electrons induced ⅢCu defects in Cu(In,Ga)Se2.

  18. Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Bäcke, Olof, E-mail: obacke@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Lindqvist, Camilla; Diaz de Zerio Mendaza, Amaia [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Gustafsson, Stefan [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden); Wang, Ergang; Andersson, Mats R.; Müller, Christian [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg (Sweden); Kristiansen, Per Magnus [Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Science and Arts Northwestern Switzerland, 5210 Windisch (Switzerland); Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen (Switzerland); Olsson, Eva, E-mail: eva.olsson@chalmers.se [Department of Applied Physics, Chalmers University of Technology, 41296 Göteborg (Sweden)

    2017-05-15

    We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope. In areas of the film that exposed to the electron beam the nanostructure of the film remained stable, while the nanostructure in areas not exposed to the electron beam underwent large phase separation and nucleation of fullerene crystals. UV–vis spectroscopy shows that the polymer:fullerene films are stable for electron doses up to 2000 kGy. - Highlights: • Thermal stability of a polymer: fullerne blend is increased using electron irradiation. • Using in-situ transmission electron microscopy the nanostructure is studied. • Electron irradiation stops phase separation between the polymer and fullerene. • Electron irradiation quenches the formation and nucleation of fullerene crystals.

  19. Molecular Understanding of Fullerene - Electron Donor Interactions in Organic Solar Cells

    KAUST Repository

    Ryno, Sean

    2016-09-13

    Organic solar cells hold promise of providing low-cost, renewable power generation, with current devices providing up to 13% power conversion efficiency. The rational design of more performant systems requires an in-depth understanding of the interactions between the electron donating and electron accepting materials within the active layers of these devices. Here, we explore works that give insight into the intermolecular interactions between electron donors and electron acceptors, and the impact of molecular orientations and environment on these interactions. We highlight, from a theoretical standpoint, the effects of intermolecular interactions on the stability of charge carriers at the donor/acceptor interface and in the bulk and how these interactions influence the nature of the charge transfer states as wells as the charge separation and charge transport processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Effect of Lysophosphatidic Acid during In Vitro Maturation of Bovine Oocytes: Embryonic Development and mRNA Abundances of Genes Involved in Apoptosis and Oocyte Competence

    Directory of Open Access Journals (Sweden)

    Dorota Boruszewska

    2014-01-01

    Full Text Available In the present study we examined whether LPA can be synthesized and act during in vitro maturation of bovine cumulus oocyte complexes (COCs. We found transcription of genes coding for enzymes of LPA synthesis pathway (ATX and PLA2 and of LPA receptors (LPAR 1–4 in bovine oocytes and cumulus cells, following in vitro maturation. COCs were matured in vitro in presence or absence of LPA (10−5 M for 24 h. Supplementation of maturation medium with LPA increased mRNA abundance of FST and GDF9 in oocytes and decreased mRNA abundance of CTSs in cumulus cells. Additionally, oocytes stimulated with LPA had higher transcription levels of BCL2 and lower transcription levels of BAX resulting in the significantly lower BAX/BCL2 ratio. Blastocyst rates on day 7 were similar in the control and the LPA-stimulated COCs. Our study demonstrates for the first time that bovine COCs are a potential source and target of LPA action. We postulate that LPA exerts an autocrine and/or paracrine signaling, through several LPARs, between the oocyte and cumulus cells. LPA supplementation of maturation medium improves COC quality, and although this was not translated into an enhanced in vitro development until the blastocyst stage, improved oocyte competence may be relevant for subsequent in vivo survival.

  1. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by Scanning Electron Microscopy

    NARCIS (Netherlands)

    Hartsuiker, Liesbeth; van Es, Peter; Petersen, Wilhelmina; van Leeuwen, Ton; Terstappen, Leonardus Wendelinus Mathias Marie; Otto, Cornelis

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  2. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by scanning electron microscopy

    NARCIS (Netherlands)

    Hartsuiker, L.; van Es, P.; Petersen, W.; van Leeuwen, T. G.; Terstappen, L. W. M. M.; Otto, C.

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  3. Particle-in-cell simulations of plasma accelerators and electron-neutral collisions

    Directory of Open Access Journals (Sweden)

    David L. Bruhwiler

    2001-10-01

    Full Text Available We present 2D simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented particle-in-cell code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low \\(∼10^{16} W/cm^{2}\\ and high \\(∼10^{18} W/cm^{2}\\ peak intensity laser pulses are conducted in slab geometry, showing agreement with theory and fluid simulations. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications to XOOPIC required by this work, and summarize the issues relevant to modeling relativistic electron-neutral collisions in a particle-in-cell code.

  4. The Route to Raindrop Formation in a Shallow Cumulus Cloud Simulated by a Lagrangian Cloud Model

    Science.gov (United States)

    Noh, Yign; Hoffmann, Fabian; Raasch, Siegfried

    2017-11-01

    The mechanism of raindrop formation in a shallow cumulus cloud is investigated using a Lagrangian cloud model (LCM). The analysis is focused on how and under which conditions a cloud droplet grows to a raindrop by tracking the history of individual Lagrangian droplets. It is found that the rapid collisional growth, leading to raindrop formation, is triggered when single droplets with a radius of 20 μm appear in the region near the cloud top, characterized by a large liquid water content, strong turbulence, large mean droplet size, a broad drop size distribution (DSD), and high supersaturations. Raindrop formation easily occurs when turbulence-induced collision enhancement(TICE) is considered, with or without any extra broadening of the DSD by another mechanism (such as entrainment and mixing). In contrast, when TICE is not considered, raindrop formation is severely delayed if no other broadening mechanism is active. The reason leading to the difference is clarified by the additional analysis of idealized box-simulations of the collisional growth process for different DSDs in varied turbulent environments. It is found that TICE does not accelerate the timing of the raindrop formation for individual droplets, but it enhances the collisional growth rate significantly afterward. KMA R & D Program (Korea), DFG (Germany).

  5. The cell agglutination agent, phytohemagglutinin-L, improves the efficiency of somatic nuclear transfer cloning in cattle (Bos taurus).

    Science.gov (United States)

    Du, Fuliang; Shen, Perng-Chih; Xu, Jie; Sung, Li-Ying; Jeong, B-Seon; Lucky Nedambale, Tshimangadzo; Riesen, John; Cindy Tian, X; Cheng, Winston T K; Lee, Shan-Nan; Yang, Xiangzhong

    2006-02-01

    One of the several factors that contribute to the low efficiency of mammalian somatic cloning is poor fusion between the small somatic donor cell and the large recipient oocyte. This study was designed to test phytohemagglutinin (PHA) agglutination activity on fusion rate, and subsequent developmental potential of cloned bovine embryos. The toxicity of PHA was established by examining its effects on the development of parthenogenetic bovine oocytes treated with different doses (Experiment 1), and for different durations (Experiment 2). The effective dose and duration of PHA treatment (150 microg/mL, 20 min incubation) was selected and used to compare membrane fusion efficiency and embryo development following somatic cell nuclear transfer (Experiment 3). Cloning with somatic donor fibroblasts versus cumulus cells was also compared, both with and without PHA treatment (150 microg/mL, 20 min). Fusion rate of nuclear donor fibroblasts, after phytohemagglutinin treatment, was increased from 33 to 61% (P cell nuclear donors. The nuclear transfer (NT) efficiency per oocyte used was improved following PHA treatment, for both fibroblast (13% versus 22%) as well as cumulus cells (17% versus 34%; P cloned embryos, both with and without PHA treatment, were subjected to vitrification and embryo transfer testing, and resulted in similar survival (approximately 90% hatching) and pregnancy rates (17-25%). Three calves were born following vitrification and embryo transfer of these embryos; two from the PHA-treated group, and one from non-PHA control group. We concluded that PHA treatment significantly improved the fusion efficiency of somatic NT in cattle, and therefore, increased the development of cloned blastocysts. Furthermore, within a determined range of dose and duration, PHA had no detrimental effect on embryo survival post-vitrification, nor on pregnancy or calving rates following embryo transfer.

  6. Direct electron transfer based enzymatic fuel cells

    International Nuclear Information System (INIS)

    Falk, Magnus; Blum, Zoltan; Shleev, Sergey

    2012-01-01

    In this mini-review we briefly describe some historical developments made in the field of enzymatic fuel cells (FCs), discussing important design considerations taken when constructing mediator-, cofactor-, and membrane-less biological FCs (BFCs). Since the topic is rather extensive, only BFCs utilizing direct electron transfer (DET) reactions on both the anodic and cathodic sides are considered. Moreover, the performance of mostly glucose/oxygen biodevices is analyzed and compared. We also present some unpublished results on mediator-, cofactor-, and membrane-less glucose/oxygen BFCs recently designed in our group and tested in different human physiological fluids, such as blood, plasma, saliva, and tears. Finally, further perspectives for BFC applications are highlighted.

  7. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells

    Directory of Open Access Journals (Sweden)

    Paolo Bollella

    2018-04-01

    Full Text Available Dehydrogenase based bioelectrocatalysis has been increasingly exploited in recent years in order to develop new bioelectrochemical devices, such as biosensors and biofuel cells, with improved performances. In some cases, dehydrogeases are able to directly exchange electrons with an appropriately designed electrode surface, without the need for an added redox mediator, allowing bioelectrocatalysis based on a direct electron transfer process. In this review we briefly describe the electron transfer mechanism of dehydrogenase enzymes and some of the characteristics required for bioelectrocatalysis reactions via a direct electron transfer mechanism. Special attention is given to cellobiose dehydrogenase and fructose dehydrogenase, which showed efficient direct electron transfer reactions. An overview of the most recent biosensors and biofuel cells based on the two dehydrogenases will be presented. The various strategies to prepare modified electrodes in order to improve the electron transfer properties of the device will be carefully investigated and all analytical parameters will be presented, discussed and compared.

  8. ultraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy.

    Science.gov (United States)

    Brama, Elisabeth; Peddie, Christopher J; Wilkes, Gary; Gu, Yan; Collinson, Lucy M; Jones, Martin L

    2016-12-13

    In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.

  9. Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Sathyanarayana, E-mail: asharao76@gmail.com; Rao, Asha, E-mail: asharao76@gmail.com [Department of Physics, Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore-574225 (India); Krishnan, Sheeja [Department of Physics, Sri Devi Institute of Technology, Kenjar, Mangalore-574142 (India); Sanjeev, Ganesh [Microtron Centre, Department of Physics, Mangalore University, Mangalagangothri-574199 (India); Suresh, E. P. [Solar Panel Division, ISRO Satellite Centre, Bangalore-560017 (India)

    2014-04-24

    The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy – 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance – Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

  10. Double-wall IFR cell for conditioning intense relativistic electron beams

    International Nuclear Information System (INIS)

    Myers, M.C.; Meger, R.A.; Murphy, D.P.; Fernsler, R.F.; Hubbard, R.F.; Slinker, S.P.; Weidman, D.J.

    1994-01-01

    An intense relativistic electron beam (IREB) injected into neutral gas in the high pressure regime characteristically propagates in a self-pinched mode but is susceptible to the resistive hose instability. Typically, beam are conditioned for propagation experiments by reducing the perturbations that may excite resistive hose and by adjusting the emittance profile of the beam such that the convective growth of the instability is decreased. The former has been achieved by applying an anharmonic focusing force as the beam is transported through a conducting tube or cell. The latter has been effectively demonstrated by passing the beam through an ion focus regime (IFR) cell which imposes a head to tail beam emittance variations. However, since the physical parameters of the two types of cells are different, conflicts arise when the cells are coupled sequentially. The double-wall IFR cell described here eliminates these interface difficulties by providing the necessary conditions properties in a single cell. The physics and design of the cell will be introduced and parameter variations explored. The conditioning and propagation measurements will be presented and the results of the experiment will be discussed in relation to theory and simulation

  11. In vitro culture of oocytes and granulosa cells collected from normal, obese, emaciated and metabolically stressed ewes.

    Science.gov (United States)

    Tripathi, S K; Farman, M; Nandi, S; Mondal, S; Gupta, Psp; Kumar, V Girish

    2016-07-01

    The present study was undertaken to investigate the oocyte morphology, its fertilizing capacity and granulosa cell functions in ewes (obese, normal, metabolic stressed and emaciated). Ewes (Ovis aries) of approximately 3 years of age (Bellary breed) from a local village were screened, chosen and categorized into a) normal b) obese but not metabolically stressed, c) Emaciated but not metabolically stressed d) Metabolically stressed based on body condition scoring and blood markers. Oocytes and granulosa cells were collected from ovaries of the ewes of all categories after slaughter and were classified into good (oocytes with more than three layers of cumulus cells and homogenous ooplasm), fair (oocytes one or two layers of cumulus cells and homogenous ooplasm) and poor (denuded oocytes or with dark ooplasm). The good and fair quality oocytes were in vitro matured and cultured with fresh semen present and the fertilization, cleavage and blastocyst development were observed. The granulosa cells were cultured for evaluation of metabolic activity by use of the MTT assay, and cell viability, cell number as well as estrogen and progesterone production were assessed. It was observed that the good and fair quality oocytes had greater metabolic activity when collected from normal and obese ewes compared with those from emaciated and metabolically stressed ewes. No significant difference was observed in oocyte quality and maturation amongst the oocytes collected from normal and obese ewes. The cleavage and blastocyst production rates were different for the various body condition classifications and when ranked were: normal>obese>metabolically stressed>emaciated. Lesser metabolic activity was observed in granulosa cells obtained from ovaries of emaciated ewes. However, no changes were observed in viability and cell number of granulosa cells obtained from ewes with the different body condition categories. Estrogen and progesterone production from cultured granulosa cells were

  12. One-Dimensional Electron Transport Layers for Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Ujwal K. Thakur

    2017-04-01

    Full Text Available The electron diffusion length (Ln is smaller than the hole diffusion length (Lp in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D structures such as nanowires (NWs and nanotubes (NTs as electron transport layers (ETLs is a promising method of achieving high performance halide perovskite solar cells (HPSCs. ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs. This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells.

  13. One-Dimensional Electron Transport Layers for Perovskite Solar Cells

    Science.gov (United States)

    Thakur, Ujwal K.; Kisslinger, Ryan; Shankar, Karthik

    2017-01-01

    The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells. PMID:28468280

  14. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide

    KAUST Repository

    Rodighiero, Simona

    2015-03-22

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. © 2015 Wiley Periodicals, Inc.

  15. Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria

    International Nuclear Information System (INIS)

    Swulius, Matthew T.; Chen, Songye; Jane Ding, H.; Li, Zhuo; Briegel, Ariane; Pilhofer, Martin; Tocheva, Elitza I.; Lybarger, Suzanne R.; Johnson, Tanya L.; Sandkvist, Maria; Jensen, Grant J.

    2011-01-01

    Highlights: → No long helical filaments are seen near or along rod-shaped bacterial inner membranes by electron cryo-tomography. → Electron cryo-tomography has the resolution to detect single filaments in vivo. -- Abstract: How rod-shaped bacteria form and maintain their shape is an important question in bacterial cell biology. Results from fluorescent light microscopy have led many to believe that the actin homolog MreB and a number of other proteins form long helical filaments along the inner membrane of the cell. Here we show using electron cryotomography of six different rod-shaped bacterial species, at macromolecular resolution, that no long (>80 nm) helical filaments exist near or along either surface of the inner membrane. We also use correlated cryo-fluorescent light microscopy (cryo-fLM) and electron cryo-tomography (ECT) to identify cytoplasmic bundles of MreB, showing that MreB filaments are detectable by ECT. In light of these results, the structure and function of MreB must be reconsidered: instead of acting as a large, rigid scaffold that localizes cell-wall synthetic machinery, moving MreB complexes may apply tension to growing peptidoglycan strands to ensure their orderly, linear insertion.

  16. Investigation of the Electron Acceleration by a High-Power Laser and a Density-Tapered Mixed-Gas Cell

    Science.gov (United States)

    Kim, Jinju; Phung, Vanessa L. J.; Kim, Minseok; Hur, Min-Sup; Suk, Hyyong

    2017-10-01

    Plasma-based accelerators can generate about 1000 times stronger acceleration field compared with RF-based conventional accelerators, which can be done by high power laser and plasma. There are many issues in this research and one of them is development of a good plasma source for higher electron beam energy. For this purpose, we are investigating a special type of plasma source, which is a density-tapered gas cell with a mixed-gas for easy injection. By this type of special gas cell, we expect higher electron beam energies with easy injection in the wakefield. In this poster, some experimental results for electron beam generation with the density-tapered mixed-gas cell are presented. In addition to the experimental results, CFD (Computational-Fluid-Dynamics) and PIC (Particle-In-Cell) simulation results are also presented for comparison studies.

  17. Immunohistochemical localization of proliferating cell nuclear antigen (PCNA in the pig ovary.

    Directory of Open Access Journals (Sweden)

    Milan TomĂĄnek

    2007-01-01

    Full Text Available The aim of the study was to determine the expression of proliferating cell nuclear antigen protein (PCNA in the pig ovary. The localization of PCNA was demonstrated in paraffin sections of pig ovarian tissue using primary mouse monoclonal anti-PCNA antibody. In primordial follicles, no remarkable staining for PCNA either in granulosa cells or in the oocytes was observed. In primary to secondary follicles, positive staining in oocytes and in some granulosa cells was detected. The advanced preantral and particularly actively growing small to large antral follicles showed extensive PCNA labeling in the layers of granulosa and theca cells and in the cumulus cells encircling the oocyte. PCNA labeling was expressed in nuclei of oocytes in preantral and small antral follicles. In atretic follicles, the level of PCNA protein expression was dependent on the stage of atresia. Follicles demonstrating advanced atresia showed only limited or no PCNA labeled granulosa and theca cells. The results of the study demonstrate that follicular growth and development in pig ovary may be effectively monitored by determining the granulosa cell expression of PCNA.

  18. Synthesis on power electronics for large fuel cells: From power conditioning to potentiodynamic analysis technique

    International Nuclear Information System (INIS)

    De Bernardinis, Alexandre

    2014-01-01

    Highlights: • Active load for fuel cell managing electrical drive constraints: frequency and current ripple can be adjusted independently. • Multi-port resonant soft-switched topology for power management of a thirty kilowatt segmented PEM fuel cell. • Splitting current control strategy for power segmented PEM fuel cell in case of a segment is under fault. • Reversible Buck topology for large fuel cell with control of the fuel cell potential linked to current density nonlinearity. - Abstract: The work addressed in this paper deals with a synthesis on power electronic converters used for fuel cells. The knowledge gap concerns conceptually different electronic converter architectures for PEM (Proton Exchange Membrane) fuel cells able to perform three types of functionalities: The first one is the capacity of emulating an active load representative of electrical drive constraints. In that case, frequency and fuel cell current ripple can be set independently to investigate the dynamic behavior of the fuel cell. The second one is power conditioning applied to large high power and segmented fuel cell systems (“Large” represents several tens of cells and multi-kilowatt stacks), which is a non trivial consideration regarding the topological choices to be made for improving efficiency, compactness and ensure operation under faulty condition. A multi-port resonant isolated boost topology is analyzed enabling soft switching over a large operating range for a thirty kilowatt segmented fuel cell. A splitting current control strategy in case of a segment is under fault is proposed. Each considered converter topologies meet specific constraints regarding fuel cell stack design and power level. The third functionality is the ability for the power electronics to perform analysis and diagnosis techniques, like the cyclic voltammetry on large PEM fuel cell assemblies. The latter technique is an uncommon process for large fuel cell stacks since it is rather performed on

  19. Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells.

    Science.gov (United States)

    Laschinsky, Lydia; Karsch, Leonhard; Leßmann, Elisabeth; Oppelt, Melanie; Pawelke, Jörg; Richter, Christian; Schürer, Michael; Beyreuther, Elke

    2016-08-01

    Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10(10) Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone.

  20. Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells

    International Nuclear Information System (INIS)

    Laschinsky, Lydia; Karsch, Leonhard; Schuerer, Michael; Lessmann, Elisabeth; Beyreuther, Elke; Oppelt, Melanie; Pawelke, Joerg; Richter, Christian

    2016-01-01

    Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10"1"0 Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone. (orig.)

  1. Sputter Deposited TiOx Thin-Films as Electron Transport Layers in Organic Solar Cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Bomholt Jensen, Pia; Lakhotiya, Harish

    transparency and favorable energy-level alignment with many commonly used electron-acceptor materials. There are several methods available for fabricating compact TiOx thin-films for use in organic solar cells, including sol-gel solution processing, spray pyrolysis and atomic-layer deposition; however...... of around 7%, by incorporating sputter deposited TiOx thin-films as electron-transport and exciton-blocking layers. In the work, we report on the effect of different TiOx deposition temperatures and thicknesses on the organic-solar-cell device performance. Besides optical characterization, AFM and XRD...... analyses are performed to characterize the morphology and crystal structure of the films, and external quantum efficiency measurements are employed to shed further light on the device performance. Our study presents a novel method for implementation of TiOx thin-films as electron-transport layer in organic...

  2. The investigation of influence of accelerated electrons on SiO2 used in silicon solar cells

    International Nuclear Information System (INIS)

    Abdullaev, G.B.; Bakirov, M.Ya; Akhmedov, G.M.; Safarov, N.A.; Safarova, F.D.

    1994-01-01

    The process of radiation defects production in enlightened SiO 2 layers coated on silicon solar cells was studied. During irradiation the silicon solar cells with enlightened layers radiation defects are formed both in silicon and SiO 2 thus making worse photo energetic parameters of cells. For investigation of radiation effects formed under irradiation by electrons with 5 MeV energy and cobalt-60 gamma-rays photoluminescence, absorption spectra and electron spin resonance methods were used. It is supposed that main radiation defects in silicon dioxide are E'-centers and oxygen vacancies. (A.D. Avezov). 10 refs.; 2 figs

  3. Multi-color imaging of fluorescent nanodiamonds in living HeLa cells using direct electron-beam excitation.

    Science.gov (United States)

    Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu; Fang, Chia-Yi; Chang, Huan-Cheng

    2014-03-17

    Multi-color, high spatial resolution imaging of fluorescent nanodiamonds (FNDs) in living HeLa cells has been performed with a direct electron-beam excitation-assisted fluorescence (D-EXA) microscope. In this technique, fluorescent materials are directly excited with a focused electron beam and the resulting cathodoluminescence (CL) is detected with nanoscale resolution. Green- and red-light-emitting FNDs were employed for two-color imaging, which were observed simultaneously in the cells with high spatial resolution. This technique could be applied generally for multi-color immunostaining to reveal various cell functions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of linoleic acid supplementation on in vitro maturation, embryo development and apoptotic related gene expression in ovine

    Directory of Open Access Journals (Sweden)

    Ebrahim Amini

    2016-04-01

    Full Text Available Background: Linoleic acid (LA is a polyunsaturated fatty acid present in high concentrations in follicular fluid, when added to maturation culture media, it affects oocyte competence. Objective: In the present study, we investigated effect of linoleic acid supplementation on in vitro maturation, embryo development and apoptotic related gene expression in ovine Materials and Methods: The experiments conducted on 450 ovine Cumulus-oocyte complexes (COCs with homogenous ooplasm and more than two compact layers of cumulus cells. For in vitro maturation COCs were randomly allocated into four treatment groups for 24 hr period. Treatment groups were as follow: control maturation media, 0 μM LA, 50 μM LA, 100 μM LA and 200 μM LA. The cumulus cell expansion and blastocysts rates were recorded. Total RNA was isolated from embryo pools, reverse transcribed into cDNA, and subjected to apoptotic gene expression by real-time PCR. Results: Highest concentration (200 μM/mL of LA significantly decreased the rate of fully expanded cumulus cells 24 hr after in vitro maturation (IVM and the percentage of blastocyste rate compared with the control (p<0.05. These inhibitory effects were associated with an increased in relative mRNA expression of Bax (Bcl-2- associated X gene compared with controls. Conclusion: Data obtained in present study suggest that low concentration of LA used for maturation had no deleterious effect on subsequent embryonic development compared to high concentration of LA. Relative expression of Bcl-2 (B-cell lymphoma 2 and Bax in embryos seems to be associated with LA concentration.

  5. Beam Dynamics in an Electron Lens with the Warp Particle-in-cell Code

    CERN Document Server

    Stancari, Giulio; Redaelli, Stefano

    2014-01-01

    Electron lenses are a mature technique for beam manipulation in colliders and storage rings. In an electron lens, a pulsed, magnetically confined electron beam with a given current-density profile interacts with the circulating beam to obtain the desired effect. Electron lenses were used in the Fermilab Tevatron collider for beam-beam compensation, for abort-gap clearing, and for halo scraping. They will be used in RHIC at BNL for head-on beam-beam compensation, and their application to the Large Hadron Collider for halo control is under development. At Fermilab, electron lenses will be implemented as lattice elements for nonlinear integrable optics. The design of electron lenses requires tools to calculate the kicks and wakefields experienced by the circulating beam. We use the Warp particle-in-cell code to study generation, transport, and evolution of the electron beam. For the first time, a fully 3-dimensional code is used for this purpose.

  6. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    Science.gov (United States)

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-03-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.

  7. Bovine oocytes and early embryos express mRNA encoding glycerol kinase but addition of glycerol to the culture media interferes with oocyte maturation.

    Science.gov (United States)

    Okawara, Sumika; Hamano, Seizo; Tetsuka, Masafumi

    2009-04-01

    Glycerol plays multi-functional roles in cellular physiology. Other than forming the backbone molecule for glycerophospholipid and triglyceride (TG), glycerol acts as an energy substrate for glycolysis. Spermatozoa are known to utilize glycerol for energy production, but there are no reports of this in oocytes. In this study, the value of glycerol as an energy substrate for bovine oocyte maturation (Exp. 1) and the gene expression of glycerol kinase (GK), an enzyme crucial for cellular glycerol utilization, in bovine oocytes and early embryos (Exp. 2) were examined. In Exp. 1, in vitro maturation (IVM) was conducted using synthetic oviduct fluid supplemented with/without glucose (1.5 mM) and/or glycerol (1.0 mM), and maturation rate, degree of cumulus expansion, glucose consumption and lactate production by cumulus-oocyte complexes (COC) were examined. In Exp. 2, to examine the developmental expression of GK mRNA, cumulus cells, oocytes and embryos at the 2-, 8- and 16-cell, morula, expanded blastocyst and hatched blastocyst stages were obtained in separate experiments, and the expression of GK mRNA was quantified using a real-time PCR. Glycerol did not support oocyte maturation or cumulus expansion. Addition of glycerol to glucose-supplemented media significantly decreased the maturation rate. Expression of GK mRNA was very low in cumulus cells, whereas an appreciable level of the transcript was observed in the oocytes. GK mRNA was detected in embryos at all the stages examined, and its expression significantly increased at the morula stage. These results indicate that glycerol, at least at the present concentration, is not beneficial as a constituent of the medium for bovine oocyte maturation. However, the appreciable levels of GK mRNA found in the oocyte and embryo imply a physiological role for glycerol in bovine oocyte maturation and embryo development.

  8. Contributions of Heterogeneous Ice Nucleation, Large-Scale Circulation, and Shallow Cumulus Detrainment to Cloud Phase Transition in Mixed-Phase Clouds with NCAR CAM5

    Science.gov (United States)

    Liu, X.; Wang, Y.; Zhang, D.; Wang, Z.

    2016-12-01

    Mixed-phase clouds consisting of both liquid and ice water occur frequently at high-latitudes and in mid-latitude storm track regions. This type of clouds has been shown to play a critical role in the surface energy balance, surface air temperature, and sea ice melting in the Arctic. Cloud phase partitioning between liquid and ice water determines the cloud optical depth of mixed-phase clouds because of distinct optical properties of liquid and ice hydrometeors. The representation and simulation of cloud phase partitioning in state-of-the-art global climate models (GCMs) are associated with large biases. In this study, the cloud phase partition in mixed-phase clouds simulated from the NCAR Community Atmosphere Model version 5 (CAM5) is evaluated against satellite observations. Observation-based supercooled liquid fraction (SLF) is calculated from CloudSat, MODIS and CPR radar detected liquid and ice water paths for clouds with cloud-top temperatures between -40 and 0°C. Sensitivity tests with CAM5 are conducted for different heterogeneous ice nucleation parameterizations with respect to aerosol influence (Wang et al., 2014), different phase transition temperatures for detrained cloud water from shallow convection (Kay et al., 2016), and different CAM5 model configurations (free-run versus nudged winds and temperature, Zhang et al., 2015). A classical nucleation theory-based ice nucleation parameterization in mixed-phase clouds increases the SLF especially at temperatures colder than -20°C, and significantly improves the model agreement with observations in the Arctic. The change of transition temperature for detrained cloud water increases the SLF at higher temperatures and improves the SLF mostly over the Southern Ocean. Even with the improved SLF from the ice nucleation and shallow cumulus detrainment, the low SLF biases in some regions can only be improved through the improved circulation with the nudging technique. Our study highlights the challenges of

  9. Surface topography of hairy cell leukemia cells compared to other leukemias as seen by scanning electron microscopy.

    Science.gov (United States)

    Polliack, Aaron; Tadmor, Tamar

    2011-06-01

    This short review deals with the ultrastructural surface architecture of hairy cell leukemia (HCL) compared to other leukemic cells, as seen by scanning electron microscopy (SEM). The development of improved techniques for preparing blood cells for SEM in the 1970s readily enabled these features to be visualized more accurately. This review returns us to the earlier history of SEM, when the surface topography of normal and neoplastic cells was visualized and reported for the first time, in an era before the emergence and use of monoclonal antibodies and flow cytometry, now used routinely to define cells by their immunophenotype. Surface microvilli are characteristic for normal and leukemic lymphoid cells, myelo-monocytic cells lack microvilli and show surface ruffles, while leukemic plasma and myeloma cells and megakaryocytes display large surface blebs. HCL cell surfaces are complex and typically 'hybrid' in nature, displaying both lymphoid and monocytic features with florid ruffles of varying sizes interspersed with clumps of short microvilli cytoplasm. The surface features of other leukemic cells and photomicrographs of immuno-SEM labeling of cells employing antibodies and colloidal gold, reported more than 20 years ago, are shown.

  10. Analysis of radiation damage to Si solar cells under high-fluence electron irradiation

    International Nuclear Information System (INIS)

    Yamaguchi, Masafumi; Taylor, S.J.; Yang, Ming-Ju; Matsuda, Sumio; Kawasaki, Osamu; Hisamatsu, Tadashi.

    1996-01-01

    Radiation testing of Si n + -p-p + space solar cells has revealed an anomalous increase in short-circuit current I sc , followed by an abrupt decrease and cell failure, induced by high-fluence (>10 16 cm -2 ) electron irradiation. A model which can be used to explain these phenomena by expressing the change in majority-carrier concentration p of the base region as a function of the electron fluence has been proposed in addition to the well-known model in which I sc is decreased due to minority-carrier lifetime reduction with irradiation. The reduction in p due to majority-carrier trapping by radiation-induced defects has two effects; one is broadening of the depletion layer which contributes to the increase in the generated photocurrent and that in the recombination-generation current in the depletion layer, and the second is an increase in the resistivity of the base layer resulting in an abrupt decrease of I sc and failure of the solar cells. (author)

  11. Radiation hardening and irradiation testing of in-cell electronics for MA23/APM

    International Nuclear Information System (INIS)

    Friant, A.

    1988-09-01

    We relate briefly the radiation hardening method used to guarantee a gamma resistance of 10 Mrad for the whole electronic equipment associated with the slave arm of MA23 M servomanipulator which will be set up in cell 404 in Marcoule (APM). We describe the radiation testing of electronic devices and of the various subsystems designed by the D. LETI groups involved in the MA23/APM project

  12. Ultrastructure and mitochondrial numbers in pre- and postpubertal pig oocytes

    DEFF Research Database (Denmark)

    Pedersen, Hanne Skovsgaard; Callesen, Henrik; Løvendahl, Peter

    2016-01-01

    Prepubertal pig oocytes are associated with lower developmental competence. The aim of this experiment was to conduct an exhaustive survey of oocyte ultrastructure and to use a design-unbiased stereological approach to quantify the numerical density and total number of mitochondria in oocytes...... with different diameters from pre- and postpubertal pigs. The ultrastructure of smaller prepubertal immature oocytes indicated active cells in close contact with cumulus cells. The postpubertal oocytes were more quiescent cell types. The small prepubertal oocytes had a lower total mitochondrial number......, but no differences were observed in mitochondrial densities between groups. Mature postpubertal oocytes adhered to the following characteristics: presence of metaphase II, lack of contact between cumulus cells and oocyte, absence of rough endoplasmic reticulum and Golgi complexes, peripheral location of cortical...

  13. Electron-beam induced current characterization of back-surface field solar cells using a chopped scanning electron microscope beam

    Science.gov (United States)

    Luke, K. L.; Cheng, L.-J.

    1984-01-01

    A chopped electron beam induced current (EBIC) technique for the chacterization of back-surface field (BSF) solar cells is presented. It is shown that the effective recombination velocity of the low-high junction forming the back-surface field of BSF cells, in addition to the diffusion length and the surface recombination velocity of the surface perpendicular to both the p-n and low-high junctions, can be determined from the data provided by a single EBIC scan. The method for doing so is described and illustrated. Certain experimental considerations taken to enhance the quality of the EBIC data are also discussed.

  14. Mechanisms of electron transport and recombination in ZnO nanostructures for dye-sensitized solar cells.

    Science.gov (United States)

    Vega-Poot, Alberto G; Macías-Montero, Manuel; Idígoras, Jesus; Borrás, Ana; Barranco, Angel; Gonzalez-Elipe, Agustín R; Lizama-Tzec, Francisco I; Oskam, Gerko; Anta, Juan A

    2014-04-14

    ZnO is an attractive material for applications in dye-sensitized solar cells and related devices. This material has excellent electron-transport properties in the bulk but its electron diffusion coefficient is much smaller in mesoporous films. In this work the electron-transport properties of two different kinds of dye-sensitized ZnO nanostructures are investigated by small-perturbation electrochemical techniques. For nanoparticulate ZnO photoanodes prepared via a wet-chemistry technique, the diffusion coefficient is found to reproduce the typical behavior predicted by the multiple-trapping and the hopping models, with an exponential increase with respect to the applied bias. In contrast, in ZnO nanostructured thin films of controlled texture and crystallinity prepared via a plasma chemical vapor deposition method, the diffusion coefficient is found to be independent of the electrochemical bias. This observation suggests a different transport mechanism not controlled by trapping and electron accumulation. In spite of the quite different transport features, the recombination kinetics, the electron-collection efficiency and the photoconversion efficiency are very similar for both kinds of photoanodes, an observation that indicates that surface properties rather than electron transport is the main efficiency-determining factor in solar cells based on ZnO nanostructured photoanodes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Water-clear cell adenoma of the parathyroid. A case report with immunohistochemistry and electron microscopy.

    Science.gov (United States)

    Grenko, R T; Anderson, K M; Kauffman, G; Abt, A B

    1995-11-01

    We report a water-clear cell adenoma of the parathyroid gland, a lesion which to our knowledge has not been described previously. Like its rare but well-described hyperplastic counterpart, water-clear cell hyperplasia, this adenoma is composed of cells with abundant foamy-to-granular cytoplasm and mild nuclear pleomorphism. The cells form glandular structures and cell nests separated by fine fibrovascular septae. The tumor cells stain positively with anti-parathyroid hormone and show characteristic glassy and flocculate material by electron microscopy. Unlike water-clear cell hyperplasia, water-clear cell adenoma is a solitary lesion that compresses the residual nonneoplastic parathyroid gland.

  16. Fermi-degeneracy and discrete-ion effects in the spherical-cell model and electron-electron correlation effects in hot dense plasmas

    International Nuclear Information System (INIS)

    Furukawa, H.; Nishihara, K.

    1992-01-01

    The spherical-cell model [F. Perrot, Phys. Rev. A 25, 489 (1982); M. W. C. Dharma-wardana and F. Perrot, ibid. 26, 2096 (1982)] is improved to investigate laser-produced hot, dense plasmas. The free-electron distribution function around a test free electron is calculated by using the Fermi integral in order that the free-electron--free-electron correlation function includes Fermi-degeneracy effects, and also that the calculation includes the discrete-ion effect. The free-electron--free-electron, free-electron--ion, and ion-ion correlation effects are coupled, within the framework of the hypernetted-chain approximation, through the Ornstein-Zernike relation. The effective ion-ion potential includes the effect of a spatial distribution of bound electrons. The interparticle correlation functions and the effective potential acting on either an electron or an ion in hot, dense plasmas are calculated numerically. The Fermi-degeneracy effect on the correlation functions between free electrons becomes clear for the degeneracy parameter θ approx-lt 1. The discrete-ion effect in the calculation of the correlation functions between free electrons affects the electron-ion pair distribution functions for r s approx-gt 3. As an application of the proposed model, the strong-coupling effect on the stopping power of charged particles [Xin-Zhong Yan, S. Tanaka, S. Mitake, and S. Ichimaru, Phys. Rev. A 32, 1785 (1985)] is estimated. While the free-electron--ion strong-coupling effect and the Fermi-degeneracy effect incorporated in the calculation of the free-electron distribution function around a test free electron enhance the stopping number, the quantum-diffraction effect incorporated in the quantal hypernetted-chain equations [J. Chihara, Prog. Theor. Phys. 72, 940 (1984); Phys. Rev. A 44, 1247 (1991); J. Phys. Condens. Matter 3, 8715 (1991)] reduces the stopping number substantially

  17. Ultrastructural alterations in ciliary cells exposed to ionizing radiation. A scanning and transmission electron microscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Baldetorp, L; Mecklenburg, C v; Haakansson, C H [Lund Univ. (Sweden). Hospital; Lund Univ. (Sweden). Dept. of Zoology)

    1977-01-01

    Early effects of ionizing radiation were investigated in an experimental in vitro system using the ciliary cells of the tracheal mucous membrane of the rabbit, irradiated at 30/sup 0/C and at more than 90% humidity. The changes in physiological activities of the ciliary cells caused by irradation were continously registered during the irradation. The specimens were examined immediately after irradiation electron microscopically. The morphological changes in irradiated material after 10-70 Gy are compared with normal material. After 40-70 Gy, scanning electron microscopy revealed the formation of vesicles on cilia, and club-like protrusions and adhesion of their tips. After 30-70 Gy, a swelling of mitochondrial membranes and cristae was apparent transmission electron microscopically. The membrane alterations caused by irradiation are assumed to disturb the permeability and flow of ATP from the mitochondria, which in turn leads to the recorded changes in the activity of the ciliated cells.

  18. Particle-in-cell simulation of electron trajectories and irradiation uniformity in an annular cathode high current pulsed electron beam source

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Wang, Langping, E-mail: aplpwang@hit.edu.cn; Zhou, Guangxue; Wang, Xiaofeng

    2017-02-01

    Highlights: • The transmission process of electrons and irradiation uniformity was simulated. • Influence of the irradiation parameters on irradiation uniformity are discussed. • High irradiation uniformity can be obtained in a wide processing window. - Abstract: In order to study electron trajectories in an annular cathode high current pulsed electron beam (HCPEB) source based on carbon fiber bunches, the transmission process of electrons emitted from the annular cathode was simulated using a particle-in-cell model with Monte Carlo collisions (PIC-MCC). The simulation results show that the intense flow of the electrons emitted from the annular cathode are expanded during the transmission process, and the uniformity of the electron distribution is improved in the transportation process. The irradiation current decreases with the irradiation distance and the pressure, and increases with the negative voltage. In addition, when the irradiation distance and the cathode voltage are larger than 40 mm and −15 kV, respectively, a uniform irradiation current distribution along the circumference of the anode can be obtained. The simulation results show that good irradiation uniformity of circular components can be achieved by this annular cathode HCPEB source.

  19. Electron Transfer Mediators for Photoelectrochemical Cells Based on Cu(I Metal Complexes

    Directory of Open Access Journals (Sweden)

    Michele Brugnati

    2007-01-01

    Full Text Available The preparation and the photoelectrochemical characterization of a series of bipyridine and pyridyl-quinoline Cu(I complexes, used as electron transfer mediators in regenerative photoelectrochemical cells, are reported. The best performing mediators produced maximum IPCEs of the order of 35–40%. The J-V curves recorded under monochromatic light showed that the selected Cu(I/(II couples generated higher Vocs and fill factors compared to an equivalent I-/I3- cell, due to a decreased dark current.

  20. Exploring ultrashort high-energy electron-induced damage in human carcinoma cells

    International Nuclear Information System (INIS)

    Rigaud, O.; Fortunel, N.O.; Vaigot, P.; Cadio, E.; Martin, M.T.; Lundh, O.; Faure, J.; Rechatin, C.; Malka, V.; Gauduel, Y.A.

    2010-01-01

    In conventional cancer therapy or fundamental radiobiology research, the accumulated knowledge on the complex responses of healthy or diseased cells to ionizing radiation is generally obtained with low-dose rates. Under these radiation conditions, the time spent for energy deposition is very long compared with the dynamics of early molecular and cellular responses. The use of ultrashort pulsed radiation would offer new perspectives for exploring the 'black box' aspects of long irradiation profiles and favouring the selective control of early damage in living targets. Several attempts were previously performed using nanosecond or picosecond pulsed irradiations on various mammalian cells and radiosensitive mutants at high dose rate. The effects of single or multi-pulsed radiations on cell populations were generally analyzed in the framework of dose survival curves or characterized by 2D imaging of γ-H2AX foci and no increase in cytotoxicity was shown compared with a delivery at a conventional dose rate. Moreover, when multi-shot irradiations were performed, the overall time needed to obtain an integrated dose of several Grays again overlapped with the multi-scale dynamics of bio-molecular damage-repair sequences and cell signalling steps. Ideally, a single-shot irradiation delivering a well-defined energy profile, via a very short temporal window, would permit the approach of a real-time investigation of early radiation induced molecular damage within the confined spaces of cell compartments. Owing to the potential applications of intense ultrashort laser for radiation therapy, the model of the A431 carcinoma cell line was chosen. An ultrafast single-shot irradiation strategy was carried out with these radio-resistant human skin carcinoma cells, using the capacity of an innovating laser-plasma accelerator to generate quasi mono-energetic femtosecond electron bunches in the MeV domain and to deliver a very high dose rate of 10 13 Gy s -1 per pulse. The alkaline comet

  1. Metabolic requirements associated with GSH synthesis during in vitro maturation of cattle oocytes.

    Science.gov (United States)

    Furnus, C C; de Matos, D G; Picco, S; García, P Peral; Inda, A M; Mattioli, G; Errecalde, A L

    2008-12-01

    Glutathione (GSH) concentration increases in bovine oocytes during in vitro maturation (IVM). The constitutive amino acids involved in GSH synthesis are glycine (Gly), glutamate (Glu) and cysteine (Cys). The present study was conducted to investigate the effect of the availability of glucose, Cys, Gly and Glu on GSH synthesis during IVM. The effect of the amino acid serine (Ser) on intracellular reduced/oxidized glutathione (GSH/GSSG) content in both oocytes and cumulus cells was also studied. Cumulus-oocyte complexes (COC) of cattle obtained from ovaries collected from an abattoir were matured in synthetic oviduct fluid (SOF) medium containing 8 mg/ml bovine serum albumin-fatty acid-free (BSA-FAF), 10 microg/ml LH, 1 microg/ml porcine FSH (pFSH) and 1 microg/ml 17 beta-estradiol (17beta-E2). GSH/GSSG content was measured using a double-beam spectrophotometer. The COC were cultured in SOF supplemented with 1.5mM or 5.6mM glucose (Exp. 1); with or without Cys+Glu+Gly (Exp. 2); with the omission of one constitutive GSH amino acid (Exp. 3); with 0.6mM Cys or Cys+Ser (Exp. 4). The developmental capacity of oocytes matured in IVM medium supplemented with Cys and the cell number per blastocyst were determined (Exp. 5). The results reported here indicate (1) no differences in the intracellular GSH/GSSG content at any glucose concentrations. Also, cumulus cell number per COC did not differ either before or after IVM (Exp. 1). (2) Glutathione content in oocytes matured in SOF alone were significantly different from oocytes incubated with SOF supplemented with Cys+Glu+Gly (Exp. 2). (3) Addition of Cys to maturation medium, either with or without Gly and Glu supplementation resulted in an increase of GSH/GSSG content. However, when Cys was omitted from the IVM medium intracellular GSH in oocytes or cumulus cells was less but not significantly altered compared to SOF alone (Exp. 3). (4) Glutathione content in both oocytes and cumulus cells was significantly reduced by

  2. The role of 1-D and 3-D radiative heating in the organization of shallow cumulus convection and the formation of cloud streets

    Science.gov (United States)

    Jakub, Fabian; Mayer, Bernhard

    2017-11-01

    The formation of shallow cumulus cloud streets was historically attributed primarily to dynamics. Here, we focus on the interaction between radiatively induced surface heterogeneities and the resulting patterns in the flow. Our results suggest that solar radiative heating has the potential to organize clouds perpendicular to the sun's incidence angle. To quantify the extent of organization, we performed a high-resolution large-eddy simulation (LES) parameter study. We varied the horizontal wind speed, the surface heat capacity, the solar zenith and azimuth angles, and radiative transfer parameterizations (1-D and 3-D). As a quantitative measure we introduce a simple algorithm that provides a scalar quantity for the degree of organization and the alignment. We find that, even in the absence of a horizontal wind, 3-D radiative transfer produces cloud streets perpendicular to the sun's incident direction, whereas the 1-D approximation or constant surface fluxes produce randomly positioned circular clouds. Our reasoning for the enhancement or reduction of organization is the geometric position of the cloud's shadow and its corresponding surface fluxes. Furthermore, when increasing horizontal wind speeds to 5 or 10 m s-1, we observe the development of dynamically induced cloud streets. If, in addition, solar radiation illuminates the surface beneath the cloud, i.e., when the sun is positioned orthogonally to the mean wind field and the solar zenith angle is larger than 20°, the cloud-radiative feedback has the potential to significantly enhance the tendency to organize in cloud streets. In contrast, in the case of the 1-D approximation (or overhead sun), the tendency to organize is weaker or even prohibited because the shadow is cast directly beneath the cloud. In a land-surface-type situation, we find the organization of convection happening on a timescale of half an hour. The radiative feedback, which creates surface heterogeneities, is generally diminished for large

  3. The role of 1-D and 3-D radiative heating in the organization of shallow cumulus convection and the formation of cloud streets

    Directory of Open Access Journals (Sweden)

    F. Jakub

    2017-11-01

    Full Text Available The formation of shallow cumulus cloud streets was historically attributed primarily to dynamics. Here, we focus on the interaction between radiatively induced surface heterogeneities and the resulting patterns in the flow. Our results suggest that solar radiative heating has the potential to organize clouds perpendicular to the sun's incidence angle. To quantify the extent of organization, we performed a high-resolution large-eddy simulation (LES parameter study. We varied the horizontal wind speed, the surface heat capacity, the solar zenith and azimuth angles, and radiative transfer parameterizations (1-D and 3-D. As a quantitative measure we introduce a simple algorithm that provides a scalar quantity for the degree of organization and the alignment. We find that, even in the absence of a horizontal wind, 3-D radiative transfer produces cloud streets perpendicular to the sun's incident direction, whereas the 1-D approximation or constant surface fluxes produce randomly positioned circular clouds. Our reasoning for the enhancement or reduction of organization is the geometric position of the cloud's shadow and its corresponding surface fluxes. Furthermore, when increasing horizontal wind speeds to 5 or 10 m s−1, we observe the development of dynamically induced cloud streets. If, in addition, solar radiation illuminates the surface beneath the cloud, i.e., when the sun is positioned orthogonally to the mean wind field and the solar zenith angle is larger than 20°, the cloud-radiative feedback has the potential to significantly enhance the tendency to organize in cloud streets. In contrast, in the case of the 1-D approximation (or overhead sun, the tendency to organize is weaker or even prohibited because the shadow is cast directly beneath the cloud. In a land-surface-type situation, we find the organization of convection happening on a timescale of half an hour. The radiative feedback, which creates surface heterogeneities, is

  4. Improved efficiency of NiOx-based p-i-n perovskite solar cells by using PTEG-1 as electron transport layer

    Science.gov (United States)

    Groeneveld, Bart G. H. M.; Najafi, Mehrdad; Steensma, Bauke; Adjokatse, Sampson; Fang, Hong-Hua; Jahani, Fatemeh; Qiu, Li; ten Brink, Gert H.; Hummelen, Jan C.; Loi, Maria Antonietta

    2017-07-01

    We present efficient p-i-n type perovskite solar cells using NiOx as the hole transport layer and a fulleropyrrolidine with a triethylene glycol monoethyl ether side chain (PTEG-1) as electron transport layer. This electron transport layer leads to higher power conversion efficiencies compared to perovskite solar cells with PCBM (phenyl-C61-butyric acid methyl ester). The improved performance of PTEG-1 devices is attributed to the reduced trap-assisted recombination and improved charge extraction in these solar cells, as determined by light intensity dependence and photoluminescence measurements. Through optimization of the hole and electron transport layers, the power conversion efficiency of the NiOx/perovskite/PTEG-1 solar cells was increased up to 16.1%.

  5. Electron cryotomography of vitrified cells with a Volta phase plate.

    Science.gov (United States)

    Fukuda, Yoshiyuki; Laugks, Ulrike; Lučić, Vladan; Baumeister, Wolfgang; Danev, Radostin

    2015-05-01

    Electron cryotomography provides a means of studying the three dimensional structure of pleomorphic objects, such as organelles or cells, with a resolution of 1-3nm. A limitation in the study of radiation sensitive biological samples is the low signal-to-noise ratio of the tomograms which may obscure fine details. To overcome this limitation, the recently developed Volta phase plate (VPP) was applied in electron cryotomographic studies of a wide range of cellular structures, from magnetotactic bacteria to primary cultured neurons. The results show that the VPP improves contrast significantly and consequently the signal-to-noise ratio of the tomograms, moreover it avoids disturbing fringing artifacts typical for Zernike phase plates. The contrast improvement provided by the VPP was also confirmed in projection images of relatively thick (∼400nm) samples. In order to investigate the respective contributions of the VPP and the energy filter, images acquired with different combinations of the two were compared. Zero-loss energy filtering reduced the background noise in thicker areas of the sample and improved the contrast of features such as poly-β-hydroxybutyrate granules in magnetotactic bacteria, whereas the VPP provided an overall contrast improvement for all sample areas. After 3D reconstruction, tomograms acquired with the combination of a VPP and an energy filter showed structural features in neuronal processes with outstanding clarity. We also show that the VPP can be combined with focused ion beam milling to examine structures embedded deeply inside cells. Thus, we expect that VPP will become a standard element of the electron cryotomography workflow. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A study on the electric properties of single-junction GaAs solar cells under the combined radiation of low-energy protons and electrons

    International Nuclear Information System (INIS)

    Zhao Huijie; Wu Yiyong; Xiao Jingdong; He Shiyu; Yang Dezhuang; Sun Yanzheng; Sun Qiang; Lv Wei; Xiao Zhibin; Huang Caiyong

    2008-01-01

    Displacement damage induced by charged particle radiation is the main cause of degradation of orbital-service solar cells, while the radiation-induced ionization shows no permanent damage effect on their electrical properties. It is reported that in single crystal silicon solar cells, low-energy electron radiation does not exert permanent degradation of their properties, but the fluence of electron radiation exerts an influence on the damage magnitude under the combined radiation of protons and electrons. The electrical properties of the single-junction GaAs/Ge solar cells were investigated after irradiation by sequential and synchronous electron and proton beams. Low-energy electron radiation showed no effects on the change of the solar cell properties during sequential or synchronous irradiation, implying ionization during particle radiation could not exert influence on the displacement damage process to the solar cells under the experimental conditions

  7. LH-receptor gene expression in human granulosa and cumulus cells from antral and preovulatory follicles

    DEFF Research Database (Denmark)

    Jeppesen, Janni Vikkelsø; Kristensen, Stine Gry; Nielsen, Maria Eilsø

    2012-01-01

    Context:Human granulosa cells (GC) acquire LH receptor (LHR) expression during the follicular phase of the menstrual cycle. Currently, the precise follicular stage is unknown, and specific roles of LH in the follicular development are not fully understood.Objective:Our objective was to measure LH...

  8. Validation of cell-free culture using scanning electron microscopy (SEM) and gene expression studies.

    Science.gov (United States)

    Yang, R; Elankumaran, Y; Hijjawi, N; Ryan, U

    2015-06-01

    A cell-free culture system for Cryptosporidium parvum was analysed using scanning electron microscopy (SEM) to characterise life cycle stages and compare gene expression in cell-free culture and cell culture using HCT-8 cells. Cryptosporidium parvum samples were harvested at 2 h, 8 h, 14 h, 26 h, 50 h, 74 h, 98 h, 122 h and 170 h, chemically fixed and specimens were observed using a Zeiss 1555 scanning electron microscope. The presence of sporozoites, trophozoites and type I merozoites were identified by SEM. Gene expression in cell culture and cell-free culture was studied using reverse transcriptase quantitative PCR (RT-qPCR) of the sporozoite surface antigen protein (cp15), the glycoprotein 900 (gp900), the Cryptosporidium oocyst wall protein (COWP) and 18S ribosomal RNA (rRNA) genes in both cell free and conventional cell culture. In cell culture, cp15 expression peaked at 74 h, gp900 expression peaked at 74 h and 98 h and COWP expression peaked at 50 h. In cell-free culture, CP15 expression peaked at 98 h, gp900 expression peaked at 74 h and COWP expression peaked at 122 h. The present study is the first to compare gene expression of C. parvum in cell culture and cell-free culture and to characterise life cycle stages of C. parvum in cell-free culture using SEM. Findings from this study showed that gene expression patterns in cell culture and cell-free culture were similar but in cell-free culture, gene expression was delayed for CP15 and COWP in cell free culture compared with the cell culture system and was lower. Although three life cycle stageswere conclusively identified, improvements in SEM methodology should lead to the detection of more life cycle stages. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. An experimental electronic model for a neuronal cell

    International Nuclear Information System (INIS)

    Campos-Cantón, I; Martel-Gallegos, G; Rangel-López, A; Vertiz-Hérnandez, A; Zarazúa, S

    2014-01-01

    Over the last two decades, the study of information transmission in living beings has acquired great relevance, because it regulates and conducts the functioning of all of the organs in the body. In information transmission pathways, the neuron plays an important role in that it receives, transmits, and processes electrical signals from different parts of the human body; these signals are transmitted as electrical impulses called action potentials, and they transmit information from one neuron to another. In this work, and with the aim of developing experiments for teaching biological processes, we implemented an electronic circuit of the neuron cell device and its mathematical model based on piecewise linear functions. (paper)

  10. Mesoporous Zn2SnO4 as effective electron transport materials for high-performance perovskite solar cells

    International Nuclear Information System (INIS)

    Bao, Sha; Wu, Jihuai; He, Xin; Tu, Yongguang; Wang, Shibo; Huang, Miaoliang; Lan, Zhang

    2017-01-01

    Highlights: •Large grain and mesoporous Zn 2 SnO 4 are synthesized by a facile hydrothermal method. •Perovskite device with Zn 2 SnO 4 electron transport layer get efficiency of 17.21%. •While the device with TiO 2 electron transport layer obtain an efficiency of 14.83%. •Superior photovoltaic performance stems from the intrinsic characteristics of Zn 2 SnO 4 . -- Abstract: Electron transport layer with higher carrier mobility and suitable band gap structure plays a significant role in determining the photovoltaic performance of perovskite solar cells (PSCs). Here, we report a synthesis of high crystalline zinc stannate (Zn 2 SnO 4 ) by a facile hydrothermal method. The as-synthesized Zn 2 SnO 4 possesses particle size of 20 nm, large surface area, mesoporous hierarchical structure, and can be used as a promising electron-transport materials to replace the conventional mesoporous TiO 2 material. A perovskite solar cell with structure of FTO/blocking layer/Zn 2 SnO 4 /CH 3 NH 3 PbI 3 /Spiro-OMeOTAD/Au is fabricated, and the preparation condition is optimized. The champion device based on Zn 2 SnO 4 electron transport material achieves a power conversion efficiency of 17.21%, while the device based on TiO 2 electron transport material gets an efficiency of 14.83% under the same experimental conditions. The results render Zn 2 SnO 4 an effective candidate as electron transport material for high performance perovskite solar cells and other devices.

  11. Development and application of a window-type environmental cell in high voltage electron microscope

    International Nuclear Information System (INIS)

    Wakasugi, Takenobu; Isobe, Shigehito; Umeda, Ayaka; Wang, Yongming; Hashimoto, Naoyuki; Ohnuki, Somei

    2013-01-01

    Highlights: ► A window-type environmental cell for a high voltage electron microscope (HVEM) is developed. ► In situ HVEM image of Pd under an H2 gas pressure is obtained. ► The effect of the window materials on the resolution and contamination of the HVEM image is tested. -- Abstract: A close type of an environmental cell was developed for a high voltage electron microscope. Using this cell allowed an in situ observation of hydrogenation in Pd particles under H 2 gas of 0.05 MPa at RT. Two types of window films, Tri-Acetyl-Cellulose (TAC) and Silicon Nitride (SiN), were used for testing the contamination on the sample, as well as the strength for pressure. We confirmed the hydrogenation in diffraction patterns and images, and additionally the image resolution of 0.19 nm was obtained by using a SiN film with a thickness of 17 nm

  12. Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells.

    Science.gov (United States)

    Liu, Jun; Xue, Yuhua; Gao, Yunxiang; Yu, Dingshan; Durstock, Michael; Dai, Liming

    2012-05-02

    By charge neutralization of carboxylic acid groups in graphene oxide (GO) with Cs(2)CO(3) to afford Cesium-neutralized GO (GO-Cs), GO derivatives with appropriate modification are used as both hole- and electron-extraction layers for bulk heterojunction (BHJ) solar cells. The normal and inverted devices based on GO hole- and GO-Cs electron-extraction layers both outperform the corresponding standard BHJ solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electron microscopic study of the spilt irradiation effects on the rat parotid ductal cells

    International Nuclear Information System (INIS)

    Kim, Sung Soo; Lee, Sang Rae

    1988-01-01

    This study was designed to investigate the effects of split irradiation on the salivary ductal cells, especially on the intercalated cells of the rat parotid glands. For this study, 24 Sprague-Dawley strain rats were irradiated on the head and neck region with two equal split doses of 9 Gy for a 4 hours interval by Co-60 teletherapy unit, Picker's mode l 4M 60. The conditions of irradiation were that field size, dose rate, SSD and depth were 12 X 5 cm, 222 cGy/min, 50 cm and 1 cm, respectively. The experimental animals were sacrificed 1, 2, 3, 6, 12, hours and 1, 3, 7, days after the irradiation and the changes of the irradiated intercalated cells of the parotid glands were examined under light and electron microscope. The results were as follows: 1. By the split irradiation, the degenerative changes of intercalated cells of the parotid glands appeared at 3 hours after irradiation and the most severe cellular degeneration observed at 6 hours after irradiation. The repair processes began from 12 hours after irradiation and have matured progressively. 2. Under electron microscope, loss of nuclear membrane, microvilli and secretory granules, derangement of chromosomes, degeneration of cytoplasm, atrophy or reduction of intracytoplasmic organelles were observed in the intercalated ductal cells after split irradiation. 3. Under light microscope, derangement of ductal cells, widening of cytoplasms and nuclei, hyperchromatism and proliferation of ductal cells were observed in intercalated ducts after split irradiation.

  14. Morphologically controlled ZnO nanostructures as electron transport materials in polymer-based organic solar cells

    International Nuclear Information System (INIS)

    Choi, Kyu-Chae; Lee, Eun-Jin; Baek, Youn-Kyoung; Lim, Dong-Chan; Kang, Yong-Cheol; Kim, Yang-Do; Kim, Ki Hyun; Kim, Jae Pil; Kim, Young-Kuk

    2015-01-01

    Highlights: • Enhanced efficiency of solar cells using ZnO nanocrystals for charge transport. • Morphology of the charge transport layer is controlled. • Mixture of nanoparticles and nanorods are advantageous for cell efficiency. - ABSTRACT: The morphology of ZnO electron transport layers based on ZnO nanoparticles were modified with incorporation of ZnO nanorods via their co-deposition from mixed colloidal solution of nanoparticles and nanorods. In particular, the short circuit current density and the fill factor of the constructed photovoltaic device were simultaneously improved by applying mixture of ZnO nanoparticles and nanorods. As a result, a large improvement of power conversion efficiency up to 9% for the inverted organic solar cells having a blend of low band gap polymers and fullerene derivative as an active layer was demonstrated with the morphologically controlled ZnO electron transport layer.

  15. Displacement damage analysis and modified electrical equivalent circuit for electron and photon-irradiated silicon solar cells

    Science.gov (United States)

    Arjhangmehr, Afshin; Feghhi, Seyed Amir Hossein

    2014-10-01

    Solar modules and arrays are the conventional energy resources of space satellites. Outside the earth's atmosphere, solar panels experience abnormal radiation environments and because of incident particles, photovoltaic (PV) parameters degrade. This article tries to analyze the electrical performance of electron and photon-irradiated mono-crystalline silicon (mono-Si) solar cells. PV cells are irradiated by mono-energetic electrons and poly-energetic photons and immediately characterized after the irradiation. The mean degradation of the maximum power (Pmax) of silicon solar cells is presented and correlated using the displacement damage dose (Dd) methodology. This method simplifies evaluation of cell performance in space radiation environments and produces a single characteristic curve for Pmax degradation. Furthermore, complete analysis of the results revealed that the open-circuit voltage (Voc) and the filling factor of mono-Si cells did not significantly change during the irradiation and were independent of the radiation type and fluence. Moreover, a new technique is developed that adapts the irradiation-induced effects in a single-cell equivalent electrical circuit and adjusts its elements. The "modified circuit" is capable of modeling the "radiation damage" in the electrical behavior of mono-Si solar cells and simplifies the designing of the compensation circuits.

  16. Impacts of solar-absorbing aerosol layers on the transition of stratocumulus to trade cumulus clouds

    Directory of Open Access Journals (Sweden)

    X. Zhou

    2017-10-01

    Full Text Available The effects of an initially overlying layer of solar-absorbing aerosol on the transition of stratocumulus to trade cumulus clouds are examined using large-eddy simulations. For lightly drizzling cloud the transition is generally hastened, resulting mainly from increased cloud droplet number concentration (Nc induced by entrained aerosol. The increased Nc slows sedimentation of cloud droplets and shortens their relaxation time for diffusional growth, both of which accelerate entrainment of overlying air and thereby stratocumulus breakup. However, the decrease in albedo from cloud breakup is more than offset by redistributing cloud water over a greater number of droplets, such that the diurnal-average shortwave forcing at the top of the atmosphere is negative. The negative radiative forcing is enhanced by sizable longwave contributions, which result from the greater cloud breakup and a reduced boundary layer height associated with aerosol heating. A perturbation of moisture instead of aerosol aloft leads to a greater liquid water path and a more gradual transition. Adding absorbing aerosol to that atmosphere results in substantial reductions in liquid water path (LWP and cloud cover that lead to positive shortwave and negative longwave forcings on average canceling each other. Only for heavily drizzling clouds is the breakup delayed, as inhibition of precipitation overcomes cloud water loss from enhanced entrainment. Considering these simulations as an imperfect proxy for biomass burning plumes influencing Namibian stratocumulus, we expect regional indirect plus semi-direct forcings to be substantially negative to negligible at the top of the atmosphere, with its magnitude sensitive to background and perturbation properties.

  17. Somatic Donor Cell Type Correlates with Embryonic, but Not Extra-Embryonic, Gene Expression in Postimplantation Cloned Embryos

    Science.gov (United States)

    Inoue, Kimiko; Ogura, Atsuo

    2013-01-01

    The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (Pcloning efficiency using SCNT. PMID:24146866

  18. Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun; Gao, Yunxiang; Yu, Dingshan; Dai, Liming [Center of Advanced Science and Engineering for Carbon, Department of Macromolecular, Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio (United States); Xue, Yuhua [Center of Advanced Science and Engineering for Carbon, Department of Macromolecular, Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio (United States); Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical College, Zhejiang 325027 (China); Durstock, Michael [Materials and Manufacturing Directorate, Air Force Research Laboratory, RXBP, Wright-Patterson Air Force Base, Ohio 45433 (United States)

    2012-05-02

    By charge neutralization of carboxylic acid groups in graphene oxide (GO) with Cs{sub 2}CO{sub 3} to afford Cesium-neutralized GO (GO-Cs), GO derivatives with appropriate modification are used as both hole- and electron-extraction layers for bulk heterojunction (BHJ) solar cells. The normal and inverted devices based on GO hole- and GO-Cs electron-extraction layers both outperform the corresponding standard BHJ solar cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Some personal and historical notes on the utility of "deep-etch" electron microscopy for making cell structure/function correlations.

    Science.gov (United States)

    Heuser, John E

    2014-11-01

    This brief essay talks up the advantages of metal replicas for electron microscopy and explains why they are still the best way to image frozen cells in the electron microscope. Then it explains our approach to freezing, namely the Van Harreveld trick of "slamming" living cells onto a supercold block of metal sprayed with liquid helium at -269ºC, and further talks up this slamming over the alternative of high-pressure freezing, which is much trickier but enjoys greater favor at the moment. This leads me to bemoan the fact that there are not more young investigators today who want to get their hands on electron microscopes and use our approach to get the most "true to life" views of cells out of them with a minimum of hassle. Finally, it ends with a few perspectives on my own career and concludes that, personally, I'm permanently stuck with the view of the "founding fathers" that cell ultrastructure will ultimately display and explain all of cell function, or as Palade said in his Nobel lecture,electron micrographs are "irresistible and half transparent … their meaning buried under only a few years of work," and "reasonable working hypotheses are already suggested by the ultrastructural organization itself." © 2014 Heuser.

  20. 2. Brazilian Congress on Cell Biology and 7. Brazilian Colloquium on Electron Microscopy - Abstracts

    International Nuclear Information System (INIS)

    1980-01-01

    Immunology, virology, bacteriology, genetics and protozoology are some of the subjects treated in the 2. Brazilian Congress on Cell Biology. Studies using radioisotopic techniques and ultrastructural cytological studies are presented. Use of optical - and electron microscopy in some of these studies is discussed. In the 7. Brazilian Colloquium on Electron Microscopy, the application of this technique to materials science is discussed (failure analysis in metallurgy, energy dispersion X-ray analysis, etc). (I.C.R.) [pt

  1. Fullerene-Based Electron Transport Layers for Semi-Transparent MAPbBr3 Perovskite Films in Planar Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Lung-Chien Chen

    2016-10-01

    Full Text Available In this study, four kinds of structures—[6,6]-phenyl-C61-butyric acid methyl ester (PCBM, PCBM/fullerene (C60, C60/bathocuproine (BCP, and PCBM/C60/BCP—were used as electron transport layers, and the structure, and optical and electronic behaviors of MAPbBr3 perovskite layers after annealing treatments were observed. The experimental results indicate that PCBM/C60 bi-layer structure is acceptable for MAPbBr3 planar perovskite solar cells due to electron step transporting. Low-temperature annealing is suitable for smooth and large grain MAPbBr3 films. The semi-transparent yellow C60/PCBM/MAPbBr3/PEDOT:PSS/ITO glass-structure solar cells exhibit the best performance with a power conversion efficiency of 4.19%. The solar cells are revealed to be suitable for application in building integrated photovoltaic (BIPV systems.

  2. Enhanced efficiency of organic solar cells by using ZnO as an electron-transport layer

    Science.gov (United States)

    Ullah, Irfan; Shah, Said Karim; Wali, Sartaj; Hayat, Khizar; Khattak, Shaukat Ali; Khan, Aurangzeb

    2017-12-01

    This paper reports the use of ZnO, processed by sol-gel, as an efficient electron-transport layer for inverted organic photovoltaic cells. The device with incorporated ZnO interlayer, annealed at 100 °C, between transparent electrode and blend film plays an effective role in enhancing photovoltaic properties: the short-circuit current density (J sc) doubles while open-circuit voltage (V oc) and fill factor increase by 0.12 V and 10 %, respectively. Power conversion efficiency (PCE) of solar cell increases, approximately, three times. The improvement in the PCE is attributed to the presence of ZnO which, being an electron-facilitating layer, provides an energy step for charge collection at electrodes.

  3. Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy.

    Science.gov (United States)

    Popescu, Laurentiu M; Gherghiceanu, Mihaela; Suciu, Laura C; Manole, Catalin G; Hinescu, Mihail E

    2011-09-01

    This study describes a novel type of interstitial (stromal) cell - telocytes (TCs) - in the human and mouse respiratory tree (terminal and respiratory bronchioles, as well as alveolar ducts). TCs have recently been described in pleura, epicardium, myocardium, endocardium, intestine, uterus, pancreas, mammary gland, etc. (see www.telocytes.com ). TCs are cells with specific prolongations called telopodes (Tp), frequently two to three per cell. Tp are very long prolongations (tens up to hundreds of μm) built of alternating thin segments known as podomers (≤ 200 nm, below the resolving power of light microscope) and dilated segments called podoms, which accommodate mitochondria, rough endoplasmic reticulum and caveolae. Tp ramify dichotomously, making a 3-dimensional network with complex homo- and heterocellular junctions. Confocal microscopy reveals that TCs are c-kit- and CD34-positive. Tp release shed vesicles or exosomes, sending macromolecular signals to neighboring cells and eventually modifying their transcriptional activity. At bronchoalveolar junctions, TCs have been observed in close association with putative stem cells (SCs) in the subepithelial stroma. SCs are recognized by their ultrastructure and Sca-1 positivity. Tp surround SCs, forming complex TC-SC niches (TC-SCNs). Electron tomography allows the identification of bridging nanostructures, which connect Tp with SCs. In conclusion, this study shows the presence of TCs in lungs and identifies a TC-SC tandem in subepithelial niches of the bronchiolar tree. In TC-SCNs, the synergy of TCs and SCs may be based on nanocontacts and shed vesicles.

  4. Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    Science.gov (United States)

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-11-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility — A Review

    Directory of Open Access Journals (Sweden)

    Fernanda Cavallari de Castro

    2016-08-01

    Full Text Available Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9 and the bone morphogenetic protein 15 (BMP15, belong to the transforming growth factor beta (TGF-β superfamily, have been implicated as essential for follicular development. The GDF9 and BMP15 participate in the evolution of the primordial follicle to primary follicle and play an important role in the later stages of follicular development and maturation, increasing the steroidogenic acute regulatory protein expression, plasminogen activator and luteinizing hormone receptor (LHR. These factors are also involved in the interconnections between the oocyte and surrounding cumulus cells, where they regulate absorption of amino acids, glycolysis and biosynthesis of cholesterol cumulus cells. Even though the mode of action has not been fully established, in vitro observations indicate that the factors GDF9 and BMP15 stimulate the growth of ovarian follicles and proliferation of cumulus cells through the induction of mitosis in cells and granulosa and theca expression of genes linked to follicular maturation. Thus, seeking greater understanding of the action of these growth factors on the development of oocytes, the role of GDF9 and BMP15 in ovarian function is summarized in this brief review.

  6. Wallerian degeneration slow mouse neurons are protected against cell death caused by mechanisms involving mitochondrial electron transport dysfunction.

    Science.gov (United States)

    Tokunaga, Shinji; Araki, Toshiyuki

    2012-03-01

    Ischemia elicits a variety of stress responses in neuronal cells, which result in cell death. wld(S) Mice bear a mutation that significantly delays Wallerian degeneration. This mutation also protects all neuronal cells against other types of stresses resulting in cell death, including ischemia. To clarify the types of stresses that neuronal cell bodies derived from wld(S) mice are protected from, we exposed primary cultured neurons derived from wld(S) mice to various components of hypoxic stress. We found that wld(S) mouse neurons are protected against cellular injury induced by reoxygenation following hypoxic stress. Furthermore, we found that wld(S) mouse neurons are protected against functional impairment of the mitochondrial electron transport chain. These data suggest that Wld(S) protein expression may provide protection against neuronal cell death caused by mechanisms involving mitochondrial electron transport dysfunction. Copyright © 2011 Wiley Periodicals, Inc.

  7. Association of intracellular and synaptic organization in cochlear inner hair cells revealed by 3D electron microscopy

    OpenAIRE

    Bullen, Anwen; West, Timothy; Moores, Carolyn; Ashmore, Jonathan; Fleck, Roland A.; MacLellan-Gibson, Kirsty; Forge, Andrew

    2015-01-01

    ABSTRACT The ways in which cell architecture is modelled to meet cell function is a poorly understood facet of cell biology. To address this question, we have studied the cytoarchitecture of a cell with highly specialised organisation, the cochlear inner hair cell (IHC), using multiple hierarchies of three-dimensional (3D) electron microscopy analyses. We show that synaptic terminal distribution on the IHC surface correlates with cell shape, and the distribution of a highly organised network ...

  8. Effects of electron irradiation and temperature on 1 ohm-cm and 10 ohm-cm silicon solar cells

    Science.gov (United States)

    Nicoletta, C. A.

    1973-01-01

    One OHM-cm and 10 OHM-cm silicon solar cells were exposed to 1.0 MeV electrons at a fixed flux of 10 to the 11th power e/sq cm/sec and fluences of 10 to the 13th power, 10 to the 14th power and 10 to the 15th power e/sq.cm. 1-V curves of the cells were made at room temperature, - 63 C and + or - 143 C after each irradiation. A value of 139.5 mw/sq cm was used as AMO incident energy rate per unit area. The 10 OHM-cm cells appear more efficient than 1 OHM-cm cells after exposure to a fluence greater than 10 to the 14th power e/sq cm. The 1.0 MeV electron damage coefficients for both 1 OHM-cm and 10 OHM-cm cells are somewhat less than those for previously irradiated cells at room temperature. The values of the damage coefficients increase as the cell temperatures decrease. Efficiencies pertaining to maximum power output are about the same as those of n on p silicon cells evaluated previously.

  9. Specific, sensitive, high-resolution detection of protein molecules in eukaryotic cells using metal-tagging transmission electron microscopy

    Science.gov (United States)

    Risco, Cristina; Sanmartín-Conesa, Eva; Tzeng, Wen-Pin; Frey, Teryl K.; Seybold, Volker; de Groot, Raoul J.

    2012-01-01

    Summary More than any other methodology, transmission electron microscopy (TEM) has contributed to our understanding of the architecture and organization of cells. With current detection limits approaching atomic resolution, it will ultimately become possible to ultrastructurally image intracellular macromolecular assemblies in situ. Presently, however, methods to unambiguously identify proteins within the crowded environment of the cell’s interior are lagging behind. We describe a novel approach, metal-tagging TEM (METTEM) that allows detection of intracellular proteins in mammalian cells with high specificity, exceptional sensitivity and at molecular scale resolution. In live cells treated with gold salts, proteins bearing a small metal-binding tag will form 1-nm gold nanoclusters, readily detectable in electron micrographs. The applicability and strength of METTEM is demonstrated by a study of Rubella virus replicase and capsid proteins, which revealed virus-induced cell structures not seen before. PMID:22579245

  10. Direct Methanol Fuel Cell systems in portable electronics - a metrics-based conceptualization approach

    NARCIS (Netherlands)

    Flipsen, S.F.J.

    2010-01-01

    It is impossible to imagine life without portable electronics like the laptop computer and cell phone. All these products are powered by a battery, granting them grid independence and all-round protability. Connectivity to the internet and an increase of functionality demands for a better battery.

  11. Particle-in-Cell Calculations of the Electron Cloud in the ILC Positron Damping Ring Wigglers

    International Nuclear Information System (INIS)

    Celata, C.M.; Furman, M.A.; Vay, J.-L.; Grote, D.P.

    2007-01-01

    The self-consistent code suite WARP-POSINST is being used to study electron cloud effects in the ILC positron damping ring wiggler. WARP is a parallelized, 3D particle-in-cell code which is fully self-consistent for all species. The POSINST models for the production of photoelectrons and secondary electrons are used to calculate electron creation. Mesh refinement and a moving reference frame for the calculation will be used to reduce the computer time needed by several orders of magnitude. We present preliminary results for cloud buildup showing 3D electron effects at the nulls of the vertical wiggler field. First results from a benchmark of WARP-POSINST vs. POSINST are also discussed

  12. Tantalum Nitride Electron-Selective Contact for Crystalline Silicon Solar Cells

    KAUST Repository

    Yang, Xinbo

    2018-04-19

    Minimizing carrier recombination at contact regions by using carrier‐selective contact materials, instead of heavily doping the silicon, has attracted considerable attention for high‐efficiency, low‐cost crystalline silicon (c‐Si) solar cells. A novel electron‐selective, passivating contact for c‐Si solar cells is presented. Tantalum nitride (TaN x ) thin films deposited by atomic layer deposition are demonstrated to provide excellent electron‐transporting and hole‐blocking properties to the silicon surface, due to their small conduction band offset and large valence band offset. Thin TaNx interlayers provide moderate passivation of the silicon surfaces while simultaneously allowing a low contact resistivity to n‐type silicon. A power conversion efficiency (PCE) of over 20% is demonstrated with c‐Si solar cells featuring a simple full‐area electron‐selective TaNx contact, which significantly improves the fill factor and the open circuit voltage (Voc) and hence provides the higher PCE. The work opens up the possibility of using metal nitrides, instead of metal oxides, as carrier‐selective contacts or electron transport layers for photovoltaic devices.

  13. Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

    International Nuclear Information System (INIS)

    Susumu, Kato; Eisuke, Miura; Kazuyoshi, Koyama; Mitsumori, Tanimoto; Masahiro, Adachi

    2004-01-01

    The propagation of intense laser pulses and the generation of high energy electrons from underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power to the critical power of relativistic self-focusing gets the optimal value, the laser pulse propagates in a steady way and electrons have maximum energies. (author)

  14. Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Susumu, Kato; Eisuke, Miura; Kazuyoshi, Koyama [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Mitsumori, Tanimoto [Meisei Univ., Dept. of Electrical Engineering, Hino, Tokyo (Japan); Masahiro, Adachi [Hiroshima Univ., Graduate school of Advanced Science of Matter, Higashi-Hiroshima, Hiroshima (Japan)

    2004-07-01

    The propagation of intense laser pulses and the generation of high energy electrons from underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power to the critical power of relativistic self-focusing gets the optimal value, the laser pulse propagates in a steady way and electrons have maximum energies. (author)

  15. Alloxan-induced diabetes and insulin resistant effects on ovulation

    African Journals Online (AJOL)

    Dr Olaleye

    characterized based on the proportion of 3 cell types. (epithelial cells, cornified cells, and leukocytes) observed in the vaginal smear. Diabetes mellitus has been shown to interfere with ..... (1996). Altered prostanoid production by cumulus- oocyte complexes in a rat model of non-insulin- dependent diabetes mellitus.

  16. Traversal of cells by radiation and absorbed fraction estimates for electrons and alpha particles

    International Nuclear Information System (INIS)

    Eckerman, K.F.; Ryman, J.C.; Taner, A.C.; Kerr, G.D.

    1986-01-01

    Consideration of the pathlength which radiation traverses in a cell is central to algorithms for estimating energy deposition on a cellular level. Distinct pathlength distributions occur for radionuclides: (1) uniformly distributed in space about the cell (referred to as μ-randomness); (2) uniformly distributed on the surface of the cell (S-randomness); and (3) uniformly distributed within the cell volume (I-randomness). For a spherical cell of diameter d, the mean pathlengths are 2/3d, and 3/4d, respectively, for these distributions. Algorithms for simulating the path of radiation through a cell are presented and the absorbed fraction in the cell and its nucleus are tabulated for low energy electrons and alpha particles emitted on the surface of spherical cells. The algorithms and absorbed fraction data should be of interest to those concerned with the dosimetry of radionuclide-labeled monoclonal antibodies. 8 references, 3 figures, 2 tables

  17. Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations

    International Nuclear Information System (INIS)

    Hughes, R. Scott; Gary, S. Peter; Wang, Joseph

    2014-01-01

    Three-dimensional particle-in-cell simulations of decaying whistler turbulence are carried out on a collisionless, homogeneous, magnetized, electron-ion plasma model. In addition, the simulations use an initial ensemble of relatively long wavelength whistler modes with a broad range of initial propagation directions with an initial electron beta β e = 0.05. The computations follow the temporal evolution of the fluctuations as they cascade into broadband turbulent spectra at shorter wavelengths. Three simulations correspond to successively larger simulation boxes and successively longer wavelengths of the initial fluctuations. The computations confirm previous results showing electron heating is preferentially parallel to the background magnetic field B o , and ion heating is preferentially perpendicular to B o . The new results here are that larger simulation boxes and longer initial whistler wavelengths yield weaker overall dissipation, consistent with linear dispersion theory predictions of decreased damping, stronger ion heating, consistent with a stronger ion Landau resonance, and weaker electron heating

  18. Perpendicular electron cyclotron emission from hot electrons in TMX-U

    International Nuclear Information System (INIS)

    James, R.A.; Ellis, R.F.; Lasnier, C.J.; Casper, T.A.; Celata, C.M.

    1984-01-01

    Perpendicular electron cyclotron emission (PECE) from the electron cyclotron resonant heating of hot electrons in TMX-U is measured at 30 to 40 and 50 to 75 GHz. This emission is optically thin and is measured at the midplane, f/sub ce/ approx. = 14 GHz, in either end cell. In the west end cell, the emission can be measured at different axial positions thus yielding the temporal history of the hot electron axial profile. These profiles are in excellent agreement with the axial diamagnetic signals. In addition, the PECE signal level correlates well with the diamagnetic signal over a wide range of hot electron densities. Preliminary results from theoretical modeling and comparisons with other diagnostics are also presented

  19. Electron behavior in ion beam neutralization in electric propulsion: full particle-in-cell simulation

    International Nuclear Information System (INIS)

    Usui, Hideyuki; Hashimoto, Akihiko; Miyake, Yohei

    2013-01-01

    By performing full Particle-In-Cell simulations, we examined the transient response of electrons released for the charge neutralization of a local ion beam emitted from an ion engine which is one of the electric propulsion systems. In the vicinity of the engine, the mixing process of electrons in the ion beam region is not so obvious because of large difference of dynamics between electrons and ions. A heavy ion beam emitted from a spacecraft propagates away from the engine and forms a positive potential region with respect to the background. Meanwhile electrons emitted for a neutralizer located near the ion engine are electrically attracted or accelerated to the core of the ion beam. Some electrons with the energy lower than the ion beam potential are trapped in the beam region and move along with the ion beam propagation with a multi-streaming structure in the beam potential region. Since the locations of the neutralizer and the ion beam exit are different, the above-mentioned bouncing motion of electrons is also observed in the direction of the beam diameter

  20. Genetic effects of decay by electron capture of radionuclides in yeasts cell

    International Nuclear Information System (INIS)

    Gracheva, L.M.; Korolev, V.G.

    1984-01-01

    Regularities of genetic effect on the yeast cell Saccharomyces cerevisiae, incorporated radionuclides decaying according to the scheme of k-capture- 7 Be, 54 Mn, 85 Sr are studied. It is known that this type of decay models the ionization of internal electron shells of atoms which is most probable when a cell is affected by external ionizing radiation. It is shown that the decay of radionuclides connecting with a DNA molecule in a cell according to the scheme of D-capture brings about a strong lethal effect. The relative mutagenic efficiency is much lower than that for gamma-radiation and many radionuclides decaying according to the scheme of B-decay. In the mutation spectrum induced by these radionuclides the increase in the number of mutations of the reading frame shift type is observed

  1. MALDI Mass Spectrometry Imaging of Lipids and Gene Expression Reveals Differences in Fatty Acid Metabolism between Follicular Compartments in Porcine Ovaries

    Directory of Open Access Journals (Sweden)

    Svetlana Uzbekova

    2015-03-01

    Full Text Available In mammals, oocytes develop inside the ovarian follicles; this process is strongly supported by the surrounding follicular environment consisting of cumulus, granulosa and theca cells, and follicular fluid. In the antral follicle, the final stages of oogenesis require large amounts of energy that is produced by follicular cells from substrates including glucose, amino acids and fatty acids (FAs. Since lipid metabolism plays an important role in acquiring oocyte developmental competence, the aim of this study was to investigate site-specificity of lipid metabolism in ovaries by comparing lipid profiles and expression of FA metabolism-related genes in different ovarian compartments. Using MALDI Mass Spectrometry Imaging, images of porcine ovary sections were reconstructed from lipid ion signals for the first time. Cluster analysis of ion spectra revealed differences in spatial distribution of lipid species among ovarian compartments, notably between the follicles and interstitial tissue. Inside the follicles analysis differentiated follicular fluid, granulosa, theca and the oocyte-cumulus complex. Moreover, by transcript quantification using real time PCR, we showed that expression of five key genes in FA metabolism significantly varied between somatic follicular cells (theca, granulosa and cumulus and the oocyte. In conclusion, lipid metabolism differs between ovarian and follicular compartments.

  2. Low resistivity ZnO-GO electron transport layer based CH3NH3PbI3 solar cells

    Directory of Open Access Journals (Sweden)

    Muhammad Imran Ahmed

    2016-06-01

    Full Text Available Perovskite based solar cells have demonstrated impressive performances. Controlled environment synthesis and expensive hole transport material impede their potential commercialization. We report ambient air synthesis of hole transport layer free devices using ZnO-GO as electron selective contacts. Solar cells fabricated with hole transport layer free architecture under ambient air conditions with ZnO as electron selective contact achieved an efficiency of 3.02%. We have demonstrated that by incorporating GO in ZnO matrix, low resistivity electron selective contacts, critical to improve the performance, can be achieved. We could achieve max efficiency of 4.52% with our completed devices for ZnO: GO composite. Impedance spectroscopy confirmed the decrease in series resistance and an increase in recombination resistance with inclusion of GO in ZnO matrix. Effect of temperature on completed devices was investigated by recording impedance spectra at 40 and 60 oC, providing indirect evidence of the performance of solar cells at elevated temperatures.

  3. Photoreactivity in Saccharomyces cerevisiae cells after irradiation with 25 MeV electrons

    International Nuclear Information System (INIS)

    Tsyb, T.S.; Seleva, N.G.; Myasnik, M.N.; Kabakova, N.M.

    1986-01-01

    Significant photoreactivation was noted in radio- and UV-sensitive rad-mutants of Saccharomyces cerevisiae cells exposed to 25 MeV electrons. In order to make the photoreactivable damage be manifest anoxic conditions of irradiation should be chosen as optimal ones. It was shown that the low oxygen effect was partially associated with the photoreactivable damage involved in the lethal effect of ionizing radiation

  4. A simple procedure to analyze positions of interest in infectious cell cultures by correlative light and electron microscopy.

    Science.gov (United States)

    Madela, Kazimierz; Banhart, Sebastian; Zimmermann, Anja; Piesker, Janett; Bannert, Norbert; Laue, Michael

    2014-01-01

    Plastic cell culture dishes that contain a thin bottom of highest optical quality including an imprinted finder grid (μ-Dish Grid-500) are optimally suited for routine correlative light and electron microscopy using chemical fixation. Such dishes allow high-resolution fluorescence and bright-field imaging using fixed and living cells and are compatible with standard protocols for scanning and transmission electron microscopy. Ease of use during cell culture and imaging, as well as a tight cover render the dishes particularly suitable for working with infectious organisms up to the highest biosafety level. Detailed protocols are provided and demonstrated by showing two examples: monitoring the production of virus-like particles of the Human Endogenous Retrovirus HERV-K(HML-2) by HeLa cells and investigation of Rab11-positive membrane-compartments of HeLa cells after infection with Chlamydia trachomatis. © 2014 Elsevier Inc. All rights reserved.

  5. A solution-processed binary cathode interfacial layer facilitates electron extraction for inverted polymer solar cells.

    Science.gov (United States)

    Zhang, Xinyuan; Li, Zhiqi; Liu, Chunyu; Guo, Jiaxin; Shen, Liang; Guo, Wenbin

    2018-03-15

    The charge transfer and separation are significantly affected by the electron properties of the interface between the electron-donor layer and the carrier-transporting layer in polymer solar cells (PSCs). In this study, we investigate the electron extraction mechanism of PSCs with a low temperature solution-processed ZnO/PEI as electron transport layer. The incorporation of PEI layer can decrease the work function of ZnO and reduce interfacial barrier, which facilitates electron extraction and suppresses bimolecular recombination, leading to a significant performance enhancement. Furthermore, PEI layer can induce phase separation and passivite inorganic surface trap states as well as shift the interfacial energy offset between metal oxide and organic materials. This work offers a simple and effective way to improve the charge transporting property of organic photovoltaic devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Okadaic acid inhibits cell growth and photosynthetic electron transport in the alga Dunaliella tertiolecta

    Energy Technology Data Exchange (ETDEWEB)

    Perreault, Francois; Matias, Marcelo Seleme; Oukarroum, Abdallah [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada); Matias, William Gerson [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada); Laboratorio de Toxicologia Ambiental, LABTOX, Depto. de Engenharia Sanitaria e Ambiental, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-970, Florianopolis, SC (Brazil); Popovic, Radovan, E-mail: popovic.radovan@uqam.ca [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada)

    2012-01-01

    Okadaic acid (OA), which is produced by several dinoflagellate species, is a phycotoxin known to induce a decrease of biomass production in phytoplankton. However, the mechanisms of OA cytotoxicity are still unknown in microalgae. In this study, we exposed the green microalga Dunaliella tertiolecta to OA concentrations of 0.05 to 0.5 {mu}M in order to evaluate its effects on cell division, reactive oxygen species production and photosynthetic electron transport. After 72 h of treatment under continuous illumination, OA concentrations higher than 0.10 {mu}M decreased culture cell density, induced oxidative stress and inhibited photosystem II electron transport capacity. OA effect in D. tertiolecta was strongly light dependent since no oxidative stress was observed when D. tertiolecta was exposed to OA in the dark. In the absence of light, the effect of OA on culture cell density and photosystem II activity was also significantly reduced. Therefore, light appears to have a significant role in the toxicity of OA in microalgae. Our results indicate that the site of OA interaction on photosynthetic electron transport is likely to be at the level of the plastoquinone pool, which can lead to photo-oxidative stress when light absorbed by the light-harvesting complex of photosystem II cannot be dissipated via photochemical pathways. These findings allowed for a better understanding of the mechanisms of OA toxicity in microalgae. - Highlights: Black-Right-Pointing-Pointer Exposition of Dunaliella tertiolecta to okadaic acid in light conditions results in reactive oxygen species formation. Black-Right-Pointing-Pointer Inhibition of photosystem II is dependent on oxidative stress and effects of okadaic acid on the plastoquinone pool. Black-Right-Pointing-Pointer Oxidative stress and inhibition of photosynthesis increase okadaic acid effect on cell density in light conditions. Black-Right-Pointing-Pointer Okadaic acid induces toxicity in algae via both light-dependent and light

  7. 3D Plant Cell Architecture of Arabidopsis thaliana (Brassicaceae Using Focused Ion Beam–Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Bhawana

    2014-06-01

    Full Text Available Premise of the study: Focused ion beam–scanning electron microscopy (FIB-SEM combines the ability to sequentially mill the sample surface and obtain SEM images that can be used to create 3D renderings with micron-level resolution. We have applied FIB-SEM to study Arabidopsis cell architecture. The goal was to determine the efficacy of this technique in plant tissue and cellular studies and to demonstrate its usefulness in studying cell and organelle architecture and distribution. Methods: Seed aleurone, leaf mesophyll, stem cortex, root cortex, and petal lamina from Arabidopsis were fixed and embedded for electron microscopy using protocols developed for animal tissues and modified for use with plant cells. Each sample was sectioned using the FIB and imaged with SEM. These serial images were assembled to produce 3D renderings of each cell type. Results: Organelles such as nuclei and chloroplasts were easily identifiable, and other structures such as endoplasmic reticula, lipid bodies, and starch grains were distinguishable in each tissue. Discussion: The application of FIB-SEM produced 3D renderings of five plant cell types and offered unique views of their shapes and internal content. These results demonstrate the usefulness of FIB-SEM for organelle distribution and cell architecture studies.

  8. Reduction in unnecessary red blood cell folate testing by restricting computerized physician order entry in the electronic health record.

    Science.gov (United States)

    MacMillan, Thomas E; Gudgeon, Patrick; Yip, Paul M; Cavalcanti, Rodrigo B

    2018-05-02

    Red blood cell folate is a laboratory test with limited clinical utility. Previous attempts to reduce physician ordering of unnecessary laboratory tests, including folate, have resulted in only modest success. The objective of this study was to assess the effectiveness and impacts of restricting red blood cell folate ordering in the electronic health record. This was a retrospective observational study from January 2010 to December 2016 at a large academic healthcare network in Toronto, Canada. All inpatients and outpatients who underwent at least 1 red blood cell folate or vitamin B12 test during the study period were included. Red blood cell folate ordering was restricted to clincians in gastroenterology and hematology and was removed from other physicians' computerized order entry screen in the electronic health record in June 2013. Red blood cell folate testing decreased by 94.4% during the study, from a mean of 493.0 (SD 48.0) tests/month before intervention to 27.6 (SD 10.3) tests/month after intervention (P<.001). Restricting red blood cell folate ordering in the electronic health record resulted in a large and sustained reduction in red blood cell folate testing. Significant cost savings estimated at over a quarter-million dollars (CAD) over three years were achieved. There was no significant clinical impact of the intervention on the diagnosis of folate deficiency. Copyright © 2018. Published by Elsevier Inc.

  9. Traversal of cells by radiation and absorbed fraction estimates for electrons and alpha particles

    International Nuclear Information System (INIS)

    Eckerman, K.F.; Ryman, J.C.; Taner, A.C.; Kerr, G.D.

    1985-01-01

    Consideration of the pathlength which radiation traverses in a cell is central to algorithms for estimating energy deposition on a cellular level. Distinct pathlength distributions occur for radionuclides: (1) uniformly distributed in space about the cell (referred to as μ-randomness); (2) uniformly distributed on the surface of the cell (S-randomness); and (3) uniformly distributed within the cell volume (I-randomness). For a spherical cell of diameter d, the mean pathlengths are 2/3d, 1/2d, and 3/4d, respectively, for these distributions. Algorithms for simulating the path of radiation through a cell are presented and the absorbed fraction in the cell and its nucleus are tabulated for low energy electrons and alpha particles emitted on the surface of spherical cells. The algorithms and absorbed fraction data should be of interest to those concerned with the dosimetry of radionuclide-labeled monoclonal antibodies. 8 refs., 3 figs., 2 tabs

  10. Lysis of autologous human macrophages by lymphokine-activated killer cells: interaction of effector cell and target cell conjugates analyzed by scanning electron microscopy.

    Science.gov (United States)

    Streck, R J; Helinski, E H; Ovak, G M; Pauly, J L

    1990-09-01

    Lymphokine (i.e., interleukin 2; IL-2)-activated killer (LAK) cells derived from normal human blood are known to destroy human tumor target cells. Accordingly, immunotherapy modalities using IL-2, either alone or in combination with LAK cells, have been evaluated for eradicating metastatic cancer. In studies conducted to characterize receptors on LAK cell membrane ultrastructures, we observed that LAK cells kill autologous human monocyte-derived macrophages (M phi). In these experiments, peripheral blood mononuclear cells of a healthy adult donor were cultured to generate LAK cells and autologous non-adherent M phi. Thereafter, conjugates were prepared by incubating for 3 h autologous populations of LAK cells and M phi. Examination of the conjugates by scanning electron microscopy (SEM) identified LAK cell-mediated killing of M phi. Moreover, SEM analysis of the LAK cell membrane architecture identified microvilli-like ultrastructures that provided a physical bridge that joined together the LAK cell and M phi. The immunological mechanism(s) underling LAK cell killing of autologous M phi is not known; nevertheless, these conjugates will provide a useful model to study membrane receptors on ultrastructures that mediate the initial stages of cytolysis that include target cell recognition and cell-to-cell adhesion. The results of our observations and the findings of other investigators who have also demonstrated LAK cell killing of autologous normal human leukocytes are discussed in the context of the association of IL-2 and IL-2-activated killer cells with side effects observed in ongoing clinical trials and with autoimmune disorders.

  11. Use of Both Cumulus Cells’ Transcriptomic Markers and Zona Pellucida Birefringence to Select Developmentally Competent Oocytes in Human Assisted Reproductive Technologies

    Science.gov (United States)

    2015-01-01

    Background Selection of the best oocyte for subsequent steps of fertilization and embryo transfer was shown to be the crucial step in human infertility treatment procedure. Oocyte selection using morphological criteria mainly Zona pellucida (ZP) has been the gold standard method in assisted reproductive technologies (ART) clinics, but this selection approach has limitations in terms of accuracy, objectivity and constancy. Recent studies using OMICs-based approaches have allowed the identification of key molecular markers that quantitatively and non-invasively predict the oocyte quality for higher pregnancy rates and efficient infertility treatment. These biomarkers are a valuable reinforcement of the morphological selection criteria widely used in in vitro fertilization (IVF) clinics. In this context, this study was designed to investigate the relationship between transcriptomic predictors of oocyte quality found by our group and the conventional morphological parameters of oocyte quality mainly the ZP birefringence. Results Microarray data revealed that 48 and 27 differentially expressed candidate genes in cumulus cells (CCs) were respectively overexpressed and underexpressed in the ZGP (Zona Good Pregnant) versus ZBNP (Zona Bad Non Pregnant) groups. More than 70% of previously reported transcriptomic biomarkers of oocyte developmental competence were confirmed in this study. The analysis of possible association between ZP birefringence versus molecular markers approach showed an absence of correlation between them using the current set of markers. Conclusions This study suggested a new integrative approach that matches morphological and molecular approaches used to select developmentally competent oocytes able to lead to successful pregnancy and the delivery of healthy baby. For each ZP birefringence score, oocytes displayed a particular CCs' gene expression pattern. However, no correlations were found between the 7 gene biomarkers of oocyte developmental

  12. Simulation of heavy precipitation episode over eastern Peninsular Malaysia using MM5: sensitivity to cumulus parameterization schemes

    Science.gov (United States)

    Salimun, Ester; Tangang, Fredolin; Juneng, Liew

    2010-06-01

    A comparative study has been conducted to investigate the skill of four convection parameterization schemes, namely the Anthes-Kuo (AK), the Betts-Miller (BM), the Kain-Fritsch (KF), and the Grell (GR) schemes in the numerical simulation of an extreme precipitation episode over eastern Peninsular Malaysia using the Pennsylvania State University—National Center for Atmospheric Research Center (PSU-NCAR) Fifth Generation Mesoscale Model (MM5). The event is a commonly occurring westward propagating tropical depression weather system during a boreal winter resulting from an interaction between a cold surge and the quasi-stationary Borneo vortex. The model setup and other physical parameterizations are identical in all experiments and hence any difference in the simulation performance could be associated with the cumulus parameterization scheme used. From the predicted rainfall and structure of the storm, it is clear that the BM scheme has an edge over the other schemes. The rainfall intensity and spatial distribution were reasonably well simulated compared to observations. The BM scheme was also better in resolving the horizontal and vertical structures of the storm. Most of the rainfall simulated by the BM simulation was of the convective type. The failure of other schemes (AK, GR and KF) in simulating the event may be attributed to the trigger function, closure assumption, and precipitation scheme. On the other hand, the appropriateness of the BM scheme for this episode may not be generalized for other episodes or convective environments.

  13. Correlative Light-Electron Microscopy of Lipid-Encapsulated Fluorescent Nanodiamonds for Nanometric Localization of Cell Surface Antigens.

    Science.gov (United States)

    Hsieh, Feng-Jen; Chen, Yen-Wei; Huang, Yao-Kuan; Lee, Hsien-Ming; Lin, Chun-Hung; Chang, Huan-Cheng

    2018-02-06

    Containing an ensemble of nitrogen-vacancy centers in crystal matrices, fluorescent nanodiamonds (FNDs) are a new type of photostable markers that have found wide applications in light microscopy. The nanomaterial also has a dense carbon core, making it visible to electron microscopy. Here, we show that FNDs encapsulated in biotinylated lipids (bLs) are useful for subdiffraction imaging of antigens on cell surface with correlative light-electron microscopy (CLEM). The lipid encapsulation enables not only good dispersion of the particles in biological buffers but also high specific labeling of live cells. By employing the bL-encapsulated FNDs to target CD44 on HeLa cell surface through biotin-mediated immunostaining, we obtained the spatial distribution of these antigens by CLEM with a localization accuracy of ∼50 nm in routine operations. A comparative study with dual-color imaging, in which CD44 was labeled with FND and MICA/MICB was labeled with Alexa Fluor 488, demonstrated the superior performance of FNDs as fluorescent fiducial markers for CLEM of cell surface antigens.

  14. A review and design of power electronics converters for fuel cell hybrid system applications

    DEFF Research Database (Denmark)

    Zhang, Zhe; Pittini, Riccardo; Andersen, Michael A. E.

    2012-01-01

    This paper presents an overview of most promising power electronics topologies for a fuel cell hybrid power conversion system which can be utilized in many applications such as hybrid electrical vehicles (HEV), distributed generations (DG) and uninterruptible-power-supply (UPS) systems. Then...

  15. Extracting Information about the Electronic Quality of Organic Solar-Cell Absorbers from Fill Factor and Thickness

    Science.gov (United States)

    Kaienburg, Pascal; Rau, Uwe; Kirchartz, Thomas

    2016-08-01

    Understanding the fill factor in organic solar cells remains challenging due to its complex dependence on a multitude of parameters. By means of drift-diffusion simulations, we thoroughly analyze the fill factor of such low-mobility systems and demonstrate its dependence on a collection coefficient defined in this work. We systematically discuss the effect of different recombination mechanisms, space-charge regions, and contact properties. Based on these findings, we are able to interpret the thickness dependence of the fill factor for different experimental studies from the literature. The presented model provides a facile method to extract the photoactive layer's electronic quality which is of particular importance for the fill factor. We illustrate that over the past 15 years, the electronic quality has not been continuously improved, although organic solar-cell efficiencies increased steadily over the same period of time. Only recent reports show the synthesis of polymers for semiconducting films of high electronic quality that are able to produce new efficiency records.

  16. Synthesis of an A-D-A type of molecule used as electron acceptor for improving charge transfer in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao-Zhi, E-mail: chzhzhang@sohu.com [Department of Chemistry, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Gu, Shu-Duo; Shen, Dan; Yuan, Yang [Department of Chemistry, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Zhang, Mingdao, E-mail: matchlessjimmy@163.com [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044 (China)

    2016-08-22

    Electron-accepting molecules play an important role in developing organic solar cells. A new type of A-D-A molecule, 3,6-di([7-(5-bromothiophen-2-yl)-1,5,2,4,6,8-dithiotetrazocin-3-yl]thiophen -2-yl)-9-(2-ethylhexyl)carbazole, was synthesized. The lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels are −3.55 and −5.85 eV, respectively. Therefore, the A-D-A type of compound could be used as electron acceptor for fabricating organic solar cell with a high open circuit voltage. Gibbs free energy (−49.2 kJ/mol) reveals that the process of A-D-A acceptor accepting an electron from poly(3-hexylthiophene) at excited state is spontaneous. The value of entropy (118 J/mol) in the process of an electron transferring from P3HT to the A-D-A acceptor at organic interface suggests that electrons generated from separation of electron-hole pairs at donor/acceptor interface would be delocalized efficiently. Therefore, the A-D-A molecule would be a potential acceptor for efficient organic BHJ solar cells.

  17. Solar electron source and thermionic solar cell

    Directory of Open Access Journals (Sweden)

    Parham Yaghoobi

    2012-12-01

    Full Text Available Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed “Heat Trap” effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  18. DFT Studies on the electronic structures of indoline dyes for dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    JIE XU

    2010-02-01

    Full Text Available A series of indoline dyes with promising efficiency for dye-sensitized solar cells (DSSCs were studied using the density functional theory at the B3LYP/6-31g (d level. The ground-state geometries, electronic structures and absorption spectra of these dyes are reported. The calculated results indicate that the energy levels of the HOMOs and LUMOs of these dyes are advantageous for electron injection. Their intense and broad absorption bands as well as favorable excited-state energy levels are key factor for their outstanding efficiencies in DSSCs.

  19. Examination of relaxin and its receptors expression in pig gametes and embryos

    Directory of Open Access Journals (Sweden)

    Bathgate Ross A

    2011-01-01

    Full Text Available Abstract Background Relaxin is a small peptide also known as pregnancy hormone in many mammals. It is synthesized by both male and female tissues, and its secretions are found in various body fluids such as plasma serum, ovarian follicular fluid, utero-oviduct secretions, and seminal plasma of many mammals, including pigs. However, the presence and effects of relaxin in porcine gametes and embryos are still not well-known. The purpose of this study was to assess the presence of relaxin and its receptors RXFP1 and RXFP2 in pig gametes and embryos. Methods Immature cumulus-oocyte complexes (COCs were aspirated from sows' ovaries collected at the abattoir. After in vitro-maturation, COCs were in vitro-fertilized and cultured. For studies, immature and mature COCs were separately collected, and oocytes were freed from their surrounding cumulus cells. Denuded oocytes, cumulus cells, mature boar spermatozoa, zygotes, and embryos (cleaved and blastocysts were harvested for temporal and spatial gene expression studies. Sections of ovary, granulosa and neonatal porcine uterine cells were also collected to use as controls. Results Using both semi-quantitative and quantitative PCRs, relaxin transcripts were not detected in all tested samples, while RXFP1 and RXFP2 mRNA were present. Both receptor gene products were found at higher levels in oocytes compared to cumulus cells, irrespective of the maturation time. Cleaved-embryos contained higher levels of RXFP2 mRNA, whereas, blastocysts were characterized by a higher RXFP1 mRNA content. Using western-immunoblotting or in situ immunofluorescence, relaxin and its receptor proteins were detected in all samples. Their fluorescence intensities were consistently more important in mature oocytes than immature ones. The RXFP1 and RXFP2 signal intensities were mostly located in the plasma membrane region, while the relaxin ones appeared homogeneously distributed within the oocytes and embryonic cells. Furthermore

  20. An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor

    KAUST Repository

    Cha, Hyojung; Wu, Jiaying; Wadsworth, Andrew; Nagitta, Jade; Limbu, Saurav; Pont, Sebastian; Li, Zhe; Searle, Justin; Wyatt, Mark F.; Baran, Derya; Kim, Ji-Seon; McCulloch, Iain; Durrant, James R.

    2017-01-01

    polymer blended with either the nonfullerene acceptor EH-IDTBR or the fullerene derivative, [6,6]-phenyl C71 butyric acid methyl ester (PC71 BM) as electron acceptors is reported. Inverted PffBT4T-2OD:EH-IDTBR blend solar cell fabricated without any

  1. Ultrastructural morphology and localisation of cisplatin-induced platinum-DNA adducts in a cisplatin-sensitive and -resistant human small cell lung cancer cell line using electron microscopy

    NARCIS (Netherlands)

    Meijer, C; van Luyn, MJA; Nienhuis, EF; Blom, N; Mulder, NH; de Vries, EGE

    2001-01-01

    Ultrastructural morphology (transmission electron microscopy) and localisation of cisplatin-induced platinum (Pt)-DNA adducts (immunoelectron microscopy) were analysed in the human small cell lung cancer cell line GLC(4) and its 40-fold in vitro acquired cisplatin-resistant subline GLC(4)-CDDP,

  2. Influence of encapsulated electron active molecules of single walled-carbon nanotubes on superstrate-type Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jungwoo [Department of Chemistry, Hanyang University, Seoul 133-791 (Korea, Republic of); CRD Laboratory, LG Chem. Research Park, Daejeon 305-738 (Korea, Republic of); Lee, Wonjoo [Department of Defense Ammunitions, Daeduk College, Daejeon 305-715 (Korea, Republic of); Shrestha, Nabeen K.; Lee, Deok Yeon; Lim, Iseul [Department of Chemistry, Hanyang University, Seoul 133-791 (Korea, Republic of); Kang, Soon Hyung [Department of Chemistry Education, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Nah, Yoon-Chae [School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education, Cheonan 330-708 (Korea, Republic of); Lee, Soo-Hyoung, E-mail: shlee66@jbnu.ac.kr [School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Yi, Whikun, E-mail: wkyi@hanyang.ac.kr [Department of Chemistry, Hanyang University, Seoul 133-791 (Korea, Republic of); Han, Sung-Hwan, E-mail: shhan@hanyang.ac.kr [Department of Chemistry, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2014-03-01

    Chemical functionalization of carbon nanotubes (CNTs) can strongly affect the efficiency of solar cells due to change of three factors viz. electronic energy structures, interfacial resistance, and electrical field. Therefore, it is worthwhile to investigate the influence of these three factors on the solar cells based on the functionalization of various active molecules in CNTs. In the present study, we investigate the influence of the three factors in the efficiency of superstrate-type Cu(In,Ga)Se{sub 2} (CIGS) solar cells [i.e. F-doped SnO{sub 2}/CNTs/CdS/CIGS/Au] by encapsulation of electron withdrawing and donating organic molecules inside CNTs. The CIGS solar cell was characterized using the electronic diagram, electrochemical impendence spectroscopy, reverse field emission currents, and currents–voltages curves. - Highlights: • We investigated the three effects of CNTs in superstrate-type CIGS solar cells. • Chemical functionalization of CNTs strongly affect the efficiency of solar cells. • The electrical field of solar cell was characterized using the reverse FE-currents.

  3. Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells

    KAUST Repository

    Bera, Ashok

    2014-12-11

    In this work, we explored perovskite oxide SrTiO3 (STO) for the first time as the electron-transporting layer in organolead trihalide perovskite solar cells. The steady-state photoluminescence (PL) quenching and transient absorption experiments revealed efficient photoelectron transfer from CH3NH3PbI3-xClx to STO. Perovskite solar cells with meso-STO exhibit an open circuit voltage of 1.01 V, which is 25% higher than the value of 0.81 V achieved in the control device with the conventional meso-TiO2. In addition, an increase of 17% in the fill factor was achieved by tailoring the thickness of the meso-STO layer. We found that the application of STO leads to uniform perovskite layers with large grains and complete surface coverage, leading to a high shunt resistance and improved performance. These findings suggest STO as a competitive candidate as electron transport material in organometal perovskite solar cells.

  4. Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells

    KAUST Repository

    Bera, Ashok; Wu, Kewei; Sheikh, Arif D.; Alarousu, Erkki; Mohammed, Omar F.; Wu, Tao

    2014-01-01

    In this work, we explored perovskite oxide SrTiO3 (STO) for the first time as the electron-transporting layer in organolead trihalide perovskite solar cells. The steady-state photoluminescence (PL) quenching and transient absorption experiments revealed efficient photoelectron transfer from CH3NH3PbI3-xClx to STO. Perovskite solar cells with meso-STO exhibit an open circuit voltage of 1.01 V, which is 25% higher than the value of 0.81 V achieved in the control device with the conventional meso-TiO2. In addition, an increase of 17% in the fill factor was achieved by tailoring the thickness of the meso-STO layer. We found that the application of STO leads to uniform perovskite layers with large grains and complete surface coverage, leading to a high shunt resistance and improved performance. These findings suggest STO as a competitive candidate as electron transport material in organometal perovskite solar cells.

  5. An extended collection length model for the description of keV-electron induced degradation and thermal recovery of p-i-n solar cells

    International Nuclear Information System (INIS)

    Schneider, U.; Schroder, B.

    1990-01-01

    The results of keV-electron degradation and annealing experiments obtained on a-Si:H based p-i-n solar cells are interpretated under inclusion of models developed earlier for the degradation of a-Si:H films and are placed in the framework of an extended collection length model. The strong degradation of the cell parameters j sc and FF due to considerable keV-electron irradiation can be explained quantitatively. This enables a crucial test of the validity of the mathematical models for the keV-electron induced effects developed so far. Furthermore the results of a detailed investigation of the thermal recovery of electron-degraded solar cells can be cleared up consistently. Some unresolved issues are discussed, and experiments to resolve these questions are proposed

  6. Mitochondrial genome-knockout cells demonstrate a dual mechanism of action for the electron transport complex I inhibitor mycothiazole.

    Science.gov (United States)

    Meyer, Kirsten J; Singh, A Jonathan; Cameron, Alanna; Tan, An S; Leahy, Dora C; O'Sullivan, David; Joshi, Praneta; La Flamme, Anne C; Northcote, Peter T; Berridge, Michael V; Miller, John H

    2012-04-01

    Mycothiazole, a polyketide metabolite isolated from the marine sponge Cacospongia mycofijiensis, is a potent inhibitor of metabolic activity and mitochondrial electron transport chain complex I in sensitive cells, but other cells are relatively insensitive to the drug. Sensitive cell lines (IC(50) 0.36-13.8 nM) include HeLa, P815, RAW 264.7, MDCK, HeLa S3, 143B, 4T1, B16, and CD4/CD8 T cells. Insensitive cell lines (IC(50) 12.2-26.5 μM) include HL-60, LN18, and Jurkat. Thus, there is a 34,000-fold difference in sensitivity between HeLa and HL-60 cells. Some sensitive cell lines show a biphasic response, suggesting more than one mechanism of action. Mitochondrial genome-knockout ρ(0) cell lines are insensitive to mycothiazole, supporting a conditional mitochondrial site of action. Mycothiazole is cytostatic rather than cytotoxic in sensitive cells, has a long lag period of about 12 h, and unlike the complex I inhibitor, rotenone, does not cause G(2)/M cell cycle arrest. Mycothiazole decreases, rather than increases the levels of reactive oxygen species after 24 h. It is concluded that the cytostatic inhibitory effects of mycothiazole on mitochondrial electron transport function in sensitive cell lines may depend on a pre-activation step that is absent in insensitive cell lines with intact mitochondria, and that a second lower-affinity cytotoxic target may also be involved in the metabolic and growth inhibition of cells.

  7. Electron histochemical and autoradiographic studies of vascular smooth muscle cell

    International Nuclear Information System (INIS)

    Kameyama, Kohji; Aida, Takeo; Asano, Goro

    1982-01-01

    The authors have studied the vascular smooth muscle cell in the aorta and the arteries of brain, heart in autopsied cases, cholesterol fed rabbits and canine through electron histochemical and autoradiographic methods, using 3 H-proline and 3 H-thymidine. The vascular changes are variable presumably due to the functional and morphological difference of vessels. Aging, pathological condition and physiological requirement induce the disturbances of vascular functions as contractility. According to various pathological conditions, the smooth muscle cell altered their shape, surface properties and arrangement of subcellular organelles including changes in number. The morphological features of arteries during aging is characterized by the thickening of endothelium and media. Decreasing cellularity and increasing collagen contents in media. The autoradiographic and histochemical observations using periodic acid methenamine silver (PAM) and ruthenium red stains demonstrated that the smooth muscle cell is a connective tissue synthetic cell. The PAM impregnation have proved that the small bundle of microfilaments become associated with small conglomerate of collagen and elastic fibers. Cytochemical examination will provide sufficient evidence to establish the contribution of subcellular structure. The acid phosphatase play an important role in vascular disease and they are directly involved in cellular lipid metabolism in cholesterol fed animals, and the activity of Na-K ATPase on the plasma membrane may contribute to the regulation of vascular blood flow and vasospasms. Direct injury and subsequent abnormal contraction of smooth muscle cell may initiate increased permeability of plasma protein and lipid in the media layer and eventually may developed and enhance arteriosclerosis. (author)

  8. Electron-Beam Induced Grafting of Isopropylacrylamide to a Poly(Ethylene-Terephthalate) Membrane for Cell Sheet Detachment, and Fuel Cell Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Shahamat, L; Al-Sheikhly, M [Department of Materials Science and Engineering, College Park, MD (United States)

    2012-09-15

    Using high-energy irradiation initiation, isopropylacrylamide (IPAA) was grafted to a porous membrane dish composed of poly(ethylene terephthalate) (PET). IPPA demonstrates a transition from a hydrophobic to a hydrophilic structure with a simple change in temperature. The dishes were used for cell grow. Cells generally grow in an environment set at 37 deg. C, at which the IPAA polymer exhibits its hydrophobic structure. IPAA was attached uniformly to a cell culture surface, and cells were able to grow on top of the IPAA while it was in its hydrophobic state. Cells were easily removed from the surface of the dishes after changing the temperature below the LCST of IPAA. By changing the temperature polymer altered its structure to a hydrophilic state and no longer provided a suitable surface for the cells to adhere to. This caused the cells to lift off the culture surface without the use of a destructive enzyme such as trypsin or dispase. These cell sheets are useful to cell sheet engineering because the cells will retain both their extracellular matrix (ECM) and cell-to-cell junctions, which are normally lost in the harvest of cells. Poly(tetrafluoroethylene-co-hexefluoropropylene) (FEP) is a material under investigation as a polymer electrolyte membrane for fuel cells. In order to make it ionically conductive, styrene was grafted to it and then subsequently sulfonated. Grafting of styrene to FEP was performed by simultaneous irradiation of the monomer and substrate to initiate the reaction, followed by a heat treatment to allow the reaction to undergo propagation. The effects of dose rate and heat treatment time on the weight percent yield of grafting and uniformity as a function of depth in the substrate was investigated. A 38.5 wt% graft was obtained after a 50 kGy dose of electron irradiation at a dose rate of 2,8 Gy/pulse and post-irradiation heat treatment of 60 deg. C for three hours. FTIR analysis of 10 {mu}m sections of material grafted under these

  9. Palaeobiology of Mesoproterozoic Salkhan Limestone, Semri Group ...

    Indian Academy of Sciences (India)

    Eoentophysalis cumulus Butterfield et al revised. 1994. Description: Cells polygonal, sphaeroidal, ellip- soidal, occur in solitary or in pairs, planar tetrads, irregular clusters and colonies, occasionally dis- torted due to mutual compression. The size of cells varies from 3–10µm across (with the aver- age of 4µm, 100 cells ...

  10. An efficient and reproducible process for transmission electron microscopy (TEM) of rare cell populations

    Science.gov (United States)

    Kumar, Sachin; Ciraolo, Georgianne; Hinge, Ashwini; Filippi, Marie-Dominique

    2014-01-01

    Transmission electron microscopy (TEM) provides ultra-structural details of cells at the sub-organelle level. However, details of the cellular ultrastructure, and the cellular organization and content of various organelles in rare populations, particularly in the suspension, like hematopoietic stem cells (HSCs) remained elusive. This is mainly due to the requirement of millions of cells for TEM studies. Thus, there is a vital requirement of a method that will allow TEM studies with low cell numbers of such rare populations. We describe an alternative and novel approach for TEM studies for rare cell populations. Here we performed TEM study from 10,000 HSC cells with quite ease. In particular, tiny cell pellets were identified by Evans blue staining after PFA-GA fixation. The cell pellet was pre-embedded in agarose in a small microcentrifuge tube and processed for dehydration, infiltration and embedding. Semi-thin and ultra-thin sections identified clusters of numerous cells per sections with well preserved morphology and ultrastructural details of golgi complex and mitochondria. Together, this method provides an efficient, easy and reproducible process to perform qualitative and quantitative TEM analysis from limited biological samples including cells in suspension. PMID:24291346

  11. Unbalanced field RF electron gun

    Science.gov (United States)

    Hofler, Alicia

    2013-11-12

    A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.

  12. Effect of electron affinic hypoxic cell sensitizers on the radiolytic depletion of oxygen in mammalian cells irradiated at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Michaels, H.B.

    1982-01-01

    When CHO cells are equilibrated with a low level of oxygen (e.g. 0.4% O 2 ) and irradiated with single 3 ns pulses of electrons, a breaking survival curve is observed. This effect is believed to be the result of radiolytic oxygen depletion and can be prevented by the presence of a relatively low concentraton of hypoxic cell radiosensitizer. This prevention of the breaking survival curve has been observed for 2- and 5-nitroimidazoles, nitrofurans, and diamide. It is hypothesized that the sensitizer acts by competing wth oxygen for the radiation-induced intracellular oxygen-binding species, perhaps a hydrated electron adduct, leaving oxygen free to participate in radiosensitization reactions during the lifetime of the oxygen-sensitive radiation-induced target sites for lethal damage, probably DNA radicals produced by hydroxyl radical attack. The proposed role of the sensitizer in the interference with oxygen depletion is a transient phenomenon, occuring on the microsecond to millisecond time scale

  13. A Strategy to Enhance the Efficiency of Quantum Dot-Sensitized Solar Cells by Decreasing Electron Recombination with Polyoxometalate/TiO2 as the Electronic Interface Layer.

    Science.gov (United States)

    Chen, Li; Chen, Weilin; Li, Jianping; Wang, Jiabo; Wang, Enbo

    2017-07-21

    Electron recombination occurring at the TiO 2 /quantum dot sensitizer/electrolyte interface is the key reason for hindering further efficiency improvements to quantum dot sensitized solar cells (QDSCs). Polyoxometalate (POM) can act as an electron-transfer medium to decrease electron recombination in a photoelectric device owing to its excellent oxidation/reduction properties and thermostability. A POM/TiO 2 electronic interface layer prepared by a simple layer-by-layer self-assembly method was added between fluorine-doped tin oxide (FTO) and mesoporous TiO 2 in the photoanode of QDSCs, and the effect on the photovoltaic performance was systematically investigated. Photovoltaic experimental results and the electron transmission mechanism show that the POM/TiO 2 electronic interface layer in the QDSCs can clearly suppress electron recombination, increase the electron lifetime, and result in smoother electron transmission. In summary, the best conversion efficiency of QDSCs with POM/TiO 2 electronic interface layers increases to 8.02 %, which is an improvement of 25.1 % compared with QDSCs without POM/TiO 2 . This work first builds an electron-transfer bridge between FTO and the quantum dot sensitizer and paves the way for further improved efficiency of QDSCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of Rat Medicated Serum Containing Zuo Gui Wan and/or You Gui Wan on the Differentiation of Stem Cells Derived from Human First Trimester Umbilical Cord into Oocyte-Like Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Xiang Hu

    2015-01-01

    Full Text Available Zuo Gui Wan (ZGW and You Gui Wan (YGW are two classic formulas used in clinical treatment of infertility in traditional Chinese medicine (TCM. However, the actions of the formulas remain to be proven at the cellular and molecular levels. In this study, we investigate whether the two formulas have any effect on germ cell formation and differentiation by culturing rat medicated serums containing YGW or ZGW with stem cells derived from human first trimester umbilical cord. Our results showed that while the normal rat serums had no significant effects, the rat medicated serums had significant effects on the differentiation of the stem cells into oocyte-like cells (OLCs based on (1 cell morphological changes that resembled purative cumulus-oocyte complexes (COCs; (2 expressions of specific markers that were indicative of germ cell formation and oocyte development; and (3 estradiol production by the COC-like cells. Furthermore, ZGW medicated serums exhibited more obvious effects on specific gene expressions of germ cells, whereas YGW medicated serums showed stronger effects on estradiol production. Accordingly, our study provides evidence demonstrating for the first time that one of molecular and cellular actions of YGW or ZGW in treating human reproductive dysfunctions may be through an enhancement of neooogenesis.

  15. Electron Beam Evaporated TiO2 Layer for High Efficiency Planar Perovskite Solar Cells on Flexible Polyethylene Terephthalate Substrates

    KAUST Repository

    Qiu, Weiming; Paetzold, Ulrich W; Gehlhaar, Robert; Smirnov, Vladimir; Boyen, Hans-Gerd; Tait, Jeffrey Gerhart; Conings, Bert; Zhang, Weimin; Nielsen, Christian; McCulloch, Iain; Froyen, Ludo; Heremans, Paul; Cheyns, David

    2015-01-01

    The TiO2 layer made by electron beam (e-beam) induced evaporation is demonstrated as electron transport layer (ETL) in high efficiency planar junction perovskite solar cells. The temperature of the substrate and the thickness of the TiO2 layer can

  16. Particle-in-cell simulation of two-dimensional electron velocity shear driven instability in relativistic domain

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Chandrasekhar, E-mail: chandrasekhar.shukla@gmail.com; Das, Amita, E-mail: amita@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Patel, Kartik [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-08-15

    We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.

  17. TMX-U high frequency central-cell electron heating

    International Nuclear Information System (INIS)

    Cummins, W.F.; Barter, J.D.; Dimonte, G.; Falabella, S.; Molvik, A.W.; Poulsen, P.

    1985-01-01

    A correlation is shown to exist between the center-cell core electron temperature and loss power and the 2.67 MHz power coupled from the slot antenna system. The slot was operated in the full-wave excitation mode (1). Nominal r = 0 density was 4-6e12 cm -3 . Sufficient radial profile data was obtained to allow a comparison with the r.f. coupling code predictions (2) for both the Slot and 2-170 Loop. Comparison of the experimental data with predicted values of r.f. power absorption on axis indicate that the major contribution was from the Slot. An investigation of the r.f. wave spectra for these conditions indicates that this heating results from Landau damping of the cold plasma wave which is coupled to the m = +-1 ICRF wave near the perpendicular cyclotron resonance boundary

  18. Enhanced quasi-static particle-in-cell simulation of electron cloud instabilities in circular accelerators

    Science.gov (United States)

    Feng, Bing

    Electron cloud instabilities have been observed in many circular accelerators around the world and raised concerns of future accelerators and possible upgrades. In this thesis, the electron cloud instabilities are studied with the quasi-static particle-in-cell (PIC) code QuickPIC. Modeling in three-dimensions the long timescale propagation of beam in electron clouds in circular accelerators requires faster and more efficient simulation codes. Thousands of processors are easily available for parallel computations. However, it is not straightforward to increase the effective speed of the simulation by running the same problem size on an increasingly number of processors because there is a limit to domain size in the decomposition of the two-dimensional part of the code. A pipelining algorithm applied on the fully parallelized particle-in-cell code QuickPIC is implemented to overcome this limit. The pipelining algorithm uses multiple groups of processors and optimizes the job allocation on the processors in parallel computing. With this novel algorithm, it is possible to use on the order of 102 processors, and to expand the scale and the speed of the simulation with QuickPIC by a similar factor. In addition to the efficiency improvement with the pipelining algorithm, the fidelity of QuickPIC is enhanced by adding two physics models, the beam space charge effect and the dispersion effect. Simulation of two specific circular machines is performed with the enhanced QuickPIC. First, the proposed upgrade to the Fermilab Main Injector is studied with an eye upon guiding the design of the upgrade and code validation. Moderate emittance growth is observed for the upgrade of increasing the bunch population by 5 times. But the simulation also shows that increasing the beam energy from 8GeV to 20GeV or above can effectively limit the emittance growth. Then the enhanced QuickPIC is used to simulate the electron cloud effect on electron beam in the Cornell Energy Recovery Linac

  19. Culture of porcine luteal cells as a substrate for in vitro maturation of porcine cumulus oocyte complexes. Establishment and characterization

    Directory of Open Access Journals (Sweden)

    Teplitz MA

    2016-12-01

    Full Text Available The aim of this study was to establish and characterize the porcine luteal cells (PLC culture for the subsequent coculture with porcine COC. The final purpose is to promote the oocyte maturation. The PLC was established using corpora lutea obtained from slaughterhouse ovaries. Corpora lutea were dissected and luteal tissue submitted to a mechanical and enzymatic digestion with collagenase IV. The cell suspension was filtered and centrifuged and the cells obtained were diluted in 15 mL of DMEM-F12 supplemented media. Diluted cells were seeded in 3 culture flasks T25, staying in a controlled environment and changing the medium every 2 days. For the analysis and characterization, the cells were assessed by the Nile red staining to detect intracellular lipids, immunocytochemistry (ICC for 3β-hydroxy steroid dehidrogenase (3β-HSD and ELISA for P4 determination. We observed the presence of lipid intracellular droplets. Also, we observed an increase of P4 concentration at 48, 96 y 144 h of primary culture and almost all the cells were positive to the ICC evaluation for 3β-HSD, showing the steroidogenic capacity of the culture cells.

  20. Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Brian; Long, Qi; Schiff, Eric A. [Department of Physics, Syracuse University, Syracuse, New York 13244 (United States); Yang, Mengjin; Zhu, Kai [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Kottokkaran, Ranjith; Abbas, Hisham; Dalal, Vikram L. [Iowa State University, Ames, Iowa 50011 (United States)

    2016-04-25

    We report nanosecond domain time-of-flight measurements of electron and hole photocarriers in methylammonium lead iodide perovskite solar cells. The mobilities ranged from 0.06 to 1.4 cm{sup 2}/Vs at room temperature, but there is little systematic difference between the two carriers. We also find that the drift mobilities are dispersive (time-dependent). The dispersion parameters are in the range of 0.4–0.7, and they imply that terahertz domain mobilities will be much larger than nanosecond domain mobilities. The temperature-dependences of the dispersion parameters are consistent with confinement of electron and hole transport to fractal-like spatial networks within nanoseconds of their photogeneration.

  1. Focusing of megaampere electron beam in gas cell for production of flash X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Zinchenko, Vl; Chlenov, A M; Shiyan, V D [Research Institute of Scientific Instruments, Turaevo-Lytkarino (Russian Federation)

    1997-12-31

    One of important problems to be solved in the development of an intense source of flash X-rays is the choice of the optimum design of the high-current diode at the exit of the electron accelerator. The results of numerical investigations of megaampere relativistic electron beam (REB) generation and focusing in a compound diode are discussed. The diode consists of a vacuum field-emission annular cathode, a planar anode, and a gas cell inserted between the anode foil and the target. (author). 2 figs., 5 refs.

  2. The effects of electron and hole transport layer with the electrode work function on perovskite solar cells

    Science.gov (United States)

    Deng, Quanrong; Li, Yiqi; Chen, Lian; Wang, Shenggao; Wang, Geming; Sheng, Yonglong; Shao, Guosheng

    2016-09-01

    The effects of electron and hole transport layer with the electrode work function on perovskite solar cells with the interface defects were simulated by using analysis of microelectronic and photonic structures-one-dimensional (AMPS-1D) software. The simulation results suggest that TiO2 electron transport layer provides best device performance with conversion efficiency of 25.9% compared with ZnO and CdS. The threshold value of back electrode work function for Spiro-OMeTAD, NiO, CuI and Cu2O hole transport layer are calculated to be 4.9, 4.8, 4.7 and 4.9 eV, respectively, to reach the highest conversion efficiency. The mechanisms of device physics with various electron and hole transport materials are discussed in details. The device performance deteriorates gradually as the increased density of interface defects located at ETM/absorber or absorber/HTM. This research results can provide helpful guidance for materials and metal electrode choice for perovskite solar cells.

  3. Channeling of electron transport to improve collection efficiency in mesoporous titanium dioxide dye sensitized solar cell stacks

    International Nuclear Information System (INIS)

    Fakharuddin, Azhar; Ahmed, Irfan; Yusoff, Mashitah M.; Jose, Rajan; Khalidin, Zulkeflee

    2014-01-01

    Dye-sensitized solar cell (DSC) modules are generally made by interconnecting large photoelectrode strips with optimized thickness (∼14 μm) and show lower current density (J SC ) compared with their single cells. We found out that the key to achieving higher J SC in large area devices is optimized photoelectrode volume (V D ), viz., thickness and area which facilitate the electron channeling towards working electrode. By imposing constraints on electronic path in a DSC stack, we achieved >50% increased J SC and ∼60% increment in photoelectric conversion efficiency in photoelectrodes of similar V D (∼3.36 × 10 −4 cm 3 ) without using any metallic grid or a special interconnections

  4. Electronic grain boundary properties in polycrystalline Cu(In,Ga)Se2 semiconductors for thin film solar cells

    International Nuclear Information System (INIS)

    Baier, Robert

    2012-01-01

    Solar cells based on polycrystalline Cu(In,Ga)Se 2 (CIGSe) thin film absorbers reach the highest energy conversion efficiency among all thin film solar cells. The record efficiency is at least partly attributed to benign electronic properties of grain boundaries (GBs) in the CIGSe layers. However, despite a high amount of research on this phenomenon the underlying physics is not sufficiently understood. This thesis presents an elaborate study on the electronic properties of GBs in CIGSe thin films. Kelvin probe force microscopy (KPFM) was employed to investigate the electronic properties of GBs in dependence of the Ga-content. Five CIGSe thin lms with various Ga-contents were grown by means of similar three stage co-evaporation processes. Both as grown as well as chemically treated (KCN etched) thin films were analyzed. The chemical treatment was employed to remove surface oxides. No difference in electronic GB properties was found with or without the chemical treatment. Therefore, we conclude that a moderate surface oxidation does not alter the electronic properties of GBs. In general, one can observe significant variations of electronic potential barriers at GBs. Under consideration of the averaging effect of the work function signal of nanoscale potential distributions in KPFM measurements which was quantified in the course of this thesis both positive and negative potential barriers in a range between ∼-350 mV and ∼+450 mV were detected. Additionally, variations in the defect densities at GBs between ∼3.1 x 10 11 cm -2 and ∼2.1 x 10 12 cm -2 were found. However, no correlation between the electronic properties of GBs and the Ga-content of CIGSe thin films was discovered. Consequently, one cannot explain the drop in device efficiency observed for CIGSe thin film solar cells with a high Ga-content by a change of the electronic properties of GBs. Combined KPFM and electron backscatter diffraction measurements were employed for the first time on CIGSe thin

  5. Electron Acceptors Based on α-Substituted Perylene Diimide (PDI) for Organic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Donglin [Department; Wu, Qinghe [Department; Cai, Zhengxu [Department; Zheng, Tianyue [Department; Chen, Wei [Materials; Institute; Lu, Jessica [Department; Yu, Luping [Department

    2016-02-02

    Perylene diimide (PDI) derivatives functionalized at the ortho-position (αPPID, αPBDT) were synthesized and used as electron acceptors in non-fullerene organic photovoltaic cells. Because of the good planarity and strong π-stacking of ortho-functionalized PDI, the αPPID and αPBDT exhibit a strong tendency to form aggregates, which endow the materials with high electron mobility. The inverted OPVs employing αPDI-based compounds as the acceptors and PBT7-Th as the donor give the highest power conversion efficiency (PCE) values: 4.92% for αPBDT-based devices and 3.61% for αPPID-based devices, which are, respectively, 39% and 4% higher than that of their β-substituted counterparts βPBDT and βPPID. Charge separation studies show more efficient exciton dissociation at interfaces between αPDI-based compounds and PTB7-Th. The results suggest that α-substituted PDI derivatives are more promising electron acceptors for organic photovoltaic (OPV) components than β-isomers.

  6. In Vitro Maturation and Embryo Development to blastocyst Mouse Germinal Vesicle Oocytes after Vitrification

    Directory of Open Access Journals (Sweden)

    M Nikseresht

    2013-05-01

    Full Text Available Abstract Background & aim: Vitrification is a simple and ultra rapid technique for the conservation of fertility. Improving pregnancy rate associate with the use of cryopreserved oocytes would be an important advanced in human assisted reproductive technology (ART. The purpose of this study was to evaluate survival, oocytes maturation and embryo development to the blastocyst stage after vitrification of oocytes germinal vesicle-stage and multi stage Methods: In the present experimental study, germinal vesicle oocytes with or without cumulus cells were transferred to vitrification solution containing 30% (v/v ethylene glycol, 18% (w/v Ficoll-70, and 0.3 M sucrose, either by single step or in a step-wise way. After vitrification and storage in liquid nitrogen, the oocytes were thawed and washed twice in culture medium TCM119, and then subjected to in vitro maturation, fertilization, and culture. Data analysis was performed by using One-way variance and Tukey tests. Results: Oocytes survival, metaphase 2 stage oocyte maturation, fertilization and embryo formed blastocyst in vitrification methods multistage were significantly higher than the single step procedure (P<0/05 Conclusion: The Germinal vesicle stage oocytes vitrified with cumulus cells and stepwise procedure had positive effect on the survival, maturation and developmental rate on blastocyst compared to oocytes without cumulus cell and single step procedure. Key words: Germinal Vesicle Oocyte, Blastocyst, Vitrification, Ethylene glycol

  7. Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer

    Institute of Scientific and Technical Information of China (English)

    Mehdi Ahmadi; Sajjad Rashidi Dafeh; Samaneh Ghazanfarpour; Mohammad Khanzadeh

    2017-01-01

    We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly (3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester (PCBM).1% vanadium-doped TiO2 nanoparticles were synthesized via the solvothermal method.Crystalline structure,morphology,and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction,scanning electron microscopy,transmittance electron microscopy,and UV-visible transmission spectrum.The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm.The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm.The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm2 compared with its pure counterpart.In the cells using 60 nm pure and vanadium-doped TiO2 layers,the cell using the doped layer showed much higher efficiency.It is remarkable that the extemal quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.

  8. Low-temperature, solution-processed aluminum-doped zinc oxide as electron transport layer for stable efficient polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qianqian [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Bao, Xichang, E-mail: baoxc@qibebt.ac.cn [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Yu, Jianhua [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhu, Dangqiang [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Zhang, Qian [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Gu, Chuantao [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Dong, Hongzhou [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Yang, Renqiang [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Dong, Lifeng, E-mail: DongLifeng@qust.edu.cn [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Department of Physics, Hamline University, St. Paul, MN 55104 (United States)

    2016-04-30

    A simple low-temperature solution-processed zinc oxide (ZnO) and aluminum-doped ZnO (AZO) were synthesized and investigated as an electron transport layer (ETL) for inverted polymer solar cells. A solar cell with a blend of poly(4,8-bis-alkyloxy-benzo[1,2-b:4,5-b′] dithiophene-alt-alkylcarbonyl-thieno [3,4-b] thiophene) and (6,6)-phenyl-C71-butyric acid methyl ester as an active layer and AZO as ETL demonstrates a high power conversion efficiency (PCE) of 7.36% under the illumination of AM 1.5G, 100 mW/cm{sup 2}. Compared to the cells with ZnO ETL (PCE of 6.85%), the PCE is improved by 7.45% with the introduction of an AZO layer. The improved PCE is ascribed to the enhanced short circuit current density, which results from the electron transport property of the AZO layer. Moreover, AZO is a more stable interfacial layer than ZnO. The PCE of the solar cells with AZO as ETL retain 85% of their original value after storage for 120 days, superior to the 39% of cells with ZnO ETL. The results above indicate that a simple low-temperature solution-processed AZO film is an efficient and economical ETL for high-performance inverted polymer solar cells. Due to its environmental friendliness, good electrical properties, and simple preparation approach, AZO has the potential to be applied in high-performance, large-scale industrialization of solar cells and other electronic devices. - Highlights: • ZnO and AZO were synthesized by a simple low-temperature solution-processed method. • AZO films show high transmittance and conductivity. • The photovoltaic performance can be improved with AZO as ETL. • AZO-based devices demonstrate excellent stability, with 85% retained after 120 days.

  9. Performance and electron transport properties of TiO2 nanocomposite dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wu, J-J; Chen, G-R; Lu, C-C; Wu, W-T; Chen, J-S

    2008-01-01

    TiO 2 nanowire (NW)/nanoparticle (NP) composite films have been fabricated by hybridizing various ratios of hydrothermal anatase NWs and TiO 2 NPs for use in dye-sensitized solar cells (DSSCs). Scanning electron microscopy (SEM) images reveal that uniform NW/NP composite films were formed on fluorine-doped tin oxide (FTO) substrates by the dip-coating method. The NWs are randomly but neither vertically nor horizontally oriented within the composite film. The TiO 2 NP DSSC possesses superior performance to those of the NW/NP composite and the pure NW cells, and the efficiency of the NW/NP composite DSSC increases on increasing the NP/NW ratio in the composite anode. All types of DSSC possess the same dependence of performance on the anode thickness that the efficiency increases with the anode thickness to a maximum value, then it decreases when the anode is thickened further. Electrochemical impedance spectroscopy analyses reveal that the NP DSSCs possess larger effective electron diffusion coefficients (D eff ) in the photoanodes and smaller diffusion resistances of I 3 - in electrolytes compared to those in the NW/NP and the NW DSSCs. D eff decreases when NWs are added into the photoanode. These results suggest that the vertical feature of the NWs within the anodes is crucial for achieving a high electron transport rate in the anode

  10. The Cultivation of Human Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Lenka Brůčková

    2008-01-01

    Full Text Available The major functions of granulosa cells (GCs include the production of steroids, as well as a myriad of growth factors to interact with the oocyte during its development within the ovarian follicle. Also FSH stimulates GCs to convert androgens (coming from the thecal cells to estradiol by aromatase. However, after ovulation the GCs produce progesterone that may maintain a potential pregnancy. Experiments with human GCs are mainly focused on the purification of GCs from ovarian follicular fluid followed by FACS analysis or short-term cultivation. The aim of our study was to cultivate GCs for a long period, to characterize their morphology and phenotype. Moreover, we have cultivated GCs under gonadotropin stimulation in order to simulate different pathological mechanisms during folliculogenesis (e.g. ovarian hyperstimulation syndrome. GCs were harvested from women undergoing in vitro fertilization. Complex oocyte-cumulus oophorus was dissociated by hyaluronidase. The best condition for transport of GCs was optimized as short transport in follicular fluid at 37 °C. GCs expansion medium consisted of DMEM/F12, 2 % FCS, ascorbic acid, dexamethasone, L-glutamine, gentamycine, penicillin, streptomycin and growth factors (EGF, bFGF. GCs transported in follicular fluid and cultivated in 2 % FCS containing DMEM/F12 medium supplemented with follicular fluid presented increased adhesion, proliferation, viability and decreased doubling time. Cell viability was 92 % and mean cell doubling time was 52 hrs. We have optimized transport and cultivation protocols for long-term cultivation of GCs.

  11. Semiconductor interfaces of polycrystalline CdTe thin-film solar cells. Characterization and modification of electronic properties

    International Nuclear Information System (INIS)

    Fritsche, J.

    2003-01-01

    In this thesis for the first time the electronic properties of the semiconductor interfaces in polycrystalline CdTe thin-film solar cells, as well as the morphological and electronic properties of the single semiconductor surfaces were systematically characterized by surface-sensitive measuring methods. The morphological surface properties were analyzed by scanning force microscopy. As substrate materials with SnO 2 /ITO covered glass was applied, where the CdS and CdTe layers were deposited. Furthermore the electronic and morphological material properties of differently treated SnO 2 surfaces were characterized. Beside the studies with scanning force microscopy sputtering depth profiles and X-ray photoelectron spectroscopy were measured

  12. Electron and photon reconstruction and performance in ATLAS using a dynamical, topological cell clustering-based approach

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    The electron and photon reconstruction in ATLAS has moved towards the use of a dynamical, topo- logical cell-based approach for cluster building, owing to advancements in the calibration procedure which allow for such a method to be applied. The move to this new technique allows for improved measurements of electron and photon energies, particularly in situations where an electron radiates a bremsstrahlung photon, or a photon converts to an electron-poistron pair. This note details the changes to the ATLAS electron and photon reconstruction software, and assesses its performance under current LHC luminosity conditions using simulated data. Changes to the converted photon reconstruction are also detailed, which improve the reconstruction efficiency of double-track converted photons, as well as reducing the reconstruction of spurious one-track converted photons. The performance of the new reconstruction algorithm is also presented in a number of important topologies relevant to precision Standard Model physics,...

  13. Enhancement of Perovskite Solar Cells Efficiency using N-Doped TiO2 Nanorod Arrays as Electron Transfer Layer.

    Science.gov (United States)

    Zhang, Zhen-Long; Li, Jun-Feng; Wang, Xiao-Li; Qin, Jian-Qiang; Shi, Wen-Jia; Liu, Yue-Feng; Gao, Hui-Ping; Mao, Yan-Li

    2017-12-01

    In this paper, N-doped TiO 2 (N-TiO 2 ) nanorod arrays were synthesized with hydrothermal method, and perovskite solar cells were fabricated using them as electron transfer layer. The solar cell performance was optimized by changing the N doping contents. The power conversion efficiency of solar cells based on N-TiO 2 with the N doping content of 1% (N/Ti, atomic ratio) has been achieved 11.1%, which was 14.7% higher than that of solar cells based on un-doped TiO 2 . To get an insight into the improvement, some investigations were performed. The structure was examined with X-ray powder diffraction (XRD), and morphology was examined by scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) and Tauc plot spectra indicated the incorporation of N in TiO 2 nanorods. Absorption spectra showed higher absorption of visible light for N-TiO 2 than un-doped TiO 2 . The N doping reduced the energy band gap from 3.03 to 2.74 eV. The photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectra displayed the faster electron transfer from perovskite layer to N-TiO 2 than to un-doped TiO 2 . Electrochemical impedance spectroscopy (EIS) showed the smaller resistance of device based on N-TiO 2 than that on un-doped TiO 2 .

  14. Shallow cumulus convection = Ondiepe cumulus convectie

    NARCIS (Netherlands)

    Neggers, R.

    2002-01-01

    Clouds play an important role in the earth's climate. Firstly, they are important in the radiative energy budget of the global atmosphere. Clouds absorb and reflect ultraviolet solar radiation, and emit infrared radiation depending on their temperature. Secondly, an

  15. Free cholesterol and cholesterol esters in bovine oocytes: Implications in survival and membrane raft organization after cryopreservation.

    Directory of Open Access Journals (Sweden)

    Jorgelina Buschiazzo

    Full Text Available Part of the damage caused by cryopreservation of mammalian oocytes occurs at the plasma membrane. The addition of cholesterol to cell membranes as a strategy to make it more tolerant to cryopreservation has been little addressed in oocytes. In order to increase the survival of bovine oocytes after cryopreservation, we proposed not only to increase cholesterol level of oocyte membranes before vitrification but also to remove the added cholesterol after warming, thus recovering its original level. Results from our study showed that modulation of membrane cholesterol by methyl-β-cyclodextrin (MβCD did not affect the apoptotic status of oocytes and improved viability after vitrification yielding levels of apoptosis closer to those of fresh oocytes. Fluorometric measurements based on an enzyme-coupled reaction that detects both free cholesterol (membrane and cholesteryl esters (stored in lipid droplets, revealed that oocytes and cumulus cells present different levels of cholesterol depending on the seasonal period. Variations at membrane cholesterol level of oocytes were enough to account for the differences found in total cholesterol. Differences found in total cholesterol of cumulus cells were explained by the differences found in both the content of membrane cholesterol and of cholesterol esters. Cholesterol was incorporated into the oocyte plasma membrane as evidenced by comparative labeling of a fluorescent cholesterol. Oocytes and cumulus cells increased membrane cholesterol after incubation with MβCD/cholesterol and recovered their original level after cholesterol removal, regardless of the season. Finally, we evaluated the effect of vitrification on the putative raft molecule GM1. Cholesterol modulation also preserved membrane organization by maintaining ganglioside level at the plasma membrane. Results suggest a distinctive cholesterol metabolic status of cumulus-oocyte complexes (COCs among seasons and a dynamic organizational structure

  16. Correlating Intravital Multi-Photon Microscopy to 3D Electron Microscopy of Invading Tumor Cells Using Anatomical Reference Points

    Science.gov (United States)

    Karreman, Matthia A.; Mercier, Luc; Schieber, Nicole L.; Shibue, Tsukasa; Schwab, Yannick; Goetz, Jacky G.

    2014-01-01

    Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electron microscopy. To investigate tumor cell behavior in vivo with ultrastructural accuracy, a reliable approach is needed to retrieve single tumor cells imaged deep within the tissue. For this purpose, fluorescently labeled tumor cells were subcutaneously injected into a mouse ear and imaged using two-photon-excitation microscopy. Using near-infrared branding, the position of the imaged area within the sample was labeled at the skin level, allowing for its precise recollection. Following sample preparation for electron microscopy, concerted usage of the artificial branding and anatomical landmarks enables targeting and approaching the cells of interest while serial sectioning through the specimen. We describe here three procedures showing how three-dimensional (3D) mapping of structural features in the tissue can be exploited to accurately correlate between the two imaging modalities, without having to rely on the use of artificially introduced markers of the region of interest. The methods employed here facilitate the link between intravital and nanoscale imaging of invasive tumor cells, enabling correlating function to structure in the study of tumor invasion and metastasis. PMID:25479106

  17. Polymer substrates for flexible photovoltaic cells application in personal electronic system

    Science.gov (United States)

    Znajdek, K.; Sibiński, M.; Strąkowska, A.; Lisik, Z.

    2016-01-01

    The article presents an overview of polymeric materials for flexible substrates in photovoltaic (PV) structures that could be used as power supply in the personal electronic systems. Four types of polymers have been elected for testing. The first two are the most specialized and heat resistant polyimide films. The third material is transparent polyethylene terephthalate film from the group of polyesters which was proposed as a cheap and commercially available substrate for the technology of photovoltaic cells in a superstrate configuration. The last selected polymeric material is a polysiloxane, which meets the criteria of high elasticity, is temperature resistant and it is also characterized by relatively high transparency in the visible light range. For the most promising of these materials additional studies were performed in order to select those of them which represent the best optical, mechanical and temperature parameters according to their usage for flexible substrates in solar cells.

  18. Radiation-produced electron migration along 5-bromouracil-substituted DNA in cells and in solutions

    International Nuclear Information System (INIS)

    Beach, C.M.

    1981-01-01

    Results of work by other investigators support the theory of charge migration in DNA. Charge transfer between nucleotides and electron and energy migration in solid state DNA have been detected, but no previous experiments have demonstrated charge migration in aqueous solutions of DNA or in DNA inside an E. coli cell. Such experiments were performed by substituting different amounts of 5-bromouracil (BU) for thymine in E. coli DNA and assaying for the amount of bromide given off from the reaction of bromouracil with hydrated electrons produced by ionizing radiation to form uracil-5-yl radicals and free bromide. By varying the amount of BU incorporated in the DNA, the average distance between the BU bases was varied, and because the number of BU/electron reactions was monitored by the amount of bromide released, the maximum average electron migration distance along the BU-DNA was estimated. Charge migration was demonstrated, and the maximum average electron migration distance in aqueous solutions of BU-DNA was measured to be 8 to 10 base distances (assuming only intrastrand migration). Only 11 to 16% of the electrons produced attacked BU-DNA in aqueous solution, and only 1% resulted in bromide release from BU-DNA inside E. coli. Charge migration was demonstrated in BU-DNA inside E. coli, and the maximum average migration distance was measured to be 5 to 6 base distances

  19. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth.

    Science.gov (United States)

    Sutter, Eli A; Sutter, Peter W

    2014-12-03

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important, as they provide direct insight into processes in liquids, such as solution growth of nanoparticles, among others. In liquid cell TEM/STEM redox reaction experiments, the hydrated electrons e(-)aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e(-)aq generated by the electron beam during in situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e(-)aq]. By comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e(-)aq] but also the rate of reduction of a metal-ion complex to zerovalent metal atoms in solution.

  20. Efficient Regular Perovskite Solar Cells Based on Pristine [70]Fullerene as Electron-Selective Contact.

    Science.gov (United States)

    Collavini, Silvia; Kosta, Ivet; Völker, Sebastian F; Cabanero, German; Grande, Hans J; Tena-Zaera, Ramón; Delgado, Juan Luis

    2016-06-08

    [70]Fullerene is presented as an efficient alternative electron-selective contact (ESC) for regular-architecture perovskite solar cells (PSCs). A smart and simple, well-described solution processing protocol for the preparation of [70]- and [60]fullerene-based solar cells, namely the fullerene saturation approach (FSA), allowed us to obtain similar power conversion efficiencies for both fullerene materials (i.e., 10.4 and 11.4 % for [70]- and [60]fullerene-based devices, respectively). Importantly, despite the low electron mobility and significant visible-light absorption of [70]fullerene, the presented protocol allows the employment of [70]fullerene as an efficient ESC. The [70]fullerene film thickness and its solubility in the perovskite processing solutions are crucial parameters, which can be controlled by the use of this simple solution processing protocol. The damage to the [70]fullerene film through dissolution during the perovskite deposition is avoided through the saturation of the perovskite processing solution with [70]fullerene. Additionally, this fullerene-saturation strategy improves the performance of the perovskite film significantly and enhances the power conversion efficiency of solar cells based on different ESCs (i.e., [60]fullerene, [70]fullerene, and TiO2 ). Therefore, this universal solution processing protocol widens the opportunities for the further development of PSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. An Electronic Measurement Instrumentation of the Impedance of a Loaded Fuel Cell or Battery.

    Science.gov (United States)

    Aglzim, El-Hassane; Rouane, Amar; El-Moznine, Reddad

    2007-10-17

    In this paper we present an inexpensive electronic measurement instrumentationdeveloped in our laboratory, to measure and plot the impedance of a loaded fuel cell orbattery. Impedance measurements were taken by using the load modulation method. Thisinstrumentation has been developed around a VXI system stand which controls electroniccards. Software under Hpvee ® was developed for automatic measurements and the layout ofthe impedance of the fuel cell on load. The measurement environment, like the ambienttemperature, the fuel cell temperature, the level of the hydrogen, etc..., were taken withseveral sensors that enable us to control the measurement. To filter the noise and theinfluence of the 50Hz, we have implemented a synchronous detection which filters in a verynarrow way around the useful signal. The theoretical result obtained by a simulation underPspice ® of the method used consolidates the choice of this method and the possibility ofobtaining correct and exploitable results. The experimental results are preliminary results ona 12V vehicle battery, having an inrush current of 330A and a capacity of 40Ah (impedancemeasurements on a fuel cell are in progress, and will be the subject of a forthcoming paper).The results were plotted at various nominal voltages of the battery (12.7V, 10V, 8V and 5V)and with two imposed currents (0.6A and 4A). The Nyquist diagram resulting from theexperimental data enable us to show an influence of the load of the battery on its internalimpedance. The similitude in the graph form and in order of magnitude of the valuesobtained (both theoretical and practical) enables us to validate our electronic measurementinstrumentation. One of the future uses for this instrumentation is to integrate it with several control sensors, on a vehicle as an embedded system to monitor the degradation of fuel cell membranes.

  2. An Electronic Measurement Instrumentation of the Impedance of a Loaded Fuel Cell or Battery

    Directory of Open Access Journals (Sweden)

    Reddad El-Moznine

    2007-10-01

    Full Text Available In this paper we present an inexpensive electronic measurement instrumentationdeveloped in our laboratory, to measure and plot the impedance of a loaded fuel cell orbattery. Impedance measurements were taken by using the load modulation method. Thisinstrumentation has been developed around a VXI system stand which controls electroniccards. Software under Hpvee® was developed for automatic measurements and the layout ofthe impedance of the fuel cell on load. The measurement environment, like the ambienttemperature, the fuel cell temperature, the level of the hydrogen, etc..., were taken withseveral sensors that enable us to control the measurement. To filter the noise and theinfluence of the 50Hz, we have implemented a synchronous detection which filters in a verynarrow way around the useful signal. The theoretical result obtained by a simulation underPspice® of the method used consolidates the choice of this method and the possibility ofobtaining correct and exploitable results. The experimental results are preliminary results ona 12V vehicle battery, having an inrush current of 330A and a capacity of 40Ah (impedancemeasurements on a fuel cell are in progress, and will be the subject of a forthcoming paper.The results were plotted at various nominal voltages of the battery (12.7V, 10V, 8V and 5Vand with two imposed currents (0.6A and 4A. The Nyquist diagram resulting from theexperimental data enable us to show an influence of the load of the battery on its internalimpedance. The similitude in the graph form and in order of magnitude of the valuesobtained (both theoretical and practical enables us to validate our electronic measurementinstrumentation. One of the future uses for this instrumentation is to integrate it with several control sensors, on a vehicle as an embedded system to monitor the degradation of fuel cell membranes.

  3. Quantum dots: Rethinking the electronics

    Energy Technology Data Exchange (ETDEWEB)

    Bishnoi, Dimple [Department of Physics, S. S. Jain Subodh PG College, Jaipur, Rajasthan Pin-302004 (India)

    2016-05-06

    In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including “waste heat” from the sun’s energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.

  4. DNA comet assay for rice seeds treated with low energy electrons ('soft-electrons')

    International Nuclear Information System (INIS)

    Todoriki, Setsuko; Hayashi, Toru

    1999-01-01

    As rice seeds are sometimes contaminated with phytopathogenic organisms such as blast disease fungi and nematodes, a novel non-chemical disinfection method for rice seeds is highly required. In order to develop a disinfection method, the effect of low energy electron ('soft-electrons') on seed DNA was examined by using the neutral comet assay. Rice seeds (whole grain) were treated with electrons of different acceleration voltages (180 kV to 1 MV) at a dose of 5 kGy. Nucleus suspensions were prepared from whole brown rice and subjected to electrophoresis. DNA from un-irradiated (control) seeds relaxed and produced comets with a short tail, most of the comets distributed within the range of comet length between 30 μm to 70 μm. In the case of seeds treated with electrons at acceleration voltages up to 190 kV, cells without seed coats were not damaged and the frequency histograms of comet length showed almost the same pattern as that for control. At acceleration voltages higher than 200 kV, the cells were distributed into two categories; DNA comets with a short tail (with little DNA damages, less than 70 μm in the comet length) and DNA comets with long tails (with sever strand breaks, more than 130 μm in the comet length). The ratios of damaged cells increased with increasing acceleration voltage. The growths of rice seedlings were not affected by the treatment with electrons at up to 200 kV. On the contrary, the cells of gamma-irradiated seed showed small variations in the comet length, and which were depending on radiation dose. The individual cells of gamma-irradiated seeds at 1 kGy showed shorter comet than the damaged cells with soft electron, seed treated with gamma rays (1-5 kGy) did not shoot nor root. (author)

  5. Closed-looped in situ nano processing on a culturing cell using an inverted electron beam lithography system

    International Nuclear Information System (INIS)

    Hoshino, Takayuki; Mabuchi, Kunihiko

    2013-01-01

    Highlights: ► An electron beam lithography (EBL) was used as an in situ nano processing for a living cell. ► A synchronized optics was containing an inverted EBL and an optical microscope. ► This system visualized real-time images of the EB-induced nano processing. ► We demonstrated the nano processing for a culturing cell with 200–300 nm resolution. ► Our system would be able to provide high resolution display of virtual environments. -- Abstract: The beam profile of an electron beam (EB) can be focused onto less than a nanometer spot and scanned over a wide field with extremely high speed sweeping. Thus, EB is employed for nano scale lithography in applied physics research studies and in fabrication of semiconductors. We applied a scanning EB as a control system for a living cell membrane which is representative of large scale complex systems containing nanometer size components. First, we designed the opposed co-axial dual optics containing inverted electron beam lithography (I-EBL) system and a fluorescent optical microscope. This system could provide in situ nano processing for a culturing living cell on a 100-nm-thick SiN nanomembrane, which was placed between the I-EBL and the fluorescent optical microscope. Then we demonstrated the EB-induced chemical direct nano processing for a culturing cell with hundreds of nanometer resolution and visualized real-time images of the scanning spot of the EB-induced luminescent emission and chemical processing using a high sensitive camera mounted on the optical microscope. We concluded that our closed-loop in situ nano processing would be able to provide a nanometer resolution display of virtual molecule environments to study functional changes of bio-molecule systems

  6. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  7. Preliminary Optical And Electric Field Pulse Statistics From Storm Overflights During The Altus Cumulus Electrification Study

    Science.gov (United States)

    Mach, D. A.; Blakeslee, R. J.; Bailey, J. C.; Farrell, W. M.; Goldberg, R. A.; Desch, M. D.; Houser, J. G.

    2003-01-01

    The Altus Cumulus Electrification Study (ACES) was conducted during the month of August, 2002 in an area near Key West, Florida. One of the goals of this uninhabited aerial vehicle (UAV) study was to collect high resolution optical pulse and electric field data from thunderstorms. During the month long campaign, we acquired 5294 lightning generated optical pulses with associated electric field changes. Most of these observations were made while close to the top of the storms. We found filtered mean and median 10-10% optical pulse widths of 875 and 830 microns respectively while the 50-50% mean and median optical pulse widths are 422 and 365 microns respectively. These values are similar to previous results as are the 10-90% mean and median rise times of 327 and 265 microns. The peak electrical to optical pulse delay mean and median were 209 and 145 microns which is longer than one would expect from theoretical results. The results of the pulse analysis will contribute to further validation of the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS) satellites. Pre-launch estimates of the flash detection efficiency were based on a small sample of optical pulse measurements associated with less than 350 lightning discharges collected by NASA U-2 aircraft in the early 1980s. Preliminary analyses of the ACES measurements show that we have greatly increased the number of optical pulses available for validation of the LIS and other orbital lightning optical sensors. Since the Altus was often close to the cloud tops, many of the optical pulses are from low-energy pulses. From these low-energy pulses, we can determine the fraction of optical lightning pulses below the thresholds of LIS, OTD, and any future satellite-based optical sensors such as the geostationary Lightning Mapping Sensor.

  8. Electron microscopic study on the initial effect of gamma-irradiation on the chromatin structure of L cells

    International Nuclear Information System (INIS)

    Kondo, Takashi; Nakanishi, Y.H.; Yoshii, Giichi

    1979-01-01

    Mouse L cells are gamma-irradiated at a dose of 1 Mrad, and ultrathin sections of the cells are examined by electron microscopy. The distance between chromatin fibers in diffused chromatin regions in the irradiated nuclei is essentially identical with the nonirradiated control. In contrast, an increase of the distance between the chromatin fibers is observed in the excess of Ca ions in irradiation. (author)

  9. A simple method for environmental cell depressurization for use with an electron microscope.

    Science.gov (United States)

    Ogawa, Naoki; Mizokawa, Ryo; Saito, Minoru; Ishikawa, Akira

    2017-12-01

    With the aid of the environmental cell (EC) in electron microscopy, hydrated specimens have been observed at high resolutions that optical microscopy cannot attain. Due to the ultra-high vacuum conditions of the inner column of the electron microscope, the EC requires sealing films that are sufficiently thin to allow electron transmission and that are sufficiently tough to withstand the pressure difference between the inside and outside of the EC. However, most hydrated specimens can be observed at low vacuum because the saturated vapor pressure of water is known to be 0.02 atm at room temperature. These concepts have been used in the differential pumping system, but it is complicated and relatively expensive. In this work, we propose a simple method for depressurization of the EC using a 'balloon structure' and demonstrate the theoretical benefits and practical improvement for specimen observations in low-vacuum conditions. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Electron thermal effect on linear and nonlinear coupled Shukla-Varma and convective cell modes in dust-contaminated magnetoplasma

    Science.gov (United States)

    Masood, W.; Mirza, Arshad M.

    2010-11-01

    Linear and nonlinear properties of coupled Shukla-Varma (SV) and convective cell modes in the presence of electron thermal effects are studied in a nonuniform magnetoplasma composed of electrons, ions, and extremely massive and negatively charged immobile dust grains. In the linear case, the modified dispersion relation is given and, in the nonlinear case, stationary solutions of the nonlinear equations that govern the dynamics of coupled SV and convective cell modes are obtained. It is found that electrostatic dipolar and vortex street type solutions can appear in such a plasma. The relevance of the present investigation with regard to the Earth's mesosphere as well as in ionospheric plasmas is also pointed out.

  11. Electron thermal effect on linear and nonlinear coupled Shukla-Varma and convective cell modes in dust-contaminated magnetoplasma

    International Nuclear Information System (INIS)

    Masood, W.; Mirza, Arshad M.

    2010-01-01

    Linear and nonlinear properties of coupled Shukla-Varma (SV) and convective cell modes in the presence of electron thermal effects are studied in a nonuniform magnetoplasma composed of electrons, ions, and extremely massive and negatively charged immobile dust grains. In the linear case, the modified dispersion relation is given and, in the nonlinear case, stationary solutions of the nonlinear equations that govern the dynamics of coupled SV and convective cell modes are obtained. It is found that electrostatic dipolar and vortex street type solutions can appear in such a plasma. The relevance of the present investigation with regard to the Earth's mesosphere as well as in ionospheric plasmas is also pointed out.

  12. Electronic grain boundary properties in polycrystalline Cu(In,Ga)Se{sub 2} semiconductors for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Baier, Robert

    2012-06-25

    Solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGSe) thin film absorbers reach the highest energy conversion efficiency among all thin film solar cells. The record efficiency is at least partly attributed to benign electronic properties of grain boundaries (GBs) in the CIGSe layers. However, despite a high amount of research on this phenomenon the underlying physics is not sufficiently understood. This thesis presents an elaborate study on the electronic properties of GBs in CIGSe thin films. Kelvin probe force microscopy (KPFM) was employed to investigate the electronic properties of GBs in dependence of the Ga-content. Five CIGSe thin lms with various Ga-contents were grown by means of similar three stage co-evaporation processes. Both as grown as well as chemically treated (KCN etched) thin films were analyzed. The chemical treatment was employed to remove surface oxides. No difference in electronic GB properties was found with or without the chemical treatment. Therefore, we conclude that a moderate surface oxidation does not alter the electronic properties of GBs. In general, one can observe significant variations of electronic potential barriers at GBs. Under consideration of the averaging effect of the work function signal of nanoscale potential distributions in KPFM measurements which was quantified in the course of this thesis both positive and negative potential barriers in a range between ∼-350 mV and ∼+450 mV were detected. Additionally, variations in the defect densities at GBs between ∼3.1 x 10{sup 11} cm{sup -2} and ∼2.1 x 10{sup 12} cm{sup -2} were found. However, no correlation between the electronic properties of GBs and the Ga-content of CIGSe thin films was discovered. Consequently, one cannot explain the drop in device efficiency observed for CIGSe thin film solar cells with a high Ga-content by a change of the electronic properties of GBs. Combined KPFM and electron backscatter diffraction measurements were employed for the

  13. Improved efficiency of NiOx-based p-i-n perovskite solar cells by using PTEG-1 as electron transport layer

    NARCIS (Netherlands)

    Groeneveld, Bart G. H. M.; Najafi, Mehrdad; Steensma, Bauke; Adjokatse, Sampson; Fang, Hong-Hua; Jahani, Fatemeh; Qiu, Li; ten Brink, Gert H.; Hummelen, Jan C.; Loi, Maria Antonietta

    We present efficient p-i-n type perovskite solar cells using NiOx as the hole transport layer and a fulleropyrrolidine with a triethylene glycol monoethyl ether side chain (PTEG-1) as electron transport layer. This electron transport layer leads to higher power conversion efficiencies compared to

  14. Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM

    International Nuclear Information System (INIS)

    Hirano, Kazumi; Kinoshita, Takaaki; Uemura, Takeshi; Motohashi, Hozumi; Watanabe, Yohei; Ebihara, Tatsuhiko; Nishiyama, Hidetoshi; Sato, Mari; Suga, Mitsuo; Maruyama, Yuusuke; Tsuji, Noriko M.; Yamamoto, Masayuki; Nishihara, Shoko; Sato, Chikara

    2014-01-01

    Correlative light-electron microscopy of cells in a natural environment of aqueous liquid facilitates high-throughput observation of protein complex formation. ASEM allows the inverted SEM to observe the wet sample from below, while an optical microscope observes it from above quasi-simultaneously. The disposable ASEM dish with a silicon nitride (SiN) film window can be coated variously to realize the primary-culture of substrate-sensitive cells in a few milliliters of culture medium in a stable incubator environment. Neuron differentiation, neural networking, proplatelet-formation and phagocytosis were captured by optical or fluorescence microscopy, and imaged at high resolution by gold-labeled immuno-ASEM with/without metal staining. Fas expression on the cell surface was visualized, correlated to the spatial distribution of F-actin. Axonal partitioning was studied using primary-culture neurons, and presynaptic induction by GluRδ2-N-terminus-linked fluorescent magnetic beads was correlated to the presynaptic-marker Bassoon. Further, megakaryocytes secreting proplatelets were captured, and P-selectins with adherence activity were localized to some of the granules present by immuno-ASEM. The phagocytosis of lactic acid bacteria by dendritic cells was also imaged. Based on these studies, ASEM correlative microscopy promises to allow the study of various mesoscopic-scale dynamics in the near future. - Highlights: • In situ correlative light electron microscopy of samples in open solution by ASEM. • Primary cultures for in-solution CLEM by developing SiN-film coating methods • First visualization of fluorescent magnetic beads in aqueous solution by CLEM. • Presynaptic induction of neurons by GluRδ2-N-terminus-coated beads studied by CLEM. • Axonal partitioning, bacterial phagocytosis, platelet formation imaged by CLEM

  15. Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Kazumi; Kinoshita, Takaaki [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577 (Japan); Uemura, Takeshi [Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Motohashi, Hozumi [Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Watanabe, Yohei; Ebihara, Tatsuhiko [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Nishiyama, Hidetoshi [JEOL Ltd., 1-2 Musashino 3-chome, Akishima, Tokyo 196-8558 (Japan); Sato, Mari [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Suga, Mitsuo [JEOL Ltd., 1-2 Musashino 3-chome, Akishima, Tokyo 196-8558 (Japan); Maruyama, Yuusuke; Tsuji, Noriko M. [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Yamamoto, Masayuki [Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Nishihara, Shoko, E-mail: shoko@soka.ac.jp [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577 (Japan); Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan)

    2014-08-01

    Correlative light-electron microscopy of cells in a natural environment of aqueous liquid facilitates high-throughput observation of protein complex formation. ASEM allows the inverted SEM to observe the wet sample from below, while an optical microscope observes it from above quasi-simultaneously. The disposable ASEM dish with a silicon nitride (SiN) film window can be coated variously to realize the primary-culture of substrate-sensitive cells in a few milliliters of culture medium in a stable incubator environment. Neuron differentiation, neural networking, proplatelet-formation and phagocytosis were captured by optical or fluorescence microscopy, and imaged at high resolution by gold-labeled immuno-ASEM with/without metal staining. Fas expression on the cell surface was visualized, correlated to the spatial distribution of F-actin. Axonal partitioning was studied using primary-culture neurons, and presynaptic induction by GluRδ2-N-terminus-linked fluorescent magnetic beads was correlated to the presynaptic-marker Bassoon. Further, megakaryocytes secreting proplatelets were captured, and P-selectins with adherence activity were localized to some of the granules present by immuno-ASEM. The phagocytosis of lactic acid bacteria by dendritic cells was also imaged. Based on these studies, ASEM correlative microscopy promises to allow the study of various mesoscopic-scale dynamics in the near future. - Highlights: • In situ correlative light electron microscopy of samples in open solution by ASEM. • Primary cultures for in-solution CLEM by developing SiN-film coating methods • First visualization of fluorescent magnetic beads in aqueous solution by CLEM. • Presynaptic induction of neurons by GluRδ2-N-terminus-coated beads studied by CLEM. • Axonal partitioning, bacterial phagocytosis, platelet formation imaged by CLEM.

  16. Aberration-corrected transmission electron microscopy analyses of GaAs/Si interfaces in wafer-bonded multi-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Häussler, Dietrich [Institute for Materials Science, Christian-Albrechts-University Kiel, Kaiserstraße 2, 24143 Kiel (Germany); Houben, Lothar [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich GmbH, 52425 Juelich (Germany); Essig, Stephanie [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg (Germany); Kurttepeli, Mert [Institute for Materials Science, Christian-Albrechts-University Kiel, Kaiserstraße 2, 24143 Kiel (Germany); Dimroth, Frank [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg (Germany); Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich GmbH, 52425 Juelich (Germany); Jäger, Wolfgang, E-mail: wolfgang.jaeger@tf.uni-kiel.de [Institute for Materials Science, Christian-Albrechts-University Kiel, Kaiserstraße 2, 24143 Kiel (Germany)

    2013-11-15

    Aberration-corrected scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) investigations have been applied to investigate the structure and composition fluctuations near interfaces in wafer-bonded multi-junction solar cells. Multi-junction solar cells are of particular interest since efficiencies well above 40% have been obtained for concentrator solar cells which are based on III-V compound semiconductors. In this methodologically oriented investigation, we explore the potential of combining aberration-corrected high-angle annular dark-field STEM imaging (HAADF-STEM) with spectroscopic techniques, such as EELS and energy-dispersive X-ray spectroscopy (EDXS), and with high-resolution transmission electron microscopy (HR-TEM), in order to analyze the effects of fast atom beam (FAB) and ion beam bombardment (IB) activation treatments on the structure and composition of bonding interfaces of wafer-bonded solar cells on Si substrates. Investigations using STEM/EELS are able to measure quantitatively and with high precision the widths and the fluctuations in element distributions within amorphous interface layers of nanometer extensions, including those of light elements. Such measurements allow the control of the activation treatments and thus support assessing electrical conductivity phenomena connected with impurity and dopant distributions near interfaces for optimized performance of the solar cells. - Highlights: • Aberration-corrected TEM and EELS reveal structural and elemental profiles across GaAs/Si bond interfaces in wafer-bonded GaInP/GaAs/Si - multi-junction solar cells. • Fluctuations in elemental concentration in nanometer-thick amorphous interface layers, including the disrubutions of light elements, are measured using EELS. • The projected widths of the interface layers are determined on the atomic scale from STEM-HAADF measurements. • The effects of atom and ion beam activation treatment on the bonding

  17. Polymer Solar Cells with Efficiency >10% Enabled via a Facile Solution-Processed Al-Doped ZnO Electron Transporting Layer

    KAUST Repository

    Jagadamma, Lethy Krishnan

    2015-04-22

    A facile and low-temperature (125 °C) solution-processed Al-doped ZnO (AZO) buffer layer functioning very effectively as electron accepting/hole blocking layer for a wide range of polymer:fullerene bulk heterojunction systems, yielding power conversion efficiency in excess of 10% (8%) on glass (plastic) substrates is described. The ammonia-treatment of the aqueous AZO nanoparticle solution produces compact, crystalline, and smooth thin films, which retain the aluminum doping, and eliminates/reduces the native defects by nitrogen incorporation, making them good electron transporters and energetically matched with the fullerene acceptor. It is demonstrated that highly efficient solar cells can be achieved without the need for additional surface chemical modifications of the buffer layer, which is a common requirement for many metal oxide buffer layers to yield efficient solar cells. Also highly efficient solar cells are achieved with thick AZO films (>50 nm), highlighting the suitability of this material for roll-to-roll coating. Preliminary results on the applicability of AZO as electron injection layer in F8BT-based polymer light emitting diode are also presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. ELECTRON ACCELERATIONS AT HIGH MACH NUMBER SHOCKS: TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS IN VARIOUS PARAMETER REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yosuke [Department of Physics, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan); Amano, Takanobu; Hoshino, Masahiro, E-mail: ymatumot@astro.s.chiba-u.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Hongo 1-33, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-08-20

    Electron accelerations at high Mach number collisionless shocks are investigated by means of two-dimensional electromagnetic particle-in-cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron {beta}{sub e} (the ratio of the thermal pressure to the magnetic pressure). We find electrons are effectively accelerated at a super-high Mach number shock (M{sub A} {approx} 30) with a mass ratio of M/m = 100 and {beta}{sub e} = 0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with a large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.

  19. Expression of growth differentiation factor 9 messenger RNA in porcine growing and preovulatory ovarian follicles

    Czech Academy of Sciences Publication Activity Database

    Procházka, Radek; Němcová, Lucie; Nagyová, Eva; Kaňka, Jiří

    2004-01-01

    Roč. 71, - (2004), s. 1290-1295 ISSN 0006-3363 R&D Projects: GA ČR GA524/01/0903; GA AV ČR IAA5045102 Institutional research plan: CEZ:AV0Z5045916 Keywords : cumulus cells * follicle * granulosa cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.550, year: 2004

  20. Electroluminescence analysis of injection-enhanced annealing of electron irradiation-induced defects in GaInP top cells for triple-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Tiancheng; Lu, Ming; Yang, Kui; Xiao, Pengfei; Wang, Rong, E-mail: wangr@bnu.edu.cn

    2014-09-15

    Direct injection-enhanced annealing of defects in a GaInP top cell for GaInP/GaAs/Ge triple-junction solar cells irradiated with 1.8 MeV electrons with a fluence of 1 × 10{sup 15} cm{sup −2} has been observed and analyzed using electroluminescence (EL) spectra. Minority-carrier injection under forward bias conditions is observed to enhance defect annealing in the GaInP top cell, and recovery of the EL intensity of the GaInP top cell was observed even at room temperature. Moreover, the injection-enhanced defect annealing rates obey a simple Arrhenius law; therefore, the annealing activation energy was determined and is equal to 0.51 eV. Lastly, the H2 defect has been identified as the primary non-radiative recombination center based on a comparison of the annealing activation energies.

  1. Low resistivity ZnO-GO electron transport layer based CH{sub 3}NH{sub 3}PbI{sub 3} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Muhammad Imran, E-mail: imranrahbar@scme.nust.edu.pk, E-mail: amirhabib@scme.nust.edu.pk; Hussain, Zakir; Mujahid, Mohammad; Khan, Ahmed Nawaz [School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000 (Pakistan); Javaid, Syed Saad [College of Aeronautical Engineering, National University of Sciences and Technology, Islamabad, 44000 (Pakistan); Habib, Amir, E-mail: imranrahbar@scme.nust.edu.pk, E-mail: amirhabib@scme.nust.edu.pk [School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000 (Pakistan); The Department of Physics, College of Sciences, University of Hafar Al Batin, P.O. Box 1803, Hafar Al Batin 31991 Saudi Arabia (Saudi Arabia)

    2016-06-15

    Perovskite based solar cells have demonstrated impressive performances. Controlled environment synthesis and expensive hole transport material impede their potential commercialization. We report ambient air synthesis of hole transport layer free devices using ZnO-GO as electron selective contacts. Solar cells fabricated with hole transport layer free architecture under ambient air conditions with ZnO as electron selective contact achieved an efficiency of 3.02%. We have demonstrated that by incorporating GO in ZnO matrix, low resistivity electron selective contacts, critical to improve the performance, can be achieved. We could achieve max efficiency of 4.52% with our completed devices for ZnO: GO composite. Impedance spectroscopy confirmed the decrease in series resistance and an increase in recombination resistance with inclusion of GO in ZnO matrix. Effect of temperature on completed devices was investigated by recording impedance spectra at 40 and 60 {sup o}C, providing indirect evidence of the performance of solar cells at elevated temperatures.

  2. Effect of glucose, lactate and pyruvate concentrations on in vitro ...

    African Journals Online (AJOL)

    Jane

    2011-08-01

    Aug 1, 2011 ... growth of oocytes and other follicular cells in vitro. The aim of this study ... major metabolite used in bovine cumulus oocyte complex in maturation .... implantation embryos, because it eliminates undefined factors present in ...

  3. Effect of Collection Technique on Yield of Bovine Oocytes and the Development Potential of Oocytes from Different Grades of Oocytes

    Directory of Open Access Journals (Sweden)

    R.G Sianturi

    2002-10-01

    Full Text Available Oocyte collection technique is important to obtain a maximum number of oocytes to be employed on in vitro production of embryos. In this study, immature bovine oocytes were collected from slaughterhouse ovaries by two techniques: aspiration of 2- to 6-mm follicles and slicing. Following collection, oocyte qualities were classified into four categories (A, B, C, and D on the basis of cumulus attachment. Oocytes of each category were matured in vitro in CO2 incubator for 22-24 hours and cumulus expansion and maturation rates were observed. The total number of oocytes (group A+B+C+D and yield of good quality oocytes (only group A and B recovered per ovary by aspiration were 12.02 and 8.21, and by slicing were 29.38 and 19.65 (P<0.01, respectively. The total cumulus cells expansion rates of A, B, C and D oocytes were 97.1%, 88.3%, 6.0% and 20.6% respectively. Maturation rates for A, B and C categories of oocytes were 91.4%, 82.3% and 35.0% respectively while no matured oocyte was observed for group D oocytes. Maturation rates were significantly different between group A and C and also between B and C but not between A and B (P<0.05. In conclusion, slicing technique recovered more oocytes per ovary (2.4 times than that of aspiration and the best maturation rate was observed from category A oocytes which surrounded by more than 3 layers of cumulus cells. However oocytes of category A and B can be considered as good quality oocytes.

  4. Fast Crystallization and improved Stability of Perovskite Solar Cells with Zn 2 SnO 4 Electron Transporting Layer: Interface Matters

    KAUST Repository

    Bera, Ashok

    2015-12-03

    Here we report that mesoporous ternary oxide Zn2SnO4 can significantly promotes the crystallization of hybrid perovskite layers and serves as an efficient electron transporting material in perovskite solar cells. Such devices exhibit an energy conversion efficiency of 13.34%, which is even higher than that achieved with the commonly used TiO2 in the similar experimental conditions (9.1%). Simple one-step spin coating of CH3NH3PbI3−xClx on Zn2SnO4 is found to lead to rapidly crystalized bilayer perovskite structure without any solvent engineering. Furthermore, ultrafast transient absorption measurement reveals efficient charge transfer at the Zn2SnO4/perovskite interface. Most importantly, solar cells with Zn2SnO4 as the electron-transporting material exhibit negligible electrical hysteresis and exceptionally high stability without encapsulation for over one month. Besides underscoring Zn2SnO4 as a highly promising electron transporting material for perovskite solar cells, our results demonstrate the significant role of interfaces on improving the perovskite crystallization and photovoltaic performance.

  5. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations.

    Science.gov (United States)

    Nogueira, P; Zankl, M; Schlattl, H; Vaz, P

    2011-11-07

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  6. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations

    International Nuclear Information System (INIS)

    Nogueira, P; Vaz, P; Zankl, M; Schlattl, H

    2011-01-01

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  7. Trans-membrane electron transfer in red blood cells immobilized in a chitosan film on a glassy carbon electrode

    International Nuclear Information System (INIS)

    Yu, Chunmei; Wang, Li; Zhu, Zhenkun; Bao, Ning; Gu, Haiying

    2014-01-01

    We have studied the trans-membrane electron transfer in human red blood cells (RBCs) immobilized in a chitosan film on a glassy carbon electrode (GCE). Electron transfer results from the presence of hemoglobin (Hb) in the RBCs. The electron transfer rate (k s ) of Hb in RBCs is 0.42 s −1 , and <1.13 s −1 for Hb directly immobilized in the chitosan film. Only Hb molecules in RBCs that are closest to the plasma membrane and the surface of the electrode can undergo electron transfer to the electrode. The immobilized RBCs displayed sensitive electrocatalytic response to oxygen and hydrogen peroxide. It is believed that this cellular biosensor is of potential significance in studies on the physiological status of RBCs based on observing their electron transfer on the modified electrode. (author)

  8. Planar heterojunction perovskite solar cell based on CdS electron transport layer

    KAUST Repository

    Abulikemu, Mutalifu

    2017-07-02

    We report on planar heterojunction perovskite solar cells employing a metal chalcogenide (CdS) electron transport layer with power conversion efficiency up to 10.8%. The CdS layer was deposited via solution-process chemical bath deposition at low-temperature (60°C). Pinhole-free and uniform thin films were obtained with good structural, optical and morphological properties. An optimal layer thickness of 60nm yielded an improved open-circuit voltage and fill factor compared to the standard TiO2-based solar cells. Devices showed a higher reproducibility of the results compared to TiO2-based ones. We also tested the effect of annealing temperature on the CdS film and the effect of CdCl2 treatment followed by high temperature annealing (410°C) that is expected to passivate the surface, thus eliminating eventual trap-states inducing recombination.

  9. Planar heterojunction perovskite solar cell based on CdS electron transport layer

    KAUST Repository

    Abulikemu, Mutalifu; Barbe, Jeremy; El Labban, Abdulrahman; Eid, Jessica; Del Gobbo, Silvano

    2017-01-01

    We report on planar heterojunction perovskite solar cells employing a metal chalcogenide (CdS) electron transport layer with power conversion efficiency up to 10.8%. The CdS layer was deposited via solution-process chemical bath deposition at low-temperature (60°C). Pinhole-free and uniform thin films were obtained with good structural, optical and morphological properties. An optimal layer thickness of 60nm yielded an improved open-circuit voltage and fill factor compared to the standard TiO2-based solar cells. Devices showed a higher reproducibility of the results compared to TiO2-based ones. We also tested the effect of annealing temperature on the CdS film and the effect of CdCl2 treatment followed by high temperature annealing (410°C) that is expected to passivate the surface, thus eliminating eventual trap-states inducing recombination.

  10. Intact cell MALDI-TOF mass spectrometry on single bovine oocyte and follicular cells combined with top-down proteomics: A novel approach to characterise markers of oocyte maturation.

    Science.gov (United States)

    Labas, Valérie; Teixeira-Gomes, Ana-Paula; Bouguereau, Laura; Gargaros, Audrey; Spina, Lucie; Marestaing, Aurélie; Uzbekova, Svetlana

    2018-03-20

    Intact cell MALDI-TOF mass spectrometry (ICM-MS) was adapted to bovine follicular cells from individual ovarian follicles to obtain the protein/peptide signatures (top-down workflow using high resolution MS/MS (TD HR-MS) was performed on the protein extracts from oocytes, CC and GC. The TD HR-MS proteomic approach allowed for: (1) identification of 386 peptide/proteoforms encoded by 194 genes; and (2) characterisation of proteolysis products likely resulting from the action of kallikreins and caspases. In total, 136 peaks observed by ICM-MS were annotated by TD HR-MS (ProteomeXchange PXD004892). Among these, 16 markers of maturation were identified, including IGF2 binding protein 3 and hemoglobin B in the oocyte, thymosins beta-4 and beta-10, histone H2B and ubiquitin in CC. The combination of ICM-MS and TD HR-MS proved to be a suitable strategy to identify non-invasive markers of oocyte quality using limited biological samples. Intact cell MALDI-TOF mass spectrometry on single oocytes and their surrounding cumulus cells, coupled to an optimised top-down HR-MS proteomic approach on ovarian follicular cells, was used to identify specific markers of oocyte meiotic maturation represented by whole low molecular weight proteins or products of degradation by specific proteases. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors.

    Science.gov (United States)

    Wen, Zhen; Yeh, Min-Hsin; Guo, Hengyu; Wang, Jie; Zi, Yunlong; Xu, Weidong; Deng, Jianan; Zhu, Lei; Wang, Xin; Hu, Chenguo; Zhu, Liping; Sun, Xuhui; Wang, Zhong Lin

    2016-10-01

    Wearable electronics fabricated on lightweight and flexible substrate are believed to have great potential for portable devices, but their applications are limited by the life span of their batteries. We propose a hybridized self-charging power textile system with the aim of simultaneously collecting outdoor sunshine and random body motion energies and then storing them in an energy storage unit. Both of the harvested energies can be easily converted into electricity by using fiber-shaped dye-sensitized solar cells (for solar energy) and fiber-shaped triboelectric nanogenerators (for random body motion energy) and then further stored as chemical energy in fiber-shaped supercapacitors. Because of the all-fiber-shaped structure of the entire system, our proposed hybridized self-charging textile system can be easily woven into electronic textiles to fabricate smart clothes to sustainably operate mobile or wearable electronics.

  12. Investigating Ceria Nanocrystals Uptake by Glioblastoma Multiforme Cells and its Related Effects: An Electron Microscopy Study

    KAUST Repository

    Aloufi, Bader

    2017-01-22

    Cerium oxide nanoparticles have been utilized widely nowadays in cancer research. It has been suggested by many studies that these nanoparticles are capable of having dual antioxidant behavior in healthy and cancer microenvironment; where in physiological condition, they act as antioxidant and do not affect the healthy cells, while in tumor-like condition; they act as an oxidase, and result in a selective killing for the cancer cells. In this experiment, the interaction of nanoceria with glioblastoma and healthy astrocyte cells was examined, and further correlated with the in vitro cytotoxic effects of various nanoceria concentrations (100 and 300 µg/ml) and exposure times (12, 24, and 48 hours). Electron microscopes were used to investigate the cellular-NPs interactions, and to examine the related cytotoxic effects in combination with trypan blue and propidium iodide viability assays. Our data suggest the following results. First, the two cell lines demonstrated capability of taken up the ceria through endocytosis pathway, where the NPs were recognized engulfed by double membrane vesicles at various regions over the cellular cytoplasm. Secondly, cerium oxide nanoparticles were found to affect the glioblastoma cells, but not so severely the corresponding healthy astrocytes at the various concentrations and incubation times, as revealed by the viability assays and the electron microscopy analysis. Thirdly, the viability of the glioblastoma cells after the treatment displayed a declined trend when increasing the ceria concentrations, but did not show such dependency with regard to the different time points. In all cases, the healthy astrocyte cells showed slight alterations in mitochondrial shape which did not influence their viability. Among the various nanoceria concentrations and exposure times, the most efficient dose of treatment was found to be with a concentration of 300 µg/ml at a time point of 24-hour, where higher reduction on the viability of

  13. Electron tomography of fusiform vesicles and their organization in urothelial cells.

    Directory of Open Access Journals (Sweden)

    Samo Hudoklin

    Full Text Available The formation of fusiform vesicles (FVs is one of the most distinctive features in the urothelium of the urinary bladder. FVs represent compartments for intracellular transport of urothelial plaques, which modulate the surface area of the superficial urothelial (umbrella cells during the distension-contraction cycle. We have analysed the three-dimensional (3D structure of FVs and their organization in umbrella cells of mouse urinary bladders. Compared to chemical fixation, high pressure freezing gave a new insight into the ultrastructure of urothelial cells. Electron tomography on serial sections revealed that mature FVs had a shape of flattened discs, with a diameter of up to 1.2 µm. The lumen between the two opposing asymmetrically thickened membranes was very narrow, ranging from 5 nm to 10 nm. Freeze-fracturing and immunolabelling confirmed that FVs contain two opposing urothelial plaques connected by a hinge region that made an omega shaped curvature. In the central cytoplasm, 4-15 FVs were often organized into stacks. In the subapical cytoplasm, FVs were mainly organized as individual vesicles. Distension-contraction cycles did not affect the shape of mature FVs; however, their orientation changed from parallel in distended to perpendicular in contracted bladder with respect to the apical plasma membrane. In the intermediate cells, shorter and more dilated immature FVs were present. The salient outcome from this research is the first comprehensive, high resolution 3D view of the ultrastructure of FVs and how they are organized differently depending on their location in the cytoplasm of umbrella cells. The shape of mature FVs and their organization into tightly packed stacks makes them a perfect storage compartment, which transports large amounts of urothelial plaques while occupying a small volume of umbrella cell cytoplasm.

  14. Transmission electron microscope cells for use with liquid samples

    Science.gov (United States)

    Khalid, Waqas; Alivisatos, Paul A.; Zettl, Alexander K.

    2016-08-09

    This disclosure provides systems, methods, and devices related to transmission electron microscopy cells for use with liquids. In one aspect a device includes a substrate, a first graphene layer, and a second graphene layer. The substrate has a first surface and a second surface. The first surface defines a first channel, a second channel, and an outlet channel. The first channel and the second channel are joined to the outlet channel. The outlet channel defines a viewport region forming a though hole in the substrate. The first graphene layer overlays the first surface of the substrate, including an interior area of the first channel, the second channel, and the outlet channel. The second graphene layer overlays the first surface of the substrate, including open regions defined by the first channel, the second channel, and the outlet channel.

  15. N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability

    NARCIS (Netherlands)

    Shao, S.; Chen, Z.; Fang, H. -H.; ten Brink, G. H.; Bartesaghi, D.; Adjokatse, S.; Koster, L. J. A.; Kooi, B. J.; Facchetti, A.; Loi, M. A.

    2016-01-01

    We studied three n-type polymers of the naphthalenediimide-bithiophene family as electron extraction layers (EELs) in hybrid perovskite solar cells. The recombination mechanism in these devices is found to be heavily influenced by the EEL transport properties. The maximum efficiency of the devices

  16. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  17. Sol-gel derived ZnO as an electron transport layer (ETL) for inverted organic solar cells

    Science.gov (United States)

    Tiwari, D. C.; Dwivedi, Shailendra Kumar; Dipak, Phukhrambam; Chandel, Tarun; Sharma, Rishi

    2017-05-01

    In this work, we present the study of the fabrication process of the sol-gel derived zinc oxide (ZnO) as an electron transport layer (ETL.). The solution processed inverted bulk heterojunction organic solar cells based on a thin film blend of poly (3-hexylthiophene 2, 5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester is prepared. ZnO thin films are annealed at different temperature to optimize the solar cell performance and their characterization for their structural and optical properties are carried out. We have observed Voc=70mV, Jsc=1.33 µA/cm2 and FF=26% from the inverted heterojunction solar cell.

  18. mtDNA copy number in oocytes of different sizes from individual pre- and post-pubertal pigs

    DEFF Research Database (Denmark)

    Pedersen, Hanne Skovsgaard; Løvendahl, Peter; Larsen, Knud Erik

    2014-01-01

    from ovaries of 10 pre- and 10 post-pubertal pigs. Cumulus cells were removed and the oocytes were measured (inside-ZP-diameter). Oocytes were transferred to DNAase-free tubes, snap-frozen, and stored at –80°C. The genes ND1 and COX1 were used to determine the mtDNA copy number. Plasmid preparations...... Reproduction 131, 233–245). However, the correlation between size and mtDNA copy number in single oocytes has not been determined. This study describes the relation between oocytes of defined diameters from individual pre- and postpubertal pigs and mtDNA copy number. Cumulus-oocyte complexes were aspirated...

  19. Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Peddie, Christopher J.; Blight, Ken; Wilson, Emma [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Melia, Charlotte [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Department of Molecular Cell Biology, Leiden University Medical Centre, 2300 RC Leiden (Netherlands); Marrison, Jo [Department of Biology, The University of York, Heslington, York (United Kingdom); Carzaniga, Raffaella [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Domart, Marie-Charlotte [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); O' Toole, Peter [Department of Biology, The University of York, Heslington, York (United Kingdom); Larijani, Banafshe [Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, Unidad de Biofísica (CSIC-UPV/EHU),Sarriena s/n, 48940 Leioa (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain); Collinson, Lucy M. [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom)

    2014-08-01

    Fluorescence microscopy of GFP-tagged proteins is a fundamental tool in cell biology, but without seeing the structure of the surrounding cellular space, functional information can be lost. Here we present a protocol that preserves GFP and mCherry fluorescence in mammalian cells embedded in resin with electron contrast to reveal cellular ultrastructure. Ultrathin in-resin fluorescence (IRF) sections were imaged simultaneously for fluorescence and electron signals in an integrated light and scanning electron microscope. We show, for the first time, that GFP is stable and active in resin sections in vacuo. We applied our protocol to study the subcellular localisation of diacylglycerol (DAG), a modulator of membrane morphology and membrane dynamics in nuclear envelope assembly. We show that DAG is localised to the nuclear envelope, nucleoplasmic reticulum and curved tips of the Golgi apparatus. With these developments, we demonstrate that integrated imaging is maturing into a powerful tool for accurate molecular localisation to structure. - Highlights: • GFP and mCherry fluorescence are preserved in heavy-metal stained mammalian cells embedded in resin • Fluorophores are stable and intensity is sufficient for detection in ultrathin sections • Overlay of separate LM and EM images from the same ultrathin section improves CLEM protein localisation precision • GFP is stable and active in the vacuum of an integrated light and scanning EM • Integrated light and electron microscopy shows new subcellular locations of the lipid diacylglycerol.

  20. AFM measurements of novel solar cells. Studying electronic properties of Si-based radial junctions

    Czech Academy of Sciences Publication Activity Database

    Hývl, Matěj

    -, č. 1 (2014), s. 52-53 ISSN 1439-4243 R&D Projects: GA ČR GA13-25747S; GA ČR GA13-12386S; GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : AFM measurements * conductive cantilever * electronic properties * nanowires * PF TUNA Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.imaging-git.com/science/scanning-probe-microscopy/afm-measurements-novel-solar- cells

  1. Electrical performance of the InGaP solar cell irradiated with low energy electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Yasuki; Okuda, Shuichi; Kojima, Takeo; Oka, Takashi [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai City, Osaka (Japan); Kawakita, Shirou; Imaizumi, Mitsuru; Kusawake, Hiroaki [Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba, Ibaraki (Japan)

    2015-06-15

    The investigation of the radiation degradation characteristics of InGaP space solar cells is important. In order to understand the mechanism of the degradation by radiation the samples of the InGaP solar cell were irradiated in vacuum and at ambient temperature with electron beams from a Cockcroft-Walton type accelerator at Osaka Prefecture University. The threshold energies for recoil were obtained by theoretical calculation. The energies and the fluences of the electron beams were from 60 to 400 keV and from 3 x 10{sup 14} to 3 x 10{sup 16} cm{sup -2}, respectively. The light-current-voltage measurements were performed. The degradation of Isc caused by the defects related to the phosphorus atoms was observed and the degradation was suppressed by irradiation at an energy higher than the threshold energy for recoiling Indium atoms. At an energy of 60 keV, where the recoil does not occur, the V{sub oc} was degraded. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Hydrogenated TiO2 Thin Film for Accelerating Electron Transport in Highly Efficient Planar Perovskite Solar Cells.

    Science.gov (United States)

    Yao, Xin; Liang, Junhui; Li, Yuelong; Luo, Jingshan; Shi, Biao; Wei, Changchun; Zhang, Dekun; Li, Baozhang; Ding, Yi; Zhao, Ying; Zhang, Xiaodan

    2017-10-01

    Intensive studies on low-temperature deposited electron transport materials have been performed to improve the efficiency of n-i-p type planar perovskite solar cells to extend their application on plastic and multijunction device architectures. Here, a TiO 2 film with enhanced conductivity and tailored band edge is prepared by magnetron sputtering at room temperature by hydrogen doping (HTO), which accelerates the electron extraction from perovskite photoabsorber and reduces charge transfer resistance, resulting in an improved short circuit current density and fill factor. The HTO film with upward shifted Fermi level guarantees a smaller loss on V OC and facilitates the growth of high-quality absorber with much larger grains and more uniform size, leading to devices with negligible hysteresis. In comparison with the pristine TiO 2 prepared without hydrogen doping, the HTO-based device exhibits a substantial performance enhancement leading to an efficiency of 19.30% and more stabilized photovoltaic performance maintaining 93% of its initial value after 300 min continuous illumination in the glove box. These properties permit the room-temperature magnetron sputtered HTO film as a promising electron transport material for flexible and tandem perovskite solar cell in the future.

  3. Fluorescent carbon quantum dots synthesized by chemical vapor deposition: An alternative candidate for electron acceptor in polymer solar cells

    Science.gov (United States)

    Cui, Bo; Yan, Lingpeng; Gu, Huimin; Yang, Yongzhen; Liu, Xuguang; Ma, Chang-Qi; Chen, Yongkang; Jia, Husheng

    2018-01-01

    Excitation-wavelength-dependent blue-greenish fluorescent carbon quantum dots (CQDs) with graphite structure were synthesized by chemical vapor deposition (CVD) method. In comparison with those synthesized by hydrothermal method (named H-CQDs), C-CQDs have less hydrophilic terminal groups, showing good solubility in common organic solvents. Furthermore, these synthesized C-CQDs show a low LUMO energy level (LUMO = -3.84 eV), which is close to that of phenyl-C61-butyric acid methyl ester (PC61BM, LUMO = -4.01 eV), the most widely used electron acceptor in polymer solar cells. Photoluminescence quenching of the poly(3-hexylthiophene-2,5-diyl):C-CQDs blended film (P3HT:C-CQDs) indicated that a photo-induced charge transfer between P3HT and C-CQDs occurs in such a composite film. Bulk heterojunction solar cells using C-CQDs as electron acceptors or doping materials were fabricated and tested. High fill factors were achieved for these C-CQDs based polymer solar cells, demonstrating that CQDs synthesized by CVD could be alternative to the fullerene derivatives for applying in polymer solar cells.

  4. Fully coupled opto-electronic modelling of organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, Nils A.; Haeusermann, Roger; Huber, Evelyne; Moos, Michael [ZHAW, Institute of Comp. Physics (Germany); Flatz, Thomas [Fluxim AG (Switzerland); Ruhstaller, Beat [ZHAW, Institute of Comp. Physics (Germany); Fluxim AG (Switzerland)

    2009-07-01

    Record solar power conversion efficiencies of up to 5.5 % for single junction organic solar cells (OSC) are encouraging but still inferior to values of inorganic solar cells. For further progress, a detailed analysis of the mechanisms that limit the external quantum efficiency is crucial. It is widely believed that the device physics of OSCs can be reduced to the processes, which take place at the donor/acceptor-interface. Neglecting transport, trapping and ejection of charge carriers at the electrodes raises the question of the universality of such a simplification. In this study we present a fully coupled opto-electronic simulator, which calculates the spatial and spectral photon flux density inside the OSC, the formation of the charge transfer state and its dissociation into free charge carriers. Our simulator solves the drift- diffusion equations for the generated charge carriers as well as their ejection at the electrodes. Our results are in good agreement with both steady-state and transient OSC characteristics. We address the influence of physical quantities such as the optical properties, film-thicknesses, the recombination rate and charge carrier mobilities on performance figures. For instance the short circuit current can be enhanced by 15% to 25% when using a silver instead of an aluminium cathode. Our simulations lead to rules of thumb, which help to optimise a given OSC structure.

  5. Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH.

    Science.gov (United States)

    Okamoto, Akihiro; Kalathil, Shafeer; Deng, Xiao; Hashimoto, Kazuhito; Nakamura, Ryuhei; Nealson, Kenneth H

    2014-07-11

    The variety of solid surfaces to and from which microbes can deliver electrons by extracellular electron transport (EET) processes via outer-membrane c-type cytochromes (OM c-Cyts) expands the importance of microbial respiration in natural environments and industrial applications. Here, we demonstrate that the bifurcated EET pathway of OM c-Cyts sustains the diversity of the EET surface in Shewanella oneidensis MR-1 via specific binding with cell-secreted flavin mononucleotide (FMN) and riboflavin (RF). Microbial current production and whole-cell differential pulse voltammetry revealed that RF and FMN enhance EET as bound cofactors in a similar manner. Conversely, FMN and RF were clearly differentiated in the EET enhancement by gene-deletion of OM c-Cyts and the dependency of the electrode potential and pH. These results indicate that RF and FMN have specific binding sites in OM c-Cyts and highlight the potential roles of these flavin-cytochrome complexes in controlling the rate of electron transfer to surfaces with diverse potential and pH.

  6. Electron Beam Evaporated TiO2 Layer for High Efficiency Planar Perovskite Solar Cells on Flexible Polyethylene Terephthalate Substrates

    KAUST Repository

    Qiu, Weiming

    2015-09-30

    The TiO2 layer made by electron beam (e-beam) induced evaporation is demonstrated as electron transport layer (ETL) in high efficiency planar junction perovskite solar cells. The temperature of the substrate and the thickness of the TiO2 layer can be easily controlled with this e-beam induced evaporation method, which enables the usage of different types of substrates. Here, Perovskite solar cells based on CH3NH3PbI3-xClx achieve power conversion efficiencies of 14.6% on glass and 13.5% on flexible plastic substrates. The relationship between the TiO2 layer thickness and the perovskite morphology is studied with scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Our results indicate that pinholes in thin TiO2 layer lead to pinholes in the perovskite layer. By optimizing the TiO2 thickness, perovskite layers with substantially increased surface coverage and reduced pinhole areas are fabricated, increasing overall device performance.

  7. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    Science.gov (United States)

    Kang, Jin Sung

    Inkjet printing of electrode using copper nanoparticle ink is presented. Electrode was printed on a flexible glass epoxy composite substrate using drop on demand piezoelectric dispenser and was sintered at 200°C in N 2 gas condition. The printed electrodes were made with various widths and thicknesses. Surface morphology of electrode was analyzed using scanning electron microscope (SEM) and atomic force microscope (AFM). Reliable dimensions for printed electronics were found from this study. Single-crystalline silicon solar cells were tested under four-point bending to find the feasibility of directly integrating them onto a carbon fiber/epoxy composite laminate. These solar cells were not able to withstand 0.2% strain. On the other hand, thin-film amorphous silicon solar cells were subjected to flexural fatigue loadings. The current density-voltage curves were analyzed at different cycles, and there was no noticeable degradation on its performance up to 100 cycles. A multifunctional composite laminate which can harvest and store solar energy was fabricated using printed electrodes. The integrated printed circuit board (PCB) was co-cured with a carbon/epoxy composite laminate by the vacuum bag molding process in an autoclave; an amorphous silicon solar cell and a thin-film solid state lithium-ion (Li-ion) battery were adhesively joined and electrically connected to a thin flexible PCB; and then the passive components such as resistors and diodes were electrically connected to the printed circuit board by silver pasting. Since a thin-film solid state Li-ion battery was not able to withstand tensile strain above 0.4%, thin Li-ion polymer batteries were tested under various mechanical loadings and environmental conditions to find the feasibility of using the polymer batteries for our multifunctional purpose. It was found that the Li-ion polymer batteries were stable under pressure and tensile loading without any noticeable degradation on its charge and discharge

  8. Highly water-dispersible, mixed ionic-electronic conducting, polymer acid-doped polyanilines as ionomers for direct methanol fuel cells.

    Science.gov (United States)

    Murthy, Arun; Manthiram, Arumugam

    2011-06-28

    Highly water-dispersible polymer acid-doped polyanilines have been synthesized and evaluated as an alternative for expensive Nafion ionomers in the anode of direct methanol fuel cells (DMFC). These polymers as ionomers lead to higher performance in single cell DMFC compared to Nafion ionomers due to mixed ionic-electronic conduction, water dispersibility, and co-catalytic activity. This journal is © The Royal Society of Chemistry 2011

  9. Electron microscopic radioautographic studies on macromolecular synthesis in mitochondria of animal cells in aging

    International Nuclear Information System (INIS)

    Nagata, Tetsuji

    2010-01-01

    Study aging changes of intramitochondrial DNA, RNA, protein synthesis of mouse organs during the development and aging, 30 groups of developing and aging mice (3 individuals each), from fetal day 19 to postnatal newborn at day 1, 3, 9, 14 and adult at month 1, 2, 6, 12 to 24, were injected with either 3 H-thymidine, 3 H-uriidine, or 3 H-leucine, sacrificed 1 h later and liver, adrenal, lung and testis tissues observed by electron microscopic radioautography. Accordingly, numbers of mitochondria per cell profile area, numbers of labeled mitochondria and the mitochondrial labeling index labeled with 3 H-labeled precursors showing DNA, RNA, protein synthesis in these cells (hepatocytes, 3 zones of the adrenal cortices - zona glomerulosa, fasciculata and reticularis -, adrenal medullary cells, pulmonary cells and testis cells) were counted per cells and compared among the respective developing and aging groups. The numbers of mitochondria in these cells increased from fetal day 19 to postnatal month 1 and 2. However, the numbers of labeled mitochondria and the labeling indices of intramitochondrial DNA, RNA, protein syntheses incorporating the 3 H-labeled precursors in the described tissue cells increased from fetal day 19 to postnatal month 1 and decreased to month 24. These data support that the activity of intramitochnodrial DNA, RNA, protein syntheses in cells of these tissues increased and decreased by development and aging in mice. The intramitochondrial DNA, RNA and protein syntheses in some other organs were also reviewed and discussed. (author)

  10. A-π-D-π-A Electron-Donating Small Molecules for Solution-Processed Organic Solar Cells: A Review.

    Science.gov (United States)

    Wang, Zhen; Zhu, Lingyun; Shuai, Zhigang; Wei, Zhixiang

    2017-11-01

    Organic solar cells based on semiconducting polymers and small molecules have attracted considerable attention in the last two decades. Moreover, the power conversion efficiencies for solution-processed solar cells containing A-π-D-π-A-type small molecules and fullerenes have reached 11%. However, the method for designing high-performance, photovoltaic small molecules still remains unclear. In this review, recent studies on A-π-D-π-A electron-donating small molecules for organic solar cells are introduced. Moreover, the relationships between molecular properties and device performances are summarized, from which inspiration for the future design of high performance organic solar cells may be obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Tail state-assisted charge injection and recombination at the electron-collecting interface of P3HT:PCBM bulk-heterojunction polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States); Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States); Shah, Manas [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ganesan, Venkat [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Chabinyc, Michael L. [Materials Department, University of California Santa Barbara, CA 93106 (United States); Loo, Yueh-Lin [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2012-12-15

    The systematic insertion of thin films of P3HT and PCBM at the electron- and hole-collecting interfaces, respectively, in bulk-heterojunction polymer solar cells results in different extents of reduction in device characteristics, with the insertion of P3HT at the electron-collecting interface being less disruptive to the output currents compared to the insertion of PCBM at the hole-collecting interface. This asymmetry is attributed to differences in the tail state-assisted charge injection and recombination at the active layer-electrode interfaces. P3HT exhibits a higher density of tail states compared to PCBM; holes in these tail states can thus easily recombine with electrons at the electron-collection interface during device operation. This process is subsequently compensated by the injection of holes from the cathode into these tail states, which collectively enables net current flow through the polymer solar cell. The study presented herein thus provides a plausible explanation for why preferential segregation of P3HT to the cathode interface is inconsequential to device characteristics in P3HT:PCBM bulk-heterojunction solar cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells.

    Science.gov (United States)

    Pinto, David; Coradin, Thibaud; Laberty-Robert, Christel

    2018-04-01

    In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between -0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (-0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. ultraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Elisabeth Brama

    2016-12-01

    Full Text Available In-resin fluorescence (IRF protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables ‘smart collection’ of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables ‘smart tracking’ of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.

  14. Exocellular electron transfer in anaerobic microbial communities.

    Science.gov (United States)

    Stams, Alfons J M; de Bok, Frank A M; Plugge, Caroline M; van Eekert, Miriam H A; Dolfing, Jan; Schraa, Gosse

    2006-03-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory syntrophic consortia of proton-reducing acetogenic bacteria and hydrogen-consuming methanogenic archaea. Anaerobic microorganisms that use insoluble electron acceptors for growth, such as iron- and manganese-oxide as well as inert graphite electrodes in microbial fuel cells, also transfer electrons exocellularly. Soluble compounds, like humic substances, quinones, phenazines and riboflavin, can function as exocellular electron mediators enhancing this type of anaerobic respiration. However, direct electron transfer by cell-cell contact is important as well. This review addresses the mechanisms of exocellular electron transfer in anaerobic microbial communities. There are fundamental differences but also similarities between electron transfer to another microorganism or to an insoluble electron acceptor. The physical separation of the electron donor and electron acceptor metabolism allows energy conservation in compounds as methane and hydrogen or as electricity. Furthermore, this separation is essential in the donation or acceptance of electrons in some environmental technological processes, e.g. soil remediation, wastewater purification and corrosion.

  15. Effects of electron and proton irradiations on n/p and p/n GaAs cells grown by MOCVD

    International Nuclear Information System (INIS)

    Weinberg, I.; Swartz, C.K.; Hart, R.E. Jr.

    1987-01-01

    State-of-the-art n/p and p/n heteroface GaAs cells, processed by metal organic chemical vapor deposition, were irradiated by 1 MeV electrons and 37 MeV protons and their performance determined as a function of fluence. It was found that the p/n cells were more radiation resistant than the n/p cells. The increased loss in the n/p cells was attributed to increases in series resistance and losses in the p-region resulting from the irradiation. The greater loss in fill factor observed for the n/p cells introduces the possibility that the presently observed superiority of the p/n cells may not be an intrinsic property of this configuration in GaAs

  16. Magnetoresistance oscillations of two-dimensional electron systems in lateral superlattices with structured unit cells

    Science.gov (United States)

    Gerhardts, Rolf R.

    2015-11-01

    Model calculations for commensurability oscillations of the low-field magnetoresistance of two-dimensional electron systems (2DES) in lateral superlattices, consisting of unit cells with an internal structure, are compared with recent experiments. The relevant harmonics of the effective modulation potential depend not only on the geometrical structure of the modulated unit cell, but also strongly on the nature of the modulation. While higher harmonics of an electrostatically generated surface modulation are exponentially damped at the position of the 2DES about 90 nm below the surface, no such damping appears for strain-induced modulation generated, e.g., by the deposition of stripes of calixarene resist on the surface before cooling down the sample.

  17. Improvements of fill factor in solar cells based on blends of polyfluorene copolymers as electron donors

    International Nuclear Information System (INIS)

    Gadisa, Abay; Zhang, Fengling; Sharma, Deepak; Svensson, Mattias; Andersson, Mats R.; Inganaes, Olle

    2007-01-01

    The photovoltaic characteristics of solar cells based on alternating polyfluorene copolymers, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3' -benzothia diazole)) (APFO-3), and poly(2,7-(9,9-didodecyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3' -benzothiadiazole)) (APFO-4), blended with an electron acceptor fullerene molecule [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM), have been investigated and compared. The two copolymers have the same aromatic backbone structure but differ by the length of their alkyl side chain. The overall photovoltaic performance of the solar cells is comparable irrespective of the copolymer used in the active layer. However, the fill factor (FF) values of the devices are strongly affected by the copolymer type. Higher FF values were realized in solar cells with APFO-4 (with longer alkyl side chain)/PCBM bulk heterojunction active layer. On the other hand, devices with blends of APFO-3/APFO-4/PCBM were found to render fill factor values that are intermediate between the values obtained in solar cells with APFO-3/PCBM and APFO-4/PCBM active film. Upon using APFO-3/APFO-4 blends as electron donors, the cell efficiency can be enhanced by about 16% as compared to cells with either APFO-3 or APFO-4. The transport of holes in each polymer obeys the model of hopping transport in disordered media. However, the degree of energetic barrier against hopping was found to be larger in APFO-3. The tuning of the photovoltaic parameters will be discussed based on studies of hole transport in the pure polymer films, and morphology of blend layers. The effect of bipolar transport in PCBM will also be discussed

  18. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  19. Effects of water stress on photosynthetic electron transport, photophosphorylation, and metabolite levels of Xanthium strumarium mesophyll cells.

    Science.gov (United States)

    Sharkey, T D; Badger, M R

    1982-12-01

    Several component processes of photosynthesis were measured in osmotically stressed mesophyll cells of Xanthium strumarium L. The ribulose-1,5-bisphosphate regeneration capacity was reduced by water stress. Photophoshorylation was sensitive to water stress but photosynthetic electron transport was unaffected by water potentials down to-40 bar (-4 MPa). The concentrations of several intermediates of the photosynthetic carbon-reduction cycle remained relatively constant and did not indicate that ATP supply was limiting photosynthesis in the water-stressed cells.

  20. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells

    KAUST Repository

    Wadsworth, Andrew; Moser, Maximilian; Marks, Adam; Little, Mark S.; Gasparini, Nicola; Brabec, Christoph J.; Baran, Derya; McCulloch, Iain

    2018-01-01

    Fullerenes have formed an integral part of high performance organic solar cells over the last 20 years, however their inherent limitations in terms of synthetic flexibility, cost and stability have acted as a motivation to develop replacements; the so-called non-fullerene electron acceptors. A rapid evolution of such materials has taken place over the last few years, yielding a number of promising candidates that can exceed the device performance of fullerenes and provide opportunities to improve upon the stability and processability of organic solar cells. In this review we explore the structure-property relationships of a library of non-fullerene acceptors, highlighting the important chemical modifications that have led to progress in the field and provide an outlook for future innovations in electron acceptors for use in organic photovoltaics.

  1. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells

    KAUST Repository

    Wadsworth, Andrew

    2018-04-26

    Fullerenes have formed an integral part of high performance organic solar cells over the last 20 years, however their inherent limitations in terms of synthetic flexibility, cost and stability have acted as a motivation to develop replacements; the so-called non-fullerene electron acceptors. A rapid evolution of such materials has taken place over the last few years, yielding a number of promising candidates that can exceed the device performance of fullerenes and provide opportunities to improve upon the stability and processability of organic solar cells. In this review we explore the structure-property relationships of a library of non-fullerene acceptors, highlighting the important chemical modifications that have led to progress in the field and provide an outlook for future innovations in electron acceptors for use in organic photovoltaics.

  2. Electron microscope studies of methotrexate and radiation effects in human squamous cell carcinoma of the mouth

    International Nuclear Information System (INIS)

    De Martino, C.

    1974-01-01

    Serial biopsy specimens from two squamous cell carcinomas of the mouth were studied by electron microscopy. This report described the ultrastructural changes in the cells produced by treatment with methotrexate followed by irradiation. The main ultrastructural findings after treatment are: numerous autophagic lysosomes and residual bodies are visible in the cytoplasm of the tumor cells; mitochondria are swollen. The mitochondrial cristae are distorted and disrupted, and mitochondrial matrix disappears; the nucleolus shows a series of morphological changes such as development of a compact nucleolus, aggregation of granular elements, atrophy, dissolution and fragmentation of the nucleolar mass; infiltration of lymphocytes, granulocytes and macrophages in the tumor. The significance of these ultrastructural findings is discussed. (U.S.)

  3. Conceptual design for real time monitoring of electron microbeam

    International Nuclear Information System (INIS)

    Kim, Ji Seok; Kim, Hyun Ki; Jang, Mee; Choi, Chang Woon; Sun, Gwang Min; Lee, Jai Ki

    2008-01-01

    It is recognized that the microbeam is powerful system to understand the interaction of ionizing radiation with cells. Especially, electron microbeam system is useful to investigate the effect of low-LET radiation for cells. Electron microbeam has been developed in KIRAMS. It can irradiate the small volume in cell level by collimator and electromagnetic field and give local dose to individual cell by controlling the number of electrons. When the electron microbeam irradiates the individual cell, however, there is a possibility to change the current and intended trajectory of electron beam. Because this possibility introduces the uncertainty of dose, it is necessary to monitor the trajectory and current of electron beam. This study deals with development of real time monitoring device to confirm beam quality and to control if necessary during experiment. Consequently we designed dual monitoring device to solve various factors. And we optimize the design by simulation. (author)

  4. Electron-rich anthracene semiconductors containing triarylamine for solution-processed small-molecule organic solar cells.

    Science.gov (United States)

    Choi, Hyeju; Ko, Haye Min; Cho, Nara; Song, Kihyung; Lee, Jae Kwan; Ko, Jaejung

    2012-10-01

    New electron-rich anthracene derivatives containing triarylamine hole stabilizers, 2,6-bis[5,5'-bis(N,N'-diphenylaniline)-2,2'-bithiophen-5-yl]-9,10-bis-[(triisopropylsilyl)ethynyl]anthracene (TIPSAntBT-TPA) and 2,6-bis(5,5'-bis{4-[bis(9,9-dimethyl-9H-fluoren-2-yl)amino]phenyl}-2,2'-bithiophen-5-yl)-9,10-bis-[(triisopropylsilyl)ethynyl]anthracene (TIPSAntBT-bisDMFA), linked with π-conjugated bithiophene bridges, were synthesized and their photovoltaic characteristics were investigated in solution-processed small-molecule organic solar cells (SMOSCs). These new materials exhibited superior intramolecular charge transfer from triarylamine to anthracene, leading to a more electron-rich anthracene core that facilitated electron transfer into phenyl-C(61)-butyric acid methyl ester. Compared with TIPSAntBT and triarylamine, these materials show a threefold improvement in hole-transporting properties and better photovoltaic performance in solution-processed SMOSCs, with the best power conversion efficiency being 2.96 % at a high open-circuit voltage of 0.85 V. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Theoretical Study of Ultrafast Electron Injection into a Dye/TiO2 System in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Lin, Chundan; Xia, Qide; Li, Kuan; Li, Juan; Yang, Zhenqing

    2018-06-01

    The ultrafast injection of excited electrons in dye/TiO2 system plays a critical role, which determines the device's efficiency in large part. In this work, we studied the geometrical structures and electronic properties of a dye/TiO2 composite system for dye-sensitized solar cells (DSSCs) by using density functional theory, and we analyzed the mechanism of ultrafast electron injection with emphasis on the power conversion efficiency. The results show that the dye SPL103/TiO2 (101) surface is more stable than dye SPL101. The electron injection driving force of SPL103/TiO2 (101) is 3.55 times that of SPL101, indicating that SPL103/TiO2 (101) has a strong ability to transfer electrons. SPL103 and SPL101/TiO2 (101) both have fast electron transfer processes, and especially the electron injection time of SPL103/TiO2 (101) is only 1.875 fs. The results of this work are expected to provide a new understanding of the mechanism of electron injection in dyes/TiO2 systems for use in highly effective DSSCs.

  6. Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III

    International Nuclear Information System (INIS)

    Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun; Shin, Ki Soon; Kang, Shin Jung

    2013-01-01

    Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complex III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD

  7. Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun [Department of Molecular Biology, Sejong University, Seoul 143-747 (Korea, Republic of); Shin, Ki Soon [Department of Biology, Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kang, Shin Jung, E-mail: sjkang@sejong.ac.kr [Department of Molecular Biology, Sejong University, Seoul 143-747 (Korea, Republic of)

    2013-08-09

    Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complex III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD.

  8. 19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact.

    Science.gov (United States)

    Yin, Xingtian; Battaglia, Corsin; Lin, Yongjing; Chen, Kevin; Hettick, Mark; Zheng, Maxwell; Chen, Cheng-Ying; Kiriya, Daisuke; Javey, Ali

    2014-12-17

    We demonstrate an InP heterojunction solar cell employing an ultrathin layer (∼10 nm) of amorphous TiO 2 deposited at 120 °C by atomic layer deposition as the transparent electron-selective contact. The TiO 2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm 2 and a high power conversion efficiency of 19.2%.

  9. Glucose oxidase anode for biofuel cell based on direct electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ivnitski, Dmitri; Branch, Brittany; Atanassov, Plamen [Department of Chemical and Nuclear Engineering, University of New Mexico, 209 Farris Engineering Center, Room 150, Albuquerque, NM 87131-0001 (United States); Apblett, Christopher [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2006-08-15

    This paper presents a new design concept of a glucose oxidase (GO{sub x}) electrode as an anode for the biofuel cell based on direct electron transfer (DET) between the active site of an enzyme and the multi-walled carbon nanotube (MWNT)-modified electrode surface. Toray{sup (R)} carbon paper (TP) with a porous three-dimensional network (78% porosity) was used as a matrix for selectively growing multi-walled carbon nanotubes. The incorporation of MWCNTs into TP was provided by the chemical vapor deposition technique after an electrochemical transition of cobalt metal seeds. This approach has the ability to efficiently promote DET reactions. The morphologies and electrochemical characteristics of the GO{sub x} modified electrodes were investigated by scanning electron microscopy, cyclic voltammetry, and potentiometric methods. The combination of poly-cation polyethylenimine (PEI) with negatively charged glucose oxidase provides formation of circa 100nm thick films on the TP/MWCNT surface. The tetrabutylammonium bromide salt-treated Nafion{sup (R)} was used as GO{sub x} binder and proton-conducting medium. The TP/MWCNT/PEI/GO{sub x}/Nafion{sup (R)} modified electrode operates at 25{sup o}C in 0.02M phosphate buffer solution (pH 6.9) containing 0.1M KCl in the presence of 20mM glucose. The open circuit potential of GO{sub x} anode was between -0.38V and -0.4V vs. Ag/AgCl, which is closer to the redox potential of the FAD/FADH{sub 2} cofactor in the enzyme itself. The GO{sub x} electrode has a potential to work in vivo by using endogenous substances, such as glucose and oxygen. Such a glucose anode allows for the development of a new generation of miniaturized membrane-less biofuel cells. (author)

  10. Electron-selective contacts via ultra-thin organic interface dipoles for silicon organic heterojunction solar cells

    Science.gov (United States)

    Reichel, Christian; Würfel, Uli; Winkler, Kristina; Schleiermacher, Hans-Frieder; Kohlstädt, Markus; Unmüssig, Moritz; Messmer, Christoph A.; Hermle, Martin; Glunz, Stefan W.

    2018-01-01

    In the last years, novel materials for the formation of electron-selective contacts on n-type crystalline silicon (c-Si) heterojunction solar cells were explored as an interfacial layer between the metal electrode and the c-Si wafer. Besides inorganic materials like transition metal oxides or alkali metal fluorides, also interfacial layers based on organic molecules with a permanent dipole moment are promising candidates to improve the contact properties. Here, the dipole effect plays an essential role in the modification of the interface and effective work function of the contact. The amino acids L-histidine, L-tryptophan, L-phenylalanine, glycine, and sarcosine, the nucleobase adenine, and the heterocycle 4-hydroxypyridine were investigated as dipole materials for an electron-selective contact on the back of p- and n-type c-Si with a metal electrode based on aluminum (Al). Furthermore, the effect of an added fluorosurfactant on the resulting contact properties was examined. The performance of n-type c-Si solar cells with a boron diffusion on the front was significantly increased when L-histidine and/or the fluorosurfactant was applied as a full-area back surface field. This improvement was attributed to the modification of the interface and the effective work function of the contact by the dipole material which was corroborated by numerical device simulations. For these solar cells, conversion efficiencies of 17.5% were obtained with open-circuit voltages (Voc) of 625 mV and fill factors of 76.3%, showing the potential of organic interface dipoles for silicon organic heterojunction solar cells due to their simple formation by solution processing and their low thermal budget requirements.

  11. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope

    Science.gov (United States)

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-01-01

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications. PMID:26525841

  12. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope.

    Science.gov (United States)

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-11-03

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.

  13. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells.

    Science.gov (United States)

    Scrosati, Bruno

    2005-01-01

    The activities in progress in our laboratory for the development of batteries and fuel cells for portable electronics and hybrid car applications are reviewed and discussed. In the case of lithium batteries, the research has been mainly focused on the characterization of new electrode and electrolyte materials. Results related to disordered carbon anodes and improved, solvent-free, as well as gel-type, polymer electrolytes are particularly stressed. It is shown that the use of proper gel electrolytes, in combination with suitable electrode couples, allows the development of new types of safe, reliable, and low-cost lithium ion batteries which appear to be very promising power sources for hybrid vehicles. Some of the technologies proven to be successful in the lithium battery area are readapted for use in fuel cells. In particular, this approach has been followed for the preparation of low-cost and stable protonic membranes to be proposed as an alternative to the expensive, perfluorosulfonic membranes presently used in polymer electrolyte membrane fuel cells (PEMFCs). Copyright 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc

  14. Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection

    Directory of Open Access Journals (Sweden)

    D. A. Belikov

    2013-02-01

    Full Text Available A modified cumulus convection parametrisation scheme is presented. This scheme computes the mass of air transported upward in a cumulus cell using conservation of moisture and a detailed distribution of convective precipitation provided by a reanalysis dataset. The representation of vertical transport within the scheme includes entrainment and detrainment processes in convective updrafts and downdrafts. Output from the proposed parametrisation scheme is employed in the National Institute for Environmental Studies (NIES global chemical transport model driven by JRA-25/JCDAS reanalysis. The simulated convective precipitation rate and mass fluxes are compared with observations and reanalysis data. A simulation of the short-lived tracer 222Rn is used to further evaluate the performance of the cumulus convection scheme. Simulated distributions of 222Rn are evaluated against observations at the surface and in the free troposphere, and compared with output from models that participated in the TransCom-CH4 Transport Model Intercomparison. From this comparison, we demonstrate that the proposed convective scheme in general is consistent with observed and modeled results.

  15. Multifunctional Inverse Opal-Like TiO2 Electron Transport Layer for Efficient Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    Chen, Xiao; Yang, Shuang; Zheng, Yi Chu; Chen, Ying; Hou, Yu; Yang, Xiao Hua; Yang, Hua Gui

    2015-09-01

    A novel multifunctional inverse opal-like TiO 2 electron transport layer (IOT-ETL) is designed to replace the traditional compact layer and mesoporous scaffold layer in perovskite solar cells (PSCs). Improved light harvesting efficiency and charge transporting performance in IOT-ETL based PSCs yield high power conversion efficiency of 13.11%.

  16. Electron microscopy of glial cells of the central nervous system in the crab Ucides cordatus

    Directory of Open Access Journals (Sweden)

    Allodi S.

    1999-01-01

    Full Text Available Invertebrate glial cells show a variety of morphologies depending on species and location. They have been classified according to relatively general morphological or functional criteria and also to their location. The present study was carried out to characterize the organization of glial cells and their processes in the zona fasciculata and in the protocerebral tract of the crab Ucides cordatus. We performed routine and cytochemical procedures for electron microscopy analysis. Semithin sections were observed at the light microscope. The Thiéry procedure indicated the presence of carbohydrates, particularly glycogen, in tissue and in cells. To better visualize the axonal ensheathment at the ultrastructural level, we employed a method to enhance the unsaturated fatty acids present in membranes. Our results showed that there are at least two types of glial cells in these nervous structures, a light one and a dark one. Most of the dark cell processes have been mentioned in the literature as extracellular matrix, but since they presented an enveloping membrane, glycogen and mitochondria - intact and with different degrees of disruption - they were considered to be glial cells in the present study. We assume that they correspond to the perineurial cells on the basis of their location. The light cells must correspond to the periaxonal cells. Some characteristics of the axons such as their organization, ensheathment and subcellular structures are also described.

  17. Association of intracellular and synaptic organization in cochlear inner hair cells revealed by 3D electron microscopy.

    Science.gov (United States)

    Bullen, Anwen; West, Timothy; Moores, Carolyn; Ashmore, Jonathan; Fleck, Roland A; MacLellan-Gibson, Kirsty; Forge, Andrew

    2015-07-15

    The ways in which cell architecture is modelled to meet cell function is a poorly understood facet of cell biology. To address this question, we have studied the cytoarchitecture of a cell with highly specialised organisation, the cochlear inner hair cell (IHC), using multiple hierarchies of three-dimensional (3D) electron microscopy analyses. We show that synaptic terminal distribution on the IHC surface correlates with cell shape, and the distribution of a highly organised network of membranes and mitochondria encompassing the infranuclear region of the cell. This network is juxtaposed to a population of small vesicles, which represents a potential new source of neurotransmitter vesicles for replenishment of the synapses. Structural linkages between organelles that underlie this organisation were identified by high-resolution imaging. Taken together, these results describe a cell-encompassing network of membranes and mitochondria present in IHCs that support efficient coding and transmission of auditory signals. Such techniques also have the potential for clarifying functionally specialised cytoarchitecture of other cell types. © 2015. Published by The Company of Biologists Ltd.

  18. Polymer electronics

    CERN Document Server

    Geoghegan, Mark

    2013-01-01

    Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text thatdiscusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content

  19. Electron microscopic radioautographic studies on macromolecular synthesis in mitochondria of animal cells in aging

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Tetsuji, E-mail: nagata@kowagakuen.ac.j [Shinshu Univ. School of Medicine, Matsumoto (Japan). Dept. of Anatomy and Cell Biology

    2010-07-01

    Study aging changes of intramitochondrial DNA, RNA, protein synthesis of mouse organs during the development and aging, 30 groups of developing and aging mice (3 individuals each), from fetal day 19 to postnatal newborn at day 1, 3, 9, 14 and adult at month 1, 2, 6, 12 to 24, were injected with either {sup 3}H-thymidine, {sup 3}H-uriidine, or {sup 3}H-leucine, sacrificed 1 h later and liver, adrenal, lung and testis tissues observed by electron microscopic radioautography. Accordingly, numbers of mitochondria per cell profile area, numbers of labeled mitochondria and the mitochondrial labeling index labeled with {sup 3}H-labeled precursors showing DNA, RNA, protein synthesis in these cells (hepatocytes, 3 zones of the adrenal cortices - zona glomerulosa, fasciculata and reticularis -, adrenal medullary cells, pulmonary cells and testis cells) were counted per cells and compared among the respective developing and aging groups. The numbers of mitochondria in these cells increased from fetal day 19 to postnatal month 1 and 2. However, the numbers of labeled mitochondria and the labeling indices of intramitochondrial DNA, RNA, protein syntheses incorporating the {sup 3}H-labeled precursors in the described tissue cells increased from fetal day 19 to postnatal month 1 and decreased to month 24. These data support that the activity of intramitochnodrial DNA, RNA, protein syntheses in cells of these tissues increased and decreased by development and aging in mice. The intramitochondrial DNA, RNA and protein syntheses in some other organs were also reviewed and discussed. (author)

  20. Pleomorphic (giant cell) carcinoma of the intestine. An immunohistochemical and electron microscopic study

    DEFF Research Database (Denmark)

    Bak, Martin; Teglbjaerg, P S

    1989-01-01

    reaction for neuron-specific enolase (NSE) was found in three tumors and a positive reaction for chromogranin was found in one tumor. On electron microscopic study, intracytoplasmic whorls of intermediate filaments were seen in the perinuclear area. Dense core "neurosecretory" granules were rarely seen......Pleomorphic (giant cell) carcinomas have been described in the lungs, thyroid, pancreas, and gallbladder. Two pleomorphic carcinomas of the small bowel and two of the large bowel are presented. On light microscopic study, the carcinomas were solid, without squamous or glandular differentiation...

  1. Modification of a scanning electron microscope for remote operation in a hot cell

    International Nuclear Information System (INIS)

    Reed, J.R.; Watson, H.E.; Smidt, F.A. Jr.

    1982-01-01

    Scanning electron microscopy (SEM) examination of broken fracture specimens is an essential part of the characterization of the failure mode of fracture toughness of specimens. The large specimen mass required for such examinations dictates the use of a shielded facility for performing such examinations on irradiated specimens. This report describes the modification of a commercial SEM for remote operation in a hot cell. The facility is used to examine specimens from several Navy and DOE-sponsored programs conducted at NRL which require the examination of radioactive materials

  2. Sample Preparation Methodologies for In Situ Liquid and Gaseous Cell Analytical Transmission Electron Microscopy of Electropolished Specimens.

    Science.gov (United States)

    Zhong, Xiang Li; Schilling, Sibylle; Zaluzec, Nestor J; Burke, M Grace

    2016-12-01

    In recent years, an increasing number of studies utilizing in situ liquid and/or gaseous cell scanning/transmission electron microscopy (S/TEM) have been reported. Because of the difficulty in the preparation of suitable specimens, these environmental S/TEM studies have been generally limited to studies of nanoscale structured materials such as nanoparticles, nanowires, or sputtered thin films. In this paper, we present two methodologies which have been developed to facilitate the preparation of electron-transparent samples from conventional bulk metals and alloys for in situ liquid/gaseous cell S/TEM experiments. These methods take advantage of combining sequential electrochemical jet polishing followed by focused ion beam extraction techniques to create large electron-transparent areas for site-specific observation. As an example, we illustrate the application of this methodology for the preparation of in situ specimens from a cold-rolled Type 304 austenitic stainless steel sample, which was subsequently examined in both 1 atm of air as well as fully immersed in a H2O environment in the S/TEM followed by hyperspectral imaging. These preparation techniques can be successfully applied as a general procedure for a wide range of metals and alloys, and are suitable for a variety of in situ analytical S/TEM studies in both aqueous and gaseous environments.

  3. Endangered wolves cloned from adult somatic cells.

    Science.gov (United States)

    Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hwang, Woo Suk; Hossein, Mohammad Shamim; Kim, Joung Joo; Shin, Nam Shik; Kang, Sung Keun; Lee, Byeong Chun

    2007-01-01

    Over the world, canine species, including the gray wolf, have been gradually endangered or extinct. Many efforts have been made to recover and conserve these canids. The aim of this study was to produce the endangered gray wolf with somatic cell nuclear transfer (SCNT) for conservation. Adult ear fibroblasts from a female gray wolf (Canis lupus) were isolated and cultured in vitro as donor cells. Because of limitations in obtaining gray wolf matured oocytes, in vivo matured canine oocytes obtained by flushing the oviducts from the isthmus to the infundibulum were used. After removing the cumulus cells, the oocyte was enucleated, microinjected, fused with a donor cell, and activated. The reconstructed cloned wolf embryos were transferred into the oviducts of the naturally synchronized surrogate mothers. Two pregnancies were detected by ultrasonography at 23 days of gestation in recipient dogs. In each surrogate dog, two fetal sacs were confirmed by early pregnancy diagnosis at 23 days, but only two cloned wolves were delivered. The first cloned wolf was delivered by cesarean section on October 18, 2005, 60 days after embryo transfer. The second cloned wolf was delivered on October 26, 2005, at 61 days postembryo transfer. Microsatellite analysis was performed with genomic DNA from the donor wolf, the two cloned wolves, and the two surrogate female recipients to confirm the genetic identity of the cloned wolves. Analysis of 19 microsatellite loci confirmed that the cloned wolves were genetically identical to the donor wolf. In conclusion, we demonstrated live birth of two cloned gray wolves by nuclear transfer of wolf somatic cells into enucleated canine oocyte, indicating that SCNT is a practical approach for conserving endangered canids.

  4. Oxygen diffusion kinetics and reactive lifetimes in bacterial and mammalian cells irradiated with nanosecond pulses of high intensity electrons

    International Nuclear Information System (INIS)

    Epp, E.R.; Weiss, H.; Ling, C.C.; Djordjevic, B.; Kessaris, N.D.

    1975-01-01

    Experiaments have been designed to gain information on the lifetime of oxygen-sensitive species suspected to be produced in critical molecules in irradiated cells and on the time-diffusion of oxygen in cells. An approach developed in this laboratory involves the delivery of two high intensity electron pulses each of 3 ns duration to a thin layer of cells equilibrated with a known concentration of oxygen. The first pulse serves to render the cells totally anoxic by the radiochemical depletion of oxygen; the second is delivered at a time electronically delayed after the first allowing for diffusion of oxygen during this time. Under these conditions the radiosensitivity of E coli B/r has been measured over six decades of interpulse time. Cellular time-diffusion curves constructed from the measurements show that oxygen establishes its sensitizing effect within 10 -4 s after the creation of intracellular anoxia establishing this time as an upper limit to the lifetime of the species. Unusual behaviour of the diffusion curve observed for longer delay times can be explained by a model wherein it is postulated that a radiation-induced inhibiting agent slows down diffusion. Application of this model to the experimental data yields a value of 0.4x10 -5 cm 2 s -1 for the cellular oxygen diffusion coefficient. Similar experiments recently carried out for Serratia marcescens will also be described. The oxygen effect in cultured HeLa cells exposed to single short electron pulses has been examined over a range of oxygen concentrations. A family of breaking survival curves was obtained similar to those previously measured for E coli B/r by this laboratory. The data appear to be reasonably consistent with a physicochemical mechanism involving the radiochemical depletion of oxygen previously invoked for bacteria. (author)

  5. The short circuit current improvement in P3HT:PCBM based polymer solar cell by introducing PSBTBT as additional electron donor.

    Science.gov (United States)

    Sun, Lu; Shen, Liang; Mengd, Fanxu; Xu, Peng; Guo, Wenbin; Ruan, Shengping

    2014-05-01

    Here we demonstrate the influence of electron-donating polymer addition on the performance of poly(3-hexylthiophene) (P3HT):1 -(3-methoxycarbonyl)-propyl-1-phenyl-(6,6) C61 (PCBM) solar cells. Poly[(4,42-bis(2-ethylhexyl) dithieno [3,2-b:22,32-d] silole)-2,6-diylalt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT) was chosen as the electron-donating polymer to improve the short circuit current (J(sc)) due to its distinct absorption in the near-IR range and similar HOMO level with that of P3HT. In the study, we found that J(sc) was improved for ternary blend (P3HT:PSBTBT:PCBM) solar cells. The dependence of device performance was investigated. J(sc) got decreased with increasing the ratio of PSBTBT. Result showed that J(sc) of ternary blend solar cells was improved greatly after thermal annealing at 150 degrees C, close to that of the binary blend (PSBTBT:PCBM) solar cells.

  6. Enabling fast electron transfer through both bacterial outer-membrane redox centers and endogenous electron mediators by polyaniline hybridized large-mesoporous carbon anode for high-performance microbial fuel cells

    International Nuclear Information System (INIS)

    Zou, Long; Qiao, Yan; Zhong, Canyu; Li, Chang Ming

    2017-01-01

    Both physical structure and chemical property of an electrode play critical roles in extracellular electron transfer from microbes to electrodes in microbial fuel cells (MFCs). Herein a novel polyaniline hybridized large mesoporous carbon (PANI-LMC) anode is fabricated from natural biomass by nanostructured CaCO 3 template-assisted carbonization followed by in situ chemical polymerizing PANI to enable fast extracellular electron transfer, in which the LMC with rich disorder-interconnected large mesopores (∼20−50 nm) and large surface area facilitates a fast mediated electron transfer through electron mediators, while the decorated PANI on LMC surface enables the direct electron transfer via bacterial outer-membrane redox centers. Owing to the unique synergistic effect from both excellent electron transfer paths, the PANI-LMC hybrid anode harvests high power electricity with a maximum output power density of 1280 mW m −2 in Shewanella putrefaciens CN32 MFCs, 10-fold higher than that of conventional carbon cloth. The findings from this work suggest a new insight on design of high-efficient anode according to the multiple and flexible electrochemical process for practical MFC applications.

  7. Simulations of the ILC Electron Gun and Electron Bunching System

    International Nuclear Information System (INIS)

    Haakonsen, C.B.; McGill U.

    2006-01-01

    The International Linear Collider (ILC) is a proposed electron-positron collider, expected to provide insight into important questions in particle physics. A part of the global R and D effort for the ILC is the design of its electron gun and electron bunching system. The present design of the bunching system has two sub-harmonic bunchers, one operating at 108 MHz and one at 433MHz, and two 5-cell 1.3 GHz (L-band) bunchers. This bunching system has previously been simulated using the Phase and Radial Motion in Electron Linear Accelerators (PARMELA) software, and those simulations indicated that the design provides sufficient bunching and acceleration. Due to the complicated dynamics governing the electrons in the bunching system we decided to verify and expand the PARMELA results using the more recent and independent simulation software General Particle Tracer (GPT). GPT tracks the motion and interactions of a set of macro particles, each of which represent a number of electrons, and provides a variety of analysis capabilities. To provide initial conditions for the macro particles, a method was developed for deriving the initial conditions from detailed simulations of particle trajectories in the electron gun. These simulations were performed using the Egun software. For realistic simulation of the L-band bunching cavities, their electric and magnetic fields were calculated using the Superfish software and imported into GPT. The GPT simulations arrived at similar results to the PARMELA simulations for sub-harmonic bunching. However, using GPT it was impossible to achieve an efficient bunching performance of the first L-band bunching cavity. To correct this, the first L-band buncher cell was decoupled from the remaining 4 cells and driven as an independent cavity. Using this modification we attained results similar to the PARMELA simulations. Although the modified bunching system design performed as required, the modifications are technically challenging to implement

  8. Atomic-layer deposited Nb2O5 as transparent passivating electron contact for c-Si solar cells

    NARCIS (Netherlands)

    Macco, Bart; Black, Lachlan E.; Melskens, Jimmy; van de Loo, Bas W.H.; Berghuis, Willem Jan H.; Verheijen, Marcel A.; Kessels, Wilhelmus M.M.

    2018-01-01

    Passivating contacts based on metal oxides have proven to enable high energy conversion efficiencies for crystalline silicon (c-Si) solar cells at low processing complexity. In this work, the potential of atomic-layer deposited (ALD) Nb2O5 as novel electron-selective passivating contact is explored

  9. Automated detection of fluorescent cells in in-resin fluorescence sections for integrated light and electron microscopy.

    Science.gov (United States)

    Delpiano, J; Pizarro, L; Peddie, C J; Jones, M L; Griffin, L D; Collinson, L M

    2018-04-26

    Integrated array tomography combines fluorescence and electron imaging of ultrathin sections in one microscope, and enables accurate high-resolution correlation of fluorescent proteins to cell organelles and membranes. Large numbers of serial sections can be imaged sequentially to produce aligned volumes from both imaging modalities, thus producing enormous amounts of data that must be handled and processed using novel techniques. Here, we present a scheme for automated detection of fluorescent cells within thin resin sections, which could then be used to drive automated electron image acquisition from target regions via 'smart tracking'. The aim of this work is to aid in optimization of the data acquisition process through automation, freeing the operator to work on other tasks and speeding up the process, while reducing data rates by only acquiring images from regions of interest. This new method is shown to be robust against noise and able to deal with regions of low fluorescence. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  10. Increased progesterone production in cumulus-oocyte complexes of female mice sired by males with the Y-chromosome long arm deletion and its potential influence on fertilization efficiency.

    Science.gov (United States)

    Kotarska, Katarzyna; Galas, Jerzy; Przybyło, Małgorzata; Bilińska, Barbara; Styrna, Józefa

    2015-02-01

    It was revealed previously that B10.BR(Y(del)) females sired by males with the Y-chromosome long arm deletion differ from genetically identical B10.BR females sired by males with the intact Y chromosome. This is interpreted as a result of different epigenetic information which females of both groups inherit from their fathers. In the following study, we show that cumulus-oocyte complexes ovulated by B10.BR(Y(del)) females synthesize increased amounts of progesterone, which is important sperm stimulator. Because their extracellular matrix is excessively firm, the increased progesterone secretion belongs presumably to factors that compensate this feature enabling unchanged fertilization ratios. Described compensatory mechanism can act only on sperm of high quality, presenting proper receptors. Indeed, low proportion of sperm of Y(del) males that poorly fertilize B10.BR(Y(del)) oocytes demonstrates positive staining of membrane progesterone receptors. This proportion is significantly higher for sperm of control males that fertilize B10.BR(Y(del)) and B10.BR oocytes with the same efficiency. © The Author(s) 2014.

  11. Cell inactivation studies on yeast cells under euoxic and hypoxic condition using electron beam from microtron accelerator

    International Nuclear Information System (INIS)

    Praveen Joseph; Santhosh Acharya; Ganesh Sanjeev; Narayana, Y.; Bhat, N.N.

    2011-01-01

    In the case of sparsely ionizing radiation such as electron, the dose rate and the pattern of energy deposition of the radiation are the important physical factors which can affect the amount of damage in living cells. In the present study, the differences in the cell survival efficiency and dose rate effect in diploid yeast strains Saccharomyces cerevisiae X2180 and Saccharomyces cerevisiae D7 under euoxic and hypoxic condition have been quantified. Irradiation was carried out using 8 MeV pulsed electron beam from Microtron accelerator. The dose per pulse and pulse width of the beam used was 0.6 Gy and 2.3 μs, respectively, which correspond to an instantaneous dose rate of 2.6 x 10 5 Gy s -1 . For survival studies doses were delivered at a rate of 50 pulses per second (an average dose rate of 1,800 Gy s -1 ). Fricke and alanine dosimeters were used to measure the dose delivered to the sample. A significant difference in the dose response has been observed under euoxic and hypoxic condition. Dose rate effect has been studied by changing the pulse repetition rate of the Microtron and the dose rate used was from 180 to 1800 Gy min -1 . A significant dose rate effect was observed under euoxic condition for Saccharomyces cerevisiae X2180 but the same was absent under hypoxic condition. The dose rate effect was absent for Saccharomyces cerevisiae D7 under both irradiation condition. The survival curves are found to be sigmoidal in shape under both condition but with a wider shoulder under hypoxic condition. The D 0 value and the Oxygen Enhancement Ratio (OER) at that point have been derived. (author)

  12. Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells.

    Science.gov (United States)

    Yuan, Yong; Zhou, Shungui; Zhao, Bo; Zhuang, Li; Wang, Yueqiang

    2012-07-01

    A one-pot method is exploited by adding graphene oxide (GO) and acetate into an microbial fuel cell (MFC) in which GO is microbially reduced, leading to in situ construction of a bacteria/graphene network in the anode. The obtained microbially reduced graphene (MRG) exhibits comparable conductivity and physical characteristics to the chemically reduced graphene. Electrochemical measurements reveal that the number of exoelectrogens involved in extracellular electron transfer (EET) to the solid electrode, increases due to the presence of graphene scaffolds, and the EET is facilitated in terms of electron transfer kinetics. As a result, the maximum power density of the MFC is enhanced by 32% (from 1440 to 1905 mW m(-2)) and the coulombic efficiency is improved by 80% (from 30 to 54%). The results demonstrate that the construction of the bacteria/graphene network is an effective alternative to improve the MFC performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Temperature and intensity dependence of the performance of an electron-irradiated (AlGa)As/GaAs solar cell

    Science.gov (United States)

    Swartz, C. K.; Hart, R. E., Jr.

    1979-01-01

    The performance of a Hughes, liquid-phase epitaxial 2 centimeter-by-2 centimeter, (AlGa)As/GaAs solar cell was measured before and after irradiations with 1 MeV electrons to fluences of 1 x 10 to the 16th power electrons/sq cm. The temperature dependence of performance was measured over the temperature range 135 to 415 K at each fluence level. In addition, temperature dependences were measured at five intensity levels from 137 to 2.57 mW/sq cm before irradiation and after a fluence of 1 x 10 to the 16th power electrons/sq cm. For the intermediate fluences, performance was measured as a function of intensity at 298 K only.

  14. Electron microscopic observations and DNA chain fragmentation studies on apoptosis in bone tumor cells induced by 153Sm-EDTMP

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Xiao Dong; Han Xiaofeng

    1997-01-01

    The morphological changes observed by electron microscopy indicate that after internal irradiation with 153 Sm-EDTMP bone tumor cells displayed feature of apoptosis, such as margination of condensed chromatin, chromatin fragmentation, as well as the membrane bounded apoptotic bodies formation. The quantification analysis of fragmentation DNA for bone tumor cells induced by 153 Sm-EDTMP shows that the DNA fragmentation is enhanced with the prolongation of internally irradiated time. These characteristics suggest that 153 Sm-EDTMP internal irradiation could induce bone tumor cells to go to apoptosis

  15. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells

    KAUST Repository

    Barbe, Jeremy; Tietze, Max Lutz; Neophytou, Marios; Banavoth, Murali; Alarousu, Erkki; El Labban, Abdulrahman; Abulikemu, Mutalifu; Yue, Wan; Mohammed, Omar F.; McCulloch, Iain; Amassian, Aram; Del Gobbo, Silvano

    2017-01-01

    Chemical bath deposition (CBD) of tin oxide (SnO) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO (a

  16. A One-compartment direct glucose alkaline fuel cell with methyl viologen as electron mediator

    International Nuclear Information System (INIS)

    Liu, Xianhua; Hao, Miaoqing; Feng, Mengnan; Zhang, Lin; Zhao, Yong; Du, Xiwen; Wang, Guangyi

    2013-01-01

    Highlights: ► A glucose–air alkaline fuel cell without using noble metal catalysts has been developed. ► The rudimentary fuel cell generates a maximum power density of 0.62 mW m −2 . ► The high performance is attributed to the use of MV and nickel foam. ► Main oxidation products are small organic acids indicating deep oxidation of glucose. - Abstract: Glucose is abundant, renewable, non-toxic and convenient as a fuel for fuel cells, but current technologies are unavailable for us to directly oxidize it to obtain energy. Fuel cells using enzymes and micro-organisms as catalysts are limited by their extremely low power output and rather short durability. Fuel cells using precious metal catalyst are expensive for large-scale use. In this work, a one-compartment direct glucose alkaline fuel cell has been developed that use methyl viologen (MV) as electron mediator and nickel foam as the anode. The rudimentary fuel cell generates a maximum power density of 0.62 mW cm −2 , while the maximum current density is 5.03 mA cm −2 . Electro-catalytic activities of MV and the nickel foam in alkaline conditions were studied by cyclic voltammetry. It is indicated that the high performance of the fuel cell is attributed to the combined use of MV and nickel foam. 13 C-NMR and HPLC were used to analyze oxidation products of glucose. The result shows that the principal oxidation products are short-chain organic acids indicating deep oxidation of glucose is achieved

  17. In situ Reduction and Oxidation of Nickel from Solid Oxide Fuel Cells in a Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Faes, Antonin; Jeangros, Quentin; Wagner, Jakob Birkedal

    2009-01-01

    Environmental transmission electron microscopy was used to characterize in situ the reduction and oxidation of nickel from a Ni/YSZ solid oxide fuel cell anode support between 300-500{degree sign}C. The reduction is done under low hydrogen pressure. The reduction initiates at the NiO/YSZ interface...

  18. A preliminary study of the tropical water cycle and its sensitivity to surface warming

    Science.gov (United States)

    Lau, K. M.; Sui, C. H.; Tao, W. K.

    1993-01-01

    The Goddard Cumulus Ensemble Model (GCEM) has been used to demonstrate that cumulus-scale dynamics and microphysics play a major role in determining the vertical distribution of water vapor and clouds in the tropical atmosphere. The GCEM is described and is the basic structure of cumulus convection. The long-term equilibrium response to tropical convection to surface warming is examined. A picture of the water cycle within tropical cumulus clusters is developed.

  19. HLA Class Ib Molecules and Immune Cells in Pregnancy and Preeclampsia

    DEFF Research Database (Denmark)

    Djurisic, Snezana; Hviid, Thomas Vauvert F

    2014-01-01

    Despite decades of research, the highly prevalent pregnancy complication preeclampsia, "the disease of theories," has remained an enigma. Indeed, the etiology of preeclampsia is largely unknown. A compiling amount of studies indicates that the pathological basis involves a complex array of geneti...... of HLA-G, and, in some studies, with preeclampsia. In this review, a genetic contribution from the mother, the father, and the fetus, together with the presence and function of various immune cells of relevance in pregnancy are reviewed in relation to HLA-G and preeclampsia....... predisposition and immunological maladaptation, and that a contribution from the mother, the father, and the fetus is likely to be important. The Human Leukocyte Antigen (HLA)-G is an increasing focus of research in relation to preeclampsia. The HLA-G molecule is primarily expressed by the extravillous...... trophoblast cells lining the placenta together with the two other HLA class Ib molecules, HLA-E and HLA-F. Soluble isoforms of HLA-G have been detected in the early endometrium, the matured cumulus-oocyte complex, maternal blood of pregnant women, in umbilical cord blood, and lately, in seminal plasma. HLA...

  20. A mass-flux cumulus parameterization scheme for large-scale models: description and test with observations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tongwen [China Meteorological Administration (CMA), National Climate Center (Beijing Climate Center), Beijing (China)

    2012-02-15

    A simple mass-flux cumulus parameterization scheme suitable for large-scale atmospheric models is presented. The scheme is based on a bulk-cloud approach and has the following properties: (1) Deep convection is launched at the level of maximum moist static energy above the top of the boundary layer. It is triggered if there is positive convective available potential energy (CAPE) and relative humidity of the air at the lifting level of convection cloud is greater than 75%; (2) Convective updrafts for mass, dry static energy, moisture, cloud liquid water and momentum are parameterized by a one-dimensional entrainment/detrainment bulk-cloud model. The lateral entrainment of the environmental air into the unstable ascending parcel before it rises to the lifting condensation level is considered. The entrainment/detrainment amount for the updraft cloud parcel is separately determined according to the increase/decrease of updraft parcel mass with altitude, and the mass change for the adiabatic ascent cloud parcel with altitude is derived from a total energy conservation equation of the whole adiabatic system in which involves the updraft cloud parcel and the environment; (3) The convective downdraft is assumed saturated and originated from the level of minimum environmental saturated equivalent potential temperature within the updraft cloud; (4) The mass flux at the base of convective cloud is determined by a closure scheme suggested by Zhang (J Geophys Res 107(D14)), in which the increase/decrease of CAPE due to changes of the thermodynamic states in the free troposphere resulting from convection approximately balances the decrease/increase resulting from large-scale processes. Evaluation of the proposed convection scheme is performed by using a single column model (SCM) forced by the Atmospheric Radiation Measurement Program's (ARM) summer 1995 and 1997 Intensive Observing Period (IOP) observations, and field observations from the Global Atmospheric Research