WorldWideScience

Sample records for cultures metabolically dechlorinates

  1. Phylogenetically distinct bacteria involve extensive dechlorination of aroclor 1260 in sediment-free cultures.

    Directory of Open Access Journals (Sweden)

    Shanquan Wang

    Full Text Available Microbial reductive dechlorination of the persistent polychlorinated biphenyls (PCBs is attracting much attention in cleanup of the contaminated environment. Nevertheless, most PCB dechlorinating cultures require presence of sediment or sediment substitutes to maintain their dechlorination activities which hinders subsequent bacterial enrichment and isolation processes. The information on enriching sediment-free PCB dechlorinating cultures is still limited. In this study, 18 microcosms established with soils and sediments were screened for their dechlorination activities on a PCB mixture - Aroclor 1260. After one year of incubation, 10 out of 18 microcosms showed significant PCB dechlorination with distinct dechlorination patterns (e.g., Process H, N and T classified based on profiles of PCB congeners loss and new congeners formation. Through serial transfers in defined medium, six sediment-free PCB dechlorinating cultures (i.e., CW-4, CG-1, CG-3, CG-4, CG-5 and SG-1 were obtained without amending any sediment or sediment-substitutes. PCB dechlorination Process H was the most frequently observed dechlorination pattern, which was found in four sediment-free cultures (CW-4, CG-3, CG-4 and SG-1. Sediment-free culture CG-5 showed the most extensive PCB dechlorination among the six cultures, which was mediated by Process N, resulting in the accumulation of penta- (e.g., 236-24-CB and tetra-chlorobiphenyls (tetra-CBs (e.g., 24-24-CB, 24-25-CB, 24-26-CB and 25-26-CB via dechlorinating 30.44% hepta-CBs and 59.12% hexa-CBs after three months of incubation. For culture CG-1, dechlorinators mainly attacked double flanked meta-chlorines and partially ortho-chlorines, which might represent a novel dechlorination pattern. Phylogenetic analysis showed distinct affiliation of PCB dechlorinators in the microcosms, including Dehalogenimonas and Dehalococcoides species. This study broadens our knowledge in microbial reductive dechlorination of PCBs, and provides

  2. A remediation performance model for enhanced metabolic reductive dechlorination of chloroethenes in fractured clay till

    DEFF Research Database (Denmark)

    Manoli, Gabriele; Chambon, Julie C.; Bjerg, Poul L.

    2012-01-01

    A numerical model of metabolic reductive dechlorination is used to describe the performance of enhanced bioremediation in fractured clay till. The model is developed to simulate field observations of a full scale bioremediation scheme in a fractured clay till and thereby to assess remediation...

  3. A remediation performance model for enhanced metabolic reductive dechlorination of chloroethenes in fractured clay till

    Science.gov (United States)

    Manoli, Gabriele; Chambon, Julie C.; Bjerg, Poul L.; Scheutz, Charlotte; Binning, Philip J.; Broholm, Mette M.

    2012-04-01

    A numerical model of metabolic reductive dechlorination is used to describe the performance of enhanced bioremediation in fractured clay till. The model is developed to simulate field observations of a full scale bioremediation scheme in a fractured clay till and thereby to assess remediation efficiency and timeframe. A relatively simple approach is used to link the fermentation of the electron donor soybean oil to the sequential dechlorination of trichloroethene (TCE) while considering redox conditions and the heterogeneous clay till system (clay till matrix, fractures and sand stringers). The model is tested on lab batch experiments and applied to describe sediment core samples from a TCE-contaminated site. Model simulations compare favorably to field observations and demonstrate that dechlorination may be limited to narrow bioactive zones in the clay matrix around fractures and sand stringers. Field scale simulations show that the injected donor is expected to be depleted after 5 years, and that without donor re-injection contaminant rebound will occur in the high permeability zones and the mass removal will stall at 18%. Long remediation timeframes, if dechlorination is limited to narrow bioactive zones, and the need for additional donor injections to maintain dechlorination activity may limit the efficiency of ERD in low-permeability media. Future work should address the dynamics of the bioactive zones, which is essential to understand for predictions of long term mass removal.

  4. Anaerobic bacteria that dechlorinate perchloroethene.

    Science.gov (United States)

    Fathepure, B Z; Nengu, J P; Boyd, S A

    1987-01-01

    In this study, we identified specific cultures of anaerobic bacteria that dechlorinate perchlorethene (PCE). The bacteria that significantly dechlorinated PCE were strain DCB-1, an obligate anaerobe previously shown to dechlorinate chlorobenzoate, and two strains of Methanosarcina. The rate of PCE dechlorination by DCB-1 compared favorably with reported rates of trichloroethene bio-oxidation by methanotrophs. Even higher PCE dechlorination rates were achieved when DCB-1 was grown in a methanogenic consortium. PMID:3426224

  5. Identification of Multiple Dehalogenase Genes Involved in Tetrachloroethene-to-Ethene Dechlorination in a Dehalococcoides-Dominated Enrichment Culture

    Directory of Open Access Journals (Sweden)

    Mohamed Ismaeil

    2017-01-01

    Full Text Available Chloroethenes (CEs are widespread groundwater toxicants that are reductively dechlorinated to nontoxic ethene (ETH by members of Dehalococcoides. This study established a Dehalococcoides-dominated enrichment culture (designated “YN3” that dechlorinates tetrachloroethene (PCE to ETH with high dechlorination activity, that is, complete dechlorination of 800 μM PCE to ETH within 14 days in the presence of Dehalococcoides species at 5.7±1.9×107 copies of 16S rRNA gene/mL. The metagenome of YN3 harbored 18 rdhA genes (designated YN3rdhA1–18 encoding the catalytic subunit of reductive dehalogenase (RdhA, four of which were suggested to be involved in PCE-to-ETH dechlorination based on significant increases in their transcription in response to CE addition. The predicted proteins for two of these four genes, YN3RdhA8 and YN3RdhA16, showed 94% and 97% of amino acid similarity with PceA and VcrA, which are well known to dechlorinate PCE to trichloroethene (TCE and TCE to ETH, respectively. The other two rdhAs, YN3rdhA6 and YN3rdhA12, which were never proved as rdhA for CEs, showed particularly high transcription upon addition of vinyl chloride (VC, with 75±38 and 16±8.6 mRNA copies per gene, respectively, suggesting their possible functions as novel VC-reductive dehalogenases. Moreover, metagenome data indicated the presence of three coexisting bacterial species, including novel species of the genus Bacteroides, which might promote CE dechlorination by Dehalococcoides.

  6. Impact of estuarine gradients on reductive dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin in river sediment enrichment cultures.

    Science.gov (United States)

    Dam, Hang T; Häggblom, Max M

    2017-02-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) are among the most persistent organic pollutants. Although the total input of PCDDs into the environment has decreased substantially over the past four decades, their input via non-point sources is still increasing, especially in estuarine metropolitan areas. Here we report on the microbially mediated reductive dechlorination of PCDDs in anaerobic enrichment cultures established from sediments collected from five locations along the Hackensack River, NJ and investigate the impacts of sediment physicochemical characteristics on dechlorination activity. Dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TeCDD) and abundance of Dehalococcoides spp. negatively correlated with salinity and sulfate concentration in sediments used to establish the cultures. 1,2,3,4-TeCDD was dechlorinated to a lesser extent in cultures established from sediments from the tidally influenced estuarine mouth of the river. In cultures established from low salinity sediments, 1,2,3,4-TeCDD was reductively dechlorinated with the accumulation of 2-monochlorodibenzo-p-dioxin as the major product. Sulfate concentrations above 2 mM inhibited 1,2,3,4-TecDD dechlorination activity. Consecutive lateral- and peri- dechlorination took place in enrichment cultures with a minimal accumulation of 2,3-dichlorodibenzo-p-dioxin in active cultures. A Dehalococcoides spp. community was enriched and accounted for up to 64% of Chloroflexi detected in these sediment cultures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis.

    OpenAIRE

    Maymó-Gatell, X; Tandoi, V; Gossett, J M; Zinder, S H

    1995-01-01

    We have been studying an anaerobic enrichment culture which, by using methanol as an electron donor, dechlorinates tetrachloroethene (PCE) to vinyl chloride and ethene. Our previous results indicated that H2 was the direct electron donor for rductive dechlorination of PCE by the methanol-PCE culture. Most-probable-number counts performed on this culture indicated low numbers ( or equal to 10(6)/ml...

  8. The impact of bioaugmentation on dechlorination kinetics and on microbial dechlorinating communities in subsurface clay till

    DEFF Research Database (Denmark)

    Bælum, Jacob; Scheutz, Charlotte; Chambon, Julie Claire Claudia

    2014-01-01

    A molecular study on how the abundance of the dechlorinating culture KB-1 affects dechlorination rates in clay till is presented. DNA extracts showed changes in abundance of specific dechlorinators as well as their functional genes. Independently of the KB-1 added, the microbial dechlorinator abu......, highlights the ecological behavior of KB-1 in clay till, and reinforces the importance of using multiple functional genes as biomarkers for reductive dechlorination. © 2013 Elsevier Ltd. All rights reserved....

  9. Bacteria of an anaerobic 1,2-dichloropropane-dechlorinating mixed culture are phylogenetically related to those of other anaerobic dechlorinating consortia.

    Science.gov (United States)

    Schlötelburg, C; von Wintzingerode, F; Hauck, R; Hegemann, W; Göbel, U B

    2000-07-01

    A 16S-rDNA-based molecular study was performed to determine the bacterial diversity of an anaerobic, 1,2-dichloropropane-dechlorinating bioreactor consortium derived from sediment of the River Saale, Germany. Total community DNA was extracted and bacterial 16S rRNA genes were subsequently amplified using conserved primers. A clone library was constructed and analysed by sequencing the 16S rDNA inserts of randomly chosen clones followed by dot blot hybridization with labelled polynucleotide probes. The phylogenetic analysis revealed significant sequence similarities of several as yet uncultured bacterial species in the bioreactor to those found in other reductively dechlorinating freshwater consortia. In contrast, no close relationship was obtained with as yet uncultured bacteria found in reductively dechlorinating consortia derived from marine habitats. One rDNA clone showed >97% sequence similarity to Dehalobacter species, known for reductive dechlorination of tri- and tetrachloroethene. These results suggest that reductive dechlorination in microbial freshwater habitats depends upon a specific bacterial community structure.

  10. The impact of bioaugmentation on dechlorination kinetics and on microbial dechlorinating communities in subsurface clay till

    International Nuclear Information System (INIS)

    Bælum, Jacob; Scheutz, Charlotte; Chambon, Julie C.; Jensen, Christine Mosegaard; Brochmann, Rikke P.; Dennis, Philip; Laier, Troels; Broholm, Mette M.; Bjerg, Poul L.; Binning, Philip J.; Jacobsen, Carsten S.

    2014-01-01

    A molecular study on how the abundance of the dechlorinating culture KB-1 affects dechlorination rates in clay till is presented. DNA extracts showed changes in abundance of specific dechlorinators as well as their functional genes. Independently of the KB-1 added, the microbial dechlorinator abundance increased to the same level in all treatments. In the non-bioaugmented microcosms the reductive dehalogenase gene bvcA increased in abundance, but when KB-1 was added the related vcrA gene increased while bvcA genes did not increase. Modeling showed higher vinyl-chloride dechlorination rates and shorter time for complete dechlorination to ethene with higher initial concentration of KB-1 culture, while cis-dichloroethene dechlorination rates were not affected by KB-1 concentrations. This study provides high resolution abundance profiles of Dehalococcoides spp. (DHC) and functional genes, highlights the ecological behavior of KB-1 in clay till, and reinforces the importance of using multiple functional genes as biomarkers for reductive dechlorination. -- Highlights: • vcrA gene is not always linked to reductive dechlorination potential. • High concentrations of KB-1 stimulate vinyl-chloride degradation. • Vinyl-chloride degradation in non-bioaugmented aquifer is linked to bvcA gene. -- vcrA gene biomarker for reductive dechlorination must be supplemented by bvcA and KB-1 had a positive effect on vinyl-chloride dechlorination compared to dichloroethene dechlorination

  11. Population dynamics of dechlorinators and factors affecting the level and products of PCB dechlorination in sediments

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.S.; Sokol, R.C.; Liu, X.; Bethoney, C.M.; Rhee, G.Y. [State Univ. of New York and New York State Department of Health, Albany, NY (United States)

    1996-12-31

    Microbial dechlorination of polychlorinated biphenyls (PCBs) often stops although a significant number of removable chlorines remain. To determine the reason for the cessation, we investigated the limitation of organic carbon, PCB bioavailability, and inhibition by metabolic products. Enrichment with carbon sources did not induce additional chlorination, indicating the plateau was not due to depletion of organic carbon. The bioavailability was not limiting, since a subcritical micelle concentration of the surfactant, which enhanced desorption without inhibiting dechlorinating microorganisms, failed to lower the plateau. Neither was it due to accumulation of metabolites, since no additional dechlorination was detected when plateau sediments were incubated with fresh medium. Similarly, dechlorination was not inhibited in freshly spiked sediment slurries. Dechlorination ended up at the same level with nearly identical congener profiles, regardless of treatment. These results indicate that cessation of dechlorination was due to the accumulation of daughter congeners, which cannot be used as electron acceptors by microbes. To determine whether the decreasing availability affected the microorganisms, we determined the population dynamics of dechlorinators using the most probable number technique. The growth dynamics of the dechlorinators mirrored the time course of dechlorination. It started when the population increased by two orders of magnitude. Once dechlorination stopped the dechlorinating population also began to decrease. When dechlorinators were inoculated into PCB-free sediments, the population decreased over time. The decrease of the population as dechlorination ceased confirms that the diminishing availability of congeners was the reason for the incomplete dechlorination. Recent findings have shown that a second phase of dechlorination of certain congeners can occur after a long lag. 45 refs., 8 figs.

  12. Effects of 1,1,1-Trichloroethane and Triclocarban on Reductive Dechlorination of Trichloroethene in a TCE-Reducing Culture.

    Science.gov (United States)

    Wen, Li-Lian; Chen, Jia-Xian; Fang, Jia-Yi; Li, Ang; Zhao, He-Ping

    2017-01-01

    Chlorinated compounds were generally present in the environment due to widespread use in the industry. A short-term study was performed to evaluate the effects of 1,1,1- trichloroethane (TCA) and triclocarban (TCC) on trichloroethene (TCE) removal in a reactor fed with lactate as the sole electron donor. Both TCA and TCC inhibited TCE reduction, but the TCC had a more pronounced effect compared to TCA. The TCE-reducing culture, which had never been exposed to TCA before, reductively dechlorinated TCA to 1,1-dichloroethane (DCA). Below 15 μM, TCA had little effect on the transformation of TCE to cis -dichloroethene (DCE); however, the reduction of cis -DCE and vinyl chloride (VC) were more sensitive to TCA, and ethene production was completely inhibited when the concentration of TCA was above 15 μM. In cultures amended with TCC, the reduction of TCE was severely affected, even at concentrations as low as 0.3 μM; all the cultures stalled at VC, and no ethene was detected. The cultures that fully transformed TCE to ethene contained 5.2-8.1% Dehalococcoides . Geobacter and Desulfovibrio , the bacteria capable of partially reducing TCE to DCE, were detected in all cultures, but both represented a larger proportion of the community in TCC-amended cultures. All cultures were dominated by Clostridium _sensu_stricto_7, a genus that belongs to Firmicutes with proportions ranging from 40.9% (in a high TCC (15 μM) culture) to 88.2%. Methanobacteria was detected at levels of 1.1-12.7%, except in cultures added with 15 and 30 μM TCA, in which they only accounted for ∼0.4%. This study implies further environmental factors needed to be considered in the successful bioremediation of TCE in contaminated sites.

  13. Effects of 1,1,1-Trichloroethane and Triclocarban on Reductive Dechlorination of Trichloroethene in a TCE-Reducing Culture

    Directory of Open Access Journals (Sweden)

    Li-Lian Wen

    2017-08-01

    Full Text Available Chlorinated compounds were generally present in the environment due to widespread use in the industry. A short-term study was performed to evaluate the effects of 1,1,1- trichloroethane (TCA and triclocarban (TCC on trichloroethene (TCE removal in a reactor fed with lactate as the sole electron donor. Both TCA and TCC inhibited TCE reduction, but the TCC had a more pronounced effect compared to TCA. The TCE-reducing culture, which had never been exposed to TCA before, reductively dechlorinated TCA to 1,1-dichloroethane (DCA. Below 15 μM, TCA had little effect on the transformation of TCE to cis-dichloroethene (DCE; however, the reduction of cis-DCE and vinyl chloride (VC were more sensitive to TCA, and ethene production was completely inhibited when the concentration of TCA was above 15 μM. In cultures amended with TCC, the reduction of TCE was severely affected, even at concentrations as low as 0.3 μM; all the cultures stalled at VC, and no ethene was detected. The cultures that fully transformed TCE to ethene contained 5.2–8.1% Dehalococcoides. Geobacter and Desulfovibrio, the bacteria capable of partially reducing TCE to DCE, were detected in all cultures, but both represented a larger proportion of the community in TCC-amended cultures. All cultures were dominated by Clostridium_sensu_stricto_7, a genus that belongs to Firmicutes with proportions ranging from 40.9% (in a high TCC (15 μM culture to 88.2%. Methanobacteria was detected at levels of 1.1–12.7%, except in cultures added with 15 and 30 μM TCA, in which they only accounted for ∼0.4%. This study implies further environmental factors needed to be considered in the successful bioremediation of TCE in contaminated sites.

  14. Chlorinated Electron Acceptor Abundance Drives Selection of Dehalococcoides mccartyi (D. mccartyi Strains in Dechlorinating Enrichment Cultures and Groundwater Environments

    Directory of Open Access Journals (Sweden)

    Alfredo Pérez-de-Mora

    2018-05-01

    Full Text Available Dehalococcoides mccartyi (D. mccartyi strains differ primarily from one another by the number and identity of the reductive dehalogenase homologous catalytic subunit A (rdhA genes within their respective genomes. While multiple rdhA genes have been sequenced, the activity of the corresponding proteins has been identified in only a few cases. Examples include the enzymes whose substrates are groundwater contaminants such as trichloroethene (TCE, cis-dichloroethene (cDCE and vinyl chloride (VC. The associated rdhA genes, namely tceA, bvcA, and vcrA, along with the D. mccartyi 16S rRNA gene are often used as biomarkers of growth in field samples. In this study, we monitored an additional 12 uncharacterized rdhA sequences identified in the metagenome in the mixed D. mccartyi-containing culture KB-1 to monitor population shifts in more detail. Quantitative PCR (qPCR assays were developed for 15 D. mccartyi rdhA genes and used to measure population diversity in 11 different sub-cultures of KB-1, each enriched on different chlorinated ethenes and ethanes. The proportion of rdhA gene copies relative to D. mccartyi 16S rRNA gene copies revealed the presence of multiple distinct D. mccartyi strains in each culture, many more than the two strains inferred from 16S rRNA analysis. The specific electron acceptor amended to each culture had a major influence on the distribution of D. mccartyi strains and their associated rdhA genes. We also surveyed the abundance of rdhA genes in samples from two bioaugmented field sites (Canada and United Kingdom. Growth of the dominant D. mccartyi strain in KB-1 was detected at the United Kingdom site. At both field sites, the measurement of relative rdhA abundances revealed D. mccartyi population shifts over time as dechlorination progressed from TCE through cDCE to VC and ethene. These shifts indicate a selective pressure of the most abundant chlorinated electron acceptor, as was also observed in lab cultures. These

  15. Contributions of Fe Minerals to Abiotic Dechlorination

    Science.gov (United States)

    Most applications of enhanced in situ bioremediation are based on biological reductive dechlorination. Anaerobic metabolism can also produce reactive minerals that allow for in situ biogeochemical transformation of chlorinated organic contaminants such as PCE, TCE, and cis-DCE. ...

  16. Successful operation of continuous reactors at short retention times results in high-density, fast-rate Dehalococcoides dechlorinating cultures.

    Science.gov (United States)

    Delgado, Anca G; Fajardo-Williams, Devyn; Popat, Sudeep C; Torres, César I; Krajmalnik-Brown, Rosa

    2014-03-01

    The discovery of Dehalococcoides mccartyi reducing perchloroethene and trichloroethene (TCE) to ethene was a key landmark for bioremediation applications at contaminated sites. D. mccartyi-containing cultures are typically grown in batch-fed reactors. On the other hand, continuous cultivation of these microorganisms has been described only at long hydraulic retention times (HRTs). We report the cultivation of a representative D. mccartyi-containing culture in continuous stirred-tank reactors (CSTRs) at a short, 3-d HRT, using TCE as the electron acceptor. We successfully operated 3-d HRT CSTRs for up to 120 days and observed sustained dechlorination of TCE at influent concentrations of 1 and 2 mM TCE to ≥ 97 % ethene, coupled to the production of 10(12) D. mccartyi cells Lculture (-1). These outcomes were possible in part by using a medium with low bicarbonate concentrations (5 mM) to minimize the excessive proliferation of microorganisms that use bicarbonate as an electron acceptor and compete with D. mccartyi for H2. The maximum conversion rates for the CSTR-produced culture were 0.13 ± 0.016, 0.06 ± 0.018, and 0.02 ± 0.007 mmol Cl(-) Lculture (-1) h(-1), respectively, for TCE, cis-dichloroethene, and vinyl chloride. The CSTR operation described here provides the fastest laboratory cultivation rate of high-cell density Dehalococcoides cultures reported in the literature to date. This cultivation method provides a fundamental scientific platform for potential future operations of such a system at larger scales.

  17. Biomarkers’ Responses to Reductive Dechlorination Rates and Oxygen Stress in Bioaugmentation Culture KB-1TM

    Directory of Open Access Journals (Sweden)

    Gretchen L. W. Heavner

    2018-02-01

    Full Text Available Using mRNA transcript levels for key functional enzymes as proxies for the organohalide respiration (OHR rate, is a promising approach for monitoring bioremediation populations in situ at chlorinated solvent-contaminated field sites. However, to date, no correlations have been empirically derived for chlorinated solvent respiring, Dehalococcoides mccartyi (DMC containing, bioaugmentation cultures. In the current study, genome-wide transcriptome and proteome data were first used to confirm the most highly expressed OHR-related enzymes in the bioaugmentation culture, KB-1TM, including several reductive dehalogenases (RDases and a Ni-Fe hydrogenase, Hup. Different KB-1™ DMC strains could be resolved at the RNA and protein level through differences in the sequence of a common RDase (DET1545-like homologs and differences in expression of their vinyl chloride-respiring RDases. The dominant strain expresses VcrA, whereas the minor strain utilizes BvcA. We then used quantitative reverse-transcriptase PCR (qRT-PCR as a targeted approach for quantifying transcript copies in the KB-1TM consortium operated under a range of TCE respiration rates in continuously-fed, pseudo-steady-state reactors. These candidate biomarkers from KB-1TM demonstrated a variety of trends in terms of transcript abundance as a function of respiration rate over the range: 7.7 × 10−12 to 5.9 × 10−10 microelectron equivalents per cell per hour (μeeq/cell∙h. Power law trends were observed between the respiration rate and transcript abundance for the main DMC RDase (VcrA and the hydrogenase HupL (R2 = 0.83 and 0.88, respectively, but not transcripts for 16S rRNA or three other RDases examined: TceA, BvcA or the RDase DET1545 homologs in KB1TM. Overall, HupL transcripts appear to be the most robust activity biomarker across multiple DMC strains and in mixed communities including DMC co-cultures such as KB1TM. The addition of oxygen induced cell stress that caused respiration

  18. Biomarkers' Responses to Reductive Dechlorination Rates and Oxygen Stress in Bioaugmentation Culture KB-1TM.

    Science.gov (United States)

    Heavner, Gretchen L W; Mansfeldt, Cresten B; Debs, Garrett E; Hellerstedt, Sage T; Rowe, Annette R; Richardson, Ruth E

    2018-02-08

    Using mRNA transcript levels for key functional enzymes as proxies for the organohalide respiration (OHR) rate, is a promising approach for monitoring bioremediation populations in situ at chlorinated solvent-contaminated field sites. However, to date, no correlations have been empirically derived for chlorinated solvent respiring, Dehalococcoides mccartyi (DMC) containing, bioaugmentation cultures. In the current study, genome-wide transcriptome and proteome data were first used to confirm the most highly expressed OHR-related enzymes in the bioaugmentation culture, KB-1 TM , including several reductive dehalogenases (RDases) and a Ni-Fe hydrogenase, Hup. Different KB-1™ DMC strains could be resolved at the RNA and protein level through differences in the sequence of a common RDase (DET1545-like homologs) and differences in expression of their vinyl chloride-respiring RDases. The dominant strain expresses VcrA, whereas the minor strain utilizes BvcA. We then used quantitative reverse-transcriptase PCR (qRT-PCR) as a targeted approach for quantifying transcript copies in the KB-1 TM consortium operated under a range of TCE respiration rates in continuously-fed, pseudo-steady-state reactors. These candidate biomarkers from KB-1 TM demonstrated a variety of trends in terms of transcript abundance as a function of respiration rate over the range: 7.7 × 10 -12 to 5.9 × 10 -10 microelectron equivalents per cell per hour (μeeq/cell∙h). Power law trends were observed between the respiration rate and transcript abundance for the main DMC RDase (VcrA) and the hydrogenase HupL (R² = 0.83 and 0.88, respectively), but not transcripts for 16S rRNA or three other RDases examined: TceA, BvcA or the RDase DET1545 homologs in KB1 TM . Overall, HupL transcripts appear to be the most robust activity biomarker across multiple DMC strains and in mixed communities including DMC co-cultures such as KB1 TM . The addition of oxygen induced cell stress that caused respiration rates

  19. Retention and transport of an anaerobic trichloroethene dechlorinating microbial culture in anaerobic porous media.

    Science.gov (United States)

    Zhang, Huixin; Ulrich, Ania C; Liu, Yang

    2015-06-01

    The influence of solution chemistry on microbial transport was examined using the strictly anaerobic trichloroethene (TCE) bioaugmentation culture KB-1(®). A column was employed to determine transport behaviors and deposition kinetics of three distinct functional species in KB-1(®), Dehalococcoides, Geobacter, and Methanomethylovorans, over a range of ionic strengths under a well-controlled anaerobic condition. A quantitative polymerase chain reaction (qPCR) was utilized to enumerate cell concentration and complementary techniques were implemented to evaluate cell surface electrokinetic potentials. Solution chemistry was found to positively affect the deposition rates, which was consistent with calculated Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies. Retained microbial profiles showed spatially constant colloid deposition rate coefficients, in agreement with classical colloid filtration theory (CFT). It was interesting to note that the three KB-1(®) species displayed similar transport and retention behaviors under the defined experimental conditions despite their different cell electrokinetic properties. A deeper analysis of cell characteristics showed that factors, such as cell size and shape, concentration, and motility were involved in determining adhesion behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: Model validation and sensitivity analysis

    Science.gov (United States)

    Chen, Mingjie; Abriola, Linda M.; Amos, Benjamin K.; Suchomel, Eric J.; Pennell, Kurt D.; Löffler, Frank E.; Christ, John A.

    2013-08-01

    Reductive dechlorination catalyzed by organohalide-respiring bacteria is often considered for remediation of non-aqueous phase liquid (NAPL) source zones due to cost savings, ease of implementation, regulatory acceptance, and sustainability. Despite knowledge of the key dechlorinators, an understanding of the processes and factors that control NAPL dissolution rates and detoxification (i.e., ethene formation) is lacking. A recent column study demonstrated a 5-fold cumulative enhancement in tetrachloroethene (PCE) dissolution and ethene formation (Amos et al., 2009). Spatial and temporal monitoring of key geochemical and microbial (i.e., Geobacter lovleyi and Dehalococcoides mccartyi strains) parameters in the column generated a data set used herein as the basis for refinement and testing of a multiphase, compositional transport model. The refined model is capable of simulating the reactive transport of multiple chemical constituents produced and consumed by organohalide-respiring bacteria and accounts for substrate limitations and competitive inhibition. Parameter estimation techniques were used to optimize the values of sensitive microbial kinetic parameters, including maximum utilization rates, biomass yield coefficients, and endogenous decay rates. Comparison and calibration of model simulations with the experimental data demonstrate that the model is able to accurately reproduce measured effluent concentrations, while delineating trends in dechlorinator growth and reductive dechlorination kinetics along the column. Sensitivity analyses performed on the optimized model parameters indicate that the rates of PCE and cis-1,2-dichloroethene (cis-DCE) transformation and Dehalococcoides growth govern bioenhanced dissolution, as long as electron donor (i.e., hydrogen flux) is not limiting. Dissolution enhancements were shown to be independent of cis-DCE accumulation; however, accumulation of cis-DCE, as well as column length and flow rate (i.e., column residence time

  1. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Naoko [EcoTopia Science Institute, Nagoya University Nagoya 464-8603 (Japan)]. E-mail: ysd75@esi.nagoya-u.ac.jp; Yoshida, Yukina [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Handa, Yuko [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kim, Hyo-Keun [Korea Ginseng and Tobacco Research Institute, Taejon 305-345 (Korea, Republic of); Ichihara, Shigeyuki [Faculty of Agriculture, Meijo University, Nagoya 468-8502 (Japan); Katayama, Arata [EcoTopia Science Institute, Nagoya University Nagoya 464-8603 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2007-08-01

    Dechlorination of PCP has been observed previously under anaerobic condition in paddy soil. However, there is poor information about the dechlorination pathway of PCP and the microbial community associated with the PCP dechlorination in paddy soil. In this study, an anaerobic microbial community dechlorinating PCP was enriched by serial transfers from a paddy soil using a medium containing PCP, lactate and the steam-sterilized paddy soil. The enriched microbial community dechlorinated PCP completely to phenol under the anaerobic condition by a dechlorinating pathway as follows; PCP {sup {yields}} 2,3,4,5-tetrachlorophenol {sup {yields}} 3,4,5-trichlorophenol {sup {yields}} 3,5-dichlorophenol {sup {yields}} 3-chlorophenol {sup {yields}} phenol. Intermediate products such as 3-chlorophenol were not accumulated, which were immediately dechlorinated to phenol. The enriched microbial community was characterized physiologically by testing the effects of electron donors and electron acceptors on the dechlorinating activity. The dechlorinating activity was promoted with lactate, pyruvate, and hydrogen as electron donors but not with acetate. Electron acceptors, nitrate and sulphate, inhibited the dechlorinating activity competitively but not iron (III). The microbial group associated with the anaerobic dechlorination was characterized by the effect of specific inhibitors on the PCP dechlorination. Effects of specific metabolic inhibitors and antibiotics indicated the involvement of Gram-positive spore-forming bacteria with the PCP dechlorinating activity, which was represented as bacteria of phylum Firmicutes. The structure of the microbial community was characterized by fluorescence in situ hybridization, quinone profiling, and PCR-DGGE (denaturing gel gradient electrophoresis). The combined results indicated the predominance of Clostridium species of phylum Firmicutes in the microbial community. Desulfitobacterium spp. known as anaerobic Gram-positive spore

  2. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil

    International Nuclear Information System (INIS)

    Yoshida, Naoko; Yoshida, Yukina; Handa, Yuko; Kim, Hyo-Keun; Ichihara, Shigeyuki; Katayama, Arata

    2007-01-01

    Dechlorination of PCP has been observed previously under anaerobic condition in paddy soil. However, there is poor information about the dechlorination pathway of PCP and the microbial community associated with the PCP dechlorination in paddy soil. In this study, an anaerobic microbial community dechlorinating PCP was enriched by serial transfers from a paddy soil using a medium containing PCP, lactate and the steam-sterilized paddy soil. The enriched microbial community dechlorinated PCP completely to phenol under the anaerobic condition by a dechlorinating pathway as follows; PCP → 2,3,4,5-tetrachlorophenol → 3,4,5-trichlorophenol → 3,5-dichlorophenol → 3-chlorophenol → phenol. Intermediate products such as 3-chlorophenol were not accumulated, which were immediately dechlorinated to phenol. The enriched microbial community was characterized physiologically by testing the effects of electron donors and electron acceptors on the dechlorinating activity. The dechlorinating activity was promoted with lactate, pyruvate, and hydrogen as electron donors but not with acetate. Electron acceptors, nitrate and sulphate, inhibited the dechlorinating activity competitively but not iron (III). The microbial group associated with the anaerobic dechlorination was characterized by the effect of specific inhibitors on the PCP dechlorination. Effects of specific metabolic inhibitors and antibiotics indicated the involvement of Gram-positive spore-forming bacteria with the PCP dechlorinating activity, which was represented as bacteria of phylum Firmicutes. The structure of the microbial community was characterized by fluorescence in situ hybridization, quinone profiling, and PCR-DGGE (denaturing gel gradient electrophoresis). The combined results indicated the predominance of Clostridium species of phylum Firmicutes in the microbial community. Desulfitobacterium spp. known as anaerobic Gram-positive spore-forming bacteria dechlorinating PCP were not detected by PCR using a

  3. Dechlorination of Aromatic Xenobiotic Compounds by Anaerobic Microorganisms

    Science.gov (United States)

    1988-07-01

    dechlorination of 3 6C1- 2,3,7,8-TCDD have been initiated but are incomplete at this time. The sources of anaerobic dechlorinating bacteria were the...SETHUNATHAN, 1983). Active anaerobic habitatsa DDT Soil, rumen fluid, sewage sludge, sediments, microbial cultures Lindane Soil, sediments, microbial... anaerobic bacteria (Reference 24). Sediments containing relatively high levels of PCBs (> 50 ppm) all showed losses of up to one-third of the chlorine

  4. INFLUENCE OF HYDRAULIC RETENTION TIME ON EXTENT OF PCE DECHLORINATION AND PRELIMINARY CHARACTERIZATION OF THE ENRICHMENT CULTURE. (R826694C703)

    Science.gov (United States)

    The extent of tetrachloroethene (PCE) dechlorination in two chemostats was evaluated as a function of hydraulic retention time (HRT). The inoculum of these chemostats was from an upflow anaerobic sludge blanket (UASB) reactor that rapidly converts PCE to vinyl chloride (VC) an...

  5. Melphalan metabolism in cultured cells

    International Nuclear Information System (INIS)

    Seagrave, J.C.; Valdez, J.G.; Tobey, R.A.; Gurley, L.R.

    1985-06-01

    Procedures are presented for the adaptation of reversed-phase-HPLC methods to accomplish separation and isolation of the cancer therapeutic drug melphalan (L-phenylalanine mustard) and its metabolic products from whole cells. Five major degradation products of melphalan were observed following its hydrolysis in phosphate buffer in vitro. The two most polar of these products (or modifications of them) were also found in the cytosol of Chinese hamster CHO cells. The amounts of these two polar products (shown not to be mono- or dihydroxymelphalan) were significantly changed by the pretreatment of cells with ZnC1 2 , one being increased in amount while the other was reduced to an insignificant level. In ZnC1 2 -treated cells, there was also an increased binding of melphalan (or its derivatives) to one protein fraction resolved by gel filtration-HPLC. These observations suggest that changes in polar melphalan products, and perhaps their interaction with a protein, may by involved in the reduction of melphalan cytotoxicity observed in ZnC1 2 -treated cells. While ZnC1 2 is also known to increase the level of glutathione in cells, no significant amounts of glutathione-melphalan derivatives of the type formed non-enzymatically in vitro could be detected in ZnC1 2 -treated or untreated cells. Formation of derivatives of melphalan with glutathione catabolic products in ZnC1 2 -treated cells has not yet been eliminated, however. 17 refs., 5 figs., 1 tab

  6. Glycogen metabolism in aerobic mixed cultures

    DEFF Research Database (Denmark)

    Dircks, Klaus; Beun, J.J.; van Loosdrecht, M.C.M.

    2001-01-01

    In this study, the metabolism of glycogen storage and consumption in mixed cultures under aerobic conditions is described. The experimental results are used to calibrate a metabolic model, which as sole stoichiometric variables has the efficiency of oxidative phosphorylation (delta) and maintenance...... of glycogen and subsequent growth occur without significant loss of energy, as compared with direct growth on glucose. For kinetic modeling, Monod kinetics is used most commonly in activated sludge models to describe the rate of microbial transformation. Monod kinetics, however, does not provide a good...

  7. Reductive dechlorination of chlorinated solvents in landfills

    International Nuclear Information System (INIS)

    Wang, J.Y.; Wu, C.

    2002-01-01

    The use of landfills as an in situ biological treatment system represents an alternative for source area remediation with a significant cost saving. The specific objective of this research is to investigate the intrinsic bioattenuation capacity of the landfill ecosystem for chlorinated aliphatic hydrocarbons (CAHs). The research was conducted in two complementary systems: simulated landfill bioreactors and batch degradation experiment in serum bottles. Refuse samples excavated from a landfill were tested in laboratory bioreactors designed and operated to facilitate refuse decomposition under landfilling conditions. Each bioreactor was operated with leachate recirculation and gas collection. Target CAHs, tetrachloroethene (PCE) and trichloroethene (TCE), were added to selected reactors and maintained at 20 μM each in leachate to simulate the effect of long-term exposure of refuse microorganisms to CAHs on the degradation potential of these chemicals in landfills. At two different stages of refuse decomposition, active refuse decomposition representing young landfills and maturation phase representing aged landfills, anaerobic microbial cultures were derived from selected bioreactors and tested in serum bottles for their abilities to biodegrade target CAHs. Results of this study suggest that landfills have an intrinsic reductive dechlorination capacity for PCE and TCE. The decomposition of refuse, a source of complex organics, enhances reductive dechlorination by the refuse cultures tested in this study. In addition, the test results suggest that it may be possible to develop engineering strategies to promote both CAHs degradation and refuse decomposition in landfills. (author)

  8. Effects of Aqueous Film-Forming Foams (AFFFs) on Trichloroethene (TCE) Dechlorination by a Dehalococcoides mccartyi-Containing Microbial Community.

    Science.gov (United States)

    Harding-Marjanovic, Katie C; Yi, Shan; Weathers, Tess S; Sharp, Jonathan O; Sedlak, David L; Alvarez-Cohen, Lisa

    2016-04-05

    The application of aqueous film-forming foams (AFFFs) to extinguish chlorinated solvent-fueled fires has led to the co-contamination of poly- and perfluoroalkyl substances (PFASs) and trichloroethene (TCE) in groundwater and soil. Although reductive dechlorination of TCE by Dehalococcoides mccartyi is a frequently used remediation strategy, the effects of AFFF and PFASs on TCE dechlorination are not well-understood. Various AFFF formulations, PFASs, and ethylene glycols were amended to the growth medium of a D. mccartyi-containing enrichment culture to determine the impact on dechlorination, fermentation, and methanogenesis. The community was capable of fermenting organics (e.g., diethylene glycol butyl ether) in all AFFF formulations to hydrogen and acetate, but the product concentrations varied significantly according to formulation. TCE was dechlorinated in the presence of an AFFF formulation manufactured by 3M but was not dechlorinated in the presence of formulations from two other manufacturers. Experiments amended with AFFF-derived PFASs and perfluoroalkyl acids (PFAAs) indicated that dechlorination could be inhibited by PFASs but that the inhibition depends on surfactant concentration and structure. This study revealed that the fermentable components of AFFF can stimulate TCE dechlorination, while some of the fluorinated compounds in certain AFFF formulations can inhibit dechlorination.

  9. Dechlorinating ability of TCE-fed microcosms with different electron donors

    International Nuclear Information System (INIS)

    Panagiotakis, Iraklis; Mamais, Daniel; Pantazidou, Marina; Marneri, Matina; Parapouli, Maria; Hatziloukas, Efstathios; Tandoi, Valter

    2007-01-01

    The main objective of the work presented herein is to assess the effect of different electron donors (butyric acid and methanol) on the dechlorinating activity of two microbial cultures where active methanogenic populations are present, in an effort to evaluate the importance of the electron donor selection process. The ability of each anaerobic culture to dechlorinate TCE, when enriched with either butyric acid or methanol, was verified based on the results of gas chromatography. In addition, the fluorescent in situ hybridization (FISH) and the polymerase chain reaction (PCR) methods gave positive results for the presence of Dehalococcoides spp. According to results of the batch tests conducted in this study, it appears that the selection of the electron donor for stimulating TCE dechlorination depends on microbial culture composition; therefore, the decision on the appropriate electron donor should be based on site-specific microcosm studies

  10. Human meniscal proteoglycan metabolism in long-term tissue culture

    NARCIS (Netherlands)

    Verbruggen, G.; Verdonk, R.; Veys, E. M.; van Daele, P.; de Smet, P.; van den Abbeele, K.; Claus, B.; Baeten, D.

    1996-01-01

    For the purpose of human meniscal allografting, menisci have been maintained viable in in vitro culture. The influence of long-term tissue culture on the extracellular matrix metabolism of the meniscus has been studied. Fetal calf serum (FCS) was used as a supplement for the growth factors necessary

  11. Dechlorination of PCB by radiation

    International Nuclear Information System (INIS)

    Shinozaki, Yoshiharu

    1978-01-01

    On the PCB poisoning accident in Japan occurred in 1968, Tokyo Metropolitan Isotope Research Center started to investigate the decomposition of PCB (polychlorinated biphenyl) on the request of Metropolitan government. The research center has found that if PCB is dissolved or extracted in alkaline 2-propanol solution and then irradiated with γ-ray, PCB is dechlorinated in chain-reactive manner, and biphenyl and salts (KCl or NaCl) are formed. Afterwards, it has been found that photolysis has also similar effect on PCB. Then, the basic design of a disposal pilot plant using ultraviolet ray and its economic evaluation have been performed, which is composed of photolysis reaction process, refining process and waste disposal process. However, its disposal cost only has reached the value three times as high as that of incineration process. If this is conducted by radiolysis, its disposal cost can be reduced to about 1/12 of that of ultraviolet ray system when an electron accelerator is employed. Cs-137 source gives better results than Co-60. Dechlorination process of PCB has been thus established. Further reduction of total cost will be the keypoint of radiolysis system to be adopted. If the application of electron accelerators to sludge treatment in the future, the effective use of recovered products, and the possibility of using Cs-137 large sources are considered, it is expected that the disposal cost of radiolysis process system becomes comparable with the incineration process. (Wakatsuki, Y.)

  12. Dechlorination of TCE with palladized iron

    Science.gov (United States)

    Fernando, Quintus; Muftikian, Rosy; Korte, Nic

    1997-01-01

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds.

  13. Glucose metabolism in cultured trophoblasts from human placenta

    International Nuclear Information System (INIS)

    Moe, A.J.; Farmer, D.R.; Nelson, D.M.; Smith, C.H.

    1990-01-01

    The development of appropriate placental trophoblast isolation and culture techniques enables the study of pathways of glucose utilization by this important cell layer in vitro. Trophoblasts from normal term placentas were isolated and cultured 24 hours and 72 hours in uncoated polystyrene culture tubes or tubes previously coated with a fibrin matrix. Trophoblasts cultured on fibrin are morphologically distinct from those cultured on plastic or other matrices and generally resemble in vivo syncytium. Cells were incubated up to 3 hours with 14 C-labeled glucose and reactions were stopped by addition of perchloric acid. 14 CO 2 production by trophoblasts increased linearly with time however the largest accumulation of label was in organic acids. Trophoblasts cultured in absence of fibrin utilized more glucose and accumulated more 14 C in metabolic products compared to cells cultured on fibrin. Glucose oxidation to CO 2 by the phosphogluconate (PG) pathway was estimated from specific yields of 14 CO 2 from [1- 14 C]-D-glucose and [6- 14 C]-D-glucose. Approximately 6% of glucose oxidation was by the PG pathway when cells were cultured on fibrin compared to approximately 1% by cells cultured in the absence of fibrin. The presence of a fibrin growth matrix appears to modulate the metabolism of glucose by trophoblast from human placenta in vitro

  14. Norepinephrine metabolism in neuronal cultures is increased by angiotensin II

    International Nuclear Information System (INIS)

    Sumners, C.; Shalit, S.L.; Kalberg, C.J.; Raizada, M.K.

    1987-01-01

    In this study the authors have examined the actions of angiotensin II (ANG II) on catecholamine metabolism in neuronal brain cell cultures prepared from the hypothalamus and brain stem. Neuronal cultures prepared from the brains of 1-day-old Sprague-Dawley rats exhibit specific neuronal uptake mechanisms for both norepinephrine (NE) and dopamine (DA), and also monoamine oxidase (MAO) and catechol O-methyltransferase (COMT) activity. Separate neuronal uptake sites for NE and DA were identified by using specific neuronal uptake inhibitors for each amine. In previous studies, they determined that ANG II (10 nM-1 μM) stimulates increased neuronal [ 3 H]NE uptake by acting as specific receptors. They have confirmed these results here and in addition have shown that ANG II has not significant effects on neuronal [ 3 H]DA uptake. These results suggest that the actions of ANG II are restricted to the NE transporter in neuronal cultures. It is possible that ANG II stimulates the intraneuronal metabolism of at least part of the NE that is taken up, because the peptide stimulates MAO activity, an effect mediated by specific ANG II receptors. ANG II had no effect on COMT activity in neuronal cultures. Therefore, the use of neuronal cultures of hypothalamus and brain stem they have determined that ANG II can specifically alter NE metabolism in these areas, while apparently not altering DA metabolism

  15. Dechlorinating reaction of organic chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Yahata, Taneaki; Kihara, Shinji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Ohuchi, Misao

    1996-06-01

    Dechlorination has been examined by the reaction between iron, aluminum powder or CaO and organic chlorides such as C{sub 2}HCl{sub 3} and CH{sub 2}Cl{sub 2}. Progress of the reaction was analyzed with mass spectrometer. The reaction between iron and organic chloride was rapidly occurred at the temperature between 350 and 440degC in an atmosphere of argon. Above 380degC, more than 99.5% of C{sub 2}HCl{sub 3} was decomposed within approximately 100 minutes. At 440degC, approximately 60% of C{sub 2}HCl{sub 3} was decomposed by the reaction with aluminium powder within approximately 100 minutes. At 440degC, reaction between C{sub 2}HCl{sub 3} and CaO powder were occurred rapidly in an atmosphere of argon to form CaCl{sub 2} and free carbon. Also in an atmosphere of air, nearly the same result was obtained. In this reaction, CaCl{sub 2}, CO and CO{sub 2} were formed. CH{sub 2}Cl{sub 2} was also decomposed by the reaction with iron at the temperature between 380 and 440degC. In the reaction, FeCl{sub 2}, carbon and hydrogen were formed. CH{sub 3}{sup +} and CH{sub 4} were observed during the dechlorinating reaction of CH{sub 2}Cl{sub 2}. Variation in particle size of iron powder such as 100, 150 and 250 mesh did not affect the reaction rate. (author)

  16. Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures

    Directory of Open Access Journals (Sweden)

    Reis Maria AM

    2008-07-01

    Full Text Available Abstract Background This paper presents a metabolic model describing the production of polyhydroxyalkanoate (PHA copolymers in mixed microbial cultures, using mixtures of acetic and propionic acid as carbon source material. Material and energetic balances were established on the basis of previously elucidated metabolic pathways. Equations were derived for the theoretical yields for cell growth and PHA production on mixtures of acetic and propionic acid as functions of the oxidative phosphorylation efficiency, P/O ratio. The oxidative phosphorylation efficiency was estimated from rate measurements, which in turn allowed the estimation of the theoretical yield coefficients. Results The model was validated with experimental data collected in a sequencing batch reactor (SBR operated under varying feeding conditions: feeding of acetic and propionic acid separately (control experiments, and the feeding of acetic and propionic acid simultaneously. Two different feast and famine culture enrichment strategies were studied: (i either with acetate or (ii with propionate as carbon source material. Metabolic flux analysis (MFA was performed for the different feeding conditions and culture enrichment strategies. Flux balance analysis (FBA was used to calculate optimal feeding scenarios for high quality PHA polymers production, where it was found that a suitable polymer would be obtained when acetate is fed in excess and the feeding rate of propionate is limited to ~0.17 C-mol/(C-mol.h. The results were compared with published pure culture metabolic studies. Conclusion Acetate was more conducive toward the enrichment of a microbial culture with higher PHA storage fluxes and yields as compared to propionate. The P/O ratio was not only influenced by the selected microbial culture, but also by the carbon substrate fed to each culture, where higher P/O ratio values were consistently observed for acetate than propionate. MFA studies suggest that when mixtures of

  17. Factors Influencing TCE Anaerobic Dechlorination Investigated via Simulations of Microcosm Experiments

    Science.gov (United States)

    Mao, X.; Harkness, M.; Lee, M. D.; Mack, E. E.; Dworatzek, S.; Acheson, C.; McCarty, P.; Barry, D. A.; Gerhard, J. I.

    2006-12-01

    SABRE (Source Area BioREmediation) is a public-private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The focus of this 4-year, $5.7 million research project is a field site in the United Kingdom containing a TCE DNAPL source area. In preparation, a microcosm study was performed to determine the optimal combination of factors to support reductive dechlorination of TCE in site soil and groundwater. The study consisted of 168 bottles distributed between four laboratories (Dupont, GE, SiREM, and Terra Systems) and tested the impact of six carbon substrates (lactate, acetate, methanol, SRS (soybean oil), hexanol, butyl acetate), bioaugmentation with KB-1 bacterial culture, three TCE levels (100 mg/L, 400 mg/L, and 800 mg/L) and two sulphate levels (200 mg/L, >500 mg/L) on TCE dechlorination. This research presents a numerical model designed to simulate the main processes occurring in the microcosms, including substrate fermentation, sequential dechlorination, toxic inhibition, and the influence of sulphate concentration. In calibrating the model to over 60 of the microcosm experiments, lumped parameters were employed to quantify the effect of key factors on the conversion rate of each chlorinated ethene in the TCE degradation sequence. Results quantify the benefit (i.e., increased stepwise dechlorination rate) due to both bioaugmentation and the presence of higher sulphate concentrations. Competitive inhibition is found to increase in significance as TCE concentrations increase; however, inclusion of Haldane inhibition is not supported. Over a wide range of experimental conditions and dechlorination steps, SRS appears to induce relatively little hydrogen limitation, thereby facilitating relatively quick conversion of TCE to ethene. In general, hydrogen limitation is found to increase with increasing TCE concentration and with bioaugmentation, and

  18. PCB dechlorination in anaerobic soil slurry reactors

    International Nuclear Information System (INIS)

    Klasson, K.T.; Evans, B.S.

    1993-01-01

    Many industrial locations, including the US Department of Energy's, have identified needs for treatment of polychlorinated biphenyl (PCB) wastes and remediation of PCB-contaminated sites. Biodegradation of PCBs is a potentially effective technology for the treatment of PCB-contaminated soils and sludges, including mixed wastes; however, a practical remediation technology has not yet been demonstrated. In laboratory experiments, soil slurry bioreactors inoculated with microorganisms extracted from PCB-contaminated sediments from the Hudson River have been used to obtain anaerobic dechlorination of PCBS. The onset of dechlorination activity can be accelerated by addition of nutritional amendments and inducers. After 15 weeks of incubation with PCB-contaminated soil and nutrient solution, dechlorination has been observed under several working conditions. The best results show that the average chlorine content steadily dropped from 4.3 to 3.5 chlorines per biphenyl over a 15-week period

  19. Metabolic Profile of Pancreatic Acinar and Islet Tissue in Culture

    Science.gov (United States)

    Suszynski, Thomas M.; Mueller, Kathryn; Gruessner, Angelika C.; Papas, Klearchos K.

    2016-01-01

    The amount and condition of exocrine impurities may affect the quality of islet preparations especially during culture. In this study, the objective was to determine the oxygen demandand viability of islet and acinar tissue post-isolation and whether they change disproportionately while in culture. We compare the OCR normalized to DNA (OCR/DNA, a measure of fractional viability in units nmol/min/mg DNA), and percent change in OCR and DNA recoveries between adult porcine islet and acinar tissue from the same preparation (paired) over a 6-9 days of standard culture. Paired comparisons were done to quantify differences in OCR/DNA between islet and acinar tissue from the same preparation, at specified time points during culture; the mean (± standard error) OCR/DNA was 74.0 (±11.7) units higher for acinar (vs. islet) tissue on the day of isolation (n=16, p<0.0001), but 25.7 (±9.4) units lower after 1 day (n=8, p=0.03), 56.6 (±11.5) units lower after 2 days (n=12, p=0.0004), and 65.9 (±28.7) units lower after 8 days (n=4, p=0.2) in culture. DNA and OCR recoveries decreased at different rates for acinar versus islet tissue over 6-9 days in culture (n=6). DNA recovery decreased to 24±7% for acinar and 75±8% for islets (p=0.002). Similarly, OCR recovery decreased to 16±3% for acinar and remained virtually constant for islets (p=0.005). Differences in the metabolic profile of acinarand islet tissue should be considered when culturing impure islet preparations. OCR-based measurements may help optimize pre-IT culture protocols. PMID:25131082

  20. Evaluation of biodegradable plastics as solid hydrogen donors for the reductive dechlorination of fthalide by Dehalobacter species.

    Science.gov (United States)

    Yoshida, Naoko; Ye, Lizhen; Liu, Fengmao; Li, Zhiling; Katayama, Arata

    2013-02-01

    Biodegradable plastics (BPs) were evaluated for their applicability as sustainable and solid H(2) donors for microbial reductive dechlorination of 4,5,6,7-tetrachlorophthalide (fthalide). After a screening test of several BPs, the starch-based plastic (SP) that produced the highest levels of H(2) was selected for its use as the sole H(2) donor in this reaction. Fthalide dechlorination was successfully accomplished by combining an H(2)-producing SP culture and a KFL culture containing Dehalobacter species, supplemented with 0.13% and 0.5% SP, respectively. The efficiency of H(2) use in dechlorination was evaluated in a combined culture containing the KFL culture and strain Clostridium sp. Ma13, a new isolate that produces H(2) from SP. Results obtained with this culture indicated increased H(2)-fraction for fthalide dechlorination much more in this culture than in compared with a KFL culture supplemented with 20mM lactate, which are 0.75 H(2)·glucose(-1) and 0.015 H(2)·lactate(-1) in mol ratio, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Metabolism of Mannose in Cultured Primary Rat Neurons.

    Science.gov (United States)

    Rastedt, Wiebke; Blumrich, Eva-Maria; Dringen, Ralf

    2017-08-01

    Glucose is the main peripheral substrate for energy production in the brain. However, as other hexoses are present in blood and cerebrospinal fluid, we have investigated whether neurons have the potential to metabolize, in addition to glucose, also the hexoses mannose, fructose or galactose. Incubation of primary cerebellar granule neurons in the absence of glucose caused severe cell toxicity within 24 h, which could not be prevented by application of galactose or fructose, while the cells remained viable during incubation in the presence of either mannose or glucose. In addition, cultured neurons produced substantial and almost identical amounts of lactate after exposure to either glucose or mannose, while lactate production was low in the presence of fructose and hardly detectable during incubations without hexoses or with galactose as carbon source. Determination of the K M values of hexokinase in lysates of cultured neurons for the hexoses revealed values in the micromolar range for mannose (32 ± 2 µM) and glucose (59 ± 10 µM) and in the millimolar range for fructose (4.4 ± 2.3 mM), demonstrating that mannose is efficiently phosphorylated by neuronal hexokinase. Finally, cultured neurons contained reasonable specific activity of the enzyme phosphomannose isomerase, which is required for isomerization of the hexokinase product mannose-6-phosphate into the glycolysis intermediate fructose-6-phosphate. These data demonstrate that cultured cerebellar granule neurons have the potential and express the required enzymes to efficiently metabolize mannose, while galactose and fructose serve at best poorly as extracellular carbon sources for neurons.

  2. EFFECTS OF REACTOR CONDITIONS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODE.

    Science.gov (United States)

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...

  3. MODELING THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE IN A GRANULAR GRAPHITE-PACKED REACTOR

    Science.gov (United States)

    A comprehensive reactor model was developed for the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite cathode. The reactor model describes the dynamic processes of TCE dechlorination and adsorption, and the formation and dechlorination of all the major...

  4. Carbon, Chlorine, and Hydrogen Isotope Fractionation in Transformation of TCE to Ethene by a Dehalococcoides Culture

    NARCIS (Netherlands)

    Kuder, T.; van Breukelen, B.M.; Vanderford, M.; Philip, P.

    2013-01-01

    Carbon (C), chlorine (Cl), and hydrogen (H) isotope effects were determined during dechlorination of TCE to ethene by a mixed Dehalococcoides (Dhc) culture. The C isotope effects for the dechlorination steps were consistent with data published in the past for reductive dechlorination (RD) by Dhc.

  5. Metabolism of dimethylnitrosamine and 1,2-dimethylhydrazine in cultured human bronchi

    DEFF Research Database (Denmark)

    Harris, Curtis C.; Autrup, Herman; Stoner, Gary D.

    1977-01-01

    The metabolic activation of several chemical classes of procarcinogens is being studied in cultured human bronchi. Previous studies have shown that carcinogenic polynuclear aromatic hydrocarbons are metabolically activated by the bronchial epithelium. In the study reported here, dimethylnitrosami...

  6. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions

    International Nuclear Information System (INIS)

    Freedman, D.L.; Gossett, J.M.

    1989-01-01

    A biological process for remediation of groundwater contaminated with tetrachloroethylene (PCE) and trichloroethylene (TCE) can only be applied if the transformation products are environmentally acceptable. Studies with enrichment cultures of PCE- and TCE-degrading microorganisms provide evidence that, under methanogenic conditions, mixed cultures are able to completely dechlorinate PCE and TCE to ethylene, a product which is environmentally acceptable. Radiotracer studies with [ 14 C]PCE indicated that [ 14 C]ethylene was the terminal product; significant conversion to 14 CO 2 or 14 CH 4 was not observed. The rate-limiting step in the pathway appeared to be conversion of vinyl chloride to ethylene. To sustain reductive dechlorination of PCE and TCE, it was necessary to supply an electron donor; methanol was the most effective, although hydrogen, formate, acetate, and glucose also served. Studies with the inhibitor 2-bromoethanesulfonate suggested that methanogens played a key role in the observed biotransformations of PCE and TCE

  7. Metabolism of 4-nitrobiphenyl (NBP) by cultured rat urothelial cells

    International Nuclear Information System (INIS)

    Swaminathan, S.; Lang, D.B.; Reznikoff, C.A.

    1986-01-01

    The potential of rat urothelial cells to metabolize NBP was evaluated by incubating 4.3 x 10 7 viable cells with 20 μM [ 3 H]NBP in a serum free medium for 48 hours. The culture medium was examined for metabolites of NBP by extraction with ethyl acetate and subsequent chromatographic analysis. High pressure liquid chromatography of the solvent extract using a Whatman ODS-3, C-18 column in 70% methanol-water at a flow rate of 1 ml/min revealed two major peaks at retention times of approximately 8 and 13 min. Thin layer chromatography showed two regions of radioactivity at Rf values of 0.35 and 0.83, the latter corresponding with NBP. Based on the chromatographic data the metabolite with the retention time of 8.0 min in HPLC and an Rf of 0.35 in TLC has been tentatively identified as 4-acetylaminobiphenyl. Analysis of binding to proteins and nucleic acids following exposure to [ 3 H]NBP revealed a significant amount (0.03% of initially applied radioactivity) in the protein fractions. Control samples of NBP incubated in medium, without the urothelial cells revealed only the parent compound. These data suggest that rat bladder cells possess the metabolic capability to reduce NBP and to generate reactive metabolites that bind to cellular macromolecules

  8. Microbial dechlorination activity during and after chemical oxidant treatment

    Energy Technology Data Exchange (ETDEWEB)

    Doğan-Subaşı, Eylem [Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol (Belgium); Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent (Belgium); Bastiaens, Leen, E-mail: leen.bastiaens@vito.be [Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol (Belgium); Boon, Nico [Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent (Belgium); Dejonghe, Winnie [Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol (Belgium)

    2013-11-15

    Highlights: • Combined treatment was possible below 0.5 g/L of KMnO{sub 4} and 1 g/L of Na{sub 2}S{sub 2}O{sub 8}. • By-products SO{sub 4}{sup 2−} and MnO{sub 2(s)} had inhibitory effects on dehalogenating bacteria. • Oxidation reduction potential (ORP) was identified as a crucial parameter for recovery of oxidant exposed cells. • Bioaugmentation is a necessity at 0.5 g/L of KMnO{sub 4} and 1 g/L of Na{sub 2}S{sub 2}O{sub 8} and above. -- Abstract: Potassium permanganate (PM) and sodium persulfate (PS) are used in soil remediation, however, their compatibility with a coinciding or subsequent biotreatment is poorly understood. In this study, different concentrations of PM (0.005–2 g/L) and PS (0.01–4.52 g/L) were applied and their effects on the abundance, activity, and reactivation potential of a dechlorinating enrichment culture were investigated. Expression of the tceA, vcrA and 16S rRNA genes of Dehalococcoides spp. were detected at 0.005–0.01 g/L PM and 0.01–0.02 g/L PS. However, with 0.5–2 g/L PM and 1.13–4.52 g/L PS no gene expression was recorded, neither were indicator molecules for total cell activity (Adenosine triphosphate, ATP) detected. Dilution did not promote the reactivation of the microbial cells when the redox potential was above −100 mV. Similarly, inoculated cells did not dechlorinate trichloroethene (TCE) above −100 mV. When the redox potential was decreased to −300 mV and the reactors were bioaugmented for a second time, dechlorination activity recovered, but only in the reactors with 1.13 and 2.26 g/L PS. In conclusion, our results show that chemical oxidants can be combined with a biotreatment at concentrations below 0.5 g/L PM and 1 g/L PS.

  9. Interspecies differences in metabolism of arsenic by cultured primary hepatocytes

    International Nuclear Information System (INIS)

    Drobna, Zuzana; Walton, Felecia S.; Harmon, Anne W.; Thomas, David J.; Styblo, Miroslav

    2010-01-01

    Biomethylation is the major pathway for the metabolism of inorganic arsenic (iAs) in many mammalian species, including the human. However, significant interspecies differences have been reported in the rate of in vivo metabolism of iAs and in yields of iAs metabolites found in urine. Liver is considered the primary site for the methylation of iAs and arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in this pathway. Thus, the As3mt-catalyzed methylation of iAs in the liver determines in part the rate and the pattern of iAs metabolism in various species. We examined kinetics and concentration-response patterns for iAs methylation by cultured primary hepatocytes derived from human, rat, mice, dog, rabbit, and rhesus monkey. Hepatocytes were exposed to [ 73 As]arsenite (iAs III ; 0.3, 0.9, 3.0, 9.0 or 30 nmol As/mg protein) for 24 h and radiolabeled metabolites were analyzed in cells and culture media. Hepatocytes from all six species methylated iAs III to methylarsenic (MAs) and dimethylarsenic (DMAs). Notably, dog, rat and monkey hepatocytes were considerably more efficient methylators of iAs III than mouse, rabbit or human hepatocytes. The low efficiency of mouse, rabbit and human hepatocytes to methylate iAs III was associated with inhibition of DMAs production by moderate concentrations of iAs III and with retention of iAs and MAs in cells. No significant correlations were found between the rate of iAs methylation and the thioredoxin reductase activity or glutathione concentration, two factors that modulate the activity of recombinant As3mt. No associations between the rates of iAs methylation and As3mt protein structures were found for the six species examined. Immunoblot analyses indicate that the superior arsenic methylation capacities of dog, rat and monkey hepatocytes examined in this study may be associated with a higher As3mt expression. However, factors other than As3mt expression may also contribute to the interspecies differences

  10. Performance of full scale enhanced reductive dechlorination in clay till

    DEFF Research Database (Denmark)

    Damgaard, Ida; Bjerg, Poul Løgstrup; Jacobsen, Carsten S.

    2013-01-01

    At a low permeability clay till site contaminated with chlorinated ethenes (Gl. Kongevej, Denmark), enhanced reductive dechlorination (ERD) was applied by direct push injection of molasses and dechlorinating bacteria. The performance was investigated by long-term groundwater monitoring, and after 4...

  11. ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODES

    Science.gov (United States)

    Electrochemical dechlorination of TCE was conducted in a glass column using granular graphite as electrodes. A constant voltage of 15 volt was applied resulting in 60-62 mA of current. Approximately 4-6% of the TCE was dechlorinated. Among the reduced TCE, more than 95% was compl...

  12. Dechlorination of hexachlorobenzene using ultrafine Ca-Fe composite oxides

    International Nuclear Information System (INIS)

    Ma Xiaodong; Zheng Minghui; Liu Wenbin; Qian Yong; Zhang Bing; Liu Wenxia

    2005-01-01

    Ca-Fe composite oxides with different Ca/Fe atomic ratios were synthesized by co-precipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy with elemental X-ray analysis (SEM-EDX) and inductively coupled plasma optical emission spectrometer (ICP-OES). Their dechlorination activities were evaluated using hexachlorobenzene (HCB) as a model compound. The results indicate that the dechlorination activity is related to the composition of metal oxides. Different compositions lead to the formation of different phases of Ca-Fe composite oxides. When Ca/Fe atomic ratio was 3.4, the dechlorination activity reached 97%, which was the highest in the dechlorination of HCB at 300 deg. C for 0.5 h. This may be related to the formation of Ca 2 Fe 2 O 5 phase and small agglomerate size of oxide crystal of about 1 μm. The effect of reaction time on HCB dechlorination and the pathway of dechlorination were investigated using the Ca-Fe composite oxide with the highest activity. It was found that hydrodechlorination took place in the destruction of HCB, the dechlorination efficiency is almost 100% after 2 h reaction. After reaction, quantitative measurement of chloride ion and qualitative analysis of CaCO 3 indicate besides hydrodechlorination, other degradation routes may be present. The mechanism of synergic dechlorination using Ca-Fe composite oxides was discussed

  13. Dechlorination kinetics of TCE at toxic TCE concentrations: Assessment of different models.

    Science.gov (United States)

    Haest, P J; Springael, D; Smolders, E

    2010-01-01

    The reductive dechlorination of trichloroethene (TCE) in a TCE source zone can be self-inhibited by TCE toxicity. A study was set up to examine the toxicity of TCE in terms of species specific degradation kinetics and microbial growth and to evaluate models that describe this self-inhibition. A batch experiment was performed using the TCE dechlorinating KB-1 culture at initial TCE concentrations ranging from 0.04mM to saturation (8.4mM). Biodegradation activity was highest at 0.3mM TCE and no activity was found at concentrations from 4 to 8mM. Species specific TCE and cis-DCE (cis-dichloroethene) degradation rates and Dehalococcoides numbers were modeled with Monod kinetics combined with either Haldane inhibition or a log-logistic dose-response inhibition on these rates. The log-logistic toxicity model appeared the most appropriate model and predicts that the species specific degradation activities are reduced by a factor 2 at about 1mM TCE, respectively cis-DCE. However, the model showed that the inhibitive effects on the time for TCE to ethene degradation are a complex function of degradation kinetics and the initial cell densities of the dechlorinating species. Our analysis suggests that the self-inhibition on biodegradation cannot be predicted by a single concentration threshold without information on the cell densities.

  14. The metabolism of malate by cultured rat brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, M.C.; Tildon, J.T.; Couto, R.; Stevenson, J.H.; Caprio, F.J. (Department of Pediatrics, University of Maryland School of Medicine, Baltimore (USA))

    1990-12-01

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-(U-14C)malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain.

  15. NUTRITION AND FITNESS: CULTURAL, GENETIC AND METABOLIC ASPECTS

    Directory of Open Access Journals (Sweden)

    Artemis P. Simopoulos

    2008-12-01

    Full Text Available Selected Proceedings of the International Congress and Exhibition on Nutrition, Fitness and Health, Shanghai, November 30 to December 2, 2006 The book presents selected papers from the International Congress and Exhibition on Nutrition, Fitness and Health held in Shanghai, China from November 30 to December 2, 2006. PURPOSE This volume is designed to update interested parties on the nutrition and fitness issues from the cultural, genetic and metabolic point of views. FEATURES The book starts with a keynote presentation on nutrition, fitness and the concept of positive health from ancient times to the present. Subsequently papers focusing on the role of omega-3 and omega-6 fatty acids in health and disease follow. Other topics addressed are non-conventional genetic risk factors for cardiovascular disease; the impact of the APO E genotype on health, nutrition and fitness; nutrition in the prevention of chronic disease; and, the connection between exercise and obesity. The formation is concluded by the papers on nutritional risk factors for gastrointestinal cancers, Mediterranean diets as a global resource in health and disease, and the role of politics and politicians on the relevant issues. AUDIENCE Obviously; dieticians, nutritionists, geneticists and exercise physiologists will be interested in these proceedings since the book covers broadly their field. Then again; health care providers, historians, general practitioners and scientists in industry and government might benefit as well. ASSESSMENT It is safe to say that this volume represent a helpful source for anybody who is involved with Nutrition, Fitness and Health in one way or another

  16. The Cultural Divide: Exponential Growth in Classical 2D and Metabolic Equilibrium in 3D Environments

    DEFF Research Database (Denmark)

    Wrzesinski, Krzysztof; Rogowska-Wrzesinska, Adelina; Kanlaya, Rattiyaporn

    2014-01-01

    Introduction: Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular architecture at these two extremes and found that they are dram......Introduction: Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular architecture at these two extremes and found...... that they are dramatically different. Results: Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved...

  17. Reductive Dechlorination of Polychlorinated Biphenyls in Marine Sediments

    National Research Council Canada - National Science Library

    Sowers, Kevin

    1999-01-01

    ... Community by Comparative Sequence Analysis of Genes Coding for 16S rRNA, Microbial Reductive Dechlorination of Aroclor 1260 in Anaerobic Slurries of Estuarine Sediments, Differential RFLP patterns of PCR...

  18. Improving lactate metabolism in an intensified CHO culture process: productivity and product quality considerations.

    Science.gov (United States)

    Xu, Sen; Hoshan, Linda; Chen, Hao

    2016-11-01

    In this study, we discussed the development and optimization of an intensified CHO culture process, highlighting medium and control strategies to improve lactate metabolism. A few strategies, including supplementing glucose with other sugars (fructose, maltose, and galactose), controlling glucose level at Productivity and product quality attributes differences between batch, fed-batch, and concentrated fed-batch cultures were discussed. The importance of process and cell metabolism understanding when adapting the existing process to a new operational mode was demonstrated in the study.

  19. Metabolism of acyclic and cyclic N-nitroamines by cultured human colon

    DEFF Research Database (Denmark)

    Autrup, Herman; Harris, Curtis C.; Trump, Benjamin F.

    1978-01-01

    Cultured human colon mucosa was found to metabolize both acyclic and cyclic N-nitrosamines as measured by 14C-CO2 formation and reaction of the activated moieties with cellular macromolecules. Dimethylnitrosamine and N-nitrosopyrrolidine were metabolized by explants from all patients studied. A p...

  20. Dechlorination of PCBs in the rhizosphere of switchgrass and poplar

    International Nuclear Information System (INIS)

    Meggo, Richard E.; Schnoor, Jerald L.; Hu, Dingfei

    2013-01-01

    Polychlorinated biphenyl (PCB) congeners (PCB 52, 77, and 153) singly and in mixture were spiked and aged in soil microcosms and subsequently planted with switchgrass (Panicum virgatum) or poplar (Populus deltoids x nigra DN34). The planted reactors showed significantly greater reductions in PCB parent compounds when compared to unplanted systems after 32 weeks. There was evidence of reductive dechlorination in both planted and unplanted systems, but the planted microcosms with fully developed roots and rhizospheres showed greater biotransformation than the unplanted reactors. These dechlorination products accounted for approximately all of the molar mass of parent compound lost. Based on the transformation products, reductive dechlorination pathways are proposed for rhizospheric biotransformation of PCB 52, 77, and 153. This is the first report of rhizosphere biotransformation pathways for reductive dechlorination in marginally aerobic, intermittently flooded soil as evidenced by a mass balance on transformation products. -- Highlights: •Soil was spiked and aged and then planted with poplar and switchgrass. •Planted microcosms showed significant reductive dechlorination and greater biotransformation than unplanted reactor. •Rhizospheric reductive dechlorination pathways are proposed. -- This study provides insight into rhizospheric transformation of PCBs

  1. Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    De, Supriyo; Perkins, Michael; Dutta, Sisir K.

    2006-01-01

    Polychlorobiphenyl (PCB) degradation usually occurs through reductive dechlorination under anaerobic conditions and phenolic ring cleavage under aerobic conditions. In this paper, we provide evidence of nitrate reductase (NaR) mediated dechlorination of hexachlorobiphenyl (PCB-153) in Phanerochaete chrysosporium under non-ligninolytic condition and the gene involved. The NaR enzyme and its cofactor, molybdenum (Mo), were found to mediate reductive dechlorination of PCBs even in aerobic condition. Tungsten (W), a competitive inhibitor of this enzyme, was found to suppress this dechlorination. Chlorine release assay provided further evidence of this nitrate reductase mediated dechlorination. Commercially available pure NaR enzyme from Aspergillus was used to confirm these results. Through homology search using TBLASTN program, NaR gene was identified, primers were designed and the RT-PCR product was sequenced. The NaR gene was then annotated in the P. chrysosporium genome (GenBank accession no. AY700576). This is the first report regarding the presence of nitrate reductase gene in this fungus with the explanation why this fungus can dechlorinate PCBs even in aerobic condition. These fungal inoculums are used commercially as pellets in sawdust for enhanced bioremediation of PCBs at the risk of depleting soil nitrates. Hence, the addition of nitrates to the pellets will reduce this risk as well as enhance its activity

  2. The cultural divide: exponential growth in classical 2D and metabolic equilibrium in 3D environments

    DEFF Research Database (Denmark)

    Carvalho, Vasco Botelho

    Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analysed the proteome and cellular architecture at these two extremes and found that they are dramatically...... different. Ultrastructurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate cycle are increased while Krebs cycle and oxidative phosphorylation is unchanged. Enzymes involved...

  3. Evaluation by mass fragmentography of metabolic pathways of endogenous and exogenous compounds in eukaryote cell cultures

    International Nuclear Information System (INIS)

    Padieu, P.; Maume, B.F.

    1977-01-01

    Carbon-14 labelled compounds in cell cultures are used to establish the interconnections between different metabolic pathways as well as the competitive action of effectors on these different pathways. Analysis was performed by the GC-MS combination. Identification was carried out by comparison with the mass spectra of d9-TMS, 35 Cl-TMS and 37 Cl-TMS derivatizations of the culture extracts. Examples are given of the metabolic study of hormonal steroids and of safrale, a carcinogenic compound, by differentiated eukaryotic cells in cultures from the rat

  4. Metabolism of pharmaceutical and personal care products by carrot cell cultures

    International Nuclear Information System (INIS)

    Wu, Xiaoqin; Fu, Qiuguo; Gan, Jay

    2016-01-01

    With the increasing use of treated wastewater and biosolids in agriculture, residues of pharmaceutical and personal care products (PPCPs) in these reused resources may contaminate food produce via plant uptake, constituting a route for human exposure. Although various PPCPs have been reported to be taken up by plants in laboratories or under field conditions, at present little information is available on their metabolism in plants. In this study, we applied carrot cell cultures to investigate the plant metabolism of PPCPs. Five phase I metabolites of carbamazepine were identified and the potential metabolism pathways of carbamazepine were proposed. We also used the carrot cell cultures as a rapid screening tool to initially assess the metabolism potentials of 18 PPCPs. Eleven PPCPs, including acetaminophen, caffeine, meprobamate, primidone, atenolol, trimethoprim, DEET, carbamazepine, dilantin, diazepam, and triclocarban, were found to be recalcitrant to metabolism. The other 7 PPCPs, including triclosan, naproxen, diclofenac, ibuprofen, gemfibrozil, sulfamethoxazole, and atorvastatin, displayed rapid metabolism, with 0.4–47.3% remaining in the culture at the end of the experiment. Further investigation using glycosidase hydrolysis showed that 1.3–20.6% of initially spiked naproxen, diclofenac, ibuprofen, and gemfibrozil were transformed into glycoside conjugates. Results from this study showed that plant cell cultures may be a useful tool for initially exploring the potential metabolites of PPCPs in plants as well as for rapidly screening the metabolism potentials of a variety of PPCPs or other emerging contaminants, and therefore may be used for prioritizing compounds for further comprehensive evaluations. - Highlights: • Five phase I metabolites of carbamazepine were identified in carrot cell cultures. • The metabolism potentials of 18 PPCPs were evaluated using carrot cell cultures. • Four PPCPs may partially form glycoside conjugates as phase II

  5. IDENTIFICATION OF CHLOROMETHANE FORMATION PATHS DURING ELECTROCHEMICAL DECHLORINATION OF TCE USING GRAPHITE ELECTRODES

    Science.gov (United States)

    The purpose of this research is to investigate the formation of chloromethane during TCE dechlorination in a mixed electrochemical reactor using graphite electrodes. Chloromethane was the major chlorinated organic compound detected in previous dechlorination experiments. In order...

  6. IDENTIFICATION OF CHLOROMETHANE FROMATION PATHS DURING ELECTROCHEMICAL DECHLORINATION OF TCE USING GRAPHITE ELECTRODES

    Science.gov (United States)

    The purpose of this research is to investigate the formation of chloromethane during TCE dechlorination in a mixed electrochemical reactor using graphite electrodes. Chloromethane was the major chlorinated organic compound detected in previous dechlorination experiments. In order...

  7. Reductive dechlorination of hexachlorocyclohexane (HCH) isomers in soil under anaerobic conditions

    NARCIS (Netherlands)

    Middeldorp, P.J.M.; Doesburg, van W.C.J.; Schraa, G.; Stams, A.J.M.

    2005-01-01

    The biological anaerobic reductive dechlorination of -hexachlorocyclohexane under methanogenic conditions was tested in a number of contaminated soil samples from two locations in the Netherlands. Soils from a heavily polluted location showed rapid dechlorination of -hexachlorocyclohexane to benzene

  8. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Bjerg, Poul Løgstrup; Scheutz, Charlotte

    2013-01-01

    Reductive dechlorination is a major degradation pathway of chlorinated ethenes in anaerobic subsurface environments, and reactive kinetic models describing the degradation process are needed in fate and transport models of these contaminants. However, reductive dechlorination is a complex biologi...

  9. Sugar alcohols-induced oxidative metabolism in cotton callus culture

    African Journals Online (AJOL)

    Sugar alcohols (mannitol and sorbitol) may cause oxidative damage in plants if used in higher concentration. Our present experiment was undertaken to study physiological and metabolic responses in cotton (Gossypium hirsutum L.) callus against mannitol and sorbitol higher doses. Both markedly declined mean values of ...

  10. Modular co-culture engineering, a new approach for metabolic engineering.

    Science.gov (United States)

    Zhang, Haoran; Wang, Xiaonan

    2016-09-01

    With the development of metabolic engineering, employment of a selected microbial host for accommodation of a designed biosynthetic pathway to produce a target compound has achieved tremendous success in the past several decades. Yet, increasing requirements for sophisticated microbial biosynthesis call for establishment and application of more advanced metabolic engineering methodologies. Recently, important progress has been made towards employing more than one engineered microbial strains to constitute synthetic co-cultures and modularizing the biosynthetic labor between the co-culture members in order to improve bioproduction performance. This emerging approach, referred to as modular co-culture engineering in this review, presents a valuable opportunity for expanding the scope of the broad field of metabolic engineering. We highlight representative research accomplishments using this approach, especially those utilizing metabolic engineering tools for microbial co-culture manipulation. Key benefits and major challenges associated with modular co-culture engineering are also presented and discussed. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Characterizing steady states of genome-scale metabolic networks in continuous cell cultures.

    Directory of Open Access Journals (Sweden)

    Jorge Fernandez-de-Cossio-Diaz

    2017-11-01

    Full Text Available In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.

  12. Yearly growth and metabolic changes in earthen pond-cultured meagre Argyrosomus regius

    Directory of Open Access Journals (Sweden)

    Luis Vargas-Chacoff

    2014-06-01

    Full Text Available Metabolic modifications associated with natural environmental conditions were assessed in the meagre Argyrosomus regius cultured in earthen ponds under natural photoperiod and temperature. Juvenile specimens (90-100 g initial weight were sampled (plasma, liver and muscle every two months for 18 months (between December 2004 and May 2006. Specimens showed seasonal variations in growth rate, with the highest values in spring and summer. Plasmatic, hepatic and muscular metabolite levels and hepatic and muscular metabolic enzymes also showed significant variations throughout the year. Enzymatic activity related to carbohydrate metabolism in the liver (HK, FBPase and G6PDH showed great modifications in summer, increasing glycogenogenic pathways, while amino acid metabolism (GDH and GOT activity was enhanced in spring and summer. However lipid-related (G3PDH activity metabolic enzymes did not show a clear seasonal pattern. In muscle, enzymatic activity related to amino acid, lipid and lactate metabolism (LDH-O activity, but not carbohydrate metabolism, showed seasonal changes in parallel with changes in growth rate. Thus A. regius specimens showed a trend to grow in summer months and mobilize their energy reserves in winter. Differences in the hepatic level were observed between the first and the second year of the study, suggesting the possible existence of metabolic changes related to specimen age or size. Our results indicate that growth and metabolic responses in A. regius are environmentally dependent and that this species is a very good candidate for diversification in aquaculture.

  13. Metabolic changes associated with shoot formation in tobacco callus cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grady, K.L.

    1982-08-01

    Callus tissue derived from Nicotiana tabacum L. stem pith parenchyma cells was grown either on medium which maintains the callus in an undifferentiated state, or on medium which induces the formation of shoots. Two complementary types of studies were performed with the goal of establishing metabolic markers for the initiation of shoot formation: one designed to characterize the flow of radioactive sucrose into various metabolic pools, and one which allowed measurement of intermediary metabolite concentrations. In the former, callus tissue was incubated in (U-/sup 14/C)sucrose for periods up to one hour, and patterns of metabolite labelling in tissue grown on shoot-forming and non-shoot-forming media were compared. In the latter studies, tissue was grown for an entire subculture period on non-shoot-forming medium labelled with (U-/sup 14/C)sucrose, then subcultured to labelled non-shoot-forming or shoot-forming media, and sampled at intervals during the first week of growth. 189 references.

  14. Metabolic changes associated with shoot formation in tobacco callus cultures

    International Nuclear Information System (INIS)

    Grady, K.L.

    1982-08-01

    Callus tissue derived from Nicotiana tabacum L. stem pith parenchyma cells was grown either on medium which maintains the callus in an undifferentiated state, or on medium which induces the formation of shoots. Two complementary types of studies were performed with the goal of establishing metabolic markers for the initiation of shoot formation: one designed to characterize the flow of radioactive sucrose into various metabolic pools, and one which allowed measurement of intermediary metabolite concentrations. In the former, callus tissue was incubated in [U- 14 C]sucrose for periods up to one hour, and patterns of metabolite labelling in tissue grown on shoot-forming and non-shoot-forming media were compared. In the latter studies, tissue was grown for an entire subculture period on non-shoot-forming medium labelled with [U- 14 C]sucrose, then subcultured to labelled non-shoot-forming or shoot-forming media, and sampled at intervals during the first week of growth. 189 references

  15. Metabolism of pharmaceutical and personal care products by carrot cell cultures.

    Science.gov (United States)

    Wu, Xiaoqin; Fu, Qiuguo; Gan, Jay

    2016-04-01

    With the increasing use of treated wastewater and biosolids in agriculture, residues of pharmaceutical and personal care products (PPCPs) in these reused resources may contaminate food produce via plant uptake, constituting a route for human exposure. Although various PPCPs have been reported to be taken up by plants in laboratories or under field conditions, at present little information is available on their metabolism in plants. In this study, we applied carrot cell cultures to investigate the plant metabolism of PPCPs. Five phase I metabolites of carbamazepine were identified and the potential metabolism pathways of carbamazepine were proposed. We also used the carrot cell cultures as a rapid screening tool to initially assess the metabolism potentials of 18 PPCPs. Eleven PPCPs, including acetaminophen, caffeine, meprobamate, primidone, atenolol, trimethoprim, DEET, carbamazepine, dilantin, diazepam, and triclocarban, were found to be recalcitrant to metabolism. The other 7 PPCPs, including triclosan, naproxen, diclofenac, ibuprofen, gemfibrozil, sulfamethoxazole, and atorvastatin, displayed rapid metabolism, with 0.4-47.3% remaining in the culture at the end of the experiment. Further investigation using glycosidase hydrolysis showed that 1.3-20.6% of initially spiked naproxen, diclofenac, ibuprofen, and gemfibrozil were transformed into glycoside conjugates. Results from this study showed that plant cell cultures may be a useful tool for initially exploring the potential metabolites of PPCPs in plants as well as for rapidly screening the metabolism potentials of a variety of PPCPs or other emerging contaminants, and therefore may be used for prioritizing compounds for further comprehensive evaluations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Metabolic signatures of cultured human adipocytes from metabolically healthy versus unhealthy obese individuals.

    Directory of Open Access Journals (Sweden)

    Anja Böhm

    Full Text Available Among obese subjects, metabolically healthy and unhealthy obesity (MHO/MUHO can be differentiated: the latter is characterized by whole-body insulin resistance, hepatic steatosis, and subclinical inflammation. Aim of this study was, to identify adipocyte-specific metabolic signatures and functional biomarkers for MHO versus MUHO.10 insulin-resistant (IR vs. 10 insulin-sensitive (IS non-diabetic morbidly obese (BMI >40 kg/m2 Caucasians were matched for gender, age, BMI, and percentage of body fat. From subcutaneous fat biopsies, primary preadipocytes were isolated and differentiated to adipocytes in vitro. About 280 metabolites were investigated by a targeted metabolomic approach intracellularly, extracellularly, and in plasma.Among others, aspartate was reduced intracellularly to one third (p = 0.0039 in IR adipocytes, pointing to a relative depletion of citric acid cycle metabolites or reduced aspartate uptake in MUHO. Other amino acids, already known to correlate with diabetes and/or obesity, were identified to differ between MUHO's and MHO's adipocytes, namely glutamine, histidine, and spermidine. Most species of phosphatidylcholines (PCs were lower in MUHO's extracellular milieu, though simultaneously elevated intracellularly, e.g., PC aa C32∶3, pointing to increased PC synthesis and/or reduced PC release. Furthermore, altered arachidonic acid (AA metabolism was found: 15(S-HETE (15-hydroxy-eicosatetraenoic acid; 0 vs. 120pM; p = 0.0014, AA (1.5-fold; p = 0.0055 and docosahexaenoic acid (DHA, C22∶6; 2-fold; p = 0.0033 were higher in MUHO. This emphasizes a direct contribution of adipocytes to local adipose tissue inflammation. Elevated DHA, as an inhibitor of prostaglandin synthesis, might be a hint for counter-regulatory mechanisms in MUHO.We identified adipocyte-inherent metabolic alterations discriminating between MHO and MUHO.

  17. Metabolism of acyclic and cyclic N-nitrosamines in cultured human bronchi

    DEFF Research Database (Denmark)

    Harris, Curtis C.; Autrup, Herman; Stoner, Gary D.

    1977-01-01

    The metabolism of carcinogenic N-nitrosamines was studied in normal-appearing bronchial specimens obtained from 4 patients. Explants of bronchi were cultured in a chemically defined medium for 7 days. N-Nitrosamines [N-nitrosodimethylamine (DMN), N-nitrosodiethylamine (DEN), N,N'-dinitrosopiperaz...

  18. Effect of various chemicals on the metabolism of benzo(a)pyrene by cultured rat colon

    DEFF Research Database (Denmark)

    Autrup, Herman; Harris, Curtis C.; Fugaro, Steven

    1977-01-01

    The effect of various co- and anti-carcinogens of colon carcinogenesis on the metabolism of benzo(a)pyrene (BP) in cultured rat colon is reported. Rat colon enzymatically converted BP into metabolites which bind to cellular macromolecules i.e., DNA and protein. Activity of aryl hydrocarbon...

  19. Use of plant cell cultures to study the metabolism of environmental chemicals

    International Nuclear Information System (INIS)

    Sandermann, H. Jr.; Scheel, D.; von der Trenck, T.

    1984-01-01

    The metabolism of the following environmental chemicals has been studied in cell suspension cultures of wheat (Triticum aestivum L.) and soybean (Glycine max L.):2, 4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), hexachlorobenzene, pentachlorophenol, diethylhexylphthalate , benzo [alpha] pyrene, and DDT. All chemicals tested, including the persistent ones, were partially metabolized. Polar conjugates predominated in all cases. A covalent incorporation into lignin could be demonstrated for 2,4-D and pentachlorophenol. A specific deposition in the cellular vacuole could be demonstrated for the beta-D-glucopyranoside conjugates derived from 2,4-D. A rapid assay procedure to evaluate the metabolism of a given 14 C-labeled chemical in plant cell suspension cultures is described. This procedure requires about 1 week, and the reproducibility of the results obtained has been assessed

  20. Metabolic labeling with (14C)-glucose of bloodstream and cell culture trypanosoma cruzi trypomastigotes:

    International Nuclear Information System (INIS)

    Lederkremer, R.M. de; Groisman, J.F.; Lima, C.; Katzin, A.

    1990-01-01

    Trypomastigote forms of Trypanosoma cruzi from infected mouse blood and from cell culture were metabolically labeled by incubation with D-( 14 C)-glucose. Analysis by polyacrylamide gel electrophoresis of lysates from parasites of two strains (RA and CA 1 ) showed a significantly different pattern. The difference was mainly quantitative when the blood and cell culture trypomastigotes of the RA strain were compared. Analysis of the culture medium by paper electrophoresis showed an anionic exometabolite only in the blood forms of both strains. (Author) [es

  1. Modeling of Pharmaceutical Biotransformation by Enriched Nitrifying Culture under Different Metabolic Conditions

    DEFF Research Database (Denmark)

    Xu, Yifeng; Chen, Xueming; Yuan, Zhiguo

    2018-01-01

    Pharmaceutical removal could be significantly enhanced through cometabolism during nitrification processes. To date, pharmaceutical biotransformation models have not considered the formation of transformation products associated with the metabolic type of microorganisms. Here we report a comprehe......Pharmaceutical removal could be significantly enhanced through cometabolism during nitrification processes. To date, pharmaceutical biotransformation models have not considered the formation of transformation products associated with the metabolic type of microorganisms. Here we report...... a comprehensive model to describe and evaluate the biodegradation of pharmaceuticals and the formation of their biotransformation products by enriched nitrifying cultures. The biotransformation of parent compounds was linked to the microbial processes via cometabolism induced by ammonium-oxidizing bacteria (AOB......) growth, metabolism by AOB, cometabolism by heterotrophs (HET) growth, and metabolism by HET in the model framework. The model was calibrated and validated using experimental data from pharmaceutical biodegradation experiments at realistic levels, taking two pharmaceuticals as examples, i.e., atenolol...

  2. Dechlorination of 1,2– dichloroethane by Pseudomonas aeruginosa ...

    African Journals Online (AJOL)

    As part of our attempt at isolating and stocking some indigenous microbial species, we isolated a bacterium from a waste dumpsite with appreciable dechlorination activity. 16S rDNA profiling revealed the isolate to be a strain of Pseudomonas aeruginosa and the sequence has been deposited in the NCBI nucleotide ...

  3. DDT, DDD, AND DDE DECHLORINATION BY ZERO-VALENT IRON

    Science.gov (United States)

    Traditionally, destruction of DDT [1,1,1-trichIoro-2,2-bis(p-chlorophenyl)ethane] for environmental remediation required high-energy processes such as incineration. Here, the capability of powdered zero-valent iron to dechlorinate DDT and related compounds at room tempera...

  4. Metabolic Profiling of Food Protective Cultures by in vitro NMR Spectroscopy

    DEFF Research Database (Denmark)

    Ebrahimi, Parvaneh

    Food spoilage is of major concern to the food industry, because it leads to considerable economic losses, a deteriorated environmental food-print, and to possible public health hazards. In order to limit food spoilage, research on the preservation of food products has always received particular......-called protective cultures) has unexploited potential to inhibit the growth of pathogenic microorganisms and enhance the shelf life of the final food product. In order to apply biopreservation in food products effectively, detailed knowledge on the metabolism of protective cultures is required. The present Ph......D project is mainly focused on the application of in vitro NMR spectroscopy for studying the metabolism of protective cultures. As an important part of this work, an analytical protocol was developed for realtime in vitro NMR measurements of bacterial fermentation, which includes guidelines from the sample...

  5. Explant culture of human peripheral lung. I. Metabolism of benzo[alpha]pyrene

    DEFF Research Database (Denmark)

    Stoner, G.D.; Harris, C.C.; Autrup, Herman

    1978-01-01

    the predominant alveolar epithelial cell type. Lamellar inclusion bodies were released from the type 2 cells and accumulated in the alveolar spaces. The metabolism of benzo[alpha]pyrene (BP) in human lung explants cultured for up to 7 days was investigated. Human lung explants had measurable aryl hydrocarbon......Human lung explants have been maintained in vitro for a period of 25 days. Autoradiographic studies indicated that the broncholar epithelial cells, type 2 alveolar epithelial cells, and stromal fibroblasts incorporated 3H-thymidine during the culture. After 7 to 10 days, type 2 cells were...... hydroxylase activity and could metabolize BP into forms that were bound to cellular DNA and protein. Peripheral lung had significantly lower aryl hydrocarbon hydroxylase activity than cultured bronchus but both tissues had similar binding levels of BP to DNA. Radioautographic studies indicated that all cell...

  6. Radiation dechlorination of PCE in aqueous solutions under various conditions

    International Nuclear Information System (INIS)

    Mucka, V.; Lizalova, B.; Pospisil, M.; Silber, R.; Polakova, D.

    2002-01-01

    Complete text of publication follows. Radiation technology of water purification from chlorinated compounds seems to be one of the promising method (Getoff, 1996), analogously as it was shown (Mueka et al., 2000) with radiation degradation of polychlorinated biphenyls (PCBs). A systematic study of dechlorination of tetrachloroethylene (PCE) in aqueous solutions (initial concentrations ranging from 9.2 x 10 -6 to 2.5 x 10 -4 mol dm -3 ), initiated by γ-rays of 60 Co or by accelerated electrons (EB, 4.5 MeV) in presence of various modifiers (atmospheric oxygen, N 2 O-oxide, HCO 3 - - and NO 3 - - ions as well as various pH-values), was the aim of this paper. The studies showed that both actual concentration c of PCE and radiation yield G(Cl - ) decreased rapidly with increasing dose up to the dose of 2 kGy and the degree of dechlorination raised sharply in this dose-interval. The dechlorination was slightly promoted by atmospheric oxygen. Similarly, a promotion effect was detected in the case of the PCE-solutions saturated, prior to their irradiation, with the N 2 O-oxide. On the other hand, a presence of NO 3 - - or HCO 3 - -ions in irradiated samples led to an inhibiting effect. The inhibiting effect increased markedly with increasing concentration of both at above-mentioned ions up to the concentration of about 100 mg dm -3 . A pronounced inhibition of γ-radiation dechlorination of PCE was observed in alkaline aqueous solutions. The results obtained in this paper support the idea that the radiation dechlorination of PCE in aqueous solutions proceeds via an oxidative mechanism in which the γ-irradiation was found to be more effective than the EB-irradiation

  7. Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Nehlin, Jan O; Just, Marlene; Rustan, Arild C

    2011-01-01

    Adult stem cells are known to have a finite replication potential. Muscle biopsy-derived human satellite cells (SCs) were grown at different passages and differentiated to human myotubes in culture to analyze the functional state of various carbohydrate and lipid metabolic pathways. As the prolif......Adult stem cells are known to have a finite replication potential. Muscle biopsy-derived human satellite cells (SCs) were grown at different passages and differentiated to human myotubes in culture to analyze the functional state of various carbohydrate and lipid metabolic pathways...... number and could be explained by reduced incorporation into diacyl- and triacylglycerols. The levels of long-chain acyl-CoA esters decreased with increased passage number. Late-passage, non-proliferating, myoblast cultures showed strong senescence-associated β-galactosidase activity indicating...... that the observed metabolic defects accompany the induction of a senescent state. The main function of SCs is regeneration and skeletal muscle-build up. Thus, the metabolic defects observed during aging of SC-derived myotubes could have a role in sarcopenia, the gradual age-related loss of muscle mass and strength....

  8. Effects of biochar on dechlorination of hexachlorobenzene and the bacterial community in paddy soil.

    Science.gov (United States)

    Song, Yang; Bian, Yongrong; Wang, Fang; Herzberger, Anna; Yang, Xinglun; Gu, Chenggang; Jiang, Xin

    2017-11-01

    Anaerobic reductive dechlorination is an important degradation pathway for chlorinated organic contaminants in paddy soil. This study investigated the effects of amending paddy soil with wheat straw biochar on both the dechlorination of hexachlorobenzene (HCB), a typical highly chlorinated contaminant, and on the structure of soil bacteria communities. Soil amendment of 0.1% biochar did not significantly affect the dechlorination of HCB in the soil. However, biochar amendment at higher application levels (5%) stimulated the dechlorination of HCB in the first month of anaerobic incubation and inhibited the dechlorination of HCB after that period. The stimulation effect may be ascribed to the graphite carbon and carbon-centered persistent radicals, which are redox active, in biochar. The inhibiting effect could be partly ascribed to the reduced bioavailability of HCB in biochar-amended soils. High-throughput sequencing revealed that the amendment of biochar changed the soil bacterial community structure but not the bacterial abundances and diversities. The relative abundance of Dehalococcoidaceae in the tested soils showed a significant relationship with the dechlorination percentages of HCB, indicating that Dehalococcoidaceae may be the main HCB-dechlorinating bacteria in the studied paddy soil. The results indicated that low application levels of biochar did not affect the dechlorination of HCB in the paddy soil, while high application levels of biochar mainly inhibited the dechlorination of HCB due to the reduced bioavailability of HCB and the reduced abundances of certain dechlorinating bacteria in the biochar-amended paddy soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Steroid metabolism by purified adult rat Leydig cells in primary culture

    International Nuclear Information System (INIS)

    Browning, J.Y.; Tcholakian, R.K.; Kessler, M.J.; Grotjan, H.E. Jr.

    1982-01-01

    To characterize Leydig cell steroidogensis, we examined the metabolism of [3H]pregnenolone (3 beta-hydroxy-5-pregnen-20-one) to androgens in the presence and absence of human chorionic gonadotropin (hCG) as a function of culture duration. Approximately 20-30% of the (3H)pregnenolone was converted to testosterone (17 beta-hydroxy-4-androsten-3-one) by purified Leydig cells at 0, 3 and 5 days (d) of culture. Androstenedione (4-androstene-3,17-dione) and dihydrotestosterone (17 beta-hydroxy-5 alpha-androstan-3-one) were also produced while on day 5 of culture, significant amounts of progesterone (4-pregnene-3,20-dione) were isolated. The delta 5 intermediates, 17-hydroxypregnenolone (3 beta, 17-dihydroxy-5-pregnen-20-one) and dehydroepiandrosterone (3 beta-hydroxy-5-androsten-17-one), accounted for less than 1% of substrate conversion, indicating a clear preference for Leydig cells to metabolize (3H)pregnenolone via the delta 4 pathway. On day 0 of culture, unidentified metabolites considered of predominately polar steroids while on day 5 of culture, the unidentified metabolites consisted of predominately nonpolar steroids. In the presence of hCG, (3H-pregnenolone metabolism did not differ from basal on day 0 or 3 of culture. HCG increased the conversion of pregnenolone to progesterone and 17-hydroxyprogesterone (17-hydroxy-4-pregnene-3,20-dione) on 5d. This suggests that Leydig cells cultured for 5d have decreased C17-20 desmolase activity or that hCG acutely stimulates 3 beta-hydroxysteroid dehydrogenase and delta 5-delta 5 isomerase activities

  10. Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons.

    Science.gov (United States)

    Halim, Nader D; Mcfate, Thomas; Mohyeldin, Ahmed; Okagaki, Peter; Korotchkina, Lioubov G; Patel, Mulchand S; Jeoung, Nam Ho; Harris, Robert A; Schell, Michael J; Verma, Ajay

    2010-08-01

    Glucose metabolism in nervous tissue has been proposed to occur in a compartmentalized manner with astrocytes contributing largely to glycolysis and neurons being the primary site of glucose oxidation. However, mammalian astrocytes and neurons both contain mitochondria, and it remains unclear why in culture neurons oxidize glucose, lactate, and pyruvate to a much larger extent than astrocytes. The objective of this study was to determine whether pyruvate metabolism is differentially regulated in cultured neurons versus astrocytes. Expression of all components of the pyruvate dehydrogenase complex (PDC), the rate-limiting step for pyruvate entry into the Krebs cycle, was determined in cultured astrocytes and neurons. In addition, regulation of PDC enzymatic activity in the two cell types via protein phosphorylation was examined. We show that all components of the PDC are expressed in both cell types in culture, but that PDC activity is kept strongly inhibited in astrocytes through phosphorylation of the pyruvate dehydrogenase alpha subunit (PDH alpha). In contrast, neuronal PDC operates close to maximal levels with much lower levels of phosphorylated PDH alpha. Dephosphorylation of astrocytic PDH alpha restores PDC activity and lowers lactate production. Our findings suggest that the glucose metabolism of astrocytes and neurons may be far more flexible than previously believed. (c) 2010 Wiley-Liss, Inc.

  11. Monitoring and robust adaptive control of fed-batch cultures of microorganisms exhibiting overflow metabolism [abstract

    Directory of Open Access Journals (Sweden)

    Vande Wouwer, A.

    2010-01-01

    Full Text Available Overflow metabolism characterizes cells strains that are likely to produce inhibiting by-products resulting from an excess of substrate feeding and a saturated respiratory capacity. The critical substrate level separating the two different metabolic pathways is generally not well defined. Monitoring of this kind of cultures, going from model identification to state estimation, is first discussed. Then, a review of control techniques which all aim at maximizing the cell productivity of fed-batch fermentations is presented. Two main adaptive control strategies, one using an estimation of the critical substrate level as set-point and another regulating the by-product concentration, are proposed. Finally, experimental investigations of an adaptive RST control scheme using the observer polynomial for the regulation of the ethanol concentration in Saccharomyces cerevisiae fed-batch cultures ranging from laboratory to industrial scales, are also presented.

  12. Metabolic modulation induced by oestradiol and DHT in immature rat Sertoli cells cultured in vitro.

    Science.gov (United States)

    Rato, Luís; Alves, Marco G; Socorro, Sílvia; Carvalho, Rui A; Cavaco, José E; Oliveira, Pedro F

    2012-02-01

    Sertoli cells actively metabolize glucose that is converted into lactate, which is used by developing germ cells for their energy metabolism. Androgens and oestrogens have general metabolic roles that reach far beyond reproductive processes. Hence, the main purpose of this study was to examine the effect of sex hormones on metabolite secretion/consumption in primary cultures of rat Sertoli cells. Sertoli cell-enriched cultures were maintained in a defined medium for 50 h. Glucose and pyruvate consumption, and lactate and alanine secretion were determined, by 1H-NMR (proton NMR) spectra analysis, in the presence or absence of 100 nM E2 (17β-oestradiol) or 100 nM 5α-DHT (dihydrotestosterone). Cells cultured in the absence (control) or presence of E2 consumed the same amount of glucose (29±2 pmol/cell) at similar rates during the 50 h. After 25 h of treatment with DHT, glucose consumption and glucose consumption rate significantly increased. Control and E2-treated cells secreted similar amounts of lactate during the 50 h, while the amount of lactate secreted by DHT-treated cells was significantly lower. Such a decrease was concomitant with a significant decrease in LDH A [LDH (lactate dehydrogenase) chain A] and MCT4 [MCT (monocarboxylate transporter) isoform 4] mRNA levels after 50 h treatment in hormonally treated groups, being more pronounced in DHT-treated groups. Finally, alanine production was significantly increased in E2-treated cells after 25 h treatment, which indicated a lower redox/higher oxidative state for the cells in those conditions. Together, these results support the existence of a relation between sex hormones action and energy metabolism, providing an important assessment of androgens and oestrogens as metabolic modulators in rat Sertoli cells.

  13. Flow cytometric measurement of the metabolism of benzo [a] pyrene by mouse liver cells in culture

    International Nuclear Information System (INIS)

    Bartholomew, J.C.; Wade, C.G.; Dougherty, K.

    1984-01-01

    The metabolism of benzo[a]pyrene in individual cells was monitored by flow cytometry. The measurements are based on the alterations that occur in the fluorescence emission spectrum of benzo[a]pyrene when it is converted to various metabolities. Using present instrumentation the technique could easily detect 1 x 10/sup 6/ molecules per cells of benzo [a]pyrene and 1 x 10/sup 7/ molecules per cell of the diol epoxide. The analysis of C3H IOT 1/2 mouse fibroblasts growing in culture indicated that there was heterogeneity in the conversion of the parent compound into diol epoxide derivative suggesting that some variation in sensitivity to transformation by benzo[a]pyrene may be due to differences in cellular metabolism

  14. Metabolic cooperation between co-cultured lung cancer cells and lung fibroblasts.

    Science.gov (United States)

    Koukourakis, Michael I; Kalamida, Dimitra; Mitrakas, Achilleas G; Liousia, Maria; Pouliliou, Stamatia; Sivridis, Efthimios; Giatromanolaki, Alexandra

    2017-11-01

    Cooperation of cancer cells with stromal cells, such as cancer-associated fibroblasts (CAFs), has been revealed as a mechanism sustaining cancer cell survival and growth. In the current study, we focus on the metabolic interactions of MRC5 lung fibroblasts with lung cancer cells (A549 and H1299) using co-culture experiments and studying changes of the metabolic protein expression profile and of their growth and migration abilities. Using western blotting, confocal microscopy and RT-PCR, we observed that in co-cultures MRC5 respond by upregulating pyruvate dehydrogenase (PDH) and the monocarboxylate transporter MCT1. In contrast, cancer cells increase the expression of glucose transporters (GLUT1), LDH5, PDH kinase and the levels of phosphorylated/inactivated pPDH. H1299 cells growing in the same culture medium with fibroblasts exhibit a 'metastasis-like' phenomenon by forming nests within the fibroblast area. LDH5 and pPDH were drastically upregulated in these nests. The growth rate of both MRC5 and cancer cells increased in co-cultures. Suppression of LDHA or PDK1 in cancer cells abrogates the stimulatory signal from cancer cells to fibroblasts. Incubation of MRC5 fibroblasts with lactate resulted in an increase of LDHB and of PDH expression. Silencing of PDH gene in fibroblasts, or silencing of PDK1 or LDHA gene in tumor cells, impedes cancer cell's migration ability. Overall, a metabolic cooperation between lung cancer cells and fibroblasts has been confirmed in the context of direct Warburg effect, thus the fibroblasts reinforce aerobic metabolism to support the intensified anaerobic glycolytic pathways exploited by cancer cells.

  15. Metabolism of fluoranthene in different plant cell cultures and intact plants

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, M.; Harms, H.

    2000-05-01

    The metabolism of fluoranthene was investigated in 11 cell cultures of different plant species using a [{sup 14}C]-labeled standard. Most species metabolized less than 5% of fluoranthene to soluble metabolites and formed less than 5% nonextractable residues during the standardized 48-h test procedure. Higher metabolic rates were observed in lettuce (Lactuca sativa, 6%), wheat (Tricitum aestivum, 9%), and tomato (Lycopersicon esculentum, 15%). A special high metabolic rate of nearly 50% was determined for the rose species Paul's Scarlet. Chromatographic analysis of metabolites extracted from aseptically grown tomato plants proved that the metabolites detected in the cell cultures were also formed in the intact plants. Metabolites produced in tomato and rose cells from [{sup 14}C]-fluoranthene were conjugated with glucose, glucuronic acid, and other cell components. After acid hydrolyses, the main metabolite of both species was 1-hydroxyfluoranthene as identified by gas chromatography-mass spectrometry and high-performance liquid chromatography with diode array detection. The second metabolite formed by both species was 8-hydroxyfluoranthene. A third metabolite in tomatoes was 3-hydroxyfluoranthene.

  16. Oxygen consumption through metabolism and photodynamic reactions in cells cultured on microbeads

    International Nuclear Information System (INIS)

    Schunck, T.; Poulet, P.

    2000-01-01

    Oxygen consumption by cultured cells, through metabolism and photosensitization reactions, has been calculated theoretically. From this result, we have derived the partial oxygen pressure P O 2 in the perfusion medium flowing across sensitized cultured cells during photodynamic experiments. The P O 2 variations in the perfusate during light irradiation are related to the rate of oxygen consumption through photoreactions, and to the number of cells killed per mole of oxygen consumed through metabolic processes. After irradiation, the reduced metabolic oxygen consumption yields information on the cell death rate, and on the photodynamic cell killing efficiency. The aim of this paper is to present an experimental set-up and the corresponding theoretical model that allows us to control the photodynamic efficiency for a given cell-sensitizer pair, under well defined and controlled conditions of irradiation and oxygen supply. To demonstrate the usefulness of the methodology described, CHO cells cultured on microbeads were sensitized with pheophorbide a and irradiated with different light fluence rates. The results obtained, i.e. oxygen consumption of about 0.1 μMs -1 m -3 under a light fluence rate of 1 W m -2 , 10 5 cells killed per mole of oxygen consumed and a decay rate of about 1 h -1 of living cells after irradiation, are in good agreement with the theoretical predictions and with previously published data. (author)

  17. Starter Culture Selection for Making Chinese Sesame-Flavored Liquor Based on Microbial Metabolic Activity in Mixed-Culture Fermentation

    Science.gov (United States)

    Wu, Qun; Ling, Jie

    2014-01-01

    Selection of a starter culture with excellent viability and metabolic activity is important for inoculated fermentation of traditional food. To obtain a suitable starter culture for making Chinese sesame-flavored liquor, the yeast and bacterium community structures were investigated during spontaneous and solid-state fermentations of this type of liquor. Five dominant species in spontaneous fermentation were identified: Saccharomyces cerevisiae, Pichia membranaefaciens, Issatchenkia orientalis, Bacillus licheniformis, and Bacillus amyloliquefaciens. The metabolic activity of each species in mixed and inoculated fermentations of liquor was investigated in 14 different cocultures that used different combinations of these species. The relationships between the microbial species and volatile metabolites were analyzed by partial least-squares (PLS) regression analysis. We found that S. cerevisiae was positively correlated to nonanal, and B. licheniformis was positively associated with 2,3-butanediol, isobutyric acid, guaiacol, and 4-vinyl guaiacol, while I. orientalis was positively correlated to butyric acid, isovaleric acid, hexanoic acid, and 2,3-butanediol. These three species are excellent flavor producers for Chinese liquor. Although P. membranaefaciens and B. amyloliquefaciens were not efficient flavor producers, the addition of them alleviated competition among the other three species and altered their growth rates and flavor production. As a result, the coculture of all five dominant species produced the largest amount of flavor compounds. The result indicates that flavor producers and microbial interaction regulators are important for inoculated fermentation of Chinese sesame-flavored liquor. PMID:24814798

  18. Rapid metabolism of exogenous angiotensin II by catecholaminergic neuronal cells in culture media.

    Science.gov (United States)

    Basu, Urmi; Seravalli, Javier; Madayiputhiya, Nandakumar; Adamec, Jiri; Case, Adam J; Zimmerman, Matthew C

    2015-02-01

    Angiotensin II (AngII) acts on central neurons to increase neuronal firing and induce sympathoexcitation, which contribute to the pathogenesis of cardiovascular diseases including hypertension and heart failure. Numerous studies have examined the precise AngII-induced intraneuronal signaling mechanism in an attempt to identify new therapeutic targets for these diseases. Considering the technical challenges in studying specific intraneuronal signaling pathways in vivo, especially in the cardiovascular control brain regions, most studies have relied on neuronal cell culture models. However, there are numerous limitations in using cell culture models to study AngII intraneuronal signaling, including the lack of evidence indicating the stability of AngII in culture media. Herein, we tested the hypothesis that exogenous AngII is rapidly metabolized in neuronal cell culture media. Using liquid chromatography-tandem mass spectrometry, we measured levels of AngII and its metabolites, Ang III, Ang IV, and Ang-1-7, in neuronal cell culture media after administration of exogenous AngII (100 nmol/L) to a neuronal cell culture model (CATH.a neurons). AngII levels rapidly declined in the media, returning to near baseline levels within 3 h of administration. Additionally, levels of Ang III and Ang-1-7 acutely increased, while levels of Ang IV remained unchanged. Replenishing the media with exogenous AngII every 3 h for 24 h resulted in a consistent and significant increase in AngII levels for the duration of the treatment period. These data indicate that AngII is rapidly metabolized in neuronal cell culture media, and replenishing the media at least every 3 h is needed to sustain chronically elevated levels. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  19. Borohydride, micellar, and exciplex-enhanced dechlorination of chlorobiphenyls

    Energy Technology Data Exchange (ETDEWEB)

    Epling, G.A.; Florio, E.M.; Bourque, A.J.; Qian, H.H.; Stuart, J.D.

    1988-08-01

    The photodechlorination of polychlorinated biphenyls (PCB's) has been studied in the presence of sodium borohydride, detergents, and exciplex-forming additives. In a family of 13 representative PCB's these variations generally led to a dramatically increased rate of photodegradation. Further, the products of photoreaction in the presence of sodium borohydride are more cleanly the simple dechlorinated aromatics, with fewer side reactions than observed with ordinary photolysis.

  20. Uptake and metabolism of sugars by suspension-cultured catharanthus roseus cells

    International Nuclear Information System (INIS)

    Ashihara, Hiroshi; Sagishima, Kyoko; Kubota, Kaoru

    1989-01-01

    The Uptake and metabolism of sugars by suspension-cultured Catharanthus roseus cells were investigated. Substantially all the sucrose in the culture medium was hydrolyzed to glucose and fructose before being taken up by the cells. The activity of invertase bound to cell walls, determined in situ, was high at the early stage of culture. Glucose was more easily taken up by the cells than was fructose. Tracer experiments using [U- 14 C]glucose and [U- 14 C]fructose indicated that glucose is a better precursor for respiration than fructose, while fructose is preferentially utilized for the synthesis of sucrose, especially in the early phase of cell growth. These results suggest that fructose is utilized for the synthesis of sucrose via the reaction catalyzed by sucrose synthase, prior to the phosphorylation by hexokinase or fructokinase

  1. Anaerobic reductive dechlorination of tetrachloroethene: how can dual Carbon-Chlorine isotopic measurements help elucidating the underlying reaction mechanism?

    Science.gov (United States)

    Badin, Alice; Buttet, Géraldine; Maillard, Julien; Holliger, Christof; Hunkeler, Daniel

    2014-05-01

    to catalyse PCE reductive dechlorination according to a different mechanism. In another study, an m value of 2.5±0.8 was found for PCE anaerobic dechlorination by a bacterial consortium dominated by species closely related to Desulfitobacterium aromaticivorans strain UKTL (consortia A) [2]. This value is indistinguishable from the one found for PceATCE within a 95% confidence interval although the reductive dehalogenase protein sequence of consortia A is distinctly different from the sequences of our two cultures. This suggests that the reaction mechanism is not related to the similarities between reductive dehalogenases. References 1. Abe, Y., et al., Carbon and Chlorine Isotope Fractionation during Aerobic Oxidation and Reductive Dechlorination of Vinyl Chloride and cis-1,2-Dichloroethene. Environmental Science & Technology, 2009. 43(1): p. 101-107. 2. Wiegert, C., et al., Carbon and Chlorine Isotope Fractionation During Microbial Degradation of Tetra- and Trichloroethene. Environmental Science & Technology, 2013. 47(12): p. 6449-6456.

  2. Effects of bioaugmentation on enhanced reductive dechlorination of 1,1,1-trichloroethane in groundwater - a comparison of three sites

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Durant, Neal D.; Broholm, Mette Martina

    2014-01-01

    , microcosms were amended with various concentrations of chloroethanes (TCA or monochloroethane [CA]) and/or chloroethenes (tetrachloroethene [PCE], trichloroethene [TCE], or 1,1-dichloroethene [1,1-DCE]). Results showed that combined electron donor addition and bioaugmentation stimulated dechlorination of TCA...... and 1,1-dichloroethane (1,1-DCA) to CA, and dechlorination of PCE, TCE, 1,1-DCE and cDCE to ethane. Dechlorination of CA was not observed. Bioaugmentation improved the rate and extent of TCA and 1,1-DCA dechlorination at two sites, but did not accelerate dechlorination at a third site where geochemical...... conditions were reducing and Dhc and Dhb were indigenous. TCA at initial concentrations of 5 mg/L inhibited (i.e., slowed the rate of) TCA dechlorination, TCE dechlorination, donor fermentation, and methanogenesis. 1 mg/L TCA did not inhibit dechlorination of TCA, TCE or cDCE. Moreover, complete...

  3. INFLUENCES OF PH AND CURRENT ON ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE AT A GRANULAR-GRAPHITE PACKED ELECTRODE

    Science.gov (United States)

    Electrolytic dechlorination using a granular-graphite packed cathode is an alternative method for the remediation of chlorinated organic compounds. Its effectiveness under various conditions needs experimental investigation. Dechlorination of trichloroethylene (TCE) was conducted...

  4. Effects Of Aging And Oxidation Of Palladized Iron Embedded In Activated Carbon On The Dechlorination Of 2-Chlorobiphenyl

    Science.gov (United States)

    Reactive activated carbon (RAC) impregnated with palladized iron has been developed to effectively treat polychlorinated biphenyls (PCBs) in the environment by coupling adsorption and dechlorination of PCBs. In this study, we addressed the dechlorination reactivity and capacity ...

  5. Metabolic and Kinetic analyses of influenza production in perfusion HEK293 cell culture

    Directory of Open Access Journals (Sweden)

    Lohr Verena

    2011-09-01

    Full Text Available Abstract Background Cell culture-based production of influenza vaccine remains an attractive alternative to egg-based production. Short response time and high production yields are the key success factors for the broader adoption of cell culture technology for industrial manufacturing of pandemic and seasonal influenza vaccines. Recently, HEK293SF cells have been successfully used to produce influenza viruses, achieving hemagglutinin (HA and infectious viral particle (IVP titers in the highest ranges reported to date. In the same study, it was suggested that beyond 4 × 106 cells/mL, viral production was limited by a lack of nutrients or an accumulation of toxic products. Results To further improve viral titers at high cell densities, perfusion culture mode was evaluated. Productivities of both perfusion and batch culture modes were compared at an infection cell density of 6 × 106 cells/mL. The metabolism, including glycolysis, glutaminolysis and amino acids utilization as well as physiological indicators such as viability and apoptosis were extensively documented for the two modes of culture before and after viral infection to identify potential metabolic limitations. A 3 L bioreactor with a perfusion rate of 0.5 vol/day allowed us to reach maximal titers of 3.3 × 1011 IVP/mL and 4.0 logHA units/mL, corresponding to a total production of 1.0 × 1015 IVP and 7.8 logHA units after 3 days post-infection. Overall, perfusion mode titers were higher by almost one order of magnitude over the batch culture mode of production. This improvement was associated with an activation of the cell metabolism as seen by a 1.5-fold and 4-fold higher consumption rates of glucose and glutamine respectively. A shift in the viral production kinetics was also observed leading to an accumulation of more viable cells with a higher specific production and causing an increase in the total volumetric production of infectious influenza particles. Conclusions These results

  6. The cultural divide: exponential growth in classical 2D and metabolic equilibrium in 3D environments.

    Directory of Open Access Journals (Sweden)

    Krzysztof Wrzesinski

    Full Text Available INTRODUCTION: Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures and the other by a dynamic equilibrium (in 3D cultures. We have analyzed the proteome and cellular architecture at these two extremes and found that they are dramatically different. RESULTS: Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved in cholesterol and urea synthesis are increased consistent with the attainment of cholesterol and urea production rates seen in vivo. DNA repair enzymes are increased even though cells are predominantly in Go. Transport around the cell--along the microtubules, through the nuclear pore and in various types of vesicles has been prioritized. There are numerous coherent changes in transcription, splicing, translation, protein folding and degradation. The amount of individual proteins within complexes is shown to be highly coordinated. Typically subunits which initiate a particular function are present in increased amounts compared to other subunits of the same complex. SUMMARY: We have previously demonstrated that cells at dynamic equilibrium can match the physiological performance of cells in tissues in vivo. Here we describe the multitude of protein changes necessary to achieve this performance.

  7. The cultural divide: exponential growth in classical 2D and metabolic equilibrium in 3D environments.

    Science.gov (United States)

    Wrzesinski, Krzysztof; Rogowska-Wrzesinska, Adelina; Kanlaya, Rattiyaporn; Borkowski, Kamil; Schwämmle, Veit; Dai, Jie; Joensen, Kira Eyd; Wojdyla, Katarzyna; Carvalho, Vasco Botelho; Fey, Stephen J

    2014-01-01

    Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular architecture at these two extremes and found that they are dramatically different. Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved in cholesterol and urea synthesis are increased consistent with the attainment of cholesterol and urea production rates seen in vivo. DNA repair enzymes are increased even though cells are predominantly in Go. Transport around the cell--along the microtubules, through the nuclear pore and in various types of vesicles has been prioritized. There are numerous coherent changes in transcription, splicing, translation, protein folding and degradation. The amount of individual proteins within complexes is shown to be highly coordinated. Typically subunits which initiate a particular function are present in increased amounts compared to other subunits of the same complex. We have previously demonstrated that cells at dynamic equilibrium can match the physiological performance of cells in tissues in vivo. Here we describe the multitude of protein changes necessary to achieve this performance.

  8. Effect of oxygen deprivation on metabolism of arachidonic acid by cultures of rat heart cells

    International Nuclear Information System (INIS)

    Freyss-Beguin, M.; Millanvoye-van Brussel, E.; Duval, D.

    1989-01-01

    To investigate the mechanisms responsible for the impairment of phospholipid metabolism observed in ischemic cells, we have studied the effect of conditions simulating ischemia on the metabolism of arachidonic acid (AA) by muscle (M-) and nonmuscle (F-) cells isolated from newborn rat hearts and cultured separately. In muscle cells, oxygen deprivation induces a significant stimulation of the release of [ 14 C]AA from prelabeled cells associated with a preferential redistribution of [ 14 C]AA into cell triglycerides but not formation of radioactive prostaglandins. Moreover, the fatty acid content of phospholipids, as measured by capillary gas chromatography, appears markedly reduced in ischemic myocardial cells. This fact may be related to phospholipase stimulation during ischemia as suggested by the antagonistic effect of mepacrine or p-bromophenacyl bromide. In contrast, oxygen deprivation failed to induce any significant alteration of AA metabolism in fibroblast-like heart cells. Our results indicate that these cultures of newborn rat heart cells, which exhibit many of the features observed in intact organ during ischemia, may represent a useful experimental model to investigate the pharmacological control of the membrane phospholipid turnover

  9. The effects of the obesogen tributyltin on the metabolism of Sertoli cells cultured ex vivo.

    Science.gov (United States)

    Cardoso, Ana M; Alves, Marco G; Sousa, Ana C; Jarak, Ivana; Carvalho, Rui A; Oliveira, Pedro F; Cavaco, José E; Rato, Luís

    2018-02-01

    Human exposure to environmental contaminants is widespread. Some of these contaminants have the ability to interfere with adipogenesis, being thus considered as obesogens. Recently, obesogens have been singled out as a cause of male infertility. Sertoli cells (SCs) are essential for male fertility and their metabolic performance, especially glucose metabolism, is under a tight endocrine control, being essential for the success of spermatogenesis. Herein, we studied the impact of the model obesogen tributyltin in the metabolic profile of SCs. For that, ex vivo-cultured rat SCs were exposed to increasing doses of tributyltin. SCs proliferation was evaluated by the sulforhodamine B assay and the maturation state of the cells was assessed by the expression of specific markers (inhibin B and the androgen receptor) by quantitative polymerase chain reaction. The metabolic profile of SCs was established by studying metabolites consumption/production by nuclear magnetic resonance spectroscopy and by analyzing the expression of key transporters and enzymes involved in glycolysis by Western blot. The proliferation of SCs was only affected in the cells exposed to the highest dose (1000 nM) of tributyltin. Notably, SCs exposed to 10 nM tributyltin decreased the consumption of glucose and pyruvate, as well as the production of lactate. The decreased lactate production hampers the development of germ cells. Intriguingly, the lowest levels of tributyltin were more prone to modulate the expression of key players of the glycolytic pathway. This is the first study showing that tributyltin reprograms glucose metabolism of SCs under ex vivo conditions, suggesting new targets and mechanisms through which obesogens modulate the metabolism of SCs and thus male (in)fertility.

  10. Transcriptional and metabolic flux profiling of triadimefon effects on cultured hepatocytes

    International Nuclear Information System (INIS)

    Iyer, Vidya V.; Ovacik, Meric A.; Androulakis, Ioannis P.; Roth, Charles M.; Ierapetritou, Marianthi G.

    2010-01-01

    Conazoles are a class of azole fungicides used to prevent fungal growth in agriculture, for treatment of fungal infections, and are found to be tumorigenic in rats and/or mice. In this study, cultured primary rat hepatocytes were treated to two different concentrations (0.3 and 0.15 mM) of triadimefon, which is a tumorigenic conazole in rat and mouse liver, on a temporal basis with daily media change. Following treatment, cells were harvested for microarray data ranging from 6 to 72 h. Supernatant was collected daily for three days, and the concentrations of various metabolites in the media and supernatant were quantified. Gene expression changes were most significant following exposure to 0.3 mM triadimefon and were characterized mainly by metabolic pathways related to carbohydrate, lipid and amino acid metabolism. Correspondingly, metabolic network flexibility analysis demonstrated a switch from fatty acid synthesis to fatty acid oxidation in cells exposed to triadimefon. It is likely that fatty acid oxidation is active in order to supply energy required for triadimefon detoxification. In 0.15 mM triadimefon treatment, the hepatocytes are able to detoxify the relatively low concentration of triadimefon with less pronounced changes in hepatic metabolism.

  11. Metabolic and cytoprotective effects of in vivo peri-patellar hyaluronic acid injections in cultured tenocytes.

    Science.gov (United States)

    Salamanna, F; Frizziero, A; Pagani, S; Giavaresi, G; Curzi, D; Falcieri, E; Marini, M; Abruzzo, P M; Martini, L; Fini, M

    2015-02-01

    The purpose of this study was to investigate tenocyte mechanobiology after sudden-detraining and to examine the hypothesis that repeated peri-patellar injections of hyaluronic acid (HA) on detrained patellar tendon (PT) may reduce and limit detrained-associated damage in tenocytes. Twenty-four male Sprague-Dawley rats were divided into three groups: Untrained, Trained and Detrained. In the Detrained rats, the left tendon was untreated while the right tendon received repeated peri-patellar injections of either HA or saline (NaCl). Tenocyte morphology, metabolism and synthesis of C-terminal-propeptide of type I collagen, collagen-III, fibronectin, aggrecan, tenascin-c, interleukin-1β, matrix-metalloproteinase-1 and-3 were evaluated after 1, 3, 7 and 10 days of culture. Transmission-electronic-microscopy showed a significant increase in mitochondria and rough endoplasmic reticulum in cultured tenocytes from Detrained-HA with respect to those from Detrained-NaCl. Additionally, Detrained-HA cultures showed a significantly higher proliferation rate and viability, and increased synthesis of C-terminal-Propeptide of type I collagen, fibronectin, aggrecan, tenascin-c and matrix-metalloproteinase-3 with respect to Detrained-NaCl ones, whereas synthesis of matrix-metalloproteinase-1 and interleukin-1β was decreased. Our study demonstrates that discontinuing training activity in the short-term alters tenocyte synthetic and metabolic activity and that repeated peri-patellar infiltrations of HA during detraining allow the maintenance of tenocyte anabolic activity.

  12. Effects of achilline on lipid metabolism gene expression in cell culture

    Directory of Open Access Journals (Sweden)

    A. V. Ratkin

    2016-01-01

    Full Text Available Objective. Evaluation in vitro of the mechanisms of the hypolipidemic effect of sesquiterpene γ-lactone achilline in the hepatoma tissue culture (HTC.Materials and methods.The influence of sesquiterpene γ-lactone achilline and gemfibrozil (comparison drug on the viability, lipid content and expression of key genes of lipid metabolism in the hepatoma tissue culture. The lipid content was assessed by fluorescent method with the vital dye Nile Red, the cell viability was assessed using MTT assay.Results. Cultivation of of cell cultures of rat’s hepatoma cell line HTC for 48 h with achilline in a concentration of from 0.25 to 1.0 mm and gemfibrozil from 0,25 to 0,5 mm did not change cell viability compared to control. In these same concentrations of the test substance reduced the lipid content in the cells, assessed by fluorescent method with the vital dye Nile Red. To study the mechanism of hypolipidemicaction of achillinedetermined the expression of key genes of lipid metabolism in cell culture lines HTC. The possible mechanism of hypolipidemic action of achilline can be attributed to the increased transport and oxidation of long-chain fatty acids in mitochondria, as evidenced by the increase in the gene expression of carnitine-palmitoyltransferase 2 (Cpt2. The decrease in cholesterol level may be due to increased synthesis of bile acids from cholesterol, due to increased gene expression of 7-alphahydroxylase (Cyp7a1. Conclusion. In cell cultures of rat’s hepatoma cell line HTC sesquiterpene γ-lactone achilline reduces the accumulation of lipids in cells, as evidenced by the decrease in the fluorescence of Nile Red, increased gene expression of the carnitine-palmitoyltransferase 2 (Cpt2 gene and 7-alpha-hydroxylase (Cyp7a1.

  13. The metabolic dynamics of cartilage explants over a long-term culture period

    Directory of Open Access Journals (Sweden)

    E.K Moo

    2011-01-01

    Full Text Available INTRODUCTION: Although previous studies have been performed on cartilage explant cultures, the generalized dynamics of cartilage metabolism after extraction from the host are still poorly understood due to differences in the experimental setups across studies, which in turn prevent building a complete picture. METHODS: In this study, we investigated the response of cartilage to the trauma sustained during extraction and determined the time needed for the cartilage to stabilize. Explants were extracted aseptically from bovine metacarpal-phalangeal joints and cultured for up to 17 days. RESULTS: The cell viability, cell number, proteoglycan content, and collagen content of the harvested explants were analyzed at 0, 2, 10, and 17 days after explantation. A high percentage of the cartilage explants were found to be viable. The cell density initially increased significantly but stabilized after two days. The proteoglycan content decreased gradually over time, but it did not decrease to a significant level due to leakage through the distorted peripheral collagen network and into the bathing medium. The collagen content remained stable for most of the culture period until it dropped abruptly on day 17. CONCLUSION: Overall, the tested cartilage explants were sustainable over long-term culture. They were most stable from day 2 to day 10. The degradation of the collagen on day 17 did not reach diseased levels, but it indicated the potential of the cultures to develop into degenerated cartilage. These findings have implications for the application of cartilage explants in pathophysiological fields.

  14. Preliminary Results of Reductive Dechlorination Conducted at the X-749/X-120 Area of the DOE Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    Rieske, D. E.; Baird, D. R.; Lawson, N. E.

    2006-01-01

    points were completed within three treatment zones: north, west, and south of the X-749 South Barrier Wall. The HRC-X (glycerol tripoly-lactate) degrades chlorinated organic compounds, such as TCE, into non-toxic compounds such as ethene and ethane. Upon being injected into the subsurface, HRC-X slowly reacts with groundwater and releases lactic acid. As the anaerobic microbes (which are naturally present in the subsurface) metabolize the lactic acid, low concentrations of dissolved hydrogen are produced. These hydrogen molecules strip the chlorinated (TCE) molecules of their chlorine atoms. During the chemical process of this reductive dechlorination, the lactic acid degrades to pyruvic acid and finally to acetic acid. As the subsurface environment becomes more anaerobic, the TCE degrades. Lactic acid and acetic acid were detected in two wells immediately down-gradient from the HRC-X injection areas. The oxidation/reduction potential has dropped in these two monitoring wells, but did not reach ideal levels for reductive dechlorination of the TCE until after June 2005. The methane concentration in the two wells has increased since the injection of HRC-X, but has not likely reached extreme methano-genesis levels that may restrict the dechlorination process. Through June 2005, concentrations of TCE and TCE degradation products had not yet changed significantly in response to reductive dechlorination. However, by November 2005 the concentration of TCE at monitoring well X749-45G had decreased from a high of 59 μg/L (April 2005) to 9.6 μg/L. At well X749-97G TCE had decreased from a high of 6.3 μg/L (June 2005) to 2.6 μg/L in November 2005. Groundwater monitoring of the wells for reductive dechlorination effectiveness will continue on a semiannual basis in order to track the chemical and biochemical changes in the groundwater. (authors)

  15. PALLADIUM-FACILITATED ELECTROLYTIC DECHLORINATION OF 2-CHLOROBIPHENYL USING A GRANULAR-GRAPHITE ELECTRODE.

    Science.gov (United States)

    Palladium-assisted electrocatalytic dechlorination of 2-chlorobiphenyl (2-Cl BP) in aqueous solutions was conducted in a membrane-separated electrochemical reactor with granular-graphite packed electrodes. The dechlorination took place at a granular-graphite cathode while Pd was ...

  16. Xenobiotic-Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by Toxcast Chemicals

    Science.gov (United States)

    Primary human hepatocyte cultures are useful in vitro model systems of human liver because when cultured under appropriate conditions the hepatocytes retain liver-like functionality such as metabolism, transport, and cell signaling. This model system was used to characterize the ...

  17. Quantitative Multilevel Analysis of Central Metabolism in Developing Oilseeds of Oilseed Rape During In Vitro Culture

    Energy Technology Data Exchange (ETDEWEB)

    Schwender, Jorg [Brookhaven National Lab. (BNL), Upton, NY (United States); Hebbelmann, Inga [Brookhaven National Lab. (BNL), Upton, NY (United States); Heinzel, Nicholas [Leibniz Inst. of Plant Genetics and Crop Plant Research, Gatersleben (Germany); Hildebrandt, Tatjana [Univ. of Hannover (Germany); Rogers, Alistair [Brookhaven National Lab. (BNL), Upton, NY (United States); Naik, Dhiraj [Brookhaven National Lab. (BNL), Upton, NY (United States); Indian Inst. of Advanced Research Koba, Gujarat (India); Klapperstuck, Matthias [Monash Univ., Melbourne, VIC (Australia); Braun, Hans -Peter [Univ. of Hannover (Germany); Schreiber, Falk [Monash Univ., Melbourne, VIC (Australia); Univ. Halle-Wittenberg, Melbourne (Australia); Denolf, Peter [Bayer CropScience (Belgium); Borisjuk, Ljudmilla [Leibniz Inst. of Plant Genetics and Crop Plant Research, Gatersleben (Germany); Rolletschek, Hardy [Leibniz Inst. of Plant Genetics and Crop Plant Research, Gatersleben (Germany)

    2015-07-01

    Seeds provide the basis for many food, feed, and fuel products. Continued increases in seed yield, composition, and quality require an improved understanding of how the developing seed converts carbon and nitrogen supplies into storage. Current knowledge of this process is often based on the premise that transcriptional regulation directly translates via enzyme concentration into flux. In an attempt to highlight metabolic control, we explore genotypic differences in carbon partitioning for in vitro cultured developing embryos of oilseed rape (Brassica napus). We determined biomass composition as well as 79 net fluxes, the levels of 77 metabolites, and 26 enzyme activities with specific focus on central metabolism in nine selected germplasm accessions. We observed a tradeoff between the biomass component fractions of lipid and starch. With increasing lipid content over the spectrum of genotypes, plastidic fatty acid synthesis and glycolytic flux increased concomitantly, while glycolytic intermediates decreased. The lipid/starch tradeoff was not reflected at the proteome level, pointing to the significance of (posttranslational) metabolic control. Enzyme activity/flux and metabolite/flux correlations suggest that plastidic pyruvate kinase exerts flux control and that the lipid/starch tradeoff is most likely mediated by allosteric feedback regulation of phosphofructokinase and ADP-glucose pyrophosphorylase. Also, quantitative data were used to calculate in vivo mass action ratios, reaction equilibria, and metabolite turnover times. Compounds like cyclic 3',5'-AMP and sucrose-6-phosphate were identified to potentially be involved in so far unknown mechanisms of metabolic control. This study provides a rich source of quantitative data for those studying central metabolism..

  18. Dechlorination of short chain chlorinated paraffins by nanoscale zero-valent iron.

    Science.gov (United States)

    Zhang, Zhi-Yong; Lu, Mang; Zhang, Zhong-Zhi; Xiao, Meng; Zhang, Min

    2012-12-01

    In this study, nanoscale zero-valent iron (NZVI) particles were synthesized and used for the reductive dehalogenation of short chain chlorinated paraffins (SCCPs) in the laboratory. The results show that the dechlorination rate of chlorinated n-decane (CP(10)) by NZVI increased with decreased solution pH. Increasing the loading of NZVI enhanced the dechlorination rate of CP(10). With an increase in temperature, the degradation rate increased. The reduction of CP(10) by NZVI was accelerated with increasing the concentration of humic acid up to 15 mg/L but then was inhibited. The dechlorination of CP(10) within the initial 18 h followed pseudo-first order rate model. The formation of intermediate products indicates a stepwise dechlorination pathway of SCCPs by NZVI. The carbon chain length and chlorination degree of SCCPs have a polynominal impact on dechlorination reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Arachidonic metabolism and radiation toxicity in cultures of vascular endothelial cells

    International Nuclear Information System (INIS)

    Eldor, A.; Vlodavsky, I.; Fuks, Z.; Matzner, Y.; Rubin, D.B.

    1989-01-01

    The authors conclude that the observed changes in eicosanoid production by vascular endothelial cells exposed to ionizing irradiation may be relevant to the pathogenesis of post-radiation injury in small and large blood vessels. Anomalies of PGI 2 production may lead to thrombosis and accelerated arteriosclerosis which are observed in irradiated vessels. The generation of potent cells may greatly facilitate inflammation in irradiated vessels. The model of irradiated cultured endothelial cells may also be useful for the study of various methods and agents aimed at reducing the radiation induced damage to blood vessels. Evaluation of the capacity of cultured endothelial cells to produce eicosanoids may serve as an appropriate index for the metabolic damage induced by radiation. (author)

  20. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  1. Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures

    Directory of Open Access Journals (Sweden)

    Vogel Hans J

    2008-01-01

    Full Text Available Abstract Background Opium poppy (Papaver somniferum produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a model system to study plant alkaloid metabolism. The plant is cultivated as the only commercial source of the narcotic analgesics morphine and codeine, but also produces many other alkaloids including the antimicrobial agent sanguinarine. Modulations in plant secondary metabolism as a result of environmental perturbations are often associated with the altered regulation of other metabolic pathways. As a key component of our functional genomics platform for opium poppy we have used proton nuclear magnetic resonance (1H NMR metabolomics to investigate the interplay between primary and secondary metabolism in cultured opium poppy cells treated with a fungal elicitor. Results Metabolite fingerprinting and compound-specific profiling showed the extensive reprogramming of primary metabolic pathways in association with the induction of alkaloid biosynthesis in response to elicitor treatment. Using Chenomx NMR Suite v. 4.6, a software package capable of identifying and quantifying individual compounds based on their respective signature spectra, the levels of 42 diverse metabolites were monitored over a 100-hour time course in control and elicitor-treated opium poppy cell cultures. Overall, detectable and dynamic changes in the metabolome of elicitor-treated cells, especially in cellular pools of carbohydrates, organic acids and non-protein amino acids were detected within 5 hours after elicitor treatment. The metabolome of control cultures also showed substantial modulations 80 hours after the start of the time course, particularly in the levels of amino acids and phospholipid pathway intermediates. Specific flux modulations were detected throughout primary metabolism, including glycolysis, the tricarboxylic acid cycle, nitrogen assimilation, phospholipid/fatty acid synthesis and the shikimate pathway, all of which

  2. Metabolic characterization of natural and cultured Ophicordyceps sinensis from different origins by 1H NMR spectroscopy.

    Science.gov (United States)

    Zhang, Jianshuang; Zhong, Xin; Li, Shaosong; Zhang, Guren; Liu, Xin

    2015-11-10

    Ophicordyceps sinensis is a well-known traditional Chinese medicine and cultured mycelium is a substitute for wild O. sinensis. Metabolic profiles of wild O. sinensis from three geographical locations and cultivated mycelia derived from three origins were investigated using (1)H nuclear magnetic resonance (NMR) analysis combined with multivariate statistical analysis. A total of 56 primary metabolites were identified and quantified from O. sinensis samples. The principle component analysis (PCA) showed significant differences between natural O. sinensis and fermentation mycelia. Seven metabolites responsible for differentiation were screened out by orthogonal partial least squares discriminant analysis (OPLS-DA). The concentrations of mannitol, trehalose, arginine, trans-4-hydroxyproline, alanine and glucitol were significantly different between wild and cultured groups. The variation in metabolic profiling among artificial mycelia was greater than that among wild O. sinensis. Furthermore, wild samples from different origins were clearly distinguished by the levels of mannitol, trehalose and some amino acids. This study indicates that (1)H NMR-based metabolomics is useful for fingerprinting and discriminating O. sinensis of different geographical regions and cultivated mycelia of different strains. The present study provided an efficient approach for investigating chemical compositions and evaluating the quality of medicine and health food derived from O. sinensis. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Regulation of heme metabolism in normal and sideroblastic bone marrow cells in culture

    International Nuclear Information System (INIS)

    Ibraham, N.G.; Lutton, J.D.; Hoffman, R.; Levere, R.D.

    1985-01-01

    Heme metabolism was examined in developing in vitro erythroid colonies (CFUE) and in bone marrow samples taken directly from four normal donors and four patients with sideroblastic anemia. Maximum activities of delta-aminolevulinic acid synthase (ALAS), ALA dehydratase (ALAD), and 14 C-ALA incorporation into heme were achieved in normal marrow CFUE after 8 days of culture, whereas heme oxygenase progressively decreased to low levels of activity during the same period. Assays on nucleated bone marrow cells taken directly from patients revealed that ALAS activity was considerably reduced in idiopathic sideroblastic anemia (IASA) and X-linked sideroblastic anemia (X-SA) bone marrow specimens, whereas the activity increased more than twofold (normal levels) when cells were assayed from 8-day CFUE. In all cases, ALAD activity appeared to be within normal levels. Measurement of heme synthesis revealed that normal levels of 14 C-ALA incorporation into heme were achieved in IASA cells but were reduced in X-SA cells. In marked contrast to levels in normal cells, heme oxygenase was found to be significantly elevated (two- to fourfold) in bone marrow cells taken directly from patients with IASA and X-SA. Results from this study demonstrate that IASA and X-SA bone marrow cells have disturbances in ALAS and heme metabolism, and that erythropoiesis (CFUE) can be restored to normal levels when cells are cultured in methylcellulose

  4. Changes in pyridine metabolism profile during growth of trigonelline-forming Lotus japonicus cell cultures.

    Science.gov (United States)

    Yin, Yuling; Matsui, Ayu; Sakuta, Masaaki; Ashihara, Hiroshi

    2008-12-01

    Changes in the profile of pyridine metabolism during growth of cells were investigated using trigonelline-forming suspension-cultured cells of Lotus japonicus. Activity of the de novo and salvage pathways of NAD biosynthesis was estimated from the in situ metabolism of [(3)H] quinolinic acid and [(14)C] nicotinamide. Maximum activity of the de novo pathway for NAD synthesis was found in the exponential growth phase, whereas activity of the salvage pathway was increased in the lag phase of cell growth. Expression profiles of some genes related to pyridine metabolism were examined using the expression sequence tags obtained from the L. japonicus database. Transcript levels of NaPRT and NIC, encoding salvage enzymes, were enhanced in the lag phase of cell growth, whereas the maximum expression of NADS was found in the exponential growth phase. Correspondingly, the activities of the salvage enzymes, nicotinate phosphoribosyltransferase (EC 2.4.2.11) and nicotinamidase (EC 3.5.1.19), increased one day after transfer of the stationary phase cells to the fresh medium. The greatest in situ trigonelline synthesis, both from [(3)H] quinolinic acid and [(14)C] nicotinamide, was found in the stationary phase of cell growth. The role of trigonelline in leguminous plants is discussed.

  5. Exploring the Genome and Proteome of Desulfitobacterium hafniense DCB2 for its Protein Complexes Involved in Metal Reduction and Dechlorination

    Energy Technology Data Exchange (ETDEWEB)

    Sang-Hoon, Kim; Hardzman, Christina; Davis, John k.; Hutcheson, Rachel; Broderick, Joan B.; Marsh, Terence L.; Tiedje, James M.

    2012-09-27

    Desulfitobacteria are of interest to DOE mission because of their ability to reduce many electron acceptors including Fe(III), U(VI), Cr(VI), As(V), Mn(IV), Se(VI), NO3- and well as CO2, sulfite, fumarate and humates, their ability to colonize more stressful environments because they form spores, fix nitrogen and they have the more protective Gram positive cell walls. Furthermore at least some of them reductively dechlorinate aromatic and aliphatic pollutants. Importantly, most of the metals and the organochlorine reductions are coupled to ATP production and support growth providing for the organism's natural selection at DOE's contaminant sites. This work was undertaken to gain insight into the genetic and metabolic pathways involved in dissimilatory metal reduction and reductive dechlorination, (ii) to discern the commonalities among these electron-accepting processes, (iii) to identify multi-protein complexes catalyzing these functions and (iv) to elucidate the coordination in expression of these pathways and processes.

  6. Characterization of amino acid metabolism by cultured rat kidney cells: Study with 15N

    International Nuclear Information System (INIS)

    Nissim, I.; States, B.; Yudkoff, M.; Segal, S.

    1987-01-01

    The present study evaluates the metabolism of glutamine and glutamate by normal rat kidney (NRK) cells. The major aim was to evaluate the effect of acute acidosis on the metabolism of amino acid and ammonia formation by cultured NRK cells. Experiments at either pH 7.0 or 7.4 were conducted with phosphate-buffered saline supplemented with either 1 mM [5- 15 N]glutamine, [2- 15 N]glutamine, or [ 15 N]glutamate. Incubation with either glutamine or glutamate as a precursor showed that production of ammonia and glucose was increased significantly at pH 7.0 vs 7.4. In experiments with [5- 15 N]glutamine, the authors found that ∼57 and 43% of ammonia N was derived from 5-N of glutamine at pH 7.4 and 7.0, respectively. Three major metabolic pathways of [2- 15 N]glutamine or [ 15 N]glutamate disposal were identified: (1) transamination reactions involving the pH-independent formation of [ 15 N] aspartate and [ 15 N]alanine; (2) the synthesis of [6- 15 NH 2 ]adenine nucleotide, a process more active at pH 7.4 vs. 7.0; and (3) glutamine synthesis from [ 15 N]glutamate, especially at pH 7.4. The data indicate that NRK cells in culture consume glutamine and glutamate and generate ammonia and various amino acids, depending on the H + concentration in the media. The studies suggest that these cell lines may provide a useful model for studying various aspects of the effect of pH on rat renal ammoniagenesis

  7. Identification of metabolic profiling of cell culture of licorice compared with its native one.

    Science.gov (United States)

    Man, Shuli; Guo, Songbo; Gao, Wenyuan; Wang, Juan; Zhang, Liming; Li, Xinglin

    2013-04-01

    Glycyrrhiza uralensis has long been used as a flavoring and sweetening agent in food products. In the last ten years, suspensions of Glycyrhiza cells have been successfully established. However, there is no report of full metabolic profiling research on these cells. To identify their composition we used HPLC-DAD coupled with ESI(+/-)-MS (n) to compare the constituents of cultured Glycyrhiza (CG) cells with those the native cells (NG). We identified 60 compounds including flavonoids, phenols, and triterpenoids. Among these compounds, 42 occurred both in NG and CG, nine were present in NG only and nine were present in CG alone. The number of the triterpenoid aglycones without glycones in CG was smaller than that in NG. The number of flavanone, isoflavone, isoflavan, and benzenoid compounds was also smaller in CG than that in NG, whereas the number of pterocarpans was much higher. Although differences existed between CG and NG, the extract of CG was similar to that of NG. With the development of cell suspension culture-based biotransformation, cell culture of Glycyrrhiza has the potential to be more profitable than field cultivation in some areas.

  8. Effect of extracellular fatty acids on lipid metabolism in cultured rabbit articular chondrocytes

    International Nuclear Information System (INIS)

    Nagao, M.; Ishii, S.; Murata, Y.; Akino, T.

    1991-01-01

    Rabbit articular chondrocytes were cultured for 8 h in the presence of various concentrations (5-500 microM) of 14 C oleic, 14 C linoleic, and 3H arachidonic acids. The radioactive unsaturated fatty acids were incorporated into triacylglycerol (TG) and phosphatidylcholine (PC) in a concentration-dependent manner; more fatty acids were incorporated into TG than into PC, at higher concentrations of extracellular fatty acids. Among these fatty acids, arachidonic acid was incorporated into TG much more than into PC, in spite of a very low concentration of arachidonic acid in TG. After transfer of the labeled cells to maintenance medium, the radioactivity in TG declined rapidly and 3 H arachidonic acid radioactivity in PC increased continuously during the chase time periods. Palmitoyl-unsaturated species were mainly formed in PC when cultured at a concentration of 5 microM of each fatty acid. However, when cultured at 500 microM, unsaturated-unsaturated species, specific for each unsaturated fatty acid were actively formed. These findings indicate that (1) fatty acid composition of TG and PC in articular chondrocytes is influenced by the degree of fatty acid supply, (2) formation and turnover of TG plays a role in fatty acid metabolism of cells, and (3) fatty acid pairing in PC is modulated by extracellular fatty acid concentrations

  9. Comparison of dechlorination rates for field DNAPL vs synthetic samples: effect of sample matrix

    Science.gov (United States)

    O'Carroll, D. M.; Sakulchaicharoen, N.; Herrera, J. E.

    2015-12-01

    Nanometals have received significant attention in recent years due to their ability to rapidly destroy numerous priority source zone contaminants in controlled laboratory studies. This has led to great optimism surrounding nanometal particle injection for insitu remediation. Reported dechlorination rates vary widely among different investigators. These differences have been ascribed to differences in the iron types (granular, micro, or nano-sized iron), matrix solution chemistry and the morphology of the nZVI surface. Among these, the effects of solution chemistry on rates of reductive dechlorination of various chlorinated compounds have been investigated in several short-term laboratory studies. Variables investigated include the effect of anions or groundwater solutes such as SO4-2, Cl-, NO3-, pH, natural organic matters (NOM), surfactant, and humic acid on dechlorination reaction of various chlorinated compounds such as TCE, carbon tetrachloride (CT), and chloroform (CF). These studies have normally centered on the assessment of nZVI reactivity toward dechlorination of an isolated individual contaminant spiked into a ground water sample under ideal conditions, with limited work conducted using real field samples. In this work, the DNAPL used for the dechlorination study was obtained from a contaminatied site. This approach was selected to adequately simulate a condition where the nZVI suspension was in direct contact with DNAPL and to isolate the dechlorination activity shown by the nZVI from the groundwater matrix effects. An ideal system "synthetic DNAPL" composed of a mixture of chlorinated compounds mimicking the composition of the actual DNAPL was also dechlorinated to evaluate the DNAPL "matrix effect" on NZVI dechlorination activity. This approach allowed us to evaluate the effect of the presence of different types of organic compounds (volatile fatty acids and humic acids) found in the actual DNAPL on nZVI dechlorination activity. This presentation will

  10. Chlorination and dechlorination rates in a forest soil — A combined modelling and experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Montelius, Malin, E-mail: malin.montelius@liu.se [Department of Thematic Studies — Environmental Change, Linköping University, 581 83 Linköping (Sweden); Svensson, Teresia [Department of Thematic Studies — Environmental Change, Linköping University, 581 83 Linköping (Sweden); Lourino-Cabana, Beatriz [EDF, Laboratoire National d' Hydraulique et Environnement, 78401 Chatou (France); Thiry, Yves [Andra, Research and Development Division, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex (France); Bastviken, David [Department of Thematic Studies — Environmental Change, Linköping University, 581 83 Linköping (Sweden)

    2016-06-01

    Much of the total pool of chlorine (Cl) in soil consists of naturally produced organic chlorine (Cl{sub org}). The chlorination of bulk organic matter at substantial rates has been experimentally confirmed in various soil types. The subsequent fates of Cl{sub org} are important for ecosystem Cl cycling and residence times. As most previous research into dechlorination in soils has examined either single substances or specific groups of compounds, we lack information about overall bulk dechlorination rates. Here we assessed bulk organic matter chlorination and dechlorination rates in coniferous forest soil based on a radiotracer experiment conducted under various environmental conditions (additional water, labile organic matter, and ammonium nitrate). Experiment results were used to develop a model to estimate specific chlorination (i.e., fraction of Cl{sup −} transformed to Cl{sub org} per time unit) and specific dechlorination (i.e., fraction of Cl{sub org} transformed to Cl{sup −} per time unit) rates. The results indicate that chlorination and dechlorination occurred simultaneously under all tested environmental conditions. Specific chlorination rates ranged from 0.0005 to 0.01 d{sup −1} and were hampered by nitrogen fertilization but were otherwise similar among the treatments. Specific dechlorination rates were 0.01–0.03 d{sup −1} and were similar among all treatments. This study finds that soil Cl{sub org} levels result from a dynamic equilibrium between the chlorination and rapid dechlorination of some Cl{sub org} compounds, while another Cl{sub org} pool is dechlorinated more slowly. Altogether, this study demonstrates a highly active Cl cycling in soils. - Highlights: • Chlorination and dechlorination rates in soil were revealed by a radiotracer method. • Chlorination was hampered by nitrogen addition. • Both Cl{sup −} and many Cl{sub org} compounds are highly reactive in soils. • Some formed Cl{sub org} seem to be refractory.

  11. Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane.

    Science.gov (United States)

    Yan, J; Rash, B A; Rainey, F A; Moe, W M

    2009-04-01

    Two strictly anaerobic bacterial strains were isolated from contaminated groundwater at a Superfund site located near Baton Rouge, LA, USA. These strains represent the first isolates reported to reductively dehalogenate 1,2,3-trichloropropane. Allyl chloride (3-chloro-1-propene), which is chemically unstable, was produced from 1,2,3-trichloropropane, and it was hydrolysed abiotically to allyl alcohol and also reacted with the sulfide- and cysteine-reducing agents in the medium to form various allyl sulfides. Both isolates also dehalogenated a variety of other vicinally chlorinated alkanes (1,2-dichloropropane, 1,2-dichloroethane, 1,1,2-trichloroethane, 1,1,2,2- tetrachloroethane) via dichloroelimination reactions. A quantitative real-time PCR (qPCR) approach targeting 16S rRNA genes indicated that both strains couple reductive dechlorination to cell growth. Growth was not observed in the absence of hydrogen (H2) as an electron donor and a polychlorinated alkane as an electron acceptor. Alkanes containing only a single chlorine substituent (1-chloropropane, 2-chloropropane), chlorinated alkenes (tetrachlorothene, trichlorothene, cisdichloroethene, trans-dichloroethene, vinyl chloride) and chlorinated benzenes (1-chlorobenzene and 1,2- dichlorobenzene) were not dechlorinated. Phylogenetic analysis based on 16S rRNA gene sequence data showed these isolates to represent a new lineage within the Chloroflexi. Their closest previously cultured relatives are 'Dehalococcoides' strains, with 16S rRNA gene sequence similarities of only 90%.

  12. Quantitative HRMAS proton total correlation spectroscopy applied to cultured melanoma cells treated by chloroethyl nitrosourea: demonstration of phospholipid metabolism alterations.

    Science.gov (United States)

    Morvan, Daniel; Demidem, Aicha; Papon, Janine; Madelmont, Jean Claude

    2003-02-01

    Recent NMR spectroscopy developments, such as high-resolution magic angle spinning (HRMAS) probes and correlation-enhanced 2D sequences, now allow improved investigations of phospholipid (Plp) metabolism. Using these modalities we previously demonstrated that a mouse-bearing melanoma tumor responded to chloroethyl nitrosourea (CENU) treatment in vivo by altering its Plp metabolism. The aims of the present study were to investigate whether HRMAS proton total correlation spectroscopy (TOCSY) could be used as a quantitative technique to probe Plp metabolism, and to determine the Plp metabolism response of cultured B16 melanoma cells to CENU treatment in vitro. The exploited TOCSY signals of Plp derivatives arose from scalar coupling among the protons of neighbor methylene groups within base headgroups (choline and ethanolamine). For strongly expressed Plp derivatives, TOCSY signals were compared to saturation recovery signals and demonstrated a linear relationship. HRMAS proton TOCSY was thus used to provide concentrations of Plp derivatives during long-term follow-up of CENU-treated cell cultures. Strong Plp metabolism alteration was observed in treated cultured cells in vitro involving a down-regulation of phosphocholine, and a dramatic and irreversible increase of phosphoethanolamine. These findings are discussed in relation to previous in vivo data, and to Plp metabolism enzymatic involvement. Copyright 2003 Wiley-Liss, Inc.

  13. Oxcarbazepine-induced cytotoxicity and genotoxicity in human lymphocyte cultures with or without metabolic activation.

    Science.gov (United States)

    Atlı Şekeroğlu, Zülal; Kefelioğlu, Haluk; Kontaş Yedier, Seval; Şekeroğlu, Vedat; Delmecioğlu, Berrin

    2017-03-01

    There has been considerable debate about the relationship between epilepsy and cancer. Oxcarbazepine (OXC) is used for treating certain types of seizures in patients with epilepsy. There have been no detailed investigations about genotoxicity of OXC and its metabolites. Therefore, the aim of this study is to investigate the cytotoxic and genotoxic effects of OXC and its metabolites on cultured human lymphocytes. The cytotoxicity and genotoxicity of OXC on human peripheral blood lymphocytes were examined in vitro by sister chromatid exchange (SCE), chromosomal aberration (CA) and micronucleus (MN) tests. Cultures were treated with 125, 250 and 500 μg/ml of OXC in the presence (3 h treatment) and absence (24 h and 48 h treatment) of a metabolic activator (S9 mix). Dimethyl sulfoxide (DMSO) was used as a solvent control. OXC showed cytotoxic activities due to significant decreases in mitotic index (MI), proliferation index (PI) and nuclear division index (NDI) in the absence of S9 mix when compared with solvent control. Metabolites of OXC also significantly reduced MI and PI in cultures with S9 mix. OXC significantly increased the CAs, aberrant cells, SCE and MN values in the presence and absence of S9 mix. Our results indicated that both OXC and its metabolites have cytotoxic, cytostatic and genotoxic potential on human peripheral blood lymphocyte cultures under the experimental conditions. Further studies are necessary to elucidate the relationship between cytotoxic, cytostatic and genotoxic effects, and to make a possible risk assessment in patients receiving therapy with this drug.

  14. Metabolic aspects of growth in HU-treated crown-gall tissue cultures. I. Nicotiana tabacum

    Directory of Open Access Journals (Sweden)

    Aldona Rennert

    2015-01-01

    Full Text Available An influence of hydroxyurea (HU on the growth, DNA and RNA contents and protein synthesis in the tobacco tumour tissue culture was studied in comparison with a homologous callus tissue. In conformity with expectations considerable decrease of DNA level in both tissues is a primary effect of HU activity. This results in the growth inhibition and in the secondary metabolic effects; these effects depend not only on the concentration of inhibitor but also on the age of tissue. In spite of some common features the character of these changes shows a distinct differentiation depending on the tissue type. TMs points to specific modifications of the biochemical regulation of growth in a tumour.

  15. Improving flavor metabolism of Saccharomyces cerevisiae by mixed culture with Bacillus licheniformis for Chinese Maotai-flavor liquor making.

    Science.gov (United States)

    Meng, Xing; Wu, Qun; Wang, Li; Wang, Diqiang; Chen, Liangqiang; Xu, Yan

    2015-12-01

    Microbial interactions could impact the metabolic behavior of microbes involved in food fermentation, and therefore they are important for improving food quality. This study investigated the effect of Bacillus licheniformis, the dominant bacteria in the fermentation process of Chinese Maotai-flavor liquor, on the metabolic activity of Saccharomyces cerevisiae. Results indicated that S. cerevisiae inhibited the growth of B. licheniformis in all mixed culture systems and final viable cell count was lower than 20 cfu/mL. Although growth of S. cerevisiae was barely influenced by B. licheniformis, its metabolism was changed as initial inoculation ratio varied. The maximum ethanol productions were observed in S. cerevisiae and B. licheniformis at 10(6):10(7) and 10(6):10(8) ratios and have increased by 16.8 % compared with single culture of S. cerevisiae. According to flavor compounds, the culture ratio 10(6):10(6) showed the highest level of total concentrations of all different kinds of flavor compounds. Correlation analyses showed that 12 flavor compounds, including 4 fatty acids and their 2 corresponding esters, 1 terpene, and 5 aromatic compounds, that could only be produced by S. cerevisiae were significantly correlated with the initial inoculation amount of B. licheniformis. These metabolic changes in S. cerevisiae were not only a benefit for liquor aroma, but may also be related to its inhibition effect in mixed culture. This study could help to reveal the microbial interactions in Chinese liquor fermentation and provide guidance for optimal arrangement of mixed culture fermentation systems.

  16. Effects of Kisspeptin-10 on Lipid Metabolism in Cultured Chicken Hepatocytes

    Directory of Open Access Journals (Sweden)

    J. Wu

    2012-09-01

    Full Text Available Our previous studies showed that kisspeptin-10 (Kp-10 injected in vivo can markedly increase lipid anabolism in liver of quails. In order to investigate the direct effect of Kp-10 on lipid metabolism of hepatocytes in birds, cells were separated from embryos livers and cultured in vitro with 0, 100 and 1,000 nM Kp-10, respectively. The results showed that after 24 h treatment, cells viability was not affected by 100 nM Kp-10, but showed a mild decrease with 1,000 nM Kp-10 compared to the control cells. Based on the results of the cell viability, 100 nM dosage of Kp-10 was selected for the further study and analysis. Compared with control cells, total cholesterol (Tch contents in 100 nM treated cells were increased by 51.23%, but did not reach statistical significance, while the level of triglyceride (TG, high density of lipoprotein-cholesterol (HDL-C and low density of lipoprotein-cholesterol (LDL-C were significantly increased. Real-time PCR results showed that ApoVLDL-II mRNA expression had a tendency to increase, genes including sterol regulatory element-binding protein-1 (SREBP-1, acetyl coenzyme A carboxylase α (ACCα, carnitine palmitoyltransferase 1 (CPT1, 3-hydroxyl-3-methylglutaryl-coenzyme A reductases (HMGCR and stearyl coenzyme A dehydrogenase-1 (SCD1 mRNA in hepatocytes were significantly down-regulated by 100 nM Kp-10. However, contrary to its gene expression, SREBP-1 protein expression was significantly up-regulated by 100 nM Kp-10. Some of the significant correlations in mRNA expression were found between genes encoding hepatic factors or enzymes involved in lipid metabolism in liver of birds. These results indicate that Kp-10 stimulates lipid synthesis directly in primary cultured hepatocytes of chickens.

  17. Pathways of sphingomyelin metabolism in cultured fibroblasts from normal and sphingomyelin lipidosis subjects.

    Science.gov (United States)

    Spence, M W; Clarke, J T; Cook, H W

    1983-07-25

    The metabolism of endogenous sphingomyelin labeled with 32P or [methyl-3H]choline and of exogenous [choline-methyl-3H], [32P]-, or [N-acyl-1-14C]sphingomyelin was studied in normal and Niemann-Pick Type A (NP-A) cultured fibroblasts. Despite a greater than 96% decrease in lysosomal sphingomyelinase activity in the NP-A cells, they were able to degrade endogenously produced [32P]- or [methyl-3H]sphingomyelin at normal or near normal rates. Exogenous [methyl-3H]-, [methyl-3H, 32P]-, and [methyl-3H, N-acyl-1-14C] sphingomyelin was taken up intact by normal and NP-A cells, with NP-A cells accumulating 4-8 times more lipid. By 20 h, 50% of the control cell-associated 3H and 32P was recovered in lecithin, and the ratio of activities (3H/32P) indicated most of the phosphorylcholine derived from sphingomyelin had been transferred intact. By comparison in NP-A cells, after a 40-h incubation only 20% of the labeled phosphorylcholine derived from sphingomyelin was recovered in lecithin. With both cell lines, 20 to 50 times more sphingomyelin was hydrolyzed than was taken up by the cells; the reaction products in the medium were ceramide and a mixture of water-soluble compounds such as phosphorylcholine and choline. These results indicate that there are at least two metabolic pathways for sphingomyelin modification in cultured fibroblasts in addition to degradation by the lysosomal acid sphingomyelinase. One route is hydrolysis by a cellular sphingomyelinase. The second is the hydrolysis and/or transfer of phosphorylcholine from sphingomyelin and results in the synthesis of lecithin.

  18. Dynamic gene expression for metabolic engineering of mammalian cells in culture.

    Science.gov (United States)

    Le, Huong; Vishwanathan, Nandita; Kantardjieff, Anne; Doo, Inseok; Srienc, Michael; Zheng, Xiaolu; Somia, Nikunj; Hu, Wei-Shou

    2013-11-01

    Recombinant mammalian cells are the major hosts for the production of protein therapeutics. In addition to high expression of the product gene, a hyper-producer must also harbor superior phenotypic traits related to metabolism, protein secretion, and growth control. Introduction of genes endowing the relevant hyper-productivity traits is a strategy frequently used to enhance the productivity. Most of such cell engineering efforts have been performed using constitutive expression systems. However, cells respond to various environmental cues and cellular events dynamically according to cellular needs. The use of inducible systems allows for time dependent expression, but requires external manipulation. Ideally, a transgene's expression should be synchronous to the host cell's own rhythm, and at levels appropriate for the objective. To that end, we identified genes with different expression dynamics and intensity ranges using pooled transcriptome data. Their promoters may be used to drive the expression of the transgenes following the desired dynamics. We isolated the promoter of the Thioredoxin-interacting protein (Txnip) gene and demonstrated its capability to drive transgene expression in concert with cell growth. We further employed this Chinese hamster promoter to engineer dynamic expression of the mouse GLUT5 fructose transporter in Chinese hamster ovary (CHO) cells, enabling them to utilize sugar according to cellular needs rather than in excess as typically seen in culture. Thus, less lactate was produced, resulting in a better growth rate, prolonged culture duration, and higher product titer. This approach illustrates a novel concept in metabolic engineering which can potentially be used to achieve dynamic control of cellular behaviors for enhanced process characteristics. © 2013 Published by Elsevier Inc.

  19. Metabolism

    Science.gov (United States)

    ... lin), which signals cells to increase their anabolic activities. Metabolism is a complicated chemical process, so it's not ... how those enzymes or hormones work. When the metabolism of body chemicals is ... Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism ...

  20. Involvement of triacylglycerol in the metabolism of fatty acids by cultured neuroblastoma and glioma cells

    International Nuclear Information System (INIS)

    Cook, H.W.; Clarke, J.T.; Spence, M.W.

    1982-01-01

    The metabolism (chain elongation, desaturation, and incorporation into complex lipids) of thirteen different radiolabeled fatty acids and acetate was examined in N1E-115 neuroblastoma and C-6 glioma cell lines in culture. During 6-hr incubations, all fatty acids were extensively (14-80%) esterified to complex lipids, mainly choline phosphoglycerides and triacylglycerol. With trienoic and tetraenoic substrates, inositol and ethanolamine phosphoglycerides also contained up to 30% of the labeled fatty acids; plasmalogen contained up to half of the label in the ethanolamine phosphoglyceride fraction of neuroblastoma cells. Chain elongation and delta 9, delta 6, and delta 5 desaturation occurred in both cell lines; delta 4 desaturation was not observed. Seemingly anomalous utilization of arachidic acid and some selectivity based on the geometric configuration of double bonds was observed. These studies indicate that these cell lines are capable of modulating cellular membrane composition by a combination of selective exclusion and removal of inappropriate acyl chains and of modification of other acyl chains by desaturation and chain elongation. The time courses and patterns of modification and incorporation of exogenous substrates into phospholipids and triacylglycerol suggest that exogenous unsaturated fatty acid may be incorporated into triacylglycerol and later released for further metabolism and incorporation into phospholipids. This supports a role for triacylglycerol in the synthesis of membrane complex lipids in cell lines derived from neural tissue

  1. Effects of coronatine elicitation on growth and metabolic profiles of Lemna paucicostata culture.

    Directory of Open Access Journals (Sweden)

    Jin-Young Kim

    Full Text Available In this study, the effects of coronatine treatment on the growth, comprehensive metabolic profiles, and productivity of bioactive compounds, including phenolics and phytosterols, in whole plant cultures of Lemna paucicostata were investigated using gas chromatography-mass spectrometry (GC-MS coupled with multivariate statistical analysis. To determine the optimal timing of coronatine elicitation, coronatine was added on days 0, 23, and 28 after inoculation. The total growth of L. paucicostata was not significantly different between the coronatine treated groups and the control. The coronatine treatment in L. paucicostata induced increases in the content of hydroxycinnamic acids, such as caffeic acid, isoferulic acid, ρ-coumaric acid, sinapic acid, and phytosterols, such as campesterol and β-sitosterol. The productivity of these useful metabolites was highest when coronatine was added on day 0 and harvested on day 32. These results suggest that coronatine treatment on day 0 activates the phenolic and phytosterol biosynthetic pathways in L. paucicostata to a greater extent than in the control. To the best of our knowledge, this is the first report to investigate the effects of coronatine on the alteration of metabolism in L. paucicostata based on GC-MS profiling. The results of this research provide a foundation for designing strategies for enhanced production of useful metabolites for pharmaceutical and nutraceutical industries by cultivation of L. paucicostata.

  2. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    Science.gov (United States)

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  3. Stoichiometry and kinetics of poly-{beta}-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures

    Energy Technology Data Exchange (ETDEWEB)

    Beun, J.J.; Paletta, F.; Loosdrecht, M.C.M. Van; Heijnen, J.J.

    2000-02-20

    This paper discusses the poly-{beta}-hydroxybutyrate (PHB) metabolism in aerobic, slow growing, activated sludge cultures, based on experimental data and on a metabolic model. The dynamic conditions which occur in activated sludge processes were simulated in a 2-L sequencing batch reactor (SBR) by subjecting a mixed microbial population to successive periods of external substrate availability (feast period) and no external substrate availability (famine period). Under these conditions intracellular storage and consumption of PHB was observed. It appeared that in the feast period, 66% to almost 100% of the substrate consumed is used for storage of PHB, the remainder is used for growth and maintenance processes. Furthermore, it appeared that at high sludge retention time (SRT) the growth rate in the feast and famine periods was the same. With decreasing SRT the growth rate in the feast period increased relative to the growth rate in the famine period. Acetate consumption and PHB production in the feast period both proceeded with a zero-order rate in acetate and PHB concentration respectively. PHB consumption in the famine period could best be described kinetically with a nth order degradation equation in PHB concentration. The obtained results are discussed in the context of the general activated sludge models.

  4. Differential metabolic responses of Beauveria bassiana cultured in pupae extracts, root exudates and its interactions with insect and plant.

    Science.gov (United States)

    Luo, Feifei; Wang, Qian; Yin, Chunlin; Ge, Yinglu; Hu, Fenglin; Huang, Bo; Zhou, Hong; Bao, Guanhu; Wang, Bin; Lu, Ruili; Li, Zengzhi

    2015-09-01

    Beauveria bassiana is a kind of world-wide entomopathogenic fungus and can also colonize plant rhizosphere. Previous researches showed differential expression of genes when entomopathogenic fungi are cultured in insect or plant materials. However, so far there is no report on metabolic alterations of B. bassiana in the environments of insect or plant. The purpose of this paper is to address this problem. Herein, we first provide the metabolomic analysis of B. bassiana cultured in insect pupae extracts (derived from Euproctis pseudoconspersa and Bombyx mori, EPP and BMP), plant root exudates (derived from asparagus and carrot, ARE and CRE), distilled water and minimal media (MM), respectively. Principal components analysis (PCA) shows that mycelia cultured in pupae extracts and root exudates are evidently separated and individually separated from MM, which indicates that fungus accommodates to insect and plant environments by different metabolic regulation mechanisms. Subsequently, orthogonal projection on latent structure-discriminant analysis (OPLS-DA) identifies differential metabolites in fungus under three environments relative to MM. Hierarchical clustering analysis (HCA) is performed to cluster compounds based on biochemical relationships, showing that sphingolipids are increased in BMP but are decreased in EPP. This observation further implies that sphingolipid metabolism may be involved in the adaptation of fungus to different hosts. In the meantime, sphingolipids are significantly decreased in root exudates but they are not decreased in distilled water, suggesting that some components of the root exudates can suppress sphingolipid to down-regulate sphingolipid metabolism. Pathway analysis finds that fatty acid metabolism is maintained at high level but non-ribosomal peptides (NRP) synthesis is unaffected in mycelia cultured in pupae extracts. In contrast, fatty acid metabolism is not changed but NRP synthesis is high in mycelia cultured in root exudates

  5. The metabolic role of isoleucine in detoxification of ammonia in cultured mouse neurons and astrocytes.

    Science.gov (United States)

    Johansen, Maja L; Bak, Lasse K; Schousboe, Arne; Iversen, Peter; Sørensen, Michael; Keiding, Susanne; Vilstrup, Hendrik; Gjedde, Albert; Ott, Peter; Waagepetersen, Helle S

    2007-06-01

    Cerebral hyperammonemia is a hallmark of hepatic encephalopathy, a debilitating condition arising secondary to liver disease. Pyruvate oxidation including tricarboxylic acid (TCA) cycle metabolism has been suggested to be inhibited by hyperammonemia at the pyruvate and alpha-ketoglutarate dehydrogenase steps. Catabolism of the branched-chain amino acid isoleucine provides both acetyl-CoA and succinyl-CoA, thus by-passing both the pyruvate dehydrogenase and the alpha-ketoglutarate dehydrogenase steps. Potentially, this will enable the TCA cycle to work in the face of ammonium-induced inhibition. In addition, this will provide the alpha-ketoglutarate carbon skeleton for glutamate and glutamine synthesis by glutamate dehydrogenase and glutamine synthetase (astrocytes only), respectively, both reactions fixing ammonium. Cultured cerebellar neurons (primarily glutamatergic) or astrocytes were incubated in the presence of either [U-13C]glucose (2.5 mM) and isoleucine (1 mM) or [U-13C]isoleucine and glucose. Cell cultures were treated with an acute ammonium chloride load of 2 (astrocytes) or 5 mM (neurons and astrocytes) and incorporation of 13C-label into glutamate, aspartate, glutamine and alanine was determined employing mass spectrometry. Labeling from [U-13C]glucose in glutamate and aspartate increased as a result of ammonium-treatment in both neurons and astrocytes, suggesting that the TCA cycle was not inhibited. Labeling in alanine increased in neurons but not in astrocytes, indicating elevated glycolysis in neurons. For both neurons and astrocytes, labeling from [U-13C]isoleucine entered glutamate and aspartate albeit to a lower extent than from [U-13C]glucose. Labeling in glutamate and aspartate from [U-13C]isoleucine was decreased by ammonium treatment in neurons but not in astrocytes, the former probably reflecting increased metabolism of unlabeled glucose. In astrocytes, ammonia treatment resulted in glutamine production and release to the medium, partially

  6. The Effect of Culture Medium on Metabolic and Antibacterial Activities of Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Mirdavoudi F

    2012-01-01

    Full Text Available Background and Objectives: Probiotic bacteria is added directly to food components and it has beneficial effect on function and the health of organisms. The bifidogenic factors enter the colon where they contribute to an increase lactic acid bacteria population including Lactobacilli and Bifidobacteria and they inhibit enteric pathogenic bacterial growth. The aim of this study is to investigate the effect of culture medium on metabolic and antibacterial of probiotic bacteria.Methods: In this study, the probiotics bacterial and intestine pathogenic are to be used. Lactobacilli and Bifidobacterium were identified by plating samples on MRS medium, Gram Staining and standard biochemical methods. The effect of antagonistic probiotics was investigated in the presence of growth factor in the method well diffusion Ager on the Shigella flexneri (PTCC 1234, Escherichia coli (PTCC 1552, Salmonella typhi ( PTCC 1609 and the culture medium pH was measured.Results: The probiotics bacterial growth in MRS and lactose1%, sorbitol, raffinose, riboflavin were shown the effect antibacterial. The results of the study show the most antagonistic activity in commercial strain Lactobacillus acidophilus on Shigella flexneri and lower activity was in Lactobacillus casei (PTCC 1608, and Salmonella typhimurium (PTCC 1609, and also in Bbifidobacterium bifidum, it showed the most decrease pH value.Conclusion: According to the result of the study, adding growth factors to MRS medium base and lactose 1%, probiotic growth was increased and which also increased antagonistic activity.

  7. Effects of different electron donor feeding patterns on TCE reductive dechlorination performance.

    Science.gov (United States)

    Panagiotakis, I; Antoniou, K; Mamais, D; Pantazidou, M

    2015-03-01

    This study investigates how the feeding pattern of e(-) donors might affect the efficiency of enhanced in situ bioremediation in TCE-contaminated aquifers. A series of lab-scale batch experiments were conducted using butyrate or hydrogen gas (H2) as e(-) donor and a TCE-dechlorinating microbial consortium dominated by Dehalococcoides spp. The results of these experiments demonstrate that butyrate is similarly efficient for TCE dechlorination whether it is injected once or in doses. Moreover, the present work indicates that the addition of butyrate in great excess cannot be avoided, since it most likely provide, even indirectly, significant part of the H2 required. Furthermore, methanogenesis appears to be the major ultimate e(-) accepting process in all experiments, regardless the e(-) donor used and the feeding pattern. Finally, the timing of injection of H2 seems to significantly affect dechlorination performance, since the injection during the early stages improves VC-to-ETH dechlorination and reduce methanogenic activity.

  8. Radiation dechlorination of PCE and PCB in the quarter operation flow apparatus

    International Nuclear Information System (INIS)

    Mucka, V.; Silber, R.; Pospisil, M.; Camra, M.; Bartonicek, B.

    1999-01-01

    The aim of this work was to verify practical possibilities of radiation dechlorination of liquid chlorinated substrates [perchloroethylene (PCE) and polychlorinated biphenyls (PCB)] in the quarter operation flow apparatus. In this apparatus may be disposable work over 50 dm 3 of media. Radiation dechlorination of PCE proceeds more effectively as dechlorination of PCB in flow regimes, too. Radiation chemical yield of G(-OH - ) decrease with increasing applied radiation dose and at the dose 5 kGy for PCE it is 200 · 10 -2 eV -1 and for PCB this value is 55 · 10 -2 eV -1 . At increasing original concentration of PCE or PCB the G-values decreases. The radical chain mechanism of dechlorination of PCE and PCB was proposed

  9. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach.

    Science.gov (United States)

    Freitas, Juliana G; Rivett, Michael O; Roche, Rachel S; Durrant Neé Cleverly, Megan; Walker, Caroline; Tellam, John H

    2015-02-01

    The typically elevated natural attenuation capacity of riverbed-hyporheic zones is expected to decrease chlorinated hydrocarbon (CHC) groundwater plume discharges to river receptors through dechlorination reactions. The aim of this study was to assess physico-chemical processes controlling field-scale variation in riverbed-hyporheic zone dechlorination of a TCE groundwater plume discharge to an urban river reach. The 50-m long pool-riffle-glide reach of the River Tame in Birmingham (UK) studied is a heterogeneous high energy river environment. The shallow riverbed was instrumented with a detailed network of multilevel samplers. Freeze coring revealed a geologically heterogeneous and poorly sorted riverbed. A chlorine number reduction approach provided a quantitative indicator of CHC dechlorination. Three sub-reaches of contrasting behaviour were identified. Greatest dechlorination occurred in the riffle sub-reach that was characterised by hyporheic zone flows, moderate sulphate concentrations and pH, anaerobic conditions, low iron, but elevated manganese concentrations with evidence of sulphate reduction. Transient hyporheic zone flows allowing input to varying riverbed depths of organic matter are anticipated to be a key control. The glide sub-reach displayed negligible dechlorination attributed to the predominant groundwater baseflow discharge condition, absence of hyporheic zone, transition to more oxic conditions and elevated sulphate concentrations expected to locally inhibit dechlorination. The tail-of-pool-riffle sub-reach exhibited patchy dechlorination that was attributed to sub-reach complexities including significant flow bypass of a low permeability, high organic matter, silty unit of high dechlorination potential. A process-based conceptual model of reach-scale dechlorination variability was developed. Key findings of practitioner relevance were: riverbed-hyporheic zone CHC dechlorination may provide only a partial, somewhat patchy barrier to CHC

  10. Clorate Metabolism in Pure Cultures of E.Coli 0157:H7 Pretreated with Either Nitrate or Chlorate

    Science.gov (United States)

    Experiments were conducted to determine the effects of 5, 7.5, and 10 mM nitrate, and 5, 10, or 20 mM chlorate on total E. coli counts, chlorate metabolism, and volatile fatty acid (VFA) concentrations in anaerobic ruminal fluid cultures. Nitrate did not affect total E. coli counts (P = 0.05), chlor...

  11. Hydroxyl-radical induced dechlorination of pentachlorophenol in water

    International Nuclear Information System (INIS)

    He Yongke; Wu Jilan; Fang Xingwang; Sonntag, C. von

    1998-01-01

    The hydroxyl-radical induced dechlorination of pentachlorophenol (PCP) in water has been investigated pulse radiolytically. Hydroxyl radicals react with PCP by both electron transfer and addition. The former process results in pentachlorophenoxyl radicals (PCP-O), the latter process followed by rapid HCl elimination gives birth to deprotonated hydroxytetrachlorophenoxyl radicals ( - O-TCP-O). These phenoxyl radicals exhibit maximum absorption around 452 nm, which hinders the proper estimation of the ratio of the two processes. However, these two processes cause different changes in conductivity. In basic solution, the electron transfer causes a conductivity increase due to the formation of OH - whereas an addition followed by HCl elimination results in a conductivity decrease. The concurrence of these two processes reduces the relative variation in conductivity, from which about 53% electron transfer is deduced

  12. Graphene oxide-mediated rapid dechlorination of carbon tetrachloride by green rust

    DEFF Research Database (Denmark)

    Huang, Li-Zhi; Hansen, Hans Christian B.; Daasbjerg, Kim

    2017-01-01

    Graphene-based nanomaterials can mediate environmentally relevant abiotic redox reactions of chlorinated aliphatic hydrocarbons. In this study as low amounts as ∼0.007 % of graphene oxide (GO) was found to catalyze the reduction of carbon tetrachloride by layered Fe(II)-Fe(III) hydroxide (Green R....... This study indicates that traces of graphene oxide can affect reaction pathways as well as kinetics for dechlorination processes in anoxic sediments by facilitating a partial dechlorination....

  13. Enhanced anaerobic dechlorination of polychlorinated biphenyl in sediments by bioanode stimulation

    International Nuclear Information System (INIS)

    Yu, Hui; Feng, Chunhua; Liu, Xiaoping; Yi, Xiaoyun; Ren, Yuan; Wei, Chaohai

    2016-01-01

    The application of a low-voltage electric field as an electron donor or acceptor to promote the bioremediation of chlorinated organic compounds represents a promising technology meeting the demand of developing an efficient and cost-effective strategy for in situ treatment of PCB-contaminated sediments. Here, we reported that bioanode stimulation with an anodic potential markedly enhanced dechlorination of 2,3,4,5-tetrachlorobiphenyl (PCB 61) contained in the sediment at an electronic waste recycling site of Qingyuan, Guangdong, China. The 110-day incubation of the bioanode with a potential poised at 0.2 V relative to saturated calomel electrode enabled 58% transformation of the total PCB 61 at the initial concentration of 100 μmol kg"−"1, while only 23% was reduced in the open-circuit reference experiment. The introduction of acetate to the bioelectrochemical reactor (BER) further improved PCB 61 transformation to 82%. Analysis of the bacterial composition showed significant community shifts in response to variations in treatment. At phylum level, the bioanode stimulation resulted in substantially increased abundance of Actinobacteria, Bacteroidetes, and Chloroflexi either capable of PCB dechlorination, or detected in the PCB-contaminated environment. At genus level, the BER contained two types of microorganisms: electrochemically active bacteria (EAB) represented by Geobacter, Ignavibacterium, and Dysgonomonas, and dechlorinating bacteria including Hydrogenophaga, Alcanivorax, Sedimentibacter, Dehalogenimonas, Comamonas and Vibrio. These results suggest that the presence of EAB can promote the population of dechlorinating bacteria which are responsible for PCB 61 transformation. - Highlights: • A bioelectrochemical reactor (BER) was constructed for anaerobic PCB dechlorination. • Bioanode stimulation substantially enhanced dechlorination of PCB 61. • Electrochemically active bacteria and dechlorinating bacteria coexisted in the BER. - Bioanode

  14. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon.

    Science.gov (United States)

    Choi, Hyeok; Lawal, Wasiu; Al-Abed, Souhail R

    2015-04-28

    Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Use of carbon stable isotope to investigate chloromethane formation in the electrolytic dechlorination of trichloroethylene

    International Nuclear Information System (INIS)

    Fang Yuanxiang; Al-Abed, Souhail R.

    2007-01-01

    Carbon stable isotope trichloroethylene ( 13 C TCE) was used to investigate the formation of chloromethane (CM) during the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite packed cathode. A method was developed to use a conventional GC/MS to analyze and quantify regular and 13 C TCE and their dechlorination products. The concentration of a 13 C compound can be calculated, based on the concentration of its regular counterpart, from the response ratio of two fragments of different mass per charge values from the compounds in a sample and two characteristic MS spectrum ratios: one is the response ratio of the two fragments of the regular compound, and the other is the response ratio of the corresponding fragments of the regular and 13 C compounds at the same concentrations. The method was used to analyze the regular and 13 C compounds observed in an experiment of dechlorination in an ammonium acetate solution that contained both regular TCE and 13 C TCE. Results of analysis confirmed that CM was not a direct product of TCE dechlorination at the granular graphite cathode that cis-DCE was an intermediate product of TCE dechlorination, and that 1,1-DCE was not a dechlorination product

  16. Use of carbon stable isotope to investigate chloromethane formation in the electrolytic dechlorination of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Fang Yuanxiang [National Risk Management Research Laboratory, USEPA 26 W. Martin Luther King Dr. Cincinnati, OH 45268 (United States); Al-Abed, Souhail R. [National Risk Management Research Laboratory, USEPA 26 W. Martin Luther King Dr. Cincinnati, OH 45268 (United States)]. E-mail: Al-Abed.Souhail@epa.gov

    2007-03-22

    Carbon stable isotope trichloroethylene ({sup 13}C TCE) was used to investigate the formation of chloromethane (CM) during the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite packed cathode. A method was developed to use a conventional GC/MS to analyze and quantify regular and {sup 13}C TCE and their dechlorination products. The concentration of a {sup 13}C compound can be calculated, based on the concentration of its regular counterpart, from the response ratio of two fragments of different mass per charge values from the compounds in a sample and two characteristic MS spectrum ratios: one is the response ratio of the two fragments of the regular compound, and the other is the response ratio of the corresponding fragments of the regular and {sup 13}C compounds at the same concentrations. The method was used to analyze the regular and {sup 13}C compounds observed in an experiment of dechlorination in an ammonium acetate solution that contained both regular TCE and {sup 13}C TCE. Results of analysis confirmed that CM was not a direct product of TCE dechlorination at the granular graphite cathode that cis-DCE was an intermediate product of TCE dechlorination, and that 1,1-DCE was not a dechlorination product.

  17. Rules of thumb for assessing reductive dechlorination pathways of PCDDs in specific systems

    International Nuclear Information System (INIS)

    Lu Guining; Dang Zhi; Fennell, Donna E.; Huang Weilin; Li Zhong; Liu Congqiang

    2010-01-01

    This paper reports a theoretical validation and proposition of the reductive dechlorination pathways for polychlorinated dibenzo-p-dioxin (PCDD) congeners. Density functional theory (DFT) calculations were carried out at the B3LYP/6-31G(d) level for all PCDDs and Mulliken atomic charges on chlorine atoms were adopted as the probe of the dechlorination reaction activity. The experimentally substantiated dechlorination pathways of 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TCDD) and its daughter products in the presence of zero-valent zinc were validated and the complete pathway of dechlorination of octachlorodibenzo-p-dioxin (OCDD) was proposed. The proposed pathways were found to be consistent with anaerobic biotransformation of several PCDD congeners. Four rules of thumb arrived from this study include (1) the chlorine atoms in the longitudinal (1,4,6,9) positions are removed in preference to the chlorine atoms on lateral (2,3,7,8) positions; (2) the chlorine atom that has more neighboring chlorine atoms at ortho-, meta- and para-positions is to be eliminated; (3) reductive dechlorination prefers to take place on the benzene ring having more chlorine substitutions; and (4) a chlorine atom on the side of the longitudinal symmetry axis containing more chlorine atoms is preferentially eliminated. These rules of thumb can be conveniently used for rapidly predicting the major dechlorination pathway for a given PCDD in specific systems.

  18. Enhanced glucose metabolism in cultured human skeletal muscle after Roux-en-Y gastric bypass surgery.

    Science.gov (United States)

    Nascimento, Emmani B M; Riedl, Isabelle; Jiang, Lake Qunfeng; Kulkarni, Sameer S; Näslund, Erik; Krook, Anna

    2015-01-01

    Roux-en-Y gastric bypass (RYGB) surgery rapidly increases whole body insulin sensitivity, with changes in several organs including skeletal muscle. Objectives were to determine whether improvements in insulin action in skeletal muscle may occur directly at the level of the myocyte or secondarily from changes in systemic factors associated with weight loss. Myotubes were derived before and after RYGB surgery. The setting was Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden. Eight patients (body mass index (BMI) 41.8 kg/m(2); age 41 yr) underwent RYGB surgery. Before and 6 months after RYGB surgery, skeletal muscle biopsies were collected from vastus lateralis muscle. Satellite cells derived from skeletal muscle biopsies were propagated in vitro as myoblasts and differentiated into myotubes. Expression of myogenic markers is increased in myoblasts derived from biopsies taken 6 months after bypass surgery, compared with their respective presurgery condition. Furthermore, glycogen synthesis, tyrosine phosphorylation of insulin receptor (IRS)-1-Tyr612 and Interleukin (IL)-8 secretion were increased, while fatty acid oxidation and circulating IL8 levels remain unaltered. Myotubes derived from muscle biopsies obtained after RYGB surgery displayed increased insulin-stimulated phosphorylation of protein kinase B (PKB)-Thr308 and proline-rich Akt substrate of 40 kDa (PRAS40)-Thr246. RYGB surgery is accompanied by enhanced glucose metabolism and insulin signaling, altered IL8 secretion and changes in mRNA levels and myogenic markers in cultured skeletal muscle cells. Thus, RYGB surgery involves intrinsic reprogramming of skeletal muscle to increase peripheral insulin sensitivity and glucose metabolism. Copyright © 2015 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  19. Flexible Sheet-Type Sensor for Noninvasive Measurement of Cellular Oxygen Metabolism on a Culture Dish.

    Directory of Open Access Journals (Sweden)

    Mari Kojima

    Full Text Available A novel flexible sensor was developed for the noninvasive oxygen metabolism measurement of cultivated cells and tissues. This device is composed of a transparent double-layered polymer sheet of ethylene-vinyl alcohol (EVOH and poly(dimethylsiloxane (PDMS having an array of microhole structures of 90 μm diameter and 50 μm depth on its surface. All the microhole structures were equipped with a 1-μm-thick optical chemical sensing layer of platinum porphyrin-fluoropolymer on their bottom. The three-dimensional microstructures of the sensor were fabricated by a newly developed simple and low-cost production method named self-aligned hot embossing. The device was designed to be attached slightly above the cells cultivated on a dish to form a temporarily closed microspace over the target cells during measurement. Since the change in oxygen concentration is relatively fast in the microcompartmentalized culture medium, a rapid evaluation of the oxygen consumption rate is possible by measuring the phosphorescence lifetime of the platinum porphyrin-fluoropolymer. The combined use of the device and an automated optical measurement system enabled the high-throughput sensing of cellular oxygen consumption (100 points/min. We monitored the oxygen metabolism of the human breast cancer cell line MCF7 on a Petri dish and evaluated the oxygen consumption rate to be 0.72 ± 0.12 fmol/min/cell. Furthermore, to demonstrate the utility of the developed sensing system, we demonstrated the mapping of the oxygen consumption rate of rat brain slices and succeeded in visualizing a clear difference among the layer structures of the hippocampus, i.e., the cornu ammonis (CA1 and CA3 and dentate gyrus (DG.

  20. In vitro culture of oocytes and granulosa cells collected from normal, obese, emaciated and metabolically stressed ewes.

    Science.gov (United States)

    Tripathi, S K; Farman, M; Nandi, S; Mondal, S; Gupta, Psp; Kumar, V Girish

    2016-07-01

    The present study was undertaken to investigate the oocyte morphology, its fertilizing capacity and granulosa cell functions in ewes (obese, normal, metabolic stressed and emaciated). Ewes (Ovis aries) of approximately 3 years of age (Bellary breed) from a local village were screened, chosen and categorized into a) normal b) obese but not metabolically stressed, c) Emaciated but not metabolically stressed d) Metabolically stressed based on body condition scoring and blood markers. Oocytes and granulosa cells were collected from ovaries of the ewes of all categories after slaughter and were classified into good (oocytes with more than three layers of cumulus cells and homogenous ooplasm), fair (oocytes one or two layers of cumulus cells and homogenous ooplasm) and poor (denuded oocytes or with dark ooplasm). The good and fair quality oocytes were in vitro matured and cultured with fresh semen present and the fertilization, cleavage and blastocyst development were observed. The granulosa cells were cultured for evaluation of metabolic activity by use of the MTT assay, and cell viability, cell number as well as estrogen and progesterone production were assessed. It was observed that the good and fair quality oocytes had greater metabolic activity when collected from normal and obese ewes compared with those from emaciated and metabolically stressed ewes. No significant difference was observed in oocyte quality and maturation amongst the oocytes collected from normal and obese ewes. The cleavage and blastocyst production rates were different for the various body condition classifications and when ranked were: normal>obese>metabolically stressed>emaciated. Lesser metabolic activity was observed in granulosa cells obtained from ovaries of emaciated ewes. However, no changes were observed in viability and cell number of granulosa cells obtained from ewes with the different body condition categories. Estrogen and progesterone production from cultured granulosa cells were

  1. Metabolism of methyl-branched iodo palmitic acids in cultured hepatocytes

    International Nuclear Information System (INIS)

    Thomas, G.; Pepin, D.; Loriette, C.; Chambaz, J.; Bereziat, G.; Vidal, M.; Apparu, M.; Coornaert, S.

    1989-01-01

    The metabolic fate of methyl-branched iodo fatty acids was studied in primary culture of rat hepatocytes. We compared 16-iodo-2-R,S-methyl palmitic acid (2-Me), which can be β oxidized, with 16-iodo-3-R,S-methyl palmitic acid (3-Me) which can be β oxidized only after an initial α oxydation and with 16-iodo-2,2-dimethyl palmitic acid (2,2-Me 2 ) and 16-iodo-3,3-dimethyl palmitic acid (3,3-Me 2 ) which cannot be β oxidized at all. The normal fate of natural fatty acids was given by comparative experiments with [1- 14 C] palmitic acid. Monomethyl-branched iodo fatty acids were taken up in the same range as palmitic acid but more than dimethyl-branched iodo fatty acids. After a 15-h incubation, acido-soluble products (ASP) accounted for 75% of the radioactivity taken up as 16-iodo-2-methyl palmitic acid, 50% as other methyl-branched iodo fatty acids and only 30% as palmitic acid. Cultured hepatocytes, labelled for 3 h with the various fatty acids and reincubated for 12 h without fatty acid, secreted large amounts of free dimethyl-branched iodo fatty acids as compared to the monomethyl ones and palmitic acid. Only hepatocytes prelabelled with 16-[ 125 I]iodo-2,2-dimethyl palmitic acid exhibited an appreciable secretion of labeled triglycerides, but at a lower rate than with [1- 14 C] palmitic acid. Conversely, the 16-iodo-monomethyl palmitic acids remained chiefly in hepatocyte triglycerides. Minute amounts of 16-iodo-methyl-branched palmitic acids were found in hepatocyte or secreted phospholipids as compared with palmitic acid. (orig.)

  2. Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system.

    Science.gov (United States)

    Jang, Hui-Jeong; Yoon, Sang-Hwal; Ryu, Hee-Kyung; Kim, Jung-Hun; Wang, Chong-Long; Kim, Jae-Yean; Oh, Deok-Kun; Kim, Seon-Won

    2011-07-29

    Retinoids are lipophilic isoprenoids composed of a cyclic group and a linear chain with a hydrophilic end group. These compounds include retinol, retinal, retinoic acid, retinyl esters, and various derivatives of these structures. Retinoids are used as cosmetic agents and effective pharmaceuticals for skin diseases. Retinal, an immediate precursor of retinoids, is derived by β-carotene 15,15'-mono(di)oxygenase (BCM(D)O) from β-carotene, which is synthesized from the isoprenoid building blocks isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Retinoids are chemically unstable and biologically degraded via retinoic acid. Although extensive studies have been performed on the microbial production of carotenoids, retinoid production using microbial metabolic engineering has not been reported. Here, we report retinoid production using engineered Escherichia coli that express exogenous BCM(D)O and the mevalonate (MVA) pathway for the building blocks synthesis in combination with a two-phase culture system using a dodecane overlay. Among the BCM(D)O tested in E. coli, the synthetic retinoid synthesis protein (SR), based on bacteriorhodopsin-related protein-like homolog (Blh) of the uncultured marine bacteria 66A03, showed the highest β-carotene cleavage activity with no residual intracellular β-carotene. By introducing the exogenous MVA pathway, 8.7 mg/L of retinal was produced, which is 4-fold higher production than that of augmenting the MEP pathway (dxs overexpression). There was a large gap between retinal production and β-carotene consumption using the exogenous MVA pathway; therefore, the retinal derivatives were analyzed. The derivatives, except for retinoic acid, that formed were identified, and the levels of retinal, retinol, and retinyl acetate were measured. Amounts as high as 95 mg/L retinoids were obtained from engineered E. coli DH5α harboring the synthetic SR gene and the exogenous MVA pathway in addition to dxs overexpression, which

  3. Interleukin 6 regulates metallothionein gene expression and zinc metabolism in hepatocyte monolayer cultures

    International Nuclear Information System (INIS)

    Schroeder, J.J.; Cousins, R.J.

    1990-01-01

    Attention has focused on the cytokine interleukin 6 (IL-6) as a major mediator of acute-phase protein synthesis in hepatocytes in response to infection and tissue injury. The authors have evaluated the effects of IL-6 and IL-1α as well as extracellular zinc and glucocorticoid hormone on metal-lothionein gene expression and cellular zinc accumulation in rat hepatocyte monolayer cultures. Further, they have evaluated the teleological basis for cytokine mediation by examining cyto-protection from CCl 4 -induced damage. Incubation of hepatocytes with IL-6 led to concentration-dependent and time-dependent increases in metallothionein-1 and -2 mRNA and metallothionein protein. The level of each was increased within 3 hr after the addition of IL-6 at 10 ng/ml. Maximal increases the metallothionein mRNA and metallothionein protein were achieved after 12 hr and 36 hr, respectively. Concomitant with the up-regulation of metallothionein gene expression, IL-6 also increased cellular zinc. Responses to IL-6 required the synthetic glucocorticoid hormone dexamethasone and were optimized by increased extracellular zinc. Thus, IL-6 is a major cytokine mediator of metallothionein gene expression and zinc metabolism in hepatocytes and provides cytoprotection from CCl 4 -induced hepatotoxicity via a mode consistent with dependence upon increased cellular metallothionein synthesis and zinc accumulation

  4. Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons.

    Science.gov (United States)

    Pfeiffer-Guglielmi, Brigitte; Dombert, Benjamin; Jablonka, Sibylle; Hausherr, Vanessa; van Thriel, Christoph; Schöbel, Nicole; Jansen, Ralf-Peter

    2014-06-04

    Localization of mRNAs encoding cytoskeletal or signaling proteins to neuronal processes is known to contribute to axon growth, synaptic differentiation and plasticity. In addition, a still increasing spectrum of mRNAs has been demonstrated to be localized under different conditions and developing stages thus reflecting a highly regulated mechanism and a role of mRNA localization in a broad range of cellular processes. Applying fluorescence in-situ-hybridization with specific riboprobes on cultured neurons and nervous tissue sections, we investigated whether the mRNAs for two metabolic enzymes, namely glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, may also be targeted to neuronal processes. If it were so, this might contribute to clarify the so far enigmatic role of neuronal glycogen. We found that the mRNAs for both enzymes are localized to axonal and dendritic processes in cultured lumbar spinal motoneurons, but not in cultured trigeminal neurons. In cultured cortical neurons which do not store glycogen but nevertheless express glycogen synthase, the GS mRNA is also subject to axonal and dendritic localization. In spinal motoneurons and trigeminal neurons in situ, however, the mRNAs could only be demonstrated in the neuronal somata but not in the nerves. We could demonstrate that the mRNAs for major enzymes of neural energy metabolism can be localized to neuronal processes. The heterogeneous pattern of mRNA localization in different culture types and developmental stages stresses that mRNA localization is a versatile mechanism for the fine-tuning of cellular events. Our findings suggest that mRNA localization for enzymes of glycogen metabolism could allow adaptation to spatial and temporal energy demands in neuronal events like growth, repair and synaptic transmission.

  5. Magnetic resonance spectroscopy and metabolism. Applications of proton and sup 13 C NMR to the study of glutamate metabolism in cultured glial cells and human brain in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Portais, J.C.; Pianet, I.; Merle, M.; Raffard, G.; Biran, M.; Labouesse, J.; Canioni, P. (Bordeaux-2 Univ., 33 (FR)); Allard, M.; Kien, P.; Caille, J.M. (Centre Hospitalier Universitaire, 33 Bordeaux (FR))

    1991-01-01

    Nuclear magnetic resonance (NMR) spectroscopy was used to study the metabolism of cells from the central nervous system both in vitro on perchloric acid extracts obtained either from cultured tumoral cells (C6 rat glioma) or rat astrocytes in primary culture, and in vivo within the human brain. Analysis of carbon 13 NMR spectra of perchloric acid extracts prepared from cultured cells in the presence of NMR (1-{sup 13}C) glucose as substrate allowed determination of the glutamate and glutamine enrichments in both normal and tumoral cells. Preliminary results indicated large changes in the metabolism of these amino acids (and also of aspartate and alanine) in the C6 cell as compared to its normal counterpart. Localized proton NMR spectra of the human brain in vivo were obtained at 1.5 T, in order to evaluate the content of various metabolites, including glutamate, in peritumoral edema from a selected volume of 2 x 2 x 2 cm{sup 3}. N-acetyl aspartate, glutamate, phosphocreatine, creatine, choline and inositol derivative resonances were observed in 15 min spectra. N-acetyl-aspartate was found to be at a lower level in contrast to glutamate which was detected at a higher level in the injured area as compared to the controlateral unaffected side.

  6. Forensic Analysis of Polychlorinated Dibenzo-p-Dioxin and Furan Fingerprints to Elucidate Dechlorination Pathways.

    Science.gov (United States)

    Rodenburg, Lisa A; Dewani, Yashika; Häggblom, Max M; Kerkhof, Lee J; Fennell, Donna E

    2017-09-19

    Polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) are persistent organic pollutants whose main removal process in the environment is due to biodegradation, and particularly anaerobic reductive dechlorination. Since PCDD/F congeners that are substituted in the lateral 2, 3, 7, and 8 positions are the most toxic, removal of these chlorines is advantageous, but previous studies have only demonstrated their removal under laboratory conditions. We evaluated a concentration data set of PCDD/F congeners with four or more chlorines along with all 209 polychlorinated biphenyl (PCB) congeners in surface water, treated and untreated wastewater, landfill leachate, and biosolids (NY CARP data set) to determine whether peri and peri/lateral dechlorination of PCDD/Fs occurs in these environments. Positive Matrix Factorization (PMF) applied to the data set revealed a factor indicative of the microbial dechlorination of PCBs, and this factor also contained a variety of non-2,3,7,8 substituted PCDD/F congeners. These results suggest that dechlorination of PCDD/Fs at the lateral positions is facile if not preferred in these environments. The relative lack of tetra- and penta-chlorinated PCDD/Fs suggested that dechlorination proceeds to PCDD/F congeners with less than four chlorines. The PMF results were confirmed by examining three samples that contained >90% PCB dechlorination products from the Fresh Kills Landfill and the Hudson River. Even without factor analysis, these samples demonstrated almost identical PCDD/F congener patterns. This study suggests that PCDD/Fs are reductively dechlorinated to nontoxic non-2,3,7,8 PCDD/F congeners in sewers and landfills as well as in the sediment of the Upper Hudson River.

  7. Hexachlorobenzene dechlorination as affected by organic fertilizer and urea applications in two rice planted paddy soils in a pot experiment

    International Nuclear Information System (INIS)

    Liu, C.Y.; Jiang, X.; Yang, X.L.; Song, Y.

    2010-01-01

    Reductive dechlorination is a crucial pathway for HCB degradation, the applications of organic materials and nitrogen can alter microbial activity and redox potential of soils, thus probably influence HCB dechlorination. To evaluate hexachlorobenzene (HCB) dechlorination as affected by organic fertilizer (OF) and urea applications in planted paddy soils, a pot experiment was conducted in two types of soils, Hydragric Acrisols (Ac) and Gleyi-Stagnic Anthrosols (An). After 18 weeks of experiment, HCB residues decreased by 28.2-37.5% of the initial amounts in Ac, and 42.1-70.9% in An. The amounts of HCB metabolites showed that dechlorination rates in An were higher than in Ac, which was mainly attributed to the higher pH and dissolved organic carbon (DOC) content of An. Both in Ac and An, the additions of 1% and 2% OF had negative effect on HCB dechlorination, which was probably because excessive nitrogen in OF decreased degraders' activity and the degradation of organic carbon in OF accepted electrons. The application of 0.03% urea could enhance HCB dechlorination rates slightly, while 0.06% urea accelerated HCB dechlorination significantly both in Ac and An. It could be assumed that urea served as an electron donor and stimulated degraders to dechlorinate HCB. In addition, the methanogenic bacteria were involved in dechlorination process, and reductive dechlorination in planted paddy soil might be impeded for the aerenchyma and O 2 supply into the rhizosphere. Results indicated that soil types, rice root system, methanogenic bacteria, OF and urea applications all had great effects on dechlorination process.

  8. Glucose metabolism and metabolic flexibility in cultured skeletal muscle cells is related to exercise status in young male subjects

    DEFF Research Database (Denmark)

    Lund, Jenny; S Tangen, Daniel; Wiig, Håvard

    2018-01-01

    deoxyglucose accumulation and fractional glucose oxidation (glucose oxidation relative to glucose uptake), and were also more sensitive to the suppressive action of acutely added oleic acid to the cells. Despite lack of correlation of fibre types between skeletal muscle biopsies and cultured cells, myotubes...

  9. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen

    International Nuclear Information System (INIS)

    Kiene, R.P.; Oremland, R.S.; Catena, A.; Miller, L.G.; Capone, A.G.

    1986-01-01

    Addition of dimethylsulfide (DMS), dimethyldisulfide (DMDS), or methane thiol (MSH) to a diversity of anoxic aquatic sediments (e.g., fresh water, estuarine, alkaline/hypersaline) stimulated methane production. The yield of methane recovered from DMS was often 52 to 63%, although high concentrations of DMS (as well as MSH and DMDS) inhibited methanogenesis in some types of sediments. Production of methane from these reduced methylated sulfur compounds was blocked by 2-bromoethanesulfonic acid. Sulfate did not influence the metabolism of millimolar levels of DMS, DMDs, or MSH added to sediments. However, when DMS was added at ∼2-3=M levels as [ 14 C]DMS, metabolism by sediments resulted in a 14 CH 4 / 14 CO 2 ratio of only 0.06. Addition of molybdate increased the ratio of 1.8, while 2-bromoethanesulfonic acid decreased it to 0, but did not block 14 CO 2 production. These results indicate the methanogens and sulfate reducers compete for DMS when it is present at low concentrations; however, at high concentrations, DMS is a noncompetitive substrate for methanogens. Metabolism of DMS by sediments resulted in the appearance of MSH as a transient intermediate. A pure culture of an obligately methylotrophic estuarine methanogen was isolated which was capable of growth on DMS. Metabolism of DMS by the culture also resulted in the transient appearance of MSH, but the organism could grow on neither MSH nor DMDS. The culture metabolized [ 14 C]-DMS to yield a 14 CH 4 / 14 CO 2 ratio of ∼ 2.8

  10. Flow cytometric measurement of the metabolism of benzo[a]pyrene by mouse liver cells in culture

    International Nuclear Information System (INIS)

    Bartholomew, J.C.; Wade, C.G.; Dougherty, K.K.

    1984-01-01

    The metabolism of benzo[a]pyrene in individual cells was monitored by flow cytometry. The measurements are based on the alterations that occur in the fluorescence emission spectrum of benzo[a]pyrene when it is converted to various metabolites. Using present instrumentation the technique could easily detect 1x10 6 molecules per cells of benzo[a]pyrene and 1x10 7 molecules per cell of the diol epoxide. The analysis of C3H IOT 1/2 mouse fibroblasts growing in culture indicated that there was heterogeneity in the conversion of the parent compound into diol epoxide derivatives suggesting that some variation in sensitivity to transformation by benzo[a]pyrene may be due to differences in cellular metabolism. The technique allows sensitive detection of metabolites in viable cells, and provides a new approach to the study of factors that influence both metabolism and transformation. (orig.)

  11. The Effect of Culture Medium on Metabolic and Antibacterial Activities of Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    f Mirdavoudi

    2012-05-01

    Full Text Available

    Background and Objectives: Probiotic bacteria is added directly to food components and it has beneficial effect on function and the health of organisms. The bifidogenic factors enter the colon where they contribute to an increase lactic acid bacteria population including Lactobacilli and Bifidobacteria and they inhibit enteric pathogenic bacterial growth. The aim of this study is to investigate the effect of culture medium on metabolic and antibacterial of probiotic bacteria.

     

    Methods: In this study, the probiotics bacterial and intestine pathogenic are to be used. Lactobacilli and Bifidobacterium were identified by plating samples on MRS medium, Gram Staining and standard biochemical methods. The effect of antagonistic probiotics was investigated in the presence of growth factor in the method well diffusion Ager on the Shigella flexneri (PTCC 1234, Escherichia coli (PTCC 1552, Salmonella typhi ( PTCC 1609 and the culture medium pH was measured.

     

    Results: The probiotics bacterial growth in MRS and lactose1%, sorbitol, raffinose, riboflavin were shown the effect antibacterial. The results of the study show the most antagonistic activity in commercial strain Lactobacillus acidophilus on Shigella flexneri and lower activity was in Lactobacillus casei (PTCC 1608, and Salmonella typhimurium (PTCC 1609, and also in Bbifidobacterium bifidum, it showed the most decrease pH value.

     

    Conclusion: According to the result of the study, adding growth factors to MRS medium base and lactose 1%, probiotic growth was increased and which also increased antagonistic activity.

     

  12. DEPTOR-mTOR Signaling Is Critical for Lipid Metabolism and Inflammation Homeostasis of Lymphocytes in Human PBMC Culture

    Directory of Open Access Journals (Sweden)

    Qi-bing Xie

    2017-01-01

    Full Text Available Abnormal immune response of the body against substances and tissues causes autoimmune diseases, such as polymyositis, dermatomyositis, and rheumatoid arthritis. Irregular lipid metabolism and inflammation may be a significant cause of autoimmune diseases. Although much progress has been made, mechanisms of initiation and proceeding of metabolic and inflammatory regulation in autoimmune disease have not been well-defined. And novel markers for the detection and therapy of autoimmune disease are urgent. mTOR signaling is a central regulator of extracellular metabolic and inflammatory processes, while DEP domain-containing mTOR-interacting protein (DEPTOR is a natural inhibitor of mTOR. Here, we report that overexpression of DEPTOR reduces mTORC1 activity in lymphocytes of human peripheral blood mononuclear cells (PBMCs. Combination of DEPTOR overexpression and mTORC2/AKT inhibitors effectively inhibits lipogenesis and inflammation in lymphocytes of PBMC culture. Moreover, DEPTOR knockdown activates mTORC1 and increases lipogenesis and inflammations. Our findings provide a deep insight into the relationship between lipid metabolism and inflammations via DEPTOR-mTOR pathway and imply that DEPTOR-mTOR in lymphocytes of PBMC culture has the potential to be as biomarkers for the detection and therapies of autoimmune diseases.

  13. Effect of elevated total CoA levels on metabolic pathways in cultured hepatocytes

    International Nuclear Information System (INIS)

    Steffen, C.A.; Smith, C.M.

    1987-01-01

    Livers from fasted rats have 30% higher total CoA levels than fed rats. To determine whether this increase of total CoA influences metabolism, the rates of gluconeogenesis, fatty acid oxidation and ketogenesis were measured in hepatocytes with cyanamide (CYM) or pantothenate (PA) deficient medium used to vary total CoA levels independently of hormonal status. Primary cultures of rat hepatocytes were incubated 14 hrs with Bt 2 cAMP, dexamethasone + theophylline in PA deficient medium or with CYM (500 μM) + PA, rinsed and preincubated 0.5 hr to remove the CYM. Hepatocytes treated with CYM had total CoA levels 10-24% higher than PA deficient cells and lower rates of glucose production from lactate + pyruvate (L/P) or from alanine (0.23 +/- 0.05 and 0.089 +/- 0.02 μm/mg protein, respectively in CYM treated cells compared to 0.33 +/- 0.06 and 0.130 +/- 0.006 in PA deficient cells). This decrease was not due to CYM per se, as the direct addition of CYM stimulated glucose production from L/P. CYM treated cells with 15-40% higher total CoA and 30% higher fatty acyl-CoA levels had the same rates of [ 14 C]-palmitate oxidation as PA deficient cells. However, rates of ketogenesis were lower in CYM treated cells (163 +/- 11 nm/mg compared to 217 +/- 14 nm/mg protein). These results suggest that physiological alterations of hepatic total CoA levels are not necessary for fasting rates of gluconeogenesis, fatty acid oxidation and ketogenesis

  14. Bioproduction of 3-acetyldeoxynivalenol and its metabolic regulation in the submerged cultures of Fusarium graminearum R 2118

    International Nuclear Information System (INIS)

    Vasavada, A.B.

    1988-01-01

    3-Acetyldeoxynivalenol (3-ADN) is a highly toxic secondary metabolite elaborated by several species of the filamentous fungus, Fusarium. The present research was aimed at investigating the cultural conditions governing the production of 3-ADN, and to elucidate the mechanism and metabolic regulation of the toxin production in submerged cultures. A two-stage submerged culture was developed in which the biosynthetically active mycelium from YEPD medium was transferred to the production medium to achieve as much as 90-105 mg/l 3-ADN. Phosphate inhibition was found to be a regulatory factor in 3-ADN biosynthesis. While Mg +2 and Zn +2 at 1 mM increased 3-ADN yields by 60% and 76% respectively, and Fe +2 at 5 mM doubled 3-ADN yields, Mn +2 completely inhibited 3-ADN biosynthesis at all concentrations used suggesting its regulatory role in the toxin production. Modulation of 3-ADN biosynthesis by using various metabolic inhibitors and stimulators of the TCA cycle, fatty acid biosynthesis, and ergosterol biosynthesis yielded increased levels of 3-ADN possibly by channelling more acetyl Co-A into the toxin production pathway. This was further evidenced by 14 C-acetate pulse-feeding studies where highly labelled 3-ADN was obtained by using known metabolic inhibitors of the competing pathways thereby specifically channelling the label into 3-ADN synthesis

  15. Chain dechlorination of organic chlorinated compounds in alcohol solutions by 60Co gamma-rays, (1)

    International Nuclear Information System (INIS)

    Sawai, Takeshi; Shimokawa, Toshinari; Sawai, Teruko; Hosoda, Ieji; Kondo, Masaharu.

    1975-01-01

    A study was made on radiolytic dechlorination of pentachlorobenzene in alkaline alcohol solutions. The dechlorination yield (G(Cl - )) was found to depend on the alcohols used as solvent and the concentrations of the chlorinated benzene and hydroxide ion. The high yields obtained in alkaline 2-propanol, sec-butanol and ethanol indicate a chain process in the dechlorination reaction. The value of G(Cl - ) was highest in 2-propanol, and the principal products generated were potassium chloride, acetone and the lower chlorinated benzenes, while a decrease was seen in the hydroxide ion concentration. The concentrations produced of potassium chloride and acetone, as well as the decrease in hydroxide ion concentration, are all roughly equal at all doses. With increasing irradiation dose, pentachlorobenzene was dechlorinated to tetra, tri, di and monochlorobenzene. 1,2,4,5-tetrachlorobenzene, 1,2,4-trichlorobenzene and 1,4-dichlorobenzene were main products. A discussion is given of the detailed mechanism of the dechlorination in alkaline alcohols and the effect of alcohols on G(Cl - ). (auth.)

  16. [Effect of composting organic fertilizer supplies on hexachlorobenzene dechlorination in paddy soils].

    Science.gov (United States)

    Liu, Cui-Ying; Jiang, Xin

    2013-04-01

    A rice pot experiment was conducted in two soils, Hydragric Acrisols (Ac) and Gleyi-Stagnic Anthrosols (An). Three treatments including control and additions of 1% or 2% composting organic fertilizer were designed for each soil. The objective of this research was to evaluate the reductive dechlorination of hexachlorobenzene (HCB) as affected by organic fertilizer supplies in planted paddy soils, and to analyze the relationship between methane production and HCB dechlorination. The results showed that the HCB residues were decreased by 28.6%-30.1% of the initial amounts in Ac, and 47.3% -61.0% in An after 18 weeks of experiment. The amount of HCB and its metabolite uptake by rice plants was only a few thousandths of the initial HCB amount in soils. The main product of HCB dechlorination was pentachlorobenzene (PeCB). The rates of HCB dechlorination in An were higher than those in Ac, which was mainly attributed to the higher pH and dissolved organic carbon (DOC) content of An. The applications of both 1% and 2% composting organic fertilizer showed significant inhibition on PeCB production after the 6th and 10th week in Ac and An, respectively. In both tested soils, no significant difference of PeCB production rates was observed between the applications of 1% and 2% composting organic fertilizer. The role of methanogenic bacteria in HCB dechlorination was condition-dependent.

  17. Dechlorination and decomposition of chloroform induced by glow discharge plasma in an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongjun, E-mail: lyjglow@sohu.com [College of Environmental Science & Engineering, Dalian Maritime University, Dalian 116026 (China); Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta 30332 (United States); Crittenden, John C. [Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta 30332 (United States); Wang, Lei [College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen 361024 (China); Liu, Panliang [Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta 30332 (United States)

    2016-05-05

    Highlights: • Hydrated electrons played an important role for chloroform decomposition. • Oxygen enhanced hydrolyses are critical for the chloroform mineralization. • Energy efficiency of GDP is higher than those of the typical competitive processes. - Abstract: In this study, efficient dechlorination and decomposition of chloroform (CF) induced by glow discharge plasma (GDP) in contact with a sodium sulfate solution was investigated. Intermediate byproducts were determined by ionic chromatography and headspace gas chromatography, respectively. Results showed that CF can be effectively dechlorinated and decomposed under the action of GDP. Both removal and dechlorination of CF increased with increasing pH and with addition of hydroxyl radical scavengers to the solution. Addition of H{sub 2}O{sub 2} to the solution slightly decreased the CF removal. Formic acid, oxalic acid and dichloromethane were determined as the major intermediate byproducts. Final products were carbon dioxide and hydrochloric acid. Hydrated electrons were the most likely active species responsible for initiation of the dechlorination, and hydroxyl radicals may be the ones for the oxidation of the organic intermediate byproducts. Hydrolyses of the chloromethyl radicals contributed much in the mineralization of the organic chlorine. Reaction mechanism was proposed based on the dechlorination kinetics and the distribution of intermediate byproducts.

  18. Dechlorination and decomposition of chloroform induced by glow discharge plasma in an aqueous solution

    International Nuclear Information System (INIS)

    Liu, Yongjun; Crittenden, John C.; Wang, Lei; Liu, Panliang

    2016-01-01

    Highlights: • Hydrated electrons played an important role for chloroform decomposition. • Oxygen enhanced hydrolyses are critical for the chloroform mineralization. • Energy efficiency of GDP is higher than those of the typical competitive processes. - Abstract: In this study, efficient dechlorination and decomposition of chloroform (CF) induced by glow discharge plasma (GDP) in contact with a sodium sulfate solution was investigated. Intermediate byproducts were determined by ionic chromatography and headspace gas chromatography, respectively. Results showed that CF can be effectively dechlorinated and decomposed under the action of GDP. Both removal and dechlorination of CF increased with increasing pH and with addition of hydroxyl radical scavengers to the solution. Addition of H_2O_2 to the solution slightly decreased the CF removal. Formic acid, oxalic acid and dichloromethane were determined as the major intermediate byproducts. Final products were carbon dioxide and hydrochloric acid. Hydrated electrons were the most likely active species responsible for initiation of the dechlorination, and hydroxyl radicals may be the ones for the oxidation of the organic intermediate byproducts. Hydrolyses of the chloromethyl radicals contributed much in the mineralization of the organic chlorine. Reaction mechanism was proposed based on the dechlorination kinetics and the distribution of intermediate byproducts.

  19. Biosupported Bimetallic Pd Au Nanocatalysts for Dechlorination of Environmental Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    De Corte, S.; Fitts, J.; Hennebel, T.; Sabbe, T.; Bliznuk, V.; Verschuere, S.; van der Lelie, D.; Verstraete, W.; Boon, N.

    2011-08-30

    Biologically produced monometallic palladium nanoparticles (bio-Pd) have been shown to catalyze the dehalogenation of environmental contaminants, but fail to efficiently catalyze the degradation of other important recalcitrant halogenated compounds. This study represents the first report of biologically produced bimetallic Pd/Au nanoparticle catalysts. The obtained catalysts were tested for the dechlorination of diclofenac and trichloroethylene. When aqueous bivalent Pd(II) and trivalent Au(III) ions were both added to concentrations of 50 mg L{sup -1} and reduced simultaneously by Shewanella oneidensis in the presence of H{sub 2}, the resulting cell-associated bimetallic nanoparticles (bio-Pd/Au) were able to dehalogenate 78% of the initially added diclofenac after 24 h; in comparison, no dehalogenation was observed using monometallic bio-Pd or bio-Au. Other catalyst-synthesis strategies did not show improved dehalogenation of TCE and diclofenac compared with bio-Pd. Synchrotron-based X-ray diffraction, (scanning) transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the simultaneous reduction of Pd and Au supported on cells of S. oneidensis resulted in the formation of a unique bimetallic crystalline structure. This study demonstrates that the catalytic activity and functionality of possibly environmentally more benign biosupported Pd-catalysts can be improved by coprecipitation with Au.

  20. A conceptual model linking functional gene expression and reductive dechlorination rates of chlorinated ethenes in clay rich groundwater sediment

    DEFF Research Database (Denmark)

    Bælum, Jacob; Chambon, Julie Claire Claudia; Scheutz, Charlotte

    2013-01-01

    We used current knowledge of cellular processes involved in reductive dechlorination to develop a conceptual model to describe the regulatory system of dechlorination at the cell level; the model links bacterial growth and substrate consumption to the abundance of messenger RNA of functional gene...

  1. Dechlorination of chlorinated phenols by subnanoscale Pd 0 /Fe 0 intercalated in smectite: pathway, reactivity, and selectivity.

    Science.gov (United States)

    Jia, Hanzhong; Wang, Chuanyi

    2015-12-30

    Smectite clay was employed as templated matrix to prepare subnanoscale Pd(0)/Fe(0) particles, and their components as well as intercalated architectures were well characterized by X-ray energy dispersive spectroscopy (X-EDS) and X-ray diffraction (XRD). Furthermore, as-prepared Pd(0)/Fe(0) subnanoscale nanoparticles were evaluated for their dechlorination effect using chlorinated phenols as model molecules. As a result, pentachlorophenol (PCP) is selectively transformed to phenol in a stepwise dechlorination pathway within 6h, and the dechlorination rate constants show linearly relationship with contents of Pd as its loadings <0.065%. Comparing with PCP, other chlorinated phenols display similar degradation pattern but within much shorter time frame. The dechlorination rate of chlorinated phenols increases with decreasing in number of -Cl attached to aromatic ring, which can be predicted by the total charge of the aromatic ring, exhibiting an inversely linear relationship with the dechlorination rates. While the selectivity of dechlorination depends on the charges associated with the individual aromatic carbon. Chloro-functional groups at the ortho-position are easier to be dechlorinated than that at meta- and para- positions yielding primarily 3,4,5-TCP as intermediate from PCP, further to phenol. The effective dechlorination warrants their potential utilizations in development of in-situ remediation technologies for organic pollutants in contaminated water. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Influential factors of 2-chlorobiphenyl reductive dechlorination by highly dispersed bimetallic nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang Junrong

    2016-01-01

    Full Text Available Highly dispersed Pd-Fe0 bimetallic nanoparticles were prepared in the presence of 40 kHz ultrasonic irradiation in order to enhance disparity and reactivity, and simultaneously avoid agglomeration. Influential factors of 2-chlorobiphenyl (2-Cl BP reductive dechlorination by highly dispersed Pd-Fe0 nanoparticles were investigated. Experimental results showed that highly dispersed Pd-Fe0 nanoparticles prepared in the in the presence of ultrasound could further improve the dechlorination efficiency of 2-Cl BP, meanwhile the biphenyl (BP formation rates increased obviously and increased from 47.4% (in the absence of ultrasound to 95.3% (in the presence of ultrasound within 300 min. The catalytic reductive dechlorination effciency of 2-Cl BP was dependent on Pd-Fe0 nanoparticles prepared methods, Pd-Fe0 nanoparticles dosage, Pd loading percentage over Fe0 and initial pH values

  3. Investigation of the metabolism of ergot alkaloids in cell culture by fourier transformation mass spectrometry.

    Science.gov (United States)

    Mulac, Dennis; Grote, Anna-Karina; Kleigrewe, Karin; Humpf, Hans-Ulrich

    2011-07-27

    Ergot alkaloids are known toxic secondary metabolites of the fungus Claviceps purpurea occurring in various grains, especially rye products. The liver is responsible for converting the ergot alkaloids into metabolites; however, the toxic impact of these end products of metabolism is still unknown. The aim of this study was to analyze the metabolism of ergot alkaloids in colon and liver cell lines (HT-29, HepG2), as well as in human primary renal cells (RPTEC). It was shown that cells in vitro are able to metabolize ergot alkaloids, forming a variety of metabolic compounds. Significant differences between the used cell types could be identified, and a suitable model system was established using HT-29 cells, performing an intensive metabolism to hydroxylated metabolites. The formed substances were analyzed by coupling of high-performance liquid chromatography with fluorescence detection and Fourier transformation mass spectrometry (HPLC-FLD-FTMS) as a powerful tool to identify known and unknown metabolites.

  4. Influence of phosphate and copper on reductive dechlorination of thiobencarb in California rice field soils.

    Science.gov (United States)

    Gunasekara, Amrith S; Tenbrook, Patti L; Palumbo, Amanda J; Johnson, Catherine S; Tjeerdema, Ronald S

    2005-12-28

    The potential for reductive dechlorination of the herbicide thiobencarb (TB) by microbes and its prevention in saturated anaerobic rice field soils was examined in laboratory microcosms. TB is effective in controlling both annual grasses and broadleaf weeds. In anoxic microcosms, TB was effectively degraded within 30 days to its dechlorinated product, deschlorothiobencarb (DTB), in two Sacramento Valley rice field soils. TB dechlorination, and subsequent degradation, followed pseudo-zero- (lag phase) and first-order (degradation phase) kinetics. Logistic regression analysis (r2 > 0.841) produced a half-life (t(1/2)) in nonsterile soils ranging from 10 to 15 days, which was also observed when microcosms were amended with low concentrations (copper (Cu2+; as the fungicides Cu(OH)2 and CuSO4.5H2O). High Cu2+ concentrations (>40 mg L(-1)) were added to the microcosms to determine if copper toxicity to dechlorinating microbes is concentration dependent within the range used. After 30 days, the low-copper-amended soils closely resembled the nonsterile experiments to which no Cu2+ was added while the high-copper-amended microcosms were similar to the sterile experiment. Microcosms were also separately amended with 5.7 g L(-1) phosphate (PO4(2-); as KH2PO4), a nutrient regularly applied to rice fields. Phosphate-amended experiments also showed TB degradation, but no DTB formation, indicating the phosphate played a role, possibly as a microbial inhibitor or an alternative electron acceptor, in limiting the dechlorination of TB. In summary, TB dechlorination was inhibited at high Cu(OH)2, CuSO4.5H2O, and KH2PO4 concentrations.

  5. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon

    International Nuclear Information System (INIS)

    Choi, Hyeok; Lawal, Wasiu; Al-Abed, Souhail R.

    2015-01-01

    Highlights: • Problematic aged real PCBs-contaminated sediment (WHS) was examined. • Performance of reactive activated carbon (RAC) impregnated with Pd–ZVI was tested. • Fate and transport of PCBs bound to WHS in the presence of RAC was fully traced. • Direct mixing configuration was compared with compartment configuration. • Results reflected real world complexities associated with slow desorption of PCBs. - Abstract: Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls

  6. Dechlorination of Hexachloroethane in Water Using Iron Shavings and Amended Iron Shavings: Kinetics and Pathways

    Directory of Open Access Journals (Sweden)

    D. L. Wu

    2014-01-01

    Full Text Available In contrast to previous studies which employed zero-valent iron powder, this paper investigated reductive dechlorination of hexachloroethane (HCA using iron shavings and bimetallic iron shavings modified with Cu, Ag, or Pd. Results clearly show that iron shavings offer superior reductive dechlorination of HCA. In addition, surface-normalized pseudo first-order dechlorination rates of 0.0073 L·m−2·h−1, 0.0136 L·m−2·h−1, 0.0189 L·m−2·h−1, and 0.0084 L·m−2·h−1 were observed in the presence of iron shavings (Fe0 and the bimetallic iron shavings Cu/Fe, Ag/Fe, and Pd/Fe, respectively. Bimetallic iron shavings consisting of Cu/Fe and Ag/Fe could greatly enhance the reductive reaction rate; Pd/Fe was used to achieve complete dechlorination of HCA within 5 hours. The additives of Ag and Pd shifted product distributions, and the reductive dechlorination of HCA occurred via β reductive elimination and sequential hydrogenolysis in the presence of all iron shavings. This study consequently designed a reaction pathway diagram which reflected the reaction pathway and most prevalent dechlorination products. Iron shavings are a common byproduct of mechanical processing plants. While the purity of such Fe metals may be low, these shavings are readily available at low costs and could potentially be used in engineering applications such as contamination control technologies.

  7. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeok, E-mail: hchoi@uta.edu [Department of Civil Engineering, The University of Texas at Arlington, 416 Yates Street, Arlington, TX 76019-0308 (United States); Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049 (United States); Lawal, Wasiu [Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049 (United States); Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268 (United States)

    2015-04-28

    Highlights: • Problematic aged real PCBs-contaminated sediment (WHS) was examined. • Performance of reactive activated carbon (RAC) impregnated with Pd–ZVI was tested. • Fate and transport of PCBs bound to WHS in the presence of RAC was fully traced. • Direct mixing configuration was compared with compartment configuration. • Results reflected real world complexities associated with slow desorption of PCBs. - Abstract: Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls.

  8. Assessment of the metabolic effects of the ionophore grisorixin on myocardial cells in culture with 14-C-labelled substrates

    International Nuclear Information System (INIS)

    Maublant, J.C.; Gachon, P.; Ross, M.R.; Davidson, W.D.; Mena, I.

    1984-01-01

    Cultures of myocardial cells were utilized to verify the hypothesis that the ionophore grisorixin could facilitate the anaerobic and impair the aerobic metabolism in the myocardium. This was suggested by previous experiments in which the authors found an increase in the cardiac work without increase in the oxygen consumption, while the myocardial uptake of 123-Iodo-hexadecenoic acid was decreased. Tissue cultures were prepared by trypsinization of the myocardium of two to four-day old newborn mice. The cultures were incubated with 14-C-glucose (n=10), 14-C-octanoate (n=14) or 14-C-acetate (n=12). Except for the controls (n=19), they also received 1 μg/ml of an alcoholic solution of grisorixin or 200 μl of 60% alcohol. The cultures were then placed in a circuit with a closed circulation of air which passed through a vibrating reed electrometer for detection of the beta radiations of the 14-CO/sub 2/ liberated by the 14-C labelled substrates. The activity was permanently recorded for measurements of the rate of consumption of these substrates. Compared to the control values, the metabolic rate with grisorixin was significantly decreased for octanoate (77 +- 22 vs 169 +- 62 rho mole/min/mg prot, rho<0.01) and acetate (2.7 +- 1.0 vs 6.0 +- 1.3 rho mole/min/mg prot, rho<0.01). The results for glucose were 1.05 +- 0.24 vs 0.88 +- 0.24 n mole/min/mg prot, (rho<0.10). Alcohol alone produced no significant effect except on the octanoate consumption. These results provide direct evidence that grisorixin favors the anaerobic pathway in the metabolism of the myocardial cells

  9. Efficient dechlorination of carbon tetrachloride by hydrophobic green rust intercalated with dodecanoate anions

    DEFF Research Database (Denmark)

    Ayala Luis, Karina Barbara; Ginette Anneliese Cooper, Nicola; Bender Koch, Christian

    2012-01-01

    similar to those found in heavily contaminated groundwater close to polluted industrial sites (14 988 mu M) was reduced mainly to the fully dechlorinated products carbon monoxide (CO, yields >54 and formic acid (HCOOH, yields >6. Minor formation of chloroform (CF), the only chlorinated degradation product......The reductive dechlorination of carbon tetrachloride (CT) by Fe-II-Fe-III hydroxide (green rust) intercalated with dodecanoate, (Fe4Fe2III)-Fe-II (OH)(12)(C12H23O2)(2)center dot gamma H2O (designated GR(C12)), at pH similar to 8 and at room temperature was investigated. CT at concentration levels...

  10. Field-scale modeling of acidity production and remediation efficiency during in situ reductive dechlorination

    Science.gov (United States)

    Brovelli, A.; Robinson, C. E.; Barry, D. A.; Gerhard, J.

    2009-12-01

    Enhanced reductive dechlorination is a viable technology for in situ remediation of chlorinated solvent DNAPL source areas. Although in recent years increased understanding of this technology has led to more rapid dechlorination rates, complete dechlorination can be hindered by unfavorable conditions. Hydrochloric acid produced from dechlorination and organic acids generated from electron donor fermentation can lead to significant groundwater acidification. Adverse pH conditions can inhibit the activity of dehalogenating microorganisms and thus slow or stall the remediation process. The extent of acidification likely to occur at a contaminated site depends on a number of factors including (1) the extent of dechlorination, (2) the pH-sensitivity of dechlorinating bacteria, and (3) the geochemical composition of the soil and water, in particular the soil’s natural buffering capacity. The substantial mass of solvents available for dechlorination when treating DNAPL source zones means that these applications are particularly susceptible to acidification. In this study a reactive transport biogeochemical model was developed to investigate the chemical and physical parameters that control the build-up of acidity and subsequent remediation efficiency. The model accounts for the site water chemistry, mineral precipitation and dissolution kinetics, electron donor fermentation, gas phase formation, competing electron-accepting processes (e.g., sulfate and iron reduction) and the sensitivity of microbial processes to pH. Confidence in the model was achieved by simulating a well-documented field study, for which the 2-D field scale model was able to reproduce long-term variations of pH, and the concurrent build up of reaction products. Sensitivity analyses indicated the groundwater flow velocity is able to reduce acidity build-up when the rate of advection is comparable or larger than the rate of dechlorination. The extent of pH change is highly dependent on the presence of

  11. Low and high acetate amendments are equally as effective at promoting complete dechlorination of trichloroethylene (TCE).

    Science.gov (United States)

    Wei, Na; Finneran, Kevin T

    2013-06-01

    Experiments with trichloroethylene-contaminated aquifer material demonstrated that TCE, cis-DCE, and VC were completely degraded with concurrent Fe(III) or Fe(III) and sulfate reduction when acetate was amended at stoichiometric concentration; competing TEAPs did not inhibit ethene production. Adding 10× more acetate did not increase the rate or extent of TCE reduction, but only increased methane production. Enrichment cultures demonstrated that ~90 μM TCE or ~22 μM VC was degraded primarily to ethene within 20 days with concurrent Fe(III) or Fe(III) + sulfate reduction. The dechlorination rates were comparable between the low and high acetate concentrations (0.36 vs 0.34 day(-1), respectively), with a slightly slower rate in the 10× acetate amended incubations. Methane accumulated to 13.5 (±0.5) μmol/tube in the TCE-degrading incubations with 10× acetate, and only 1.4 (±0.1) μmol/tube with low acetate concentration. Methane accumulated to 16 (±1.5) μmol/tube in VC-degrading enrichment with 10× acetate and 2 (±0.1) μmol/tube with stoichiometric acetate. The estimated fraction of electrons distributed to methanogenesis increased substantially when excessive acetate was added. Quantitative PCR analysis indicated that 10× acetate did not enhance Dehalococcoides biomass but rather increased the methanogen abundance by nearly one order of magnitude compared to that with stoichiometric acetate. The data suggest that adding low levels of substrate may be equally if not more effective as high concentrations, without producing excessive methane. This has implications for field remediation efforts, in that adding excess electron donor may not benefit the reactions of interest, which in turn will increase treatment costs without direct benefit to the stakeholders.

  12. Potential of isotope analysis (C, Cl) to identify dechlorination mechanisms

    Science.gov (United States)

    Cretnik, Stefan; Thoreson, Kristen; Bernstein, Anat; Ebert, Karin; Buchner, Daniel; Laskov, Christine; Haderlein, Stefan; Shouakar-Stash, Orfan; Kliegman, Sarah; McNeill, Kristopher; Elsner, Martin

    2013-04-01

    Chloroethenes are commonly used in industrial applications, and detected as carcinogenic contaminants in the environment. Their dehalogenation is of environmental importance in remediation processes. However, a detailed understanding frequently accounted problem is the accumulation of toxic degradation products such as cis-dichloroethylene (cis-DCE) at contaminated sites. Several studies have addressed the reductive dehalogenation reactions using biotic and abiotic model systems, but a crucial question in this context has remained open: Do environmental transformations occur by the same mechanism as in their corresponding in vitro model systems? The presented study shows the potential to close this research gap using the latest developments in compound specific chlorine isotope analysis, which make it possible to routinely measure chlorine isotope fractionation of chloroethenes in environmental samples and complex reaction mixtures.1,2 In particular, such chlorine isotope analysis enables the measurement of isotope fractionation for two elements (i.e., C and Cl) in chloroethenes. When isotope values of both elements are plotted against each other, different slopes reflect different underlying mechanisms and are remarkably insensitive towards masking. Our results suggest that different microbial strains (G. lovleyi strain SZ, D. hafniense Y51) and the isolated cofactor cobalamin employ similar mechanisms of reductive dechlorination of TCE. In contrast, evidence for a different mechanism was obtained with cobaloxime cautioning its use as a model for biodegradation. The study shows the potential of the dual isotope approach as a tool to directly compare transformation mechanisms of environmental scenarios, biotic transformations, and their putative chemical lab scale systems. Furthermore, it serves as an essential reference when using the dual isotope approach to assess the fate of chlorinated compounds in the environment.

  13. Dechlorination of polychlorinated biphenyls by iron and its oxides.

    Science.gov (United States)

    Sun, Yifei; Liu, Xiaoyuan; Kainuma, Masashi; Wang, Wei; Takaoka, Masaki; Takeda, Nobuo

    2015-10-01

    The decomposition efficiency of polychlorinated biphenyls (PCBs) was determined using elemental iron (Fe) and three iron (hydr)oxides, i.e., α-Fe2O3, Fe3O4, and α-FeOOH, as catalysts. The experiments were performed using four distinct PCB congeners (PCB-209, PCB-153, and the coplanar PCB-167 and PCB-77) at temperatures ranging from 180 °C to 380 °C and under an inert, oxidizing or reducing atmosphere composed of N2, N2+O2, or N2+H2. From these three options N2 showed to provide the best reaction atmosphere. Among the iron compounds tested, Fe3O4 showed the highest activity for decomposing PCBs. The decomposition efficiencies of PCB-209, PCB-167, PCB-153, and PCB-77 by Fe3O4 in an N2 atmosphere at 230 °C were 88.5%, 82.5%, 69.9%, and 66.4%, respectively. Other inorganic chlorine (Cl) products which were measured by the amount of inorganic Cl ions represented 82.5% and 76.1% of the reaction products, showing that ring cleavage of PCBs was the main elimination process. Moreover, the dechlorination did not require a particular hydrogen donor. We used X-ray photoelectron spectroscopy to analyze the elemental distribution at the catalyst's surface. The O/Fe ratio influenced upon the decomposition efficiency of PCBs: the lower this ratio, the higher the decomposition efficiency. X-ray absorption near edge structure spectra showed that α-Fe2O3 effectively worked as a catalyst, while Fe3O4 and α-FeOOH were consumed as reactants, as their final state is different from their initial state. Finally, a decomposition pathway was postulated in which the Cl atoms in ortho-positions were more difficult to eliminate than those in the para- or meta-positions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Metabolic enzyme microarray coupled with miniaturized cell-culture array technology for high-throughput toxicity screening.

    Science.gov (United States)

    Lee, Moo-Yeal; Dordick, Jonathan S; Clark, Douglas S

    2010-01-01

    Due to poor drug candidate safety profiles that are often identified late in the drug development process, the clinical progression of new chemical entities to pharmaceuticals remains hindered, thus resulting in the high cost of drug discovery. To accelerate the identification of safer drug candidates and improve the clinical progression of drug candidates to pharmaceuticals, it is important to develop high-throughput tools that can provide early-stage predictive toxicology data. In particular, in vitro cell-based systems that can accurately mimic the human in vivo response and predict the impact of drug candidates on human toxicology are needed to accelerate the assessment of drug candidate toxicity and human metabolism earlier in the drug development process. The in vitro techniques that provide a high degree of human toxicity prediction will be perhaps more important in cosmetic and chemical industries in Europe, as animal toxicity testing is being phased out entirely in the immediate future.We have developed a metabolic enzyme microarray (the Metabolizing Enzyme Toxicology Assay Chip, or MetaChip) and a miniaturized three-dimensional (3D) cell-culture array (the Data Analysis Toxicology Assay Chip, or DataChip) for high-throughput toxicity screening of target compounds and their metabolic enzyme-generated products. The human or rat MetaChip contains an array of encapsulated metabolic enzymes that is designed to emulate the metabolic reactions in the human or rat liver. The human or rat DataChip contains an array of 3D human or rat cells encapsulated in alginate gels for cell-based toxicity screening. By combining the DataChip with the complementary MetaChip, in vitro toxicity results are obtained that correlate well with in vivo rat data.

  15. Menadione-mediated WST1 reduction assay for the determination of metabolic activity of cultured neural cells.

    Science.gov (United States)

    Stapelfeldt, Karsten; Ehrke, Eric; Steinmeier, Johann; Rastedt, Wiebke; Dringen, Ralf

    2017-12-01

    Cellular reduction of tetrazolium salts to their respective formazans is frequently used to determine the metabolic activity of cultured cells as an indicator of cell viability. For membrane-impermeable tetrazolium salts such as WST1 the application of a membrane-permeable electron cycler is usually required to mediate the transfer of intracellular electrons for extracellular WST1 reduction. Here we demonstrate that in addition to the commonly used electron cycler M-PMS, menadione can also serve as an efficient electron cycler for extracellular WST1 reduction in cultured neural cells. The increase in formazan absorbance in glial cell cultures for the WST1 reduction by menadione involves enzymatic menadione reduction and was twice that recorded for the cytosolic enzyme-independent WST1 reduction in the presence of M-PMS. The optimized WST1 reduction assay allowed within 30 min of incubation a highly reliable detection of compromised cell metabolism caused by 3-bromopyruvate and impaired membrane integrity caused by Triton X-100, with a sensitivity as good as that of spectrophotometric assays which determine cellular MTT reduction or lactate dehydrogenase release. The short incubation period of 30 min and the observed good sensitivity make this optimized menadione-mediated WST1 reduction assay a quick and reliable alternative to other viability and toxicity assays. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Benzoate-driven dehalogenation of chlorinated ethenes in microbial cultures from a contaminated aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Bunge, M.; Kleikemper, J.; Miniaci, C.; Duc, L.; Muusse, M.G.; Zeyer, J. [Swiss Federal Institute of Technology (ETH), Zurich (Switzerland). Inst. of Biogeochemistry and Pollutant Dynamics, Soil Biology; Hause, G. [Halle-Wittenberg Univ., Halle (Germany). Biocenter

    2007-10-15

    Microbial dehalogenation of tetrachloroethene (PCE) and cis-dichloroethene (cis-DCE) was studied in cultures from a continuous stirred tank reactor initially inoculated with aquifer material from a PCE-contaminated site. Cultures amended with hydrogen and acetate readily dechlorinated PCE and cis-DCE; however, this transformation was incomplete and resulted in the accumulation of chlorinated intermediates and only small amounts of ethene within 60 days of incubation. Conversely, microbial PCE and cis-DCE dechlorination in cultures with benzoate and acetate resulted in the complete transformation to ethene within 30 days. Community fingerprinting by denaturing gradient gel electrophoresis (DGGE) revealed the predominance of phylotypes closely affiliated with Desulfitobacterium, Dehalococcoides, and Syntrophus species. The Dehalococcoides culture VZ, obtained from small whitish colonies in cis-DCE dechlorinating agarose cultures, revealed an irregular cell diameter between 200 and 500 nm, and a spherical or biconcave disk-shaped morphology. These organisms were identified as responsible for the dechlorination of cis-DCE to ethene in the PCE-dechlorinating consortia, operating together with the Desulfitobacterium as PCE-to-cis-DCE dehalogenating bacterium and with a Syntrophus species as potential hydrogen-producing partner in cultures with benzoate. (orig.)

  17. The Role of Glucose, Serum, and Three-Dimensional Cell Culture on the Metabolism of Bone Marrow-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Byron Deorosan

    2011-01-01

    factors in the metabolic response of the cells. However, cells cultured in low density collagen exhibited considerable cell death, likely because of physical contraction of the collagen hydrogel which was not observed in the higher density collagen. These findings will be useful to the development of in vitro cell culture models that properly mimic in vivo physiological processes.

  18. Metabolism of benzo(a)pyrene and 7,12-dimethylbenz(a)anthracene in cultured human bronchus and pancreatic duct

    DEFF Research Database (Denmark)

    Harris, Curtis C.; Autrup, Herman; Stoner, Gary

    1977-01-01

    The metabolism of two carcinogenic polynuclear aro matic hydrocarbons, benzo[a]pyrene (BP) and 7,12-dimethylbenz[a]anthracene, was studied in expiants of human pancreatic duct and bronchus cultured in a chemically defined medium. In cultured human bronchial mucosa, activity of aryl hydrocarbon hy...

  19. Metabolism of benzo(a)pyrene and identification of the major benzo(a)pyrene-DNA adducts in cultured human colon

    DEFF Research Database (Denmark)

    Autrup, Herman; Harris, Curtis C.; Trump, Benjamin F.

    1978-01-01

    The metabolism of benzo(a)pyrene in cultured human colon has been investigated. Nontumorous colonie tissue was collected at the time of either surgery or "immediate autopsy" from patients with or without colonic cancer. After 24 hr in culture the expiants were exposed to [3H]benzo(a)pyrene for an...

  20. Increased Contractile Response to Noradrenaline Induced By Factors Associated with the Metabolic Syndrome in Cultured Small Mesenteric Arteries

    DEFF Research Database (Denmark)

    Blædel, Martin; Sams, Anette; Boonen, Harrie C M

    2016-01-01

    UNLABELLED: This study investigated the effect of the metabolic syndrome associated risk factors hyperglycemia (glucose [Glc]), hyperinsulinemia (insulin [Ins]) and low-grade inflammation (tumor necrosis factor α [TNFα]) on the vasomotor responses of resistance arteries. Isolated small mesenteric...... arteries from 3-month-old Sprague-Dawley rats, were suspended for 21-23 h in tissue cultures containing either elevated Glc (30 mmol/l), Ins (100 nmol/l), TNFα (100 ng/ml) or combinations thereof. After incubation, the vascular response to noradrenaline (NA), phenylephrine, isoprenaline and NA...... in vascular tone....

  1. Effects of ionizing radiations and of metabolic inhibitors on the synthesis of RNA in lymphocites bred in culture

    Energy Technology Data Exchange (ETDEWEB)

    Farulla, A; Alimena, G; Castagna, R; Naro, G; Percoco, V D [Rome Univ. (Italy)

    1954-01-01

    Studies are conducted of the activation kinetics of the RNA synthesis and of proteins, during their blasto transformation stage of human circulating lymphocytes in culture breeding and of the effects caused by some metabolic inhibitors and by ionizing radiations on RNA synthesis. The results obtained lead to assume that the initial activation concern RNA nuclear linkages with fast turnover and scarce sensibility to actinomycin and that the exposure to ionizing radiations causes a significant reduction of the RNA synthesis rate at the initial phases of the activation process while it hasn't any effect on the later stage.

  2. Reductive dechlorination of 3,3',4,4'-tetrachlorobiphenyl (PCB77) using palladium or palladium/iron nanoparticles and assessment of the reduction in toxic potency in vascular endothelial cells

    International Nuclear Information System (INIS)

    Venkatachalam, Karthik; Arzuaga, Xabier; Chopra, Nitin; Gavalas, Vasilis G.; Xu, Jian; Bhattacharyya, Dibakar; Hennig, Bernhard; Bachas, Leonidas G.

    2008-01-01

    Palladium-based nanoparticles immobilized in polymeric matrices were applied to the reductive dechlorination of 3,3',4,4'-tetrachlorobiphenyl (PCB77) at room temperature. Two different dechlorination platforms were evaluated using (1) Pd nanoparticles within conductive polypyrrole films; or (2) immobilized Fe/Pd nanoparticles within polyvinylidene fluoride microfiltration membranes. For the first approach, the polypyrrole film was electrochemically formed in the presence of perchlorate ions that were incorporated into the film to counter-balance the positive charges of the polypyrrole chain. The film was then incubated in a solution containing tetrachloropalladate ions, which were exchanged with the perchlorate ions within the film. During this exchange, reduction of tetrachloropalladate by polypyrrole occurred, which led to the formation of palladium nanoparticles within the film. For the second approach, the membrane-supported Fe/Pd nanoparticles were prepared in three steps: polymerization of acrylic acid in polyvinylidene fluoride microfiltration membrane pores was followed by ion exchange of Fe 2+ , and then chemical reduction of the ferrous ions bound to the carboxylate groups. The membrane-supported iron nanoparticles were then soaked in a solution of tetrachloropalladate resulting in the deposition of Pd on the Fe surface. The nanoparticles prepared by both approaches were employed in the dechlorination of PCB77. The presence of hydrogen was required when the monometallic Pd nanoparticles were employed. The results indicate the removal of chlorine atoms from PCB77, which led to the formation of lower chlorinated intermediates and ultimately biphenyl. Toxicity associated with vascular dysfunction by PCB77 and biphenyl was compared using cultured endothelial cells. The data strongly suggest that the dechlorination system used in this study markedly reduced the proinflammatory activity of PCB77, a persistent organic pollutant

  3. A potential mechanism of energy-metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Xu, Zhaojun; Tsurugi, Kunio

    2006-04-01

    The energy-metabolism oscillation in aerobic chemostat cultures of yeast is a periodic change of the respiro-fermentative and respiratory phase. In the respiro-fermentative phase, the NADH level was kept high and respiration was suppressed, and glucose was anabolized into trehalose and glycogen at a rate comparable to that of catabolism. On the transition to the respiratory phase, cAMP levels increased triggering the breakdown of storage carbohydrates and the increased influx of glucose into the glycolytic pathway activated production of glycerol and ethanol consuming NADH. The resulting increase in the NAD(+)/NADH ratio stimulated respiration in combination with a decrease in the level of ATP, which was consumed mainly in the formation of biomass accompanying budding, and the accumulated ethanol and glycerol were gradually degraded by respiration via NAD(+)-dependent oxidation to acetate and the respiratory phase ceased after the recovery of NADH and ATP levels. However, the mRNA levels of both synthetic and degradative enzymes of storage carbohydrates were increased around the early respiro-fermentative phase, when storage carbohydrates are being synthesized, suggesting that the synthetic enzymes were expressed directly as active forms while the degradative enzymes were activated late by cAMP. In summary, the energy-metabolism oscillation is basically regulated by a feedback loop of oxido-reductive reactions of energy metabolism mediated by metabolites like NADH and ATP, and is modulated by metabolism of storage carbohydrates in combination of post-translational and transcriptional regulation of the related enzymes. A potential mechanism of energy-metabolism oscillation is proposed.

  4. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian

    2015-01-01

    optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylationrelated product quality. In this work, different fed-batch processes with two chemically defined proprietary media......Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process...... and glutamine concentrations and uptake rates were positively correlated with intracellular UDP-Gal availability. All these findings are important for optimization of fed-batch culture for improving IgG production and directing glycosylation quality....

  5. Effect of a base-catalyzed dechlorination process on the genotoxicity of PCB-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    DeMarini, D.M.; Houk, V.S.; Kornel, A.; Rogers, C.J.

    1992-01-01

    We evaluated the genotoxicity of dichloromethane (DCM) extracts of PCB-contaminated soil before and after the soil had been treated by a base-catalyzed dechlorination process, which involved heating a mixture of the soil, polyethylene glycol, and sodium hydroxide to 250-350 C. This dechlorination process reduced by over 99% the PCB concentration in the soil, which was initially 2,200 ppm. The DCM extracts of both control and treated soils were not mutagenic in strain TA100 of Salmonella, but they were mutagenic in strain TA98. The base-catalyzed dechlorination process reduced the mutagenic potency of the soil by approximately one-half. The DCM extracts of the soils before and after treatment were equally genotoxic in a prophage-induction assay in E. coli, which detects some chlorinated organic carcinogens that were not detected by the Salmonella mutagenicity assay. These results show that treatment of PCB-contaminated soil by this base-catalyzed dechlorination process did not increase the genotoxicity of the soil.

  6. Geochemical and microbial community determinants of reductive dechlorination at a site biostimulated with glycerol

    NARCIS (Netherlands)

    Atashgahi, Siavash; Lu, Yue; Zheng, Ying; Saccenti, Edoardo; Suarez-Diez, Maria; Ramiro-Garcia, Javier; Eisenmann, Heinrich; Elsner, Martin; J.M. Stams, Alfons; Springael, Dirk; Dejonghe, Winnie; Smidt, Hauke

    2017-01-01

    Biostimulation is widely used to enhance reductive dechlorination of chlorinated ethenes in contaminated aquifers. However, the knowledge on corresponding biogeochemical responses is limited. In this study, glycerol was injected in an aquifer contaminated with cis-dichloroethene (cDCE), and

  7. Radiation induced dechlorination of some chlorinated hydrocarbons in aqueous suspensions of various solid particles

    Czech Academy of Sciences Publication Activity Database

    Múčka, V.; Buňata, M.; Čuba, V.; Silber, R.; Juha, Libor

    2015-01-01

    Roč. 112, Jul (2015), s. 108-116 ISSN 0969-806X R&D Projects: GA ČR GA13-28721S Institutional support: RVO:68378271 Keywords : chlorinated hydrocarbons * TCE * PCE * PCBs * dechlorination * gamma irradiation * modifiers * cell membrane permeability Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.207, year: 2015

  8. PCB dechlorination hotspots and reductive dehalogenase genes in sediments from a contaminated wastewater lagoon.

    Science.gov (United States)

    Mattes, Timothy E; Ewald, Jessica M; Liang, Yi; Martinez, Andres; Awad, Andrew; Richards, Patrick; Hornbuckle, Keri C; Schnoor, Jerald L

    2017-08-12

    Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants that are distributed worldwide. Although industrial PCB production has stopped, legacy contamination can be traced to several different commercial mixtures (e.g., Aroclors in the USA). Despite their persistence, PCBs are subject to naturally occurring biodegradation processes, although the microbes and enzymes involved are poorly understood. The biodegradation potential of PCB-contaminated sediments in a wastewater lagoon located in Virginia (USA) was studied. Total PCB concentrations in sediments ranged from 6.34 to 12,700 mg/kg. PCB congener profiles in sediment sample were similar to Aroclor 1248; however, PCB congener profiles at several locations showed evidence of dechlorination. The sediment microbial community structure varied among samples but was dominated by Proteobacteria and Firmicutes. The relative abundance of putative dechlorinating Chloroflexi (including Dehalococcoides sp.) was 0.01-0.19% among the sediment samples, with Dehalococcoides sp. representing 0.6-14.8% of this group. Other possible PCB dechlorinators present included the Clostridia and the Geobacteraceae. A PCR survey for potential PCB reductive dehalogenase genes (RDases) yielded 11 sequences related to RDase genes in PCB-respiring Dehalococcoides mccartyi strain CG5 and PCB-dechlorinating D. mccartyi strain CBDB1. This is the first study to retrieve potential PCB RDase genes from unenriched PCB-contaminated sediments.

  9. Chasing halorespirers: High throughput multiplex detection of dechlorinating bacteria using Pri-Lock probes

    Energy Technology Data Exchange (ETDEWEB)

    Maphosa, F.; Doorn, R. van; Vos, W. de; Cor Schoen, C.; Smidt, H.

    2009-07-01

    Bioremediation management strategies for sites contaminated with chlorinated compounds require monitoring technologies that enable simultaneous detection and quantification of a wide range of microorganisms involved in reductive dechlorination. Many multiplex, quantitative detection methods available suffer from compromises between the level of multiplexing, throughput and accuracy of quantification. (Author)

  10. Comparison of Bimetallic and Trimetallic Catalyst in Reductive Dechlorination; Influence of Copper Addition

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, František; Kaštánek, Petr; Maléterová, Ywetta; Kallistová, A.; Šolcová, Olga

    2015-01-01

    Roč. 2, č. 7 (2015), s. 1954-1958 E-ISSN 3159-0040 R&D Projects: GA TA ČR TA04020700 Institutional support: RVO:67985858 ; RVO:67985831 Keywords : PCB * reductive dechlorination * bimetallic and trimetallic catalysts Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.jmest.org/wp-content/uploads/JMESTN42350950.pdf

  11. Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors.

    Science.gov (United States)

    Freeborn, Ryan A; West, Kimberlee A; Bhupathiraju, Vishvesh K; Chauhan, Sadhana; Rahm, Brian G; Richardson, Ruth E; Alvarez-Cohen, Lisa

    2005-11-01

    Two rapidly fermented electron donors, lactate and methanol, and two slowly fermented electron donors, propionate and butyrate, were selected for enrichment studies to evaluate the characteristics of anaerobic microbial consortia that reductively dechlorinate TCE to ethene. Each electron donor enrichment subculture demonstrated the ability to dechlorinate TCE to ethene through several serial transfers. Microbial community analyses based upon 16S rDNA, including terminal restriction fragment length polymorphism (T-RFLP) and clone library/sequencing, were performed to assess major changes in microbial community structure associated with electron donors capable of stimulating reductive dechlorination. Results demonstrated that five phylogenic subgroups or genera of bacteria were present in all consortia, including Dehalococcoides sp., low G+C Gram-positives (mostly Clostridium and Eubacterium sp.), Bacteroides sp., Citrobacter sp., and delta Proteobacteria (mostly Desulfovibrio sp.). Phylogenetic association indicates that only minor shifts in the microbial community structure occurred between the four alternate electron donor enrichments and the parent consortium. Inconsistent detection of Dehalococcoides spp. in clone libraries and T-RFLP of enrichment subcultures was resolved using quantitative polymerase chain reaction (Q-PCR). Q-PCR with primers specific to Dehalococcoides 16S rDNA resulted in positive detection of this species in all enrichments. Our results suggest that TCE-dechlorinating consortia can be stably maintained on a variety of electron donors and that quantities of Dehalococcoides cells detected with Dehalococcoides specific 16S rDNA primer/probe sets do not necessarily correlate well with solvent degradation rates.

  12. Stable carbon isotope fractionation of chlorinated ethenes by a microbial consortium containing multiple dechlorinating genes.

    Science.gov (United States)

    Liu, Na; Ding, Longzhen; Li, Haijun; Zhang, Pengpeng; Zheng, Jixing; Weng, Chih-Huang

    2018-08-01

    The study aimed to determine the possible contribution of specific growth conditions and community structures to variable carbon enrichment factors (Ɛ- carbon ) values for the degradation of chlorinated ethenes (CEs) by a bacterial consortium with multiple dechlorinating genes. Ɛ- carbon values for trichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride were -7.24% ± 0.59%, -14.6% ± 1.71%, and -21.1% ± 1.14%, respectively, during their degradation by a microbial consortium containing multiple dechlorinating genes including tceA and vcrA. The Ɛ- carbon values of all CEs were not greatly affected by changes in growth conditions and community structures, which directly or indirectly affected reductive dechlorination of CEs by this consortium. Stability analysis provided evidence that the presence of multiple dechlorinating genes within a microbial consortium had little effect on carbon isotope fractionation, as long as the genes have definite, non-overlapping functions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Metabolism of methoxychlor by the P450-monooxygenase CYP6G1 involved in insecticide resistance of Drosophila melanogaster after expression in cell cultures of Nicotiana tabacum.

    Science.gov (United States)

    Joussen, Nicole; Schuphan, Ingolf; Schmidt, Burkhard

    2010-03-01

    Cytochrome P450 monooxygenase CYP6G1 of Drosophila melanogaster was heterologously expressed in a cell suspension culture of Nicotiana tabacum. This in vitro system was used to study the capability of CYP6G1 to metabolize the insecticide methoxychlor (=1,1,1-trichloro-2,2-bis(4-methoxyphenyl)ethane, 1) against the background of endogenous enzymes of the corresponding non-transgenic culture. The Cyp6g1-transgenic cell culture metabolized 96% of applied methoxychlor (45.8 microg per assay) within 24 h by demethylation and hydroxylation mainly to trishydroxy and catechol methoxychlor (16 and 17%, resp.). About 34% of the metabolism and the distinct formation of trishydroxy and catechol methoxychlor were due to foreign enzyme CYP6G1. Furthermore, methoxychlor metabolism was inhibited by 43% after simultaneous addition of piperonyl butoxide (458 microg), whereas inhibition in the non-transgenic culture amounted to 92%. Additionally, the rate of glycosylation was reduced in both cultures. These results were supported by the inhibition of the metabolism of the insecticide imidacloprid (6; 20 microg, 24 h) in the Cyp6g1-transgenic culture by 82% in the presence of piperonyl butoxide (200 microg). Due to CYP6G1 being responsible for imidacloprid resistance of Drosophila or being involved in DDT resistance, it is likely that CYP6G1 conveys resistance to methoxychlor (1). Furthermore, treating Drosophila with piperonyl butoxide could weaken the observed resistance phenomena.

  14. Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture-clay matrix system

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Broholm, Mette Martina; Binning, Philip John

    2010-01-01

    Clayey tills contaminated with chlorinated solvents are a threat to groundwater and are difficult to remediate. A numerical model is developed for assessing leaching processes and for simulating the remediation via enhanced anaerobic dechlorination. The model simulates the transport...... to the physical processes, mainly diffusion in the matrix, than to the biogeochemical processes, when dechlorination is assumed to take place in a limited reaction zone only. The inclusion of sequential dechlorination in clay fracture transport models is crucial, as the contaminant flux to the aquifer...

  15. Changes in the metabolic footprint of placental explant-conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies.

    LENUS (Irish Health Repository)

    Horgan, R P

    2012-01-31

    Being born small for gestational age (SGA) confers significantly increased risks of perinatal morbidity and mortality. Accumulating evidence suggests that an SGA fetus results from a poorly perfused and abnormally developed placenta. Some of the placental features seen in SGA, such as abnormal cell turnover and impaired nutrient transport, can be reproduced by culture of placental explants in hypoxic conditions. Metabolic footprinting offers a hypothesis-generating strategy to investigate factors absorbed by and released from this tissue in vitro. Previously, metabolic footprinting of the conditioned culture media has identified differences in placental explants cultured under normoxic and hypoxic conditions and between normal pregnancies and those complicated by pre-eclampsia. In this study we aimed to examine the differences in the metabolic footprint of placental villous explants cultured at different oxygen (O(2)) tensions between women who deliver an SGA baby (n = 9) and those from normal controls (n = 8). Placental villous explants from cases and controls were cultured for 96 h in 1% (hypoxic), 6% (normoxic) and 20% (hyperoxic) O(2). Metabolic footprints were analysed by Ultra Performance Liquid Chromatography coupled to an electrospray hybrid LTQ-Orbitrap Mass Spectrometry (UPLC-MS). 574 metabolite features showed significant difference between SGA and normal at one or more of the oxygen tensions. SGA explant media cultured under hypoxic conditions was observed, on a univariate level, to exhibit the same metabolic signature as controls cultured under normoxic conditions in 49% of the metabolites of interest, suggesting that SGA tissue is acclimatised to hypoxic conditions in vivo. No such behaviour was observed under hyperoxic culture conditions. Glycerophospholipid and tryptophan metabolism were highlighted as areas of particular interest.

  16. Application of speckle dynamics for studying metabolic activity of cell cultures with herpes virus

    Science.gov (United States)

    Vladimirov, A. P.; Bakharev, A. A.; Malygin, A. S.; Mikhaylova, J. A.; Borodin, E. M.; Poryvayeva, A. P.; Glinskikh, N. P.

    2014-05-01

    The report considers the results of the experiments in which digital values of light intensity I and the image area correlation index η values were recorded on a real-time basis for one or two days. Three cell cultures with viruses along with intact cultures were investigated. High correlation of dependence of η values on time t values was demonstrated for three cultures. The η=η(t) and I=I(t) dependences for cells with and without viruses differ considerably. It was shown that the presence of viruses could be determined as early as ten minutes after measurements were started.

  17. The kinetics of the radiation-induced chain dechlorination of hexachloroethane in alcohols

    International Nuclear Information System (INIS)

    Sawai, Takeshi; Ohara, Naoki; Shimokawa, Toshinari

    1978-01-01

    The kinetics of the radiation-induced dechlorination of hexachloroethane was investigated in deoxygenated alcohol solutions. The major products were hydrogen chloride, pentachloroethane, 1,1,2,2-tetrachloroethane, tetrachloroethylene, and aldehydes or acetone. No 1,1,1,2-tetrachloroethane was observed. The radiation-chemical yields of these products and the disappearance of hexachloroethane were quite high; these facts indicate that a chain reaction is involved in these processes. After the hexachloroethane had effectively dechlorinated down to tetrachloro compounds, there were no marked changes in the lower chlorinated compound upon continuous irradiation. Tetrachloroethane was formed via pentachloroethane, but tetrachloroethylene was produced by means of C 2 Cl 5 →C 2 Cl 4 + cl reaction and the yield was particularly high in methanol compared with the other alcohols. The chain length of the dechlorination from hexachloroethane to pentachloroethane and from pentachloroethane to tetrachloroethane increased in the order of 2-propanol>ethanol>methanol. The G(-C 2 Cl 6 ) and G(products) were proportional to (dose rate)sup(-1/2), and the ratio of G(C 2 HCl 5 ) to G(C 2 Cl 4 ) was a constant in each alcohol solution, regardless of the dose rate. The α-hydroxy alkyl radical is the chain carrier for the dechlorination reaction of hexachloroethane in alcohol solutions. The relative rates of the dechlorination were found to be 1, 3, and 14 for C*H 2 OH (*: radical), CH 3 C*HOH (*: radical), and (CH 3 ) 2 C*OH (*: radical), respectively. The order in the rate is in agreement with that of the redox potential of these radicals. The effect of the irradiation temperature on the products yields was also examined. (auth.)

  18. Reductive Dechlorination of Carbon Tetrachloride by Soil With Ferrous and Bisulfide

    Science.gov (United States)

    Choi, K.; Lee, W.

    2008-12-01

    Batch and column experiments were conducted to investigate the effect of concentration of reductants, contact time to activate reductive capacity, and pH on reductive dechlorination by soil with Fe(II) and HS- in this study. Carbon tetrachloride (CT) was used as a representative target organic compound. Sorption kinetic and isotherm tests were performed to investigate the influence of adsorption on the soil surface. Target compound in the soil suspension reached sorption equilibrium in 4 hours and the type of isotherm was well fitted by a linear type isotherm. In batch experiment, kinetic rate constants for the reductive dechlorination of CT increased with increasing the concentration of the reductants (Fe(II) and HS-). However, Fe(II) was a much more effective reductant, producing higher k values than those of HS-. The contact time of one day for the soil with HS- and that of four hours with Fe(II) showed the highest reaction rates. Additionally, the rate constants increased with the increase of pH in soil suspension with Fe(II) (5.2~8) and HS- (8.3~10.3), respectively. In column experiment, the soil column with Fe(II) showed larger bed volumes (13.76) to reach a column breakthrough than that with HS- indicating the treatment of Fe(II) is more effective for the reductive dechlorination of CT. To enhance reductive capacity of soil column under an acidic condition, CaO addition to the column treated with Fe(II) showed better results for the reductive dechlorination of CT than that of HS-. Fe(II) showed better CT dechlorination than HS- in batch and column reactors therefore, it can be used as an effective reducing agent for the treatment of soil contaminated with chlorinated organic compounds.

  19. Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts

    International Nuclear Information System (INIS)

    Huang, Qiang; Liu, Wen; Peng, Ping’an; Huang, Weilin

    2013-01-01

    Highlights: • TCBPA can be rapidly and completely dechlorinated by Pd/Fe bimetallic catalysts. • The observed rate constants are functions of dosages, initial concentration, Pd coverage and solution pH. • Pd dosage is the major factor in the observed rates of the reaction. • This is the first report investigating the dechlorination of TCBPA by Pd/Fe catalysts. -- Abstract: The Pd/Fe bimetallic catalysts of micron sizes were synthesized and the rates of tetrachlorobisphenol A (TCBPA) degradation were measured under various conditions using a batch reactor system. The results showed that TCBPA was rapidly dechlorinated to tri-, di- and mono-chlorobisphenol A and to bisphenol A (BPA). The observed rate constants (k obs ) were found to increase as functions of the Pd coverage on the Fe particles and the dosages of the catalysts within the reactors. The k obs value decreased as the initial TCBPA concentration increased, suggesting that the TCBPA dechlorination may follow a surface-site limiting Langmuir–Hinshelwood rate model. The weakly acidic solution, especially at or near pH 6.0, also favored the dechlorination of TCBPA. At pH 6.0, Pd coverage of 0.044 wt% and catalyst dosage of 5 g L −1 , TCBPA with an initial concentration of 20 μM was completely transformed within 60 min, and BPA was detected as the major product through the reaction time. Meanwhile, the k obs values measured at constant solution pH correlated linearly with the mass of particle-bound Pd introduced to the reactors, regardless of Pd/Fe catalyst dosage or Pd surface coverage. This study suggested that Pd/Fe catalysts could be potentially employed to rapidly degrade TCBPA in the contaminated environment

  20. GM2-ganglioside metabolism in hexosaminidase A deficiency states: determination in situ using labeled GM2 added to fibroblast cultures

    International Nuclear Information System (INIS)

    Raghavan, S.S.; Krusell, A.; Krusell, J.; Lyerla, T.A.; Kolodny, E.H.

    1985-01-01

    To clarify the relationship between hexosaminidase A (HEX A) activity and GM2-ganglioside hydrolysis in atypical clinical situations of HEX A deficiency, we have developed a simple method to assess GM2-ganglioside metabolism in cultured fibroblasts utilizing GM2 labeled with tritium in the sphingosine portion of the molecule. The radioactive lipid is added to the media of cultured skin fibroblasts, and after 10 days the cells are thoroughly washed, then harvested, and their lipid composition analyzed by HPLC. The degree of hydrolysis of the ingested GM2 is determined by comparing the amount of radioactive counts recovered in undegraded substrate with total cellular radioactivity. A deficiency in GM2-ganglioside hydrolysis was demonstrated in seven HEX A-deficient adults with neurological signs and in two healthy-appearing adolescents with older affected siblings. In each case, an analysis of endogenous monosialoganglioside composition revealed an increase in GM2-ganglioside, confirming the presence of a block in the metabolism of GM2. No defect in GM2-catabolism was found in four other healthy individuals with HEX A deficiency. This method of assay is especially helpful in the evaluation of atypical cases of HEX A deficiency for the definitive diagnosis of GM2-gangliosidosis

  1. The Impact of a Cultural Lifestyle Intervention on Metabolic Parameters After Gestational Diabetes Mellitus A Randomized Controlled Trial.

    Science.gov (United States)

    Zilberman-Kravits, Dana; Meyerstein, Naomi; Abu-Rabia, Yones; Wiznitzer, Arnon; Harman-Boehm, Ilana

    2018-06-01

    The prevalence of type 2 diabetes in Israel is increasing in all ethnic groups but most markedly in the Bedouin population. We aimed to assess the effects of a lifestyle change intervention on risk markers for type 2 diabetes after gestational diabetes mellitus (GDM). One hundred eighty Jewish and Bedouin post-GDM women were randomly assigned to a lifestyle intervention group (IG) or a control group (CG) starting 3-4 months after delivery. The IG participated in healthy lifestyle sessions led by a dietician and a sports instructor for 24 months after delivery. The IG participants had three individual 45-min counseling sessions and four 90-min group meetings (10 women each). The dietary and exercise recommendations were culturally adapted. The primary outcome of the study was HOMA-IR. We monitored clinical and chemical biomarkers 1 and 2 years after delivery. After 1 and 2 years of intervention, the metabolic measures improved substantially. The intervention reduced the insulin, glucose and HOMA-IR levels in the IG compared with those in the CG (p < 0.001). This novel culturally tailored lifestyle intervention program significantly improved the metabolic and morphometric indices measured 1 and 2 years after delivery. These results highlight and underscore the importance of effective lifestyle change education following GDM.

  2. Differential alterations of phospholipid metabolism in cultured cells of neural origin by phorbol esters, fatty acids, diacylglycerols and related compounds

    International Nuclear Information System (INIS)

    Cook, H.W.; Spence, M.W.

    1986-01-01

    The uptake and metabolism of [ 3 H]methylcholine, [1,2- 14 C]-ethanolamine, [1- 14 C]fatty acids and [ 32 P] were studied in glioma (C6), neuroblastoma (N1E-115) and neuroblastoma-glioma hybrid (NG108-15) cells in culture in the presence of tetradecanoylphorbolacetate (TPA) and related analogues, fatty acids and diacylglycerol (DAG) to assess mechanisms of stimulation of phospholipid synthesis. Choline incorporation into phosphatidylcholine (PC) was stimulated 1.5-3 fold by phorbol esters and 3-10 fold by 18:1(n-9) in C6 cultures; these agents were without effect on N1E-115 and had intermediate effects on NG108-15 cells. Stimulation of [ 32 P] incorporation was predominantly into PC, ethanolamine incorporation into phosphatidylethanolamine (PE) was less stimulated ( 3 H]choline and its incorporation via intracellular phosphocholine into PC whereas exogenous 18:1(n-9) stimulated only utilization of intracellular P-choline in C6 cells. Choline incorporation into PC and relative stimulation by TPA or 18:1 was influenced by medium glucose and choline. Thus, metabolism of phospholipids and their precursors in neural cells can be markedly influenced by phorbol esters and fatty acids but this stimulation is dependent on cell type, growth medium, phospholipid class and nature of the stimulator

  3. Seasonal variations in the pattern of RNA metabolism of tuber tissue in response to excision and culture

    International Nuclear Information System (INIS)

    Macleod, A.J.; Mills, E.D.; Yeoman, M.M.

    1979-01-01

    Between December 1975 and June 1976 explants excised from Jerusalem artichoke tubers were cultured in the presence and in the absence of 2,4-D, the cells in the tissue dividing only in the presence of 2,4-D, in which the length of the first cell cycle increased nonlinearly from 18 hours to 40 hours as the tubers aged in storage at 4 0 C. Simultaneously the amount of RNA in the tissue declined linearly from 8 to 5 μg RNA per explant. Detailed examination of the RNA metabolism in dividing and in non-dividing cells during February and June 1976 revealed superimposed but independent responses to wounding during excision and to stimulation into growth by 2,4-D. The responses to wounding involved only a very low level of metabolic activity, were complete within a few hours of excision and changed very little with the storage of the tubers. Tissue treated with 2,4-D showed a much higher level of metabolic activity including the periodic accumulation of RNA coupled to its discontinuous synthesis. The features of these growth-related responses changed considerably during the investigation. (author)

  4. Understanding the interplay of carbon and nitrogen supply for ectoines production and metabolic overflow in high density cultures of Chromohalobacter salexigens.

    Science.gov (United States)

    Salar-García, María J; Bernal, Vicente; Pastor, José M; Salvador, Manuel; Argandoña, Montserrat; Nieto, Joaquín J; Vargas, Carmen; Cánovas, Manuel

    2017-02-08

    The halophilic bacterium Chromohalobacter salexigens has been proposed as promising cell factory for the production of the compatible solutes ectoine and hydroxyectoine. This bacterium has evolved metabolic adaptations to efficiently grow under high salt concentrations by accumulating ectoines as compatible solutes. However, metabolic overflow, which is a major drawback for the efficient conversion of biological feedstocks, occurs as a result of metabolic unbalances during growth and ectoines production. Optimal production of ectoines is conditioned by the interplay of carbon and nitrogen metabolisms. In this work, we set out to determine how nitrogen supply affects the production of ectoines. Chromohalobacter salexigens was challenged to grow in media with unbalanced carbon/nitrogen ratio. In C. salexigens, overflow metabolism and ectoines production are a function of medium composition. At low ammonium conditions, the growth rate decreased importantly, up to 80%. Shifts in overflow metabolism were observed when changing the C/N ratio in the culture medium. 13 C-NMR analysis of ectoines labelling revealed a high metabolic rigidity, with almost constant flux ratios in all conditions assayed. Unbalanced C/N ratio led to pyruvate accumulation, especially upon N-limitation. Analysis of an ect - mutant demonstrated the link between metabolic overflow and ectoine biosynthesis. Under non ectoine synthesizing conditions, glucose uptake and metabolic overflow decreased importantly. Finally, in fed-batch cultures, biomass yield was affected by the feeding scheme chosen. High growth (up to 42.4 g L -1 ) and volumetric ectoine yields (up to 4.21 g L -1 ) were obtained by minimizing metabolite overflow and nutrient accumulation in high density cultures in a low nitrogen fed-batch culture. Moreover, the yield coefficient calculated for the transformation of glucose into biomass was 30% higher in fed-batch than in the batch culture, demonstrating that the metabolic

  5. Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture.

    Science.gov (United States)

    Crabbendam, P M; Neijssel, O M; Tempest, D W

    1985-09-01

    The influence of a number of environmental parameters on the fermentation of glucose, and on the energetics of growth of Clostridium butyricum in chemostat culture, have been studied. With cultures that were continuously sparged with nitrogen gas, glucose was fermented primarily to acetate and butyrate with a fixed stoichiometry. Thus, irrespective of the growth rate, input glucose concentration, specific nutrient limitation and, within limits, the culture pH value, the acetate/butyrate molar ratio in the culture extracellular fluids was uniformly 0.74 +/- 0.07. Thus, the efficiency with which ATP was generated from glucose catabolism also was constant at 3.27 +/- 0.02 mol ATP/mol glucose fermented. However, the rate of glucose fermentation at a fixed growth rate, and hence the rate of ATP generation, varied markedly under some conditions, leading to changes in the Y glucose and YATP values. In general, glucose-sufficient cultures expressed lower yield values than a corresponding glucose-limited culture, and this was particularly marked with a potassium-limited culture. However, with a glucose-limited culture increasing the input glucose concentration above 40 g glucose X 1(-1) also led to a significant decrease in the yield values that could be partially reversed by increasing the sparging rate of the nitrogen gas. Finally glucose-limited cultures immediately expressed an increased rate of glucose fermentation when relieved of their growth limitation. Since the rate of cell synthesis did not increase instantaneously, again the yield values with respect to glucose consumed and ATP generated transiently decreased. Two conditions were found to effect a change in the fermentation pattern with a lowering of the acetate/butyrate molar ratio. First, a significant decrease in this ratio was observed when a glucose-limited culture was not sparged with nitrogen gas; and second, a substantial (and progressive) decrease was observed to follow addition of increasing amounts of

  6. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures

    Directory of Open Access Journals (Sweden)

    Schriemer David C

    2010-11-01

    Full Text Available Abstract Background Papaver somniferum (opium poppy is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. Results A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. Conclusions The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a

  7. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures.

    Science.gov (United States)

    Desgagné-Penix, Isabel; Khan, Morgan F; Schriemer, David C; Cram, Dustin; Nowak, Jacek; Facchini, Peter J

    2010-11-18

    Papaver somniferum (opium poppy) is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs) with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a system with a well-defined metabolite profile facilitates

  8. Role of Gts1p in regulation of energy-metabolism oscillation in continuous cultures of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Xu, Zhaojun; Tsurugi, Kunio

    2007-03-01

    Energy-metabolism oscillation (EMO) in an aerobic chemostat culture of yeast is basically regulated by a feedback loop of redox reactions in energy metabolism and modulated by metabolism of storage carbohydrates. In this study, we investigated the role of Gts1p in the stabilization of EMO, using the GTS1-deleted transformant gts1Delta. We found that fluctuations in the redox state of the NAD co-factor and levels of redox-regulated metabolites in glycolysis, especially of ethanol, are markedly reduced in amplitude during EMO of gts1Delta, while respiration indicated by the oxygen uptake rate (OUR) and energy charge is not so affected throughout EMO in gts1Delta. Further, the transitions of the levels of OUR, NAD(+) : NADH ratio and intracellular pH between the two phases were apparently retarded compared with those in the wild-type, suggesting attenuation of EMO in gts1Delta. Furthermore, the mRNA levels of genes encoding enzymes for the synthesis of trehalose and glycogen are fairly reduced in gts1Delta, consistent with the decreased synthesis of storage carbohydrates. In addition, the level of inorganic phosphate, which is required for the reduction of NAD(+) and mainly supplied from trehalose synthesis, was decreased in the early respiro-fermentative phase in gts1Delta. Thus, we suggested that the deletion of GTS1 as a transcriptional co-activator for these genes inhibited the metabolism of storage carbohydrates, which causes attenuation of the feedback loop of dehydrogenase reactions in glycolysis with the restricted fluctuation of ethanol as a main synchronizing agent for EMO in a cell population.

  9. An extensive case study of hairy-root cultures for enhanced secondary-metabolite production through metabolic-pathway engineering.

    Science.gov (United States)

    Mehrotra, Shakti; Rahman, Laiq Ur; Kukreja, Arun Kumar

    2010-08-23

    An intrinsic improvement is taking place in the methodologies for the development of culture systems with first-rate production of plant-based molecules. The blending of HR (hairy root) cultures with ME (metabolic engineering) approaches offers new insights into, and possibilities for, improving the system productivity for known and/or novel high-value plant-derived active compounds. The introduction and expression of foreign genes in plants results in improvement of cellular activities by manipulating enzymatic, regulatory and transport function of the cell. The rational amendments in the rate-limiting steps of a biosynthetic pathway as well as inactivating the inefficient pathway(s) for by-product formation can be accomplished either through single-step engineering or through the multi-step engineering. The hierarchical control of any metabolic process can lead the engineer to apply the ME ideas and principles to any of the strata, including transcriptional, moving on to translational and enzymatic activity. The HR culture systems offer a remarkable potential for commercial production of a number of low-volume, but high-value, secondary metabolites. Taking HR as a model system, in the present review, we discuss engineering principles and perceptions to exploit secondary-metabolite pathways for the production of important bioactive compounds. We also talk about requisites and possible challenges that occur during ME, with emphasis on examples of various HR systems. Furthermore, it also highlights the utilization of global information obtained from '-omic' platforms in order to explore pathway architecture, structural and functional aspects of important enzymes and genes that can support the design of sets of engineering, resulting in the generation of wide-ranging views of DNA sequence-to-metabolite passageway networking and their control to obtain desired results.

  10. Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness

    Directory of Open Access Journals (Sweden)

    Viktor Konakovsky

    2016-01-01

    Full Text Available Biomass and cell-specific metabolic rates usually change dynamically over time, making the “feed according to need” strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i inline pH and online glucose concentration measurement or (ii inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8 is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With

  11. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.

    Science.gov (United States)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian; Wagtberg Sen, Jette; Rasmussen, Søren Kofoed; Kontoravdi, Cleo; Weilguny, Dietmar; Andersen, Mikael Rørdam

    2015-03-01

    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylation-related product quality. In this work, different fed-batch processes with two chemically defined proprietary media and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards energy and recombinant product, respectively. Accumulation of by-products such as NH4(+) and lactate as a consequence of unbalanced nutrient supply to cell activities inhibits cell growth. The levels of Leu and Arg in the culture, which relate to cell growth and IgG productivity, need to be well controlled. Amino acids with the highest consumption rates correlate with the most abundant amino acids present in the produced IgG, and thus require sufficient availability during culture. Case-by-case analysis is necessary for understanding the effect of media and process optimization on glycosylation. We found that in certain cases the presence of Man5 glycan can be linked to limitation of UDP-GlcNAc biosynthesis as a result of insufficient extracellular Gln. However, under different culture conditions, high Man5 levels can also result from low α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase (GnTI) and UDP-GlcNAc transporter activities, which may be attributed to high level of NH4+ in the cell culture. Furthermore, galactosylation of the mAb Fc glycans

  12. ENVIROMETAL TECHNOLOGIES, INC., METAL-ENHANCED DECHLORINATION OF VOLATILE ORGANIC COMPOUNDS USING AN IN-SITU REACTIVE IRON WALL

    Science.gov (United States)

    This report summarizes the results of a field demonstration conducted under the SITE program. The technology that was demonstrated was a metal-enhanced dechlorination process developed by EnviroMetal Technologies, Inc. to treat groundwater contaminated with chlorinated volatile ...

  13. Metabolism of ibuprofen in higher plants: A model Arabidopsis thaliana cell suspension culture system

    Czech Academy of Sciences Publication Activity Database

    Maršík, Petr; Šíša, Miroslav; Lacina, O.; Moťková, Kateřina; Langhansová, Lenka; Rezek, Jan; Vaněk, Tomáš

    2017-01-01

    Roč. 220, JAN (2017), s. 383-392 ISSN 0269-7491 R&D Projects: GA ČR(CZ) GA14-22593S Grant - others:European Regional Development Fund(XE) CZ.2.16/3.1.00/24014 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * Ibuprofen * Metabolism * Plant cells * Sequestration Subject RIV: CE - Biochemistry OBOR OECD: Plant sciences, botany Impact factor: 5.099, year: 2016

  14. Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice

    OpenAIRE

    Ridaura, Vanessa K.; Faith, Jeremiah J.; Rey, Federico E.; Cheng, Jiye; Duncan, Alexis E.; Kau, Andrew L.; Griffin, Nicholas W.; Lombard, Vincent; Henrissat, Bernard; Bain, James R.; Muehlbauer, Michael J.; Ilkayeva, Olga; Semenkovich, Clay F.; Funai, Katsuhiko; Hayashi, David K.

    2013-01-01

    The role of specific gut microbes in shaping body composition remains unclear. We transplanted fecal microbiota from adult female twin pairs discordant for obesity into germ-free mice fed low-fat mouse chow, as well as diets representing different levels of saturated fat and fruit and vegetable consumption typical of the USA. Increased total body and fat mass, as well as obesity-associated metabolic phenotypes were transmissible with uncultured fecal communities, and with their corresponding ...

  15. Influence of culture conditions on growth and protein metabolism in chlorella pyranosides

    International Nuclear Information System (INIS)

    Mazon Matanzo, M. P.; Fernandez Gonzalez, J.; Batuecas Suarez, B.

    1981-01-01

    Growth and protein metabolism of Chlorella pyranoside under different conditions of temperature, photo period and CO 2 concentration was studied. The optimum of biomass production was observed at 25 degree centigree, 40.000 ppm of CO 2 in air and a 20 h. light period, followed of 4 h. of darkness. Some variations in free aminoacids content was observed under different conditions but no change did occur in protein. (Author) 68 refs

  16. Influence of culture conditions on growth and protein metabolism in chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Fernandez Gonzalez, J.; Mazon, M.P.; Batuecas, B.

    1981-01-01

    Growth and protein metabolism of chlorella pyrenoidosa under differents conditions of temperature, photoperiod and CO 2 concentration was studied. The optimum of biomas production was observed at 25 deg C, 40.000 ppm of CO 2 in air and a 20 h. light period, followed of 4 h. of darkness. Some variations in free aminoacids content was observed under differents conditions but no change did occur in protein. (author)

  17. Updates to a 13C metabolic flux analysis model for evaluating energy metabolism in cultured cerebellar granule neurons from neonatal rats.

    Science.gov (United States)

    Jekabsons, Mika B; Gebril, Hoda M; Wang, Yan-Hong; Avula, Bharathi; Khan, Ikhlas A

    2017-10-01

    A hexose phosphate recycling model previously developed to infer fluxes through the major glucose consuming pathways in cultured cerebellar granule neurons (CGNs) from neonatal rats metabolizing [1,2- 13 C 2 ]glucose was revised by considering reverse flux through the non-oxidative pentose phosphate pathway (PPP) and symmetrical succinate oxidation within the tricarboxylic acid (TCA) cycle. The model adjusts three flux ratios to effect 13 C distribution in the hexose, pentose, and triose phosphate pools, and in TCA cycle malate to minimize the error between predicted and measured 13 C labeling in exported lactate (i.e., unlabeled, single-, double-, and triple-labeled; M, M1, M2, and M3, respectively). Inclusion of reverse non-oxidative PPP flux substantially increased the number of calculations but ultimately had relatively minor effects on the labeling of glycolytic metabolites. From the error-minimized solution in which the predicted M-M3 lactate differed by 0.49% from that measured by liquid chromatography-triple quadrupole mass spectrometry, the neurons exhibited negligible forward non-oxidative PPP flux. Thus, no glucose was used by the pentose cycle despite explicit consideration of hexose phosphate recycling. Mitochondria consumed only 16% of glucose while 45% was exported as lactate by aerobic glycolysis. The remaining 39% of glucose was shunted to pentose phosphates presumably for de novo nucleotide synthesis, but the proportion metabolized through the oxidative PPP vs. the reverse non-oxidative PPP could not be determined. The lactate exported as M1 (2.5%) and M3 (1.2%) was attributed to malic enzyme, which was responsible for 7.8% of pyruvate production (vs. 92.2% by glycolysis). The updated model is more broadly applicable to different cell types by considering bi-directional flux through the non-oxidative PPP. Its application to cultured neurons utilizing glucose as the sole exogenous substrate has demonstrated substantial oxygen-independent glucose

  18. Variations on metabolic activities of legume tissues through radiation in tissue culture

    International Nuclear Information System (INIS)

    Batra, Amla

    1977-01-01

    Cell cultures from Arachis hypogaea L. cultivated in a modified medium developed by Murashige and Skoog (1962) showed vigorous qrowth after radiation treatment. Investigations on the effect of various sugars on the chlorophyll formation and growth of the irradiated tissues showed that sucrose was superior to maltose, glucose or fructose as a carbon source. Lactose and mannitol supported growth and development of chlorophyll to a less degree. On prolonging the cultures on a sugar free medium, the tissues failed to regain either growth or chlorophyll content. (author)

  19. Variations on metabolic activities of legume tissues through radiation in tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Batra, A [Rajasthan Univ., Jaipur (India). Dept. of Botany

    1977-12-01

    Cell cultures from Arachis hypogaea L. cultivated in a modified medium developed by Murashige and Skoog (1962) showed vigorous qrowth after radiation treatment. Investigations on the effect of various sugars on the chlorophyll formation and growth of the irradiated tissues showed that sucrose was superior to maltose, glucose or fructose as a carbon source. Lactose and mannitol supported growth and development of chlorophyll to a less degree. On prolonging the cultures on a sugar free medium, the tissues failed to regain either growth or chlorophyll content.

  20. [Effects of endophytic fungi from Dendrobium officinale on host growth and components metabolism of tissue culture seedlings].

    Science.gov (United States)

    Zhu, Bo; Liu, Jing-Jing; Si, Jin-Ping; Qin, Lu-Ping; Han, Ting; Zhao, Li; Wu, Ling-Shang

    2016-05-01

    The paper aims to study the effects of endophytic fungi from D. officinale cultivated on living trees on growth and components metabolism of tissue culture seedlings. Morphological characteristics and agronomic characters of tissue culture seedlings infected and uninfected by endophytic fungus were observed and measured. Polysaccharides and alcohol-soluble extracts contents were determined by phenol-sulfuric acid method and hot-dipmethod, respectively. Monosacchride composition of polysaccharides and alcohol-soluble extracts components were analyzed by pre-column derivatives HPLC and HPLC method, respectively. It showed that effects of turning to purple of stem nodes could be changed by endophytic fungus. Besides, the endophytic fungus could affect the contents and constitutions of polysaccharides and alcohol-soluble extracts. The strains tested, expect DO34, could promote growth and polysaccharides content of tissue culture seedlings. The strains tested, expect DO12, could promote the accumulation of mannose. Furthermore, DO18, DO19 and DO120 could increase alcohol-soluble extracts. On the basis, four superior strains were selected for mechanism research between endophytic fungus and their hosts and microbiology engineering. Copyright© by the Chinese Pharmaceutical Association.

  1. Radiometric study of the metabolic processes in cell cultures inoculated with E.coli 0111

    International Nuclear Information System (INIS)

    Stankova-Shindarova, I.

    1977-01-01

    The penetration and propagation of bacteria in tissue cells is accompanied by changes in the metabolic processes. A group of strains, belonging to one serologic type comprises invasive and noninvasive variants. Twenty two E.coli 0111 strains were studied. By labelling strains with 3 H-thymidine, 3 H-uridine and 14C-leucine it was demonstrated that the amino acid and protein synthesis of RC 3 cells inoculated with invasive E.coli 0111 variants becomes more intensive. Amino acid and protein synthesis in noninvasive E.coli 0111 following previous high incorporation of the three labelled compounds is rapidly reduced and remains within control limits. (author)

  2. Dechlorination of chlorinated phenols by subnanoscale Pd{sup 0}/Fe{sup 0} intercalated in smectite: pathway, reactivity, and selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hanzhong; Wang, Chuanyi, E-mail: jiahz0143@aliyun.com

    2015-12-30

    Graphical abstract: Dechlorination process of pentachlorophenol (PCP) by smectite-templated Pd{sup 0}/Fe{sup 0}. - Highlights: • Smectite was employed as templated matrix to prepare subnanoscale Pd{sup 0}/Fe{sup 0} particles. • Dechlorination rate depends linearly on the Pd content as its loadings <0.065 wt.%. • Dechlorination rates correlate with the total charge of C on chlorinated phenols. • The dechlorination selectivity relies on charges of individual C in aromatic ring. - Abstract: Smectite clay was employed as templated matrix to prepare subnanoscale Pd{sup 0}/Fe{sup 0} particles, and their components as well as intercalated architectures were well characterized by X-ray energy dispersive spectroscopy (X-EDS) and X-ray diffraction (XRD). Furthermore, as-prepared Pd{sup 0}/Fe{sup 0} subnanoscale nanoparticles were evaluated for their dechlorination effect using chlorinated phenols as model molecules. As a result, pentachlorophenol (PCP) is selectively transformed to phenol in a stepwise dechlorination pathway within 6 h, and the dechlorination rate constants show linearly relationship with contents of Pd as its loadings <0.065%. Comparing with PCP, other chlorinated phenols display similar degradation pattern but within much shorter time frame. The dechlorination rate of chlorinated phenols increases with decreasing in number of -Cl attached to aromatic ring, which can be predicted by the total charge of the aromatic ring, exhibiting an inversely linear relationship with the dechlorination rates. While the selectivity of dechlorination depends on the charges associated with the individual aromatic carbon. Chloro-functional groups at the ortho-position are easier to be dechlorinated than that at meta- and para- positions yielding primarily 3,4,5-TCP as intermediate from PCP, further to phenol. The effective dechlorination warrants their potential utilizations in development of in-situ remediation technologies for organic pollutants in contaminated

  3. Use of γ-hexachlorocyclohexane as a terminal electron acceptor by an anaerobic enrichment culture

    International Nuclear Information System (INIS)

    Elango, Vijai; Kurtz, Harry D.; Anderson, Christina; Freedman, David L.

    2011-01-01

    Highlights: ► Use of γ-hexachlorocyclohexane as a terminal electron acceptor was demonstrated. ► H 2 served as the electron donor for an enrichment culture that dechlorinated γ-HCH. ► H 2 consumption for acetogenesis and methanogenesis stopped in HEPES media. ► Addition of vancomycin significantly slowed the rate of γ-HCH dechlorination. ► Previously identified chlororespiring microbes were not detected in the enrichment. - Abstract: The use of γ-hexachlorocyclohexane (HCH) as a terminal electron acceptor via organohalide respiration was demonstrated for the first time with an enrichment culture grown in a sulfate-free HEPES-buffered anaerobic mineral salts medium. The enrichment culture was initially developed with soil and groundwater from an industrial site contaminated with HCH isomers, chlorinated benzenes, and chlorinated ethenes. When hydrogen served as the electron donor, 79–90% of the electron equivalents from hydrogen were used by the enrichment culture for reductive dechlorination of the γ-HCH, which was provided at a saturation concentration of approximately 10 mg/L. Benzene and chlorobenzene were the only volatile transformation products detected, accounting for 25% and 75% of the γ-HCH consumed (on a molar basis), respectively. The enrichment culture remained active with only hydrogen as the electron donor and γ-HCH as the electron acceptor through several transfers to fresh mineral salts medium for more than one year. Addition of vancomycin to the culture significantly slowed the rate of γ-HCH dechlorination, suggesting that a Gram-positive organism is responsible for the reduction of γ-HCH. Analysis of the γ-HCH dechlorinating enrichment culture did not detect any known chlororespiring genera, including Dehalobacter. In bicarbonate-buffered medium, reductive dechlorination of γ-HCH was accompanied by significant levels of acetogenesis as well as methanogenesis.

  4. Fumonisin B₁ (FB₁) Induces Lamellar Separation and Alters Sphingolipid Metabolism of In Vitro Cultured Hoof Explants.

    Science.gov (United States)

    Reisinger, Nicole; Dohnal, Ilse; Nagl, Veronika; Schaumberger, Simone; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-03-24

    One of the most important hoof diseases is laminitis. Yet, the pathology of laminitis is not fully understood. Different bacterial toxins, e.g. endotoxins or exotoxins, seem to play an important role. Additionally, ingestion of mycotoxins, toxic secondary metabolites of fungi, might contribute to the onset of laminitis. In this respect, fumonsins are of special interest since horses are regarded as species most susceptible to this group of mycotoxins. The aim of our study was to investigate the influence of fumonisin B₁ (FB₁) on primary isolated epidermal and dermal hoof cells, as well as on the lamellar tissue integrity and sphingolipid metabolism of hoof explants in vitro. There was no effect of FB₁ at any concentration on dermal or epidermal cells. However, FB₁ significantly reduced the separation force of explants after 24 h of incubation. The Sa/So ratio was significantly increased in supernatants of explants incubated with FB₁ (2.5-10 µg/mL) after 24 h. Observed effects on Sa/So ratio were linked to significantly increased sphinganine concentrations. Our study showed that FB₁ impairs the sphingolipid metabolism of explants and reduces lamellar integrity at non-cytotoxic concentrations. FB₁ might, therefore, affect hoof health. Further in vitro and in vivo studies are necessary to elucidate the effects of FB₁ on the equine hoof in more detail.

  5. Effects of continuous hypoxia on energy metabolism in cultured cerebro-cortical neurons.

    Science.gov (United States)

    Malthankar-Phatak, Gauri H; Patel, Anant B; Xia, Ying; Hong, Soonsun; Chowdhury, Golam M I; Behar, Kevin L; Orina, Isaac A; Lai, James C K

    2008-09-10

    Mechanisms underlying hypoxia-induced neuronal adaptation have not been fully elucidated. In the present study we investigated glucose metabolism and the activities of glycolytic and TCA cycle enzymes in cerebro-cortical neurons exposed to hypoxia (3 days in 1% of O2) or normoxia (room air). Hypoxia led to increased activities of LDH (194%), PK (90%), and HK (24%) and decreased activities of CS (15%) and GDH (34%). Neurons were incubated with [1-(13)C]glucose for 45 and 120 min under normoxic or hypoxic (120 min only) conditions and 13C enrichment determined in the medium and cell extract using 1H-{13C}-NMR. In hypoxia-treated neurons [3-(13)C]lactate release into the medium was 428% greater than in normoxia-treated controls (45-min normoxic incubation) and total flux through lactate was increased by 425%. In contrast glucose oxidation was reduced significantly in hypoxia-treated neurons, even when expressed relative to total cellular protein, which correlated with the reduced activities of the measured mitochondrial enzymes. The results suggest that surviving neurons adapt to prolonged hypoxia by up-regulation of glycolysis and down-regulation of oxidative energy metabolism, similar to certain other cell types. The factors leading to adaptation and survival for some neurons but not others remain to be determined.

  6. The use of cultured hepatocytes to investigate the metabolism of drugs and mechanisms of drug hepatotoxicity.

    Science.gov (United States)

    Gómez-Lechón, M J; Ponsoda, X; Bort, R; Castell, J V

    2001-01-01

    Hepatotoxins can be classified as intrinsic when they exert their effects on all individuals in a dose-dependent manner, and as idiosyncratic when their effects are the consequence of an abnormal metabolism of the drug by susceptible individuals (metabolic idiosyncrasy) or of an immune-mediated injury to hepatocytes (allergic hepatitis). Some xenobiotics are electrophilic, and others are biotransformed by the liver into highly reactive metabolites that are usually more toxic than the parent compound. This activation process is the key to many hepatotoxic phenomena. Mitochondria are a frequent target of hepatotoxic drugs, and the alteration of their function has immediate effects on the energy balance of cells (depletion of ATP). Lipid peroxidation, oxidative stress, alteration of Ca(2+) homeostasis, and covalent binding to cell macromolecules are the molecular mechanisms that are frequently involved in the toxicity of xenobiotics. Against these potential hazards, cells have their own defence mechanisms (for example, glutathione, DNA repair, suicide inactivation). Ultimately, toxicity is the balance between bioactivation and detoxification, which determines whether a reactive metabolite elicits a toxic effect. The ultimate goal of in vitro experiments is to generate the type of scientific information needed to identify compounds that are potentially toxic to man. For this purpose, both the design of the experiments and the interpretation of the results are critical.

  7. Modeling 3D-CSIA data: Carbon, chlorine, and hydrogen isotope fractionation during reductive dechlorination of TCE to ethene.

    Science.gov (United States)

    Van Breukelen, Boris M; Thouement, Héloïse A A; Stack, Philip E; Vanderford, Mindy; Philp, Paul; Kuder, Tomasz

    2017-09-01

    Reactive transport modeling of multi-element, compound-specific isotope analysis (CSIA) data has great potential to quantify sequential microbial reductive dechlorination (SRD) and alternative pathways such as oxidation, in support of remediation of chlorinated solvents in groundwater. As a key step towards this goal, a model was developed that simulates simultaneous carbon, chlorine, and hydrogen isotope fractionation during SRD of trichloroethene, via cis-1,2-dichloroethene (and trans-DCE as minor pathway), and vinyl chloride to ethene, following Monod kinetics. A simple correction term for individual isotope/isotopologue rates avoided multi-element isotopologue modeling. The model was successfully validated with data from a mixed culture Dehalococcoides microcosm. Simulation of Cl-CSIA required incorporation of secondary kinetic isotope effects (SKIEs). Assuming a limited degree of intramolecular heterogeneity of δ 37 Cl in TCE decreased the magnitudes of SKIEs required at the non-reacting Cl positions, without compromising the goodness of model fit, whereas a good fit of a model involving intramolecular CCl bond competition required an unlikely degree of intramolecular heterogeneity. Simulation of H-CSIA required SKIEs in H atoms originally present in the reacting compounds, especially for TCE, together with imprints of strongly depleted δ 2 H during protonation in the products. Scenario modeling illustrates the potential of H-CSIA for source apportionment. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Cholesterol metabolism: use of D2O for determination of synthesis rate in cell culture

    International Nuclear Information System (INIS)

    Esterman, A.L.; Cohen, B.I.; Javitt, N.B.

    1985-01-01

    Cholesterol synthesis in cell culture in the presence of D 2 O yields a spectrum of enriched molecules having a relative abundance that indicates random substitution of deuterium for hydrogen. Quantitation of the absolute rate of cholesterol synthesis is obtained by isotope ratio mass spectrometry. Mevinolin and 26-hydroxycholesterol both decrease cholesterol synthesis rate but have a discordant effect on HMG-CoA reductase activity

  9. Metabolism of monoterpenes in cell cultures of common sage (Salvia officinalis)

    International Nuclear Information System (INIS)

    Falk, K.L.; Gershenzon, J.; Croteau, R.

    1990-01-01

    Leaves of common sage (Salvia officinalis) accumulate monoterpenes in glandular trichomes at levels exceeding 15 milligrams per gram fresh weight at maturity, whereas sage cells in suspension culture did not accumulate detectable levels of monoterpenes ( 14 C]sucrose was also virtually undetectable in this cell culture system. In vitro assay of each of the enzymes required for the sequential conversion of the ubiquitous isoprenoid precursor geranyl pyrophosphate to (+)-camphor (a major monoterpene product of sage) in soluble extracts of the cells revealed the presence of activity sufficient to produce (+)-camphor at a readily detectable level (>0.3 micrograms per gram fresh weight) at the late log phase of growth. Other monoterpene synthetic enzymes were present as well. In vivo measurement of the ability to catabolize (+)-camphor in these cells indicated that degradative capability exceeded biosynthetic capacity by at least 1,000-fold. Therefore, the lack of monoterpene accumulation in undifferentiated sage cultures could be attributed to a low level of biosynthetic activity (relative to the intact plant) coupled to a pronounced capacity for monoterpene catabolism

  10. Delta-9-tetrahydrocannabinol accumulation, metabolism and cell-type-specific adverse effects in aggregating brain cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Monnet-Tschudi, Florianne [Department of Physiology, University of Lausanne, 7, rue du Bugnon CH-1005 Lausanne (Switzerland); Hazekamp, Arno [Department of Plant Metabolomics, University of Leiden (Netherlands); Perret, Nicolas; Zurich, Marie-Gabrielle [Department of Physiology, University of Lausanne, 7, rue du Bugnon CH-1005 Lausanne (Switzerland); Mangin, Patrice; Giroud, Christian [Laboratory of Forensic Toxicology and Chemistry, Institute of Legal Medicine, University Hospital Center and University of Lausanne (Switzerland); Honegger, Paul [Department of Physiology, University of Lausanne, 7, rue du Bugnon CH-1005 Lausanne (Switzerland)

    2008-04-01

    Despite the widespread use of Cannabis as recreational drug or as medicine, little is known about its toxicity. The accumulation, metabolism and toxicity of THC were analyzed 10 days after a single treatment, and after repeated exposures during 10 days. Mixed-cell aggregate cultures of fetal rat telencephalon were used as in vitro model, as well as aggregates enriched either in neurons or in glial cells. It was found that THC accumulated preferentially in neurons, and that glia-neuron interactions decreased THC accumulation. The quantification of 11-OH-THC and of THC-COOH showed that brain aggregates were capable of THC metabolism. No cell-type difference was found for the metabolite 11-OH-THC, whereas the THC-COOH content was higher in mixed-cell cultures. No cell death was found at THC concentrations of 2 {mu}M in single treatment and of 1 {mu}M and 2 {mu}M in repeated treatments. Neurons, and particularly GABAergic neurons, were most sensitive to THC. Only the GABAergic marker was affected after the single treatment, whereas the GABAergic, cholinergic and astrocytic markers were decreased after the repeated treatments. JWH 015, a CB2 receptor agonist, showed effects similar to THC, whereas ACEA, a CB1 receptor agonist, had no effect. The expression of the cytokine IL-6 was upregulated 48 h after the single treatment with 5 {mu}M of THC or JWH 015, whereas the expression of TNF-{alpha} remained unchanged. These results suggest that the adverse effects of THC were related either to THC accumulation or to cannabinoid receptor activation and associated with IL-6 upregulation.

  11. Delta-9-tetrahydrocannabinol accumulation, metabolism and cell-type-specific adverse effects in aggregating brain cell cultures

    International Nuclear Information System (INIS)

    Monnet-Tschudi, Florianne; Hazekamp, Arno; Perret, Nicolas; Zurich, Marie-Gabrielle; Mangin, Patrice; Giroud, Christian; Honegger, Paul

    2008-01-01

    Despite the widespread use of Cannabis as recreational drug or as medicine, little is known about its toxicity. The accumulation, metabolism and toxicity of THC were analyzed 10 days after a single treatment, and after repeated exposures during 10 days. Mixed-cell aggregate cultures of fetal rat telencephalon were used as in vitro model, as well as aggregates enriched either in neurons or in glial cells. It was found that THC accumulated preferentially in neurons, and that glia-neuron interactions decreased THC accumulation. The quantification of 11-OH-THC and of THC-COOH showed that brain aggregates were capable of THC metabolism. No cell-type difference was found for the metabolite 11-OH-THC, whereas the THC-COOH content was higher in mixed-cell cultures. No cell death was found at THC concentrations of 2 μM in single treatment and of 1 μM and 2 μM in repeated treatments. Neurons, and particularly GABAergic neurons, were most sensitive to THC. Only the GABAergic marker was affected after the single treatment, whereas the GABAergic, cholinergic and astrocytic markers were decreased after the repeated treatments. JWH 015, a CB2 receptor agonist, showed effects similar to THC, whereas ACEA, a CB1 receptor agonist, had no effect. The expression of the cytokine IL-6 was upregulated 48 h after the single treatment with 5 μM of THC or JWH 015, whereas the expression of TNF-α remained unchanged. These results suggest that the adverse effects of THC were related either to THC accumulation or to cannabinoid receptor activation and associated with IL-6 upregulation

  12. Effect of Non-Esterified Fatty Acids on Fatty Acid Metabolism-Related Genes in Calf Hepatocytes Cultured in Vitro

    Directory of Open Access Journals (Sweden)

    Peng Li

    2013-11-01

    Full Text Available Background: NEFA plays numerous roles in the metabolism of glucose, lipids, and proteins. A number of experimental studies have shown that NEFA may have an important role in fatty acid metabolism in the liver, especially in dairy cows that experience negative energy balance (NEB during early lactation. Methods: In this study, using fluorescent quantitative RT-PCR, ELISA, and primary hepatocytes cultured in vitro, we examined the effect of NEFA (0, 0.2, 0.4, 0.8, 1.6, and 3.2 mmol/L on fatty acid metabolism by monitoring the mRNA and protein expression of the following key enzymes: long chain acyl-CoA synthetase (ACSL, carnitine palmitoyltransferase IA (CPT IA, long chain acyl-CoA dehydrogenase (ACADL, and acetyl-CoA carboxylase (ACC. Results: The mRNA and protein expression levels of ACSL and ACADL markedly increased as the concentration of NEFA in the media was increased. The mRNA and protein expression levels of CPT IA were enhanced significantly when the NEFA concentrations increased from 0 to 1.6 mmol/L and decreased significantly when the NEFA concentrations increased from 1.6 to 3.2 mmol/L. The mRNA and protein expression of ACC decreased gradually with increasing concentrations of NEFA. Conclusion: These findings indicate that increased NEFA significantly promote the activation and β-oxidation of fatty acids, but very high NEFA concentrations may inhibit the translocation of fatty acids into mitochondria of hepatocytes. This may explain the development of ketosis or liver lipidosis in dairy cows. CPT IA might be the key control enzyme of the fatty acid oxidation process in hepatocytes.

  13. Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(III) reduction by an iron-reducing bacterium Clostridium beijerinckii Z

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yan [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China); He, Yan, E-mail: yhe2006@zju.edu.cn [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China); Feng, Xiaoli [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China); Liang, Luyi [Experiment Teaching Center for Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Xu, Jianming, E-mail: jmxu@zju.edu.cn [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China); Brookes, Philip C.; Wu, Jianjun [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China)

    2014-03-01

    A novel Fe(III) reducing bacterium, Clostridium beijerinckii Z, was isolated from glucose amended paddy slurries, and shown to dechlorinate pentachlorophenol (PCP). Fifty percent of added PCP was removed by C. beijerinckii Z alone, which increased to 83% in the presence of both C. beijerinckii Z and ferrihydrite after 11 days of incubation. Without C. beijerinckii Z, the surface-bound Fe(II) also abiotically dechlorinated more than 40% of the added PCP. This indicated that the biotic dechlorination by C. beijerinckii Z is a dominant process causing PCP transformation through anaerobic dechlorination, and that the dechlorination rates can be accelerated by simultaneous reduction of Fe(III). A biochemical electron transfer coupling process between sorbed Fe(II) produced by C. beijerinckii Z and reductive dehalogenation is a possible mechanism. This finding increases our knowledge of the role of Fe(III) reducing genera of Clostridium in dechlorinating halogenated organic pollutants, such as PCP, in anaerobic paddy soils. - Highlights: • A novel Fe(III) reducing bacterium Clostridium beijerinckii Z was isolated and could dechlorinate pentachlorophenol. • Anaerobic transformation of PCP by C. beijerinckii Z could be accelerated by simultaneous reduction of Fe(III). • Biochemical electron transfer coupling between Fe redox cycling and reductive dechlorination was the mechanism involved. • The finding increases our knowledge of Clostridium sp. regarding their multiple functions for dechlorinating pollutants.

  14. Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(III) reduction by an iron-reducing bacterium Clostridium beijerinckii Z

    International Nuclear Information System (INIS)

    Xu, Yan; He, Yan; Feng, Xiaoli; Liang, Luyi; Xu, Jianming; Brookes, Philip C.; Wu, Jianjun

    2014-01-01

    A novel Fe(III) reducing bacterium, Clostridium beijerinckii Z, was isolated from glucose amended paddy slurries, and shown to dechlorinate pentachlorophenol (PCP). Fifty percent of added PCP was removed by C. beijerinckii Z alone, which increased to 83% in the presence of both C. beijerinckii Z and ferrihydrite after 11 days of incubation. Without C. beijerinckii Z, the surface-bound Fe(II) also abiotically dechlorinated more than 40% of the added PCP. This indicated that the biotic dechlorination by C. beijerinckii Z is a dominant process causing PCP transformation through anaerobic dechlorination, and that the dechlorination rates can be accelerated by simultaneous reduction of Fe(III). A biochemical electron transfer coupling process between sorbed Fe(II) produced by C. beijerinckii Z and reductive dehalogenation is a possible mechanism. This finding increases our knowledge of the role of Fe(III) reducing genera of Clostridium in dechlorinating halogenated organic pollutants, such as PCP, in anaerobic paddy soils. - Highlights: • A novel Fe(III) reducing bacterium Clostridium beijerinckii Z was isolated and could dechlorinate pentachlorophenol. • Anaerobic transformation of PCP by C. beijerinckii Z could be accelerated by simultaneous reduction of Fe(III). • Biochemical electron transfer coupling between Fe redox cycling and reductive dechlorination was the mechanism involved. • The finding increases our knowledge of Clostridium sp. regarding their multiple functions for dechlorinating pollutants

  15. Development and sensitivity analysis of a fullykinetic model of sequential reductive dechlorination in subsurface

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Chambon, Julie Claire Claudia; Albrechtsen, Hans-Jørgen

    2010-01-01

    and natural degradation of chlorinated solvents frequently occurs in the subsurface through sequential reductive dechlorination. However, the occurrence and the performance of natural sequential reductive dechlorination strongly depends on environmental factor such as redox conditions, presence of fermenting...... organic matter / electron donors, presence of specific biomass, etc. Here we develop a new fully-kinetic biogeochemical reactive model able to simulate chlorinated solvents degradation as well as production and consumption of molecular hydrogen. The model is validated using batch experiment data......Chlorinated hydrocarbons originating from point sources are amongst the most prevalent contaminants of ground water and often represent a serious threat to groundwater-based drinking water resources. Natural attenuation of contaminant plumes can play a major role in contaminated site management...

  16. Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron

    International Nuclear Information System (INIS)

    Cong, Xin; Xue, Nandong; Wang, Shijie; Li, Keji; Li, Fasheng

    2010-01-01

    Several experiments and a model were constructed using conventional granular zero-valent iron (ZVI) particles as the reducing agent to study the reductive dechlorination characteristics of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethane (DDTs) in soils from a former pesticide-manufacturing site. The results showed that ZVI had good ability for the reductive dechlorination for both HCHs and DDTs. The reductive dechlorination of HCHs and DDTs proceeded at different rates. The pseudo first-order constants of HCHs were greater than those of DDTs. The reductive dechlorination rates in a descending order were γ-HCH > δ-HCH > β-HCH > α-HCH > o,p'-DDT > p,p'-DDT > p,p'-DDE. To discuss the major influential factors over the reductive dechlorination rates of HCHs and DDTs by ZVI, 22 quantum chemical descriptors were computed with the density functional theory at B3LYP/6-31G * level, which characterizes different molecular structures and physicochemical properties of HCHs and DDTs. A polyparameter linear free energy relationship (LFER) model was established, which correlates the reductive dechlorination properties of pollutants with their structural descriptors. Using the partial least squares (PLS) analysis, an optimal two-parameter LFER model was established. q + and q Cl - were more important factors in determining the dechlorination rate of OCPs in the chemical reductive reaction. This optimal model was stable and had good predictability. The model study also showed that the coefficient value of q + was 0.511, which positively correlated with the reductive dechlorination rate constant, whereas q Cl - was negatively correlated with it. The reductive dechlorination rate of pollutants appears to be limited mainly by the rate of dissolution in the aqueous phase. This model can be used to explain the degradation potential of organochlorine pesticides (OCPs) and the trend of residues changing during the soil remediation. Therefore, the study is of

  17. Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE.

    Science.gov (United States)

    Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lacombe, Pierre J; Bishop, Michael E; Dong, Hailiang

    2015-01-01

    Field and laboratory tests were performed to evaluate the abiotic reaction of trichloroethene (TCE) in sedimentary rock matrices. Hydraulically conductive fractures, and the rock directly adjacent to the hydraulically conductive fractures, within a historically contaminated TCE bedrock aquifer were used as the basis for this study. These results were compared to previous work using rock that had not been exposed to TCE (Schaefer et al., 2013) to assess the impact of long-term TCE exposure on the abiotic dechlorination reaction, as the longevity of these reactions after long-term exposure to TCE was hitherto unknown. Results showed that potential abiotic TCE degradation products, including ethane, ethene, and acetylene, were present in the conductive fractures. Using minimally disturbed slices of rock core at and near the fracture faces, laboratory testing on the rocks confirmed that abiotic dechlorination reactions between the rock matrix and TCE were occurring. Abiotic daughter products measured in the laboratory under controlled conditions were consistent with those measured in the conductive fractures, except that propane also was observed as a daughter product. TCE degradation measured in the laboratory was well described by a first order rate constant through the 118-d study. Observed bulk first-order TCE degradation rate constants within the rock matrix were 1.3×10(-8) s(-1). These results clearly show that abiotic dechlorination of TCE is occurring within the rock matrix, despite decades of exposure to TCE. Furthermore, these observed rates of TCE dechlorination are expected to have a substantial impact on TCE migration and uptake/release from rock matrices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Induction of secondary metabolism of Aspergillus terreus ATCC 20542 in the batch bioreactor cultures.

    Science.gov (United States)

    Boruta, Tomasz; Bizukojc, Marcin

    2016-04-01

    Cultivation of Aspergillus terreus ATCC 20542 in a stirred tank bioreactor was performed to induce the biosynthesis of secondary metabolites and provide the bioprocess-related insights into the metabolic capabilities of the investigated strain. The activation of biosynthetic routes was attempted by the diversification of process conditions and growth media. Several strategies were tested, including the addition of rapeseed oil or inulin, changing the concentration of nitrogen source, reduction of chlorine supply, cultivation under saline conditions, and using various aeration schemes. Fifteen secondary metabolites were identified in the course of the study by using ultra-high performance liquid chromatography coupled with mass spectrometry, namely mevinolinic acid, 4a,5-dihydromevinolinic acid, 3α-hydroxy-3,5-dihydromonacolin L acid, terrein, aspulvinone E, dihydroisoflavipucine, (+)-geodin, (+)-bisdechlorogeodin, (+)-erdin, asterric acid, butyrolactone I, desmethylsulochrin, questin, sulochrin, and demethylasterric acid. The study also presents the collection of mass spectra that can serve as a resource for future experiments. The growth in a salt-rich environment turned out to be strongly inhibitory for secondary metabolism and the formation of dense and compact pellets was observed. Generally, the addition of inulin, reducing the oxygen supply, and increasing the content of nitrogen source did not enhance the production of examined molecules. The most successful strategy involved the addition of rapeseed oil to the chlorine-deficient medium. Under these conditions, the highest levels of butyrolactone I, asterric acid, and mevinolinic acid were achieved and the presence of desmethylsulochrin and (+)-bisdechlorogeodin was detected in the broth. The constant and relatively high aeration rate in the idiophase was shown to be beneficial for terrein and (+)-geodin biosynthesis.

  19. Culture.

    Science.gov (United States)

    Smith, Timothy B; Rodríguez, Melanie Domenech; Bernal, Guillermo

    2011-02-01

    This article summarizes the definitions, means, and research of adapting psychotherapy to clients' cultural backgrounds. We begin by reviewing the prevailing definitions of cultural adaptation and providing a clinical example. We present an original meta-analysis of 65 experimental and quasi-experimental studies involving 8,620 participants. The omnibus effect size of d = .46 indicates that treatments specifically adapted for clients of color were moderately more effective with that clientele than traditional treatments. The most effective treatments tended to be those with greater numbers of cultural adaptations. Mental health services targeted to a specific cultural group were several times more effective than those provided to clients from a variety of cultural backgrounds. We recommend a series of research-supported therapeutic practices that account for clients' culture, with culture-specific treatments being more effective than generally culture-sensitive treatments. © 2010 Wiley Periodicals, Inc.

  20. Metabolic aspects of growth in HU-treated crown-gall tissue cultures. II. Helianthus annuus

    Directory of Open Access Journals (Sweden)

    Aldona Rennert

    2015-01-01

    Full Text Available The dynamics of growth and changes in nucleic acid and protein contents in sunflower calluses and tumours cultured in hydroxyurea (HU containing media were examined. HU-induced changes in healthy tissues ran in parallel always in the same direction, in tumourous ones however an uncoupling between DNA synthesis and tissue growth on one hand and RNA and protein synthesis on the other took place. A detailed analysis of the results allows to suppose that the specific activity of HU on tumourous tissue could be an index of: 1 quantitative disturbances in its genes function (2 degree of the lass of sensitivity to the factors of regulation.

  1. Phreatophyte influence on reductive dechlorination in a shallow aquifer contaminated with trichloroethene (TCE)

    Science.gov (United States)

    Lee, R.W.; Jones, S.A.; Kuniansky, E.L.; Harvey, G.; Lollar, B.S.; Slater, G.F.

    2000-01-01

    Phytoremediation uses the natural ability of plants to degrade contaminants in groundwater. A field demonstration designed to remediate aerobic shallow groundwater contaminated with trichloroethene began in April 1996 with the planting of cottonwood trees, a short-rotation woody crop, over an approximately 0.2-ha area at the Naval Air Station, Fort Worth, Texas. The project was developed to demonstrate capture of contaminated groundwater and degradation of contaminants by phreatophytes. Analyses from samples of groundwater collected from July 1997 to June 1998 indicate that tree roots have the potential to create anaerobic conditions in the groundwater that will facilitate degradation of trichloroethene by microbially mediated reductive dechlorination. Organic matter from root exudates and decay of tree roots probably stimulate microbial activity, consuming dissolved oxygen. Dissolved oxygen concentrations, which varied across the site, were smallest near a mature cottonwood tree (about 20 years of age and 60 meters southwest of the cottonwood plantings) where degradation products of trichloroethene were measured. Oxidation of organic matter is the primary microbially mediated reaction occurring in the groundwater beneath the planted trees whereas near the mature cottonwood tree, data indicate that methanogenesis is the most probable reaction occurring. Reductive dechlorination in groundwater either is not occurring or is not a primary process away from the mature tree. Carbon-13 isotope values for trichloroethene are nearly identical at locations away from the mature tree, further confirming that dechlorination is not occurring at the site.

  2. Evidence of rock matrix back-diffusion and abiotic dechlorination using a field testing approach

    Science.gov (United States)

    Schaefer, Charles E.; Lippincott, David R.; Klammler, Harald; Hatfield, Kirk

    2018-02-01

    An in situ field demonstration was performed in fractured rock impacted with trichloroethene (TCE) and cis-1,2-dichloroethene (DCE) to assess the impacts of contaminant rebound after removing dissolved contaminants within hydraulically conductive fractures. Using a bedrock well pair spaced 2.4 m apart, TCE and DCE were first flushed with water to create a decrease in dissolved contaminant concentrations. While hydraulically isolating the well pair from upgradient contaminant impacts, contaminant rebound then was observed between the well pair over 151 days. The magnitude, but not trend, of TCE rebound was reasonably described by a matrix back-diffusion screening model that employed an effective diffusion coefficient and first-order abiotic TCE dechlorination rate constant that was based on bench-scale testing. Furthermore, a shift in the TCE:DCE ratio and carbon isotopic enrichment was observed during the rebound, suggesting that both biotic and abiotic dechlorination were occurring within the rock matrix. The isotopic data and back-diffusion model together served as a convincing argument that matrix back-diffusion was the mechanism responsible for the observed contaminant rebound. Results of this field demonstration highlight the importance and applicability of rock matrix parameters determined at the bench-scale, and suggest that carbon isotopic enrichment can be used as a line of evidence for abiotic dechlorination within rock matrices.

  3. Threshold amounts of organic carbon needed to initiate reductive dechlorination in groundwater systems

    Science.gov (United States)

    Chapelle, Francis H.; Thomas, Lashun K.; Bradley, Paul M.; Rectanus, Heather V.; Widdowson, Mark A.

    2012-01-01

    Aquifer sediment and groundwater chemistry data from 15 Department of Defense facilities located throughout the United States were collected and analyzed with the goal of estimating the amount of natural organic carbon needed to initiate reductive dechlorination in groundwater systems. Aquifer sediments were analyzed for hydroxylamine and NaOH-extractable organic carbon, yielding a probable underestimate of potentially bioavailable organic carbon (PBOC). Aquifer sediments were also analyzed for total organic carbon (TOC) using an elemental combustion analyzer, yielding a probable overestimate of bioavailable carbon. Concentrations of PBOC correlated linearly with TOC with a slope near one. However, concentrations of PBOC were consistently five to ten times lower than TOC. When mean concentrations of dissolved oxygen observed at each site were plotted versus PBOC, it showed that anoxic conditions were initiated at approximately 200 mg/kg of PBOC. Similarly, the accumulation of reductive dechlorination daughter products relative to parent compounds increased at a PBOC concentration of approximately 200 mg/kg. Concentrations of total hydrolysable amino acids (THAA) in sediments also increased at approximately 200 mg/kg, and bioassays showed that sediment CO2 production correlated positively with THAA. The results of this study provide an estimate for threshold amounts of bioavailable carbon present in aquifer sediments (approximately 200 mg/kg of PBOC; approximately 1,000 to 2,000 mg/kg of TOC) needed to support reductive dechlorination in groundwater systems.

  4. Solidification of metal chloride waste from pyrochemical process via dechlorination-chlorination reaction system

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.S.; Cho, I.H.; Lee, K.R.; Choi, J.H.; Eun, H.C.; Kim, I.T.; Park, G.I. [Korea Atomic Energy Research Inst., Deajeon (Korea, Republic of)

    2014-07-01

    The metal chloride wastes generated from the pyro-chemical process to recover uranium and TRUs has been considered as a problematic waste due to the high volatility and low compatibility with conventional silicate glass. Our research group has suggested the dechlorination approach for the solidification of this kind of waste by using a synthetic composite, SAP (SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}). During the dechlorination, metal elements are chemically interacted with the inorganic composite, SAP, while chlorine is vaporized as gaseous chlorine. Metal elements in the salt were immobilized into phosphate and silicate glass which are uniformly distributed in tens of nm scale. During the dechlorination, gaseous chlorine is captured by Li{sub 2}O-Li{sub 2}O{sub 2} composite that can be converted into metal chloride (LiCl). About 98wt% of oxide composite was converted into LiCl that can be used as an electrolyte in the electrochemical process. The method suggested in this study can provide a chance to minimize the waste volume for the final disposal of salt wastes from a pyro-chemical process. (author)

  5. Kinetics of 2-chlorobiphenyl Reductive Dechlorination by Pd-fe0 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang Junrong

    2016-01-01

    Full Text Available Kinetics of 2-chlorobiphenyl (2-Cl BP catalytic reductive dechlorination by Pd-Fe0 nanoparticles were investigated. Experimental results showed that ultrafine bimetallic Pd-Fe0e nanoparticles were synthesized in the presence of 40 kHz ultrasound in order to enhance disparity and avoid agglomeration. The application of ultrasonic irradiation during the synthesis of Pd-Fe0 nanoparticles further accelerated the dechlorinated removal ratio of 2-Cl BP. Up to 95.0% of 2-Cl BP was removed after 300 min reaction with the following experimental conditions: initial 2-Cl BP concentration 10 mg L-1, Pd content 0.8 wt. %, bimetallic Pd-Fe0 nanoparticles prepared in the presence of ultrasound available dosage 7g L-1, initial pH value in aqueous solution 3.0, and reaction temperature 25°C. The catalytic reductive dechlorination of 2-Cl BP followed pseudo-first-order kinetics and the apparent pseudo-first-order kinetics constant was 0.0143 min-1.

  6. Microbial community analysis of switchgrass planted and unplanted soil microcosms displaying PCB dechlorination.

    Science.gov (United States)

    Liang, Yi; Meggo, Richard; Hu, Dingfei; Schnoor, Jerald L; Mattes, Timothy E

    2015-08-01

    Polychlorinated biphenyls (PCBs) pose potential risks to human and environmental health because they are carcinogenic, persistent, and bioaccumulative. In this study, we investigated bacterial communities in soil microcosms spiked with PCB 52, 77, and 153. Switchgrass (Panicum virgatum) was employed to improve overall PCB removal, and redox cycling (i.e., sequential periods of flooding followed by periods of no flooding) was performed in an effort to promote PCB dechlorination. Lesser chlorinated PCB transformation products were detected in all microcosms, indicating the occurrence of PCB dechlorination. Terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis showed that PCB spiking, switchgrass planting, and redox cycling affected the microbial community structure. Putative organohalide-respiring Chloroflexi populations, which were not found in unflooded microcosms, were enriched after 2 weeks of flooding in the redox-cycled microcosms. Sequences classified as Geobacter sp. were detected in all microcosms and were most abundant in the switchgrass-planted microcosm spiked with PCB congeners. The presence of possible organohalide-respiring bacteria in these soil microcosms suggests that they play a role in PCB dechlorination therein.

  7. PCE dechlorination by non-Dehalococcoides in a microbial electrochemical system.

    Science.gov (United States)

    Yu, Jaecheul; Park, Younghyun; Nguyen, Van Khanh; Lee, Taeho

    2016-08-01

    The bioremediation of tetrachloroethene (perchloroethene; PCE) contaminated sites generally requires a supply of some fermentable organic substrates as an electron donor. On the other hand, organic substrates can induce the massive growth of microorganisms around the injection wells, which can foul the contaminated subsurface environment. In this study, PCE dechlorination to ethene was performed in a microbial electrochemical system (MES) using the electrode (a cathode polarized at -500 mV vs. standard hydrogen electrode) as the electron donor. Denaturing gel gradient electrophoresis and pyrosequencing revealed a variety of non-Dehalococcoides bacteria dominant in MES, such as Acinetobacter sp. (25.7 % for AS1 in suspension of M3), Rhodopseudomonas sp. (10.5 % for AE1 and 10.1 % for AE2 in anodic biofilm of M3), Pseudomonas aeruginosa (22.4 % for BS1 in suspension of M4), and Enterobacter sp. (21.7 % for BE1 in anodic biofilm of M4) which are capable of electron transfer, hydrogen production and dechlorination. The Dehalococcoides group, however, was not detected in this system. Therefore, these results suggest that a range of bacterial species outside the Dehalococcoides can play an important role in the microbial electrochemical dechlorination process, which may lead to innovative bioremediation technology.

  8. Dechlorination of Environmental Contaminants Using a Hybrid Nanocatalyst: Palladium Nanoparticles Supported on Hierarchical Carbon Nanostructures

    Directory of Open Access Journals (Sweden)

    Hema Vijwani

    2012-01-01

    Full Text Available This paper demonstrates the effectiveness of a new type of hybrid nanocatalyst material that combines the high surface area of nanoparticles and nanotubes with the structural robustness and ease of handling larger supports. The hybrid material is made by fabricating palladium nanoparticles on two types of carbon supports: as-received microcellular foam (Foam and foam with carbon nanotubes anchored on the pore walls (CNT/Foam. Catalytic reductive dechlorination of carbon tetrachloride with these materials has been investigated using gas chromatography. It is seen that while both palladium-functionalized carbon supports are highly effective in the degradation of carbon tetrachloride, the rate of degradation is significantly increased with palladium on CNT/Foam. However, there is scope to increase this rate further if the wettability of these structures can be enhanced in the future. Microstructural and spectroscopic analyses of the fresh and used catalysts have been compared which indicates that there is no change in density or surface chemical states of the catalyst after prolonged use in dechlorination test. This implies that these materials can be used repeatedly and hence provide a simple, powerful, and cost-effective approach for dechlorination of water.

  9. Metabolism of 14C-aspartate during shoot bud formation in cultured cotyledon explants of radiata pine

    International Nuclear Information System (INIS)

    Konschuh, M.N.; Thorpe, T.A.

    1997-01-01

    Aspartate metabolism was investigated in excised cotyledons of radiata pine (Pinus radiate D. Don). These cotyledons were cultured under shoot-forming (plus N 6 -benzyladenine, SF), non-shoot-forming (minus N 6 -benzyladenine, NSF) and unresponsive (plus N 6 -benzyladenine, OLD) conditions, then incubated with [ 14 C]-aspartate for 3-h pulse treatments followed by 3-h chase treatments with cold aspartate. The majority of label was recovered in the CO 2 , amino acid, organic acid and pellet fractions. Uptake was greatest in all tissue types early in culture. Most (over 80%) of the [ 14 C 9-aspartate taken up by the tissues was converted to CO 2 at day 0 in SF and NSF tissues. CO 2 accounted for less than 50% of the total radioactivity in other tissues. Greater incorporation into fractions was observed in SF tissues during promeristemoid formation, while in NSF tissues the greatest incorporation was observed during a period of rapid elongation. Generally, less incorporation was observed in OLD cotyledons than in SF and NSF cotyledons. Analysis of the amino acid fraction showed that labelled aspartate was converted to other amino acids, mainly glutamate, glutamine, asparagine and 4-aminobutyric acid. (au)

  10. Aerobic exercise modulation of mental stress-induced responses in cultured endothelial progenitor cells from healthy and metabolic syndrome subjects.

    Science.gov (United States)

    Rocha, Natalia G; Sales, Allan R K; Miranda, Renan L; Silva, Mayra S; Silva, Jemima F R; Silva, Bruno M; Santos, Aline A; Nóbrega, Antonio C L

    2015-02-15

    Numerous studies have demonstrated that exercise acutely prevents the reduction in flow-mediated dilation induced by mental stress in subjects with metabolic syndrome (MetS). However, it is unknown whether a similar effect occurs in endothelial progenitors cells (EPCs). This study investigated whether exercise protects from the deleterious effect of mental stress on cultured EPCs in healthy subjects and those with MetS. Ten healthy subjects (aged 31±2) and ten subjects with MetS (aged 36±2) were enrolled. Subjects underwent a mental stress test, followed immediately by either 40 min of leg cycling or rest across two randomized sessions: mental stress+non-exercise control (MS) and mental stress+exercise (MS+EXE). The Stroop Color-Word Test was used to elicit mental stress. Blood samples were drawn at baseline and following sessions to isolate mononuclear cells. These cells were cultured in fibronectin-coated plates for seven days, and EPCs were identified by immunofluorescence (acLDL(+)/ UEA-I Lectin(+)). All subjects presented similar increases in mean blood pressure and heart rate during the mental stress test (P0.05). The EPC response to MS and MS+EXE was increased in healthy subjects, whereas it was decreased in subjects with MetS (Pexercise session increased EPCs in healthy subjects but did not prevent the EPC reduction induced by mental stress among subjects with MetS. © 2015.

  11. METABOLIC AND BIOCHEMICAL CHARACTERISTICS OF PROBIOTIC CULTURE IN MILK SUPPLEMENTED WITH RYE FLAKES AND MALT EXTRACT

    Directory of Open Access Journals (Sweden)

    Elena Bărăscu

    2010-01-01

    Full Text Available Rye flakes and malt extract were added to milk in order to stimulate growth and fermentative activity of probioticbacteria and to obtain a probiotic product with pleasant sensory attributes. Probiotic culture used in this study containsbifidobacteria, Lb. acidophilus, Lactobacilus lactis and Streptococcus thermophilus.Rye flakes have a stimulating effect more pronounced than malt extract on acidification capacity of the probioticculture, and to achieve an increase of the milk acidity of 7g lactic acid /dm3 (in 6h at 39oC the two ingredients must beadded in concentration of 2% and, respectively, 0.2%..The probiotic culture reach the greatest proteolytic activity when rye flakes are added in the proportion of 3% andmalt extract in the proportion of 0.1% and the amino acids released rate was 764.6 μg%. The lactose bioconversionrate was greater in the milk supplemented with rye flakes 3% and malt extract 0.1% and residual lactose was 3.84%.

  12. Inhibition of prostaglandin synthesis after metabolism of menadione by cultured porcine endothelial cells

    International Nuclear Information System (INIS)

    Barchowsky, A.; Tabrizi, K.; Kent, R.S.; Whorton, A.R.

    1989-01-01

    We have examined the effects of menadione on porcine aortic endothelial cell prostaglandin synthesis. Addition of 1-20 microM menadione caused a dose- and time-dependent inhibition of stimulated prostaglandin synthesis with an IC50 of 5 microM at 15 min. Concentrations greater than 100 microM menadione were necessary to increase 51 Cr release from prelabeled cells. Recovery of enzyme inactivated by menadione required a 6-h incubation in 1% serum. In a microsomal preparation, menadione was shown to have no direct effect on conversion of arachidonic acid to prostaglandins. In intact cells menadione caused only a 40% inhibition of the conversion of PGH2 to prostacyclin. Enzymes involved in the incorporation and the release of arachidonic acid were not affected by menadione (20 microM, 15 min). Menadione undergoes oxidation/reduction reactions in intact cells leading to partial reduction of oxygen-forming, reactive oxygen species. In our cells menadione was found to increase KCN-resistant oxygen consumption. Further, an increased accumulation of H 2 O 2 was observed with a time course consistent with menadione-induced inhibition of prostaglandin synthesis. We conclude that menadione at sublethal doses caused inhibition of prostaglandin synthesis. The mechanism involves inactivation of PGH2 synthase by a reactive species resulting from metabolism of menadione by endothelial cells

  13. Metabolic and transcriptional changes in cultured muscle stem cells from low birth weight subjects

    DEFF Research Database (Denmark)

    Hansen, Ninna S; Hjort, Line; Broholm, Christa

    2016-01-01

    and cultured into fully differentiated myotubes. MAIN OUTCOME MEASURES: We studied glucose uptake, glucose transporters, insulin signaling, key transcriptional markers of myotube maturity, selected site specific DNA methylation, and mitochondrial gene expression. RESULTS: We found reduced glucose uptake...... as well as decreased levels of glucose transporter-1 and -4 mRNA and of the Akt substrate of 160 kDa mRNA and protein in myotubes from LBW individuals compared with NBW individuals. The myogenic differentiation markers, myogenin and myosin heavy chain 1 and 2, were decreased during late differentiation...... in LBW myotubes. Additionally, the mRNA level of the peroxisome proliferator-activated receptor-γ coactivator-1α and cytochrome c oxidase polypeptide 7A, were reduced in LBW myotubes. Decreased gene expression was not explained by changes in DNA methylation levels. CONCLUSION: We demonstrate...

  14. Effects of caffeine on purine metabolism and ultraviolet light-induced lethality in cultured mammalian cells

    International Nuclear Information System (INIS)

    Waldren, C.A.; Patterson, D.

    1979-01-01

    Caffeine, at doses which enhance the killing action of ultraviolet light, inhibits both de novo synthesis and the utilization of exogenous purines in cultured CHO-K1, a Chinese hamster ovary cell line. The effect is dose dependent, with a caffeine concentration of 7.5 mM producing a 90% reduction in 15 min. Interference with utilization of exogenous purines was seen as a substantial decrease in the conversion of [14C]hypoxanthine, [14C]adenine, or [14C]guanine into their respective di- and triphosphates in the presence of caffeine. Thus, one of the ways by which antimetabolites and caffeine act to enhance ultraviolet light killing may be by interference with the supply of purine nucleotides needed for repair

  15. Ultraviolet radiation induces changes in membrane metabolism of human keratinocytes in culture

    International Nuclear Information System (INIS)

    De Leo, V.A.; Horlick, H.; Hanson, D.; Eisinger, M.; Harber, L.C.

    1984-01-01

    Human keratinocytes in culture were prelabeled with [ 3 H]arachidonic acid (AA) and then exposed to ultraviolet B radiation. Irradiated cells released labeled AA metabolites into media in a dose-dependent manner when compared to sham-irradiated cells. The response began immediately and continued for 24 h. Extracts from media were examined by high-performance liquid chromatography for identification of specific AA metabolites. Irradiated cells were stimulated to produce prostaglandin-like material (PGE2 and PGF2 alpha). These findings support the concept that the cell membrane of keratinocytes participates directly or indirectly in initiating the sunburn response. It is also felt that the metabolites formed following injury to the membrane are an integral component in the mediation of that response

  16. Effects on DHEA levels by estrogen in rat astrocytes and CNS co-cultures via the regulation of CYP7B1-mediated metabolism

    DEFF Research Database (Denmark)

    Fex Svenningsen, Åsa; Wicher, Grzegorz; Lundqvist, Johan

    2011-01-01

    The neurosteroid dehydroepiandrosterone (DHEA) is formed locally in the CNS and has been implicated in several processes essential for CNS function, including control of neuronal survival. An important metabolic pathway for DHEA in the CNS involves the steroid hydroxylase CYP7B1. In previous...... studies, CYP7B1 was identified as a target for estrogen regulation in cells of kidney and liver. In the current study, we examined effects of estrogens on CYP7B1-mediated metabolism of DHEA in primary cultures of rat astrocytes and co-cultures of rat CNS cells. Astrocytes, which interact with neurons...... whereby estrogen can exert protective effects in the CNS may involve increase of the levels of DHEA by suppression of its metabolism....

  17. Stable Overexpression of the Constitutive Androstane Receptor Reduces the Requirement for Culture with Dimethyl Sulfoxide for High Drug Metabolism in HepaRG Cells.

    Science.gov (United States)

    van der Mark, Vincent A; Rudi de Waart, D; Shevchenko, Valery; Elferink, Ronald P J Oude; Chamuleau, Robert A F M; Hoekstra, Ruurdtje

    2017-01-01

    Dimethylsulfoxide (DMSO) induces cellular differentiation and expression of drug metabolic enzymes in the human liver cell line HepaRG; however, DMSO also induces cell death and interferes with cellular activities. The aim of this study was to examine whether overexpression of the constitutive androstane receptor (CAR, NR1I3), the nuclear receptor controlling various drug metabolism genes, would sufficiently promote differentiation and drug metabolism in HepaRG cells, optionally without using DMSO. By stable lentiviral overexpression of CAR, HepaRG cultures were less affected by DMSO in total protein content and obtained increased resistance to acetaminophen- and amiodarone-induced cell death. Transcript levels of CAR target genes were significantly increased in HepaRG-CAR cultures without DMSO, resulting in increased activities of cytochrome P450 (P450) enzymes and bilirubin conjugation to levels equal or surpassing those of HepaRG cells cultured with DMSO. Unexpectedly, CAR overexpression also increased the activities of non-CAR target P450s, as well as albumin production. In combination with DMSO treatment, CAR overexpression further increased transcript levels and activities of CAR targets. Induction of CYP1A2 and CYP2B6 remained unchanged, whereas CYP3A4 was reduced. Moreover, the metabolism of low-clearance compounds warfarin and prednisolone was increased. In conclusion, CAR overexpression creates a more physiologically relevant environment for studies on hepatic (drug) metabolism and differentiation in HepaRG cells without the utilization of DMSO. DMSO still may be applied to accomplish higher drug metabolism, required for sensitive assays, such as low-clearance studies and identification of (rare) metabolites, whereas reduced total protein content after DMSO culture is diminished by CAR overexpression. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Effects of oxygen limitation on sugar metabolism in yeasts: a continuous-culture study of the Kluyver effect.

    Science.gov (United States)

    Weusthuis, R A; Visser, W; Pronk, J T; Scheffers, W A; van Dijken, J P

    1994-04-01

    Growth and metabolite formation were studied in oxygen-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 growing on glucose or maltose at a dilution rate of 0.1 h-1. With either glucose or maltose S. cerevisiae could be grown under dual limitation of oxygen and sugar. Respiration and alcoholic fermentation occurred simultaneously and the catabolite fluxes through these processes were dependent on the magnitude of the oxygen feed. C. utilis could also be grown under dual limitation of glucose and oxygen. However, at very low oxygen feed rates (i.e. below 4 mmol l-1 h-1) growth was limited by oxygen only, as indicated by the high residual glucose concentration in the culture. In contrast to S. cerevisiae, C. utilis could not be grown anaerobically at a dilution rate of 0.1 h-1. With C. utilis absence of oxygen resulted in wash-out, despite the presence of ergosterol and Tween-80 in the growth medium. The behaviour of C. utilis with respect to maltose utilization in oxygen-limited cultures was remarkable: alcoholic fermentation did not occur and the amount of maltose metabolized was dependent on the oxygen supply. Oxygen-limited cultures of C. utilis growing on maltose always contained high residual sugar concentrations. These observations throw new light on the so-called Kluyver effect. Apparently, maltose is a non-fermentable sugar for C. utilis CBS 621, despite the fact that it can serve as a substrate for growth of this facultatively fermentative yeast. This is not due to the absence of key enzymes of alcoholic fermentation. Pyruvate decarboxylase and alcohol dehydrogenase were present at high levels in maltose-utilizing cells of C. utilis grown under oxygen limitation. It is concluded that the Kluyver effect, in C. utilis growing on maltose, results from a regulatory mechanism that prevents the sugar from being fermented. Oxygen is not a key factor in this phenomenon since under oxygen limitation alcoholic fermentation of

  19. Induction of neuronal axon outgrowth by Shati/Nat8l by energy metabolism in mice cultured neurons.

    Science.gov (United States)

    Sumi, Kazuyuki; Uno, Kyosuke; Matsumura, Shohei; Miyamoto, Yoshiaki; Furukawa-Hibi, Yoko; Muramatsu, Shin-Ichi; Nabeshima, Toshitaka; Nitta, Atsumi

    2015-09-09

    A novel N-acetyltransferase, Shati/Nat8l, was identified in the nucleus accumbens of mice repeatedly treated with methamphetamine (METH). Shati/Nat8l has been reported to inhibit the pharmacological action induced by METH. Shati/Nat8l produces N-acetylaspartate from aspartate and acetyl-CoA. Previously, we reported that overexpression of Shati/Nat8l in nucleus accumbens attenuates the response to METH by N-acetylaspartylglutamate (which is derived from N-acetylaspartate)-mGluR3 signaling in the mice brain. In the present study, to clarify the type of cells that produce Shati/Nat8l, we carried out in-situ hybridization for the detection of Shati/Nat8l mRNA along with immunohistochemical studies using serial sections of mice brain. Shati/Nat8l mRNA was detected in neuronal cells, but not in astrocytes or microglia cells. Next, we investigated the function of Shati/Nat8l in the neuronal cells in mice brain; then, we used an adeno-associated virus vector containing Shati/Nat8l for transfection and overexpression of Shati/Nat8l protein into the primary cultured neurons to investigate the contribution toward the neuronal activity of Shati/Nat8l. Overexpression of Shati/Nat8l in the mice primary cultured neurons induced axonal growth, but not dendrite elongation at day 1.5 (DIV). This finding indicated that Shati/Nat8l contributes toward neuronal development. LY341495, a selective group II mGluRs antagonist, did not abolish this axonal growth, and N-acetylaspartylglutamate itself did not abolish axon outgrowth in the same cultured system. The cultured neurons overexpressing Shati/Nat8l contained high ATP, suggesting that axon outgrowth is dependent on energy metabolism. This study shows that Shati/Nat8l in the neuron may induce axon outgrowth by ATP synthesis and not through mGluR3 signaling.

  20. Effect of yeast culture on milk production and metabolic and reproductive performance of early lactation dairy cows

    Directory of Open Access Journals (Sweden)

    Kalmus Piret

    2009-08-01

    Full Text Available Abstract Background The main objective of this study was to estimate the effect of supplementation with Saccaromyces cerevisiae (SC (Yea-Sacc® 1026 on milk production, metabolic parameters and the resumption of ovarian activity in early lactation dairy cows. Methods The experiment was conducted during 2005/2006 in a commercial tied-house farm with an average of 200 milking Estonian Holstein Friesian cows. The late pregnant multiparous cows (n = 46 were randomly divided into two groups; one group received 10 g yeast culture from two weeks before to 14 weeks after calving. The groups were fed a total mixed ration with silages and concentrates. Milk recording data and blood samples for plasma metabolites were taken. Resumption of luteal activity was determined using milk progesterone (P4 measurements. Uterine bacteriology and ovarian ultrasonography (US were performed and body condition scores (BCS and clinical disease occurrences were recorded. For analysis, the statistical software Stata 9.2 and R were used to compute Cox proportional hazard and linear mixed models. Results The average milk production per cow did not differ between the groups (32.7 ± 6.4 vs 30.7 ± 5.3 kg/day in the SC and control groups respectively, but the production of milk fat (P P 4 results, all cows in both groups ovulated during the experimental period. The resumption of ovarian activity (first ovulations and time required for elimination of bacteria from the uterus did not differ between the groups. Conclusion Supplementation with SC had an effect on milk protein and fat production, but did not influence the milk yield. No effects on PP metabolic status, bacterial elimination from the uterus nor the resumption of ovarian activity were found.

  1. Performance and Mechanism of Piezo-Catalytic Degradation of 4-Chlorophenol: Finding of Effective Piezo-Dechlorination.

    Science.gov (United States)

    Lan, Shenyu; Feng, Jinxi; Xiong, Ya; Tian, Shuanghong; Liu, Shengwei; Kong, Lingjun

    2017-06-06

    Piezo-catalysis was first used to degrade a nondye pollutant, 4-chlorophenol (4-CP). In this process, hydrothermally synthesized tetragonal BaTiO 3 nano/micrometer-sized particles were used as the piezo-catalyst, and the ultrasonic irradiation with low frequency was selected as the vibration energy to cause the deformation of tetragonal BaTiO 3 . It was found that the piezoelectric potential from the deformation could not only successfully degrade 4-chlorophenol but also effectively dechlorinate it at the same time, and five kinds of dechlorinated intermediates, hydroquinone, benzoquinone, phenol, cyclohexanone, and cyclohexanol, were determined. This is the first sample of piezo-dechlorination. Although various active species, including h + , e - , •H, •OH, •O 2 - , 1 O 2 , and H 2 O 2 , were generated in the piezoelectric process, it was confirmed by ESR, scavenger studies, and LC-MS that the degradation and dechlorination were mainly attributed to •OH radicals. These •OH radicals were chiefly derived from the electron reduction of O 2 , partly from the hole oxidation of H 2 O. These results indicated that the piezo-catalysis was an emerging and effective advanced oxidation technology for degradation and dechlorination of organic pollutants.

  2. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, F.E.; Sun, Q.; Li, J.; Tiedje, J.M.

    2000-03-01

    Members of the genera Desulfuromonas and Dehalococcoides reductively dechlorinate tetrachloroethene (PCE) and trichloroethene. Two primer pairs specific to hypervariable regions of the 16S rRNA genes of the Dehalococcoides group (comprising Dehalococcoides ethenogenes and Dehalococcoides sp. strain FL2) and the acetate-oxidizing, PCE-dechlorinating Desulfuromonas group (comprising Desulfuromonas sp. strain BB1 and Desulfuromonas chloroethenica) were designed. The detection threshold of a nested PCR approach using universal bacterial primers followed by a second PCR with the Desulfuromonas dechlorinator-targeted primer pair was 1 x 10{sup 3} BB1 cells added per gram (wet weight) of sandy aquifer material. Total community DNA isolated from sediments of three Michigan rivers and six different chloroethene-contaminated aquifer samples was used as template in nested PCR. All river sediment samples yielded positive signals with the BB1- and the Dehalococcoides-targeted primers. One chloroethene-contaminated aquifer tested positive with the Dehalococcoides-targeted primers, and another contaminated aquifer tested positive with the Desulfuromonas dechlorinator-targeted primer pair. Restriction fragment analysis of the amplicons could discriminate strain BB1 from other known Desulfuromonas species. Microcosm studies confirmed the presence of PCE-dechlorinating, acetate-oxidizing Desulfuromonas and hydrogenotrophic Dehalococcoides species in samples yielding positive PCR signals with the specific primers.

  3. Metabolism of oxybenzone in a hairy root culture: Perspectives for phytoremediation of a widely used sunscreen agent.

    Science.gov (United States)

    Chen, Feiran; Huber, Christian; May, Robert; Schröder, Peter

    2016-04-05

    Oxybenzone (OBZ), known as Benzophenone-3, is a commonly used UV filter in sun tans and skin protectants, entering aquatic systems either directly during recreational activities or indirectly through wastewater treatment plants discharge. To study the potential degradation capacity of plants for OBZ in phytotreatment, a well-established hairy root culture (Armoracia rusticana) was treated with OBZ. More than 20% of spiked OBZ (100μM) was eliminated from the medium by hairy roots after 3h of exposure. Two metabolites were identified as oxybenzone-glucoside (OBZ-Glu) and oxybenzone-(6-O-malonyl)-glucoside (OBZ-Mal-Glu) by LC-MS/MS and TOF-MS. Formation of these metabolites was confirmed by enzymatic synthesis, as well as enzymatic and alkaline hydrolysis. Incubation with O-glucosyltransferase (O-GT) extracted from roots formed OBZ-Glu; whereas β-d-Glucosidase hydrolyzed OBZ-Glu. However, alkaline hydrolysis led to cleavage of OBZ-Mal-Glu and yielded OBZ-Glu. In the hairy root culture, an excretion of OBZ-Glu into the growth medium was observed while the corresponding OBZ-Mal-Glu remained stored in root cells over the incubation time. We propose that metabolism of oxybenzone in plants involves initial conjugation with glucose to form OBZ-Glu followed by malonylation to yield OBZ-Mal-Glu. To our best knowledge this first finding presenting the potential of plants to degrade benzophenone type UV filters by phytoremediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Metabolic labeling of sialic acids in tissue culture cell lines: methods to identify substituted and modified radioactive neuraminic acids

    International Nuclear Information System (INIS)

    Diaz, S.; Varki, A.

    1985-01-01

    The parent sialic acid N-acetylneuraminic acid can be modified or substituted in various ways, giving rise to a family of more than 25 compounds. The definitive identification of these compounds has previously required isolation of nanomole amounts for mass spectrometry or NMR. We have explored the possibility of using the known metabolic precursors of the sialic acids, particularly N-acetyl-[6-3H]mannosamine, to label and identify various forms of sialic acids in tissue culture cells. Firstly, we defined several variables that affect the labeling of sialic acids with N-acetyl-[6-3H]mannosamine. Secondly, we have devised a simple screening method to identify cell lines that synthesize substituted or modified sialic acids. We next demonstrate that it is possible to definitively identify the natures of the various labeled sialic acids without the use of mass spectrometry, even though they are present only in tracer amounts. The methods used include paper chromatography, analytical de-O-acetylation, periodate release of the 9-3H as [3H]formaldehyde (which is subsequently converted to a specific 3H-labeled chromophore), acylneuraminate pyruvate lyase treatment with identification of [3H]acylmannosamines, gas-liquid chromatography with radioactive detection, and two new high-pressure liquid chromatography methods utilizing the amine-adsorption:ion suppression and ion-pair principles. The use of an internal N-acetyl-[4-14C]neuraminic acid standard in each of these methods assures precision and accuracy. The combined use of these methods now allows the identification of radioactive tracer amounts of the various types of sialic acids in well-defined populations of tissue culture cells; it may also allow the identification of hitherto unknown forms of sialic acids

  5. The expression of xenobiotic-metabolizing enzymes in human prostate and in prostate epithelial cells (PECs) derived from primary cultures.

    Science.gov (United States)

    Al-Buheissi, S Z; Cole, K J; Hewer, A; Kumar, V; Bryan, R L; Hudson, D L; Patel, H R; Nathan, S; Miller, R A; Phillips, D H

    2006-06-01

    Dietary heterocyclic amines (HCAs) are carcinogenic in rodent prostate requiring activation by enzymes such as cytochrome P450 (CYP) and N-acetyltransferase (NAT). We investigated by Western blotting and immunohistochemistry the expression of CYP1A1, CYP1A2, and NAT1 in human prostate and in prostate epithelial cells (PECs) derived from primary cultures and tested their ability to activate the dietary carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and its N-hydroxy metabolite (N-OH-IQ) to DNA-damaging moieties. Western blotting identified CYP1A1, CYP1A2, and NAT1. Immunohistochemistry localized NAT1 to the cytoplasm of PECs. Inter-individual variation was observed in the expression levels of CYP1A1, 1A2, and NAT1 (11, 75, and 35-fold, respectively). PECs expressed CYP1A1 and NAT1 but not CYP1A2. When incubated with IQ or N-OH-IQ, PECs formed DNA adducts indicating their ability to metabolically activate these compounds. Prostate cells possess the capacity to activate dietary carcinogens. PECs may provide a useful model system to study their role in prostate carcinogenesis.

  6. Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae: proteomic and metabolic responses at early stage

    Directory of Open Access Journals (Sweden)

    Payet Bertrand

    2010-05-01

    subculture of embryogenic/organogenic calli onto shoot differentiation medium triggers the stimulation of cell metabolism principally at three levels namely (i initiation of photosynthesis, glycolysis and phenolic compounds synthesis; (ii amino acid - protein synthesis, and protein stabilization; (iii sugar degradation. These biochemical mechanisms associated with the initiation of shoot formation during protocorm - like body (PLB organogenesis could be coordinated by the removal of TDZ in callus maintenance medium. These results might contribute to elucidate the complex mechanism that leads to vanilla callus differentiation and subsequent shoot formation into PLB organogenesis. Moreover, our results highlight an early intermediate metabolic event in vanillin biosynthetic pathway with respect to secondary metabolism. Indeed, for the first time in vanilla tissue culture, phenolic compounds such as glucoside A and glucoside B were identified. The degradation of these compounds in specialized tissue (i.e. young green beans probably contributes to the biosynthesis of glucovanillin, the parent compound of vanillin.

  7. Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture.

    Science.gov (United States)

    Thomas, Louise; Hodgson, David A; Wentzel, Alexander; Nieselt, Kay; Ellingsen, Trond E; Moore, Jonathan; Morrissey, Edward R; Legaie, Roxane; Wohlleben, Wolfgang; Rodríguez-García, Antonio; Martín, Juan F; Burroughs, Nigel J; Wellington, Elizabeth M H; Smith, Margaret C M

    2012-02-01

    Bacteria in the genus Streptomyces are soil-dwelling oligotrophs and important producers of secondary metabolites. Previously, we showed that global messenger RNA expression was subject to a series of metabolic and regulatory switches during the lifetime of a fermentor batch culture of Streptomyces coelicolor M145. Here we analyze the proteome from eight time points from the same fermentor culture and, because phosphate availability is an important regulator of secondary metabolite production, compare this to the proteome of a similar time course from an S. coelicolor mutant, INB201 (ΔphoP), defective in the control of phosphate utilization. The proteomes provide a detailed view of enzymes involved in central carbon and nitrogen metabolism. Trends in protein expression over the time courses were deduced from a protein abundance index, which also revealed the importance of stress pathway proteins in both cultures. As expected, the ΔphoP mutant was deficient in expression of PhoP-dependent genes, and several putatively compensatory metabolic and regulatory pathways for phosphate scavenging were detected. Notably there is a succession of switches that coordinately induce the production of enzymes for five different secondary metabolite biosynthesis pathways over the course of the batch cultures.

  8. Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures

    OpenAIRE

    Zulak, Katherine G; Weljie, Aalim M; Vogel, Hans J; Facchini, Peter J

    2008-01-01

    Abstract Background Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a model system to study plant alkaloid metabolism. The plant is cultivated as the only commercial source of the narcotic analgesics morphine and codeine, but also produces many other alkaloids including the antimicrobial agent sanguinarine. Modulations in plant secondary metabolism as a result of environmental perturbations are often associated with the al...

  9. Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Dongmei Zhou; Yujun Wang; Xiangdong Zhu; Shengyang Jin

    2011-01-01

    Transformation of polychlorinated biphenyls (PCBs) by zero-valent iron represents one of the latest innovative technologies for environmental remediation.The dechlorination of 4-chlorobiphenyl (4-C1BP) by nanoscale zero-valent iron (NZVI) in the presence of humic acid or metal ions was investigated.The results showed that the de chlorination of 4-CIBP by NZVI increased with decreased solution pH.When the initial pH value was 4.0,5.5,6.8,and 9.0,the de chlorination efliciencies of 4-C1BP after 48 hr were 53.8%,47.8%,35.7%,and 35.6%,respectively.The presence of humic acid inhibited the reduction of 4-ClBP in the first 4 hr,and then significantly accelerated the dechlorination by reaching 86.3% in 48 hr.Divalent metal ions,Co2+,Cu2+,and Ni2+,were reduced and formed bimetals with NZVI,thereby enhanced the dechlorination of 4-CIBP.The dechlorination percentages of 4-CIBP in the presence of 0.1 mmol/L Co2+,Cu2+ and Ni2+ were 66.1%,66.0% and 64.6% in 48 hr,and then increased to 67.9%,71.3% and 73.5%,after 96 hr respectively.The dechlorination kinetics of 4-CIBP by the NZVI in all cases followed pseudo-first order model.The results provide a basis for better understanding of the dechlorination mechanisms of PCBs in real environment.

  10. Accelerated anaerobic dechlorination of DDT in slurry with Hydragric Acrisols using citric acid and anthraquinone-2,6-disulfonate (AQDS).

    Science.gov (United States)

    Liu, Cuiying; Xu, Xianghua; Fan, Jianling

    2015-12-01

    The application of electron donor and electron shuttle substances has a vital influence on electron transfer, thus may affect the reductive dechlorination of 1,1,1-trichoro-2,2-bis(p-chlorophenyl)ethane (DDT) in anaerobic reaction systems. To evaluate the roles of citric acid and anthraquinone-2,6-disulfonate (AQDS) in accelerating the reductive dechlorination of DDT in Hydragric Acrisols that contain abundant iron oxide, a batch anaerobic incubation experiment was conducted in a slurry system with four treatments of (1) control, (2) citric acid, (3) AQDS, and (4) citric acid+AQDS. Results showed that DDT residues decreased by 78.93%-92.11% of the initial quantities after 20days of incubation, and 1,1-dichloro-2,2-bis(4-chlorophenyl)-ethane (DDD) was the dominant metabolite. The application of citric acid accelerated DDT dechlorination slightly in the first 8days, while the methanogenesis rate increased quickly, and then the acceleration effect improved after the 8th day while the methanogenesis rate decreased. The amendment by AQDS decreased the Eh value of the reaction system and accelerated microbial reduction of Fe(III) oxides to generate Fe(II), which was an efficient electron donor, thus enhancing the reductive dechlorination rate of DDT. The addition of citric acid+AQDS was most efficient in stimulating DDT dechlorination, but no significant interaction between citric acid and AQDS on DDT dechlorination was observed. The results will be of great significance for developing an efficient in situ remediation strategy for DDT-contaminated sites. Copyright © 2015. Published by Elsevier B.V.

  11. Metabolism of androstenone, 17β-estradiol and dihydrotestosterone in primary cultured pig hepatocytes and the role of 3β-hydroxysteroid dehydrogenase in this process.

    Directory of Open Access Journals (Sweden)

    Gang Chen

    Full Text Available Steroids metabolism plays an important role in mammals and contributes to quality of pig meat. The main objective of this study was to identify metabolites of androstenone, 17β-estradiol and dihydrotestosterone using primary cultured pig hepatocytes as a model system. The role of 3β-hydroxysteroid dehydrogenase (3βHSD in regulation of steroid metabolism was also validated using trilostane, a specific 3βHSD inhibitor. Steroid glucuronide conjugated metabolites were detected by liquid chromatography time of flight mass spectrometry (LC-TOF-MS. 3βHSD enzyme was essential for metabolism of androstenone to 5α-androst-16-en-3β-ol, which then formed androstenone glucuronide conjugate. Metabolism of 17β-estradiol was accompanied by formation of glucuronide-conjugated estrone and glucuronide-conjugated estradiol. The ratio of the two metabolites was around 5:1. 3βHSD enzyme was not involved in 17β-estradiol metabolism. 5α-Dihydrotestosterone-17β-glucuronide was identified as a dihydrotestosterone metabolite, and this metabolism was related to 3βHSD enzyme activity as demonstrated by inhibition study.

  12. Green remediation: enhanced reductive dechlorination using recycled rinse water as bioremediation substrate

    International Nuclear Information System (INIS)

    Dawson, Gaynor; McKeon, Tom

    2007-01-01

    Enhanced reductive dechlorination (ERD) has rapidly become a remedy of choice for use on chlorinated solvent contamination when site conditions allow. With this approach, solutions of an organic substrate are injected into the affected aquifer to stimulate biological growth and the resultant production of reducing conditions in the target zone. Under the reducing conditions, hydrogen is produced and ultimately replaces chlorine atoms on the contaminant molecule causing sequential dechlorination. Under suitable conditions the process continues until the parent hydrocarbon precursor is produced, such as the complete dechlorination of trichloroethylene (TCE) to ethene. The process is optimized by use of a substrate that maximizes hydrogen production per unit cost. When natural biota are not present to promote the desired degradation, inoculates can be added with the substrate. The in-situ method both reduces cost and accelerates cleanup. Successful applications have been extended from the most common chlorinated compounds perchloroethylene (PCE) and TCE and related products of degradation, to perchlorate, and even explosives such as RDX and trinitrotoluene on which nitrates are attacked in lieu of chloride. In recent work, the process has been further improved through use of beverage industry wastewaters that are available at little or no cost. With material cost removed from the equation, applications can maximize the substrate loading without significantly increasing total cost. The extra substrate loading both accelerates reaction rates and extends the period of time over which reducing conditions are maintained. In some cases, the presence of other organic matter in addition to simple sugars provides for longer performance times of individual injections, thereby working in a fashion similar to emulsified vegetable oil. The paper discusses results of applications at three different sites contaminated with chlorinated ethylenes. The applications have included

  13. Effects of activated carbon on reductive dechlorination of PCBs by organohalide respiring bacteria indigenous to sediments.

    Science.gov (United States)

    Kjellerup, B V; Naff, C; Edwards, S J; Ghosh, U; Baker, J E; Sowers, K R

    2014-04-01

    Polychlorinated biphenyls (PCBs) have accumulated in aquatic sediments due to their inherent chemical stability and their presence poses a risk due to their potential toxicity in humans and animals. Granular activated carbon (GAC) has been applied to PCB contaminated sediment sites to reduce the aqueous concentration by sequestration thus reducing the PCB exposure and toxicity to both benthic and aquatic organisms. However, it is not known how the reduction of PCB bioavailability by adsorption to GAC affects bacterial transformation of PCBs by indigenous organohalide respiring bacteria. In this study, the impact of GAC on anaerobic dechlorination by putative organohalide respiring bacteria indigenous to sediment from Baltimore Harbor was examined. It was shown that the average Cl/biphenyl after dehalogenation of Aroclor 1260 was similar between treatments with and without GAC amendment. However, GAC caused a substantial shift in the congener distribution whereby a smaller fraction of highly chlorinated congeners was more extensively dechlorinated to mono- through tri-chlorinated congeners compared to the formation of tri- through penta-chlorinated congeners in unamended sediment. The results combined with comparative sequence analysis of 16S rRNA gene sequences suggest that GAC caused a community shift to putative organohalide respiring phylotypes that coincided with more extensive dechlorination of ortho and unflanked chlorines. This shift in activity by GAC shown here for the first time has the potential to promote greater degradation in situ by promoting accumulation of less chlorinated congeners that are generally more susceptible to complete mineralization by aerobic PCB degrading bacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Parameter Sensitivity and Laboratory Benchmarking of a Biogeochemical Process Model for Enhanced Anaerobic Dechlorination

    Science.gov (United States)

    Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Barry, D. A.; Robinson, C.; Brovelli, A.; Harkness, M.; Fisher, A.; Mack, E. E.; Payne, J. A.; Dworatzek, S.; Roberts, J.

    2008-12-01

    A detailed model to simulate trichloroethene (TCE) dechlorination in anaerobic groundwater systems has been developed and implemented through PHAST, a robust and flexible geochemical modeling platform. The approach is comprehensive but retains flexibility such that models of varying complexity can be used to simulate TCE biodegradation in the vicinity of nonaqueous phase liquid (NAPL) source zones. The complete model considers a full suite of biological (e.g., dechlorination, fermentation, sulfate and iron reduction, electron donor competition, toxic inhibition, pH inhibition), physical (e.g., flow and mass transfer) and geochemical processes (e.g., pH modulation, gas formation, mineral interactions). Example simulations with the model demonstrated that the feedback between biological, physical, and geochemical processes is critical. Successful simulation of a thirty-two-month column experiment with site soil, complex groundwater chemistry, and exhibiting both anaerobic dechlorination and endogenous respiration, provided confidence in the modeling approach. A comprehensive suite of batch simulations was then conducted to estimate the sensitivity of predicted TCE degradation to the 36 model input parameters. A local sensitivity analysis was first employed to rank the importance of parameters, revealing that 5 parameters consistently dominated model predictions across a range of performance metrics. A global sensitivity analysis was then performed to evaluate the influence of a variety of full parameter data sets available in the literature. The modeling study was performed as part of the SABRE (Source Area BioREmediation) project, a public/private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The modelling conducted has provided valuable insight into the complex interactions between processes in the evolving biogeochemical systems

  15. Chemical dechlorination of pesticides at a superfund site in Region II

    International Nuclear Information System (INIS)

    Pendergrass, S.; Prince, J.

    1991-01-01

    Selecting technologies for cleaning up hazardous waste sites is a complex task, due in part to the rapidly changing nature of the state-of-the-art in technology. There is strong support for use of innovative technologies as specified in Section 121(b) of CERCLA. However, use of an innovative technology requires overcoming a variety of challenges. These challenges include: Screening potentially appropriate technologies, including innovative technologies, and selecting one or more potential innovative technologies for which preliminary results are promising; however, site-specific data are needed prior to technology evaluation. Evaluating the effectiveness of the proposed technology for the site through the use of treatability studies. Gaining acceptance for the innovative technology, which may employ new or unfamiliar concepts. Determining optimal design and operating parameters for full-scale remediation. This paper discusses the technology evaluation process and how that process supported the selection of an innovative technology for the Myers Property site, a Superfund site in Region II. A case study is presented showing how technology screening and laboratory treatability studies were used to evaluate an innovative technology (chemical dechlorination), which was selected as the technology for remediation of soils and sediments contaminated with pesticides at this environmentally sensitive site in New Jersey. The remedy selected by the U.S. EPA for this site designates chemical dechlorination as the selected technology, but does not specify any particular vendor or process. Rather, the remedy sets forth technology performance standards and recommends certain design tasks which may be used to select a particular chemical process. This paper discusses he of these design tasks as they might apply to innovative technologies, using chemical dechlorination as a model

  16. Thermal dechlorination of PCB-209 over Ca species-doped Fe₂O₃.

    Science.gov (United States)

    Su, Guijin; Huang, Linyan; Shi, Ruifang; Liu, Yexuan; Lu, Huijie; Zhao, Yuyang; Yang, Fan; Gao, Lirong; Zheng, Minghui

    2016-02-01

    Degradation reaction of decachlorobiphenyl (PCB-209) was investigated over the synthesized Ca species-doped Fe2O3 at 300 °C. The 1%Ca-Fe2O3 exhibited the highest activity among the four catalysts prepared with the pseudo-first order reaction at k(obs) = 0.103 min(-1). PCB-207, PCB-197, PCB-176, PCB-184, PCB-150, PCB-136, PCB-148, PCB-104, PCB-96, PCB-54, PCB-19, PCB-4 and PCB-1 were identified as the dominant isomers in their respective nonachlorobiphenyl (NonaCB) to monochlorobiphenyl (MonoCB) homologue groups. Analysis of the hydrodechlorination products indicated that dechlorination was much more favored on meta- and para-than on ortho-positions. The formation of significantly predominant NonaCB and octachlorobiphenyl (OctaCB) isomers was attributed to lower energy principles and to the 90° dihedral angles of two aromatic rings which prevented the hydrodechlorination at ortho-positions. When the number of chlorine atoms is not more than 7, the steric effect supports the formation of predominant PCB isomers having chlorines at four ortho-positions. During the dechlorination of tetrachlorobiphenyl (TetraCB) formed to generate monochlorobiphenyl (MonoCB) isomers, the chlorine atoms fully substituted at the ortho-positions have to be successively removed, with the first two dechlorinations preferentially occurring at the two different benzene rings. This is dissimilar to that of octachloronaphthalene (PCN-75) in which the hydrodechlorination reaction happened preferentially at ortho-position due to the existence of steric effects. The opposite roles of the steric effect in ortho-position between PCB-209 and PCN-75 might be due to the difference of the π-conjugated plane caused by the dihedral angle of 90° and 0° of the two aromatic rings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Arellano-González, Miguel Ángel; González, Ignacio [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D.F. (Mexico); Texier, Anne-Claire, E-mail: actx@xanum.uam.mx [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)

    2016-08-15

    Highlights: • Dechlorination of 2-chlorophenol to phenol was 100% efficient on Pd-Ni/Ti electrode. • An ECCOCEL reactor was efficient and selective to obtain phenol from 2-chlorophenol. • Phenol was totally mineralized in a coupled denitrifying biorreactor. • Global time of 2-chlorophenol mineralization in the combined system was 7.5 h. - Abstract: In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of −0.40 V vs Ag/AgCl{sub (s)}/KCl{sub (sat)}, achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO{sub 2} and N{sub 2} as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5 h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes.

  18. Investigations in the microbial degradation of polychlorinated dibenzo-p-dioxins and means of reductive dechlorination and aerobic mineralization

    International Nuclear Information System (INIS)

    Rosenbrock, P.

    1997-12-01

    The work had the objective to develop a biological method for cleaning up PCDD/PCDF contaminated upper soil layers (PCDDs/PCDFs: polychlorinated dibenzo-p-dioxins and dibenzofurans). Since highly chlorinated aromatic compounds persist in soil under aerobic conditions, reductive dechlorination of the compounds under anaerobic conditions was aimed at in a first phase of the project. A second, topped phase was destined for aerobic mineralization of the dechlorinated matrices. The tests were carried out on three farmland soils following long-term contamination with PCDDs/PCDFs. (orig./MG)

  19. Kinetic analysis of dechlorination and oxidation of PrOCl by using a non-isothermal TG method

    International Nuclear Information System (INIS)

    Yang, H.C.; Eun, H.C.; Cho, Y.Z.; Lee, H.S.; Kim, I.T.

    2009-01-01

    Thermal dechlorination and oxidation process of praseodymium oxychloride, PrOCl, was studied from the view point of reaction kinetics. On the basis of data of thermogravimetry under different oxygen partial pressures at various heating rates, a kinetic analysis was performed using an isoconversional method and a master plot method. The results of the isoconversional method of TG data suggested that the dechlorination and oxidation of PrOCl followed a single step with activation energy of 112.6 ± 3.4 kJ mol -1 , and from master plot methods, the reaction was described by a linear-contracting phase boundary reaction

  20. Metabolism of benzo(a)pyrene, N-nitrosomethylamine, and N-nitrosopyrrolidine and identification of the major carcinogen-DNA adducts formed in cultured human esophagus

    DEFF Research Database (Denmark)

    Harris, Curtis C.; Autrup, Herman; Stoner, Gary D.

    1979-01-01

    The wide variation in the world-wide incidence of esophageal carcinoma suggests that environmental agents including chemicals cause this cancer. Since the interaction between chemical procarcinogens and human esophagus has not been studied previously, we examined the metabolic fate of benzo......(a)pyrene (BP), N-nitrosodimethylamine (DMN), and A/-nitrosopyrrolidine in cultured nontumorous esophagus from two patients with and six patients without esophageal carcinoma. Esophageal explants were cultured in a chemically defined medium for 7 days prior to adding [3H]BP (1.5 JUM),[14C]DMN (100 /IM), or [14C...

  1. Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine

    DEFF Research Database (Denmark)

    Leke, Renata; Bak, Lasse Kristoffer; Anker, Malene

    2011-01-01

    Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme....... Moreover, it has been suggested that cerebral tricarboxylic acid (TCA) cycle metabolism is inhibited and glycolysis enhanced during hyperammonemia. The aim of this study was to characterize the ammonia-detoxifying mechanisms as well as the effects of ammonia on energy-generating metabolic pathways...... in a mouse neuronal-astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure...

  2. The cell death factor, cell wall elicitor of rice blast fungus (Magnaporthe grisea) causes metabolic alterations including GABA shunt in rice cultured cells

    OpenAIRE

    Takahashi, Hideyuki; Matsumura, Hideo; Kawai-Yamada, Maki; Uchimiya, Hirofumi

    2008-01-01

    An elicitor derived from the cell wall of rice blast fungus (Magnaporthe grisea) causes cell death in suspension cultured cells of rice (Oryza sativa L.). To elucidate the role of M. grisea elicitor on metabolic pathway of rice cells, we performed metabolite profiling using capillary electrophoresis-mass spectrometry (CE/MS). Treatment with M. grisea elicitor increased the amounts of antioxidants and free amino acids and decreased the amount of metabolites in the tricarboxylic acid (TCA) cycl...

  3. Aerobic Degradation of Trichloroethylene by Co-Metabolism Using Phenol and Gasoline as Growth Substrates

    Directory of Open Access Journals (Sweden)

    Yan Li

    2014-05-01

    Full Text Available Trichloroethylene (TCE is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26 × 107 cell/mL, initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE/mg (biomass and 5.1 μg (TCE/mg (phenol, respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%. When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively. This study provides a promising approach for the removal of combined pollution of TCE and gasoline.

  4. Sustainable remediation: electrochemically assisted microbial dechlorination of tetrachloroethene-contaminated groundwater.

    Science.gov (United States)

    Patil, Sayali S; Adetutu, Eric M; Rochow, Jacqueline; Mitchell, James G; Ball, Andrew S

    2014-01-01

    Microbial electric systems (MESs) hold significant promise for the sustainable remediation of chlorinated solvents such as tetrachlorethene (perchloroethylene, PCE). Although the bio-electrochemical potential of some specific bacterial species such as Dehalcoccoides and Geobacteraceae have been exploited, this ability in other undefined microorganisms has not been extensively assessed. Hence, the focus of this study was to investigate indigenous and potentially bio-electrochemically active microorganisms in PCE-contaminated groundwater. Lab-scale MESs were fed with acetate and carbon electrode/PCE as electron donors and acceptors, respectively, under biostimulation (BS) and BS-bioaugmentation (BS-BA) regimes. Molecular analysis of the indigenous groundwater community identified mainly Spirochaetes, Firmicutes, Bacteroidetes, and γ and δ-Proteobacteria. Environmental scanning electron photomicrographs of the anode surfaces showed extensive indigenous microbial colonization under both regimes. This colonization and BS resulted in 100% dechlorination in both treatments with complete dechlorination occurring 4 weeks earlier in BS-BA samples and up to 11.5 μA of current being generated. The indigenous non-Dehalococcoides community was found to contribute significantly to electron transfer with ∼61% of the current generated due to their activities. This study therefore shows the potential of the indigenous non-Dehalococcoides bacterial community in bio-electrochemically reducing PCE that could prove to be a cost-effective and sustainable bioremediation practice. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. Reductive dechlorination of trichloroethene DNAPL source zones: source zone architecture versus electron donor availability

    Science.gov (United States)

    Krol, M.; Kokkinaki, A.; Sleep, B.

    2014-12-01

    The persistence of dense-non-aqueous-phase liquids (DNAPLs) in the subsurface has led practitioners and regulatory agencies to turn towards low-maintenance, low-cost remediation methods. Biological degradation has been suggested as a possible solution, based on the well-proven ability of certain microbial species to break down dissolved chlorinated ethenes under favorable conditions. However, the biodegradation of pure phase chlorinated ethenes is subject to additional constraints: the continuous release of electron acceptor at a rate governed by mass transfer kinetics, and the temporal and spatial heterogeneity of DNAPL source zones which leads to spatially and temporally variable availability of the reactants for reductive dechlorination. In this work, we investigate the relationship between various DNAPL source zone characteristics and reaction kinetics using COMPSIM, a multiphase groundwater model that considers non-equilibrium mass transfer and Monod-type kinetics for reductive dechlorination. Numerical simulations are performed for simple, homogeneous trichloroethene DNAPL source zones to demonstrate the effect of single source zone characteristics, as well as for larger, more realistic heterogeneous source zones. It is shown that source zone size, and mass transfer kinetics may have a decisive effect on the predicted bio-enhancement. Finally, we evaluate the performance of DNAPL bioremediation for realistic, thermodynamically constrained, concentrations of electron donor. Our results indicate that the latter may be the most important limitation for the success of DNAPL bioremediation, leading to reduced bio-enhancement and, in many cases, comparable performance with water flooding.

  6. Organometallic copper I, II or III species in an intramolecular dechlorination reaction

    KAUST Repository

    Poater, Albert

    2013-03-15

    The present paper gives insight into an intramolecular dechlorination reaction involving Copper (I) and an ArCH2Cl moiety. The discussion of the presence of a CuIII organometallic intermediate becomes a challenge, and because of the lack of clear experimental detection of this proposed intermediate, and due to the computational evidence that it is less stable than other isomeric species, it can be ruled out for the complex studied here. Our calculations are completely consistent with the key hypothesis of Karlin et al. that TMPA-CuI is the substrate of intramolecular dechlorination reactions as well as the source to generate organometallic species. However the organometallic character of some intermediates has been refused because computationally these species are less stable than other isomers. Thus this study constitutes an additional piece towards the full understanding of a class of reaction of biological relevance. Further, the lack of high energy barriers and deep energy wells along the reaction pathway explains the experimental difficulties to trap other intermediates. © Springer-Verlag Berlin Heidelberg 2013.

  7. Estimation of rate constants of PCB dechlorination reactions using an anaerobic dehalogenation model.

    Science.gov (United States)

    Karakas, Filiz; Imamoglu, Ipek

    2017-02-15

    This study aims to estimate anaerobic dechlorination rate constants (k m ) of reactions of individual PCB congeners using data from four laboratory microcosms set up using sediment from Baltimore Harbor. Pathway k m values are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model (ADM) which can be applied to any halogenated hydrophobic organic (HOC). Improvements such as handling multiple dechlorination activities (DAs) and co-elution of congeners, incorporating constraints, using new goodness of fit evaluation led to an increase in accuracy, speed and flexibility of ADM. DAs published in the literature in terms of chlorine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The best fit explaining the congener pattern changes was found for pathways of Phylotype DEH10, which has the ability to remove doubly flanked chlorines in meta and para positions, para flanked chlorines in meta position. The range of estimated k m values is between 0.0001-0.133d -1 , the median of which is found to be comparable to the few available published biologically confirmed rate constants. Compound specific modelling studies such as that performed by ADM can enable monitoring and prediction of concentration changes as well as toxicity during bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron

    International Nuclear Information System (INIS)

    Liu, C.-C.; Tseng, D.-H.; Wang, C.-Y.

    2006-01-01

    The surface characteristics of zero-valent iron (ZVI) and the efficiency of reductive dechlorination of trichloroethylene (TCE) in the presence of ferrous ions were studied. The experimental results indicated that the acid-washing of a metallic iron sample enhanced the efficiency of TCE degradation by ZVI. This occurred because acid-washing changed the conformation of oxides on the surface of iron from maghemite (γ-Fe 2 O 3 ) to the more hydrated goethite (α-FeOOH), as was confirmed by XPS analysis. However, when ferrous ions were simultaneous with TCE in water, the TCE degradation rate decreased as the concentration of ferrous ion increased. This was due to the formation of passive precipitates of ferrous hydroxide, including maghemite and magnetite (Fe 3 O 4 ), that coated on the surface of acid-washed ZVI, which as a result inhibited the electron transfer and catalytic hydrogenation mechanisms. On the other hand, in an Fe 0 -TCE system without the acid-washing pretreatment of ZVI, ferrous ions were adsorbed into the maghemite lattice which was then converted to semiconductive magnetite. Thus, the electrons were transferred from the iron surface and passed through the precipitates, allowing for the reductive dechlorination of TCE

  9. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.-C. [Graduate Institute of Environmental Engineering, National Central University, Chungli, Taiwan 32001 (China); Tseng, D.-H. [Graduate Institute of Environmental Engineering, National Central University, Chungli, Taiwan 32001 (China)]. E-mail: dhtseng@ncuen.ncu.edu.tw; Wang, C.-Y. [Graduate Institute of Environmental Engineering, National Central University, Chungli, Taiwan 32001 (China)

    2006-08-25

    The surface characteristics of zero-valent iron (ZVI) and the efficiency of reductive dechlorination of trichloroethylene (TCE) in the presence of ferrous ions were studied. The experimental results indicated that the acid-washing of a metallic iron sample enhanced the efficiency of TCE degradation by ZVI. This occurred because acid-washing changed the conformation of oxides on the surface of iron from maghemite ({gamma}-Fe{sub 2}O{sub 3}) to the more hydrated goethite ({alpha}-FeOOH), as was confirmed by XPS analysis. However, when ferrous ions were simultaneous with TCE in water, the TCE degradation rate decreased as the concentration of ferrous ion increased. This was due to the formation of passive precipitates of ferrous hydroxide, including maghemite and magnetite (Fe{sub 3}O{sub 4}), that coated on the surface of acid-washed ZVI, which as a result inhibited the electron transfer and catalytic hydrogenation mechanisms. On the other hand, in an Fe{sup 0}-TCE system without the acid-washing pretreatment of ZVI, ferrous ions were adsorbed into the maghemite lattice which was then converted to semiconductive magnetite. Thus, the electrons were transferred from the iron surface and passed through the precipitates, allowing for the reductive dechlorination of TCE.

  10. Reductive dechlorination of {gamma}-hexachlorocyclohexane using Fe-Pd bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, Varima; Bokare, Alok D. [Center for Nanobioscience, Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra (India); Chikate, Rajeev C. [Department of Chemistry, MES Abasaheb Garware College, Karve Road, Pune 411004 (India); Rode, Chandrashekhar V. [Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411008 (India); Paknikar, Kishore M., E-mail: paknikar@vsnl.com [Center for Nanobioscience, Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra (India)

    2010-03-15

    Nanoscale Fe-Pd bimetallic particles were synthesized and used for degradation of lindane ({gamma}-hexachlorocyclohexane) in aqueous solution. Batch studies showed that 5 mg/L of lindane was completely dechlorinated within 5 min at a catalyst loading of 0.5 g/L and the degradation process followed first-order kinetics. GC-MS analysis in corroboration with GC-ECD results showed the presence of cyclohexane as the final degradation product. The proposed mechanism for the reductive dechlorination of lindane involves Fe corrosion-induced hydrogen atom transfer from the Pd surface. The enhanced degradation efficiency of Fe-Pd nanoparticles is attributed to: (1) high specific surface area of the nanoscale metal particles (60 m{sup 2}/g), manyfold greater that of commercial grade micro- or milli-scale iron particles ({approx}1.6 m{sup 2}/g); and, (2) increased catalytic reactivity due to the presence of Pd on the surface. Recycling and column studies showed that these nanoparticles exhibit efficient and sustained catalytic activity.

  11. Pentachlorophenol dechlorination with zero valent iron: a Raman and GCMS study of the complex role of surficial iron oxides.

    Science.gov (United States)

    Gunawardana, Buddhika; Swedlund, Peter J; Singhal, Naresh; Nieuwoudt, Michel K

    2018-04-20

    The dechlorination of chlorinated organic pollutants by zero valent iron (ZVI) is an important water treatment process with a complex dependence on many variables. This complexity means that there are reported inconsistencies in terms of dechlorination with ZVI and the effect of ZVI acid treatment, which are significant and are as yet unexplained. This study aims to decipher some of this complexity by combining Raman spectroscopy with gas chromatography-mass spectrometry (GC-MS) to investigate the influence of the mineralogy of the iron oxide phases on the surface of ZVI on the reductive dechlorination of pentachlorophenol (PCP). Two electrolytic iron samples (ZVI-T and ZVI-H) were found to have quite different PCP dechlorination reactivity in batch reactors under anoxic conditions. Raman analysis of the "as-received" ZVI-T indicated the iron was mainly covered with the ferrous oxide (FeO) wustite, which is non-conducting and led to a low rate of PCP dechlorination. In contrast, the dominant oxide on the "as-received" ZVI-H was magnetite which is conducting and, compared to ZVI-T, the ZVI-H rate of PCP dechlorination was four times faster. Treating the ZVI-H sample with 1 N H 2 SO 4 made small change to the composition of the oxide layers and also minute change to the rate of PCP dechlorination. However, treating the ZVI-T sample with H 2 SO 4 led to the loss of wustite so that magnetite became the dominant oxide and the rate of PCP dechlorination increased to that of the ZVI-H material. In conclusion, this study clearly shows that iron oxide mineralogy can be a contributing factor to apparent inconsistencies in the literature related to ZVI performance towards dechlorination and the effect of acid treatment on ZVI reactivity.

  12. Prebiotic potential of L-sorbose and xylitol in promoting the growth and metabolic activity of specific butyrate-producing bacteria in human fecal culture.

    Science.gov (United States)

    Sato, Tadashi; Kusuhara, Shiro; Yokoi, Wakae; Ito, Masahiko; Miyazaki, Kouji

    2017-01-01

    Dietary low-digestible carbohydrates (LDCs) affect gut microbial metabolism, including the production of short-chain fatty acids. The ability of various LDCs to promote butyrate production was evaluated in in vitro human fecal cultures. Fecal suspensions from five healthy males were anaerobically incubated with various LDCs. L-Sorbose and xylitol markedly promoted butyrate formation in cultures. Bacterial 16S rRNA gene-based denaturing gradient gel electrophoresis analyses of these fecal cultures revealed a marked increase in the abundance of bacteria closely related to the species Anaerostipes hadrus or A. caccae or both, during enhanced butyrate formation from L-sorbose or xylitol. By using an agar plate culture, two strains of A. hadrus that produced butyrate from each substrate were isolated from the feces of two donors. Furthermore, of 12 species of representative colonic butyrate producers, only A. hadrus and A. caccae demonstrated augmented butyrate production from L-sorbose or xylitol. These findings suggest that L-sorbose and xylitol cause prebiotic stimulation of the growth and metabolic activity of Anaerostipes spp. in the human colon. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Effects of Peptone Supplementation in Different Culture Media on Growth, Metabolic Pathway and Productivity of CHO DG44 Cells; a New Insight into Amino Acid Profiles.

    Science.gov (United States)

    Davami, Fatemeh; Eghbalpour, Farnaz; Nematollahi, Leila; Barkhordari, Farzaneh; Mahboudi, Fereidoun

    2015-01-01

    The optimization of bioprocess conditions towards improved growth profile and productivity yield is considered of great importance in biopharmaceutical manufacturing. Peptones as efficient sources of nutrients have been studied for their effect on media development; however, their role on metabolic pathway is not well understood. In the present study, the effect of different concentration of peptones on a recombinant Chinese hamster ovary (CHO) cell line grown in three serum-free suspension cultures was determined. Six peptones of different origins and available amino acid profiles were investigated regarding their impact on cell growth, productivity, and metabolic pathways changes. In optimized feeding strategies, increases of 136% and 159% in volumetric productivity (for a low-nutrient culture media) and 55% (for a high-nutrient culture media) were achieved. Furthermore, particular sources of peptones with specific amino acid profile developed preferential results for each different culture medium. Two peptones, SoyA2SC and SoyE-110, were the only hydrolysates that showed production improvement in all three media. Casein Peptone plus Tryptone N1 and SoyA3SC showed different improved results based on their implemented concentration for each individual basal medium. The amino acid profile of peptones may provide clues to identify the most effective feeding strategies for recombinant CHO cells.

  14. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    International Nuclear Information System (INIS)

    Li, F.B.; Li, X.M.; Zhou, S.G.; Zhuang, L.; Cao, F.; Huang, D.Y.; Xu, W.; Liu, T.X.; Feng, C.H.

    2010-01-01

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (α-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of α-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe 2+ + α-FeOOH and the system of DIRB + α-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of α-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  15. Use Of Statistical Tools To Evaluate The Reductive Dechlorination Of High Levels Of TCE In Microcosm Studies

    Science.gov (United States)

    A large, multi-laboratory microcosm study was performed to select amendments for supporting reductive dechlorination of high levels of trichloroethylene (TCE) found at an industrial site in the United Kingdom (UK) containing dense non-aqueous phase liquid (DNAPL) TCE. The study ...

  16. Impact of dechlorination processes on the sediment-water exchange of PCDD/F in Passaic river cores

    Energy Technology Data Exchange (ETDEWEB)

    Adriaens, P.; Khijniak, A. [Civil and Environmental Engineering, Univ. of Michigan, Ann Arbor (United States); Jones, K.; Green, N. [Environmental Science, Lancaster Univ. (United Kingdom); Gruden, C. [Univ. of Toledo, OH (United States)

    2004-09-15

    The potential for natural dechlorination processes in sediments to impact the biogeochemical cycling of dioxins and furans has been proposed as a possible mechanism to explain the prevalence of lesser halogenated dioxins and furans at the air-water interface. The hypothesis was supported by multiple lines of evidence, but has not been directly demonstrated. Field evidence indicated dynamic air-water exchange of PCDD/Fs in the Raritan Bay/Hudson River Estuary, whereby lesser chlorinated (predominantly diCDD/F) were present in the particle and apparent dissolved phase. Fugacity calculations indicated that the water column served as the source of these homologue groups. Laboratory evidence from Passaic River sediment cores and microbiallymediated dechlorination demonstrated that historic dioxins can undergo extensive dechlorination reactions, culminating in the formation of mono-and diCDD homologues. Similar pathways have been observed with PCDF, resulting in the accumulation of triCDF. The current paper reports on an investigation addressing the hypothesis of whether the lesser chlorinated PCDD/F observed at the air-water interface could be the result of selective dissolution of these congeners or homologues from sediments as they are produced during microbial dechlorination.

  17. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.B., E-mail: cefbli@soil.gd.c [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Li, X.M. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Zhou, S.G.; Zhuang, L. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Cao, F. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Huang, D.Y.; Xu, W.; Liu, T.X. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Feng, C.H. [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China)

    2010-05-15

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (alpha-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of alpha-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe{sup 2+} + alpha-FeOOH and the system of DIRB + alpha-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of alpha-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  18. Validation of an Integrative Methodology to Assess and Monitor Reductive Dechlorination of Chlorinated Ethenes in Contaminated Aquifers

    Czech Academy of Sciences Publication Activity Database

    Tarnawski, S.E.; Rossi, P.; Brennerová, Mária; Stavělová, M.; Holliger, Ch.

    2016-01-01

    Roč. 4, February (2016), s. 7 E-ISSN 2296-665X R&D Projects: GA TA ČR TA02020534 Institutional support: RVO:61388971 Keywords : dechlorination * integrative methodology * chlorinated ethenes Subject RIV: EE - Microbiology, Virology

  19. A stereospecific pathway for the introduction of deuterium on the brassinosteroid skeleton by reductive dechlorination of chlorocarbonates

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Patil, Mahadeo Rajshekhar; Klepetářová, Blanka; Kohout, Ladislav; Elbert, Tomáš

    2012-01-01

    Roč. 53, č. 16 (2012), s. 2048-2050 ISSN 0040-4039 R&D Projects: GA AV ČR IAA400550801 Institutional research plan: CEZ:AV0Z40550506 Keywords : brassinosteroids * reductive dechlorination * stereospecific reactions Subject RIV: CC - Organic Chemistry Impact factor: 2.397, year: 2012

  20. Abilities of Co-cultures of Brown-Rot Fungus Fomitopsis pinicola and Bacillus subtilis on Biodegradation of DDT.

    Science.gov (United States)

    Sariwati, Atmira; Purnomo, Adi Setyo; Kamei, Ichiro

    2017-09-01

    DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) is one of the pesticides that are hazardous for the environment and human health. Effective environmental-friendly treatment using co-cultures of fungi and bacteria is needed. In this study, the bacteria Bacillus subtilis at various volumes of 1, 3, 5, 7, and 10 mL (1 mL ≈ 6.7 × 10 8  CFU) were mixed into 10 mL of the brown-rot fungus Fomitopsis pinicola culture for degrading DDT during a 7-days incubation period. DDT was degraded by approximately 42% by F. pinicola during the 7-days incubation period. The addition of 10 mL of B. subtilis into F. pinicola culture showed the highest DDT degradation of approximately 86% during the 7-days incubation period. DDD (1,1-dichloro-2,2-bis(4-chlorophenyl)ethane), DDE (1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene), and DDMU (1-chloro-2,2-bis(4-chlorophenyl)ethylene) were detected as metabolic products from DDT degradation by co-cultures of F. pinicola and B. subtilis. Transformation pathway was proposed in which DDT was transformed into three pathways as follows: (1) dechlorination to DDD, (2) dehydrochlorination to DDE, and (3) formation of DDMU.

  1. cultural

    Directory of Open Access Journals (Sweden)

    Irene Kreutz

    2006-01-01

    Full Text Available Es un estudio cualitativo que adoptó como referencial teorico-motodológico la antropología y la etnografía. Presenta las experiencias vivenciadas por mujeres de una comunidad en el proceso salud-enfermedad, con el objetivo de comprender los determinantes sócio-culturales e históricos de las prácticas de prevención y tratamiento adoptados por el grupo cultural por medio de la entrevista semi-estructurada. Los temas que emergieron fueron: la relación entre la alimentación y lo proceso salud-enfermedad, las relaciones con el sistema de salud oficial y el proceso salud-enfermedad y lo sobrenatural. Los dados revelaron que los moradores de la comunidad investigada tienen un modo particular de explicar sus procedimientos terapéuticos. Consideramos que es papel de los profesionales de la salud en sus prácticas, la adopción de abordajes o enfoques que consideren al individuo en su dimensión sócio-cultural e histórica, considerando la enorme diversidad cultural en nuestro país.

  2. Complete dechlorination of 2,4-dichlorophenol in aqueous solution on palladium/polymeric pyrrole-cetyl trimethyl ammonium bromide/foam-nickel composite electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhirong, E-mail: zrsun@bjut.edu.cn [College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Wei, Xuefeng; Han, Yanbo; Tong, Shan [College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Hu, Xiang, E-mail: huxiang99@163.com [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2013-01-15

    Highlights: ► Pd/PPy-CTAB/foam-Ni electrode with high surface area and low Pd content was prepared. ► The composite electrode was applied to dechlorination of 2,4-DCP in aqueous solution. ► Complete dechlorination of 2,4-DCP was achieved with higher current efficiency. ► Removal efficiency kept 100% after 10 times dechlorination on the stable electrode. ► The electrochemically reductive activation energy was 25.8 kJ mol{sup −1} in this system. -- Abstract: The electrochemically reductive dechlorination of 2,4-dichlorophenol (2,4-DCP) in aqueous solution on palladium/polymeric pyrrole-cetyl trimethyl ammonium bromide/foam-nickel electrode (Pd/PPy-CTAB/foam-Ni electrode) was investigated in this paper. Pd/PPy-CTAB/foam-Ni electrode was prepared and characterized by cyclic voltammetry (CV), scanning electron microscope (SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The influences of some experimental factors such as the dechlorination current, dechlorination time and the initial pH on the removal efficiency and the current efficiency of 2,4-DCP dechlorination on Pd/PPy-CTAB/foam-Ni electrode were studied. Complete removal of 2,4-DCP was achieved and the current efficiency of 47.4% could be obtained under the conditions of the initial pH of 2.2, the dechlorination current of 5 mA and the dechlorination time of 50 min when the initial 2,4-DCP concentration was 100 mg L{sup −1}. The analysis of high performance liquid chromatography (HPLC) identified that the intermediate products were 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP). The final products were mainly phenol. Its further reduction product cyclohexanone was also detected. The electrocatalytic dechlorination pathways of 2,4-DCP on Pd/PPy-CTAB/foam-Ni electrode were discussed. The stability of the electrode was favorable that it could keep dechlorination efficiency at 100% after having been reused

  3. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution.

    Science.gov (United States)

    Liu, Yueqiang; Phenrat, Tanapon; Lowry, Gregory V

    2007-11-15

    Nanoscale zero-valent iron (NZVI) is used to remediate contaminated groundwater plumes and contaminant source zones. The target contaminant concentration and groundwater solutes (NO3-, Cl-, HCO3-, SO4(2-), and HPO4(2-)) should affect the NZVI longevity and reactivity with target contaminants, but these effects are not well understood. This study evaluates the effect of trichloroethylene (TCE) concentration and common dissolved groundwater solutes on the rates of NZVI-promoted TCE dechlorination and H2 evolution in batch reactors. Both model systems and real groundwater are evaluated. The TCE reaction rate constant was unaffected by TCE concentration for [TCE] TCE concentration up to water saturation (8.4 mM). For [TCE] > or = 0.46 mM, acetylene formation increased, and the total amount of H2 evolved at the end of the particle reactive lifetime decreased with increasing [TCE], indicating a higher Fe0 utilization efficiency for TCE dechlorination. Common groundwater anions (5mN) had a minor effect on H2 evolution but inhibited TCE reduction up to 7-fold in increasing order of Cl- TCE reduction but increased acetylene production and decreased H2 evolution. NO3- present at > 3 mM slowed TCE dechlorination due to surface passivation. NO3- present at 5 mM stopped TCE dechlorination and H2 evolution after 3 days. Dissolved solutes accounted for the observed decrease of NZVI reactivity for TCE dechlorination in natural groundwater when the total organic content was small (< 1 mg/L).

  4. MicrO: an ontology of phenotypic and metabolic characters, assays, and culture media found in prokaryotic taxonomic descriptions.

    Science.gov (United States)

    Blank, Carrine E; Cui, Hong; Moore, Lisa R; Walls, Ramona L

    2016-01-01

    MicrO is an ontology of microbiological terms, including prokaryotic qualities and processes, material entities (such as cell components), chemical entities (such as microbiological culture media and medium ingredients), and assays. The ontology was built to support the ongoing development of a natural language processing algorithm, MicroPIE (or, Microbial Phenomics Information Extractor). During the MicroPIE design process, we realized there was a need for a prokaryotic ontology which would capture the evolutionary diversity of phenotypes and metabolic processes across the tree of life, capture the diversity of synonyms and information contained in the taxonomic literature, and relate microbiological entities and processes to terms in a large number of other ontologies, most particularly the Gene Ontology (GO), the Phenotypic Quality Ontology (PATO), and the Chemical Entities of Biological Interest (ChEBI). We thus constructed MicrO to be rich in logical axioms and synonyms gathered from the taxonomic literature. MicrO currently has ~14550 classes (~2550 of which are new, the remainder being microbiologically-relevant classes imported from other ontologies), connected by ~24,130 logical axioms (5,446 of which are new), and is available at (http://purl.obolibrary.org/obo/MicrO.owl) and on the project website at https://github.com/carrineblank/MicrO. MicrO has been integrated into the OBO Foundry Library (http://www.obofoundry.org/ontology/micro.html), so that other ontologies can borrow and re-use classes. Term requests and user feedback can be made using MicrO's Issue Tracker in GitHub. We designed MicrO such that it can support the ongoing and future development of algorithms that can leverage the controlled vocabulary and logical inference power provided by the ontology. By connecting microbial classes with large numbers of chemical entities, material entities, biological processes, molecular functions, and qualities using a dense array of logical axioms, we

  5. Session 6: Synergistic effects in selective hydro dechlorination on bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Srebowata, A.; Legawiec-Jarzyna, M.; Juszczyk, W.; Karpinski, Z. [Institute of Physical Chemistry of PAS, Warszawa (Poland)

    2004-07-01

    Catalytic removal of chlorine from organic compounds has recently attracted increasing interest. A special case of this important environmental issue is the hydro-dechlorination (HDC). HDC of three compounds was investigated: dichloro-difluoro-methane, carbon tetrachloride and 1,2-dichloroethane. Since the most desired products of the mentioned reactions are: CH{sub 2}F{sub 2}, chloroform and ethene (highlighted below), our attention was focused at the rates of formation of these products: CCl{sub 2}F{sub 2} {yields} CH{sub 2}F{sub 2} {yields} CH{sub 4}; CCl{sub 4} {yields} CHCl{sub 3} {yields} CH{sub 4}; ClCH{sub 2}-CH{sub 2}Cl {yields} CH{sub 2}=CH{sub 2} {yields} CH{sub 3}CH{sub 3}. In fact, Selection of the most suitable HDC catalyst depends on the C-Cl bond strength in a molecule subjected to reaction. A relatively weak C-Cl bond in CCl{sub 4} (306 kJ/mol) does not require a high dechlorination potential, which can be directly correlated with the strength of a metal-chlorine bond. Thus Pt is a better catalyst than Pd in CCl{sub 4} reaction. In addition, an improvement of Pt-based catalysts can be achieved by alloying with metals which bind chlorine even less strongly than Pt (i.e. with Au). In contrast, Pd is a better catalyst than Pt for hydro-dechlorination of a stronger C-Cl bond (about 350 kJ/mol), present in CCl{sub 2}F{sub 2} and ClCH{sub 2}-CH{sub 2}Cl. However, a good performance of Pd can still be improved by alloying it with much less active Pt (or Au), as a result of weakening of the metal-chlorine bond. This effect leads to a higher selectivity toward partial dehalogenation, i.e. to formation of a desired CH{sub 2}F{sub 2} (at the expense of CH{sub 4}). In a similar way, combination of Pd with Co and Cu is rationalized. For HDC of ClCH{sub 2}-CH{sub 2}Cl, addition of a metal characterized by a poor hydrogenation strength (like Cu or Ag) to Pd (or Pt) reduces undesired formation of ethane, giving higher yields of ethene. (authors)

  6. Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine.

    Science.gov (United States)

    Leke, Renata; Bak, Lasse K; Anker, Malene; Melø, Torun M; Sørensen, Michael; Keiding, Susanne; Vilstrup, Hendrik; Ott, Peter; Portela, Luis V; Sonnewald, Ursula; Schousboe, Arne; Waagepetersen, Helle S

    2011-04-01

    Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme. Moreover, it has been suggested that cerebral tricarboxylic acid (TCA) cycle metabolism is inhibited and glycolysis enhanced during hyperammonemia. The aim of this study was to characterize the ammonia-detoxifying mechanisms as well as the effects of ammonia on energy-generating metabolic pathways in a mouse neuronal-astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure enhanced the synthesis and release of alanine. Collectively, our results demonstrate that (1) formation of glutamine is seminal for detoxification of ammonia; (2) neuronal oxidative metabolism is increased in the presence of ammonia; and (3) synthesis and release of alanine is likely to be important for ammonia detoxification as a supplement to formation of glutamine.

  7. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose

    Science.gov (United States)

    Moran, Nancy E.; Rogers, Randy B.; Lu, Chi-Hua; Conlon, Lauren E.; Lila, Mary Ann; Clinton, Steven K.; Erdman, John W.

    2013-01-01

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched 13C-lycopene for human bioavailability and metabolism studies. To enhance the 13C-enrichment and yields of labeled lycopene from the hp-1 tomato cell line, cultures were first grown in 13C-glucose media for three serial batches and produced increasing proportions of uniformly labeled lycopene (14.3 +/− 1.2 %, 39.6 +/− 0.5 %, and 48.9 +/− 1.5% with consistent yields (from 5.8 to 9 mg/L). An optimized 9-day-long 13C-loading and 18-day-long labeling strategy developed based on glucose utilization and lycopene yields, yielded 13C-lycopene with 93% 13C isotopic purity, and 55% of isotopomers were uniformly labeled. Furthermore, an optimized acetone and hexane extraction led to a four-fold increase in lycopene recovery from cultures compared to a standard extraction. PMID:23561155

  8. Reductive dechlorination of trichloroethylene (TCE) in competition with Fe and Mn oxides – observed dynamics in H2-dependent terminal electron accepting processes

    DEFF Research Database (Denmark)

    Paul, Laiby; Jakobsen, Rasmus; Smolders, Erik

    2016-01-01

    The determination of hydrogen (H2) concentration together with the products of microbial reduction reactions in a trichloroethylene dechlorinating system is conducted to delineate the ongoing predominant terminal electron accepting processes (TEAP). Formate was used as electron donor and synthetic...

  9. Comment on 'evaluation of dechlorination mechanisms during anaerobic fermentation of blached kraft mill effluent by W.J. Parker, E.R. Hall and G.J. Farquhar'

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    Comment on "Evaluation of dechlorination mechanisms during anaerobic fermentation of bleached kraft mill effluent", is put forth. The data reproduced in Table 1 does not seem to be authentic as the method of preprationo of the chlorinated organic...

  10. Enhanced CAH dechlorination in a low permeability, variably-saturated medium

    Science.gov (United States)

    Martin, J.P.; Sorenson, K.S.; Peterson, L.N.; Brennan, R.A.; Werth, C.J.; Sanford, R.A.; Bures, G.H.; Taylor, C.J.; ,

    2002-01-01

    An innovative pilot-scale field test was performed to enhance the anaerobic reductive dechlorination (ARD) of chlorinated aliphatic hydrocarbons (CAHs) in a low permeability, variably-saturated formation. The selected technology combines the use of a hydraulic fracturing (fracking) technique with enhanced bioremediation through the creation of highly-permeable sand- and electron donor-filled fractures in the low permeability matrix. Chitin was selected as the electron donor because of its unique properties as a polymeric organic material and based on the results of lab studies that indicated its ability to support ARD. The distribution and impact of chitin- and sand-filled fractures to the system was evaluated using hydrologic, geophysical, and geochemical parameters. The results indicate that, where distributed, chitin favorably impacted redox conditions and supported enhanced ARD of CAHs. These results indicate that this technology may be a viable and cost-effective approach for remediation of low-permeability, variably saturated systems.

  11. Effect of heterogeneity on enhanced reductive dechlorination: Analysis of remediation efficiency and groundwater acidification

    Science.gov (United States)

    Brovelli, A.; Lacroix, E.; Robinson, C. E.; Gerhard, J.; Holliger, C.; Barry, D. A.

    2011-12-01

    Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, alternative terminal electron acceptors available and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. In previous work a detailed geochemical and groundwater flow simulator able to model the fermentation-dechlorination reactions and associated pH change was developed. The model accounts for the main processes influencing microbial activity and groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects dechlorination rates, groundwater pH and ultimately the remediation efficiency. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency. For examples, zones of high hydraulic conductivity can prevent the accumulation of acids and alleviate the problem of groundwater acidification. The

  12. Understanding Hydrothermal Dechlorination of PVC by Focusing on the Operating Conditions and Hydrochar Characteristics

    Directory of Open Access Journals (Sweden)

    Tian Li

    2017-03-01

    Full Text Available To remove chlorine from chlorinated wastes efficiently, the hydrothermal treatment (HT of PVC was investigated with a lower alkaline dosage in this work. Some typical operating conditions were investigated to find out the most important factor affecting the dechlorination efficiency (DE. The FTIR technique was employed to detect the functional groups in PVC and hydrochars generated to reveal the possible pathways for chlorine removal. The results show that the HT temperature was a key parameter to control the dechlorination reaction rate. At a HT temperature of 240 °C, about 94.3% of chlorine could be removed from the PVC with 1% NaOH. The usage of NaOH was helpful for chlorine removal, while a higher dosage might also hinder this process because of the surface poisoning and coverage of free sites. To some extent, the DE was increased with the residence time. At a residence time of 30 min, the DE reached a maximum of 76.74%. A longer residence time could promote the generation of pores in hydrochar which is responsible for the reduction in DE because of the re-absorption of water-soluble chlorine. According to the FTIR results, the peak intensities of both C=CH and C=C stretching vibrations in hydrochar were increased, while the peak at around 3300 cm−1 representing the –OH group was not obvious, indicating that the dehydrochlorination (elimination reaction was a main route for chlorine removal under these conditions studied in this work.

  13. Reductive dechlorination of chlorinated hydrocarbons as non-aqueous phase liquid (NAPL): Preliminary investigation on effects of cement doses

    Energy Technology Data Exchange (ETDEWEB)

    Do, Si-Hyun, E-mail: sihyun2@hanyang.ac.kr [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Batchelor, Bill [Zachry Department of Civil Engineering, Texas A and M University, College Station, TX 77843 (United States)

    2012-07-15

    The reactivities of various types of iron mixtures to degrade chlorinated hydrocarbons (PCE, TCE and 1,1,1-TCA) in the form of non-aqueous phase liquids were investigated. The iron mixtures included a mixture of Fe(II) and Portland cement (Fe(II)-C), a mixture of Fe(II), Fe(III) and Ca(OH){sub 2} (Fe(II/III)-L), and a mixture of Fe(II), Fe(III), Ca(OH){sub 2}, and Portland cement (Fe(II/III)-C). When the same amount of Fe(II) was used, Fe(II)-C was more reactive with chlorinated ethylenes (i.e. PCE and TCE) than Fe(II/III)-L. The reductive pathway for high concentrations of total PCE (i.e. above solubility) with Fe(II)-C was determined to be a combination of two-electron transfer, {beta}-elimination and hydrogenolysis. Increasing the cement dose from 5% to 10% in Fe(II)-C did not affect PCE dechlorination rates, but it did favor the {beta}-elimination pathway. In addition, when Fe(II/III)-C with 5%C was used, PCE dechlorination was similar to that by Fe(II)-C, but this mixture did not effectively degrade TCE. A modified second-order kinetic model was developed and shown to appropriately describe degradation of TCE at high concentrations. Fe(II/III)-L effectively degraded high concentrations of 1,1,1-TCA at rates that were similar to those obtained with Fe(II)-C using 10% C. Moreover, both increasing cement doses and the presence of Fe(III) increased dechlorination rates of 1,1,1-TCA, which was mainly through the hydrogenolysis pathway. The reactivity of Fe(II/III)-L was strongly dependent on the target compound (i.e. less reactivity with TCE, more with 1,1,1-TCA). Therefore, Fe(II/III)-L could be a potential mixture for degrading 1,1,1-TCA, but it should be modified to degrade TCE more effectively. - Highlights: Black-Right-Pointing-Pointer TCE yield indicated that PCE dechlorination was through hydrogenolysis and {beta}-elimination. Black-Right-Pointing-Pointer {beta}-elimination, especially PCE to dichloroacetylene, was favored with the higher cement doses. Black

  14. Dechlorination of Trichloroacetic Acid Using a Noble Metal-Free Graphene-Cu Foam Electrode via Direct Cathodic Reduction and Atomic H.

    Science.gov (United States)

    Mao, Ran; Li, Ning; Lan, Huachun; Zhao, Xu; Liu, Huijuan; Qu, Jiuhui; Sun, Meng

    2016-04-05

    A three-dimensional graphene-copper (3D GR-Cu) foam electrode prepared by chemical vapor deposition method exhibited superior electrocatalytic activity toward the dechlorination of trichloroacetic acid (TCAA) as compared to the Cu foam electrode. The cyclic voltammetry and electrochemical impedance spectra analysis confirmed that GR accelerated the electron transfer from the cathode surface to TCAA. With the applied cathode potential of -1.2 V (vs SCE), 95.3% of TCAA (500 μg/L) was removed within 20 min at pH 6.8. TCAA dechlorination at the Cu foam electrode was enhanced at acidic pH, while a slight pH effect was observed at the GR-Cu foam electrode with a significant inhibition for Cu leaching. The electrocatalytic dechlorination of TCAA was accomplished via a combined stepwise and concerted pathway on both electrodes, whereas the concerted pathway was efficiently promoted on the GR-Cu foam electrode. The direct reduction by electrons was responsible for TCAA dechlorination at Cu foam electrode, while at GR-Cu foam electrode, the surface-adsorbed atomic H* also contributed to TCAA dechlorination owing to the chemical storage of hydrogen in the GR structure. Finally, the potential applicability of GR-Cu foam was revealed by its stability in the electrocatalytic dechlorination over 25 cycles.

  15. Reducing properties, energy efficiency and carbohydrate metabolism in hyperhydric and normal carnation shoots cultured in vitro: a hypoxia stress?

    Science.gov (United States)

    Saher, Shady; Fernández-García, Nieves; Piqueras, Abel; Hellín, Eladio; Olmos, Enrique

    2005-06-01

    Hyperhydricity is considered as a physiological disorder that can be induced by different stressing conditions. In the present work we have studied the metabolic and energetic states of hyperhydric carnation shoots. We have evaluated the hypothesis that hypoxia stress is the main factor affecting the metabolism of hyperhydric leaves. Our results indicate a low level of ATP in hyperhydric tissues, but only slight modifications in pyridine nucleotide contents. Concurrently, the glucose-6-phosphate dehydrogenase (G-6-PDH; EC 1.1.1.49) activity in hyperhydric leaves was increased but glucokinase (GK; EC 2.7.1.2) activity was unchanged. We have observed that the metabolism of pyruvate was altered in hyperhydric tissues by the induction of pyruvate synthesis via NADP-dependent malic enzyme (EC 1.1.1.40). The enzymes of the fermentative metabolism pyruvate decarboxylase (PDC; EC 4.1.1.1) and alcohol dehydrogenase (ADH; EC 1.1.1.1) were highly increased in hyperhydric leaves. Sucrose metabolism was modified in hyperhydric leaves with a high increase in the activity of both synthesis and catabolic enzymes. The analysis of the sucrose, glucose and fructose contents indicated that all of these sugars were accumulated in hyperhydric leaves. However, the pinitol content was drastically decreased in hyperhydric leaves. We consider that these results suggest that hyperhydric leaves of carnation have adapted to hypoxia stress conditions by the induction of the oxidative pentose phosphate and fermentative pathways.

  16. Reactive Minerals and Dechlorinating Communities: Mechanisms Governing the Degradation of Chlorinated Ethenes during Back Diffusion from Low Permeability Zones in Aerobic and Anaerobic Environments

    Science.gov (United States)

    Berns, E. C.; Zeng, R.; Singh, H.; Valocchi, A. J.; Sanford, R. A.; Strathmann, T. J.; Schaefer, C. E.; Werth, C. J.

    2017-12-01

    Low permeability zones (LPZs) comprised of silts and clays, and contaminated with chlorinated ethenes, can act as a long term source of contaminated groundwater by diffusion into adjacent high permeability zones (HPZs). Following initial remediation efforts, chlorinated ethenes that have diffused into LPZs will back diffuse and recontaminate HPZs. Because chlorinated ethenes are known to cause cancer and damage the liver, kidneys, and central nervous system, it is important to understand how they degrade in natural systems and how to model their fate and transport. Previous work has shown that anaerobic hydrogenolysis reactions are facilitated by both dechlorinating microorganisms and reactive minerals. Abiotic dichloro-elimination reactions with reactive minerals can also degrade chlorinated ethenes to acetylene, albeit at slower rates than biotic processes. More recently, studies have explored aerobic abiotic degradation of chlorinated ethenes to formate, glycolate, and carbon dioxide. This study focuses on these biotic and abiotic reactions and their contributions to chlorinated ethene degradation under aerobic and anaerobic conditions at the LPZ/HPZ interface. A two-dimensional flow cell was constructed to model this interface using clay and sand from Pease Air Force Base. The clay was inoculated with a dechlorinating enrichment culture. Tenax adsorbent beads equilibrated with trichloroethylene (TCE) were used as a chlorinated ethene source zone at the base of the clay. TCE and its degradation products diffused from the clay into the sand, where they were removed from the flow cell by groundwater at a rate of 50 mL/day. Volatile compounds were trapped in a sample loop and removed every 48 hours for analysis by GC-FID. Organic and inorganic ions in the effluent were analyzed on the HPLC and IC. The experiment was terminated by freezing the flow cell, and chemical profiles through the flow cell material were created to show the spatial distribution of degradation

  17. Collagen metabolism and basement membrane formation in cultures of mouse mammary epithelial cells: Induction of assembly on fibrillar type I collagen substrata

    International Nuclear Information System (INIS)

    David, G.; van der Schueren, B.; van den Berghe, H.; Nusgens, B.; Van Cauwenberge, D.; Lapiere, C.

    1987-01-01

    Collagen metabolism was compared in cultures of mouse mammary epithelial cells maintained on plastic or fibrillar type I collagen gel substrata. The accumulation of dialysable and non-dialysable [ 3 H]hydroxyproline and the identification of the collagens produced suggest no difference between substrata in the allover rates of collagen synthesis and degradation. The proportion of the [ 3 H]collagen which accumulates in the monolayers of cultures on collagen, however, markedly exceeds that of cultures on plastic. Cultures on collagen deposit a sheet-like layer of extracellular matrix materials on the surface of the collagen fibers. Transformed cells on collagen produce and accumulate more [ 3 H]collage, yet are less effective in basement membrane formation than normal cells, indicting that the accumulation of collagen alone and the effect of interstitial collagen thereupon do not suffice. Thus, exogenous fibrillar collagen appears to enhance, but is not sufficient for proper assembly of collagenous basement membrane components near the basal epithelial cell surface

  18. Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes by ToxCast Chemicals

    Science.gov (United States)

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  19. Changes of in vivo fluxes through central metabolic pathways during the production of nystatin by Streptomyces noursei in batch culture

    DEFF Research Database (Denmark)

    Jonsbu, E.; Christensen, Bjarke; Nielsen, Jens

    2001-01-01

    The central carbon metabolism of the nystatin-producing strain Streptomyces noursei ATCC 11455 was evaluated by C-13-labelling experiments. A batch fermentation was examined during the idiophase by GC-MS measurements of the labelling patterns of amino acids in the biomass. The labelling patterns...

  20. Metabolism of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene in cultured human fetal aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Bond, J.A.; Kocan, R.M.; Benditt, E.P.; Juchau, M.R.

    1979-01-01

    Cultured human fetal aortic smooth muscle cells derived from the abdominal aorta converted benzo[a]pyrene (BaP) and 7,12-dimethylbenz[a]anthracene (DMBA) via cytochrome P-450-dependent monooxygenation to metabolites detectable by both a highly sensitive radiometric assay and high pressure liquid chromatography (HPLC). Cells incubated with 3 H-BaP transformed this substrate primarily to phenols. 14 C-DMBA was converted to metabolites that cochromatographed with 12-hydroxymethyl-methylbenz[a]anthracene, 7-hydroxymethyl-12-methylbenz[a]anthracene, 7- 7,12-dihydroxymethylbenz[a]anthracene, and trans-8,9-dihydrodiol-7,12-DMBA. Exposure of cells in culture to 13 μM 1,2-benz[a]anthracene resulted in increased oxidative metabolism of both BaP and DMBA. In the case of BaP, total phenol formation was increased, while with DMBA all metabolites detected by HPLC were increased. Support for the potential role of metabolism of polycyclic aromatic hydrocarbons by aortic smooth muscle cells in the etiology of atherosclerosis was obtained

  1. New Gene Markers for Metabolic Processes and Homeostasis in Porcine Buccal Pouch Mucosa during Cells Long Term-Cultivation—A Primary Culture Approach

    Directory of Open Access Journals (Sweden)

    Marta Dyszkiewicz-Konwińska

    2018-03-01

    Full Text Available The oral mucosal tissue is a compound structure composed of morphologically and physiologically different cell types. The morphological modification involves genetically determined lifespan, which may be recognized as the balance between cell survival and apoptosis. Although the biochemical processes and pathways in oral mucosa, with special regards to drug transport, delivery, and metabolism, are well known, the cellular physiological homeostasis in this tissue requires further investigation. The porcine buccal pouch mucosal cells (BPMCs collected from 20 pubertal crossbred Landrace gilts, were used in this study. Immediately after recovery, the oral mucosa was separated micro-surgically, and treated enzymatically. The dispersed cells were transferred into primary in vitro culture systems for a long-term cultivation of 30 days. After each step of in vitro culture (IVC, the cells were collected for isolation of total RNA at 24 h, 7, 15, and 30 days of IVC. While the expression was analyzed for days 7, 15, and 30, the 24th hour was used as a reference for outcome calibration. The gene expression profile was determined using Affymetrix microarray assays and necessary procedures. In results, we observed significant up-regulation of SCARB1, PTGS2, DUSP5, ITGB3, PLK2, CCL2, TGFB1, CCL8, RFC4, LYN, ETS1, REL, LIF, SPP1, and FGER1G genes, belonging to two ontological groups, namely “positive regulation of metabolic process”, and “regulation of homeostatic process” at 7 day of IVC as compared to down-regulation at days 15 and 30. These findings suggest that the metabolic processes and homeostatic regulations are much more intense in porcine mucosal cells at day 7 of IVC. Moreover, the increased expression of marker genes, for both of these ontological groups, may suggest the existence of not only “morphological lifespan” during tissue keratinization, but also “physiological checkpoint” dedicated to metabolic processes in oral mucosa

  2. Dechlorination of Hexachlorobenzene in Contaminated Soils Using a Nanometallic Al/CaO Dispersion Mixture: Optimization through Response Surface Methodology

    Science.gov (United States)

    Jiang, Yuhui; Shang, Yixuan; Yu, Shuyao; Liu, Jianguo

    2018-01-01

    Hexachlorobenzene (HCB) contamination of soils remains a significant environmental challenge all over the world. Reductive stabilization is a developing technology that can decompose the HCB with a dechlorination process. A nanometallic Al/CaO (n-Al/CaO) dispersion mixture was developed utilizing ball-milling technology in this study. The dechlorination efficiency of HCB in contaminated soils by the n-Al/CaO grinding treatment was evaluated. Response surface methodology (RSM) was employed to investigate the effects of three variables (soil moisture content, n-Al/CaO dosage and grinding time) and the interactions between these variables under the Box-Behnken Design (BBD). A high regression coefficient value (R2 = 0.9807) and low p value (soil moisture content, n-Al/CaO dosage, and grinding time were found to be 7% (m/m), 17.7% (m/m), and 24 h, respectively, in the experimental ranges and levels. Under optimal conditions, the dechlorination efficiency was 80%. The intermediate product analysis indicated that dechlorination was the process by stepwise loss of chloride atoms. The main pathway observed within 24 h was HCB → pentachlorobenzene (PeCB) → 1,2,3,4-tetrachlorobenzene (TeCB) and 1,2,4,5-TeCB. The results indicated that the moderate soil moisture content was crucial for the hydrodechlorination of HCB. A probable mechanism was proposed wherein water acted like a hydrogen donor and promoted the hydrodechlorination process. The potential application of n-Al/CaO is an environmentally-friendly and cost-effective option for decontamination of HCB-contaminated soils. PMID:29702570

  3. Dechlorination of Hexachlorobenzene in Contaminated Soils Using a Nanometallic Al/CaO Dispersion Mixture: Optimization through Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Yuhui Jiang

    2018-04-01

    Full Text Available Hexachlorobenzene (HCB contamination of soils remains a significant environmental challenge all over the world. Reductive stabilization is a developing technology that can decompose the HCB with a dechlorination process. A nanometallic Al/CaO (n-Al/CaO dispersion mixture was developed utilizing ball-milling technology in this study. The dechlorination efficiency of HCB in contaminated soils by the n-Al/CaO grinding treatment was evaluated. Response surface methodology (RSM was employed to investigate the effects of three variables (soil moisture content, n-Al/CaO dosage and grinding time and the interactions between these variables under the Box-Behnken Design (BBD. A high regression coefficient value (R2 = 0.9807 and low p value (<0.0001 of the quadratic model indicated that the model was accurate in predicting the experimental results. The optimal soil moisture content, n-Al/CaO dosage, and grinding time were found to be 7% (m/m, 17.7% (m/m, and 24 h, respectively, in the experimental ranges and levels. Under optimal conditions, the dechlorination efficiency was 80%. The intermediate product analysis indicated that dechlorination was the process by stepwise loss of chloride atoms. The main pathway observed within 24 h was HCB → pentachlorobenzene (PeCB → 1,2,3,4-tetrachlorobenzene (TeCB and 1,2,4,5-TeCB. The results indicated that the moderate soil moisture content was crucial for the hydrodechlorination of HCB. A probable mechanism was proposed wherein water acted like a hydrogen donor and promoted the hydrodechlorination process. The potential application of n-Al/CaO is an environmentally-friendly and cost-effective option for decontamination of HCB-contaminated soils.

  4. Improved Dechlorinating Performance of Upflow Anaerobic Sludge Blanket Reactors by Incorporation of Dehalospirillum multivorans into Granular Sludge

    Science.gov (United States)

    Hörber, Christine; Christiansen, Nina; Arvin, Erik; Ahring, Birgitte K.

    1998-01-01

    Dechlorination of tetrachloroethene, also known as perchloroethylene (PCE), was investigated in an upflow anaerobic sludge blanket (UASB) reactor after incorporation of the strictly anaerobic, reductively dechlorinating bacterium Dehalospirillum multivorans into granular sludge. This reactor was compared to the reference 1 (R1) reactor, where the granules were autoclaved to remove all dechlorinating abilities before inoculation, and to the reference 2 (R2) reactor, containing only living granular sludge. All three reactors were fed mineral medium containing 3 to 57 μM PCE, 2 mM formate, and 0.5 mM acetate and were operated under sterile conditions. In the test reactor, an average of 93% (mole/mole) of the effluent chloroethenes was dichloroethene (DCE), compared to 99% (mole/mole) in the R1 reactor. The R2 reactor, with no inoculation, produced only trichloroethene (TCE), averaging 43% (mole/mole) of the effluent chloroethenes. No dechlorination of PCE was observed in an abiotic control consisting of sterile granules without inoculum. During continuous operation with stepwise-reduced hydraulic retention times (HRTs), both the test reactor and the R1 reactor showed conversion of PCE to DCE, even at HRTs much lower than the reciprocal maximum specific growth rate of D. multivorans, indicating that this bacterium was immobilized in the living and autoclaved granular sludge. In contrast, the R2 reactor, with no inoculation of D. multivorans, only converted PCE to TCE under the same conditions. Immobilization could be confirmed by using fluorescein-labeled antibody probes raised against D. multivorans. In granules obtained from the R1 reactor, D. multivorans grew mainly in microcolonies located in the centers of the granules, while in the test reactor, the bacterium mainly covered the surfaces of granules. PMID:9572963

  5. Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes

    Directory of Open Access Journals (Sweden)

    Delgado Anca G

    2012-09-01

    Full Text Available Abstract Background Buffering to achieve pH control is crucial for successful trichloroethene (TCE anaerobic bioremediation. Bicarbonate (HCO3− is the natural buffer in groundwater and the buffer of choice in the laboratory and at contaminated sites undergoing biological treatment with organohalide respiring microorganisms. However, HCO3− also serves as the electron acceptor for hydrogenotrophic methanogens and hydrogenotrophic homoacetogens, two microbial groups competing with organohalide respirers for hydrogen (H2. We studied the effect of HCO3− as a buffering agent and the effect of HCO3−-consuming reactions in a range of concentrations (2.5-30 mM with an initial pH of 7.5 in H2-fed TCE reductively dechlorinating communities containing Dehalococcoides, hydrogenotrophic methanogens, and hydrogenotrophic homoacetogens. Results Rate differences in TCE dechlorination were observed as a result of added varying HCO3− concentrations due to H2-fed electrons channeled towards methanogenesis and homoacetogenesis and pH increases (up to 8.7 from biological HCO3− consumption. Significantly faster dechlorination rates were noted at all HCO3− concentrations tested when the pH buffering was improved by providing 4-(2-hydroxyethyl-1-piperazineethanesulfonic acid (HEPES as an additional buffer. Electron balances and quantitative PCR revealed that methanogenesis was the main electron sink when the initial HCO3− concentrations were 2.5 and 5 mM, while homoacetogenesis was the dominant process and sink when 10 and 30 mM HCO3− were provided initially. Conclusions Our study reveals that HCO3− is an important variable for bioremediation of chloroethenes as it has a prominent role as an electron acceptor for methanogenesis and homoacetogenesis. It also illustrates the changes in rates and extent of reductive dechlorination resulting from the combined effect of electron donor competition stimulated by HCO3− and the changes in pH exerted by

  6. Field Evidence for Co-Metabolism of Trichloroethene Stimulated by Addition of Electron Donor to Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Mark E.; Brodie, Eoin L.; Radtke, Corey W.; Bill, Markus; Delwiche, Mark E.; Lee, M. Hope; Swift, Dana L.; Colwell, Frederick S.

    2010-05-17

    For more than 10 years, electron donor has been injected into the Snake River aquifer beneath the Test Area North site of the Idaho National Laboratory for the purpose of stimulating microbial reductive dechlorination of trichloroethene (TCE) in groundwater. This has resulted in significant TCE removal from the source area of the contaminant plume and elevated dissolved CH4 in the groundwater extending 250 m from the injection well. The delta13C of the CH4 increases from 56o/oo in the source area to -13 o/oo with distance from the injection well, whereas the delta13C of dissolved inorganic carbon decreases from 8 o/oo to -13 o/oo, indicating a shift from methanogenesis to methane oxidation. This change in microbial activity along the plume axis is confirmed by PhyloChip microarray analyses of 16S rRNA genes obtained from groundwater microbial communities, which indicate decreasing abundances of reductive dechlorinating microorganisms (e.g., Dehalococcoides ethenogenes) and increasing CH4-oxidizing microorganisms capable of aerobic co-metabolism of TCE (e.g., Methylosinus trichosporium). Incubation experiments with 13C-labeled TCE introduced into microcosms containing basalt and groundwater from the aquifer confirm that TCE co-metabolism is possible. The results of these studies indicate that electron donor amendment designed to stimulate reductive dechlorination of TCE may also stimulate co-metabolism of TCE.

  7. RNA-Seq Reveals Enhanced Sugar Metabolism in Streptococcus mutans Co-cultured with Candida albicans within Mixed-Species Biofilms

    Science.gov (United States)

    He, Jinzhi; Kim, Dongyeop; Zhou, Xuedong; Ahn, Sang-Joon; Burne, Robert A.; Richards, Vincent P.; Koo, Hyun

    2017-01-01

    Early childhood caries (ECC), which can lead to rampant tooth-decay that is painful and costly to treat, is one of the most prevalent infectious diseases affecting children worldwide. Previous studies support that interactions between Streptococcus mutans and Candida albicans are associated with the pathogenesis of ECC. The presence of Candida enhances S. mutans growth, fitness and accumulation within biofilms in vitro, although the molecular basis for these behaviors is undefined. Using an established co-cultivation biofilm model and RNA-Seq, we investigated how C. albicans influences the transcriptome of S. mutans. The presence of C. albicans dramatically altered gene expression in S. mutans in the dual-species biofilm, resulting in 393 genes differentially expressed, compared to mono-species biofilms of S. mutans. By Gene Ontology analysis, the majority of up-regulated genes were related to carbohydrate transport and metabolic/catabolic processes. KEGG pathway impact analysis showed elevated pyruvate and galactose metabolism, suggesting that co-cultivation with C. albicans influences carbohydrate utilization by S. mutans. Analysis of metabolites confirmed the increases in carbohydrate metabolism, with elevated amounts of formate in the culture medium of co-cultured biofilms. Moreover, co-cultivation with C. albicans altered transcription of S. mutans signal transduction (comC and ciaRH) genes associated with fitness and virulence. Interestingly, the expression of genes for mutacins (bacteriocins) and CRISPR were down-regulated. Collectively, the data provide a comprehensive insight into S. mutans transcriptomic changes induced by C. albicans, and offer novel insights into how bacterial–fungal interactions may enhance the severity of dental caries. PMID:28642749

  8. RNA-Seq Reveals Enhanced Sugar Metabolism in Streptococcus mutans Co-cultured with Candida albicans within Mixed-Species Biofilms

    Directory of Open Access Journals (Sweden)

    Jinzhi He

    2017-06-01

    Full Text Available Early childhood caries (ECC, which can lead to rampant tooth-decay that is painful and costly to treat, is one of the most prevalent infectious diseases affecting children worldwide. Previous studies support that interactions between Streptococcus mutans and Candida albicans are associated with the pathogenesis of ECC. The presence of Candida enhances S. mutans growth, fitness and accumulation within biofilms in vitro, although the molecular basis for these behaviors is undefined. Using an established co-cultivation biofilm model and RNA-Seq, we investigated how C. albicans influences the transcriptome of S. mutans. The presence of C. albicans dramatically altered gene expression in S. mutans in the dual-species biofilm, resulting in 393 genes differentially expressed, compared to mono-species biofilms of S. mutans. By Gene Ontology analysis, the majority of up-regulated genes were related to carbohydrate transport and metabolic/catabolic processes. KEGG pathway impact analysis showed elevated pyruvate and galactose metabolism, suggesting that co-cultivation with C. albicans influences carbohydrate utilization by S. mutans. Analysis of metabolites confirmed the increases in carbohydrate metabolism, with elevated amounts of formate in the culture medium of co-cultured biofilms. Moreover, co-cultivation with C. albicans altered transcription of S. mutans signal transduction (comC and ciaRH genes associated with fitness and virulence. Interestingly, the expression of genes for mutacins (bacteriocins and CRISPR were down-regulated. Collectively, the data provide a comprehensive insight into S. mutans transcriptomic changes induced by C. albicans, and offer novel insights into how bacterial–fungal interactions may enhance the severity of dental caries.

  9. Co-Metabolic Degradation of β-Cypermethrin and 3-Phenoxybenzoic Acid by Co-Culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4.

    Science.gov (United States)

    Zhao, Jiayuan; Chi, Yuanlong; Xu, Yingchao; Jia, Dongying; Yao, Kai

    2016-01-01

    The degradation efficiency of organic contaminants and their associated metabolites by co-culture of microbes is mainly limited by toxic intermediates from co-metabolic degradation. In this study, we investigated the degradation of β-cypermethrin (β-CY) and 3-phenoxybenzoic acid (3-PBA) by co-culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4, as well as the influences of β-CY and 3-PBA metabolites on their degradation and the growth of strains B-1 and M-4. Our results indicated that 100 mg/L β-CY was degraded by 78.85%, and 3-PBA concentration was 0.05 mg/L after 72 h. Compared with using only strain B-1, the half-life (t1/2) of β-CY by using the two strains together was shortened from 84.53 h to 38.54 h, and the yield coefficient of 3-PBA was decreased from 0.846 to 0.001. At 100 mg/L of 3-PBA and gallic acid, β-CY and 3-PBA degradation were only 17.68% and 40.45%, respectively. As the toxic intermediate derived from co-metabolic degradation of β-CY by strain B-1, 3-PBA was efficiently degraded by strain M-4, and gallic acid, as the toxic intermediate from co-metabolic degradation of 3-PBA by strain M-4, was efficiently degraded by strain B-1. These results provided a promising approach for efficient biodegradation of β-CY and 3-PBA.

  10. Co-Metabolic Degradation of β-Cypermethrin and 3-Phenoxybenzoic Acid by Co-Culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4.

    Directory of Open Access Journals (Sweden)

    Jiayuan Zhao

    Full Text Available The degradation efficiency of organic contaminants and their associated metabolites by co-culture of microbes is mainly limited by toxic intermediates from co-metabolic degradation. In this study, we investigated the degradation of β-cypermethrin (β-CY and 3-phenoxybenzoic acid (3-PBA by co-culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4, as well as the influences of β-CY and 3-PBA metabolites on their degradation and the growth of strains B-1 and M-4. Our results indicated that 100 mg/L β-CY was degraded by 78.85%, and 3-PBA concentration was 0.05 mg/L after 72 h. Compared with using only strain B-1, the half-life (t1/2 of β-CY by using the two strains together was shortened from 84.53 h to 38.54 h, and the yield coefficient of 3-PBA was decreased from 0.846 to 0.001. At 100 mg/L of 3-PBA and gallic acid, β-CY and 3-PBA degradation were only 17.68% and 40.45%, respectively. As the toxic intermediate derived from co-metabolic degradation of β-CY by strain B-1, 3-PBA was efficiently degraded by strain M-4, and gallic acid, as the toxic intermediate from co-metabolic degradation of 3-PBA by strain M-4, was efficiently degraded by strain B-1. These results provided a promising approach for efficient biodegradation of β-CY and 3-PBA.

  11. Photocatalytic dechlorination of PCB 138 using leuco-methylene blue and visible light; reaction conditions and mechanisms

    International Nuclear Information System (INIS)

    Izadifard, Maryam; Langford, Cooper H.; Achari, Gopal

    2010-01-01

    A study of dechlorination of PCB 138, under visible light employing methylene blue (MB) and triethylamine (TEA) in acetonitrile/water has been conducted to investigate the details of the mechanism of dechlorination and to determine the efficiency of the process for this representative congener. Two other amines, N-methyldiethanolamine (MEDA) and (triethanolamine) TEOA also replaced TEA and two other solvents, methanol and ethanol replacing acetonitrile were examined for effects on reaction rates. The results show that PCB 138 can be dechlorinated efficiently in this photocatalytic reaction. Clarifying ambiguities in several previous reports, the reduced form of MB, leuco-methylene blue (LMB) was identified as responsible for the photoreaction with its excited state transferring an electron to PCBs; oxidized LMB (i.e. MB) is reduced back to LMB by the excess amine present. The reaction depends on a cycle driven by the amine as a sacrificial electron donor. MEDA proved to be the most efficient electron donor; apparently in consequence of the most favourable steady state concentration of LMB. Methanol and ethanol may be used to replace acetonitrile with little change in the efficiency of the reaction.

  12. Monocrotophos induces the expression and activity of xenobiotic metabolizing enzymes in pre-sensitized cultured human brain cells.

    Directory of Open Access Journals (Sweden)

    Vinay K Tripathi

    Full Text Available The expression and metabolic profile of cytochrome P450s (CYPs is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y and glial (U373-MG cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC, cyclophosphamide (CPA, ethanol and known neurotoxicant- monocrotophos (MCP, a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against

  13. Effects of pentylenetetrazole and glutamate on metabolism of [U-(13)C]glucose in cultured cerebellar granule neurons.

    Science.gov (United States)

    Eloqayli, Haytham; Qu, Hong; Unsgård, Geirmund; Sletvold, Olav; Hadidi, Hakam; Sonnewald, Ursula

    2002-02-01

    This study was performed to analyze the effects of glutamate and the epileptogenic agent pentylenetetrazole (PTZ) on neuronal glucose metabolism. Cerebellar granule neurons were incubated for 2 h in medium containing 3 mM [U-(13)C]glucose, with and without 0.25 mM glutamate and/or 10 mM PTZ. In the presence of PTZ, decreased glucose consumption with unchanged lactate release was observed, indicating decreased glucose oxidation. PTZ also slowed down tricarboxylic acid (TCA) cycle activity as evidenced by the decreased amounts of labeled aspartate and [1,2-(13)C]glutamate. When glutamate was present, glucose consumption was also decreased. However, the amount of glutamate, derived from [U-(13)C]glucose via the first turn of the TCA cycle, was increased. The decreased amount of [1,2-(13)C]glutamate, derived from the second turn in the TCA cycle, and increased amount of aspartate indicated the dilution of label due to the entrance of unlabeled glutamate into TCA cycle. In the presence of glutamate plus PTZ, the effect of PTZ was enhanced by glutamate. Labeled alanine was detected only in the presence of glutamate plus PTZ, which indicated that oxaloacetate was a better amino acid acceptor than pyruvate. Furthermore, there was also evidence for intracellular compartmentation of oxaloacetate metabolism. Glutamate and PTZ caused similar metabolic changes, however, via different mechanisms. Glutamate substituted for glucose as energy substrate in the TCA cycle, whereas, PTZ appeared to decrease mitochondrial activity.

  14. D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica.

    Science.gov (United States)

    Ochoa-Estopier, Abril; Guillouet, Stéphane E

    2014-01-20

    Lipid accumulation in oleaginous yeasts is triggered by nutrient imbalance in the culture medium between the carbon source in excess and the nitrogen source in limiting concentration. However Yarrowia lipolytica when cultivated on glucose as the sole carbon source, mainly produces citric acid upon nitrogen limitation over lipid accumulation (only 5-10% triacylglycerol). Therefore for developing bioprocess for the production of triacylglycerol from renewable carbon source as glucose it is of first importance to control this imbalance in order to avoid citric acid production during TAG accumulation. Using D-stat cultivation system, where the N/C was linearly decreased using a constant change rate we were able to identify the N/C ratio inducing TAG accumulation (0.085NmolCmol(-1)) and citric acid (0.021NmolCmol(-1)). We therefore demonstrated that it was possible to accumulate lipids without excretion citric acid as long as the N/C was within this indicated range. Moreover enzyme specific activities measurement during the D-stat indicated that ATP-citrate lyase, malic enzyme and acetyl-coA carboxylase were strongly induced at the onset of lipid accumulation and showed different patterns when citric acid was excreted. Our results give relevant information for future industrial bioprocess development concerning the production of lipids using renewable carbohydrate substrates as an alternative way to produce synthons for fuel or chemical industry. By controlling the N/C over the fermentation process on glucose Y. lipolytica can accumulate lipids without excreting citric acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Oxalate metabolism in liquid cultures of Ceriporiopsis subvermispora : a possible pathway for extracellular H2O2 production

    Science.gov (United States)

    Ulises. Urzua; Claudio. Aguilar; Philip J. Kersten; Rafael. Vicuna

    1998-01-01

    In this work, the source of extracellular hydrogen peroxide in cultures of Ceriporiopsis subvermispora was investigated. A thorough search for the presence in the growth medium of oxidases known to be produced by other fungi gave negative results. We therefore explored the prospect that H2O2 might arise from the oxidation of organic acids by MnP. Both oxalate and...

  16. Influence of Dilution Rate on Enzymes of Intermediary Metabolism in Two Freshwater Bacteria Grown in Continuous Culture

    NARCIS (Netherlands)

    Matin, A.; Grootjans, A.; Hogenhuis, H.

    1976-01-01

    Two freshwater bacteria, a Pseudomonas sp. and a Spirillum sp., were grown in continuous culture under steady-state conditions in L-lactate-, succinate-, ammonium- or phosphate-limited media. In Pseudomonas sp., NAD-independent and NAD-dependent L-lactate dehydrogenases, aconitase, isocitrate

  17. Studies on dechlorination of DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) using magnesium/palladium bimetallic system

    International Nuclear Information System (INIS)

    Gautam, Sumit Kumar; Suresh, Sumathi

    2007-01-01

    The aim of our investigation was to compare the rates of dechlorination of DDT using Mg 0 /Pd 4+ system in two different reaction phases, namely, water-acetone and 0.05% biosurfactant in water. Since palladium is expensive and its toxicity effects are not well known we also examined the reuse efficiency of Pd 0 immobilized on alumina for dechlorinating DDT. Studies on the dechlorination of DDT in water-acetone (1:1, v/v) and 0.05% biosurfactant phases revealed that the reaction followed second order kinetics and rate of reaction is dependent upon both initial concentrations of the target compound and Mg 0 /Pd 4+ . The presence of acid enhanced the rate of reaction by providing protons and preventing passivation of metal that occurs due to deposition of magnesium hydroxide. GC-MS analyses revealed the formation of completely dechlorinated hydrocarbon skeleton of DDT namely, diphenylethane (DPE), as the end product in both reaction phases (water-acetone and 0.05% biosurfactant in water) thereby implying the removal of all five chlorine atoms (three alkyl and two aryl) of DDT. The optimum ratio of water and acetone to facilitate successful dechlorination reaction was found to be 9:1. Results suggested that salt form (K 2 PdCl 6 ) of palladium had higher potential to dechlorinate DDT as compared to pellet (Pd 0 -alumina) form (efficiencies of 95 and 36%, respectively, for 100 ppm initial concentration of DDT). We noted that Pd 0 -alumina pellets could be reused at least four times for successful dechlorination of DDT provided Mg 0 granules are present in sufficient quantity. Technical grade DDT (50 ppm) containing significant amounts of DDD was dechlorinated almost completely by the Mg 0 /Pd 4+ (10 mg/0.2 mg/ml) within 1 h in water-biosurfactant phase. Our studies reveal that Mg/Pd system is a promising option due to its high reactivity and its ability to achieve complete dechlorination of DDT. This bimetallic system may be useful for designing indigenous permeable

  18. Species diversity and metabolic impact of the microbiota are low in spontaneously acidified Belgian sausages with an added starter culture of Staphylococcus carnosus.

    Science.gov (United States)

    Janssens, M; Myter, N; De Vuyst, L; Leroy, F

    2012-04-01

    Quality of fermented sausages is affected by acidifying lactic acid bacteria (LAB) and colour- and flavour-promoting coagulase-negative staphylococci (CNS), whether or not used as starter culture. Artisan fermented sausages are often perceived as superior to industrial variants, partially because of the specific microbiota due to spontaneous acidification, which may be considered as an artisan characteristic. Therefore, two kinds of spontaneously acidified Belgian sausages were prepared (Belgian-type salami and Boulogne sausage), but with addition of a Staphylococcus carnosus culture. The Belgian-type salami was made from pork and beef, whereas the Boulogne sausage contained pork and horse meat. In all cases, Lactobacillus sakei was the dominant LAB species present on the raw materials and during fermentation, whereas enterococci remained present in the background. Enterobacteriaceae vanished after fermentation. The CNS species diversity on the raw materials was large and differed between the pork, beef, and horse meat. Nevertheless, this species diversity was annihilated during fermentation by the added S. carnosus culture. The volatiles fraction was mainly composed of aldehydes that originated from lipid oxidation and spices-derived compounds. Aromatic compounds that are typically associated to CNS activity, such as end-products from the metabolism of branched-chain amino acids, were not present in the Belgian-type salami and only marginally present in the Boulogne sausage. In conclusion, spontaneous acidification of Belgian-type fermented sausages leads to dominance of L. sakei and is no guarantee for bacterial contribution to the aroma profile when S. carnosus is added as a starter culture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Comparison of an assay for Dehalococcoides DNA and a microcosm study in predicting reductive dechlorination of chlorinated ethenes in the field

    International Nuclear Information System (INIS)

    Lu Xiaoxia; Wilson, John T.; Kampbell, Donald H.

    2009-01-01

    The study aims to compare the detection of 16S rRNA gene of Dehalococcoides species and the microcosm study for biotransformation in predicting reductive dechlorination of chlorinated ethenes in ground water at hazardous waste sites. A total of 72 ground water samples were collected from 12 PCE or TCE contaminated sites in the United States. The samples were analyzed and used to construct microcosms in the laboratory. The results showed that the presence of Dehalococcoides DNA was well associated with dechlorination to ethene in the field. Nearly half of the wells where Dehalococcoides DNA was detected had ethene as a dechlorination end product. In comparison, for ground water samples of 16 wells where ethene was detected, ethene was produced in 11 of the corresponding microcosms. For most microcosms, during two years of incubation, dechlorination was less extensive than that observed in the field. - Positive results of the assay for Dehalococcoides DNA and the microcosm study may suggest that reductive dechlorination is occurring in the field

  20. Diverse Reductive Dehalogenases Are Associated with Clostridiales-Enriched Microcosms Dechlorinating 1,2-Dichloroethane

    KAUST Repository

    Merlino, Giuseppe

    2015-03-06

    The achievement of successful biostimulation of active microbiomes for the cleanup of a polluted site is strictly dependent on the knowledge of the key microorganisms equipped with the relevant catabolic genes responsible for the degradation process. In this work, we present the characterization of the bacterial community developed in anaerobic microcosms after biostimulation with the electron donor lactate of groundwater polluted with 1,2-dichloroethane (1,2-DCA). Through a multilevel analysis, we have assessed (i) the structural analysis of the bacterial community; (ii) the identification of putative dehalorespiring bacteria; (iii) the characterization of functional genes encoding for putative 1,2-DCA reductive dehalogenases (RDs). Following the biostimulation treatment, the structure of the bacterial community underwent a notable change of the main phylotypes, with the enrichment of representatives of the order Clostridiales . Through PCR targeting conserved regions within known RD genes, four novel variants of RDs previously associated with the reductive dechlorination of 1,2-DCA were identified in the metagenome of the Clostridiales-dominated bacterial community.

  1. Diverse Reductive Dehalogenases Are Associated with Clostridiales-Enriched Microcosms Dechlorinating 1,2-Dichloroethane

    KAUST Repository

    Merlino, Giuseppe; Balloi, Annalisa; Marzorati, Massimo; Mapelli, Francesca; Rizzi, Aurora; Lavazza, Davide; de Ferra, Francesca; Carpani, Giovanna; Daffonchio, Daniele

    2015-01-01

    The achievement of successful biostimulation of active microbiomes for the cleanup of a polluted site is strictly dependent on the knowledge of the key microorganisms equipped with the relevant catabolic genes responsible for the degradation process. In this work, we present the characterization of the bacterial community developed in anaerobic microcosms after biostimulation with the electron donor lactate of groundwater polluted with 1,2-dichloroethane (1,2-DCA). Through a multilevel analysis, we have assessed (i) the structural analysis of the bacterial community; (ii) the identification of putative dehalorespiring bacteria; (iii) the characterization of functional genes encoding for putative 1,2-DCA reductive dehalogenases (RDs). Following the biostimulation treatment, the structure of the bacterial community underwent a notable change of the main phylotypes, with the enrichment of representatives of the order Clostridiales . Through PCR targeting conserved regions within known RD genes, four novel variants of RDs previously associated with the reductive dechlorination of 1,2-DCA were identified in the metagenome of the Clostridiales-dominated bacterial community.

  2. Characteristics of dechlorination for LiCl salt by the surface temperature-controlled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In Hak [Chungnam National University, Daejeon (Korea, Republic of); Park, Hwan Seo; Ahn, Soo Na; Eun, Hee Chul; Kim, In Tae; Cho, Yong Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Molten salt waste is generated from a pyrochemical process to separate reusable U and TRU elements from a spent nuclear fuel. The spent lithium chloride waste is highly soluble in water and contains volatile radioactive elements such as Cs. However, these wastes are difficult to directly immobilize into durable matrix such as glass or ceramic wasteform for final disposal. ANL(Argonne National Laboratory) suggested the conversion of metal chloride into a sodalite for the immobilization of a chloride waste, glass-bonded sodalite, which was fabricated at about 915 .deg. C after mixing the salt-loaded zeolite and borosilicate glass powder. Although this wasteform shows high leach-resistance, the waste volume greatly increases. The previous study was to treat metal chloride wastes by using SAP(SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}) materials. By using this method, the final waste volume reduced and leach-resistance was good. In this study, characteristics of dechlorination reaction of LiCl with an inorganic composite, SAP, was investigated by using a specific surface temperature-controlled reactor

  3. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hui [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Shi, Xiangyang, E-mail: xshi@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); CQM - Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal (Portugal)

    2012-04-15

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  4. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Ma, Hui; Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan; Shi, Xiangyang

    2012-01-01

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  5. Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures

    DEFF Research Database (Denmark)

    Kolko, M; DeCoster, M A; de Turco, E B

    1996-01-01

    glutamate and sPLA2 from bee venom. sPLA2, at concentrations eliciting low neurotoxicity (acid into triacylglycerols. Free [3H]arachidonic acid accumulated at higher enzyme concentrations......, from Taipan snake venom. The NMDA receptor antagonist MK-801 blocked glutamate effects and partially inhibited sPLA2 OS2 but not sPLA2 from bee venom-induced arachidonic acid release. Thus, the synergy with glutamate and very low concentrations of exogenously added sPLA2 suggests a potential role......Secretory and cytosolic phospholipases A2 (sPLA2 and cPLA2) may contribute to the release of arachidonic acid and other bioactive lipids, which are modulators of synaptic function. In primary cortical neuron cultures, neurotoxic cell death and [3H]arachidonate metabolism was studied after adding...

  6. Effects of aluminum on growth, polyamine metabolism, and inorganic ions in suspension cultures of red spruce (Picea rubens)

    Science.gov (United States)

    Rakesh Minocha; Walter C. Shortle; Daniel J. Jr. Coughin; Subhash C. Minocha

    1996-01-01

    The influence of age of red spruce (Picea rubens Sarg.) cell suspensions on aluminum (Al) effects was studied by adding AICI3 (0.2, 0.5, and 1.0 mM) to the media on each day of a 7-day culture period and analyzing for changes in total cell mass, polyamines, arginine decarboxylase activity, and inorganic ions after 24 h of...

  7. Metabolism of progesterone-4-14C in organ cultures of fetal adrenal glands in the human being

    International Nuclear Information System (INIS)

    Weber, S.

    1979-01-01

    1. In 72 hours of incubation in two subsequent cultures, progesterone-4- 14 C was converted into different corticosteroids and androgenes by using explants of the adrenal glands in organ cultures, which were taken from a male fetus with a crown-to-rump length of 8.5 cm. In the most cases the water-dilutable metabolites are steroidsulfates. 2. The following individual progesterone metabolites were found: 17α-hydroxyprogesterone-4- 14 C, 16α-hydroxyprogesterone-4- 14 C, corticosterone-4- 14 C, cortisole-4- 14 C, cortisone-4- 14 C, androstendione-4- 14 C, and 11β-hydroxyandrostendione-4- 14 C. 3. These steroides let appear possible the presence and efficacy of the following enzyme systems: 17α-hydroxylase, 16α-hydroxylase, 21-hydroxylase, 11β-hydroxylase, 11β-hydroxysteroide-dehydrogenase, and Csub(17-20) desmolase. 4. Calculations of our dates by the analogue computer, which are present by now, apparently seem to render possible the kinetic of the corticosteroide biosynthesis in the tissue of fetal adrenal glands by organ cultures, because under the present conditions incubations can be carried out for considerably longer periods than by cell fractions, cell homogenates, and organ sections. (orig.) [de

  8. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents

    International Nuclear Information System (INIS)

    Zaccone, Eric J.; Goldsmith, W. Travis; Shimko, Michael J.; Wells, J.R.; Schwegler-Berry, Diane; Willard, Patsy A.; Case, Shannon L.; Thompson, Janet A.; Fedan, Jeffrey S.

    2015-01-01

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance, we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity. We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (R t ) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na + transport, without affecting Cl − transport or Na + ,K + -pump activity. R t was unaffected. Na + transport recovered 18 h after exposure. Concentrations (100–360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. - Highlights: • Butter flavoring vapor effects on human cultured airway epithelium were studied. • Na transport was reduced by a 6-h exposure to 25 ppm diacetyl and 2,3-pentanedione. • Na transport recovered 18 h after exposure. • > 60 ppm transepithelial voltage and resistance were abolished; cells were damaged. • Cells metabolized diacetyl and 2,3-pentanedione into acetoin and 2-OH-3-pentanone.

  9. Use of cultured cells with defects of citrulline metabolism in diagnosis and in the study of intercellular communication

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, J S

    1985-01-01

    Citrullinemia and argininosuccinic aciduria are two disorders resulting from defects in two consecutive enzymes of the urea cycle, argininosuccinate synthetase and argininosuccinate lyase. Fibroblast cell lines were derived from patients with these disorders and the diagnoses, which had been made on the basis of amino acid levels in plasma and urine, were confirmed by demonstrating that the cell lines were unable to incorporate /sup 14/C-citrulline into protein. DNA from the argininosuccinate synthetase-deficient (ASS-) cells was analysed by restriction enzyme digestion and hybridisation to a cDNA probe which had been cloned from human argininosuccinate synthetase mRNA. No defect in the patient's DNA could be demonstrated, indicating that no major deletions in the argininosuccinate synthetase genes were present in this patient. Co-cultures of the ASS- and argininosuccinate lyase-deficient (ASL-) fibroblasts were able to incorporate /sup 14/C-citrulline into protein. Co-cultures of ASS- and ASL-cells were used as an assay system for measuring intercellular junctional communication. This allowed quantitation of the effects of pH and extra-cellular divalent cations on junctional communication. Tumor promoters such as phorbol esters and organochlorine pesticides have been reported to inhibit intercellular junctional communication in other systems, and this inhibitory activity may be related to the mechanism of tumor promotion. Retinoic acid and other retinoids also inhibited junctional communication, and the inhibitory effects of retinoic acid and TPA were additive. It is concluded that co-cultures of ASS- and ASL-cells constitute a useful system for providing quantitative measurements of intercellular junctional communication under a wide range of experimental conditions.

  10. The use of cultured cells with defects of citrulline metabolism in diagnosis and in the study of intercellular communication

    International Nuclear Information System (INIS)

    Davidson, J.S.

    1985-02-01

    Citrullinemia and argininosuccinic aciduria are two disorders resulting from defects in two consecutive enzymes of the urea cycle, argininosuccinate synthetase and argininosuccinate lyase. Fibroblast cell lines were derived from patients with these disorders and the diagnoses, which had been made on the basis of amino acid levels in plasma and urine, were confirmed by demonstrating that the cell lines were unable to incorporate 14 C-citrulline into protein. DNA from the argininosuccinate synthetase-deficient (ASS-) cells was analysed by restriction enzyme digestion and hybridisation to a cDNA probe which had been cloned from human argininosuccinate synthetase mRNA. No defect in the patient's DNA could be demonstrated, indicating that no major deletions in the argininosuccinate synthetase genes were present in this patient. Co-cultures of the ASS- and argininosuccinate lyase-deficient (ASL-) fibroblasts were able to incorporate 14 C-citrulline into protein. Co-cultures of ASS- and ASL-cells were used as an assay system for measuring intercellular junctional communication. This allowed quantitation of the effects of pH and extra-cellular divalent cations on junctional communication. Tumor promoters such as phorbol esters and organochlorine pesticides have been reported to inhibit intercellular junctional communication in other systems, and this inhibitory activity may be related to the mechanism of tumor promotion. Retinoic acid and other retinoids also inhibited junctional communication, and the inhibitory effects of retinoic acid and TPA were additive. It is concluded that co-cultures of ASS- and ASL-cells constitute a useful system for providing quantitative measurements of intercellular junctional communication under a wide range of experimental conditions

  11. Differential metabolism and leakage of protein in an inherited cataract and a normal lens cultured with ouabain

    International Nuclear Information System (INIS)

    Piatigorsky, J.; Fukui, H.N.; Kinoshita, J.H.

    1978-01-01

    Ocular lenses in Nakano mice showed marked changes in synthesis, degradation and leakage of protein during cataractogenesis. The cataract-associated changes included the differential lowering of crystalline synthesis, the cleavage of crystallin polypeptides to lower molecular weight forms and the leakage of crystallins from cultured lenses. Ouabain treatment of normal lenses induced these alterations, suggesting that changes in the intracellular levels of Na + and K + affect the anabolism and catabolism of protein during cataract formation. 35 S-methionine was used during the course of the experiments as a method of protein identification. (author)

  12. Liquid chromatography-mass spectrometry for metabolic footprinting of co-cultures of lactic and propionic acid bacteria

    DEFF Research Database (Denmark)

    Honore, Anders H.; Thorsen, Michael; Skov, Thomas

    2013-01-01

    (UPLC) coupled to high-resolution mass spectrometry (MS) via electrospray ionisation (ESI) operated in both positive and negative modes is regarded as the optimum instrumental technique. The applicability of a range of liquid chromatographic techniques ranging from ion-pair (IPC) and hydrophilic...... could be a potent approach to elucidation of the mechanism. The purpose of this review is to discuss the two pre-requisites for such a study-the compound classes expected in the co-cultures, and on the basis of these, the most suitable analytical technique(s). Ultrahigh-performance liquid chromatography...

  13. The oxidative p-dichlorobenzene dechlorinating in the presence of copper (ΙΙ complexes and nitrogen (ΙΙ, ΙV oxides

    Directory of Open Access Journals (Sweden)

    Valentina Yemelyanova

    2012-12-01

    Full Text Available The results of dechlorination in the solution CuCl2–TBP–NaNO2–О2–Н2О kinetics research are presented in the article. All system components influence to the dechlorination process is studied and quantitatively described. The composition of copper intermediate complexes participating in reaction is studied by the instrumentality of UV-spectroscopy. Established part of binuclear copper complexes in the catalytic intermediate complex constants of formation were estimated and compared with the kinetic and spectrophotometric methods. The composition of the intermediate complexes responsible for process is defined, the mechanism scheme is offered, the p-dichlorobenzene dechlorination limiting stage including redox-disintegration of the intermediate complex consisting of dimeric complex of copper (II, I chloride, nitrogen oxide and p-dichlorobenzene is defined.

  14. I. Lipid metabolism stimulated by altered intracellular calcium in cultured fibroblasts. II. Regulation of the activity of rat adipose tissue lipoprotein lipase

    International Nuclear Information System (INIS)

    Chang Wang, Huei-Hsiang Lisa.

    1988-01-01

    The cell killing process of 3T3 Swiss mouse fibroblasts stimulated by Ca 2+ plus A23187, a Ca 2+ ionophore has been studied. The aim of this research is to understand the biochemical mechanism of this process, i.e, to elucidate the step involved and to characterize the enzymes involved with each steps in the lipid metabolism stimulated in cultured fibroblasts undergoing a toxic death response. Parallel 3T3 cultures biosynthetically labeled with lipid precursors were examined under Ca 2+ -mediated killing conditions. Labeled lipids were extracted and analyzed by thin-layer chromatography and autoradiography. Evidence for activation of a phosphatidylinositol-specific phospholipase C has been obtained in injured 3T3 cells labeled with [ 3 H]glycerol and [ 3 H]inositol. To simplify the system for studying the lipoprotein lipase reaction, our laboratory prepared the chromophore containing a substrate: 1,2-dipalmitoyl-3-β-2-furylacryloyltriacylglycerol (DPFATG). By using this artificial lipid we could readily investigate the lipoprotein lipase reactions, since the absorbance change directly represents the hydrolysis of the chromophoric side chain of the substrate

  15. Metabolic profiling of yeast culture using gas chromatography coupled with orthogonal acceleration accurate mass time-of-flight mass spectrometry: application to biomarker discovery.

    Science.gov (United States)

    Kondo, Elsuida; Marriott, Philip J; Parker, Rhiannon M; Kouremenos, Konstantinos A; Morrison, Paul; Adams, Mike

    2014-01-07

    Yeast and yeast cultures are frequently used as additives in diets of dairy cows. Beneficial effects from the inclusion of yeast culture in diets for dairy mammals have been reported, and the aim of this study was to develop a comprehensive analytical method for the accurate mass identification of the 'global' metabolites in order to differentiate a variety of yeasts at varying growth stages (Diamond V XP, Yea-Sacc and Levucell). Microwave-assisted derivatization for metabolic profiling is demonstrated through the analysis of differing yeast samples developed for cattle feed, which include a wide range of metabolites of interest covering a large range of compound classes. Accurate identification of the components was undertaken using GC-oa-ToFMS (gas chromatography-orthogonal acceleration-time-of-flight mass spectrometry), followed by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) for data reduction and biomarker discovery. Semi-quantification (fold changes in relative peak areas) was reported for metabolites identified as possible discriminative biomarkers (p-value 2), including D-ribose (four fold decrease), myo-inositol (five fold increase), L-phenylalanine (three fold increase), glucopyranoside (two fold increase), fructose (three fold increase) and threitol (three fold increase) respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyanobacterium Pseudanabaena galeata.

    Science.gov (United States)

    Kakimoto, Masayuki; Ishikawa, Toshiki; Miyagi, Atsuko; Saito, Kazuaki; Miyazaki, Motonobu; Asaeda, Takashi; Yamaguchi, Masatoshi; Uchimiya, Hirofumi; Kawai-Yamada, Maki

    2014-02-15

    A volatile metabolite, 2-methylisoborneol (2-MIB), causes an unpleasant taste and odor in tap water. Some filamentous cyanobacteria produce 2-MIB via a two-step biosynthetic pathway: methylation of geranyl diphosphate (GPP) by methyl transferase (GPPMT), followed by the cyclization of methyl-GPP by monoterpene cyclase (MIBS). We isolated the genes encoding GPPMT and MIBS from Pseudanabaena galeata, a filamentous cyanobacterium known to be a major causal organism of 2-MIB production in Japanese lakes. The predicted amino acid sequence showed high similarity with that of Pseudanabaena limnetica (96% identity in GPPMT and 97% identity in MIBS). P. galeata was cultured at different temperatures to examine the effect of growth conditions on the production of 2-MIB and major metabolites. Gas chromatograph-mass spectrometry (GC-MS) measurements showed higher accumulation of 2-MIB at 30 °C than at 4 °C or 20 °C after 24 h of culture. Real-time-RT PCR analysis showed that the expression levels of the genes encoding GPPMT and MIBS decreased at 4 °C and increased at 30 °C, compared with at 20 °C. Furthermore, metabolite analysis showed dramatic changes in primary metabolite concentrations in cyanobacteria grown at different temperatures. The data indicate that changes in carbon flow in the TCA cycle affect 2-MIB biosynthesis at higher temperatures. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Cellular metabolism

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Walters, R.A.

    1977-01-01

    Progress is reported on the following research projects: chromatin structure; the use of circular synthetic polydeoxynucleotides as substrates for the study of DNA repair enzymes; human cellular kinetic response following exposure to DNA-interactive compounds; histone phosphorylation and chromatin structure in cell proliferation; photoaddition products induced in chromatin by uv light; pollutants and genetic information transfer; altered RNA metabolism as a function of cadmium accumulation and intracellular distribution in cultured cells; and thymidylate chromophore destruction by water free radicals

  18. Efficient photocatalytic reductive dechlorination of 4-chlorophenol to phenol on {0 0 1}/{1 0 1} facets co-exposed TiO_2 nanocrystals

    International Nuclear Information System (INIS)

    Jiang, Guodong; Wei, Meng; Yuan, Songdong; Chang, Qing

    2016-01-01

    Graphical abstract: - Highlights: • 4-Chlorophenol is dechlorinated over {0 0 1}/{1 0 1} co-exposed TiO_2 nanocrystals. • Photo-electrons are accumulated on {1 0 1} facets due to surface heterojunction. • Fluorine will trap photoelectrons to depress the dechlorination performance. • Sufficient isopropanol promotes the dechlorination activity and selectivity. - Abstract: 4-chlorophenol could be efficiently photoreductively dechlorinated over anatase TiO_2 nanocrystals with co-exposed {0 0 1} and {1 0 1} facets, which were synthesized and further characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Although fluorine could adsorb on {0 0 1} facets to decrease their surface energy, enabling TiO_2 to expose high energy {0 0 1} facets, the surface bonded fluorine might depress the photoreductive dechlorination efficiency of 4-chlorophenol, attributed to the electron trapping role of surface ≡Ti−F groups. Due to the formation of a surface heterojunction between {1 0 1} and {0 0 1} facets in a single TiO_2 nanocrystal, electrons and holes were spontaneously self-separated and selectively migrate to {1 0 1} and {0 0 1} facets, respectively. Electron trapping experiments demonstrated that photogenerated electrons are the responsible for the reductive dechlorinaton of 4-chlorophenol to phenol. To avoid the oxidative degradation of 4-chlorophenol by holes and ensure sufficient electrons to reductively dechlorinate the substrate, moderate scavengers were required in the reaction system and dissolved oxygen, which might deplete electron on TiO_2, also should be removed. With the optimal scavengers, the conversion efficiency of 4-chlorophenol (4-CP) achieved 97.5% and the selectivity for phenol was 92.5%, which were much higher than that of commercial TiO_2 P25.

  19. Efficient photocatalytic reductive dechlorination of 4-chlorophenol to phenol on {0 0 1}/{1 0 1} facets co-exposed TiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Guodong; Wei, Meng; Yuan, Songdong [College of Chemistry and chemical engineering, Hubei Collaborative Innovation Center for High Efficient Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China); Chang, Qing, E-mail: changqinghust@163.com [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074 (China)

    2016-01-30

    Graphical abstract: - Highlights: • 4-Chlorophenol is dechlorinated over {0 0 1}/{1 0 1} co-exposed TiO{sub 2} nanocrystals. • Photo-electrons are accumulated on {1 0 1} facets due to surface heterojunction. • Fluorine will trap photoelectrons to depress the dechlorination performance. • Sufficient isopropanol promotes the dechlorination activity and selectivity. - Abstract: 4-chlorophenol could be efficiently photoreductively dechlorinated over anatase TiO{sub 2} nanocrystals with co-exposed {0 0 1} and {1 0 1} facets, which were synthesized and further characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Although fluorine could adsorb on {0 0 1} facets to decrease their surface energy, enabling TiO{sub 2} to expose high energy {0 0 1} facets, the surface bonded fluorine might depress the photoreductive dechlorination efficiency of 4-chlorophenol, attributed to the electron trapping role of surface ≡Ti−F groups. Due to the formation of a surface heterojunction between {1 0 1} and {0 0 1} facets in a single TiO{sub 2} nanocrystal, electrons and holes were spontaneously self-separated and selectively migrate to {1 0 1} and {0 0 1} facets, respectively. Electron trapping experiments demonstrated that photogenerated electrons are the responsible for the reductive dechlorinaton of 4-chlorophenol to phenol. To avoid the oxidative degradation of 4-chlorophenol by holes and ensure sufficient electrons to reductively dechlorinate the substrate, moderate scavengers were required in the reaction system and dissolved oxygen, which might deplete electron on TiO{sub 2}, also should be removed. With the optimal scavengers, the conversion efficiency of 4-chlorophenol (4-CP) achieved 97.5% and the selectivity for phenol was 92.5%, which were much higher than that of commercial TiO{sub 2} P25.

  20. Dechlorination/Solidification of LiCl waste by using a synthetic inorganic composite with different compositions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Na Young; Cho, In Hak; Park, Hwan Seo; Ahn, Do Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    Waste salt generated from a pyro-processing for the recovery of uranium and transuranic elements has high volatility at vitrification temperature and low compatibility in conventional waste glasses. For this reason, KAERI (Korea Atomic Energy Research Institute) suggested a new method to de-chlorinate waste salt by using an inorganic composite named SAP (SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}). In this study, the de-chlorination behavior of waste salt and the microstructure of consolidated form were examined by adding B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} to the original SAP composition. De-chlorination behavior of metal chloride waste was slightly changed with given compositions, compared with that of original SAP. In the consolidated forms, the phase separation between Si-rich phase and P-rich phase decreases with the amount of Al{sub 2}O{sub 3} or B{sub 2}O{sub 3} as a connecting agent between Si and P-rich phase. The results of PCT (Product Consistency Test) indicated that the leach-resistance of consolidated forms out of reference composition was lowered, even though the leach-resistance was higher than that of EA (Environmental Assessment) glass. From these results, it could be inferred that the change in the content of Al or B in U-SAP affected the microstructure and leach-resistance of consolidated form. Further studies related with correlation between composition and characteristics of wasteform are required for a better understanding.

  1. Enhancement of Degradation and Dechlorination of Trichloroethylene via Supporting Palladium/Iron Bimetallic Nanoparticles onto Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Jianjun Wei

    2016-07-01

    Full Text Available This study is aimed to prevent the agglomeration of Pd/Fe bimetallic nanoparticles and thus improve the efficiency toward degradation and dechlorination of chlorinated organic contaminants. A mesoporous silica with a primary pore diameter of 8.3 nm and a specific surface area of 688 m2/g was prepared and used as the host of Pd/Fe nanoparticles. The Pd/Fe nanoparticles were deposited onto or into the mesoporous silica by reduction of ferrous ion and hexachloropalladate ion in aqueous phase. Batch degradation and dechlorination reactions of trichloroethylene were conducted with initial trichloroethylene concentration of 23.7 mg/L, iron loading of 203 or 1.91 × 103 mg/L and silica loading of 8.10 g/L at 25 °C. Concentration of trichloroethylene occurs on the supported Pd/Fe nanoparticles, with trichloroethylene degrading to 56% and 59% in 30 min on the supported Pd/Fe nanoparticles with weight percentage of palladium to iron at 0.075% and 0.10% respectively. The supported Pd/Fe nanoparticles exhibit better dechlorination activity. When the supported Pd/Fe nanoparticles with a weight percentage of palladium to iron of 0.10% were loaded much less than the bare counterpart, the yield of ethylene plus ethane in 10 h on them was comparable, i.e., 19% vs. 21%. This study offers a future approach to efficiently combine the reactivity of supported Pd/Fe nanoparticles and the adsorption ability of mesoporous silica.

  2. Insulin suppresses the AMPK signaling pathway to regulate lipid metabolism in primary cultured hepatocytes of dairy cows.

    Science.gov (United States)

    Li, Xinwei; Li, Yu; Ding, Hongyan; Dong, Jihong; Zhang, Renhe; Huang, Dan; Lei, Lin; Wang, Zhe; Liu, Guowen; Li, Xiaobing

    2018-05-01

    Dairy cows with type II ketosis display hepatic fat accumulation and hyperinsulinemia, but the underlying mechanism is not completely clear. This study aimed to clarify the regulation of lipid metabolism by insulin in cow hepatocytes. In vitro, cow hepatocytes were treated with 0, 1, 10, or 100 nm insulin in the presence or absence of AICAR (an AMP-activated protein kinase alpha (AMPKα) activator). The results showed that insulin decreased AMPKα phosphorylation. This inactivation of AMPKα increased the gene and protein expression levels of carbohydrate responsive element-binding protein (ChREBP) and sterol regulatory element-binding protein-1c (SREBP-1c), which downregulated the expression of lipogenic genes, thereby decreasing lipid biosynthesis. Furthermore, AMPKα inactivation decreased the gene and protein expression levels of peroxisome proliferator-activated receptor-α (PPARα), which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation. In addition, insulin decreased the very low density lipoprotein (VLDL) assembly. Consequently, triglyceride content was significantly increased in insulin treated hepatocytes. Activation of AMPKα induced by AICAR could reverse the effect of insulin on PPARα, SREBP-1c, and ChREBP, thereby decreasing triglyceride content. These results indicate that insulin inhibits the AMPKα signaling pathway to increase lipid synthesis and decrease lipid oxidation and VLDL assembly in cow hepatocytes, thereby inducing TG accumulation. This mechanism could partly explain the causal relationship between hepatic fat accumulation and hyperinsulinemia in dairy cows with type II ketosis.

  3. Metabolism of pentachlorophenol in cell suspension cultures of wheat (Triticum aestivum L.). Tetrachlorocatechol as a primary metabolite

    International Nuclear Information System (INIS)

    Schaefer, W.; Sandermann, H. Jr.

    1988-01-01

    Wheat cell suspension cultures were incubated with [U- 14 C] pentachlorophenol (PCP; 1 ppm, 48 h, 27 0 C). Soluble metabolites were formed in ∼ 50% yield, another ∼ 31% of the applied radioactivity being incorporated into the insoluble residue. The soluble metabolite fraction, and its β-D-glucoside conjugate components, the total insoluble residue, and its lignin components, were all found to contain a novel polar PCP derivative besides smaller amounts of tetrachlorohydroquinone and PCP. The novel derivative also predominated in intact wheat plants and was identified as tetrachlorocatechol by TLC, HPLC, GC, and EI as well as CI mass spectroscopy. Tetrachlorocatechol is a potential mutagen, so that the soluble and insoluble conjugates formed in wheat from PCP may present a toxicological hazard

  4. Consequence assessment for Airborne Releases of SO2 from the Y-12 Pilot Dechlorination Facility

    International Nuclear Information System (INIS)

    Pendergrass, W.R.

    1992-06-01

    The Atmospheric Turbulence and Diffusion Division was requested by the Department of Energy's Oak Ridge Operations Office to conduct a consequence assessment for potential atmospheric releases of SO 2 from the Y-12 Pilot Dechlorination Facility. The focus of the assessment was to identify ''worst'' case meteorology which posed the highest concentration exposure potential for both on-site as well as off-site populations. A series of plausible SO 2 release scenarios were provided by Y-12 for the consequence assessment. Each scenario was evaluated for predictions of downwind concentration, estimates of a five-minute time weighted average, and estimate of the dimension of the puff. The highest hazard potential was associated with Scenario 1, in which a total of eight SO 2 cylinders are released internally to the Pilot Facility and exhausted through the emergency venting system. A companion effort was also conducted to evaluate the potential for impact of releases of SO 2 from the Pilot Facility on the population of Oak Ridge. While specific transport trajectory data is not available for the Pilot Facility, extrapolations based on the Oak Ridge Site Survey and climatological records from the Y-12 meteorological program does not indicate the potential for impact on the city of Oak Ridge. Steering by the local topographical features severely limits the potential impact ares. Due to the lack of specific observational data, both tracer and meteorological, only inferences can be made concerning impact zones. It is recommended tat the Department of Energy Oak Ridge Operations examine the potential for off-site impact and develop the background data to prepare impact zones for releases of hazardous materials from the Y-12 facility

  5. Effect of amino acid supplementation on titer and glycosylation distribution in hybridoma cell cultures-Systems biology-based interpretation using genome-scale metabolic flux balance model and multivariate data analysis.

    Science.gov (United States)

    Reimonn, Thomas M; Park, Seo-Young; Agarabi, Cyrus D; Brorson, Kurt A; Yoon, Seongkyu

    2016-09-01

    Genome-scale flux balance analysis (FBA) is a powerful systems biology tool to characterize intracellular reaction fluxes during cell cultures. FBA estimates intracellular reaction rates by optimizing an objective function, subject to the constraints of a metabolic model and media uptake/excretion rates. A dynamic extension to FBA, dynamic flux balance analysis (DFBA), can calculate intracellular reaction fluxes as they change during cell cultures. In a previous study by Read et al. (2013), a series of informed amino acid supplementation experiments were performed on twelve parallel murine hybridoma cell cultures, and this data was leveraged for further analysis (Read et al., Biotechnol Prog. 2013;29:745-753). In order to understand the effects of media changes on the model murine hybridoma cell line, a systems biology approach is applied in the current study. Dynamic flux balance analysis was performed using a genome-scale mouse metabolic model, and multivariate data analysis was used for interpretation. The calculated reaction fluxes were examined using partial least squares and partial least squares discriminant analysis. The results indicate media supplementation increases product yield because it raises nutrient levels extending the growth phase, and the increased cell density allows for greater culture performance. At the same time, the directed supplementation does not change the overall metabolism of the cells. This supports the conclusion that product quality, as measured by glycoform assays, remains unchanged because the metabolism remains in a similar state. Additionally, the DFBA shows that metabolic state varies more at the beginning of the culture but less by the middle of the growth phase, possibly due to stress on the cells during inoculation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1163-1173, 2016. © 2016 American Institute of Chemical Engineers.

  6. Transcriptomic and metabolic responses of Staphylococcus aureus in mixed culture with Lactobacillus plantarum, Streptococcus thermophilus and Enterococcus durans in milk.

    Science.gov (United States)

    Zdenkova, Kamila; Alibayov, Babek; Karamonova, Ludmila; Purkrtova, Sabina; Karpiskova, Renata; Demnerova, Katerina

    2016-09-01

    Staphylococcus aureus is a major food-borne pathogen due to the production of enterotoxin and is particularly prevalent in contaminated milk and dairy products. The lactic acid bacteria (LAB) are widely used as biocontrol agents in fermented foods which can inhibit pathogenic flora. In our work, we investigated the influence of three strains of LAB (Lactobacillus plantarum, Streptococcus thermophilus and Enterococcus durans) on the relative expression of three enterotoxin genes (sea, sec, sell) and eight virulence and/or regulatory genes (sarA, saeS, codY, srrA, rot, hld/RNAIII, agrA/RNAII, sigB) in two S. aureus strains (MW2 and Sa1612) in TSB and reduced-fat milk (1.5 %) at 30 °C over a 24-h period. The tested LAB and S. aureus strains proved to be mutually non-competitive or only slightly competitive during co-cultivation. In addition, under the above-mentioned conditions, differential gene expression between the S. aureus MW2 and Sa1612 strains was well documented. S. aureus growth was changed in mixed culture with LAB; however, its effect on the repression of sea and sec expression correlated with production of these virulence factors. In comparison, the presence of LAB strains generally inhibited the expression of sec, sell, sarA, seaS, agrA/RNAII and hld/RNAIII genes. The effect of LAB strains presence on the expression of sea, codY, srrA, rot and sigB genes was medium, time, LAB and S. aureus strain specific. SEA and SEC production was significantly reduced in milk compared to TSB in pure culture. After the 24-h cultivation, S. aureus MW2 and Sa1612 SEC production was 187 and 331 times lower in milk compared to TSB, respectively (0.07 and 0.39 ng/mL in milk, versus 13.1 and 129.2 ng/mL in TSB, respectively). At the same time S. aureus MW2 and Sa1612 SEA production was 77 and 68 times lower in milk compared to TSB, respectively (0.99 and 0.17 ng/mL in milk, versus 76.4 and 11.5 ng/mL in TSB, respectively). This study has revealed new insights into the

  7. Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage.

    Science.gov (United States)

    Palama, Tony L; Menard, Patrice; Fock, Isabelle; Choi, Young H; Bourdon, Emmanuel; Govinden-Soulange, Joyce; Bahut, Muriel; Payet, Bertrand; Verpoorte, Robert; Kodja, Hippolyte

    2010-05-05

    Vanilla planifolia is an important Orchid commercially cultivated for the production of natural vanilla flavour. Vanilla plants are conventionally propagated by stem cuttings and thus causing injury to the mother plants. Regeneration and in vitro mass multiplication are proposed as an alternative to minimize damage to mother plants. Because mass production of V. planifolia through indirect shoot differentiation from callus culture is rare and may be a successful use of in vitro techniques for producing somaclonal variants, we have established a novel protocol for the regeneration of vanilla plants and investigated the initial biochemical and molecular mechanisms that trigger shoot organogenesis from embryogenic/organogenic callus. For embryogenic callus induction, seeds obtained from 7-month-old green pods of V. planifolia were inoculated on MS basal medium (BM) containing TDZ (0.5 mg l(-1)). Germination of unorganized mass callus such as protocorm -like structure (PLS) arising from each seed has been observed. The primary embryogenic calli have been formed after transferring on BM containing IAA (0.5 mg l(-1)) and TDZ (0.5 mg l(-1)). These calli were maintained by subculturing on BM containing IAA (0.5 mg l(-1)) and TDZ (0.3 mg l(-1)) during 6 months and formed embryogenic/organogenic calli. Histological analysis showed that shoot organogenesis was induced between 15 and 20 days after embryogenic/organogenic calli were transferred onto MS basal medium with NAA (0.5 mg l(-1)). By associating proteomics and metabolomics analyses, the biochemical and molecular markers responsible for shoot induction have been studied in 15-day-old calli at the stage where no differentiating part was visible on organogenic calli. Two-dimensional electrophoresis followed by matrix-assisted laser desorption ionization time-of-flight-tandem mass spectrometry (MALDI-TOF-TOF-MS) analysis revealed that 15 protein spots are significantly expressed (P tissue culture, phenolic compounds such

  8. Benzo(a)pyrene metabolism, DNA-binding and UV-induced repair of DNA damage in cultured skin fibroblasts from a patient with unilateral multiple basal cell carcinoma

    International Nuclear Information System (INIS)

    Don, P.S.C.; Mukhtar, H.; Das, M.; Berger, N.A.; Bickers, D.R.

    1989-01-01

    The metabolism of benzo(a)pyrene (BP), and its subsequent binding to DNA, and the repair of UV-induced DNA damage were studied in fibroblasts cultured from the skin of a 61-year-old male who had multiple basal cell carcinoma (BCC) (>100) on his left upper trunk. Results suggest that BP metabolism and repair of DNA are altered in tumor-bearing site (TSB) cells and that patients with this type of metabolic profile may be at higher risk of the development of cutaneous neoplasms. It is also possible that fibroblasts from tumour bearing skin undergo some as yet unexplained alteration in carcinogen metabolism as a consequence of the induction of neoplasia. (author)

  9. Effect of hyaluronic acid and polysaccharides from Opuntia ficus indica (L.) cladodes on the metabolism of human chondrocyte cultures.

    Science.gov (United States)

    Panico, A M; Cardile, V; Garufi, F; Puglia, C; Bonina, F; Ronsisvalle, S

    2007-05-04

    Conventional medications in articular disease are often effective for symptom relief, but they can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective as non-steroidal anti-inflammatory drugs at relieving the symptoms of osteoarthritis (OA), and preliminary evidence suggests that some of these compounds may exert a favourable influence on the course of the disease. In this study, we assay the anti-inflammatory/chondroprotective effect of some lyophilised extracts obtained from Opuntia ficus indica (L.) cladodes and of hyaluronic acid (HA) on the production of key molecules released during chronic inflammatory events such as nitric oxide (NO), glycosaminoglycans (GAGs), prostaglandins (PGE(2)) and reactive oxygen species (ROS) in human chondrocyte culture, stimulated with proinflammatory cytokine interleukin-1 beta (IL-1 beta). Further the antioxidant effect of these extracts was evaluated in vitro employing the bleaching of the stable 1,1-diphenyl-2-picrylhydrazyl radical (DPPH test). All the extracts tested in this study showed an interesting profile in active compounds. Particularly some of these extracts were characterized by polyphenolic and polysaccharidic species. In vitro results pointed out that the extracts of Opuntia ficus indica cladodes were able to contrast the harmful effects of IL-1 beta. Our data showed the protective effect of the extracts of Opuntia ficus indica cladodes in cartilage alteration, which appears greater than that elicited by hyaluronic acid (HA) commonly employed as visco-supplementation in the treatment of joint diseases.

  10. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents

    Energy Technology Data Exchange (ETDEWEB)

    Zaccone, Eric J. [Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV (United States); Goldsmith, W. Travis [Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV (United States); Shimko, Michael J. [Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV (United States); Wells, J.R.; Schwegler-Berry, Diane; Willard, Patsy A.; Case, Shannon L.; Thompson, Janet A. [Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV (United States); Fedan, Jeffrey S. [Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV (United States); Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV (United States)

    2015-12-15

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance, we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity. We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (R{sub t}) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na{sup +} transport, without affecting Cl{sup −} transport or Na{sup +},K{sup +}-pump activity. R{sub t} was unaffected. Na{sup +} transport recovered 18 h after exposure. Concentrations (100–360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. - Highlights: • Butter flavoring vapor effects on human cultured airway epithelium were studied. • Na transport was reduced by a 6-h exposure to 25 ppm diacetyl and 2,3-pentanedione. • Na transport recovered 18 h after exposure. • > 60 ppm transepithelial voltage and resistance were abolished; cells were damaged. • Cells metabolized diacetyl and 2,3-pentanedione

  11. Deposition of Fe-Ni nanoparticles on Al2O3 for dechlorination of chloroform and trichloroethylene

    International Nuclear Information System (INIS)

    Hsieh, S.-H.; Horng, J.-J.

    2006-01-01

    This research proposes an efficient method for depositing Fe-Ni nanoparticles on Al 2 O 3 microparticles to decompose containments in ground water, such as chloroform and trichloroethylene. The Fe-Ni nanoparticles can be deposited onto the surface of Al 2 O 3 microparticles by electroless plating technique. The reasons why the Fe-Ni nanoparticles would be deposited on the surface of Al 2 O 3 microparticles is to avoid the agglomeration of Fe-Ni nanoparticles due to their surface effect and magnetic property. The results show that the sizes of Fe-Ni particles on Al 2 O 3 particles are between several and several hundreds of nanometers, the contents of Fe and Ni in Fe-Ni nanoparticles can be adjusted from 8 to 60 at.% for Fe and 40 to 92 at.% for Ni, the specific surface area of Fe-Ni nanoparticles can reach to 117 m 2 /g, and the reaction mechanism of dechlorination of chloroform of 2 mg/L by Fe-Ni/Al 2 O 3 particles of 5 g/L appears to be pseudo first order with a half life of 0.7 h and the half life is 0.25 h for the dechlorination of trichloroethylene of 2 mg/L

  12. Development of a soft-sensor based on multi-wavelength fluorescence spectroscopy and a dynamic metabolic model for monitoring mammalian cell cultures.

    Science.gov (United States)

    Ohadi, Kaveh; Legge, Raymond L; Budman, Hector M

    2015-01-01

    A soft-sensor based on an Extended Kalman Filter (EKF) that combines data obtained using a fluorescence-based soft-sensor with a dynamic mechanistic model, was investigated as a tool for continuous monitoring of a Chinese hamster ovary (CHO) cell cultivation process. A standalone fluorescence based soft-sensor, which uses a combination of an empirical multivariate statistical model and measured spectra, was designed for predicting key culture variables including viable and dead cells, recombinant protein, glucose, and ammonia concentrations. The standalone fluorescence sensor was then combined with a dynamic mechanistic model within an EKF framework, for improving the prediction accuracy and generating predictions in-between sampling instances. The dynamic model used for the EKF framework was based on a structured metabolic flux analysis and mass balances. In order to calibrate the fluorescence-based empirical model and the dynamic mechanistic model, cells were grown in batch mode with different initial glucose and glutamine concentrations. To mitigate the uncertainty associated with the model structure and parameters, non-stationary disturbances were accounted for in the EKF by parameter-adaptation. It was demonstrated that the implementation of the EKF along with the dynamic model could improve the accuracy of the fluorescence-based predictions at the sampling instances. Additionally, it was shown that the major advantage of the EKF-based soft-sensor, compared to the standalone fluorescence-based counterpart, was its capability to track the temporal evolution of key process variables between measurement instances obtained by the fluorescence-based soft-sensor. This is crucial for designing control strategies of CHO cell cultures with the aim of guaranteeing product quality. © 2014 Wiley Periodicals, Inc.

  13. Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition

    Directory of Open Access Journals (Sweden)

    ASISH KUMAR PARIDA

    2016-03-01

    Full Text Available Salt tolerance mechanism of an extreme halophyte Salvadora persica was assessed by analysing growth, nutrient uptake, anatomical modifications and alterations in levels of some organic metabolites in seedlings imposed to various levels of salinity (0, 250, 500 and 750 mM NaCl under hydroponic culture condition. After 21 days of salt treatment, plant height, leaf area and shoot biomass decreased with increase in salinity whereas the leaf succulence increased significantly with increasing salinity in S. persica. The RWC% of leaf increased progressively in salt-treated seedlings as compared to control. Na+ contents of leaf, stem and root increased in dose-dependent manner whereas there was no significant changes in K+ content. There was significant alterations in leaf, stem and root anatomy by salinity. The thickness of epidermis and spongy parenchyma of leaf increased in salt treated seedlings as compared to control, whereas palisade parenchyma decreased dramatically in extreme salinity (750 mM NaCl. There was a significant reduction in stomatal density and stomatal pore area of leaf with increasing salinity. Anatomical observations of stem showed that the epidermal cells diameter and thickness of cortex decreased by salinity whereas thickness of hypodermal layer, hypodermal cell diameter, pith area and pith cell diameter increased by high salinity. The root anatomy showed an increase in epidermal thickness by salinity whereas diameters of epidermal cells and xylem vessels decreased. Total soluble sugar content remained unchanged at all levels of salinity whereas reducing sugar content increased by 2-fold at high salinity (750 mM NaCl. The starch content of leaf decreased progressively in NaCl treated seedlings as compared to control. Total free amino acid content did not change at low salinity (250 mM, whereas it increased significantly at higher salinity (500 and 750 mM NaCl. The proline content increased in the NaCl treated seedlings as

  14. Influence of iron-bearing phyllosilicates on the dechlorination kinetics of 1,1,1-trichloroethane in Fe(II)/cement slurries.

    Science.gov (United States)

    Jung, Bahngmi; Batchelor, Bill

    2007-07-01

    This study examines the effect of iron-bearing phyllosilicates on dechlorination rates of chlorinated aliphatic hydrocarbons (CAHs) in iron-based degradative solidification/stabilization (DS/S-Fe(II)). Laboratory batch experiments were conducted to evaluate dechlorination rates of 1,1,1-trichloroethane (1,1,1-TCA) in a mixture solution of Fe(II), cement and three different iron-bearing phyllosilicates (biotite, vermiculite, and montmorillonite). A first-order rate model was generally used to describe the dechlorination kinetics and the rate constants were dependent on soil mineral type (biotite, vermiculite, and montmorillonite), Fe(II) dose, and the mass ratio of cement to soil mineral. The pseudo-first-order rate constant for montmorillonite was lower than that for biotite and vermiculite by factors of 11-27 when the mass ratio of cement to phyllosilicates was fixed at one. The presence of biotite and vermiculite increase and the presence of montmorillonite decrease the degradation rate that would be observed in their absence. The effect of cement/mineral ratio on rate constants with three different soil minerals indicates that biotite was more reactive than the other two phyllosilicates. This may be due to high accessible natural Fe(II) content in biotite. Montmorillonite appears to inhibit dechlorination by either inactivating Fe(II) by ion exchange or by physically blocking active sites on cement hydration products.

  15. The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yibo [College of Life Sciences, South China Normal University, Guangdong Key Lab of Biotechnology for Plant Development, Guangzhou, 510631 (China)] [Guangdong Institute of Eco-environment and Soil Sciences, Guangzhou, 510650 (China)] [College of Life Science and Chemistry, Tianshui Normal University, Tianshui, 741000 (China); Wu Chunyuan [Guangdong Institute of Eco-environment and Soil Sciences, Guangzhou, 510650 (China); Wang Xiaojing, E-mail: wangyb02@163.com [College of Life Sciences, South China Normal University, Guangdong Key Lab of Biotechnology for Plant Development, Guangzhou, 510631 (China); Zhou Shungui, E-mail: sgzhou@soil.gd.cn [Guangdong Institute of Eco-environment and Soil Sciences, Guangzhou, 510650 (China)

    2009-05-30

    The role of the humic model compound, anthraquinone-2,6-disulfonate (AQDS), in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid (2,4-D) by the Fe(III)- and humic substances (HS)-reducing bacterium, Comamonas koreensis strain CY01 was investigated. The results taken as a whole indicated that (i) strain CY01 could couple glucose oxidation to 2,4-D reductive dechlorination; (ii) reductive dechlorination of 2,4-D by strain CY01 was greatly stimulated by the addition of AQDS; (iii) the transfer of electrons from biogenic AH{sub 2}QDS to 2,4-D was an abiotic process which can take place in the absence of microorganisms; and (iv) AH{sub 2}QDS was reoxidized during the chemical reaction, AQDS can serve again as electron acceptor for microorganisms, thus acting as electron shuttles. All the results suggested that 2,4-D reductive dechlorination by CY01 strain was a biochemical process that oxidizes the electron donors and transfers the electron to the acceptors through redox mediator, AQDS. We proposed the possible mechanism for the HS dependent reduction of 2,4-D. Our results suggested that microbial reduction of HS and subsequent chemical reduction of organic pollutants represent an important path of electron flow in anoxic natural environments. This work is a necessary preliminary step for better understanding the biodegradation of 2,4-D in subsurface soil.

  16. Introduction of a De Novo Bioremediation Ability, Aryl Reductive Dechlorination, into Anaerobic Granular Sludge by Inoculation of Sludge with Desulfomonile tiedjei

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Christiansen, Nina; Mathrani, Indra Madan

    1992-01-01

    Methanogenic upflow anaerobic granular-sludge blanket (UASB) reactors treat wastewaters at a high rate while simultaneously producing a useful product, methane; however, recalcitrant environmental pollutants may not be degraded. To impart 3-chlorobenzoate (3-CB)-dechlorinating ability to UASB rea...

  17. Investigation of testosterone, androstenone, and estradiol metabolism in HepG2 cells and primary culture pig hepatocytes and their effects on 17βHSD7 gene expression.

    Directory of Open Access Journals (Sweden)

    Gang Chen

    Full Text Available Steroid metabolism is important in various species. The accumulation of androgen metabolite, androstenone, in pig adipose tissue is negatively associated with pork flavor, odour and makes the meat unfit for human consumption. The 17β-hydroxysteroid dehydrogenase type 7 (17βHSD7 expressed abundantly in porcine liver, and it was previously suggested to be associated with androstenone levels. Understanding the enzymes and metabolic pathways responsible for androstenone as well as other steroids metabolism is important for improving the meat quality. At the same time, metabolism of steroids is known to be species- and tissue-specific. Therefore it is important to investigate between-species variations in the hepatic steroid metabolism and to elucidate the role of 17βHSD7 in this process. Here we used an effective methodological approach, liquid chromatography coupled with mass spectrometry, to investigate species-specific metabolism of androstenone, testosterone and beta-estradiol in HepG2 cell line, and pig cultured hepatocytes. Species- and concentration-depended effect of steroids on 17βHSD7 gene expression was also investigated. It was demonstrated that the investigated steroids can regulate the 17βHSD7 gene expression in HepG2 and primary cultured porcine hepatocytes in a concentration-dependent and species-dependent pattern. Investigation of steroid metabolites demonstrated that androstenone formed a 3'-hydroxy compound 3β-hydroxy-5α-androst-16-ene. Testosterone was metabolized to 4-androstene-3,17-dione. Estrone was found as the metabolite for β-estradiol. Inhibition study with 17βHSD inhibitor apigenin showed that apigenin didn't affect androstenone metabolism. Apigenin at high concentration (50 µM tends to inhibit testosterone metabolism but this inhibition effect was negligible. Beta-estradiol metabolism was notably inhibited with apigenin at high concentration. The study also established that the level of testosterone and

  18. Use of 15N reverse gradient two-dimensional nuclear magnetic resonance spectroscopy to follow metabolic activity in Nicotiana plumbaginifolia cell-suspension cultures.

    Science.gov (United States)

    Mesnard, F; Azaroual, N; Marty, D; Fliniaux, M A; Robins, R J; Vermeersch, G; Monti, J P

    2000-02-01

    Nitrogen metabolism was monitored in suspension cultured cells of Nicotiana plumbaginifolia Viv. using nuclear magnetic resonance (NMR) spectroscopy following the feeding of (15NH4)2SO4 and K15NO3. By using two-dimensional 15N-1H NMR with heteronuclear single-quantum-coherence spectroscopy and heteronuclear multiple-bond-coherence spectroscopy sequences, an enhanced resolution of the incorporation of 15N label into a range of compounds could be detected. Thus, in addition to the amino acids normally observed in one-dimensional 15N NMR (glutamine, aspartate, alanine), several other amino acids could be resolved, notably serine, glycine and proline. Furthermore, it was found that the peak normally assigned to the non-protein amino-acid gamma-aminobutyric acid in the one-dimensional 15N NMR spectrum was resolved into a several components. A peak of N-acetylated compounds was resolved, probably composed of the intermediates in arginine biosynthesis, N-acetylglutamate and N-acetylornithine and, possibly, the intermediate of putrescine degradation into gamma-aminobutyric acid, N-acetylputrescine. The occurrence of 15N-label in agmatine and the low detection of labelled putrescine indicate that crucial intermediates of the pathway from glutamate to polyamines and/or the tobacco alkaloids could be monitored. For the first time, labelling of the peptide glutathione and of the nucleotide uridine could be seen.

  19. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium.

    Science.gov (United States)

    Morland, Cecilie; Pettersen, Mi Nguyen; Hassel, Bjørnar

    2016-05-01

    Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia. Copyright © 2016. Published by Elsevier B.V.

  20. Calcineurin regulates slow myosin, but not fast myosin or metabolic enzymes, during fast-to-slow transformation in rabbit skeletal muscle cell culture

    Science.gov (United States)

    Meißner, Joachim D; Gros, Gerolf; Scheibe, Renate J; Scholz, Michael; Kubis, Hans-Peter

    2001-01-01

    The addition of cyclosporin A (500 ng ml−1) - an inhibitor of the Ca2+-calmodulin-regulated serine/threonine phosphatase calcineurin - to primary cultures of rabbit skeletal muscle cells had no influence on the expression of fast myosin heavy chain (MHC) isoforms MHCIIa and MHCIId at the level of protein and mRNA, but reduced the expression of slow MHCI mRNA. In addition, no influence of cyclosporin A on the expression of citrate synthase (CS) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA was found. The level of enzyme activity of CS was also not affected. When the Ca2+ ionophore A23187 (4 × 10−7m) was added to the medium, a partial fast-to-slow transformation occurred. The level of MHCI mRNA increased, and the level of MHCIId mRNA decreased. Cotreatment with cyclosporin A was able to prevent the upregulation of MHCI at the level of mRNA as well as protein, but did not reverse the decrease in MHCIId expression. The expression of MHCIIa was also not influenced by cyclosporin A. Cyclosporin A was not able to prevent the upregulation of CS mRNA under Ca2+ ionophore treatment and failed to reduce the increased enzyme activity of CS. The expression of GAPDH mRNA was reduced under Ca2+ ionophore treatment and was not altered under cotreatment with cyclosporin A. When the myotubes in the primary muscle culture were electrostimulated at 1 Hz for 15 min periods followed by pauses of 30 min, a partial fast-to-slow transformation was induced. Again, cotreatment with cyclosporin A prevented the upregulation of MHCI at the level of mRNA and protein without affecting MHCIId expression. The nuclear translocation of the calcineurin-regulated transcription factor nuclear factor of activated thymocytes (NFATc1) during treatment with Ca2+ ionophore, and the prevention of the translocation in the presence of cyclosporin A, were demonstrated immunocytochemically in the myotubes of the primary culture. The effects of cyclosporin A demonstrate the involvement of

  1. Diversity of reductive dehalogenase genes from environmental samples and enrichment cultures identified with degenerate primer PCR screens.

    Directory of Open Access Journals (Sweden)

    Laura Audrey Hug

    2013-11-01

    Full Text Available Reductive dehalogenases are the critical enzymes for anaerobic organohalide respiration, a microbial metabolic process that has been harnessed for bioremediation efforts to resolve chlorinated solvent contamination in groundwater and is implicated in the global halogen cycle. Reductive dehalogenase sequence diversity is informative for the dechlorination potential of the site or enrichment culture. A suite of degenerate PCR primers targeting a comprehensive curated set of reductive dehalogenase genes was designed and applied to twelve DNA samples extracted from contaminated and pristine sites, as well as six enrichment cultures capable of reducing chlorinated compounds to non-toxic end-products. The amplified gene products from four environmental sites and two enrichment cultures were sequenced using Illumina HiSeq, and the reductive dehalogenase complement of each sample determined. The results indicate that the diversity of the reductive dehalogenase gene family is much deeper than is currently accounted for: one-third of the translated proteins have less than 70% pairwise amino acid identity to database sequences. Approximately 60% of the sequenced reductive dehalogenase genes were broadly distributed, being identified in four or more samples, and often in previously sequenced genomes as well. In contrast, 17% of the sequenced reductive dehalogenases were unique, present in only a single sample and bearing less than 90% pairwise amino acid identity to any previously identified proteins. Many of the broadly distributed reductive dehalogenases are uncharacterized in terms of their substrate specificity, making these intriguing targets for further biochemical experimentation. Finally, comparison of samples from a contaminated site and an enrichment culture derived from the same site eight years prior allowed examination of the effect of the enrichment process.

  2. Influence of physical factors and geochemical conditions on groundwater acidification during enhanced reductive dechlorination

    Science.gov (United States)

    Brovelli, A.; Barry, D. A.; Robinson, C.; Gerhard, J.

    2010-12-01

    Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, availability of alternative terminal electron acceptors and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. For this reason, research in this area is gaining increasing attention. In previous work (Robinson et al., 2009 407:4560, Sci. Tot. Environ, Robinson and Barry, 2009 24:1332, Environ. Model. & Software, Brovelli et al., 2010, submitted), a detailed geochemical and groundwater flow model able to predict the pH change occurring during reductive dehalogenation was developed. The model accounts for the main processes influencing groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects groundwater pH and dechlorination rates. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency

  3. Synergistic effect of nano-sized mackinawite with cyano-cobalamin in cement slurries for reductive dechlorination of tetrachloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Kyung, Daeseung [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Sihn, Youngho [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Kim, Sangwoo [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Bae, Sungjun [Department of Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029 (Korea, Republic of); Amin, Muhammad Tahir; Alazba, Abdulrahman Ali [Alamoudi Water Chair, King Saud University, Riyadh 11451 (Saudi Arabia); Lee, Woojin, E-mail: woojin_lee@kaist.ac.kr [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2016-07-05

    Highlights: • Complete degradation of PCE was observed in nFeS-Cbl(III)-cement at pH 12. • PCE was completely degraded to non-chlorinated organic compounds by this system. • Co redox couple and Ca species in cement played a pivotal role for PCE reduction. • Increases in Cbl(III) concentration, cement ratio, and pH enhanced PCE degradation. • Efficiency of the system for PCE reduction was good even at high concentration of PCE. - Abstract: Experiments were conducted to investigate the reductive dechlorination of tetrachloroethylene (PCE) by nano-Mackinawite (nFeS) with cyano-cobalamin (Cbl(III)) in cement slurries. Almost complete degradation of PCE by nFeS-Cbl(III) was observed in cement slurries in 5 h and its degradation kinetics (k{sub obs-PCE} = 0.57 h{sup −1}) was 6-times faster than that of nFeS-Cbl(III) without the cement slurries. PCE was finally transformed to non-chlorinated organic compounds such as ethylene, acetylene, and C3-C4 hydrocarbons by nFeS-Cbl(III) in cement slurries. X-ray photoelectron spectroscopy and PCE degradation by cement components (SiO{sub 2}, Al{sub 2}O{sub 3}, and CaO) revealed that both the reduced Co species in Cbl(III) and the presence of Ca in cement played an important role for the enhanced reductive dechlorination of PCE. The increase in the concentration of Cbl(III) (0.005–0.1 mM), cement ratio (0.05–0.2), and suspension pH (11.5–13.5) accelerated the PCE degradation kinetics by providing more favorable environments for the production of reactive Ca species and reduction of Co species. We also observed that the degradation efficiency of PCE by nFeS-Cbl(III)-cement lasted even at high concentration of PCE. The experimental results obtained from this study could provide fundamental knowledge of redox interactions among nFeS, Cbl(III), and cement, which could significantly enhance reductive dechlorination of chlorinated organics in contaminated natural and engineered environments.

  4. Synergistic effect of nano-sized mackinawite with cyano-cobalamin in cement slurries for reductive dechlorination of tetrachloroethylene

    International Nuclear Information System (INIS)

    Kyung, Daeseung; Sihn, Youngho; Kim, Sangwoo; Bae, Sungjun; Amin, Muhammad Tahir; Alazba, Abdulrahman Ali; Lee, Woojin

    2016-01-01

    Highlights: • Complete degradation of PCE was observed in nFeS-Cbl(III)-cement at pH 12. • PCE was completely degraded to non-chlorinated organic compounds by this system. • Co redox couple and Ca species in cement played a pivotal role for PCE reduction. • Increases in Cbl(III) concentration, cement ratio, and pH enhanced PCE degradation. • Efficiency of the system for PCE reduction was good even at high concentration of PCE. - Abstract: Experiments were conducted to investigate the reductive dechlorination of tetrachloroethylene (PCE) by nano-Mackinawite (nFeS) with cyano-cobalamin (Cbl(III)) in cement slurries. Almost complete degradation of PCE by nFeS-Cbl(III) was observed in cement slurries in 5 h and its degradation kinetics (k_o_b_s_-_P_C_E = 0.57 h"−"1) was 6-times faster than that of nFeS-Cbl(III) without the cement slurries. PCE was finally transformed to non-chlorinated organic compounds such as ethylene, acetylene, and C3-C4 hydrocarbons by nFeS-Cbl(III) in cement slurries. X-ray photoelectron spectroscopy and PCE degradation by cement components (SiO_2, Al_2O_3, and CaO) revealed that both the reduced Co species in Cbl(III) and the presence of Ca in cement played an important role for the enhanced reductive dechlorination of PCE. The increase in the concentration of Cbl(III) (0.005–0.1 mM), cement ratio (0.05–0.2), and suspension pH (11.5–13.5) accelerated the PCE degradation kinetics by providing more favorable environments for the production of reactive Ca species and reduction of Co species. We also observed that the degradation efficiency of PCE by nFeS-Cbl(III)-cement lasted even at high concentration of PCE. The experimental results obtained from this study could provide fundamental knowledge of redox interactions among nFeS, Cbl(III), and cement, which could significantly enhance reductive dechlorination of chlorinated organics in contaminated natural and engineered environments.

  5. Dechlorination of 2,4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles

    International Nuclear Information System (INIS)

    Zhou, Hongyi; Han, Jian; Baig, Shams Ali; Xu, Xinhua

    2011-01-01

    Highlights: ► CMC-stabilized Pd/Fe nanoparticles were synthesized and used for 2,4-D removal. ► Particle stability, ζ-potential and IEP of non- and stabilized Pd/Fe were compared. ► Dechlorination of 2,4-D by different Pd/Fe systems was investigated. ► The reaction mechanism has been discussed and presented in the article. ► Effects of CMC/Fe mass ratio and pH were also investigated. - Abstract: This paper describes the synthesis of sodium carboxymethyl cellulose (CMC)-stabilized Pd/Fe nanoparticles and their applications to the dechlorination of 2,4-dichlorophenoxyacetic acid (2,4-D) under controlled laboratorial conditions. For this purpose batch mode experiments were conducted to understand the effects of CMC on the surface characteristics of Pd/Fe nanoparticles, optimum removal of 2,4-D and other surface interactions mechanism. Our experimental results demonstrated considerable enhancements in particle stability and chemical reactivity with the addition of CMC to Pd/Fe nanoparticles. Transmission electron microscopy (TEM) analysis indicated that CMC-stabilized Pd/Fe nanoparticles were well dispersed, and nanoparticles remained in suspension for days compared to non-stabilized Pd/Fe nanoparticles precipitated within minutes. The isoelectric point (IEP) of the nanoparticles shifted from pH 6.5 to 2.5, suggesting that CMC-stabilized Pd/Fe nanoparticles were negatively charged over a wider pH range. Our batch experiments demonstrated that CMC-stabilized Pd/Fe nanoparticles (0.6 g Fe L −1 ) were able to remove much higher levels of 2,4-D with only one intermediate 2-chlorophenoxyacetic acid (2-CPA) and the final organic product phenoxyacetic acid (PA), than non-stabilized Pd/Fe nanoparticles or microsized Pd/Fe particles. The removal percentage of 2,4-D increased from 10% to nearly 100% as the reaction pH decreased from 11.5 to 2.5. The optimal CMC/Fe mass ratio for the dechlorination of 2,4-D was determined to be 5/1, and the removal of 2,4-D was

  6. Dechlorination of 2,4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hongyi, E-mail: zhouhy@zjut.edu.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Han, Jian [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Baig, Shams Ali; Xu, Xinhua [Department of Environmental Engineering, Zhejiang University, Hangzhou 310027 (China)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer CMC-stabilized Pd/Fe nanoparticles were synthesized and used for 2,4-D removal. Black-Right-Pointing-Pointer Particle stability, {zeta}-potential and IEP of non- and stabilized Pd/Fe were compared. Black-Right-Pointing-Pointer Dechlorination of 2,4-D by different Pd/Fe systems was investigated. Black-Right-Pointing-Pointer The reaction mechanism has been discussed and presented in the article. Black-Right-Pointing-Pointer Effects of CMC/Fe mass ratio and pH were also investigated. - Abstract: This paper describes the synthesis of sodium carboxymethyl cellulose (CMC)-stabilized Pd/Fe nanoparticles and their applications to the dechlorination of 2,4-dichlorophenoxyacetic acid (2,4-D) under controlled laboratorial conditions. For this purpose batch mode experiments were conducted to understand the effects of CMC on the surface characteristics of Pd/Fe nanoparticles, optimum removal of 2,4-D and other surface interactions mechanism. Our experimental results demonstrated considerable enhancements in particle stability and chemical reactivity with the addition of CMC to Pd/Fe nanoparticles. Transmission electron microscopy (TEM) analysis indicated that CMC-stabilized Pd/Fe nanoparticles were well dispersed, and nanoparticles remained in suspension for days compared to non-stabilized Pd/Fe nanoparticles precipitated within minutes. The isoelectric point (IEP) of the nanoparticles shifted from pH 6.5 to 2.5, suggesting that CMC-stabilized Pd/Fe nanoparticles were negatively charged over a wider pH range. Our batch experiments demonstrated that CMC-stabilized Pd/Fe nanoparticles (0.6 g Fe L{sup -1}) were able to remove much higher levels of 2,4-D with only one intermediate 2-chlorophenoxyacetic acid (2-CPA) and the final organic product phenoxyacetic acid (PA), than non-stabilized Pd/Fe nanoparticles or microsized Pd/Fe particles. The removal percentage of 2,4-D increased from 10% to nearly 100% as the reaction pH decreased from 11

  7. Dechlorination Reaction of Metal Chloride Wastes with Inorganic Composite (SiO{sub 2}-Al{sub 2}O{sub 3}- P{sub 2}O{sub 5}) at 650 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Soo Na; Park, Hwan Seo; Cho, In Hak; Kim, In Tae; Cho, Yong Zun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Pyrochemical process to recover uranium and transuranic elements from the spent nuclear fuel indispensably generates radioactive metal chlorides waste containing fission products. These wastes are difficult to solidify and stabilize by conventional method due to their volatility and low comparability with silicate glass. Our research group is under development of dechlorination method to remove Clinduced problems. For dechlorination of metal chloride waste, an inorganic composite, SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5} (SAP), has been investigated as dechlorination agent. The composite reacts with metal chloride to produce aluminosilicates, alumino phosphate and orthophosphate. The products are thermally stable up to 1200 .deg. C and compatible with silicate glass. In this study, modified SAP containing Fe{sub 2}O{sub 3} as another component was investigated to enhance the dechlorination reaction and characterize the reaction behavior of LiCl

  8. Metabolism of sulfate-reducing bacteria and corrosion behavior of carbon steel in the continuous culturing medium; Renzoku baiyo baichichu ni okeru ryusan`en kangen no taisha to tansoko no fushoku kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Baba, F.; Suzuki, T. [Ajinomoto Co. Inc., Tokyo (Japan); Seo, M. [Hokkaido University, Sapporo (Japan)

    1997-08-25

    Investigations were made on metabolism of sulfate-reducing bacteria and corrosion behavior of carbon steel in the continuous culturing medium. Sulfate-reducing bacteria were cultured for 50 days by supplying the culturing medium prepared to a prescribed chemical composition (containing Fe {sup 2+} at 0.01 mol/kg) at a rate of 10 cm {sup 3}/h, and drawing them out at the same rate. Test carbon steel pieces were immersed into this culturing medium. As a result, the following matters were clarified: the number of bacteria is maintained at more than 10 {sup 10}/cm{sup 3} after several days since inauguration of the immersion, with the bacteria stably producing H2S and FeS until the culturing is finished; comma-shaped bacteria which move actively and rod-shaped bacteria which do not move very actively exist in the culturing medium; a black film has been produced on surface of the test pieces throughout the culturing period, and satin-like corrosion was found underneath the surface; and weight increase of this film and weight decrease of the lower layer progress as the time lapses (the weight decrease of the lower layer has reached 40 mg/cm{sup 2} in 50 days). 28 refs., 8 figs., 1 tab.

  9. Reductive dechlorination of trichloroacetic acid (TCAA) by electrochemical process over Pd-In/Al_2O_3 catalyst

    International Nuclear Information System (INIS)

    Liu, Yanzhen; Mao, Ran; Tong, Yating; Lan, Huachun; Zhang, Gong; Liu, Huijuan; Qu, Jiuhui

    2017-01-01

    Highlights: • TCAA was efficiently removed by Pd-In/Al_2O_3 based electro-reductive process. • The active species for TCAA electroreduction involved electron (e"−) and atomic H*. • The atomic H* played a major contribution to TCAA removal. - Abstract: Electrochemical reduction treatment was found to be a promising method for dechlorination of Trichloroacetic acid (TCAA), and acceleration of electron transfer or enhancement of the concentration of atomic H* significantly improve the electrochemical dechlorination process. Bimetallic Pd-based catalysts have the unique property of simultaneously catalyzing the production of atomic H* and reducing target pollutants. Herein, a bimetallic Pd–In electrocatalyst with atomic ratio of 1:1 was evenly deposited on an Al_2O_3 substrate, and the bimetallic Pd-In structure was confirmed via X-ray photoelectron spectroscopy (XPS). Electrochemical removal of trichloroacetic acid (TCAA) by the Pd-In/Al_2O_3 catalyst was performed in a three-dimensional reactor. 94% of TCAA with the initial concentration of 500 μg L"−"1 could be degraded within 30 min under a relatively low current density (0.9 mA cm"−"2). In contrast to the presence of refractory intermediates (dichloroacetic acid (DCAA)) found in the Pd/Al_2O_3 system, TCAA could be thoroughly reduced to monochloroacetic acid (MCAA) using Pd-In/Al_2O_3 catalysts. According to scavenger experiments, an electron transfer process and atomic H* formation function both existed in the TCAA reduction process, and the enhanced indirect atomic H* reduction process (confirmed by ESR signals) played a chief role in the TCAA removal. Moreover, the synergistic effects of Pd and In were proven to be able to enhance both direct electron transfer and indirect atomic H* formation, indicating a promising prospect for bimetallic electrochemical reduction treatment.

  10. Fabrication and evaluation of Au-Pd core-shell nanocomposites for dechlorination of diclofenac in water.

    Science.gov (United States)

    Wang, Xu; Li, Jian-Rong; Fu, Ming-Lai; Yuan, Baoling; Cui, Hao-Jie; Wang, Ya-Fen

    2015-01-01

    Nanocomposites with core-shell structure usually exhibit excellent catalytic properties due to unique interfaces and synergistic effect among composites. In this study, Au-Pd bimetallic nanoparticles (NPs) with core-shell structure (Au-Pd cs) by using Au NPs as core and Pd as shell were successfully fabricated and, for the first time, were used to investigate the dechlorination of diclofenac (DCF) at H2 atmosphere in water at room temperature. The degradation products were studied as well by using HPLC/Q-ToF MS/MS. The operational factors such as pH and composition of the Au-Pd cs were also studied. The results showed that nearly 100% of DCF (30 mg L(-1), 50 mL, pH=7) was dechlorinated in 4.5 h by 10 mL of 56 mg L(-1) of Au-Pd cs. Ninety per cent of DCF was degraded in 6.5 h by the mixture of Au and Pd NPs. However, the individual Au NPs had no obvious effect in degrading DCF and the monometallic Pd NPs with comparable concentration only degraded less than 20% of DCF. Furthermore, the reaction mechanism of this catalytic process was studied in detail. It was found that the degradation was a second-order exponential reaction. The two main degradation products were obtained by cleaving the carbon-halogen bond of DCF and this made the degradation products more environmentally friendly.

  11. Dechlorination of PCBs, CAHs, herbicides and pesticides neat and in soils at 25 degrees C using Na/NH3.

    Science.gov (United States)

    Pittman, Charles U; He, Jinbao

    2002-05-03

    Na/NH3 reductions have been used to dehalogenate polychlorinated biphenyls (PCBs), chlorinated aliphatic hydrocarbons (CAHs) and pesticides at diffusion controlled rates at room temperature in model compound studies in both dry NH3 and when water was added. The rate ratio of dechlorination (aliphatic and aromatic compounds) versus reaction of the solvated electron with water is very large, allowing wet soils or sludges to be remediated without an unreasonable consumption of sodium. Several soils, purposely contaminated with 1,1,1-trichloroethane, 1-chlorooctane and tetrachloroethylene, were remediated by slurring the soils in NH3 followed by addition of sodium. The consumption of sodium per mole of chlorine removed was examined as a function of both the hazardous substrate's concentration in the soil and the amount of water present. The Na consumption per Cl removed increases as the amount of water increases and as the substrate concentration in soil decreases. However, remediation was still readily accomplished from 5000 to 3000ppm to sub ppm levels of RCl in the presence of substantial amounts of water. PCB- and dioxin-contaminated oils were remediated with Na/NH3 as were PCB-contaminated soils and sludges from contaminated sites. Ca/NH3 treatments also successfully remediated PCB-contaminated clay, sandy and organic soils but laboratory studies demonstrated that Ca was less efficient than Na when substantial amounts of water were present. The advantages of solvated electron reductions using Na/NH3 include: (1) very rapid dehalogenation rates at ambient temperature, (2) soils (even clay soils) break down into particles and slurry nicely in NH3, (3) liquid ammonia handling technology is well known and (4) removal from soils, recovery and recycle of ammonia is easy due to its low boiling point. Finally, dechlorination is extremely fast even for the 'corner' chlorines in the substrate Mirex (structure in Eq. (5)).

  12. Definition of metabolism-dependent xenobiotic toxicity with co-cultures of human hepatocytes and mouse 3T3 fibroblasts in the novel integrated discrete multiple organ co-culture (IdMOC) experimental system: results with model toxicants aflatoxin B1, cyclophosphamide and tamoxifen.

    Science.gov (United States)

    Li, Albert P; Uzgare, Aarti; LaForge, Yumiko S

    2012-07-30

    The integrated discrete multiple organ co-culture system (IdMOC) allows the co-culturing of multiple cell types as physically separated cells interconnected by a common overlying medium. We report here the application of IdMOC with two cell types: the metabolically competent primary human hepatocytes, and a metabolically incompetent cell line, mouse 3T3 fibroblasts, in the definition of the role of hepatic metabolism on the cytotoxicity of three model toxicants: cyclophosphamide (CPA), aflatoxin B1 (AFB) and tamoxifen (TMX). The presence of hepatic metabolism in IdMOC with human hepatocytes was demonstrated by the metabolism of the P450 isoform 3A4 substrate, luciferin-IPA. The three model toxicants showed three distinct patterns of cytotoxic profile: TMX was cytotoxic to 3T3 cells in the absence of hepatocytes, with slightly lower cytotoxicity towards both 3T3 cells and hepatocytes in the IdMOC. AFB was selective toxic towards the human hepatocytes and relatively noncytotoxic towards 3T3 cells both in the presence and absence of the hepatocytes. CPA cytotoxicity to the 3T3 cells was found to be significantly enhanced by the presence of the hepatocytes, with the cytotoxicity dependent of the number of hepatocytes, and with the cytotoxicity attenuated by the presence of a non-specific P450 inhibitor, 1-aminobenzotriazole. We propose here the following classification of toxicants based on the role of hepatic metabolism as defined by the human hepatocyte-3T3 cell IdMOC assay: type I: direct-acting cytotoxicants represented by TMX as indicated by cytotoxicity in 3T3 cells in the absence of hepatocytes; type II: metabolism-dependent cytotoxicity represented by AFB1 with effects localized within the site of metabolic activation (i. e. hepatocytes); and type III: metabolism-dependent cytotoxicity with metabolites that can diffuse out of the hepatocytes to cause toxicity in cells distal from the site of metabolism, as exemplified by CPA. Copyright © 2012 Elsevier Ireland

  13. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate

    Directory of Open Access Journals (Sweden)

    Clemens Schmeitzl

    2015-08-01

    Full Text Available Deoxynivalenol (DON is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON, 15-acetyl-DON (15-ADON and 3,15-diacetyl-DON (3,15-diADON, and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G and of 15-acetyl-DON-3-sulfate (15-ADON3S as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G. This study highlights significant differences in the metabolization of DON and its acetylated derivatives.

  14. From "Water Boiling in a Peruvian Town" to "Letting them Die": culture, community intervention, and the metabolic balance between patience and zeal.

    Science.gov (United States)

    Trickett, Edison J

    2011-03-01

    While the concept of culture has long been central to community psychology research and intervention, it has most frequently referred to the communities in which such work occurs. The purpose of this paper is to reframe this discussion by viewing community interventions as instances of intercultural contact between the culture of science, reflected in community intervention research, and the culture of the communities in which those interventions occur. Following a brief discussion of the complexities of culture as a concept, two illustrative stories of failed community interventions are provided to highlight the centrality of cultural and contextual understanding as prelude to community intervention. These stories, set 50 years apart, reflect the depth and pervasive influence of both the culture of science and the culture of communities. Next, a series of propositions about the culture of social science as a partial reflection of the broader culture of the United States are offered, and their implications for the conduct of community interventions drawn. The paper concludes with a series of recommendations which, together, provide an ecological mind-set for taking culture seriously in community interventions. Central to this mind set are the importance of focusing on communities rather than programs and emphasizing the intervention goal of choice over change.

  15. BioReD: Biomarkers and Tools for Reductive Dechlorination Site Assessment, Monitoring and Management

    Science.gov (United States)

    2013-11-01

    as amino acid and lipid metabolism and transport were over-represented in the transcripts as compared to the average Dhc gene (Figure 2.7...genes involved in corrinoid transport were transcribed, supporting the salvaging of corrinoids from the environment. Moreover, transcription of...soil and sediment samples. Appl. Environ. Microbiol. 65:4715-4724. 107. Miller, N. J., and S. M. Mudge. 1997. The effect of biodiesel on the rate of

  16. Metagenomic and Metatranscriptomic Analyses Reveal the Structure and Dynamics of a Dechlorinating Community Containing Dehalococcoides mccartyi and Corrinoid-Providing Microorganisms under Cobalamin-Limited Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Men, Yujie; Yu, Ke; Bælum, Jacob; Gao, Ying; Tremblay, Julien; Prestat, Emmanuel; Stenuit, Ben; Tringe, Susannah G.; Jansson, Janet; Zhang, Tong; Alvarez-Cohen, Lisa; Liu, Shuang-Jiang

    2017-02-10

    ABSTRACT

    The aim of this study is to obtain a systems-level understanding of the interactions betweenDehalococcoidesand corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities, and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven putative draft genomes were binned from the metagenomes. At an early stage (2 days), more transcripts of genes in theVeillonellaceaebin-genome were detected in the metatranscriptome of the enrichment without exogenous cobalamin than in the one with the addition of cobalamin. Among these genes, sporulation-related genes exhibited the highest differential expression when cobalamin was not added, suggesting a possible release route of corrinoids from corrinoid producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoidde novobiosynthesis pathway was also assigned to theVeillonellaceaebin-genome. Targeted quantitative PCR (qPCR) analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin than in the enrichment with cobalamin. Furthermore, the corrinoid salvaging and modification pathway ofDehalococcoideswas upregulated in response to the cobalamin stress. This study provides important insights into the microbial interactions and roles played by members of dechlorinating communities under cobalamin-limited conditions.

    IMPORTANCEThe key

  17. On the mechanism of dechlorination of polychlorinated biphenyls (PCBs) induced by electron beam irradiation in aqueous and aqueous micellar solutions, transformer oil, and sediment

    International Nuclear Information System (INIS)

    Chaychian, M.; Silverman, J.; Al-Sheirkhly, M.

    2011-01-01

    Complete text of publication follows. The widespread release of PCBs into the environment presents a serious problem due to their persistence and toxicity. Ionizing radiation, such as gamma rays and high-energy electron beam, is remarkably effective in dechlorinating PCBs into biphenyls. The kinetics of the reductive dechlorination of PCBs in aqueous and aqueous micellar solutions and in transformer oil is being studied by pulse radiolysis and steady-state radiolysis. In aqueous micellar solutions, dichlori-, tetrachloro-, and decachlorobiphenyl congeners were solubilized in water using a commercially available non-ionic surfactant, Triton X-100, and subsequently pulse irradiated by electron accelerator using optical detection method. The reaction rate constant between decachlorobiphenyl and aqueous electrons e aq ·- , and Triton with e aq ·- in the 2% Triton solution, were measured as 2.6 x 10 9 Lmol -1 s -1 and 1.2 x 10 7 Lmol -1 s -1 , respectively. We have also measured in aqueous solutions, the reaction rate constant of e aq ·- with dichlorobiphenyl as 3.8 x 10 9 Lmol -1 s -1 . In aqueous-propanol, the reaction rate constants of e aq ·- with dichlorobiphenyl, tetrachlorobiphenyl, and dechachlorobiphenyl are 2 x 10 9 Lmol -1 s -1 , 3 x 10 9 Lmol -1 s -1 , and 7 x 10 9 Lmol -1 s -1 , respectively. In addition to the presence of PCBs as high-dielectric component, transformer oil contains many aromatic hydrocarbons; the most abundant being biphenyl, fluorine, and phenanthrene. Solvated electrons formed by irradiation of the oil react either with PCB to lead to dechlorination or with the aromatic hydrocarbons present in the oil to form radical anions. These species are shown to transfer an electron to chlorinated biphenyls relative rapidly, leading to dechlorination. The rate constants for several such reactions, determined in 2-propanol solutions, are in the range of 10 7 - 10 8 Lmol -1 s -1 . These rapid reactions explain why PCB can be dechlorinated in oil

  18. Metabolism of aflatoxin B1 and identification of the major aflatoxin B1-DNA adducts formed in cultured human bronchus and colon

    DEFF Research Database (Denmark)

    Autrup, Herman; Essigmann, John M.; Croy, Robert G.

    1979-01-01

    Aflatoxin B1 and benzo(a)pyrene were activated by both cultured human bronchus and human colon as measured by binding to cellular DNA and protein. The binding of aflatoxin B1 to DNA was dose dependent, and the level of binding was higher in cultured human bronchus than it was in the colon. When c...

  19. Metabolic fate of 14-C-fenitrothion in a rice field model ecosystem

    International Nuclear Information System (INIS)

    Nashriyah binti Mat; Nambu, K.; Miyashita, T.; Sakata, S.; Ohshima, M.

    1991-01-01

    Pesticide fenitrothion (Sumithion sup R)is widely used to control rice stem borer and other pests. Its metabolic fate and degradation was studied using the sup 14 C-ring labelled fenitrothion in a model ecosystem consisting of Takarazuka paddy field soil, rice plant (Oryza sativa var. nihonbare), carp fish (Cyprinus carpio L.) and dechlorinated water. Radioactive fenitrothion was applied at a normal rate as used by Japanese farmers and samples of rice plant, fish soil and water were analysed after ten days of application. Fenitrothion was readily metabolized in rice plant and fish and also readily degraded to a number of metabolites in water and flooded soil. Most of the radioactivity applied was found in the soil component of the ecosystem. A trace amount of fenitrooxon, the activated metabolite of fenitrothion was detected only in soil and water. A possible metabolic pathway of fenitrothion in the rice model ecosystem was proposed

  20. Defining the sources of airborne polychlorinated biphenyls: evidence for the influence of microbially dechlorinated congeners from river sediment?

    Energy Technology Data Exchange (ETDEWEB)

    Chiarenzelli, J. [SUNYat Oswego, NY (United States); Bush, B.; Casey, A.; O' Keefe, P. [SUNY at Albany, School of Public Health, Rensselaer, NY (United States); Barnard, E.; Smith, B. [New York State Dept. of Health, Wadsworth Center for Laboratories and Research, Albany, NY (United States); Gilligan, E. [Syracuse Univ., Dept. of Civil an Environmental Engineering, NY (United States); Johnson, G. [Energy and Geoscience Institute, Dept, of Civil and Environmental Engineering, Salt Lake City, UT (United States)

    2000-07-01

    During sampling in 1993, elevated levels of polychlorinated biphenyls were discovered near three industrial facilities on the Akwesasne Mohawk Nation Reserve along the St. Lawrence River, straddling the Canadian-US. border. Volatilization of Aroclor 1248, which was used extensively at all three sites, was identified as the dominant source, augmented in a minor way by a dechlorinated source, presumably from river sediment and waters. These two sources were found to account for 80 per cent of the contamination. Further, it was established that at a small cove adjacent to an industrial landfill, summer concentrations of PCBs exceeded winter concentrations by a factor of 27. Observation showed the presence of similar congener-specific PCB patterns at all sample sites and an increase in the concentrations of chlorine to biphenyl ratios during the summer months. During the colder months PCB concentrations at all sites declined, nevertheless, PCB levels were still higher than those measured elsewhere in the Great Lakes region during the same time period. Results of this investigation suggest that atmospheric deposition from local contaminant sources can elevate concentrations in produce and vegetative matter, complicating exposure routes and bioaccumulation via modeling of food chain. 22 refs., 4 tabs. 1 fig.

  1. Dechlorination and chlorine rearrangement of 1,2,5,5,6,9,10-heptachlorodecane mediated by the whole pumpkin seedlings.

    Science.gov (United States)

    Li, Yanlin; Hou, Xingwang; Yu, Miao; Zhou, Qunfang; Liu, Jiyan; Schnoor, Jerald L; Jiang, Guibin

    2017-05-01

    Short chain chlorinated paraffins (SCCPs) are ubiquitously present as persistent organic pollutants in the environment. However, little information on the interaction of SCCPs with plants is currently available. In this work, young pumpkin plants (Cucurbita maxima × C. Moschata) were hydroponically exposed to the congener of chlorinated decane, 1,2,5,5,6,9,10-heptachlorodecane (1,2,5,5,6,9,10-HepCD), to investigate the uptake, translocation and transformation of chlorinated decanes in the intact plants. It was found that parent HepCD was taken up by the pumpkin roots, translocated from root to shoots, and phytovolatilized from pumpkin plants to air via the plant transpiration flux. Our data suggested that dechlorination of 1,2,5,5,6,9,10-HepCD to lower chlorinated decanes and rearrangement of chlorine atoms in the molecule were all mediated by the whole pumpkin seedlings. Chlorinated decanes were found in the shoots and roots of blank controls, indicating that chlorinated decanes in the air could be absorbed by leaves and translocated from shoots to roots. Lower chlorinated congeners (C 10 H 17 Cl 5 ) tended to detain in air compared to higher chlorinated congeners (C 10 H 16 Cl 6 and other C 10 H 15 Cl 7 ). Potential transformation pathway and behavior of 1,2,5,5,6,9,10-HepCD in pumpkin were proposed based on these experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The cultural divide

    DEFF Research Database (Denmark)

    Wrzesinski, Krzysztof; Rogowska-Wrzesinska, Adelina; Kanlaya, Rattiyaporn

    2014-01-01

    Introduction: Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular architecture at these two extremes and found that they are dram......Introduction: Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular architecture at these two extremes and found...... that they are dramatically different. Results: Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved...

  3. Compendium of Technical Papers on the Reductive Dechlorination of Chlorinated Solvents.

    Science.gov (United States)

    1997-08-01

    30), was added to cultures atarate of 20 pL (for in Thauer et al. (22) with temperature = 25 °C; pH = 7; HC0 3- = 70 supplement (E0),twas)added0to...34Biotransformation of chlorinated organic solvents in static niicrocosrrs." Environmental Toxicology and Chemistry 4: 739-742. Tandoi, V., T D. DiStefano, R A

  4. Metabolic alterations produced by 3-nitropropionic acid in rat striata and cultured astrocytes: quantitative in vitro 1H nuclear magnetic resonance spectroscopy and biochemical characterization

    International Nuclear Information System (INIS)

    Chang, C.; Wan, Y.L.; Goh, C.C.; Tsai, M.J.

    1997-01-01

    Quantitative high resolution in vitro 1 H nuclear magnetic resonance spectroscopy was employed to study the metabolic effects of 3-nitropropionic acid associated with aging from perchloric acid extracts of rat striata. Systemic injection of 3-nitropropionic acid in rats at a dose of 10 mg/kg/day for seven consecutive days significantly impaired energy metabolism in rats one, four and eight months of age, as evidenced by a marked elevation of succinate and lactate levels. However, a significant decrease in N-acetyl-l-aspartate level, a neuronal marker, was observed in four- and eight-month-old rats but not in one-month-old rats. This would indicate that rats at four to eight months are more susceptible to 3-nitropropionic acid than those at one month. A significant decrease in GABA level was observed in four-month-old 3-nitropropionic acid-treated rats, which is consistent with the literature that GABAergic neurons are particularly vulnerable to 3-nitropropionic acid treatment. In addition, glutamine and glutamate levels were markedly decreased at four and eight months in 3-nitropropionic acid-treated rats. Since glutamine is synthesized predominantly in glia, the observation above suggests that 3-nitropropionic acid intoxication may involve perturbation of energy metabolism, glial injury and consequent neuronal damage. Astrocytes which are essential in the metabolism of glutamate and glutamine were used to further assess 3-nitropropionic acid-induced toxicity. Glial proliferation, mitochondrial metabolism and glutamine synthetase activity were all reduced by 3-nitropropionic acid treatment with a concomitant increase, in a dose-dependent manner, of lactate levels, suggesting that 3-nitropropionic acid is also detrimental to astrocytes in vivo and thus may affect metabolic interaction between neurons and glia.These results not only imply that 3-nitropropionic acid blocks energy metabolism prior to exerting neurotoxic damage but also demonstrate that the degree of

  5. Xenobiotic metabolism capacities of human skin in comparison with a 3D-epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: phase II enzymes.

    Science.gov (United States)

    Götz, Christine; Pfeiffer, Roland; Tigges, Julia; Ruwiedel, Karsten; Hübenthal, Ulrike; Merk, Hans F; Krutmann, Jean; Edwards, Robert J; Abel, Josef; Pease, Camilla; Goebel, Carsten; Hewitt, Nicola; Fritsche, Ellen

    2012-05-01

    The 7th Amendment to the EU Cosmetics Directive prohibits the use of animals in cosmetic testing for certain endpoints, such as genotoxicity. Therefore, skin in vitro models have to replace chemical testing in vivo. However, the metabolic competence neither of human skin nor of alternative in vitro models has so far been fully characterized, although skin is the first-pass organ for accidentally or purposely (cosmetics and pharmaceuticals) applied chemicals. Thus, there is an urgent need to understand the xenobiotic-metabolizing capacities of human skin and to compare these activities to models developed to replace animal testing. We have measured the activity of the phase II enzymes glutathione S-transferase, UDP-glucuronosyltransferase and N-acetyltransferase in ex vivo human skin, the 3D epidermal model EpiDerm 200 (EPI-200), immortalized keratinocyte-based cell lines (HaCaT and NCTC 2544) and primary normal human epidermal keratinocytes. We show that all three phase II enzymes are present and highly active in skin as compared to phase I. Human skin, therefore, represents a more detoxifying than activating organ. This work systematically compares the activities of three important phase II enzymes in four different in vitro models directly to human skin. We conclude from our studies that 3D epidermal models, like the EPI-200 employed here, are superior over monolayer cultures in mimicking human skin xenobiotic metabolism and thus better suited for dermatotoxicity testing. © 2012 John Wiley & Sons A/S.

  6. Effects of aluminum on organic acid metabolism and secretion by red spruce cell suspension cultures and the reversal of Al effects on growth and polyamine metabolism by exogenous organic acids

    Science.gov (United States)

    Rakesh Minocha; Stephanie Long

    2004-01-01

    In the absence of added Al, the concentration of succinate in cultured red spruce (Picea rubens Sarg.) cells was 15-20 times higher (> 600 nmol g-1FW) than that of citrate or oxalate and 4-6 times higher than that of malate. Addition of AICIJ (effective monomeric Al concentrations of 0.23 and 0.48...

  7. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for molecules associated with metabolism, signaling and regulation in central nervous system mixed glial cell cultures

    Directory of Open Access Journals (Sweden)

    Studzinski Diane

    2009-01-01

    Full Text Available Abstract Background Cytokines secreted by immune cells and activated glia play central roles in both the pathogenesis of and protection from damage to the central nervous system (CNS in multiple sclerosis (MS. Methods We have used gene array analysis to identify the initial direct effects of cytokines on CNS glia by comparing changes in early gene expression in CNS glial cultures treated for 6 hours with cytokines typical of those secreted by Th1 and Th2 lymphocytes and monocyte/macrophages (M/M. Results In two previous papers, we summarized effects of these cytokines on immune-related molecules, and on neural and glial related proteins, including neurotrophins, growth factors and structural proteins. In this paper, we present the effects of the cytokines on molecules involved in metabolism, signaling and regulatory mechanisms in CNS glia. Many of the changes in gene expression were similar to those seen in ischemic preconditioning and in early inflammatory lesions in experimental autoimmune encephalomyelitis (EAE, related to ion homeostasis, mitochondrial function, neurotransmission, vitamin D metabolism and a variety of transcription factors and signaling pathways. Among the most prominent changes, all three cytokine mixtures markedly downregulated the dopamine D3 receptor, while Th1 and Th2 cytokines downregulated neuropeptide Y receptor 5. An unexpected finding was the large number of changes related to lipid metabolism, including several suggesting a switch from diacylglycerol to phosphatidyl inositol mediated signaling pathways. Using QRT-PCR we validated the results for regulation of genes for iNOS, arginase and P glycoprotein/multi-drug resistance protein 1 (MDR1 seen at 6 hours with microarray. Conclusion Each of the three cytokine mixtures differentially regulated gene expression related to metabolism and signaling that may play roles in the pathogenesis of MS, most notably with regard to mitochondrial function and neurotransmitter

  8. Sucrose metabolizing enzymes in cell suspension cultures of Bauhinia forficata, Curcuma zedoaria and Phaseolus vulgaris Enzimas do metabolismo da sacarose em cultura celular de Bauhinia forficata, Curcuma zedoaria e Phaseolus vulgaris

    Directory of Open Access Journals (Sweden)

    Marcia Ometto de Mello

    2001-09-01

    Full Text Available The objective of this work was to study the activity of sucrose metabolizing enzymes in extracts of cell suspension cultures of Bauhinia forficata Link, Curcuma zedoaria Roscoe and Phaseolus vulgaris L. Invertase pathway was identified in the three studied species. Sucrose synthase pathway was also responsible for sucrose metabolism in Curcuma zedoaria and Phaseolus vulgaris cells. Activity values higher than 300 nmol min-1 mg-1 of protein were found for acid and neutral invertases, UDPglucose pyrophosphorylase and phosphoglucomutase in the cell extract of the three plant species. Sucrose synthase showed low activity in Bauhinia forficata cells. As sucrose concentration in the culture medium decreased, sucrose synthase activity increased in C. zedoaria and P. vulgaris cells. The glycolytic enzymes activity gradually reduced at the end of the culture period, when carbohydrate was limited.O objetivo deste trabalho foi estudar as enzimas do metabolismo da sacarose em culturas de célula em suspensão de Bauhinia forficata Link, Curcuma zedoaria Roscoe e Phaseolus vulgaris L. A via da invertase foi identificada nas três espécies estudadas. A via da sacarose sintase também foi responsável pelo metabolismo da sacarose em células de Curcuma zedoaria e Phaseolus vulgaris. Foram encontradas atividades maiores que 300 nmol min-1 mg-1 de proteína das enzimas invertase ácida e alcalina, UDPglicose pirofosforilase e fosfoglicomutase no extrato celular das três espécies de plantas. A sacarose sintase mostrou atividade baixa nas células de Bauhinia forficata. À medida que a concentração de sacarose no meio de cultura diminuiu, a atividade da sacarose sintase aumentou em células de Curcuma zedoaria e Phaseolus vulgaris. Ao final do período de cultura, quando os carboidratos se tornaram limitantes, as atividades das enzimas glicolíticas reduziram-se gradualmente.

  9. Time-dependent bacterial community and electrochemical characterizations of cathodic biofilms in the surfactant-amended sediment-based bioelectrochemical reactor with enhanced 2,3,4,5-tetrachlorobiphenyl dechlorination.

    Science.gov (United States)

    Wan, Hui; Yi, Xiaoyun; Liu, Xiaoping; Feng, Chunhua; Dang, Zhi; Wei, Chaohai

    2018-05-01

    Applying an electric field to stimulate the microbial reductive dechlorination of polychlorinated biphenyls (PCBs) represents a promising approach for bioremediation of PCB-contaminated sites. This study aimed to demonstrate the biocathodic film-facilitated reduction of PCB 61 in a sediment-based bioelectrochemical reactor (BER) and, more importantly, the characterizations of electrode-microbe interaction from microbial and electrochemical perspectives particularly in a time-dependent manner. The application of a cathodic potential (-0.45 V vs. SHE) significantly improved the rate and extent of PCB 61 dechlorination compared to the open-circuit scenario (without electrical stimulation), and the addition of an external surfactant further increased the dechlorination, with Tween 80 exerting more pronounced effects than rhamnolipid. The bacterial composition of the biofilms and the bioelectrochemical kinetics of the BERs were found to be time-dependent and to vary considerably with the incubation time and slightly with the coexistence of an external surfactant. Excellent correlations were observed between the dechlorination rate and the relative abundance of Dehalogenimonas, Dechloromonas, and Geobacter, the dechlorination rate and the cathodic current density recorded from the chronoamperometry tests, and the dechlorination rate and the charge transfer resistance derived from the electrochemical impedance tests, with respect to the 120 day-operation. After day 120, PCB 61 was resistant to further appreciable reduction, but substantial hydrogen production was detected, and the bacterial community and electrochemical parameters observed on day 180 were not distinctly different from those on day 120. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: L-glutamine inhibits the generation of L-arginine by cultured endothelial cells

    International Nuclear Information System (INIS)

    Sessa, W.C.; Hecker, M.; Mitchell, J.A.; Vane, J.R.

    1990-01-01

    The mechanism by which L-glutamine (L-Gln) inhibits the release of endothelium-derived factor from bovine aortic cultured endothelial cells was investigated. The intracellular concentration of L-arginine (L-Arg) in Arg-depleted endothelial cells was inversely related to the level of L-Gln. Removal of L-Gln from the culture medium (usually containing L-Gln at 2 mM) abolished the inhibitory effect of the culture medium on L-Arg generation. L-Gln (0.2 and 2 mM) but not D-Gln inhibited the generation of L-Arg by both Arg-depleted and nondepleted endothelial cells. L-Gln did not interfere with the uptake of L-Arg or the metabolism of L-Arg-L-Phe to L-Arg but inhibited the formation of L-Arg from L-citrulline (L-Cit), L-Cit-L-Phe, and N G -monomethyl-L-arginine. L-Gln also inhibited the conversion of L-[ 14 C]Cit to L-[ 14 C]Arg by Arg-depleted endothelial cells. However, L-Gln did not inhibit the conversion of L-argininosuccinic acid to L-Arg by endothelial cell homogenates. Thus, L-Gln interferes with the conversion of L-Cit to L-Arg probably by acting on argininosuccinate synthetase rather than argininosuccinate lyase. L-Gln also inhibited the generation of L-Arg by the monocyte-macrophage cell line J774 but had no effect on the conversion of L-Cit to L-Arg by these cells. As the release of endothelium-derived relaxing factor from cultured and non-cultured endothelial cells is limited by the availability of L-Arg, endogenous L-Gln may play a regulatory role in the biosynthesis of endothelium-derived relaxing factor

  11. Influence of culture conditions on growth and protein metabolism in chlorella pyranosides; Influencia de las condiciones de cultivo sobre el crecimiento y metabolismo proteico de chlorella pyrenoidosa

    Energy Technology Data Exchange (ETDEWEB)

    Mazon Matanzo, M P; Fernandez Gonzalez, J; Batuecas Suarez, B

    1981-07-01

    Growth and protein metabolism of Chlorella pyranoside under different conditions of temperature, photo period and CO{sub 2} concentration was studied. The optimum of biomass production was observed at 25 degree centigree, 40.000 ppm of CO{sub 2} in air and a 20 h. light period, followed of 4 h. of darkness. Some variations in free aminoacids content was observed under different conditions but no change did occur in protein. (Author) 68 refs.

  12. Metabolic fate of desomorphine elucidated using rat urine, pooled human liver preparations, and human hepatocyte cultures as well as its detectability using standard urine screening approaches.

    Science.gov (United States)

    Richter, Lilian H J; Kaminski, Yeda Rumi; Noor, Fozia; Meyer, Markus R; Maurer, Hans H

    2016-09-01

    Desomorphine is an opioid misused as "crocodile", a cheaper alternative to heroin. It is a crude synthesis product homemade from codeine with toxic byproducts. The aim of the present work was to investigate the metabolic fate of desomorphine in vivo using rat urine and in vitro using pooled human liver microsomes and cytosol as well as human liver cell lines (HepG2 and HepaRG) by Orbitrap-based liquid chromatography-high resolution-tandem mass spectrometry or hydrophilic interaction liquid chromatography. According to the identified metabolites, the following metabolic steps could be proposed: N-demethylation, hydroxylation at various positions, N-oxidation, glucuronidation, and sulfation. The cytochrome P450 (CYP) initial activity screening revealed CYP3A4 to be the only CYP involved in all phase I steps. UDP-glucuronyltransferase (UGT) initial activity screening showed that UGT1A1, UGT1A8, UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B15, and UGT2B17 formed desomorphine glucuronide. Among the tested in vitro models, HepaRG cells were identified to be the most suitable tool for prediction of human hepatic phase I and II metabolism of drugs of abuse. Finally, desomorphine (crocodile) consumption should be detectable by all standard urine screening approaches mainly via the parent compound and/or its glucuronide assuming similar kinetics in rats and humans.

  13. Metabolic activity of tree saps of different origin towards cultured human cells in the light of grade correspondence analysis and multiple regression modeling

    Directory of Open Access Journals (Sweden)

    Artur Wnorowski

    2017-06-01

    Full Text Available Tree saps are nourishing biological media commonly used for beverage and syrup production. Although the nutritional aspect of tree saps is widely acknowledged, the exact relationship between the sap composition, origin, and effect on the metabolic rate of human cells is still elusive. Thus, we collected saps from seven different tree species and conducted composition-activity analysis. Saps from trees of Betulaceae, but not from Salicaceae, Sapindaceae, nor Juglandaceae families, were increasing the metabolic rate of HepG2 cells, as measured using tetrazolium-based assay. Content of glucose, fructose, sucrose, chlorides, nitrates, sulphates, fumarates, malates, and succinates in sap samples varied across different tree species. Grade correspondence analysis clustered trees based on the saps’ chemical footprint indicating its usability in chemotaxonomy. Multiple regression modeling showed that glucose and fumarate present in saps from silver birch (Betula pendula Roth., black alder (Alnus glutinosa Gaertn., and European hornbeam (Carpinus betulus L. are positively affecting the metabolic activity of HepG2 cells.

  14. Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kang; Zhang, Fu-Shen, E-mail: fszhang@rcees.ac.cn

    2016-10-05

    Highlights: • A co-treatment process for recovery of Co and Li and simultaneous detoxification of PVC in subcritical water was proposed. • PVC was used as a hydrochloric acid source. • More than 95% Co and nearly 98% Li were leached under the optimum conditions. • Neither corrosive acid nor reducing agent was used. • The co-treatment process has technical, economic and environmental benefits over the traditional recovery processes. - Abstract: In this work, an effective and environmentally friendly process for the recovery of cobalt (Co) and lithium (Li) from spent lithium-ion batteries (LIBs) and simultaneously detoxification of polyvinyl chloride (PVC) in subcritical water was developed. Lithium cobalt oxide (LiCoO{sub 2}) power from spent LIBs and PVC were co-treated by subcritical water oxidation, in which PVC served as a hydrochloric acid source to promote metal leaching. The dechlorination of PVC and metal leaching was achieved simultaneously under subcritical water oxidation. More than 95% Co and nearly 98% Li were recovered under the optimum conditions: temperature 350 °C, PVC/LiCoO{sub 2} ratio 3:1, time 30 min, and a solid/liquid ratio 16:1 (g/L), respectively. Moreover, PVC was completely dechlorinated at temperatures above 350 °C without any release of toxic chlorinated organic compounds. Assessment on economical and environmental impacts revealed that the PVC and LiCoO{sub 2} subcritical co-treatment process had significant technical, economic and environmental benefits over the traditional hydrometallurgy and pyrometallurgy processes. This innovative co-treatment process is efficient, environmentally friendly and adequate for Co and Li recovery from spent LIBs and simultaneous dechlorination of PVC in subcritical water.

  15. Photocatalytic reductive dechlorination of 2-chlorodibenzo-p-dioxin by Pd modified g-C3N4 photocatalysts under UV-vis irradiation: Efficacy, kinetics and mechanism.

    Science.gov (United States)

    Ding, Jiafeng; Long, Gaoyuan; Luo, Yang; Sun, Runze; Chen, Mengxia; Li, Yajun; Zhou, Yanfang; Xu, Xinhua; Zhao, Weirong

    2018-05-09

    Polychlorinated dibenzo-p-dioxins (PCDDs), as a group of notorious anthropogenic environmental toxicants, are arguably ubiquitous in nature. In this study, we investigated the photocatalytic reductive dechlorination of 2-chlorodibenzo-p-dioxin (2-CDD) over Pd/g-C 3 N 4 catalysts under UV-vis irradiation. The g-C 3 N 4 and a series of Pd/g-C 3 N 4 catalysts were prepared by thermal polymerization and mechanical mixing-illumination method and characterized by XRD, TEM, BET, SEM and UV-vis DRS analyses. Among all the samples, the Pd/g-C 3 N 4 (5 wt%) yielded the optimal dechlorination activity with a total 2-CDD conversion of 54% within 4 h, and 76% of those converted 2-CDD were evolved to dibenzo-p-dioxin (DD). The kinetics of dechlorination could be described as pseudo-first-order decay model (R 2  > 0.84). Corresponding rate constants (k) increased from 0.052 to 0.17 h -1 with Pd contents up to 5 wt% and decreased to 0.13 h -1 with a 10 wt% of Pd. The enhanced activities originated from the surface plasmonic resonance (SPR) effect of Pd nanoparticles and the formation of Schottky barrier between Pd and g-C 3 N 4 , which extend the spectrum responsive range and suppress the charge recombination of g-C 3 N 4 . This is the first report on the photocatalytic reductive removal of PCDDs and may provide a new approach for PCDDs pollution control. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    DEFF Research Database (Denmark)

    Badin, Alice; Broholm, Mette Martina; Jacobsen, Carsten S.

    2016-01-01

    -Cl isotope analysis together with the almost absent VC 13C depletion in comparison to cDCE 13C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation...... reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined...

  17. Simulation Of Enhanced Reductive Dechlorination For Remediation Of Tce In A Fractured Clay System: A New Model Approach And Application To Field Site

    DEFF Research Database (Denmark)

    Manoli, Gabriele; Chambon, Julie Claire Claudia; Christiansen, Camilla Maymann

    2010-01-01

    with interspersed sand lenses and stringers. The transport model couples diffusion dominated transport in the clay matrix, with advective‐dispersive transport in the fractures and higher permeability sand lenses. The reactive model calculates sequential reductive dechlorination of TCE (trichloroethylene) to its...... a contamination of trichloroethylene located in a fractured clay till. The site is simulated using the model developed. Fracture geometry, site parameters and degradation rates are based on observations from the site and lab studies. The risk for drinking water is assessed and cleanup times are simulated using...

  18. Characterization of natural anaerobic dechlorination of TCE and 1,1,1-TCA in clay till including isotope fractionation and molecular biological tools

    DEFF Research Database (Denmark)

    Damgaard, Ida; Bælum, J.; Hunkeler, D.

    2010-01-01

    One of the major challenges when using enhanced reductive dechlorination (ERD) as a remediation technology at clay till sites is to obtain good contact between added agents such as donor, bacteria and the contamination. It is unclear whether degradation only takes place in fractures and/or sand l...... including the location of degradation in the fracture matrix geology. An extensive field collection of cores and discrete soil sampling has been conducted and samples have been analysed using state of the art microbial and chemical tools including isotope fractionation....

  19. Effect of emplaced nZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand

    International Nuclear Information System (INIS)

    Kim, Hye-Jin; Leitch, Megan; Naknakorn, Bhanuphong; Tilton, Robert D.; Lowry, Gregory V.

    2017-01-01

    Highlights: • Reactivity of nZVI increased linearly with nZVI concentration above 10 g/L, but was non-linear below 10 g/L. • nZVI reactivity with PCE is more sensitive to solution redox potential than solution pH. • Mass transfer limits the reactivity of emplaced nZVI under typical groundwater flow velocity. • Lowering pH increases H_2 evolution from nZVI more than reactivity with PCE. • Design of nZVI remediation strategies should consider mass loading and flow velocity on performance and lifetime. - Abstract: The effect of nZVI mass loading and groundwater velocity on the tetrachloroethylene (PCE) dechlorination rate and the hydrogen evolution rate for poly(maleic acid-co-olefin) (MW = 12 K) coated nZVI was examined. In batch reactors, the PCE reaction rate constant (3.7 × 10"−"4 L hr"−"1 m"−"2) and hydrogen evolution rate constant (1.4 nanomol L hr"−"1 m"−"2) were independent of nZVI concentration above 10 g/L, but the PCE dechlorination rate decreased and the hydrogen evolution rate increased for nZVI concentration below 10 g/L. The nonlinearity between nZVI mass loading and PCE dechlorination and H_2 evolution was explained by differences in pH and E_h at each nZVI mass loading; PCE reactivity increased when solution E_h decreased, and the H_2 evolution rate increased with decreasing pH. Thus, nZVI mass loading of <5 g/L yields lower reactivity with PCE and lower efficiency of Fe° utilization than for higher nZVI mass loading. The PCE dechlorination rate increased with increasing pore-water velocity, suggesting that mass transfer limits the reaction at low porewater velocity. Overall, this work suggests that design of nZVI-based reactive barriers for groundwater treatment should consider the non-linear effects of both mass loading and flow velocity on performance and expected reactive lifetime.

  20. Effect of emplaced nZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Jin [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Chemical Research Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708 (Korea, Republic of); Leitch, Megan [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Naknakorn, Bhanuphong [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Tilton, Robert D. [Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Lowry, Gregory V., E-mail: glowry@cmu.edu [Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States); Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, PA 15213-3890 (United States)

    2017-01-15

    Highlights: • Reactivity of nZVI increased linearly with nZVI concentration above 10 g/L, but was non-linear below 10 g/L. • nZVI reactivity with PCE is more sensitive to solution redox potential than solution pH. • Mass transfer limits the reactivity of emplaced nZVI under typical groundwater flow velocity. • Lowering pH increases H{sub 2} evolution from nZVI more than reactivity with PCE. • Design of nZVI remediation strategies should consider mass loading and flow velocity on performance and lifetime. - Abstract: The effect of nZVI mass loading and groundwater velocity on the tetrachloroethylene (PCE) dechlorination rate and the hydrogen evolution rate for poly(maleic acid-co-olefin) (MW = 12 K) coated nZVI was examined. In batch reactors, the PCE reaction rate constant (3.7 × 10{sup −4} L hr{sup −1} m{sup −2}) and hydrogen evolution rate constant (1.4 nanomol L hr{sup −1} m{sup −2}) were independent of nZVI concentration above 10 g/L, but the PCE dechlorination rate decreased and the hydrogen evolution rate increased for nZVI concentration below 10 g/L. The nonlinearity between nZVI mass loading and PCE dechlorination and H{sub 2} evolution was explained by differences in pH and E{sub h} at each nZVI mass loading; PCE reactivity increased when solution E{sub h} decreased, and the H{sub 2} evolution rate increased with decreasing pH. Thus, nZVI mass loading of <5 g/L yields lower reactivity with PCE and lower efficiency of Fe° utilization than for higher nZVI mass loading. The PCE dechlorination rate increased with increasing pore-water velocity, suggesting that mass transfer limits the reaction at low porewater velocity. Overall, this work suggests that design of nZVI-based reactive barriers for groundwater treatment should consider the non-linear effects of both mass loading and flow velocity on performance and expected reactive lifetime.

  1. Treatment of radioactive waste salt by using synthetic silica-based phosphate composite for de-chlorination and solidification

    Science.gov (United States)

    Cho, In-Hak; Park, Hwan-Seo; Lee, Ki-Rak; Choi, Jung-Hun; Kim, In-Tae; Hur, Jin Mok; Lee, Young-Seak

    2017-09-01

    In the radioactive waste management, waste salts as metal chloride generated from a pyrochemical process to recover uranium and transuranic elements are one of problematic wastes due to their intrinsic properties such as high volatility and low compatibility with conventional glasses. This study reports a method to stabilize and solidify LiCl waste via de-chlorination using a synthetic composite, U-SAP (SiO2-Al2O3-B2O3-Fe2O3-P2O5) prepared by a sol-gel process. The composite was reacted with alkali metal elements to produce some metal aluminosilicates, aluminophosphates or orthophosphate as a crystalline or amorphous compound. Different from the original SAP (SiO2-Al2O3-P2O5), the reaction product of U-SAP could be successfully fabricated as a monolithic wasteform without a glassy binder at a proper reaction/consolidation condition. From the results of the FE-SEM, FT-IR and MAS-NMR analysis, it could be inferred that the Si-rich phase and P-rich phase as a glassy grains would be distributed in tens of nm scale, where alkali metal elements would be chemically interacted with Si-rich or P-rich region in the virgin U-SAP composite and its products was vitrified into a silicate or phosphate glass after a heat-treatment at 1150 °C. The PCT-A (Product Consistency Test, ASTM-1208) revealed that the mass loss of Cs and Sr in the U-SAP wasteform had a range of 10-3∼10-1 g/m2 and the leach-resistance of the U-SAP wasteform was comparable to other conventional wasteforms. From the U-SAP method, LiCl waste salt was effectively stabilized and solidified with high waste loading and good leach-resistance.

  2. Dechlorination of chloropicrin and 1,3-dichloropropene by hydrogen sulfide species: redox and nucleophilic substitution reactions.

    Science.gov (United States)

    Zheng, Wei; Yates, Scott R; Papiernik, Sharon K; Guo, Mingxin; Gan, Jianying

    2006-03-22

    The chlorinated fumigants chloropicrin (trichloronitromethane) and 1,3-dichloropropene (1,3-D) are extensively used in agricultural production for the control of soilborne pests. The reaction of these two fumigants with hydrogen sulfide species (H2S and HS-) was examined in well-defined anoxic aqueous solutions. Chloropicrin underwent an extremely rapid redox reaction in the hydrogen sulfide solution. Transformation products indicated reductive dechlorination of chloropicrin by hydrogen sulfide species to produce dichloro- and chloronitromethane. The transformation of chloropicrin in hydrogen sulfide solution significantly increased with increasing pH, indicating that H2S is less reactive toward chloropicrin than HS- is. For both 1,3-D isomers, kinetics and transformation products analysis revealed that the reaction between 1,3-D and hydrogen sulfide species is an S(N)2 nucleophilic substitution process, in which the chlorine at C3 of 1,3-D is substituted by the sulfur nucleophile to form corresponding mercaptans. The 50% disappearance time (DT50) of 1,3-D decreased with increasing hydrogen sulfide species concentration at a constant pH. Transformation of 1,3-D was more rapid at high pH, suggesting that the reactivity of hydrogen sulfide species in the experimental system stems primarily from HS-. Because of the relatively low smell threshold values and potential environmental persistence of organic sulfur products yielded by the reaction of 1,3-D and HS-, the effects of reduced sulfide species should be considered in the development of alternative fumigation practices, especially in the integrated application of sulfur-containing fertilizers.

  3. Catabolic thiosulfate disproportionation and carbon dioxide reduction in strain DCB-1, a reductively dechlorinating anaerobe

    Energy Technology Data Exchange (ETDEWEB)

    Mohn, W.W.; Tiedje, J.M. (Michigan State Univ., East Lansing (USA))

    1990-04-01

    Strain DCB-1 is a strict anaerobe capable of reductive dehalogenation. We elucidated metabolic processes in DCB-1 which may be related to dehalogenation and which further characterize the organism physiologically. Sulfoxy anions and CO2 were used by DCB-1 as catabolic electron acceptors. With suitable electron donors, sulfate and thiosulfate were reduced to sulfide. Sulfate and thiosulfate supported growth with formate or hydrogen as the electron donor and thus are probably respiratory electron acceptors. Other electron donors supporting growth with sulfate were CO, lactate, pyruvate, butyrate, and 3-methoxybenzoate. Thiosulfate also supported growth without an additional electron donor, being disproportionated to sulfide and sulfate. In the absence of other electron acceptors, CO2 reduction to acetate plus cell material was coupled to pyruvate oxidation to acetate plus CO2. Pyruvate could not be fermented without an electron acceptor. Carbon monoxide dehydrogenase activity was found in whole cells, indicating that CO2 reduction probably occurred via the acetyl coenzyme A pathway. Autotrophic growth occurred on H2 plus thiosulfate or sulfate. Diazotrophic growth occurred, and whole cells had nitrogenase activity. On the basis of these physiological characteristics, DCB-1 is a thiosulfate-disproportionating bacterium unlike those previously described.

  4. Regulation of Autotrophic and Heterotrophic Metabolism in Pseudomonas oxalaticus OX1 : Growth on Mixtures of Acetate and Formate in Continuous Culture

    NARCIS (Netherlands)

    Dijkhuizen, L.; Harder, W.

    1979-01-01

    Growth of Pseudomonas oxalaticus in carbon- and energy-limited continuous cultures with mixtures of acetate and formate resulted in the simultaneous utilization of both substrates at all dilution rates tested. During growth on these mixtures, acetate repressed the synthesis of ribulosebisphosphate

  5. Differentiation of monkey embryonic stem cells to hepatocytes by feeder-free dispersion culture and expression analyses of cytochrome p450 enzymes responsible for drug metabolism.

    Science.gov (United States)

    Maruyama, Junya; Matsunaga, Tamihide; Yamaori, Satoshi; Sakamoto, Sakae; Kamada, Noboru; Nakamura, Katsunori; Kikuchi, Shinji; Ohmori, Shigeru

    2013-01-01

    We reported previously that monkey embryonic stem cells (ESCs) were differentiated into hepatocytes by formation of embryoid bodies (EBs). However, this EB formation method is not always efficient for assays using a large number of samples simultaneously. A dispersion culture system, one of the differentiation methods without EB formation, is able to more efficiently provide a large number of feeder-free undifferentiated cells. A previous study demonstrated the effectiveness of the Rho-associated kinase inhibitor Y-27632 for feeder-free dispersion culture and induction of differentiation of monkey ESCs into neural cells. In the present study, the induction of differentiation of cynomolgus monkey ESCs (cmESCs) into hepatocytes was performed by the dispersion culture method, and the expression and drug inducibility of cytochrome P450 (CYP) enzymes in these hepatocytes were examined. The cmESCs were successfully differentiated into hepatocytes under feeder-free dispersion culture conditions supplemented with Y-27632. The hepatocytes differentiated from cmESCs expressed the mRNAs for three hepatocyte marker genes (α-fetoprotein, albumin, CYP7A1) and several CYP enzymes, as measured by real-time polymerase chain reaction. In particular, the basal expression of cmCYP3A4 (3A8) in these hepatocytes was detected at mRNA and enzyme activity (testosterone 6β-hydroxylation) levels. Furthermore, the expression and activity of cmCYP3A4 (3A8) were significantly upregulated by rifampicin. These results indicated the effectiveness of Y-27632 supplementation for feeder-free dispersed culture and induction of differentiation into hepatocytes, and the expression of functional CYP enzyme(s) in cmESC-derived hepatic cells.

  6. Neuronal Cell Death Induced by Mechanical Percussion Trauma in Cultured Neurons is not Preceded by Alterations in Glucose, Lactate and Glutamine Metabolism.

    Science.gov (United States)

    Jayakumar, A R; Bak, L K; Rama Rao, K V; Waagepetersen, H S; Schousboe, A; Norenberg, M D

    2016-02-01

    Traumatic brain injury (TBI) is a devastating neurological disorder that usually presents in acute and chronic forms. Brain edema and associated increased intracranial pressure in the early phase following TBI are major consequences of acute trauma. On the other hand, neuronal injury, leading to neurobehavioral and cognitive impairments, that usually develop months to years after single or repetitive episodes of head trauma, are major consequences of chronic TBI. The molecular mechanisms responsible for TBI-induced injury, however, are unclear. Recent studies have suggested that early mitochondrial dysfunction and subsequent energy failure play a role in the pathogenesis of TBI. We therefore examined whether oxidative metabolism of (13)C-labeled glucose, lactate or glutamine is altered early following in vitro mechanical percussion-induced trauma (5 atm) to neurons (4-24 h), and whether such events contribute to the development of neuronal injury. Cell viability was assayed using the release of the cytoplasmic enzyme lactate dehydrogenase (LDH), together with fluorescence-based cell staining (calcein and ethidium homodimer-1 for live and dead cells, respectively). Trauma had no effect on the LDH release in neurons from 1 to 18 h. However, a significant increase in LDH release was detected at 24 h after trauma. Similar findings were identified when traumatized neurons were stained with fluorescent markers. Additionally (13)C-labeling of glutamate showed a small, but statistically significant decrease at 14 h after trauma. However, trauma had no effect on the cycling ratio of the TCA cycle at any time-period examined. These findings indicate that trauma does not cause a disturbance in oxidative metabolism of any of the substrates used for neurons. Accordingly, such metabolic disturbance does not appear to contribute to the neuronal death in the early stages following trauma.

  7. An enhanced in vivo stable isotope labeling by amino acids in cell culture (SILAC) model for quantification of drug metabolism enzymes.

    Science.gov (United States)

    MacLeod, A Kenneth; Fallon, Padraic G; Sharp, Sheila; Henderson, Colin J; Wolf, C Roland; Huang, Jeffrey T-J

    2015-03-01

    Many of the enzymes involved in xenobiotic metabolism are maintained at a low basal level and are only synthesized in response to activation of upstream sensor/effector proteins. This induction can have implications in a variety of contexts, particularly during the study of the pharmacokinetics, pharmacodynamics, and drug-drug interaction profile of a candidate therapeutic compound. Previously, we combined in vivo SILAC material with a targeted high resolution single ion monitoring (tHR/SIM) LC-MS/MS approach for quantification of 197 peptide pairs, representing 51 drug metabolism enzymes (DME), in mouse liver. However, as important enzymes (for example, cytochromes P450 (Cyp) of the 1a and 2b subfamilies) are maintained at low or undetectable levels in the liver of unstimulated metabolically labeled mice, quantification of these proteins was unreliable. In the present study, we induced DME expression in labeled mice through synchronous ligand-mediated activation of multiple upstream nuclear receptors, thereby enhancing signals for proteins including Cyps 1a, 2a, 2b, 2c, and 3a. With this enhancement, 115 unique, lysine-containing, Cyp-derived peptides were detected in the liver of a single animal, as opposed to 56 in a pooled sample from three uninduced animals. A total of 386 peptide pairs were quantified by tHR/SIM, representing 68 Phase I, 30 Phase II, and eight control proteins. This method was employed to quantify changes in DME expression in the hepatic cytochrome P450 reductase null (HRN) mouse. We observed compensatory induction of several enzymes, including Cyps 2b10, 2c29, 2c37, 2c54, 2c55, 2e1, 3a11, and 3a13, carboxylesterase (Ces) 2a, and glutathione S-transferases (Gst) m2 and m3, along with down-regulation of hydroxysteroid dehydrogenases (Hsd) 11b1 and 17b6. Using DME-enhanced in vivo SILAC material with tHR/SIM, therefore, permits the robust analysis of multiple DME of importance to xenobiotic metabolism, with improved utility for the study of

  8. Metabolic Syndrome

    Science.gov (United States)

    Metabolic syndrome is a group of conditions that put you at risk for heart disease and diabetes. These conditions ... agree on the definition or cause of metabolic syndrome. The cause might be insulin resistance. Insulin is ...

  9. Contribution of extracellular glutamine as an anaplerotic substrate to neuronal metabolism: a re-evaluation by multinuclear NMR spectroscopy in primary cultured neurons.

    Science.gov (United States)

    Shokati, Touraj; Zwingmann, Claudia; Leibfritz, Dieter

    2005-10-01

    Multinuclear NMR spectroscopy is used to investigate the effect of glutamine on neuronal glucose metabolism. Primary neurons were incubated with [1-(13C)]glucose in the absence or presence of glutamine (2 mM) and/or NH4Cl (5 mM). After ammonia-treatment, the concentrations of high-energy phosphates decreased up to 84% of control, which was aggravated in glutamine-containing medium (up to 42% of control). These effects could not be attributed to changes in mitochondrial glucose oxidation. Withdrawal of glutamine decreased amino acid concentrations, e.g. of glutamate to 53%, but also considerably lessened the 13C enrichment in [4-(13C)]glutamate to 8.3% of control, and decreased the 13C-enrichment in acetyl-CoA entering the Krebs cycle (P neuronal glutamate stores, glutamate formation is mainly attributed to its de novo synthesis from glucose. Furthermore, mitochondrial glucose metabolism strongly depends on the supply of carbons from glutamine, indicating that exogenous glutamine is a well-suited substrate to replenish neuronal Krebs cycle intermediates.

  10. Co-Cultured Continuously Bioluminescent Human Cells as Bioreporters for the Detection of Prodrug Therapeutic Impact Pre- and Post-Metabolism

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    2017-12-01

    Full Text Available Modern drug discovery workflows require assay systems capable of replicating the complex interactions of multiple tissue types, but that can still function under high throughput conditions. In this work, we evaluate the use of substrate-free autobioluminescence in human cell lines to support the performance of these assays with reduced economical and logistical restrictions relative to substrate-requiring bioluminescent reporter systems. The use of autobioluminescence was found to support assay functionality similar to existing luciferase reporter targets. The autobioluminescent assay format was observed to correlate strongly with general metabolic activity markers such as ATP content and the presence of reactive oxygen species, but not with secondary markers such as glutathione depletion. At the transcriptional level, autobioluminescent dynamics were most closely associated with expression of the CYP1A1 phase I detoxification pathway. These results suggest constitutively autobioluminescent cells can function as general metabolic activity bioreporters, while pairing expression of the autobioluminescent phenotype to detoxification pathway specific promoters could create more specific sensor systems.

  11. Metabolism of the synthetic cannabinoid 5F-PY-PICA by human and rat hepatocytes and identification of biliary analytical targets by directional efflux in sandwich-cultured rat hepatocytes using UHPLC-HR-MS/MS

    DEFF Research Database (Denmark)

    Mardal, Marie; Annaert, Pieter; Noble, Carolina

    2018-01-01

    Analytical strategies for detecting drugs in biological samples rely on information on metabolism and elimination. 5F-PY-PICA belongs to the group of synthetic cannabinoids that are known to undergo excretion into the bile. The aims of this study were the in vitro identification of metabolites of 5......F-PY-PICA and to determine which analytical targets are excreted into the bile and urine. Metabolites identified after incubation of 5F-PY-PICA with pooled human liver microsomes (pHLM), pooled human hepatocytes (pHH), or suspended and sandwich-cultured rat hepatocytes (SCRH). Rat hepatocytes were......-PY-PICA, M4, and M22 are proposed as analytical targets for bile analysis in forensic screening protocols, whereas M6 should be one of the main urinary targets for 5F-PY-PICA analysis....

  12. The antibiotic tiamulin is a potent inducer and inhibitor of cytochrome P4503A via the formation of a stable metabolic intermediate complex. Studies in primary hepatocyte cultures and liver microsomes of the pig.

    Science.gov (United States)

    Witkamp, R F; Nijmeijer, S M; Monshouwer, M; Van Miert, A S

    1995-05-01

    Tiamulin is a semisynthetic antibiotic frequently used in agricultural animals. The drug has been shown to produce clinically important--often lethal--interactions with other compounds that are simultaneously administered. To explain this, it has been suggested that tiamulin selectively inhibits oxidative drug metabolism via the formation of a cytochrome P450 metabolic intermediate complex. The aim of the present study was to provide further support for this hypothesis. When hepatic microsomes and cultured primary pig hepatocytes were incubated with tiamulin, a maximum in the absorbance spectrum at 455 nm was observed, which disappeared after adding KFe(CN)6. When hepatocytes were incubated with tiamulin for 72 hr, cytochrome P450 content and cytochrome P4503A apoprotein levels were increased. Tiamulin strongly inhibited and concentration dependently inhibited the hydroxylation rate of testosterone at the 6 beta-position in both microsomes and hepatocytes, and the microsomal N-demethylation rate of ethylmorphine. Other testosterone hydroxylations were inhibited to a lesser extent or not affected. The relative inhibition of the hydroxylation of testosterone at the 6 beta-position was more pronounced in microsomes from rifampicin- and triacetyloleandomycin-treated pigs. The results indicate that cytochrome P450 complex formation can at least partly explain the interactions observed with tiamulin. Tiamulin seems to be a strong, probably selective, inhibitor of the cytochrome P4503A subfamily and an interesting tool for further research.

  13. Deposition of Fe-Ni nanoparticles on Al{sub 2}O{sub 3} for dechlorination of chloroform and trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, S.-H. [Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Taiwan (China) and Department of Materials Science and Engineering, National Formosa University, Taiwan (China)]. E-mail: shhsieh@sunws.nfu.edu.tw; Horng, J.-J. [Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 640, Taiwan (China)

    2006-11-30

    This research proposes an efficient method for depositing Fe-Ni nanoparticles on Al{sub 2}O{sub 3} microparticles to decompose containments in ground water, such as chloroform and trichloroethylene. The Fe-Ni nanoparticles can be deposited onto the surface of Al{sub 2}O{sub 3} microparticles by electroless plating technique. The reasons why the Fe-Ni nanoparticles would be deposited on the surface of Al{sub 2}O{sub 3} microparticles is to avoid the agglomeration of Fe-Ni nanoparticles due to their surface effect and magnetic property. The results show that the sizes of Fe-Ni particles on Al{sub 2}O{sub 3} particles are between several and several hundreds of nanometers, the contents of Fe and Ni in Fe-Ni nanoparticles can be adjusted from 8 to 60 at.% for Fe and 40 to 92 at.% for Ni, the specific surface area of Fe-Ni nanoparticles can reach to 117 m{sup 2}/g, and the reaction mechanism of dechlorination of chloroform of 2 mg/L by Fe-Ni/Al{sub 2}O{sub 3} particles of 5 g/L appears to be pseudo first order with a half life of 0.7 h and the half life is 0.25 h for the dechlorination of trichloroethylene of 2 mg/L.

  14. Two dechlorinated chlordecone derivatives formed by in situ chemical reduction are devoid of genotoxicity and mutagenicity and have lower proangiogenic properties compared to the parent compound.

    Science.gov (United States)

    Legeay, Samuel; Billat, Pierre-André; Clere, Nicolas; Nesslany, Fabrice; Bristeau, Sébastien; Faure, Sébastien; Mouvet, Christophe

    2018-05-01

    Chlordecone (CLD) is a chlorinated hydrocarbon insecticide, now classified as a persistent organic pollutant. Several studies have previously reported that chronic exposure to CLD leads to hepatotoxicity, neurotoxicity, raises early child development and pregnancy complications, and increases the risk of liver and prostate cancer. In situ chemical reduction (ISCR) has been identified as a possible way for the remediation of soils contaminated by CLD. In the present study, the objectives were (i) to evaluate the genotoxicity and the mutagenicity of two CLD metabolites formed by ISCR, CLD-5a-hydro, or CLD-5-hydro (5a- or 5- according to CAS nomenclature; CLD-1Cl) and tri-hydroCLD (CLD-3Cl), and (ii) to explore the angiogenic properties of these molecules. Mutagenicity and genotoxicity were investigated using the Ames's technique on Salmonella typhimurium and the in vitro micronucleus micromethod with TK6 human lymphoblastoid cells. The proangiogenic properties were evaluated on the in vitro capillary network formation of human primary endothelial cells. Like CLD, the dechlorinated derivatives of CLD studied were devoid of genotoxic and mutagenic activity. In the assay targeting angiogenic properties, significantly lower microvessel lengths formed by endothelial cells were observed for the CLD-3Cl-treated cells compared to the CLD-treated cells for two of the three tested concentrations. These results suggest that dechlorinated CLD derivatives are devoid of mutagenicity and genotoxicity and have lower proangiogenic properties than CLD.

  15. Metabolism of the synthetic cannabinoids AMB-CHMICA and 5C-AKB48 in pooled human hepatocytes and rat hepatocytes analyzed by UHPLC-(IMS)-HR-MSE.

    Science.gov (United States)

    Mardal, Marie; Dalsgaard, Petur Weihe; Qi, Bing; Mollerup, Christian Brinch; Annaert, Pieter; Linnet, Kristian

    2018-04-15

    The main analytical targets of synthetic cannabinoids are often metabolites. With the high number of new psychoactive substances entering the market, suitable workflows are needed for analytical target identification in biological samples. The aims of this study were to identify the main metabolites of the synthetic cannabinoids, AMB-CHMICA and 5C-AKB48, using an in silico-assisted workflow with analytical data acquired using ultra-high-performance liquid chromatography-(ion mobility spectroscopy)-high resolution-mass spectrometry in data-independent acquisition mode (UHPLC-(IMS)-HR-MS E ). The metabolites were identified after incubation with rat and pooled human hepatocytes using UHPLC-HR-MS E , followed by UHPLC-IMS-HR-MS E . Metabolites of AMB-CHMICA and 5C-AKB48 were predicted with Meteor (Lhasa Ltd) and imported to the UNIFI software (Waters). The predicted metabolites were assigned to analytical components supported by the UNIFI in silico fragmentation tool. The main metabolic pathway of AMB-CHMICA was O-demethylation and hydroxylation of the methylhexyl moiety. For 5C-AKB48, the main metabolic pathways were hydroxylation(s) of the adamantyl moiety and oxidative dechlorination with subsequent oxidation to the ω-COOH. The matrix components in the metabolite spectra were reduced with IMS, which improved the accuracy of the spectral interpretation; however, this left fewer fragment ions for assigning sites of metabolism. Meteor was able to predict the majority of the metabolites, with the most notable exception being the oxidative dechlorination and, consequently, all metabolites that underwent that transformation pathway. Oxidative dechlorination of ω-chloroalkanes in humans has not been previously reported in the literature. The postulated metabolites can be used for screening of biological samples, with four-dimensional identification based on retention time, collision cross section, precursor ion, and fragment ions. Copyright © 2018 Elsevier B.V. All

  16. 5α-cholest-8(14)-en-3β-ol-15-one. Studies on its metabolism in cultured cells and male baboons. Volume 1 and 2

    International Nuclear Information System (INIS)

    Pajewski, T.N.

    1989-01-01

    5α-Cholest-8(14)-en-3β-ol-15-one is a potent is a potent inhibitor of cholesterol biosynthesis which has been found to have significant hypocholesterolemic action upon oral administration to rodents and nonhuman primates. The metabolism of [2,4- 3 H]5α-cholest-8(14)-3n-3β-ol-15-one was studied in Chinese hamster ovary (CHO-K1) cells. The incorporation of the labeled 15-ketosterol into the cells was linear with respect to sterol concentration in the medium over the range of concentrations studied and was higher than the uptake of cholesterol. The results of detailed analyses of the lipids recovered from the cells after 6 hours of incubation with the [2,4- 3 H]-15-ketosterol indicated that most of the 3 H was associated with the free 15-ketosterol. Considerably smaller amounts of 3 H were associated with esters of the 15-ketosterol. No conversion of the 15-ketosterol to cholesterol or other C 27 monohydroxysterols was observed. The labeled material with the chromatographic behavior of esters of the 15-ketosterol gave, after mild saponification, the free 15-ketosterol which was characterized by cocrystallization and chromatographic studies. The metabolism of the 15-ketosterol was also studied in male baboons (Papio cynocephalus) treated with the 15-ketosterol. After oral administration of a mixture of [2,4- 3 H]5α-cholest-8(14)-en-3β-ol-15-one and [4- 14 C]cholesterol, blood samples were obtained at various times. Marked differences in the time courses of the levels of 3 H and 14 C in plasma were observed. 3 H showed maximum levels at 4 to 8 h, while maximum values for the levels of 14 C were observed much later. Total lipid extraction of plasma showed that essentially all of the 14 C of plasma was recovered in the lipid extract

  17. Metabolic Activation of the Organic Fraction Coated Onto Air Pollution PM2.5 and its Genotoxicity in a Co Culture Model of Human Lung Cells

    International Nuclear Information System (INIS)

    Abbas, I; Garcon, G; Billet, S.; Verdin, A.; Escande, F.; Saint-Georges, F.; Mulliez, Ph.; Gosset, P.; Shirali, P.

    2011-01-01

    Air pollution Particulate Matter (PM 2 .5) is described as one of the major risk factors affecting human health. Hence, the objective of our research project was to evaluate the lung toxicity of PM 2 .5 collected in Dunkerque (France), through the study of the metabolic activation of its organic fraction (e.g. Polycyclic Aromatic Hydrocarbons, PAHs; Volatile Organic Compounds, VOCs) and its genotoxicity in two human cell models: embryonic lung epithelial L132 cells and Alveolar Macrophages (AM) isolated from bronchiolo-alveolar lavages of healthy outpatients, in mono- and/or coculture. The coculture system we used allowed the direct exposure of AM to PM 2 .5, and the interaction between the two cell types only through soluble factor diffusion. Exposure to Dunkerque City's PM 2 .5 induced the gene expression of phase I and phase II enzymes (e.g. CYP1A1, CYP2E1, CYP2F1, NQO1, GSTπ1, GSTμ3) involved in the metabolic activation of PAHS and/or VOCS, in AM, in mono- and coculture, and in L132 cells, only in monoculture. Taken together, these results reinforced the key role of AM in lung defenses, and indicated that particles, as physical vector of the penetration and retention of coated-PAHS and/or VOCS within cells, enabled them to exert a durable toxicity. DNA bulky adduct formation was also reported not only in Dunkerque City's PM 2 .5-exposed AM, in mono- and coculture, but also in L132 cells from PAH-exposed coculture. Loss of Heterozygosity (LOH) and/or MicroSatellite Instability (MSI) of some MicroSatellites (MS) located in multiple critical regions of chromosome 3 were reported in L132 cells from Dunkerque City's PM 2 .5-exposed mono- or cocultures. (author)

  18. Dechlorination of PCBs in Aqueous Extracts from Soils Contaminated by PCBs by Application of Zero-valent Nano-iron in Statu Nascendi. Influence of Microwaves on the Rate of Reaction