WorldWideScience

Sample records for cumulative gas production

  1. In vitro cumulative gas production techniques: history, methodological considerations and challenges

    NARCIS (Netherlands)

    Rymer, C.; Huntington, J.A.; Williams, B.A.; Givens, D.I.

    2005-01-01

    Methodology used to measure in vitro gas production is reviewed to determine impacts of sources of variation on resultant gas production profiles (GPP). Current methods include measurement of gas production at constant pressure (e.g., use of gas tight syringes), a system that is inexpensive, but may

  2. Determining of Degradation and Digestion Coefficients of Canola meal Using of In situ and Gas production Techniques

    Directory of Open Access Journals (Sweden)

    Younes Tahmazi

    2015-04-01

    Full Text Available This study was carried out to the determination of nutritive value of canola meal using naylon bag and cumulative gas production techniques in Gizel sheep. Tow fistulated Gizel sheep with average BW 45±2 kg used in a complete randomized design. The cumulative gas production was measured at 2, 4, 6, 8, 12, 16, 24, 36 and 48 h and ruminal DM and CP disappearance were measured up to 96 h. Coefficients of soluble CP degradation of canola meal (A, canola meal treated with 0.5% urea (B and canola meal treated with micro wave (C were 4.74, 15.81 and 15%, and for fermentable portion were 31.05, 39.62 and 65.55%, respectively. The cumulative gas production of soluble and insoluble portions (a+b were 252.13, 213.57 and 240.88 ml/g DM. Metabolizable protein of treatments A, B and C were 283.11, 329.33 and 284.39 g/kg DM, that were not significantly different. The relationship between dry matter and cumulative gas production values for treatments obtained about 0.958, 0.976 and 0.932 and this parameter for crude protein and cumulative gas production achieved 0.987, 0.994 and 0.989, respectively. High correlation between in situ and cumulative gas production techniques indicated that digestibility values can be predicted from cumulative gas production data.

  3. Cumulative particle production in the quark recombination model

    International Nuclear Information System (INIS)

    Gavrilov, V.B.; Leksin, G.A.

    1987-01-01

    Production of cumulative particles in hadron-nuclear inteactions at high energies is considered within the framework of recombination quark model. Predictions for inclusive cross sections of production of cumulative particles and different resonances containing quarks in s state are made

  4. Cumulative effect in multiple production processes on nuclei

    International Nuclear Information System (INIS)

    Golubyatnikova, E.S.; Shmonin, V.L.; Kalinkin, B.N.

    1989-01-01

    It is shown that the cumulative effect is a natural result of the process of hadron multiple production in nuclear reactions. Interpretation is made of the universality of slopes of inclusive spectra and other characteristics of cumulative hadrons. The character of information from such reactions is discussed, which could be helpful in studying the mechanism of multiparticle production. 27 refs.; 4 figs

  5. Ruminal degradation kinetics of protein foods by in vitro gas production technique

    Directory of Open Access Journals (Sweden)

    Ivone Yurika Mizubuti

    2014-02-01

    Full Text Available Chemical analysis of carbohydrates and nitrogen fractions, as well as, determination their carbohydrates digestion rates in soyben meal (SM, crambe meal (CM, radish meal (RM, wet brewery residue (WBR and dehydrated silkworm chrysalis (SCD were accomplished. The kinetics parameters of non-fibrous carbohydrates (NFC and B2 fraction were estimated using cumulative gas production technique. Among the foods studied there was considerable variation in chemical composition. The crambe meal was the only food that did not present synchronism between carbohydrate and nitrogen fractions. In this food there was predominance of A+B1 carbohydrates fractions and B1+B2 nitrogen compounds fraction, and for the other predominated B2 carbohydrate fraction and B1+ B2 nitrogen compounds fraction. There were differences among the digestive kinetic parameters for all foods. The greater participation in gas production due to non-fibrous carbohydrates was found in the crambe meal and oilseed radish meal. The fermentation of fibrous carbohydrates provided higher gas volume in the wet brewery residue and in the soybean meal, however, the soybean meal was food with higher total gas volume. Non fibrous carbohydrates degradation rates of wet brewery residue and dehydrated silkworm chrysalis were far below the limits of degradation of this fraction. Due to the parameters obtained by the cumulative gas production, the soybean meal was the best food, however, all others have potential for use in animal nutrition. The cumulative gas production technique allows the estimative of degradation rates and provides further information about the ruminal fermentation kinetics of foods.

  6. Cumulative effects of cascade hydropower stations on total dissolved gas supersaturation.

    Science.gov (United States)

    Ma, Qian; Li, Ran; Feng, Jingjie; Lu, Jingying; Zhou, Qin

    2018-03-01

    Elevated levels of total dissolved gas (TDG) may occur downstream of dams during the spill process. These high levels would increase the incidence of gas bubble disease in fish and cause severe environmental impacts. With increasing numbers of cascade hydropower stations being built or planned, the cumulative effects of TDG supersaturation are becoming increasingly prominent. The TDG saturation distribution in the downstream reaches of the Jinsha River was studied to investigate the cumulative effects of TDG supersaturation resulting from the cascade hydropower stations. A comparison of the effects of the joint operation and the single operation of two hydropower stations (XLD and XJB) was performed to analyze the risk degree to fish posed by TDG supersaturation. The results showed that water with supersaturated TDG generated at the upstream cascade can be transported to the downstream power station, leading to cumulative TDG supersaturation effects. Compared with the single operation of XJB, the joint operation of both stations produced a much higher TDG saturation downstream of XJB, especially during the non-flood discharge period. Moreover, the duration of high TDG saturation and the lengths of the lethal and sub-lethal areas were much higher in the joint operation scenario, posing a greater threat to fish and severely damaging the environment. This work provides a scientific basis for strategies to reduce TDG supersaturation to the permissible level and minimize the potential risk of supersaturated TDG.

  7. Determining of Degradation and Digestion Coefficients of Canola meal Using of In situ and Gas production Techniques

    OpenAIRE

    Younes Tahmazi; Akbar Taghizadeh; Yousef Mehmannavaz; Mehdi Moghaddam

    2015-01-01

    This study was carried out to the determination of nutritive value of canola meal using naylon bag and cumulative gas production techniques in Gizel sheep. Tow fistulated Gizel sheep with average BW 45±2 kg used in a complete randomized design. The cumulative gas production was measured at 2, 4, 6, 8, 12, 16, 24, 36 and 48 h and ruminal DM and CP disappearance were measured up to 96 h. Coefficients of soluble CP degradation of canola meal (A), canola meal treated with 0.5% urea (B) and canola...

  8. Expansion formulae for characteristics of cumulative cost in finite horizon production models

    NARCIS (Netherlands)

    Ayhan, H.; Schlegel, S.

    2001-01-01

    We consider the expected value and the tail probability of cumulative shortage and holding cost (i.e. the probability that cumulative cost is more than a certain value) in finite horizon production models. An exact expression is provided for the expected value of the cumulative cost for general

  9. Structure functions and particle production in the cumulative region: two different exponentials

    International Nuclear Information System (INIS)

    Braun, M.; Vechernin, V.

    1997-01-01

    In the framework of the recently proposed (QCD-based parton model for the cumulative phenomena in the interactions with nuclei two mechanisms for particle production, direct and spectator ones, are analyzed. It is shown that due to final-state interactions the leading terms of the direct mechanism contribution are cancelled and the spectator mechanism is the dominant one. It leads to a smaller slope of the cumulative particle production rates compared to the slope of the nuclear structure function in the cumulative region x ≥ 1, in agreement with the recent experimental data

  10. Shale Gas Development and Brook Trout: Scaling Best Management Practices to Anticipate Cumulative Effects

    Science.gov (United States)

    Smith, David; Snyder, Craig D.; Hitt, Nathaniel P.; Young, John A.; Faulkner, Stephen P.

    2012-01-01

    Shale gas development may involve trade-offs between energy development and benefits provided by natural ecosystems. However, current best management practices (BMPs) focus on mitigating localized ecological degradation. We review evidence for cumulative effects of natural gas development on brook trout (Salvelinus fontinalis) and conclude that BMPs should account for potential watershed-scale effects in addition to localized influences. The challenge is to develop BMPs in the face of uncertainty in the predicted response of brook trout to landscape-scale disturbance caused by gas extraction. We propose a decision-analysis approach to formulating BMPs in the specific case of relatively undisturbed watersheds where there is consensus to maintain brook trout populations during gas development. The decision analysis was informed by existing empirical models that describe brook trout occupancy responses to landscape disturbance and set bounds on the uncertainty in the predicted responses to shale gas development. The decision analysis showed that a high efficiency of gas development (e.g., 1 well pad per square mile and 7 acres per pad) was critical to achieving a win-win solution characterized by maintaining brook trout and maximizing extraction of available gas. This finding was invariant to uncertainty in predicted response of brook trout to watershed-level disturbance. However, as the efficiency of gas development decreased, the optimal BMP depended on the predicted response, and there was considerable potential value in discriminating among predictive models through adaptive management or research. The proposed decision-analysis framework provides an opportunity to anticipate the cumulative effects of shale gas development, account for uncertainty, and inform management decisions at the appropriate spatial scales.

  11. On the mechanism of hadron cumulative production on nucleus

    International Nuclear Information System (INIS)

    Efremov, A.V.

    1976-01-01

    A mechanism of cumulative production of hadrons on nucleus is proposed which is similar to that of high perpendicular hadron production. The cross section obtained describes the main qualitative features of such prosesses, e.g., initial energy dependence atomic number behaviour, dependence on the rest mass of the produced particle and its production angle

  12. On interference of cumulative proton production mechanisms

    International Nuclear Information System (INIS)

    Braun, M.A.; Vechernin, V.V.

    1993-01-01

    The dynamical picture of the cumulative proton production in hA-collisions by means of diagram analysis with NN interaction described by a non-relativistic NN potential is considered. The contributions of the various mechanisms (spectator, direct and rescattering) for backward hemisphere proton production within the framework of this common approach is calculated. The emphasis is on the comparison of the relative contributions of these mechanisms for various angles, taking into account the interference of these contributions. Comparison with experimental data is also presented. (author)

  13. The Effect of Monensin or Protexin on Gas Production Parameters of Alfalfa and Barley in the Ruminal Fungi Culture

    Directory of Open Access Journals (Sweden)

    saeid sobhanirad

    2016-11-01

    Full Text Available Introduction Since the legislation of European Union has prohibited the use of growth-promoting antibiotics such as: monensin, there is an interest in alternatives to manipulate the rumen fermentation. The use of growth-promoting antibiotics in animal feeds is banned in Europe due to having potential risks such as the spread of antibiotic resistance genes or the contamination of milk or meat with antibiotic residues. Recently, probiotics have been increasingly evaluated to replace or facilitate reductions in the use of antibiotics. Thus, the aim of this study was investigating the comparison of antibiotic (sodium monensin and probiotic (protexin on the gas production parameters and organic matter digestibility of feedstuffs (alfalfa hay, barley grain, and alfalfa+ barley mixture Materials and Methods Experimental treatments were included control (basal feeds without additive, basal feeds supplemented with sodium monensin or protexin probiotic at levels of 500 or 1000 mg per kg of DM in a rumen fungi culture. Ruminal fluid was collected from two fistulated sheep (49.5±2.5 kg and all samples were withdrawn 2 h after the morning ration had been consumed. Collected ruminal contents were strained through four layers of cheesecloth and brought immediately to the laboratory. To have a pure ruminal fungi culture, whole ruminal fluid was centrifuged at 1000 g for 10 min and added 0.100 mg/ml antibacterial agent (streptomycin sulfate, penicillin G, and chloramphenicol (14, 35. Gas production technique was used to detect the fermentation parameters of the treatments (16.Three parallel syringes of each treatment were prepared in this experiment. To measure the total gas production (A and the rate of gas production (c, cumulative gas production, organic digestibility and metabolizable energy of treatments until 120 h. Gas production was measured directly from the volume of the syringes at 0, 3, 6, 16, 24, 48, 72, 96, and 120 h. Statistical analysis of data

  14. Modeling cumulative effects in life cycle assessment: the case of fertilizer in wheat production contributing to the global warming potential.

    Science.gov (United States)

    Laratte, Bertrand; Guillaume, Bertrand; Kim, Junbeum; Birregah, Babiga

    2014-05-15

    This paper aims at presenting a dynamic indicator for life cycle assessment (LCA) measuring cumulative impacts over time of greenhouse gas (GHG) emissions from fertilizers used for wheat cultivation and production. Our approach offers a dynamic indicator of global warming potential (GWP), one of the most used indicator of environmental impacts (e.g. in the Kyoto Protocol). For a case study, the wheat production in France was selected and considered by using data from official sources about fertilizer consumption and production of wheat. We propose to assess GWP environmental impact based on LCA method. The system boundary is limited to the fertilizer production for 1 ton of wheat produced (functional unit) from 1910 to 2010. As applied to wheat production in France, traditional LCA shows a maximum GWP impact of 500 kg CO2-eq for 1 ton of wheat production, whereas the GWP impact of wheat production over time with our approach to dynamic LCA and its cumulative effects increases to 18,000 kg CO2-eq for 1 ton of wheat production. In this paper, only one substance and one impact assessment indicator are presented. However, the methodology can be generalized and improved by using different substances and indicators. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Cumulative exposure to phthalates from phthalate-containing drug products

    DEFF Research Database (Denmark)

    Ennis, Zandra Nymand; Broe, Anne; Pottegård, Anton

    2018-01-01

    European regulatory limit of exposure ranging between 380-1710 mg/year throughout the study period. Lithium-products constituted the majority of dibutyl phthalate exposure. Diethyl phthalate exposure, mainly caused by erythromycin, theophylline and diclofenac products, did not exceed the EMA regulatory...... to quantify annual cumulated phthalate exposure from drug products among users of phthalate-containing oral medications in Denmark throughout the period of 2004-2016. METHODS: We conducted a Danish nationwide cohort study using The Danish National Prescription Registry and an internal database held...

  16. Use of in vitro gas production technique to evaluate the effects of microwave irradiation on sorghum (Sorghum bicolor and wheat (Triticum sp. nutritive values and fermentation characteristics

    Directory of Open Access Journals (Sweden)

    Farhad Parnian

    2013-01-01

    Full Text Available Effects of microwave irradiation (900 W for 3, 5 and 7 min on the nutritive value of sorghum and wheat grains were evaluated by in vitro gas production technique. Gas volume was recorded at 2, 4, 6, 8, 12, 16, 24, 36, 48, 72 and 96 h of incubation and kinetics of gas production were estimated using model: GP = A exp {– exp [1 + (be/A (LAG – t]}. Cumulative gas production at 24 h was used for estimation of metabolizable energy, net energy for lactation, short chain fatty acids, digestible organic matter and microbial protein. For sorghum grain, microwave irradiation increased cumulative gas production for most times of incubation linearly. Microwave treatments for 5 and 7 min increased the A fraction linearly in both cereal grain, whereas the maximum rate of gas production (b decreased linearly only in wheat grain. Microwave treatments for 3, 5 and 7 min increased (P<0.05 metabolizable energy, net energy for lactation and short chain fatty acids content of sorghum grain, but not of wheat grain. It was concluded that microwave irradiation changed the gas production parameters resulting changed ruminal fermentation characteristics that can be considered in ration formulation.

  17. Exact probability distribution function for the volatility of cumulative production

    Science.gov (United States)

    Zadourian, Rubina; Klümper, Andreas

    2018-04-01

    In this paper we study the volatility and its probability distribution function for the cumulative production based on the experience curve hypothesis. This work presents a generalization of the study of volatility in Lafond et al. (2017), which addressed the effects of normally distributed noise in the production process. Due to its wide applicability in industrial and technological activities we present here the mathematical foundation for an arbitrary distribution function of the process, which we expect will pave the future research on forecasting of the production process.

  18. Polarization in high Psub(trans) and cumulative hadron production

    International Nuclear Information System (INIS)

    Efremov, A.V.

    1978-01-01

    The final hadron polarization in the high Psub(trans) processes is analyzed in the parton hard scattering picture. Scaling assumption allows a correct qualitative description to be given for the Psub(trans)-behaviour of polarization or escape angle behaviour in cumulative production. The energy scaling and weak dependence on the beam and target type is predicted. A method is proposed for measuring the polarization of hadron jets

  19. Greenhouse gas emissions from the production and use of alternative transport fuels

    International Nuclear Information System (INIS)

    Le Cornu, J.K.

    1990-01-01

    A number of the commonly proposed alternative transport fuels were ranked according to both the cumulative greenhouse gas emissions and the production costs incurred between the recovery of the prime resource and the fuel's end use by the Australian transport fleet. An examination of the emissions of each greenhouse gas at each production stage confirmed the common presumption that the low levels of secondary greenhouse gas emissions involved contribute little to the overall greenhouse impact of a fuel's production and use. From a greenhouse point of view the transport fuels studied could be reasonable well ranked by considering their carbon dioxide emissions alone. A possible exception may apply in the case of the compressed natural gas option, which may need to separate consideration of the effect of fugitive emissions of methane from gas distribution systems. An assumption involved in reaching this result was that nitrous oxide emissions, on which there was inadequate hard data, would not form more than 1% of the total nitrogen oxide emissions. At such an emission level it could contribute up to 5% of a fuel's total greenhouse impact. It is concluded that apart from some small niche opportunities, there is no Australian alternative transport fuel option whose production cost and greenhouse impact makes it one which policy should favour over other fuels. It is stressed that this is no more than a preliminary scouting study of generic options, which addresses only greenhouse issues. 17 refs., 1 tab., 8 figs

  20. Is cumulative fossil energy demand a useful indicator for the environmental performance of products?

    NARCIS (Netherlands)

    Huijbregts, Mark A J; Rombouts, Linda J A; Hellweg, Stefanie; Frischknecht, Rolf; Hendriks, A Jan; Meent, Dik van de; Ragas, Ad M J; Reijnders, Lucas; Struijs, Jaap

    2006-01-01

    The appropriateness of the fossil Cumulative Energy Demand (CED) as an indicator for the environmental performance of products and processes is explored with a regression analysis between the environmental life-cycle impacts and fossil CEDs of 1218 products, divided into the product categories

  1. Decline curve based models for predicting natural gas well performance

    Directory of Open Access Journals (Sweden)

    Arash Kamari

    2017-06-01

    Full Text Available The productivity of a gas well declines over its production life as cannot cover economic policies. To overcome such problems, the production performance of gas wells should be predicted by applying reliable methods to analyse the decline trend. Therefore, reliable models are developed in this study on the basis of powerful artificial intelligence techniques viz. the artificial neural network (ANN modelling strategy, least square support vector machine (LSSVM approach, adaptive neuro-fuzzy inference system (ANFIS, and decision tree (DT method for the prediction of cumulative gas production as well as initial decline rate multiplied by time as a function of the Arps' decline curve exponent and ratio of initial gas flow rate over total gas flow rate. It was concluded that the results obtained based on the models developed in current study are in satisfactory agreement with the actual gas well production data. Furthermore, the results of comparative study performed demonstrates that the LSSVM strategy is superior to the other models investigated for the prediction of both cumulative gas production, and initial decline rate multiplied by time.

  2. Cumulative exergy losses associated with the production of lead metal

    Energy Technology Data Exchange (ETDEWEB)

    Szargut, J [Technical Univ. of Silesia, Gliwice (PL). Inst. of Thermal-Engineering; Morris, D R [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Chemical Engineering

    1990-08-01

    Cumulative exergy losses result from the irreversibility of the links of a technological network leading from raw materials and fuels extracted from nature to the product under consideration. The sum of these losses can be apportioned into partial exergy losses (associated with particular links of the technological network) or into constituent exergy losses (associated with constituent subprocesses of the network). The methods of calculation of the partial and constituent exergy losses are presented, taking into account the useful byproducts substituting the major products of other processes. Analyses of partial and constituent exergy losses are made for the technological network of lead metal production. (author).

  3. Greenhouse effects of the peat production and use as compared to coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.; Wihersaari, M.

    1993-01-01

    This report examines the greenhouse effects of greenhouse gas emissions (carbon dioxide, methane and nitrous oxide) arising from certain production and utilization chains of peat and compares them with the corresponding effects associated with the production and utilization chains of coal, oil, natural gas and wood. In order to estimate the greenhouse effects of the peat production and utilization chains, the initial state of the peat bog together with the instantaneous and cumulative greenhouse effects associated with the production and burning of peat as well as subsequent use of the production area were taken into account. The initial state of the peat bog was taken to be either a bog in its natural sale, a forest-drained bog or a cultivated peatland. As regards alternatives for subsequent use of the peat production area, afforestation, paludification and lake formation were all examined

  4. Experience curve for natural gas production by hydraulic fracturing

    International Nuclear Information System (INIS)

    Fukui, Rokuhei; Greenfield, Carl; Pogue, Katie; Zwaan, Bob van der

    2017-01-01

    From 2007 to 2012 shale gas production in the US expanded at an astounding average growth rate of over 50%/yr, and thereby increased nearly tenfold over this short time period alone. Hydraulic fracturing technology, or “fracking”, as well as new directional drilling techniques, played key roles in this shale gas revolution, by allowing for extraction of natural gas from previously unviable shale resources. Although hydraulic fracturing technology had been around for decades, it only recently became commercially attractive for large-scale implementation. As the production of shale gas rapidly increased in the US over the past decade, the wellhead price of natural gas dropped substantially. In this paper we express the relationship between wellhead price and cumulative natural gas output in terms of an experience curve, and obtain a learning rate of 13% for the industry using hydraulic fracturing technology. This learning rate represents a measure for the know-how and skills accumulated thus far by the US shale gas industry. The use of experience curves for renewable energy options such as solar and wind power has allowed analysts, practitioners, and policy makers to assess potential price reductions, and underlying cost decreases, for these technologies in the future. The reasons for price reductions of hydraulic fracturing are fundamentally different from those behind renewable energy technologies – hence they cannot be directly compared – and hydraulic fracturing may soon reach, or maybe has already attained, a lower bound for further price reductions, for instance as a result of its water requirements or environmental footprint. Yet, understanding learning-by-doing phenomena as expressed by an industry-wide experience curve for shale gas production can be useful for strategic planning in the gas sector, as well as assist environmental policy design, and serve more broadly as input for projections of energy system developments. - Highlights: • Hydraulic

  5. Cumulative Environmental Management Association : Wood Buffalo Region

    International Nuclear Information System (INIS)

    Friesen, B.

    2001-01-01

    The recently announced oil sands development of the Wood Buffalo Region in Alberta was the focus of this power point presentation. Both mining and in situ development is expected to total $26 billion and 2.6 million barrels per day of bitumen production. This paper described the economic, social and environmental challenges facing the resource development of this region. In addition to the proposed oil sands projects, this region will accommodate the needs of conventional oil and gas production, forestry, building of pipelines and power lines, municipal development, recreation, tourism, mining exploration and open cast mining. The Cumulative Environmental Management Association (CEMA) was inaugurated as a non-profit association in April 2000, and includes 41 members from all sectors. Its major role is to ensure a sustainable ecosystem and to avoid any cumulative impacts on wildlife. Other work underway includes the study of soil and plant species diversity, and the effects of air emissions on human health, wildlife and vegetation. The bioaccumulation of heavy metals and their impacts on surface water and fish is also under consideration to ensure the quality and quantity of surface water and ground water. 3 figs

  6. Life Cycle Assessment Of Hydrogen Production From Natural Gas Reforming Process

    International Nuclear Information System (INIS)

    Ozturk, M.

    2010-01-01

    Society has become concerned about the issues of natural resource depletion and environmental degradation. The environmental performance of products or processes has become a key issue, which is why ways to minimize the effects on the environment are investigated. The most effective tool for this purpose is called life cycle assessment (LCA). This concept considers the entire life cycle of product or process. The life cycle of a product begins with the extraction of raw materials from the earth to create the product and ends at the point when all materials are returned to the earth. LCA makes it possible to estimate the cumulative environmental impacts resulting from all stages in the product life cycle, often including impacts not considered in more traditional analyses. Therefore, LCA provides a comprehensive view of the environmental aspects of the product or process and a more accurate picture of the true environmental trade-offs in product selection. In the case of this study, life cycle assessments of hydrogen production via natural gas reforming process are investigated for environmental affect.

  7. Secant cumulants and toric geometry

    NARCIS (Netherlands)

    Michalek, M.; Oeding, L.; Zwiernik, P.W.

    2012-01-01

    We study the secant line variety of the Segre product of projective spaces using special cumulant coordinates adapted for secant varieties. We show that the secant variety is covered by open normal toric varieties. We prove that in cumulant coordinates its ideal is generated by binomial quadrics. We

  8. Cumulative Culture and Future Thinking: Is Mental Time Travel a Prerequisite to Cumulative Cultural Evolution?

    Science.gov (United States)

    Vale, G. L.; Flynn, E. G.; Kendal, R. L.

    2012-01-01

    Cumulative culture denotes the, arguably, human capacity to build on the cultural behaviors of one's predecessors, allowing increases in cultural complexity to occur such that many of our cultural artifacts, products and technologies have progressed beyond what a single individual could invent alone. This process of cumulative cultural evolution…

  9. Scenarios for remote gas production

    International Nuclear Information System (INIS)

    Tangen, Grethe; Molnvik, Mona J.

    2009-01-01

    The amount of natural gas resources accessible via proven production technology and existing infrastructure is declining. Therefore, smaller and less accessible gas fields are considered for commercial exploitation. The research project Enabling production of remote gas builds knowledge and technology aiming at developing competitive remote gas production based on floating LNG and chemical gas conversion. In this project, scenarios are used as basis for directing research related to topics that affect the overall design and operation of such plants. Selected research areas are safety, environment, power supply, operability and control. The paper summarises the scenario building process as a common effort among research institutes and industry. Further, it documents four scenarios for production of remote gas and outlines how the scenarios are applied to establish research strategies and adequate plans in a multidisciplinary project. To ensure relevance of the scenarios, it is important to adapt the building process to the current problem and the scenarios should be developed with extensive participation of key personnel.

  10. Cumulative carbon as a policy framework for achieving climate stabilization

    Science.gov (United States)

    Matthews, H. Damon; Solomon, Susan; Pierrehumbert, Raymond

    2012-01-01

    The primary objective of the United Nations Framework Convention on Climate Change is to stabilize greenhouse gas concentrations at a level that will avoid dangerous climate impacts. However, greenhouse gas concentration stabilization is an awkward framework within which to assess dangerous climate change on account of the significant lag between a given concentration level and the eventual equilibrium temperature change. By contrast, recent research has shown that global temperature change can be well described by a given cumulative carbon emissions budget. Here, we propose that cumulative carbon emissions represent an alternative framework that is applicable both as a tool for climate mitigation as well as for the assessment of potential climate impacts. We show first that both atmospheric CO2 concentration at a given year and the associated temperature change are generally associated with a unique cumulative carbon emissions budget that is largely independent of the emissions scenario. The rate of global temperature change can therefore be related to first order to the rate of increase of cumulative carbon emissions. However, transient warming over the next century will also be strongly affected by emissions of shorter lived forcing agents such as aerosols and methane. Non-CO2 emissions therefore contribute to uncertainty in the cumulative carbon budget associated with near-term temperature targets, and may suggest the need for a mitigation approach that considers separately short- and long-lived gas emissions. By contrast, long-term temperature change remains primarily associated with total cumulative carbon emissions owing to the much longer atmospheric residence time of CO2 relative to other major climate forcing agents. PMID:22869803

  11. A comparative study of floor construction on sloping sites: an analysis of cumulative energy demand and greenhouse gas emissions

    Directory of Open Access Journals (Sweden)

    Grace Ding

    2016-03-01

    Full Text Available In order to make environmentally aware decisions, there is growing interest in the comparative energy and greenhouse gas (GHG performance of competing construction methods. Little research has been done concerning competing ground floor construction methods, especially given different site variables, such as slope and soil type. A life cycle assessment approach was adopted to analyse environmental impacts, including cumulative energy demand and GHG emissions for detached housing construction in Australia. Data was drawn from 24 case study housing projects, including 12 reinforced concrete and 12 suspended timber floor projects. The data presented in the paper compares cumulative energy demand, GHG and the constituent parts of competing construction methods. The findings indicate that the timber floors use/create significantly less cumulative energy demand and GHG emissions than concrete floors—approximately 2.1 to 2.7 times less energy and 2.3 to 2.9 times less GHG. These findings are limited to the site slope and foundation soil types identified in the paper. The main application of the work is in guidance concerning the lowest environmental impact options for detached housing construction.

  12. Gas production strategy of underground coal gasification based on multiple gas sources.

    Science.gov (United States)

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  13. In vitro Digestibility and Gas Production Characteristics of Four Napier (Pennisetum purpureum Cultivars as Fresh Fodder

    Directory of Open Access Journals (Sweden)

    Zailan, M.Z.

    2016-12-01

    Full Text Available Napier grass was first introduced to Malaysia in the 1920?s and there were many cultivars introduced in Malaysia since 1950?s. However, there is a need to have comparative evaluation of these Napier cultivars so that definite recommendations can be made in the choice and management of the respective cultivars. The experiment was conducted to evaluate the in vitro digestibility and gas production characteristic of four Napier (Pennisetum purpureum cultivars, namely Common, Silver, Red and Dwarf Napier. Common, Silver and Red Napier are classified as tall cultivars while Dwarf Napier is a short cultivar. Gas production was determined at 2, 4, 6, 8, 12, 24, 32, 36, 48, 72 and 96 h of incubation period and its kinetics was described using the equation p = a + b (1 ? e?ct. Dwarf Napier had the highest (P 0.05 in the rate of gas production (C of Napier cultivars which ranged from 0.024 to 0.035 h-1. The metabolisable energy (ME was significantly higher in Dwarf and Red Napier cultivars (8.7 MJ/kg DM compared to Silver and Common Napier cultivars. The cumulative gas production within 32 h was highest (P0.05 ranged from 52 to 73 mM, 88 to 70%, 6.2 to 6.8%, respectively.. Dwarf Napier cultivar had superior nutritional quality. Dwarf and Red Napier cultivars could be classified as high quality grasses due to their high digestibility, gas production and degradation rates compared to the other cultivars. The low quality of Common and Silver Napier cultivars is mainly reflected by the extensive lignification of their cell wall structure.

  14. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    Science.gov (United States)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP

  15. Gas reserves, discoveries and production

    International Nuclear Information System (INIS)

    Saniere, A.

    2006-01-01

    Between 2000 and 2004, new discoveries, located mostly in the Asia/Pacific region, permitted a 71% produced reserve replacement rate. The Middle East and the offshore sector represent a growing proportion of world gas production Non-conventional gas resources are substantial but are not exploited to any significant extent, except in the United States, where they account for 30% of U.S. gas production. (author)

  16. Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources

    Directory of Open Access Journals (Sweden)

    Duan Tianhong

    2014-01-01

    Full Text Available To lower stability requirement of gas production in UCG (underground coal gasification, create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  17. Union Gas and Ontario gas production

    International Nuclear Information System (INIS)

    Cameron, C.

    2001-01-01

    A step-by-step review of the tie-in process of new production wells into the Union Gas System is described. Requirements of the producer and those of Union Gas are explained. Also described are the choices available to the producer to sell his gas. He can sell either to Union Gas directly at an agreed upon price, or the producer has the option to have what is called an M13 contract which allows him to sell his gas at Dawn, where it can be stored within parameters of the contract, and sold to any buyer at Dawn at a negotiated rate. This arrangement, while entailing a much greater administrative load than direct sale to Union Gas, nevertheless, allows the producer to take advantage of market fluctuations. A third option provided by Union Gas is to make available to the producer storage space greater than the provisions of the M13 contract at current market rate, thereby opening up the opportunity to the producer to capture additional value in later winter months (when gas is in greater demand)

  18. Expanding Canadian natural gas production will strengthen growth of LP-gas industry

    International Nuclear Information System (INIS)

    Hawkins, D.J.

    1994-01-01

    In 1992, over 86% of Canadian propane and 70% of Canadian butane production originated in gas plants. Propane and butane production not recovered at gas plants is recovered in other processing facilities, primarily refineries and heavy oil upgraders. As a result, supplies of both products are largely tied to natural gas production, and the outlook for natural gas therefore provides the basis for any discussion on the outlook for gas processing and NGL industry infrastructure. The paper discusses gas processing, economies of scale, NGL supply, expected declines, industry structure and infrastructure, the two major centers of the Canadian NGL industry, new shippers, and required pipeline expansion

  19. Oil and gas field database

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Han, Jung Kuy [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    As agreed by the Second Meeting of the Expert Group of Minerals and Energy Exploration and Development in Seoul, Korea, 'The Construction of Database on the Oil and Gas Fields in the APEC Region' is now under way as a GEMEED database project for 1998. This project is supported by Korean government funds and the cooperation of GEMEED colleagues and experts. During this year, we have constructed the home page menu (topics) and added the data items on the oil and gas field. These items include name of field, discovery year, depth, the number of wells, average production (b/d), cumulative production, and API gravity. The web site shows the total number of oil and gas fields in the APEC region is 47,201. The number of oil and gas fields by member economics are shown in the table. World oil and gas statistics including reserve, production consumption, and trade information were added to the database for the users convenience. (author). 13 refs., tabs., figs.

  20. Oil and gas field database

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Han, Jung Kuy [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    As agreed by the Second Meeting of the Expert Group of Minerals and Energy Exploration and Development in Seoul, Korea, 'The Construction of Database on the Oil and Gas Fields in the APEC Region' is now under way as a GEMEED database project for 1998. This project is supported by Korean government funds and the cooperation of GEMEED colleagues and experts. During this year, we have constructed the home page menu (topics) and added the data items on the oil and gas field. These items include name of field, discovery year, depth, the number of wells, average production (b/d), cumulative production, and API gravity. The web site shows the total number of oil and gas fields in the APEC region is 47,201. The number of oil and gas fields by member economics are shown in the table. World oil and gas statistics including reserve, production consumption, and trade information were added to the database for the users convenience. (author). 13 refs., tabs., figs.

  1. Alternative Fuels Data Center: Conventional Natural Gas Production

    Science.gov (United States)

    Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center : Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production

  2. Desulfurized gas production from vertical kiln pyrolysis

    Science.gov (United States)

    Harris, Harry A.; Jones, Jr., John B.

    1978-05-30

    A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.

  3. Online Scheduling in Manufacturing A Cumulative Delay Approach

    CERN Document Server

    Suwa, Haruhiko

    2013-01-01

    Online scheduling is recognized as the crucial decision-making process of production control at a phase of “being in production" according to the released shop floor schedule. Online scheduling can be also considered as one of key enablers to realize prompt capable-to-promise as well as available-to-promise to customers along with reducing production lead times under recent globalized competitive markets. Online Scheduling in Manufacturing introduces new approaches to online scheduling based on a concept of cumulative delay. The cumulative delay is regarded as consolidated information of uncertainties under a dynamic environment in manufacturing and can be collected constantly without much effort at any points in time during a schedule execution. In this approach, the cumulative delay of the schedule has the important role of a criterion for making a decision whether or not a schedule revision is carried out. The cumulative delay approach to trigger schedule revisions has the following capabilities for the ...

  4. Breakthrough and prospect of shale gas exploration and development in China

    OpenAIRE

    Dazhong Dong; Yuman Wang; Xinjing Li; Caineng Zou; Quanzhong Guan; Chenchen Zhang; Jinliang Huang; Shufang Wang; Hongyan Wang; Honglin Liu; Wenhua Bai; Feng Liang; Wen Lin; Qun Zhao; Dexun Liu

    2016-01-01

    In the past five years, shale gas exploration and development has grown in a leaping-forward way in China. Following USA and Canada, China is now the third country where industrial shale gas production is realized, with the cumulative production exceeding 60 × 108 m3 until the end of 2015. In this paper, the main achievements of shale gas exploration and development in China in recent years were reviewed and the future development prospect was analyzed. It is pointed out that shale gas explor...

  5. Radon gas in oil and natural gas production facilities

    International Nuclear Information System (INIS)

    Chandler, W.P.

    1994-01-01

    Radon gas is a naturally occurring radionuclide that can be found in some oil and natural gas production facilities, either as a contaminant in a natural gas stream or derived from Radium dissolved in formation waters. The gas itself is not normally a health hazard, but it's decay products, which can be concentrated by plate-out or deposition as a scale in process equipment, can be a health hazard for maintenance personnel. To evaluate possible health hazards, it is necessary to monitor for naturally occurring radioactive materials (NORM) in the gas stream and in the formation water. If Radon and/or Radium is found, a monitoring programme should be initiated to comply with National or State requirements. In some instances, it has been found necessary to dispose of silt and scale materials as low level radioactive waste. 8 refs

  6. Oil and gas exploration and production

    International Nuclear Information System (INIS)

    Babusiaux, D.; Favennec, J.P.; Bauquis, P.R.; Bret-Rouzaut, N.; Guirauden, D.

    2004-01-01

    The steps that lead to the production of oil and gas are diverse, complex and costly. They are diverse, because the detection of oil and gas involves input from many specialties, ranging from geology to reservoir engineering. They are complex, as shown by the development of the job of the petroleum architect, who coordinates all the operations. They are costly, as the investments for exploration and production represent more than half of all investments in the oil and gas sector. Moreover, exploration is a risky activity, both from the technical and financial viewpoint: only one well in five produces marketable oil. Meanwhile, the areas for exploration and production are spread throughout the world. This book provides a complete overview of the stakes and challenges involved in oil and gas exploration and production. Following a historical review and a survey of the markets, the technical phases are covered, as are the evaluation of reserves, the estimation of investments and costs, the decision-making and control processes, and the accounting, legal and contractual environment for these activities. The book concludes with a discussion of the role of safety, and of environmental and ethical issues. This work, which is designed for readers concerned with the various aspects of the oil and gas upstream sector, is accessible to all. Contents: 1. Petroleum: a strategic product. 2. Oil and gas exploration and production. 3. Hydrocarbon reserves. 4. Investments and costs. 5. Legal, fiscal and contractual framework. 6. Decision-making on exploration and production. 7. Information, accounting and competition analysis. 8. Health, safety, the environment, ethics. Bibliography. Glossary. Index

  7. Preliminary report on the economics of gas production from natural gas hydrates

    International Nuclear Information System (INIS)

    Walsh, M.; Wilson, S.; Patil, S.; Moridis, G.; Boswell, R.; Koh, C.; Sloan, D.

    2008-01-01

    Gas hydrates are solid crystalline compounds in which gas molecules reside inside cages that are formed by hydrogen-bonded water molecules in a crystal lattice. At particularly low temperatures and high pressures, a guest molecule will combine with water to form gas hydrates. Gas hydrates are found in two different settings in which the temperature and pressure conditions are suitable for their existence, notably in Arctic permafrost regions and below the seafloor. Because of the size of this possible future resource, if any of the gas in hydrates can be proven to be economically recoverable, then production from gas hydrates could become an important portion of the world's energy portfolio as demand for natural gas increases along with the technology to compress and distribute natural gas to distant markets. This paper presented a compilation of economic research that was conducted on the resource potential of gas hydrates. The paper reported a preliminary estimate of the price of natural gas that may lead to economically-viable production from North American Arctic region hydrates. The paper also discussed the implications of a recent study on the production of class 3 marine hydrate deposits from the Gulf of Mexico. The state of the art technologies and methods in hydrate reservoir modeling and hydrate reservoir production and petrophysical testing were also discussed. It was concluded that the somewhat optimistic results presented in this report should be interpreted with caution, however, the economically-viable gas production from hydrates was not an unreasonable scenario. 23 refs., 2 tabs., 10 figs

  8. Natural gas product and strategic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Layne, A.W.; Duda, J.R.; Zammerilli, A.M.

    1993-12-31

    Product and strategic analysis at the Department of Energy (DOE)/Morgantown Energy Technology Center (METC) crosscuts all sectors of the natural gas industry. This includes the supply, transportation, and end-use sectors of the natural-gas market. Projects in the Natural Gas Resource and Extraction supply program have been integrated into a new product focus. Product development facilitates commercialization and technology transfer through DOE/industry cost-shared research, development, and demonstration (RD&D). Four products under the Resource and Extraction program include Resource and Reserves; Low Permeability Formations; Drilling, Completion, and Stimulation: and Natural Gas Upgrading. Engineering process analyses have been performed for the Slant Hole Completion Test project. These analyses focused on evaluation of horizontal-well recovery potential and applications of slant-hole technology. Figures 2 and 3 depict slant-well in situ stress conditions and hydraulic fracture configurations. Figure 4 presents Paludal Formation coal-gas production curves used to optimize the hydraulic fracture design for the slant well. Economic analyses have utilized data generated from vertical test wells to evaluate the profitability of horizontal technology for low-permeability formations in Yuma County, Colorado, and Maverick County, Texas.

  9. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  10. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.

    Science.gov (United States)

    Patra, Amlan Kumar; Yu, Zhongtang

    2013-07-01

    Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but

  11. Production of bio-gas from maize cobs

    Energy Technology Data Exchange (ETDEWEB)

    Leke, Luter [College of Physical Sciences, University of Aberdeen, AB24 3UE, Aberdeen (United Kingdom); Department of Chemistry, Benue State University, P M B 102119, Makurdi (Nigeria); Ogbanje, Anne Ada [Department of Chemistry, Benue State University, P M B 102119, Makurdi (Nigeria); Department of Renewable Energy, Energy Commission of Nigeria, Garki-Abuja (Nigeria); Terfa, Dekaa Henry [Department of Chemistry, Benue State University, P M B 102119, Makurdi (Nigeria); Ikyaagba, Tyoalumun [College of Physical Sciences, University of Aberdeen, AB24 3UE, Aberdeen (United Kingdom)

    2013-07-01

    Anaerobic digestion of energy crop residues and wastes is of increasing interest in order to reduce greenhouse gas emissions and to facilitate a sustainable development of energy supply. Production of biogas provides a versatile carrier of renewable energy, as methane can be used for replacement of fossil fuels in both heat and power generation as vehicle fuel. Biogas fuel production from blends of biological wastes such as Cow rumen liquor (CL), Poultry droppings (PD), and Goat Faeces (GF) with Maize cobs (M) were studied. 20 g of each inoculum was mixed with 100g of degraded maize cobs in the first three digesters while the fourth contained CL 10g, PD 10 g, and M 100 g. 100 g of M alone in the fifth digester served as the control. The blends were subjected to anaerobic digestion for 10 days on the prevailing atmospheric ambient temperature and pressure conditions. Physiochemical properties of the blends such as moisture content, crude protein, ash, fat, crude fibre, carbohydrate content, C/N ratio, and pH were also determined. Results of the daily performances of each system showed that maize cobs (M) alone had cumulative biogas yield of 1.50 cm3 while those of the blends (MCL, MPD, MGF and MCLPD) were 6.11 cm3, 3.05 cm3, 2.50 cm3, and 63.00 cm3 respectively, pH and C/N ratio affected the biogas yield of the systems significantly. These results indicate that the low biogas production from maize cobs can be enhanced significantly by blending with cow rumen liquor and poultry droppings.

  12. Technology and products of gas companies; Gas gaisha no Technology and Products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-10

    This paper presents the latest technology and products of gas companies. `Newly developed gas table for one-push automatic fish broiling` of Tokyo Gas Co. `Catalytic technology for decomposing dioxin generated by incinerator to make it harmless` of Osaka Gas Co. `Newly developed strong and kindly shower head` of Tokyo Gas Co. By laying fish on a sensor in a grill and appropriately setting upper and lower heating levers, user can skillfully broil fish only by pushing an ignition button. A temperature sensor attached to the center of a grill catches a change in surface temperature of fish, and automatically sets an appropriate broiling time according to the kind and volume of fish. A finish buzzer and automatic extinction mechanism are prepared. The technology decomposes dioxin in exhaust gas of incinerators to make it harmless. The catalyst is prepared by dispersing noble metal or oxide of several angstroms into activated carbon fibers. The shower head can switch hot water power by a control handle

  13. Shale gas production: potential versus actual greenhouse gas emissions

    OpenAIRE

    O'Sullivan, Francis Martin; Paltsev, Sergey

    2012-01-01

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during 2010. Data from each of the approximately 4000 horizontal shale gas wells brought online that year are used to show that about 900 Gg CH[subscript 4] of potential fugitive emissions were generated by these operations, or 228 Mg CH[subscript 4] per well—a figure inappropriately ...

  14. In vitro gas production in rumen fluid of buffalo as affected by urea-calcium mixture in high-quality feed block.

    Science.gov (United States)

    Cherdthong, Anusorn; Wanapat, Metha

    2014-04-01

    This study aimed to determine the effect of urea-calcium sulphate mixture (U-cas) levels in high-quality feed block (HQFB) on ruminal digestibility, fermentation and gas kinetics in rumen fluid of swamp buffalo by using in vitro techniques. The treatments were seven levels of U-cas incorporated in HQFB at 0, 3, 6, 9, 12, 15 and 18% and the experimental design was a completely randomized design. Gas production rate constants for the insoluble fraction, potential extent of gas and cumulative gas were linearly increased with increasing levels of U-cas in HQFB. The in vitro dry matter digestibility, in vitro organic matter digestibility, true digestibility and microbial mass were altered by treatments and were greatest at 18% U-cas supplementation. Concentrations of propionate were linearly increased with increasing levels of U-cas and was highest with U-cas supplementation at 18%. The NH3 -N concentration was highest when urea was added in the HQFB while NH3 -N concentration tended to be reduced with increasing level of U-cas. The findings suggest supplementation of 18% U-cas in HQFB improves kinetics of gas production, rumen fermentation, digestibility and microbial mass as well as controlling the rate of N degradation in the rumen of swamp buffalo. © 2014 Japanese Society of Animal Science.

  15. Neutron-induced particle production in the cumulative and noncumulative regions at intermediate energies

    International Nuclear Information System (INIS)

    Mashnik, S.G.

    1992-01-01

    The first systematic measurements of neutron-induced inclusive production of protons, deuterons, tritons and charged pions on carbon, copper, and bismuth in the bombarding energy range of 300-580 MeV and in the angular interval from 51 deg to 165 deg have been analyzed in the framework of the cascade-exciton model. The role of single-particle scattering, the effects of rescattering, the pre-equilibrium emission and 'coalescence' mechanism in particle production in the cumulative (i.e., kinematically - forbidden for quasi-free intranuclear projectile-nucleon collisions) and noncumulative regions are discussed. A week sensitivity of the inclusive distributions to the specific reaction mechanisms and a need of correlation and polarization measurements are noted. 27 refs.; 12 figs.; 1 tab

  16. Natural gas technology

    International Nuclear Information System (INIS)

    Todaro, J.M.; Herbert, J.H.

    1997-01-01

    This presentation is devoted to a discussion regarding current and planned US fossil energy research and development for fiscal years 1996, 1997 and 1998. The principal focus of research in the immediate future will be: clean coal fuels, natural gas and oil exploration and production, especially reservoir life extension, advanced drilling completion and stimulation systems, advanced diagnostics and imaging systems, environmental compliance in technology development, regulatory streamlining and risk assessment. Program goals to 2010 were summarized as: increasing domestic oil and gas recovery; increasing recoverable reserves; decreasing cumulative industry environmental compliance costs; increasing revenues to the federal government; saving jobs in the U.S

  17. Preliminary report on the commercial viability of gas production from natural gas hydrates

    Science.gov (United States)

    Walsh, M.R.; Hancock, S.H.; Wilson, S.J.; Patil, S.L.; Moridis, G.J.; Boswell, R.; Collett, T.S.; Koh, C.A.; Sloan, E.D.

    2009-01-01

    Economic studies on simulated gas hydrate reservoirs have been compiled to estimate the price of natural gas that may lead to economically viable production from the most promising gas hydrate accumulations. As a first estimate, $CDN2005 12/Mscf is the lowest gas price that would allow economically viable production from gas hydrates in the absence of associated free gas, while an underlying gas deposit will reduce the viability price estimate to $CDN2005 7.50/Mscf. Results from a recent analysis of the simulated production of natural gas from marine hydrate deposits are also considered in this report; on an IROR basis, it is $US2008 3.50-4.00/Mscf more expensive to produce marine hydrates than conventional marine gas assuming the existence of sufficiently large marine hydrate accumulations. While these prices represent the best available estimates, the economic evaluation of a specific project is highly dependent on the producibility of the target zone, the amount of gas in place, the associated geologic and depositional environment, existing pipeline infrastructure, and local tariffs and taxes. ?? 2009 Elsevier B.V.

  18. Price impact on Russian gas production and export

    International Nuclear Information System (INIS)

    Kononov, Y.D.

    2003-01-01

    The paper examines the prospects for Russian gas output and export under different price development. Growth of gas production and transportation costs, following an increase of gas export and production, is estimated. An attempt is made to determine the relation of efficient (from the point of view of gas companies) gas export volumes to prices on external energy markets. The paper presents a quantitative estimate of the possible impact of domestic gas price policy on gas output in Western Siberia. (author)

  19. China's natural gas: Resources, production and its impacts

    International Nuclear Information System (INIS)

    Wang, Jianliang; Feng, Lianyong; Zhao, Lin; Snowden, Simon

    2013-01-01

    In order to achieve energy consumption targets, and subsequently reduce carbon emissions, China is working on energy strategies and policies aimed at actively increasing the consumption of natural gas—the lowest carbon energy of the fossil fuels, and to enhance the proportion of gas in total primary energy consumption. To do this, it is a necessary prerequisite that China must have access to adequate gas resources and production to meet demand. This paper shows that the availability of domestic gas resources are overestimated by China's authorities due to differences in classification and definitions of gas resources/reserves between China and those accepted internationally. Based on official gas resource figures, China's gas production remains low with respect to the projected demand, and will only be 164.6 bcm in 2020, far lower than the 375 bcm of forecast demand. The gap between gas production and demand will reach 210.4 bcm by 2020. Existing plans for the importation of gas and the development of unconventional gas will not close this gap in the next 10 years, and this situation will therefore present a severe challenge to China's gas security, achievement of targets in improving energy consumption structure and reducing carbon emissions. - Highlights: ► We show that available gas resources are overestimated by China's authorities. ► We forecast China's future gas production under different resource scenarios. ► This paper shows that China's gas production will not meet the soaring demand. ► The gap between supply and demand will continue to increase rapidly in future. ► China's gas security will meet a severe challenge because of this increasing gap

  20. European energy security: The future of Norwegian natural gas production

    International Nuclear Information System (INIS)

    Soederbergh, Bengt; Jakobsson, Kristofer; Aleklett, Kjell

    2009-01-01

    The European Union (EU) is expected to meet its future growing demand for natural gas by increased imports. In 2006, Norway had a 21% share of EU gas imports. The Norwegian government has communicated that Norwegian gas production will increase by 25-40% from today's level of about 99 billion cubic meters (bcm)/year. This article shows that only a 20-25% growth of Norwegian gas production is possible due to production from currently existing recoverable reserves and contingent resources. A high and a low production forecast for Norwegian gas production is presented. Norwegian gas production exported by pipeline peaks between 2015 and 2016, with minimum peak production in 2015 at 118 bcm/year and maximum peak production at 127 bcm/year in 2016. By 2030 the pipeline export levels are 94-78 bcm. Total Norwegian gas production peaks between 2015 and 2020, with peak production at 124-135 bcm/year. By 2030 the production is 96-115 bcm/year. The results show that there is a limited potential for increased gas exports from Norway to the EU and that Norwegian gas production is declining by 2030 in all scenarios. Annual Norwegian pipeline gas exports to the EU, by 2030, may even be 20 bcm lower than today's level.

  1. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas

  2. Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits

    Science.gov (United States)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswel, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.B.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.A.

    2011-01-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas-hydrate (GH) petroleum system; to discuss advances, requirements, and suggested practices in GH prospecting and GH deposit characterization; and to review the associated technical, economic, and environmental challenges and uncertainties, which include the following: accurate assessment of producible fractions of the GH resource; development of methods for identifying suitable production targets; sampling of hydrate-bearing sediments (HBS) and sample analysis; analysis and interpretation of geophysical surveys of GH reservoirs; well-testing methods; interpretation of well-testing results; geomechanical and reservoir/well stability concerns; well design, operation, and installation; field operations and extending production beyond sand-dominated GH reservoirs; monitoring production and geomechanical stability; laboratory investigations; fundamental knowledge of hydrate behavior; the economics of commercial gas production from hydrates; and associated environmental concerns. ?? 2011 Society of Petroleum Engineers.

  3. In-Vitro gas production technique as for feed evaluation: volume of gas production and feed degradability

    International Nuclear Information System (INIS)

    Asih Kurniawati

    2007-01-01

    In-vitro gas production technique can be used to predict feed quality. The effect of molasses supplementation as a source of degradable carbohydrate to protein source red clover silage has been done using this technique. Data showed there were positive correlation between total volume gas produced and feed degradability (r = 0.96), between total volume gas produced and microbial biomass (r = 0,96). Dry matter degradability, dry matter degraded, microbial biomass production and efficiency of nitrogen utilization, highly significant (P<0,01) increased due to increasing of degradable carbohydrate. The addition of 0.3 g molasses gave the best result whereas the addition of 0.15 g and 0.225 g have better effect than 0.0625 g molasses addition and red clover only. This result suggested that In-vitro production technique can be used as tool for feed evaluation. (author)

  4. The oil and gas industry in Alberta: drilling and production

    International Nuclear Information System (INIS)

    Anon

    2001-11-01

    This document outlined the impacts of drilling and production on the forest structure and integrity. The cumulative impact of all 11,898 wells drilled in 2000 in Alberta, coupled with previously drilled wells that is of primary concern. It is estimated that an 886 square kilometres area of the boreal forest has been cleared as a result of well drilling, based on an assumption of 1 hectare cleared per well site. No regulations govern the reforestation of the areas once the activities have been terminated, and nothing to regulate the cumulative road densities or pipeline densities. A progressive loss and fragmentation of habitat, increased access, and damage to aquatic systems are all consequences of the drilling and production activities. These activities also lead to the contamination of soil and water. Reductions in air quality are associated with drilling and production activities, mainly through the release of various gases in the atmosphere, such as sulphur dioxide and nitrogen dioxide, both responsible for acid rain deposition. Explicit limits on cumulative densities of well sites, pipelines and access roads are part of best practices that can result in a minimization of the negative environmental impacts. Integrated planning with the forest industry, the development and implementation of new operating practices, and a reduction in the pace of development would also go a long way toward the reduction of the ecological footprint

  5. Productivity improvements in gas distribution

    International Nuclear Information System (INIS)

    Young, M.R.

    1997-01-01

    In 1993, the Hilmer Report resulted in the introduction of the National Competition Policy which, in the case of the gas industry, aims to promote gas-on-gas competition where to date it has been excluded. In response, and to prepare for wide gas industry reform, Gas and Fuel formed three fundamentally different core businesses on 1 July 1996 - Energy Retail, Network, and Contestable Services. In one productivity improvement initiative which is believed to be unique, Gas and Fuel appointed three companies as strategic alliance partners for distribution system maintenance. Gas and Fuel can now concentrate on its core role as asset manager which owns and operates the distribution system while procuring all services from what will become non-regulated businesses. This Paper details this initiative and the benefits which have resulted from overall changes and improvements, and outlines the challenges facing Gas and Fuel in the future. (au)

  6. Global climate change implications for coastal and offshore oil and gas development

    International Nuclear Information System (INIS)

    Burkett, Virginia

    2011-01-01

    The discussion and debate about climate change and oil and gas resource development has generally focused on how fossil fuel use affects the Earth's climate. This paper explores how the changing climate is likely to affect oil and gas operations in low-lying coastal areas and the outer continental shelf. Oil and gas production in these regions comprises a large sector of the economies of many energy producing nations. Six key climate change drivers in coastal and marine regions are characterized with respect to oil and gas development: changes in carbon dioxide levels and ocean acidity, air and water temperature, precipitation patterns, the rate of sea level rise, storm intensity, and wave regime. These key drivers have the potential to independently and cumulatively affect coastal and offshore oil and gas exploration, production, and transportation, and several impacts of climate change have already been observed in North America. - Highlights: ► Climate change effects on coastal and offshore energy development have been observed in some regions. ► Key drivers include changes in temperature, precipitation, sea level rise, storm intensity and wave regime. ► These can independently and cumulatively affect coastal and offshore exploration, production, and transportation. ► A methodical vulnerability and impact assessment is needed to support adaptation in this sector of the global economy.

  7. Oil and gas leasing/production program

    International Nuclear Information System (INIS)

    Heimberger, M.L.

    1992-01-01

    As the Congress declared in the Outer Continental Shelf Lands Act the natural gas and oil production from the Outer Continental Shelf constitutes an important part of the Nation's domestic energy supply. Federal offshore minerals are administered within the Department of the Interior by the Minerals Management Service (MMS), which provides access to potential new sources of natural gas and oil offshore by conducting lease sales. Each year, on or before March 31, the MMS presents to Congress a fiscal year annual report on the Federal offshore natural gas and oil leasing and production program. In FY 1991, this program was the third largest producer of non-tax revenue for the US Treasury, contributing more than $3 billion. This report presents Federal offshore leasing, sales, production, and exploration activities, and environmental monitoring activities

  8. High-BTU gas production from tar-bearing hot coke oven gas over iron catalyst

    Energy Technology Data Exchange (ETDEWEB)

    L.Y. Li; K. Morishita; T. Takarada [Gunma University, Gunma (Japan). Department of Biological and Chemical Engineering

    2005-07-01

    To utilize the tar-bearing hot coke oven gas (the by-product of coke making process) more effectively, a process was developed by converting the hot coke oven gas into a methane rich high-BTU gas over iron-bearing catalysts. The catalytic behaviour of Indonesian limonite ore was mainly discussed. For a reference, a conventional nickel catalyst (Ni/Al{sub 2}O{sub 3}) was employed. Laboratory scale tests were carried out in a two-stage fixed-bed reactor at ambient pressure. A bituminous coal sample was heated at first stage, the volatiles was carried by feed gas and decomposed at second stage. The limonite promoted hydropyrolysis of coal volatiles similar to Ni/Al{sub 2}O{sub 3} catalyst. High yields of total product gas and methane were obtained at 50 vol.% hydrogen atmosphere with a feed gas of 60 ml min{sup -1} hydrogen and 60 ml min{sup -1} nitrogen. After experiments, hydrocarbons heavier than ethane were not observed. Also that, carbon balance was more than 99.8% in coal char, product gases and carbon deposits. It was considered that coal volatiles converted into light gases and carbon almost completely in catalyst bed. Yields of product gas and methane depended upon catalytic temperature. At 923 K, the maximum yield of product gas was achieved at 74.3% for limonite catalyst on carbon balance with methane 83.2 vol.% of the carbonaceous gas products. Comparing with limonite, Fe/Al{sub 2}O{sub 3} and BOF dust samples showed low activities on coal volatiles catalytic decomposition. 21 refs., 5 figs., 3 tabs.

  9. Production of cumulative protons in the pion-carbon interactions at 5 GeV/c

    International Nuclear Information System (INIS)

    Abdinov, O.B.; Bajramov, A.A.; Budagov, Yu.A.; Valkar, Sh.; Dvornik, A.M.; Lomakin, Yu.F.; Majlov, A.A.; Flyagin, V.B.; Kharzheev, Yu.N.

    1983-01-01

    For the π -12 C interactions at the incident momentum of 5 GeV/c the relation between the divergence angle and the sum of kinetic energies of two protons, one of which is emitted into the backward hemisphere, and the other into the forward hemisphere, in the laboratory system is investigated. The obtained results can be considered as an evidence to that the absorption of slow pions is a possible mechanism responsible for the cumulative production of protons in the momentum range of 0.2-0.6 GeV/c

  10. Elaboration of a concept for the cumulative environmental exposure assessment of biocides

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Rita; Bunke, Dirk; Moch, Katja [Oeko-Institut e.V. - Institut fuer Angewandte Oekologie e.V., Freiburg im Breisgau (Germany); Gartiser, Stefan [Hydrotox GmbH, Freiburg im Breisgau (Germany)

    2011-12-15

    Article 10(1) of the EU Biocidal Products Directive 98/8/EC (BPD) requires that for the inclusion of an active substance in Annex I, Annex IA or IB, cumulation effects from the use of biocidal products containing the same active substance shall be taken into account, where relevant. The study proves the feasibility of a technical realisation of Article 10(1) of the BPD and elaborates a first concept for the cumulative environmental exposure assessment of biocides. Existing requirements concerning cumulative assessments in other regulatory frameworks have been evaluated and their applicability for biocides has been examined. Technical terms and definitions used in this context were documented with the aim to harmonise terminology with other frameworks and to set up a precise definition within the BPD. Furthermore, application conditions of biocidal products have been analysed to find out for which cumulative exposure assessments may be relevant. Different parameters were identified which might serve as indicators for the relevance of cumulative exposure assessments. These indicators were then integrated in a flow chart by means of which the relevance of cumulative exposure assessments can be checked. Finally, proposals for the technical performance of cumulative exposure assessments within the Review Programme have been elaborated with the aim to bring the results of the project into the upcoming development and harmonization processes on EU level. (orig.)

  11. Comparative study of shale-gas production using single- and dual-continuum approaches

    KAUST Repository

    El-Amin, Mohamed; Amir, Sahar Z.; Salama, Amgad; Urozayev, Dias; Sun, Shuyu

    2017-01-01

    parameters. Several results are discussed such as pressure, production rate and cumulative production. We compare the results of the two models using the same dimensions and physical and computational parameters. We found that the DPDP and the SDFM models

  12. US production of natural gas from tight reservoirs

    International Nuclear Information System (INIS)

    1993-01-01

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission's (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ''legally tight'' reservoirs. Additional production from ''geologically tight'' reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA's tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government's regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs

  13. Accumulative effect of food residues on intestinal gas production.

    Science.gov (United States)

    Mego, M; Accarino, A; Malagelada, J-R; Guarner, F; Azpiroz, F

    2015-11-01

    As mean transit time in the colon is longer than the interval between meals, several consecutive meal loads accumulate, and contribute to colonic biomass. Our aim was to determine the summation effect of fermentable food residues on intestinal gas production. In eight healthy subjects, the volume of endogenous intestinal gas produced in the intestine over a 4-h period was measured by means of a wash-out technique, using an exogenous gas infusion into the jejunum (24 mL/min) and collection of the effluent via a rectal Foley catheter. The exogenous gas infused was labeled (5% SF6 ) to calculate the proportion of endogenous intestinal gas evacuated. In each subject, four experiments were performed ≥1 week apart combining a 1-day high- or low-flatulogenic diet with a test meal or fast. Basal conditions: on the low-flatulogenic diet, intestinal gas production during fasting over the 4-h study period was 609 ± 63 mL. Effect of diet: during fasting, intestinal gas production on the high-flatulogenic diet was 370 ± 146 mL greater than on the low-flatulogenic diet (p = 0.040). Effect of test meal: on the low-flatulogenic diet, intestinal gas production after the test meal was 681 ± 114 mL greater than during fasting (p = 0.001); a similar effect was observed on the high-flatulogenic diet (599 ± 174 mL more intestinal gas production after the test meal than during fasting; p = 0.021). Our data demonstrate temporal summation effects of food residues on intestinal gas production. Hence, intestinal gas production depends on pre-existing and on recent colonic loads of fermentable foodstuffs. © 2015 John Wiley & Sons Ltd.

  14. A pore structure model for the gas transport property changes, initial oxidation rates and cumulative weight loss of AGR moderator graphite

    International Nuclear Information System (INIS)

    Johnson, P.A.V.

    1985-09-01

    A quantitative model has been developed for the gas transport property variation, cumulative weight loss and initial oxidation rates of AGR moderator graphite. The model utilises the theory of dynamic moments of the pore structure to calculate the changes in physical properties brought about by radiolytic corrosion taking place within the graphite porosity. In order to account for the behaviour of the initial rate curves, and the weight loss data obtained it is necessary to invoke the presence of a group of cylindrical pore and a group of small slab-shaped pores. The latter are methane depleted. This is in addition to the pore group involved in gas transport which is best represented by cylinders of mean radius 2.13 μm. The model satisfactorily predicts the experimental weight loss data obtained from experiments in the DIDO 6V3 and BFB loops. (author)

  15. Problems of radiation safety of petroleum and gas production

    International Nuclear Information System (INIS)

    Garibov, A.A.

    2002-01-01

    Oil and gas production is the basis of economy of the Azerbaijan Republic and its cause in ecological and radioecology problems. One form this problem is the pollution by radionuclides of environment at the time of gas and petroleum production. At the time of petroleum and gas production the three-phase radionuclides are emitted in atmosphere: Emissions consisted from solid U-238, Ra-226, Th-232, K-40 discharged to atmosphere at the time of production, exploring and exploitation of petroleum and gas. They are presented in compounds of sand, clay, and petroleum residues; During the drilling and production the gross quantities of water flows out and collects. These water areas consist of radium, uranium, Th and K-40 dissolved in water salts; There are the radionuclides being in 902 condition emitted in atmosphere at the places of petroleum and gas production. The radon and its isotopes are emitted at this time; At the places of petroleum and gas production it is observed at local pollution areas polluted by solid emissions that at this territories the doze of exposition power variable 100 - 1000 micro/hour. The radioactivity at this system according to 2-1000 year/k consists from Ra, K-40, and U. At this areas the value of total background changes 5 - 1000 micro R/hour. The total radioactivity of water polls formed at the places of petroleum and gas production consisted 50 -150 Bq/L. In the case of gas the separated radionuclides are mainly consisted from Radon and its isotopes. In the compound of produced gas the concentration of radon varied 20 - 1700 Bq/m 3 . Thus, at the places of petroleum and gas production radioactive pollutants emitted to atmosphere, forms the polluted environment for working and living people at the same territory. This problem's status haven't been investigated thoroughly, the sources of pollution hasn't been uncovered concretely, the cleaning technology for polluted areas is unknown

  16. Characterizing tight-gas systems with production data: Wyoming, Utah, and Colorado

    Science.gov (United States)

    Nelson, Philip H.; Santus, Stephen L.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    The study of produced fluids allows comparisons among tight-gas systems. This paper examines gas, oil, and water production data from vertical wells in 23 fields in five Rocky Mountain basins of the United States, mostly from wells completed before the year 2000. Average daily rates of gas, oil, and water production are determined two years and seven years after production begins in order to represent the interval in which gas production declines exponentially. In addition to the daily rates, results are also presented in terms of oil-to-gas and water-to-gas ratios, and in terms of the five-year decline in gas production rates and water-to-gas ratios. No attempt has been made to estimate the ultimate productivity of wells or fields. The ratio of gas production rates after seven years to gas production rates at two years is about one-half, with median ratios falling within a range of 0.4 to 0.6 in 16 fields. Oil-gas ratios show substantial variation among fields, ranging from dry gas (no oil) to wet gas to retrograde conditions. Among wells within fields, the oil-gas ratios vary by a factor of three to thirty, with the exception of the Lance Formation in Jonah and Pinedale fields, where the oil-gas ratios vary by less than a factor of two. One field produces water-free gas and a large fraction of wells in two other fields produce water-free gas, but most fields have water-gas ratios greater than 1 bbl/mmcf—greater than can be attributed to water dissolved in gas in the reservoir— and as high as 100 bbl/mmcf. The median water-gas ratio for fields increases moderately with time, but in individual wells water influx relative to gas is erratic, increasing greatly with time in many wells while remaining constant or decreasing in others.

  17. Language production in a shared task: Cumulative semantic interference from self- and other-produced context words

    OpenAIRE

    Hoedemaker, R.; Ernst, J.; Meyer, A.; Belke, E.

    2017-01-01

    This study assessed the effects of semantic context in the form of self-produced and other-produced words on subsequent language production. Pairs of participants performed a joint picture naming task, taking turns while naming a continuous series of pictures. In the single-speaker version of this paradigm, naming latencies have been found to increase for successive presentations of exemplars from the same category, a phenomenon known as Cumulative Semantic Interference (CSI). As expected, th...

  18. Natural gas and production of electricity

    International Nuclear Information System (INIS)

    Defago, E.

    2005-01-01

    The forthcoming power supply shortage in Switzerland due to increasing consumption is discussed, as are the possibilities for securing the future supply. Today, the main sources are hydroelectric (roughly 55 %) and nuclear (40 %) power. The share of electricity from natural gas amounts to only 1.4 %. The possibilities of further economic production of hydropower are practically exhausted. Therefore, further electric power has to be either imported or generated from other energy sources (renewable, nuclear, fossil) in the country itself. Due to the low acceptance of nuclear energy and the limited potential of renewable energy sources, natural gas is the most favoured candidate. The advantages of distributed production in cogeneration plants are compared with the centralized production in larger plants using combined cycles. Finally, a project currently under development is presented: an existing thermal power plant fueled with heavy fuel oil shall be refurbished and converted to natural gas as the new fuel

  19. Micro- and macroanalytical methods for the determination of the specific cumulated energy consumption for the production of consumer goods

    Energy Technology Data Exchange (ETDEWEB)

    Flaschar, W.

    1979-01-01

    As an estimation shows the total share of the final energy consumption for the production of goods amounts to more than 50%. Consequently, the present study is directed toward an important field. Apart from systemizing and confronting methods which have already been used it also tries to largely genereralize the problems of the specific cumulated energy consumption (SCEC). First, the terminolgy of energy and materials balances is fundamentally defined and determined. The influencing factors of the SCEC are analyzed and presented and the essential variables of energy consumption are explained with the help of examples. The fundamentals of cumulation as well as micro- and macroanalytical methods for the determination of the SCEC are worked out and discussed. The last part of the study shows the application of general methods and the solution of special problems when determining the SCEC for a particular product as exemplified by the practice of producing natural yogurt.

  20. Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects

    International Nuclear Information System (INIS)

    Chen, G.; Andries, J.; Luo, Z.; Spliethoff, H.

    2003-01-01

    The conventional biomass pyrolysis/gasification process for production of medium heating value gas for industrial or civil applications faces two disadvantages, i.e. low gas productivity and the accompanying corrosion of downstream equipment caused by the high content of tar vapour contained in the gas phase. The objective of this paper is to overcome these disadvantages, and therefore, the effects of the operating parameters on biomass pyrolysis are investigated in a laboratory setup based on the principle of keeping the heating value of the gas almost unchanged. The studied parameters include reaction temperature, residence time of volatile phase in the reactor, physico-chemical pretreatment of biomass particles, heating rate of the external heating furnace and improvement of the heat and mass transfer ability of the pyrolysis reactor. The running temperature of a separate cracking reactor and the geometrical configuration of the pyrolysis reactor are also studied. However, due to time limits, different types of catalysts are not used in this work to determine their positive influences on biomass pyrolysis behaviour. The results indicate that product gas production from biomass pyrolysis is sensitive to the operating parameters mentioned above, and the product gas heating value is high, up to 13-15 MJ/N m 3

  1. Suppression of charmonium production in hadron gas

    International Nuclear Information System (INIS)

    Faustov, R.N.; Vasilevskaya, I.G.

    1991-01-01

    The problem of J/ψ charmonium production suppression under heavy ion collisions is investigated. The processes of charmonium disintegration in hadron gas are considered: π+J/ψ → π+c+c-bar and ρ+J/ψ → D+D. Based on the results obtained one can assume that charmonium disintegration contribution to J/ψ production suppression under collisions with gas hadrons and the contribution conditioned by the production of quark-gluon plasma, appear to be the effects of similar order of magnitude

  2. Hadron correlations in nuclear reactions with production of cumulative protons induced by π- mesons with momentum of 6.0 GeV/c

    International Nuclear Information System (INIS)

    Bayukov, Yu.D.; Vlasov, A.V.; Gavrilov, V.B.

    1981-01-01

    Hardonic correlations were investigated in reactions with the proton backward production induced by 6.0-GeV/c π - mesons on nuclei Be, C, Al, Cu, Cd, Pb, U. The studied correlations indicate an essential role of multiple interactions of the incident particle in production of cumulative protons [ru

  3. Activation of Antibiotic Production in Bacillus spp. by Cumulative Drug Resistance Mutations.

    Science.gov (United States)

    Tojo, Shigeo; Tanaka, Yukinori; Ochi, Kozo

    2015-12-01

    Bacillus subtilis strains produce a wide range of antibiotics, including ribosomal and nonribosomal peptide antibiotics, as well as bacilysocin and neotrehalosadiamine. Mutations in B. subtilis strain 168 that conferred resistance to drugs such as streptomycin and rifampin resulted in overproduction of the dipeptide antibiotic bacilysin. Cumulative drug resistance mutations, such as mutations in the mthA and rpsL genes, which confer low- and high-level resistance, respectively, to streptomycin, and mutations in rpoB, which confer resistance to rifampin, resulted in cells that overproduced bacilysin. Transcriptional analysis demonstrated that the enhanced transcription of biosynthesis genes was responsible for the overproduction of bacilysin. This approach was effective also in activating the cryptic genes of Bacillus amyloliquefaciens, leading to actual production of antibiotic(s). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Natural gas production verification tests

    International Nuclear Information System (INIS)

    1992-02-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) in compliance with the requirements of the National Environmental Policy Act of 1969. The Department of Energy (DOE) proposes to fund, through a contract with Petroleum Consulting Services, Inc. of Canton, Ohio, the testing of the effectiveness of a non-water based hydraulic fracturing treatment to increase gas recovery from low-pressure, tight, fractured Devonian Shale formations. Although Devonian Shales are found in the Appalachian, Michigan, and Illinois Basins, testing will be done only in the dominant, historical five state area of established production. The objective of this proposed project is to assess the benefits of liquid carbon dioxide (CO 2 )/sand stimulations in the Devonian Shale. In addition, this project would evaluate the potential nondamaging (to the formation) properties of this unique fracturing treatment relative to the clogging or chocking of pores and fractures that act as gas flow paths to the wellbore in the target gas-producing zones of the formation. This liquid CO 2 /sand fracturing process is water-free and is expected to facilitate gas well cleanup, reduce the time required for post-stimulation cleanup, and result in improved production levels in a much shorter time than is currently experienced

  5. Natural gas productive capacity for the lower 48 states, 1982--1993

    International Nuclear Information System (INIS)

    1993-01-01

    The purpose of this report is to analyze monthly natural gas wellhead productive capacity and project this capacity for 1992 and 1993, based upon historical production data through 1991. Productive capacity is the volume of gas that can be produced from a well, reservoir, or field during a given period of time against a certain wellhead back-pressure under actual reservoir conditions excluding restrictions imposed by pipeline capacity, contracts, or regulatory bodies. For decades, natural gas supplies and productive capacity have been adequate, although in the 1970's the capacity surplus was small because of market structure (both interstate and intrastate), increasing demand, and insufficient drilling. In the early 1980's, lower demand together with increased drilling led to a large surplus of natural gas capacity. After 1986, this large surplus began to decline as demand for gas increased, gas prices dropped, and gas well completions dropped sharply. In late December 1989, this surplus decline, accompanied by exceptionally high demand and temporary weather-related production losses, led to concerns about the adequacy of monthly productive capacity for natural gas. This study indicates that monthly productive capacity will drop sharply during the 1992-1993 period. In the low gas price, low drilling case, gas productive capacity and estimated production demand will be roughly equal in December 1993. In base and high drilling cases, monthly productive capacity should be able to meet normal production demands through 1993 in the lower 48 States. Exceptionally high peak-day or peak-week production demand might not be met because of physical limitations. Beyond 1993, as the capacity of currently producing wells declines, a sufficient number of wells and/or imports must be added each year in order to ensure an adequate gas supply

  6. Caspian Oil and Gas: Production and Prospects

    National Research Council Canada - National Science Library

    Gelb, Bernard A

    2005-01-01

    .... The Caspian Sea region historically has been an oil and natural gas producer, but many believe that the region contains large reserves of oil and gas capable of much greater production than at present...

  7. Planning of optimum production from a natural gas field

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, J

    1968-03-01

    The design of an optimum development plan for a natural gas field always depends on the typical characteristics of the producing field, as well as those of the market to be served by this field. Therefore, a good knowledge of the field parameters, such as the total natural gas reserves, the well productivity, and the dependence of production rates on pipeline pressure and depletion of natural gas reserves, is required prior to designing the development scheme of the field, which in fact depends on the gas-sales contract to be concluded in order to commit the natural gas reserves to the market. In this paper these various technical parameters are discussed in some detail, and on this basis a theoretical/economical analysis of natural gas production is given. For this purpose a simplified economical/mathematical model for the field is proposed, from which optimum production rates at various future dates can be calculated. The results of these calculations are represented in a dimensionless diagram which may serve as an aid in designing optimum development plans for a natural gas field. The use of these graphs is illustrated in a few examples.

  8. World statistics on natural gas reserves, production and utilization

    International Nuclear Information System (INIS)

    Raikaslehto, S.

    2001-01-01

    By reviewing the statistics of BP Amoco on natural gas reserves, production and usage, it is easy to see that Russia and USA, both being large natural gas producers, differ significantly from each other. The natural gas reserves of USA are 6th largest in the world, simultaneously the natural gas consumption and import are largest in the world. About one third of the known natural gas reserves of the world are in Russia. The known natural gas reserves of both USA and Canada have decreases, but they have potential gas reserves left. Known natural gas reserves of the USA have been calculated to be sufficient for 9 years consumption at present usage and those of Canada for 11 years. The reserves of Algeria correspond to the usage of 55 years, and the Russian reserves for are about 83 years. Annual production figures of both Russia and the USA are nearly the same. Russia is the largest exporter (125.5 billion m 3 ) of natural gas and the USA the largest importer (96 billion m 3 ). The natural gas reserves of the largest European producers, the Netherlands and Norway have been estimated to be sufficient for use of about 20 years, but those of Great Britain only for about 10 years. The annual production of Russia has varied in the 1990s between nearly 600 billion m 3 and present 550 billion m 3 , the minimum being in 1997 only about 532 billion m 3 . Ten largest natural gas consumers use 67% of the natural gas consumed annually in the world. USA consumes about 27% of the total natural gas produced in the world, the amount of Russia being 364 billion m 3 (16%). Other large natural gas consumers are Great Britain, Germany, Japan, Ukraine, Canada, Italy, Iran and Uzbekistan. The share of these countries of the total consumption varied in between 2-4%. Only Japan has no natural gas production of its own. The foreign trade between Japan and Indonesia is trade on LNG. On the other hand the natural gas consumption of the world's 10th largest producer Norway is nearly zero, so

  9. Simulation by the method of inverse cumulative distribution function applied in optimising of foundry plant production

    Directory of Open Access Journals (Sweden)

    J. Szymszal

    2009-01-01

    Full Text Available The study discusses application of computer simulation based on the method of inverse cumulative distribution function. The simulationrefers to an elementary static case, which can also be solved by physical experiment, consisting mainly in observations of foundryproduction in a selected foundry plant. For the simulation and forecasting of foundry production quality in selected cast iron grade, arandom number generator of Excel calculation sheet was chosen. Very wide potentials of this type of simulation when applied to theevaluation of foundry production quality were demonstrated, using a number generator of even distribution for generation of a variable ofan arbitrary distribution, especially of a preset empirical distribution, without any need of adjusting to this variable the smooth theoreticaldistributions.

  10. Nitrogen oxides in the combustion products of gas cookers

    Energy Technology Data Exchange (ETDEWEB)

    Benes, M.; Zahourek, J.

    1981-07-01

    The combustion of town gas and natural gas in two types of gas ranges manufactured in Czechoslovakia resulted in measurable amounts of NO/sub x/ in both the combustion products and the surrounding air. In all the cases tested, the amounts of NO/sub x/ given off exceeded levels permitted by current Czech standards. These results indicate that before the widespread use of any new gas ranges, their combustion products should be tested for NO/sub x/.

  11. Hydro-geomechanical behaviour of gas-hydrate bearing soils during gas production through depressurization and CO2 injection

    Science.gov (United States)

    Deusner, C.; Gupta, S.; Kossel, E.; Bigalke, N.; Haeckel, M.

    2015-12-01

    Results from recent field trials suggest that natural gas could be produced from marine gas hydrate reservoirs at compatible yields and rates. It appears, from a current perspective, that gas production would essentially be based on depressurization and, when facing suitable conditions, be assisted by local thermal stimulation or gas hydrate conversion after injection of CO2-rich fluids. Both field trials, onshore in the Alaska permafrost and in the Nankai Trough offshore Japan, were accompanied by different technical issues, the most striking problems resulting from un-predicted geomechanical behaviour, sediment destabilization and catastrophic sand production. So far, there is a lack of experimental data which could help to understand relevant mechanisms and triggers for potential soil failure in gas hydrate production, to guide model development for simulation of soil behaviour in large-scale production, and to identify processes which drive or, further, mitigate sand production. We use high-pressure flow-through systems in combination with different online and in situ monitoring tools (e.g. Raman microscopy, MRI) to simulate relevant gas hydrate production scenarios. Key components for soil mechanical studies are triaxial systems with ERT (Electric resistivity tomography) and high-resolution local strain analysis. Sand production control and management is studied in a novel hollow-cylinder-type triaxial setup with a miniaturized borehole which allows fluid and particle transport at different fluid injection and flow conditions. Further, the development of a large-scale high-pressure flow-through triaxial test system equipped with μ-CT is ongoing. We will present results from high-pressure flow-through experiments on gas production through depressurization and injection of CO2-rich fluids. Experimental data are used to develop and parametrize numerical models which can simulate coupled process dynamics during gas-hydrate formation and gas production.

  12. Geological evaluation on productibility of coal seam gas; Coal seam gas no chishitsugakuteki shigen hyoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K [University of Shizuoka, Shizuoka (Japan). Faculty of Education

    1996-09-01

    Coal seam gas is also called coal bed methane gas, indicating the gas existing in coal beds. The gas is distinguished from the oil field based gas, and also called non-conventional type gas. Its confirmed reserve is estimated to be 24 trillion m {sup 3}, with the trend of its development seen worldwide as utilization of unused resource. For the necessity of cultivating relevant technologies in Japan, this paper considers processes of production, movement, stockpiling, and accumulation of the gas. Its productibility is controlled by thickness of a coal bed, degree of coalification, gas content, permeability, groundwater flow, and deposition structure. Gas generation potential is evaluated by existing conditions of coal and degree of coalification, and methane production by biological origin and thermal origin. Economically viable methane gas is mainly of the latter origin. Evaluating gas reserve potential requires identification of the whole mechanism of adsorption, accumulation and movement of methane gas. The gas is expected of effect on environmental aspects in addition to availability as utilization of unused energy. 5 figs.

  13. Environmental security and gas exports

    International Nuclear Information System (INIS)

    Bankes, N.

    1996-01-01

    It is argued that Canadian regulatory commissions have systematically rebuffed efforts by environmental groups to review their concerns regarding the cumulative environmental effects of oil and gas exploration and development in western Canada. The concerns include the opening-up of wilderness areas through access roads construction, exploratory drilling, environmental degradation caused by pipeline construction and gas processing plants, and the cumulative effects on air, and water quality, loss of habitat, etc. The author is of the opinion that the decisions have been based on policy considerations and not on law, and in making the decisions the courts ignored policy questions raised by the environmental groups in favor of those advanced by gas interests. Specifically, the author provided a critique of the decision of the Alberta Court of Appeal in the matter of Rocky Mountain Ecosystem Coalition (RMEC) vs. Alberta Energy and Utilities Board (AEUB). He also proposed an appropriate forum and method for considering the issues involved, and a mechanism to ensure that the cumulative effects of ongoing gas exploration do not undermine ecosystem health

  14. Production of bio-synthetic natural gas in Canada.

    Science.gov (United States)

    Hacatoglu, Kevork; McLellan, P James; Layzell, David B

    2010-03-15

    Large-scale production of renewable synthetic natural gas from biomass (bioSNG) in Canada was assessed for its ability to mitigate energy security and climate change risks. The land area within 100 km of Canada's network of natural gas pipelines was estimated to be capable of producing 67-210 Mt of dry lignocellulosic biomass per year with minimal adverse impacts on food and fiber production. Biomass gasification and subsequent methanation and upgrading were estimated to yield 16,000-61,000 Mm(3) of pipeline-quality gas (equivalent to 16-63% of Canada's current gas use). Life-cycle greenhouse gas emissions of bioSNG-based electricity were calculated to be only 8.2-10% of the emissions from coal-fired power. Although predicted production costs ($17-21 GJ(-1)) were much higher than current energy prices, a value for low-carbon energy would narrow the price differential. A bioSNG sector could infuse Canada's rural economy with $41-130 billion of investments and create 410,000-1,300,000 jobs while developing a nation-wide low-carbon energy system.

  15. Behaviour of gas production from type 3 hydrate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Pooladi-Darvish, M. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Fekete Associates Inc., Calgary, AB (Canada); Zatsepina, O. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Hong, H. [Fekete Associates Inc., Calgary, AB (Canada)

    2008-07-01

    The possible role of gas hydrates as a potential energy resource was discussed with particular reference to methods for estimating the rate of gas production from hydrate reservoirs under different operating conditions. This paper presented several numerical simulations studies of gas production from type 3 hydrate reservoirs in 1-D and 2-D geometries. Type 3 reservoirs include gas production from hydrate-reservoirs that lie totally within the hydrate stability zone and are sandwiched by impermeable layers on top and bottom. The purpose of this study was to better understand hydrate decomposition by depressurization. The study questioned whether 1-D modeling of type 3 hydrate reservoirs is a reasonable approximation. It also determined whether gas rate increases or decreases with time. The important reservoir characteristics for determining the rate of gas production were identified. Last, the study determined how competition between fluid and heat flow affects hydrate decomposition. This paper also described the relation and interaction between the heat and fluid flow mechanisms in depressurization of type 3 hydrate reservoirs. All results of 1-D and 2-D numerical simulation and analyses were generated using the STARS simulator. It was shown that the rate of gas production depends on the initial pressure/temperature conditions and permeability of the hydrate bearing formation. A high peak rate may be achieved under favourable conditions, but this peak rate is obtained after an initial period where the rate of gas production increases with time. The heat transfer in the direction perpendicular to the direction of fluid flow is significant, requiring 2D modeling. The hydraulic diffusivity is low because of the low permeability of hydrate-bearing formations. This could result in competition between heat and fluid flow, thereby influencing the behaviour of decomposition. 6 refs., 3 tabs., 12 figs.

  16. Numerical Simulation of Shale Gas Production with Thermodynamic Calculations Incorporated

    KAUST Repository

    Urozayev, Dias

    2015-06-01

    In today’s energy sector, it has been observed a revolutionary increase in shale gas recovery induced by reservoir fracking. So-called unconventional reservoirs became profitable after introducing a well stimulation technique. Some of the analysts expect that shale gas is going to expand worldwide energy supply. However, there is still a lack of an efficient as well as accurate modeling techniques, which can provide a good recovery and production estimates. Gas transports in shale reservoir is a complex process, consisting of slippage effect, gas diffusion along the wall, viscous flow due to the pressure gradient. Conventional industrial simulators are unable to model the flow as the flow doesn’t follow Darcy’s formulation. It is significant to build a unified model considering all given mechanisms for shale reservoir production study and analyze the importance of each mechanism in varied conditions. In this work, a unified mathematical model is proposed for shale gas reservoirs. The proposed model was build based on the dual porosity continuum media model; mass conservation equations for both matrix and fracture systems were build using the dusty gas model. In the matrix, gas desorption, Knudsen diffusion and viscous flow were taken into account. The model was also developed by implementing thermodynamic calculations to correct for the gas compressibility, or to obtain accurate treatment of the multicomponent gas. Previously, the model was built on the idealization of the gas, considering every molecule identical without any interaction. Moreover, the compositional variety of shale gas requires to consider impurities in the gas due to very high variety. Peng-Robinson equation of state was used to com- pute and correct for the gas density to pressure relation by solving the cubic equation to improve the model. The results show that considering the compressibility of the gas will noticeably increase gas production under given reservoir conditions and slow down

  17. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  18. Comparative study of shale-gas production using single- and dual-continuum approaches

    KAUST Repository

    El-Amin, Mohamed

    2017-07-06

    In this paper, we explore the possibility of specifying the ideal hypothetical positions of matrices blocks and fractures in fractured porous media as a single-continuum reservoir model in a way that mimics the dual-porosity dual-permeability (DPDP) configuration. In order to get an ideal mimic, we use the typical configuration and geometrical hypotheses of the DPDP model for the SDFM. Unlike the DPDP model which consists of two equations for the two-continuum coupled by a transfer term, the proposed single-domain fracture model (SDFM) model consists of a single equation for the single-continuum. Each one of the two models includes slippage effect, adsorption, Knudsen diffusion, geomechanics, and thermodynamics deviation factor. For the thermodynamics calculations, the cubic Peng-Robinson equation of state is employed. The diffusion model is verified by calculating the total mass flux through a nanopore by combination of slip flow and Knudsen diffusion and compared with experimental data. A semi-implicit scheme is used for the time discretization while the thermodynamics equations are updated explicitly. The spatial discretization is done using the cell-centered finite difference (CCFD) method. Finally, numerical experiments are performed under variations of the physical parameters. Several results are discussed such as pressure, production rate and cumulative production. We compare the results of the two models using the same dimensions and physical and computational parameters. We found that the DPDP and the SDFM models production rate and cumulative production behave similarly with approximately the same slope but with some differences in values. Moreover, we found that the poroelasticity effect reduces the production rate and consequently the cumulative production rate but in the SDFM model the reservoir takes more time to achieve depletion than the DPDP model. The normal fracture factor which appears in the transfer term of the DPDP model is adjusted against

  19. Explosively fracturing a productive oil and gas formation

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, C W

    1966-06-23

    In this method of fracturing an oil- or gas-producing strata, a portion of the formation adjacent to, but separated from, the producing strata is fractured. Explosives are then introduced into the fracture in this portion of the formation and thereafter detonated to fracture the productive strata. Also claimed are a method of variably controlling the extent and force of the explosives used, and a method of increasing oil and gas production from a productive strata.

  20. Combined production og energy by vapor-gas unit on natural gas in Skopje (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin; Tashevski, Done

    1998-01-01

    The steam and gas turbine power plant for combine heat (for district heating of Skopje - the capital of Macedonia) and power (connected to the grid) production is analyzed and determined. Two variants of power plants are analyzed: power plant with gas turbine, heat recovery steam generator and a back pressure steam turbine; and power plant with two gas turbines, two heat recovery steam generators (HRSG) and one back pressure steam turbine. The power plant would operate on natural gas as the main fuel source. It will be burnt in the gas turbine as well in the HRSG as an auxiliary fuel.The backup fuel for the gas turbine would be light oil. In normal operation, the HRSG uses the waste heat of the exhaust gases from the gas turbine. During gas turbine shutdowns, the HRSG can continue to generate the maximum steam capacity. The heat for district heating would be produce in HRSG by flue gases from the gas turbine and in the heat exchanger by condensed steam from back pressure turbine. The main parameters of the combined power plant, as: overall energy efficiency, natural gas consumption, natural gas saving are analyzed and determined in comparison with separated production of heat (for district heating) and power (for electrical grid). (Author)

  1. Measurement of four-particle cumulants and symmetric cumulants with subevent methods in small collision systems with the ATLAS detector

    CERN Document Server

    Derendarz, Dominik; The ATLAS collaboration

    2018-01-01

    Measurements of symmetric cumulants SC(n,m)=⟨v2nv2m⟩−⟨v2n⟩⟨v2m⟩ for (n,m)=(2,3) and (2,4) and asymmetric cumulant AC(n) are presented in pp, p+Pb and peripheral Pb+Pb collisions at various collision energies, aiming to probe the long-range collective nature of multi-particle production in small systems. Results are obtained using the standard cumulant method, as well as the two-subevent and three-subevent cumulant methods. Results from the standard method are found to be strongly biased by non-flow correlations as indicated by strong sensitivity to the chosen event class definition. A systematic reduction of non-flow effects is observed when using the two-subevent method and the results become independent of event class definition when the three-subevent method is used. The measured SC(n,m) shows an anti-correlation between v2 and v3, and a positive correlation between v2 and v4. The magnitude of SC(n,m) is constant with Nch in pp collisions, but increases with Nch in p+Pb and Pb+Pb collisions. ...

  2. Metal powder production by gas atomization

    Science.gov (United States)

    Ting, E. Y.; Grant, N. J.

    1986-01-01

    The confined liquid, gas-atomization process was investigated. Results from a two-dimensional water model showed the importance of atomization pressure, as well as delivery tube and atomizer design. The atomization process at the tip of the delivery tube was photographed. Results from the atomization of a modified 7075 aluminum alloy yielded up to 60 wt pct. powders that were finer than 45 microns in diameter. Two different atomizer designs were evaluated. The amount of fine powders produced was correlated to a calculated gas-power term. An optimal gas-power value existed for maximized fine powder production. Atomization at gas-power greater than or less than this optimal value produced coarser powders.

  3. NOVEL REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Vasilis Papavassiliou; Leo Bonnell; Dion Vlachos

    2004-12-01

    Praxair investigated an advanced technology for producing synthesis gas from natural gas and oxygen This production process combined the use of a short-reaction time catalyst with Praxair's gas mixing technology to provide a novel reactor system. The program achieved all of the milestones contained in the development plan for Phase I. We were able to develop a reactor configuration that was able to operate at high pressures (up to 19atm). This new reactor technology was used as the basis for a new process for the conversion of natural gas to liquid products (Gas to Liquids or GTL). Economic analysis indicated that the new process could provide a 8-10% cost advantage over conventional technology. The economic prediction although favorable was not encouraging enough for a high risk program like this. Praxair decided to terminate development.

  4. Effect of abdominal waste on biogas production from cow dung ...

    African Journals Online (AJOL)

    Studies have been carried out on the production of biogas from mixture of cow abdominal waste and its dung. The rate of biogas production and cumulative volume of the gas produced was compared with that of pure cow dung under the same experimental conditions. The result shows that the mixture of the cow abdominal ...

  5. Synthesis gas production via hybrid steam reforming of natural gas and bio-liquids

    OpenAIRE

    Balegedde Ramachandran, P.

    2013-01-01

    This thesis deals with (catalytic) steam reforming of bio-liquids for the production of synthesis gas. Glycerol, both crude from the biodiesel manufacturing and refined, and pyrolysis oil are tested as bio-based feedstocks. Liquid bio-based feeds could be preferred over inhomogeneous fibrous solid biomass because of their logistic advantages, better mineral balance, and better processability. Especially the ease of pressurization, which is required for large scale synthesis gas production, is...

  6. Gas phase adsorption technology for nitrogen isotope separation and its feasibility for highly enriched nitrogen gas production

    International Nuclear Information System (INIS)

    Inoue, Masaki; Asaga, Takeo

    2000-04-01

    Highly enriched nitrogen-15 gas is favorable to reduce radioactive carbon-14 production in reactor. The cost of highly enriched nitrogen-15 gas in mass production is one of the most important subject in nitride fuel option in 'Feasibility Study for FBR and Related Fuel Cycle'. In this work gas phase adsorption technology was verified to be applicable for nitrogen isotope separation and feasible to produce highly enriched nitrogen-15 gas in commercial. Nitrogen isotopes were separated while ammonia gas flows through sodium-A type zeolite column using pressure swing adsorption process. The isotopic ratio of eight samples were measured by high resolution mass spectrometry and Fourier transform microwave spectroscopy. Gas phase adsorption technology was verified to be applicable for nitrogen isotope separation, since the isotopic ratio of nitrogen-15 and nitrogen-14 in samples were more than six times as high as in natural. The cost of highly enriched nitrogen-15 gas in mass production were estimated by the factor method. It revealed that highly enriched nitrogen-15 gas could be supplied in a few hundred yen per gram in mass production. (author)

  7. Natural gas: reserves keep ahead of production

    Energy Technology Data Exchange (ETDEWEB)

    Hough, G V

    1983-08-01

    World production of natural gas in 1982 fell only 1.6% below 1981 levels, while proven recoverable reserves were up by 3.6% for a total of 3.279 quadrillion CF, which is 32.4% higher than had been estimated in 1978. Gas consumption, however, has experienced greater changes, with most of the industrialized countries (except for Japan) reporting declines in gas demand resulting from falling oil prices, reduced energy demand, and a slack world economy. Although gas seems to be holding its own in energy markets, further progress will not be easy to achieve.

  8. Liquid oil production from shale gas condensate reservoirs

    Science.gov (United States)

    Sheng, James J.

    2018-04-03

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  9. A novel method to determine simultaneously methane production during in vitro gas production using fully automated equipment

    NARCIS (Netherlands)

    Pellikaan, W.F.; Hendriks, W.H.; Uwimanaa, G.; Bongers, L.J.G.M.; Becker, P.M.; Cone, J.W.

    2011-01-01

    An adaptation of fully automated gas production equipment was tested for its ability to simultaneously measure methane and total gas. The simultaneous measurement of gas production and gas composition was not possible using fully automated equipment, as the bottles should be kept closed during the

  10. Improvement of anaerobic bio-hydrogen gas production from organic sludge waste

    International Nuclear Information System (INIS)

    Lee, S.; Lee, Y. H.

    2009-01-01

    Microbial hydrogen gas production from organic matters stands out as one of the most promising alternatives for sustainable green energy production. Based on the literature review, investigation of anaerobic bio-hydrogen gas production from organic sludge waste using a mixed culture has been very limited. The objective of this study was to assess the anaerobic bio-hydrogen gas production from organic sludge waste under various conditions. (Author)

  11. Gas Turbines: ''low NOx'' technologies at EGT

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    For more than 15 years, European Gas Turbines (EGT - GEC Alsthom Group) has gained an important know-how culture and can use its rich feedback experience in the domain of gas turbine emissions. The EGT gas turbine units equipped with denitrogenation technologies cover the 4 to 226 MW power range and cumulate more than 1.7 hours of functioning in the different existing installations in the world. This paper describes the economical and environmental interests of gas turbines for power production and the combustion technologies developed by EGT to reduce the NOx emissions. The selective catalytic reduction technique is the only available secondary technique with can allow NOx and CO emissions lower than 10 ppm. Other technologies involving diluent injection (water, water-fuel mixture, vapor..) are also described and were developed in several countries to reduce the emission of these pollutants. (J.S.)

  12. Methane Production of Different Forages in Ruminal Fermentation

    Directory of Open Access Journals (Sweden)

    S. J. Meale

    2012-01-01

    Full Text Available An in vitro rumen batch culture study was completed to compare effects of common grasses, leguminous shrubs and non-leguminous shrubs used for livestock grazing in Australia and Ghana on CH4 production and fermentation characteristics. Grass species included Andropodon gayanus, Brachiaria ruziziensis and Pennisetum purpureum. Leguminous shrub species included Cajanus cajan, Cratylia argentea, Gliricidia sepium, Leucaena leucocephala and Stylosanthes guianensis and non-leguminous shrub species included Annona senegalensis, Moringa oleifera, Securinega virosa and Vitellaria paradoxa. Leaves were harvested, dried at 55°C and ground through a 1 mm screen. Serum bottles containing 500 mg of forage, modified McDougall’s buffer and rumen fluid were incubated under anaerobic conditions at 39°C for 24 h. Samples of each forage type were removed after 0, 2, 6, 12 and 24 h of incubation for determination of cumulative gas production. Methane production, ammonia concentration and proportions of VFA were measured at 24 h. Concentration of aNDF (g/kg DM ranged from 671 to 713 (grasses, 377 to 590 (leguminous shrubs and 288 to 517 (non-leguminous shrubs. After 24 h of in vitro incubation, cumulative gas, CH4 production, ammonia concentration, proportion of propionate in VFA and IVDMD differed (p<0.05 within each forage type. B. ruziziensis and G. sepium produced the highest cumulative gas, IVDMD, total VFA, proportion of propionate in VFA and the lowest A:P ratios within their forage types. Consequently, these two species produced moderate CH4 emissions without compromising digestion. Grazing of these two species may be a strategy to reduce CH4 emissions however further assessment in in vivo trials and at different stages of maturity is recommended.

  13. The future of the European natural gas market: A quantitative assessment

    International Nuclear Information System (INIS)

    Aguilera, Roberto F.

    2010-01-01

    The debate over the availability of conventional natural gas has been nearly as strong as that for conventional oil. In Europe, the debate is strengthened due to the region's dependence on natural gas from outside countries. In addition, concern has been expressed by some energy experts in recent years about an imminent shortage of natural gas from Europe, caused supposedly by dwindling natural gas resources. Thus, the purpose of this analysis is to address the concern by assessing the availability of natural gas in the region. This is done by estimating a cumulative availability curve showing natural gas endowment versus production costs. The findings indicate that natural gas in Europe is more available and economic than often assumed. Increased research and development of this potential could help increase energy security in the region. (author)

  14. Controlled PVTS oil and gas production stimulation system

    Energy Technology Data Exchange (ETDEWEB)

    Ospina-Racines, E

    1970-02-01

    By completing oil- or gas-producing wells according to the PVTS method and energizing the flow of the oil-gas fluids in the reservoir with a small horse-power gas compressor at the wellhead, the following oil and gas production features are attained: (1) Original reservoir story energy conditions are restored, improved, used, and conserved while producing oil and/or gas. (2) The flow of oil or gas in the pay formation to the well bore is stimulated by gas compressor energy, outside of the reservoir system. The pressure drawdown is developed by gas-compressor energy in the well casing and not in the pay formation. (3) The stored energy of the reservoir is conserved while producing oil or gas. The potential energy (pressure) of the reservoir can be used to advantage up to bubble point of the virgin crude. (4) Producible reserves are increased from 4-to 5-fold by the conservation of reservoir energy. Present-day primary oil production practice yields a maximum of 20% of the oil in place by depleting the original reservoir energy. The PVTS system will yield over 80% + of oil in place. (5) Producible gas reserves can be increased greatly by establishing a low abandonment pressure at will. The principal features of the PVTS well mechanism and energy injection method are illustrated by a schematic diagram.

  15. Effect of high-voltage pulsed electric field (HPEF pretreatment on biogas production rates of hybrid Pennisetum by anaerobic fermentation

    Directory of Open Access Journals (Sweden)

    Baijuan Wang

    2018-02-01

    Full Text Available In this paper, the raw materials of hybrid Pennisetum were pretreated in different conditions of high voltage pulsed electric field (HPEF to improve its material utilization ratios and biogas production rates of anaerobic fermentation. Then, anaerobic digestion experiments were conducted within 32 days at moderate temperature (35 °C with TS mass fraction (6%, inoculation rate (20% and initial pH (7.0. It is indicated that compared with the control group, 9 groups of hybrid Pennisetum pretreated by HPEF are obviously superior in gas production efficiency of anaerobic fermentation, and higher in cumulative gas production, peak daily gas production and maximum methane concentration; that the most remarkable stimulation occurs in the HPEF condition of 15 kV/120 Hz/60 min, in that situation, the cumulative gas production in the fermentation period of 32 days is up to 9587 mL, 26.95% higher than that of the control group, the peak daily gas production increases and the range of peak period extends. It is demonstrated that the optimal HPEF pretreatment time is 60 min and three HPEF parameters have a better effect on gas production in the order of voltage > time > frequency; and that the effect degree of treatment parameters on peak daily gas production is voltage, frequency and time in turn. It is concluded that HPEF can improve material utilization ratio and gas production rate of hybrid Pennisetum by anaerobic fermentation and shorten the gas production cycle. By virtue of this physical pretreatment method, the resource of Pennisetum is utilized sufficiently and the classes of energy plants are enlarged effectively. Keywords: Hybrid Pennisetum, Anaerobic fermentation, High voltage pulsed electric field (HPEF, Biogas, Material utilization ratio, Gas generation rate, Model, Stimulation

  16. Method of treating final products from flue gas desulfurization

    International Nuclear Information System (INIS)

    Bloss, W.; Mohn, U.

    1984-01-01

    A method of treating final products from a flue gas desulfurization. The flue gas desulfurization is carried out by the absorption of sulfur oxide in a spray dryer with a suspension which contains lime, or in a reactor with a dry, fine-grained, absorbent which contains lime. Prior to desulfurization, the fly ash carried along by the flue gas which is to be desulfurized is separated entirely, partially, or not at all from the flue gas, and the final products from the flue gas desulfurization, prior to any further treatment thereof, amount to 1-99% by weight, preferably 1-70% by weight, of fly ash, and 1-99% by weight, preferably 30-99% by weight, of the sum of the desulfurization products, preferably calcium sulfite hemihydrate, and/or calcium sulfite, and/or calcium sulfate dyhydrate, and/or calcium sulfate hemihydrate, and/or calcium sulfate, as well as residue of the absorbent. The reduction of the amount of calcium sulfite is implemented by a dry oxidation with air

  17. Forecasting natural gas supply in China: Production peak and import trends

    International Nuclear Information System (INIS)

    Lin Boqiang; Wang Ting

    2012-01-01

    China's natural gas consumption has increased rapidly in recent years making China a net gas importer. As a nonrenewable energy, the gas resource is exhaustible. Based on the forecast of this article, China's gas production peak is likely to approach in 2022. However, China is currently in the industrialization and urbanization stage, and its natural gas consumption will persistently increase. With China's gas production peak, China will have to face a massive expansion in gas imports. As the largest developing country, China's massive imports of gas will have an effect on the international gas market. In addition, as China's natural gas price is still controlled by the government and has remained at a low level, the massive imports of higher priced gas will exert great pressure on China's gas price reform. - Highlights: ► We figured out the natural gas production peak of China. ► We predict the import trends of natural gas of China. ► We study the international and national impacts of China's increasing import of gas. ► It is important for China to accelerate price reformation of natural gas.

  18. Energy Current Cumulants in One-Dimensional Systems in Equilibrium

    Science.gov (United States)

    Dhar, Abhishek; Saito, Keiji; Roy, Anjan

    2018-06-01

    A recent theory based on fluctuating hydrodynamics predicts that one-dimensional interacting systems with particle, momentum, and energy conservation exhibit anomalous transport that falls into two main universality classes. The classification is based on behavior of equilibrium dynamical correlations of the conserved quantities. One class is characterized by sound modes with Kardar-Parisi-Zhang scaling, while the second class has diffusive sound modes. The heat mode follows Lévy statistics, with different exponents for the two classes. Here we consider heat current fluctuations in two specific systems, which are expected to be in the above two universality classes, namely, a hard particle gas with Hamiltonian dynamics and a harmonic chain with momentum conserving stochastic dynamics. Numerical simulations show completely different system-size dependence of current cumulants in these two systems. We explain this numerical observation using a phenomenological model of Lévy walkers with inputs from fluctuating hydrodynamics. This consistently explains the system-size dependence of heat current fluctuations. For the latter system, we derive the cumulant-generating function from a more microscopic theory, which also gives the same system-size dependence of cumulants.

  19. Natural gas production from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    1965-01-01

    A remote location in Rio Arriba County, NW. New Mexico, is being considered as the site for an experiment in the use of a nuclear explosive to increase production from a natural gas field. A feasibility study has been conducted by the El Paso Natural Gas Co., the U.S. Atomic Energy commission, and the U.S. Bureau of Mines. As presently conceived, a nuclear explosive would be set in an emplacement hole and detonated. The explosion would create a cylinder or ''chimney'' of collapsed rock, and a network of fractures extending beyond the chimney. The fractures are the key effect. These would consist of new fractures, enlargement of existing ones, and movement along planes where strata overlap. In addition, there are a number of intangible but important benefits that could accrue from the stimulating effect. Among these are the great increase in recoverable reserves and the deliverability of large volumes of gas during the periods of high demand. It is believed that this type of well stimulation may increase the total gas production of these low permeability natural gas fields by about 7 times the amounts now attainable.

  20. Problems of describing the cumulative effect in relativistic nuclear physics

    International Nuclear Information System (INIS)

    Baldin, A.M.

    1979-01-01

    The problem of describing the cumulative effect i.e., the particle production on nuclei in the range kinematically forbidden for one-nucleon collisions, is studied. Discrimination of events containing cumulative particles fixes configurations in the wave function of a nucleus, when several nucleons are closely spaced and their quark-parton components are collectivized. For the cumulative processes under consideration large distances between quarks are very important. The fundamental facts and theoretical interpretation of the quantum field theory and of the condensed media theory in the relativistic nuclear physics are presented in brief. The collisions of the relativistic nuclei with low momentum transfers is considered in a fast moving coordinate system. The basic parameter determining this type of collisions is the energy of nucleon binding in nuclei. It has been shown that the short-range correlation model provides a good presentation of many characteristics of the multiple particle production and it may be regarded as an approximate universal property of hadron interactions

  1. Cumulative Poisson Distribution Program

    Science.gov (United States)

    Bowerman, Paul N.; Scheuer, Ernest M.; Nolty, Robert

    1990-01-01

    Overflow and underflow in sums prevented. Cumulative Poisson Distribution Program, CUMPOIS, one of two computer programs that make calculations involving cumulative Poisson distributions. Both programs, CUMPOIS (NPO-17714) and NEWTPOIS (NPO-17715), used independently of one another. CUMPOIS determines cumulative Poisson distribution, used to evaluate cumulative distribution function (cdf) for gamma distributions with integer shape parameters and cdf for X (sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Written in C.

  2. Oil and gas products and energy equipment

    International Nuclear Information System (INIS)

    1996-01-01

    The planned activities of the Canadian oil and gas products and energy equipment industry for 1996-1997, were presented. The sector is made up of approximately 1500 small and medium sized enterprises. The Canadian oil field manufacturing and servicing industry holds only a small 2.5% share of the world export market, but it is recognized internationally as one of the leading suppliers of advanced petroleum equipment. Their exports include specialized equipment for extracting oil sands, gathering and treatment facilities for sour gas, underbalanced drilling technologies, equipment for wells experiencing declining production rates, top motor drives, winter drilling rigs, and horizontal drilling technologies. They also offer petroleum industry software products. Most exploration and production equipment sold abroad by Canadian firms is manufactured in Canada, but there is an increasing trend toward manufacturing in the country of operation. 2 tabs

  3. Process for the production of hydrogen/deuterium-containing gas

    International Nuclear Information System (INIS)

    Nitschke, E.; Desai, A.; Ilgner, H.

    1978-01-01

    A process for the production of hydrogen/deuterium-containing gas is described in which the enriched condensate obtained from the production of a hydrogen/deuterium-containing gas mixture is collected and subjected to a direct exchange of isotopes with the feedsteam admitted to the process. Such condensate can be brought into direct exchange of isotopes with the gas water vapor mixture within the process, viz. ahead of the CO conversion section. The exchange of isotopes may be performed according to the counter-current principle. If it is intended to maintain in the hydrogen/deuterium-containing gas a certain definite content of water vapor whose phase condition is superior to the condition achieved when using normal cooling water, this gas, at least 0.6 kg/m 3 of gas, is subjected to an exchange of isotopes with the water fed additionally into the process

  4. Potential of Ruminant Feed with Appearance of In Vitro Gas Production

    Directory of Open Access Journals (Sweden)

    Firsoni

    2017-10-01

    Full Text Available Indonesia has many kinds of feedstuff with different qualities that can be used as ruminants feed. One way to evaluate it is analyzing the performance of the feed gas production value in vitro. Feed ingredients tested in this study were the flour of coffee hull, peanut hull, field grass, turn leaves, rice straw and fermented rice straw. Samples weighed 200 ± 5 mg, put into a 100 ml syringe glass, added 30 ml buffalo rumen liquor with bicarbonate buffer medium, then incubated in the water bath at 39 ° C for 48 hours. Neway software and random block design with 4 blocks are used to calculate the value of fitted gas and to analyze the variance. The variables measured were gas production 2, 4, 6, 8, 10, 12, 24, 48, 72 and 96 hours, organic material degradable, gas production potential (a+b, gas production rate (k. The highest gas production 24, 48 and 72 hours from the field grass treatment (C was 36.33, 51.12 and 56.29 ml/200 mg DM but 96 hours of rice straw ie 59.60 ml/200 mg DM, while the lowest (24, 48, 72 and 96 hours of coffee skin (6.08, 7.77, 7.61, and 7.68 ml/200 mg DM respectively. The highest gas production potential of rice straw is 69.13 ml/200 mg DM and the lowest of coffee skin is 7.72 ml/200 mg BK. The highest percentage of gas production after 24 hours was obtained Turi leaves (D: 91.46% and the lowest rice straw (E: 41.22%. Rice straw can be suggested to be field grass substitution by processed again to reduce its crude fiber content, while the coffee and peanut hulls need further study, due to low gas production potential of 7.72 and 11.45 ml / 200 mg DM.

  5. Gas production in the Barnett Shale obeys a simple scaling theory

    OpenAIRE

    Patzek, Tad W.; Male, Frank; Marder, Michael

    2013-01-01

    Ten years ago, US natural gas cost 50% more than that from Russia. Now, it is threefold less. US gas prices plummeted because of the shale gas revolution. However, a key question remains: At what rate will the new hydrofractured horizontal wells in shales continue to produce gas? We analyze the simplest model of gas production consistent with basic physics of the extraction process. Its exact solution produces a nearly universal scaling law for gas wells in each shale play, where production f...

  6. Britain's North Sea oil and gas production: a critical review

    International Nuclear Information System (INIS)

    Odell, P.R.

    1996-01-01

    The size and longevity of Britain's offshore hydrocarbons resources have been underestimated. Gas reserves were seriously under-exploited for almost 20 years from the late 1960s, given a belief that gas should be used only as a premium fuel and in the context of an uncompetitive market. Oil reserves' development and production has suffered from time to time from inappropriate politico-economic conditions. Nevertheless, offshore oil and gas has come to dominate the UK's energy production over the past 20 years and currently accounts for 85% of the country's total energy output. Fears for resources' exhaustion remain unjustified, as the industry continues to replace oil and gas reserves used each year. The North Sea is still not comprehensively explored: the continuation of the process will enable oil production to remain at high levels and that of gas to expand further. Supplementary output from the new west of Shetland province will become progressively more important after 2000. But continued intensive production overall depends on the maintenance of attractive politico-economic conditions and on present oil prices. It also requires the European gas market to remain firm but, ironically, the planned flow of UK gas to the mainland constitutes a threat to this condition. (Author)

  7. Numerical solution of fractured horizontal wells in shale gas reservoirs considering multiple transport mechanisms

    Science.gov (United States)

    Zhao, Yu-long; Tang, Xu-chuan; Zhang, Lie-hui; Tang, Hong-ming; Tao, Zheng-Wu

    2018-06-01

    The multiscale pore size and specific gas storage mechanism in organic-rich shale gas reservoirs make gas transport in such reservoirs complicated. Therefore, a model that fully incorporates all transport mechanisms and employs an accurate numerical method is urgently needed to simulate the gas production process. In this paper, a unified model of apparent permeability was first developed, which took into account multiple influential factors including slip flow, Knudsen diffusion (KD), surface diffusion, effects of the adsorbed layer, permeability stress sensitivity, and ad-/desorption phenomena. Subsequently, a comprehensive mathematical model, which included the model of apparent permeability, was derived to describe gas production behaviors. Thereafter, on the basis of unstructured perpendicular bisection grids and finite volume method, a fully implicit numerical simulator was developed using Matlab software. The validation and application of the new model were confirmed using a field case reported in the literature. Finally, the impacts of related influencing factors on gas production were analyzed. The results showed that KD resulted in a negligible impact on gas production in the proposed model. The smaller the pore size was, the more obvious the effects of the adsorbed layer on the well production rate would be. Permeability stress sensitivity had a slight effect on well cumulative production in shale gas reservoirs. Adsorbed gas made a major contribution to the later flow period of the well; the greater the adsorbed gas content, the greater the well production rate would be. This paper can improve the understanding of gas production in shale gas reservoirs for petroleum engineers.

  8. Technologies for direct production of flexible H2/CO synthesis gas

    International Nuclear Information System (INIS)

    Song Xueping; Guo Zhancheng

    2006-01-01

    The use of synthesis gas offers the opportunity to furnish a broad range of environmentally clean fuels and high value chemicals. However, synthesis gas manufacturing systems based on natural gas are capital intensive, and hence, there is great interest in technologies for cost effective synthesis gas production. Direct production of synthesis gas with flexible H 2 /CO ratio, which is in agreement with the stoichiometric ratios required by major synthesis gas based petrochemicals, can decrease the capital investment as well as the operating cost. Although CO 2 reforming and catalytic partial oxidation can directly produce desirable H 2 /CO synthesis gas, they are complicated and continued studies are necessary. In fact, direct production of flexible H 2 /CO synthesis gas can be obtained by optimizing the process schemes based on steam reforming and autothermal reforming as well as partial oxidation. This paper reviews the state of the art of the technologies

  9. Numerical Simulation of Shale Gas Production with Thermodynamic Calculations Incorporated

    KAUST Repository

    Urozayev, Dias

    2015-01-01

    to pressure relation by solving the cubic equation to improve the model. The results show that considering the compressibility of the gas will noticeably increase gas production under given reservoir conditions and slow down the production decline curve

  10. Quantifying methane emissions from natural gas production in north-eastern Pennsylvania

    Directory of Open Access Journals (Sweden)

    Z. R. Barkley

    2017-11-01

    Full Text Available Natural gas infrastructure releases methane (CH4, a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of its greenhouse footprint. This study presents a new application of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in north-eastern Pennsylvania. An inventory of CH4 emissions was compiled for major sources in Pennsylvania. This inventory served as input emission data for the Weather Research and Forecasting model with chemistry enabled (WRF-Chem, and atmospheric CH4 mole fraction fields were generated at 3 km resolution. Simulated atmospheric CH4 enhancements from WRF-Chem were compared to observations obtained from a 3-week flight campaign in May 2015. Modelled enhancements from sources not associated with upstream natural gas processes were assumed constant and known and therefore removed from the optimization procedure, creating a set of observed enhancements from natural gas only. Simulated emission rates from unconventional production were then adjusted to minimize the mismatch between aircraft observations and model-simulated mole fractions for 10 flights. To evaluate the method, an aircraft mass balance calculation was performed for four flights where conditions permitted its use. Using the model optimization approach, the weighted mean emission rate from unconventional natural gas production and gathering facilities in north-eastern Pennsylvania approach is found to be 0.36 % of total gas production, with a 2σ confidence interval between 0.27 and 0.45 % of production. Similarly, the mean emission estimates using the aircraft mass balance approach are calculated to be 0.40 % of regional natural gas production, with a 2σ confidence interval between 0.08 and 0.72 % of production. These emission rates as a percent of production are

  11. Quantifying methane emissions from natural gas production in north-eastern Pennsylvania

    Science.gov (United States)

    Barkley, Zachary R.; Lauvaux, Thomas; Davis, Kenneth J.; Deng, Aijun; Miles, Natasha L.; Richardson, Scott J.; Cao, Yanni; Sweeney, Colm; Karion, Anna; Smith, MacKenzie; Kort, Eric A.; Schwietzke, Stefan; Murphy, Thomas; Cervone, Guido; Martins, Douglas; Maasakkers, Joannes D.

    2017-11-01

    Natural gas infrastructure releases methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of its greenhouse footprint. This study presents a new application of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in north-eastern Pennsylvania. An inventory of CH4 emissions was compiled for major sources in Pennsylvania. This inventory served as input emission data for the Weather Research and Forecasting model with chemistry enabled (WRF-Chem), and atmospheric CH4 mole fraction fields were generated at 3 km resolution. Simulated atmospheric CH4 enhancements from WRF-Chem were compared to observations obtained from a 3-week flight campaign in May 2015. Modelled enhancements from sources not associated with upstream natural gas processes were assumed constant and known and therefore removed from the optimization procedure, creating a set of observed enhancements from natural gas only. Simulated emission rates from unconventional production were then adjusted to minimize the mismatch between aircraft observations and model-simulated mole fractions for 10 flights. To evaluate the method, an aircraft mass balance calculation was performed for four flights where conditions permitted its use. Using the model optimization approach, the weighted mean emission rate from unconventional natural gas production and gathering facilities in north-eastern Pennsylvania approach is found to be 0.36 % of total gas production, with a 2σ confidence interval between 0.27 and 0.45 % of production. Similarly, the mean emission estimates using the aircraft mass balance approach are calculated to be 0.40 % of regional natural gas production, with a 2σ confidence interval between 0.08 and 0.72 % of production. These emission rates as a percent of production are lower than rates found in any

  12. 19 CFR 351.518 - Exemption, remission, or deferral upon export of prior-stage cumulative indirect taxes.

    Science.gov (United States)

    2010-04-01

    ... prior-stage cumulative indirect taxes. 351.518 Section 351.518 Customs Duties INTERNATIONAL TRADE... indirect taxes. (a) Benefit—(1) Exemption of prior-stage cumulative indirect taxes. In the case of a... production of an exported product, a benefit exists to the extent that the exemption extends to inputs that...

  13. Analysis of cumulative energy consumption in an oxy-fuel combustion power plant integrated with a CO2 processing unit

    International Nuclear Information System (INIS)

    Ziębik, Andrzej; Gładysz, Paweł

    2014-01-01

    Highlights: • Oxy-fuel combustion is promising CCS technology. • Sum of direct and indirect energy consumption ought to be consider. • This sum is expressed by cumulative energy consumption. • Input–output analysis is adequate method of CCS modeling. - Abstract: A balance of direct energy consumption is not a sufficient tool for an energy analysis of an oxy-fuel combustion power plant because of the indirect consumption of energy in preceding processes in the energy-technological set of interconnections. The sum of direct and indirect consumption expresses cumulative energy consumption. Based on the “input–output” model of direct energy consumption the mathematical model of cumulative energy consumption concerning an integrated oxy-fuel combustion power plant has been developed. Three groups of energy carriers or materials are to be distinguished, viz. main products, by-products and external supplies not supplementing the main production. The mathematical model of the balance of cumulative energy consumption based on the assumption that the indices of cumulative energy consumption of external supplies (mainly fuels and raw materials) are known a’priori. It results from weak connections between domestic economy and an integrated oxy-fuel combustion power plant. The paper presents both examples of the balances of direct and cumulative energy consumption. The results of calculations of indices of cumulative energy consumption concerning main products are presented. A comparison of direct and cumulative energy effects between three variants has been worked out. Calculations of the indices of cumulative energy consumption were also subjected to sensitive analysis. The influence of the indices of cumulative energy consumption of external supplies (input data), as well as the assumption concerning the utilization of solid by-products of the combustion process have been investigated

  14. ConocoPhillips Gas Hydrate Production Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoderbek, David [ConocoPhillips Co., Houston, TX (United States); Farrell, Helen [ConocoPhillips Co., Houston, TX (United States); Howard, James [ConocoPhillips Co., Houston, TX (United States); Raterman, Kevin [ConocoPhillips Co., Houston, TX (United States); Silpngarmlert, Suntichai [ConocoPhillips Co., Houston, TX (United States); Martin, Kenneth [ConocoPhillips Co., Houston, TX (United States); Smith, Bruce [ConocoPhillips Co., Houston, TX (United States); Klein, Perry [ConocoPhillips Co., Houston, TX (United States)

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  15. Relationship between gas production and starch degradation in feed samples

    NARCIS (Netherlands)

    Chai, W.Z.; Gelder, van A.H.; Cone, J.W.

    2004-01-01

    An investigation was completed of the possibilities to estimate starch fermentation in rumen fluid using the gas production technique by incubating the total sample. Gas production from six starchy feed ingredients and eight maize silage samples were recorded and related to starch degradation

  16. Adaptive strategies for cumulative cultural learning.

    Science.gov (United States)

    Ehn, Micael; Laland, Kevin

    2012-05-21

    The demographic and ecological success of our species is frequently attributed to our capacity for cumulative culture. However, it is not yet known how humans combine social and asocial learning to generate effective strategies for learning in a cumulative cultural context. Here we explore how cumulative culture influences the relative merits of various pure and conditional learning strategies, including pure asocial and social learning, critical social learning, conditional social learning and individual refiner strategies. We replicate the Rogers' paradox in the cumulative setting. However, our analysis suggests that strategies that resolved Rogers' paradox in a non-cumulative setting may not necessarily evolve in a cumulative setting, thus different strategies will optimize cumulative and non-cumulative cultural learning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Natural Gas Reserves, Development and Production in Qatar

    International Nuclear Information System (INIS)

    Naji, Abi-Aad.

    1998-01-01

    Qatar entered the club of natural gas exporters in early 1997 when the first shipment of liquefied natural gas left the state for Japan. Qatar was helped by the discovery in 1971 of supergiant North Field gas field, the country's suitable location between the established gas consuming markets in Europe and Southeast Asia, and its proximity to developing markets in the Indian subcontinent and in neighbouring countries. All that have combined to make gas export projects from Qatar economically viable and commercially attractive. In addition to export-oriented development, increased gas production from the North Field is planned for meeting a growing domestic demand for gas as fuel and feedstock for power generation and desalination plants, as well as value-added petrochemical and fertilizer industries

  18. High efficient ethanol and VFAs production from gas fermentation: effect of acetate, gas and inoculum microbial composition

    DEFF Research Database (Denmark)

    El-Gammal, Maie; Abou-Shanab, Reda; Angelidaki, Irini

    2017-01-01

    In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas fermenta......In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas...... fatty acids and ethanol was achieved by the pure culture (Clostridium ragsdalei). Depending on the headspace gas composition, VFA concentrations were up to 300% higher after fermentation with Clostridium ragsdalei compared to fermentation with mixed culture. The preferred gas composition with respect...... to highest VFA concentration was pure CO (100%) regardless of microbial composition of the inoculum and media composition. The addition of acetate had a negative impact on the VFA formation which was depending on the initial gas composition in head space....

  19. Natural gas market assessment. Natural gas supply, western Canada: Recent developments (1982-1992), [and] short-term deliverability outlook (1993-1996)

    International Nuclear Information System (INIS)

    1993-11-01

    A review is presented of the evolution of gas supply from western Canada over the last ten years and a short-term forecast of gas deliverability. To illustrate the changed supply conditions, selected trends and market developments are summarized, including trends in excess deliverability, changes in reserves, the regional distribution of cumulative production, the pace of tieing-in of previously discovered pools for production, the expansion in deliverability from gas storage reservoirs, and recent increases in drilling activity. On the basis of analyses and observations, it is concluded that estimated productive capacity is likely to exceed pipeline capacity on a peak-day basis by a narrow margin over 1993-96. Increasing deliverability from gas storage reservoirs located in the producing provinces is an important factor in handling peak day requirements. From time to time, high demand due to extreme weather conditions could result in pronounced tightness and price fluctuations similar to those seen in winter 1992/93. A strong economic recovery could also result in market tightness, depending on the speed and size of supply response. The growing estimates of resource potential in the western Canada sedimentary basin provide an encouraging indication of the availability of future supply. 29 figs., 3 tabs

  20. Analysis of gob gas venthole production performances for strata gas control in longwall mining.

    Science.gov (United States)

    Karacan, C Özgen

    2015-10-01

    Longwall mining of coal seams affects a large area of overburden by deforming it and creating stress-relief fractures, as well as bedding plane separations, as the mining face progresses. Stress-relief fractures and bedding plane separations are recognized as major pathways for gas migration from gas-bearing strata into sealed and active areas of the mines. In order for strata gas not to enter and inundate the ventilation system of a mine, gob gas ventholes (GGVs) can be used as a methane control measure. The aim of this paper is to analyze production performances of GGVs drilled over a longwall panel. These boreholes were drilled to control methane emissions from the Pratt group of coals due to stress-relief fracturing and bedding plane separations into a longwall mine operating in the Mary Lee/Blue Creek coal seam of the Upper Pottsville Formation in the Black Warrior Basin, Alabama. During the course of the study, Pratt coal's reservoir properties were integrated with production data of the GGVs. These data were analyzed by using material balance techniques to estimate radius of influence of GGVs, gas-in-place and coal pressures, as well as their variations during mining. The results show that the GGVs drilled to extract gas from the stress-relief zone of the Pratt coal interval is highly effective in removing gas from the Upper Pottsville Formation. The radii of influence of the GGVs were in the order of 330-380 m, exceeding the widths of the panels, due to bedding plane separations and stress relieved by fracturing. Material balance analyses indicated that the initial pressure of the Pratt coals, which was around 648 KPa when longwall mining started, decreased to approximately 150 KPa as the result of strata fracturing and production of released gas. Approximately 70% of the initial gas-in-place within the area of influence of the GGVs was captured during a period of one year.

  1. Exploring the production of natural gas through the lenses of the ACEGES model

    International Nuclear Information System (INIS)

    Voudouris, Vlasios; Matsumoto, Ken'ichi; Sedgwick, John; Rigby, Robert; Stasinopoulos, Dimitrios; Jefferson, Michael

    2014-01-01

    Due to the increasing importance of natural gas for modern economic activity, and gas's non-renewable nature, it is extremely important to try to estimate possible trajectories of future natural gas production while considering uncertainties in resource estimates, demand growth, production growth and other factors that might limit production. In this study, we develop future scenarios for natural gas supply using the ACEGES computational laboratory. Conditionally on the currently estimated ultimate recoverable resources, the ‘Collective View’ and ‘Golden Age’ Scenarios suggest that the supply of natural gas is likely to meet the increasing demand for natural gas until at least 2035. The ‘Golden Age’ Scenario suggests significant ‘jumps’ of natural gas production – important for testing the resilience of long-term strategies. - Highlights: • We present the ‘Collective View’ and ‘Golden Age’ Scenarios for natural gas production. • We do not observe any significant supply demand pressure of natural gas until 2035. • We do observe ‘jumps’ in natural gas supply until 2035. • The ACEGES-based scenarios can assess the resilience of longterm strategies

  2. A gas circulation and purification system for gas-cell-based low-energy RI-beam production

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, T.; Wada, M.; Katayama, I.; Kojima, T. M.; Reponen, M. [RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsubota, T. [Tokyo KOATSU Co., Ltd., 1-9-8 Shibuya, Shibuyaku, Tokyo 150-0002 (Japan)

    2016-06-15

    A gas circulation and purification system was developed at the RIKEN Radioactive Isotope Beam Factory that can be used for gas-cell-based low-energy RI-beam production. A high-flow-rate gas cell filled with one atmosphere of buffer gas (argon or helium) is used for the deceleration and thermalization of high-energy RI-beams. The exhausted buffer gas is efficiently collected using a compact dry pump and returned to the gas cell with a recovery efficiency of >97%. The buffer gas is efficiently purified using two gas purifiers as well as collision cleaning, which eliminates impurities in the gas. An impurity level of one part per billion is achieved with this method.

  3. Natural gas productive capacity for the lower 48 States, 1980 through 1995

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this report is to analyze monthly natural gas wellhead productive capacity in the lower 48 States from 1980 through 1992 and project this capacity from 1993 through 1995. For decades, natural gas supplies and productive capacity have been adequate to meet demand. In the 1970's the capacity surplus was small because of market structure (split between interstate and intrastate), increasing demand, and insufficient drilling. In the early 1980's, lower demand, together with increased drilling, led to a large surplus capacity as new productive capacity came on line. After 1986, this large surplus began to decline as demand for gas increased, gas prices fell, and gas well completions dropped sharply. In late December 1989, the decline in this surplus, accompanied by exceptionally high demand and temporary weather-related production losses, led to concerns about the adequacy of monthly productive capacity for natural gas. These concerns should have been moderated by the gas system's performance during the unusually severe winter weather in March 1993 and January 1994. The declining trend in wellhead productive capacity is expected to be reversed in 1994 if natural gas prices and drilling meet or exceed the base case assumption. This study indicates that in the low, base, and high drilling cases, monthly productive capacity should be able to meet normal production demands through 1995 in the lower 48 States (Figure ES1). Exceptionally high peak-day or peak-week production demand might not be met because of physical limitations such as pipeline capacity. Beyond 1995, as the capacity of currently producing wells declines, a sufficient number of wells and/or imports must be added each year in order to ensure an adequate gas supply

  4. Effects of gas chamber geometry and gas flow on the neutron production in a fast plasma focus neutron source

    International Nuclear Information System (INIS)

    Tarifeño-Saldivia, Ariel; Soto, Leopoldo

    2014-01-01

    This work reports that gas chamber geometry and gas flow management substantially affect the neutron production of a repetitive fast plasma focus. The gas flow rate is the most sensitive parameter. An appropriate design of the gas chamber combined with a suitable flow-rate management can lead to improvements in the neutron production of one order of magnitude working in a fast repetitive mode. (paper)

  5. How to discover drivers of gas construction productivity

    International Nuclear Information System (INIS)

    Mansfield, D.; O'Neill, D.

    1991-01-01

    In their continuous pursuit of productivity improvements, gas utilities and pipe line companies have tried to use some of the best data available: comparisons of productivity for different districts or territories. The data are readily available, familiar to operating personnel, and potentially a great source of insight into what drives productivity. This paper reports that the fact is that all these variables do make a difference, but it is hard to know how much of a difference, each one makes and which is most important. Therein lies the problem--and the opportunity. Public Service Electric and Gas Co. (PSE ampersand G) used some simple statistical tools to find out the main determinants of district productivity. The gas business unit of PSE ampersand G serves over 11/2 million customers from northeastern New Jersey to the eastern suburbs of Philadelphia. Its 13 districts include a mix of stable towns and new growth areas. The southern edge of the Wisconsal moraine covers the northern districts, leaving them with stony soil and occasional outcroppings of rock. Paving, spoil removal and other job conditions vary widely by district

  6. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments

    International Nuclear Information System (INIS)

    Moridis, George J.; Sloan, E. Dendy

    2007-01-01

    In this paper, we evaluate the gas production potential of disperse, low-saturation (S H H hydrate-bearing sediments subject to depressurization-induced dissociation over a 10-year production period. We investigate the sensitivity of items (a)-(c) to the following hydraulic properties, reservoir conditions, and operational parameters: intrinsic permeability, porosity, pressure, temperature, hydrate saturation, and constant pressure at which the production well is kept. The results of this study indicate that, despite wide variations in the aforementioned parameters (covering the entire spectrum of such deposits), gas production is very limited, never exceeding a few thousand cubic meters of gas during the 10-year production period. Such low production volumes are orders of magnitude below commonly accepted standards of economic viability, and are further burdened with very unfavorable gas-to-water ratios. The unequivocal conclusion from this study is that disperse, low-S H hydrate accumulations in oceanic sediments are not promising targets for gas production by means of depressurization-induced dissociation, and resources for early hydrate exploitation should be focused elsewhere

  7. In vitro organic matter digestibility and gas production of fish-meal ...

    African Journals Online (AJOL)

    user

    2011-03-28

    Mar 28, 2011 ... In this study, an in vitro rumen gas production technique was utilized to evaluate fish-meal coated with ... Keywords: fish-meal; gas production; hydrogenated tallow; .... industrial city, Saveh, Iran). ..... commercial dairy rations.

  8. Productivity changes in the Gas and Fuel Corporation of Victoria

    International Nuclear Information System (INIS)

    Rushdi, A.

    1994-01-01

    The study reveals that the total factor productivity in the Gas and Fuel Corporation of Victoria (GFCV) continued to increase throughout the study period except for a brief period between 1983-84 and 1984-85 which was mainly the result of the decline in the industrial demand for gas and a decelerated growth rate in residential demand. The productivity gains were found to be highly sensitive to the rates of depreciation and discount rates assumed. The estimated terms of trade suggest that the increase in gas prices was lower that the increase in the aggregate input prices the GFCV paid, particularly to capital and labour. However, while the price index of reticulated gas increased to 2.17, the purchase price declined to 0.96 over the study period. The productivity gains by GFCV seem to have been shared with its customers. (Author)

  9. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms.

    Directory of Open Access Journals (Sweden)

    Chaohua Guo

    Full Text Available Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production.

  10. Methanol production with elemental phosphorus byproduct gas: technical and economic feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Lyke, S.E.; Moore, R.H.

    1981-01-01

    The technical and economic feasibility of using a typical, elemental, phosphorus byproduct gas stream in methanol production is assessed. The purpose of the study is to explore the potential of a substitute for natural gas. The first part of the study establishes economic tradeoffs between several alternative methods of supplying the hydrogen which is needed in the methanol synthesis process to react with CO from the off gas. The preferred alternative is the Battelle Process, which uses natural gas in combination with the off gas in an economically sized methanol plant. The second part of the study presents a preliminary basic design of a plant to (1) clean and compress the off gas, (2) return recovered phosphorus to the phosphorus plant, and (3) produce methanol by the Battelle Process. Use of elemental phosphorus byproduct gas in methanol production appears to be technically feasible. The Battelle Process shows a definite but relatively small economic advantage over conventional methanol manufacture based on natural gas alone. The process would be economically feasible only where natural gas supply and methanol market conditions at a phosphorus plant are not significantly less favorable than at competing methanol plants. If off-gas streams from two or more phosphorus plants could be combined, production of methanol using only offgas might also be economically feasible. The North American methanol market, however, does not seem likely to require another new methanol project until after 1990. The off-gas cleanup, compression, and phosphorus-recovery system could be used to produce a CO-rich stream that could be economically attractive for production of several other chemicals besides methanol.

  11. Self-similarity of high-pT hadron production in cumulative processes and violation of discrete symmetries at small scales (suggestion for experiment)

    International Nuclear Information System (INIS)

    Tokarev, M.V.; Zborovsky, I.

    2009-01-01

    The hypothesis of self-similarity of hadron production in relativistic heavy ion collisions for search for phase transition in a nuclear matter is discussed. It is offered to use the established features of z-scaling for revealing signatures of new physics in cumulative region. It is noted that selection of events on centrality in cumulative region could help to localize a position of a critical point. Change of parameters of the theory (a specific heat and fractal dimensions) near to a critical point is considered as a signature of new physics. The relation of the power asymptotic of ψ(z) at high z, anisotropy of momentum space due to spontaneous symmetry breaking, and discrete (C, P, T) symmetries is emphasized

  12. Effect of storage duration on frozen inoculum to be used for the in vitro gas production technique in rabbit

    Directory of Open Access Journals (Sweden)

    Antonino Nizza

    2010-01-01

    Full Text Available The present study aimed to investigate the effect of storage duration of frozen inoculum on fermentation parametersobtained with the in vitro gas production technique. Two non-predigested diets differing in chemical composition andespecially crude fibre content (low fibre diet: 13.8%; high-fibre diet: 22.6% were ground to pass a 1 mm screen andsubjected to fermentation with the same inoculum frozen for different periods: after 1 month (inoculum 1, after 2months (inoculum 2 and after 3 months (inoculum 3. The inoculum used was obtained from the caecal content of 75-day-old NZW rabbits. After defrosting, the caecal content was diluted with the medium 1:1 (V/V and squeezed throughsix layers of gauze to obtain the inoculum. The substrate affected several fermentation parameters. In particular, thehigh-fibre diet had lower potential and cumulative gas production (A = ml/g 220 vs 256; P vs 221; P acids (mmol/g 56.2 vs 49.8; P P values of degraded organic matter (62.4%, 62.7% and 62.7% respectively for inocula 1, 2 and 3 and similarproduction of VFA (54.0, 52.2 and 52.8 mmol/g, respectively for inocula 1, 2 and 3. This research showed it is possibleto use frozen inoculum for at least 3 months and in this time interval obtain the same parameters of in vitro fermentation.

  13. Production of inert gas for substitution of a part of the cushion gas trapped in an aquifer underground storage reservoir

    International Nuclear Information System (INIS)

    Berger, L.; Arnoult, J.P.

    1990-01-01

    In a natural gas storage reservoir operating over the different seasons, a varying fraction of the injected gas, the cushion gas, remains permanently trapped. This cushion gas may represent more than half the total gas volume, and more than 50% of the initial investment costs for the storage facility. Studies conducted by Gaz de France, backed up by experience acquired over the years, have shown that at least 20% of the cushion gas could be replaced by a less expensive inert gas. Nitrogen, carbon dioxide, or a mixture of the two, satisfy the specifications required for this inert gas. Two main production methods exist: recovery of natural gas combustion products (mixture of 88% N 2 and 12% Co 2 ) and physical separation of air components (more or less pure N 2 , depending on industrial conditions). For the specific needs of Gaz de France, the means of production must be suited to its programme of partial cushion gas substitution. The equipment must satisfy requirements of autonomy, operating flexibility and mobility. Gaz de France has tested two units for recovery of natural gas combustion products. In the first unit, the inert gas is produced in a combustion chamber, treated in a catalytic reactor to reduce nitrogen oxide content and then compressed by gas engine driven compressors. In the second unit, the exhaust gases of the compressor gas engines are collected, treated to eliminate nitrogen oxides and then compressed. The energy balance is improved. A PSA method nitrogen production unit by selective absorption of nitrogen in the air, will be put into service in 1989. The specific features of these two methods and the reasons for choosing them will be reviewed. (author). 1 fig

  14. Fragmentation of tensor polarized deuterons into cumulative pions

    International Nuclear Information System (INIS)

    Afanas'ev, S.; Arkhipov, V.; Bondarev, V.

    1998-01-01

    The tensor analyzing power T 20 of the reaction d polarized + A → π - (0 0 ) + X has been measured in the fragmentation of 9 GeV tensor polarized deuterons into pions with momenta from 3.5 to 5.3 GeV/c on hydrogen, beryllium and carbon targets. This kinematic range corresponds to the region of cumulative hadron production with the cumulative variable x c from 1.08 to 1.76. The values of T 20 have been found to be small and consistent with positive values. This contradicts the predictions based on a direct mechanism assuming NN collision between a high momentum nucleon in the deuteron and a target nucleon (NN → NNπ)

  15. Impact assessment of concentrate recirculation on the landfill gas production

    Directory of Open Access Journals (Sweden)

    Džolev Nikola M.

    2016-01-01

    Full Text Available This paper explores the impact of concentrate recirculation, as a product of leachate treated by reverse osmosis plant, on the production of landfill gas at the real-scale landfill for municipal solid waste. In an effort to come up with results experimental measurements were carried out at the landfill in Bijeljina. All measurements performed, were divided into 3 groups. The aims of two groups of measurement were to determine landfill gas and methane yield from concentrate and leachate in laboratory conditions (1st group and to find out concentrations of oxidizing matters (COD and BOD5 present in leachate and concentrate at different points of treatment as well as its variability over the time (2nd group which could be used to calculate the potential of landfill gas and methane generation from concentrate by recirculation, theoretically. 3rd group of measurements, carried out in parallel, have goal to determine the quality and quantity of the collected landfill gas at wells throughout the landfill. The results of analysis carried out in this experimental research show the clear evidence of concentrate recirculation impact on methane production by increasing the landfill gas flow, as well as its concentration within the landfill gas composition, at the nearby well. Although results indicated relatively high impact of concentrate recirculation on landfill gas production, comparing to its theoretical potential, the influence on the landfill at whole, is negligible, due to relatively low volumes in recirculation with respect to its size and objectively low potential given by organic matter present in concentrate.

  16. Virginia oil and gas production, exploration and development

    International Nuclear Information System (INIS)

    Stern, M.

    1990-01-01

    This paper reports that although production and drilling declined in Virginia in 1989, there were interesting projects that should impact Virginal's future oil and gas potential. In Dickenson County, Equitable Resources (EREX) began development on two areas of coalbed methane and extended the limits of the Nora Coalbed Methane Field with an exploratory well. In Westmoreland County, Texaco drilled a deep test well in the Taylorsville Basin. While a depressed market caused a decline in natural gas production of four percent, there was significant new production from ten coalbed methane wells in Dickenson County. The coalbed methane wells produced 181,526 Mcf or over one percent of the total production in the state. The 1989 total of 17,935,376 Mcf produced from 752 wells was a four percent decline from the 1988 figure of 18,682,350 Mcf from 728 wells

  17. Complete cumulative index (1963-1983)

    International Nuclear Information System (INIS)

    1983-01-01

    This complete cumulative index covers all regular and special issues and supplements published by Atomic Energy Review (AER) during its lifetime (1963-1983). The complete cumulative index consists of six Indexes: the Index of Abstracts, the Subject Index, the Title Index, the Author Index, the Country Index and the Table of Elements Index. The complete cumulative index supersedes the Cumulative Indexes for Volumes 1-7: 1963-1969 (1970), and for Volumes 1-10: 1963-1972 (1972); this Index also finalizes Atomic Energy Review, the publication of which has recently been terminated by the IAEA

  18. Flammable gas tank waste level reconciliation tank 241-SX-105

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddie, L.A.

    1997-01-01

    Fluor Daniel Northwest was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-SX-105 (SX-105, typical). The trapped gas evaluation document states that Tank SX-105 exceeds the 25% of the lower flammable limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The Welty Report is also a part of the trapped gas evaluation document criteria. The Welty Report contains various tank information, including: physical information, status, levels, and dry wells. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank SX-105 transfers and reported a net cumulative change of 20.75 in. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank SX-105 initially received waste from REDOX starting the second quarter of 1955. After June 1975, the tank primarily received processed waste (slurry) from the 242-S Evaporator/Crystallizer and transferred supernate waste to Tanks S-102 and SX-102. The Welty Report shows a cumulative change of 20.75 in. from June 1973 through December 1980

  19. High efficient ethanol and VFAs production from gas fermentation: effect of acetate, gas and inoculum microbial composition

    DEFF Research Database (Denmark)

    El-Gammal, Maie; Abou-Shanab, Reda; Angelidaki, Irini

    2017-01-01

    In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas...... fatty acids and ethanol was achieved by the pure culture (Clostridium ragsdalei). Depending on the headspace gas composition, VFA concentrations were up to 300% higher after fermentation with Clostridium ragsdalei compared to fermentation with mixed culture. The preferred gas composition with respect...

  20. Use of significance thresholds to integrate cumulative effects into project-level socio-economic impact assessment in Canada

    International Nuclear Information System (INIS)

    Joseph, Chris; Zeeg, Taylor; Angus, David; Usborne, Anna; Mutrie, Erin

    2017-01-01

    A longstanding critique of project-level environmental assessment is that it is weak at addressing cumulative effects, and because of this many argue that cumulative effects are best managed at a regional scale. However, in the absence of regional management it is important that project-level assessment supports cumulative effects management as best as possible. In this paper we present case study socio-economic impact assessments of liquefied natural gas development on Aboriginal groups on Canada's west coast. The case studies use an analytical structure modified from typical Canadian practice including unambiguous and non-arbitrary significance thresholds grounded in stakeholder values to focus baselines, impact assessment, and significance determination on cumulative effects. This approach is found to be more capable of informing decision-makers on cumulative effects as well as more rigorous and transparent than typical assessments. Much of this approach is not conceptually new, but at least in western Canada such an approach is not typically used or meaningfully implemented by practitioners. As such, the case studies serve to illustrate how practice can bolster project-level assessment. - Highlights: •Typical project assessment is weak with respect to cumulative effects. •Modified analysis structure and thresholds enable a focus on cumulative effects. •Clear, value-based thresholds make analysis rigorous, transparent, and democratic.

  1. Natural gas productive capacity for the lower 48 states 1984 through 1996, February 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This is the fourth wellhead productive capacity report. The three previous ones were published in 1991, 1993, and 1994. This report should be of particular interest to those in Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas. The EIA Dallas Field Office has prepared five earlier reports regarding natural gas productive capacity. These reports, Gas Deliverability and Flow Capacity of Surveillance Fields, reported deliverability and capacity data for selected gas fields in major gas producing areas. The data in the reports were based on gas-well back-pressure tests and estimates of gas-in-place for each field or reservoir. These reports use proven well testing theory, most of which has been employed by industry since 1936 when the Bureau of Mines first published Monograph 7. Demand for natural gas in the United States is met by a combination of natural gas production, underground gas storage, imported gas, and supplemental gaseous fuels. Natural gas production requirements in the lower 48 States have been increasing during the last few years while drilling has remained at low levels. This has raised some concern about the adequacy of future gas supplies, especially in periods of peak heating or cooling demand. The purpose of this report is to address these concerns by presenting a 3-year projection of the total productive capacity of natural gas at the wellhead for the lower 48 States. Alaska is excluded because Alaskan gas does not enter the lower-48 States pipeline system. The Energy Information Administration (EIA) generates this 3-year projection based on historical gas-well drilling and production data from State, Federal, and private sources. In addition to conventional gas-well gas, coalbed gas and oil-well gas are also included

  2. Impacts of Marcellus Shale Natural Gas Production on Regional Air Quality

    Science.gov (United States)

    Swarthout, R.; Russo, R. S.; Zhou, Y.; Mitchell, B.; Miller, B.; Lipsky, E. M.; Sive, B. C.

    2012-12-01

    Natural gas is a clean burning alternative to other fossil fuels, producing lower carbon dioxide (CO2) emissions during combustion. Gas deposits located within shale rock or tight sand formations are difficult to access using conventional drilling techniques. However, horizontal drilling coupled with hydraulic fracturing is now widely used to enhance natural gas extraction. Potential environmental impacts of these practices are currently being assessed because of the rapid expansion of natural gas production in the U.S. Natural gas production has contributed to the deterioration of air quality in several regions, such as in Wyoming and Utah, that were near or downwind of natural gas basins. We conducted a field campaign in southwestern Pennsylvania on 16-18 June 2012 to investigate the impact of gas production operations in the Marcellus Shale on regional air quality. A total of 235 whole air samples were collected in 2-liter electropolished stainless- steel canisters throughout southwestern Pennsylvania in a regular grid pattern that covered an area of approximately 8500 square km. Day and night samples were collected at each grid point and additional samples were collected near active wells, flaring wells, fluid retention reservoirs, transmission pipelines, and a processing plant to assess the influence of different stages of the gas production operation on emissions. The samples were analyzed at Appalachian State University for methane (CH4), CO2, C2-C10 nonmethane hydrocarbons (NMHCs), C1-C2 halocarbons, C1-C5 alkyl nitrates and selected reduced sulfur compounds. In-situ measurements of ozone (O3), CH4, CO2, nitric oxide (NO), total reactive nitrogen (NOy), formaldehyde (HCHO), and a range of volatile organic compounds (VOCs) were carried out at an upwind site and a site near active gas wells using a mobile lab. Emissions associated with gas production were observed throughout the study region. Elevated mixing ratios of CH4 and CO2 were observed in the

  3. Chimpanzees (Pan troglodytes) and the question of cumulative culture: an experimental approach.

    Science.gov (United States)

    Marshall-Pescini, Sarah; Whiten, Andrew

    2008-07-01

    There is increasing evidence for cultural variations in behaviour among non-human species, but human societies additionally display elaborate cumulative cultural evolution, with successive generations building on earlier achievements. Evidence for cumulative culture in non-human species remains minimal and controversial. Relevant experiments are also lacking. Here we present a first experiment designed to examine chimpanzees' capacity for cumulative social learning. Eleven young chimpanzees were presented with a foraging device, which afforded both a relatively simple and a more complex tool-use technique for extracting honey. The more complex 'probing' technique incorporated the core actions of the simpler 'dipping' one and was also much more productive. In a baseline, exploration condition only two subjects discovered the dipping technique and a solitary instance of probing occurred. Demonstrations of dipping by a familiar human were followed by acquisition of this technique by the five subjects aged three years or above, whilst younger subjects showed a significant increase only in the elements of the dipping technique. By contrast, subsequent demonstrations of the probing task were not followed by acquisition of this more productive technique. Subjects stuck to their habitual dipping method despite an escalating series of demonstrations eventually exceeding 200. Supplementary tests showed this technique is within the capability of chimpanzees of this age. We therefore tentatively conclude that young chimpanzees exhibit a tendency to become 'stuck' on a technique they initially learn, inhibiting cumulative social learning and possibly constraining the species' capacity for cumulative cultural evolution.

  4. World natural gas supply and demand: Brief pause in production

    International Nuclear Information System (INIS)

    Coccia, G.

    1993-01-01

    With reference to the 1992 CEDIGAZ (Centre International sur le Gas Naturel et tous Hydrocarbures Gazeux) report on world natural gas supply and demand, this paper assesses current market and production trends in this industry. The slight drop in production in 1992, the first which has which has occurred after many consecutive years of steady increases, is ascribed to ownership disputes among the former-USSR republics and major changes in the organizational structure of the former-USSR's natural gas industry. Strong increases in demand are forecasted due to expected strong population growth and increased industrialization to take place in China and India. Price trends in natural gas should remain steady as a result of plentiful supplies of this fuel and coal, a major competitor. The use of relatively clean natural gas is suggested as a practical alternative to energy taxes now being proposed as a means for the reduction of greenhouse gas emissions

  5. Economic benefits to gas customers from completed research and development at GRI: An occasional publication of Gas Research Institute on topics of current interest, August 1990

    International Nuclear Information System (INIS)

    Pine, G.D.; Rinholm, R.C.

    1990-08-01

    Conducted in cooperation with gas industry partners, GRI's R and D program brought 93 gas products, processes and techniques, and 53 information items to the marketplace during 1987-1990. Quantitative estimates of economic benefits to the gas industry and its customers are provided for 60 of the technologies. The net present value is approximately $7.4 billion. While not accounting for R and D efforts in progress, the figure is 4.3 times the cumulative net present value of the cost of the entire GRI R and D program from its inception and represents a rate of return to ratepayers of almost 20%. When compared with the cost of completed R and D, the benefit-to-cost ratio is 8.1 to 1

  6. Gas Fermentation using Thermophilic Moorella Species for production of Biochemicals

    DEFF Research Database (Denmark)

    Redl, Stephanie Maria Anna

    Gas fermentation is a promising technology which gained increasing attention over the last years. In this process, acetogenic bacteria convert gases rich in H2, CO2, and CO, into compounds of higher value. The gas can derive from industrial off-gas or from waste streams via gasification. In the gas...... fermentation processes that are nearly on commercial level, mesophilic acetogens are used to mainly produce ethanol and butanediol. However, thermophilic acetogens, such as Moorella thermoacetica would allow for easy downstream processing when producing volatile products such as acetone. This thesis starts...... with a review of the feedstock potential for gas fermentation and how thermophilic production strains as well as unconventional fermentation processes such as mixotrophy can help to exploit this potential. I analyzed a process with respect to thermodynamic and economic considerations, in which acetone...

  7. A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process

    Science.gov (United States)

    Jia, B.; Tsau, J. S.; Barati, R.

    2017-12-01

    Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might

  8. Production of hydrogen by thermocatalytic cracking of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    The conventional methods of hydrogen production from natural gas (for example, steam reforming and partial oxidation) are complex, multi-step processes that produce large quantities of CO{sub 2}. The main goal of this project is to develop a technologically simple process for hydrogen production from natural gas (NG) and other hydrocarbon fuels via single-step decomposition of hydrocarbons. This approach eliminates or significantly reduces CO{sub 2} emission. Carbon is a valuable by-product of this process, whereas conventional methods of hydrogen production from NG produce no useful by-products. This approach is based on the use of special catalysts that reduce the maximum temperature of the process from 1400-1500{degrees}C (thermal non-catalytic decomposition of methane) to 500-900{degrees}C. Transition metal based catalysts and various forms of carbon are among the candidate catalysts for the process. This approach can advantageously be used for the development of compact NG reformers for on-site production of hydrogen-methane blends at refueling stations and, also, for the production of hydrogen-rich gas for fuel cell applications. The author extended the search for active methane decomposition catalysts to various modifications of Ni-, Fe-, Mo- and Co-based catalysts. Variation in the operational parameters makes it possible to produce H{sub 2}-CH{sub 4} blends with a wide range of hydrogen concentrations that vary from 15 to 98% by volume. The author found that Ni-based catalysts are more effective at temperatures below 750{degrees}C, whereas Fe-based catalysts are effective at temperatures above 800{degrees}C for the production of hydrogen with purity of 95% v. or higher. The catalytic pyrolysis of liquid hydrocarbons (pentane, gasoline) over Fe-based catalyst was conducted. The author observed the production of a hydrogen-rich gas (hydrogen concentration up to 97% by volume) at a rate of approximately 1L/min.mL of hydrocarbon fuel.

  9. The Influence of Allocation on the Carbon Footprint of Electricity Production from Waste Gas, a Case Study for Blast Furnace Gas

    Directory of Open Access Journals (Sweden)

    Joeri Van Mierlo

    2013-03-01

    Full Text Available Producing electricity from waste gas is an after treatment for waste gas while recovering the energy content. This paper addresses the methodology to calculate the effect that waste gas energy recovery has on lowering the impact of climate change. Greenhouse gases are emitted while burning the waste gas. However, a thorough study should include the production of the feedstock as well as the production of the infrastructure. A framework is developed to calculate the environmental impact of electricity production from waste gas with a life cycle approach. The present paper has a twofold purpose: to assess the climate change impact of generating electricity with blast furnace gas (BFG as a waste gas from the steel industry; and to establish a sensitivity assessment of the environmental implications of different allocation rules.

  10. European energy security: An analysis of future Russian natural gas production and exports

    Energy Technology Data Exchange (ETDEWEB)

    Soederbergh, Bengt, E-mail: bengt.soderbergh@fysast.uu.s [Global Energy Systems, Department of Physics and Astronomy, Uppsala University, Laegerhyddsvaegen 1, Box 535, SE-751 21, Uppsala (Sweden); Jakobsson, Kristofer; Aleklett, Kjell [Global Energy Systems, Department of Physics and Astronomy, Uppsala University, Laegerhyddsvaegen 1, Box 535, SE-751 21, Uppsala (Sweden)

    2010-12-15

    The widening gap between EU gas production and consumption may require an 87% increase of import volumes between 2006 and 2030, and there are great uncertainties regarding the amounts of gas that can be expected from new suppliers. The potential of increased production from Norway and Algeria is limited; hence, Russia is likely to play a crucial part of meeting the anticipated growing gas demand of the EU. A field-by-field study of 83 giant gas fields shows that the major producing Russian gas fields are in decline, and by 2013 much larger supplies from the Yamal Peninsula and the Shtokman field will be needed in order to avoid a decline in production. Gas from fields in Eastern Siberia and the Far East will mainly be directed to the Asian and Pacific Rim markets, thereby limiting its relevance to the European and CIS markets. As a result, the maximum export increase to the European and CIS markets amounts only to about 45% for the period 2015-2030. The discourse surrounding the EU's dependence on Russian gas should thus not only be concerned with geopolitics, but also with the issue of resource limitations. - Research highlights: {yields}Natural gas production in the Nadym Pur Taz region (Western Siberia) will start to decline within a few years. {yields}New production from the Yamal peninsula is critical to ensure gas exports to Europe. {yields}Additional production in East Siberia and the Far East will not be available for the European market. {yields}Rapid gas demand growth in China might also lead to competition for gas from Western Siberia.

  11. Investigation of Productivity of Brown’s (HHO Gas Generator

    Directory of Open Access Journals (Sweden)

    Andrius Brazdžiūnas

    2017-01-01

    Full Text Available There were made tests of productivity of Brown’s gas generator using different potassium hydroxide (KOH concentration changing voltage and amperage. It is described experimental stand that is used to do researches and methodology of experiments performance. Brown’s gas production in electrolyser (electrolyser – the device that is going electrolysis to use stainless steel (AISI 316 electrodes. It was determined after researches that increasing the potassium hydroxide (KOH concentration in the solution and using the same amperage and voltage of the all concentration results are similar. The highest productivity 1.429 l/min was obtained by using a 120 A amperage and 15 V voltage.

  12. Natural gas reserve growth in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Woronuk, R. [Canadian Gas Potential Committee, Calgary, AB (Canada)]|[GasEnergy Strategies Inc., Calgary, AB (Canada)

    2003-07-01

    An appreciation study of a natural gas reservoir is a component of assessing its ultimate reserve potential. The Canadian Gas Potential Committee (CGPC) defines appreciation as the change in a reserve estimate from a previously booked pool or basin. Basins cannot appreciate through the addition of new pools. Ultimate potential includes all of the following: cumulative production; remaining discovered reserves; adjustments to remaining discovered reserves; and, full appreciated undiscovered reserves. This presentation outlined the procedures used by the CGPC in its appreciation studies. It also reviewed data supplier issues, regulatory practices, and booking issues. A series of graphs were also included depicting pools discovered in 1993 and the average pool gas in place. Reservoir loss from 1993 to 1998 was attributed to the fact that enhanced recovery technology cannot keep pace with the degradation in pool quality. It was noted that beyond 1998, significant increases in gas prices should increase recovery factors. Special studies by the Alberta Energy and Utilities Board have included the depreciation of unconnected gas pools and the appreciation of sheet sands. The challenge of tracking pool appreciation was discussed with reference to estimating new pool discoveries in established fields. 2 tabs., 6 figs.

  13. Natural gas for power production in Western Europe

    International Nuclear Information System (INIS)

    1993-01-01

    The third and last part of the Sub-Committee's study on natural gas for power generation is reprinted in this issue. This part addresses gas consumption in electricity production until the year 2010. The first part of the study dealing with combined cycle power plants was published in September and the 2nd part on regulatory and environmental issues in October 1992

  14. Constant rate natural gas production from a well in a hydrate reservoir

    International Nuclear Information System (INIS)

    Ji Chuang; Ahmadi, Goodarz; Smith, Duane H.

    2003-01-01

    Using a computational model, production of natural gas at a constant rate from a well that is drilled into a confined methane hydrate reservoir is studied. It is assumed that the pores in the reservoir are partially saturated with hydrate. A linearized model for an axisymmetric condition with a fixed well output is used in the analysis. For different reservoir temperatures and various well outputs, time evolutions of temperature and pressure profiles, as well as the gas flow rate in the hydrate zone and the gas region, are evaluated. The distance of the decomposition front from the well as a function of time is also computed. It is shown that to maintain a constant natural gas production rate, the well pressure must be decreased with time. A constant low production rate can be sustained for a long duration of time, but a high production rate demands unrealistically low pressure at the well after a relatively short production time. The simulation results show that the process of natural gas production in a hydrate reservoir is a sensitive function of reservoir temperature and hydrate zone permeability

  15. Maximization of Egyptian Gas Oil Production Through the Optimal Use of the Operating Parameters

    International Nuclear Information System (INIS)

    Marawan, H.

    2004-01-01

    Gas oil is the major fossil fuel consumed around the world. Global gas oil consumption is rising at a steadily fast pace because of its higher combustion efficiency (versus gasoline). The annual increase rate of gas oil consumption in Egypt is 7 % whereas, the world increase rates range from 1.5 % to 2 % . The main sources for producing gas oil in Egypt refiners is the direct production from the atmospheric distillation process units or it may be produced as a side product from vacuum distillation units . Gas oil is produced through hydrocracking process of vacuum distillation side streams and heavy cocked gas oil. Gas oil production yield can be increased through the existing operation process units. Modifications of the current atmospheric and vacuum tower operations will increase gas oil yield rates to 20 % more than the existing production rates. The modification of the operating conditions and adoption of the optimum catalyst of the existing hydrocracking and mild hydro cracking process units improve gas oil production yield. Operating delayed cocker at high temperatures, low pressure and low cycle ratio also support achieving the maximization of gas oil yield

  16. Western Gas Sands Project. Status report, 1 July-31 July, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-01

    National Laboratories and Energy Technology Centers continued projects during July. Bartlesville Energy Technology Center continued work on core/fluid testing, fabrication of and improvements to confining pressure apparatus, advanced logging techniques and interpretation and reservoir simulation studies. At Lawrence Livermore Laboratory theoretical analysis and experimental programs continued for hydraulic fracturing. Testing of the borehole seismic and hydrophone systems for fracture mapping continued at Sandia Laboratories. The CER Corporation RB-MHF 3 well has been transferred to Rio Blanco Natural Gas Company for further testing. Cyclic gas injection and production continued at CIG's Miller No. 1 and Sprague No. 1 wells. The DOE well test facility was transported to the Rio Blanco Natural Gas Company well No. 397-19-1 Government. The cumulative production of Mitchell Energy Muse-Duke No. 1 as of July 31, 1979, was just over one billion cubic ft of gas. A flow log was run on the Mobil PCU F31-13G well. Exploratory coring for the Sandia Hole No. 6 fracture experiment continued in July with the completion of two additional holes.

  17. Cumulative effects of wind turbines. A guide to assessing the cumulative effects of wind energy development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This guidance provides advice on how to assess the cumulative effects of wind energy developments in an area and is aimed at developers, planners, and stakeholders interested in the development of wind energy in the UK. The principles of cumulative assessment, wind energy development in the UK, cumulative assessment of wind energy development, and best practice conclusions are discussed. The identification and assessment of the cumulative effects is examined in terms of global environmental sustainability, local environmental quality and socio-economic activity. Supplementary guidance for assessing the principle cumulative effects on the landscape, on birds, and on the visual effect is provided. The consensus building approach behind the preparation of this guidance is outlined in the annexes of the report.

  18. The challenge of cumulative impacts

    Energy Technology Data Exchange (ETDEWEB)

    Masden, Elisabeth

    2011-07-01

    Full text: As governments pledge to combat climate change, wind turbines are becoming a common feature of terrestrial and marine environments. Although wind power is a renewable energy source and a means of reducing carbon emissions, there is a need to ensure that the wind farms themselves do not damage the environment. There is particular concern over the impacts of wind farms on bird populations, and with increasing numbers of wind farm proposals, the concern focuses on cumulative impacts. Individually, a wind farm, or indeed any activity/action, may have minor effects on the environment, but collectively these may be significant, potentially greater than the sum of the individual parts acting alone. Cumulative impact assessment is a legislative requirement of environmental impact assessment but such assessments are rarely adequate restricting the acquisition of basic knowledge about the cumulative impacts of wind farms on bird populations. Reasons for this are numerous but a recurring theme is the lack of clear definitions and guidance on how to perform cumulative assessments. Here we present a conceptual framework and include illustrative examples to demonstrate how the framework can be used to improve the planning and execution of cumulative impact assessments. The core concept is that explicit definitions of impacts, actions and scales of assessment are required to reduce uncertainty in the process of assessment and improve communication between stake holders. Only when it is clear what has been included within a cumulative assessment, is it possible to make comparisons between developments. Our framework requires improved legislative guidance on the actions to include in assessments, and advice on the appropriate baselines against which to assess impacts. Cumulative impacts are currently considered on restricted scales (spatial and temporal) relating to individual development assessments. We propose that benefits would be gained from elevating cumulative

  19. Influence of biogenic gas production on coalbed methane recovery index

    Directory of Open Access Journals (Sweden)

    Hongyu Guo

    2017-05-01

    Full Text Available In investigating the effect of biogenic gas production on the recovery of coalbed methane (CBM, coal samples spanning different ranks were applied in the microbial-functioned simulation experiments for biogenic methane production. Based on the biogenic methane yield, testing of pore structures, and the isothermal adsorption data of coals used before and after the simulation experiments, several key parameters related to the recovery of CBM, including recovery rate, gas saturation and ratio of critical desorption pressure to reservoir pressure, etc., were calculated and the corresponding variations were further analyzed. The results show that one of the significant functions of microbial communities on coal is possibly to weaken its affinity for methane gas, especially with the advance of coal ranks; and that by enhancing the pore system of coal, which can be evidenced by the increase of porosity and permeability, the samples collected from Qianqiu (Yima in Henan and Shaqu (Liulin in Shanxi coal mines all see a notable increase in the critical desorption pressure, gas saturation and recovery rate, as compared to the moderate changes of that of Guandi (Xishan in Shanxi coal sample. It is concluded that the significance of enhanced biogenic gas is not only in the increase of CBM resources and the improvement of CBM recoverability, but in serving as an engineering reference for domestic coalbed biogenic gas production.

  20. In vitro organic matter digestibility and gas production of fish-meal ...

    African Journals Online (AJOL)

    In this study, an in vitro rumen gas production technique was utilized to evaluate fish-meal coated with different types and levels of fats for total gas production, Metabolizable energy (ME) and organic matter digestibility (OMD) contents. Approximately 200 mg of sample was weighed and inserted in glass syringes, then ...

  1. Multi-layered satisficing decision making in oil and gas production platforms

    DEFF Research Database (Denmark)

    Lindegaard Mikkelsen, Lars; Demazeau, Yves; Jørgensen, B. N.

    2013-01-01

    From a control perspective, offshore oil and gas production is very challenging due to the many and potentially conflicting production objectives that arise from the intrinsic complexity of the oil and gas domain. In this paper, we show how a multi-layered multi-agent system can be used to implem...

  2. Emittance growth due to beam-gas scattering

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1992-06-01

    The effect of beam-gas scattering on beam emittance is examined by deriving the beam distribution function. The distribution function is found by treating the beam-gas scattering as a filtered Poisson process and calculating the cumulants of the distribution. (author)

  3. Ruminal Methane Production on Simple Phenolic Acids Addition in in Vitro Gas Production Method

    Directory of Open Access Journals (Sweden)

    A. Jayanegara

    2009-04-01

    Full Text Available Methane production from ruminants contributes to total global methane production, which is an important contributor to global warming. In this experiment, six sources of simple phenolic acids (benzoic, cinnamic, phenylacetic, caffeic, p-coumaric and ferulic acids at two different levels (2 and 5 mM added to hay diet were evaluated for their potential to reduce enteric methane production using in vitro Hohenheim gas production method. The measured variables were gas production, methane, organic matter digestibility (OMD, and short chain fatty acids (SCFA. The results showed that addition of cinnamic, caffeic, p-coumaric and ferulic acids at 5 mM significantly (P p-coumaric > ferulic > cinnamic. The addition of simple phenols did not significantly decrease OMD. Addition of simple phenols tends to decrease total SCFA production. It was concluded that methane decrease by addition of phenolic acids was relatively small, and the effect of phenolic acids on methane decrease depended on the source and concentration applied.

  4. Increased productivity through waste reduction effort in oil and gas company

    Science.gov (United States)

    Hidayati, J.; Silviana, NA; Matondang, RA

    2018-02-01

    National companies engaged in oil and gas activities in the upstream sector. In general, the on going operations include drilling, exploration, and production activities with the result being crude oil channelled for shipment. Production activities produce waste gas (flare) of 0.58 MMSCFD derived from 17.05% of natural gas produced. Gas flares are residual gases that have been burning through flare stacks to avoid toxic gases such as H2S and CO that are harmful to human health and the environment. Therefore, appropriate environmental management is needed; one of them is by doing waste reduction business. Through this approach, it is expected that waste reduction efforts can affect the improvement of environmental conditions while increasing the productivity of the company. In this research begins by identifying the existence of problems on the company related to the amount of waste that is excessive and potentially to be reduced. Alternative improvements are then formulated and selected by their feasibility to be implemented through financial analysis, and the estimation of alternative contributions to the level of productivity. The result of this research is an alternative solution to solve the problem of the company by doing technological based engineering by reusing gas flare into fuel for incinerator machine. This alternative contributes to the increased productivity of material use by 23.32%, humans 83.8%, capital 10.13 %, and waste decreased by 0.11%.

  5. Environmental review of natural gas production in Lake Erie

    International Nuclear Information System (INIS)

    O'Shea, K.

    2002-01-01

    The water of Lake Erie is used as a source of drinking water for Ontario, New York, Pennsylvania, Ohio and Michigan. An environmental review has been conducted to determine the impact of drilling operations on the overall ecology of the lake. Since 1913, 2000 natural gas wells have been drilled in Lake Erie, of which 550 currently produce gas and account for 75 per cent of Ontario's total gas production. 180 wells are shut-in or suspended and the remaining wells have been abandoned. The gas wells are connected to onshore production facilities by approximately 1,600 km of small diameter pipelines that lie buried near shore or on top of the lake bed. Nearly 90 per cent of the in-lake infrastructure is in water depths of more than 20 metres. Talisman Energy is actively involved with the Canadian Coast Guard, the Department of Fisheries and Oceans, and the Ministry of Natural Resources to ensure cooperation between regulators and off-shore personnel. The environmental assessment of natural gas production in Lake Erie included a review of regulatory and best management practices, a biophysical overview of the lake, and a review of drilling practices, well completions, handling of waste streams, materials management, operations inspections, wastewater discharge, air emissions, and oil spills. It was revealed that for most drilling programs, cuttings are washed and discharged to the Lake. Ongoing testing will determine the impact that this practice has on benthic populations. The drill muds used for drilling operations are water based, environmentally friendly, and re-used between well locations. For completion programs, all well activities are closed circuit operations. Wells are abandoned through plugging with cement, removing wellheads and casing below the lake bottom. There has been a reported volume of about 23,000 litres of spilled product from 1990 to 2001, of which 68 per cent has come from 3 industrial companies that operate near Lake Erie. The offshore gas

  6. Greenhouse gas emissions in milk and dairy product chains

    DEFF Research Database (Denmark)

    Flysjö, Anna Maria

    Reducing greenhouse gas emissions from dairy products is one important step towards a more sustainable dairy sector. To ensure effective mitigation, reliable assessment methods are required. The present PhD thesis focuses on some of the most critical methodological aspects influencing the carbon ...... throughout the value chain – from cow to consumer.......Reducing greenhouse gas emissions from dairy products is one important step towards a more sustainable dairy sector. To ensure effective mitigation, reliable assessment methods are required. The present PhD thesis focuses on some of the most critical methodological aspects influencing the carbon...... footprint (CF) of milk and dairy products, namely; estimating CH4 and N2O emissions; accounting for land use change; co-product handling; and defining the functional unit. In addition, the CF is calculated for different types of dairy products, and suggestions on various mitigation measures are presented...

  7. Cumulative Energy Demands (CED) and Cumulative Emissions of PV systems in the European Union: Methodological aspects; Methodische Aspekte zu kumulierten Energieaufwendungen und Emissionen bei Photovoltaikanlagen in der Europaeischen Union

    Energy Technology Data Exchange (ETDEWEB)

    Guerzenich, D.

    2002-07-01

    The present dissertation investigates options to save primary energy and emissions when manufacturing and using photovoltaic systems in regard to the concept of sustainability. Valuation is done by use of Cumulative Energy Demands (CED) and Cumulative Emissions as well as yearly substituted primary energy and avoided emissions. The main aim is to evaluate the consequences of national differences in electricity supply within the European Community upon the results of an ecological assessment. Therefore seven representative countries were selected within the EU. The most common photovoltaic systems presently and in the near future are monocrystalline- (sc-), multicrystalline- (pc-) and amorphous-silicon (a-Si) based. Comparison of production of these systems - with equal peak power - shows, that CED for production of these systems is lowest with pc-Si, followed by a-Si and sc-Si. The investigated countries are divided into two groups. One group - consisting of Austria and Sweden - with lower CEDs than the other one, whereas the CEDs in the second group approximately lie within the same margin. The Cumulative CO{sub 2}-Emissions show their lowest values not only in Austria and Sweden but also in France, while Cumulative NO{sub x}- and SO{sub 2}-Emissions tend to result in lower values when production takes place in Sweden or France. Especially pc-Si-Systems are found to give best results, whereas sc-Si-Systems lie at the end of the line. The use of the PC-Systems results in highest primary energy substitution in Spain and highest avoided emissions in Italy. In conclusion a comparison between production and use of the systems as well as calculation of energy payback time and emission related payback time is done. (orig.)

  8. Analysis of Specific Features of the Ukrainian Market of Natural Gas Production and Consumption

    Directory of Open Access Journals (Sweden)

    Lelyuk Oleksiy V.

    2013-11-01

    Full Text Available The article provides results of the study of specific features of the Ukrainian market of natural gas production and consumption. It analyses dynamics of the specific weight of Ukraine in general volumes of natural gas consumption in the world, dynamics of natural gas consumption in Ukraine during 1990 – 2012 and dependence of natural gas consumption on GDP volumes by the purchasing power parity. It studies the structure of natural gas consumption by regions in 2012 and sectors of economy, resource base of natural gas in Ukraine and also dynamics of established resources of natural gas in Ukraine and dynamics of natural gas production. It analyses base rates of growth of natural gas resources and production in Ukraine. It considers dynamics of import of natural gas into Ukraine and its import prices and also the structure of natural gas import. It identifies the balance of the natural gas market in Ukraine. On the basis of the conducted analysis the article proves that Ukraine is a gas-deficit country of the world, which depends on natural gas import supplies.

  9. JENDL gas-production cross section file

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Narita, Tsutomu

    1992-05-01

    The JENDL gas-production cross section file was compiled by taking cross-section data from JENDL-3 and by using the ENDF-5 format. The data were given to 23 nuclei or elements in light nuclei and structural materials. Graphs of the cross sections and brief description on their evaluation methods are given in this report. (author)

  10. A synthesis of research on wood products and greenhouse gas impacts

    International Nuclear Information System (INIS)

    Sathre, R.; O'Connor, J.

    2008-11-01

    Existing scientific literature on the wood products industry was reviewed in an effort to summarize consensus findings, or range of findings, addressing the net life cycle greenhouse gas footprint of wood construction products. The report sought to clarify whether actively managing forests for wood production was better, worse or neutral for climate change than leaving the forest in its natural state. In addition, it sought to quantify the greenhouse gas emissions avoided per unit of wood substituted for non-wood materials. Forty-eight international studies were examined in terms of fossil energy used in wood manufacturing and compared alternatives, such as the avoidance of industrial process carbon emissions as with cement manufacturing; the storage of carbon in forests and forest products; the use of wood by-products as a biofuel replacement for fossil fuels; and carbon storage and emission due to forest products in landfills. The report presented a list of studies reviewed and individual summaries of study findings. A meta-analysis of displacement factors of wood product use was also presented. It was concluded from all of the studies reviewed, that the production of wood-based materials and products results in less greenhouse gas emission than the production of functionally comparable non-wood materials and products. 48 refs., 1 tab.

  11. Rainfall Intensity and Frequency Explain Production Basis Risk in Cumulative Rain Index Insurance

    Science.gov (United States)

    Muneepeerakul, Chitsomanus P.; Muneepeerakul, Rachata; Huffaker, Ray G.

    2017-12-01

    With minimal moral hazard and adverse selection, weather index insurance promises financial resilience to farmers struck by harsh weather conditions through swift compensation at affordable premium. Despite these advantages, the very nature of indexing gives rise to production basis risk as the selected weather indexes do not sufficiently correspond to actual damages. To address this problem, we develop a stochastic yield model, built upon a stochastic soil moisture model driven by marked Poisson rainfall. Our analysis shows that even under similar temperature and rainfall amount yields can differ significantly; this was empirically supported by a 2-year field experiment in which rain-fed maize was grown under very similar total rainfall. Here, the year with more intense, less-frequent rainfall produces a better yield—a rare counter evidence to most climate change projections. Through a stochastic yield model, we demonstrate the crucial roles of rainfall intensity and frequency in determining the yield. Importantly, the model allows us to compute rainfall pattern-related basis risk inherent in cumulative rain index insurance. The model results and a case study herein clearly show that total rainfall is a poor indicator of yield, imposing unnecessary production basis risk on farmers and false-positive payouts on insurers. Incorporating rainfall intensity and frequency in the design of rain index insurance can offer farmers better protection, while maintaining the attractive features of the weather index insurance and thus fulfilling its promise of financial resilience.

  12. 32 CFR 651.16 - Cumulative impacts.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Cumulative impacts. 651.16 Section 651.16... § 651.16 Cumulative impacts. (a) NEPA analyses must assess cumulative effects, which are the impact on the environment resulting from the incremental impact of the action when added to other past, present...

  13. Interpreting Gas Production Decline Curves By Combining Geometry and Topology

    Science.gov (United States)

    Ewing, R. P.; Hu, Q.

    2014-12-01

    Shale gas production forms an increasing fraction of domestic US energy supplies, but individual gas production wells show steep production declines. Better understanding of this production decline would allow better economic forecasting; better understanding of the reasons behind the decline would allow better production management. Yet despite these incentives, production declines curves remain poorly understood, and current analyses range from Arps' purely empirical equation to new sophisticated approaches requiring multiple unavailable parameters. Models often fail to capture salient features: for example, in log-log space many wells decline with an exponent markedly different from the -0.5 expected from diffusion, and often show a transition from one decline mode to another. We propose a new approach based on the assumption that the rate-limiting step is gas movement from the matrix to the induced fracture network. The matrix is represented as an assemblage of equivalent spheres (geometry), with low matrix pore connectivity (topology) that results in a distance-dependent accessible porosity profile given by percolation theory. The basic theory has just 2 parameters: the sphere size distribution (geometry), and the crossover distance (topology) that characterizes the porosity distribution. The theory is readily extended to include e.g. alternative geometries and bi-modal size distributions. Comparisons with historical data are promising.

  14. Reactions of newly formed fission products in the gas phase

    International Nuclear Information System (INIS)

    Strickert, R.G.

    1976-01-01

    A dynamic gas-flow system was constructed which stopped fission products in the gas phase and rapidly separated (in less than 2 sec) volatile compounds from non-volatile ones. The filter assembly designed and used was shown to stop essentially all non-volatile fission products. Between 5 percent and 20 percent of tellurium fission-product isotopes reacted with several hydrocarbon gases to form volatile compounds, which passed through the filter. With carbon monoxide gas, volatile tellurium compound(s) (probably TeCO) were also formed with similar efficiencies. The upper limits for the yields of volatile compounds formed between CO and tin and antimony fission products were shown to be less than 0.3 percent, so tellurium nuclides, not their precursors, reacted with CO. It was found that CO reacted preferentially with independently produced tellurium atoms; the reaction efficiency of beta-produced atoms was only 27 +- 3 percent of that of the independently formed atoms. The selectivity, which was independent of the over-all reaction efficiency, was shown to be due to reaction of independently formed atoms in the gas phase. The gas phase reactions are believed to occur mainly at thermal energies because of the independence of the yield upon argon moderator mole-fraction (up to 80 percent). It was shown in some experiments that about one-half of the TeCO decomposed in passing through a filter and that an appreciable fraction (approximately 20 percent) of the tellurium atoms deposited on the filter reacted agin with CO. Other tellurium atoms on the filter surface (those formed by beta decay and those formed independently but not reacting in the gas phase) also reacted with CO, but probably somewhat less efficiently than atoms formed by TeCO decomposition. No evidence was found for formation of TeCO as a direct result of beta-decay

  15. Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation.

    Science.gov (United States)

    Daniell, James; Nagaraju, Shilpa; Burton, Freya; Köpke, Michael; Simpson, Séan Dennis

    World energy demand is expected to increase by up to 40% by 2035. Over this period, the global population is also expected to increase by a billion people. A challenge facing the global community is not only to increase the supply of fuel, but also to minimize fossil carbon emissions to safeguard the environment, at the same time as ensuring that food production and supply is not detrimentally impacted. Gas fermentation is a rapidly maturing technology which allows low carbon fuel and commodity chemical synthesis. Unlike traditional biofuel technologies, gas fermentation avoids the use of sugars, relying instead on gas streams rich in carbon monoxide and/or hydrogen and carbon dioxide as sources of carbon and energy for product synthesis by specialized bacteria collectively known as acetogens. Thus, gas fermentation enables access to a diverse array of novel, large volume, and globally available feedstocks including industrial waste gases and syngas produced, for example, via the gasification of municipal waste and biomass. Through the efforts of academic labs and early stage ventures, process scale-up challenges have been surmounted through the development of specialized bioreactors. Furthermore, tools for the genetic improvement of the acetogenic bacteria have been reported, paving the way for the production of a spectrum of ever-more valuable products via this process. As a result of these developments, interest in gas fermentation among both researchers and legislators has grown significantly in the past 5 years to the point that this approach is now considered amongst the mainstream of emerging technology solutions for near-term low-carbon fuel and chemical synthesis.

  16. Production statistics of gas turbines and superchargers in Japan in 1992

    Energy Technology Data Exchange (ETDEWEB)

    Honma, T [Toshiba Corp., Tokyo (Japan)

    1994-03-01

    Production of gas turbines and superchargers in Japan in 1992 was summarized giving various production statistics. In land and marine gas turbines, the total production decreased by 2% in unit, however, increased rapidly by 84% in total power output due to a remarkable increase in large unit over and including 30,000 PS, exceeding the total power output of 5,000 MW. The production of small units less than 1,000 PS decreased in both unit and power output, and all the units were for private use of which 96% were emergency power generation use. The production of medium units decreased in both unit and power output, including a remarkable decrease in unit by 26% and in power output by 38% for base load generation use. In aircraft gas turbines, the production in 1992 decreased by 0-10%, however, 89 fan modules of V2500 turbofan engine were produced, summing up into 273 units since 1988. Most of superchargers produced in 1992 were of class 1 below 100 mm in impeller diameter, reaching 1,720,000 units. 10 figs., 9 tabs.

  17. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    Science.gov (United States)

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  18. How does increased corn-ethanol production affect US natural gas prices?

    International Nuclear Information System (INIS)

    Whistance, Jarrett; Thompson, Wyatt

    2010-01-01

    In recent years, there has been a push to increase biofuel production in the United States. The biofuel of choice, so far, has been ethanol produced from corn. The effects of increased corn-ethanol production on the consumer prices of food and energy continue to be studied and debated. This study examines, in particular, the effects of increased corn-ethanol production on US natural gas prices. A structural model of the natural gas market is developed and estimated using two stage least squares. A baseline projection for the period 2007-2018 is determined, and two scenarios are simulated. In the first scenario, current biofuel policies including EISA mandates, tariffs, and tax credits are removed. In the second scenario, we hold ethanol production to the level required only for largely obligatory additive use. The results indicate that the increased level of corn-ethanol production occurring as a result of the current US biofuel policies may lead to natural gas prices that are as much as 0.25% higher, on average, than if no biofuel policies were in place. A similar comparison between the baseline and second scenario indicates natural gas prices could be as much as 0.5% higher, on average, for the same period.

  19. International comparisons of productivity and its determinants in the natural gas industry

    International Nuclear Information System (INIS)

    Kim, Tai-Yoo; Lee, Jeong-Dong; Park, Yearn H.; Kim, Boyoung

    1999-01-01

    The objective of this paper was to evaluate the performance of the natural gas industry using an inter-country comparison of productivity level and its determinants. Three methodologies: multilateral Toernqvist productivity analysis; managerial index system analysis; and non-parametric efficiency analysis, are employed to make a methodological cross-checking and to perform diversified analysis. From the empirical results, we identified the level and growth rate of productivity of individual firms. The results also indicated that the Korean gas industry has shown a relatively low level of productivity. From the results of managerial performance index analysis, we found that during the recent years of regulatory changes, the final price of gas has decreased dramatically while the productivity growth has not been enough to offset the effect of decreased output price, which has resulted in decreased profit. We also examine the extent of the allocative, scale, and managerial efficiency as source components of the overall efficiency based on the performance of best-practiced. With the results of this study, an effective policy measure could be established to improve the productivity and the overall managerial performance in the natural gas industry

  20. New use of global warming potentials to compare cumulative and short-lived climate pollutants

    Science.gov (United States)

    Allen, Myles R.; Fuglestvedt, Jan S.; Shine, Keith P.; Reisinger, Andy; Pierrehumbert, Raymond T.; Forster, Piers M.

    2016-08-01

    Parties to the United Nations Framework Convention on Climate Change (UNFCCC) have requested guidance on common greenhouse gas metrics in accounting for Nationally determined contributions (NDCs) to emission reductions. Metric choice can affect the relative emphasis placed on reductions of `cumulative climate pollutants' such as carbon dioxide versus `short-lived climate pollutants' (SLCPs), including methane and black carbon. Here we show that the widely used 100-year global warming potential (GWP100) effectively measures the relative impact of both cumulative pollutants and SLCPs on realized warming 20-40 years after the time of emission. If the overall goal of climate policy is to limit peak warming, GWP100 therefore overstates the importance of current SLCP emissions unless stringent and immediate reductions of all climate pollutants result in temperatures nearing their peak soon after mid-century, which may be necessary to limit warming to ``well below 2 °C'' (ref. ). The GWP100 can be used to approximately equate a one-off pulse emission of a cumulative pollutant and an indefinitely sustained change in the rate of emission of an SLCP. The climate implications of traditional CO2-equivalent targets are ambiguous unless contributions from cumulative pollutants and SLCPs are specified separately.

  1. Assessing the nutritional value of agroindustrial co-products and feed through chemical composition, in vitro digestibility, and gas production technique

    Directory of Open Access Journals (Sweden)

    Paula Martins Olivo

    2017-07-01

    Full Text Available Agroindustrial co-products are a viable alternative for use in animal nutrition. Tests were conducted using eight different types of co-products and feed to evaluate the chemical composition, in vitro digestibility of dry matter, crude protein and neutral detergent fiber, and gas production by them. The co-products tested were: coffee hulls; pelleted citrus pulp; grape residue; soybean hulls; cottonseed; cassava foliage; and foods usually supplied to ruminants: corn silage and ground corn concentrate. Data of in vitro digestibility of dry matter, crude protein and neutral detergent fiber were tested by analysis of variance using the least square method; the results of gas production were interpreted by a non-linear regression by the Gauss-Newton method; and the effects of treatments were evaluated by the Tukey’s test. The coefficients of in vitro digestibility of dry matter, crude protein and neutral detergent fiber of co-products were different. Gas production was also different between co-products and feeds evaluated for the volume of gas produced from the fast and slow degradation fractions, degradation rate, bacterial colonization time, and the total volume of gas produced. The evaluated co-products exhibited greater in vitro dry matter digestibility compared to corn silage, except for cottonseed, grape residue, and cassava foliage. Co-products showed higher values of in vitro crude protein digestibility compared to corn silage, and a reduced in vitro digestibility of neutral detergent fiber, except for pelleted citrus pulp and soybean hulls. Corn silage produced larger volume of gas from the fast degradation fraction compared to the co-products and corn concentrate. Co-products analyzed had appropriate nutritional characteristics according to the techniques applied and can be included in ruminant diets.

  2. How did the US economy react to shale gas production revolution? An advanced time series approach

    International Nuclear Information System (INIS)

    Bilgili, Faik; Koçak, Emrah; Bulut, Ümit; Sualp, M. Nedim

    2016-01-01

    This paper aims at examining the impacts of shale gas revolution on industrial production in the US. To this end, this paper, first, throughout literature review, exposes the features of shale gas revolution in the US in terms of energy technology and energy markets. However, the potential influences of shale gas extraction on the US economy are not explicit in the existing literature. Thus, considering mainly the output of shale gas revolution on the US economy in this research, later, the paper conducts econometric models to reveal if there exists significant effect(s) of shale gas revolution on the US economy. Therefore, the paper employs unit root tests and cointegration tests by following relevant US monthly data from January 2008 to December 2013. Then, this paper observes long run impact of shale gas production on industrial production in the US through dynamic ordinary least squares estimation with dummy structural breaks and conducts Granger causality test based on vector error correction model. The dynamic ordinary least squares estimator explores that shale gas production has a positive effect on industrial production. Besides, the Granger causality test presents that shale gas production Granger causes industrial production in the long run. Based on the findings of the long run estimations, the paper yields that industrial production is positively related to shale gas production. Eventually, upon its findings, this paper asserts that (i) the shale gas revolution in the US has considerable positive effects on the US economy within the scope of the validity of the growth hypothesis, (ii) new technologies might be developed to mitigate the possible negative environmental effects of shale gas production, (iii) the countries having shale gas reserves, as in US, may follow energy policies to utilize their shale reserves more in the future to meet their energy demand and to increase their economic welfare. - Highlights: • Explores the US shale gas revolution

  3. Oil and Gas Production, Environmental Health and Livelihood ...

    African Journals Online (AJOL)

    Oil and Gas Production, Environmental Health and Livelihood Vulnerability in the West Coast of Ghana. ... African Journal of Sustainable Development ... Respondents' level of education significantly influences their level of knowledge about ...

  4. Compressed gas domestic aerosol valve design using high viscous product

    Directory of Open Access Journals (Sweden)

    A Nourian

    2016-10-01

    Full Text Available Most of the current universal consumer aerosol products using high viscous product such as cooking oil, antiperspirants, hair removal cream are primarily used LPG (Liquefied Petroleum Gas propellant which is unfriendly environmental. The advantages of the new innovative technology described in this paper are: i. No butane or other liquefied hydrocarbon gas is used as a propellant and it replaced with Compressed air, nitrogen or other safe gas propellant. ii. Customer acceptable spray quality and consistency during can lifetime iii. Conventional cans and filling technology There is only a feasible energy source which is inert gas (i.e. compressed air to replace VOCs (Volatile Organic Compounds and greenhouse gases, which must be avoided, to improve atomisation by generating gas bubbles and turbulence inside the atomiser insert and the actuator. This research concentrates on using "bubbly flow" in the valve stem, with injection of compressed gas into the passing flow, thus also generating turbulence. The new valve designed in this investigation using inert gases has advantageous over conventional valve with butane propellant using high viscous product (> 400 Cp because, when the valving arrangement is fully open, there are negligible energy losses as fluid passes through the valve from the interior of the container to the actuator insert. The use of valving arrangement thus permits all pressure drops to be controlled, resulting in improved control of atomising efficiency and flow rate, whereas in conventional valves a significant pressure drops occurs through the valve which has a complex effect on the corresponding spray.

  5. Divergent Cumulative Cultural Evolution

    OpenAIRE

    Marriott, Chris; Chebib, Jobran

    2016-01-01

    Divergent cumulative cultural evolution occurs when the cultural evolutionary trajectory diverges from the biological evolutionary trajectory. We consider the conditions under which divergent cumulative cultural evolution can occur. We hypothesize that two conditions are necessary. First that genetic and cultural information are stored separately in the agent. Second cultural information must be transferred horizontally between agents of different generations. We implement a model with these ...

  6. Gas production in the Barnett Shale obeys a simple scaling theory.

    Science.gov (United States)

    Patzek, Tad W; Male, Frank; Marder, Michael

    2013-12-03

    Natural gas from tight shale formations will provide the United States with a major source of energy over the next several decades. Estimates of gas production from these formations have mainly relied on formulas designed for wells with a different geometry. We consider the simplest model of gas production consistent with the basic physics and geometry of the extraction process. In principle, solutions of the model depend upon many parameters, but in practice and within a given gas field, all but two can be fixed at typical values, leading to a nonlinear diffusion problem we solve exactly with a scaling curve. The scaling curve production rate declines as 1 over the square root of time early on, and it later declines exponentially. This simple model provides a surprisingly accurate description of gas extraction from 8,294 wells in the United States' oldest shale play, the Barnett Shale. There is good agreement with the scaling theory for 2,057 horizontal wells in which production started to decline exponentially in less than 10 y. The remaining 6,237 horizontal wells in our analysis are too young for us to predict when exponential decline will set in, but the model can nevertheless be used to establish lower and upper bounds on well lifetime. Finally, we obtain upper and lower bounds on the gas that will be produced by the wells in our sample, individually and in total. The estimated ultimate recovery from our sample of 8,294 wells is between 10 and 20 trillion standard cubic feet.

  7. Estimating methane gas production in peat soils of the Florida Everglades using hydrogeophysical methods

    Science.gov (United States)

    Wright, William; Comas, Xavier

    2016-04-01

    The spatial and temporal variability in production and release of greenhouse gases (such as methane) in peat soils remains uncertain, particularly for low-latitude peatlands like the Everglades. Ground penetrating radar (GPR) is a hydrogeophysical tool that has been successfully used in the last decade to noninvasively investigate carbon dynamics in peat soils; however, application in subtropical systems is almost non-existent. This study is based on four field sites in the Florida Everglades, where changes in gas content within the soil are monitored using time-lapse GPR measurements and gas releases are monitored using gas traps. A weekly methane gas production rate is estimated using a mass balance approach, considering gas content estimated from GPR, gas release from gas traps and incorporating rates of diffusion, and methanotrophic consumption from previous studies. Resulting production rates range between 0.02 and 0.47 g CH4 m-2 d-1, falling within the range reported in literature. This study shows the potential of combining GPR with gas traps to monitor gas dynamics in peat soils of the Everglades and estimate methane gas production. We also show the enhanced ability of certain peat soils to store gas when compared to others, suggesting that physical properties control biogenic gas storage in the Everglades peat soils. Better understanding biogenic methane gas dynamics in peat soils has implications regarding the role of wetlands in the global carbon cycle, particularly under a climate change scenario.

  8. TBP degradation products. Separation and gas-chromatographic determination

    International Nuclear Information System (INIS)

    Kuada, T.A.; Alem, C.M.; Matsuda, H.T.; Araujo, B.F. de; Araujo, J.A de.

    1991-11-01

    A separation method for di butylphosphate, mono butylphosphate and phosphoric acid as degradation products in organic and aqueous streams of the process containing variable amounts of actinides and fission products is described. The products were separated by extraction and after methylation the final determination was carried out by gas chromatography. TPP was used as internal standard and 5 to 500 mg/L concentration range was determined with 1 to 10% deviation depending on the concentration of organo phosphates. (author)

  9. Demonstrating multi-layered MAS in control of offshore oil and gas production

    DEFF Research Database (Denmark)

    Lindegaard Mikkelsen, Lars; Næumann, J. R.; Demazeau, Y.

    2013-01-01

    From a control perspective, offshore oil and gas production is very challenging due to the many and potentially conflicting production objectives that arise from the intrinsic complexity of the oil and gas domain. In this paper, we demonstrate how a multi-layered multi-agent system can be used in...

  10. Effects of Geomechanical Mechanism on the Gas Production Behavior: A Simulation Study of Class-3 Type Four-Way-Closure Ridge Hydrate Deposit Offshore Southwestern Taiwan

    Science.gov (United States)

    Wu, Cheng-Yueh; Chiu, Yung-Cheng; Huang, Yi-Jyun; Hsieh, Bieng-Zih

    2017-04-01

    geophysical studies and the geo-mechanical data were analogized from Japan's hydrate production case. The first step for the geological modelling was to digitize the structure map of FWC Ridge and built a grid system for the reservoir. The formation parameters, such as formation thickness, porosity and permeability, the phase behavior parameters, rock-fluid parameters, initial conditions (including formation pressure, temperature and hydrate saturation), geo-mechanical parameters were assigned into each grid. In this case we used a horizontal well with specific operating conditions to produce water and dissociated gas from the reservoir. The sensitivity analyses on geological and geo-mechanical parameters were conducted in this study. The case of different pressure drop showed that the recovery factor (RF) was 2.50%, 13.50% and 20.47% when the pressure drop of 60%, 70% and 75% from the initial reservoir pressure was used respectively. Based on the case of pressure drop of 75% (from the initial reservoir pressure), the RF was 35.13%, 25.9%, 20.47% and 16.65% when the initial hydrate saturation of 30%, 40%, 50% and 60% was assumed respectively. The greater formation permeability, the better gas recovery. The capillary pressure had a minor affection on the gas production in this case study. The best well location was at the upper layer because of the gravity effect. For the effects of the geo-mechanics, we observed that the rock mechanisms had impacts on the final cumulative gas production. The larger the Young's Modulus and the smaller the Poisson's Ratio, the smaller the subsidence on the seabed. Our simulation results showed that the seabed subsidence in FWC Ridge was about 1 meter during the production period.

  11. Liquefied natural gas production at Hammerfest: A transforming marine community

    NARCIS (Netherlands)

    Bets, van L.K.J.; Tatenhove, van J.P.M.; Mol, A.P.J.

    2016-01-01

    Global energy demand and scarce petroleum resources require communities to adapt to a rapidly changing Arctic environment, but as well to a transforming socio-economic environment instigated by oil and gas development. This is illustrated by liquefied natural gas production by Statoil at Hammerfest,

  12. PETROCHINA TO MAINTAIN TWO-DIGITAL GROWTH OF ITS GAS PRODUCTION

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Based on the information made available from the recent conference on natural gas development held in Chengdu, the capital of the natural gasenriched Sichuan Province, PetroChina will maintain a 14 percent growth for its natural gas production during the 1 lth Five-Year Plan period (2006-2010), owing to acceleration of the market development and pipeline construction in the downstream sector and rapid progress in the natural gas exploration.

  13. Characterization of biomass producer gas as fuel for stationary gas engines in combined heat and power production

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2008-01-01

    The aim of this project has been the characterization of biomass producer gas as a fuel for stationary gas engines in heat and power production. More than 3200 hours of gas engine operation, with producer gas as fuel, has been conducted at the biomass gasification combined heat and power (CHP...... different measuring methods. Likewise, no particles were detected in the gas. Considerable amounts of NH3 were measured in the produced gas.An analysis of engine operation at varying load has been carried out. Standard emissions, load and efficiency have been measured at varying operating conditions ranging...... from 50% to 90% load. Biomass producer gas is an excellent lean burn engine fuel: Operation of a natural aspirated engine has been achieved for 1.2...

  14. Investigation of oil production conditions and production operation by solution gas drive in low permeable heterogeneous limestones

    Energy Technology Data Exchange (ETDEWEB)

    Lillie, W

    1966-04-01

    It was the purpose of this study to investigate the production of oil and gas from a low permeable heterogeneous limestone-reservoir by solution gas drive. The rock-samples were subjected to extensive petrolphysical analyses in order to characterize the pore structure of of the limestone material. Laboratory model flow tests were undertaken to outline in detail the production history during the pressure depletion process under reservoir conditions and by using original reservoir fluids. The experiments were carried out at different rates of pressure decline. It can be stated that the rate of pressure decline is the most important factor affecting the oil recovery and the development of the gas-oil-ratio in a model flow test. The present investigation leads to the following conclusion: It is posible to get reliable results which could be the base for a reservoir performance prediction only when the gas and oil phase are maintained at equilibrium conditions within the rock sample during the pressure decline. An additional calculation of the solution gas drive reservoir production history by the Tarner method shows a good agreement of the experimental and the calculated data. (40 refs.)

  15. Phenomenological pictures on the cumulative effect in nucleus-nucleus collisions at the incident kinetic energy of 3.65 A GeV

    International Nuclear Information System (INIS)

    Besliu, Calin; Jipa, Alexandru; Zaharia, Radu; Tugulea, Mircea; Iosif, Maria; Argintaru, Dan; Argintaru, Cristina

    1996-01-01

    In this work new experimental results on the cumulative production of the negative pions are reported. Eight central and peripheral (inelastic) collisions at 4.5 A GeV/c incident momentum are taken into account comparisons with experimental results on the cumulative effects obtained in n-p collisions at 4.53 GeV/c and O-Ne, O-Pb collisions at 4.5 A GeV/c are included in this work. A significant cumulative production of negative pions is observed. The non-equilibrium mechanisms can be considered for cumulative effect. The experiments have been performed at the Synchrophasotron from JINR Dubna in the frame of the SKM 200 Collaboration. (authors)

  16. Calculated apparent yields of rare gas fission products

    International Nuclear Information System (INIS)

    Delucchi, A.A.

    1975-01-01

    The apparent fission yield of the rare gas fission products from four mass chains is calculated as a function of separation time for six different fissioning systems. A plot of the calculated fission yield along with a one standard deviation error band is given for each rare gas fission product and for each fissioning system. Those parameters in the calculation that were major contributors to the calculated standard deviation at each separation time were identified and the results presented on a separate plot. To extend the usefulness of these calculations as new and better values for the input parameters become available, a third plot was generated for each system which shows how sensitive the derived fission yield is to a change in any given parameter used in the calculation. (U.S.)

  17. Gas market distorting effects of imbalanced gas balancing rules: Inefficient regulation of pipeline flexibility

    International Nuclear Information System (INIS)

    Keyaerts, Nico; Hallack, Michelle; Glachant, Jean-Michel; D'haeseleer, William

    2011-01-01

    This paper analyzes the value and cost of line-pack flexibility in liberalized gas markets through examination of the techno-economic characteristics of gas transport pipelines and the trade-offs between different ways to use the infrastructure: transport and flexibility. Line-pack flexibility is becoming increasingly important as a tool to balance gas supply and demand over different periods. In the European liberalized market context, a monopolist unbundled network operator offers regulated transport services and flexibility (balancing) services according to the network code and balancing rules. Therefore, gas policy makers should understand the role and consequences of line-pack regulation. The analysis shows that the line-pack flexibility service has an important economic value for the shippers and the TSO. Furthermore, the analysis identifies distorting effects in the gas market due to inadequate regulation of line-pack flexibility: by disregarding the sunk costs of flexibility in the balancing rules, the overall efficiency of the gas system is decreased. Finally, the analysis demonstrates that the actual costs of line-pack flexibility are related to the peak cumulative imbalance throughout the balancing period. Any price for pipeline flexibility should, therefore, be based on the related trade-off between the right to use the line-pack flexibility and the provision of transport services. - Research Highlights: →Line-pack flexibility is a main gas balancing instrument. →Capacity related costs of line-pack flexibility depend on peak cumulative imbalances. →Line-pack pricing rules determine choice between ex ante and ex post balancing. →Inefficient line-pack regulation causes gas market distortions.

  18. The Effect of Tannins and Additional Peg on In Vitro Gas Production

    International Nuclear Information System (INIS)

    Irawan Sugoro

    2004-01-01

    Agro-wastes such as sugar cane straw are potential sources as feed. Sugar cane straw contains tannins, an anti-nutrient, which could effect feed quality. The effect of tannins by in vitro gas production was compared to maize straw which has low tannins. Tannin concentration was measured by using PEG which is labelled by 14 C. The result showed that the tannins concentration of sugar cane straw is 10.88 % dry matter. The others are digestibility of dry matter and organic matter, VFA, ammonia and pH. The gas production is 48.83 ml/500 mg after 24 h incubation. It is lower than the control i.e. 100.64 ml/500 mg. Additional PEG increase the gas production i.e. 30.5 %, because tannins is bounded by it. The concentration of ammonia, VFA, dry matter and organic matter digestibility on sugar cane straw with additional PEG is higher than without PEG, i.e 28.29 mg/100 ml, 15.56 nmol/100 ml, 52.18 % and 47.54 %. pH of sugar cane without PEG i.e. 6.62 is higher than additional PEG, i.e. 6.54. It could be concluded, tannins decrease of gas production, ammonia, VFA, dry matter, and organic matter digestibility and additional PEG increase gas production of sugar cane. (author)

  19. Breakthrough and prospect of shale gas exploration and development in China

    Directory of Open Access Journals (Sweden)

    Dazhong Dong

    2016-01-01

    Full Text Available In the past five years, shale gas exploration and development has grown in a leaping-forward way in China. Following USA and Canada, China is now the third country where industrial shale gas production is realized, with the cumulative production exceeding 60 × 108 m3 until the end of 2015. In this paper, the main achievements of shale gas exploration and development in China in recent years were reviewed and the future development prospect was analyzed. It is pointed out that shale gas exploration and development in China is, on the whole, still at its early stage. Especially, marine shale gas in the Sichuan Basin has dominated the recent exploration and development. For the realization of shale gas scale development in China, one key point lies in the breakthrough and industrial production of transitional facies and continental facies shale gas. Low–moderate yield of shale gas wells is the normal in China, so it is crucial to develop key exploration and development technologies. Especially, strictly controlling single well investment and significantly reducing cost are the important means to increase shale gas exploration and development benefits. And finally, suggestions were proposed in five aspects. First, continuously strengthen theoretical and technical researches, actively carry out appraisal on shale gas “sweet spots”, and gradually accumulate development basis. Second, stress on primary evaluation of exploration and development, highlight the effective implementation of shale gas resources, and control the rhythm of appraisal drilling and productivity construction. Third, highlight fine description and evaluation of shale gas reservoirs and increase the overall development level. Fourth, intensify the research on exploration and development technologies in order to stand out simple and practical technologies with low costs. And fifth, summarize the experiences in fast growth of shale gas exploration and development, highlight

  20. Environmental Compliance for Oil and Gas Exploration and Production

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Christine

    1999-10-26

    The Appalachian/Illinois Basin Directors is a group devoted to increasing communication among the state oil and gas regulatory agencies within the Appalachian and Illinois Basin producing region. The group is comprised of representatives from the oil and gas regulatory agencies from states in the basin (Attachment A). The directors met to discuss regulatory issues common to the area, organize workshops and seminars to meet the training needs of agencies dealing with the uniqueness of their producing region and perform other business pertinent to this area of oil and gas producing states. The emphasis of the coordinated work was a wide range of topics related to environmental compliance for natural gas and oil exploration and production.

  1. Analysis of resource potential for China’s unconventional gas and forecast for its long-term production growth

    International Nuclear Information System (INIS)

    Wang, Jianliang; Mohr, Steve; Feng, Lianyong; Liu, Huihui; Tverberg, Gail E.

    2016-01-01

    China is vigorously promoting the development of its unconventional gas resources because natural gas is viewed as a lower-carbon energy source and because China has relatively little conventional natural gas supply. In this paper, we first evaluate how much unconventional gas might be available based on an analysis of technically recoverable resources for three types of unconventional gas resources: shale gas, coalbed methane and tight gas. We then develop three alternative scenarios of how this extraction might proceed, using the Geologic Resources Supply Demand Model. Based on our analysis, the medium scenario, which we would consider to be our best estimate, shows a resource peak of 176.1 billion cubic meters (bcm) in 2068. Depending on economic conditions and advance in extraction techniques, production could vary greatly from this. If economic conditions are adverse, unconventional natural gas production could perhaps be as low as 70.1 bcm, peaking in 2021. Under the extremely optimistic assumption that all of the resources that appear to be technologically available can actually be recovered, unconventional production could amount to as much as 469.7 bcm, with peak production in 2069. Even if this high scenario is achieved, China’s total gas production will only be sufficient to meet China’s lowest demand forecast. If production instead matches our best estimate, significant amounts of natural gas imports are likely to be needed. - Highlights: • A comprehensive investigation on China’s unconventional gas resources is presented. • China’s unconventional gas production is forecast under different scenarios. • Unconventional gas production will increase rapidly in high scenario. • Achieving the projected production in high scenario faces many challenges. • The increase of China’s unconventional gas production cannot solve its gas shortage.

  2. Study on methane separation from steam reforming product gas with polyimide membrane

    International Nuclear Information System (INIS)

    Koiso, Hiroshi; Inagaki, Yoshiyuki; Aita, Hideki; Sekita, Kenji; Haga, Katsuhiro; Hino, Ryutaro.

    1997-10-01

    In the HTTR hydrogen production system by steam reforming of natural gas (main component: CH 4 ), CH 4 conversion rate is limited to approximately 65% due to high pressure and low temperature conditions (4.5 MPa, 800degC). The one of the measures to improve CH 4 conversion is recycling of residual CH 4 extracted from steam reforming product gas with a gas separator. Experimental and analytical studies on CH 4 separation from gas mixture composed of CH 4 , H 2 , CO 2 and CO were carried out to investigate gas separation characteristics of a polyimide membrane gas separator. Measured permeability of each gas in gas mixture was reduced from 1/3 to 1/14 of that obtained with a single gas (catalog value). The polyimide membrane could extracted CH 4 of approximately 80% from gas mixture, then, H 2 and CO 2 more than 98% were removed. It was confirmed that the polyimide membrane could be available to residual CH 4 recycling. The analytical results by a difference method gave good prospects of experimental results such as permeated flow rate, mol-fraction profiles and so on. Therefore, it can be said the analysis method was established. (author)

  3. A Greenhouse Gas Balance of Electricity Production from Co-firing Palm Oil Products from Malaysia

    International Nuclear Information System (INIS)

    Wicke, B.; Dornburg, V.; Faaij, A.; Junginger, M.

    2007-05-01

    The Netherlands imports significant quantities of biomass for energy production, among which palm oil has been used increasingly for co-firing in existing gas-fired power plants for renewable electricity production. Imported biomass, however, can not simply be considered a sustainable energy source. The production and removal of biomass in other places in the world result in ecological, land-use and socio-economic impacts and in GHG emissions (e.g. for transportation). As a result of the sustainability discussions, the Cramer Commission in the Netherlands has formulated (draft) criteria and indicators for sustainable biomass production. This study develops a detailed methodology for determining the GHG balance of co-firing palm oil products in the Netherlands based on the Cramer Commission methodology. The methodology is applied to a specific bio-electricity chain: the production of palm oil and a palm oil derivative, palm fatty acid distillate (PFAD), in Northeast Borneo in Malaysia, their transport to the Netherlands and co-firing with natural gas for electricity production at the Essent Claus power plant

  4. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds.

    NARCIS (Netherlands)

    Groot, J.C.J.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.A.; Lantinga, E.A.

    1996-01-01

    Recently developed time-related gas production techniques to quantify the kinetics of ruminant feed fermentation have a high resolution. Consequently, fermentation processes with clearly contrasting gas production kinetics can be identified. Parameterization of the separate processes is possible

  5. In vitro gas production of wheat grain flour coated with different fat ...

    African Journals Online (AJOL)

    Gas production (GP) is a rapid method for feedstuffs assessment. A study was done to investigate wheat grain coated with hydrogenated tallow (HT) and hydrogenated palm oil (HP) of different fatty acids types and levels to study total gas production. Approximately, 200 mg (DM basis) of sample was weighed and inserted in ...

  6. Variability of oil and gas well productivities for continuous (unconventional) petroleum accumulations

    Science.gov (United States)

    Charpentier, Ronald R.; Cook, Troy A.

    2013-01-01

    Over the last decade, oil and gas well productivities were estimated using decline-curve analysis for thousands of wells as part of U.S. Geological Survey (USGS) studies of continuous (unconventional) oil and gas resources in the United States. The estimated ultimate recoveries (EURs) of these wells show great variability that was analyzed at three scales: within an assessment unit (AU), among AUs of similar reservoir type, and among groups of AUs with different reservoir types. Within a particular oil or gas AU (such as the Barnett Shale), EURs vary by about two orders of magnitude between the most productive wells and the least productive ones (excluding those that are dry and abandoned). The distributions of EURs are highly skewed, with most of the wells in the lower part of the range. Continuous AUs were divided into four categories based on reservoir type and major commodity (oil or gas): coalbed gas, shale gas, other low-permeability gas AUs (such as tight sands), and low-permeability oil AUs. Within each of these categories, there is great variability from AU to AU, as shown by plots of multiple EUR distributions. Comparing the means of each distribution within a category shows that the means themselves have a skewed distribution, with a range of approximately one to two orders of magnitude. A comparison of the three gas categories (coalbed gas, shale gas, and other low-permeability gas AUs) shows large overlap in the ranges of EUR distributions. Generally, coalbed gas AUs have lower EUR distributions, shale gas AUs have intermediate sizes, and the other low-permeability gas AUs have higher EUR distributions. The plot of EUR distributions for each category shows the range of variation among developed AUs in an appropriate context for viewing the historical development within a particular AU. The Barnett Shale is used as an example to demonstrate that dividing wells into groups by time allows one to see the changes in EUR distribution. Subdivision into groups

  7. Specific radiological monitoring (SRM) in oil and gas production platforms

    International Nuclear Information System (INIS)

    Hairul Nizam Idris, Syed Asraf Fahlawi Wafa S.M Ghazi and Fadzley Izwan Abd Manaf

    2007-01-01

    Technologically enhanced naturally occurring radioactive materials (TENORM) are present in components of both oil and natural gas production facilities. TENORM can be associated with the presence of crude oil, produced water and natural gas. The radiation exposure pathways to the workers in oil and gas production are similar to those in the uranium and heavy mineral sand mining and processing industry. This paper work provides a short review on the Specific Radiological Monitoring (SRM) program were carried out at oil and gas platforms in the east cost of Peninsular Malaysia. The objective of this paper work is to observe the monitoring parameters levels and to evaluate whether these levels are exceeding the limits set by Atomic Energy Licensing Board (AELB). The monitoring results showed that the surface contamination, airborne contamination and concentration of radon and thoron are well below the set limit stipulated in LEM/TEK/30 SEM.2, except for external radiation and radioactivity concentration of sludge and scales. About 2 (2.35%) from the 85 external radiation measurements performed were found above the permissible limit. While about 11 (36.6%) and 7 (23.3%) of the 30 collected sludge and scales samples were found containing higher Ra-226 and Ra-228, respectively, than the mean concentrations in normal soils of Peninsular Malaysia. In general, it can be concluded that a few of oil and gas production platform are producing TENORM. (Author)

  8. Gulf of Mexico Outer Continental Shelf daily oil and gas production rate projections from 1999 through 2003

    International Nuclear Information System (INIS)

    Melancon, J.M.; Baud, R.D.

    1999-02-01

    This paper provides daily oil and gas production rate projections for the Gulf of Mexico (GOM) Outer Continental Shelf (OCS) for the years 1999 through 2003. These projections represent daily oil and gas production estimates at calendar year end. In this report, daily oil production rates include both oil and condensate production, and daily gas production rates include both associated and nonassociated gas production. In addition to providing daily oil and gas production rate projections, the authors have included one figure and one table pertaining to leasing history and one table concerning exploration and development plan approvals

  9. Gulf of Mexico outer continental shelf daily oil and gas production rare projections from 1998 through 2002

    International Nuclear Information System (INIS)

    Melancon, J.M.; Roby, D.S.

    1998-02-01

    This paper provides daily oil and gas production rate projections for the Gulf of Mexico (GOM) Outer Continental Shelf (OCS) for the years 1998 through 2002. These projections represent daily oil and gas production estimates at calendar year end. In this report, daily oil production rates include both oil and condensate production, and daily gas production rates include both associated and nonassociated gas production. In addition to providing daily oil and gas production rate projections, the authors have included one figure and one table pertaining to leasing history and one table concerning exploration and development plan approvals

  10. Cumulative fission yield of Ce-148 produced by thermal-neutron fission of U-235

    International Nuclear Information System (INIS)

    Hasan, A.A.

    1984-12-01

    Cumulative fission yield of 148 cesium isotopes and some other fission products produced by thermal-neutron fission of 235 uranium is determined by Germanium/Lithium spectroscopic methods. The measuremets were done at Tsing-Hua open pool reactor using 3 to 4 mg of 93.15% enriched 235 uranium samples. Gamma rays are assigned to the responsible fission products by matching gamma rays energies and half lives. Fission rate is calculated by fission track method. Cumulative fission yields of 148 cesium, 90 krypton, 130 iodine, 144 lanthanum, 89 krypton, 136 xenon, 137 xenon and 140 cesium are calculated. This values are compared with previously predicted values and showed good agreement. 21 Ref

  11. Development of hydrate risk quantification in oil and gas production

    Science.gov (United States)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  12. Fuel performance and fission product behaviour in gas cooled reactors

    International Nuclear Information System (INIS)

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport

  13. Environmental perspectives on the East Coast offshore oil and gas industry

    International Nuclear Information System (INIS)

    Taylor, D.G.

    2001-01-01

    In this presentation, the author examined the environmental aspects affecting the offshore oil and gas development on the East Coast of Canada. Selected topics were covered to highlight what has been accomplished and the goals for the future in terms of the environment. The development of the oil and gas industry in the region has really taken off in the past twenty years, suffering from growing pains and enduring myths. An oil and gas project begins with seismic surveys, followed by exploratory wells being drilled, then proceeding to the construction and installation of the drilling production facilities, the production phase and the decommissioning of the facilities at the end of the useful life. Each phase of a project was reviewed and environmental concerns identified. Specific topics were addressed, such as drill cuttings, produced water, flaring, and decommissioning and abandonment. Selected problems were examined, notably fish and oil, spills, cumulative effects, the Oceans Act, and the regulatory evolution in the East Coast offshore. 9 refs., 1 tab., 1 fig

  14. Produced water management - clean and safe oil and gas production

    International Nuclear Information System (INIS)

    2006-01-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  15. Produced water management - clean and safe oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  16. Cumulative risk, cumulative outcome: a 20-year longitudinal study.

    Directory of Open Access Journals (Sweden)

    Leslie Atkinson

    Full Text Available Cumulative risk (CR models provide some of the most robust findings in the developmental literature, predicting numerous and varied outcomes. Typically, however, these outcomes are predicted one at a time, across different samples, using concurrent designs, longitudinal designs of short duration, or retrospective designs. We predicted that a single CR index, applied within a single sample, would prospectively predict diverse outcomes, i.e., depression, intelligence, school dropout, arrest, smoking, and physical disease from childhood to adulthood. Further, we predicted that number of risk factors would predict number of adverse outcomes (cumulative outcome; CO. We also predicted that early CR (assessed at age 5/6 explains variance in CO above and beyond that explained by subsequent risk (assessed at ages 12/13 and 19/20. The sample consisted of 284 individuals, 48% of whom were diagnosed with a speech/language disorder. Cumulative risk, assessed at 5/6-, 12/13-, and 19/20-years-old, predicted aforementioned outcomes at age 25/26 in every instance. Furthermore, number of risk factors was positively associated with number of negative outcomes. Finally, early risk accounted for variance beyond that explained by later risk in the prediction of CO. We discuss these findings in terms of five criteria posed by these data, positing a "mediated net of adversity" model, suggesting that CR may increase some central integrative factor, simultaneously augmenting risk across cognitive, quality of life, psychiatric and physical health outcomes.

  17. Synthesis gas production via hybrid steam reforming of natural gas and bio-liquids

    NARCIS (Netherlands)

    Balegedde Ramachandran, P.

    2013-01-01

    This thesis deals with (catalytic) steam reforming of bio-liquids for the production of synthesis gas. Glycerol, both crude from the biodiesel manufacturing and refined, and pyrolysis oil are tested as bio-based feedstocks. Liquid bio-based feeds could be preferred over inhomogeneous fibrous solid

  18. CEAMF study, volume 2 : cumulative effects indicators, thresholds, and case studies : final

    International Nuclear Information System (INIS)

    2003-03-01

    The four types of cumulative effects on the environment are: alteration, loss, and fragmentation of habitat; disturbance; barriers to movement; and direct and indirect mortality. Defining where and how human activities can be continued without irreversible net harm to the environment is part of cumulative effects management. Various land-use and habitat indicators were tested in the Blueberry and Sukunka study areas of British Columbia, to address the environmental effects associated with oil and gas development. As recommended, a tiered threshold approach was used to allow for flexibility in different land management regimes and ecological settings. Success will depend on defining acceptable change, threshold values, standard public database, standard processes to calculate indicator values using the database, and project-specific and cooperative management actions. A pilot study was suggested to test the candidate thresholds and implementation process. The two areas proposed for consideration were the Jedney Enhanced Resource Development Resource Management Zone in the Fort St. John Forest District, and the Etsho Enhanced Resource Development Resource Management Zone in the Fort Nelson Forest District. Both are of interest to the petroleum and forest sectors, and support the woodland caribou, a species which is extremely sensitive to cumulative effects of habitat fragmentation and disturbance. 117 refs., 11 tabs., 39 figs.

  19. Gas Strategy of China: Developing competition between national production and imports

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2014-10-01

    The Chinese gas market is facing four key challenges and the government is elaborating responses which will have implications for the Chinese and world energy markets: - Enabling the development of gas demand in order to fight against the issue of air pollution which is particularly strong in the big coast cities of the East and South-East of the country. This means replacing coal and oil by cleaner energy sources, including natural gas for which demand is booming. In such a young market, everything needs to be put in place: from the construction of LNG terminals to the sale and installation of gas stoves. The price of gas needs to be competitive for the market to develop. - Securing supplies: As national production is struggling to follow the rise in demand and as shale gas - of which China owns the second largest reserves in the world - is still a distant dream, this country is more and more reliant on imports. For evident energy security reasons, China diversifies its supplies at the maximum level and develops new energy partnerships. Four importing routes are favoured: LNG transported by ships, the West axis with Central Asia, the South axis with Burma and the new North-East axis with Russia. These imports, which amounted to 53 bcm in 2013, may triple by 2020. Even though China managed to negotiate a favourable price with Russia and its LNG importing price is lower than the one of Japan - thanks to its first LNG importing contracts signed in the early 2000 - imports are expensive, in particular for a country used to producing or importing coal at a very low cost. Up to now, the price at which gas is sold could not cover the import price and this system is not sustainable. - Developing national production: Despite important gas reserves - in particular for unconventional gas (shale gas, tight gas, CBM) - production in China is still not much developed in comparison with its potential and the growth opportunities are significant. Making the best of this potential

  20. Research on technology of online gas chromatograph for SF6 decomposition products

    Science.gov (United States)

    Li, L.; Fan, X. P.; Zhou, Y. Y.; Tang, N.; Zou, Z. L.; Liu, M. Z.; Huang, G. J.

    2017-12-01

    Sulfur hexafluoride (SF6) decomposition products were qualitatively and quantitatively analyzed by several gas chromatographs in the laboratory. Test conditions and methods were selected and optimized to minimize and eliminate the SF6’ influences on detection of other trace components. The effective separation and detection of selected characteristic gases were achieved. And by comparison among different types of gas chromatograph, it was found that GPTR-S101 can effectively separate and detect SF6 decomposition products and has best the best detection limit and sensitivity. On the basis of GPTR-S101, online gas chromatograph for SF6decomposition products (GPTR-S201) was developed. It lays the foundation for further online monitoring and diagnosis of SF6.

  1. 30 CFR 206.174 - How do I value gas production when an index-based method cannot be used?

    Science.gov (United States)

    2010-07-01

    ... to consider include prices received in spot sales of gas, residue gas or gas plant products, other... part, or timely, for a quantity of gas, residue gas, or gas plant product. (j) Non-binding MMS reviews..., DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Indian Gas § 206.174 How do I value...

  2. Spatial resolution of gas hydrate and permeability changes from ERT data in LARS simulating the Mallik gas hydrate production test

    Science.gov (United States)

    Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Schicks, Judith M.; Abendroth, Sven

    2014-05-01

    The German gas hydrate project SUGAR studies innovative methods and approaches to be applied in the production of methane from hydrate-bearing reservoirs. To enable laboratory studies in pilot scale, a large reservoir simulator (LARS) was realized allowing for the formation and dissociation of gas hydrates under simulated in-situ conditions. LARS is equipped with a series of sensors. This includes a cylindrical electrical resistance tomography (ERT) array composed of 25 electrode rings featuring 15 electrodes each. The high-resolution ERT array is used to monitor the spatial distribution of the electrical resistivity during hydrate formation and dissociation experiments over time. As the present phases of poorly conducting sediment, well conducting pore fluid, non-conducting hydrates, and isolating free gas cover a wide range of electrical properties, ERT measurements enable us to monitor the spatial distribution of these phases during the experiments. In order to investigate the hydrate dissociation and the resulting fluid flow, we simulated a hydrate production test in LARS that was based on the Mallik gas hydrate production test (see abstract Heeschen et al., this volume). At first, a hydrate phase was produced from methane saturated saline water. During the two months of gas hydrate production we measured the electrical properties within the sediment sample every four hours. These data were used to establish a routine estimating both the local degrees of hydrate saturation and the resulting local permeabilities in the sediment's pore space from the measured resistivity data. The final gas hydrate saturation filled 89.5% of the total pore space. During hydrate dissociation, ERT data do not allow for a quantitative determination of free gas and remaining gas hydrates since both phases are electrically isolating. However, changes are resolved in the spatial distribution of the conducting liquid and the isolating phase with gas being the only mobile isolating phase

  3. Overview of the 2006-2008 JOGMEC/NRCan/Aurora Mallik Gas Hydrate Production Test Program

    Science.gov (United States)

    Yamamoto, K.; Dallimore, S. R.

    2008-12-01

    During the winters of 2007 and 2008 the Japan Oil, Gas and Metals National Corporation (JOGMEC) and Natural Resources Canada (NRCan), with Aurora Research Institute as the operator, carried out an on-shore gas hydrate production test program at the Mallik site, Mackenzie Delta, Northwest Territories, Canada. The prime objective of the program was to verify the feasibility of depressurization technique by drawing down the formation pressure across a 12m perforated gas hydrate bearing section. This project was the second full scale production test at this site following the 2002 Japex/JNOC/GSC et al Mallik research program in which seven participants organizatinos from five countries undertook a thermal test using hot water circulation Field work in 2007 was devoted to establishing a production test well, installing monitoring devices outside of casing, conducting base line geophysical studies and undertaking a short test to gain practical experience prior to longer term testing planned for 2008 . Hydrate-dissociated gas was produced to surface by depressurization achieved by lowering the fluid level with a dowhole pump. However, the operation was terminated 60 hours after the start of the pumping mainly due to sand production problems. In spite of the short period (12.5 hours of ellapsed pumping time), at least 830m3 of the gas was produced and accumulated in the borehole. Sand screens were installed across the perforated interval at the bottom hole for the 2008 program to overcome operational problems encountered in 2007 and achieve sustainable gas production. Stable bottom hole flowing pressures were successfully achieved during a 6 day test with continuous pump operation. Sustained gas production was achieved with rates between 2000- 4000m3/day and cummulative gas volume in the surface of approximately 13,000m3. Temperature and pressure data measured at the bottom hole and gas and water production rates gave positive evidence for the high efficiency of gas

  4. Organic Substances from Unconventional Oil and Gas Production in Shale

    Science.gov (United States)

    Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.

    2014-12-01

    Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic

  5. HYDROGEN PRODUCTION BY THE CYANOBACTERIUM PLECTONEMA BORYANUM: EFFECTS OF INITIAL NITRATE CONCENTRATION, LIGHT INTENSITY, AND INHIBITION OF PHOTOSYSTEM II BY DCMU

    Energy Technology Data Exchange (ETDEWEB)

    Carter, B.; Huesemann, M.

    2008-01-01

    The alarming rate at which atmospheric carbon dioxide levels are increasing due to the burning of fossil fuels will have incalculable consequences if disregarded. Fuel cells, a source of energy that does not add to carbon dioxide emissions, have become an important topic of study. Although signifi cant advances have been made related to fuel cells, the problem of cheap and renewable hydrogen production still remains. The cyanobacterium Plectonema boryanum has demonstrated potential as a resolution to this problem by producing hydrogen under nitrogen defi cient growing conditions. Plectonema boryanum cultures were tested in a series of experiments to determine the effects of light intensity, initial nitrate concentration, and photosystem II inhibitor DCMU (3-(3,4- dichlorophenyl)-1,1-dimethylurea) upon hydrogen production. Cultures were grown in sterile Chu. No. 10 medium within photobioreactors constantly illuminated by halogen lights. Because the enzyme responsible for hydrogen production is sensitive to oxygen, the medium was continuously sparged with argon/CO2 (99.7%/0.3% vol/vol) by gas dispersion tubes immersed in the culture. Hydrogen production was monitored by using a gas chromatograph equipped with a thermal conductivity detector. In the initial experiment, the effects of initial nitrate concentration were tested and results revealed cumulative hydrogen production was maximum at an initial nitrate concentration of 1 mM. A second experiment was then conducted at an initial nitrate concentration of 1 mM to determine the effects of light intensity at 50, 100, and 200 μmole m-2 s-1. Cumulative hydrogen production increased with increasing light intensity. A fi nal experiment, conducted at an initial nitrate concentration of 2 mM, tested the effects of high light intensity at 200 and 400 μmole m-2 s-1. Excessive light at 400 μmole m-2 s-1 decreased cumulative hydrogen production. Based upon all experiments, cumulative hydrogen production rates were optimal

  6. Exploration and production of crude oil and natural gas in Germany in 2012

    International Nuclear Information System (INIS)

    Pasternak, Michael

    2013-01-01

    This article presents an overview of oil and gas exploration and production in Germany in 2012. The report is based on data gathered on a regular basis by the State Authority for Mining, Energy and Geology (LBEG) from the oil and gas companies and the other state mining offices. Due to the granting of new licences in the last years, a significant increase of geophysical prospecting of the subsurface for oil and gas deposits was observed. Six 3D seismic surveys were conducted. Five surveys were located in the Upper Rhine Valley and one in the lowlands of Northwest Germany. 2D seismic data were acquired in Lusatia (Brandenburg) and at the coast of the Baltic Sea. The number of exploration wells decreased once again. In 2012 nine exploration wells were drilled, compared to ten in the previous year. In addition to that number, another seven exploration wells were drilled to total depth already before 2012, but not completed by final well results in 2012. None of the ten new field wildcats were completed by result. Three exploration wells (appraisal wells) were completed successfully. Two of these wells confirmed the presence of gas and one the presence of oil. The number of development wells decreased significantly. In 2012 31 wells were drilled, compared to 46 in the prominent year 2011. Another 13 wells were drilled to total depth already before 2012, but not completed by final well results in 2012. 31 wells were completed successfully. 30 of these wells encountered oil or gas pay zones. In 2011 drilling meterage has reached its highest value since 1998. In contrast the total drilling meterage decreased slightly by less than 2000 m to 71,424 min 2012. The natural gas production continued its downward trend. Due to the depletion of gas fields, the annual natural gas production dropped by 9.1% compared to the previous year and amounted to 11.7 billion m 3 (field quality). After the increase in 2011, the annual crude oil production decreased by 2.1% to 2.6 million t

  7. European energy security. An analysis of future Russian natural gas production and exports

    Energy Technology Data Exchange (ETDEWEB)

    Soederbergh, Bengt; Jakobsson, Kristofer; Aleklett, Kjell [Global Energy Systems, Department of Physics and Astronomy, Uppsala University, Laegerhyddsvaegen 1, Box 535, SE-751 21, Uppsala (Sweden)

    2010-12-15

    The widening gap between EU gas production and consumption may require an 87% increase of import volumes between 2006 and 2030, and there are great uncertainties regarding the amounts of gas that can be expected from new suppliers. The potential of increased production from Norway and Algeria is limited; hence, Russia is likely to play a crucial part of meeting the anticipated growing gas demand of the EU. A field-by-field study of 83 giant gas fields shows that the major producing Russian gas fields are in decline, and by 2013 much larger supplies from the Yamal Peninsula and the Shtokman field will be needed in order to avoid a decline in production. Gas from fields in Eastern Siberia and the Far East will mainly be directed to the Asian and Pacific Rim markets, thereby limiting its relevance to the European and CIS markets. As a result, the maximum export increase to the European and CIS markets amounts only to about 45% for the period 2015-2030. The discourse surrounding the EU's dependence on Russian gas should thus not only be concerned with geopolitics, but also with the issue of resource limitations. (author)

  8. CMS endcap RPC gas gap production for upgrade

    International Nuclear Information System (INIS)

    Park, S K; Choi, S; Hong, B; Jeng, Y Gun; Kang, M; Lee, K S; Sim, K-S; Colaleo, A; Pugliese, G; Loddo, F; Calabria, C; Maggi, M; Verwillingen, P; Berzano, U; Carrillo, C; Aleksandrov, A; Genchev, V; Iaydjiev, P; Rodozov, M; Shopova, M

    2012-01-01

    The CMS experiment will install a RE4 layer of 144 new Resistive Plate Chambers (RPCs) on the existing york YE3 at both endcap regions to trigger high momentum muons from the proton-proton interaction. In this paper, we present the detailed procedures used in the production of new RPC gas gaps adopted in the CMS upgrade. Quality assurance is enforced as ways to maintain the same quality of RPC gas gaps as the existing 432 endcap RPC chambers that have been operational since the beginning of the LHC operation. (technical report)

  9. Fuel performance and fission product behaviour in gas cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport. Refs, figs, tabs.

  10. A review of literature relevant to gas production in radioactive waste

    International Nuclear Information System (INIS)

    Norris, G.H.

    1987-11-01

    A review of relevant recent papers on gas generation in low-level wastes and intermediate-level wastes is presented. Chemical, microbiological, radiolytic and thermal reactions are considered for both unconditioned wastes and wastes conditioned in cement, or bitumen, or polymer. Possible reaction mechanisms are identified and the effects of temperature and pressure are evaluated. Estimations of the production of combustible gases (which also have the potential to form explosive mixtures) have been taken from the literature. The implications of gas production for pressurisation (and possible rupture) of waste drums and of a repository are assessed. Waste-treatment schemes for the reduction of gas-generation capacity of several waste-types are highlighted. Recommendations for further work are summarised. (author)

  11. Different palm oil production systems for energy purposes and their greenhouse gas implications

    NARCIS (Netherlands)

    Wicke, B.|info:eu-repo/dai/nl/306645955; Dornburg, V.|info:eu-repo/dai/nl/189955007; Junginger, H.M.|info:eu-repo/dai/nl/202130703; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2008-01-01

    This study analyses the greenhouse gas (GHG) emissions of crude palm oil (CPO) and palm fatty acid distillate (PFAD) production in northern Borneo (Malaysia), their transport to the Netherlands and their co-firing with natural gas for electricity production. In the case of CPO, conversion to

  12. PVD and gas production: consider local resource access requirements

    International Nuclear Information System (INIS)

    Delafosse, E.

    1993-01-01

    The history of the natural gas industry worldwide teaches us that its development has sprung mainly from two sources: favorable contingent conditions, such as in the United States, where the discovery of large gas fields coincided favorably with technological progress and the already existing city gas distribution networks, as also happened in Italy and France; and political prodding, as in the Eastern European countries, in Japan, and certain countries of Western Europe too. Today, while natural gas is winning over more and more consumers and the infrastructures now exist, the rise in consumption is being held back by supply-related constraints, and namely the problem of adjusting to the rise in gas prices in the United States, and the distancing of the resources from Europe. In this context, the development of new gas markets in the developing countries could contribute to the continuous growth of the world natural gas industry. The resources do exist, and the possibility of generating electricity with them opens the way to creating or developing this industry in some twenty developing countries, to begin with, and a greater number later. For these countries, this perspective is highly enticing, economically; but development is slow, partly due to the fact that the specific requirements of gas production projects are not satisfied. The contractual and tax structure governing their implementation does not reflect the fact that, in contrast to the petroleum industry, the producer does not have access to a true market, and he is in fact only one of the wheels in an integrated production mechanism bent specifically on putting electrical power on the market. It is easy to see the difficulties that arise from such a situation, since the indispensable steps in the process, performed successively by producer, transporter, and electric company, use two interfaces with fields of business that are in close bilateral dependency. This leads to upstream inefficiency in

  13. Lightweight Approaches to Natural Gas Hydrate Exploration & Production

    Science.gov (United States)

    Max, M. D.; Johnson, A. H.

    2017-12-01

    Lower-cost approaches to drilling and reservoir utilization are made possible by adapting both emerging and new technology to the unique, low risk NGH natural gas resource. We have focused on drilling, wellbore lining technology, and reservoir management with an emphasis on long-term sand control and adaptive mechanical stability during NGH conversion to its constituent gas and water. In addition, we suggest that there are opportunities for management of both the gas and water with respect to maintaining desired thermal conditions. Some of the unique aspects of NGH deposits allow for new, more efficient technology to be applied to development, particularly in drilling. While NGH-bearing sands are in deepwater, they are confined to depths beneath the seafloor of 1.2 kilometers or less. As a result, they will not be significantly above hydrostatic pressure, and temperatures will be less than 30 oC. Drilling will be through semi-consolidated sediment without liquid hydrocarbons. These characteristics mean that high capability drillships are not needed. What is needed is a new perspective about drilling and producing NGH. Drilling from the seafloor will resolve the high-pressure differential between a wellhead on the sea surface in a vessel and reservoir to about the hydrostatic pressure difference between the seafloor and, at most, the base of the GHSZ. Although NGH production will begin using "off-the-shelf" technology, innovation will lead to new technology that will bring down costs and increase efficiency in the same way that led to the shale breakthrough. Commercial success is possible if consideration is given to what is actually needed to produce NGH in a safe and environmentally manner. Max, M.D. 2017. Wellbore Lining for Natural Gas Hydrate. U.S. Patent Application US15644947 Max, M.D. & Johnson, A.H. 2017. E&P Cost Reduction Opportunities for Natural Gas Hydrate. OilPro. . Max, M.D. & Johnson, A.H. 2016. Exploration and Production of Oceanic Natural Gas

  14. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  15. Knowledge based decision making: perspective on natural gas production

    Energy Technology Data Exchange (ETDEWEB)

    Ydstie, B. Erik; Stuland, Kjetil M.

    2009-07-01

    Conclusions (drawn by the author): Decarbonization of energy sources - From coal to renewable. Natural Gas Abundantly available - Norway is no. 3 exporter. Natural gas important as - Hydrogen source for chemicals; - Electricity; - End consumer usage (heating etc). Large potential for application of model based decision making; - Where and when to install platforms and drill wells - How to operate platforms and pipeline systems; - How to operate and optimize chemical production; - Optimization of electricity generation systems. (author)

  16. System-Reliability Cumulative-Binomial Program

    Science.gov (United States)

    Scheuer, Ernest M.; Bowerman, Paul N.

    1989-01-01

    Cumulative-binomial computer program, NEWTONP, one of set of three programs, calculates cumulative binomial probability distributions for arbitrary inputs. NEWTONP, CUMBIN (NPO-17555), and CROSSER (NPO-17557), used independently of one another. Program finds probability required to yield given system reliability. Used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. Program written in C.

  17. Introduction of the 2007-2008 JOGMEC/NRCan/Aurora Mallik Gas Hydrate Production Research Program, NWT, Canada

    Science.gov (United States)

    Yamamoto, K.; Dallimore, S. R.; Numasawa, M.; Yasuda, M.; Fujii, T.; Fujii, K.; Wright, J.; Nixon, F.

    2007-12-01

    Japan Oil, Gas and Metals National Corporation (JOGMEC) and Natural Resource Canada (NRCan) have embarked on a new research program to study the production potential of gas hydrates. The program is being carried out at the Mallik gas hydrate field in the Mackenzie Delta, a location where two previous scientific investigations have been carried in 1998 and 2002. In the 2002 program that was undertaken by seven partners from five countries, 468m3 of gas flow was measured during 124 hours of thermal stimulation using hot warm fluid. Small-scale pressure drawdown tests were also carried out using Schlumberger's Modular Dynamics Tester (MDT) wireline tool, gas flow was observed and the inferred formation permeabilities suggested the possible effectiveness of the simple depressurization method. While the testing undertaken in 2002 can be cited as the first well constrained gas production from a gas hydrate deposit, the results fell short of that required to fully calibrate reservoir simulation models or indeed establish the technical viability of long term production from gas hydrates. The objectives of the current JOGMEC/NRCan/Aurora Mallik production research program are to undertake longer term production testing to further constrain the scientific unknowns and to demonstrate the technical feasibility of sustained gas hydrate production using the depressurization method. A key priority is to accurately measure water and gas production using state-of-art production technologies. The primary production test well was established during the 2007 field season with the re-entry and deepening of JAPEX/JNOC/GSC Mallik 2L-38 well, originally drilled in 1998. Production testing was carried out in April of 2007 under a relatively low drawdown pressure condition. Flow of methane gas was measured from a 12m perforated interval of gas-hydrate-saturated sands from 1093 to 1105m. The results establish the potential of the depressurization method and provide a basis for future

  18. Cumulative human impacts on marine predators.

    Science.gov (United States)

    Maxwell, Sara M; Hazen, Elliott L; Bograd, Steven J; Halpern, Benjamin S; Breed, Greg A; Nickel, Barry; Teutschel, Nicole M; Crowder, Larry B; Benson, Scott; Dutton, Peter H; Bailey, Helen; Kappes, Michelle A; Kuhn, Carey E; Weise, Michael J; Mate, Bruce; Shaffer, Scott A; Hassrick, Jason L; Henry, Robert W; Irvine, Ladd; McDonald, Birgitte I; Robinson, Patrick W; Block, Barbara A; Costa, Daniel P

    2013-01-01

    Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact (CUI) on marine predators by combining electronic tracking data of eight protected predator species (n=685 individuals) in the California Current Ecosystem with data on 24 anthropogenic stressors. We show significant variation in CUI with some of the highest impacts within US National Marine Sanctuaries. High variation in underlying species and cumulative impact distributions means that neither alone is sufficient for effective spatial management. Instead, comprehensive management approaches accounting for both cumulative human impacts and trade-offs among multiple stressors must be applied in planning the use of marine resources.

  19. Gas production and decline rates in the province of Alberta

    International Nuclear Information System (INIS)

    Samson, L.A.

    1999-01-01

    A detailed study was conducted to evaluate the gas production decline rates in Alberta. The study examined the producing gas wells that were place in production between 1990 and 1997. Three major assumptions were used to determine the number of wells necessary to meet future market demand. These were: (1) reserves have been declining at greater rates in the past several years. The current rate of decline is 12 per cent, (2) new reserves added in future will produce at 5.1 E6M3 per year, and (3) the decline rates for new gas wells will be 27 per cent in the first year, 16 per cent in the second year, 12 per cent in the third year and thereafter. With this information, the Alberta Energy and Utilities Board estimates that the annual total deliveries of gas from Alberta in the year 2002 will be 177.4 E9M3 compared to 127 E9M3 in 1997. In order to meet this supply, drilling activity for successful gas wells will have to double the 1997 rate because it is predicted that more than 6400 new wells will be needed per year to meet future demand. 2 refs., 2 tabs., 20 figs

  20. Cumulative nucleon production in 3Hep- and 3Hp interactions at momenta of colliding nuclei 5 GeV/c

    International Nuclear Information System (INIS)

    Abdullin, S.K.; Blinov, A.V.; Vanyushin, I.A.

    1989-01-01

    Inclusive cross sections of cumulative protons produced in 3 Hep- and 3 Hp-interactions under momenta of colliding 5 GeV/c nuclei are investigated. Experimental material is obtained using liquid-hydrogen ITEP chamber-80cm. Under the cumulative proton kinetic energy, exceeding 50 MeV inclusive cross section ratio σ( 3 Hep→pX)/σ( 3 Hp→pX)=1.6±0.1. Within the same energy interval evaluation of yield ratio of cumulative protons and neutrons, produced in 3 Hep -interactions, leads to ∼ 1.6 value. Asymmetry of mean multiple protons escaping forward and backward both in 3 Hep -and in 3 Hp interactions is observed. Averaged invariant distribution functions for cumulative protons and neutrons in 8 Hep-interactions and protons in 3 Hp-interactions are constructed (the averaging is performed within 90-180 deg and 120-180 deg intervals). To temperatures of such distributions are found. 43 refs.; 1 fig

  1. Reducing pollution at five critical points of shale gas production: Strategies and institutional responses

    International Nuclear Information System (INIS)

    Centner, Terence J.

    2016-01-01

    While the public and governments debate the advisability of engaging in shale gas production, the United States has proceeded to develop its resources with an accompanying remarkable increase in natural gas production. The development of shale gas has not been without problems, and some countries have decided that shale gas production should not proceed until more is known about the accompanying health issues and environmental damages. From experiences in the United States, careful consideration of five critical points relating to shale gas production can form the basis for developing strategies for reducing discharges of pollutants: (1) casing and cementing, (2) handling wastewater, (3) venting and flaring, (4) equipment with air emissions, and (5) seismic events. For each strategy, institutional responses to markedly reduce the risks of harm to people and the environment are identified. These responses offer state and local governments ideas for enabling shale gas resources to be developed without sacrificing public health and environmental quality. - Highlights: •Shale gas development involves releases of unnecessary pollutants. •Major sources of unnecessary pollutants can be identified. •For major pollutant sources, strategies can be developed to reduce releases of contaminants. •Alternative strategies can offer firms and governments ways to reduce pollutant releases.

  2. Nanopowder production by gas-embedded electrical explosion of wire

    International Nuclear Information System (INIS)

    Zou Xiao-Bing; Wang Xin-Xin; Jiang Wei-Hua; Mao Zhi-Guo

    2013-01-01

    A small electrical explosion of wire (EEW) setup for nanopowder production is constructed. It consists of a low inductance capacitor bank of 2 μF–4 μF typically charged to 8 kV−30 kV, a triggered gas switch, and a production chamber housing the exploding wire load and ambient gas. With the EEW device, nanosize powders of titanium oxides, titanium nitrides, copper oxides, and zinc oxides are successfully synthesized. The average particle size of synthesized powders under different experimental conditions is in a range of 20 nm−80 nm. The pressure of ambient gas or wire vapor can strongly affect the average particle size. The lower the pressure, the smaller the particle size is. For wire material with relatively high resistivity, such as titanium, whose deposited energy W d is often less than sublimation energy W s due to the flashover breakdown along the wire prematurely ending the Joule heating process, the synthesized particle size of titanium oxides or titanium nitrides increases with overheat coefficient k (k = W d /W s ) increasing. (physics of gases, plasmas, and electric discharges)

  3. Nanopowder production by gas-embedded electrical explosion of wire

    Institute of Scientific and Technical Information of China (English)

    Zou Xiao-Bing; Mao Zhi-Guo; Wang Xin-Xin; Jiang Wei-Hua

    2013-01-01

    A small electrical explosion of wire (EEW) setup for nanopowder production is constructed.It consists of a low inductance capacitor bank of 2 μF--4 μF typically charged to 8 kV-30 kV,a triggered gas switch,and a production chamber housing the exploding wire load and ambient gas.With the EEW device,nanosize powders of titanium oxides,titanium nitrides,copper oxides,and zinc oxides are successfully synthesized.The average particle size of synthesized powders under different experimental conditions is in a range of 20 nm-80 nm.The pressure of ambient gas or wire vapor can strongly affect the average particle size.The lower the pressure,the smaller the particle size is.For wire material with relatively high resistivity,such as titanium,whose deposited energy Wd is often less than sublimation energy Ws due to the flashover breakdown along the wire prematurely ending the Joule heating process,the synthesized particle size of titanium oxides or titanium nitrides increases with overheat coefficient k (k =Wd/Ws) increasing.

  4. Artificial intelligence applications in offshore oil and gas production

    International Nuclear Information System (INIS)

    Attia, F.G.

    1994-01-01

    The field of Artificial Intelligence (AI) has gained considerable acceptance in virtually all fields, of engineering applications. Artificial intelligence is now being applied in several areas of offshore oil and gas operations, such as drilling, well testing, well logging and interpretation, reservoir engineering, planning and economic evaluation, process control, and risk analysis. Current AI techniques offer a new and exciting technology for solving problems in the oil and gas industry. Expert systems, fuzzy logic systems, neural networks and genetic algorithms are major AI technologies which have made an impact on the petroleum industry. Presently, these technologies are at different stages of maturity with expert systems being the most mature and genetic algorithms the least. However, all four technologies have evolved such that practical applications were produced. This paper describes the four major Al techniques and their many applications in offshore oil and gas production operations. A summary description of future developments in Al technology that will affect the execution and productivity of offshore operations will be also provided

  5. Displacement of oil by gas in power production

    International Nuclear Information System (INIS)

    Sundram, S.; Seng, L.K.; Kow, P.T.A.

    1992-01-01

    After the oil crises, Malaysia unveiled its four fuel diversification policy in the late 1970s towards utilization of gas, oil, coal and hydro. This was to ensure adequate and continuous energy supply for driving economic development and to cushion itself against impact of possible future fluctuations in oil prices. The primary energy supply in 1978 was predominantly oil based, consisting of 75.5% oil. As a result of this diversification policy, the oil component was reduced to about 51.8% in 1988. Due to its inherent ability to adapt and adjust to different fuels, the power sector played a crucial role in this massive shift away from oil. For the corresponding period, the oil component in the electricity generation input mix has decreased from 86.7% oil to 47.4%. Malaysia is endowed with substantial natural gas reserves amounting to 52.5 trillion cubic feet. Gas, therefore constitutes a natural and attractive option for the power sector in diversifying into non-oil indigenous energy resources, as the country's hydro potential has its limitations and the available proven coal reserves are relatively small. The paper addresses the past and current status and issues involved in displacing oil by gas for the power sector. These include the economic, technological and pricing aspects of natural gas development and issues pertaining to power system development. Future gas utilization strategies include the conversion of existing oil-fired plants to gas-fired, and the plant-up of gas turbines and the efficient combined cycle plants to meet the load requirements. These strategies are assessed from the viability and security perspective of increased gas utilization. Oil will continue to be displaced, but the extent to which gas will increase its share in power production is dependent on numerous factors ranging from its economics to supply security

  6. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  7. OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

    2004-05-01

    A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

  8. Regional air quality impacts of increased natural gas production and use in Texas.

    Science.gov (United States)

    Pacsi, Adam P; Alhajeri, Nawaf S; Zavala-Araiza, Daniel; Webster, Mort D; Allen, David T

    2013-04-02

    Natural gas use in electricity generation in Texas was estimated, for gas prices ranging from $1.89 to $7.74 per MMBTU, using an optimal power flow model. Hourly estimates of electricity generation, for individual electricity generation units, from the model were used to estimate spatially resolved hourly emissions from electricity generation. Emissions from natural gas production activities in the Barnett Shale region were also estimated, with emissions scaled up or down to match demand in electricity generation as natural gas prices changed. As natural gas use increased, emissions decreased from electricity generation and increased from natural gas production. Overall, NOx and SO2 emissions decreased, while VOC emissions increased as natural gas use increased. To assess the effects of these changes in emissions on ozone and particulate matter concentrations, spatially and temporally resolved emissions were used in a month-long photochemical modeling episode. Over the month-long photochemical modeling episode, decreases in natural gas prices typical of those experienced from 2006 to 2012 led to net regional decreases in ozone (0.2-0.7 ppb) and fine particulate matter (PM) (0.1-0.7 μg/m(3)). Changes in PM were predominantly due to changes in regional PM sulfate formation. Changes in regional PM and ozone formation are primarily due to decreases in emissions from electricity generation. Increases in emissions from increased natural gas production were offset by decreasing emissions from electricity generation for all the scenarios considered.

  9. Multidimensional modeling of the effect of Exhaust Gas Recirculation (EGR) on exergy terms in an HCCI engine fueled with a mixture of natural gas and diesel

    International Nuclear Information System (INIS)

    Jafarmadar, Samad; Nemati, Peyman; Khodaie, Rana

    2015-01-01

    Highlights: • The exergy efficiency decreases by 41.3%. • The irreversibility increases by 46.80%. • The cumulative heat loss exergy decreases by 68.10%. • The cumulative work exergy decreases by 63.4%. • The exhaust losses exergy increases by 28.79%. - Abstract: One of the most important issues in HCCI engines is auto-ignition timing control. EGR introduction into intake charge can be a method to control combustion phasing and its duration. In the current study, a FORTRAN-based code which includes 10 species (O_2, N_2, H_2O, CO_2, CO, H_2, OH, O, N, NO) associated with combustion products was employed to study the exergy analysis in a dual fuel (natural gas + diesel) HCCI engine at four EGR (exhaust gas recirculation) mass fractions (0%, 10%, 20%, and 30%) while the diesel fuel amount was held constant. In order to achieve this task, a 3-D CFD code was employed to model the energy balance during a closed cycle of running engine simulation. Moreover, an efficient Extend Coherent Flame Model-Three Zone model (ECFM-3Z) method was employed to analyze the combustion process. With crank positions at different EGR mass fractions, the exergy terms were identified and calculated separately. It was found that as EGR mass fraction increased from 0% to 30% (in 10% increment steps), exergy efficiency decreased from 48.9% to 28.7%. Furthermore, with the change in EGR mass fraction, the cumulative heat loss exergy decreased from 10.1% to 5.64% of mixture fuels chemical exergy.

  10. Comprehensive Analysis of the Gas- and Particle-Phase Products of VOC Oxidation

    Science.gov (United States)

    Bakker-Arkema, J.; Ziemann, P. J.

    2017-12-01

    Controlled environmental chamber studies are important for determining atmospheric reaction mechanisms and gas and aerosol products formed in the oxidation of volatile organic compounds (VOCs). Such information is necessary for developing detailed chemical models for use in predicting the atmospheric fate of VOCs and also secondary organic aerosol (SOA) formation. However, complete characterization of atmospheric oxidation reactions, including gas- and particle-phase product yields, and reaction branching ratios, are difficult to achieve. In this work, we investigated the reactions of terminal and internal alkenes with OH radicals in the presence of NOx in an attempt to fully characterize the chemistry of these systems while minimizing and accounting for the inherent uncertainties associated with environmental chamber experiments. Gas-phase products (aldehydes formed by alkoxy radical decomposition) and particle-phase products (alkyl nitrates, β-hydroxynitrates, dihydroxynitrates, 1,4-hydroxynitrates, 1,4-hydroxycarbonyls, and dihydroxycarbonyls) formed through pathways involving addition of OH to the C=C double bond as well as H-atom abstraction were identified and quantified using a suite of analytical techniques. Particle-phase products were analyzed in real time with a thermal desorption particle beam mass spectrometer; and off-line by collection onto filters, extraction, and subsequent analysis of functional groups by derivatization-spectrophotometric methods developed in our lab. Derivatized products were also separated by liquid chromatography for molecular quantitation by UV absorbance and identification using chemical ionization-ion trap mass spectrometry. Gas phase aldehydes were analyzed off-line by collection onto Tenax and a 5-channel denuder with subsequent analysis by gas chromatography, or by collection onto DNPH-coated cartridges and subsequent analysis by liquid chromatography. The full product identification and quantitation, with careful

  11. Common-Reliability Cumulative-Binomial Program

    Science.gov (United States)

    Scheuer, Ernest, M.; Bowerman, Paul N.

    1989-01-01

    Cumulative-binomial computer program, CROSSER, one of set of three programs, calculates cumulative binomial probability distributions for arbitrary inputs. CROSSER, CUMBIN (NPO-17555), and NEWTONP (NPO-17556), used independently of one another. Point of equality between reliability of system and common reliability of components found. Used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. Program written in C.

  12. Optimizing production gas wells by using a dual completion

    International Nuclear Information System (INIS)

    Boussa, M.; Hebbal, H.

    2006-01-01

    Dual completion has frequently been used in producing oil wells that are perforated on several zones. This paper presented the results of a study investigating the use of dual completion techniques on producing gas wells with 2 and 3 layers in Hassi-R'mel gas field in Algeria. The aim of the study was to improve production in the upper zones of the wells. The advantages and disadvantages of dual completion were discussed. Capital costs and profit ratios after completion were also examined. Hassi R'mel is one of the largest wet gas reservoirs in the world, and has 3 distinct reservoir horizons. Zone A is comprised of fine-grained clay-rich sandstone with anhydritic cementing in places. Zones B and C have permeabilities ranging 300 to 1200 mD. The lower zones contribute to the majority of the gas production. Water influx from Zone C generates an increase in the flow of some wells in Zone A. Three wells were selected that shared the following characteristics: (1) cross-flow; (2) water influx; and (3) low flow from the higher zone. Two computer simulations were prepared to compare the use of well smart completion techniques and dual completion. Hagedorne and Brown correlations were used. Results of the simulation indicated that smart well completion gave the best results when compared with dual completion, and was more cost-effective due to the fact that the completion technique did not need to be altered, and flow at the bottom could be controlled from the surface by valves. The technique prevented cross flow between zones and optimized production from various zones. 7 refs., 3 tabs., 40 figs

  13. Geologic and porous media factors affecting the 2007 production response characteristics of the JOGMEC/NRCan/AURORA Mallik gas hydrate production research well

    Energy Technology Data Exchange (ETDEWEB)

    Dallimore, S. R.; Wright, J. F.; Nixon, F. M. [Natural Resources Canada, Sidney, BC (Canada). Geological Survey of Canada; Kurihara, M. [Japan Oil Engineering, Tokyo (Japan); Yamamoto, K.; Fujii, T.; Fujii, K.; Numasawa, M.; Yasuda, M. [Japan Oil, Gas, Metals National Corp., Chiba (Japan). Technical Research Centre; Imasato, Y. [Schlumberger K.K., Fuchinombe (Japan)

    2008-07-01

    The joint research project between Japan Oil, Gas and Metals National Corporation (JOGMEC), Natural Resources Canada (NRCan) and the Aurora Research Institute was conducted in an effort to measure and monitor the response of a terrestrial gas hydrate reservoir to pressure draw down. This paper reviewed the geologic setting and porous media conditions of a concentrated gas hydrate production interval between 1093 and 1105 m. The short-duration production test was conducted at the Mallik site in Canada's Mackenzie Delta in April 2007. The production interval consists of a sand-dominated succession with occasional silty sand interbeds. Gas hydrate occurs primarily within the sediment pore spaces, with concentrations ranging between 50-90 per cent. Experiments on pore water salinity and porous media conditions on pressure-temperature stability suggest that the partition between gas hydrate stability and instability should be considered as a phase boundary zone rather than a discrete threshold. The experiment revealed that there are significant changes to the physical properties following gas hydrate dissociation, with sediments containing no hydrate behaving as unconsolidated sands. A strong reservoir response to pressure draw down was observed with increasing gas flow during the testing period. Sand inflow to the well during the test may be attributed to loss of sediment strength during gas hydrate dissociation, with the sediment behaving as a gasified slurry. It was concluded that the gas flow response observed during the 2007 production test at Mallik was highly influenced by porous media properties and by the geological heterogeneities which may initiate high permeability conduits in sediments within the production interval of the Mallik gas hydrate reservoir. 18 refs., 6 figs.

  14. Cumulative effects assessment: Does scale matter?

    International Nuclear Information System (INIS)

    Therivel, Riki; Ross, Bill

    2007-01-01

    Cumulative effects assessment (CEA) is (or should be) an integral part of environmental assessment at both the project and the more strategic level. CEA helps to link the different scales of environmental assessment in that it focuses on how a given receptor is affected by the totality of plans, projects and activities, rather than on the effects of a particular plan or project. This article reviews how CEAs consider, and could consider, scale issues: spatial extent, level of detail, and temporal issues. It is based on an analysis of Canadian project-level CEAs and UK strategic-level CEAs. Based on a review of literature and, especially, case studies with which the authors are familiar, it concludes that scale issues are poorly considered at both levels, with particular problems being unclear or non-existing cumulative effects scoping methodologies; poor consideration of past or likely future human activities beyond the plan or project in question; attempts to apportion 'blame' for cumulative effects; and, at the plan level, limited management of cumulative effects caused particularly by the absence of consent regimes. Scale issues are important in most of these problems. However both strategic-level and project-level CEA have much potential for managing cumulative effects through better siting and phasing of development, demand reduction and other behavioural changes, and particularly through setting development consent rules for projects. The lack of strategic resource-based thresholds constrains the robust management of strategic-level cumulative effects

  15. Cumulative cultural learning: Development and diversity

    Science.gov (United States)

    2017-01-01

    The complexity and variability of human culture is unmatched by any other species. Humans live in culturally constructed niches filled with artifacts, skills, beliefs, and practices that have been inherited, accumulated, and modified over generations. A causal account of the complexity of human culture must explain its distinguishing characteristics: It is cumulative and highly variable within and across populations. I propose that the psychological adaptations supporting cumulative cultural transmission are universal but are sufficiently flexible to support the acquisition of highly variable behavioral repertoires. This paper describes variation in the transmission practices (teaching) and acquisition strategies (imitation) that support cumulative cultural learning in childhood. Examining flexibility and variation in caregiver socialization and children’s learning extends our understanding of evolution in living systems by providing insight into the psychological foundations of cumulative cultural transmission—the cornerstone of human cultural diversity. PMID:28739945

  16. Cumulative cultural learning: Development and diversity.

    Science.gov (United States)

    Legare, Cristine H

    2017-07-24

    The complexity and variability of human culture is unmatched by any other species. Humans live in culturally constructed niches filled with artifacts, skills, beliefs, and practices that have been inherited, accumulated, and modified over generations. A causal account of the complexity of human culture must explain its distinguishing characteristics: It is cumulative and highly variable within and across populations. I propose that the psychological adaptations supporting cumulative cultural transmission are universal but are sufficiently flexible to support the acquisition of highly variable behavioral repertoires. This paper describes variation in the transmission practices (teaching) and acquisition strategies (imitation) that support cumulative cultural learning in childhood. Examining flexibility and variation in caregiver socialization and children's learning extends our understanding of evolution in living systems by providing insight into the psychological foundations of cumulative cultural transmission-the cornerstone of human cultural diversity.

  17. Production of synthesis gas and methane via coal gasification utilizing nuclear heat

    International Nuclear Information System (INIS)

    van Heek, K.H.; Juentgen, H.

    1982-01-01

    The steam gasificaton of coal requires a large amount of energy for endothermic gasification, as well as for production and heating of the steam and for electricity generation. In hydrogasification processes, heat is required primarily for the production of hydrogen and for preheating the reactants. Current developments in nuclear energy enable a gas cooled high temperature nuclear reactor (HTR) to be the energy source, the heat produced being withdrawn from the system by means of a helium loop. There is a prospect of converting coal, in optimal yield, into a commercial gas by employing the process heat from a gas-cooled HTR. The advantages of this process are: (1) conservation of coal reserves via more efficient gas production; (2) because of this coal conservation, there are lower emissions, especially of CO 2 , but also of dust, SO 2 , NO/sub x/, and other harmful substances; (3) process engineering advantages, such as omission of an oxygen plant and reduction in the number of gas scrubbers; (4) lower gas manufacturing costs compared to conventional processes. The main problems involved in using nuclear energy for the industrial gasification of coal are: (1) development of HTRs with helium outlet temperatures of at least 950 0 C; (2) heat transfer from the core of the reactor to the gas generator, methane reforming oven, or heater for the hydrogenation gas; (3) development of a suitable allothermal gas generator for the steam gasification; and (4) development of a helium-heated methane reforming oven and adaption of the hydrogasification process for operation in combination with the reactor. In summary, processes for gasifying coal that employ heat from an HTR have good economic and technical prospects of being realized in the future. However, time will be required for research and development before industrial application can take place. 23 figures, 4 tables. (DP)

  18. Development of a gas-jet-coupled multitarget system for multitracer production

    International Nuclear Information System (INIS)

    Haba, H.; Kaji, D.; Kanayama, Y.; Igarashi, K.; Enomoto, S.

    2005-01-01

    de021741792A new multitracer production system, which consists of a gas-jet-coupled multitarget system for short-lived radioactive tracers and a gas- and water-cooled target system for intense beam irradiations, has been installed on a beam line of the K540-MeV RIKEN Ring Cyclotron. The performance of the gas-jet system was investigated with 50 radionuclides of 18 elements produced in the 135 MeV nucl. -1 - 14 N induced reaction on nat Cu. The gas-jet efficiencies of the nuclides varying from 61 Cu to 24 Na, except for the chlorine isotopes, show a smooth variation as a function of the mass difference between a product and a target. The multitracers on the nat Ag and 197 Au targets were also produced by the 135 MeV nucl. -1 - 14 N beam with the intensity of 0.7 pμA, which was more than seven times the limit of the previous system. (orig.)

  19. Integrated process for synthetic natural gas production from coal and coke-oven gas with high energy efficiency and low emission

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Siyu; Qian, Yu

    2016-01-01

    Highlights: • A novel coal and coke-oven gas to SNG (CGtSNG) process is proposed. • Energy efficiency of CGtSNG increases 8% compared to coal-to-SNG process. • CGtSNG reduces 60% CO_2 emission and 72% effluent discharge. • CGtSNG proposes an idea of using redundant coke-oven gas for producing SNG production. - Abstract: There was a rapid development of coal to synthetic natural gas (SNG) projects in the last few years in China. The research from our previous work and some other researchers have found coal based SNG production process has the problems of environmental pollution and emission transfer, including CO_2 emission, effluent discharge, and high energy consumption. This paper proposes a novel co-feed process of coal and coke-oven gas to SNG process by using a dry methane reforming unit to reduce CO_2 emissions, more hydrogen elements are introduced to improve resource efficiency. It is shown that the energy efficiency of the co-feed process increases by 4%, CO_2 emission and effluent discharge is reduced by 60% and 72%, whereas the production cost decreases by 16.7%, in comparison to the conventional coal to SNG process. As coke-oven gas is a waste gas in most of the coking plant, this process also allows to optimize the allocation of resources.

  20. A detailed analysis of the productivity performance of oil and gas extraction in Canada

    International Nuclear Information System (INIS)

    Bradley, C.; Sharpe, A.

    2009-09-01

    The productivity and performance of oil and gas extraction in Canada has been poor over the last few years. Various input estimates show that labour productivity dropped by 8.23 per cent per year between 2000 and 2007. Hours worked grew 108.0 per cent while real gross domestic product (GDP) increased by 14.1 per cent. Oil and gas extraction accounted for 6.2 per cent of aggregate labour productivity growth in Canada between 1987 and 2006. Relative real oil and gas prices also increased significantly during this period. However, declining capital intensity, higher output prices and lagging innovation and technological progress led to declines in labour, capital, and total factor productivity in the oil and gas extraction sector during this period. Higher prices translated into a falling capital-labour ratio. Productivity growth suffered as a result of greater inefficiencies in operations. It was concluded that the deceleration in labour productivity growth after 2000 indicates a slower rate of increase in living standards despite the fact that higher commodity prices have increased the real income of Canadians. 90 refs., 6 tabs., 20 figs.

  1. A drainage data-based calculation method for coalbed permeability

    International Nuclear Information System (INIS)

    Lai, Feng-peng; Li, Zhi-ping; Fu, Ying-kun; Yang, Zhi-hao

    2013-01-01

    This paper establishes a drainage data-based calculation method for coalbed permeability. The method combines material balance and production equations. We use a material balance equation to derive the average pressure of the coalbed in the production process. The dimensionless water production index is introduced into the production equation for the water production stage. In the subsequent stage, which uses both gas and water, the gas and water production ratio is introduced to eliminate the effect of flush-flow radius, skin factor, and other uncertain factors in the calculation of coalbed methane permeability. The relationship between permeability and surface cumulative liquid production can be described as a single-variable cubic equation by derivation. The trend shows that the permeability initially declines and then increases after ten wells in the southern Qinshui coalbed methane field. The results show an exponential relationship between permeability and cumulative water production. The relationship between permeability and cumulative gas production is represented by a linear curve and that between permeability and surface cumulative liquid production is represented by a cubic polynomial curve. The regression result of the permeability and surface cumulative liquid production agrees with the theoretical mathematical relationship. (paper)

  2. Flammable gas tank waste level reconcilliation tank 241-SX-102

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddie, L.A.

    1997-01-01

    Fluoro Dynel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 24 1-S-1 1 1 (S-I 1 1, typical). The trapped gas evaluation document (ref 1) states that Tank SX-102 exceeds the 25% of the lower flammable limit (FL) criterion (ref 2), based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the ''Wallet Report'' is the basis for this letter report (ref 3). The Wallet Report is also a part of the trapped gas evaluation document criteria. The Wallet Report contains various tank information, including: physical information, status, levels, and dry wells, see Appendix A. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unacquainted for surface level rise. From 1973 through 1980, the Wallet Report tracked Tank S- 102 transfers and reported a net cumulative change of 19.95 in. This surface level increase is from an unknown source or is unacquainted for. Duke Engineering and Services Hanford (DASH) and Leached Martin Hanford Corporation (LMHC) are interested in determining the validity of the unexplained surface level changes reported in the 0611e Wallet Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unacquainted for surface level changes as shown in the Wallet Report from 1973 through 1980

  3. Utilizing natural gas huff and puff to enhance production in heavy oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Wenlong, G.; Shuhong, W.; Jian, Z.; Xialin, Z. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[PetroChina Co. Ltd., Beijing (China); Jinzhong, L.; Xiao, M. [China Univ. of Petroleum, Beijing (China)

    2008-10-15

    The L Block in the north structural belt of China's Tuha Basin is a super deep heavy oil reservoir. The gas to oil ratio (GOR) is 12 m{sup 3}/m{sup 3} and the initial bubble point pressure is only 4 MPa. The low production can be attributed to high oil viscosity and low flowability. Although steam injection is the most widely method for heavy oil production in China, it is not suitable for the L Block because of its depth. This paper reviewed pilot tests in which the natural gas huff and puff process was used to enhance production in the L Block. Laboratory experiments that included both conventional and unconventional PVT were conducted to determine the physical property of heavy oil saturated by natural gas. The experiments revealed that the heavy oil can entrap the gas for more than several hours because of its high viscosity. A pseudo bubble point pressure exists much lower than the bubble point pressure in manmade foamy oils, which is relative to the depressurization rate. Elastic energy could be maintained in a wider pressure scope than natural depletion without gas injection. A special experimental apparatus that can stimulate the process of gas huff and puff in the reservoir was also introduced. The foamy oil could be seen during the huff and puff experiment. Most of the oil flowed to the producer in a pseudo single phase, which is among the most important mechanisms for enhancing production. A pilot test of a single well demonstrated that the oil production increased from 1 to 2 cubic metres per day to 5 to 6 cubic metres per day via the natural gas huff and puff process. The stable production period which was 5 to 10 days prior to huff and puff, was prolonged to 91 days in the first cycle and 245 days in the second cycle. 10 refs., 1 tab., 12 figs.

  4. Production statistics of gas turbines and superchargers in Japan in 1991

    Energy Technology Data Exchange (ETDEWEB)

    Honma, T [Toshiba Corp., Tokyo (Japan). Principal Office

    1992-01-01

    In 1991, total production of land and marine gas turbines has made a new record of 416 units with a power output of 2,771MW(54% increase compared to previous year). Production of small units have decreased by 7% where as medium units production has increased 18% and 14% in number of units and power output respectively. Compared to previous year, the production of large units has increased by 50% in number of units and 70% in power output. The units for export shared 10% and 70% of grand total number of units and power output respectively. Gas turbines to be burnt gaseous fuel and liquid fuel have been 74% and 26% in power output respectively. Production statistics of turbojet and turbofan engines has been almost same to the previous year with slight increase and decrease of small turbojet engine and medium size turbojet engine respectively. Production of turboshaft and turboprop engines along with the models of superchargers, have increased. 10 figs., 9 tabs.

  5. Production from Giant Gas Fields in Norway and Russia and Subsequent Implications for European Energy Security

    International Nuclear Information System (INIS)

    Soederbergh, Bengt

    2010-01-01

    The International Energy Agency (IEA) expects total natural gas output in the EU to decrease from 216 billion cubic meters per year (bcm/year) in 2006 to 90 bcm/year in 2030. For the same period, EU demand for natural gas is forecast to increase rapidly. In 2006 demand for natural gas in the EU amounted to 532 bcm/year. By 2030, it is expected to reach 680 bcm/year. As a consequence, the widening gap between EU production and consumption requires a 90% increase of import volumes between 2006 and 2030. The main sources of imported gas for the EU are Russia and Norway. Between them they accounted for 62% of the EU's gas imports in 2006. The objective of this thesis is to assess the potential future levels of gas supplies to the EU from its two main suppliers, Norway and Russia. Scenarios for future natural gas production potential for Norway and Russia have been modeled utilizing a bottom-up approach, building field-by-field, and individual modeling has been made for giant and semi-giant gas fields. In order to forecast the production profile for an individual giant natural gas field a Giant Gas Field Model (GGF-model) has been developed. The GGF-model has also been applied to production from an aggregate of fields, such as production from small fields and undiscovered resources. Energy security in the EU is heavily dependent on gas supplies from a relatively small number of giant gas fields. In Norway almost all production originates from 18 fields of which 9 can be considered as giant fields. In Russia 36 giant fields account for essentially all gas production. There is limited potential for increased gas exports from Norway to the EU, and all of the scenarios investigated show Norwegian gas production in decline by 2030. Norwegian pipeline gas exports to the EU may even be, by 2030, 20 bcm/year lower than today's level. The maximum increase in exports of Russian gas supplies to the EU amount to only 45% by 2030. In real numbers this means a mere increase of about

  6. Calculating Cumulative Binomial-Distribution Probabilities

    Science.gov (United States)

    Scheuer, Ernest M.; Bowerman, Paul N.

    1989-01-01

    Cumulative-binomial computer program, CUMBIN, one of set of three programs, calculates cumulative binomial probability distributions for arbitrary inputs. CUMBIN, NEWTONP (NPO-17556), and CROSSER (NPO-17557), used independently of one another. Reliabilities and availabilities of k-out-of-n systems analyzed. Used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. Used for calculations of reliability and availability. Program written in C.

  7. Indian gas field development plan aims for quick production

    International Nuclear Information System (INIS)

    Banerjee, N.

    1992-01-01

    The development of a new oil or gas field involves construction of various downstream facilities such as field flow lines, trunk lines, oil and gas collecting and processing stations, and transportation to refineries and consuming centers. This paper reports that it is essential that these facilities be built on a schedule that allows the products to be transported and processed as early as possible. Unless such an approach is initiated, the wells producing crude oil or natural gas will need to be shut-in in the absence of the other relative facilities. For quick returns on the investments, a realistic program and careful evaluation of the schedule is needed to ensure that early commissioning of the fields is possible

  8. Gas-phase transport of fission products

    International Nuclear Information System (INIS)

    Tang, I.N.; Munkelwitz, H.R.

    1982-01-01

    The paper presents the results of an experimental investigation to show the importance of nuclear aerosol formation as a mechanism for semi-volatile fission product transport under certain postulated HTGR accident conditions. Simulated fission product Sr and Ba as oxides are impregnated in H451 graphite and released at elevated temperatures into a dry helium flow. In the presence of graphite, the oxides are quantitatively reduced to metals, which subsequently vaporize at temperatures much lower than required for the oxides alone to vaporize in the absence of graphite. A substantial fraction of the released material is associated with particulate matter, which is collected on filters located downstream at ambient temperatures. Increasing carrier-gas flow rate greatly enhances the extent of particulate transport. The release and transport of simulated fission product Ag as metal are also investigated. Electron microscopic examinations of the collected Sr and Ag aerosols show large agglomerates composed of primary particles roughly 0.06 to 0.08 μm in diameter

  9. Cumulative human impacts on marine predators

    DEFF Research Database (Denmark)

    Maxwell, Sara M; Hazen, Elliott L; Bograd, Steven J

    2013-01-01

    Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact...

  10. Process for the production of fuel gas from coal

    Science.gov (United States)

    Patel, Jitendra G.; Sandstrom, William A.; Tarman, Paul B.

    1982-01-01

    An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

  11. Microbial production of natural gas from coal and organic-rich shale

    Science.gov (United States)

    Orem, William

    2013-01-01

    Natural gas is an important component of the energy mix in the United States, producing greater energy yield per unit weight and less pollution compared to coal and oil. Most of the world’s natural gas resource is thermogenic, produced in the geologic environment over time by high temperature and pressure within deposits of oil, coal, and shale. About 20 percent of the natural gas resource, however, is produced by microorganisms (microbes). Microbes potentially could be used to generate economic quantities of natural gas from otherwise unexploitable coal and shale deposits, from coal and shale from which natural gas has already been recovered, and from waste material such as coal slurry. Little is known, however, about the microbial production of natural gas from coal and shale.

  12. EFFECTS OF OIL AND NATURAL GAS PRICES ON INDUSTRIAL PRODUCTION IN THE EUROZONE MEMBER COUNTRIES

    Directory of Open Access Journals (Sweden)

    Yılmaz BAYAR

    2014-04-01

    Full Text Available Industrial production is one of the leading indicators of gross domestic product which reflects the overall economic performance of a country. In other words decreases or increases in industrial production point out a contracting or expanding economy. Therefore, changes in prices of oil and natural gas which are the crucial inputs to the industrial production are also important for the overall economy. This study examines the effects of changes in oil and natural gas prices on the industrial production in the 18 Eurozone member countries during the period January 2001-September 2013 by using panel regression. We found that oil prices and natural gas prices had negative effect on industrial production in the Eurozone member countries.

  13. Production of natural gas from methane hydrate by a constant downhole pressure well

    International Nuclear Information System (INIS)

    Ahmadi, Goodarz; Ji, Chuang; Smith, Duane H.

    2007-01-01

    Natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing downhole well was studied. The case that the well pressure was kept constant was treated, and two different linearization schemes in an axisymmetric configuration were used in the analysis. For different fixed well pressures and reservoir temperatures, approximate self similar solutions were obtained. Distributions of temperature, pressure and gas velocity field across the reservoir were evaluated. The distance of the decomposition front from the well and the natural gas production rate as functions of time were also computed. Time evolutions of the resulting profiles were presented in graphical forms, and their differences with the constant well output results were studied. It was shown that the gas production rate was a sensitive function of well pressure and reservoir temperature. The sensitivity of the results to the linearization scheme used was also studied

  14. Preliminary Calculation of the EROI for the Production of Gas in Russia

    Directory of Open Access Journals (Sweden)

    Roman Nogovitsyn

    2014-09-01

    Full Text Available Russia is one of the world’s largest producers of energy resources. Production of energy resources in Russia is profitable, both economically and in terms of the energy produced (as measured by EROI. At the present time, Russian oil and gas companies have a policy of energy saving, and data on energy consumption is given in annual reports. Based on these data, we can make the EROI calculation. In 2013, the EROI for the production, transportation and processing of gas for Open joint stock company (OJSC “Gazprom” was 79:1; for OJSC “NOVATEK”, 76:1; for OJSC “Yakutsk Fuel and Energy Company (YATEC”, only for production, 116:1. Currently, the situation in the oil and gas industry has come to a point when there is a need for the introduction of an energy audit.

  15. Greenhouse gas footprints of different biofuel production systems

    NARCIS (Netherlands)

    Hoefnagels, E.T.A.; Smeets, E.M.W.; Faaij, A.P.C.

    2010-01-01

    The aim of this study is to show the impact of different assumptions and methodological choices on the life-cycle greenhouse gas (GHG) performance of biofuels by providing the results for different key parameters on a consistent basis. These include co-products allocation or system expansion, N2O

  16. Safety barriers to prevent release of hydrocarbons during production of oil and gas

    OpenAIRE

    Sklet, Snorre; Hauge, Stein

    2004-01-01

    This report documents a set of scenarios related to release of hydrocarbons during production on oil and gas platforms. For each release scenario, initiating events, barrier functions aimed to prevent loss of containment, and barrier systems that realize these barrier functions are identified and described. Safety barriers to prevent release of hydrocarbons during production of oil and gas

  17. Bio-Gas production from municipal sludge waste using anaerobic membrane bioreactor

    International Nuclear Information System (INIS)

    Lee, Y. H.; Lee, S.

    2009-01-01

    A laboratory scale anaerobic membrane bioreactor (AnMBR) system for the bio-methane gas production was operated for 60 days with municipal sludge wastes as a sole carbon source. The AnMRR system utilized the external cross-flow membrane module and was equipped with on-line data acquisition which enables continuous monitoring of the performance of both bioreactor and membrane through the analyses of pH, temperature, gas production; permeate flow rate, and transmembrane pressure (TMP). Such a configuration also provides an efficient tool to study rapid variations of monitoring membrane pressure (TMP). (Author)

  18. The petroleum challenge. Present day questions about oil and gas

    International Nuclear Information System (INIS)

    Boussena, S.; Locatelli, C.; Pauwels, J.P.; Swartenbroekx, C.

    2006-04-01

    Will the 21. century be the petroleum challenge century? The petroleum problem is no longer the affair of experts and journalists, it challenges also governments and consumers in pressing terms. If there is today a petroleum problem, there is no oil or gas shortage for the moment. The cumulated oil and gas reserves would allow to face the demand of the century, with the condition that investments in exploration, field development, production, and back-end of oil and gas industries will be done in time. This book, written by specialists of energy economics and geopolitics shows up some of the key questions of our energy future. In particular, it invites us to never forget the basic heavy trends of the hydrocarbons sector in order to never be trapped by superficial extrapolations of short term phenomena. Content: heavy trend of oil prices at the 2020 prospects, natural gas take over?; oil and gas geopolitics: enough of hydrocarbons for the 21. century; Russia and Caspian sea oil and gas weight; China: a new strategic actor of the energy scene; influence of 'futures' market, of speculation, and of stocks on hydrocarbon prices; which future for LNG?; natural gas in the USA: towards a new foreign dependence. (J.S.)

  19. Environmental benefits of advanced oil and gas exploration and production technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-10-01

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  20. Elusive prize: enormous coal gas potential awaits production technology breakthrough

    Energy Technology Data Exchange (ETDEWEB)

    Collison, M.

    2002-01-07

    The expanded gas pipeline grid has excess capacity, and gas resources are declining. There is increasing interest in development of Canada's resources of coalbed methane (CBM). The chairman of the Canadian Coalbed Methane Forum estimates that Canada has more than 3,000 trillion ft{sup 3} of gas awaiting suitable technology. PanCanadian and MGV Energy conducted a CBM exploration and pilot study on the Palliser spread in southern Alberta. Results from 23 of 75 wells are encouraging. The study is being accelerated and expanded to include an additional 50 wells elsewhere in Alberta. Some scientists anticipate commercial CBM production within two years. Problems facing developers include the large land holdings necessary for economic CBM production and the disposal of coal formation water. It is anticipated that U.S. technology will be modified and used. The potential for CBM development at Pictou in Nova Scotia and in British Columbia in the foothills is considered. 3 figs.

  1. Swarm intelligence for multi-objective optimization of synthesis gas production

    Science.gov (United States)

    Ganesan, T.; Vasant, P.; Elamvazuthi, I.; Ku Shaari, Ku Zilati

    2012-11-01

    In the chemical industry, the production of methanol, ammonia, hydrogen and higher hydrocarbons require synthesis gas (or syn gas). The main three syn gas production methods are carbon dioxide reforming (CRM), steam reforming (SRM) and partial-oxidation of methane (POM). In this work, multi-objective (MO) optimization of the combined CRM and POM was carried out. The empirical model and the MO problem formulation for this combined process were obtained from previous works. The central objectives considered in this problem are methane conversion, carbon monoxide selectivity and the hydrogen to carbon monoxide ratio. The MO nature of the problem was tackled using the Normal Boundary Intersection (NBI) method. Two techniques (Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO)) were then applied in conjunction with the NBI method. The performance of the two algorithms and the quality of the solutions were gauged by using two performance metrics. Comparative studies and results analysis were then carried out on the optimization results.

  2. AMMONIA REMOVAL AND NITROUS OXIDE PRODUCTION IN GAS-PHASE COMPOST BIOFILTERS

    Science.gov (United States)

    Biofiltration technology is widely utilized for treating ammonia gas (NH3), with one of its potential detrimental by-products being nitrous oxide (N2O), a greenhouse gas approximately 300 times more reactive to infrared than CO2. The present work intends to provide the relation between NH3 removal d...

  3. An analysis of cumulative risks based on biomonitoring data for six phthalates using the Maximum Cumulative Ratio

    Science.gov (United States)

    The Maximum Cumulative Ratio (MCR) quantifies the degree to which a single chemical drives the cumulative risk of an individual exposed to multiple chemicals. Phthalates are a class of chemicals with ubiquitous exposures in the general population that have the potential to cause ...

  4. Hydrogen rich gas production by thermocatalytic decomposition of kenaf biomass

    Energy Technology Data Exchange (ETDEWEB)

    Irmak, Sibel; Oeztuerk, ilker [Department of Chemistry, Cukurova University, Arts and Sciences Faculty, Adana 01330 (Turkey)

    2010-06-15

    Kenaf (Hibiscus cannabinus L.), a well known energy crop and an annual herbaceous plant grows very fast with low lodging susceptibility was used as representative lignocellulosic biomass in the present work. Thermocatalytic conversions were performed by aqueous phase reforming (APR) of kenaf hydrolysates and direct gasification of solid biomass of kenaf using 5% Pt on activated carbon as catalyst. Hydrolysates used in APR experiments were prepared by solubilization of kenaf biomass in subcritical water under CO{sub 2} gas pressure. APR of kenaf hydrolysate with low molecular weight polysaccharides in the presence of the reforming catalyst produced more gas compared to the hydrolysate that had high molecular weight polysaccharides. APR experiments of kenaf biomass hydrolysates and glucose, which was used as a simplest biomass model compound, in the presence of catalyst produced various amounts of gas mixtures that consisted of H{sub 2}, CO, CO{sub 2}, CH{sub 4} and C{sub 2}H{sub 6}. The ratios of H{sub 2} to other gases produced were 0.98, 1.50 and 1.35 for 150 C and 250 C subcritical water-treated kenaf hydrolysates and glucose, respectively. These ratios indicated that more the degraded organic content of kenaf hydrolysate the better selectivity for hydrogen production. Although APR of 250 C-kenaf hydrolysate resulted in similar gas content and composition as glucose, the gas volume produced was three times higher in glucose feed. The use of solid kenaf biomass as starting feedstock in APR experiments resulted in less gas production since the activity of catalyst was lowered by solid biomass particles. (author)

  5. Improving the gas productivity of the alkaline electrolyzer through the circulation technique

    Directory of Open Access Journals (Sweden)

    Kitipong Tangphant

    2014-03-01

    Full Text Available This research aims to study and improve the efficiency of a KOH electrolyzer through the gas productivity of the electrolyzer with different the circulation technique. In this work, the conceptual design of an electrolyzer falls into 2 categories; without pumping and with pumping. Direct current electricity at 5 different levels of 10, 15, 20, 25 and 30 A are charged into the system and the gas flow rate generated from the electrolyzer is subsequently monitored. The results show that at 30 A the gas generated from the circulation with pumping and the circulation without pumping are 2.31 litre/min and 1.76 litre/min, respectively. It is also found that the energy consumed by both techniques is the same; however, the circulation with pumping design shows the better gas productivity than that of the circulation without pumping design.

  6. Cumulative organic anion transporter-mediated drug-drug interaction potential of multiple components in salvia miltiorrhiza (danshen) preparations.

    Science.gov (United States)

    Wang, Li; Venitz, Jürgen; Sweet, Douglas H

    2014-12-01

    To evaluate organic anion transporter-mediated drug-drug interaction (DDI) potential for individual active components of Danshen (Salvia miltiorrhiza) vs. combinations using in vitro and in silico approaches. Inhibition profiles for single Danshen components and combinations were generated in stably-expressing human (h)OAT1 and hOAT3 cells. Plasma concentration-time profiles for compounds were estimated from in vivo human data using an i.v. two-compartment model (with first-order elimination). The cumulative DDI index was proposed as an indicator of DDI potential for combination products. This index was used to evaluate the DDI potential for Danshen injectables from 16 different manufacturers and 14 different lots from a single manufacturer. The cumulative DDI index predicted in vivo inhibition potentials, 82% (hOAT1) and 74% (hOAT3), comparable with those observed in vitro, 72 ± 7% (hOAT1) and 81 ± 10% (hOAT3), for Danshen component combinations. Using simulated unbound Cmax values, a wide range in cumulative DDI index between manufacturers, and between lots, was predicted. Many products exhibited a cumulative DDI index > 1 (50% inhibition). Danshen injectables will likely exhibit strong potential to inhibit hOAT1 and hOAT3 function in vivo. The proposed cumulative DDI index might improve prediction of DDI potential of herbal medicines or pharmaceutical preparations containing multiple components.

  7. Production mechanism of negative pionlike particles in H2 gas discharge plasma

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1996-04-01

    Negative pionlike and muonlike particles are produced by an electron bunch and a positive ion bunch which are generated controllably from an electron beam and a gas. Physical characteristics of the negative pionlike particles are the same with those of negative pionlike particles extracted from the H 2 gas discharge. Thus, the production mechanism in the H 2 gas discharge is deduced. (author)

  8. The role of reserves and production in the market capitalization of oil and gas companies

    International Nuclear Information System (INIS)

    Ewing, Bradley T.; Thompson, Mark A.

    2016-01-01

    We examine the role proved reserves and production play in the market capitalization of publicly traded oil and gas companies engaged in the exploration and production of hydrocarbons. The paper provides two important contributions to the literature. First, we extend the existing research by utilizing the method of Robust Least Squares to estimate a multivariate market capitalization model that controls for firm type. Second, we document the impacts that oil and gas reserves to production ratios have on market capitalization. This is a key finding in the context of discounted net cash flow models and the findings suggest there is an optimal tradeoff between current and future production, given current volumes of reserves, the latter of which is valued positively by the market. Moreover, this optimal tradeoff or the optimal profit-maximizing intertemporal production choice is unique to the type of hydrocarbon being considered. Additionally, our findings highlight the importance of capital structure in the heavily capital intensive oil and gas industry. The results from this research should benefit both oil and gas companies and investors. Specifically, the results provide new and robust information as to the empirical relationships between key determinants of oil and gas company market valuations. - Highlights: • We utilized Robust Least Squares to estimate a multivariate market capitalization model. • There is a differential impact that oil and gas reserves to production ratios have on market capitalization. • The optimal profit-maximizing intertemporal production choice is unique to the type of hydrocarbon being considered. • Results provide new information as to the relationships between key determinants of oil and gas company market valuations.

  9. A gas-phase reactor powered by solar energy and ethanol for H2 production

    International Nuclear Information System (INIS)

    Ampelli, Claudio; Genovese, Chiara; Passalacqua, Rosalba; Perathoner, Siglinda; Centi, Gabriele

    2014-01-01

    In the view of H 2 as the future energy vector, we presented here the development of a homemade photo-reactor working in gas phase and easily interfacing with fuel cell devices, for H 2 production by ethanol dehydrogenation. The process generates acetaldehyde as the main co-product, which is more economically advantageous with respect to the low valuable CO 2 produced in the alternative pathway of ethanol photoreforming. The materials adopted as photocatalysts are based on TiO 2 substrates but properly modified with noble (Au) and not-noble (Cu) metals to enhance light harvesting in the visible region. The samples were characterized by BET surface area analysis, Transmission Electron Microscopy (TEM) and UV–visible Diffusive Reflectance Spectroscopy, and finally tested in our homemade photo-reactor by simulated solar irradiation. We discussed about the benefits of operating in gas phase with respect to a conventional slurry photo-reactor (minimization of scattering phenomena, no metal leaching, easy product recovery, etc.). Results showed that high H 2 productivity can be obtained in gas phase conditions, also irradiating titania photocatalysts doped with not-noble metals. - Highlights: • A gas-phase photoreactor for H 2 production by ethanol dehydrogenation was developed. • The photocatalytic behaviours of Au and Cu metal-doped TiO 2 thin layers are compared. • Benefits of operating in gas phase with respect to a slurry reactor are presented. • Gas phase conditions and use of not-noble metals are the best economic solution

  10. Prospects for Strengthening the Security of Ukraine’s Energy Supply through Development of Unconventional Natural Gas Production

    Directory of Open Access Journals (Sweden)

    Kyzym Mykola O.

    2016-05-01

    Full Text Available The article presents an analysis of the American experience in development of natural shale gas in the US, identifies the causes that led to the shale revolution. Its current state is characterized by achieving the peak production simultaneously with shift in the emphasis from natural shale gas to shale oil. The potential technically extracted gas reserves as well as trends in terms of the growth of conventional natural gas reserves and the development of trade in liquefied natural gas are regarded as global preconditions for enlargement of the shale natural gas output. Natural shale gas can be considered as an alternative project only for liquefied natural gas while, compared to pipeline gas, its production is uncompetitive. The national preconditions for development of the industry of nonconventional natural gas production are determined on the basis of the current trends in Ukraine’s gas market. The main obstacles to the realization of this direction are reduction of the gas needs and liberalization of natural gas trade on the basis of European principles. Economic evaluation of the feasibility of natural shale gas production made it possible to forecast its production cost at the wellhead at different depths and estimate its investment attractiveness in different aggregate states. On the basis of the approbation of the presented methodological approach carried out for the Dnieper-Donets and Carpathian shale basins, it was concluded that the investment attractiveness of the first one is higher, given its reservoir properties and the presence of deposits of nonconventional hydrocarbons in different states of aggregation.

  11. Chapter 19. Cumulative watershed effects and watershed analysis

    Science.gov (United States)

    Leslie M. Reid

    1998-01-01

    Cumulative watershed effects are environmental changes that are affected by more than.one land-use activity and that are influenced by.processes involving the generation or transport.of water. Almost all environmental changes are.cumulative effects, and almost all land-use.activities contribute to cumulative effects

  12. Prediction of forage intake using in vitro gas production methods: Comparison of multiphase fermentation kinetics measured in an automated gas test, and combined gas volume and substrate degradability measurements in a manual syringe system

    NARCIS (Netherlands)

    Blümmel, M.; Cone, J.W.; Gelder, van A.H.; Nshalai, I.; Umunna, N.N.; Makkar, H.P.S.; Becker, K.

    2005-01-01

    This study investigated two approaches to in vitro analysis of gas production data, being a three phase model with long (¿72 h) incubation times, to obtain kinetics and asymptotic values of gas production, and combination of gas volume measurements with residue determinations after a relatively

  13. Analysis of cumulative exergy losses in the chains of technological processes

    International Nuclear Information System (INIS)

    Szargut, J.

    1989-01-01

    This paper reports on cumulative exergy consumption (CExC) which characterizes the chain of technological processes leading from natural resources to the final product under consideration. The difference of CExC and exergy of material or energy carrier expresses the cumulative exergy loss (CExL) in the mentioned technological chain. Two apportionment methods of CExL have been proposed. Partial exergy losses appear in particular links of the technological chain and characterize the influence of irreversibility of these links. Constituent exergy losses express the influence of thermodynamic imperfection of constituent technological chains leading to the final link of the total technological chain. Analysis of the partial and constituent exergy losses informs about the possibilities of improvement of the technological chains

  14. Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge

    International Nuclear Information System (INIS)

    Li, Hanhui; Chen, Zhihua; Huo, Chan; Hu, Mian; Guo, Dabin; Xiao, Bo

    2015-01-01

    Highlights: • Bioleaching can modify the physicochemical property of sewage sludge. • The enhancement is mainly hydrogen. • Bioleaching can enhance the gas production in gasification of sewage sludge. • Study provides an insight for future application of bioleached sewage sludge. - Abstract: Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge was carried out in a lab-scale fixed-bed reactor. The influence of sewage sludge solids concentrations (6–14% (w/v) in 2% increments) during the bioleaching process and reactor temperature (600–900 °C in 100 °C increments) on gasification product yields and gas composition were studied. Characterization of samples showed that bioleaching treatment, especially in 6% (w/v) sludge solids concentration, led to metal removal effectively and modifications in the physicochemical property of sewage sludge which was favored for gasification. The maximum gas yield (49.4%) and hydrogen content (46.4%) were obtained at 6% (w/v) sludge solids concentration and reactor temperature of 900 °C. Sewage sludge after the bioleaching treatment may be a feasible feedstock for hydrogen-rich gas product.

  15. An Analysis of Cumulative Risks Indicated by Biomonitoring Data of Six Phthalates Using the Maximum Cumulative Ratio

    Science.gov (United States)

    The Maximum Cumulative Ratio (MCR) quantifies the degree to which a single component of a chemical mixture drives the cumulative risk of a receptor.1 This study used the MCR, the Hazard Index (HI) and Hazard Quotient (HQ) to evaluate co-exposures to six phthalates using biomonito...

  16. H2 gas pressure calculation of FPM capsule failure at RSG-GAS reactor core

    International Nuclear Information System (INIS)

    Hastuti, Endiah Puji; Sunaryo, Geni Rina

    2002-01-01

    RSG-GAS has been irradiated FPM capsule for 236 times, one of those i.e. capsule number 228 has failure. The one of root cause of failure possibility is radiolysis reaction can be occurred in FPM capsule when it is filled with water during irradiation in the reactor core. The safety analysis of the radiolysis reaction in the capsule has been done. The oc cumulative hydrogen gas production can cause high pressure in the capsule then a mechanical damage occurred. The analysis was done at 10 MW of reactor power which equivalent with neutron flux of 0,6929 x 10 1 4 n/cm 2 sec and γ dose rate of 0,63x10 9 rad/hour. The assumption is the capsule is filled with water at maximum volume, i.e. 176.67 ml. The results of calculation showed that radiolysis reaction with γ and neutron produce hydrogen gas for nominal flow rate each are 494 atm and 19683 atm for γ and neutron radiolysis, respectively. H 2 gas pressure for 5% flow rate each are 723 atm. and 25772 atm., for γ and neutron radiolysis, respectively. The changing of the operation condition due to radiolysis together with one way valve' phenomena, can be produce hydrogen gas from water during irradiation in the reactor core and can be the one of root cause of capsule failure. This analysis recommended the FPM capsule preparation must be guaranteed no water or/and there is no possibility of water immersion in the capsule during irradiation in the core by more accurate leak test

  17. An Integrated Approach to Water-Energy Nexus in Shale-Gas Production

    Directory of Open Access Journals (Sweden)

    Fadhil Y. Al-Aboosi

    2018-05-01

    Full Text Available Shale gas production is associated with significant usage of fresh water and discharge of wastewater. Consequently, there is a necessity to create proper management strategies for water resources in shale gas production and to integrate conventional energy sources (e.g., shale gas with renewables (e.g., solar energy. The objective of this study is to develop a design framework for integrating water and energy systems including multiple energy sources, the cogeneration process and desalination technologies in treating wastewater and providing fresh water for shale gas production. Solar energy is included to provide thermal power directly to a multi-effect distillation plant (MED exclusively (to be more feasible economically or indirect supply through a thermal energy storage system. Thus, MED is driven by direct or indirect solar energy and excess or direct cogeneration process heat. The proposed thermal energy storage along with the fossil fuel boiler will allow for the dual-purpose system to operate at steady-state by managing the dynamic variability of solar energy. Additionally, electric production is considered to supply a reverse osmosis plant (RO without connecting to the local electric grid. A multi-period mixed integer nonlinear program (MINLP is developed and applied to discretize the operation period to track the diurnal fluctuations of solar energy. The solution of the optimization program determines the optimal mix of solar energy, thermal storage and fossil fuel to attain the maximum annual profit of the entire system. A case study is solved for water treatment and energy management for Eagle Ford Basin in Texas.

  18. Climate impact of potential shale gas production in the EU

    Energy Technology Data Exchange (ETDEWEB)

    Forster, D.; Perks, J. [AEA Technology plc, London (United Kingdom)

    2012-07-15

    Existing estimates of GHG emissions from shale gas production and available abatement options were used to obtain improved estimates of emissions from possible shale gas exploitation in the EU. GHG emissions per unit of electricity generated from shale gas were estimated to be around 4 to 8% higher than for electricity generated by conventional pipeline gas from within Europe. These additional emissions arise in the pre-combustion stage, predominantly in the well completion phase when the fracturing fluid is brought back to the surface together with released methane. If emissions from well completion are mitigated, through flaring or capture, and utilised, then this difference is reduced to 1 to 5%. The analysis suggests that the emissions from shale gas-based power generation (base case) are 2 to 10% lower than those from electricity generated from sources of conventional pipeline gas located outside of Europe (in Russia and Algeria), and 7 to 10% lower than those from electricity generated from LNG imported into Europe. However, under our 'worst case' shale gas scenario, where all flow back gases at well completion are vented, emissions from electricity generated from shale gas would be similar to the upper emissions level for electricity generated from imported LNG and for gas imported from Russia.

  19. Climate impact of potential shale gas production in the EU

    Energy Technology Data Exchange (ETDEWEB)

    Forster, D.; Perks, J. [AEA Technology plc, London (United Kingdom)

    2012-07-15

    Existing estimates of GHG emissions from shale gas production and available abatement options were used to obtain improved estimates of emissions from possible shale gas exploitation in the EU. GHG emissions per unit of electricity generated from shale gas were estimated to be around 4 to 8% higher than for electricity generated by conventional pipeline gas from within Europe. These additional emissions arise in the pre-combustion stage, predominantly in the well completion phase when the fracturing fluid is brought back to the surface together with released methane. If emissions from well completion are mitigated, through flaring or capture, and utilised, then this difference is reduced to 1 to 5%. The analysis suggests that the emissions from shale gas-based power generation (base case) are 2 to 10% lower than those from electricity generated from sources of conventional pipeline gas located outside of Europe (in Russia and Algeria), and 7 to 10% lower than those from electricity generated from LNG imported into Europe. However, under our 'worst case' shale gas scenario, where all flow back gases at well completion are vented, emissions from electricity generated from shale gas would be similar to the upper emissions level for electricity generated from imported LNG and for gas imported from Russia.

  20. Production of gas and volatile materials by distillation of tars, etc

    Energy Technology Data Exchange (ETDEWEB)

    Arson, M

    1860-04-25

    The principle of this production is in the treating of heavy oils with heat, their transformation occurring nearly completely by the action of this agent. The apparatus used consists of a retort of such a form that it has openings at the two ends immediately opposed to each other. One serves to introduce the oil and the other to remove the tar and gas produced. At the exit of the apparatus the gas passes into coolers like those used for coal gas.

  1. Review of Slug Detection, Modeling and Control Techniques for Offshore Oil & Gas Production Processes

    DEFF Research Database (Denmark)

    Pedersen, Simon; Løhndorf, Petar Durdevic; Yang, Zhenyu

    2015-01-01

    The current offshore oil & gas multi-phase production and transportation installations have big challenges related with the slugging flow: An unstable multi-phase flow regime where the flow rates, pressures and temperatures oscillate in the considered processes. Slug can be caused by different...... operating conditions and installation structures. The most severe slugs are often induced in long vertical risers or production wells, where liquid blocks gas at the riser/well base and correspondingly it causes the pressure to accumulate and hence originates the oscillating performance. There are many...... of these methods can simultaneously reduce the oil & gas production, which is a very big concern as the production rate is the key evaluation parameter for offshore production. We conclude that the slugging flow is a well-defined phenomenon, even though this subject has been extensively investigated in the past...

  2. Methods for Detecting Microbial Methane Production and Consumption by Gas Chromatography.

    Science.gov (United States)

    Aldridge, Jared T; Catlett, Jennie L; Smith, Megan L; Buan, Nicole R

    2016-04-05

    Methane is an energy-dense fuel but is also a greenhouse gas 25 times more detrimental to the environment than CO 2 . Methane can be produced abiotically by serpentinization, chemically by Sabatier or Fisher-Tropsh chemistry, or biotically by microbes (Berndt et al. , 1996; Horita and Berndt, 1999; Dry, 2002; Wolfe, 1982; Thauer, 1998; Metcalf et al. , 2002). Methanogens are anaerobic archaea that grow by producing methane gas as a metabolic byproduct (Wolfe, 1982; Thauer, 1998). Our lab has developed and optimized three different gas chromatograph-utilizing assays to characterize methanogen metabolism (Catlett et al. , 2015). Here we describe the end point and kinetic assays that can be used to measure methane production by methanogens or methane consumption by methanotrophic microbes. The protocols can be used for measuring methane production or consumption by microbial pure cultures or by enrichment cultures.

  3. Some technical subjects on production of hydrocarbon fuel from synthetic gas

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Takashi

    1987-06-20

    Since fuel oil meeting the requirements of current petroleum products can be produced by SASOL F-T synthetic process, the manufacturing process of hydrocarbon fuel oil from the coal-derived synthesis gas, downstream processes are being successively investigated. Mobile M-gasoline, MTG, process which produces gasoline from the natural gas-derived synthesis gas through methanol went into commercial operation in New Zealand in 1986. Although the gasoline suffices the quality of commercial gasoline by both fixed bed and fluidized bed systems, the price and service life of catalyst and control of by-product durene must be improved. Any STG processes have not been completed yet and the yield and quality of gasoline are inferior to those of gasoline produced by the MTG process. Applying two-stage process, the STG process will be more economically effective.(21 refs, 4 figs, 10 tabs)

  4. Cascading biomethane energy systems for sustainable green gas production in a circular economy.

    Science.gov (United States)

    Wall, David M; McDonagh, Shane; Murphy, Jerry D

    2017-11-01

    Biomethane is a flexible energy vector that can be used as a renewable fuel for both the heat and transport sectors. Recent EU legislation encourages the production and use of advanced, third generation biofuels with improved sustainability for future energy systems. The integration of technologies such as anaerobic digestion, gasification, and power to gas, along with advanced feedstocks such as algae will be at the forefront in meeting future sustainability criteria and achieving a green gas supply for the gas grid. This paper explores the relevant pathways in which an integrated biomethane industry could potentially materialise and identifies and discusses the latest biotechnological advances in the production of renewable gas. Three scenarios of cascading biomethane systems are developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Modelling the association between in vitro gas production and ...

    African Journals Online (AJOL)

    In vitro gas production of four different browse plants (Azadirachta indica, Terminalia catappa, Mangifera indica and Vernonia amygdalina) was investigated under different extractions. The relationship between the forage composition parameters (dry matter, organic matter, crude protein, acid detergent fibre, neutral ...

  6. Utilization of hydrogen gas production for electricity generation in ...

    African Journals Online (AJOL)

    Utilization of hydrogen gas production for electricity generation in fuel cell by Enterobacter aerogenes ADH 43 with many kinds of carbon sources in batch stirred tank reactor. MA Rachman, LD Eniya, Y Liasari, MM Nasef, A Ahmad, H Saidi ...

  7. Deep learning and data assimilation for real-time production prediction in natural gas wells

    NARCIS (Netherlands)

    Loh, K.K.L.; Shoeibi Omrani, P.S.; Linden, R.J.P. van der

    2018-01-01

    The prediction of the gas production from mature gas wells, due to their complex end-of-life behavior, is challenging and crucial for operational decision making. In this paper, we apply a modified deep LSTM model for prediction of the gas flow rates in mature gas wells, including the uncertainties

  8. Cumulative effective and individual organ dose levels in paediatric patients undergoing multiple catheterizations for congenital heart disease

    International Nuclear Information System (INIS)

    Jones, T.P.; Brennan, P.C.; Ryan, E.

    2017-01-01

    This study examines the cumulative radiation dose levels received by a group of children who underwent multiple cardiac catheterisation procedures during the investigation and management of congenital heart disease (CHD). The purpose is to calculate cumulative doses, identify higher dose individuals, outline the inconsistencies with risk assessment and encourage the establishment of dose databases in order to facilitate the longitudinal research necessary to better understand health risks. A retrospective review of patient records for 117 paediatric patients who have undergone two or more cardiac catheterizations for the investigation of CHD was undertaken. This cohort consisted of patients who were catheterised over a period from September 2002 to August 2014. The age distribution was from newborn to 17 y. Archived kerma-area product (P KA ) and fluoroscopy time (T) readings were retrieved and analysed. Cumulative effective and individual organ doses were determined. The cumulative P KA levels ranged from 1.8 to 651.2 Gycm 2 , whilst cumulative effective dose levels varied from 2 to 259 mSv. The cumulative fluoroscopy time was shown to vary from 8.1 to 193.5 min. Median cumulative organ doses ranged from 3 to 94 mGy. Cumulative effective dose levels are highly variable but may exceed 250 mSv. Individual organ and effective dose measurements remain useful for comparison purposes between institutions although current methodologies used for determining lifetime risks are inadequate. (authors)

  9. The EPA's human exposure research program for assessing cumulative risk in communities.

    Science.gov (United States)

    Zartarian, Valerie G; Schultz, Bradley D

    2010-06-01

    Communities are faced with challenges in identifying and prioritizing environmental issues, taking actions to reduce their exposures, and determining their effectiveness for reducing human health risks. Additional challenges include determining what scientific tools are available and most relevant, and understanding how to use those tools; given these barriers, community groups tend to rely more on risk perception than science. The U.S. Environmental Protection Agency's Office of Research and Development, National Exposure Research Laboratory (NERL) and collaborators are developing and applying tools (models, data, methods) for enhancing cumulative risk assessments. The NERL's "Cumulative Communities Research Program" focuses on key science questions: (1) How to systematically identify and prioritize key chemical stressors within a given community?; (2) How to develop estimates of exposure to multiple stressors for individuals in epidemiologic studies?; and (3) What tools can be used to assess community-level distributions of exposures for the development and evaluation of the effectiveness of risk reduction strategies? This paper provides community partners and scientific researchers with an understanding of the NERL research program and other efforts to address cumulative community risks; and key research needs and opportunities. Some initial findings include the following: (1) Many useful tools exist for components of risk assessment, but need to be developed collaboratively with end users and made more comprehensive and user-friendly for practical application; (2) Tools for quantifying cumulative risks and impact of community risk reduction activities are also needed; (3) More data are needed to assess community- and individual-level exposures, and to link exposure-related information with health effects; and (4) Additional research is needed to incorporate risk-modifying factors ("non-chemical stressors") into cumulative risk assessments. The products of this

  10. Managing cumulative impacts: A key to sustainability?

    Energy Technology Data Exchange (ETDEWEB)

    Hunsaker, C.T.

    1994-12-31

    This paper addresses how science can be more effectively used in creating policy to manage cumulative effects on ecosystems. The paper focuses on the scientific techniques that we have to identify and to assess cumulative impacts on ecosystems. The term ``sustainable development`` was brought into common use by the World Commission on Environment and Development (The Brundtland Commission) in 1987. The Brundtland Commission report highlighted the need to simultaneously address developmental and environmental imperatives simultaneously by calling for development that ``meets the needs of the present generation without compromising the needs of future generations.`` We cannot claim to be working toward sustainable development until we can quantitatively assess cumulative impacts on the environment: The two concepts are inextricibally linked in that the elusiveness of cumulative effects likely has the greatest potential of keeping us from achieving sustainability. In this paper, assessment and management frameworks relevant to cumulative impacts are discussed along with recent literature on how to improve such assessments. When possible, examples are given for marine ecosystems.

  11. Constructing a Spatially Resolved Methane Emission Inventory of Natural Gas Production and Distribution over Contiguous United States

    Science.gov (United States)

    Li, X.; Omara, M.; Adams, P. J.; Presto, A. A.

    2017-12-01

    Methane is the second most powerful greenhouse gas after Carbon Dioxide. The natural gas production and distribution accounts for 23% of the total anthropogenic methane emissions in the United States. The boost of natural gas production in U.S. in recent years poses a potential concern of increased methane emissions from natural gas production and distribution. The Emission Database for Global Atmospheric Research (Edgar) v4.2 and the EPA Greenhouse Gas Inventory (GHGI) are currently the most commonly used methane emission inventories. However, recent studies suggested that both Edgar v4.2 and the EPA GHGI largely underestimated the methane emission from natural gas production and distribution in U.S. constrained by both ground and satellite measurements. In this work, we built a gridded (0.1° Latitude ×0.1° Longitude) methane emission inventory of natural gas production and distribution over the contiguous U.S. using emission factors measured by our mobile lab in the Marcellus Shale, the Denver-Julesburg Basin, and the Uintah Basin, and emission factors reported from other recent field studies for other natural gas production regions. The activity data (well location and count) are mostly obtained from the Drillinginfo, the EPA Greenhouse Gas Reporting Program (GHGRP) and the U.S. Energy Information Administration (EIA). Results show that the methane emission from natural gas production and distribution estimated by our inventory is about 20% higher than the EPA GHGI, and in some major natural gas production regions, methane emissions estimated by the EPA GHGI are significantly lower than our inventory. For example, in the Marcellus Shale, our estimated annual methane emission in 2015 is 600 Gg higher than the EPA GHGI. We also ran the GEOS-Chem methane simulation to estimate the methane concentration in the atmosphere with our built inventory, the EPA GHGI and the Edgar v4.2 over the nested North American Domain. These simulation results showed differences in

  12. Carbon dioxide emission in hydrogen production technology from coke oven gas with life cycle approach

    Directory of Open Access Journals (Sweden)

    Burmistrz Piotr

    2016-01-01

    Full Text Available The analysis of Carbon Footprint (CF for technology of hydrogen production from cleaned coke oven gas was performed. On the basis of real data and simulation calculations of the production process of hydrogen from coke gas, emission indicators of carbon dioxide (CF were calculated. These indicators are associated with net production of electricity and thermal energy and direct emission of carbon dioxide throughout a whole product life cycle. Product life cycle includes: coal extraction and its transportation to a coking plant, the process of coking coal, purification and reforming of coke oven gas, carbon capture and storage. The values were related to 1 Mg of coking blend and to 1 Mg of the hydrogen produced. The calculation is based on the configuration of hydrogen production from coke oven gas for coking technology available on a commercial scale that uses a technology of coke dry quenching (CDQ. The calculations were made using ChemCAD v.6.0.2 simulator for a steady state of technological process. The analysis of carbon footprint was conducted in accordance with the Life Cycle Assessment (LCA.

  13. Economic growth to raise U.S. oil products, natural gas demand

    International Nuclear Information System (INIS)

    Beck, R.J.

    1994-01-01

    An accelerating economy will raise consumption of oil products and natural gas in the US this year. Contributing to demand growth will be the slump that began late last year in prices for crude oil and petroleum products. Some price recovery is likely in 1994, but there's little reason to expect a major increase. With oil production falling and demand rising, imports will have to climb again this year. OGJ projects a 2.6% increase this year following a 6.6% increase last year. Imports are expected to fill a record high 49.3% of US oil demand this year. The paper discusses energy and the economy, overall energy use, energy by source, the electrification trend, energy supplies, imports, refining operations, the growth of margins, and the energy demand of motor gasoline, jet fuel, distillate fuels, residual fuel oils, other petroleum products, and natural gas

  14. Hydrogen production with fully integrated fuel cycle gas and vapour core reactors

    International Nuclear Information System (INIS)

    Anghaie, S.; Smith, B.

    2004-01-01

    This paper presents results of a conceptual design study involving gas and vapour core reactors (G/VCR) with a combined scheme to generate hydrogen and power. The hydrogen production schemes include high temperature electrolysis as well as two dominant thermochemical hydrogen production processes. Thermochemical hydrogen production processes considered in this study included the calcium-bromine process and the sulphur-iodine processes. G/VCR systems are externally reflected and moderated nuclear energy systems fuelled by stable uranium compounds in gaseous or vapour phase that are usually operated at temperatures above 1500 K. A gas core reactor with a condensable fuel such as uranium tetrafluoride (UF 4 ) or a mixture of UF 4 and other metallic fluorides (BeF 2 , LiF, KF, etc.) is commonly known as a vapour core reactor (VCR). The single most relevant and unique feature of gas/vapour core reactors is that the functions of fuel and coolant are combined into one. The reactor outlet temperature is not constrained by solid fuel-cladding temperature limits. The maximum fuel/working fluid temperature in G/VCR is only constrained by the reactor vessel material limits, which is far less restrictive than the fuel clad. Therefore, G/VCRs can potentially provide the highest reactor and cycle temperature among all existing or proposed fission reactor designs. Gas and vapour fuel reactors feature very low fuel inventory and fully integrated fuel cycle that provide for exceptional sustainability and safety characteristics. With respect to fuel utilisation, there is no fuel burn-up limit for gas core reactors due to continuous recycling of the fuel. Owing to the flexibility in nuclear design characteristics of cavity reactors, a wide range of conversion ratio from completely burner to breeder is achievable. The continuous recycling of fuel in G/VCR systems allow for complete burning of actinides without removing and reprocessing of the fuel. The only waste products at the back

  15. The JENDL-3 sublibrary for gas production. Summary of contents

    International Nuclear Information System (INIS)

    Nakagawa, T.; Narita, T.

    1993-01-01

    This document summarizes the contents of the JENDL-3 Sublibrary for Gas Production. This nuclear data library contains neutron-induced production cross-sections of hydrogen and helium nuclei for elements from 3-Li to 41-Nb. The library or retrievals of selected materials are available on magnetic tape from the IAEA Nuclear Data Section upon request. (author)

  16. 瓦斯抽放煤层增透深孔聚能爆破钻孔参数%Drilling parameters of deep-hole cumulative blasting to improve coal seam permeability in gas drainage

    Institute of Scientific and Technical Information of China (English)

    郭德勇; 吕鹏飞; 单智勇; 谢安

    2013-01-01

    以焦作煤业集团九里山矿煤层深孔聚能爆破试验为基础,利用数值模拟分析了爆破煤体应力变化规律,发现聚能爆破效应导致应力峰值增大,扩大了煤体裂隙区范围.同时对聚能爆破钻孔参数进行优化,确定了合理的炮孔直径、爆破孔间距、爆破孔与邻近抽放孔及煤层顶底板间距.现场试验结果表明:优化的钻孔参数不仅使聚能爆破增透效果显著而且保证了爆破过程的安全.%Based on coal seam deep-hole cumulative blasting experiments in Jiulishan Coal Mine of Jiaozuo Coal Group, the law of stress change in a blasting coal body was analyzed by numerical simulation. It is found that cumulative blasting effect leads to the increase of peak stress and enlarges the crack zone range of the coal body. Drilling parameters for cumulative blasting, such as blast hole diameter, blast hole spacing, distance between the blast hole and the adjacent gas drainage hole, and distance from the blast hole to the coal seam roof and floor, were determined by optimization. Field experimental results show that after using these optimized drilling parameters the cumulative blasting not only gets remarkable permeability increasing effect but also ensures blasting safety.

  17. Fuel gas production from animal and agricultural residues and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D. L; Wentworth, R. L

    1978-05-30

    Progress was reported by all contractors. Topics presented include: solid waste to methane gas; pipeline fuel gas from an environmental cattle feed lot; heat treatment of organics for increasing anaerobic biodegradability; promoting faster anaerobic digestion; permselective membrane control of algae and wood digesters for increased production and chemicals recovery; anaerobic fermentation of agricultural residues; pilot plant demonstration of an anaerobic, fixed-film bioreactor for wastewater treatment; enhancement of methane production in the anaerobic diegestion of sewage; evaluation of agitation concepts for biogasification of sewage sludge; operation of a 50,000 gallon anaerobic digester; biological conversion of biomass to methane; dirt feedlot residue experiments; anaerobic fermentation of livestock and crop residues; current research on methanogenesis in Europe; and summary of EPA programs in digestion technology. (DC)

  18. Biological production of gas from farmyard manure

    Energy Technology Data Exchange (ETDEWEB)

    Scheffer, F; Kemmler, G

    1953-01-08

    Under anaerobic conditions of farmyard-manure storage, the products include organic acids from which methane is formed. The Schmidt-Eggersgluss method is described in which 5 to 7m/sup 3/ of gas is formed per 100 kg of fresh manure, without loss of N, P, K, or Ca from the residual sludge which is of high nutrient content. Large N losses occur if the sludge comes long in contact with atmosphere.

  19. Firm heterogeneity, Rules of Origin and Rules of Cumulation

    OpenAIRE

    Bombarda , Pamela; Gamberoni , Elisa

    2013-01-01

    We analyse the impact of relaxing rules of origin (ROOs) in a simple setting with heterogeneous firms that buy intermediate inputs from domestic and foreign sources. In particular, we consider the impact of switching from bilateral to diagonal cumulation when using preferences (instead of paying the MFN tariff) involving the respect of rules of origin. We find that relaxing the restrictiveness of the ROOs leads the least productive exporters to stop exporting. The empirical part confirms thes...

  20. Gas-based electricity production: which possibilities? - Thermal plants with steam generator; Perspectives for mini-cogeneration in collective housing; Electricity production by gas plants: which orientations on a middle term?

    International Nuclear Information System (INIS)

    Charrier, M.; Hubert, Charles-Emile; Lu, Long; Maire, Jacques; Bornard, Pierre; Garnier, Philippe-Jean; Jamme, Dominique; Cheylus, Jean-Christophe

    2012-01-01

    A set of articles proposes a comparison between coal fired and natural gas fired power stations, discusses the perspectives of low power cogeneration installations for collective housing (some examples are evoked). It also reports interventions of a meeting on middle-term orientation for gas-based electricity production during which interveners addressed several issues such as the opportunity of investment in new infrastructures, the evolution of the gas sector, modulation means

  1. Chemical reactions of fission products with ethylene using the gas jet technique

    International Nuclear Information System (INIS)

    Contis, E.T.; Rengan, Krish; Griffin, Henry C.

    1994-01-01

    An understanding of the nature of the chemical reactions taking place between fission products and their carrier gases, and the designing of a fast separation procedure were the purposes of this investigation. Chemical reactions of short-lived (less than one minute half-life) fission products with carrier gases lead to various chemical species which can be separated in the gas phase. The Gas Jet Facility at the Ford Nuclear Reactor was used to study the yields of volatile selenium and bromine fission products of 235 U using a semi-automatic batch solvent extraction technique. Heptane and water were used as organic and inorganic solvents. A carrier gas mixture of ethylene to pre-purified nitrogen (1 : 3) was used to sweep the fission products from the target to the chemistry area for analysis. The results indicated that the volatile selenium products generated by the interaction of selenium fission fragments with ethylene were predominantly organic in nature (84%), possibly organoselenides. The selenium values were used to resolve the fractions of the bromine nuclides, which come from two major sources, viz., directly from fission and from the beta-decay of selenium. The data showed that the fractions of independent bromine fission products in the organic phase were much lower compared to selenium; the bromine values range from 10 to 22% and varied with mass number. Results indicated that the bromine products were inorganic in nature, as possibly hydrogen chloride. ((orig.))

  2. Design and production of a proton exchange membrane fuel cell for the production of brown's gas

    International Nuclear Information System (INIS)

    Essuman, Samuel Pamford Kojo

    2017-07-01

    The use of petroleum products (fossil fuels) has raised a lot of environmental concerns over the past years. This is due to the fact that most of the machines and devices manufactured are engineered to use these conventional fuels which include petrol, diesel and natural gas. However, these fuels substances pollute and deteriorate the quality of the environment. Some of these pollutants include sulphur oxides, nitrogen oxides, particulate matter, and ozone. These gases are called greenhouse gases because they contribute to the greenhouse effect. These gases also cause depletion of the ozone layer. In the search for alternative fuels, researchers have used improved technologies such as steam reforming, partial oxidation, and electrolysis among many to produce hydrogen gas. Hydrogen gas is used in modern times for varied applications in industries and is now been considered as a viable primary fuel for the future. Meanwhile, all these methods produce impure hydrogen except electrolysis of water. Electrolysis of water produces hydrogen and oxygen as products gases. A collection of these gases through a common outlet gives rise to a unique type of gas called Brown’s or oxyhydrogen gas. Brown’s gas is a mixture of oxygen and hydrogen bonded magnetically in a ratio of 1:2. In the automobile industry, Brown’s gas is used as a fuel supplement to gasoline in internal combustion engines (ICEs), as well as welding and cutting of iron plates in the fabrication sector. In this project, a fabricated oxyhydrogen generator was used to produce Brown’s gas from distilled water using three selected catalyst namely caustic soda (KOH), sodium hydroxide (NaOH) and sodium bicarbonate (NaHCO3). Parameters that influence the yield of oxyhydrogen gas were further studied. It was observed that increasing in the number of electrodes, catalyst concentration, voltage and time increased the yield of oxyhydrogen gas production. With the rapid increase in consumption of fossil fuels and

  3. El Carreto o Cumulá - Aspidosperma Dugandii Standl El Carreto o Cumulá - Aspidosperma Dugandii Standl

    Directory of Open Access Journals (Sweden)

    Dugand Armando

    1944-03-01

    Full Text Available Nombres vulgares: Carreto (Atlántico, Bolívar, Magdalena; Cumulá, Cumulá (Cundinamarca, ToIima. Según el Dr. Emilio Robledo (Lecciones de Bot. ed. 3, 2: 544. 1939 el nombre Carreto también es empleado en Puerto Berrío (Antioquia. El mismo autor (loc. cit. da el nombre Comulá para una especie indeterminada de Viburnum en Mariquita (Tolima y J. M. Duque, refiriendose a la misma planta y localidad (en Bot. Gen. Colomb. 340, 356. 1943 atribuye este nombre vulgar al Aspidosperma ellipticum Rusby.  Sin embargo, las muestras de madera de Cumulá o Comulá que yo he examinado, procedentes de la región de Mariquita -una de las cuales me fue recientemente enviada por el distinguido ictiólogo Sr. Cecil Miles- pertenecen sin duda alguna al A. Dugandii StandI. Por otra parte, Santiago Cortés (FI. Colomb. 206. 1898; ed, 2: 239. 1912 cita el Cumulá "de Anapoima y otros lugares del (rio Magdalena" diciendo que pertenece a las Leguminosas, pero la brevísima descripción que este autor hace de la madera "naranjada y notable por densidad, dureza y resistencia a la humedad", me induce a creer que se trata del mismo Cumula coleccionado recientemente en Tocaima, ya que esta población esta situada a pocos kilómetros de Anapoima. Nombres vulgares: Carreto (Atlántico, Bolívar, Magdalena; Cumulá, Cumulá (Cundinamarca, ToIima. Según el Dr. Emilio Robledo (Lecciones de Bot. ed. 3, 2: 544. 1939 el nombre Carreto también es empleado en Puerto Berrío (Antioquia. El mismo autor (loc. cit. da el nombre Comulá para una especie indeterminada de Viburnum en Mariquita (Tolima y J. M. Duque, refiriendose a la misma planta y localidad (en Bot. Gen. Colomb. 340, 356. 1943 atribuye este nombre vulgar al Aspidosperma ellipticum Rusby.  Sin embargo, las muestras de madera de Cumulá o Comulá que yo he examinado, procedentes de la región de Mariquita -una de las cuales me fue recientemente enviada por el distinguido ictiólogo Sr. Cecil Miles- pertenecen sin

  4. Production costs: U.S. gas turbine ampersand combined-cycle power plants

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This fourth edition of UDI's gas turbine O ampersand M cost report gives 1991 operation and maintenance expenses for over 450 US gas turbine power plants. Modeled on UDI's popular series of O ampersand M cost reports for US steam-electric plants, this report shows operator and plant name, plant year-in-service, installed capacity, 1991 net generation, total fuel expenses, total non-fuel O ampersand M expenses, total production costs, and current plant capitalization. Coverage includes over 90 percent of the utility-owned gas/combustion turbine and combined-cycle plants installed in the country

  5. Emissions of CH4 from natural gas production in the United States using aircraft-based observations

    Science.gov (United States)

    Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Ryerson, Thomas; Peischl, Jeff; Trainer, Michael; Rella, Chris; Hardesty, Michael; Crosson, Eric; Montzka, Stephen; Tans, Pieter; Shepson, Paul; Kort, Eric

    2014-05-01

    New extraction technologies are making natural gas from shale and tight sand gas reservoirs in the United States (US) more accessible. As a result, the US has become the largest producer of natural gas in the world. This growth in natural gas production may result in increased leakage of methane, a potent greenhouse gas, offsetting the climate benefits of natural gas relative to other fossil fuels. Methane emissions from natural gas production are not well quantified because of the large variety of potential sources, the variability in production and operating practices, the uneven distribution of emitters, and a lack of verification of emission inventories with direct atmospheric measurements. Researchers at the NOAA Earth System Research Laboratory (ESRL) have used simple mass balance approaches in combination with isotopes and light alkanes to estimate emissions of CH4 from several natural gas and oil plays across the US. We will summarize the results of the available aircraft and ground-based atmospheric emissions estimates to better understand the spatial and temporal distribution of these emissions in the US.

  6. Unconventional gas experience at El Paso Production Company : tapping into deep, tight gas and coalbed methane

    International Nuclear Information System (INIS)

    Bartley, R.L.

    2003-01-01

    The current conditions in the natural gas industry were reviewed, from the excellent current and projected energy prices to low activity and rig count. Various graphs were presented, depicting total proved dry gas reserves and annual production over time for the Gulf of Mexico, including its continental shelf, the Texas coastal plains, and the United States lower 48. Offshore growth of unconventional gas was also displayed. The key elements of the strategy were also discussed. These included: (1) earnings driven, (2) superior science, (3) innovative application of technology, (4) ability to act quickly and decisively, (5) leadership, management, and professional development, and (6) achieve learning curve economics. The core competencies were outlined along with recent discoveries in South Texas and the Upper Gulf Coast. figs

  7. Gas production in anaerobic dark-fermentation processes from agriculture solid waste

    Science.gov (United States)

    Sriwuryandari, L.; Priantoro, E. A.; Sintawardani, N.

    2017-03-01

    Approximately, Bandung produces agricultural solid waste of 1549 ton/day. This wastes consist of wet-organic matter and can be used for bio-gas production. The research aimed to apply the available agricultural solid waste for bio-hydrogen. Biogas production was done by a serial of batches anaerobic fermentation using mix-culture bacteria as the active microorganism. Fermentation was carried out inside a 30 L bioreactor at room temperature. The analyzed parameters were of pH, total gas, temperature, and COD. Result showed that from 3 kg/day of organic wastes, various total gases of O2, CH4, H2, CO2, and CnHn,O2 was produced.

  8. Predicting Cumulative Incidence Probability by Direct Binomial Regression

    DEFF Research Database (Denmark)

    Scheike, Thomas H.; Zhang, Mei-Jie

    Binomial modelling; cumulative incidence probability; cause-specific hazards; subdistribution hazard......Binomial modelling; cumulative incidence probability; cause-specific hazards; subdistribution hazard...

  9. 7 CFR 42.132 - Determining cumulative sum values.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Determining cumulative sum values. 42.132 Section 42... Determining cumulative sum values. (a) The parameters for the on-line cumulative sum sampling plans for AQL's... 3 1 2.5 3 1 2 1 (b) At the beginning of the basic inspection period, the CuSum value is set equal to...

  10. The Algebra of the Cumulative Percent Operation.

    Science.gov (United States)

    Berry, Andrew J.

    2002-01-01

    Discusses how to help students avoid some pervasive reasoning errors in solving cumulative percent problems. Discusses the meaning of ."%+b%." the additive inverse of ."%." and other useful applications. Emphasizes the operational aspect of the cumulative percent concept. (KHR)

  11. Technical review of coal gasifiers for production of synthetic natural gas

    International Nuclear Information System (INIS)

    Lee, Geun Woo; Shin, Yong Seung

    2012-01-01

    Because of the increasing cost of oil and natural gas, energy production technologies using coal, including synthetic natural gas (SNG) and integrated gasification combined cycle (IGCC), have attracted attention because of the relatively low cost of coal. During the early stage of a project, the developer or project owner has many options with regard to the selection of a gasifier. In particular, from the viewpoint of feasibility, the gasifier is a key factor in the economic evaluation. This study compares the technical aspects of gasifiers for a real SNG production project in an early stage. A fixed bed slagging gasifier, wet type entrained gasifier, and dry type entrained gasifier, all of which have specific advantages, can be used for the SNG production project. Base on a comparison of the process descriptions and performances of each gasifier, this study presents a selection guideline for a gasifier for an SNG production project that will be beneficial to project developers and EPC (Engineering, Procurement, Construction) contractors

  12. Peat and the greenhouse effect - Comparison of peat with coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.

    1993-01-01

    The earth's climate is effected both by natural factors and human activities. So called greenhouse gas emissions increase the increment of the temperature of the air nearby the earth's surface, due to which the social changes can be large. The increment of greenhouse gas concentration in the atmosphere is due to increasing energy consumption. About 50 % of the climatic changes are caused by increase of the CO 2 concentration in the atmosphere. Other gases, formed in the energy production, intensifying the greenhouse effect are methane and nitrous oxide. The effect of greenhouse gases is based on their ability to absorb infrared radiation coming from the earth. This presentation discusses some of the greenhouse effect caused by some peat production and utilization chains in comparison with corresponding effects of coal, oil, natural gas and wood. The instantaneous greenhouse effects and the cumulative effects of the emissions of the gases (CO 2 , CH 4 and N 2 O) during a time period has been reviewed. The greenhouse effect has been calculated as CO 2 - equivalents. (5 figs.)

  13. Comparative analysis of top-lit bubble column and gas-lift bioreactors for microalgae-sourced biodiesel production

    International Nuclear Information System (INIS)

    Seyed Hosseini, Nekoo; Shang, Helen; Ross, Gregory M.; Scott, John Ashley

    2016-01-01

    Highlights: • Top-lit gas-lift and bubble columns were studied as deep algal cultivation tank. • A theoretical energy requirement analysis and a hydrodynamic model were developed. • Areal productivities of both bioreactors were notably higher than traditional raceways. • A gas-lift reactor sparged with 6% carbon dioxide achieved the highest lipid production. • Hydrodynamic and light stresses increased the lipid content suitable for biodiesel. - Abstract: The development of top-lit one-meter deep bioreactors operated as either a gas-lift or bubble column system using air and carbon dioxide enriched air was studied. The goal was high productivity cultivation of algae with elevated lipid levels suitable for conversion into biodiesel. A theoretical energy requirement analysis and a hydrodynamic model were developed to predict liquid circulation velocities in the gas-lift bioreactor, which agreed well with experimental measurements. The influence of operational parameters such as design of bioreactor, gas flow rates and carbon dioxide concentration on the growth and lipid volumetric production of Scenedesmus dimorphus was evaluated using factorial design. While biomass productivity was 12% higher in the bubble column bioreactor (68.2 g_d_w m"−"2 day"−"1), maximum lipid volumetric production (0.19 g_L_i_p_i_d L"−"1) was found in a gas-lift bioreactor sparged with 6% carbon dioxide due to hydrodynamic and light stresses.

  14. World nonrenewable conventional energy resources as of December 31, 1982

    International Nuclear Information System (INIS)

    Parent, J.D.

    1984-01-01

    Energy analysts present year-end 1982 estimates for world proved reserves, remaining recoverable resources, annual production rates, and cumulative production of the non-renewable convectional energy resources: coal, natural gas, crude oil, natural gas liquids, bitumens, shale oil, and uranium oxide. Life indices for world fossil fuels are also given for several annual growth rates. The world's proved and currently recoverable natural gas reserves amount to 2649-3250 trillion CF; the estimated total remaining recoverable is 6693-7462 TCF. In 1982, 54 TCF of gas was produced for a cumulative production of 1320 TCF (not counting vented or flared gas)

  15. Age- and gender-specific estimates of cumulative CT dose over 5 years using real radiation dose tracking data in children

    International Nuclear Information System (INIS)

    Lee, Eunsol; Goo, Hyun Woo; Lee, Jae-Yeong

    2015-01-01

    It is necessary to develop a mechanism to estimate and analyze cumulative radiation risks from multiple CT exams in various clinical scenarios in children. To identify major contributors to high cumulative CT dose estimates using actual dose-length product values collected for 5 years in children. Between August 2006 and July 2011 we reviewed 26,937 CT exams in 13,803 children. Among them, we included 931 children (median age 3.5 years, age range 0 days-15 years; M:F = 533:398) who had 5,339 CT exams. Each child underwent at least three CT scans and had accessible radiation dose reports. Dose-length product values were automatically extracted from DICOM files and we used recently updated conversion factors for age, gender, anatomical region and tube voltage to estimate CT radiation dose. We tracked the calculated CT dose estimates to obtain a 5-year cumulative value for each child. The study population was divided into three groups according to the cumulative CT dose estimates: high, ≥30 mSv; moderate, 10-30 mSv; and low, <10 mSv. We reviewed clinical data and CT protocols to identify major contributors to high and moderate cumulative CT dose estimates. Median cumulative CT dose estimate was 5.4 mSv (range 0.5-71.1 mSv), and median number of CT scans was 4 (range 3-36). High cumulative CT dose estimates were most common in children with malignant tumors (57.9%, 11/19). High frequency of CT scans was attributed to high cumulative CT dose estimates in children with ventriculoperitoneal shunt (35 in 1 child) and malignant tumors (range 18-49). Moreover, high-dose CT protocols, such as multiphase abdomen CT (median 4.7 mSv) contributed to high cumulative CT dose estimates even in children with a low number of CT scans. Disease group, number of CT scans, and high-dose CT protocols are major contributors to higher cumulative CT dose estimates in children. (orig.)

  16. The paca that roared: Immediate cumulative semantic interference among newly acquired words.

    Science.gov (United States)

    Oppenheim, Gary M

    2018-08-01

    With 40,000 words in the average vocabulary, how can speakers find the specific words that they want so quickly and easily? Cumulative semantic interference in language production provides a clue: when naming a large series of pictures, with a few mammals sprinkled about, naming each subsequent mammal becomes slower and more error-prone. Such interference mirrors predictions from an incremental learning algorithm applied to meaning-driven retrieval from an established vocabulary, suggesting retrieval benefits from a constant, implicit, re-optimization process (Oppenheim et al., 2010). But how quickly would a new mammal (e.g. paca) engage in this re-optimization? In this experiment, 18 participants studied 3 novel and 3 familiar exemplars from each of six semantic categories, and immediately performed a timed picture-naming task. Consistent with the learning model's predictions, naming latencies revealed immediate cumulative semantic interference in all directions: from new words to new words, from new words to old words, from old words to new words, and from old words to old words. Repeating the procedure several days later produced similar-magnitude effects, demonstrating that newly acquired words can be immediately semantically integrated, at least to the extent necessary to produce typical cumulative semantic interference. These findings extend the Dark Side model's scope to include novel word production, and are considered in terms of mechanisms for lexical selection. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Efficacy of different methanolic plant extracts on anti-methanogenesis, rumen fermentation and gas production kinetics in vitro.

    Science.gov (United States)

    Sirohi, S K; Goel, N; Pandey, P

    2012-01-01

    The present study was carried out to evaluate the effect of methanolic extracts of three plants, mehandi (Lawsonia inermis), jaiphal (Myristica fragrans) and green chili (Capsicum annuum) on methanogenesis, rumen fermentation and fermentation kinetic parameters by in vitro gas production techniques. Single dose of each plant extract (1 ml / 30 ml buffered rumen fluid) and two sorghum fodder containing diets (high and low fiber diets) were used for evaluating the effect on methanogenesis and rumen fermentation pattern, while sequential incubations (0, 1, 2, 3, 6 9, 12, 24, 36, 48, 60, 72 and 96 h) were carried out for gas production kinetics. Results showed that methane production was reduced, ammonia nitrogen was increased significantly, while no significant effect was found on pH and protozoal population following addition of different plant extracts in both diets except mehandi. Green chili significantly reduced digestibility of dry matter, total fatty acid and acetate concentration at incubation with sorghum based high and low fiber diets. Among all treatments, green chili increased potential gas production, while jaiphal decreased the gas production rate constant significantly. The present results demonstrate that methanolic extracts of different plants are promising rumen modifying agents. They have the potential to modulate the methane production, potential gas production, gas production rate constant, dry matter digestibility and microbial biomass synthesis.

  18. An experimental approach aiming the production of a gas mixture composed of hydrogen and methane from biomass as natural gas substitute in industrial applications.

    Science.gov (United States)

    Kraussler, Michael; Schindler, Philipp; Hofbauer, Hermann

    2017-08-01

    This work presents an experimental approach aiming the production of a gas mixture composed of H 2 and CH 4 , which should serve as natural gas substitute in industrial applications. Therefore, a lab-scale process chain employing a water gas shift unit, scrubbing units, and a pressure swing adsorption unit was operated with tar-rich product gas extracted from a commercial dual fluidized bed biomass steam gasification plant. A gas mixture with a volumetric fraction of about 80% H 2 and 19% CH 4 and with minor fractions of CO and CO 2 was produced by employing carbon molecular sieve as adsorbent. Moreover, the produced gas mixture had a lower heating value of about 15.5MJ·m -3 and a lower Wobbe index of about 43.4MJ·m -3 , which is similar to the typical Wobbe index of natural gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. County-level Oil and Gas Production in the U.S.

    Data.gov (United States)

    Department of Agriculture — County-level data from oil and/or natural gas producing States—for onshore production in the lower 48 States only—are compiled on a State-by-State basis. Most States...

  20. Repeatability and reproducibility of an automated gas production technique

    NARCIS (Netherlands)

    Laar, van H.; Straalen, van W.M.; Gelder, van A.H.; Boever, de J.L.; heer, D' B.; Vedder, H.; Kroes, R.; Bot, de P.; Hees, van J.; Cone, J.W.

    2006-01-01

    Two ring tests with five and three laboratories, respectively, were conducted to quantify variation within and among laboratories in an automated gas production technique. Single batches of the feeds soya bean meal (SBM), wheat grain (WG), grass silage (GS) and maize gluten meal (MG) were divided

  1. Intrinsic gas production kinetics of selected intermediates in anaerobic filters for demand-orientated energy supply.

    Science.gov (United States)

    Krümpel, Johannes Hagen; Illi, Lukas; Lemmer, Andreas

    2018-03-01

    As a consequence of a growing share of solar and wind power, recent research on biogas production highlighted a need for demand-orientated, flexible gas production to provide grid services and enable a decentralized stabilization of the electricity infrastructure. Two-staged anaerobic digestion is particularly suitable for shifting the methane production into times of higher demand due to the spatio-temporal separation of hydrolysis and methanogenesis. To provide a basis for predicting gas production in an anaerobic filter, kinetic parameters of gas production have been determined experimentally in this study. A new methodology is used, enabling their determination during continuous operation. An order in methane production rate could be established by comparing the half lives of methane production. The order was beginning with the fastest: acetic acid>ethanol>butyric acid>iso-butyric acid>valeric acid>propionic acid>1,2propanediol>lactic acid. However, the mixture of a natural hydrolysate from the acidification tank appeared to produce methane faster than all single components tested.

  2. Estimation of Energy Consumption and Greenhouse Gas Emissions of Transportation in Beef Cattle Production

    Directory of Open Access Journals (Sweden)

    Narayanan Kannan

    2016-11-01

    Full Text Available Accounting for transportation is an important part of the life cycle analysis (LCA of beef cattle production because it is associated with energy consumption and greenhouse gas emissions. This paper describes the development and application of a model that estimates energy consumption and greenhouse gas emissions of transport in beef cattle production. The animal transport model is based on the weight and number of animals in each weight category, type of trailer, vehicle, and fuel used. The energy consumption and greenhouse gas emission estimates of animal feed transportation are based on the weight of a truckload and the number of truckloads of feed transported. Our results indicate that a truckload is travelling approximately 326 km in connection with beef cattle production in the study region. The fuel consumption amounts to 24 L of fossil fuel per 1000 kg of boneless beef. The corresponding greenhouse gas emission is 83 kg. It appears from our results that the majority of energy consumption and greenhouse gas emissions are associated with sending the finished cattle to slaughterhouses and bringing feeder cattle to feedlots. Our results point out appreciable reductions in energy consumption and greenhouse gas emissions by changing from conventional fuel to bio-fuel.

  3. LOW COST METHODOLOGIES TO ANALYZE AND CORRECT ABNORMAL PRODUCTION DECLINE IN STRIPPER GAS WELLS

    International Nuclear Information System (INIS)

    Jerry James; Gene Huck; Tim Knobloch

    2001-01-01

    A study group of 376 Clinton Sand wells in Ohio provided data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the causes of the abnormal production decline. Analysis of the historic frequency of the problem indicates over 70% of the wells experienced abnormal production decline. The most frequently occurring causes of abnormal production declines were determined to be fluid accumulation (46%), gas gathering restrictions (24%), and mechanical failures (23%). Data collection forms and decision trees were developed to cost-effectively diagnose the abnormal production declines and suggest corrective action. The decision trees and data collection sheets were incorporated into a procedure guide to provide stripper gas well operators with a methodology to analyze and correct abnormal production declines. The systematic methodologies and techniques developed should increase the efficiency of problem well assessment and implementation of solutions for stripper gas wells. This eight quarterly technical progress report provides a summary of the deliverables completed to date, including the results of the remediations, the procedure guide, and the technology transfer. Due to the successful results of the study to date and the efficiency of the methodology development, two to three additional wells will be selected for remediation for inclusion into the study. The results of the additional remediations will be included in the final report

  4. An investment-production-regulatory model for firms in the offshore oil and gas industry

    International Nuclear Information System (INIS)

    Jin Di.

    1991-01-01

    This tripartite study examines the economic consequences of proposed environmental regulations on firms in the OCS oil and gas industry. The background part reviews the major issues associated with OCS oil and gas development and relevant environmental regulatory proposals. In the theoretical part, models are developed using optimal control theory and the theory of nonrenewable resources to analyze the impact of rising compliance cost on firm's behavior in terms of the investment and production rates over time. Finally, in the simulation part, an integrated investment-production-regulatory model is developed to simulate OCS development with and without the proposed environmental regulations. Effects of regulations are measured in terms of an increase in compliance costs and the associated reduction in net profits from oil and gas production. The theoretical results indicate that an increase in compliance costs will alter exploration, development and production rates. The total investments in exploration and development, and oil production will decrease as a result of rising compliance costs for exploration, development and production over the entire planning period

  5. Characterization and Prediction of the Gas Hydrate Reservoir at the Second Offshore Gas Production Test Site in the Eastern Nankai Trough, Japan

    Directory of Open Access Journals (Sweden)

    Machiko Tamaki

    2017-10-01

    Full Text Available Following the world’s first offshore production test that was conducted from a gas hydrate reservoir by a depressurization technique in 2013, the second offshore production test has been planned in the eastern Nankai Trough. In 2016, the drilling survey was performed ahead of the production test, and logging data that covers the reservoir interval were newly obtained from three wells around the test site: one well for geological survey, and two wells for monitoring surveys, during the production test. The formation evaluation using the well log data suggested that our target reservoir has a more significant heterogeneity in the gas hydrate saturation distribution than we expected, although lateral continuity of sand layers is relatively good. To evaluate the spatial distribution of gas hydrate, the integration analysis using well and seismic data was performed. The seismic amplitude analysis supports the lateral reservoir heterogeneity that has a significant positive correlation with the resistivity log data at the well locations. The spatial distribution of the apparent low-resistivity interval within the reservoir observed from log data was investigated by the P-velocity volume derived from seismic inversion. The integrated results were utilized for the pre-drill prediction of the reservoir quality at the producing wells. These approaches will reduce the risk of future commercial production from the gas hydrate reservoir.

  6. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    Science.gov (United States)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    Anthropogenic intensification of nitrogen (N) loading to aquatic ecosystems is widespread and can lead to the degradation of these systems. Wetlands are important sites for N removal via denitrification, the microbially mediated reduction of reactive nitrate to inert N2 gas, but they can also produce high levels of greenhouse gases. Floating plants play an important role in encouraging denitrification, since they create low oxygen conditions that may favor denitrification. We investigated whether wetland sediments with floating plant cover had higher denitrification and greenhouse gas production rates than wetland sediments without floating plants. Replicate flow-through mesocosms with wetland sediment and water were constructed in a growth chamber to mimic the wetland where the sediment and water were collected. Mesocosm treatments were covered with floating vegetation (duckweed), an opaque tarp, or no cover to determine how cover type affects denitrification and greenhouse gas production and whether biotic or abiotic factors are likely responsible for observed differences. Denitrification and greenhouse gas production rates were calculated by measuring excess N2 gas, methane, and nitrous oxide concentrations in the water column and measuring the gas exchange rates between the water column and the atmosphere. Gas exchange rates were measured using an inert volatile tracer added to the water column and accumulation of gas in the mesocosm headspace. Additional mesocosm experiments were performed to determine how duckweed-dominated wetland systems respond to nitrogen loading and which mechanism for lowering dissolved oxygen concentrations is important in affecting denitrification under floating vegetation. Mesocosms with floating vegetation had lower dissolved oxygen than no cover or tarp-covered mesocosms, which is consistent with field and literature observations. Water flowing out of the mesocosms had statistically lower total nitrogen and nitrate concentrations

  7. Specialists' meeting on fission product release and transport in gas-cooled reactors. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    The purpose of the Meeting on Fission Product Release and Transport in Gas-Cooled Reactors was to compare and discuss experimental and theoretical results of fission product behaviour in gas-cooled reactors under normal and accidental conditions and to give direction for future development. The technical part of the meeting covered operational experience and laboratory research, activity release, and behaviour of released activity.

  8. Specialists' meeting on fission product release and transport in gas-cooled reactors. Summary report

    International Nuclear Information System (INIS)

    1985-01-01

    The purpose of the Meeting on Fission Product Release and Transport in Gas-Cooled Reactors was to compare and discuss experimental and theoretical results of fission product behaviour in gas-cooled reactors under normal and accidental conditions and to give direction for future development. The technical part of the meeting covered operational experience and laboratory research, activity release, and behaviour of released activity

  9. Potential for greenhouse gas emission reductions using surplus electricity in hydrogen, methane and methanol production via electrolysis

    International Nuclear Information System (INIS)

    Uusitalo, Ville; Väisänen, Sanni; Inkeri, Eero; Soukka, Risto

    2017-01-01

    Highlights: • Greenhouse gas emission reductions using power-to-x processes are studied using life cycle assessment. • Surplus electricity use led to greenhouse gas emission reductions in all studied cases. • Highest reductions can be achieved by using hydrogen to replace fossil based hydrogen. • High reductions are also achieved when fossil transportation fuels are replaced. - Abstract: Using a life cycle perspective, potentials for greenhouse gas emission reductions using various power-to-x processes via electrolysis have been compared. Because of increasing renewable electricity production, occasionally surplus renewable electricity is produced, which leads to situations where the price of electricity approach zero. This surplus electricity can be used in hydrogen, methane and methanol production via electrolysis and other additional processes. Life cycle assessments have been utilized to compare these options in terms of greenhouse gas emission reductions. All of the power-to-x options studied lead to greenhouse gas emission reductions as compared to conventional production processes based on fossil fuels. The highest greenhouse gas emission reductions can be gained when hydrogen from steam reforming is replaced by hydrogen from the power-to-x process. High greenhouse gas emission reductions can also be achieved when power-to-x products are utilized as an energy source for transportation, replacing fossil transportation fuels. A third option with high greenhouse gas emission reduction potential is methane production, storing and electricity conversion in gas engines during peak consumption hours. It is concluded that the power-to-x processes provide a good potential solution for reducing greenhouse gas emissions in various sectors.

  10. Production of ultrapure D-T gas by removal of molecular tritium by selective adsorption

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Hudson, R.S.; Tsugawa, R.T.; Fearon, E.M.; Souers, P.C.; Collins, G.W.

    1991-07-01

    The application of selective adsorption to purification of D-T gas by removal of T 2 has been demonstrated for small quantities of gas typical in research applications. This represents a variation on the production of pure spin isomers of deuterium and hydrogen. The use of an adsorption column offers several advantages over conventional separation techniques, such as low tritium inventory, rapid delivery to prevent radiation damage of the accumulated product, compact size, simplicity of design, construction, and operation, and operation without carrier gas. Because a column can have several thousand equilibrium stages, the purity of the product can be very high. The adsorption column has been shown to be an attractive separation tool for small quantities of hydrogen isotopes

  11. EXAFS cumulants of CdSe

    International Nuclear Information System (INIS)

    Diop, D.

    1997-04-01

    EXAFS functions had been extracted from measurements on the K edge of Se at different temperatures between 20 and 300 K. The analysis of the EXAFS of the filtered first two shells has been done in the wavevector range laying between 2 and 15.5 A -1 in terms of the cumulants of the effective distribution of distances. The cumulants C 3 and C 4 obtained from the phase difference and the amplitude ratio methods have shown the anharmonicity in the vibrations of atoms around their equilibrium position. (author). 13 refs, 3 figs

  12. Simulation of microwave stimulation for the production of gas from methane hydrate sediment

    International Nuclear Information System (INIS)

    Zhao, Jiafei; Fan, Zhen; Wang, Bin; Dong, Hongsheng; Liu, Yu; Song, Yongchen

    2016-01-01

    Graphical abstract: Schematic diagram illustrating the process of gas production in hydrate-bearing sediment induced by microwave stimulation. Temperature gradients caused by the drop of microwave penetration depth appear in the sediment, leading to a rapid dissociation rate at the upper part of reservoir. - Highlights: • Hydrate dissociation behavior was analyzed in porous media by microwave stimulation. • Microwave stimulation provides sufficient energy conversion for hydrate dissociation. • Hydrate saturation and specific heat capacity of sediment mainly affect efficiency. • Heat conduction decreases temperature gradients promoting homogeneous dissociation. - Abstract: Natural gas hydrates dissociate via an endothermic process. One of the key requirements for any production technique is to supply the heat necessary for this dissociation. In this study, first, a microwave stimulation model for the production of gas from methane hydrate sediment is developed, which includes mass transport, energy conversion and conservation, and intrinsic kinetic reactions as the governing equations. In addition, the theoretical mixing rule of Lichtenecker and Rother is introduced for calculating the average dielectric data of the sediment containing methane hydrates, which affects the penetration of microwaves into the sediment. Next, simulations are performed for investigating gas production, as well as effects of initial water saturation, initial hydrate saturation, and sediment thermal properties induced by microwave stimulation. Moreover, the energy efficiency ratio is employed in the simulation. The simulation results show that microwave stimulation provides timely energy conversion sufficient for promoting the dissociation of hydrates, with rapid, continuous gas production. Temperature gradients caused by the decrease of the microwave penetration depth appear in the reservoir, leading to a rapid dissociation rate in the upper part of the sediment. The energy

  13. Effects of preservation conditions of canine feces on in vitro gas production kinetics and fermentation end-products

    NARCIS (Netherlands)

    Bosch, G.; Wrigglesworth, D.J.; Cone, J.W.; Pellikaan, W.F.; Hendriks, W.H.

    2013-01-01

    This study investigated the effect of chilling and freezing (for 24 h) canine feces on in vitro gas production kinetics and fermentation end-product profiles from carbohydrate-rich (in vitro run 1) and protein-rich substrates (in vitro run 2). Feces were collected from 3 adult Retriever-type dogs

  14. Experience curve for natural gas production by hydraulic fracturing

    NARCIS (Netherlands)

    Fukui, R.; Greenfield, C.; Pogue, K.; van der Zwaan, B.

    From 2007 to 2012 shale gas production in the US expanded at an astounding average growth rate of over 50yr, and thereby increased nearly tenfold over this short time period alone. Hydraulic fracturing technology, or ``fracking'', as well as new directional drilling techniques, played key roles in

  15. Inside Story of Gas Processes within Stormwater Biofilters: Does Greenhouse Gas Production Tarnish the Benefits of Nitrogen Removal?

    Science.gov (United States)

    Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Deletic, Ana; Hatt, Belinda E; Fletcher, Tim D

    2017-04-04

    Stormwater biofilters are dynamic environments, supporting diverse processes that act to capture and transform incoming pollutants. However, beneficial water treatment processes can be accompanied by undesirable greenhouse gas production. This study investigated the potential for nitrous oxide (N 2 O) and methane (CH 4 ) generation in dissolved form at the base of laboratory-scale stormwater biofilter columns. The influence of plant presence, species, inflow frequency, and inclusion of a saturated zone and carbon source were studied. Free-draining biofilters remained aerobic with negligible greenhouse gas production during storm events. Designs with a saturated zone were oxygenated at their base by incoming stormwater before anaerobic conditions rapidly re-established, although extended dry periods allowed the reintroduction of oxygen by evapotranspiration. Production of CH 4 and N 2 O in the saturated zone varied significantly in response to plant presence, species, and wetting and drying. Concentrations of N 2 O typically peaked rapidly following stormwater inundation, associated with limited plant root systems and poorer nitrogen removal from biofilter effluent. Production of CH 4 also commenced quickly but continued throughout the anaerobic interevent period and lacked clear relationships with plant characteristics or nitrogen removal performance. Dissolved greenhouse gas concentrations were highly variable, but peak concentrations of N 2 O accounted for nitrogen load. While further work is required to measure surface emissions, the potential for substantial release of N 2 O or CH 4 in biofilter effluent appears relatively low.

  16. Disaggregating reserve-to-production ratios: An algorithm for United States oil and gas reserve development

    Science.gov (United States)

    Williams, Charles William

    Reserve-to-production ratios for oil and gas development are utilized by oil and gas producing states to monitor oil and gas reserve and production dynamics. These ratios are used to determine production levels for the manipulation of oil and gas prices while maintaining adequate reserves for future development. These aggregate reserve-to-production ratios do not provide information concerning development cost and the best time necessary to develop newly discovered reserves. Oil and gas reserves are a semi-finished inventory because development of the reserves must take place in order to implement production. These reserves are considered semi-finished in that they are not counted unless it is economically profitable to produce them. The development of these reserves is encouraged by profit maximization economic variables which must consider the legal, political, and geological aspects of a project. This development is comprised of a myriad of incremental operational decisions, each of which influences profit maximization. The primary purpose of this study was to provide a model for characterizing a single product multi-period inventory/production optimization problem from an unconstrained quantity of raw material which was produced and stored as inventory reserve. This optimization was determined by evaluating dynamic changes in new additions to reserves and the subsequent depletion of these reserves with the maximization of production. A secondary purpose was to determine an equation for exponential depletion of proved reserves which presented a more comprehensive representation of reserve-to-production ratio values than an inadequate and frequently used aggregate historical method. The final purpose of this study was to determine the most accurate delay time for a proved reserve to achieve maximum production. This calculated time provided a measure of the discounted cost and calculation of net present value for developing new reserves. This study concluded that

  17. Basic study on high temperature gas cooled reactor technology for hydrogen production

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Lee, W. J.; Lee, H. M.

    2003-01-01

    The annual production of hydrogen in the world is about 500 billion m 3 . Currently hydrogen is consumed mainly in chemical industries. However hydrogen has huge potential to be consumed in transportation sector in coming decades. Assuming that 10% of fossil energy in transportation sector is substituted by hydrogen in 2020, the hydrogen in the sector will exceed current hydrogen consumption by more than 2.5 times. Currently hydrogen is mainly produced by steam reforming of natural gas. Steam reforming process is chiefest way to produce hydrogen for mass production. In the future, hydrogen has to be produced in a way to minimize CO2 emission during its production process as well as to satisfy economic competition. One of the alternatives to produce hydrogen under such criteria is using heat source of high-temperature gas-cooled reactor. The high-temperature gas-cooled reactor represents one type of the next generation of nuclear reactors for safe and reliable operation as well as for efficient and economic generation of energy

  18. Production of ammonia from plasma-catalytic decomposition of urea: Effects of carrier gas composition.

    Science.gov (United States)

    Fan, Xing; Li, Jian; Qiu, Danqi; Zhu, Tianle

    2018-04-01

    Effects of carrier gas composition (N 2 /air) on NH 3 production, energy efficiency regarding NH 3 production and byproducts formation from plasma-catalytic decomposition of urea were systematically investigated using an Al 2 O 3 -packed dielectric barrier discharge (DBD) reactor at room temperature. Results show that the presence of O 2 in the carrier gas accelerates the conversion of urea but leads to less generation of NH 3 . The final yield of NH 3 in the gas phase decreased from 70.5%, 78.7%, 66.6% and 67.2% to 54.1%, 51.7%, 49.6% and 53.4% for applied voltages of 17, 19, 21 and 23kV, respectively when air was used as the carrier gas instead of N 2 . From the viewpoint of energy savings, however, air carrier gas is better than N 2 due to reduced energy consumption and increased energy efficiency for decomposition of a fixed amount of urea. Carrier gas composition has little influence on the major decomposition pathways of urea under the synergetic effects of plasma and Al 2 O 3 catalyst to give NH 3 and CO 2 as the main products. Compared to a small amount of N 2 O formed with N 2 as the carrier gas, however, more byproducts including N 2 O and NO 2 in the gas phase and NH 4 NO 3 in solid deposits were produced with air as the carrier gas, probably due to the unproductive consumption of NH 3 , the possible intermediate HNCO and even urea by the abundant active oxygen species and nitrogen oxides generated in air-DBD plasma. Copyright © 2017. Published by Elsevier B.V.

  19. Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-08

    This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

  20. Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993

    International Nuclear Information System (INIS)

    1994-01-01

    This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations

  1. The Stability of CI02 as a Product of Gas Phase Decontamination Treatments

    International Nuclear Information System (INIS)

    Simmons, D. W.

    1994-01-01

    The gas phase decontamination project is investigating the use of chlorine trifluoride (ClF 3 ) to fluorinate nonvolatile uranium deposits to produce uranium hexafluoride (UF 6 ) gas. The potential existence of chlorine dioxide (ClO 2 ) during gas phase decontamination with ClF 3 has been the subject of recent safety discussions. Some of the laboratory data collected during feasibility studies of the gas phase process has been evaluated for the presence of ClO 2 in the product gas stream. The preliminary evidence to date can be summarized as follows: (1) ClO 2 was not detected in the flow loop in the absence of ClF 3 ; (2) ClO 2 was not detected in the static reactors in the absence of both ClF 3 and ClF; and (3) ClO 2 was detected in a static reactor in the absence of all fluorinating gases. The experimental evidence suggests that ClO 2 will not exist in the presence of ClF 3 , ClF, or UF 6 . The data analyzed to date is insufficient to determine the stability of ClO 2 in the presence of ClO 2 F. Thermodynamic calculations of the ClF 3 + H 2 O system support the experimental evidence, and suggest that ClO 2 will not exist in the presence of ClO 2 F. Additional experimental efforts are needed to provide a better understanding of the gas phase ClF 3 treatments and the product gases. However, preliminary evidence to date suggests that ClO 2 should not be present as a product during the normal operations of the gas phase decontamination project

  2. Power-to-Gas coupling to biomethane production. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Saric, M.; Dijkstra, J.W.; Walspurger, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-09-15

    This preliminary feasibility study on coupling 'Power-to-gas' conversion chain to the bio-methane from producer gas shows a promising potential for efficient and cost effective operation. The production capacity of the biomethane plant can be doubled, while cold gas efficiency remains the same as compared to a standalone biomethane plant. The specifications of the natural gas grid can be reached at the condition that the allowed H2 content is not too strict. The study showed that such coupling implies that both methanation and SNG upgrade sections need to be designed to withstand variable operation conditions and part-load. The methanation section would have to deal with a turndown factor of 2 when switching from E-demand to E-excess operating mode while the CO2 removal section must work efficiently in part-load and respond well in shutdown/start-up operations.

  3. Energy Intensity and Greenhouse Gas Emissions from Oil Production in the Eagle Ford Shale

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Sonia; Ghandi, Abbas; Scanlon, Bridget R.; Brandt, Adam R.; Cai, Hao; Wang, Michael Q.; Vafi, Kourosh; Reedy, Robert C.

    2017-01-30

    A rapid increase in horizontal drilling and hydraulic fracturing in shale and “tight” formations that began around 2000 has resulted in record increases in oil and natural gas production in the U.S. This study examines energy consumption and greenhouse gas (GHG) emissions from crude oil and natural gas produced from ~8,200 wells in the Eagle Ford Shale in southern Texas from 2009 to 2013. Our system boundary includes processes from primary exploration wells to the refinery entrance gate (henceforth well-to-refinery or WTR). The Eagle Ford includes four distinct production zones—black oil (BO), volatile oil (VO), condensate (C), and dry gas (G) zones—with average monthly gas-to-liquids ratios (thousand cubic feet per barrel—Mcf/bbl) varying from 0.91 in the BO zone to 13.9 in the G zone. Total energy consumed in drilling, extracting, processing, and operating an Eagle Ford well is ~1.5% of the energy content of the produced crude and gas in the BO and VO zones, compared with 2.2% in the C and G zones. On average, the WTR GHG emissions of gasoline, diesel, and jet fuel derived from crude oil produced in the BO and VO zones in the Eagle Ford play are 4.3, 5.0, and 5.1 gCO2e/MJ, respectively. Comparing with other known conventional and unconventional crude production where upstream GHG emissions are in the range 5.9–30 gCO2e/MJ, oil production in the Eagle Ford has lower WTR GHG emissions.

  4. Deposition of naturally occurring radioactivity in oil and gas production

    International Nuclear Information System (INIS)

    Lysebo, I.; Strand, T.

    1997-01-01

    This booklet contains general information about naturally occurring radioactive materials, NORM, in production of oil and natural gas, occupational doses, radiation protection procedures and measures, and classification methods of contaminated equipment. 6 refs., 1 fig., 1 tab

  5. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  6. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    Science.gov (United States)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  7. Fluctuation theorem for entropy production during effusion of a relativistic ideal gas

    OpenAIRE

    CLEUREN, Bart; WILLAERT, Koen; ENGEL, Andreas; VAN DEN BROECK, Christian

    2008-01-01

    The probability distribution of the entropy production for the effusion of a relativistic ideal gas is calculated explicitly. This result is then extended to include particle and anti-particle pair production and annihilation. In both cases, the fluctuation theorem is verified.

  8. Fluctuation theorem for entropy production during effusion of a relativistic ideal gas.

    Science.gov (United States)

    Cleuren, B; Willaert, K; Engel, A; Van den Broeck, C

    2008-02-01

    The probability distribution of the entropy production for the effusion of a relativistic ideal gas is calculated explicitly. This result is then extended to include particle and antiparticle pair production and annihilation. In both cases, the fluctuation theorem is verified.

  9. Real-Time Optimization of a maturing North Sea gas asset with production constraints

    NARCIS (Netherlands)

    Linden, R.J.P. van der; Busking, T.E.

    2013-01-01

    As gas and oil fields mature their operation becomes increasingly more complex, due to complex process dynamics, like slugging, gas coning, water breakthrough, salt or hydrate deposition. Moreover these phenomena also lead to production constraints in the upstream facilities. This complexity asks

  10. Radiolytic gas production from concrete containing Savannah River Plant waste

    International Nuclear Information System (INIS)

    Bibler, N.E.

    1978-01-01

    To determine the extent of gas production from radiolysis of concrete containing radioactive Savannah River Plant waste, samples of concrete and simulated waste were irradiated by 60 Co gamma rays and 244 Cm alpha particles. Gamma radiolysis simulated radiolysis by beta particles from fission products in the waste. Alpha radiolysis indicated the effect of alpha particles from transuranic isotopes in the waste. With gamma radiolysis, hydrogen was the only significant product; hydrogen reached a steady-state pressure that increased with increasing radiation intensity. Hydrogen was produced faster, and a higher steady-state pressure resulted when an organic set retarder was present. Oxygen that was sealed with the wastes was depleted. Gamma radiolysis also produced nitrous oxide gas when nitrate or nitrite was present in the concrete. With alpha radiolysis, hydrogen and oxygen were produced. Hydrogen did not reach a steady-state pressure at 137 Cs and 90 Sr), hydrogen will reach a steady-state pressure of 8 to 28 psi, and oxygen will be partially consumed. These predictions were confirmed by measurement of gas produced over a short time in a container of concrete and actual SRP waste. The tests with simulated waste also indicated that nitrous oxide may form, but because of the low nitrate or nitrite content of the waste, the maximum pressure of nitrous oxide after 300 years will be 238 Pu and 239 Pu will predominate; the hydrogen and oxygen pressures will increase to >200 psi

  11. About the cumulants of periodic signals

    Science.gov (United States)

    Barrau, Axel; El Badaoui, Mohammed

    2018-01-01

    This note studies cumulants of time series. These functions originating from the probability theory being commonly used as features of deterministic signals, their classical properties are examined in this modified framework. We show additivity of cumulants, ensured in the case of independent random variables, requires here a different hypothesis. Practical applications are proposed, in particular an analysis of the failure of the JADE algorithm to separate some specific periodic signals.

  12. Effects of total replacement of soybean meal and corn on ruminal fermentation, volatile fatty acids, protozoa concentration, and gas production

    Directory of Open Access Journals (Sweden)

    A. Bahri

    2018-03-01

    Full Text Available The main purpose of this study is to evaluate the effect of total replacement of soybean meal and corn with triticale and faba bean or field pea on rumen fermentation, protozoa counts, and gas production of lactating ewes. A total of 30 Sicilo-Sarde ewes were randomly allocated into three groups and were fed 1.8 kg drymatter of oat hay plus 500 g of one of three concentrates: the first concentrate (CS was mainly composed of soybean meal, corn, and barley; the second (TFB was formed by triticale and faba bean; and the third (TFP was composed of triticale and field pea. The type of concentrate did not affect ruminal pH or ammonia nitrogen concentration (P  >  0.05. The individual concentrations of volatile fatty acids showed a significant interaction between the type of concentrate and sampling time (P  <  0.05, except for Butyric and Isobutyric acids. Within a post-feeding time, the pattern of evolution of total volatile fatty, acetic, and propionic acids differed significantly at 2 h post feeding (P  <  0.05, while butyric and valeric acid changed at 0 and 4 h post feeding. The type of concentrate affected the total number of ciliate protozoa and the Isotricha species (P  <  0.05, whereas Entodinium, Ophryoscolex, and Polyplastron were similar among concentrates (P  >  0.05. The cumulative gas production from the in vitro fermentation, the time of incubation, and their interaction was affected by concentrate (P  <  0.001. The substitution of soybean meal and corn in the concentrate with faba bean or field peas and triticale might maintain rumen parameters of dairy ewes.

  13. The mechanisms underlying the production of discontinuous gas exchange cycles in insects.

    Science.gov (United States)

    Matthews, Philip G D

    2018-03-01

    This review examines the control of gas exchange in insects, specifically examining what mechanisms could explain the emergence of discontinuous gas exchange cycles (DGCs). DGCs are gas exchange patterns consisting of alternating breath-hold periods and bouts of gas exchange. While all insects are capable of displaying a continuous pattern of gas exchange, this episodic pattern is known to occur within only some groups of insects and then only sporadically or during certain phases of their life cycle. Investigations into DGCs have tended to emphasise the role of chemosensory thresholds in triggering spiracle opening as critical for producing these gas exchange patterns. However, a chemosensory basis for episodic breathing also requires an as-of-yet unidentified hysteresis between internal respiratory stimuli, chemoreceptors, and the spiracles. What has been less appreciated is the role that the insect's central nervous system (CNS) might play in generating episodic patterns of ventilation. The active ventilation displayed by many insects during DGCs suggests that this pattern could be the product of directed control by the CNS rather than arising passively as a result of self-sustaining oscillations in internal oxygen and carbon dioxide levels. This paper attempts to summarise what is currently known about insect gas exchange regulation, examining the location and control of ventilatory pattern generators in the CNS, the influence of chemoreceptor feedback in the form of O 2 and CO 2 /pH fluctuations in the haemolymph, and the role of state-dependent changes in CNS activity on ventilatory control. This information is placed in the context of what is currently known regarding the production of discontinuous gas exchange patterns.

  14. Current oil and gas production from North American Upper Cretaceous chalks

    Science.gov (United States)

    Scholle, Peter A.

    1977-01-01

    Production of oil and natural gas from North American chalks has increased significantly during the past five years, spurred by the prolific production from North Sea chalks, as well as by higher prices and improved production technology. Chalk reservoirs have been discovered in the Gulf Coast in the Austin Group, Saratoga and Annona Chalks, Ozan Formation, Selma Group, Monroe gas rock (an informal unit of Navarro age), and other Upper Cretaceous units. In the Western Interior, production has been obtained from the Cretaceous Niobrara and Greenhorn Formations. Significant, though subcommercial, discoveries of natural gas and gas condensate also have been made in the Upper Cretaceous Wyandot Formation on the Scotian Shelf of eastern Canada. All North American chalk units share a similar depositional and diagenetic history. The chalks consist primarily of whole and fragmented coccoliths with subordinate planktonic and benthonic Foraminifera, inoceramid prisms, oysters, and other skeletal grains. Most have between 10 and 35 percent HCl-insoluble residue, predominantly clay. Deposition was principally below wave base in tens to hundreds of meters of water. The diagenetic history of a chalk is critical in determining its reservoir potential. All chalk has a stable composition (low-Mg calcite) and very high primary porosity. With subsequent burial, mechanical and chemical (solution-transfer) compaction can reduce or completely eliminate pore space. The degree of loss of primary porosity in chalk sections is normally a direct function of the maximum depth to which it has been buried. Pore-water chemistry, pore-fluid pressures, and tectonic stresses also influence rates of cementation. Oil or gas reservoirs of North American chalk fall into three main groups: 1. Areas with thin overburden and significant primary porosity retention (for example, Niobrara Formation of Kansas and eastern Colorado). 2. Areas with thicker overburden but considerable fracturing. Here primary

  15. Gas Production Generated from Crude Oil Biodegradation: Preliminary Study on its Aplication in Microbial Enhanced Oil Recovery (MEOR

    Directory of Open Access Journals (Sweden)

    Astri Nugroho

    2009-11-01

    Full Text Available Gas Production Generated from Crude Oil Biodegradation: Preliminary Study on its Aplication in MicrobialEnhanced Oil Recovery (MEOR. The objective of this study is to observe the capacity of gas production generatedfrom crude oil degradation by the isolated bacteria. The gas in the MEOR could increase pressure in the reservoir,decrease oil viscosity, increase oil permeability-due to the increase of the porosity and viscosity, and also increase oilvolume due to the amount of dissolved gas. A research on gas analysis of oil degradation by 6 isolated bacteria has beenconducted. The bacteria isolates including Bacillus badius (A, Bacillus circulans (B, Bacillus coagulans (C, Bacillusfirmus (D, Pasteurella avium (E and Streptobacillus moniliformis (F. The trial on gas production, gas analysis and oildegradation analysis, was carried out by using SMSS medium. The test of gas production was done by usingmicrorespirometer at 40°C. The result shows that B, C, D, E produce more gas than A and F. Gas of CO2, O2, CO, N2,CH4, and H2 were analyzed by using GC. The results show that only three gases were detected by GC i.e. CO2, N2, andO2. The concentration of CO2 and N2 gas increased while the concentration of O2 decreased over an 8th day ofobservation. CO2 gas producted by mix culture was higher than by the pure culture. On the 8th day of incubation, theproduction of CO2 gas by mix culture was 4,0452% while pure culture C and D only produced 2,4543% and 2,8729%.The mix culture increase simple hydrocarbon by 12.03% and the formation of a complex hydrocarbon by 3.07%. Themix culture (C-D generated the highest concentration of CO2 gas as well as a synergistic concortium that has ability todegrade crude oil.

  16. Simulation of rumen fermentation kinetics of by-products from the biodiesel industry with in vitro gas production technique

    Directory of Open Access Journals (Sweden)

    Alex Lopes da Silva

    2015-12-01

    Full Text Available The objective of this study was to investigate the rumen fermentation kinetics of 18 by-products from the biodiesel industry exhibiting potential for use in the feeding of ruminants via the in vitro gas production technique. The following feeds were investigated: cottonseed, canudo de pito, crambe, sunflower, castor seed (detoxified with lime and soybean meals and cottonseed, peanut, babassu, crambe, palm kernel, sunflower, licuri nut, macaúba, forage radish and jatropha cakes. The evaluated parameters were total gas production (VfT, gas production from fibrous carbohydrates (VfFC, gas production from non-fibrous carbohydrates (VfNFC, the degradation rate of fibrous carbohydrates (kdFC, the degradation rate of non-fibrous carbohydrates (kdNFC and lag time (lag. The feeds were grouped into six different groups according to rumen fermentation kinetic parameters and adopting an R2 of 0.8. Forage radish cake and the meals of cottonseed, soybean, crambe and sunflower composed the first group, while the cakes of babassu and sunflower formed the second group. Canudo de pito and castor seed meals and the cakes of cottonseed, licuri and jatropha I and II formed the third group. The fourth group was composed by the cakes of crambe, palm kernel and peanut I. The fifth group was formed by peanut cake II, while macauba fruit cake formed the sixth group. The VfNFC and VfFC varied from 16.72 to 200.07 mL and from 53.09 to 242.12 mL, respectively. The mean kdFC and kdNFC values varied from 0.002 to 0.039% h-1and from 0.022 to 0.430% h-1, respectively. The mean lag and VfT varied from 0.0001 to 5.2029 hours and 136.94 to 301.44 mL, respectively. A number of the products exhibited the potential to replace soybean meal, especially the forage radish cake and cottonseed, crambe and sunflower meals.

  17. National Assessment of Oil and Gas Project: Areas of Historical Oil and Gas Exploration and Production in the United States

    Science.gov (United States)

    Biewick, Laura

    2008-01-01

    This report contains maps and associated spatial data showing historical oil and gas exploration and production in the United States. Because of the proprietary nature of many oil and gas well databases, the United States was divided into cells one-quarter square mile and the production status of all wells in a given cell was aggregated. Base-map reference data are included, using the U.S. Geological Survey (USGS) National Map, the USGS and American Geological Institute (AGI) Global GIS, and a World Shaded Relief map service from the ESRI Geography Network. A hardcopy map was created to synthesize recorded exploration data from 1859, when the first oil well was drilled in the U.S., to 2005. In addition to the hardcopy map product, the data have been refined and made more accessible through the use of Geographic Information System (GIS) tools. The cell data are included in a GIS database constructed for spatial analysis via the USGS Internet Map Service or by importing the data into GIS software such as ArcGIS. The USGS internet map service provides a number of useful and sophisticated geoprocessing and cartographic functions via an internet browser. Also included is a video clip of U.S. oil and gas exploration and production through time.

  18. Emissions of CH4 from natural gas production in the United States using aircraft-based observations (Invited)

    Science.gov (United States)

    Sweeney, C.; Ryerson, T. B.; Karion, A.; Peischl, J.; Petron, G.; Schnell, R. C.; Tsai, T.; Crosson, E.; Rella, C.; Trainer, M.; Frost, G. J.; Hardesty, R. M.; Montzka, S. A.; Dlugokencky, E. J.; Tans, P. P.

    2013-12-01

    New extraction technologies are making natural gas from shale and tight sand gas reservoirs in the United States (US) more accessible. As a result, the US has become the largest producer of natural gas in the world. This growth in natural gas production may result in increased leakage of methane, a potent greenhouse gas, offsetting the climate benefits of natural gas relative to other fossil fuels. Methane emissions from natural gas production are not well quantified because of the large variety of potential sources, the variability in production and operating practices, the uneven distribution of emitters, and a lack of verification of emission inventories with direct atmospheric measurements. Researchers at the NOAA Earth System Research Laboratory (ESRL) have used simple mass balance approaches to estimate emissions of CH4 from several natural gas and oil plays across the US. We will summarize the results of the available aircraft and ground-based atmospheric emissions estimates to better understand the spatial and temporal distribution of these emissions in the US.

  19. The encounter and analysis of naturally occurring radionuclides in gas and oil production and processing

    International Nuclear Information System (INIS)

    Hartog, F.A.; Jonkers, G.; Knaepen, W.A.I.

    1996-01-01

    As a result of oil and gas production, radioactive daughter elements from the uranium and thorium decay series can be mobilized and transported away from the reservoir. Due to changes in flow regime, temperature, pressure or chemical environment NORs (Naturally Occurring Radionuclides) may build up in products, by-products or waste streams from gas and oil production and processing facilities. Products containing NORs are commonly denoted by the acronym NORM (Naturally Occurring Radioactive Materials). Main topics of this paper are: E and P (Exploration and Production) NORM characteristics; incentives for NORM analysis; NORM analysis; interlaboratory test programme; analysis techniques; results and conclusions of the test programme. 4 figs., 2 tabs

  20. Gas, Oil, and Water Production from Jonah, Pinedale, Greater Wamsutter, and Stagecoach Draw Fields in the Greater Green River Basin, Wyoming

    Science.gov (United States)

    Nelson, Philip H.; Ewald, Shauna M.; Santus, Stephen L.; Trainor, Patrick K.

    2010-01-01

    Gas, oil, and water production data were compiled from selected wells in four gas fields in rocks of Late Cretaceous age in southwestern Wyoming. This study is one of a series of reports examining fluid production from tight-gas reservoirs, which are characterized by low permeability, low porosity, and the presence of clay minerals in pore space. Production from each well is represented by two samples spaced five years apart, the first sample typically taken two years after commencement of production. For each producing interval, summary diagrams of oil versus gas and water versus gas production show fluid production rates, the change in rates during five years, the water-gas and oil-gas ratios, and the fluid type. These diagrams permit well-to-well and field-to-field comparisons. Fields producing water at low rates (water dissolved in gas in the reservoir) can be distinguished from fields producing water at moderate or high rates, and the water-gas ratios are quantified. The ranges of first-sample gas rates in Pinedale field and Jonah field are quite similar, and the average gas production rate for the second sample, taken five years later, is about one-half that of the first sample for both fields. Water rates are generally substantially higher in Pinedale than in Jonah, and water-gas ratios in Pinedale are roughly a factor of ten greater in Pinedale than in Jonah. Gas and water production rates from each field are fairly well grouped, indicating that Pinedale and Jonah fields are fairly cohesive gas-water systems. Pinedale field appears to be remarkably uniform in its flow behavior with time. Jonah field, which is internally faulted, exhibits a small spread in first-sample production rates. In the Greater Wamsutter field, gas production from the upper part of the Almond Formation is greater than from the main part of the Almond. Some wells in the main and the combined (upper and main parts) Almond show increases in water production with time, whereas increases

  1. Cumulative Student Loan Debt in Minnesota, 2015

    Science.gov (United States)

    Williams-Wyche, Shaun

    2016-01-01

    To better understand student debt in Minnesota, the Minnesota Office of Higher Education (the Office) gathers information on cumulative student loan debt from Minnesota degree-granting institutions. These data detail the number of students with loans by institution, the cumulative student loan debt incurred at that institution, and the percentage…

  2. Application of Powder Metallurgy Technologies for Gas Turbine Engine Wheel Production

    OpenAIRE

    Liubov Magerramova; Eugene Kratt; Pavel Presniakov

    2017-01-01

    A detailed analysis has been performed for several schemes of Gas Turbine Wheels production based on additive and powder technologies including metal, ceramic, and stereolithography 3-D printing. During the process of development and debugging of gas turbine engine components, different versions of these components must be manufactured and tested. Cooled blades of the turbine are among of these components. They are usually produced by traditional casting methods. This method requires long and...

  3. Cumulative Distributions and Flow Structure of Two-Passage Shear Coaxial Injector with Various Gas Injection Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Inchul; Kim, Dohun; Koo, Jaye [Korea Aerospace Univ., Goyang (Korea, Republic of)

    2013-07-15

    To verify the effect of inner- and outer-stage gas jets, a shear coaxial injector was designed to analyze the axial velocity profile and breakup phenomenon with an increase in the measurement distance. When the measurement position was increased to Z/d=100, the axial flow showed a fully developed shape due to the momentum transfer, aerodynamic drag effect, and viscous mixing. An inner gas injection, which induces a higher momentum flux ratio near the nozzle, produces the greater shear force on atomization than an outer gas injection. Inner- and Outer-stage gas injection do not affect the mixing between the inner and outer gas flow below Z/d=5. The experiment results showed that the main effect of liquid jet breakup was governed by the gas jet of an inner stage. As the nozzle exit of the outer-stage was located far from the liquid column, shear force and turbulence breaking up of the liquid jets do not fully affect the liquid column. In the case of an inner-stage gas injection momentum flux ratio within 0.84, with the increase in the outer gas momentum flux ratio, the Smd decreases. However, at an inner-stage gas jet momentum flux ratio over 1.38, the Smd shows the similar distribution.

  4. The Stability of CI02 as a Product of Gas Phase Decontamination Treatments

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Simmons

    1994-09-01

    The gas phase decontamination project is investigating the use of chlorine trifluoride (ClF{sub 3}) to fluorinate nonvolatile uranium deposits to produce uranium hexafluoride (UF{sub 6}) gas. The potential existence of chlorine dioxide (ClO{sub 2}) during gas phase decontamination with ClF{sub 3} has been the subject of recent safety discussions. Some of the laboratory data collected during feasibility studies of the gas phase process has been evaluated for the presence of ClO{sub 2} in the product gas stream. The preliminary evidence to date can be summarized as follows: (1) ClO{sub 2} was not detected in the flow loop in the absence of ClF{sub 3}; (2) ClO{sub 2} was not detected in the static reactors in the absence of both ClF{sub 3} and ClF; and (3) ClO{sub 2} was detected in a static reactor in the absence of all fluorinating gases. The experimental evidence suggests that ClO{sub 2} will not exist in the presence of ClF{sub 3}, ClF, or UF{sub 6}. The data analyzed to date is insufficient to determine the stability of ClO{sub 2} in the presence of ClO{sub 2}F. Thermodynamic calculations of the ClF{sub 3} + H{sub 2}O system support the experimental evidence, and suggest that ClO{sub 2} will not exist in the presence of ClO{sub 2}F. Additional experimental efforts are needed to provide a better understanding of the gas phase ClF{sub 3} treatments and the product gases. However, preliminary evidence to date suggests that ClO{sub 2} should not be present as a product during the normal operations of the gas phase decontamination project.

  5. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

    2008-02-12

    Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

  6. Challenges and solutions in natural gas engine development and productions

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Mahdi; Izanloo, Hossein [Irankhodro Powertrain Co. (IPCO) (Iran)

    2008-07-01

    As an alternative fuel, natural gas is generally accepted for internal combustion engines and some developments have been conducted in order to adopt it for the road vehicles and stationary applications. Foresights shows natural gas vehicles will be a part of the future transportation technology regarding to their mid and long-term benefits. Therefore inherent problems of natural gas engine technology should be overcome to produce a competitive engine. In this paper major problems and their possible solutions in developing and producing natural gas engine for passenger cars are detailed and discussed. Challenging materials are sorted and presented in two categorizes: technical and econo-strategical problems. In the technical section major difficulties faced in components or systems of natural gas engine are analysed in different aspects of design, validation, and production. In addition problems arisen from the fuel characteristics which influence the function and durability of engine are argued. Subjects like freezing in gas regulator, cold start fuel injection, gas leakage, impurities within compressed natural gas, variation in fuel composition, thermo-mechanics of cylinder head and block, wear of valve seat inserts, spark plug erosion, back-fire phenomenon, engine oil quality requirement, low power density and mileage are described. In the econo-strategical discussion, challenges like limited gas distribution infrastructure, lack of specific manufacturing standards and codes, and non-dedicated emission standards are explained. In both part of the paper a comprehensive view is extended to clarify the effect, risk and solutions of each problem. Due to the fact that almost all information and analysis presented in this paper are based on the experience of developing a natural gas engine family, and an extensive literature review, discussions and conclusions could be useful as a guide line for future natural gas engine projects. (orig.)

  7. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    KAUST Repository

    Logan, Bruce E.

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment. © 2008 American Chemical Society.

  8. Low Carbon Technology Options for the Natural Gas Electricity Production

    Science.gov (United States)

    The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the...

  9. Effects of Formation Damage on Productivity of Underground Gas Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    C.I.C. Anyadiegwu

    2013-12-01

    Full Text Available Analysis of the effects of formation damage on the productivity of gas storage reservoirs was performed with depleted oil reservoir (OB-02, located onshore, Niger Delta, Nigeria. Information on the reservoir and the fluids from OB-02 were collected and used to evaluate the deliverabilities of the gas storage reservoir over a 10-year period of operation. The results obtained were used to plot graphs of deliverability against permeability and skin respectively. The graphs revealed that as the permeability decreased, the skin increased, and hence a decrease in deliverability of gas from the reservoir during gas withdrawal. Over the ten years of operating the reservoir for gas storage, the deliverability and permeability which were initially 2.7 MMscf/d and 50 mD, with a skin of 0.2, changed to new values of 0.88 MMscf/d and 24 mD with the skin as 4.1 at the tenth year.

  10. Gas separation techniques with liquid Ar for production of 11C ions

    International Nuclear Information System (INIS)

    Hojo, Satoru; Honma, Toshihiro; Kanazawa, Mitsutaka; Muramatsu, Masayuki; Sakamoto, Yukio; Sugiura, Akinori; Suzuki, Naokata; Noda, Koji

    2009-01-01

    Heavy-ion cancer therapy with 12 C-beam has been carried out at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences) since 1994. One of the feasibility study in HIMAC is to use a positron emitter beam such as 11 C-beam for the cancer therapy. A nuclear reaction, 14 N (p,α) 11 C will be applied in the present study; it can be expected to obtain a considerably large number of 11 C-particles by utilizing the commonly used short-lives RI production techniques for PET (Positron Emission Tomography). The amount of 11 C gas is limited in this technique. The 11 CO 2 gas was produced from N 2 gas that is irradiated high-energy proton beam. Therefore, CO 2 gas separation from N 2 gas is very important. The gas-separation techniques with cryogenic system utilizing a liquid Ar were tested by dummy gas (N 2 + 12 CO 2 ). Details of the gas-separation techniques and measurement of CO 2 partial pressure are discussed. (author)

  11. Relationship between in situ degradation kinetics and in vitro gas production fermentation using different mathematical models

    NARCIS (Netherlands)

    Rodrigues, M.A.M.; Cone, J.W.; Ferreira, L.M.M.; Blok, M.C.; Guedes, C.

    2009-01-01

    In vitro and in situ studies were conducted to evaluate the influence of different mathematical models, used to fit gas production profiles of 15 feedstuffs, on estimates of nylon bag organic matter (OM) degradation kinetics. The gas production data were fitted to Exponential, Logistic, Gompertz and

  12. Sustained climate warming drives declining marine biological productivity

    Science.gov (United States)

    Moore, J. Keith; Fu, Weiwei; Primeau, Francois; Britten, Gregory L.; Lindsay, Keith; Long, Matthew; Doney, Scott C.; Mahowald, Natalie; Hoffman, Forrest; Randerson, James T.

    2018-03-01

    Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease by more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.

  13. Decoupling of greenhouse gas emissions from global agricultural production

    DEFF Research Database (Denmark)

    Bennetzen, Eskild Hohlmann; Smith, Pete; Porter, John Roy

    2016-01-01

    Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we...... estimate and analyse past trends in GHG emission intensities from global agricultural production and land-use change and project potential future emissions. The novel Kaya-Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements...... to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis....

  14. High cumulants of conserved charges and their statistical uncertainties

    Science.gov (United States)

    Li-Zhu, Chen; Ye-Yin, Zhao; Xue, Pan; Zhi-Ming, Li; Yuan-Fang, Wu

    2017-10-01

    We study the influence of measured high cumulants of conserved charges on their associated statistical uncertainties in relativistic heavy-ion collisions. With a given number of events, the measured cumulants randomly fluctuate with an approximately normal distribution, while the estimated statistical uncertainties are found to be correlated with corresponding values of the obtained cumulants. Generally, with a given number of events, the larger the cumulants we measure, the larger the statistical uncertainties that are estimated. The error-weighted averaged cumulants are dependent on statistics. Despite this effect, however, it is found that the three sigma rule of thumb is still applicable when the statistics are above one million. Supported by NSFC (11405088, 11521064, 11647093), Major State Basic Research Development Program of China (2014CB845402) and Ministry of Science and Technology (MoST) (2016YFE0104800)

  15. Open-source LCA tool for estimating greenhouse gas emissions from crude oil production using field characteristics.

    Science.gov (United States)

    El-Houjeiri, Hassan M; Brandt, Adam R; Duffy, James E

    2013-06-04

    Existing transportation fuel cycle emissions models are either general and calculate nonspecific values of greenhouse gas (GHG) emissions from crude oil production, or are not available for public review and auditing. We have developed the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) to provide open-source, transparent, rigorous GHG assessments for use in scientific assessment, regulatory processes, and analysis of GHG mitigation options by producers. OPGEE uses petroleum engineering fundamentals to model emissions from oil and gas production operations. We introduce OPGEE and explain the methods and assumptions used in its construction. We run OPGEE on a small set of fictional oil fields and explore model sensitivity to selected input parameters. Results show that upstream emissions from petroleum production operations can vary from 3 gCO2/MJ to over 30 gCO2/MJ using realistic ranges of input parameters. Significant drivers of emissions variation are steam injection rates, water handling requirements, and rates of flaring of associated gas.

  16. Cumulative stress and autonomic dysregulation in a community sample.

    Science.gov (United States)

    Lampert, Rachel; Tuit, Keri; Hong, Kwang-Ik; Donovan, Theresa; Lee, Forrester; Sinha, Rajita

    2016-05-01

    Whether cumulative stress, including both chronic stress and adverse life events, is associated with decreased heart rate variability (HRV), a non-invasive measure of autonomic status which predicts poor cardiovascular outcomes, is unknown. Healthy community dwelling volunteers (N = 157, mean age 29 years) participated in the Cumulative Stress/Adversity Interview (CAI), a 140-item event interview measuring cumulative adversity including major life events, life trauma, recent life events and chronic stressors, and underwent 24-h ambulatory ECG monitoring. HRV was analyzed in the frequency domain and standard deviation of NN intervals (SDNN) calculated. Initial simple regression analyses revealed that total cumulative stress score, chronic stressors and cumulative adverse life events (CALE) were all inversely associated with ultra low-frequency (ULF), very low-frequency (VLF) and low-frequency (LF) power and SDNN (all p accounting for additional appreciable variance. For VLF and LF, both total cumulative stress and chronic stress significantly contributed to the variance alone but were not longer significant after adjusting for race and health behaviors. In summary, total cumulative stress, and its components of adverse life events and chronic stress were associated with decreased cardiac autonomic function as measured by HRV. Findings suggest one potential mechanism by which stress may exert adverse effects on mortality in healthy individuals. Primary preventive strategies including stress management may prove beneficial.

  17. Cumulative processes and quark distribution in nuclei

    International Nuclear Information System (INIS)

    Kondratyuk, L.; Shmatikov, M.

    1984-01-01

    Assuming existence of multiquark (mainly 12q) bags in nuclei the spectra of cumulative nucleons and mesons produced in high-energy particle-nucleus collisions are discussed. The exponential form of quark momentum distribution in 12q-bag (agreeing well with the experimental data on lepton-nucleus interactions at large q 2 ) is shown to result in quasi-exponential distribution of cumulative particles over the light-cone variable αsub(B). The dependence of f(αsub(B); psub(perpendicular)) (where psub(perpendicular) is the transverse momentum of the bag) upon psub(perpendicular) is considered. The yields of cumulative resonances as well as effects related to the u- and d-quark distributions in N > Z nuclei being different are dicscussed

  18. A microbial fluidized electrode electrolysis cell (MFEEC) for enhanced hydrogen production

    KAUST Repository

    Liu, Jia

    2014-12-01

    A microbial fluidized electrode electrolysis cell (MFEEC) was used to enhance hydrogen gas production from dissolved organic matter. Flowable granular activated carbon (GAC) particles were used to provide additional surface area for growth of exoelectrogenic bacteria. The use of this exoelectrogenic biofilm on the GAC particles with fluidization produced higher current densities and hydrogen gas recoveries than controls (no recirculation or no GAC), due to intermittent contact of the capacitive particles with the anode. The total cumulative charge of 1688C m-2 with the MFEEC reactor (a recirculation flow rate of 19 mL min-1) was 20% higher than that of the control reactor (no GAC). The highest hydrogen gas yield of 0.82 ± 0.01 mol-H2/mol-acetate (17 mL min-1) was 39% higher than that obtained without recirculation (0.59 ± 0.01 mol-H 2/mol-acetate), and 116% higher than that of the control (no GAC, without recirculation). These results show that flowable GAC particles provide a useful approach for enhancing hydrogen gas production in bioelectrochemical systems. © 2014 Elsevier B.V. All rights reserved.

  19. Field data provide estimates of effective permeability, fracture spacing, well drainage area and incremental production in gas shales

    KAUST Repository

    Eftekhari, Behzad

    2018-05-23

    About half of US natural gas comes from gas shales. It is valuable to study field production well by well. We present a field data-driven solution for long-term shale gas production from a horizontal, hydrofractured well far from other wells and reservoir boundaries. Our approach is a hybrid between an unstructured big-data approach and physics-based models. We extend a previous two-parameter scaling theory of shale gas production by adding a third parameter that incorporates gas inflow from the external unstimulated reservoir. This allows us to estimate for the first time the effective permeability of the unstimulated shale and the spacing of fractures in the stimulated region. From an analysis of wells in the Barnett shale, we find that on average stimulation fractures are spaced every 20 m, and the effective permeability of the unstimulated region is 100 nanodarcy. We estimate that over 30 years on production the Barnett wells will produce on average about 20% more gas because of inflow from the outside of the stimulated volume. There is a clear tradeoff between production rate and ultimate recovery in shale gas development. In particular, our work has strong implications for well spacing in infill drilling programs.

  20. An exploratory study of air emissions associated with shale gas development and production in the Barnett Shale.

    Science.gov (United States)

    Rich, Alisa; Grover, James P; Sattler, Melanie L

    2014-01-01

    Information regarding air emissions from shale gas extraction and production is critically important given production is occurring in highly urbanized areas across the United States. Objectives of this exploratory study were to collect ambient air samples in residential areas within 61 m (200 feet) of shale gas extraction/production and determine whether a "fingerprint" of chemicals can be associated with shale gas activity. Statistical analyses correlating fingerprint chemicals with methane, equipment, and processes of extraction/production were performed. Ambient air sampling in residential areas of shale gas extraction and production was conducted at six counties in the Dallas/Fort Worth (DFW) Metroplex from 2008 to 2010. The 39 locations tested were identified by clients that requested monitoring. Seven sites were sampled on 2 days (typically months later in another season), and two sites were sampled on 3 days, resulting in 50 sets of monitoring data. Twenty-four-hour passive samples were collected using summa canisters. Gas chromatography/mass spectrometer analysis was used to identify organic compounds present. Methane was present in concentrations above laboratory detection limits in 49 out of 50 sampling data sets. Most of the areas investigated had atmospheric methane concentrations considerably higher than reported urban background concentrations (1.8-2.0 ppm(v)). Other chemical constituents were found to be correlated with presence of methane. A principal components analysis (PCA) identified multivariate patterns of concentrations that potentially constitute signatures of emissions from different phases of operation at natural gas sites. The first factor identified through the PCA proved most informative. Extreme negative values were strongly and statistically associated with the presence of compressors at sample sites. The seven chemicals strongly associated with this factor (o-xylene, ethylbenzene, 1,2,4-trimethylbenzene, m- and p-xylene, 1

  1. Predicting Cumulative Incidence Probability: Marginal and Cause-Specific Modelling

    DEFF Research Database (Denmark)

    Scheike, Thomas H.; Zhang, Mei-Jie

    2005-01-01

    cumulative incidence probability; cause-specific hazards; subdistribution hazard; binomial modelling......cumulative incidence probability; cause-specific hazards; subdistribution hazard; binomial modelling...

  2. Hydrogen-rich gas production by cogasification of coal and biomass in an intermittent fluidized bed.

    Science.gov (United States)

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    This paper presents the experimental results of cogasification of coal and biomass in an intermittent fluidized bed reactor, aiming to investigate the influences of operation parameters such as gasification temperature (T), steam to biomass mass ratio (SBMR), and biomass to coal mass ratio (BCMR) on hydrogen-rich (H2-rich) gas production. The results show that H2-rich gas free of N2 dilution is produced and the H2 yield is in the range of 18.25~68.13 g/kg. The increases of T, SBMR, and BCMR are all favorable for promoting the H2 production. Higher temperature contributes to higher CO and H2 contents, as well as H2 yield. The BCMR has a weak influence on gas composition, but the yield and content of H2 increase with BCMR, reaching a peak at the BCMR of 4. The H2 content and yield in the product gas increase with SBMR, whilst the content of CO increases first and then decreases correspondingly. At a typical case, the relative linear sensitivity coefficients of H2 production efficiency to T, SBMR, and BCMR were calculated. The results reveal that the order of the influence of the operation parameters on H2 production efficiency is T > SBMR > BCMR.

  3. Upfront predictions of hydraulic fracturing and gas production in underexplored shale gas basins: Example of the posidonia shale formation in the Netherlands

    NARCIS (Netherlands)

    TerHeege, J.H.; Zijp, M.; DeBruin, G.; Buijze, L.

    2014-01-01

    Upfront predictions of hydraulic fracturing and gas production of potential shale gas targets in Europe are important as often large potential resources are deduced without detailed knowledge on the potential for successful stimulation. Such predictions are challenging as they need to be based on

  4. Decision analysis with cumulative prospect theory.

    Science.gov (United States)

    Bayoumi, A M; Redelmeier, D A

    2000-01-01

    Individuals sometimes express preferences that do not follow expected utility theory. Cumulative prospect theory adjusts for some phenomena by using decision weights rather than probabilities when analyzing a decision tree. The authors examined how probability transformations from cumulative prospect theory might alter a decision analysis of a prophylactic therapy in AIDS, eliciting utilities from patients with HIV infection (n = 75) and calculating expected outcomes using an established Markov model. They next focused on transformations of three sets of probabilities: 1) the probabilities used in calculating standard-gamble utility scores; 2) the probabilities of being in discrete Markov states; 3) the probabilities of transitioning between Markov states. The same prophylaxis strategy yielded the highest quality-adjusted survival under all transformations. For the average patient, prophylaxis appeared relatively less advantageous when standard-gamble utilities were transformed. Prophylaxis appeared relatively more advantageous when state probabilities were transformed and relatively less advantageous when transition probabilities were transformed. Transforming standard-gamble and transition probabilities simultaneously decreased the gain from prophylaxis by almost half. Sensitivity analysis indicated that even near-linear probability weighting transformations could substantially alter quality-adjusted survival estimates. The magnitude of benefit estimated in a decision-analytic model can change significantly after using cumulative prospect theory. Incorporating cumulative prospect theory into decision analysis can provide a form of sensitivity analysis and may help describe when people deviate from expected utility theory.

  5. Lack of observed impacts of gas production of Bongkot Field, Thailand on marine biota

    International Nuclear Information System (INIS)

    Windom, H.L.; Cranmer, G.

    1998-01-01

    The impact of metal releases, associated with gas production, on biota in the Lower Gulf of Thailand was evaluated based on metal concentrations in finfish and on the composition of sediment fauna. Results indicate that metal concentrations, particularly Hg, in species of snapper and grouper collected near the gas production platform were not significantly different from those of the same species of fish caught from the regional, presumably non-impacted, fishery. Also, there were no significant differences in faunal communities in sediments collected near petroleum production activities from those in sediments collected at remote sites. (author)

  6. Numerical simulation studies of gas production scenarios from hydrate accumulations at the Mallik Site, McKenzie Delta, Canada

    International Nuclear Information System (INIS)

    Moridis, George J.; Collett, Timothy S.; Dallimore, Scott R.; Satoh, Tohru; Hancock, Stephen; Weatherill, Brian

    2002-01-01

    The Mallik site represents an onshore permafrost-associated gas hydrate accumulation in the Mackenzie Delta, Northwest Territories, Canada. An 1150 m deep gas hydrate research well was drilled at the site in 1998. The objective of this study is the analysis of various gas production scenarios from several gas-hydrate-bearing zones at the Mallik site. The TOUGH2 general-purpose simulator with the EOSHYDR2 module were used for the analysis. EOSHYDR2 is designed to model the non-isothermal CH(sub 4) (methane) release, phase behavior and flow under conditions typical of methane-hydrate deposits by solving the coupled equations of mass and heat balance, and can describe any combination of gas hydrate dissociation mechanisms. Numerical simulations indicated that significant gas hydrate production at the Mallik site was possible by drawing down the pressure on a thin free-gas zone at the base of the hydrate stability field. Gas hydrate zones with underlying aquifers yielded significant gas production entirely from dissociated gas hydrate, but large amounts of produced water. Lithologically isolated gas-hydrate-bearing reservoirs with no underlying free gas or water zones, and gas-hydrate saturations of at least 50% were also studied. In these cases, it was assumed that thermal stimulation by circulating hot water in the well was the method used to induce dissociation. Sensitivity studies indicated that the methane release from the hydrate accumulations increases with gas-hydrate saturation, the initial formation temperature, the temperature of the circulating water in the well, and the formation thermal conductivity. Methane production appears to be less sensitive to the rock and hydrate specific heat and permeability of the formation

  7. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems.

    Science.gov (United States)

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C; Thornton, Philip K; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-12-24

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system.

  8. Study of radiolysis products of natural organic materials by means of gas chromatography

    International Nuclear Information System (INIS)

    Pogocki, D.

    1994-01-01

    Analytical methods based on gas chromatography for identification determination of products arising during food irradiation have been presented. Behind the classics version of the methods one has shown also combined methods being the on-line connection of gas chromatography with mass spectroscopy as well as gas chromatography with liquid chromatography and mass spectroscopy. The applicability as well as weakness and advantages of each version have been discussed on the context of food irradiation. 11 refs, 7 figs

  9. Review on biofuel oil and gas production processes from microalgae

    International Nuclear Information System (INIS)

    Amin, Sarmidi

    2009-01-01

    Microalgae, as biomass, are a potential source of renewable energy, and they can be converted into energy such as biofuel oil and gas. This paper presents a brief review on the main conversion processes of microalgae becoming energy. Since microalgae have high water content, not all biomass energy conversion processes can be applied. By using thermochemical processes, oil and gas can be produced, and by using biochemical processes, ethanol and biodiesel can be produced. The properties of the microalgae product are almost similar to those of offish and vegetable oils, and therefore, it can be considered as a substitute of fossil oil.

  10. Terminal separation plant for collecting petroleum and by-product gas

    Energy Technology Data Exchange (ETDEWEB)

    Marinin, N S; Shcherbina, V E; Burma, A I

    1966-06-08

    A separation plant at a transportation terminal, for collecting petroleum and by-product gas, consists of 1 or 2 vessels with gas separating device, automatic control devices, demulsifier distributors, a mixer for mixing hot water with the demulsified residue and raw crude oil stream, an apparatus for supplying oil-in-water emulsion under a water cushion, and 2 separating partitions which are located at the end of the vessel. In order to fully use the volume of the vessel, one partition does not touch the bottom, while the other does not touch the top of the tank.

  11. Hydrogen Production by Steam Reforming of Natural Gas Over Vanadium-Nickel-Alumina Catalysts.

    Science.gov (United States)

    Yoo, Jaekyeong; Park, Seungwon; Song, Ji Hwan; Song, In Kyu

    2018-09-01

    A series of vanadium-nickel-alumina (xVNA) catalysts were prepared by a single-step sol-gel method with a variation of vanadium content (x, wt%) for use in the hydrogen production by steam reforming of natural gas. The effect of vanadium content on the physicochemical properties and catalytic activities of xVNA catalysts in the steam reforming of natural gas was investigated. It was found that natural gas conversion and hydrogen yield showed volcano-shaped trends with respect to vanadium content. It was also revealed that natural gas conversion and hydrogen yield increased with decreasing nickel crystallite size.

  12. Historical plant cost and annual production expenses for selected electric plants, 1982

    International Nuclear Information System (INIS)

    1984-01-01

    This publication is a composite of the two prior publications, Hydroelectric Plant Construction Cost and Annual Production Expenses and Thermal-Electric Plant Construction Cost and Annual Production Expenses. Beginning in 1979, Thermal-Electric Plant Construction Cost and Annual Production Expenses contained information on both steam-electric and gas-turbine electric plant construction cost and annual production expenses. The summarized historical plant cost described under Historical Plant Cost in this report is the net cumulative-to-date actual outlays or expenditures for land, structures, and equipment to the utility. Historical plant cost is the initial investment in plant (cumulative to the date of initial commercial operation) plus the costs of all additions to the plant, less the value of retirements. Thus, historical plant cost includes expenditures made over several years, as modifications are made to the plant. Power Production Expenses is the reporting year's plant operation and maintenance expenses, including fuel expenses. These expenses do not include annual fixed charges on plant cost (capital costs) such as interest on debt, depreciation or amortization expenses, and taxes. Consequently, total production expenses and the derived unit costs are not the total cost of producing electric power at the various plants. This publication contains data on installed generating capacity, net generation, net capability, historical plant cost, production expenses, fuel consumption, physical and operating plant characteristics, and other relevant statistical information for selected plants

  13. Original and cumulative prospect theory: a discussion of empirical differences

    NARCIS (Netherlands)

    Wakker, P.P.; Fennema, H.

    1997-01-01

    This note discusses differences between prospect theory and cumulative prospect theory. It shows that cumulative prospect theory is not merely a formal correction of some theoretical problems in prospect theory, but it also gives different predictions. Experiments are described that favor cumulative

  14. Remote and Onsite Direct Measurements of Emissions from Oil and Natural Gas Production

    Science.gov (United States)

    Environmentally responsible oil and gas production requires accurate knowledge of emissions from long-term production operations1, which can include methane, volatile organic compounds, and hazardous air pollutants. Well pad emissions vary based on the geologically-determined com...

  15. Cumulative radiation dose of multiple trauma patients during their hospitalization

    International Nuclear Information System (INIS)

    Wang Zhikang; Sun Jianzhong; Zhao Zudan

    2012-01-01

    Objective: To study the cumulative radiation dose of multiple trauma patients during their hospitalization and to analyze the dose influence factors. Methods: The DLP for CT and DR were retrospectively collected from the patients during June, 2009 and April, 2011 at a university affiliated hospital. The cumulative radiation doses were calculated by summing typical effective doses of the anatomic regions scanned. Results: The cumulative radiation doses of 113 patients were collected. The maximum,minimum and the mean values of cumulative effective doses were 153.3, 16.48 mSv and (52.3 ± 26.6) mSv. Conclusions: Multiple trauma patients have high cumulative radiation exposure. Therefore, the management of cumulative radiation doses should be enhanced. To establish the individualized radiation exposure archives will be helpful for the clinicians and technicians to make decision whether to image again and how to select the imaging parameters. (authors)

  16. Perspectives on cumulative risks and impacts.

    Science.gov (United States)

    Faust, John B

    2010-01-01

    Cumulative risks and impacts have taken on different meanings in different regulatory and programmatic contexts at federal and state government levels. Traditional risk assessment methodologies, with considerable limitations, can provide a framework for the evaluation of cumulative risks from chemicals. Under an environmental justice program in California, cumulative impacts are defined to include exposures, public health effects, or environmental effects in a geographic area from the emission or discharge of environmental pollution from all sources, through all media. Furthermore, the evaluation of these effects should take into account sensitive populations and socioeconomic factors where possible and to the extent data are available. Key aspects to this potential approach include the consideration of exposures (versus risk), socioeconomic factors, the geographic or community-level assessment scale, and the inclusion of not only health effects but also environmental effects as contributors to impact. Assessments of this type extend the boundaries of the types of information that toxicologists generally provide for risk management decisions.

  17. Gas power production, surplus concepts and the transformation of hydro-electric rent into resource rent

    International Nuclear Information System (INIS)

    Amundsen, Eirik S.

    1997-01-01

    The paper considers the effects of introducing large scale gas power production capacity into an electricity sector based on hydropower. In this process the economic rent is transmitted from the hydro power sector to the resource rent in the gas power sector, but is along the way intermingled with ordinary producer surplus and quasi-rent stemming from increasing cost conditions in the production infrastructure and capacity constraints. The net effect on total rent generated depends on development in demand, demand elasticities, costs saved from delaying hydropower projects and the existence of producer surplus in gas power generation. The paper closes with a discussion of possible tax base changes following from the introduction of a thermal power system based on natural gas

  18. Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Onwudili, Jude A.; Williams, Paul T. [Energy and Resources Research Institute, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2009-07-15

    The role of sodium hydroxide as a promoter of hydrogen gas production during the hydrothermal gasification of glucose and other biomass samples has been investigated. Experiments were carried out in a batch reactor with glucose and also in the presence of the alkali from 200 C, 2 MPa to 450 C, 34 MPa at constant water loading. Without sodium hydroxide, glucose decomposed to produce mainly carbon dioxide, water, char and tar. Furfural, its derivatives and reaction products dominated the ethyl acetate extract of the water (organic fraction) at lower reaction conditions. This indicated that the dehydration of glucose to yield these products was unfavourable to hydrogen gas production. In the presence of sodium hydroxide however, glucose initially decomposed to form mostly alkylated and hydroxylated carbonyl compounds, whose further decomposition yielded hydrogen gas. It was observed that at 350 C, 21.5 MPa, half of the optimum hydrogen gas yield had formed and at 450 C, 34 MPa, more than 80 volume percent of the gaseous effluent was hydrogen gas, while the balance was hydrocarbon gases, mostly methane ({>=}10 volume percent). Other biomass samples were also comparably reacted at the optimum conditions observed for glucose. The rate of hydrogen production for the biomass samples was in the following order; glucose > cellulose, starch, rice straw > potato > rice husk. (author)

  19. Cleaning of biomass derived product gas for engine applications and for co-firing in PC-boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Staahlberg, P; Laatikainen-Luntama, J [VTT Energy, Espoo (Finland). Energy Production Technologies; and others

    1997-10-01

    The conventional fluidized-bed combustion has become commercially available also to relatively small scale (5 MWe), but this technology has rather low power-to-heat ratio and consequently it`s potential is limited to applications where district or process heat is the main product. Thus, there seems to be a real need to develop more efficient methods for small-scale power production from biomass. Gasification diesel power plant is one alternative for the small-scale power production, which has clearly higher power-to-heat ratio than can be reached in conventional steam cycles. The main technical problem in this process is the gas cleaning from condensable tars. In addition to the diesel-power plants, there are several other interesting applications for atmospheric-pressure clean gas technology. One alternative for cost-effective biomass utilization is co-firing of biomass derived product gas in existing pulverized coal fired boilers (or other types of boilers and furnaces). The aim of the project is to develop dry gas cleaning methods for gasification-diesel power plants and for other atmospheric-pressure applications of biomass and waste gasification. The technical objectives of the project are as follows: To develop and test catalytic gas cleaning methods for engine. To study the removal of problematic ash species of (CFE) gasification with regard to co-combustion of the product gas in PC boilers. To evaluate the technical and economical feasibility of different small-scale power plant concepts based on fixed-bed updraft and circulating fluidized- bed gasification of biomass and waste. (orig.)

  20. Gas production analysis of a fixed-dome digester operated under temperate climates in central Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Castano, J.; Martin, J.F.; Ciotola, R.; Schlea, D.; Eger, C. [Ohio State Univ., Columbus, OH (United States). Ecological Engineering Program

    2010-07-01

    Anaerobic digestion is not used in small farms in the United States because of the high costs and large size of existing digesters. More affordable digesters are needed to realize the environmental and energetic benefits on smaller farms in temperate climates. Field and laboratory experiments were conducted to determine the effects of seasonal temperature variation on gas production. Once a baseline for gas production and digester function is determined, then methods can be identified to increase gas production in these conditions. A 1 cubic metre modified fixed-dome digester was buried just below the soil surface at the Ohio State University dairy farm. The digester was fed with 1 kg/m{sup 3} per day of diluted cow manure. The kinetics associated with 6 specific anaerobic trophic groups at 5 and 15 degrees C were determined through laboratory experiments. The average ambient temperature from October through December 2009 was 7.2 degrees C, while the average digester temperature was 8.6 degrees C. The average specific gas production during this period was 0.01746 litres/Kg of volatile solids (VS). Preliminary results showed an average reduction of 44 per cent in VS and volatile fatty acids concentration of 8441 mg/litre inside the digester, from which 61 per cent, 26 per cent, 1 per cent, 7 per cent, and 5 per cent were acetic, propionic, isobutyric, isovaleric and valeric acids, respectively. These preliminary results suggest that the decreasing gas production is associated with a kinetic constraint for a specific trophic group.

  1. X(3872 production and absorption in a hot hadron gas

    Directory of Open Access Journals (Sweden)

    L.M. Abreu

    2016-10-01

    Full Text Available We calculate the time evolution of the X(3872 abundance in the hot hadron gas produced in the late stage of heavy ion collisions. We use effective field Lagrangians to obtain the production and dissociation cross sections of X(3872. In this evaluation we include diagrams involving the anomalous couplings πD⁎D¯⁎ and XD¯⁎D⁎ and also the couplings of the X(3872 with charged D and D⁎ mesons. With these new terms the X(3872 interaction cross sections are much larger than those found in previous works. Using these cross sections as input in rate equations, we conclude that during the expansion and cooling of the hadronic gas, the number of X(3872, originally produced at the end of the mixed QGP/hadron gas phase, is reduced by a factor of 4.

  2. Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997

    International Nuclear Information System (INIS)

    1998-03-01

    This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations

  3. Measurement of plasma production and neutralization in gas neutralizers

    International Nuclear Information System (INIS)

    Maor, D.; Meron, M.; Johnson, B.; Jones, K.; Agagu, A.; Hu, B.

    1986-01-01

    In order to satisfy the need of experimental data for the designing of gas neutralizers we have started a project aimed at measuring all relevant cross sections for the charge exchange of H - , H 0 and H + projectiles, as well as the cross sections for the production of ions in the target. The expected results of these latter measurements are shown schematically

  4. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon; Santamarina, Carlos

    2016-01-01

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  5. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon

    2016-06-20

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  6. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

    Energy Technology Data Exchange (ETDEWEB)

    Gaeggeler, H W [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs.

  7. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

    International Nuclear Information System (INIS)

    Gaeggeler, H.W.

    1996-01-01

    Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs

  8. Cumulative radiation exposure in children with cystic fibrosis.

    LENUS (Irish Health Repository)

    O'Reilly, R

    2010-02-01

    This retrospective study calculated the cumulative radiation dose for children with cystic fibrosis (CF) attending a tertiary CF centre. Information on 77 children with a mean age of 9.5 years, a follow up time of 658 person years and 1757 studies including 1485 chest radiographs, 215 abdominal radiographs and 57 computed tomography (CT) scans, of which 51 were thoracic CT scans, were analysed. The average cumulative radiation dose was 6.2 (0.04-25) mSv per CF patient. Cumulative radiation dose increased with increasing age and number of CT scans and was greater in children who presented with meconium ileus. No correlation was identified between cumulative radiation dose and either lung function or patient microbiology cultures. Radiation carries a risk of malignancy and children are particularly susceptible. Every effort must be made to avoid unnecessary radiation exposure in these patients whose life expectancy is increasing.

  9. Cumulative inhibitory effect of low-dose aspirin on vascular prostacyclin and platelet thromboxane production in patients with atherosclerosis.

    Science.gov (United States)

    Weksler, B B; Tack-Goldman, K; Subramanian, V A; Gay, W A

    1985-02-01

    The relationship between the antithrombotic and antiplatelet effects of aspirin is complex, since aspirin influences other systems that protect against thrombosis as well as inhibiting platelet function. We investigated possible cumulative effects of low-dose aspirin on vascular production of prostacyclin in patients with documented atherosclerotic cardiovascular disease. Candidates for coronary artery vein graft bypass ingested 20 mg of aspirin daily during the week before surgery, and platelet aggregation, platelet formation of thromboxane A2 (TXA2), aortic and saphenous vein production of prostacyclin (PGI2), and hemostatic status were measured at the time of the bypass surgery. Low-dose aspirin markedly inhibited platelet aggregation responses and reduced TXA2 generation by greater than 90%, effects similar to those observed with much higher doses of aspirin. Both aortic and saphenous vein production of PGI2 were inhibited by 50% compared with PGI2 produced by vascular tissues of control subjects who received no aspirin preoperatively (51 +/- 10 pg 6-keto-PGF1 alpha/mg aortic wet weight [mean +/- SEM] in aspirin-treated subjects vs 130 +/- 16 pg/mg in control subjects, and 71 +/- 8 pg/mg saphenous vein wet weight vs 131 +/- 17 pg/mg). Blood loss at surgery was not significantly increased by preoperative low-dose aspirin as measured by chest tube drainage (754 +/- 229 ml in aspirin-treated subjects vs 645 +/- 271 ml in control subjects), hematocrit nadir (31.2 +/- 1.9% vs 31.8 +/- 1.7%), or transfusions (2.2 +/- 1.3 units of red blood cells vs 2.2 +/- 1.7 units).(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Oil and gas production equals jobs and revenue

    International Nuclear Information System (INIS)

    Aimes, L.A.

    1994-01-01

    The effects of oil and gas production on jobs and revenue are discussed. Some suggestions are presented that should provide the climate to increase jobs, add revenue and increase efficiency in state agencies within the producing states. Some of the ideas and suggestions are summarized. Some of these ideas include: how to extend the economic limits of marginal properties; how the states can encourage additional drilling without incurring loss of revenue; and the use of investment tax credits

  11. Assessment of Gas Production Potential from Hydrate Reservoir in Qilian Mountain Permafrost Using Five-Spot Horizontal Well System

    Directory of Open Access Journals (Sweden)

    Yun-Pei Liang

    2015-09-01

    Full Text Available The main purpose of this study is to investigate the production behaviors of gas hydrate at site DK-2 in the Qilian Mountain permafrost using the novel five-spot well (5S system by means of numerical simulation. The whole system is composed of several identical units, and each single unit consists of one injection well and four production wells. All the wells are placed horizontally in the hydrate deposit. The combination method of depressurization and thermal stimulation is employed for hydrate dissociation in the system. Simulation results show that favorable gas production and hydrate dissociation rates, gas-to-water ratio, and energy ratio can be acquired using this kind of multi-well system under suitable heat injection and depressurization driving forces, and the water production rate is manageable in the entire production process under current technology. In addition, another two kinds of two-spot well (2S systems have also been employed for comparison. It is found that the 5S system will be more commercially profitable than the 2S configurations for gas production under the same operation conditions. Sensitivity analysis indicates that the gas production performance is dependent on the heat injection rate and the well spacing of the 5S system.

  12. Integrated economic and life cycle assessment of thermochemical production of bioethanol to reduce production cost by exploiting excess of greenhouse gas savings

    International Nuclear Information System (INIS)

    Reyes Valle, C.; Villanueva Perales, A.L.; Vidal-Barrero, F.; Ollero, P.

    2015-01-01

    Highlights: • Assessment of economics and sustainability of thermochemical ethanol production. • Exploitation of excess CO 2 saving by either importing fossil energy or CO 2 trading. • Significant increase in alcohol production by replacing biomass with natural gas. • CO 2 emission trading is not cost-competitive versus import of fossil energy. • Lowest ethanol production cost for partial oxidation as reforming technology. - Abstract: In this work, two options are investigated to enhance the economics of the catalytic production of bioethanol from biomass gasification by exploiting the excess of CO 2 emission saving: (i) to import fossil energy, in the form of natural gas and electricity or (ii) to trade CO 2 emissions. To this end, an integrated life cycle and economic assessment is carried out for four process configurations, each using a different light hydrocarbon reforming technology: partial oxidation, steam methane reforming, tar reforming and autothermal reforming. The results show that for all process configurations the production of bioethanol and other alcohols significantly increases when natural gas displaces biomass, maintaining the total energy content of the feedstock. The economic advantage of the partial substitution of biomass by natural gas depends on their prices and this is explored by carrying out a sensitivity analysis, taking historical prices into account. It is also concluded that the trade of CO 2 emissions is not cost-competitive compared to the import of natural gas if the CO 2 emission price remains within historical European prices. The CO 2 emission price would have to double or even quadruple the highest CO 2 historical price for CO 2 emission trading to be a cost-competitive option

  13. Experimental assessment of cumulative temperature and UV-B radiation effects on Mediterranean plankton metabolism

    Directory of Open Access Journals (Sweden)

    Lara S. eGarcia-Corral

    2015-07-01

    Full Text Available The Mediterranean Sea is a vulnerable region for climate change, warming at higher rates compare to the global ocean. Warming leads to increased stratification of the water column and enhanced the oligotrophic nature of the Mediterranean Sea. The oligotrophic waters are already highly transparent, however, exposure of Mediterranean plankton to ultraviolet radiation (UV-B and UV-A may increase further if the waters become more oligotrophic, thereby, allowing a deeper UV radiation penetration and likely enhancing impacts to biota.Here we experimentally elucidate the cumulative effects of warming and natural UV-B radiation on the net community production (NCP of plankton communities. We conducted five experiments at monthly intervals, from June to October 2013, and evaluated the responses of NCP to ambient UV-B radiation and warming (+3ºC, alone and in combination, in a coastal area of the northwest Mediterranean Sea. UV-B radiation and warming lead to reduced net community production and resulted in a heterotrophic (NCP<0 metabolic balance. Both UV-B radiation and temperature, showed a significant individual effect in NCP across treatments and time. However, their joint effect showed to be synergistic as the interaction between them (UV x Temp was statistically significant in most of the experiments performed. Our results showed that both drivers, would affect the gas exchange of CO2-O2 from and to the atmosphere and the role of plankton communities in the Mediterranean carbon cycle

  14. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada

    Science.gov (United States)

    Moridis, G.J.; Collett, T.S.; Dallimore, S.R.; Satoh, T.; Hancock, S.; Weatherill, B.

    2004-01-01

    The Mallik site represents an onshore permafrost-associated gas hydrate accumulation in the Mackenzie Delta, Northwest Territories, Canada. A gas hydrate research well was drilled at the site in 1998. The objective of this study is the analysis of various gas production scenarios from five methane hydrate-bearing zones at the Mallik site. In Zone #1, numerical simulations using the EOSHYDR2 model indicated that gas production from hydrates at the Mallik site was possible by depressurizing a thin free gas zone at the base of the hydrate stability field. Horizontal wells appeared to have a slight advantage over vertical wells, while multiwell systems involving a combination of depressurization and thermal stimulation offered superior performance, especially when a hot noncondensible gas was injected. Zone #2, which involved a gas hydrate layer with an underlying aquifer, could yield significant amounts of gas originating entirely from gas hydrates, the volumes of which increased with the production rate. However, large amounts of water were also produced. Zones #3, #4 and #5 were lithologically isolated gas hydrate-bearing deposits with no underlying zones of mobile gas or water. In these zones, thermal stimulation by circulating hot water in the well was used to induce dissociation. Sensitivity studies indicated that the methane release from the hydrate accumulations increased with the gas hydrate saturation, the initial formation temperature, the temperature of the circulating water in the well, and the formation thermal conductivity. Methane production appears to be less sensitive to the specific heat of the rock and of the hydrate, and to the permeability of the formation. ?? 2004 Published by Elsevier B.V.

  15. Natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, J W

    1967-08-01

    This report on the natural gas industry of Canada includes: composition and uses of natural gas, production statistics, exploration and development, reserve estimates, natural gas processing, transportation, and marketing. For the Canadian natural gas industry, 1966 was a year of moderate expansion in all phases, with a strong demand continuing for sulfur and liquid hydrocarbons produced as by-products of gas processing. Value of natural gas production increased to $199 million and ranked sixth in terms of value of mineral ouput in Canada. Currently, natural gas provides over 70% of Canada's energy requirements. Proved remaining marketable reserves are estimated to be in excess of a 29-yr supply.

  16. Hysec Process: production of high-purity hydrogen from coke oven gas

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, S

    1984-01-01

    An account is given of the development of the Hysec Process by the Kansai Netsukagaku and Mitsubishi Kakoki companies. The process is outlined and its special features noted. The initial development aim was to obtain high-purity hydrogen from coke oven gas by means of PSA. To achieve this, ways had to be found for removing the impurities in the coke oven gas and the trace amounts of oxygen which are found in the product hydrogen. The resulting hydrogen is 99.9999% pure. 3 references.

  17. Cumulative biological impacts framework for solar energy projects in the California Desert

    Science.gov (United States)

    Davis, Frank W.; Kreitler, Jason R.; Soong, Oliver; Stoms, David M.; Dashiell, Stephanie; Hannah, Lee; Wilkinson, Whitney; Dingman, John

    2013-01-01

    This project developed analytical approaches, tools and geospatial data to support conservation planning for renewable energy development in the California deserts. Research focused on geographical analysis to avoid, minimize and mitigate the cumulative biological effects of utility-scale solar energy development. A hierarchical logic model was created to map the compatibility of new solar energy projects with current biological conservation values. The research indicated that the extent of compatible areas is much greater than the estimated land area required to achieve 2040 greenhouse gas reduction goals. Species distribution models were produced for 65 animal and plant species that were of potential conservation significance to the Desert Renewable Energy Conservation Plan process. These models mapped historical and projected future habitat suitability using 270 meter resolution climate grids. The results were integrated into analytical frameworks to locate potential sites for offsetting project impacts and evaluating the cumulative effects of multiple solar energy projects. Examples applying these frameworks in the Western Mojave Desert ecoregion show the potential of these publicly-available tools to assist regional planning efforts. Results also highlight the necessity to explicitly consider projected land use change and climate change when prioritizing areas for conservation and mitigation offsets. Project data, software and model results are all available online.

  18. Economics, organization, and planning of drilling and petroleum-gas production enterprises. Ekonomika, organizatsiya, i planirovanie burovykh i neftegazo-dobyvayushchikh predpriyatii

    Energy Technology Data Exchange (ETDEWEB)

    Shmatov, V F; Tishchenko, V E; Malyshev, Yu M; Strizhenova, N F; Samigullin, A S

    1978-01-01

    An examination is made of problems in the economics, organization, planning, and management of production at drilling and petroleum-gas producing enterprises. A discussion is made of the development and distribution of the petroleum and gas industry, the essence and characteristics of technical progress in the petroleum industry, concentration, specialization, cooperation, and combination production. Considerable attention is given to fixed and working capital, productivity, principles of cost accounting, production costs, and economic reform. A discussion is made of the principles of organizing and managing a petroleum enterprise, labor management, technical labor standards, wage organization, planning of drilling and petroleum-gas production, principles of cost-accounting, inventory, and accountability. A discussion is made of the essence of methods of determining the economic effectiveness of production, and an examination is made of advanced methods of managing production, and basic problems in the economic analysis of production-management activities of enterprises. The book is intended as a textbook for students at secondary specialized teaching institutions dealing with the drilling and operation of petroleum and gas wells, the operation of oil and gas wells, and equipment of petroleum and gas industries. It may also be used by students in other fields of specialization as well as by workers in the petroleum and gas industry. 50 references, 5 figures, 55 tables.

  19. Ionization chamber for monitoring radioactive gas

    International Nuclear Information System (INIS)

    Kotrappa, P.; Dempsey, J.

    1992-01-01

    This present invention provides simple, effective and accurate cumulative measurement of radioactive gas over a time period. Measurements of radioactive gas are important for many purposes. Tritium concentrations in potentially exposed workers are measured, for example, with periodic urine specimens. Carbon-14 serves as a useful research tool for monitoring the progress of many chemical and biological reactions and interactions. For example, many microorganisms break down carbon-14 containing compounds in sugar to produce carbon-14 dioxide gas which can be collected and measured to determine various characteristics of the microorganisms. Both tritium and carbon-14 dioxide produce low energy radiation which cannot be easily measured by conventional radioactivity detectors. (author). 4 figs

  20. Ionization chamber for monitoring radioactive gas

    Energy Technology Data Exchange (ETDEWEB)

    Kotrappa, P; Dempsey, J

    1992-09-22

    This present invention provides simple, effective and accurate cumulative measurement of radioactive gas over a time period. Measurements of radioactive gas are important for many purposes. Tritium concentrations in potentially exposed workers are measured, for example, with periodic urine specimens. Carbon-14 serves as a useful research tool for monitoring the progress of many chemical and biological reactions and interactions. For example, many microorganisms break down carbon-14 containing compounds in sugar to produce carbon-14 dioxide gas which can be collected and measured to determine various characteristics of the microorganisms. Both tritium and carbon-14 dioxide produce low energy radiation which cannot be easily measured by conventional radioactivity detectors. (author). 4 figs.

  1. Evaluation of Biogas Production Performance and Archaeal Microbial Dynamics of Corn Straw during Anaerobic Co-Digestion with Cattle Manure Liquid.

    Science.gov (United States)

    Zhang, Benyue; Zhao, Hongyan; Yu, Hairu; Chen, Di; Li, Xue; Wang, Weidong; Piao, Renzhe; Cui, Zongjun

    2016-04-28

    The rational utilization of crop straw as a raw material for natural gas production is of economic significance. In order to increase the efficiency of biogas production from agricultural straw, seasonal restrictions must be overcome. Therefore, the potential for biogas production via anaerobic straw digestion was assessed by exposing fresh, silage, and dry yellow corn straw to cow dung liquid extract as a nitrogen source. The characteristics of anaerobic corn straw digestion were comprehensively evaluated by measuring the pH, gas production, chemical oxygen demand, methane production, and volatile fatty acid content, as well as applying a modified Gompertz model and high-throughput sequencing technology to the resident microbial community. The efficiency of biogas production from fresh straw (433.8 ml/g) was higher than that of production from straw silage and dry yellow straw (46.55 ml/g and 68.75 ml/g, respectively). The cumulative biogas production from fresh straw, silage straw, and dry yellow straw was 365 l(-1) g(-1) VS, 322 l(-1) g-1 VS, and 304 l(-1) g(-1) VS, respectively, whereas cumulative methane production was 1,426.33%, 1,351.35%, and 1,286.14%, respectively, and potential biogas production was 470.06 ml(-1) g(-1) VS, 461.73 ml(-1) g(-1) VS, and 451.76 ml(-1) g(-1) VS, respectively. Microbial community analysis showed that the corn straw was mainly metabolized by acetate-utilizing methanogens, with Methanosaeta as the dominant archaeal community. These findings provide important guidance to the biogas industry and farmers with respect to rational and efficient utilization of crop straw resources as material for biogas production.

  2. Effects of marine and freshwater macroalgae on in vitro total gas and methane production.

    Science.gov (United States)

    Machado, Lorenna; Magnusson, Marie; Paul, Nicholas A; de Nys, Rocky; Tomkins, Nigel

    2014-01-01

    This study aimed to evaluate the effects of twenty species of tropical macroalgae on in vitro fermentation parameters, total gas production (TGP) and methane (CH4) production when incubated in rumen fluid from cattle fed a low quality roughage diet. Primary biochemical parameters of macroalgae were characterized and included proximate, elemental, and fatty acid (FAME) analysis. Macroalgae and the control, decorticated cottonseed meal (DCS), were incubated in vitro for 72 h, where gas production was continuously monitored. Post-fermentation parameters, including CH4 production, pH, ammonia, apparent organic matter degradability (OMd), and volatile fatty acid (VFA) concentrations were measured. All species of macroalgae had lower TGP and CH4 production than DCS. Dictyota and Asparagopsis had the strongest effects, inhibiting TGP by 53.2% and 61.8%, and CH4 production by 92.2% and 98.9% after 72 h, respectively. Both species also resulted in the lowest total VFA concentration, and the highest molar concentration of propionate among all species analysed, indicating that anaerobic fermentation was affected. Overall, there were no strong relationships between TGP or CH4 production and the >70 biochemical parameters analysed. However, zinc concentrations >0.10 g x kg(-1) may potentially interact with other biochemical components to influence TGP and CH4 production. The lack of relationship between the primary biochemistry of species and gas parameters suggests that significant decreases in TGP and CH4 production are associated with secondary metabolites produced by effective macroalgae. The most effective species, Asparagopsis, offers the most promising alternative for mitigation of enteric CH4 emissions.

  3. Effects of marine and freshwater macroalgae on in vitro total gas and methane production.

    Directory of Open Access Journals (Sweden)

    Lorenna Machado

    Full Text Available This study aimed to evaluate the effects of twenty species of tropical macroalgae on in vitro fermentation parameters, total gas production (TGP and methane (CH4 production when incubated in rumen fluid from cattle fed a low quality roughage diet. Primary biochemical parameters of macroalgae were characterized and included proximate, elemental, and fatty acid (FAME analysis. Macroalgae and the control, decorticated cottonseed meal (DCS, were incubated in vitro for 72 h, where gas production was continuously monitored. Post-fermentation parameters, including CH4 production, pH, ammonia, apparent organic matter degradability (OMd, and volatile fatty acid (VFA concentrations were measured. All species of macroalgae had lower TGP and CH4 production than DCS. Dictyota and Asparagopsis had the strongest effects, inhibiting TGP by 53.2% and 61.8%, and CH4 production by 92.2% and 98.9% after 72 h, respectively. Both species also resulted in the lowest total VFA concentration, and the highest molar concentration of propionate among all species analysed, indicating that anaerobic fermentation was affected. Overall, there were no strong relationships between TGP or CH4 production and the >70 biochemical parameters analysed. However, zinc concentrations >0.10 g x kg(-1 may potentially interact with other biochemical components to influence TGP and CH4 production. The lack of relationship between the primary biochemistry of species and gas parameters suggests that significant decreases in TGP and CH4 production are associated with secondary metabolites produced by effective macroalgae. The most effective species, Asparagopsis, offers the most promising alternative for mitigation of enteric CH4 emissions.

  4. Gas phase hydrogen peroxide production in atmospheric pressure glow discharges operating in He - H2O

    NARCIS (Netherlands)

    Vasko, C.A.; Veldhuizen, van E.M.; Bruggeman, P.J.

    2013-01-01

    The gas phase production of hydrogen peroxide (H2O2) in a RF atmospheric pressure glow discharge with helium and water vapour has been investigated as a function of the gas flow. It is shown that the production of H2O2 is through the recombination of two OH radicals in a three body collision and the

  5. Natural gas production and anomalous geothermal gradients of the deep Tuscaloosa Formation

    Science.gov (United States)

    Burke, Lauri

    2011-01-01

    For the largest producing natural gas fields in the onshore Gulf of Mexico Basin, the relation between temperature versus depth was investigated. Prolific natural gas reservoirs with the highest temperatures were found in the Upper Cretaceous downdip Tuscaloosa trend in Louisiana. Temperature and production trends from the deepest field, Judge Digby field, in Pointe Coupe Parish, Louisiana, were investigated to characterize the environment of natural gas in the downdip Tuscaloosa trend. The average production depth in the Judge Digby field is approximately 22,000 ft. Temperatures as high as 400 degrees F are typically found at depth in Judge Digby field and are anomalously low when compared to temperature trends extrapolated to similar depths regionally. At 22,000 ft, the minimum and maximum temperatures for all reservoirs in Gulf Coast producing gas fields are 330 and 550 degrees F, respectively; the average temperature is 430 degrees F. The relatively depressed geothermal gradients in the Judge Digby field may be due to high rates of sediment preservation, which may have delayed the thermal equilibration of the sediment package with respect to the surrounding rock. Analyzing burial history and thermal maturation indicates that the deep Tuscaloosa trend in the Judge Digby field is currently in the gas generation window. Using temperature trends as an exploration tool may have important implications for undiscovered hydrocarbons at greater depths in currently producing reservoirs, and for settings that are geologically analogous to the Judge Digby fiel

  6. Evaluation of optimum roughage to concentrate ratio in maize stover based complete rations for efficient microbial biomass production using in vitro gas production technique.

    Science.gov (United States)

    Reddy, Y Ramana; Kumari, N Nalini; Monika, T; Sridhar, K

    2016-06-01

    A study was undertaken to evaluate the optimum roughage to concentrate ratio in maize stover (MS) based complete diets for efficient microbial biomass production (EMBP) using in vitro gas production technique. MS based complete diets with roughage to concentrate ratio of 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, and 30:70 were formulated, and 200 mg of oven-dried sample was incubated in water bath at 39°C along with media (rumen liquor [RL] - buffer) in in vitro gas syringes to evaluate the gas production. The gas produced was recorded at 8 and 24 h of incubation. In vitro organic matter digestibility (IVOMD), metabolizable energy (ME), truly digestible organic matter (TDOM), partitioning factor (PF), and EMBP were calculated using appropriate formulae. Ammonia nitrogen and total volatile fatty acids (TVFAs) production were analyzed in RL fluid-media mixture after 24 h of incubation. In vitro gas production (ml) at 24 h incubation, IVOMD, ME, TDOM, TVFA concentration, and ammonia nitrogen production were increased (p<0.01) in proportion to the increase in the level of concentrate in the diet. Significantly (p<0.01) higher PF and EMBP was noticed in total mixed ration with roughage to concentrate ratio of 60:40 and 50:50 followed by 70:30 and 40:60. Based on the results, it was concluded that the MS can be included in complete rations for ruminants at the level of 50-60% for better microbial biomass synthesis which in turn influences the performance of growing sheep.

  7. Innovative technologies for greenhouse gas emission reduction in steel production

    Directory of Open Access Journals (Sweden)

    D. Burchart-Korol

    2016-01-01

    Full Text Available The main goal of the study was to present the most significant technological innovations aiming at reduction of greenhouse gas emission in steel production. Reduction of greenhouse gas and dust pollution is a very important aspect in the iron and steel industry. New solutions are constantly being searched for to reduce greenhouse gases (GHG. The article presents the most recent innovative technologies which may be applied in the steel industry in order to limit the emission of GHG. The significance of CCS (CO2 Capture and Storage and CCU (CO2 Capture and Utilization in the steel industry are also discussed.

  8. Competitive landscape for gas

    International Nuclear Information System (INIS)

    Newcomb, J.

    1990-01-01

    During the 1990s, natural gas will be the critical pressure point for energy and environmental developments in North America, according to the author of this paper. The author points to the forces bearing on natural gas, including the need for new power generation capacity, tightening environmental standards, growing concerns about energy security, cyclical factors in U.S. oil and gas exploration, and changes in the oil services industry. This paper discusses how these external factors will shape gas markets in the 1990s. First, it states that gas will gain market share in power generation through greater use of both existing gas-fired facilities and new turbines by electric utilities. Second, it predicts that the cumulative impact of the Clean Air Act and other environmental legislation having significant consequences for the relative roles of coal and natural gas, particularly during the late 1990s. Third, it points to the eventual reawakening of energy security concerns, focusing attention on developing North America's sizeable gas reserves. Finally, it states that while the long-term view of a gas supply crisis without a rebound in drilling activity is accurate, it has been disastrously wrong in the short term. This had led to underestimation of the amount of extra gas that can be provided in the interim from conventional areas at relatively low cost

  9. LOFC fission product release and circulating activity calculations for gas-cooled reactors

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.; Carruthers, L.M.; Lee, C.E.

    1977-01-01

    The inventories of fission products in a gas-cooled reactor under accident and normal steady state conditions are time and temperature dependent. To obtain a reasonable estimate of these inventories it is necessary to consider fuel failure, a temperature dependent variable, and radioactive decay, a time dependent variable. Using arbitrary radioactive decay chains and published fuel failure models for the High Temperature Gas-Cooled Reactor (HTGR), methods have been developed to evaluate the release of fission products during the Loss of Forced Circulation (LOFC) accident and the circulating and plateout fission product inventories during steady state non-accident operation. The LARC-2 model presented here neglects the time delays in the release from the HTGR due to diffusion of fission products from particles in the fuel rod through the graphite matrix. It also neglects the adsorption and evaporation process of metallics at the fuel rod-graphite and graphite-coolant hole interfaces. Any time delay due to the finite time of transport of fission products by convection through the coolant to the outside of the prestressed concrete reactor vessel (PCRV) is also neglected. This model assumes that all fission products released from fuel particles are immediately deposited outside the PCRV with no time delay

  10. Synthetic gas production from dry black liquor gasification process using direct causticization with CO2 capture

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2012-01-01

    Highlights: ► We study synthetic gas production from dry black liquor gasification system. ► Direct causticization eliminates energy intensive lime kiln reducing biomass use. ► Results show large SNG production potential at significant energy efficiency (58%). ► Substantial CO 2 capture potential plus CO 2 reductions from natural gas replacement. ► Significant transport fuel replacement especially in Sweden and Europe. -- Abstract: Synthetic natural gas (SNG) production from dry black liquor gasification (DBLG) system is an attractive option to reduce CO 2 emissions replacing natural gas. This article evaluates the energy conversion performance of SNG production from oxygen blown circulating fluidized bed (CFB) black liquor gasification process with direct causticization by investigating system integration with a reference pulp mill producing 1000 air dried tonnes (ADt) of pulp per day. The direct causticization process eliminates use of energy intensive lime kiln that is a main component required in the conventional black liquor recovery cycle with the recovery boiler. The paper has estimated SNG production potential, the process energy ratio of black liquor (BL) conversion to SNG, and quantified the potential CO 2 abatement. Based on reference pulp mill capacity, the results indicate a large potential of SNG production (about 162 MW) from black liquor but at a cost of additional biomass import (36.7 MW) to compensate the total energy deficit. The process shows cold gas energy efficiency of about 58% considering black liquor and biomass import as major energy inputs. About 700 ktonnes per year of CO 2 abatement i.e. both possible CO 2 capture and CO 2 offset from bio-fuel use replacing natural gas, is estimated. Moreover, the SNG production offers a significant fuel replacement in transport sector especially in countries with large pulp and paper industry e.g. in Sweden, about 72% of motor gasoline and 40% of total motor fuel could be replaced.

  11. Radiolytic gas production in the alpha particle degradation of plastics

    International Nuclear Information System (INIS)

    Reed, D.T.; Hoh, J.; Emery, J.; Hobbs, D.

    1992-01-01

    Net gas generation due to alpha particle irradiation of polyethylene and polyvinyl chloride was investigated. Experiments were performed in an air environment at 30, 60, and 100 degree C. The predominant radiolytic degradation products of polyethylene were hydrogen and carbon dioxide with a wide variety of trace organic species noted. Irradiation of polyvinyl chloride resulted in the formation of HCl in addition to the products observed for polyethylene. For both plastic materials, a strong enhancement of net yields was noted at 100 degree C

  12. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems

    Science.gov (United States)

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C.; Thornton, Philip K.; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-01-01

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system. PMID:24344273

  13. Gas sector expansion: production monopoly versus free prices; Expansao do setor de gas: monopolio na producao versus precos livres

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Maria Paula de Souza [Agencia de Servicos Publicos de Energia do Estado do Espirito Santo (ASPE), Vitoria, ES (Brazil)

    2006-07-01

    This paper describes the necessary conditions to develop Brazil's natural gas sector with production, reserves, main uses, sources, inputs, main players, laws, regulatory aspects, prices, supply, demand, market, monopoly and free competition. (author)

  14. Deposits of naturally occurring radioactivity in production of oil and natural gas

    International Nuclear Information System (INIS)

    Strand, T.; Lysebo, I.; Kristensen, D.; Birovljev, A.

    1997-01-01

    Deposits of naturally occurring radioactive materials is an increasing problem in Norwegian oil and gas production. Activity concentration in solid-state samples and production water, and doses to workers involved in different operations off-shore, have been measured. The report also includes a discussion of different methods of monitoring and alternatives for final disposal of wastes. 154 refs

  15. Land application uses for dry flue gas desulfurization by-products: Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31

    New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

  16. Continuity and productivity analysis of three geopressured geothermal aquifer-natural gas fields: Duson, Hollywood and Church Point, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.A.; Boardman, C.R.; Bebout, D.G.; Bachman, A.L. (eds.)

    1981-01-01

    The available well logs, production records and geological structure maps were analyzed for the Hollywood, Duson, and Church Point, Louisiana oil and gas fields to determine the areal extent of the sealed geopressured blocks and to identify which aquifer sands within the blocks are connected to commercial production of hydrocarbons. Studies such as these are needed for the Department of Energy program to identify geopressured brine reservoirs that are not connected to commercial productions. The analysis showed that over the depth intervals at the geopressured zones shown on the logs essentially all of the sands of any substantial thickness had gas production from them somewhere or other in the fault block. It is therefore expected that the sands which are fully brine saturated in many of the wells are the water drive portion of the producing gas/oil somewhere else within the fault block. In this study only one deep sand was identified, in the Hollywood field, which was apparently not connected to a producing horizon somewhere else in the field. Estimates of the reservoir parameters were made for this sand and a hypothetical production calculation showed the probable production to be less than 10,000 b/d. The required gas price to profitably produce this gas is well above the current market price.

  17. Economic appraisal of shale gas plays in Continental Europe

    International Nuclear Information System (INIS)

    Weijermars, Ruud

    2013-01-01

    Highlights: ► Economic feasibility of five European shale gas plays is assessed. ► Polish and Austrian shale plays appear profitable for P90 assessment criterion. ► Posidonia (Germany), Alum (Sweden) and a Turkish shale play below the hurdle rate. ► A 10% improvement of the IRR by sweet spot targeting makes all plays profitable. - Abstract: This study evaluates the economic feasibility of five emergent shale gas plays on the European Continent. Each play is assessed using a uniform field development plan with 100 wells drilled at a rate of 10 wells/year in the first decade. The gas production from the realized wells is monitored over a 25 year life cycle. Discounted cash flow models are used to establish for each shale field the estimated ultimate recovery (EUR) that must be realized, using current technology cost, to achieve a profit. Our analyses of internal rates of return (IRR) and net present values (NPVs) indicate that the Polish and Austrian shale plays are the more robust, and appear profitable when the strict P90 assessment criterion is applied. In contrast, the Posidonia (Germany), Alum (Sweden) and a Turkish shale play assessed all have negative discounted cumulative cash flows for P90 wells, which puts these plays below the hurdle rate. The IRR for P90 wells is about 5% for all three plays, which suggests that a 10% improvement of the IRR by sweet spot targeting may lift these shale plays above the hurdle rate. Well productivity estimates will become better constrained over time as geological uncertainty is reduced and as technology improves during the progressive development of the shale gas fields

  18. A gas production system from methane hydrate layers by hot water injection and BHP control with radial horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, T.; Ono, S.; Iwamoto, A.; Sugai, Y.; Sasaki, K. [Kyushu Univ., Fukuoka, Fukuoka (Japan)

    2010-07-01

    Reservoir characterization of methane hydrate (MH) bearing turbidite channel in the eastern Nankai Trough, in Japan has been performed to develop a gas production strategy. This paper proposed a gas production system from methane hydrate (MH) sediment layers by combining the hot water injection method and bottom hole pressure control at the production well using radial horizontal wells. Numerical simulations of the cylindrical homogeneous MH layer model were performed in order to evaluate gas production characteristics by the depressurization method with bottom hole pressure control. In addition, the effects of numerical block modeling and averaging physical properties of MH layers were presented. According to numerical simulations, combining the existing production system with hot water injection and bottom hole pressure control results in an outward expansion of the hot water chamber from the center of the MH layer with continuous gas production. 10 refs., 15 figs.

  19. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  20. Improving cumulative effects assessment in Alberta: Regional strategic assessment

    International Nuclear Information System (INIS)

    Johnson, Dallas; Lalonde, Kim; McEachern, Menzie; Kenney, John; Mendoza, Gustavo; Buffin, Andrew; Rich, Kate

    2011-01-01

    The Government of Alberta, Canada is developing a regulatory framework to better manage cumulative environmental effects from development in the province. A key component of this effort is regional planning, which will lay the primary foundation for cumulative effects management into the future. Alberta Environment has considered the information needs of regional planning and has concluded that Regional Strategic Assessment may offer significant advantages if integrated into the planning process, including the overall improvement of cumulative environmental effects assessment in the province.

  1. Variations in composition of farmyard manure in biologic gas production

    Energy Technology Data Exchange (ETDEWEB)

    Scheffer, F; Welte, E; Kemmler, G

    1953-01-01

    The advantages of the ''Bihugas'' method, Schmidt-Eggersgluss system, are discussed. The losses of organic matter and of C are about 33 percent for a gas output of 270 l/kg of organic matter, but 55 percent of the C of the decomposition products is utilized as mixed gas (about 60 percent as methane). The gas output amounts to 3-7 m/sup 3/ per 100 kg fresh manure. The maximum heating value of the mixed gas is 5700 kcal. The loss of N is only 1 percent of the total N; no P, K, and Ca are lost. No formation of humus was observed. The average composition of fermented manure was dry matter 10.56 organic matter 6.9, C 3.47, N 0.36, ammonia N in percentage of total N 38, K/sub 2/O/sub 7/ 0.27, CaO 0.18, and P/sub 2/O/sub 5/ 0.13 percent. The process, compared with the conventional handling of manure, decreases losses in N from 18.5 percent to 1 percent, and those in C from 38 percent to 7.3 percent.

  2. A bivariate optimal replacement policy with cumulative repair cost ...

    Indian Academy of Sciences (India)

    Min-Tsai Lai

    Shock model; cumulative damage model; cumulative repair cost limit; preventive maintenance model. 1. Introduction ... with two types of shocks: one type is failure shock, and the other type is damage ...... Theory, methods and applications.

  3. Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process.

    Science.gov (United States)

    Lu, Congcong; Dong, Jie; Yang, Shang-Tian

    2013-09-01

    Wood pulping hydrolysate (WPH) containing mainly xylose and glucose as a potential substrate for acetone-butanol-ethanol (ABE) fermentation was studied. Due to the inhibitors present in the hydrolysate, several dilution levels and detoxification treatments, including overliming, activated charcoal adsorption, and resin adsorption, were evaluated for their effectiveness in relieving the inhibition on fermentation. Detoxification using resin and evaporation was found to be the most effective method in reducing the toxicity of WPH. ABE production in batch fermentation by Clostridium beijerinckii increased 68%, from 6.73 g/L in the non-treated and non-diluted WPH to 11.35 g/L in the resin treated WPH. With gas stripping for in situ product removal, ABE production from WPH increased to 17.73 g/L, demonstrating that gas stripping was effective in alleviating butanol toxicity by selectively separating butanol from the fermentation broth, which greatly improved solvents production and sugar conversion in the fermentation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Experimental hydrate formation and gas production scenarios based on CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, J.C.; Howard, J.J. [ConocoPhillips, Bartlesville, OK (United States). Reservoir Laboratories; Baldwin, B.A. [Green Country Petrophysics LLC, Dewey, OK (United States); Ersland, G.; Husebo, J.; Graue, A. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology

    2008-07-01

    Gas hydrate production strategies have focused on depressurization or thermal stimulation of the reservoir, which in turn leads to hydrate dissociation. In order to evaluate potential production scenarios, the recovery efficiency of the natural gas from hydrate must be known along with the corresponding amounts of produced water. This study focused on the exchange of carbon dioxide (CO{sub 2}) with the natural gas hydrate and the subsequent release of free methane (CH{sub 4}). Laboratory experiments that investigated the rates and mechanisms of hydrate formation in coarse-grained porous media have shown the significance of initial water saturation and salinity on forming methane hydrates. Many of the experiments were performed in a sample holder fitted with an MRI instrument for monitoring hydrate formation. Hydrate-saturated samples were subjected to different procedures to release methane. The rates and efficiency of the exchange process were reproducible over a series of initial conditions. The exchange process was rapid and efficient in that no free water was observed in the core with MRI measurements. Injection of CO{sub 2} into the whole-core hydrate-saturated pore system resulted in methane production at the outlet end. Permeability measurements on these hydrate saturated cores during hydrate formation decreased to low values, but enough for gas transport. The lower permeability values remained constant during the methane-carbon dioxide exchange process in the hydrate structure. 12 refs., 9 figs.

  5. Evaluation of optimum roughage to concentrate ratio in maize stover based complete rations for efficient microbial biomass production using in vitro gas production technique

    Directory of Open Access Journals (Sweden)

    Y. Ramana Reddy

    2016-06-01

    Full Text Available Aim: A study was undertaken to evaluate the optimum roughage to concentrate ratio in maize stover (MS based complete diets for efficient microbial biomass production (EMBP using in vitro gas production technique. Materials and Methods: MS based complete diets with roughage to concentrate ratio of 100:0, 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, and 30:70 were formulated, and 200 mg of oven-dried sample was incubated in water bath at 39°C along with media (rumen liquor [RL] - buffer in in vitro gas syringes to evaluate the gas production. The gas produced was recorded at 8 and 24 h of inc ubation. In vitro organic matter digestibility (IVOMD, metabolizable energy (ME, truly digestible organic matter (TDOM, partitioning factor (PF, and EMBP were calculated using appropriate formulae. Ammonia nitrogen and total volatile fatty acids (TVFAs production were analyzed in RL fluid-media mixture after 24 h of incubation. Results: In vitro gas production (ml at 24 h incubation, IVOMD, ME, TDOM, TVFA concentration, and ammonia nitrogen production were increased (p<0.01 in proportion to the increase in the level of concentrate in the diet. Significantly (p<0.01 higher PF and EMBP was noticed in total mixed ration with roughage to concentrate ratio of 60:40 and 50:50 followed by 70:30 and 40:60. Conclusion: Based on the results, it was concluded that the MS can be included in complete rations for ruminants at the level of 50-60% for better microbial biomass synthesis which in turn influences the performance of growing sheep.

  6. Venezuelan gas developments

    International Nuclear Information System (INIS)

    Michael, H.

    1993-01-01

    An overview is presented of the Venezuelan natural gas industry. The structure of PDVSA, the Petroleos de Venezuela Organization, its foreign and domestic affiliates, and its subsidiaries are discussed. Natural gas resources in Venezuela total 290 trillion cubic feet, and Venezuela's share of world, OPEC and latin American production and reserves are 1%, 11% and 26%, respectively for production and 3%, 6% and 49% for reserves. Venezuela's gas pipeline network, plants, production, and marketing are described. Natural gas production and demand forecasts to 2002 are presented. Gas resources are largely located in eastern Venezuela, and large volumes of natural gas non-associated with crude oil will start to become important in the Venezuelan natural gas industry. 19 figs

  7. CHEMICAL COMPOSITION AND in vitro GAS PRODUCTION OF SOME LEGUME BROWSE SPECIES IN SUBTROPICAL AREAS OF MEXICO

    Directory of Open Access Journals (Sweden)

    Carlos A Garcia Montes de Oca

    2011-03-01

    Full Text Available The objective of the present study was to determine the chemical composition and in vitro gas production of different legume and wild arboreal pods. Seven seeds of legume browse species, Mexican calabash (Crescentia alata, esculent leadtree (Leucaena esculenta, guamuchil (Phitecellobium dulce, bastard cedar (Guazuma ulmifolia, needle bush (Acacia farnesiana, mimosa (Mimosa sp. and elephant ear tree (Enterolobium cyclocarpum. Were evaluated for their chemical composition (g/kg DM and in vitro gas production pattern. Crude Protein was higher for L. esculenta (220 and lower for G. ulmifolia (70. Neutral and acid detergent fiber were higher for G. ulmifolia (687 and 554 and lower for A. farnesiana (267 and 176. Lignin was higher for Mimosa sp. (219 and lower for P. dulce (81. Total gas production (ml gas/g DM of P. dulce (187 and E. cyclocarpum (164 were higher (P

  8. Development of gas-jet transport systems for fission products and coupling these with methods for continuous separation of short-lived product nuclides

    International Nuclear Information System (INIS)

    Stender, E.

    1979-01-01

    The development of gas-jet transport systems for fission products as well as the coupling of these with continuous separation methods from aqueous solutions (SISAK) and with a mass separator for on-line separation of neutron-rich nuclides are described in this work. Nuclides from the fission of 235 U or other fission materials can be transported using gas-jet systems with thermal neutrons over larger distances (100 m and over). Aerosols (clusters) of either organic (e.g. ethylene) or inorganic nature (e.g. potassium chloride) serve as carrier for the nuclides. The clusters are passed through 1 mm capillaries with a transport gas (nitrogen, helium etc.) under laminar flow conditions. The diameter of the cluster fluctuates between 10 -7 and 10 -6 m. The time required from the production of a nuclide to its detection at the end of a 8 m long capillary tube is 0.8 s for the ethylene/nitrogen and potassium chloride/helium gas-jet systems. By coupling various gas-jet systems with the continuous extraction technique SISAK working with H centrifuges, the elements lanthanum, cerium, praseodymium, zirconium, niobium and technetium can be separated out of the complex fission product mixtures. The on-line technetium chemistry was used with neutron-rich 106 Tc (36 s), 107 Tc (21 s) and 108 Tc (5 s) for γγ(t) measurements. The coupling of a potassium chloride/helium gas jet with a mass separator equiped with a plasma ion source is described. The dependence of the transmission rate of various test parameters is investigated to optimize the system. (orig.) [de

  9. Organic Rankine cycle saves energy and reduces gas emissions for cement production

    International Nuclear Information System (INIS)

    Wang, Huarong; Xu, Jinliang; Yang, Xufei; Miao, Zheng; Yu, Chao

    2015-01-01

    We investigated ORCs (organic Rankine cycles) integrated with typical China cement production line. The dry air at the kiln cooler outlet with the temperature of 220 °C was the waste heat. The fluids of hexane, isohexane, R601, R123 and R245fa were selected for ORCs based on the critical temperature criterion. The developed ORC verified the thermodynamics analysis. The NPV (net present value) and PBP (payback period) methods were applied to evaluate the economic performance. The LCA (life cycle assessment) was applied to evaluate the environment impacts. ORCs could generate 67,85,540–81,21,650 kWh electricity per year, equivalent to save 2035–2436 tons standard coal and reduce 7743–9268 tons CO 2 emission, for a 4000 t/d cement production line. ORCs reduced gas emissions of CO 2 by 0.62–0.74%, SO 2 by 3.83–4.59% and NO x by 1.36–1.63%. The PBP (payback period) was 2.74–3.42 years. The ORCs had the reduction ratios of EIL (environment impact load) by 1.49–1.83%, GWP (global warming potential) by 0.74–0.92%, AP (acidification potential) by 2.34–2.84%, EP (eutrophication potential) by 0.96–1.22% and HTP (human toxicity potential) by 2.38–2.89%. The ORC with R601 as the fluid had the best economic performance and significant gas emission reductions. ORCs had good economic performance and reduce the gas emissions. - Highlights: • Organic Rankine Cycles were integrated with the cement production line. • Five organic fluids were used as the working fluids for ORCs. • Thermal, economic and gas emission performances were analyzed. • R601 was the best fluid for ORC with the heat source temperature of 220 °C. • ORCs had good economic and gas emission reduction performances

  10. A quantitative description of state-level taxation of oil and gas production in the continental U.S

    International Nuclear Information System (INIS)

    Weber, Jeremy G.; Wang, Yongsheng; Chomas, Maxwell

    2016-01-01

    We provide a quantitative description of state-level taxation of oil and gas production in the continental U.S. for 2004–2013. Aggregate revenues from production taxes nearly doubled in real terms over the period, reaching $10.3 billion and accounting for 20% of tax receipts in the top ten revenue states. The average state had a tax rate of 3.6%; nationally, the average dollar of production was taxed at 4.2%. The oil-specific rate estimated for the study period is $2.4 per barrel or $5.5 per ton of carbon. Lastly, state-level tax rates are two-thirds higher in states excluding oil and gas wells from local property taxes, suggesting that the policies are substitutes for one another. - Highlights: •State tax revenue from oil and gas production nearly doubled from 2004 to 2013. •Nationally, the typical dollar of production is taxed at 4.2%. •The rate applied to the typical dollar of production did not increase over time. •On average oil is taxed at $2.4 per barrel or $5.5 per ton of carbon. •State tax rates are two-thirds higher where oil and gas are not taxed as property.

  11. Cumulative neutrino background from quasar-driven outflows

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiawei; Loeb, Abraham, E-mail: xiawei.wang@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-12-01

    Quasar-driven outflows naturally account for the missing component of the extragalactic γ-ray background through neutral pion production in interactions between protons accelerated by the forward outflow shock and interstellar protons. We study the simultaneous neutrino emission by the same protons. We adopt outflow parameters that best fit the extragalactic γ-ray background data and derive a cumulative neutrino background of ∼ 10{sup −7} GeV cm{sup −2} s{sup −1} sr{sup −1} at neutrino energies E {sub ν} ∼> 10 TeV, which naturally explains the most recent IceCube data without tuning any free parameters. The link between the γ-ray and neutrino emission from quasar outflows can be used to constrain the high-energy physics of strong shocks at cosmological distances.

  12. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  13. Comparison of Boer, Kiko, and Spanish meat goat does for stayability and cumulative reproductive output in the humid subtropical southeastern United States

    Directory of Open Access Journals (Sweden)

    Pellerin Ashley N

    2012-08-01

    Full Text Available Abstract Background Longevity is the amount of time breeding females stay active in a herd by avoiding death or culling because of illness or reproductive failure. This is a trait of economic relevance in commercial small ruminant breeding herds as it affects lifetime reproductive output. The purpose of this study was to determine if breed of meat goat influences breeding doe survival rates and cumulative reproductive performance under semi-intensive management. Results Boer (n = 132, Kiko (n = 92 and Spanish (n = 79 does were evaluated for longevity trends and cumulative kid production. The herd was managed on humid subtropical pasture. Does had the chance to complete 2 to 6 production years. Survival curves were analyzed for 2 culling methods. The actual culling practice removed does after two failures to wean a kid. An alternative culling protocol removed doe records after the first failure to wean a kid. Kid production traits analyzed across herd life were the total number of kids weaned and cumulative kid weight weaned to the 2-, 3-, and 5-year stayability endpoints. Most (82% doe exits were illness-related under the actual culling method. Reproductive failure represented 51% of doe exits under the alternative culling protocol. Boer does had greater survival declines (P P P  Conclusion Boer does had low stayability and cumulative kid production rates compared with Kiko and Spanish does. Poor health was the primary driver of does exiting the herd. Kiko and Spanish does did not differ for longevity and lifetime performance indicators.

  14. Exergy and thermoeconomic evaluation of hydrogen production from natural gas; Avaliacao exergetica e termo-economica da producao de hidrogenio a partir do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Flavio Eduardo da [PROMON Engenharia Ltda., Sao Paulo, SP (Brazil); Oliveira Junior, Silvio de [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica

    2008-07-01

    Some specific processes are required to obtain pure hydrogen and the most usual one is the natural gas reforming, where natural gas reacts with superheated steam producing H{sub 2}, CO, CO{sub 2} and H{sub 2}O. This paper presents exergy and thermoeconomic analysis of a complete hydrogen production unit of a petroleum refinery. The hydrogen production unit analysed in this paper has to supply 550,000 Nm{sup 3} of hydrogen per day to purify diesel oil. Based on a synthesis plant of the hydrogen production unit, the exergy efficiency of each component and of the overall plant are calculated. The hydrogen production cost is determined by means of a thermoeconomic analysis in which the equality cost partition method is employed, including capital and operational costs, in order to determine the production cost of hydrogen and other products of the plant.(author)

  15. Comparison of the immediate, residual, and cumulative antibacterial effects of Novaderm R,* Novascrub R,* Betadine Surgical Scrub, Hibiclens, and liquid soap.

    Science.gov (United States)

    Faoagali, J; Fong, J; George, N; Mahoney, P; O'Rourke, V

    1995-12-01

    Triclosan (Irgasan), an antibacterial active against staphylococci and coliform bacteria, has been formulated for use as a handwash. There has been only one previous report of the use of the glove juice test to determine the immediate, residual, and cumulative effects of a 1% triclosan-based handwash product. There have been no previous studies on the use of 1% triclosan combined with povidone-iodine (PI) in a handwash product. The glove juice technique was used to document and compare the immediate, 3-hour residual, and 5-day cumulative effects on the mean log10 bacterial counts of 1% triclosan-based handwash product and 1% triclosan with 5% PI. A standardized surgical handwashing technique was used before sample collection. These results and the identity and type of the aerobic bacteria cultured from the samples were compared with the results of standardized washing and glove juice sampling with 4% weight/volume chlorhexidine gluconate (CHG), 7.5% PI, and a nonantimicrobial liquid soap. All five tested products showed significant log10 reduction from baseline on day 1, hour 0 (p 0.05). There was a significant difference between 1% triclosan and the liquid soap when they were each compared with 4% CHG, 7.5% PI, and 1% triclosan with 5% PI. There was no statistically significant difference between the 1% triclosan product and the liquid soap (p > 0.20). All products were effective at reducing the immediate bacterial count from the baseline level. All formulations except the liquid soap showed significant cumulative effect (p liquid soap and 1% triclosan (p > 0.05). Both products differed significantly (p < 0.05) from the CHG, PI, and triclosan with PI. CHG, PI, and triclosan with PI showed effects significantly different from each other (p < 0.05). Triclosan combined with PI resulted in the prevention of bacterial regrowth at 3 hours such as occurred when PI alone was used. Triclosan-containing products have a small cumulative effect, although not as great as that

  16. Production and release of the fission gas in (Th U)O2 fuel rods

    International Nuclear Information System (INIS)

    Dias, Marcio S.

    1982-06-01

    The volume, composition and release of the fission gas products were caculated for (Th, U)O 2 fuel rods. The theorectical calculations were compared with experimental results available on the literature. In ThO 2 + 5% UO 2 fuel rods it will be produced approximated 5% more fission gas as compared to UO 2 fuel rods. The fission gas composition or Xe to Kr ratio has showed a decreasing fuel brunup dependence, in opposition to that of UO 2 . Under the same fuel rod operational conditions, the (Th, U)O 2 fission gas release will be smaller as compared to UO 2 . This behaviour of (Th, U)O 2 fuel comes from smallest gas atom difusivity and higher activation energies of the processes that increase the fission gas release. (Author) [pt

  17. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs

    Energy Technology Data Exchange (ETDEWEB)

    Douskova, I.; Doucha, J.; Livansky, K.; Umysova, D.; Zachleder, V.; Vitova, M. [Academy of Sciences of the Czech Republic, Trebon (Czech Republic). Laboratory of Cell Cycles of Algae; Machat, J. [Masaryk University, Brno (Czech Republic). Research Centre for Environmental Chemistry and Ecotoxicology; Novak, P. [Termizo Inc., Liberec (Czech Republic)

    2009-02-15

    A flue gas originating from a municipal waste incinerator was used as a source of CO{sub 2} for the cultivation of the microalga Chlorella vulgaris, in order to decrease the biomass production costs and to bioremediate CO{sub 2} simultaneously. The utilization of the flue gas containing 10-13% ({nu}/{nu}) CO2 and 8-10% ({nu}/{nu}) O{sub 2} for the photobioreactor agitation and CO{sub 2} supply was proven to be convenient. The growth rate of algal cultures on the flue gas was even higher when compared with the control culture supplied by a mixture of pure CO{sub 2} and air (11% ({nu}/{nu}) CO{sub 2}). Correspondingly, the CO{sub 2} fixation rate was also higher when using the flue gas (4.4 g CO{sub 2} l{sup -1} 24 h{sup -1}) than using the control gas (3.0 g CO{sub 2} l{sup -1} 24 h{sup -1}). The toxicological analysis of the biomass produced using untreated flue gas showed only a slight excess of mercury while all the other compounds (other heavy metals, polycyclic aromatic hydrocarbons, polychlorinated dibenzodioxins and dibenzofurans, and polychlorinated biphenyls) were below the limits required by the European Union foodstuff legislation. Fortunately, extending the flue gas treatment prior to the cultivation unit by a simple granulated activated carbon column led to an efficient absorption of gaseous mercury and to the algal biomass composition compliant with all the foodstuff legislation requirements. (orig.)

  18. An evaluation paradigm for cumulative impact analysis

    Science.gov (United States)

    Stakhiv, Eugene Z.

    1988-09-01

    Cumulative impact analysis is examined from a conceptual decision-making perspective, focusing on its implicit and explicit purposes as suggested within the policy and procedures for environmental impact analysis of the National Environmental Policy Act of 1969 (NEPA) and its implementing regulations. In this article it is also linked to different evaluation and decision-making conventions, contrasting a regulatory context with a comprehensive planning framework. The specific problems that make the application of cumulative impact analysis a virtually intractable evaluation requirement are discussed in connection with the federal regulation of wetlands uses. The relatively familiar US Army Corps of Engineers' (the Corps) permit program, in conjunction with the Environmental Protection Agency's (EPA) responsibilities in managing its share of the Section 404 regulatory program requirements, is used throughout as the realistic context for highlighting certain pragmatic evaluation aspects of cumulative impact assessment. To understand the purposes of cumulative impact analysis (CIA), a key distinction must be made between the implied comprehensive and multiobjective evaluation purposes of CIA, promoted through the principles and policies contained in NEPA, and the more commonly conducted and limited assessment of cumulative effects (ACE), which focuses largely on the ecological effects of human actions. Based on current evaluation practices within the Corps' and EPA's permit programs, it is shown that the commonly used screening approach to regulating wetlands uses is not compatible with the purposes of CIA, nor is the environmental impact statement (EIS) an appropriate vehicle for evaluating the variety of objectives and trade-offs needed as part of CIA. A heuristic model that incorporates the basic elements of CIA is developed, including the idea of trade-offs among social, economic, and environmental protection goals carried out within the context of environmental

  19. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Gustavsson, Leif [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  20. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    International Nuclear Information System (INIS)

    Sathre, Roger; Gustavsson, Leif; Bergh, Johan

    2010-01-01

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO 2equiv if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.