WorldWideScience

Sample records for cultured rat cortical

  1. Cytokines effects on radio-induced apoptosis in cortical and hippocampal rat cells in culture

    International Nuclear Information System (INIS)

    Coffigny, H.; Briot, D.; Le Nin, I.

    2000-01-01

    In the central nervous system in development the radio-induced cell death occurs mainly by apoptosis. The effects of modulating factors like cytokines were studied on this kind of death. To handle more easily parameters implicated in nerve cell apoptosis, we studied the effects of radiation with a in vitro system. Cells were isolated from rat foetal cortex and hippocampus, two of the major structures implicated in human mental retardation observed after exposition in utero at Hiroshima and Nagasaki. Cortical or hippocampal cells were isolated from 17 day-old rat foetuses by enzymatic and mechanical treatments and irradiated with 0.50 or 1 Gy. The cells from both structures were cultured 1 or 3 days in serum free medium. Cytokines like βNGF, NT3, EGF, βTGF, α and βFGF, IGF I and II, interleukines like Il 1β, Il 2 and IL 6 were added to the medium. In 3 days cortical cell culture, only βFGF increased cell survival with as little as 10 ng/ml. This effect was dose dependent. In hippocampal cell culture, no significant increase of cell survival occurred with 10 ng/ml of any cytokines. In the same system culture with 1 Gy irradiation, the positive or negative effect of the association of βFGF with another cytokine was tested on cell survival. Only the association with EGF induced higher cell survival in cortical cell culture. In hippocampal cell culture where βFGF alone had no effect, the cell survival was not modified by the association. In the same system, the triple association of βFGF-EGF with another cytokine was tested on hippocampal and cortical cell cultures. No significant effect was observed in both cultures but cell survival trented to decrease with βTGF. In order to avoid the mitotic effect of cytokines in the 3 day-old culture, experiments were carried out on 20 hours cell culture, before the end of the first round of the cell cycle, with the selected cytokines (βFGF or βFGF-EGF). Without irradiation, the percentage of cortical cell survival

  2. Chronic 14-day exposure to insecticides or methylmercury modulates neuronal activity in primary rat cortical cultures

    NARCIS (Netherlands)

    Dingemans, Milou; Schütte, Marijke G; Wiersma, Daphne M M; de Groot, Aart; van Kleef, Gina; Wijnolts, Fiona; Westerink, Remco

    2016-01-01

    There is an increasing demand for in vitro test systems to detect neurotoxicity for use in chemical risk assessment. In this study, we evaluated the applicability of rat primary cortical cultures grown on multi-well micro-electrode arrays (mwMEAs) to detect effects of chronic 14-day exposure to

  3. Neuroprotective effects of orientin on oxygen-glucose deprivation/reperfusion-induced cell injury in primary culture of rat cortical neurons.

    Science.gov (United States)

    Tian, Tian; Zeng, Junan; Zhao, Guangyu; Zhao, Wenjing; Gao, Songyi; Liu, Li

    2018-01-01

    Orientin (luteolin-8-C-glucoside) is a phenolic compound found abundantly in millet, juice, and peel of passion fruit and has been shown to have antioxidant properties. In the present study, we explored the effects of orientin on oxygen-glucose deprivation/reperfusion (OGD/RP)-induced cell injury in primary culture of rat cortical neurons using an in vitro model of neonatal ischemic brain injury. The reduced cell viability and elevated lactate dehydrogenase leakage were observed after OGD/RP exposure, which were then reversed by orientin (10, 20, and 30 µM) pretreatment in a dose-dependent manner. Additionally, OGD/RP treatment resulted in significant oxidative stress, accompanied by enhanced intracellular reactive oxygen species (ROS) generation, and obvious depletion in the activities of intracellular Mn-superoxide dismutase, catalase, and glutathione peroxidase antioxidases. However, these effects were dose dependently restored by orientin pretreatment. We also found that orientin pretreatment dose dependently suppressed [Ca 2+ ] i increase and mitochondrial membrane potential dissipation caused by OGD/RP in primary culture of rat cortical neurons. Western blot analysis showed that OGD/RP exposure induced a distinct decrease of Bcl-2 protein and a marked elevation of Bax, caspase-3, and cleaved caspase-3 proteins; whereas these effects were dose dependently reversed by orientin incubation. Both the caspase-3 activity and the apoptosis rate were increased under OGD/RP treatment, but was then dose dependently down-regulated by orientin (10, 20, and 30 µM) incubation. Moreover, orientin pretreatment dose dependently inhibited OGD/RP-induced phosphorylation of JNK and ERK1/2. Notably, JNK inhibitor SP600125 and ERK1/2 inhibitor PD98059 also dramatically attenuated OGD/RP-induced cell viability loss and ROS generation, and further, orientin failed to protect cortical neurons with the interference of JNK activator anisomycin or ERK1/2 activator FGF-2. Taken

  4. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R., E-mail: mundy.william@epa.gov

    2011-11-15

    There is a need for rapid, efficient and cost-effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be used as screening tools to identify potential developmental neurotoxicants. The present study compared primary rat cortical cultures and human embryonic stem cell-derived neural cultures in terms of: 1) reproducibility of high content image analysis based neurite outgrowth measurements, 2) dynamic range of neurite outgrowth measurements and 3) sensitivity to chemicals which have been shown to inhibit neurite outgrowth. There was a large increase in neurite outgrowth between 2 and 24 h in both rat and human cultures. Image analysis data collected across multiple cultures demonstrated that neurite outgrowth measurements in rat cortical cultures were more reproducible and had higher dynamic range as compared to human neural cultures. Human neural cultures were more sensitive than rat cortical cultures to chemicals previously shown to inhibit neurite outgrowth. Parallel analysis of morphological (neurite count, neurite length) and cytotoxicity (neurons per field) measurements were used to detect selective effects on neurite outgrowth. All chemicals which inhibited neurite outgrowth in rat cortical cultures did so at concentrations which did not concurrently affect the number of neurons per field, indicating selective effects on neurite outgrowth. In contrast, more than half the chemicals which inhibited neurite outgrowth in human neural cultures did so at concentrations which concurrently decreased the number of neurons per field, indicating that effects on neurite outgrowth were secondary to cytotoxicity. Overall, these data demonstrate that the culture models performed differently in terms of reproducibility, dynamic range and sensitivity to neurite outgrowth inhibitors. While human neural

  5. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    International Nuclear Information System (INIS)

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R.

    2011-01-01

    There is a need for rapid, efficient and cost-effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be used as screening tools to identify potential developmental neurotoxicants. The present study compared primary rat cortical cultures and human embryonic stem cell-derived neural cultures in terms of: 1) reproducibility of high content image analysis based neurite outgrowth measurements, 2) dynamic range of neurite outgrowth measurements and 3) sensitivity to chemicals which have been shown to inhibit neurite outgrowth. There was a large increase in neurite outgrowth between 2 and 24 h in both rat and human cultures. Image analysis data collected across multiple cultures demonstrated that neurite outgrowth measurements in rat cortical cultures were more reproducible and had higher dynamic range as compared to human neural cultures. Human neural cultures were more sensitive than rat cortical cultures to chemicals previously shown to inhibit neurite outgrowth. Parallel analysis of morphological (neurite count, neurite length) and cytotoxicity (neurons per field) measurements were used to detect selective effects on neurite outgrowth. All chemicals which inhibited neurite outgrowth in rat cortical cultures did so at concentrations which did not concurrently affect the number of neurons per field, indicating selective effects on neurite outgrowth. In contrast, more than half the chemicals which inhibited neurite outgrowth in human neural cultures did so at concentrations which concurrently decreased the number of neurons per field, indicating that effects on neurite outgrowth were secondary to cytotoxicity. Overall, these data demonstrate that the culture models performed differently in terms of reproducibility, dynamic range and sensitivity to neurite outgrowth inhibitors. While human neural

  6. Nifedipine-activated Ca(2+) permeability in newborn rat cortical collecting duct cells in primary culture.

    Science.gov (United States)

    Valencia, L; Bidet, M; Martial, S; Sanchez, E; Melendez, E; Tauc, M; Poujeol, C; Martin, D; Namorado, M D; Reyes, J L; Poujeol, P

    2001-05-01

    To characterize Ca(2+) transport in newborn rat cortical collecting duct (CCD) cells, we used nifedipine, which in adult rat distal tubules inhibits the intracellular Ca(2+) concentration ([Ca(2+)](i)) increase in response to hormonal activation. We found that the dihydropyridine (DHP) nifedipine (20 microM) produced an increase in [Ca(2+)](i) from 87.6 +/- 3.3 nM to 389.9 +/- 29.0 nM in 65% of the cells. Similar effects of other DHP (BAY K 8644, isradipine) were also observed. Conversely, DHPs did not induce any increase in [Ca(2+)](i) in cells obtained from proximal convoluted tubule. In CCD cells, neither verapamil nor diltiazem induced any rise in [Ca(2+)](i). Experiments in the presence of EGTA showed that external Ca(2+) was required for the nifedipine effect, while lanthanum (20 microM), gadolinium (100 microM), and diltiazem (20 microM) inhibited the effect. Experiments done in the presence of valinomycin resulted in the same nifedipine effect, showing that K(+) channels were not involved in the nifedipine-induced [Ca(2+)](i) rise. H(2)O(2) also triggered [Ca(2+)](i) rise. However, nifedipine-induced [Ca(2+)](i) increase was not affected by protamine. In conclusion, the present results indicate that 1) primary cultures of cells from terminal nephron of newborn rats are a useful tool for investigating Ca(2+) transport mechanisms during growth, and 2) newborn rat CCD cells in primary culture exhibit a new apical nifedipine-activated Ca(2+) channel of capacitive type (either transient receptor potential or leak channel).

  7. Ketamine-induced apoptosis in cultured rat cortical neurons

    International Nuclear Information System (INIS)

    Takadera, Tsuneo; Ishida, Akira; Ohyashiki, Takao

    2006-01-01

    Recent data suggest that anesthetic drugs cause neurodegeneration during development. Ketamine is frequently used in infants and toddlers for elective surgeries. The purpose of this study is to determine whether glycogen synthase kinase-3 (GSK-3) is involved in ketamine-induced apoptosis. Ketamine increased apoptotic cell death with morphological changes which were characterized by cell shrinkage, nuclear condensation or fragmentation. In addition, insulin growth factor-1 completely blocked the ketamine-induced apoptotic cell death. Ketamine decreased Akt phosphorylation. GSK-3 is known as a downstream target of Akt. The selective inhibitors of GSK-3 prevented the ketamine-induced apoptosis. Moreover, caspase-3 activation was accompanied by the ketamine-induced cell death and inhibited by the GSK-3 inhibitors. These results suggest that activation of GSK-3 is involved in ketamine-induced apoptosis in rat cortical neurons

  8. Potential protection of green tea polyphenols against 1800 MHz electromagnetic radiation-induced injury on rat cortical neurons.

    Science.gov (United States)

    Liu, Mei-Li; Wen, Jian-Qiang; Fan, Yu-Bo

    2011-10-01

    Radiofrequency electromagnetic fields (EMF) are harmful to public health, but the certain anti-irradiation mechanism is not clear yet. The present study was performed to investigate the possible protective effects of green tea polyphenols against electromagnetic radiation-induced injury in the cultured rat cortical neurons. In this study, green tea polyphenols were used in the cultured cortical neurons exposed to 1800 MHz EMFs by the mobile phone. We found that the mobile phone irradiation for 24 h induced marked neuronal cell death in the MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-tetrazolium bromide) and TUNEL (TdT mediated biotin-dUTP nicked-end labeling) assay, and protective effects of green tea polyphenols on the injured cortical neurons were demonstrated by testing the content of Bcl-2 Assaciated X protein (Bax) in the immunoprecipitation assay and Western blot assay. In our study results, the mobile phone irradiation-induced increases in the content of active Bax were inhibited significantly by green tea polyphenols, while the contents of total Bax had no marked changes after the treatment of green tea polyphenols. Our results suggested a neuroprotective effect of green tea polyphenols against the mobile phone irradiation-induced injury on the cultured rat cortical neurons.

  9. A procedure for culturing rat neocortex explants in a serum-free nutrient medium

    NARCIS (Netherlands)

    Romijn, H. J.; de Jong, B. M.; Ruijter, J. M.

    1988-01-01

    A procedure is described for long-term culturing of rat neocortex explants in a serum-free growth medium. Slices spanning the entire cortical depth from pial to ventricular side are prepared from 6-day-old rat pups. After preincubation in Hanks' balanced salt solution with extra glucose, the

  10. Humanin rescues cultured rat cortical neurons from NMDA-induced toxicity through the alleviation of mitochondrial dysfunction

    Directory of Open Access Journals (Sweden)

    Cui A

    2017-04-01

    Full Text Available Ai-Ling Cui,1 Ying-Hua Zhang,2 Jian-Zhong Li,3 Tianbin Song,4 Xue-Min Liu,1 Hui Wang,2 Ce Zhang,5 Guo-Lin Ma,6 Hui Zhang,7 Kefeng Li8 1Anatomy Department, Changzhi Medical College, Changzhi, Shanxi, 2Key Laboratory of Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang, Henan, 3Clinical Laboratory of Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 4Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 5Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, 6Department of Radiology, China-Japan Friendship Hospital, Beijing, 7Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China; 8School of Medicine, University of California – San Diego, San Diego, CA, USA Abstract: N-methyl-D-aspartate (NDMA receptor-mediated excitotoxicity has been implicated in a variety of pathological situations such as Alzheimer’s disease (AD and Parkinson’s disease. However, no effective treatments for the same have been developed so far. Humanin (HN is a 24-amino acid peptide originally cloned from the brain of patients with AD and it prevents stress-induced cell death in many cells/tissues. In our previous study, HN was found to effectively rescue rat cortical neurons. It is still not clear whether HN protects the neurons through the attenuation of mitochondrial dysfunction. In this study, excitatory toxicity was induced by NMDA, which binds the NMDA receptor in primarily cultured rat cortical neurons. We found that NMDA (100 µmol/L dramatically induced the decrease of cell viability and caused mitochondrial dysfunction. Pretreatment of the neurons with HN (1 µmol/L led to significant increases of mitochondrial succinate dehydrogenase (SDH activity and membrane potential. In addition, HN pretreatment significantly reduced the excessive production of both reactive oxygen species (ROS and nitric

  11. Anti-correlated cortical networks of intrinsic connectivity in the rat brain.

    Science.gov (United States)

    Schwarz, Adam J; Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline "DMN-like" network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans.

  12. Dopamine elevates intracellular zinc concentration in cultured rat embryonic cortical neurons through the cAMP-nitric oxide signaling cascade.

    Science.gov (United States)

    Hung, Hui-Hsing; Kao, Lung-Sen; Liu, Pei-Shan; Huang, Chien-Chang; Yang, De-Ming; Pan, Chien-Yuan

    2017-07-01

    Zinc ion (Zn 2+ ), the second most abundant transition metal after iron in the body, is essential for neuronal activity and also induces toxicity if the concentration is abnormally high. Our previous results show that exposure of cultured cortical neurons to dopamine elevates intracellular Zn 2+ concentrations ([Zn 2+ ] i ) and induces autophagosome formation but the mechanism is not clear. In this study, we characterized the signaling pathway responsible for the dopamine-induced elevation of [Zn 2+ ] i and the effect of [Zn 2+ ] i in modulating the autophagy in cultured rat embryonic cortical neurons. N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a membrane-permeable Zn 2+ chelator, could rescue the cell death and suppress the autophagosome puncta number induced by dopamine. Dopamine treatment increased the lipidation level of the endogenous microtubule-associated protein 1A/1B-light chain 3 (LC3 II), an autophagosome marker. TPEN added 1h before, but not after, dopamine treatment suppressed the dopamine-induced elevation of LC3 II level. Inhibitors of the dopamine D1-like receptor, protein kinase A (PKA), and NOS suppressed the dopamine-induced elevation of [Zn 2+ ] i . PKA activators and NO generators directly increased [Zn 2+ ] i in cultured neurons. Through cell fractionation, proteins with m.w. values between 5 and 10kD were found to release Zn 2+ following NO stimulation. In addition, TPEN pretreatment and an inhibitor against PKA could suppress the LC3 II level increased by NO and dopamine, respectively. Therefore, our results demonstrate that dopamine-induced elevation of [Zn 2+ ] i is mediated by the D1-like receptor-PKA-NO pathway and is important in modulating the cell death and autophagy. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Adrenal medullary regulation of rat renal cortical adrenergic receptors

    International Nuclear Information System (INIS)

    Sundaresan, P.R.; Guarnaccia, M.M.; Izzo, J.L. Jr.

    1987-01-01

    The role of the adrenal medulla in the regulation of renal cortical adrenergic receptors was investigated in renal cortical particular fractions from control rats and rats 6 wk after adrenal demedullation. The specific binding of [ 3 H]prazosin, [ 3 H]rauwolscine, and [ 125 I]iodocyanopindolol were used to quantitate α 1 -, α 2 -, and β-adrenergic receptors, respectively. Adrenal demedullation increased the concentration of all three groups of renal adrenergic receptors; maximal number of binding sites (B max , per milligram membrane protein) for α 1 -, and α 2 -, and β-adrenergic receptors were increased by 22, 18.5, and 25%, respectively. No differences were found in the equilibrium dissociation constants (K D ) for any of the radioligands. Plasma corticosterone and plasma and renal norepinephrine levels were unchanged, whereas plasma epinephrine was decreased 72% by adrenal demedullation, renal cortical epinephrine was not detectable in control or demedullated animals. The results suggest that, in the physiological state, the adrenal medulla modulates the number of renal cortical adrenergic receptors, presumably through the actions of a circulating factor such as epinephrine

  14. Drugs for stroke: action of nitrone (Z)-N-(2-bromo-5-hydroxy-4-methoxybenzylidene)-2-methylpropan-2-amine oxide on rat cortical neurons in culture subjected to oxygen-glucose-deprivation.

    Science.gov (United States)

    Arce, Carmen; Diaz-Castroverde, Sabela; Canales, María J; Marco-Contelles, José; Samadi, Abdelouahid; Oset-Gasque, María J; González, María P

    2012-09-01

    The action of (Z)-N-(2-bromo-5-hydroxy-4-methoxybenzylidene)-2-methylpropan-2-amine oxide (RP6) on rat cortical neurons in culture, under oxygen-glucose-deprivation conditions, is reported. Cortical neurons in culture were treated during 1 h with OGD. After, they were placed under normal conditions during 24 h (reperfusion) in absence and presence of RP6. Different parameters were measured under each condition (control, 1 h OGD and 1 h OGD + reperfusion in absence and presence of RP6). RP6 protects neurons against ROS generation, lipid peroxidation levels, LDH release and mitochondrial membrane potential alteration, when administered during reperfusion after the OGD damage. Consequently, these results show that nitrone RP6 protects cells against ischemia injury produced during the reoxygenation, and could be a potential drug for the ictus therapy. Copyright © 2012. Published by Elsevier Masson SAS.

  15. IL-10 Promotes Neurite Outgrowth and Synapse Formation in Cultured Cortical Neurons after the Oxygen-Glucose Deprivation via JAK1/STAT3 Pathway.

    Science.gov (United States)

    Chen, Hongbin; Lin, Wei; Zhang, Yixian; Lin, Longzai; Chen, Jianhao; Zeng, Yongping; Zheng, Mouwei; Zhuang, Zezhong; Du, Houwei; Chen, Ronghua; Liu, Nan

    2016-07-26

    As a classic immunoregulatory and anti-inflammatory cytokine, interleukin-10 (IL-10) provides neuroprotection in cerebral ischemia in vivo or oxygen-glucose deprivation (OGD)-induced injury in vitro. However, it remains blurred whether IL-10 promotes neurite outgrowth and synapse formation in cultured primary cortical neurons after OGD injury. In order to evaluate its effect on neuronal apoptosis, neurite outgrowth and synapse formation, we administered IL-10 or IL-10 neutralizing antibody (IL-10NA) to cultured rat primary cortical neurons after OGD injury. We found that IL-10 treatment activated the Janus kinase 1 (JAK1)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. Moreover, IL-10 attenuated OGD-induced neuronal apoptosis by down-regulating the Bax expression and up-regulating the Bcl-2 expression, facilitated neurite outgrowth by increasing the expression of Netrin-1, and promoted synapse formation in cultured primary cortical neurons after OGD injury. These effects were partly abolished by JAK1 inhibitor GLPG0634. Contrarily, IL-10NA produced opposite effects on the cultured cortical neurons after OGD injury. Taken together, our findings suggest that IL-10 not only attenuates neuronal apoptosis, but also promotes neurite outgrowth and synapse formation via the JAK1/STAT3 signaling pathway in cultured primary cortical neurons after OGD injury.

  16. Deficits in Beam-Walking After Neonatal Motor Cortical Lesions are not Spared by Fetal Cortical Transplants in Rats

    OpenAIRE

    Swenson, R. S.; Danielsen, E. H.; Klausen, B. S.; Erlich, E.; Zimmer, J.; Castro, A. J.

    1989-01-01

    Adult rats that sustained unilateral motor cortical lesions at birth demonstrated deficits in traversing an elevated narrow beam. These deficits, manifested by hindlimb slips off the edge of the beam, were not spared in animals that received fetal cortical transplants into the lesion cavity immediately after lesion placement.

  17. Lycopene Prevents Amyloid [Beta]-Induced Mitochondrial Oxidative Stress and Dysfunctions in Cultured Rat Cortical Neurons.

    Science.gov (United States)

    Qu, Mingyue; Jiang, Zheng; Liao, Yuanxiang; Song, Zhenyao; Nan, Xinzhong

    2016-06-01

    Brains affected by Alzheimer's disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between β-amyloid (Aβ) and mitochondrial dysfunction has been established in cellular models of AD. We observed previously that lycopene, a member of the carotenoid family of phytochemicals, could counteract neuronal apoptosis and cell damage induced by Aβ and other neurotoxic substances, and that this neuroprotective action somehow involved the mitochondria. The present study aims to investigate the effects of lycopene on mitochondria in cultured rat cortical neurons exposed to Aβ. It was found that lycopene attenuated Aβ-induced oxidative stress, as evidenced by the decreased intracellular reactive oxygen species generation and mitochondria-derived superoxide production. Additionally, lycopene ameliorated Aβ-induced mitochondrial morphological alteration, opening of the mitochondrial permeability transition pores and the consequent cytochrome c release. Lycopene also improved mitochondrial complex activities and restored ATP levels in Aβ-treated neuron. Furthermore, lycopene prevented mitochondrial DNA damages and improved the protein level of mitochondrial transcription factor A in mitochondria. Those results indicate that lycopene protects mitochondria against Aβ-induced damages, at least in part by inhibiting mitochondrial oxidative stress and improving mitochondrial function. These beneficial effects of lycopene may account for its protection against Aβ-induced neurotoxicity.

  18. Preservation of visual cortical function following retinal pigment epithelium transplantation in the RCS rat using optical imaging techniques.

    Science.gov (United States)

    Gias, Carlos; Jones, Myles; Keegan, David; Adamson, Peter; Greenwood, John; Lund, Ray; Martindale, John; Johnston, David; Berwick, Jason; Mayhew, John; Coffey, Peter

    2007-04-01

    The aim of this study was to determine the extent of cortical functional preservation following retinal pigment epithelium (RPE) transplantation in the Royal College of Surgeons (RCS) rat using single-wavelength optical imaging and spectroscopy. The cortical responses to visual stimulation in transplanted rats at 6 months post-transplantation were compared with those from age-matched untreated dystrophic and non-dystrophic rats. Our results show that cortical responses were evoked in non-dystrophic rats to both luminance changes and pattern stimulation, whereas no response was found in untreated dystrophic animals to any of the visual stimuli tested. In contrast, a cortical response was elicited in most of the transplanted rats to luminance changes and in many of those a response was also evoked to pattern stimulation. Although the transplanted rats did not respond to high spatial frequency information we found evidence of preservation in the cortical processing of luminance changes and low spatial frequency stimulation. Anatomical sections of transplanted rat retinas confirmed the capacity of RPE transplantation to rescue photoreceptors. Good correlation was found between photoreceptor survival and the extent of cortical function preservation determined with optical imaging techniques. This study determined the efficacy of RPE transplantation to preserve visual cortical processing and established optical imaging as a powerful technique for its assessment.

  19. Responses of vibrissa-sensitive cortical neurons in normal and prenatally x-irradiated rat

    International Nuclear Information System (INIS)

    Ito, M.; Kawabata, M.; Shoji, R.

    1979-01-01

    Rats were irradiated by 200 R of x ray on day 17 of gestation through the body wall of the mother. When they underwent the following electrophysiological tests at the age of 3 to 4 month, the somatosensory cortex showed a lack of layers II, III, IV, and Va. Spike responses to quick whisker deflections were recorded from single cells in the somatosenory cortex of normal and prenatally x-irradiated rats. For the irradiated rats the response latency was prolonged when compared to the normal controls. Cortical laminar analysis of field potentials revealed that there was no difference in the latency of these potentials between the two groups, suggesting that vibrissal sensory signals reach the cortical level normally even in the irradiated rats. The prolonged latency of the irradiated cortical neuronal response could thus be ascribed to an abnormal intracortical delay, which was most likely associated with the failure of development of layer IV stellate cells in these preparations

  20. Effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Matsumoto, Hideo; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2010-09-01

    The purpose of the present study was to examine the effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats. Thirty-four female Sprague-Dawley retired breeder rats were randomized into three groups: age-matched control, sciatic neurectomy (NX), and NX + vitamin K2 administration (menatetrenone, 30 mg/kg/day p.o., three times a week). At the end of the 8-week experiment, bone histomorphometric analysis was performed on cortical and cancellous bone of the tibial diaphysis and proximal metaphysis, respectively, and osteocyte lacunar system and porosity were evaluated on cortical bone of the tibial diaphysis. NX decreased cortical and cancellous bone mass compared with age-matched controls as a result of increased endocortical and trabecular bone erosion and decreased trabecular mineral apposition rate (MAR). Vitamin K2 ameliorated the NX-induced increase in bone erosion, prevented the NX-induced decrease in MAR, and increased bone formation rate (BFR/bone surface) in cancellous bone, resulting in an attenuation of NX-induced cancellous bone loss. However, vitamin K2 did not significantly influence cortical bone mass. NX also decreased osteocyte density and lacunar occupancy and increased porosity in cortical bone compared with age-matched controls. Vitamin K2 ameliorated the NX-induced decrease in lacunar occupancy by viable osteocytes and the NX-induced increase in porosity. The present study showed the efficacy of vitamin K2 for cancellous bone mass and cortical lacunar occupancy by viable osteocytes and porosity in sciatic NX rats.

  1. [Effect of intermittent hypoxia of sleep apnea on embryonic rat cortical neurons in vitro].

    Science.gov (United States)

    Zhang, Chanjuan; Li, Yanzhong; Wang, Yan

    2015-05-01

    To investigate the effects of different pattens of intermittent hypoxia on the activity and apoptosis of primary cultured rat embryonic cortical neurons, and to evaluate the role of intermittent hypoxia in the mechanism of obstructive sleep syndrom induced cognitive function loss. The embryonic cerebral cortical neurons were cultured in vitro and were identified by immunofluorescence. Cultured neurons were randomly divided into intermittent hypoxia group, intermittent normal oxygen group, persistent hypoxia group and the control group, and intermittent hypoxia group was divided into five subgroups according to different frequency and time-bound. Neurons were exposed in different modes of hypoxia. MTT colorimetry was used to detect the viability of the neurons, and DAPI colorated measurement was used to calculate the percentages of neuron apoptosis. There were significantly different effects between all subgroups of intermittent hypoxia and the continued hypoxia group on neuronal activity and apoptosis (P Intermittent hypoxia groups with different frequency and time had no difference in neuronal activity and apoptosis (P > 0.05). The effect of intermittent hypoxia was more serious than that of continued hypoxia on neuronal activity and apoptosis; The impact of intermittent hypoxia on neuronal activity and apoptosis may be an important factor in obstructive sleep apnea related cognitive impairment.

  2. Effect of growth hormone on glycogenesis in rat cerebral cortical slices

    International Nuclear Information System (INIS)

    Visweswaran, P.; Binod Kumar; Azad, V.S.S.; Brahamchari, A.K.; Singh, S.P.

    1994-01-01

    Incubation of cerebral cortical slices of growth hormone treated diabetic and normal rats with U- 14 C glucose showed a two-fold increase in glycogenesis in diabetic rats. Glucose-6-phosphatase activity was lowered while the activities of phosphoglucomutase and phosphorylase were elevated in the cerebral cortex of diabetic rats treated with growth hormone. However, glycogen synthetase activity was slightly depressed. (author). 13 refs., 2 tabs

  3. Differential Cortical Neurotrophin and Cytogenetic Adaptation after Voluntary Exercise in Normal and Amnestic Rats

    Science.gov (United States)

    Hall, Joseph M.; Vetreno, Ryan P.; Savage, Lisa M.

    2013-01-01

    Voluntary exercise (VEx) has profound effects on neural and behavioral plasticity, including recovery of CNS trauma and disease. However, the unique regional cortical adaption to VEx has not been elucidated. In a series of experiments, we first examined whether VEx would restore and retain neurotrophin levels in several cortical regions (frontal cortex [FC], retrosplenial cortex [RSC], occipital cortex [OC]) in an animal model (pyrithiamine-induced thiamine deficiency [PTD]) of the amnestic disorder Wernicke-Korsakoff syndrome. In addition, we assessed the time-dependent effect of VEx to rescue performance on a spontaneous alternation task. Following 2-weeks of VEx or stationary housing conditions (Stat), rats were behaviorally tested and brains were harvested either the day after VEx (24-h) or after an additional two-week period (2-wk). In both control pair-fed (PF) rats and PTD rats, all neurotrophin levels (brain-derived neurotrophic factor [BDNF], nerve growth factor [NGF], and vascular endothelial growth factor [VEGF]) increased at the 24-h period after VEx in the FC and RSC, but not OC. Two-weeks following VEx, BDNF remained elevated in both FC and RSC, whereas NGF remained elevated in only the FC. Interestingly, VEx only recovered cognitive performance in amnestic rats when there was an additional 2-wk adaptation period after VEx. Given this unique temporal profile, Experiment 2 examined the cortical cytogenetic responses in all three cortical regions following a 2-wk adaptation period after VEx. In healthy (PF) rats, VEx increased the survival of progenitor cells in both the FC and RSC, but only increased oligodendrocyte precursor cells in the FC. Furthermore, VEx had a selective effect of only recovering oligodendrocyte precursor cells in the FC in PTD rats. These data reveal the therapeutic potential of exercise to restore cortical plasticity in the amnestic brain, and that the FC is one of the most responsive cortical regions to VEx. PMID:24215977

  4. Left hemispheric dominance of vestibular processing indicates lateralization of cortical functions in rats.

    Science.gov (United States)

    Best, Christoph; Lange, Elena; Buchholz, Hans-Georg; Schreckenberger, Mathias; Reuss, Stefan; Dieterich, Marianne

    2014-11-01

    Lateralization of cortical functions such as speech dominance, handedness and processing of vestibular information are present not only in humans but also in ontogenetic older species, e.g. rats. In human functional imaging studies, the processing of vestibular information was found to be correlated with the hemispherical dominance as determined by the handedness. It is located mainly within the right hemisphere in right handers and within the left hemisphere in left handers. Since dominance of vestibular processing is unknown in animals, our aim was to study the lateralization of cortical processing in a functional imaging study applying small-animal positron emission tomography (microPET) and galvanic vestibular stimulation in an in vivo rat model. The cortical and subcortical network processing vestibular information could be demonstrated and correlated with data from other animal studies. By calculating a lateralization index as well as flipped region of interest analyses, we found that the vestibular processing in rats follows a strong left hemispheric dominance independent from the "handedness" of the animals. These findings support the idea of an early hemispheric specialization of vestibular cortical functions in ontogenetic older species.

  5. Signal transfer within a cultured asymmetric cortical neuron circuit.

    Science.gov (United States)

    Isomura, Takuya; Shimba, Kenta; Takayama, Yuzo; Takeuchi, Akimasa; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-12-01

    Simplified neuronal circuits are required for investigating information representation in nervous systems and for validating theoretical neural network models. Here, we developed patterned neuronal circuits using micro fabricated devices, comprising a micro-well array bonded to a microelectrode-array substrate. The micro-well array consisted of micrometre-scale wells connected by tunnels, all contained within a silicone slab called a micro-chamber. The design of the micro-chamber confined somata to the wells and allowed axons to grow through the tunnels bidirectionally but with a designed, unidirectional bias. We guided axons into the point of the arrow structure where one of the two tunnel entrances is located, making that the preferred direction. When rat cortical neurons were cultured in the wells, their axons grew through the tunnels and connected to neurons in adjoining wells. Unidirectional burst transfers and other asymmetric signal-propagation phenomena were observed via the substrate-embedded electrodes. Seventy-nine percent of burst transfers were in the forward direction. We also observed rapid propagation of activity from sites of local electrical stimulation, and significant effects of inhibitory synapse blockade on bursting activity. These results suggest that this simple, substrate-controlled neuronal circuit can be applied to develop in vitro models of the function of cortical microcircuits or deep neural networks, better to elucidate the laws governing the dynamics of neuronal networks.

  6. Signal transfer within a cultured asymmetric cortical neuron circuit

    Science.gov (United States)

    Isomura, Takuya; Shimba, Kenta; Takayama, Yuzo; Takeuchi, Akimasa; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-12-01

    Objective. Simplified neuronal circuits are required for investigating information representation in nervous systems and for validating theoretical neural network models. Here, we developed patterned neuronal circuits using micro fabricated devices, comprising a micro-well array bonded to a microelectrode-array substrate. Approach. The micro-well array consisted of micrometre-scale wells connected by tunnels, all contained within a silicone slab called a micro-chamber. The design of the micro-chamber confined somata to the wells and allowed axons to grow through the tunnels bidirectionally but with a designed, unidirectional bias. We guided axons into the point of the arrow structure where one of the two tunnel entrances is located, making that the preferred direction. Main results. When rat cortical neurons were cultured in the wells, their axons grew through the tunnels and connected to neurons in adjoining wells. Unidirectional burst transfers and other asymmetric signal-propagation phenomena were observed via the substrate-embedded electrodes. Seventy-nine percent of burst transfers were in the forward direction. We also observed rapid propagation of activity from sites of local electrical stimulation, and significant effects of inhibitory synapse blockade on bursting activity. Significance. These results suggest that this simple, substrate-controlled neuronal circuit can be applied to develop in vitro models of the function of cortical microcircuits or deep neural networks, better to elucidate the laws governing the dynamics of neuronal networks.

  7. Persistent spatial working memory deficits in rats with bilateral cortical microgyria

    Directory of Open Access Journals (Sweden)

    Rosen Glenn D

    2008-10-01

    Full Text Available Abstract Background Anomalies of cortical neuronal migration (e.g., microgyria (MG and/or ectopias are associated with a variety of language and cognitive deficits in human populations. In rodents, postnatal focal freezing lesions lead to the formation of cortical microgyria similar to those seen in human dyslexic brains, and also cause subsequent deficits in rapid auditory processing similar to those reported in human language impaired populations. Thus convergent findings support the ongoing study of disruptions in neuronal migration in rats as a putative model to provide insight on human language disability. Since deficits in working memory using both verbal and non-verbal tasks also characterize dyslexic populations, the present study examined the effects of neonatally induced bilateral cortical microgyria (MG on working memory in adult male rats. Methods A delayed match-to-sample radial water maze task, in which the goal arm was altered among eight locations on a daily basis, was used to assess working memory performance in MG (n = 8 and sham (n = 10 littermates. Results Over a period of 60 sessions of testing (each session comprising one pre-delay sample trial, and one post-delay test trial, all rats showed learning as evidenced by a significant decrease in overall test errors. However, MG rats made significantly more errors than shams during initial testing, and this memory deficit was still evident after 60 days (12 weeks of testing. Analyses performed on daily error patterns showed that over the course of testing, MG rats utilized a strategy similar to shams (but with less effectiveness, as indicated by more errors. Conclusion These results indicate persistent abnormalities in the spatial working memory system in rats with induced disruptions of neocortical neuronal migration.

  8. Viability of dielectrophoretically trapped neuronal cortical cells in culture

    NARCIS (Netherlands)

    Heida, Tjitske; Vulto, P; Rutten, Wim; Marani, Enrico

    2001-01-01

    Negative dielectrophoretic trapping of neural cells is an efficient way to position neural cells on the electrode sites of planar micro-electrode arrays. The preservation of viability of the neural cells is essential for this approach. This study investigates the viability of postnatal cortical rat

  9. Apoptosis after irradiation of the rat cortical and hippocampal cells in culture

    International Nuclear Information System (INIS)

    Coffigny, H.; Lane, M.C.

    1997-01-01

    During the development of the central nervous system many neurons are generated but over 50% die by natural apoptosis; this phenomenon occurred in neurons without or with wrong connections with their target cells. Children exposed in utero to Hiroshima or Nagasaki bombing presented microcephaly due to cell deaths and mental retardation. In animals, the number of apoptotic cells in the developing central nervous system increased as a function of the dose received. In vitro, we have shown that 1 Gy irradiation induced 50 % decrease of cortical and hippocampal cell survival. Nervous cells when seeded in a plate were round without processes. Neuritis outgrowth increased with culture time and physical contacts were established between cells. Our purpose is to test the importance of these contacts in the radio-induced apoptosis. (authors)

  10. Exogenous and endogenous angiotensin‐II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow

    Science.gov (United States)

    Emans, Tonja W.; Janssen, Ben J.; Pinkham, Maximilian I.; Ow, Connie P. C.; Evans, Roger G.; Joles, Jaap A.; Malpas, Simon C.; Krediet, C. T. Paul

    2016-01-01

    Key points Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary.We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats.This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation.Exogenous angiotensin‐II reduced renal cortical tissue PO2 more than equi‐pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine.Activation of the endogenous renin–angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin‐II receptor type 1 antagonist.Angiotensin‐II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. Abstract We hypothesised that both exogenous and endogenous angiotensin‐II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose‐dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi‐pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min−1

  11. The cytokine temporal profile in rat cortex after controlled cortical impact.

    Science.gov (United States)

    Dalgard, Clifton L; Cole, Jeffrey T; Kean, William S; Lucky, Jessica J; Sukumar, Gauthaman; McMullen, David C; Pollard, Harvey B; Watson, William D

    2012-01-01

    Cerebral inflammatory responses may initiate secondary cascades following traumatic brain injury (TBI). Changes in the expression of both cytokines and chemokines may activate, regulate, and recruit innate and adaptive immune cells associated with secondary degeneration, as well as alter a host of other cellular processes. In this study, we quantified the temporal expression of a large set of inflammatory mediators in rat cortical tissue after brain injury. Following a controlled cortical impact (CCI) on young adult male rats, cortical and hippocampal tissue of the injured hemisphere and matching contralateral material was harvested at early (4, 12, and 24 hours) and extended (3 and 7 days) time points post-procedure. Naïve rats that received only anesthesia were used as controls. Processed brain homogenates were assayed for chemokine and cytokine levels utilizing an electrochemiluminescence-based multiplex ELISA platform. The temporal profile of cortical tissue samples revealed a multi-phasic injury response following brain injury. CXCL1, IFN-γ, TNF-α levels significantly peaked at four hours post-injury compared to levels found in naïve or contralateral tissue. CXCL1, IFN-γ, and TNF-α levels were then observed to decrease at least 3-fold by 12 hours post-injury. IL-1β, IL-4, and IL-13 levels were also significantly elevated at four hours post-injury although their expression did not decrease more than 3-fold for up to 24 hours post-injury. Additionally, IL-1β and IL-4 levels displayed a biphasic temporal profile in response to injury, which may suggest their involvement in adaptive immune responses. Interestingly, peak levels of CCL2 and CCL20 were not observed until after four hours post-injury. CCL2 levels in injured cortical tissue were significantly higher than peak levels of any other inflammatory mediator measured, thus suggesting a possible use as a biomarker. Fully elucidating chemokine and cytokine signaling properties after brain injury may

  12. GABA-B antagonist potentiates cortical epileptic afterdischarges in immature rats

    Czech Academy of Sciences Publication Activity Database

    Mareš, Pavel

    2005-01-01

    Roč. 46, č. S6 (2005), s. 358-358 ISSN 0013-9580. [International Epilepsy Congress /26./. 28.08.2005-01.09.2005, Paris] Institutional research plan: CEZ:AV0Z50110509 Keywords : GAGA-B antagonist * cortical afterdischarges * immature rat Subject RIV: ED - Physiology

  13. Morphometric golgi study of some cortical locations in wag/rij and aci rat strains

    NARCIS (Netherlands)

    Karpova, A.V.; Bikbaev, A.F.; Coenen, A.M.L.; Luijtelaar, E.L.J.M. van; Luijtelaar, E.L.J.M. van; Kuznetsova, G.D.; Coenen, A.M.L.; Chepurnov, S.A.

    2004-01-01

    The present study was aimed to investigate the neuronal organization of two neocortical frontal zones using a Golgi staining technique in genetic epileptic rats, WAG/Rij's. One cortical zone was a specific part of the somatosensory cortex, which was recently proposed to contain a cortical epileptic

  14. Suppression of motor cortical excitability in anesthetized rats by low frequency repetitive transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Paul A Muller

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is a widely-used method for modulating cortical excitability in humans, by mechanisms thought to involve use-dependent synaptic plasticity. For example, when low frequency rTMS (LF rTMS is applied over the motor cortex, in humans, it predictably leads to a suppression of the motor evoked potential (MEP, presumably reflecting long-term depression (LTD -like mechanisms. Yet how closely such rTMS effects actually match LTD is unknown. We therefore sought to (1 reproduce cortico-spinal depression by LF rTMS in rats, (2 establish a reliable animal model for rTMS effects that may enable mechanistic studies, and (3 test whether LTD-like properties are evident in the rat LF rTMS setup. Lateralized MEPs were obtained from anesthetized Long-Evans rats. To test frequency-dependence of LF rTMS, rats underwent rTMS at one of three frequencies, 0.25, 0.5, or 1 Hz. We next tested the dependence of rTMS effects on N-methyl-D-aspartate glutamate receptor (NMDAR, by application of two NMDAR antagonists. We find that 1 Hz rTMS preferentially depresses unilateral MEP in rats, and that this LTD-like effect is blocked by NMDAR antagonists. These are the first electrophysiological data showing depression of cortical excitability following LF rTMS in rats, and the first to demonstrate dependence of this form of cortical plasticity on the NMDAR. We also note that our report is the first to show that the capacity for LTD-type cortical suppression by rTMS is present under barbiturate anesthesia, suggesting that future neuromodulatory rTMS applications under anesthesia may be considered.

  15. Exogenous and endogenous angiotensin-II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow.

    Science.gov (United States)

    Emans, Tonja W; Janssen, Ben J; Pinkham, Maximilian I; Ow, Connie P C; Evans, Roger G; Joles, Jaap A; Malpas, Simon C; Krediet, C T Paul; Koeners, Maarten P

    2016-11-01

    Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary. We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats. This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation. Exogenous angiotensin-II reduced renal cortical tissue PO2 more than equi-pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine. Activation of the endogenous renin-angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin-II receptor type 1 antagonist. Angiotensin-II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. We hypothesised that both exogenous and endogenous angiotensin-II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose-dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi-pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min -1 . Equi-pressor infusion of

  16. A New Rat Model of Epileptic Spasms Based on Methylazoxymethanol-Induced Malformations of Cortical Development

    Directory of Open Access Journals (Sweden)

    Eun-Hee Kim

    2017-06-01

    Full Text Available Malformations of cortical development (MCDs can cause medically intractable epilepsies and cognitive disabilities in children. We developed a new model of MCD-associated epileptic spasms by treating rats prenatally with methylazoxymethanol acetate (MAM to induce cortical malformations and postnatally with N-methyl-d-aspartate (NMDA to induce spasms. To produce cortical malformations to infant rats, two dosages of MAM (15 mg/kg, intraperitoneally were injected to pregnant rats at gestational day 15. In prenatally MAM-exposed rats and the controls, spasms were triggered by single (6 mg/kg on postnatal day 12 (P12 or 10 mg/kg on P13 or 15 mg/kg on P15 or multiple doses (P12, P13, and P15 of NMDA. In prenatally MAM-exposed rats with single NMDA-provoked spasms at P15, we obtain the intracranial electroencephalography and examine the pretreatment response to adrenocorticotropic hormone (ACTH or vigabatrin. Rat pups prenatally exposed to MAM exhibited a significantly greater number of spasms in response to single and multiple postnatal NMDA doses than vehicle-exposed controls. Vigabatrin treatment prior to a single NMDA dose on P15 significantly suppressed spasms in MAM group rats (p < 0.05, while ACTH did not. The MAM group also showed significantly higher fast oscillation (25–100 Hz power during NMDA-induced spasms than controls (p = 0.047. This new model of MCD-based epileptic spasms with corresponding features of human spasms will be valuable for future research of the developmental epilepsy.

  17. Glutamate stimulates the formation of N-acylphosphatidylethanolamine in cortical neurons in culture

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Lauritzen, L.; Strand, A.M.

    1995-01-01

    The formation of anandamide (N-arachidonoylethanolamine), N-acylethanolamine, and N-acylphosphatidylethanolamine was studied in primary cultures of rat cortical neurons. The cells were incubated for 22 h with [C]ethanolamine, [U-C]arachidonic acid, [H]arachidonic acid, [P]phosphate, [C]stearic acid......-acylethanolamine. Compound I could be labelled with [C]stearic acid and [H]myristic acid, but not with [H]- or [C]arachidonic acid. Exogenous [H]anandamide was metabolised with a t( 1/2 ) of 2.6 h. The labelling of the two compounds identified as N-acylethanolamine and N-acylphosphatidylethanolamine were more pronounced......, or [H]myristic acid. The lipids from the cells and media were separated by thin layer chromatography. [C]Ethanolamine labelling revealed two compounds (I and II), which on different thin layer chromatography systems migrated as N-acylethanolamine (0.06-0.55% of total radioactivity) and N...

  18. Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues.

    Science.gov (United States)

    Eiraku, Mototsugu; Sasai, Yoshiki

    2011-12-15

    Generation of compound tissues with complex structures is a major challenge in cell biology. In this article, we describe a protocol for mouse embryonic stem cell (ESC) culture for in vitro generation of three-dimensional retinal tissue, comparing it with the culture protocol for cortical tissue generation. Dissociated ESCs are reaggregated in a 96-well plate with reduced cell-plate adhesion and cultured as floating aggregates. Retinal epithelium is efficiently generated when ESC aggregates are cultured in serum-free medium containing extracellular matrix proteins, spontaneously forming hemispherical vesicles and then progressively transforming into a shape reminiscent of the embryonic optic cup in 9-10 d. In long-term culture, the ESC-derived optic cup generates a fully stratified retinal tissue consisting of all major neural retinal components. In contrast, the cortical differentiation culture can be started without exogenous extracellular matrix proteins, and it generates stratified cortical epithelia consisting of four distinct layers in 13 d.

  19. Characterization of the Relationship of CDKL5 with MeCP2 and Dnmt1 in PrimaryRat Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Zhi Yi

    Full Text Available ABSTRACT Cyclin-dependent kinase-like 5 (CDKL5 is a protein kinase that is homologous to mitogen-activated protein kinases (MAPKs and cyclin-dependent kinases (CDKs. Mutations in the CDKL5 gene cause X-linked infantile spasms and phenotypes that overlap with that of Rett syndrome, which is a neurodevelopmental disorder caused primarily by mutations in the methyl CpG binding protein 2 gene (MECP2. Previous studies in transfected cell lines showed that CDKL5 interacts with MeCP2 and DNA (cytosine-5-methyltransferase 1 (Dnmt1. However, little is known about the relationships of CDKL5 with interacting proteins in primary neuronal cultures. In this study, we investigated the expression patterns of CDKL5, MeCP2 and Dnmt1, and their interaction in cultured rat cortical neurons. Using real-time PCR analysis, we found that CDKL5, MeCP2 and Dnmt1 have similar expression patterns at the mRNA level. In contrast, the expression patterns of those proteins at the protein level are different and could be inversely correlated, as shown by western blotting. Using co-immunoprecipitation, we further demonstrated that CDKL5 interacts with MeCP2 and Dnmt1 in primary rat cortical neurons. These data suggest that a functional link exists among CDKL5, MeCP2 and Dnmt1 during neuronal development and may provide further insight into the pathogenesis of Rett syndrome.

  20. Amitriptyline up-regulates connexin43-gap junction in rat cultured cortical astrocytes via activation of the p38 and c-Fos/AP-1 signalling pathway.

    Science.gov (United States)

    Morioka, N; Suekama, K; Zhang, F F; Kajitani, N; Hisaoka-Nakashima, K; Takebayashi, M; Nakata, Y

    2014-06-01

    Intercellular communication via gap junctions, comprised of connexin (Cx) proteins, allow for communication between astrocytes, which in turn is crucial for maintaining CNS homeostasis. The expression of Cx43 is decreased in post-mortem brains from patients with major depression. A potentially novel mechanism of tricyclic antidepressants is to increase the expression and functioning of gap junctions in astrocytes. The effect of amitriptyline on the expression of Cx43 and gap junction intercellular communication (GJIC) in rat primary cultured cortical astrocytes was investigated. We also investigated the role of p38 MAPK intracellular signalling pathway in the amitriptyline-induced expression of Cx43 and GJIC. Treatment with amitriptyline for 48 h significantly up-regulated Cx43 mRNA, protein and GJIC. The up-regulation of Cx43 was not monoamine-related since noradrenaline, 5-HT and dopamine did not induce Cx43 expression and pretreatment with α- and β-adrenoceptor antagonists had no effect. Intracellular signalling involved p38 MAPK, as amitriptyline significantly increased p38 MAPK phosphorylation and Cx43 expression and GJIC were significantly blocked by the p38 inhibitor SB 202190. Furthermore, amitriptyline-induced Cx43 expression and GJIC were markedly reduced by transcription factor AP-1 inhibitors (curcumin and tanshinone IIA). The translocation of c-Fos from the cytosol and the nucleus of cortical astrocytes was increased by amitriptyline, and this response was dependent on p38 activity. These findings indicate a novel mechanism of action of amitriptyline through cortical astrocytes, and further suggest that targeting this mechanism could lead to the development of a new class of antidepressants. © 2014 The British Pharmacological Society.

  1. Effect of canagliflozin and metformin on cortical neurotransmitters in a diabetic rat model.

    Science.gov (United States)

    Arafa, Nadia M S; Marie, Mohamed-Assem S; AlAzimi, Sara Abdullah Mubarak

    2016-10-25

    The rapid economic development in the Arabian Gulf has resulted in lifestyle changes that have increased the prevalence of obesity and type 2 diabetes, with the greatest increases observed in Kuwait. Dyslipidemia and diabetes are risk factors for disruptions in cortical neurotransmitter homeostasis. This study investigated the effect of the antidiabetic medications canagliflozin (CAN) and metformin (MET) on the levels of cortical neurotransmitters in a diabetic rat model. The rats were assigned to the control (C) group, the diabetic group that did not receive treatment (D) or the diabetic group treated with either CAN (10 mg/kg) or MET (100 mg/kg) for 2 or 4 weeks. Blood and urine glucose levels and cortical acetylcholinesterase (AChE) activity were assayed, and amino acid and monoamine levels were measured using HPLC. The diabetic group exhibited a significant increase in AChE activity and a decrease in monoamine and amino acid neurotransmitter levels. In the CAN group, AChE was significantly lower than that in the D and D + MET groups after 2 weeks of treatment. In addition, a significant increase in some cortical monoamines and amino acids was observed in the D + MET and D + CAN groups compared with the D group. Histopathological analysis revealed the presence of severe focal hemorrhage, neuronal degeneration, and cerebral blood vessel congestion, with gliosis in the cerebrum of rats in the D group. The CAN-treated group exhibited severe cerebral blood vessel congestion after 2 weeks of treatment and focal gliosis in the cerebrum after 4 weeks of treatment. Focal gliosis in the cerebrum of rats in the MET-treated group was observed after 2 and 4 weeks of treatment. We conclude that the effect of CAN and MET on neurotransmitters is potentially mediated by their antihyperglycemic and antihyperlipidemic effects. In addition, the effects of CAN on neurotransmitters might be associated with its receptor activity, and the effect of MET on neurotransmitters

  2. Motor cortex stimulation does not lead to functional recovery after experimental cortical injury in rats.

    Science.gov (United States)

    Schönfeld, Lisa-Maria; Jahanshahi, Ali; Lemmens, Evi; Bauwens, Matthias; Hescham, Sarah-Anna; Schipper, Sandra; Lagiere, Melanie; Hendrix, Sven; Temel, Yasin

    2017-01-01

    Motor impairments are among the major complications that develop after cortical damage caused by either stroke or traumatic brain injury. Motor cortex stimulation (MCS) can improve motor functions in animal models of stroke by inducing neuroplasticity. In the current study, the therapeutic effect of chronic MCS was assessed in a rat model of severe cortical damage. A controlled cortical impact (CCI) was applied to the forelimb area of the motor cortex followed by implantation of a flat electrode covering the lesioned area. Forelimb function was assessed using the Montoya staircase test and the cylinder test before and after a period of chronic MCS. Furthermore, the effect of MCS on tissue metabolism and lesion size was measured using [18F]-fluorodesoxyglucose (FDG) μPET scanning. CCI caused a considerable lesion at the level of the motor cortex and dorsal striatum together with a long-lasting behavioral phenotype of forelimb impairment. However, MCS applied to the CCI lesion did not lead to any improvement in limb functioning when compared to non-stimulated control rats. Also, MCS neither changed lesion size nor distribution of FDG. The use of MCS as a standalone treatment did not improve motor impairments in a rat model of severe cortical damage using our specific treatment modalities.

  3. Quantitative immuno-electron microscopic analysis of depolarization-induced expression of PGC-1alpha in cultured rat visual cortical neurons.

    Science.gov (United States)

    Meng, Hui; Liang, Huan Ling; Wong-Riley, Margaret

    2007-10-17

    Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC- 1alpha) is a coactivator of nuclear receptors and other transcription factors that regulate several metabolic processes, including mitochondrial biogenesis, energy homeostasis, respiration, and gluconeogenesis. PGC-1alpha plays a vital role in stimulating genes that are important to oxidative metabolism and other mitochondrial functions in brown adipose tissue and skeleton muscles, but the significance of PGC-1alpha in the brain remains elusive. The goal of our present study was to determine by means of quantitative immuno-electron microscopy the expression of PGC-1alpha in cultured rat visual cortical neurons under normal conditions as well as after depolarizing stimulation for varying periods of time. Our results showed that: (a) PGC-1alpha was normally located in both the nucleus and the cytoplasm. In the nucleus, PGC-1alpha was associated mainly with euchromatin rather than heterochromatin, consistent with active involvement in transcription. In the cytoplasm, it was associated mainly with free ribosomes. (b) Neuronal depolarization by KCl for 0.5 h induced a significant increase in PGC-1alpha labeling density in both the nucleus and the cytoplasm (Pneuronal activity by synthesizing more proteins in the cytoplasm and translocating them to the nucleus for gene activation. PGC-1alpha level in neurons is, therefore, tightly regulated by neuronal activity.

  4. Caffeine/nutrition interaction in the rat brain: Influence on latent inhibition and cortical spreading depression.

    Science.gov (United States)

    de Aguiar, Márlison José Lima; de Aguiar, Cilene Rejane Ramos Alves; Guedes, Rubem Carlos Araújo

    2011-01-10

    Caffeine, like malnutrition, can produce behavioral and electrophysiological alterations. However, the interaction of both factors remains unclear. Here this interaction has been studied in male Wistar rats previously malnourished during the lactation period by feeding their dams the "regional basic diet" of Northeast Brazil, containing about 8% protein, predominantly from vegetable sources (RBD(8)). At 70-75days of life, a subset of the pups was treated intraperitoneally with 30mg/kg caffeine for 4days while being tested according to the behavioral model of latent inhibition. Another group was subjected to an electrophysiological recording of the phenomenon known as cortical spreading depression, and the effects of caffeine injected during the recording session were evaluated. Caffeine did not affect cortical spreading depression, but antagonized latent inhibition in both the RBD(8)-malnourished rats and in the well-nourished control group fed a chow diet with 22% protein. This effect of caffeine was not seen in malnourished rats fed a protein-supplemented RBD (protein increased to 22% by increasing the proportion of foodstuffs from vegetable origin; RBD(22) group), suggesting that the amino acid imbalance of this diet may modulate the caffeine effects on latent inhibition. The results indicate a differential effect of caffeine in the latent inhibition behavioral model, as compared to the cortical spreading depression phenomenon, and this effect is influenced by the early nutritional status of the animal. We suggest that caffeine may modulate dopaminergic subcortical receptors participating in attention processes, but does not interact at the cortical level, in a way that would affect cortical spreading depression. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Functional characterization of apical transporters expressed in rat proximal tubular cells (PTCs) in primary culture.

    Science.gov (United States)

    Nakanishi, Takeo; Fukushi, Akimasa; Sato, Masanobu; Yoshifuji, Mayuko; Gose, Tomoka; Shirasaka, Yoshiyuki; Ohe, Kazuyo; Kobayashi, Masato; Kawai, Keiichi; Tamai, Ikumi

    2011-12-05

    Since in vitro cell culture models often show altered apical transporter expression, they are not necessarily suitable for the analysis of renal transport processes. Therefore, we aimed here to investigate the usefulness of primary-cultured rat proximal tubular cells (PTCs) for this purpose. After isolation of renal cortical cells from rat kidneys, PTCs were enriched and the gene expression and function of apical transporters were analyzed by means of microarray, RT-PCR and uptake experiments. RT-PCR confirmed that the major apical transporters were expressed in rat PTCs. Na(+)-dependent uptake of α-methyl-d-glucopyranoside (αMG), ergothioneine and carnitine by the PTCs suggests functional expression of Sglts, Octn1 and Octn2, respectively. Inhibition of pH-dependent glycylsarcosine uptake by low concentration of cephalexin, which is a β-lactam antibiotics recognized by Pepts, indicates a predominant role of high affinity type Pept2, but not low affinity type Pept1, in the PTCs. Moreover, the permeability ratio of [(14)C]αMG (apical to basolateral/basolateral to apical) across PTCs was 4.3, suggesting that Sglt-mediated reabsorptive transport is characterized. In conclusion, our results indicate that rat PTCs in primary culture are found to be a promising in vitro model to evaluate reabsorption processes mediated at least by Sglts, Pept2, Octn1 and Octn2.

  6. Neuroprotection by biodegradable PAMAM ester (e-PAM-R)-mediated HMGB1 siRNA delivery in primary cortical cultures and in the postischemic brain.

    Science.gov (United States)

    Kim, Il-Doo; Lim, Chae-Moon; Kim, Jung-Bin; Nam, Hye Yeong; Nam, Kihoon; Kim, Seung-Woo; Park, Jong-Sang; Lee, Ja-Kyeong

    2010-03-19

    Although RNA interference (RNAi)-mediated gene silencing provides a powerful strategy for modulating specific gene functions, difficulties associated with siRNA delivery have impeded the development of efficient therapeutic applications. In particular, the efficacy of siRNA delivery into neurons has been limited by extremely low transfection efficiencies. e-PAM-R is a biodegradable arginine ester of PAMAM dendrimer, which is readily degradable under physiological conditions (pH 7.4, 37 degrees C). In the present study, we investigated the efficiency of siRNA delivery by e-PAM-R in primary cortical cultures and in rat brain. e-PAM-R/siRNA complexes showed high transfection efficiencies and low cytotoxicities in primary cortical cultures. Localization of fluorescence-tagged siRNA revealed that siRNA was delivered not only into the nucleus and cytoplasm, but also along the processes of the neuron. e-PAM-R/siRNA complex-mediated target gene reduction was observed in over 40% of cells and it was persistent for over 48 h. The potential use of e-PAM-R was demonstrated by gene knockdown after transfecting High mobility group box-1 (HMGB1, a novel cytokine-like molecule) siRNA into H(2)O(2)- or NMDA-treated primary cortical cultures. In these cells, HMGB1 siRNA delivery successfully reduced both basal and H(2)O(2)- or NMDA-induced HMGB1 levels, and as a result of that, neuronal cell death was significantly suppressed in both cases. Furthermore, we showed that e-PAM-R successfully delivered HMGB1 siRNA into the rat brain, wherein HMGB1 expression was depleted in over 40% of neurons and astrocytes of the normal brain. Moreover, e-PAM-R-mediated HMGB1 siRNA delivery notably reduced infarct volume in the postischemic rat brain, which is generated by occluding the middle cerebral artery for 60 min. These results indicate that e-PAM-R, a novel biodegradable nonviral gene carrier, offers an efficient means of transfecting siRNA into primary neuronal cells and in the brain and of

  7. Enhancement of synaptic transmission induced by BDNF in cultured cortical neurons

    Science.gov (United States)

    He, Jun; Gong, Hui; Zeng, Shaoqun; Li, Yanling; Luo, Qingming

    2005-03-01

    Brain-derived neurotrophic factor (BDNF), like other neurotrophins, has long-term effects on neuronal survival and differentiation; furthermore, BDNF has been reported to exert an acute potentiation of synaptic activity and are critically involved in long-term potentiation (LTP). We found that BDNF rapidly induced potentiation of synaptic activity and an increase in the intracellular Ca2+ concentration in cultured cortical neurons. Within minutes of BDNF application to cultured cortical neurons, spontaneous firing rate was dramatically increased as were the frequency and amplitude of excitatory spontaneous postsynaptic currents (EPSCs). Fura-2 recordings showed that BDNF acutely elicited an increase in intracellular calcium concentration ([Ca2+]c). This effect was partially dependent on [Ca2+]o; The BDNF-induced increase in [Ca2+]c can not be completely blocked by Ca2+-free solution. It was completely blocked by K252a and partially blocked by Cd2+ and TTX. The results demonstrate that BDNF can enhances synaptic transmission and that this effect is accompanied by a rise in [Ca2+]c that requires two route: the release of Ca2+ from intracellular calcium stores and influx of extracellular Ca2+ through voltage-dependent Ca2+ channels in cultured cortical neurons.

  8. Molecular Correlates of Cortical Network Modulation by Long-Term Sensory Experience in the Adult Rat Barrel Cortex

    Science.gov (United States)

    Vallès, Astrid; Granic, Ivica; De Weerd, Peter; Martens, Gerard J. M.

    2014-01-01

    Modulation of cortical network connectivity is crucial for an adaptive response to experience. In the rat barrel cortex, long-term sensory stimulation induces cortical network modifications and neuronal response changes of which the molecular basis is unknown. Here, we show that long-term somatosensory stimulation by enriched environment…

  9. Characterization of Early Cortical Neural Network Development in Multiwell Microelectrode Array Plates

    Science.gov (United States)

    We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentiall...

  10. Effects of Cortical Spreading Depression on Synaptic Activity, Blood Flow and Oxygen Consumption in Rat Cerebral Cortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard

    2010-01-01

    As the title of this thesis indicates I have during my PhD studied the effects of cortical spreading depression (CSD) on synaptic activity, blood flow and oxygen consumption in rat cerebral cortex. This was performed in vivo using an open cranial window approach in anesthetized rats. I applied...... parameters of the whisker/infraorbital nerve etwork (IO) targeting the same cortical area. We tested the hypothesis that the relation between increases in CBF and CMRO2 evoked by stimulation and synaptic activity differed for the two activated networks and that activation of two distinct networks activate...

  11. Metabolic and hemodynamic activation of postischemic rat brain by cortical spreading depression.

    Science.gov (United States)

    Kocher, M

    1990-07-01

    Following transient ischemia of the brain, the coupling between somatosensory activation and the hemodynamic-metabolic response is abolished for a certain period despite the partial recovery of somatosensory evoked responses. To determine whether this disturbance is due to alterations of the stimulus-induced neuronal excitation or to a breakdown of the coupling mechanisms, cortical spreading depression was used as a metabolic stimulus in rats before and after ischemia. Adult rats were subjected to 30 min of global forebrain ischemia and 3-6 h of recirculation. EEG, cortical direct current (DC) potential, and laser-Doppler flow were continuously recorded. Local CBF (LCBF), local CMRglc (LCMRglc), regional tissue contents of ATP, glucose, and lactate, and regional pH were determined by quantitative autoradiography, substrate-induced bioluminescence, and fluorometry. Amplitude and frequency of the DC shifts did not differ between groups. In control animals, spreading depression induced a 77% rise in cortical glucose consumption, a 66% rise in lactate content, and a drop in tissue pH of 0.3 unit. ATP and glucose contents were not depleted. During the passage of DC shifts, transient increases (less than 2 min) in laser-Doppler flow were observed, followed by a post-spreading depression hypoperfusion. A comparable although less expressed pattern of hemodynamic and metabolic changes was observed in the postischemic rats. Although baseline LCMRglc was depressed after ischemia, it was activated 47% during spreading depression. Lactate increased by 26%, pH decreased by 0.3 unit, and ATP and glucose remained unchanged. The extent of the transient increase in laser-Doppler flow did not differ from that of the control group, and a post-spreading depression hypoperfusion was also found.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Subcortical cerebral blood flow and metabolic changes elicited by cortical spreading depression in rat

    Energy Technology Data Exchange (ETDEWEB)

    Mraovitch, S.; Calando, Y.; Goadsby, P.J.; Seylaz, J. (Laboratoire de Recherches Cerebrovasculaire, Paris (France))

    1992-06-01

    Changes in cerebral cortical perfusion (CBF{sub LDF}), local cerebral blood flow (lCBF) and local cerebral glucose utilization (lCGU) elicited by unilateral cortical spreading depression (SD) were monitored and measured in separate groups of rats anesthetized with {alpha}-chloralose. CBF{sub LDF} was recorded with laser Doppler flowmetry, while lCBF and lCGU were measured by the quantitative autoradiographic ({sup 14}C)iodoantipyrine and ({sup 14}C)-2-deoxyglucose methods, respectively. SD elicited a wave of hyperemia after a latency of 2 to 3 min followed by an oligemic phase. Ninety minutes following the onset of SD cortical lCBF and lCGU were essentially the same as on the contralateral side and in sham-treated rats. However, alteration in the lCBF and lCGU in upper and lower brainstem persisted. The present results demonstrate that long-lasting cerebrovascular and metabolic alterations take place within the subcortical regions following SD. These regions provide an attractive site to integrate observations in man concerning spreading depression and the aura of migraine with the other features of the syndrome. 19 refs., 2 figs., 1 tab.

  13. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex

    Directory of Open Access Journals (Sweden)

    Jimmy eStehberg

    2014-09-01

    Full Text Available Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI and primary visual (VI. It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA and retrograde (CTb tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging and cortical parcellation are discussed.

  14. Osteocyte lacunar properties in rat cortical bone

    DEFF Research Database (Denmark)

    Bach-Gansmo, Fiona Linnea; Weaver, James C.; Jensen, Mads Hartmann

    2015-01-01

    Recently, the roles of osteocytes in bone maintenance have gained increasing attention. Osteocytes reside in lacunae that are interconnected by canaliculi resulting in a vast cellular network within the mineralized bone matrix. As the structure of the lacuno-canalicular network is highly connected......-species but also inter-site variation in lacunar properties. Here, osteocyte lacunae in rat cortical bone have been studied using synchrotron radiation micro computed tomography (SR μCT) and backscattered electron (BE) microscopy. Quantitative lacunar geometric characteristics are reported based on the synchrotron...... radiation data, differentiating between circumferential lamellar bone and a central, more disordered bone type. From these studies, no significant differences were found in lacunar volumes between lamellar and central bone, whereas significant differences in lacunar orientation, shape and density values...

  15. The rat orbital and agranular insular prefrontal cortical areas: a cytoarchitectonic and chemoarchitectonic study

    NARCIS (Netherlands)

    van de Werd, H.J.J.M.; Uylings, H.B.M.

    2008-01-01

    Cytoarchitectonic characterization of borders is necessary for stereological studies (e.g., total cell number estimation), in which particular cortical areas have to be defined. In this study, cytoarchitectonic characteristics are described and illustrated for the rat ventral or orbital frontal

  16. The neuroprotective effect of rat adipose tissue-derived mesenchymal stem cell-conditioned medium on cortical neurons using an in vitro model of SCI inflammation.

    Science.gov (United States)

    Szekiova, Eva; Slovinska, Lucia; Blasko, Juraj; Plsikova, Jana; Cizkova, Dasa

    2018-04-01

    Objectives In this study, a new approach was used with an in vitro model in which neural cells were exposed to conditioned media from the injured spinal cord (SCI-CM) mimicking a local inflammatory microenvironment . Subsequently, the neuroprotective effect of rat adipose tissue-derived msesenchymal stem cell-conditioned media (ATMSC-CM) was investigated through a cell-free based therapy, which was used to treat cortical neurons and astrocytes under inflammation. Methods Primary cell cultures isolated from postnatal day (P6) Wistar rat brain cortex were exposed to SCI-CM derived from the central lesion, rostral and caudal segments of injured spinal cord. After 48 h incubation, the SCI-CM was replaced and primary cultures were cultivated either in DMEM media alone or in ATMSC-CM for 72 h. The impact of ATMSC-CM on the viability of neurons and astrocytes was assessed using a CyQUANT® Direct Cell Proliferation Assay Kit as well as immunocytochemistry analysis. Results Immunocytochemical analysis revealed significant decrease in the number of MAP2 positive neurons exposed to SCI-CM compared to Control. Protection by ATMSC-CM was associated with increased survival of neurons compared to primary culture cultivated in DMEM media alone. The ATMSC-CM effect on astrocytes was more variable and without any significant impact. Conclusion The results demonstrate that SCI-CM mimicking inflammation can reduce cortical neuron survival, and subsequent exposure to ATMSC-CM can stabilize the neuronal population most likely via released neuroprotective and trophic factors. In addition, astrogliosis was not affected by ATMSC-CM.

  17. Cultured Cortical Neurons Can Perform Blind Source Separation According to the Free-Energy Principle

    Science.gov (United States)

    Isomura, Takuya; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-01-01

    Blind source separation is the computation underlying the cocktail party effect––a partygoer can distinguish a particular talker’s voice from the ambient noise. Early studies indicated that the brain might use blind source separation as a signal processing strategy for sensory perception and numerous mathematical models have been proposed; however, it remains unclear how the neural networks extract particular sources from a complex mixture of inputs. We discovered that neurons in cultures of dissociated rat cortical cells could learn to represent particular sources while filtering out other signals. Specifically, the distinct classes of neurons in the culture learned to respond to the distinct sources after repeating training stimulation. Moreover, the neural network structures changed to reduce free energy, as predicted by the free-energy principle, a candidate unified theory of learning and memory, and by Jaynes’ principle of maximum entropy. This implicit learning can only be explained by some form of Hebbian plasticity. These results are the first in vitro (as opposed to in silico) demonstration of neural networks performing blind source separation, and the first formal demonstration of neuronal self-organization under the free energy principle. PMID:26690814

  18. Cultured Cortical Neurons Can Perform Blind Source Separation According to the Free-Energy Principle.

    Directory of Open Access Journals (Sweden)

    Takuya Isomura

    2015-12-01

    Full Text Available Blind source separation is the computation underlying the cocktail party effect--a partygoer can distinguish a particular talker's voice from the ambient noise. Early studies indicated that the brain might use blind source separation as a signal processing strategy for sensory perception and numerous mathematical models have been proposed; however, it remains unclear how the neural networks extract particular sources from a complex mixture of inputs. We discovered that neurons in cultures of dissociated rat cortical cells could learn to represent particular sources while filtering out other signals. Specifically, the distinct classes of neurons in the culture learned to respond to the distinct sources after repeating training stimulation. Moreover, the neural network structures changed to reduce free energy, as predicted by the free-energy principle, a candidate unified theory of learning and memory, and by Jaynes' principle of maximum entropy. This implicit learning can only be explained by some form of Hebbian plasticity. These results are the first in vitro (as opposed to in silico demonstration of neural networks performing blind source separation, and the first formal demonstration of neuronal self-organization under the free energy principle.

  19. Curcumin protects microglia and primary rat cortical neurons against HIV-1 gp120-mediated inflammation and apoptosis.

    Directory of Open Access Journals (Sweden)

    Luyan Guo

    Full Text Available Curcumin is a molecule found in turmeric root that has anti-inflammatory, antioxidant, and anti-tumor properties and has been widely used as both an herbal drug and a food additive to treat or prevent neurodegenerative diseases. To explore whether curcumin is able to ameliorate HIV-1-associated neurotoxicity, we treated a murine microglial cell line (N9 and primary rat cortical neurons with curcumin in the presence or absence of neurotoxic HIV-1 gp120 (V3 loop protein. We found that HIV-1 gp120 profoundly induced N9 cells to produce reactive oxygen species (ROS, tumor necrosis factor-α (TNF-α and monocyte chemoattractant protein-1 (MCP-1. HIV-1 gp120 also induced apoptosis of primary rat cortical neurons. Curcumin exerted a powerful inhibitory effect against HIV-1 gp120-induced neuronal damage, reducing the production of ROS, TNF-α and MCP-1 by N9 cells and inhibiting apoptosis of primary rat cortical neurons. Curcumin may exert its biological activities through inhibition of the delayed rectification and transient outward potassium (K(+ current, as curcumin effectively reduced HIV-1 gp120-mediated elevation of the delayed rectification and transient outward K(+ channel current in neurons. We conclude that HIV-1 gp120 increases ROS, TNF-α and MCP-1 production in microglia, and induces cortical neuron apoptosis by affecting the delayed rectification and transient outward K(+ channel current. Curcumin reduces production of ROS and inflammatory mediators in HIV-1-gp120-stimulated microglia, and protects cortical neurons against HIV-1-mediated apoptosis, most likely through inhibition of HIV-1 gp120-induced elevation of the delayed rectification and transient outward K(+ current.

  20. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia.

    Science.gov (United States)

    Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro

    2016-03-01

    A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Hypo-and hyperthyroidism affect the ATP, ADP and AMP hydrolysis in rat hippocampal and cortical slices.

    Science.gov (United States)

    Bruno, Alessandra Nejar; Diniz, Gabriela Placoná; Ricachenevsky, Felipe Klein; Pochmann, Daniela; Bonan, Carla Denise; Barreto-Chaves, Maria Luiza M; Sarkis, João José Freitas

    2005-05-01

    The presence of severe neurological symptoms in thyroid diseases has highlighted the importance of thyroid hormones in the normal functioning of the mature brain. Since, ATP is an important excitatory neurotransmitter and adenosine acts as a neuromodulatory structure inhibiting neurotransmitters release in the central nervous system (CNS), the ectonucleotidase cascade that hydrolyzes ATP to adenosine, is also involved in the control of brain functions. Thus, we investigated the influence of hyper-and hypothyroidism on the ATP, ADP and AMP hydrolysis in hippocampal and cortical slices from adult rats. Hyperthyroidism was induced by daily injections of l-thyroxine (T4) 25 microg/100 g body weight, for 14 days. Hypothyroidism was induced by thyroidectomy and methimazole (0.05%) added to their drinking water for 14 days. Hypothyroid rats were hormonally replaced by daily injections of T4 (5 microg/100 g body weight, i.p.) for 5 days. Hyperthyroidism significantly inhibited the ATP, ADP and AMP hydrolysis in hippocampal slices. In brain cortical slices, hyperthyroidism inhibited the AMP hydrolysis. In contrast, hypothyroidism increased the ATP, ADP and AMP hydrolysis in both hippocampal and cortical slices and these effects were reverted by T4 replacement. Furthermore, hypothyroidism increased the expression of NTPDase1 and 5'-nucleotidase, whereas hyperthyroidism decreased the expression of 5'-nucleotidase in hippocampus of adult rats. These findings demonstrate that thyroid disorders may influence the enzymes involved in the complete degradation of ATP to adenosine and possibly affects the responses mediated by adenine nucleotides in the CNS of adult rats.

  2. MDMA (Ecstasy) Decreases the Number of Neurons and Stem Cells in Embryonic Cortical Cultures

    DEFF Research Database (Denmark)

    Kindlundh-Högberg, Anna M S; Pickering, Chris; Wicher, Grzegorz

    2010-01-01

    Ecstasy, 3,4-methylenedioxymetamphetamine (MDMA), is a recreational drug used among adolescents, including young pregnant women. MDMA passes the placental barrier and may therefore influence fetal development. The aim was to investigate the direct effect of MDMA on cortical cells using dissociated...... CNS cortex of rat embryos, E17. The primary culture was exposed to a single dose of MDMA and collected 5 days later. MDMA caused a dramatic, dose-dependent (100 and 400 muM) decrease in nestin-positive stem cell density, as well as a significant reduction (400 muM) in NeuN-positive cells. By q......PCR, MDMA (200 muM) caused a significant decrease in mRNA expression of the 5HT3 receptor, dopamine D(1) receptor, and glutamate transporter EAAT2-1, as well as an increase in mRNA levels of the NMDA NR1 receptor subunit and the 5HT(1A) receptor. In conclusion, MDMA caused a marked reduction in stem cells...

  3. Effect of extracellular generation of the reactive oxygen species, singlet oxygen (1O2), on the electrophysiological properties of cultured cortical neurons

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Sinks, Louise, E.; Vionogradov, Sergej A.

    (ABM) were made from cultured rat cortical neurons to provide insight into the events following extracellular generation of 1O2. Membrane resistance (Rm), capacitance (Cm), holding current (Ihold), and firing properties were monitored throughout. The V/I relationship was investigated with 1 s duration...... current steps of 0.1 nA (-0.4 - 1 nA). The PS, dissolved in ABM (10 µM), was administered by local application directly to the neuron monitored. The intensity of the applied light at 455 nm was adjusted by neutral density filters. Phosphorescence at 700 nm proved the presence of the PS, which was absent...

  4. CNTF-ACM promotes mitochondrial respiration and oxidative stress in cortical neurons through upregulating L-type calcium channel activity.

    Science.gov (United States)

    Sun, Meiqun; Liu, Hongli; Xu, Huanbai; Wang, Hongtao; Wang, Xiaojing

    2016-09-01

    A specialized culture medium termed ciliary neurotrophic factor-treated astrocyte-conditioned medium (CNTF-ACM) allows investigators to assess the peripheral effects of CNTF-induced activated astrocytes upon cultured neurons. CNTF-ACM has been shown to upregulate neuronal L-type calcium channel current activity, which has been previously linked to changes in mitochondrial respiration and oxidative stress. Therefore, the aim of this study was to evaluate CNTF-ACM's effects upon mitochondrial respiration and oxidative stress in rat cortical neurons. Cortical neurons, CNTF-ACM, and untreated control astrocyte-conditioned medium (UC-ACM) were prepared from neonatal Sprague-Dawley rat cortical tissue. Neurons were cultured in either CNTF-ACM or UC-ACM for a 48-h period. Changes in the following parameters before and after treatment with the L-type calcium channel blocker isradipine were assessed: (i) intracellular calcium levels, (ii) mitochondrial membrane potential (ΔΨm), (iii) oxygen consumption rate (OCR) and adenosine triphosphate (ATP) formation, (iv) intracellular nitric oxide (NO) levels, (v) mitochondrial reactive oxygen species (ROS) production, and (vi) susceptibility to the mitochondrial complex I toxin rotenone. CNTF-ACM neurons displayed the following significant changes relative to UC-ACM neurons: (i) increased intracellular calcium levels (p ACM (p ACM promotes mitochondrial respiration and oxidative stress in cortical neurons through elevating L-type calcium channel activity.

  5. Neuronal Culture and labelling of receptors of rat brain by a radioactive molecule labelled with technetium

    International Nuclear Information System (INIS)

    Barhoumi, C; Mejri, N.; Saidi, M.; Coulais, Y.; Dunia, D.; Masmoudi, O.; Amri, M.

    2009-01-01

    Alzheimer's disease is a neurodegenerative disease of the brain which causes progressive and irreversible loss of mental function. It is characterized by a decrease of serotoninergic neurons that carry the 5HT1A receptors. In our study, we performed cultures of hippocampal and cortical neurons from brains of young rats. After the differentiation of these neurons, some wells of cell culture were incubated with 8 OH DPAT, a 5HT1A agonist of serotonin, which are located on the surface of neurons.The neurons were then incubated with a molecule labelled with technetium 99m Tc. These neurons are lysed and the radioactivity is read. The results show that for the culture of neurons in the hippocampus, we have levels of radioactivity of cells treated with agonist, below the level of radioactivity of cells treated with the radioactive molecule. Cortical neurons show the same level of radioactivity of cells treated with agonist and for cells treated only with the labelled molecule. Our results show a decrease in the fixation of the labelled molecule on serotoninergic neurons in the hippocampus compared to neurons in the cortex. This work will be continued in humans in order to achieve early diagnosis of Alzheimer's disease

  6. Effects of Preweaning Polysensorial Enrichment upon Development of the Parietal Cortical Plate of Undernourished Rats: A Stereological Study

    OpenAIRE

    González, Héctor; Adaro, Luis; Hernández, Alejandro; Fernández, Víctor

    2014-01-01

    This investigation was undertaken in order to quantify the effects of early polysensorial enrichment on the development of cortical pyramids, located in the parietal cortex of rats simultaneously submitted to protein-energy undernutrition. A short period of stimulation during suckling significantly decreases the cellular density in the cortical plate (phylogenetic-ontogenetic evolutionary index). Results suggest that the cerebral cortex develops according to a sophisticated neuronal network, ...

  7. Characterization of rat cerebral cortical beta adrenoceptor subtypes using (-)-[125I]-iodocyanopindolol

    International Nuclear Information System (INIS)

    Tiong, A.H.; Richardson, J.S.

    1990-01-01

    (-)-[125I]-Iodocyanopindolol [-(ICYP)], used to characterize beta adrenoceptors on membrane preparations from rat cerebral cortex, was shown to have affinity for both beta adrenoceptors and serotonin receptors. Therefore, 10 microM serotonin was added to the assays to prevent (-)ICYP binding to serotonin receptors. Under these conditions, (-)ICYP binding to the cortical membrane preparation was reversible and saturable, and the association reaction was very slow. The dissociation reaction was also very slow, and revealed two affinity states corresponding to a high and a low affinity state. Scatchard analysis showed a single class of binding sites with an equilibrium dissociation constant (KD) of 20.7 pM, and a maximal density of binding sites (Bmax) of 95.1 fmol/mg membrane protein. Displacement binding analyses revealed a potency series of (-) isoproterenol greater than (-) epinephrine equal to (-) norepinephrine, suggesting a predominance of the beta 1 adrenoceptor subtype. Detailed competition ligand binding studies with the selective beta 1 adrenoceptor antagonist ICI-89406 and the selective beta 2 adrenoceptor antagonist ICI-118551, showed that about 70% of the beta adrenoceptor population in the rat cortex is of the beta 1 subtype with the remainder being of the beta 2 subtype. We conclude that since (-)ICYP binds to both beta adrenoceptors and serotonin receptors, it is important to prevent the binding of (-)ICYP to serotonin receptors by adding a suppressing ligand like excess cold serotonin when assaying beta adrenoceptors. We have presented the first such characterization of rat cerebral cortical beta adrenoceptors with (-)ICYP in this study

  8. Neuroprotective effect of Quince leaf hydroalcoholic extract on intracerebroventricular streptozotocin-induced oxidative stress in cortical tissue of rat brain

    Directory of Open Access Journals (Sweden)

    A Hajizadeh Moghaddam

    2015-12-01

    Full Text Available Background & aim: Oxidative stress is a result of the imbalance between free radicals and the antioxidant system of the body. Increased oxidative stress in brain causes dysfunction of brain activities, destruction of neurons, and disease such as Alzheimer. Antioxidants, for example vitamins, phenolic compounds and flavonoids have been extensively investigated as potential therapeutic agents in vitro and in vivo for prevention of neurodegenerative diseases. In the present experimental study, the neuro-protective effect of quince leaf hydroalcoholic extract (QLHE on intracerebroventricular streptozotocin (icv-STZ-induced oxidative stress in cortical tissue of rat brain was examined. Methods: In the present experimental research, forty-two Wistar rats were randomly divided into control, sham, icv-STZ and icv-STZ treated with QLHE groups. The ICV-STZ group rats were injected unilaterally with ICV-STZ (3 mg/kg using a stereotactic device and QLHE (50, 100 and 150 mg/kg/day were administered for 6 weeks starting from 3 weeks before of ICV-STZ injection. The rats were killed at the end of the study and their brain cortical tissue superoxide dismutase and catalase activity were measured. The assay of catalase and superoxide dismutase was performed by following the Genet method. The amount of protein was determined according to the Bradford method.The statistical analysis was performed using one way ANOVA. Data were expressed as mean±SD and  P<0.05 was considered significant. Results: The present study indicated that in the ICV-STZ group showed significant decrease (P<0.001 in enzymatic antioxidants superoxide dismutase and catalase in the cortical tissue of the brain. Treatment of different doses of QLHE significantly increased superoxide dismutase and catalase activity compared to icv-STZ group (P<0.001 in cortical tissue of the brain. Conclusion: The study demonstrated the effectiveness of quince leaf hydroalcoholic extract as a powerful antioxidant

  9. Effect of phenytoin on cortical epileptic foci in cerveau isolé rats.

    Science.gov (United States)

    Mares, P

    1994-01-01

    The action of phenytoin was studied in acute experiments in rats with brainstem transection at the midcollicular level. Symmetrical epileptogenic foci were elicited in sensorimotor cortical areas of both hemispheres by local application of penicillin. Seven rats formed a control group, ten animals were pretreated with phenytoin (60 mg/kg i.p., 10 min before penicillin application). Synchronization of interictal discharges in control rats was delayed in comparison to animals with an intact brainstem; phenytoin did not influence this synchronization. Spontaneous transition of interictal into ictal activity was not abolished by phenytoin, i.e. in cerveau isolé preparations phenytoin lost this activity. The loss of anticonvulsant activity was not complete. Ictal episodes were modified; they started as very short ones and their duration progressively increased. Structures localized below the level of transection represent a site of at least one of the mechanisms of phenytoin anticonvulsant action.

  10. Cortical cholinergic hypofunction and behaviorial impairment produced by basal forebrain lesions in the rat

    International Nuclear Information System (INIS)

    Lerer, B.E.; Friedman, E.; Gamzu, E.

    1986-01-01

    The authors confirm the cortical ChAT and passive avoidance deficits resulting from bilateral KA lesions of the magnocellular nuclei of the basal forebrain (MNBF). Because of reported passive avoidance deficits, the authors were interested in whether bilateral MNBF lesions would interfere with learning in an active avoidance paradigm. Samples of rat cortex were stored at -80 C until assayed. ChAT was assayed by a modification method under saturating conditions; 20 mM choline and 2 mM C 14-acetylcoenzyme. The behavioral deficits assumed to be indicative of learning and memory problems were accompanied by a 20% decrease in cortical ChAT

  11. Continuous and intermittent transcranial magnetic theta burst stimulation modify tactile learning performance and cortical protein expression in the rat differently.

    Science.gov (United States)

    Mix, Annika; Benali, Alia; Eysel, Ulf T; Funke, Klaus

    2010-11-01

    Repetitive transcranial magnetic stimulation (rTMS) can modulate cortical excitability in a stimulus-frequency-dependent manner. Two kinds of theta burst stimulation (TBS) [intermittent TBS (iTBS) and continuous TBS (cTBS)] modulate human cortical excitability differently, with iTBS increasing it and cTBS decreasing it. In rats, we recently showed that this is accompanied by changes in the cortical expression of proteins related to the activity of inhibitory neurons. Expression levels of the calcium-binding protein parvalbumin (PV) and of the 67-kDa isoform of glutamic acid decarboxylase (GAD67) were strongly reduced following iTBS, but not cTBS, whereas both increased expression of the 65-kDa isoform of glutamic acid decarboxylase. In the present study, to investigate possible functional consequences, we applied iTBS and cTBS to rats learning a tactile discrimination task. Conscious rats received either verum or sham rTMS prior to the task. Finally, to investigate how rTMS and learning effects interact, protein expression was determined for cortical areas directly involved in the task and for those either not, or indirectly, involved. We found that iTBS, but not cTBS, improved learning and strongly reduced cortical PV and GAD67 expression. However, the combination of learning and iTBS prevented this effect in those cortical areas involved in the task, but not in unrelated areas. We conclude that the improved learning found following iTBS is a result of the interaction of two effects, possibly in a homeostatic manner: a general weakening of inhibition mediated by the fast-spiking interneurons, and re-established activity in those neurons specifically involved in the learning task, leading to enhanced contrast between learning-induced and background activity. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  12. Enhanced limbic/impaired cortical-loop connection onto the hippocampus of NHE rats: Application of resting-state functional connectivity in a preclinical ADHD model.

    Science.gov (United States)

    Zoratto, F; Palombelli, G M; Ruocco, L A; Carboni, E; Laviola, G; Sadile, A G; Adriani, W; Canese, R

    2017-08-30

    Due to a hyperfunctioning mesocorticolimbic system, Naples-High-Excitability (NHE) rats have been proposed to model for the meso-cortical variant of attention deficit/hyperactivity disorder (ADHD). Compared to Naples Random-Bred (NRB) controls, NHE rats show hyperactivity, impaired non-selective attention (Aspide et al., 1998), and impaired selective spatial attention (Ruocco et al., 2009a, 2014). Alteration in limbic functions has been proposed; however, resulting unbalance among forebrain areas has not been assessed yet. By resting-state functional Magnetic-Resonance Imaging (fMRI) in vivo, we investigated the connectivity of neuronal networks belonging to limbic vs. cortical loops in NHE and NRB rats (n=10 each). Notably, resting-state fMRI was applied using a multi-slice sagittal, gradient-echo sequence. Voxel-wise connectivity maps at rest, based on temporal correlation among fMRI time-series, were computed by seeding the hippocampus (Hip), nucleus accumbens (NAcc), dorsal striatum (dStr), amygdala (Amy) and dorsal/medial prefrontal cortex (PFC), both hemispheres. To summarize patterns of altered connection, clearly directional connectivity was evident within the cortical loop: bilaterally and specularly, from orbital and dorsal PFCs through dStr and hence towards Hip. Such network communication was reduced in NHE rats (also, with less mesencephalic/pontine innervation). Conversely, enhanced network activity emerged within the limbic loop of NHE rats: from left PFC, both through the NAcc and directly, to the Hip (all of which received greater ventral tegmental innervation, likely dopamine). Together with tuned-down cortical loop, this potentiated limbic loop may serve a major role in controlling ADHD-like behavioral symptoms in NHE rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Cortical radial glia: identification in tissue culture and evidence for their transformation to astrocytes.

    Science.gov (United States)

    Culican, S M; Baumrind, N L; Yamamoto, M; Pearlman, A L

    1990-02-01

    Radial glia are transiently present in the developing cerebral cortex, where they are thought to guide the migration of neurons from the proliferative zone to the forming cortical plate. To provide a framework for experimental studies of radial glia, we have defined morphological and immunocytochemical criteria to identify them in primary cultures of cortical cells obtained at embryonic day 13 in the mouse. Cortical radial glia in culture for 1-2 d resemble radial glia in vivo: they have a long, thin, unbranched process extending from one or both ends of the elongated cell body and are labeled with the monoclonal antibody RC1 but not with antibodies to glial fibrillary acidic protein (abGFAP). We tested the specificity of RC1 by double-labeling with a panel of cell-type specific antibodies, and found that it labels radial glia, astrocytes, and fibroblast-like cells, but not neurons. Fibroblasts are easily distinguished from glia by morphology and by labeling with antibodies to fibronectin. To test the hypothesis that radial glia become astrocytes when their developmental role is complete, we examined their morphological and immunocytochemical development in culture. After 3-4 d in vitro radial glia develop several branched processes; in this transitional stage they are labeled by both RC1 and abGFAP. Many radial glia lose RC1 immunoreactivity as they become increasingly branched and immunoreactive to abGFAP. In areas of the cultures that have few neurons and in cultures depleted of neurons by washing, flat, nonprocess-bearing glia predominate. These cells do not lose immunoreactivity to RC1 during the 9-d period of observation even though they acquire GFAP.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Inhibitory neurons modulate spontaneous signaling in cultured cortical neurons: density-dependent regulation of excitatory neuronal signaling

    International Nuclear Information System (INIS)

    Serra, Michael; Guaraldi, Mary; Shea, Thomas B

    2010-01-01

    Cortical neuronal activity depends on a balance between excitatory and inhibitory influences. Culturing of neurons on multi-electrode arrays (MEAs) has provided insight into the development and maintenance of neuronal networks. Herein, we seeded MEAs with murine embryonic cortical/hippocampal neurons at different densities ( 1000 cells mm −2 ) and monitored resultant spontaneous signaling. Sparsely seeded cultures displayed a large number of bipolar, rapid, high-amplitude individual signals with no apparent temporal regularity. By contrast, densely seeded cultures instead displayed clusters of signals at regular intervals. These patterns were observed even within thinner and thicker areas of the same culture. GABAergic neurons (25% of total neurons in our cultures) mediated the differential signal patterns observed above, since addition of the inhibitory antagonist bicuculline to dense cultures and hippocampal slice cultures induced the signal pattern characteristic of sparse cultures. Sparsely seeded cultures likely lacked sufficient inhibitory neurons to modulate excitatory activity. Differential seeding of MEAs can provide a unique model for analyses of pertubation in the interaction between excitatory and inhibitory function during aging and neuropathological conditions where dysregulation of GABAergic neurons is a significant component

  15. Effects of electroacupuncture on the cortical extracellular signal regulated kinase pathway in rats with cerebral ischaemia/reperfusion.

    Science.gov (United States)

    Wu, Chunxiao; Li, Chun; Zhou, Guoping; Yang, Lu; Jiang, Guimei; Chen, Jing; Li, Qiushi; Zhan, Zhulian; Xu, Xiuhong; Zhang, Xin

    2017-12-01

    To explore the effects of electroacupuncture (EA) on the phosphorylated extracellular signal regulated kinase (p-ERK) pathway of the cerebral cortex in a rat model of focal cerebral ischaemia/reperfusion (I/R). 160 adult Sprague-Dawley rats underwent middle carotid artery occlusion (MCAO) to establish I/R injury and were randomly divided into four groups (n=40 each) that remained untreated (I/R group) or received EA at LU5, LI4, ST36 and SP6 (I/R+EA group), the ERK inhibitor PD98059 (I/R+PD group), or both interventions (I/R+PD+EA groups). An additional 40 rats undergoing sham surgery formed a healthy control group. Eight rats from each group were sacrificed at the following time points: 2 hours, 6 hours, 1 day, 3 days and 1 week. Neurological function was assessed using neurological deficit scores, morphological examination was performed following haematoxylin-eosin staining of cortical tissues, and apoptotic indices were calculated after terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labelling. Cortical protein and mRNA expression of p-ERK and ERK were measured by immunohistochemistry and real-time quantitative PCR, respectively. Compared with the I/R group, neurological deficit scores and apoptotic indices were lower in the I/R+EA group at 1 and 3 days, whereas mRNA/protein expression of ERK/p-ERK was higher in the EA group at all time points studied. Our results suggest that EA can alleviate neurological deficits and reduce cortical apoptosis in rats with I/R injury. These anti-apoptotic effects may be due to upregulation of p-ERK. Moreover, apoptosis appeared to peak at 1 day after I/R injury, which might therefore represent the optimal time point for targeting of EA. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Effect of acute stretch injury on action potential and network activity of rat neocortical neurons in culture.

    Science.gov (United States)

    Magou, George C; Pfister, Bryan J; Berlin, Joshua R

    2015-10-22

    The basis for acute seizures following traumatic brain injury (TBI) remains unclear. Animal models of TBI have revealed acute hyperexcitablility in cortical neurons that could underlie seizure activity, but studying initiating events causing hyperexcitability is difficult in these models. In vitro models of stretch injury with cultured cortical neurons, a surrogate for TBI, allow facile investigation of cellular changes after injury but they have only demonstrated post-injury hypoexcitability. The goal of this study was to determine if neuronal hyperexcitability could be triggered by in vitro stretch injury. Controlled uniaxial stretch injury was delivered to a spatially delimited region of a spontaneously active network of cultured rat cortical neurons, yielding a region of stretch-injured neurons and adjacent regions of non-stretched neurons that did not directly experience stretch injury. Spontaneous electrical activity was measured in non-stretched and stretch-injured neurons, and in control neuronal networks not subjected to stretch injury. Non-stretched neurons in stretch-injured cultures displayed a three-fold increase in action potential firing rate and bursting activity 30-60 min post-injury. Stretch-injured neurons, however, displayed dramatically lower rates of action potential firing and bursting. These results demonstrate that acute hyperexcitability can be observed in non-stretched neurons located in regions adjacent to the site of stretch injury, consistent with reports that seizure activity can arise from regions surrounding the site of localized brain injury. Thus, this in vitro procedure for localized neuronal stretch injury may provide a model to study the earliest cellular changes in neuronal function associated with acute post-traumatic seizures. Copyright © 2015. Published by Elsevier B.V.

  17. Effects of caffeine on cortical epileptic afterdischarges in adult rats are modulated by postnatal treatment

    Czech Academy of Sciences Publication Activity Database

    Tchekalarova, Jana; Kubová, Hana; Mareš, Pavel

    2013-01-01

    Roč. 113, č. 4 (2013), s. 493-500 ISSN 0300-9009 R&D Projects: GA MZd(CZ) NR9184; GA MŠk(CZ) LH11015 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : caffeine * perinatal administration * cortical epileptic afterdischarges * adult rats Subject RIV: FH - Neurology Impact factor: 0.598, year: 2013

  18. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats.

    Science.gov (United States)

    Frost, Shawn B; Dunham, Caleb L; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K; Guggenmos, David J; Nudo, Randolph J

    2015-11-01

    The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9-T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury.

  19. Cortical substrate oxidation during hyperketonemia in the fasted anesthetized rat in vivo

    OpenAIRE

    Jiang, Lihong; Mason, Graeme F; Rothman, Douglas L; de Graaf, Robin A; Behar, Kevin L

    2011-01-01

    Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-13C2]--β-hydroxybutyrate (BHB). Time courses of 13C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tes...

  20. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways.

    Science.gov (United States)

    Kunori, Nobuo; Takashima, Ichiro

    2016-12-01

    The motor cortex of rats contains two forelimb motor areas; the caudal forelimb area (CFA) and the rostral forelimb area (RFA). Although the RFA is thought to correspond to the premotor and/or supplementary motor cortices of primates, which are higher-order motor areas that receive somatosensory inputs, it is unknown whether the RFA of rats receives somatosensory inputs in the same manner. To investigate this issue, voltage-sensitive dye (VSD) imaging was used to assess the motor cortex in rats following a brief electrical stimulation of the forelimb. This procedure was followed by intracortical microstimulation (ICMS) mapping to identify the motor representations in the imaged cortex. The combined use of VSD imaging and ICMS revealed that both the CFA and RFA received excitatory synaptic inputs after forelimb stimulation. Further evaluation of the sensory input pathway to the RFA revealed that the forelimb-evoked RFA response was abolished either by the pharmacological inactivation of the CFA or a cortical transection between the CFA and RFA. These results suggest that forelimb-related sensory inputs would be transmitted to the RFA from the CFA via the cortico-cortical pathway. Thus, the present findings imply that sensory information processed in the RFA may be used for the generation of coordinated forelimb movements, which would be similar to the function of the higher-order motor cortex in primates. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats.

    Directory of Open Access Journals (Sweden)

    Timo Ruusuvirta

    Full Text Available Any change in the invariant aspects of the auditory environment is of potential importance. The human brain preattentively or automatically detects such changes. The mismatch negativity (MMN of event-related potentials (ERPs reflects this initial stage of auditory change detection. The origin of MMN is held to be cortical. The hippocampus is associated with a later generated P3a of ERPs reflecting involuntarily attention switches towards auditory changes that are high in magnitude. The evidence for this cortico-hippocampal dichotomy is scarce, however. To shed further light on this issue, auditory cortical and hippocampal-system (CA1, dentate gyrus, subiculum local-field potentials were recorded in urethane-anesthetized rats. A rare tone in duration (deviant was interspersed with a repeated tone (standard. Two standard-to-standard (SSI and standard-to-deviant (SDI intervals (200 ms vs. 500 ms were applied in different combinations to vary the observability of responses resembling MMN (mismatch responses. Mismatch responses were observed at 51.5-89 ms with the 500-ms SSI coupled with the 200-ms SDI but not with the three remaining combinations. Most importantly, the responses appeared in both the auditory-cortical and hippocampal locations. The findings suggest that the hippocampus may play a role in (cortical manifestation of MMN.

  2. Network bursts in cortical neuronal cultures: 'noise - versus pacemaker'- driven neural network simulations

    NARCIS (Netherlands)

    Gritsun, T.; Stegenga, J.; le Feber, Jakob; Rutten, Wim

    2009-01-01

    In this paper we address the issue of spontaneous bursting activity in cortical neuronal cultures and explain what might cause this collective behavior using computer simulations of two different neural network models. While the common approach to acivate a passive network is done by introducing

  3. Reduced Synaptic Vesicle Recycling during Hypoxia in Cultured Cortical Neurons

    OpenAIRE

    Fedorovich, Sergei; Hofmeijer, Jeannette; van Putten, Michel Johannes Antonius Maria; le Feber, Jakob

    2017-01-01

    Improvement of neuronal recovery in the ischemic penumbra, an area around the core of a brain infarct with some remaining perfusion, has a large potential for the development of therapy against acute ischemic stroke. However, mechanisms that lead to either recovery or secondary damage in the penumbra largely remain unclear. Recent studies in cultured networks of cortical neurons showed that failure of synaptic transmission (referred to as synaptic failure) is a critical factor in the penumbra...

  4. Culturing of primary rat neurons and glia on ultra-thin parylene-C

    International Nuclear Information System (INIS)

    Unsworth, C.P.; Delivopoulos, E.; Murray, A.F.

    2010-01-01

    Full text: In this article, we will describe how we have successfully cultured dissociated embryonic cortical neurons and glia from the postnatal rat hippocampus on extremely thin layers (up to 10 nm) of Parylene-C on a silicon dioxide substrate. Silicon wafers were oxidised, deposited with the biomaterial, Parylene-C, photo-lithographically patterned and plasma etched to produce chips that consisted of lines of Paryl ene-C with varying widths, thickness and lengths. The chips produced were then immersed in Horse Serum and plated with the cells. Ratios of Neurons; Glia; Cell Body were measured on, adjacent to and away from the Parylene-C. Our initial results show how these ratios remained roughly constant for ultra-thin Parylene-C thicknesses of 10 nm as compared to a benchmark thickness of 100 nm (where such cells are known to grow well). Thus, our findings demonstrate that it is possible to culture primary rat neurons and glia to practically cell membrane thicknesses of Parylene-C. Being able to culture cells on such ultra thin levels of Parylene-C will open up the possibility to develop Multi-Electrode Arrays (MEA) that can capacitively couple embedded electrodes through the parylene to the cells on its surface. Thus, providing a neat, insulated passive electrode. Only the ultra-thin thicknesses of Parylene demonstrated here would allow for the rea isation of such a technology. Hence, the outcome of this work, will be of great interest to the Neuroengineering and the Multi-Electrode Array (MEA) community, as an alternative material for the fabric tion of passive electrodes, used in capacitive coupling mode.

  5. Identification of a mouse synaptic glycoprotein gene in cultured neurons.

    Science.gov (United States)

    Yu, Albert Cheung-Hoi; Sun, Chun Xiao; Li, Qiang; Liu, Hua Dong; Wang, Chen Ran; Zhao, Guo Ping; Jin, Meilei; Lau, Lok Ting; Fung, Yin-Wan Wendy; Liu, Shuang

    2005-10-01

    Neuronal differentiation and aging are known to involve many genes, which may also be differentially expressed during these developmental processes. From primary cultured cerebral cortical neurons, we have previously identified various differentially expressed gene transcripts from cultured cortical neurons using the technique of arbitrarily primed PCR (RAP-PCR). Among these transcripts, clone 0-2 was found to have high homology to rat and human synaptic glycoprotein. By in silico analysis using an EST database and the FACTURA software, the full-length sequence of 0-2 was assembled and the clone was named as mouse synaptic glycoprotein homolog 2 (mSC2). DNA sequencing revealed transcript size of mSC2 being smaller than the human and rat homologs. RT-PCR indicated that mSC2 was expressed differentially at various culture days. The mSC2 gene was located in various tissues with higher expression in brain, lung, and liver. Functions of mSC2 in neurons and other tissues remain elusive and will require more investigation.

  6. An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes.

    Science.gov (United States)

    Abbott, N Joan; Dolman, Diana E M; Drndarski, Svetlana; Fredriksson, Sarah M

    2012-01-01

    In vitro blood-brain barrier (BBB) models using primary cultured brain endothelial cells are important for establishing cellular and molecular mechanisms of BBB function. Co-culturing with BBB-associated cells especially astrocytes to mimic more closely the in vivo condition leads to upregulation of the BBB phenotype in the brain endothelial cells. Rat brain endothelial cells (RBECs) are a valuable tool allowing ready comparison with in vivo studies in rodents; however, it has been difficult to obtain pure brain endothelial cells, and few models achieve a transendothelial electrical resistance (TEER, measure of tight junction efficacy) of >200 Ω cm(2), i.e. the models are still relatively leaky. Here, we describe methods for preparing high purity RBECs and neonatal rat astrocytes, and a co-culture method that generates a robust, stable BBB model that can achieve TEER >600 Ω cm(2). The method is based on >20 years experience with RBEC culture, together with recent improvements to kill contaminating cells and encourage BBB differentiation.Astrocytes are isolated by mechanical dissection and cell straining and are frozen for later co-culture. RBECs are isolated from 3-month-old rat cortices. The brains are cleaned of meninges and white matter and enzymatically and mechanically dissociated. Thereafter, the tissue homogenate is centrifuged in bovine serum albumin to separate vessel fragments from other cells that stick to the myelin plug. The vessel fragments undergo a second enzyme digestion to separate pericytes from vessels and break down vessels into shorter segments, after which a Percoll gradient is used to separate capillaries from venules, arterioles, and single cells. To kill remaining contaminating cells such as pericytes, the capillary fragments are plated in puromycin-containing medium and RBECs grown to 50-60% confluence. They are then passaged onto filters for co-culture with astrocytes grown in the bottom of the wells. The whole procedure takes ∼2

  7. Combinatorial Motor Training Results in Functional Reorganization of Remaining Motor Cortex after Controlled Cortical Impact in Rats.

    Science.gov (United States)

    Combs, Hannah L; Jones, Theresa A; Kozlowski, Dorothy A; Adkins, DeAnna L

    2016-04-15

    Cortical reorganization subsequent to post-stroke motor rehabilitative training (RT) has been extensively examined in animal models and humans. However, similar studies focused on the effects of motor training after traumatic brain injury (TBI) are lacking. We previously reported that after a moderate/severe TBI in adult male rats, functional improvements in forelimb use were accomplished only with a combination of skilled forelimb reach training and aerobic exercise, with or without nonimpaired forelimb constraint. Thus, the current study was designed to examine the relationship between functional motor cortical map reorganization after experimental TBI and the behavioral improvements resulting from this combinatorial rehabilitative regime. Adult male rats were trained to proficiency on a skilled reaching task, received a unilateral controlled cortical impact (CCI) over the forelimb area of the caudal motor cortex (CMC). Three days post-CCI, animals began RT (n = 13) or no rehabilitative training (NoRT) control procedures (n = 13). The RT group participated in daily skilled reach training, voluntary aerobic exercise, and nonimpaired forelimb constraint. This RT regimen significantly improved impaired forelimb reaching success and normalized reaching strategies, consistent with previous findings. RT also enlarged the area of motor cortical wrist representation, derived by intracortical microstimulation, compared to NoRT. These findings indicate that sufficient RT can greatly improve motor function and improve the functional integrity of remaining motor cortex after a moderate/severe CCI. When compared with findings from stroke models, these findings also suggest that more intense RT may be needed to improve motor function and remodel the injured cortex after TBI.

  8. Atorvastatin prevents Aβ oligomer-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting Tau cleavage

    Science.gov (United States)

    Sui, Hai-juan; Zhang, Ling-ling; Liu, Zhou; Jin, Ying

    2015-01-01

    Aim: The proteolytic cleavage of Tau is involved in Aβ-induced neuronal dysfunction and cell death. In this study, we investigated whether atorvastatin could prevent Tau cleavage and hence prevent Aβ1–42 oligomer (AβO)-induced neurotoxicity in cultured cortical neurons. Methods: Cultured rat hippocampal neurons were incubated in the presence of AβOs (1.25 μmol/L) with or without atorvastatin pretreatment. ATP content and LDH in the culture medium were measured to assess the neuronal viability. Caspase-3/7 and calpain protease activities were detected. The levels of phospho-Akt, phospho-Erk1/2, phospho-GSK3β, p35 and Tau proteins were measured using Western blotting. Results: Treatment of the neurons with AβO significantly decreased the neuronal viability, induced rapid activation of calpain and caspase-3/7 proteases, accompanied by Tau degradation and relatively stable fragments generated in the neurons. AβO also suppressed Akt and Erk1/2 kinase activity, while increased GSK3β and Cdk5 activity in the neurons. Pretreatment with atorvastatin (0.5, 1, 2.5 μmol/L) dose-dependently inhibited AβO-induced activation of calpain and caspase-3/7 proteases, and effectively diminished the generation of Tau fragments, attenuated synaptic damage and increased neuronal survival. Atorvastatin pretreatment also prevented AβO-induced decreases in Akt and Erk1/2 kinase activity and the increases in GSK3β and Cdk5 kinase activity. Conclusion: Atorvastatin prevents AβO-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting calpain- and caspase-mediated Tau cleavage. PMID:25891085

  9. Co-induction of p75NTR and p75NTR-associated death executor in neurons after zinc exposure in cortical culture or transient ischemia in the rat.

    Science.gov (United States)

    Park, J A; Lee, J Y; Sato, T A; Koh, J Y

    2000-12-15

    Recently, a 22 kDa protein termed p75(NTR)-associated death executor (NADE) was discovered to be a necessary factor for p75(NTR)-mediated apoptosis in certain cells. However, the possible role for p75(NTR)/NADE in pathological neuronal death has yet been undetermined. In the present study, we have examined this possibility in vivo and in vitro. Exposure of cortical cultures to zinc induced both p75(NTR) and NADE in neurons, whereas exposure to NMDA, ionomycin, iron, or H(2)O(2) induced neither. In addition, zinc exposure increased neuronal NGF expression and its release into the medium. A function-blocking antibody of p75(NTR) (REX) inhibited association between p75(NTR) and NADE as well as neuronal death induced by zinc. Conversely, NGF augmented zinc-induced neuronal death. Caspase inhibitors reduced zinc-induced neuronal death, indicating that caspases were involved. Because reduction of NADE expression with cycloheximide or NADE antisense oligonucleotides attenuated zinc-induced neuronal death, NADE appears to contribute to p75(NTR)-induced cortical neuronal death as shown in other cells. Because zinc neurotoxicity may be a key mechanism of neuronal death after transient forebrain ischemia, we next examined this model. After ischemia, p75(NTR) and NADE were induced in degenerating rat hippocampal CA1 neurons. There was a close correlation between zinc accumulation and p75(NTR)/NADE induction. Suggesting the role of zinc here, injection of a metal chelator, CaEDTA, into the lateral ventricle completely blocked the induction of p75(NTR) and NADE. Our results suggest that co-induction of p75(NTR) and NADE plays a role in zinc-triggered neuronal death in vitro and in vivo.

  10. Cortical Local Field Potential Power Is Associated with Behavioral Detection of Near-threshold Stimuli in the Rat Whisker System: Dissociation between Orbitofrontal and Somatosensory Cortices.

    Science.gov (United States)

    Rickard, Rachel E; Young, Andrew M J; Gerdjikov, Todor V

    2018-01-01

    There is growing evidence that ongoing brain oscillations may represent a key regulator of attentional processes and as such may contribute to behavioral performance in psychophysical tasks. OFC appears to be involved in the top-down modulation of sensory processing; however, the specific contribution of ongoing OFC oscillations to perception has not been characterized. Here we used the rat whiskers as a model system to further characterize the relationship between cortical state and tactile detection. Head-fixed rats were trained to report the presence of a vibrotactile stimulus (frequency = 60 Hz, duration = 2 sec, deflection amplitude = 0.01-0.5 mm) applied to a single vibrissa. We calculated power spectra of local field potentials preceding the onset of near-threshold stimuli from microelectrodes chronically implanted in OFC and somatosensory cortex. We found a dissociation between slow oscillation power in the two regions in relation to detection probability: Higher OFC but not somatosensory delta power was associated with increased detection probability. Furthermore, coherence between OFC and barrel cortex was reduced preceding successful detection. Consistent with the role of OFC in attention, our results identify a cortical network whose activity is differentially modulated before successful tactile detection.

  11. Role of secondary sensory cortices in emotional memory storage and retrieval in rats.

    Science.gov (United States)

    Sacco, Tiziana; Sacchetti, Benedetto

    2010-08-06

    Visual, acoustic, and olfactory stimuli associated with a highly charged emotional situation take on the affective qualities of that situation. Where the emotional meaning of a given sensory experience is stored is a matter of debate. We found that excitotoxic lesions of auditory, visual, or olfactory secondary sensory cortices impaired remote, but not recent, fear memories in rats. Amnesia was modality-specific and not due to an interference with sensory or emotional processes. In these sites, memory persistence was dependent on ongoing protein kinase Mzeta activity and was associated with an increased activity of layers II-IV, thus suggesting a synaptic strengthening of corticocortical connections. Lesions of the same areas left intact the memory of sensory stimuli not associated with any emotional charge. We propose that secondary sensory cortices support memory storage and retrieval of sensory stimuli that have acquired a behavioral salience with the experience.

  12. Long-term organ culture of adult rat colon

    DEFF Research Database (Denmark)

    Shamsuddin, A.K.M.; Barrett, L.A.; Autrup, Herman

    1978-01-01

    . The effect of in vivo carcinogen pretreatment was also studied. The explant culture from control untreated animals showed good epithelial differentiation with crypts until 6 weeks. In contrast, the explants from animals pretreated with 4 weekly doses of azoxymethane consistently showed epithelial......Colon explants from adult rats were maintained in culture for over 3 months in our laboratories with good epithelial preservation and cellular differentiation. The light and transmission electron microscopic features of rat colon mucosa during the culture period are described. In all the explants...

  13. Therapeutic potential of the novel hybrid molecule JM-20 against focal cortical ischemia in rats

    Directory of Open Access Journals (Sweden)

    Yanier Núñez Figueredo

    2016-08-01

    Full Text Available Context: Despite the great mortality and morbidity of stroke, treatment options remain limited. We previously showed that JM-20, a novel synthetic molecule, possessed a strong neuroprotective effect in rats subjected to transient middle cerebral artery occlusion. However, to verify the robustness of the pre-clinical neuroprotective effects of JM-20 to get good prognosis in the translation to the clinic, it is necessary to use other experimental models of brain ischemia. Aims: To evaluate the neuroprotective effects of JM-20 following the onset of permanent focal cerebral ischemia induced in rats by thermocoagulation of blood into pial blood vessels of cerebral cortices. Methods: Ischemic lesion was induced by thermocoagulation of blood into pial blood vessels of primary motor and somatosensory cortices. Behavioral performance was evaluated by the cylinder testing for a period of 2, 3 and 7 days after surgery, and was followed by histopathological study in brain cortex stained with hematoxylin- eosin. Results: Ischemic injury resulted in impaired function of the forelimb evidenced by high asymmetry punctuation, and caused histopathological alterations indicative of tissue damage at cerebral cortex. JM-20 treatment (4 and 8 mg/kg significantly decreased asymmetry scores and histological alterations with a marked preservation of cortical neurons. Conclusions: The effects of permanent brain ischemia were strongly attenuated by JM-20 administration, which expands and improves the current preclinical data of JM-20 as neuroprotector against cerebral ischemia, and strongly support the examination of its translation to the clinic to treat acute ischemic stroke.

  14. Piracetam ameliorated oxygen and glucose deprivation-induced injury in rat cortical neurons via inhibition of oxidative stress, excitatory amino acids release and P53/Bax.

    Science.gov (United States)

    He, Zhi; Hu, Min; Zha, Yun-hong; Li, Zi-cheng; Zhao, Bo; Yu, Ling-ling; Yu, Min; Qian, Ying

    2014-05-01

    Our previous work has demonstrated that piracetam inhibited the decrease in amino acid content induced by chronic hypoperfusion, ameliorated the dysfunction of learning and memory in a hypoperfusion rat model, down-regulated P53, and BAX protein, facilitated the synaptic plasticity, and may be helpful in the treatment of vascular dementia. To explore the precise mechanism, the present study further evaluated effects of piracetam on Oxygen and glucose deprivation (OGD)-induced neuronal damage in rat primary cortical cells. The addition of piracetam to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and lactate dehydrogenase release experiments. Piracetam also lowered the levels of malondialdehyde, nitrogen monoxidum, and xanthine oxidase which was increased in the OGD cells, and enhanced the activities of superoxide dismutase and glutathione peroxidase, which were decreased in the OGD cells. We also demonstrated that piracetam could decrease glutamate and aspartate release when cortical cells were subjected to OGD. Furthermore, Western blot study demonstrated that piracetam attenuated the increased expression of P53 and BAX protein in OGD cells. These observations demonstrated that piracetam reduced OGD-induced neuronal damage by inhibiting the oxidative stress and decreasing excitatory amino acids release and lowering P53/Bax protein expression in OGD cells.

  15. Staurosporine induces different cell death forms in cultured rat astrocytes

    International Nuclear Information System (INIS)

    Simenc, Janez; Lipnik-Stangelj, Metoda

    2012-01-01

    Astroglial cells are frequently involved in malignant transformation. Besides apoptosis, necroptosis, a different form of regulated cell death, seems to be related with glioblastoma genesis, proliferation, angiogenesis and invasion. In the present work we elucidated mechanisms of necroptosis in cultured astrocytes, and compared them with apoptosis, caused by staurosporine. Cultured rat cortical astrocytes were used for a cell death studies. Cell death was induced by different concentrations of staurosporine, and modified by inhibitors of apoptosis (z-vad-fmk) and necroptosis (nec-1). Different forms of a cell death were detected using flow cytometry. We showed that staurosporine, depending on concentration, induces both, apoptosis as well as necroptosis. Treatment with 10 −7 M staurosporine increased apoptosis of astrocytes after the regeneration in a staurosporine free medium. When caspases were inhibited, apoptosis was attenuated, while necroptosis was slightly increased. Treatment with 10 −6 M staurosporine induced necroptosis that occurred after the regeneration of astrocytes in a staurosporine free medium, as well as without regeneration period. Necroptosis was significantly attenuated by nec-1 which inhibits RIP1 kinase. On the other hand, the inhibition of caspases had no effect on necroptosis. Furthermore, staurosporine activated RIP1 kinase increased the production of reactive oxygen species, while an antioxidant BHA significantly attenuated necroptosis. Staurosporine can induce apoptosis and/or necroptosis in cultured astrocytes via different signalling pathways. Distinction between different forms of cell death is crucial in the studies of therapy-induced necroptosis

  16. Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ana Carolina Bergmann de; Henriques, Helene Nara [Postgraduate Program in Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Fernandes, Gustavo Vieira Oliveira [Postgraduate Program in Medical Sciences, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Lima, Inaya; Oliveira, Davi Ferreira de; Lopes, Ricardo Tadeu [Nuclear Engineering Program, Federal University of Rio de Janeiro (UFRJ), RJ (Brazil); Pantaleao, Jose Augusto Soares [Maternal and Child Department, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Granjeiro, Jose Mauro [Department of Cellular and Molecular Biology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Silva, Maria Angelica Guzman [Department of Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-03-15

    Purpose: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS). Methods: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T) while the other did not (OVX), those groups were compared to a control group (C) not ovariectomized. Tibolone administration (1 mg/day) began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographs of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at P<0.05%. Results: Tibolone administration was shown to be beneficial only in the densitometric analysis of the femoral head, performing higher optical density compared to OVX. No difference was found in cortical bone thickness. Conclusion: Ovariectomy caused bone loss in the analyzed regions and tibolone administered in high doses over a long period showed not to be fully beneficial, but preserved bone mass in the femoral head. (author)

  17. Inhibition of synaptically evoked cortical acetylcholine release by adenosine: an in vivo microdialysis study in the rat.

    Science.gov (United States)

    Materi, L M; Rasmusson, D D; Semba, K

    2000-01-01

    The release of cortical acetylcholine from the intracortical axonal terminals of cholinergic basal forebrain neurons is closely associated with electroencephalographic activity. One factor which may act to reduce cortical acetylcholine release and promote sleep is adenosine. Using in vivo microdialysis, we examined the effect of adenosine and selective adenosine receptor agonists and antagonists on cortical acetylcholine release evoked by electrical stimulation of the pedunculopontine tegmental nucleus in urethane anesthetized rats. All drugs were administered locally within the cortex by reverse dialysis. None of the drugs tested altered basal release of acetylcholine in the cortex. Adenosine significantly reduced evoked cortical acetylcholine efflux in a concentration-dependent manner. This was mimicked by the adenosine A(1) receptor selective agonist N(6)-cyclopentyladenosine and blocked by the selective A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The A(2A) receptor agonist 2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoadenosi ne hydrochloride (CGS 21680) did not alter evoked cortical acetylcholine release even in the presence of DPCPX. Administered alone, neither DPCPX nor the non-selective adenosine receptor antagonist caffeine affected evoked cortical acetylcholine efflux. Simultaneous delivery of the adenosine uptake inhibitors dipyridamole and S-(4-nitrobenzyl)-6-thioinosine significantly reduced evoked cortical acetylcholine release, and this effect was blocked by the simultaneous administration of caffeine. These data indicate that activation of the A(1) adenosine receptor inhibits acetylcholine release in the cortex in vivo while the A(2A) receptor does not influence acetylcholine efflux. Such inhibition of cortical acetylcholine release by adenosine may contribute to an increased propensity to sleep during prolonged wakefulness.

  18. Imprint lithography provides topographical nanocues to guide cell growth in primary cortical cell culture

    NARCIS (Netherlands)

    Xie, S.; Luttge, R.

    2014-01-01

    In this paper, we describe a technology platform to study the effect of nanocues on the cell growth direction in primary cortical cell culture. Topographical cues to cells are provided using nanoscale features created by Jet and Flash Imprint Lithography, coated with polyethylenimine. We

  19. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons

    International Nuclear Information System (INIS)

    Zeng, Xiang Jun; Yu, Shan Ping; Zhang, Like; Wei, Ling

    2010-01-01

    The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release and activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca 2+ accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage.

  20. Adaptations in the Microarchitecture and Load Distribution of Maternal Cortical and Trabecular Bone in Response to Multiple Reproductive Cycles in Rats

    Science.gov (United States)

    de Bakker, Chantal M. J.; Altman-Singles, Allison R.; Li, Yihan; Tseng, Wei-Ju; Li, Connie; Liu, X. Sherry

    2017-01-01

    Pregnancy, lactation, and weaning result in dramatic changes in maternal calcium metabolism. In particular, the increased calcium demand during lactation causes a substantial degree of maternal bone loss. This reproductive bone loss has been suggested to be largely reversible, as multiple clinical studies have found that parity and lactation history have no adverse effect on post-menopausal fracture risk. However, the precise effects of pregnancy, lactation, and post-weaning recovery on maternal bone structure are not well understood. Our study aimed to address this question by longitudinally tracking changes in trabecular and cortical bone microarchitecture at the proximal tibia in rats throughout three cycles of pregnancy, lactation, and post-weaning using in vivo μCT. We found that the trabecular thickness underwent a reversible deterioration during pregnancy and lactation, which was fully recovered after weaning, while other parameters of trabecular microarchitecture (including trabecular number, spacing, connectivity density, and structure model index) underwent a more permanent deterioration which recovered minimally. Thus, pregnancy and lactation resulted in both transient and long-lasting alterations in trabecular microstructure. In the meantime, multiple reproductive cycles appeared to improve the robustness of cortical bone (resulting in an elevated cortical area and polar moment of inertia), as well as increase the proportion of the total load carried by the cortical bone at the proximal tibia. Taken together, changes in the cortical and trabecular compartments suggest that while rat tibial trabecular bone appears to be highly involved in maintaining calcium homeostasis during female reproduction, cortical bone adapts to increase its load-bearing capacity, allowing the overall mechanical function of the tibia to be maintained. PMID:28109138

  1. Influence of ovarian hormones on cortical spreading depression and its suppression by L-kynurenine in rat.

    Directory of Open Access Journals (Sweden)

    Virginie Chauvel

    Full Text Available Migraine is sexually dimorphic and associated in 20-30% of patients with an aura most likely caused by cortical spreading depression (CSD. We have previously shown that systemic L-kynurenine (L-KYN, the precursor of kynurenic acid, suppresses CSD and that this effect depends on the stage of the estrous cycle in female rats. The objectives here are to determine the influence of ovarian hormones on KCl-induced CSD and its suppression after L-KYN by directly modulating estradiol or progesterone levels in ovariectomized rats. Adult female rats were ovariectomized and subcutaneously implanted with silastic capsules filled with progesterone or 17β-estradiol mixed with cholesterol, with cholesterol only or left empty. Two weeks after the ovariectomy/capsule implantation, the animals received an i.p. injection of L-KYN (300 mg/kg or NaCl as control. Thirty minutes later CSDs were elicited by applying KCl over the occipital cortex and recorded by DC electrocorticogram for 1 hour. The results show that both estradiol and progesterone increase CSD frequency after ovariectomy. The suppressive effect of L-KYN on CSD frequency, previously reported in normal cycling females, is not found anymore after ovariectomy, but reappears after progesterone replacement therapy. Taken together, these results emphasize the complex role of sex hormones on cortical excitability. The CSD increase by estradiol and, more surprisingly, progesterone may explain why clinically migraine with aura appears or worsens during pregnancy or with combined hormonal treatments.

  2. Accumulation of pyrethroid compounds in primary cultures of rat cortical neurons

    Science.gov (United States)

    Recent studies have demonstrated that lipophilic compounds (e.g. methylmercury, polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs)) rapidly accumulate in cells in culture to concentrations much higher than in the surrounding media. Primary cultures of neur...

  3. Prenatal programming of rat cortical collecting tubule sodium transport.

    Science.gov (United States)

    Cheng, Chih-Jen; Lozano, German; Baum, Michel

    2012-03-15

    Prenatal insults have been shown to lead to elevated blood pressure in offspring when they are studied as adults. Prenatal administration of dexamethasone and dietary protein deprivation have demonstrated that there is an increase in transporter abundance for a number of nephron segments but not the subunits of the epithelial sodium channel (ENaC) in the cortical collecting duct. Recent studies have shown that aldosterone is elevated in offspring of protein-deprived mothers when studied as adults, but the physiological importance of the increase in serum aldosterone is unknown. As an indirect measure of ENaC activity, we compared the natriuretic response to benzamil in offspring of mothers who ate a low-protein diet (6%) with those who ate a normal diet (20%) for the last half of pregnancy. The natriuretic response to benzamil was greater in the 6% group (821.1 ± 161.0 μmol/24 h) compared with the 20% group (279.1 ± 137.0 μmol/24 h), consistent with greater ENaC activity in vivo (P sodium transport (-1.9 ± 3.1 pmol·mm(-1)·min(-1)), the offspring of rats that ate a 6% protein diet during the last half of pregnancy had a net sodium flux of 10.7 ± 2.6 pmol·mm(-1)·min(-1) (P = 0.01) in tubules perfused in vitro. Sodium transport was measured using ion-selective electrodes, a novel technique allowing measurement of sodium in nanoliter quantities of fluid. Thus we directly demonstrate that there is prenatal programming of cortical collecting duct sodium transport.

  4. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    Science.gov (United States)

    Peng, Yu-Hao; Heintz, Ryan; Wang, Zhuo; Guo, Yumei; Myers, Kalisa; Scremin, Oscar; Maarek, Jean-Michel; Holschneider, Daniel

    2014-12-01

    Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex--changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic

  5. c-Fos and Arc/Arg3.1 expression in auditory and visual cortices after hearing loss: Evidence of sensory crossmodal reorganization in adult rats.

    Science.gov (United States)

    Pernia, M; Estevez, S; Poveda, C; Plaza, I; Carro, J; Juiz, J M; Merchan, M A

    2017-08-15

    Cross-modal reorganization in the auditory and visual cortices has been reported after hearing and visual deficits mostly during the developmental period, possibly underlying sensory compensation mechanisms. However, there are very few data on the existence or nature and timeline of such reorganization events during sensory deficits in adulthood. In this study, we assessed long-term changes in activity-dependent immediate early genes c-Fos and Arc/Arg3.1 in auditory and neighboring visual cortical areas after bilateral deafness in young adult rats. Specifically, we analyzed qualitatively and quantitatively c-Fos and Arc/Arg3.1 immunoreactivity at 15 and 90 days after cochlea removal. We report extensive, global loss of c-Fos and Arc/Arg3.1 immunoreactive neurons in the auditory cortex 15 days after permanent auditory deprivation in adult rats, which is partly reversed 90 days after deafness. Simultaneously, the number and labeling intensity of c-Fos- and Arc/Arg3.1-immunoreactive neurons progressively increase in neighboring visual cortical areas from 2 weeks after deafness and these changes stabilize three months after inducing the cochlear lesion. These findings support plastic, compensatory, long-term changes in activity in the auditory and visual cortices after auditory deprivation in the adult rats. Further studies may clarify whether those changes result in perceptual potentiation of visual drives on auditory regions of the adult cortex. © 2017 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  6. Rapid Induction of Aldosterone Synthesis in Cultured Neonatal Rat Cardiomyocytes under High Glucose Conditions

    Directory of Open Access Journals (Sweden)

    Masami Fujisaki

    2013-01-01

    Full Text Available In addition to classical adrenal cortical biosynthetic pathway, there is increasing evidence that aldosterone is produced in extra-adrenal tissues. Although we previously reported aldosterone production in the heart, the concept of cardiac aldosterone synthesis remains controversial. This is partly due to lack of established experimental models representing aldosterone synthase (CYP11B2 expression in robustly reproducible fashion. We herein investigated suitable conditions in neonatal rat cardiomyocytes (NRCMs culture system producing CYP11B2 with considerable efficacy. NRCMs were cultured with various glucose doses for 2–24 hours. CYP11B2 mRNA expression and aldosterone concentrations secreted from NRCMs were determined using real-time PCR and enzyme immunoassay, respectively. We found that suitable conditions for CYP11B2 induction included four-hour incubation with high glucose conditions. Under these particular conditions, CYP11B2 expression, in accordance with aldosterone secretion, was significantly increased compared to those observed in the cells cultured under standard-glucose condition. Angiotensin II receptor blocker partially inhibited this CYP11B2 induction, suggesting that there is local renin-angiotensin-aldosterone system activation under high glucose conditions. The suitable conditions for CYP11B2 induction in NRCMs culture system are now clarified: high-glucose conditions with relatively brief period of culture promote CYP11B2 expression in cardiomyocytes. The current system will help to accelerate further progress in research on cardiac tissue aldosterone synthesis.

  7. Does status epilepticus modify the effect of ifenprodil on cortical epileptic afterdischarges in immature rats?

    Czech Academy of Sciences Publication Activity Database

    Abbasova, Kenul; Kubová, Hana; Mareš, Pavel

    2018-01-01

    Roč. 70, č. 1 (2018), s. 126-132 ISSN 1734-1140 R&D Projects: GA ČR(CZ) GAP302/10/0971; GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GA15-16605S; GA MŠk(CZ) LC554; GA MŠk(CZ) LH15032 Institutional support: RVO:67985823 Keywords : status epilepticus * immature rats * ifenprodil * cortical stimulation * epileptic afterdischarges Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 2.587, year: 2016

  8. An experimental approach towards the development of an in vitro cortical-thalamic co-culture model.

    Science.gov (United States)

    Kanagasabapathi, Thirukumaran T; Massobrio, Paolo; Tedesco, Mariateresa; Martinoia, Sergio; Wadman, Wytse J; Decré, Michel M J

    2011-01-01

    In this paper, we propose an experimental approach to develop an in vitro dissociated cortical-thalamic co-culture model using a dual compartment neurofluidic device. The device has two compartments separated by 10 μm wide and 3 μm high microchannels. The microchannels provide a physical isolation of neurons allowing only neurites to grow between the compartments. Long-term viable co-culture was maintained in the compartmented device, neurite growth through the microchannels was verified using immunofluorescence staining, and electrophysiological recordings from the co-culture system was investigated. Preliminary analysis of spontaneous activities from the co-culture shows a distinctively different firing pattern associated with cultures of individual cell types and further analysis is proposed for a deeper understanding of the dynamics involved in the network connectivity in such a co-culture system.

  9. Cortical substrate oxidation during hyperketonemia in the fasted anesthetized rat in vivo.

    Science.gov (United States)

    Jiang, Lihong; Mason, Graeme F; Rothman, Douglas L; de Graaf, Robin A; Behar, Kevin L

    2011-12-01

    Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-(13)C(2)]-D-β-hydroxybutyrate (BHB). Time courses of (13)C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized (1)H-[(13)C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron-astrocyte) metabolic model to the (13)C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. D-β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (≈ 70:30), and followed a pattern closely similar to the metabolism of [1-(13)C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-(13)C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use.

  10. Chronic lithium treatment increased intracellular S100ß levels in rat primary neuronal culture.

    Directory of Open Access Journals (Sweden)

    Masoumeh Emamghoreishi

    2015-02-01

    Full Text Available S100ß a neurotrophic factor mainly released by astrocytes, has been implicated in the pathogenesis of bipolar disorder. Thus, lithium may exert its neuroprotective effects to some extent through S100ß. Furthermore, the possible effects of lithium on astrocytes as well as on interactions between neurons and astrocytes as a part of its mechanisms of actions are unknown. This study was undertaken to determine the effect of lithium on S100β in neurons, astrocytes and a mixture of neurons and astrocytes. Rat primary astrocyte, neuronal and mixed neuro-astroglia cultures were prepared from cortices of 18-day's embryos. Cell cultures were exposed to lithium (1mM or vehicle for 1day (acute or 7 days (chronic. RT-PCR and ELISA determined S100β mRNA and intra- and extracellular protein levels. Chronic lithium treatment significantly increased intracellular S100β in neuronal and neuro-astroglia cultures in comparison to control cultures (P<0.05. Acute and chronic lithium treatments exerted no significant effects on intracellular S100β protein levels in astrocytes, and extracellular S100β protein levels in three studied cultures as compared to control cultures. Acute and chronic lithium treatments did not significantly alter S100β mRNA levels in three studied cultures, compared to control cultures. Chronic lithium treatment increased intracellular S100ß protein levels in a cell-type specific manner which may favor its neuroprotective action. The findings of this study suggest that lithium may exert its neuroprotective action, at least partly, by increasing neuronal S100ß level, with no effect on astrocytes or interaction between neurons and astrocytes.

  11. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    International Nuclear Information System (INIS)

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.

    1985-01-01

    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated 3 H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of 3 H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture

  12. Impaired social interaction and enhanced sensitivity to phencyclidine-induced deficits in novel object recognition in rats with cortical cholinergic denervation.

    Science.gov (United States)

    Savage, S; Kehr, J; Olson, L; Mattsson, A

    2011-11-10

    Dysregulated cholinergic neurotransmission has been implicated in the pathophysiology of schizophrenia, particularly negative symptoms and cognitive deficits. The aim of the present study was to evaluate the role of neocortical cholinergic innervation and of the N-methyl-d-aspartate (NMDA) receptor antagonist phencyclidine (PCP) on social interaction and novel object recognition (NOR), a declarative memory task. The cholinergic corticopetal projection was lesioned by local infusion of the immunotoxin 192 IgG-saporin into nucleus basalis magnocellularis of adult male Lister hooded rats. Behavior was assessed 2.5 weeks later in a social interaction paradigm followed by the NOR task. We found that selective cholinergic denervation of neocortex led to a significant reduction in duration of social interaction, specifically active social interaction. Acute administration of PCP (1.0 mg/kg, s.c.) caused a marked decrease of active social interaction, such that there was no longer a difference between intact and denervated animals. Neither cholinergic denervation alone, nor PCP (1.0 mg/kg, s.c.) alone blocked the ability of rats to recognize a novel object. However, when animals lacking cortical cholinergic innervation were challenged by PCP, they were no longer able to recognize a novel object. This study indicates that rats lacking cholinergic innervation of neocortex have impaired social interaction and specifically that the duration of active contact is shortened. Animals with severe cortical cholinergic hypofunction maintain the ability to perform in a declarative memory test, although the task is carried out less intensively. However, a provocation of psychosis-like behavior by a dose of PCP that does not by itself impair performance in normal animals, will abolish the ability to recognize novel objects in animals lacking cortical cholinergic innervation. The present findings support a possible role for cortical cholinergic hypofunction in the negative and cognitive

  13. Spreading depression and focal venous cerebral ischemia enhance cortical neurogenesis

    Directory of Open Access Journals (Sweden)

    Ryo Tamaki

    2017-01-01

    Full Text Available Endogenous neurogenesis can arise from a variety of physiological stimuli including exercise, learning, or “enriched environment” as well as pathological conditions such as ischemia, epilepsy or cortical spreading depression. Whether all these conditions use a common trigger to set off endogenous neurogenesis is yet unclear. We hypothesized that cortical spreading depression (CSD induces neurogenesis in the cerebral cortex and dentate gyrus after cerebral venous ischemia. Forty-two Wistar rats alternatively underwent sham operation (Sham, induction of ten CSDs or venous ischemia provoked via occlusion of two adjacent superficial cortical vein followed by ten induced CSDs (CSD + 2-VO. As an additional control, 15 naïve rats received no intervention except 5-bromo-2′-deoxyuridine (BrdU treatment for 7 days. Sagittal brain slices (40 μm thick were co-stained for BrdU and doublecortin (DCX; new immature neuronal cells on day 9 or NeuN (new mature neuronal cells on day 28. On day 9 after sham operation, cell proliferation and neurogenesis occurred in the cortex in rats. The sole induction of CSD had no effect. But on days 9 and 28, more proliferating cells and newly formed neurons in the ipsilateral cortex were observed in rats subjected to CSD + 2VO than in rats subjected to sham operation. On days 9 and 28, cell proliferation and neurogenesis in the ipsilateral dentate gyrus was increased in sham-operated rats than in naïve rats. Our data supports the hypothesis that induced cortical neurogenesis after CSD + 2-VO is a direct effect of ischemia, rather than of CSD alone.

  14. Effect of acute and chronic tramadol on [3H]-5-HT uptake in rat cortical synaptosomes

    OpenAIRE

    Giusti, Pietro; Buriani, Alessandro; Cima, Lorenzo; Lipartiti, Maria

    1997-01-01

    Tramadol hydrochloride is a centrally acting opioid analgesic, the efficacy and potency of which is only five to ten times lower than that of morphine. Opioid, as well as non-opioid mechanisms, may participate in the analgesic activity of tramadol.[3H]-5-hydroxytryptamine (5-HT) uptake in rat isolated cortical synaptosomes was studied in the presence of tramadol, desipramine, fluoxetine, methadone and morphine. Methadone and tramadol inhibited synaptosomal [3H]-5-HT uptake with apparent Kis o...

  15. Behaviour in the open field predicts the number of KCl-induced cortical spreading depressions in rats

    OpenAIRE

    Bogdanov, Volodymyr Borysovych; Bogdanova, Olena Viktorivna; Koulchitsky, Stanislav Vladimirovich; Chauvel, Virginie; Multon, Sylvie; Makarchuk, Mykola Yukhymovych; Brennan, Kevin Christopher; Renshaw, Perry F.; Schoenen, Jean

    2012-01-01

    Anxiety disorders are known to be comorbid with migraine, and cortical spreading depression (CSD) is the most likely cause of the migraine aura. To search for possible correlations between susceptibility to CSD and anxiety we used the open field test in male Sprague-Dawley rats chronically treated with the preventive anti-migraine drugs valproate or riboflavin. Animals avoiding the central area of the open field chamber and those with less exploratory activity (i.e. rearing) were considered m...

  16. Lower cortical serotonin 2A receptors in major depressive disorder, suicide and in rats after administration of imipramine.

    Science.gov (United States)

    Dean, Brian; Tawadros, Nahed; Seo, Myoung Suk; Jeon, Won Je; Everall, Ian; Scarr, Elizabeth; Gibbons, Andrew

    2014-06-01

    We have attempted to replicate studies showing higher levels of serotonin 2A receptors (HTR2A) in the cortex of people with mood disorders and to determine the effects of treating rats with antidepressant drugs on levels of that receptor. In situ [3H]ketanserin binding and autoradiography was used to measure levels of HTR2A in Brodmann's area (BA) 46 and 24 from people with major depressive disorders (MDD, n = 16), bipolar disorders (BD, n = 14) and healthy controls (n = 14) as well as the central nervous system (CNS) of rats (20 per treatment arm) treated for 10 or 28 d with fluoxetine (10 mg/kg/d) or imipramine (20 mg/kg/d). Compared with controls, HTR2A were lower in BA 24, but not BA 46, from people with MDD (p = 0.005); HTR2A were not changed in BD. Levels of HTR2A were lower in BA 24 (p = 0.007), but not BA 46, from people who had died by suicide. Finally, levels of HTR2A were lower in the CNS of rats treated with imipramine, but not fluoxetine, for 28 d, but not 10 d. From our current and previous data we conclude cortical HTR2A are lower in schizophrenia, MDD, people with mood disorders who died by suicide, rats treated with some antipsychotic or some antidepressant drugs. As levels of cortical HTR2A can be affected by the aetiologies of different disorders and mechanisms of action of different drugs, a better understanding of how such changes can occur needs to be elucidated.

  17. Day/night difference in extradural cortical stimulation for motor relearning in a subacute stroke rat model.

    Science.gov (United States)

    Kim, Joo Yeon; Sun, Woong; Park, Eunhee; Lee, Jiyeong; Kim, Hyun; Shin, Yong-Il; Kim, Yun-Hee; Chang, Won Hyuk

    2016-02-24

    The aim of this study was to assess the proper timing of extradural cortical stimulation (ECS) on the motor relearning in a rat model of subacute photothrombotic stroke. Photothrombotic infarction was induced on the dominant sensorimotor cortex in male Sprague-Dawley rats after training in a single-pellet reaching task (SPRT). Rats were randomly divided into three groups after stroke: ECS during the inactive period (Day-ECS group), ECS during the active period (Night-ECS group) and no ECS (Non-stimulated group). Six sham-operated rats were assigned to the control group. The Day- and Night-ECS group received continuous ECS for 12 hours during the day or night for 2 weeks from day 4 after the stroke. Behavioral assessment with SPRT was performed daily. SPRT showed a significantly faster and greater improvement in the Day and Night-ECS groups than in the Non-stimulated group. In the Day- and Night-ECS groups, the success rate of SPRT differed significantly from Non-stimulated group on day 11 and day 8, respectively. In addition, the Night-ECS group showed a significantly higher SPRT success rate than the Day-ECS group from days 10 to 13. ECS during the active period might be more effective for motor relearning in the subacute stroke rat model.

  18. In vivo study of rat cortical hemodynamics using a stereotaxic-apparatus-compatible photoacoustic microscope.

    Science.gov (United States)

    Guo, Heng; Chen, Qian; Qi, Weizhi; Chen, Xingxing; Xi, Lei

    2018-04-19

    Brain imaging is an important technique in cognitive neuroscience. In this article, we designed a stereotaxic-apparatus-compatible photoacoustic microscope for the studies of rat cortical hemodynamics. Compared with existing optical resolution photoacoustic microscopy (ORPAM) systems, the probe owns feature of fast, light and miniature. In this microscope, we integrated a miniaturized ultrasound transducer with a center frequency of 10 MHz to detect photoacoustic signals and a 2-dimensional (2D) microelectromechanical system (MEMS) scanner to achieve raster scanning of the optical focus. Based on phantom evaluation, this imaging probe has a high lateral resolution of 3.8 μm and an effective imaging domain of 2 × 2 mm 2 . Different from conventional ORPAMs, combining with standard stereotaxic apparatus enables broad studies of rodent brains without any motion artifact. To show its capability, we successfully captured red blood cell flow in the capillary, monitored the vascular changes during bleeding and blood infusion and visualized cortical hemodynamics induced by middle cerebral artery occlusion. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Regulation of Taurine transporter activity in cultured rat retinal ganglion cells and rat retinal Muller Cells

    International Nuclear Information System (INIS)

    Eissa, Laila A.; Smith, Sylvia B.; El-sherbeny, Amira A.

    2006-01-01

    Diabetic retinopathy is one of the most common complications of diabetes. The amino acid taurine is believed to play an antioxidant protective role in diabetic retinopathy through the scavenging of the reactive species. It is not well established whether taurine uptake is altered in retina cells during diabetic conditions. Thus, the present study was designed to investigate the changes in taurine transport in cultures of rat retinal Muller cells and rat retinal ganglion cells under conditions associated with diabetes. Taurine was abundantly taken up by retinal Muller cells and rat retinal ganglion cells under normal glycemic condition. Taurine was actively transported to rat Muller cells and rat retinal ganglion cells in a Na and Cl dependant manner. Taurine uptake further significantly elevated in both type of cells after the incubation with high glucose concentration. This effect could be attributed to the increase in osmolarity. Because Nitric Oxide (NO) is a molecule implicated in the pathogenesis of diabetes, we also determined the activity of taurine transporter in cultured rat retinal Muller cells and rat retinal ganglion cells in the presence of the NO donors, SIN-1 and SNAP. Taurine uptake was elevated above control value after 24-h incubation with low concentration of NO donors. We finally investigated the ability of neurotoxic glutamate to change taurine transporter activity in both types of cells. Uptake of taurine was significantly increased in rat retinal ganglion cells when only incubated with high concentration of glutamate. Our data provide evidence that taurine transporter is present in cultured rat retinal ganglion and Muller cells and is regulated by hyperosmolarity. The data are relevant to disease such as diabetes and neuronal degeneration where retinal cell volume may dramatically change. (author)

  20. Ultrastructure of the cortical epithelium of the rat thymus after in vivo exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

    Energy Technology Data Exchange (ETDEWEB)

    Waal, E.J. de (National Inst. of Public Health and Environmental Protection, Bilthoven (Netherlands)); Rademakers, L.H.P.M. (Dept. of Pathology, University Hospital, Utrecht (Netherlands)); Schuurman, H.J. (National Inst. of Public Health and Environmental Protection, Bilthoven (Netherlands) Dept. of Pathology, University Hospital, Utrecht (Netherlands) Dept. of Internal Medicine, University Hospital, Utrecht (Netherlands)); Loveren, H. van (National Inst. of Public Health and Environmental Protection, Bilthoven (Netherlands)); Vos, J.G. (National Inst. of Public Health and Environmental Protection, Bilthoven (Netherlands))

    1993-09-01

    The present study was conducted to provide ultrastructural evidence for the cortical epithelium to be a target for TCDD in vivo. Juvenile male Wistar rats were orally intubated once with either 50 or 150 [mu]g/kg TCDD and killed 4 or 10 days thereafter. Major changes were found in the cortical thymic epithelium. First, a relative shift occurred from 'pale' to darker cortical epithelial cell types, as judged by their nuclear and cytoplasmic electron density. This effect was most prominent at 10 days after exposure to 150 [mu]g/kg TCDD. The increased electron density of the cortical epithelium indicates an altered state of cellular differentiation. Secondly, at the 150 [mu]g/kg dose level focal epithelial cell aggregated were seen both at day 4 and day 10 after administration. This aggregation may either be compound induced or represent a secondary event to the collapse of the thymic stroma. Thirdly, increased vacuolation of cortical epithelial cells was apparent. This effect is interpreted as a consequence rather than a cause of thymocyte depletion from the cortex. (orig./MG)

  1. Erythroid differentiation and commitment in rat erythroleukemia cells with hypertonic culture conditions.

    OpenAIRE

    Yamaguchi, Y; Kluge, N; Ostertag, W; Furusawa, M

    1981-01-01

    Cell cultures of 7,12-dimethylbenz[a]anthracene-induced rat erythroleukemia can be stimulated to synthesize hemoglobin when cultured in hypertonic media. During hypertonic treatment the intracellular osmotic conditions immediately readjust to those of the extracellular medium. None of the Friend virus-induced mouse erythroleukemia cell lines was inducible for differentiation with the same hypertonic culture conditions used for rat cells. Earliest commitment to erythroid terminal differentiati...

  2. Hypoxia preferentially destroys GABAergic neurons in developing rat neocortex explants in culture

    NARCIS (Netherlands)

    Romijn, H. J.; Ruijter, J. M.; Wolters, P. S.

    1988-01-01

    The hypothesis that hypoxic ischemia before or during the human birth process preferentially destroys GABAergic nerve cells, particularly in the neocortex, was tested in a tissue culture model system. To that end, rat neocortex explants dissected from 6-day-old rat pups and cultured to a

  3. Reduction in cortical parvalbumin expression due to intermittent theta-burst stimulation correlates with maturation of the perineuronal nets in young rats.

    Science.gov (United States)

    Mix, Annika; Hoppenrath, Kathrin; Funke, Klaus

    2015-01-01

    We recently showed that intermittent theta-burst stimulation (iTBS) using transcranial magnetic stimulation strongly reduces the number of rat neocortical interneurons expressing glutamic acid decarboxylase 67 kDa (GAD67) and parvalbumin (PV), indicating changed activity of fast-spiking (FS) interneurons. In advance of in vitro studies intended to characterize changes in electrical properties of FS interneurons under these conditions, we tested whether the iTBS effect is age-dependent. Conscious Sprague-Dawley rats aged between 28 and 90 days received three blocks of iTBS at 15 min intervals. We found that iTBS-related reduction in PV+ cells was absent up to an age of 32 days, then gradually increased, and approached a maximum of about 40% reduction at an age of about 40 days. The relative number of cells expressing PV (PV+, 8-9%) did not change with age in sham-controls and also the increase in cortical c-Fos expression induced by iTBS was not principally age-dependent. However, a prominent growth of the perineuronal nets, typically surrounding the PV+ cells, exactly paralleled the increase in the iTBS effect. Based on these findings, we conclude that the functional development of the inhibitory network of PV+ interneurons with regard to intracortical synaptic connectivity is not sufficiently matured in rats younger than 35 d to enable activity-dependent modifications during iTBS. Outgrowth of the perineuronal nets and associated maturation of excitatory cortical inputs, as is characteristic for the critical cortical period, may take place before PV+ interneurons can be sufficiently activated via repetitive transcranial magnetic stimulation, allowing plastic changes of molecular phenotype and likely also synaptic plasticity. © 2014 Wiley Periodicals, Inc.

  4. Rat embryonic palatal shelves respond to TCDD in organ culture

    International Nuclear Information System (INIS)

    Abbott, B.D.; Birnbaum, L.S.

    1990-01-01

    TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), a highly toxic environmental contaminant, is teratogenic in mice, inducing cleft palate (CP) and hydronephrosis at doses which are not overtly maternally or embryo toxic. Palatal shelves of embryonic mice respond to TCDD, both in vivo and in organ culture, with altered differentiation of medial epithelial cells. By contrast, in the rat TCDD produces substantial maternal, embryonic, and fetal toxicity, including fetal lethality, with few malformations. In this study the possible effects of maternal toxicity on induction of cleft palate were eliminated by exposure of embryonic rat palatal shelves in organ culture. The shelves were examined for specific TCDD-induced alterations in differentiation of the medial cells. On Gestation Day (GD) 14 or 15 palatal shelves from embryonic F344 rats were placed in organ culture for 2 to 3 days (IMEM:F12 medium, 5% FBS, 0.1% DMSO) containing 0, 1 x 10(-8), 1 x 10(-9), 1 x 10(-10), or 5 x 10(-11) M TCDD. The medial epithelial peridermal cells degenerated on shelves exposed to control media or 5 x 10(-11) M TCDD. Exposure to 10(-10), 10(-9), and 10(-8) M TCDD inhibited this degeneration in 20, 36, and 60% of the shelves, respectively, and was statistically significant at the two highest doses. A normally occurring decrease in [3H]TdR incorporation was inhibited in some GD 15 shelves cultured with 10(-10) and 10(-9) M TCDD. The medial cells of TCDD-exposed shelves continued to express high levels of immunohistochemically detected EGF receptors. The altered differentiation of rat medial epithelium is similar to that reported for TCDD-exposed mouse medial cells in vivo and in vitro. However, in order to obtain these responses, the cultured rat shelves require much higher concentrations of TCDD than the mouse shelves

  5. Neuroglobin overexpression inhibits oxygen-glucose deprivation-induced mitochondrial permeability transition pore opening in primary cultured mouse cortical neurons.

    Science.gov (United States)

    Yu, Zhanyang; Liu, Ning; Li, Yadan; Xu, Jianfeng; Wang, Xiaoying

    2013-08-01

    Neuroglobin (Ngb) is an endogenous neuroprotective molecule against hypoxic/ischemic brain injury, but the underlying mechanisms remain largely undefined. Our recent study revealed that Ngb can bind to voltage-dependent anion channel (VDAC), a regulator of mitochondria permeability transition (MPT). In this study we examined the role of Ngb in MPT pore (mPTP) opening following oxygen-glucose deprivation (OGD) in primary cultured mouse cortical neurons. Co-immunoprecipitation (Co-IP) and immunocytochemistry showed that the binding between Ngb and VDAC was increased after OGD compared to normoxia, indicating the OGD-enhanced Ngb-VDAC interaction. Ngb overexpression protected primary mouse cortical neurons from OGD-induced neuronal death, to an extent comparable to mPTP opening inhibitor, cyclosporine A (CsA) pretreatment. We further measured the role of Ngb in OGD-induced mPTP opening using Ngb overexpression and knockdown approaches in primary cultured neurons, and recombinant Ngb exposure to isolated mitochondria. Same as CsA pretreatment, Ngb overexpression significantly reduced OGD-induced mPTP opening markers including mitochondria swelling, mitochondrial NAD(+) release, and cytochrome c (Cyt c) release in primary cultured neurons. Recombinant Ngb incubation significantly reduced OGD-induced NAD(+) release and Cyt c release from isolated mitochondria. In contrast, Ngb knockdown significantly increased OGD-induced neuron death, and increased OGD-induced mitochondrial NAD(+) release and Cyt c release as well, and these outcomes could be rescued by CsA pretreatment. In summary, our results demonstrated that Ngb overexpression can inhibit OGD-induced mPTP opening in primary cultured mouse cortical neurons, which may be one of the molecular mechanisms of Ngb's neuroprotection. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Effects of Parecoxib and Fentanyl on nociception-induced cortical activity

    Directory of Open Access Journals (Sweden)

    Wang Ying-Wei

    2010-01-01

    Full Text Available Abstract Background Analgesics, including opioids and non-steroid anti-inflammatory drugs reduce postoperative pain. However, little is known about the quantitative effects of these drugs on cortical activity induced by nociceptive stimulation. The aim of the present study was to determine the neural activity in response to a nociceptive stimulus and to investigate the effects of fentanyl (an opioid agonist and parecoxib (a selective cyclooxygenase-2 inhibitor on this nociception-induced cortical activity evoked by tail pinch. Extracellular recordings (electroencephalogram and multi-unit signals were performed in the area of the anterior cingulate cortex while intracellular recordings were made in the primary somatosensory cortex. The effects of parecoxib and fentanyl on induced cortical activity were compared. Results Peripheral nociceptive stimulation in anesthetized rats produced an immediate electroencephalogram (EEG desynchronization resembling the cortical arousal (low-amplitude, fast-wave activity, while the membrane potential switched into a persistent depolarization state. The induced cortical activity was abolished by fentanyl, and the fentanyl's effect was reversed by the opioid receptor antagonist, naloxone. Parecoxib, on the other hand, did not significantly affect the neural activity. Conclusion Cortical activity was modulated by nociceptive stimulation in anesthetized rats. Fentanyl showed a strong inhibitory effect on the nociceptive-stimulus induced cortical activity while parecoxib had no significant effect.

  7. Characterization of cortical neuronal and glial alterations during culture of organotypic whole brain slices from neonatal and mature mice.

    Science.gov (United States)

    Staal, Jerome A; Alexander, Samuel R; Liu, Yao; Dickson, Tracey D; Vickers, James C

    2011-01-01

    Organotypic brain slice culturing techniques are extensively used in a wide range of experimental procedures and are particularly useful in providing mechanistic insights into neurological disorders or injury. The cellular and morphological alterations associated with hippocampal brain slice cultures has been well established, however, the neuronal response of mouse cortical neurons to culture is not well documented. In the current study, we compared the cell viability, as well as phenotypic and protein expression changes in cortical neurons, in whole brain slice cultures from mouse neonates (P4-6), adolescent animals (P25-28) and mature adults (P50+). Cultures were prepared using the membrane interface method. Propidium iodide labeling of nuclei (due to compromised cell membrane) and AlamarBlue™ (cell respiration) analysis demonstrated that neonatal tissue was significantly less vulnerable to long-term culture in comparison to the more mature brain tissues. Cultures from P6 animals showed a significant increase in the expression of synaptic markers and a decrease in growth-associated proteins over the entire culture period. However, morphological analysis of organotypic brain slices cultured from neonatal tissue demonstrated that there were substantial changes to neuronal and glial organization within the neocortex, with a distinct loss of cytoarchitectural stratification and increased GFAP expression (pglial limitans and, after 14 DIV, displayed substantial cellular protrusions from slice edges, including cells that expressed both glial and neuronal markers. In summary, we present a substantial evaluation of the viability and morphological changes that occur in the neocortex of whole brain tissue cultures, from different ages, over an extended period of culture.

  8. Posterior Thalamic Nucleus Modulation of Tactile Stimuli Processing in Rat Motor and Primary Somatosensory Cortices

    Directory of Open Access Journals (Sweden)

    Diana Casas-Torremocha

    2017-09-01

    Full Text Available Rodents move rhythmically their facial whiskers and compute differences between signals predicted and those resulting from the movement to infer information about objects near their head. These computations are carried out by a large network of forebrain structures that includes the thalamus and the primary somatosensory (S1BF and motor (M1wk cortices. Spatially and temporally precise mechanorreceptive whisker information reaches the S1BF cortex via the ventroposterior medial thalamic nucleus (VPM. Other whisker-related information may reach both M1wk and S1BF via the axons from the posterior thalamic nucleus (Po. However, Po axons may convey, in addition to direct sensory signals, the dynamic output of computations between whisker signals and descending motor commands. It has been proposed that this input may be relevant for adjusting cortical responses to predicted vs. unpredicted whisker signals, but the effects of Po input on M1wk and S1BF function have not been directly tested or compared in vivo. Here, using electrophysiology, optogenetics and pharmacological tools, we compared in adult rats M1wk and S1BF in vivo responses in the whisker areas of the motor and primary somatosensory cortices to passive multi-whisker deflection, their dependence on Po activity, and their changes after a brief intense activation of Po axons. We report that the latencies of the first component of tactile-evoked local field potentials in M1wk and S1BF are similar. The evoked potentials decrease markedly in M1wk, but not in S1BF, by injection in Po of the GABAA agonist muscimol. A brief high-frequency electrical stimulation of Po decreases the responsivity of M1wk and S1BF cells to subsequent whisker stimulation. This effect is prevented by the local application of omega-agatoxin, suggesting that it may in part depend on GABA release by fast-spiking parvalbumin (PV-expressing cortical interneurons. Local optogenetic activation of Po synapses in different

  9. Cytoarchitecture in cultured rat neocortex explants

    NARCIS (Netherlands)

    de Jong, B. M.; Ruijter, J. M.; Romijn, H. J.

    1988-01-01

    Neocortex explants obtained from 6-day-old rat pups and cultured in a serum-free medium from 5 hr to 13 days in vitro (DIV) show preservation of cytoarchitectural characteristics. Major changes in the size of the explants and their layers occur during the first 2 DIV. A radial arrangement of neurons

  10. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats.

    Science.gov (United States)

    Alaverdashvili, Mariam; Hackett, Mark J; Caine, Sally; Paterson, Phyllis G

    2017-04-01

    While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH 2 ) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Methylphenidate and Atomoxetine-Responsive Prefrontal Cortical Genetic Overlaps in "Impulsive" SHR/NCrl and Wistar Rats.

    Science.gov (United States)

    Dela Peña, Ike; Dela Peña, Irene Joy; de la Peña, June Bryan; Kim, Hee Jin; Shin, Chan Young; Han, Doug Hyun; Kim, Bung-Nyun; Ryu, Jong Hoon; Cheong, Jae Hoon

    2017-09-01

    Impulsivity, the predisposition to act prematurely without foresight, is associated with a number of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). Identifying genetic underpinnings of impulsive behavior may help decipher the complex etiology and neurobiological factors of disorders marked by impulsivity. To identify potential genetic factors of impulsivity, we examined common differentially expressed genes (DEGs) in the prefrontal cortex (PFC) of adolescent SHR/NCrl and Wistar rats, which showed marked decrease in preference for the large but delayed reward, compared with WKY/NCrl rats, in the delay discounting task. Of these DEGs, we examined drug-responsive transcripts whose mRNA levels were altered following treatment (in SHR/NCrl and Wistar rats) with drugs that alleviate impulsivity, namely, the ADHD medications methylphenidate and atomoxetine. Prefrontal cortical genetic overlaps between SHR/NCrl and Wistar rats in comparison with WKY/NCrl included genes associated with transcription (e.g., Btg2, Fos, Nr4a2), synaptic plasticity (e.g., Arc, Homer2), and neuron apoptosis (Grik2, Nmnat1). Treatment with methylphenidate and/or atomoxetine increased choice of the large, delayed reward in SHR/NCrl and Wistar rats and changed, in varying degrees, mRNA levels of Nr4a2, Btg2, and Homer2, genes with previously described roles in neuropsychiatric disorders characterized by impulsivity. While further studies are required, we dissected potential genetic factors that may influence impulsivity by identifying genetic overlaps in the PFC of "impulsive" SHR/NCrl and Wistar rats. Notably, these are also drug-responsive transcripts which may be studied further as biomarkers to predict response to ADHD drugs, and as potential targets for the development of treatments to improve impulsivity.

  12. Which component of treatment is important for changes of cortical epileptic afterdischarges after status epilepticus in immature rats?

    Czech Academy of Sciences Publication Activity Database

    Tsenov, Grygoriy; Kubová, Hana; Mareš, Pavel

    2017-01-01

    Roč. 644, Mar 22 (2017), s. 1-4 ISSN 0304-3940 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP302/10/0971; GA ČR(CZ) GA15-16605S Institutional support: RVO:67985823 Keywords : status epilepticus * immature rats * pilocarpine * lithium chloride * paraldehyde * cortical epileptic afterdischarges Subject RIV: FH - Neurology OBOR OECD: Neuroscience s (including psychophysiology Impact factor: 2.180, year: 2016

  13. Reproductive experience modified dendritic spines on cortical pyramidal neurons to enhance sensory perception and spatial learning in rats.

    Science.gov (United States)

    Chen, Jeng-Rung; Lim, Seh Hong; Chung, Sin-Cun; Lee, Yee-Fun; Wang, Yueh-Jan; Tseng, Guo-Fang; Wang, Tsyr-Jiuan

    2017-01-27

    Behavioral adaptations during motherhood are aimed at increasing reproductive success. Alterations of hormones during motherhood could trigger brain morphological changes to underlie behavioral alterations. Here we investigated whether motherhood changes a rat's sensory perception and spatial memory in conjunction with cortical neuronal structural changes. Female rats of different statuses, including virgin, pregnant, lactating, and primiparous rats were studied. Behavioral test showed that the lactating rats were most sensitive to heat, while rats with motherhood and reproduction experience outperformed virgin rats in a water maze task. By intracellular dye injection and computer-assisted 3-dimensional reconstruction, the dendritic arbors and spines of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons were revealed for closer analysis. The results showed that motherhood and reproductive experience increased dendritic spines but not arbors or the lengths of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons. In addition, lactating rats had a higher incidence of spines than pregnant or primiparous rats. The increase of dendritic spines was coupled with increased expression of the glutamatergic postsynaptic marker protein (PSD-95), especially in lactating rats. On the basis of the present results, it is concluded that motherhood enhanced rat sensory perception and spatial memory and was accompanied by increases in dendritic spines on output neurons of the somatosensory cortex and CA1 hippocampus. The effect was sustained for at least 6 weeks after the weaning of the pups.

  14. Isolation, culture and intraportal transplantation of rat marrow stromal cell

    International Nuclear Information System (INIS)

    Wang Ping; Wang Jianhua; Yan Zhiping; Li Wentao; Lin Genlai; Hu Meiyu; Wang Yanhong

    2004-01-01

    Objective: To observe the tracing and evolution of marrow stromal cell (MSC) after intraportal transplantation into the liver of homogenous rats, and to provide experimental data for MSC differentiation to hepatocyte in vivo. Methods: The MSC was isolated from the leg bone marrow of adult SD rats, and purified by culture-expanded in vitro. Before transplantation, MSC was labeled with DAPI. Then 10 5 MSC were intraportally transplanted into the homogenous rat liver. Rats were killed at 2 hours and 1, 2, 3 and 4 weeks after transplantation. The cryosection samples of liver and lung were observed under fluorescence microscopy. Results: MSC in vitro culture had high ability of proliferation. Except 4 rats were dead because of abdominal bleeding or infection, other recipients were healthy until sacrificed. The implantation cells were detected by identifying the DAPI labeled MSC in the host livers, but not in the host lungs. Conclusion: Intraportal transplanted MSC could immigrate and survive in the host livers at least for 4 weeks. They could immigrate from the small branches of portal veins to hepatic parenchyma

  15. Control of Somatosensory Cortical Processing by Thalamic Posterior Medial Nucleus: A New Role of Thalamus in Cortical Function.

    Directory of Open Access Journals (Sweden)

    Carlos Castejon

    Full Text Available Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1 in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane-anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas.

  16. A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats.

    Science.gov (United States)

    Hohman, Emily E; Weaver, Connie M

    2015-02-01

    Grapes and their associated phytochemicals have been investigated for beneficial effects on cardiovascular health, cancer prevention, and other chronic diseases, but the effect of grape consumption on bone health has not been fully determined. We previously found short-term benefits of grape products on reducing bone turnover in ovariectomized rats. The objective of this study was to determine the long-term benefits of a grape-enriched diet on bone in ovariectomized rats. Rats were ovariectomized at 3 mo of age and were administered a single dose of (45)Ca to prelabel bones at 4 mo of age. After a 1-mo equilibration period, baseline urinary (45)Ca excretion was determined. Rats (n = 22/group) were then randomly assigned to a modified AIN93M diet containing 25% freeze-dried grape powder or to a control diet for 8 wk. Urinary (45)Ca excretion was monitored throughout the study to determine changes in bone (45)Ca retention. Calcium balance was assessed after 1 and 8 wk of consuming the experimental diets, and a calcium kinetic study was performed at 8 wk. After 8 wk, femurs were collected for micro-computed tomographic imaging, 3-point bending, and reference point indentation. Rats fed the grape-enriched diet had 44% greater net bone calcium retention than did rats fed the control diet. There were no differences in calcium balance due to diet at either week 1 or week 8, but there was a significant increase in net calcium absorption (10.6%) and retention (5.7%) from week 1 to week 8 in the grape-enriched diet group only. Grape-enriched diet-fed rats had 3% greater cortical thickness and 11% greater breaking strength. There were no differences in femur bone mineral density, trabecular microarchitecture, or reference point indentation variables due to diet. This study of ovariectomized rats indicates that the consumption of grape products may improve calcium utilization and suppress bone turnover, resulting in improvements in bone quality. © 2015 American Society for

  17. Huperzine A prophylaxis against pentylenetetrazole-induced seizures in rats is associated with increased cortical inhibition.

    Science.gov (United States)

    Gersner, R; Ekstein, D; Dhamne, S C; Schachter, S C; Rotenberg, A

    2015-11-01

    Huperzine A (HupA) is a naturally occurring compound found in the firmoss Huperzia serrata. While HupA is a potent acetylcholinesterase inhibitor, its full pharmacologic profile is incompletely described. Since previous works suggested a capacity for HupA to prophylax against seizures, we tested the HupA antiepileptic potential in pentylenetetrazole (PTZ) rat epilepsy model and explored its mechanism of action by spectral EEG analysis and by paired-pulse transcranial magnetic stimulation (ppTMS), a measure of GABA-mediated intracortical inhibition. We tested whether HupA suppresses seizures in the rat PTZ acute seizure model, and quantified latency to first myoclonus and to generalized tonic-clonic seizure, and spike frequency on EEG. Additionally, we measured power in the EEG gamma frequency band which is associated with GABAergic cortical interneuron activation. Then, as a step toward further examining the HupA antiepileptic mechanism of action, we tested long-interval intracortical inhibition (LICI) using ppTMS coupled with electromyography to assess whether HupA augments GABA-mediated paired-pulse inhibition of the motor evoked potential. We also tested whether the HupA effect on paired-pulse inhibition was central or peripheral by comparison of outcomes following administration of HupA or the peripheral acetylcholinesterase inhibitor pyridostigmine. We also tested whether the HupA effect was dependent on central muscarinic or GABAA receptors by co-administration of HupA and atropine or PTZ, respectively. In tests of antiepileptic potential, HupA suppressed seizures and epileptic spikes on EEG. Spectral EEG analysis also revealed enhanced gamma frequency band power with HupA treatment. By ppTMS we found that HupA increases intracortical inhibition and blocks PTZ-induced cortical excitation. Atropine co-administration with HupA did not alter HupA-induced intracortical inhibition suggesting independent of muscarinic acetylcholine receptors mechanism in this model

  18. NR2A contributes to genesis and propagation of cortical spreading depression in rats.

    Science.gov (United States)

    Bu, Fan; Du, Ruoxing; Li, Yi; Quinn, John P; Wang, Minyan

    2016-03-22

    Cortical spreading depression (CSD) is a transient propagating excitation of synaptic activity followed by depression, which is implicated in migraine. Increasing evidence points to an essential role of NR2A-containing NMDA receptors in CSD propagation in vitro; however, whether these receptors mediate CSD genesis in vivo requires clarification and the role of NR2A on CSD propagation is still under debate. Using in vivo CSD in rats with electrophysiology and in vitro CSD in chick retina with intrinsic optical imaging, we addressed the role of NR2A in CSD. We demonstrated that NVP-AAM077, a potent antagonist for NR2A-containing receptors, perfused through microdialysis probes, markedly reduced cortex susceptibility to CSD, but also reduced magnitude of CSD genesis in rats. Additionally, NVP-AAM077 at 0.3 nmol perfused into the contralateral ventricle, considerably suppressed the magnitude of CSD propagation wave and propagation rate in rats. This reduction in CSD propagation was also observed with TCN-201, a negative allosteric modulator selective for NR2A, at 3 μM, in the chick retina. Our data provides strong evidence that NR2A subunit contributes to CSD genesis and propagation, suggesting drugs selectively antagonizing NR2A-containing receptors might constitute a highly specific strategy treating CSD associated migraine with a likely better safety profile.

  19. A method for isolating identifying and culturing of rat trachea-bronchia epithelial cells

    International Nuclear Information System (INIS)

    Cui Fengmei; Su Shibiao; Nie Jihua; Li Bingyan; Tong Jian

    2005-01-01

    Objective: To explore a method for isolating identifying and culturing the rat trachea-bronchia epithelial cells. Methods: The rat trachea-bronchia epithelial cells were isolated by digestion with pronase and brushing with cell brush, identified using confocul and cultured in entire F12 media with no serum. Results: With this method, cells in high purity and high viability could be obtained, and about 10 6 cells per rat. The cells grow well in entire F12 media with no serum. Conclusion: The method is useful for isolating rate trachea-bronchia epithelial cells and the entire F12 media with no serum is effective for culturing. (authors)

  20. Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Tracy L., E-mail: tracylmarion@qualyst.com [Curriculum in Toxicology, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7270 (United States); Perry, Cassandra H., E-mail: cassandraperry@qualyst.com [Qualyst, Inc., Durham, NC 27713 (United States); St Claire, Robert L., E-mail: bobstclaire@qualyst.com [Qualyst, Inc., Durham, NC 27713 (United States); Brouwer, Kim L.R., E-mail: kbrouwer@unc.edu [Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, CB 7569 Kerr Hall, Chapel Hill, NC 27599-7569 (United States)

    2012-05-15

    Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR{sup ®} technology, BAs were measured in cells + bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells + bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3 ± 5.9 μM in CTL rat and 183 ± 56 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16 ± 0.21 μM in CTL rat SCH and 9.61 ± 6.36 μM in CTL human SCH. Treatment of cells for 24 h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na{sup +}-taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account. -- Highlights: ► Bile acids (BAs) were measured in rat and human sandwich-cultured hepatocytes (SCH). ► Cell and medium BA

  1. Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes

    International Nuclear Information System (INIS)

    Marion, Tracy L.; Perry, Cassandra H.; St Claire, Robert L.; Brouwer, Kim L.R.

    2012-01-01

    Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR ® technology, BAs were measured in cells + bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells + bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3 ± 5.9 μM in CTL rat and 183 ± 56 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16 ± 0.21 μM in CTL rat SCH and 9.61 ± 6.36 μM in CTL human SCH. Treatment of cells for 24 h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na + -taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account. -- Highlights: ► Bile acids (BAs) were measured in rat and human sandwich-cultured hepatocytes (SCH). ► Cell and medium BA concentrations

  2. Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Park, Kwang Suk [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea); Seoul National University College of Medicine, Department of Biomedical Engineering, Seoul (Korea); Ahn, Soon-Hyun; Oh, Seung Ha; Kim, Chong Sun; Chung, June-Key; Lee, Myung Chul [Seoul National University College of Medicine, Department of Otolaryngology, Head and Neck Surgery, Seoul (Korea); Lee, Dong Soo; Jeong, Jae Min [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea)

    2005-06-01

    Animal models of cortical deafness are essential for investigation of the cerebral glucose metabolism in congenital or prelingual deafness. Autoradiographic imaging is mainly used to assess the cerebral glucose metabolism in rodents. In this study, procedures for the 3D voxel-based statistical analysis of autoradiographic data were established to enable investigations of the within-modal and cross-modal plasticity through entire areas of the brain of sensory-deprived animals without lumping together heterogeneous subregions within each brain structure into a large region of interest. Thirteen 2-[1-{sup 14}C]-deoxy-D-glucose autoradiographic images were acquired from six deaf and seven age-matched normal rats (age 6-10 weeks). The deafness was induced by surgical ablation. For the 3D voxel-based statistical analysis, brain slices were extracted semiautomatically from the autoradiographic images, which contained the coronal sections of the brain, and were stacked into 3D volume data. Using principal axes matching and mutual information maximization algorithms, the adjacent coronal sections were co-registered using a rigid body transformation, and all sections were realigned to the first section. A study-specific template was composed and the realigned images were spatially normalized onto the template. Following count normalization, voxel-wise t tests were performed to reveal the areas with significant differences in cerebral glucose metabolism between the deaf and the control rats. Continuous and clear edges were detected in each image after registration between the coronal sections, and the internal and external landmarks extracted from the spatially normalized images were well matched, demonstrating the reliability of the spatial processing procedures. Voxel-wise t tests showed that the glucose metabolism in the bilateral auditory cortices of the deaf rats was significantly (P<0.001) lower than that in the controls. There was no significantly reduced metabolism in

  3. Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Park, Kwang Suk; Ahn, Soon-Hyun; Oh, Seung Ha; Kim, Chong Sun; Chung, June-Key; Lee, Myung Chul; Lee, Dong Soo; Jeong, Jae Min

    2005-01-01

    Animal models of cortical deafness are essential for investigation of the cerebral glucose metabolism in congenital or prelingual deafness. Autoradiographic imaging is mainly used to assess the cerebral glucose metabolism in rodents. In this study, procedures for the 3D voxel-based statistical analysis of autoradiographic data were established to enable investigations of the within-modal and cross-modal plasticity through entire areas of the brain of sensory-deprived animals without lumping together heterogeneous subregions within each brain structure into a large region of interest. Thirteen 2-[1- 14 C]-deoxy-D-glucose autoradiographic images were acquired from six deaf and seven age-matched normal rats (age 6-10 weeks). The deafness was induced by surgical ablation. For the 3D voxel-based statistical analysis, brain slices were extracted semiautomatically from the autoradiographic images, which contained the coronal sections of the brain, and were stacked into 3D volume data. Using principal axes matching and mutual information maximization algorithms, the adjacent coronal sections were co-registered using a rigid body transformation, and all sections were realigned to the first section. A study-specific template was composed and the realigned images were spatially normalized onto the template. Following count normalization, voxel-wise t tests were performed to reveal the areas with significant differences in cerebral glucose metabolism between the deaf and the control rats. Continuous and clear edges were detected in each image after registration between the coronal sections, and the internal and external landmarks extracted from the spatially normalized images were well matched, demonstrating the reliability of the spatial processing procedures. Voxel-wise t tests showed that the glucose metabolism in the bilateral auditory cortices of the deaf rats was significantly (P<0.001) lower than that in the controls. There was no significantly reduced metabolism in any

  4. Dose-response analysis of phthalate effects on gene expression in rat whole embryo culture

    NARCIS (Netherlands)

    Robinson, J.F.; Verhoef, A.; van Beelen, V.A.; Pennings, J.L.A.; Piersma, A.H.|info:eu-repo/dai/nl/071276947

    2012-01-01

    The rat postimplantation whole embryo culture (WEC) model serves as a potential screening tool for developmental toxicity. In this model, cultured rat embryos are exposed during early embryogenesis and evaluated for morphological effects. The integration of molecular-based markers may lead to

  5. Rat brain sagittal organotypic slice cultures as an ex vivo dopamine cell loss system.

    Science.gov (United States)

    McCaughey-Chapman, Amy; Connor, Bronwen

    2017-02-01

    Organotypic brain slice cultures are a useful tool to study neurological function as they provide a more complex, 3-dimensional system than standard 2-dimensional in vitro cell cultures. Building on a previously developed mouse brain slice culture protocol, we have developed a rat sagittal brain slice culture system as an ex vivo model of dopamine cell loss. We show that rat brain organotypic slice cultures remain viable for up to 6 weeks in culture. Using Fluoro-Gold axonal tracing, we demonstrate that the slice 3-dimensional cytoarchitecture is maintained over a 4 week culturing period, with particular focus on the nigrostriatal pathway. Treatment of the cultures with 6-hydroxydopamine and desipramine induces a progressive loss of Fluoro-Gold-positive nigral cells with a sustained loss of tyrosine hydroxylase-positive nigral cells. This recapitulates the pattern of dopaminergic degeneration observed in the rat partial 6-hydroxydopamine lesion model and, most importantly, the progressive pathology of Parkinson's disease. Our slice culture platform provides an advance over other systems, as we demonstrate for the first time 3-dimensional cytoarchitecture maintenance of rat nigrostriatal sagittal slices for up to 6 weeks. Our ex vivo organotypic slice culture system provides a long term cellular platform to model Parkinson's disease, allowing for the elucidation of mechanisms involved in dopaminergic neuron degeneration and the capability to study cellular integration and plasticity ex vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The combined effects of pyridostigmine and chronic stress on brain cortical and blood acetylcholinesterase, corticosterone, prolactin and alternation performance in rats.

    Science.gov (United States)

    Kant, G J; Bauman, R A; Feaster, S R; Anderson, S M; Saviolakis, G A; Garcia, G E

    2001-01-01

    Thousands of soldiers who served in the Gulf War have symptoms that have been collectively termed Gulf War Illness (GWI). It has been suggested that a combination of operational stress and pyridostigmine, a drug given as a pretreatment to protect soldiers against the effects of exposure to nerve agents, might have had unexpected adverse health effects causing these symptoms. Our laboratory has previously modeled operational stress in rats using a paradigm of around-the-clock intermittent signalled footshock. In the present studies, this model was used to investigate the potential synergistic effects of chronic stress and pyridostigmine on physiology and behavior. Seventy-two rats were trained to perform an alternation lever pressing task to earn their entire daily food intake. The rats were then implanted with osmotic minipumps containing vehicle, pyridostigmine (25 mg/ml pyridostigmine bromide) or physostigmine (20 mg/ml eserine hemisulfate). The pumps delivered 1 microl/h, which resulted in a cumulative dosing of approximately 1.5 mg/kg/day of pyridostigmine or 1.2 mg/kg/day of physostigmine, equimolar doses of the two drugs. The rats were then returned to their home cages where performance continued to be measured 24 h/day. After 4 days, 24 of the 72 rats were trained to escape signalled footshock (avoidance-escape group) and 24 other rats (yoked-stressed group) were each paired to a rat in the avoidance-escape group. The remaining 24 rats were not subjected to footshock (unstressed group). Shock trials were intermittently presented in the home cage 24 h/day for 3 days, while alternation performance continued to be measured. Since only 12 test cages were available, each condition was repeated to achieve a final n of six rats per group. Pyridostigmine and physostigmine each decreased blood acetylcholinesterase levels by approximately 50%. Physostigmine also decreased brain cortical acetylcholinesterase levels by approximately 50%, while pyridostigmine had no

  7. Altered 13C glucose metabolism in the cortico-striato-thalamo-cortical loop in the MK-801 rat model of schizophrenia

    DEFF Research Database (Denmark)

    Eyjolfsson, Elvar M; Nilsen, Linn Hege; Kondziella, Daniel

    2011-01-01

    Using a modified MK-801 (dizocilpine) N-methyl-D-aspartic acid (NMDA) receptor hypofunction model for schizophrenia, we analyzed glycolysis, as well as glutamatergic, GABAergic, and monoaminergic neurotransmitter synthesis and degradation. Rats received an injection of MK-801 daily for 6 days...... in all regions. In conclusion, neurotransmitter metabolism in the cortico-striato-thalamo-cortical loop is severely impaired in the MK-801 (dizocilpine) NMDA receptor hypofunction animal model for schizophrenia....

  8. The effect of α-, β-adrenergic receptor agonists and antagonists of the efflux of 22Na and uptake of 42K by rat brain cortical slices

    International Nuclear Information System (INIS)

    Phillis, J.W.; Wu, P.H.; Thierry, D.L.

    1982-01-01

    The effects of norepinephrine on ion fluxes in rat brain cortical slices have now been ascertained. 22 Na efflux and 42 K influx are enhanced by norepinephrine. The increase in ion fluxes can be blocked by ouabain, phentolamine and propranolol, suggesting that the catecholamine activates a membrane sodium pump by a receptor-mediated step. The facilitation of 22 Na efflux is stereospecific as demonstrated by the very weak action of D-norepinephrine at 10 -5 M concentration. Various α-adrenergic and β-adrenergic receptor agonists, including oxymetazoline, naphazoline, clonidine, tramazoline, methoxamine, phenylephrine, L-isoproterenol and methoxyphenamine are potent stimulants of the sodium pump as demonstrated by their enhancement of ion fluxes in rat brain cortical slices. The results are consistent with the hypothesis that norepinephrine hyperpolarizes central neurons by activating an ouabain-sensitive, receptor-mediated sodium pump. (Auth.)

  9. Depletion of rat cortical norepinephrine and the inhibition of [3H]norepinephrine uptake by xylamine does not require monoamine oxidase activity

    International Nuclear Information System (INIS)

    Dudley, M.W.

    1988-01-01

    Inhibition of monoamine oxidase A through pretreatment of rats with clorgyline or the pro-drug MDL 72,394 did not block the amine-depleting action of xylamine. Xylamine treatment resulted in a loss of approximately 60% of the control level of norepinephrine in the cerebral cortex. A 1-hr pretreatment, but not a 24-hr pretreatment, with the monoamine oxidase B inhibitor, L-deprenyl, prevented the depletion of norepinephrine by xylamine. In addition, pretreatment with MDL 72,974, a monoamine oxidase B inhibitor without amine-releasing or uptake - inhibiting effects, did not prevent cortical norepinephrine levels. Inhibition of monoamine oxidase by either MDL 72,974 or MDL 72,394 did not prevent the inhibition of [ 3 H]norepinephrine uptake into rat cortical synaptosomes by xylamine. These data indicate that monoamine oxidase does not mediate the amine-releasing or uptake inhibiting properties of xylamine. The protection afforded by L-deprenyl following a 1-hr pretreatment most probably was due to accumulation of its metabolite, L-amphetamine, which would inhibit the uptake carrier. A functional carrier is required for depletion since desipramine administered 1 hr prior to xylamine, was also able to prevent depletion of norepinephrine

  10. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  11. Upregulation of endothelin ETB receptor-mediated vasoconstriction in rat coronary artery after organ culture

    DEFF Research Database (Denmark)

    Eskesen, Karen; Edvinsson, Lars

    2006-01-01

    The aim of this study was to examine if endothelin ET(B) receptor-mediated contraction occurred in isolated segments of rat coronary arteries during organ culture. Presence of contractile endothelin ET(B) receptors was studied by measuring the change in isometric tension in rings of left anterior......(+)-solution was not modified after 1 day in culture medium. The experiments indicate that organ culture of rat coronary arteries upregulate endothelin ET(B) receptor-mediated contraction by inducing synthesis of new protein....... descending coronary arteries isolated from hearts of rats as response to application of the selective endothelin ET(B) receptor agonist, Sarafotoxin 6c and endothelin-1. In segments cultured 1 day in serum free Dulbecco's Modified Eagle's Medium, Sarafotoxin 6c induced a concentration dependent contraction...

  12. The rat whole embryo culture assay using the Dysmorphology Score system.

    Science.gov (United States)

    Zhang, Cindy; Panzica-Kelly, Julie; Augustine-Rauch, Karen

    2013-01-01

    The rat whole embryo culture (WEC) system has been used extensively for characterizing teratogenic properties of test chemicals. In this chapter, we describe the methodology for culturing rat embryos as well as a new morphological score system, the Dysmorphology Score (DMS) system for assessing morphology of mid gestation (gestational day 11) rat embryos. In contrast to the developmental stage focused scoring associated with the Brown and Fabro score system, this new score system assesses the respective degree of severity of dysmorphology, which delineates normal from abnormal morphology of specific embryonic structures and organ systems. This score system generates an approach that allows rapid identification and quantification of adverse developmental findings, making it conducive for characterization of compounds for teratogenic properties and screening activities.

  13. A comparative study of myosin and its subunits in adult and neonatal-rat hearts and in rat heart cells from young and old cultures.

    OpenAIRE

    Ghanbari, H A; McCarl, R L

    1980-01-01

    A possible explanation for the decrease in myosin Ca2+-dependent ATPase activity as rat heart cells age in culture is presented. The subunit structure and enzyme kinetics of myosin from adult and neonatal rat hearts and from rat heart cells of young and old cultures are compared. These studies indicate that the loss in Ca-ATPase activity of myosin from older cultures was an intrinsic property of the myosin itself. Myofibrillar fractions from the indicated four sources showed no qualitative or...

  14. Potential Protection of Coeloglossum viride var. Bracteatum Extract against Oxidative Stress in Rat Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Zhe Guo

    2013-01-01

    Full Text Available The present study explored the neuroprotective effect of Coeloglossum viride var. bracteatum extract (CE against oxidative stress in rat cortical neurons. The results demonstrated that administration of CE inhibited hydrogen peroxide-induced neurotoxicity tested by MTT, LDH release, and TUNEL assays. We further found that CE inhibited the activation of caspase-3 (Csp3 induced by hydrogen peroxide. Moreover, CE was found to reverse the hydrogen peroxide-induced downregulation of active AKT and Bcl-2. We then showed that the neuroprotective effect of CE was blocked by adding the AKT inhibitor, Ly294002. Thus, our data strongly indicated that CE played a neuroprotective role against oxidative stress-induced neurotoxicity.

  15. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    Science.gov (United States)

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  16. Effect of fasting and different diets on 14C incorporation from U-14C glucose into glycogen and carbon dioxide by cerebral cortical slices of rats

    International Nuclear Information System (INIS)

    Visweswaran, P.; Binod Kumar; Sinha, A.P.; Suraiya, A.; Brahamchari, A.K.; Singh, S.P.

    1994-01-01

    There are some reports regarding change in the glycogen level due to fasting. Here an attempt is made by keeping the albino rats under fasting or feeding different diets on the rate of 14 C incorporation into glycogen and carbon dioxide from U- 14 C glucose. Our study reveals that the above conditions do not alter any significant change in the glycogen and carbon dioxide in the cerebral cortical slices of albino rats. (author). 8 refs., 1 tab

  17. Chromosome preparations from microplate cultures of man, dog, rat, and mouse

    NARCIS (Netherlands)

    de Jong, B; Anders, GJPA; van der Meer, Ingrid H

    1976-01-01

    A simple method for making chromosomal preparations from 105 leukocytes from man, dog, mouse, and rat and from 0.01 ml total human and dog blood is developed. The leukocytes and the peripheral blood are cultured in Cooke microtiter plates in a culture volume of 0.1 ml. The culture medium is R.P.M.I.

  18. Organ and tissue level properties are more sensitive to age than osteocyte lacunar characteristics in rat cortical bone

    DEFF Research Database (Denmark)

    Wittig, Nina; Bach-Gansmo, Fiona Linnea; Birkbak, Mie Elholm

    2016-01-01

    orientation with animal age. Hence, the evolution of organ and tissue level properties with age in rat cortical bone is not accompanied by related changes in osteocyte lacunar properties. This suggests that bone microstructure and bone matrix material properties and not the geometric properties...... of bone on the organ and tissue level, whereas features on the nano- and micrometer scale are much less explored. We investigated the age-related development of organ and tissue level bone properties such as bone volume, bone mineral density, and load to fracture and correlated these with osteocyte...

  19. Low endogenous glucocorticoid allows induction of kidney cortical cyclooxygenase-2 during postnatal rat development

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Stubbe, Jane; Skøtt, Ole

    2004-01-01

    COX-2 in these cells. Thus low plasma concentrations of corticosterone allowed for cortical and medullary COX-2 induction during postnatal kidney development. Increased circulating glucocorticoid in the postnatal period may damage late renal development through inhibition of COX-2.......In postnatal weeks 2-4, cyclooxygenase-2 (COX-2) is induced in the rat kidney cortex where it is critically involved in final stages of kidney development. We examined whether changes in circulating gluco- or mineralocorticosteroids or in their renal receptors regulate postnatal COX-2 induction....... Plasma corticosterone concentration peaked at birth, decreased to low levels at days 3-13, and increased to adult levels from day 22. Aldosterone peaked at birth and then stabilized at adult levels. Gluco- and mineralocorticoid receptor (GR and MR) mRNAs were expressed stably in kidney before, during...

  20. Ethanol-induced transcriptional activation of programmed cell death 4 (Pdcd4 is mediated by GSK-3β signaling in rat cortical neuroblasts.

    Directory of Open Access Journals (Sweden)

    Amanjot Kaur Riar

    Full Text Available Ingestion of ethanol (ETOH during pregnancy induces grave abnormalities in developing fetal brain. We have previously reported that ETOH induces programmed cell death 4 (PDCD4, a critical regulator of cell growth, in cultured fetal cerebral cortical neurons (PCNs and in the cerebral cortex in vivo and affect protein synthesis as observed in Fetal Alcohol Spectrum Disorder (FASD. However, the mechanism which activates PDCD4 in neuronal systems is unclear and understanding this regulation may provide a counteractive strategy to correct the protein synthesis associated developmental changes seen in FASD. The present study investigates the molecular mechanism by which ethanol regulates PDCD4 in cortical neuroblasts, the immediate precursor of neurons. ETOH treatment significantly increased PDCD4 protein and transcript expression in spontaneously immortalized rat brain neuroblasts. Since PDCD4 is regulated at both the post-translational and post-transcriptional level, we assessed ETOH's effect on PDCD4 protein and mRNA stability. Chase experiments demonstrated that ETOH does not significantly impact either PDCD4 protein or mRNA stabilization. PDCD4 promoter-reporter assays confirmed that PDCD4 is transcriptionally regulated by ETOH in neuroblasts. Given a critical role of glycogen synthase kinase 3β (GSK-3β signaling in regulating protein synthesis and neurotoxic mechanisms, we investigated the involvement of GSK-3β and showed that multifunctional GSK-3β was significantly activated in response to ETOH in neuroblasts. In addition, we found that ETOH-induced activation of PDCD4 was inhibited by pharmacologic blockade of GSK-3β using inhibitors, lithium chloride (LiCl and SB-216763 or siRNA mediated silencing of GSK-3β. These results suggest that ethanol transcriptionally upregulates PDCD4 by enhancing GSK-3β signaling in cortical neuroblasts. Further, we demonstrate that canonical Wnt-3a/GSK-3β signaling is involved in regulating PDCD4 protein

  1. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture.

    Science.gov (United States)

    Reda, A; Hou, M; Winton, T R; Chapin, R E; Söder, O; Stukenborg, J-B

    2016-09-01

    Do the organ culture conditions, previously defined for in vitro murine male germ cell differentiation, also result in differentiation of rat spermatogonia into post-meiotic germ cells exhibiting specific markers for haploid germ cells? We demonstrated the differentiation of rat spermatogonia into post-meiotic cells in vitro, with emphasis on exhibiting, protein markers described for round spermatids. Full spermatogenesis in vitro from immature germ cells using an organ culture technique in mice was first reported 5 years ago. However, no studies reporting the differentiation of rat spermatogonia into post-meiotic germ cells exhibiting the characteristic protein expression profile or into functional sperm have been reported. Organ culture of testicular fragments of 5 days postpartum (dpp) neonatal rats was performed for up to 52 days. Evaluation of microscopic morphology, testosterone levels, mRNA and protein expression as measured by RT-qPCR and immunostaining were conducted to monitor germ cell differentiation in vitro. Potential effects of melatonin, Glutamax® medium, retinoic acid and the presence of epidydimal fat tissue on the spermatogenic process were evaluated. A minimum of three biological replicates were performed for all experiments presented in this study. One-way ANOVA, ANOVA on ranks and student's t-test were applied to perform the statistical analysis. Male germ cells, present in testicular tissue pieces grown from 5 dpp rats, exhibited positive protein expression for Acrosin and Crem (cAMP (cyclic adenosine mono phosphate) response element modulator) after 52 days of culture in vitro. Intra-testicular testosterone production could be observed after 3 days of culture, while when epididymal fat tissue was added, spontaneous contractility of cultured seminiferous tubules could be observed after 21 days. However, no supportive effect of the supplementation with any factor or the co-culturing with epididymal fat tissue on germ cell differentiation in

  2. Structural and Biomechanical Adaptations to Free-Fall Landing in Hindlimb Cortical Bone of Growing Female Rats

    Directory of Open Access Journals (Sweden)

    Hsin-Shih Lin, Ho-Seng Wang, Hung-Ta Chiu, Kuang-You B. Cheng, Ar-Tyan Hsu, Tsang-Hai Huang

    2018-06-01

    Full Text Available The purpose of the study was to investigate the adaptation process of hindlimb cortical bone subjected to free-fall landing training. Female Wistar rats (7 weeks old were randomly assigned to four landing (L groups and four age-matched control (C groups (n = 12 per group: L1, L2, L4 L8, C1, C2, C4 and C8. Animals in the L1, L2, L4 and L8 groups were respectively subjected to 1, 2, 4 and 8 weeks of free-fall-landing training (40 cm height, 30 times/day and 5 days/week while the C1, C2, C4 and C8 groups served as age-matched control groups. The tibiae of the L8 group were higher in cortical bone mineral content (BMC than those in the C8 group (p < 0.05. Except for the higher bone mineralization over bone surface ratio (MS/BS, % shown in the tibiae of the L1 group (p < 0.05, dynamic histomorphometry in the tibial and femoral cortical bone showed no difference between landing groups and their age-matched control groups. In the femora, the L1 group was lower than the C1 group in cortical bone area (Ct.Ar and cortical thickness (Ct.Th (p < 0.05; however, the L4 group was higher than the C4 group in Ct.Ar and Ct.Th (p <0 .05. In the tibiae, the moment of inertia about the antero-posterior axis (Iap, Ct.Ar and Ct.Th was significantly higher in the L8 group than in the C8 group (p < 0.05. In biomechanical testing, fracture load (FL of femora was lower in the L1 group than in the C1 group (p < 0.05. Conversely, yield load (YL, FL and yield load energy (YE of femora, as well as FL of tibiae were all significantly higher in the L8 group than in the C8 group (p < 0.05. Free-fall landing training may initially compromise bone material. However, over time, the current free-fall landing training induced improvements in biomechanical properties and/or the structure of growing bones.

  3. Structural and Biomechanical Adaptations to Free-Fall Landing in Hindlimb Cortical Bone of Growing Female Rats.

    Science.gov (United States)

    Lin, Hsin-Shih; Wang, Ho-Seng; Chiu, Hung-Ta; Cheng, Kuang-You B; Hsu, Ar-Tyan; Huang, Tsang-Hai

    2018-06-01

    The purpose of the study was to investigate the adaptation process of hindlimb cortical bone subjected to free-fall landing training. Female Wistar rats (7 weeks old) were randomly assigned to four landing (L) groups and four age-matched control (C) groups (n = 12 per group): L1, L2, L4 L8, C1, C2, C4 and C8. Animals in the L1, L2, L4 and L8 groups were respectively subjected to 1, 2, 4 and 8 weeks of free-fall-landing training (40 cm height, 30 times/day and 5 days/week) while the C1, C2, C4 and C8 groups served as age-matched control groups. The tibiae of the L8 group were higher in cortical bone mineral content (BMC) than those in the C8 group (p < 0.05). Except for the higher bone mineralization over bone surface ratio (MS/BS, %) shown in the tibiae of the L1 group (p < 0.05), dynamic histomorphometry in the tibial and femoral cortical bone showed no difference between landing groups and their age-matched control groups. In the femora, the L1 group was lower than the C1 group in cortical bone area (Ct.Ar) and cortical thickness (Ct.Th) (p < 0.05); however, the L4 group was higher than the C4 group in Ct.Ar and Ct.Th (p <0 .05). In the tibiae, the moment of inertia about the antero-posterior axis ( I ap ), Ct.Ar and Ct.Th was significantly higher in the L8 group than in the C8 group (p < 0.05). In biomechanical testing, fracture load (FL) of femora was lower in the L1 group than in the C1 group (p < 0.05). Conversely, yield load (YL), FL and yield load energy (YE) of femora, as well as FL of tibiae were all significantly higher in the L8 group than in the C8 group (p < 0.05). Free-fall landing training may initially compromise bone material. However, over time, the current free-fall landing training induced improvements in biomechanical properties and/or the structure of growing bones.

  4. Trimethyltin (TMT) neurotoxicity in organotypic rat hippocampal slice cultures

    DEFF Research Database (Denmark)

    Noraberg, J; Gramsbergen, J B; Fonnum, F

    1998-01-01

    ) propidium iodide (PI) uptake, (b) lactate dehydrogenase (LDH) efflux into the culture medium, (c) cellular cobalt uptake as an index of calcium influx, (d) ordinary Nissl cell staining, and (e) immunohistochemical staining for microtubule-associated protein 2 (MAP-2). Cellular degeneration as assessed...... to in vivo cell stain observations of rats acutely exposed to TMT. The mean PI uptake of the cultures and the LDH efflux into the medium were highly correlated. The combined results obtained by the different markers indicate that the hippocampal slice culture method is a feasible model for further studies...

  5. The antidepressant effect of melatonin and fluoxetine in diabetic rats is associated with a reduction of the oxidative stress in the prefrontal and hippocampal cortices.

    Science.gov (United States)

    Rebai, Redouane; Jasmin, Luc; Boudah, Abdennacer

    2017-09-01

    In the past few years possible mechanisms that link diabetes and depression have been found. One of these mechanisms is the increase in lipid peroxidation and decrease in antioxidant activity in the hippocampal and prefrontal cortices, which are brain areas involved in mood. The goal of the present study was to evaluate the effect of an antidepressant and of an antioxidant on behavior and oxidative activity in brains of diabetic rats. Rats rendered diabetic after a treatment with streptozotocin (STZ) (60mg/kg) were treated with fluoxetine (15mg/kg), melatonin (10mg/kg), or vehicle for 4 weeks. All animals were tested for signs of depression and anxiety using the elevated plus maze (EPM), open field test (OFT) and the forced swim test (FST). Four groups were compared: (1) normoglycemic, (2) hyperglycemic vehicle treated, and hyperglycemic (3) fluoxetine or (4) melatonin treated rats. On the last day of the study, blood samples were obtained to determine the levels of hemoglobin A1c (HbA1c). Also, brain samples were collected to measure the oxidative stress in the hippocampal and prefrontal cortices using the thiobarbituric acid reactive substances (TBARS) assay. The activity of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), and glutathione S-transferase (GST) were also measured on the brain samples. The results show that both fluoxetine and melatonin decrease the signs of depression and anxiety in all tests. Concomitantly, the levels of HbA1c were reduced in drug treated rats, and to a greater degree in the fluoxetine group. In the cerebral cortex of diabetic rats, TBARS was increased, while the activity of CAT, GPx and GST were decreased. Fluoxetine and melatonin treatments decreased TBARS in both cortices. In the prefrontal cortex, fluoxetine and melatonin restored the activity of CAT, while only melatonin improved the activity of GPx and GST. In the hippocampus, the activity of GPx alone was restored by melatonin, while fluoxetine had no

  6. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P < 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  7. Role of IGF-1 in cortical plasticity and functional deficit induced by sensorimotor restriction.

    Science.gov (United States)

    Mysoet, Julien; Dupont, Erwan; Bastide, Bruno; Canu, Marie-Hélène

    2015-09-01

    In the adult rat, sensorimotor restriction by hindlimb unloading (HU) is known to induce impairments in motor behavior as well as a disorganization of somatosensory cortex (shrinkage of the cortical representation of the hindpaw, enlargement of the cutaneous receptive fields, decreased cutaneous sensibility threshold). Recently, our team has demonstrated that IGF-1 level was decreased in the somatosensory cortex of rats submitted to a 14-day period of HU. To determine whether IGF-1 is involved in these plastic mechanisms, a chronic cortical infusion of this substance was performed by means of osmotic minipump. When administered in control rats, IGF-1 affects the size of receptive fields and the cutaneous threshold, but has no effect on the somatotopic map. In addition, when injected during the whole HU period, IGF-1 is interestingly implied in cortical changes due to hypoactivity: the shrinkage of somatotopic representation of hindlimb is prevented, whereas the enlargement of receptive fields is reduced. IGF-1 has no effect on the increase in neuronal response to peripheral stimulation. We also explored the functional consequences of IGF-1 level restoration on tactile sensory discrimination. In HU rats, the percentage of paw withdrawal after a light tactile stimulation was decreased, whereas it was similar to control level in HU-IGF-1 rats. Taken together, the data clearly indicate that IGF-1 plays a key-role in cortical plastic mechanisms and in behavioral alterations induced by a decrease in sensorimotor activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. PARP Inhibition Prevents Ethanol-Induced Neuroinflammatory Signaling and Neurodegeneration in Rat Adult-Age Brain Slice Cultures

    Science.gov (United States)

    Tajuddin, Nuzhath; Kim, Hee-Yong

    2018-01-01

    Using rat adult-age hippocampal-entorhinal cortical (HEC) slice cultures, we examined the role of poly [ADP-ribose] polymerase (PARP) in binge ethanol’s brain inflammatory and neurodegenerative mechanisms. Activated by DNA strand breaks, PARP (principally PARP1 in the brain) promotes DNA repair via poly [ADP-ribose] (PAR) products, but PARP overactivation triggers regulated neuronal necrosis (e.g., parthanatos). Previously, we found that brain PARP1 levels were upregulated by neurotoxic ethanol binges in adult rats and HEC slices, and PARP inhibitor PJ34 abrogated slice neurodegeneration. Binged HEC slices also exhibited increased Ca+2-dependent phospholipase A2 (PLA2) isoenzymes (cPLA2 IVA and sPLA2 IIA) that mobilize proinflammatory ω6 arachidonic acid (ARA). We now find in 4-day–binged HEC slice cultures (100 mM ethanol) that PARP1 elevations after two overnight binges precede PAR, cPLA2, and sPLA2 enhancements by 1 day and high-mobility group box-1 (HMGB1), an ethanol-responsive alarmin that augments proinflammatory cytokines via toll-like receptor-4 (TLR4), by 2 days. After verifying that PJ34 effectively blocks PARP activity (↑PAR), we demonstrated that, like PJ34, three other PARP inhibitors—olaparib, veliparib, and 4-aminobenzamide—provided neuroprotection from ethanol. Importantly, PJ34 and olaparib also prevented ethanol’s amplification of the PLA2 isoenzymes, and two PLA2 inhibitors were neuroprotective—thus coupling PARP to PLA2, with PLA2 activity promoting neurodegeneration. Also, PJ34 and olaparib blocked ethanol-induced HMGB1 elevations, linking brain PARP induction to TLR4 activation. The results provide evidence in adult brains that induction of PARP1 may mediate dual neuroinflammatory pathways (PLA2→phospholipid→ARA and HMGB1→TLR4→proinflammatory cytokines) that are complicit in binge ethanol-induced neurodegeneration. PMID:29339456

  9. Fast, Na+ /K+ pump driven, steady-state transcytolemmal water exchange in neuronal tissue: A study of rat brain cortical cultures.

    Science.gov (United States)

    Bai, Ruiliang; Springer, Charles S; Plenz, Dietmar; Basser, Peter J

    2018-06-01

    Water homeostasis and transport play important roles in brain function (e.g., ion homeostasis, neuronal excitability, cell volume regulation, etc.). However, specific mechanisms of water transport across cell membranes in neuronal tissue have not been completely elaborated. The kinetics of transcytolemmal water exchange were measured in neuronal tissue using simultaneous, real-time fluorescence and nuclear magnetic resonance (NMR) measurements of perfused, active brain organotypic cortical cultures. Perfusion with a paramagnetic MRI contrast agent, gadoteridol, allows NMR determination of the unidirectional rate constant for steady-state cellular water efflux (k io ), and the mole fraction of intracellular water ( pi), related to the average cell volume (V). Changes in intracellular calcium concentration [Cai2+] were used as a proxy for neuronal activity and were monitored by fluorescence imaging. The k io value, averaged over all cultures (N = 99) at baseline, was 2.02 (±1.72) s -1 , indicating that on average, the equivalent of the entire intracellular water volume turns over twice each second. To probe possible molecular pathways, the specific Na + -K + -ATPase (NKA) inhibitor, ouabain (1 mM), was transiently introduced into the perfusate. This caused significant transient changes (N = 8): [Cai2+] rose ∼250%, V rose ∼89%, and k io fell ∼45%, with a metabolically active k io contribution probably eliminated by ouabain saturation. These results suggest that transcytolemmal water exchange in neuronal tissue involves mechanisms affected by NKA activity as well as passive pathways. The active pathway may account for half of the basal homeostatic water flux. Magn Reson Med 79:3207-3217, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    Science.gov (United States)

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  11. Distinct Laterality in Forelimb-Movement Representations of Rat Primary and Secondary Motor Cortical Neurons with Intratelencephalic and Pyramidal Tract Projections.

    Science.gov (United States)

    Soma, Shogo; Saiki, Akiko; Yoshida, Junichi; Ríos, Alain; Kawabata, Masanori; Sakai, Yutaka; Isomura, Yoshikazu

    2017-11-08

    Two distinct motor areas, the primary and secondary motor cortices (M1 and M2), play crucial roles in voluntary movement in rodents. The aim of this study was to characterize the laterality in motor cortical representations of right and left forelimb movements. To achieve this goal, we developed a novel behavioral task, the Right-Left Pedal task, in which a head-restrained male rat manipulates a right or left pedal with the corresponding forelimb. This task enabled us to monitor independent movements of both forelimbs with high spatiotemporal resolution. We observed phasic movement-related neuronal activity (Go-type) and tonic hold-related activity (Hold-type) in isolated unilateral movements. In both M1 and M2, Go-type neurons exhibited bias toward contralateral preference, whereas Hold-type neurons exhibited no bias. The contralateral bias was weaker in M2 than M1. Moreover, we differentiated between intratelencephalic (IT) and pyramidal tract (PT) neurons using optogenetically evoked spike collision in rats expressing channelrhodopsin-2. Even in identified PT and IT neurons, Hold-type neurons exhibited no lateral bias. Go-type PT neurons exhibited bias toward contralateral preference, whereas IT neurons exhibited no bias. Our findings suggest a different laterality of movement representations of M1 and M2, in each of which IT neurons are involved in cooperation of bilateral movements, whereas PT neurons control contralateral movements. SIGNIFICANCE STATEMENT In rodents, the primary and secondary motor cortices (M1 and M2) are involved in voluntary movements via distinct projection neurons: intratelencephalic (IT) neurons and pyramidal tract (PT) neurons. However, it remains unclear whether the two motor cortices (M1 vs M2) and the two classes of projection neurons (IT vs PT) have different laterality of movement representations. We optogenetically identified these neurons and analyzed their functional activity using a novel behavioral task to monitor movements

  12. State-dependent changes in auditory sensory gating in different cortical areas in rats.

    Directory of Open Access Journals (Sweden)

    Renli Qi

    Full Text Available Sensory gating is a process in which the brain's response to a repetitive stimulus is attenuated; it is thought to contribute to information processing by enabling organisms to filter extraneous sensory inputs from the environment. To date, sensory gating has typically been used to determine whether brain function is impaired, such as in individuals with schizophrenia or addiction. In healthy subjects, sensory gating is sensitive to a subject's behavioral state, such as acute stress and attention. The cortical response to sensory stimulation significantly decreases during sleep; however, information processing continues throughout sleep, and an auditory evoked potential (AEP can be elicited by sound. It is not known whether sensory gating changes during sleep. Sleep is a non-uniform process in the whole brain with regional differences in neural activities. Thus, another question arises concerning whether sensory gating changes are uniform in different brain areas from waking to sleep. To address these questions, we used the sound stimuli of a Conditioning-testing paradigm to examine sensory gating during waking, rapid eye movement (REM sleep and Non-REM (NREM sleep in different cortical areas in rats. We demonstrated the following: 1. Auditory sensory gating was affected by vigilant states in the frontal and parietal areas but not in the occipital areas. 2. Auditory sensory gating decreased in NREM sleep but not REM sleep from waking in the frontal and parietal areas. 3. The decreased sensory gating in the frontal and parietal areas during NREM sleep was the result of a significant increase in the test sound amplitude.

  13. Transcriptomic Analysis of Ciguatoxin-Induced Changes in Gene Expression in Primary Cultures of Mice Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Juan Andrés Rubiolo

    2018-05-01

    Full Text Available Ciguatoxins are polyether marine toxins that act as sodium channel activators. These toxins cause ciguatera, one of the most widespread nonbacterial forms of food poisoning, which presents several symptoms in humans including long-term neurological alterations. Earlier work has shown that both acute and chronic exposure of primary cortical neurons to synthetic ciguatoxin CTX3C have profound impacts on neuronal function. Thus, the present work aimed to identify relevant neuronal genes and metabolic pathways that could be altered by ciguatoxin exposure. To study the effect of ciguatoxins in primary neurons in culture, we performed a transcriptomic analysis using whole mouse genome microarrays, for primary cortical neurons exposed during 6, 24, or 72 h in culture to CTX3C. Here, we have shown that the effects of the toxin on gene expression differ with the exposure time. The results presented here have identified several relevant genes and pathways related to the effect of ciguatoxins on neurons and may assist in future research or even treatment of ciguatera. Moreover, we demonstrated that the effects of the toxin on gene expression were exclusively consequential of its action as a voltage-gated sodium channel activator, since all the effects of CTX3C were avoided by preincubation of the neurons with the sodium channel blocker tetrodotoxin.

  14. Calcium dynamics of cortical astrocytic networks in vivo.

    Directory of Open Access Journals (Sweden)

    Hajime Hirase

    2004-04-01

    Full Text Available Large and long-lasting cytosolic calcium surges in astrocytes have been described in cultured cells and acute slice preparations. The mechanisms that give rise to these calcium events have been extensively studied in vitro. However, their existence and functions in the intact brain are unknown. We have topically applied Fluo-4 AM on the cerebral cortex of anesthetized rats, and imaged cytosolic calcium fluctuation in astrocyte populations of superficial cortical layers in vivo, using two-photon laser scanning microscopy. Spontaneous [Ca(2+](i events in individual astrocytes were similar to those observed in vitro. Coordination of [Ca(2+](i events among astrocytes was indicated by the broad cross-correlograms. Increased neuronal discharge was associated with increased astrocytic [Ca(2+](i activity in individual cells and a robust coordination of [Ca(2+](i signals in neighboring astrocytes. These findings indicate potential neuron-glia communication in the intact brain.

  15. Atorvastatin enhances neurite outgrowth in cortical neurons in vitro via up-regulating the Akt/mTOR and Akt/GSK-3β signaling pathways

    Science.gov (United States)

    Jin, Ying; Sui, Hai-juan; Dong, Yan; Ding, Qi; Qu, Wen-hui; Yu, Sheng-xue; Jin, Ying-xin

    2012-01-01

    Aim: To investigate whether atorvastatin can promote formation of neurites in cultured cortical neurons and the signaling mechanisms responsible for this effect. Methods: Cultured rat cerebral cortical neurons were incubated with atorvastatin (0.05–10 μmol/L) for various lengths of time. For pharmacological experiments, inhibitors were added 30 min prior to addition of atorvastatin. Control cultures received a similar amount of DMSO. Following the treatment period, phase-contrast digital images were taken. Digital images of neurons were analyzed for total neurite branch length (TNBL), neurite number, terminal branch number, and soma area by SPOT Advanced Imaging software. After incubation with atorvastatin for 48 h, the levels of phosphorylated 3-phosphoinoside-dependent protein kinase-1 (PDK1), phospho-Akt, phosphorylated mammalian target of rapamycin (mTOR), phosphorylated 4E-binding protein 1 (4E-BP1), p70S6 kinase (p70S6K), and glycogen synthase kinase-3β (GSK-3β) in the cortical neurons were evaluated using Western blotting analyses. Results: Atorvastatin (0.05–10 μmol/L) resulted in dose-dependent increase in neurite number and length in these neurons. Pretreatment of the cortical neurons with phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 (30 μmol/L) and wortmannin (5 μmol/L), Akt inhibitor tricribine (1 μmol/L) or mTOR inhibitor rapamycin (100 nmol/L) blocked the atorvastatin-induced increase in neurite outgrowth, suggesting that atorvastatin promoted neurite outgrowth via activating the PI3K/Akt/mTOR signaling pathway. Atorvastatin (10 μmol/L) significantly increased the levels of phosphorylated PDK1, Akt and mTOR in the cortical neurons, which were prevented by LY294002 (30 μmol/L). Moreover, atorvastatin (10 μmol/L) stimulated the phosphorylation of 4E-BP1 and p70S6K, the substrates of mTOR, in the cortical neurons. In addition, atorvastatin (10 μmol/L) significantly increased the phosphorylated GSK-3β level in the cortical

  16. Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons

    Directory of Open Access Journals (Sweden)

    Ullah Ikram

    2012-01-01

    Full Text Available Abstract Background Exposure to ethanol during early development triggers severe neuronal death by activating multiple stress pathways and causes neurological disorders, such as fetal alcohol effects or fetal alcohol syndrome. This study investigated the effect of ethanol on intracellular events that predispose developing neurons for apoptosis via calcium-mediated signaling. Although the underlying molecular mechanisms of ethanol neurotoxicity are not completely determined, mitochondrial dysfunction, altered calcium homeostasis and apoptosis-related proteins have been implicated in ethanol neurotoxicity. The present study was designed to evaluate the neuroprotective mechanisms of metformin (Met and thymoquinone (TQ during ethanol toxicity in rat prenatal cortical neurons at gestational day (GD 17.5. Results We found that Met and TQ, separately and synergistically, increased cell viability after ethanol (100 mM exposure for 12 hours and attenuated the elevation of cytosolic free calcium [Ca2+]c. Furthermore, Met and TQ maintained normal physiological mitochondrial transmembrane potential (ΔψM, which is typically lowered by ethanol exposure. Increased cytosolic free [Ca2+]c and lowered mitochondrial transmembrane potential after ethanol exposure significantly decreased the expression of a key anti-apoptotic protein (Bcl-2, increased expression of Bax, and stimulated the release of cytochrome-c from mitochondria. Met and TQ treatment inhibited the apoptotic cascade by increasing Bcl-2 expression. These compounds also repressed the activation of caspase-9 and caspase-3 and reduced the cleavage of PARP-1. Morphological conformation of cell death was assessed by TUNEL, Fluoro-Jade-B, and PI staining. These staining methods demonstrated more cell death after ethanol treatment, while Met, TQ or Met plus TQ prevented ethanol-induced apoptotic cell death. Conclusion These findings suggested that Met and TQ are strong protective agents against ethanol

  17. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury

    International Nuclear Information System (INIS)

    Zhong Qing; Terlecky, Stanley R.; Lash, Lawrence H.

    2009-01-01

    Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

  18. Study on the effect of hypoxia on apoptosis of cultured newly born rat cardiac myocytes

    International Nuclear Information System (INIS)

    Su Weidong; Li Huiqiang; Yao Zhi

    2005-01-01

    Objective: To investigate the possible hypoxia-mediated cellular apoptosis after ischemic cardiac injury via a model of cultured newly born rat cardiac myocytes. Methods: Cardiac myocytes cultures from newly born rats (1-3d) were examined for apoptosis with HE stain and flow cytometry after cultured 96h and again examined after exposure to hypoxic environment for 16h. Results: Apoptotic changes were evident in the hypoxic culture cells. The HE stain revealed cellular shrinkage, nuclear chromosomal condensation with cytoplasmic eosinophilia. Also, distinct apoptosis peak was observed in the flow cytometry. Conclusion: This experiment proved that hypoxic model of cardiac myocyte culture showed definite apoptosis of the cells. (authors)

  19. Acetylcholinesterase potentiates [3H]fluorowillardiine and [3H]AMPA binding to rat cortical membranes

    International Nuclear Information System (INIS)

    Olivera, S.; Rodriguez-Ithurralde, D.; Henley, J.M.

    1999-01-01

    In addition to its action at cholinergic synapses acetylcholinesterase (AChE) has been proposed to modulate neuronal activity by mechanisms unrelated to the hydrolysis of acetylcholine. We have investigated the effects of AChE on the binding of the specific AMPA receptor agonists (S)-[ 3 H]5-fluorowillardiine ([ 3 H]FW) and [ 3 H]AMPA to rat cortical membranes. Pretreatment of membranes with AChE causes a dose-dependent increase in the binding of both radiolabelled agonists with a maximal increase to ∼60% above control. This increase is completely blocked by the specific AChE inhibitors propidium, physostigmine, DFP and BW 284C51. AChE pretreatment had no effect on [ 3 H]kainate binding. [ 3 H]FW binding to membranes from young (15-day-old) rats is four orders of magnitude more sensitive to AChE modulation than membranes from adult rats (EC 50 values of 4x10 -5 and 0.1 unit/ml, respectively) although the total percentage increase in binding is similar. Furthermore, the AChE-induced potentiation of [ 3 H]FW binding is Ca 2+ - and temperature-dependent suggesting an enzymatic action for AChE in this system. Saturation binding experiments with [ 3 H]FW to adult membranes reveal high and low affinity binding sites and demonstrate that the main action of AChE is to increase the B max of both sites. These findings suggest that modulation of AMPA receptors could provide a molecular mechanism of action for the previously reported effects of AChE in synapse formation, synaptic plasticity and neurodegeneration. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Phenotype Analysis and Quantification of Proliferating Cells in the Cortical Gray Matter of the Adult Rat

    International Nuclear Information System (INIS)

    Mori, Tetsuji; Wakabayashi, Taketoshi; Takamori, Yasuharu; Kitaya, Kotaro; Yamada, Hisao

    2009-01-01

    In intact adult mammalian brains, there are two neurogenic regions: the subependymal zone and the subgranular layer of the hippocampus. Even outside these regions, small numbers of proliferating precursors do exist. Many studies suggest that the majority of these are oligodendrocyte precursors that express NG2, a chondroitin sulfate proteoglycan, and most of the residual proliferating cells seem to be endothelial cells. However, it is still unclear whether NG2-immunonegative proliferating precursors are present, because previous studies have neglected their possible existence. In this study, we systematically analyzed the phenotypes of the proliferating cells in the intact adult rat cortical gray matter. We improved our techniques and carefully characterized the proliferating cells, because there were several problems with identifying and quantifying the proliferating cells: the detection of NG2-expressing cells was dependent on the fixation condition; there were residual proliferating leukocytes in the blood vessels; and two anti-NG2 antibodies gave rise to different staining patterns. Moreover, we used two methods, BrdU and Ki67 immunostaining, to quantify the proliferating cells. Our results strongly suggest that in the intact adult cerebral cortical gray matter, there were only two types of proliferating cells: the majority were NG2-expressing cells, including pericytes, and the rest were endothelial cells

  1. Protection of cortical cells by equine estrogens against glutamate-induced excitotoxicity is mediated through a calcium independent mechanism

    Directory of Open Access Journals (Sweden)

    Perrella Joel

    2005-05-01

    Full Text Available Abstract Background High concentrations of glutamate can accumulate in the brain and may be involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease. This form of neurotoxicity involves changes in the regulation of cellular calcium (Ca2+ and generation of free radicals such as peroxynitrite (ONOO-. Estrogen may protect against glutamate-induced cell death by reducing the excitotoxic Ca2+ influx associated with glutamate excitotoxicity. In this study, the inhibition of N-methyl-D-aspartate (NMDA receptor and nitric oxide synthase (NOS along with the effect of 17β-estradiol (17β-E2 and a more potent antioxidant Δ8, 17β-estradiol (Δ8, 17β-E2 on cell viability and intracellular Ca2+ ([Ca2+]i, following treatment of rat cortical cells with glutamate, was investigated. Results Primary rat cortical cells were cultured for 7–12 days in Neurobasal medium containing B27 supplements. Addition of glutamate (200 μM decreased cell viability to 51.3 ± 0.7% compared to control. Treatment with the noncompetitive NMDAR antagonist, MK-801, and the NOS inhibitor, L-NAME, completely prevented cell death. Pretreatment (24 hrs with 17β-E2 and Δ8, 17β-E2 (0.01 to 10 μM significantly reduced cell death. 17β-E2 was more potent than Δ8, 17β-E2. Glutamate caused a rapid 2.5 fold increase in [Ca2+]i. Treatment with 0.001 to 10 μM MK-801 reduced the initial Ca2+ influx by 14–41% and increased cell viability significantly. Pretreatment with 17β-E2 and Δ8, 17β-E2 had no effect on Ca2+ influx but protected the cortical cells against glutamate-induced cell death. Conclusion Glutamate-induced cell death in cortical cultures can occur through NMDAR and NOS-linked mechanisms by increasing nitric oxide and ONOO-. Equine estrogens: 17β-E2 and Δ8, 17β-E2, significantly protected cortical cells against glutamate-induced excitotoxicity by a mechanism that appears to be independent of Ca2+ influx. To our knowledge, this is a first

  2. Increased resistance during jump exercise does not enhance cortical bone formation.

    Science.gov (United States)

    Boudreaux, Ramon D; Swift, Joshua M; Gasier, Heath G; Wiggs, Michael P; Hogan, Harry A; Fluckey, James D; Bloomfield, Susan A

    2014-01-01

    This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cortical bone of the tibia and femur mid-diaphyses. Sprague-Dawley rats (male, 6 months old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE for 5 wk. Load in the HRE group was progressively increased from 80 g added to a weighted vest (50 repetitions) to 410 g (16 repetitions). The LRE rats completed the same protocol as the HRE group (same number of repetitions), with only a 30-g vest applied. Low- and high-load jump RE resulted in 6%-11% higher cortical bone mineral content and cortical bone area compared with controls, as determined by in vivo peripheral quantitative computed tomography measurements. In the femur, however, only LRE demonstrated improvements in cortical volumetric bone mineral density (+11%) and cross-sectional moment of inertia (+20%) versus the CC group. The three-point bending to failure revealed a marked increase in tibial maximum force (25%-29%), stiffness (19%-22%), and energy to maximum force (35%-55%) and a reduction in elastic modulus (-11% to 14%) in both LRE and HRE compared with controls. Dynamic histomorphometry assessed at the tibia mid-diaphysis determined that both LRE and HRE resulted in 20%-30% higher periosteal mineralizing surface versus the CC group. Mineral apposition rate and bone formation rate were significantly greater in animals in the LRE group (27%, 39%) than those in the HRE group. These data demonstrate that jump training with minimal loading is equally, and sometimes more, effective at augmenting cortical bone integrity compared with overload training in skeletally mature rats.

  3. Muscarinic contribution to the acute cortical effects of vagus nerve stimulation

    Science.gov (United States)

    Nichols, Justin A.

    2011-12-01

    Electrical stimulation of the vagus nerve (VNS) has been used to treat more than 60,000 patients with drug-resistant epilepsy and is under investigation as a treatment for several other neurological disorders and conditions. Among these, VNS increases memory performance and enhances recovery of motor and cognitive function in animal models of traumatic brain injury. Recent research indicates that pairing brief VNS with tones multiple-times a day for several weeks induces long-term, input specific cortical plasticity, which can be used to re-normalize the pathological cortical reorganization and eliminate a behavioral correlate of chronic tinnitus in noise exposed rats. Despite the therapeutic potential, the mechanisms of action of VNS remain speculative. In chapter 2 of this dissertation, the acute effects of VNS on cortical synchrony, excitability, and temporal processing are examined. In anesthetized rats implanted with multi-electrode arrays, VNS increased and decorrelated spontaneous multi-unit activity, and suppressed entrainment to repetitive noise burst stimulation at 6 to 8 Hz, but not after systemic administration of the muscarinic antagonist scopolamine. Chapter 3 focuses on VNS-tone pairing induced cortical plasticity. Pairing VNS with a tone one hundred times in anesthetized rats resulted in frequency specific plasticity in 31% of the auditory cortex sites. Half of these sites exhibited a frequency specific increase in firing rate and half exhibited a frequency specific decrease. Muscarinic receptor blockade with scopolamine almost entirely prevented the frequency specific increases, but not decreases. Collectively, these experiments demonstrate the capacity for VNS to not only acutely influence cortical synchrony, and excitability, but to also influence temporal and spectral tuning via muscarinic receptor activation. These results strengthen the hypothesis that acetylcholine and muscarinic receptors are involved in the mechanisms of action of VNS and

  4. Uptake of thyroxine in cultured anterior pituitary cells of euthyroid rats

    NARCIS (Netherlands)

    M.E. Everts (Maria); R. Docter (Roel); E.P.C.M. Moerings (Ellis); P.M. van Koetsveld (Peter); T.J. Visser (Theo); E.P. Krenning (Eric); G. Hennemann; M. de Jong (Marcel)

    1994-01-01

    textabstractThe uptake of [125I]T4 was investigated in cultured anterior pituitary cells isolated from adult fed Wistar rats and cultured for 3 days in medium containing 10% fetal calf serum. Experiments were performed with [125I]T4 (10(5) to 2 x 10(6) cpm; 0.35-7 nM)

  5. Neonatal L-glutamine modulates anxiety-like behavior, cortical spreading depression, and microglial immunoreactivity: analysis in developing rats suckled on normal size- and large size litters.

    Science.gov (United States)

    de Lima, Denise Sandrelly Cavalcanti; Francisco, Elian da Silva; Lima, Cássia Borges; Guedes, Rubem Carlos Araújo

    2017-02-01

    In mammals, L-glutamine (Gln) can alter the glutamate-Gln cycle and consequently brain excitability. Here, we investigated in developing rats the effect of treatment with different doses of Gln on anxiety-like behavior, cortical spreading depression (CSD), and microglial activation expressed as Iba1-immunoreactivity. Wistar rats were suckled in litters with 9 and 15 pups (groups L 9 and L 15 ; respectively, normal size- and large size litters). From postnatal days (P) 7-27, the animals received Gln per gavage (250, 500 or 750 mg/kg/day), or vehicle (water), or no treatment (naive). At P28 and P30, we tested the animals, respectively, in the elevated plus maze and open field. At P30-35, we measured CSD parameters (velocity of propagation, amplitude, and duration). Fixative-perfused brains were processed for microglial immunolabeling with anti-IBA-1 antibodies to analyze cortical microglia. Rats treated with Gln presented an anxiolytic behavior and accelerated CSD propagation when compared to the water- and naive control groups. Furthermore, CSD velocity was higher (p litter sizes, and for microglial activation in the L 15 groups. Besides confirming previous electrophysiological findings (CSD acceleration after Gln), our data demonstrate for the first time a behavioral and microglial activation that is associated with early Gln treatment in developing animals, and that is possibly operated via changes in brain excitability.

  6. Autophagy activation is involved in 3,4-methylenedioxymethamphetamine ('ecstasy'--induced neurotoxicity in cultured cortical neurons.

    Directory of Open Access Journals (Sweden)

    I-Hsun Li

    Full Text Available Autophagic (type II cell death, characterized by the massive accumulation of autophagic vacuoles in the cytoplasm of cells, has been suggested to play pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy is an illicit drug causing long-term neurotoxicity in the brain. Apoptotic (type I and necrotic (type III cell death have been implicated in MDMA-induced neurotoxicity, while the role of autophagy in MDMA-elicited neurotoxicity has not been investigated. The present study aimed to evaluate the occurrence and contribution of autophagy to neurotoxicity in cultured rat cortical neurons challenged with MDMA. Autophagy activation was monitored by expression of microtubule-associated protein 1 light chain 3 (LC3; an autophagic marker using immunofluorescence and western blot analysis. Here, we demonstrate that MDMA exposure induced monodansylcadaverine (MDC- and LC3B-densely stained autophagosome formation and increased conversion of LC3B-I to LC3B-II, coinciding with the neurodegenerative phase of MDMA challenge. Autophagy inhibitor 3-methyladenine (3-MA pretreatment significantly attenuated MDMA-induced autophagosome accumulation, LC3B-II expression, and ameliorated MDMA-triggered neurite damage and neuronal death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in neurons and aggravated neurite degeneration, indicating that excessive autophagosome accumulation contributes to MDMA-induced neurotoxicity. Furthermore, MDMA induced phosphorylation of AMP-activated protein kinase (AMPK and its downstream unc-51-like kinase 1 (ULK1, suggesting the AMPK/ULK1 signaling pathway might be involved in MDMA-induced autophagy activation.

  7. State-dependent intrinsic predictability of cortical network dynamics.

    Directory of Open Access Journals (Sweden)

    Leila Fakhraei

    Full Text Available The information encoded in cortical circuit dynamics is fleeting, changing from moment to moment as new input arrives and ongoing intracortical interactions progress. A combination of deterministic and stochastic biophysical mechanisms governs how cortical dynamics at one moment evolve from cortical dynamics in recently preceding moments. Such temporal continuity of cortical dynamics is fundamental to many aspects of cortex function but is not well understood. Here we study temporal continuity by attempting to predict cortical population dynamics (multisite local field potential based on its own recent history in somatosensory cortex of anesthetized rats and in a computational network-level model. We found that the intrinsic predictability of cortical dynamics was dependent on multiple factors including cortical state, synaptic inhibition, and how far into the future the prediction extends. By pharmacologically tuning synaptic inhibition, we obtained a continuum of cortical states with asynchronous population activity at one extreme and stronger, spatially extended synchrony at the other extreme. Intermediate between these extremes we observed evidence for a special regime of population dynamics called criticality. Predictability of the near future (10-100 ms increased as the cortical state was tuned from asynchronous to synchronous. Predictability of the more distant future (>1 s was generally poor, but, surprisingly, was higher for asynchronous states compared to synchronous states. These experimental results were confirmed in a computational network model of spiking excitatory and inhibitory neurons. Our findings demonstrate that determinism and predictability of network dynamics depend on cortical state and the time-scale of the dynamics.

  8. Chronic Underactivity of Medial Frontal Cortical β2-Containing Nicotinic Receptors Increases Clozapine-Induced Working Memory Impairment in Female Rats

    Science.gov (United States)

    Levin, Edward D.; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N. Channelle

    2009-01-01

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of β2-containing nicotinic receptors with dihydro-β-erythrodine (DHβE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal α7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical α7 and β2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHβE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHβE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHβE infusion potentiated clozapine-induced memory impairment, whereas previously the memory

  9. Chronic underactivity of medial frontal cortical beta2-containing nicotinic receptors increases clozapine-induced working memory impairment in female rats.

    Science.gov (United States)

    Levin, Edward D; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N Channelle

    2009-03-17

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of beta2-containing nicotinic receptors with dihydro-beta-erythrodine (DHbetaE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal alpha7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical alpha7 and beta2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHbetaE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHbetaE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHbetaE infusion potentiated clozapine-induced memory impairment, whereas previously

  10. Tuning differentiation signals for efficient propagation and in vitro validation of rat embryonic stem cell cultures.

    Science.gov (United States)

    Meek, Stephen; Sutherland, Linda; Burdon, Tom

    2015-01-01

    The rat is one of the most commonly used laboratory animals in biomedical research and the recent isolation of genuine pluripotent rat embryonic stem (ES) cell lines has provided new opportunities for applying contemporary genetic engineering techniques to the rat and enhancing the use of this rodent in scientific research. Technical refinements that improve the stability of the rat ES cell cultures will undoubtedly further strengthen and broaden the use of these stem cells in biomedical research. Here, we describe a relatively simple and robust protocol that supports the propagation of germ line competent rat ES cells, and outline how tuning stem cell signaling using small molecule inhibitors can be used to both stabilize self-renewal of rat ES cell cultures and aid evaluation of their differentiation potential in vitro.

  11. Acute stress exposure preceding transient global brain ischemia exacerbates the decrease in cortical remodeling potential in the rat retrosplenial cortex.

    Science.gov (United States)

    Kutsuna, Nobuo; Yamashita, Akiko; Eriguchi, Takashi; Oshima, Hideki; Suma, Takeshi; Sakatani, Kaoru; Yamamoto, Takamitsu; Yoshino, Atsuo; Katayama, Yoichi

    2014-01-01

    Doublecortin (DCX)-immunoreactive (-ir) cells are candidates that play key roles in adult cortical remodeling. We have previously reported that DCX-ir cells decrease after stress exposure or global brain ischemia (GBI) in the cingulate cortex (Cg) of rats. Herein, we investigate whether the decrease in DCX-ir cells is exacerbated after GBI due to acute stress exposure preconditioning. Twenty rats were divided into 3 groups: acute stress exposure before GBI (Group P), non-stress exposure before GBI (Group G), and controls (Group C). Acute stress or GBI was induced by a forced swim paradigm or by transient bilateral common carotid artery occlusion, respectively. DCX-ir cells were investigated in the anterior cingulate cortex (ACC) and retrosplenial cortex (RS). The number of DCX-ir cells per unit area (mm(2)) decreased after GBI with or without stress preconditioning in the ACC and in the RS (ANOVA followed by a Tukey-type test, P<0.001). Moreover, compared to Group G, the number in Group P decreased significantly in RS (P<0.05), though not significantly in ACC. Many of the DCX-ir cells were co-localized with the GABAergic neuronal marker parvalbumin. The present study indicates that cortical remodeling potential of GABAergic neurons of Cg decreases after GBI, and moreover, the ratio of the decrease is exacerbated by acute stress preconditioning in the RS. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  12. RNA synthesis in primary cultures of adult rat hepatocytes

    International Nuclear Information System (INIS)

    Fugassa, E.; Gallo, G.; Voci, A.; Cordone, A.

    1983-01-01

    The ability of hepatocyte monolayers to synthesize RNA was investigated by measuring [3H]orotic acid incorporation into RNA and the total nuclear RNA polymerase activity as a function of the time in culture. The results demonstrate that primary cultures of hepatocytes maintained in a chemically defined serum- and hormone-free medium are able to synthesize RNA actively. This ability increases within the first 2 d of culture, despite the concomitant decrease in [3H]orotic acid uptake, and decreases only after 3 d. Factors such as serum, insulin, and dexamethasone, known to improve maintenance of functional hepatocytes, markedly stimulate the uptake of labeled precursor without apparently affecting the rate of RNA synthesis by cultured cells. It is suggested that the culture of adult rat hepatocytes provides a useful experimental model for the studies of hormonal regulation of transcription in liver

  13. Comparison of mesencephalic free-floating tissue culture grafts and cell suspension grafts in the 6-hydroxydopamine-lesioned rat

    DEFF Research Database (Denmark)

    Meyer, Morten; Widmer, H R; Wagner, B

    1998-01-01

    days in culture or directly as dissociated cell suspensions, and compared with regard to neuronal survival and ability to normalize rotational behavior in adult rats with unilateral 6-hydroxydopamine (6-OHDA) lesions. Other lesioned rats received injections of cell-free medium and served as controls...... of grafted dopaminergic neurons and to correlate that with the behavioral effects. Additional cultures and acutely prepared explants were also fixed and stored for histological investigation in order to estimate the loss of dopaminergic neurons in culture and after transplantation. Similar behavioral...... improvements in terms of significant reductions in amphetamine-induced rotations were observed in rats grafted with FFRT cultures (127%) and rats grafted with cell suspensions (122%), while control animals showed no normalization of rotational behavior. At 84 days after transplantation, there were similar...

  14. Spreading depression analysis of contact behaviour of rats.

    Science.gov (United States)

    Tikal, K

    1977-08-01

    Social contact behaviour induced by spreading cortical depression was studied in rats. The controls looked for and remained in contact, whereas between the rats with spreading cortical depression and their other partners there was no contact. This phenomenon is due mainly to the absence of an active urge for contact. The contact behaviour of rats is evidently controlled by the cerebral cortex or by subcortical areas of the brain which are inhibited after the elicitation of spreading depression. The experiments show that the contact behaviour of rats has at least two components - an active urge for contact and passive tolerance of contact.

  15. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    Science.gov (United States)

    2015-11-01

    developed a paradigm for testing neurophysiological changes within pre- motor cortex (PM) of the rat (RFA, rostral forelimb area) resulting from distant...Performed anatomical studies in healthy rats using tract-tracers to compare with CCI rats undergoing ADS  Performed first CCI study in motor cortex ...Nudo “Reorganization of motor cortex after controlled cortical impact in rats and implications for functional recovery,” J Neurotrauma, vol. 27, pp

  16. Live-Cell, Label-Free Identification of GABAergic and Non-GABAergic Neurons in Primary Cortical Cultures Using Micropatterned Surface

    Science.gov (United States)

    Kono, Sho; Kushida, Takatoshi; Hirano-Iwata, Ayumi; Niwano, Michio; Tanii, Takashi

    2016-01-01

    Excitatory and inhibitory neurons have distinct roles in cortical dynamics. Here we present a novel method for identifying inhibitory GABAergic neurons from non-GABAergic neurons, which are mostly excitatory glutamatergic neurons, in primary cortical cultures. This was achieved using an asymmetrically designed micropattern that directs an axonal process to the longest pathway. In the current work, we first modified the micropattern geometry to improve cell viability and then studied the axon length from 2 to 7 days in vitro (DIV). The cell types of neurons were evaluated retrospectively based on immunoreactivity against GAD67, a marker for inhibitory GABAergic neurons. We found that axons of non-GABAergic neurons grow significantly longer than those of GABAergic neurons in the early stages of development. The optimal threshold for identifying GABAergic and non-GABAergic neurons was evaluated to be 110 μm at 6 DIV. The method does not require any fluorescence labelling and can be carried out on live cells. The accuracy of identification was 98.2%. We confirmed that the high accuracy was due to the use of a micropattern, which standardized the development of cultured neurons. The method promises to be beneficial both for engineering neuronal networks in vitro and for basic cellular neuroscience research. PMID:27513933

  17. Cerveau isolé and pretrigeminal rat preparations.

    Science.gov (United States)

    Zernicki, B; Gandolfo, G; Glin, L; Gottesmann, C

    1985-01-01

    Cortical and hippocampal EEG activity was analysed in cerveau isolé and and pretrigeminal rats. In the acute stage, waking EEG patterns were absent in the cerveau isolé, whereas sleep EGG patterns were absent in the preparations. However, already on the second day the EEG waking sleep cycle recovered in the majority of rats. Paradoxically, stimuli directed to the caudal part of the preparations evoked stronger cortical and hippocampal EEG arousal than olfactory and visual stimuli. The rats exhibited some locomotor and grooming behaviour and could be fed orally. It is concluded that the activity of the isolated cerebrum of the rat is similar to that of cat preparations, but that functions of the caudal neuraxis are superior in rats.

  18. Detection of viable cortical neurons using benzodiazepine receptor imaging after reversible focal ischaemia in rats: comparison with regional cerebral blood flow

    International Nuclear Information System (INIS)

    Watanabe, Yoshiyuki; Nakano, Takayuki; Yutani, Kenji; Nishimura, Hiroshi; Nishimura, Tsunehiko; Kusuoka, Hideo; Nakamura, Hironobu

    2000-01-01

    To elucidate the utility of benzodiazepine receptor imaging for the detection of viable cortical neurons, dual-tracer autoradiography using iodine-125 iomazenil (IMZ) and iodine-123 N-isopropyl-4-iodoamphetamine (IMP) was performed in a model of reversible focal ischaemia during the acute and subacute phases. The right middle cerebral artery of anaesthetized rats was occluded for 60 min using an intraluminal filament and reperfused. In the acute phase study, 125 I-IMZ (370 kBq) was injected via the femoral vein at 2 h after reperfusion, and 123 I-IMP (37 MBq) was injected at 50 min post-injection. Rats were sacrificed 10 min after the injection of 123 I-IMP. In the subacute phase study, the same procedure was performed at 5 days after reperfusion. In the acute phase, the IMP uptake was significantly decreased in almost all areas of the lesioned hemisphere, an exception being the cerebellum; however, the IMZ uptake was significantly decreased only in ischaemic cores. The discrepancy between IMZ and IMP uptake was observed in the lateral neocortex and the lateral caudate putamen (CPu), which were most frequently damaged in this ischaemic model. In the subacute phase, the IMZ uptake in lesioned rats was significantly decreased only in the parietal lobe and hippocampus, though the IMP uptake was decreased in many regions of lesioned hemispheres (the frontal, parietal cortex, CPu, hippocampus and thalamus). Histopathological findings indicated that both the IMP and the IMZ uptake was markedly decreased in necrotic areas. Although the IMP uptake was significantly decreased in the ischaemic areas, the IMZ uptake was maintained in these areas. These results suggest that benzodiazepine receptor imaging is superior to regional cerebral blood flow imaging for the detection of viable cortical neurons in both the acute and subacute phases of ischaemia. (orig.)

  19. Detection of viable cortical neurons using benzodiazepine receptor imaging after reversible focal ischaemia in rats: comparison with regional cerebral blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoshiyuki [Dept. of Radiology, Osaka National Hospital (Japan); Nakano, Takayuki; Yutani, Kenji; Nishimura, Hiroshi; Nishimura, Tsunehiko [Div. of Tracer Kinetics, Osaka University Medical School (Japan); Kusuoka, Hideo [Clinical Research Institute, Osaka National Hospital (Japan); Nakamura, Hironobu [Dept. of Radiology, Osaka University Medical School (Japan)

    2000-03-01

    To elucidate the utility of benzodiazepine receptor imaging for the detection of viable cortical neurons, dual-tracer autoradiography using iodine-125 iomazenil (IMZ) and iodine-123 N-isopropyl-4-iodoamphetamine (IMP) was performed in a model of reversible focal ischaemia during the acute and subacute phases. The right middle cerebral artery of anaesthetized rats was occluded for 60 min using an intraluminal filament and reperfused. In the acute phase study, {sup 125}I-IMZ (370 kBq) was injected via the femoral vein at 2 h after reperfusion, and {sup 123}I-IMP (37 MBq) was injected at 50 min post-injection. Rats were sacrificed 10 min after the injection of {sup 123}I-IMP. In the subacute phase study, the same procedure was performed at 5 days after reperfusion. In the acute phase, the IMP uptake was significantly decreased in almost all areas of the lesioned hemisphere, an exception being the cerebellum; however, the IMZ uptake was significantly decreased only in ischaemic cores. The discrepancy between IMZ and IMP uptake was observed in the lateral neocortex and the lateral caudate putamen (CPu), which were most frequently damaged in this ischaemic model. In the subacute phase, the IMZ uptake in lesioned rats was significantly decreased only in the parietal lobe and hippocampus, though the IMP uptake was decreased in many regions of lesioned hemispheres (the frontal, parietal cortex, CPu, hippocampus and thalamus). Histopathological findings indicated that both the IMP and the IMZ uptake was markedly decreased in necrotic areas. Although the IMP uptake was significantly decreased in the ischaemic areas, the IMZ uptake was maintained in these areas. These results suggest that benzodiazepine receptor imaging is superior to regional cerebral blood flow imaging for the detection of viable cortical neurons in both the acute and subacute phases of ischaemia. (orig.)

  20. Antitumor Activity of Rat Mesenchymal Stem Cells during Direct or Indirect Co-Culturing with C6 Glioma Cells.

    Science.gov (United States)

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Mel'nikov, P A; Cherepanov, S A; Levinsky, A B; Chehonin, V P

    2016-02-01

    The tumor-suppressive effect of rat mesenchymal stem cells against low-differentiated rat C6 glioma cells during their direct and indirect co-culturing and during culturing of C6 glioma cells in the medium conditioned by mesenchymal stem cells was studied in an in vitro experiment. The most pronounced antitumor activity of mesenchymal stem cells was observed during direct co-culturing with C6 glioma cells. The number of live C6 glioma cells during indirect co-culturing and during culturing in conditioned medium was slightly higher than during direct co-culturing, but significantly differed from the control (C6 glioma cells cultured in medium conditioned by C6 glioma cells). The cytotoxic effect of medium conditioned by mesenchymal stem cells was not related to medium depletion by glioma cells during their growth. The medium conditioned by other "non-stem" cells (rat astrocytes and fibroblasts) produced no tumor-suppressive effect. Rat mesenchymal stem cells, similar to rat C6 glioma cells express connexin 43, the main astroglial gap junction protein. During co-culturing, mesenchymal stem cells and glioma C6 cells formed functionally active gap junctions. Gap junction blockade with connexon inhibitor carbenoxolone attenuated the antitumor effect observed during direct co-culturing of C6 glioma cells and mesenchymal stem cells to the level produced by conditioned medium. Cell-cell signaling mediated by gap junctions can be a mechanism of the tumor-suppressive effect of mesenchymal stem cells against C6 glioma cells. This phenomenon can be used for the development of new methods of cell therapy for high-grade malignant gliomas.

  1. Green Tea Polyphenols Attenuated Glutamate Excitotoxicity via Antioxidative and Antiapoptotic Pathway in the Primary Cultured Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Lin Cong

    2016-01-01

    Full Text Available Green tea polyphenols are a natural product which has antioxidative and antiapoptotic effects. It has been shown that glutamate excitotoxicity induced oxidative stress is linked to neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. In this study we explored the neuroprotective effect of green teen polyphenols against glutamate excitotoxicity in the primary cultured cortical neurons. We found that green tea polyphenols protected against glutamate induced neurotoxicity in the cortical neurons as measured by MTT and TUNEL assays. Green tea polyphenols were then showed to inhibit the glutamate induced ROS release and SOD activity reduction in the neurons. Furthermore, our results demonstrated that green tea polyphenols restored the dysfunction of mitochondrial pro- or antiapoptotic proteins Bax, Bcl-2, and caspase-3 caused by glutamate. Interestingly, the neuroprotective effect of green tea polyphenols was abrogated when the neurons were incubated with siBcl-2. Taken together, these results demonstrated that green tea polyphenols protected against glutamate excitotoxicity through antioxidative and antiapoptotic pathways.

  2. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

    NARCIS (Netherlands)

    DiGiovanna, J.; Dominici, N.; Friedli, L.; Rigosa, J.; Duis, S.; Kreider, J.; Beauparlant, J.; van den Brand, R.; Schieppati, M.; Micera, S.; Courtine, G.

    2016-01-01

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral

  3. Effect of D-valine and cytosine arabinoside on [3H]thymidine incorporation in rat and rabbit epididymal epithelial cell cultures

    International Nuclear Information System (INIS)

    Orgebin-Crist, M.C.; Jonas-Davies, J.; Storey, P.; Olson, G.E.

    1984-01-01

    Epithelial cell enriched primary cultures were established from the rat and the rabbit epididymis. Epithelial cell aggregates, obtained after pronase digestion of minced epididymis, attached to the culture dish and after 72 h in vitro spread out to form discrete patches of cells. These cells have an epithelioid morphology and form a monolayer of closely apposed polygonal cells where DNA synthesis, as judged by [ 3 H]thymidine uptake, is very low. In L-valine medium the nonepithelial cell contamination was no more than 10% in rat and rabbit epididymal primary cultures. The labeling index of rat epididymal cells cultured in D-valine medium was significantly lower than that of cells cultured in L-valine medium. In contrast, the labeling index of rabbit epididymal cells cultured in D-valine medium was significantly higher than that of cells cultured in L-valine medium. Cytosine arabinoside decreased the number of labeled cells in both L-valine and D-valine cultures. From these results, it appears that D-valine is a selective agent for rat epididymal epithelial cells, but not for rabbit epithelial cells, and that cytosine arabinoside is a simple and effective means to control the proliferation of fibroblast-like cells in both rat and rabbit epididymal cell cultures

  4. Rapid Identification of Cortical Motor Areas in Rodents by High-Frequency Automatic Cortical Stimulation and Novel Motor Threshold Algorithm

    Directory of Open Access Journals (Sweden)

    Mitsuaki Takemi

    2017-10-01

    Full Text Available Cortical stimulation mapping is a valuable tool to test the functional organization of the motor cortex in both basic neurophysiology (e.g., elucidating the process of motor plasticity and clinical practice (e.g., before resecting brain tumors involving the motor cortex. However, compilation of motor maps based on the motor threshold (MT requires a large number of cortical stimulations and is therefore time consuming. Shortening the time for mapping may reduce stress on the subjects and unveil short-term plasticity mechanisms. In this study, we aimed to establish a cortical stimulation mapping procedure in which the time needed to identify a motor area is reduced to the order of minutes without compromising reliability. We developed an automatic motor mapping system that applies epidural cortical surface stimulations (CSSs through one-by-one of 32 micro-electrocorticographic electrodes while examining the muscles represented in a cortical region. The next stimulus intensity was selected according to previously evoked electromyographic responses in a closed-loop fashion. CSS was repeated at 4 Hz and electromyographic responses were submitted to a newly proposed algorithm estimating the MT with smaller number of stimuli with respect to traditional approaches. The results showed that in all tested rats (n = 12 the motor area maps identified by our novel mapping procedure (novel MT algorithm and 4-Hz CSS significantly correlated with the maps achieved by the conventional MT algorithm with 1-Hz CSS. The reliability of the both mapping methods was very high (intraclass correlation coefficients ≧0.8, while the time needed for the mapping was one-twelfth shorter with the novel method. Furthermore, the motor maps assessed by intracortical microstimulation and the novel CSS mapping procedure in two rats were compared and were also significantly correlated. Our novel mapping procedure that determined a cortical motor area within a few minutes could help

  5. Radiation-induced PKC signaling system in cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo; Yukawa, Osami

    1998-01-01

    Radiation effects on living organisms are mainly caused through reactive oxygen species (ROS) on living cells. It is known that ROS damages various membranes and the bio membranes play an important role in cellular signal transduction pathways. The effects of radiation on cellular signal transduction pathways in cultured rat hepatocytes have been studied

  6. Synergistic effect of parathyroid hormone and growth hormone on trabecular and cortical bone formation in hypophysectomized rats.

    Science.gov (United States)

    Guevarra, Maria Sarah N; Yeh, James K; Castro Magana, Mariano; Aloia, John F

    2010-01-01

    Growth hormone (GH) deficiency in pediatric patients results in short stature and osteopenia. We postulated that the GH and parathyroid hormone (PTH) combination would result in improvement in bone growth and bone formation. Forty hypophysectomized female rats at age 8 weeks were divided into hypophysectomy (HX), HX + PTH (62.5 microg/kg, s.c. daily), HX + GH (3.33 mg/kg, s.c. daily), and HX + PTH + GH for a 4-week study. GH increased body weight, bone growth, bone mineral content (BMC) and bone mineral density (BMD), whereas PTH increased BMC and BMD without a significant effect on bone size. GH increased both periosteal and endocortical bone formation and cortical size, while PTH increased only endocortical bone formation. GH mitigated the trabecular bone loss by increasing bone formation, while PTH increased bone mass by increasing bone formation and suppressing osteoclast number per bone area. The result of combined intervention shows an increase in trabecular, periosteal and endocortical bone formation and suppression of bone resorption resulting in a synergistic effect on increasing trabecular and cortical bone volume and BMD. The combination treatment of PTH and GH increases bone growth, bone formation, decreases bone resorption and has a synergistic effect on increasing bone density and bone mass. Copyright (c) 2010 S. Karger AG, Basel.

  7. Chronic monitoring of cortical hemodynamics in behaving, freely-moving rats using a miniaturized head-mounted optical microscope

    Science.gov (United States)

    Sigal, Iliya; Gad, Raanan; Koletar, Margaret; Ringuette, Dene; Stefanovic, Bojana; Levi, Ofer

    2016-03-01

    Growing interest within the neurophysiology community in assessing healthy and pathological brain activity in animals that are awake and freely-behaving has triggered the need for optical systems that are suitable for such longitudinal studies. In this work we report label-free multi-modal imaging of cortical hemodynamics in the somatosensory cortex of awake, freely-behaving rats, using a novel head-mounted miniature optical microscope. The microscope employs vertical cavity surface emitting lasers (VCSELs) at three distinct wavelengths (680 nm, 795 nm, and 850 nm) to provide measurements of four hemodynamic markers: blood flow speeds, HbO, HbR, and total Hb concentration, across a > 2 mm field of view. Blood flow speeds are extracted using Laser Speckle Contrast Imaging (LSCI), while oxygenation measurements are performed using Intrinsic Optical Signal Imaging (IOSI). Longitudinal measurements on the same animal are made possible over the course of > 6 weeks using a chronic window that is surgically implanted into the skull. We use the device to examine changes in blood flow and blood oxygenation in superficial cortical blood vessels and tissue in response to drug-induced absence-like seizures, correlating motor behavior with changes in blood flow and blood oxygenation in the brain.

  8. Repeated Stimulation of Cultured Networks of Rat Cortical Neurons Induces Parallel Memory Traces

    Science.gov (United States)

    le Feber, Joost; Witteveen, Tim; van Veenendaal, Tamar M.; Dijkstra, Jelle

    2015-01-01

    During systems consolidation, memories are spontaneously replayed favoring information transfer from hippocampus to neocortex. However, at present no empirically supported mechanism to accomplish a transfer of memory from hippocampal to extra-hippocampal sites has been offered. We used cultured neuronal networks on multielectrode arrays and…

  9. Determination of a tissue-level failure evaluation standard for rat femoral cortical bone utilizing a hybrid computational-experimental method.

    Science.gov (United States)

    Fan, Ruoxun; Liu, Jie; Jia, Zhengbin; Deng, Ying; Liu, Jun

    2018-01-01

    Macro-level failure in bone structure could be diagnosed by pain or physical examination. However, diagnosing tissue-level failure in a timely manner is challenging due to the difficulty in observing the interior mechanical environment of bone tissue. Because most fractures begin with tissue-level failure in bone tissue caused by continually applied loading, people attempt to monitor the tissue-level failure of bone and provide corresponding measures to prevent fracture. Many tissue-level mechanical parameters of bone could be predicted or measured; however, the value of the parameter may vary among different specimens belonging to a kind of bone structure even at the same age and anatomical site. These variations cause difficulty in representing tissue-level bone failure. Therefore, determining an appropriate tissue-level failure evaluation standard is necessary to represent tissue-level bone failure. In this study, the yield and failure processes of rat femoral cortical bones were primarily simulated through a hybrid computational-experimental method. Subsequently, the tissue-level strains and the ratio between tissue-level failure and yield strains in cortical bones were predicted. The results indicated that certain differences existed in tissue-level strains; however, slight variations in the ratio were observed among different cortical bones. Therefore, the ratio between tissue-level failure and yield strains for a kind of bone structure could be determined. This ratio may then be regarded as an appropriate tissue-level failure evaluation standard to represent the mechanical status of bone tissue.

  10. Modulation of the major histocompatibility complex by neural stem cell-derived neurotrophic factors used for regenerative therapy in a rat model of stroke

    Directory of Open Access Journals (Sweden)

    Sun Chongran

    2010-08-01

    Full Text Available Abstract Background The relationship between functional improvements in ischemic rats given a neural stem cell (NSC transplant and the modulation of the class I major histocompatibility complex (MHC mediated by NSC-derived neurotrophins was investigated. Methods The levels of gene expression of nerve growth factor (NGF, brain-derived neurotropic factor (BDNF and neurotrophin-3 (NT-3 were assayed from cultures of cortical NSC from Sprague-Dawley rat E16 embryos. The levels of translated NGF in spent culture media from NSC cultures and the cerebral spinal fluid (CSF of rats with and without NGF injection or NSC transplant were also measured. Results We found a significant increase of NGF, BDNF and NT-3 transcripts and NGF proteins in both the NSC cultures and the CSF of the rats. The immunochemical staining for MHC in brain sections and the enzyme-linked immunosorbent assay of CSF were carried out in sham-operated rats and rats with surgically induced focal cerebral ischemia. These groups were further divided into animals that did and did not receive NGF administration or NSC transplant into the cisterna magna. Our results show an up-regulation of class I MHC in the ischemic rats with NGF and NSC administration. The extent of caspase-III immunoreactivity was comparable among three arms in the ischemic rats. Conclusion Readouts of somatosensory evoked potential and the trap channel test illustrated improvements in the neurological function of ischemic rats treated with NGF administration and NSC transplant.

  11. Nanoscaffold's stiffness affects primary cortical cell network formation

    NARCIS (Netherlands)

    Xie, Sijia; Schurink, Bart; Wolbers, F.; Lüttge, Regina; Hassink, Gerrit Cornelis

    2014-01-01

    Networks of neurons cultured on-chip can provide insights into both normal and disease-state brain function. The ability to guide neuronal growth in specific, artificially designed patterns allows us to study how brain function follows form. Primary cortical cells cultured on nanograting scaffolds,

  12. Cerveau isolé and pretrigeminal rats.

    Science.gov (United States)

    Zernicki, B; Gandolfo, G; Glin, L; Gottesmann, C

    1984-01-01

    Cortical and hippocampal EEG activity was analysed in 14 cerveau isole and 8 pretrigerninal rats. In the acute stage, waking EEG patterns were absent in the cerveau isole, whereas sleep EEG patterns were absent in the pretrigeminal preparations. However, already on the second day the EEG waking-sleep cycle recovered in the majority of rats. Paradoxically, stimuli directed to the caudal part of preparations evoked stronger cortical and hippocampal EEG arousal than olfactory and visual stimuli. The behavior of the caudal part was observed in 25 preparations. Although in abortive form, the rats did show some locomotor and grooming behavior, and could be fed orally. The peripheral events of paradoxical sleep appeared only on the fourth or fifth day of survival of the cerveau isole rats. It is concluded that the activity of the isolated cerebrum of the rat is similar to that of cat preparations, but that functions of the caudal neuraxis are superior in rats.

  13. Improved Discriminability of Spatiotemporal Neural Patterns in Rat Motor Cortical Areas as Directional Choice Learning Progresses

    Directory of Open Access Journals (Sweden)

    Hongwei eMao

    2015-03-01

    Full Text Available Animals learn to choose a proper action among alternatives to improve their odds of success in food foraging and other activities critical for survival. Through trial-and-error, they learn correct associations between their choices and external stimuli. While a neural network that underlies such learning process has been identified at a high level, it is still unclear how individual neurons and a neural ensemble adapt as learning progresses. In this study, we monitored the activity of single units in the rat medial and lateral agranular (AGm and AGl, respectively areas as rats learned to make a left or right side lever press in response to a left or right side light cue. We noticed that rat movement parameters during the performance of the directional choice task quickly became stereotyped during the first 2-3 days or sessions. But learning the directional choice problem took weeks to occur. Accompanying rats’ behavioral performance adaptation, we observed neural modulation by directional choice in recorded single units. Our analysis shows that ensemble mean firing rates in the cue-on period did not change significantly as learning progressed, and the ensemble mean rate difference between left and right side choices did not show a clear trend of change either. However, the spatiotemporal firing patterns of the neural ensemble exhibited improved discriminability between the two directional choices through learning. These results suggest a spatiotemporal neural coding scheme in a motor cortical neural ensemble that may be responsible for and contributing to learning the directional choice task.

  14. Effect of hypertensive rat plasma on ion transport of cultured vascular smooth muscle

    International Nuclear Information System (INIS)

    Magargal, W.W.; Overbeck, H.W.

    1986-01-01

    We layered fresh, unprocessed plasma from healthy rats with early (less than or equal to 7 days) or benign, chronic (greater than 3 wk) one-kidney, one-clip hypertension and from paired one-kidney normotensive control rats over confluent primary-cultured rat aortic smooth muscle cells. Plasma from all rats increased cellular ouabain-sensitive 86 Rb + uptake and sodium content and decreased ouabain-insensitive 86 Rb + uptake compared with uptakes and content in the presence of balanced salt solution (P less than 0.01). Cells incubated in the presence of plasma from rats with early (P less than 0.02) or chronic hypertension (P less than 0.01) had significantly reduced ouabain-sensitive 86 Rb + uptake when compared with cells incubated in normotensive plasma, but their intracellular Na+ contents were not lower. We no longer detected this uptake difference when chronic hypertensives drank 0.9% NaCl instead of water. Plasma from hypertensive rats also altered ouabain-insensitive 86 Rb + uptake by the cultured cells. These findings of this new, reproducible, and specific assay system support the hypothesis that plasma factors inhibit the membrane sodium-potassium pump in vascular smooth muscle cells in this form of hypertension. The abnormality occurs in both early and chronic stages, but may not be related to sodium intake. The data also provide evidence for plasma factors in hypertension altering membrane K+ permeability

  15. Islet graft survival and function: concomitant culture and transplantation with vascular endothelial cells in diabetic rats.

    Science.gov (United States)

    Pan, Xiaoming; Xue, Wujun; Li, Yang; Feng, Xinshun; Tian, Xiaohui; Ding, Chenguang

    2011-12-15

    Human islet transplantation is a great potential therapy for type I diabetes. To investigate islet graft survival and function, we recently showed the improved effects after co-culture and co-transplantation with vascular endothelial cells (ECs) in diabetic rats. ECs were isolated, and the viability of isolated islets was assessed in two groups (standard culture group and co-culture group with ECs). Then streptozotocin-induced diabetic rats were divided into four groups before islet transplantation as follows: group A with infusion of islet grafts; group B with combined vascular ECs and islet grafts; groups C and D as controls with single ECs infusion and phosphate-buffered saline injection, respectively. Blood glucose and insulin concentrations were measured daily. Expression of vascular endothelial growth factor was investigated by immunohistochemical staining. The mean microvascular density was also calculated. More than 90% of acridine orange-propidium iodide staining positive islets demonstrated normal morphology while co-cultured with ECs for 7 days. Compared with standard control, insulin release assays showed a significantly higher simulation index in co-culture group except for the first day (Ptransplantation, there was a significant difference in concentrations of blood glucose and insulin among these groups after 3 days (Pislet group (P=0.04). Co-culture with ECs in vitro could improve the survival and function of isolated rat islet, and co-transplantation of islets with ECs could effectively prolong the islet graft survival in diabetic rats.

  16. Effects of PTEN inhibition on the regulation of Tau phosphorylation in rat cortical neuronal injury after oxygen and glucose deprivation.

    Science.gov (United States)

    Zhao, Jing; Chen, Yurong; Xu, Yuxia; Pi, Guanghuan

    2016-01-01

    This report investigated the involvement of the PTEN pathway in the regulation of Tau phosphorylation using an oxygen and glucose deprivation (OGD) model with rat cortical neurons. Primary cortical neurons were used to establish the oxygen and glucose deprivation (OGD) model in vitro. These were randomly divided into control, OGD, bpV+OGD, As+OGD, Se+OGD and Mock treatment groups. The neuron viability was assessed by MTT, the cell apoptosis was detected using TUNEL staining. The expression of Phospho-PTEN/PTEN, Phospho-Tau/Tau, Phospho-Akt/Akt and Phospho-GSK-3β/GSK-3β were detected by Western blotting. OGD induced Tau phosphorylation through PTEN and glycogen synthase kinase-3β (GSK-3β) activation, together with a decrease in AKT activity. Pre-treatment with bpv, a potent PTEN inhibitor, and PTEN antisense nucleotides decreased PTEN and GSK-3β activity and caused alterations in Tau phosphorylation. Neuronal apoptosis was also reduced. The PTEN/Akt/GSK-3β/Tau pathway is involved in the regulation of neuronal injury, providing a novel route for protecting neurons following neonatal HI.

  17. Effects of Yizhi Capsule (益智胶囊) on Learning and Memory Disorder and β-amyloid Peptide Induced Neurotoxicity in Rats

    Institute of Scientific and Technical Information of China (English)

    WU Hang-yu; XU Jiang-ping; LI Lin; ZHU Bai-hua

    2006-01-01

    Objective: To explore the effects of Yizhi Capsule (益智胶囊, YZC) on learning and memory disorder and β-amyloid peptide induced neurotoxicity in rats. Methods: Various doses of YZC were administered to Sprague-Dawley (SD) rats for 8 consecutive days, twice a day. On the 8th day of the experiment,scopolamine hydrobromide was intraperitoneally injected to every rat and Morris water maze test and shuttle dark avoidance test were carried out respectively to explore the changes of learning and memory capacities in the rats. Besides, after the cerebral cortical neurons of newborn SD rats aged within 3 days were cultured in vitro for 7 days, drug serum containing YZC was added to the cultured neurons before or after β amyloid peptide25-35 (Aβ25-35) intoxication to observe the protective effect of YZC on neurotoxicity by MTT assay and to determine the LDH content in the supernatant. Results: Compared with those untreated with YZC, the rats having received YZC treatment got superiority in shorter time of platform seeking in Morris water maze test,as well as elongated latent period and less times of error in shuttle dark avoidance test. On the cultured neurons, YZC drug serum could effectively increase the survival rate of Aβ25-35 intoxicated neurons and reduce the LDH contents in cultured supernatant. Conclusion: YZC has an action of improving learning and memory disorder, and good protective effect on Aβ25-35 induced neurotoxicity in SD rats.

  18. Immunocytochemistry and fluorescence imaging efficiently identify individual neurons with CRISPR/Cas9-mediated gene disruption in primary cortical cultures.

    Science.gov (United States)

    Tsunematsu, Hiroto; Uyeda, Akiko; Yamamoto, Nobuhiko; Sugo, Noriyuki

    2017-08-01

    CRISPR/Cas9 system is a powerful method to investigate the role of genes by introducing a mutation selectively and efficiently to specific genome positions in cell and animal lines. However, in primary neuron cultures, this method is affected by the issue that the effectiveness of CRISPR/Cas9 is different in each neuron. Here, we report an easy, quick and reliable method to identify mutants induced by the CRISPR/Cas9 system at a single neuron level, using immunocytochemistry (ICC) and fluorescence imaging. Dissociated cortical cells were transfected with CRISPR/Cas9 plasmids targeting the transcription factor cAMP-response element binding protein (CREB). Fluorescence ICC with CREB antibody and quantitative analysis of fluorescence intensity demonstrated that CREB expression disappeared in a fraction of the transfected neurons. The downstream FOS expression was also decreased in accordance with suppressed CREB expression. Moreover, dendritic arborization was decreased in the transfected neurons which lacked CREB immunoreactivity. Detection of protein expression is efficient to identify individual postmitotic neurons with CRISPR/Cas9-mediated gene disruption in primary cortical cultures. The present method composed of CRISPR/Cas9 system, ICC and fluorescence imaging is applicable to study the function of various genes at a single-neuron level.

  19. The Effect of Different Intensities of Treadmill Exercise on Cognitive Function Deficit Following a Severe Controlled Cortical Impact in Rats

    Directory of Open Access Journals (Sweden)

    Xiafeng Shen

    2013-10-01

    Full Text Available Exercise has been proposed for the treatment of traumatic brain injury (TBI. However, the proper intensity of exercise in the early phase following a severe TBI is largely unknown. To compare two different treadmill exercise intensities on the cognitive function following a severe TBI in its early phase, rats experienced a controlled cortical impact (CCI and were forced to treadmill exercise for 14 days. The results revealed that the rats in the low intensity exercise group had a shorter latency to locate a platform and a significantly better improvement in spatial memory in the Morris water maze (MWM compared to the control group (p 0.05. The brain-derived neurotrophic factor (BDNF and p-CREB protein levels in the contralateral hippocampus were increased significantly in the low intensity exercise group. Our results suggest that 2 weeks of low intensity of treadmill exercise is beneficial for improving cognitive function and increasing hippocampal BDNF expression after a severe TBI in its early phase.

  20. Cortical astrocytes exposed to tributyltin undergo morphological changes in vitro.

    Science.gov (United States)

    Mizuhashi, S; Ikegaya, Y; Nishiyama, N; Matsuki, N

    2000-11-01

    We investigated the effect of tributyltin (TBT), an endocrine-disrupting chemical, on the morphology and viability of cultured rat cortical astrocytes. Cultured astrocytes exhibited smooth and planiform morphology under normal conditions. Following exposure to TBT, however, they showed rapid morphological changes that are characterized by asteriated cell bodies and process formation in a time- and concentration-dependent manner. Higher concentrations of TBT produced progressive cell death of the astrocytes. In serum-free medium, TBT at a concentration as low as 200 nM induced the stellation. Pharmacological studies revealed that the morphological changes were alleviated by application of diverse free radical scavengers or antioxidants such as catalase, superoxide dismutase, Trolox, ascorbic acid and N-acetyl-L-cysteine, suggesting that TBT-induced stellation is caused by oxidative stress involving free radicals, particularly reactive oxygen species. Furthermore, we found that the astrocyte stellation was abolished by treatment with inhibitors of phospholipase C, mitogen-activated protein kinase kinase or tyrosine phosphatase. The data suggest that TBT causes the stellation through intracellular signaling cascades rather than its non-specific toxicity. These findings provide an important insight for reconciling the problems in assumed aversive actions of this environmental pollutant for mammals.

  1. The differential involvement of the prelimbic and infralimbic cortices in response conflict affects behavioral flexibility in rats trained in a new automated strategy-switching task.

    Science.gov (United States)

    Oualian, Catherine; Gisquet-Verrier, Pascale

    2010-12-01

    To assess the role of the prelimbic (PL) and infralimbic (IL) cortices in mediating strategy switching, rats were trained in a new automated task in a Y-maze allowing a careful analysis of rats' behavior. In this situation, rats can only use two egocentric (Right, Left) and two visual (Light, Dark) strategies. In the first experiment, rats with PL, IL, or PL/IL lesions were compared with sham-operated rats when trained to reach a criterion of 10 consecutive correct responses with a light strategy before being trained with a response strategy (rule shifting), and finally with the reversed response strategy (reversal). In the second experiment, sham-operated and PL-lesioned rats had their first two strategy switches in the reverse order, which was followed by a second rule shifting and reversal. The results indicate that lesions did not affect initial acquisition, but impaired the first rule shifting and reversal. Thorough analyses of rats' performance indicate that lesioned rats were still able to demonstrate some behavioral flexibility but have difficulties in solving response conflicts, which in turn may affect behavioral flexibility. Both areas were differentially involved in the resolution of response conflict, with the IL involved in the choice of strategy previously known to be nonvalid, and the PL in the selection and maintenance of that strategy.

  2. Control of fibronectin synthesis by rat granulosa cells in culture

    International Nuclear Information System (INIS)

    Skinner, M.K.; Dorrington, J.H.

    1984-01-01

    The secreted and cellular [ 35 S]methionine-radiolabeled proteins of cultured rat granulosa cells were separated by electrophoresis on sodium dodecylsulfate (SDS) polyacrylamide gradient slab gels. From 24 to 72 h of culture FSH increased the intensity of labeling of most of the secreted proteins. A 220,000-dalton protein, however, increased in intensity only in control cultures and became the major secreted protein after 72 h, comprising 20% of the total radiolabeled proteins. This protein was identified as fibronectin by immunoprecipitation. There was no increase in the secreted or cellular fibronectin in FSH- or testosterone- and insulin-treated cultures. These studies indicate that a component of extracellular matrix is a major secretory product of unstimulated immature granulosa cells. As hormones induce the differentiated functions of granulosa cells in culture, the secretion of fibronectin is inhibited

  3. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

    OpenAIRE

    DiGiovanna, J.; Dominici, N.; Friedli, L.; Rigosa, J.; Duis, S.; Kreider, J.; Beauparlant, J.; van den Brand, R.; Schieppati, M.; Micera, S.; Courtine, G.

    2016-01-01

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor pr...

  4. Royal Jelly Prevents Osteoporosis in Rats: Beneficial Effects in Ovariectomy Model and in Bone Tissue Culture Model

    Directory of Open Access Journals (Sweden)

    Saburo Hidaka

    2006-01-01

    Full Text Available Royal jelly (RJ has been used worldwide for many years as medical products, health foods and cosmetics. Since RJ contains testosterone and has steroid hormone-type activities, we hypothesized that it may have beneficial effects on osteoporosis. We used both an ovariectomized rat model and a tissue culture model. Rats were divided into eight groups as follows: sham-operated (Sham, ovariectomized (OVX, OVX given 0.5% (w/w raw RJ, OVX given 2.0% (w/w RJ, OVX given 0.5% (w/w protease-treated RJ (pRJ, OVX given 2.0% (w/w pRJ, OVX given 17β-estradiol and OVX given its vehicle, respectively. The Ovariectomy decreased tibial bone mineral density (BMD by 24%. Administration of 17β-estradiol to OVX rats recovered the tibial BMD decrease by 100%. Administration of 2.0% (w/w RJ and 0.5–2.0% (w/w pRJ to OVX rats recovered it by 85% or more. These results indicate that both RJ and pRJ are almost as effective as 17β-estradiol in preventing the development of bone loss induced by ovariectomy in rats. In tissue culture models, both RJ and pRJ increased calcium contents in femoral-diaphyseal and femoral-metaphyseal tissue cultures obtained from normal male rats. However, in a mouse marrow culture model, they neither inhibited the parathyroid hormone (PTH-induced calcium loss nor affected the formation of osteoclast-like cells induced by PTH in mouse marrow culture system. Therefore, our results suggest that both RJ and pRJ may prevent osteoporosis by enhancing intestinal calcium absorption, but not by directly antagonizing the action of PTH.

  5. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

    Science.gov (United States)

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew Cn; Swindale, Nicholas V; Murphy, Timothy H

    2017-02-04

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

  6. Characterization of Early Cortical Neural Network ...

    Science.gov (United States)

    We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentially absent on DIV 2 and developed rapidly between DIV 5 and 12. Spiking activity was primarily sporadic and unorganized at early DIV, and became progressively more organized with time in culture, with bursting parameters, synchrony and network bursting increasing between DIV 5 and 12. We selected 12 features to describe network activity and principal components analysis using these features demonstrated a general segregation of data by age at both the well and plate levels. Using a combination of random forest classifiers and Support Vector Machines, we demonstrated that 4 features (CV of within burst ISI, CV of IBI, network spike rate and burst rate) were sufficient to predict the age (either DIV 5, 7, 9 or 12) of each well recording with >65% accuracy. When restricting the classification problem to a binary decision, we found that classification improved dramatically, e.g. 95% accuracy for discriminating DIV 5 vs DIV 12 wells. Further, we present a novel resampling approach to determine the number of wells that might be needed for conducting comparisons of different treatments using mwMEA plates. Overall, these results demonstrate that network development on mwMEA plates is similar to

  7. High level over-expression of different NCX isoforms in HEK293 cell lines and primary neuronal cultures is protective following oxygen glucose deprivation.

    Science.gov (United States)

    Cross, Jane L; Boulos, Sherif; Shepherd, Kate L; Craig, Amanda J; Lee, Sharon; Bakker, Anthony J; Knuckey, Neville W; Meloni, Bruno P

    2012-07-01

    In this study we have assessed sodium-calcium exchanger (NCX) protein over-expression on cell viability in primary rat cortical neuronal and HEK293 cell cultures when subjected to oxygen-glucose deprivation (OGD). In cortical neuronal cultures, NCX2 and NCX3 over-expression was achieved using adenoviral vectors, and following OGD increased neuronal survival from ≈20% for control vector treated cultures to ≈80% for both NCX isoforms. In addition, we demonstrated that NCX2 and NCX3 over-expression in cortical neuronal cultures enables neurons to maintain intracellular calcium at significantly lower levels than control vector treated cultures when exposed to high (9mM) extracellular calcium challenge. Further assessment of NCX activity during OGD was performed using HEK293 cell lines generated to over-express NCX1, NCX2 or NCX3 isoforms. While it was shown that NCX isoform expression differed considerably in the different HEK293 cell lines, high levels of NCX over-expression was associated with increased resistance to OGD. Taken together, our findings show that high levels of NCX over-expression increases neuronal and HEK293 cell survival following OGD, improves calcium management in neuronal cultures and provides additional support for NCX as a therapeutic target to reduce ischemic brain injury. Copyright © 2012 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  8. Effect of 710 nm visible light irradiation on neurite outgrowth in primary rat cortical neurons following ischemic insult

    International Nuclear Information System (INIS)

    Choi, Dong-Hee; Lee, Kyoung-Hee; Kim, Ji-Hye; Kim, Moon Young; Lim, Jeong Hoon; Lee, Jongmin

    2012-01-01

    Highlights: ► 710 nm wavelength light (LED) has a protective effect in the stroke animal model. ► We determined the effects of LED irradiation in vitro stroke model. ► LED treatment promotes the neurite outgrowth through MAPK activation. ► The level of synaptic markers significantly increased with LED treatment. ► LED treatment protects cell death in the in vitro stroke model. -- Abstract: Objective: We previously reported that 710 nm Light-emitting Diode (LED) has a protective effect through cellular immunity activation in the stroke animal model. However, whether LED directly protects neurons suffering from neurodegeneration was entirely unknown. Therefore, we sought to determine the effects of 710 nm visible light irradiation on neuronal protection and neuronal outgrowth in an in vitro stroke model. Materials and methods: Primary cultured rat cortical neurons were exposed to oxygen-glucose deprivation (OGD) and reoxygenation and normal conditions. An LED array with a peak wavelength of 710 nm was placed beneath the covered culture dishes with the room light turned off and were irradiated accordingly. LED treatments (4 min at 4 J/cm 2 and 50 mW/cm 2 ) were given once to four times within 8 h at 2 h intervals for 7 days. Mean neurite density, mean neurite diameter, and total fiber length were also measured after microtubule associated protein 2 (MAP2) immunostaining using the Axio Vision program. Synaptic marker expression and MAPK activation were confirmed by Western blotting. Results: Images captured after MAP2 immunocytochemistry showed significant (p < 0.05) enhancement of post-ischemic neurite outgrowth with LED treatment once and twice a day. MAPK activation was enhanced by LED treatment in both OGD-exposed and normal cells. The levels of synaptic markers such as PSD 95, GAP 43, and synaptophysin significantly increased with LED treatment in both OGD-exposed and normal cells (p < 0.05). Conclusion: Our data suggest that LED treatment may promote

  9. Partly ordered synthesis and degradation of glycogen in cultured rat myotubes

    DEFF Research Database (Denmark)

    Elsner, Peter; Quistorff, Bjørn; Hansen, Gert H

    2001-01-01

    The following questions concerning glycogen synthesis and degradation were examined in cultured rat myotubes. 1) Is synthesis and degradation of the individual glycogen molecule a strictly ordered process, with the last glucosyl unit incorporated into the molecule being the first to be released...

  10. In vivo transgenic expression of collybistin in neurons of the rat cerebral cortex.

    Science.gov (United States)

    Fekete, Christopher D; Goz, Roman U; Dinallo, Sean; Miralles, Celia P; Chiou, Tzu-Ting; Bear, John; Fiondella, Christopher G; LoTurco, Joseph J; De Blas, Angel L

    2017-04-01

    Collybistin (CB) is a guanine nucleotide exchange factor selectively localized to γ-aminobutyric acid (GABA)ergic and glycinergic postsynapses. Active CB interacts with gephyrin, inducing the submembranous clustering and the postsynaptic accumulation of gephyrin, which is a scaffold protein that recruits GABA A receptors (GABA A Rs) at the postsynapse. CB is expressed with or without a src homology 3 (SH3) domain. We have previously reported the effects on GABAergic synapses of the acute overexpression of CB SH3- or CB SH3+ in cultured hippocampal (HP) neurons. In the present communication, we are studying the effects on GABAergic synapses after chronic in vivo transgenic expression of CB2 SH3- or CB2 SH3+ in neurons of the adult rat cerebral cortex. The embryonic precursors of these cortical neurons were in utero electroporated with CB SH3- or CB SH3+ DNAs, migrated to the appropriate cortical layer, and became integrated in cortical circuits. The results show that: 1) the strength of inhibitory synapses in vivo can be enhanced by increasing the expression of CB in neurons; and 2) there are significant differences in the results between in vivo and in culture studies. J. Comp. Neurol. 525:1291-1311, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Cortical and limbic excitability in rats with absence epilepsy

    NARCIS (Netherlands)

    Tolmacheva, E.A.; Luijtelaar, E.L.J.M. van; Chepurnov, S.A.; Kaminskij, Y.; Mares, P.

    2004-01-01

    The classical cortico-reticular theory on absence epilepsy suggests that a hyperexcitable cortex is a precondition for the occurrence of absence seizures. In the present experiment seizure thresholds and characteristics of cortical and limbic epileptic afterdischarges (AD) were determined in a

  12. Electrophysiological and pathological study of focal cortical dysplasia

    International Nuclear Information System (INIS)

    Hodozuka, Akira; Hashizume, Kiyotaka; Hayashi, Yoshimitsu; Tanaka, Tatsuya

    2008-01-01

    Clinical and experimental studies on focal cortical dysplasia (FCD) were carried out. For the experimental study, an experimental FCD model of rats was developed. Twenty Wistar rats at 0-2 days after birth were used for the study. Kainic acid (KA) solution was injected stereotaxically into medial and lateral sites of the sensori-motor cortex. Bipolar electrodes were inserted. The behavior of the rats and electroencephalography (EEG) were recorded using a digital video-EEG monitoring system. After observation periods of 1, 2 and 6 months, the rats were perfused for pathological study. FCD was observed adjacent to the site of KA injection in all rats more than one month after the injection. EEG recording demonstrated focal spike discharges in and around the site of injection. However, clinical seizure was not observed. Pathological studies showed decrease in gamma aminobutyric acid (GABA)-A receptors and increase in GABA-B receptors not only in the lesion but also in perilesional areas. Fifteen surgical cases of FCD with intractable epilepsy were included in the clinical study. Neuro-imaging studies including high-resolution MRI and single photon emission computed tomography (SPECT) were performed. Conventional EEG studies demonstrated focal EEG abnormalities with epileptic phenomena. At surgery, intraoperative electrocorticography (ECoG) was performed in order to localize epileptic foci under neuroleptanalgesia. Fourteen patients showed epileptiform discharges on preresection ECoG. All foci in non-eloquent areas were resected. Pathological studies including immunohistochemical staining were performed, and characteristics of the FCD in relation to EEG findings were analyzed. Electrophysiological examination revealed epileptogenecity not only in the lesions but also in perilesional areas. In the lesions, immunohistochemical studies showed decrease in GABA-A receptors and increase in GABA-B receptors in both the lesions and perilesional areas, but N

  13. Exendin-4 improved rat cortical neuron survival under oxygen/glucose deprivation through PKA pathway.

    Science.gov (United States)

    Wang, M-D; Huang, Y; Zhang, G-P; Mao, L; Xia, Y-P; Mei, Y-W; Hu, B

    2012-12-13

    Previous studies demonstrated that exendin-4 (Ex-4) may possess neurotrophic and neuroprotective functions in ischemia insults, but its mechanism remained unknown. Here, by using real-time PCR and ELISA, we identified the distribution of active GLP-1Rs in the rat primary cortical neurons. After establishment of an in vitro ischemia model by oxygen/glucose deprivation (OGD), neurons were treated with various dosages of Ex-4. The MTT assay showed that the relative survival rate increased with the dosage of Ex-4 ranging from 0.2 to 0.8 μg/ml (Pglucose-regulated proteins 78 (GRP78) and reduced C/EBP-homologous protein (CHOP). Western blot analysis demonstrated that, after neurons were treated with Ex-4, GRP78 was up-regulated over time (Pneurons, down-regulated the expression of B-cell lymphoma 2 (Bcl-2) and up-regulated the Bax expression 3h after ODG (Pneurons against OGD by modulating the unfolded protein response (UPR) through the PKA pathway and may serve as a novel therapeutic agent for stroke. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Effect of various chemicals on the metabolism of benzo(a)pyrene by cultured rat colon

    DEFF Research Database (Denmark)

    Autrup, Herman; Harris, Curtis C.; Fugaro, Steven

    1977-01-01

    The effect of various co- and anti-carcinogens of colon carcinogenesis on the metabolism of benzo(a)pyrene (BP) in cultured rat colon is reported. Rat colon enzymatically converted BP into metabolites which bind to cellular macromolecules i.e., DNA and protein. Activity of aryl hydrocarbon...

  15. Protective Effect of Edaravone against Carbon Monoxide Induced Apoptosis in Rat Primary Cultured Astrocytes

    Directory of Open Access Journals (Sweden)

    Xiaodan Xu

    2017-01-01

    Full Text Available Objective. To observe the protective effect of edaravone (Eda on astrocytes after prolonged exposure to carbon monoxide (CO and further to investigate the potential mechanisms of Eda against CO-induced apoptosis. Methods. The rat primary cultured astrocytes were cultured in vitro and exposed to 1% CO for 24 h after being cultured with different concentrations of Eda. MTT assay was used to detect the cytotoxicity of CO. Flow cytometry was used to detect the apoptosis rate, membrane potential of mitochondria, and ROS level. The mRNA and protein expressions of Bcl-2, Bax, and caspase-3 were assessed by real-time PCR and Western blotting analysis, respectively. Results. Eda can significantly suppress cytotoxicity of CO, and it can significantly increase membrane potential of mitochondria and Bcl-2 expressions and significantly suppress the apoptosis rate, ROS level, Bax, and caspase-3 expressions. Conclusion. Eda protects against CO-induced apoptosis in rat primary cultured astrocytes through decreasing ROS production and subsequently inhibiting mitochondrial apoptosis pathway.

  16. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices

    DEFF Research Database (Denmark)

    Anwar, Mohammad Raffaqat; Andreasen, Christian Maaløv; Lippert, Solvej Kølvraa

    2008-01-01

    differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co......Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic...

  17. Locally formed dopamine inhibits Na+-K+-ATPase activity in rat renal cortical tubule cells

    International Nuclear Information System (INIS)

    Seri, I.; Kone, B.C.; Gullans, S.R.; Aperia, A.; Brenner, B.M.; Ballermann, B.J.

    1988-01-01

    Dopamine, generated locally from L-dopa, inhibits Na + -K + -ATPase in permeabilized rat proximal tubules under maximum transport rate conditions for sodium. To determine whether locally formed dopamine inhibits Na + -K + -ATPase activity in intact cortical tubule cells we studied the effect of L-dopa on ouabain-sensitive oxygen consumption rate (Qo 2 ) and 86 Rb uptake in renal cortical tubule cell suspensions. L-Dopa did not affect ouabain-insensitive Qo 2 or mitochondrial respiration. However, L-dopa inhibited ouabain-sensitive Qo 2 in a concentration-dependent manner, with half-maximal inhibition (K 0.5 ) of 5 x 10 -7 M and a maximal inhibition of 14.1 ± 1.5% at 10 -4 M. L-Dopa also blunted the nystatin-stimulated Qo 2 in a concentration-dependent manner, indicating the L-dopa directly inhibits Na + -K + -ATPase activity and not sodium entry. Ouabain-sensitive 86 Rb uptake was also inhibited by L-dopa. Carbidopa, an inhibitor of the conversion of L-dopa to dopamine, eliminated the effect of L-dopa on ouabain-sensitive Qo 2 and 86 Rb uptake, indicating that dopamine rather than L-dopa was the active agent. The finding that the L-dopa concentration-response curve was shifted to the left by one order of magnitude in the presence of nystatin suggests that the inhibitory effect is enhanced when the intracellular sodium concentration is increased. By studying the effect of L-dopa on ouabain-sensitive Qo 2 at increasing extracellular sodium concentrations in the presence of nystatin, the authors demonstrated that the inhibitory effect of locally formed dopamine on the Na + -K + -ATPase is indeed dependent on the sodium available for the enzyme and occurs in an uncompetitive manner

  18. Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats Influência da deficiência estrogênica e do tratamento com tibolona no osso trabecular e cortical avaliada pelo sistema de radiografia computadorizada em ratas

    Directory of Open Access Journals (Sweden)

    Ana Carolina Bergmann de Carvalho

    2012-03-01

    Full Text Available PURPOSE: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS. METHODS: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T while the other did not (OVX, those groups were compared to a control group (C not ovariectomized. Tibolone administration (1mg/day began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographies of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at POBJETIVO: Verificar o efeito da administração de tibolona no tecido ósseo cortical e trabecular de ratas castradas através de radiografia computadorizada. MÉTODOS: O experimento foi realizado em dois grupos de ratas previamente ooforectomizadas, onde um grupo recebeu tibolona (OVX+T e o outro não (OVX. Esses grupos foram comparados a um grupo controle (C não ooforectomizado. A administração de tibolona (1mg/dia começou trinta dias após a ooforectomia e o tratamento teve duração de cinco meses. No final, os animais foram mortos e fêmures e tibias coletados. As radiografias computadorizadas dos ossos foram obtidas e as imagens digitais usadas para determinar a densidade óssea e a espessura cortical em todos os grupos. Todos os resultados foram avaliados estatisticamente com significância estabelecida a 5%. RESULTADOS: A administração de tibolona mostrou ser benéfica apenas para análise densitométrica da cabeça do fêmur, apresentando maiores valores de densidade comparada ao grupo OVX. Nenhuma diferença significativa foi encontrada para espessura óssea cortical. CONCLUSÃO: A ooforectomia ocasionou perda óssea nas regiões analisadas e a tibolona

  19. Short-term memory in networks of dissociated cortical neurons.

    Science.gov (United States)

    Dranias, Mark R; Ju, Han; Rajaram, Ezhilarasan; VanDongen, Antonius M J

    2013-01-30

    Short-term memory refers to the ability to store small amounts of stimulus-specific information for a short period of time. It is supported by both fading and hidden memory processes. Fading memory relies on recurrent activity patterns in a neuronal network, whereas hidden memory is encoded using synaptic mechanisms, such as facilitation, which persist even when neurons fall silent. We have used a novel computational and optogenetic approach to investigate whether these same memory processes hypothesized to support pattern recognition and short-term memory in vivo, exist in vitro. Electrophysiological activity was recorded from primary cultures of dissociated rat cortical neurons plated on multielectrode arrays. Cultures were transfected with ChannelRhodopsin-2 and optically stimulated using random dot stimuli. The pattern of neuronal activity resulting from this stimulation was analyzed using classification algorithms that enabled the identification of stimulus-specific memories. Fading memories for different stimuli, encoded in ongoing neural activity, persisted and could be distinguished from each other for as long as 1 s after stimulation was terminated. Hidden memories were detected by altered responses of neurons to additional stimulation, and this effect persisted longer than 1 s. Interestingly, network bursts seem to eliminate hidden memories. These results are similar to those that have been reported from similar experiments in vivo and demonstrate that mechanisms of information processing and short-term memory can be studied using cultured neuronal networks, thereby setting the stage for therapeutic applications using this platform.

  20. Cultured rat and purified human Pneumocystis carinii stimulate intra- but not extracellular free radical production in human neutrophils

    DEFF Research Database (Denmark)

    Jensen, T; Aliouat, E M; Lundgren, B

    1998-01-01

    The production of free radicals in human neutrophils was studied in both Pneumocystis carinii derived from cultures of L2 rat lung epithelial-like cells and Pneumocystis carinii purified from human lung. Using the cytochrome C technique, which selectively measured extracellular superoxide...... generation, hardly any free radical production was observed after stimulation with cultured rat-derived P. carinii. A chemiluminescence technique, which separately measured intra- and extracellular free radical production, was subsequently employed to differentiate the free radical generation....... It was established that 1) P. carinii stimulated intra- but not extracellular free radical production in human neutrophils, 2) opsonized cultured rat-derived P. carinii stimulated human neutrophils to a strong intracellular response of superoxide production, and 3) opsonized P. carinii, purified from human lung also...

  1. Differential feedback regulation of cholesterol 7α-hydroxylase mRNA and transcriptional activity by rat bile acids in primary monolayer cultures of rat hepatocytes

    NARCIS (Netherlands)

    Twisk, J.; Lehmann, E.M.; Princen, H.M.G.

    1993-01-01

    We have used primary monolayer cultures of rat hepatocytes to study the effects of physiological concentrations of various bile acids, commonly found in bile of normal rats, on the mechanism of regulation of cholesterol 7α-hydroxylase and bile acid synthesis. Addition of taurocholic acid, the most

  2. [Lessening effect of hypoxia-preconditioned rat cerebrospinal fluid on oxygen-glucose deprivation-induced injury of cultured hippocampal neurons in neonate rats and possible mechanism].

    Science.gov (United States)

    Niu, Jing-Zhong; Zhang, Yan-Bo; Li, Mei-Yi; Liu, Li-Li

    2011-12-25

    The present study was to investigate the effect of cerebrospinal fluid (CSF) from the rats with hypoxic preconditioning (HPC) on apoptosis of cultured hippocampal neurons in neonate rats under oxygen glucose deprivation (OGD). Adult Wistar rats were exposed to 3 h of hypoxia for HPC, and then their CSF was taken out. Cultured hippocampal neurons from the neonate rats were randomly divided into four groups (n = 6): normal control group, OGD group, normal CSF group and HPC CSF group. OGD group received 1.5 h of incubation in glucose-free Earle's solution containing 1 mmol/L Na2S2O4, and normal and HPC CSF groups were subjected to 1 d of corresponding CSF treatments followed by 1.5 h OGD. The apoptosis of neurons was analyzed by confocal laser scanning microscope and flow cytometry using Annexin V/PI double staining. Moreover, protein expressions of Bcl-2 and Bax were detected by immunofluorescence. The results showed that few apoptotic cells were observed in normal control group, whereas the number of apoptotic cells was greatly increased in OGD group. Both normal and HPC CSF could decrease the apoptosis of cultured hippocampal neurons injured by OGD (P neurons by up-regulating expression of Bcl-2 and down-regulating expression of Bax.

  3. Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury.

    OpenAIRE

    Sanes, J N; Suner, S; Lando, J F; Donoghue, J P

    1988-01-01

    The potential for peripheral nerve injury to reorganize motor cortical representations was investigated in adult rats. Maps reflecting functional connections between the motor cortex and somatic musculature were generated with intracortical electrical stimulation techniques. Comparison of cortical somatotopic maps obtained in normal rats with maps generated from rats with a facial nerve lesion indicated that the forelimb and eye/eyelid representations expanded into the normal vibrissa area. R...

  4. Localization of the kinesin adaptor proteins trafficking kinesin proteins 1 and 2 in primary cultures of hippocampal pyramidal and cortical neurons.

    Science.gov (United States)

    Loss, Omar; Stephenson, F Anne

    2015-07-01

    Neuronal function requires regulated anterograde and retrograde trafficking of mitochondria along microtubules by using the molecular motors kinesin and dynein. Previous work has established that trafficking kinesin proteins (TRAKs),TRAK1 and TRAK2, are kinesin adaptor proteins that link mitochondria to kinesin motor proteins via an acceptor protein in the mitochondrial outer membrane, etc. the Rho GTPase Miro. Recent studies have shown that TRAK1 preferentially controls mitochondrial transport in axons of hippocampal neurons by virtue of its binding to both kinesin and dynein motor proteins, whereas TRAK2 controls mitochondrial transport in dendrites resulting from its binding to dynein. This study further investigates the subcellular localization of TRAK1 and TRAK2 in primary cultures of hippocampal and cortical neurons by using both commercial antibodies and anti-TRAK1 and anti-TRAK2 antibodies raised in our own laboratory (in-house). Whereas TRAK1 was prevalently localized in axons of hippocampal and cortical neurons, TRAK2 was more prevalent in dendrites of hippocampal neurons. In cortical neurons, TRAK2 was equally distributed between axons and dendrites. Some qualitative differences were observed between commercial and in-house-generated antibody immunostaining. © 2015 Wiley Periodicals, Inc.

  5. Use of 5-Bromodeoxyuridine and irradiation for the estimation of the myoblast and myocyte content of primary rat heart cell cultures

    International Nuclear Information System (INIS)

    Masse, M.J.O.; Harary, I.

    1980-01-01

    A method for killing dividing cells was adapted for the elimination of dividing heart muscle cells (myoblasts) in cultures. We have used this method to demonstrate their presence and to estimate their number as well as the number of nondividing heart muscle cells (myocytes) in the neo-natal rat heart. Cells were cultivated in BUdR (5-bromodeoxyuridine) 10 -4 M for 3 days and then irradiated with long uv light. The selective elimination of dividing cells led to a loss of myosin Ca 2+ -activated ATPase in the cultures. The percent of ATPase left after irradiation was 32% of the control in cultures derived from 1-day postnatal rats and 48% in cultures from 4-day postnatal rats. This reflects an in vivo shift of myoblasts to myocytes in the muscle cell population as the rat ages

  6. Disuse exaggerates the detrimental effects of alcohol on cortical bone

    Science.gov (United States)

    Hefferan, Theresa E.; Kennedy, Angela M.; Evans, Glenda L.; Turner, Russell T.

    2003-01-01

    BACKGROUND: Alcohol abuse is associated with an increased risk for osteoporosis. However, comorbidity factors may play an important role in the pathogenesis of alcohol-related bone fractures. Suboptimal mechanical loading of the skeleton, an established risk factor for bone loss, may occur in some alcohol abusers due to reduced physical activity, muscle atrophy, or both. The effect of alcohol consumption and reduced physical activity on bone metabolism has not been well studied. The purpose of this study was to determine whether mechanical disuse alters bone metabolism in a rat model for chronic alcohol abuse. METHODS: Alcohol was administered in the diet (35% caloric intake) of 6-month-old male rats for 4 weeks. Rats were hindlimb-unloaded the final 2 weeks of the experiment to prevent dynamic weight bearing. Afterward, cortical bone histomorphometry was evaluated at the tibia-fibula synostosis. RESULTS: At the periosteal surface of the tibial diaphysis, alcohol and hindlimb unloading independently decreased the mineralizing perimeter, mineral apposition rate, and bone formation rate. In addition, alcohol, but not hindlimb unloading, increased endocortical bone resorption. The respective detrimental effects of alcohol and hindlimb unloading to inhibit bone formation were additive; there was no interaction between the two variables. CONCLUSIONS: Reduced weight bearing accentuates the detrimental effects of alcohol on cortical bone in adult male rats by further inhibiting bone formation. This finding suggests that reduced physical activity may be a comorbidity factor for osteoporosis in alcohol abusers.

  7. Acetylcholinesterase potentiates [{sup 3}H]fluorowillardiine and [{sup 3}H]AMPA binding to rat cortical membranes

    Energy Technology Data Exchange (ETDEWEB)

    Olivera, S.; Rodriguez-Ithurralde, D. [Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD (United Kingdom); Henley, J.M. [Molecular Neuroscience Unit, Division Neuromyology, Instituto de Investigaciones Biologicas Clemente Estable, 11600 Montevideo (Uruguay)

    1999-04-01

    In addition to its action at cholinergic synapses acetylcholinesterase (AChE) has been proposed to modulate neuronal activity by mechanisms unrelated to the hydrolysis of acetylcholine. We have investigated the effects of AChE on the binding of the specific AMPA receptor agonists (S)-[{sup 3}H]5-fluorowillardiine ([{sup 3}H]FW) and [{sup 3}H]AMPA to rat cortical membranes. Pretreatment of membranes with AChE causes a dose-dependent increase in the binding of both radiolabelled agonists with a maximal increase to {approx}60% above control. This increase is completely blocked by the specific AChE inhibitors propidium, physostigmine, DFP and BW 284C51. AChE pretreatment had no effect on [{sup 3}H]kainate binding. [{sup 3}H]FW binding to membranes from young (15-day-old) rats is four orders of magnitude more sensitive to AChE modulation than membranes from adult rats (EC{sub 50} values of 4x10{sup -5} and 0.1 unit/ml, respectively) although the total percentage increase in binding is similar. Furthermore, the AChE-induced potentiation of [{sup 3}H]FW binding is Ca{sup 2+}- and temperature-dependent suggesting an enzymatic action for AChE in this system. Saturation binding experiments with [{sup 3}H]FW to adult membranes reveal high and low affinity binding sites and demonstrate that the main action of AChE is to increase the B{sub max} of both sites. These findings suggest that modulation of AMPA receptors could provide a molecular mechanism of action for the previously reported effects of AChE in synapse formation, synaptic plasticity and neurodegeneration. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. PRENATAL HYPOXIA IN DIFFERENT PERIODS OF EMBRYOGENESIS DIFFERENTIALLY AFFECTS CELL MIGRATION, NEURONAL PLASTICITY AND RAT BEHAVIOR IN POSTNATAL ONTOGENESIS

    Directory of Open Access Journals (Sweden)

    Dmitrii S Vasilev

    2016-03-01

    Full Text Available Long-term effects of prenatal hypoxia on embryonic days E14 or E18 on the number, type and localization of cortical neurons, density of labile synaptopodin-positive dendritic spines and parietal cortex-dependent behavioral tasks were examined in the postnatal ontogenesis of rats. An injection of 5’ethynyl-2’deoxyuridine to pregnant rats was used to label neurons generated on E14 or E18 in the fetuses. In control rat pups a majority of cells labeled on E14 were localized in the lower cortical layers V-VI while the cells labeled on E18 were mainly found in the superficial cortical layers II-III. It was shown that hypoxia both on E14 and E18 results in disruption of neuroblast generation and migration but affects different cell populations. In rat pups subjected to hypoxia on E14, the total number of labeled cells in the parietal cortex was decreased while the number of labeled neurons scattered within the superficial cortical layers was increased. In rat pups subjected to hypoxia on E18, the total number of labeled cells in the parietal cortex was also decreased but the number of scattered labeled neurons was higher in the lower cortical layers. It can be suggested that prenatal hypoxia both on E14 and E18 causes a disruption in neuroblast migration but with a different outcome. Only in rats subjected to hypoxia on E14 did we observe a reduction in the total number of pyramidal cortical neurons and the density of labile synaptopodin-positive dendritic spines in the molecular cortical layer during the first month after birth which affected development of the cortical functions. As a result, rats subjected to hypoxia on E14, but not on E18, had impaired development of the whisker-placing reaction and reduced ability to learn reaching by a forepaw. The data obtained suggest that hypoxia on E14 in the period of generation of the cells, which later differentiate into the pyramidal cortical neurons of the V-VI layers and form cortical minicolumns

  9. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse.

    Science.gov (United States)

    Ogneva, Irina V; Biryukov, Nikolay S

    2016-01-01

    The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: "C", "C+L", "HS", and "HS+L". The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin "C+L" and "HS+L". However, lecithin treatment for three days resulted in an increase in cell stiffness; in the "C+L" group, cell stiffness was significantly higher by 22.7% (p lecithin treatment: the beta-actin and gamma-actin mRNA content in group "C+L" increased by 200% compared with that of group "C", and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively, but the levels of Tmod1 and Svil decreased by 2- and 5-fold, respectively. However, gravitational disuse did not result in changes in the mRNA content of Arpc3, Tmod1, Svil or Lcp1. Anti-orthostatic suspension for 6 hours resulted in a decrease in the mRNA content of alpha-actinin-4 (Actn4) and

  10. Characteristics of monolayer culture of bone marrow cells of rats bearing 239Pu-induced osteosarcoma

    International Nuclear Information System (INIS)

    Bukhtoyarova, Z.M.; Lemberg, V.K.

    1984-01-01

    The report is concerned with a monolayer culture of bone marrow cells of rats in which optimal blastogenic dose (92.5 kBq/kg) induced osteosarcoma. The cell culture showed an enhanced rate of fibroblast-like cell proliferation (increased number of mitoses and symplasts and larger colonies of cells), apparent signs of radiation in ury (pathologic mitoses, chromosome aberrations and gaps) as well as an increase in ploidy. Diffusion chamber measurements demonstrated osteogenic precursor-cells in osteosarcoma-bearing rats to be highly capable of bone formation. This relatively high ability seems to occur outside bone marrow as well

  11. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus.

    Science.gov (United States)

    Khodagholy, Dion; Gelinas, Jennifer N; Buzsáki, György

    2017-10-20

    Consolidation of declarative memories requires hippocampal-neocortical communication. Although experimental evidence supports the role of sharp-wave ripples in transferring hippocampal information to the neocortex, the exact cortical destinations and the physiological mechanisms of such transfer are not known. We used a conducting polymer-based conformable microelectrode array (NeuroGrid) to record local field potentials and neural spiking across the dorsal cortical surface of the rat brain, combined with silicon probe recordings in the hippocampus, to identify candidate physiological patterns. Parietal, midline, and prefrontal, but not primary cortical areas, displayed localized ripple (100 to 150 hertz) oscillations during sleep, concurrent with hippocampal ripples. Coupling between hippocampal and neocortical ripples was strengthened during sleep following learning. These findings suggest that ripple-ripple coupling supports hippocampal-association cortical transfer of memory traces. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Hepatoprotective effects of Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] on alcohol-damaged primary rat hepatocyte culture in vitro.

    Science.gov (United States)

    Jiang, Wenhua; Bian, Yuzhu; Wang, Zhenghui; Chang, Thomas Ming Swi

    2017-02-01

    We have prepared a novel nanobiotherapeutic, Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase], which not only transports both oxygen and carbon dioxide but also a therapeutic antioxidant. Our previous study in a severe sustained 90 min hemorrhagic shock rat model shows that it has a hepatoprotective effect. We investigate its hepatoprotective effect further in this present report using an alcohol-damaged primary hepatocyte culture model. Results show that it significantly reduced ethanol-induced AST release, lipid peroxidation, and ROS production in rat primary hepatocytes culture. It also significantly enhanced the viability of ethanol-treated hepatocytes. Thus, the result shows that Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] also has some hepatoprotective effects against alcohol-induced injury in in vitro rat primary hepatocytes cell culture. This collaborate our previous observation of its hepatoprotective effect in a severe sustained 90-min hemorrhagic shock rat model.

  13. Cortical compression rapidly trimmed transcallosal projections and altered axonal anterograde transport machinery.

    Science.gov (United States)

    Chen, Li-Jin; Wang, Yueh-Jan; Tseng, Guo-Fang

    2017-10-24

    Trauma and tumor compressing the brain distort underlying cortical neurons. Compressed cortical neurons remodel their dendrites instantly. The effects on axons however remain unclear. Using a rat epidural bead implantation model, we studied the effects of unilateral somatosensory cortical compression on its transcallosal projection and the reversibility of the changes following decompression. Compression reduced the density, branching profuseness and boutons of the projection axons in the contralateral homotopic cortex 1week and 1month post-compression. Projection fiber density was higher 1-month than 1-week post-compression, suggesting adaptive temporal changes. Compression reduced contralateral cortical synaptophysin, vesicular glutamate transporter 1 (VGLUT1) and postsynaptic density protein-95 (PSD95) expressions in a week and the first two marker proteins further by 1month. βIII-tubulin and kinesin light chain (KLC) expressions in the corpus callosum (CC) where transcallosal axons traveled were also decreased. Kinesin heavy chain (KHC) level in CC was temporarily increased 1week after compression. Decompression increased transcallosal axon density and branching profuseness to higher than sham while bouton density returned to sham levels. This was accompanied by restoration of synaptophysin, VGLUT1 and PSD95 expressions in the contralateral cortex of the 1-week, but not the 1-month, compression rats. Decompression restored βIII-tubulin, but not KLC and KHC expressions in CC. However, KLC and KHC expressions in the cell bodies of the layer II/III pyramidal neurons partially recovered. Our results show cerebral compression compromised cortical axonal outputs and reduced transcallosal projection. Some of these changes did not recover in long-term decompression. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates

    Science.gov (United States)

    Wessberg, Johan; Stambaugh, Christopher R.; Kralik, Jerald D.; Beck, Pamela D.; Laubach, Mark; Chapin, John K.; Kim, Jung; Biggs, S. James; Srinivasan, Mandayam A.; Nicolelis, Miguel A. L.

    2000-11-01

    Signals derived from the rat motor cortex can be used for controlling one-dimensional movements of a robot arm. It remains unknown, however, whether real-time processing of cortical signals can be employed to reproduce, in a robotic device, the kind of complex arm movements used by primates to reach objects in space. Here we recorded the simultaneous activity of large populations of neurons, distributed in the premotor, primary motor and posterior parietal cortical areas, as non-human primates performed two distinct motor tasks. Accurate real-time predictions of one- and three-dimensional arm movement trajectories were obtained by applying both linear and nonlinear algorithms to cortical neuronal ensemble activity recorded from each animal. In addition, cortically derived signals were successfully used for real-time control of robotic devices, both locally and through the Internet. These results suggest that long-term control of complex prosthetic robot arm movements can be achieved by simple real-time transformations of neuronal population signals derived from multiple cortical areas in primates.

  15. Neuroprotective Effect of Insulin-like Growth Factor-II on 1- Methyl-4 ...

    African Journals Online (AJOL)

    Purpose: To evaluate the receptor-mediated neuroprotective effect of insulin-like growth factor-II (IGFII) on 1-methyl-4-phenyl pyridinium (MPP) induced oxidative damage in adult cortical neuronal cultures. Methods: Adult rats were randomly divided into 5 groups. Cortical neurons were prepared from rats. The cells were ...

  16. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.

    Science.gov (United States)

    Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik

    2017-02-01

    Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N ω -nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes. Copyright © 2017 the American Physiological Society.

  17. Actions of the pyrethroid insecticide bifenthrin on sodium channels expressed in rat cerebral cortical neurons.

    Science.gov (United States)

    Yang, Lin; Li, Li

    2015-01-01

    Voltage-gated sodium channels are important sites for the neurotoxic actions of pyrethroid insecticides in mammals. Here, we studied the mode of action of bifenthrin on the native sodium channels in cerebral cortical neurons prepared from newborn rat brain, where the toxic effects are largely generated. Bifenthrin caused a pronounced late current that persisted at the end of a depolarizing pulse, a slowly-decaying tail current following repolarization and significant resting modification (25.3% modification at 10 μM). No significant bifenthrin-induced effect was observed at the peak current. Bifenthrin also caused a concentration-dependent hyperpolarizing shift in steady-state activation and inactivation as well as slowed recovery from channel inactivation. Repetitive depolarization increased the potency of bifenthrin with high frequency. There was approximately 64% inhibition of modification upon repetitive activation by 10-Hz trains of depolarizing pulses. These results suggest that bifenthrin binds to and modifies sodium channels in both the closed and open states and exhibits the behavior between type I and type II.

  18. Memantine, a Low-Affinity NMDA Receptor Antagonist, Protects against Methylmercury-Induced Cytotoxicity of Rat Primary Cultured Cortical Neurons, Involvement of Ca2+ Dyshomeostasis Antagonism, and Indirect Antioxidation Effects.

    Science.gov (United States)

    Liu, Wei; Xu, Zhaofa; Yang, Tianyao; Xu, Bin; Deng, Yu; Feng, Shu

    2017-09-01

    Methylmercury (MeHg) is an extremely dangerous environmental pollutant that induces severe toxic effects in the central nervous system. Neuronal damage plays critical roles mediating MeHg-induced loss of brain function and neurotoxicity. The molecular mechanisms of MeHg neurotoxicity are incompletely understood. The objective of the study is to explore mechanisms that contribute to MeHg-induced neurocyte injuries focusing on neuronal Ca 2+ dyshomeostasis and alteration of N-methyl-D-aspartate receptors (NMDARs) expression, as well as oxidative stress in primary cultured cortical neurons. In addition, the neuroprotective effects of memantine against MeHg cytotoxicity were also investigated. The cortical neurons were exposed to 0, 0.01, 0.1, 1, or 2 μM methylmercury chloride (MeHgCl) for 0.5-12 h, or pre-treated with 2.5, 5, 10, or 20 μM memantine for 0.5-6 h, respectively; cell viability and LDH release were then quantified. For further experiments, 2.5, 5, and 10 μM of memantine pre-treatment for 3 h followed by 1 μM MeHgCl for 6 h were performed for evaluation of neuronal injuries, specifically addressing apoptosis; intracellular free Ca 2+ concentrations; ATPase activities; calpain activities; expressions of NMDAR subunits (NR1, NR2A, NR2B); NPSH levels; and ROS formation. Exposure of MeHgCl resulted in toxicity of cortical neurons, which were shown as a loss of cell viability, high levels of LDH release, morphological changes, and cell apoptosis. Moreover, intracellular Ca 2+ dyshomeostasis, ATPase activities inhibition, calpain activities, and NMDARs expression alteration were observed with 1 μM MeHgCl administration. Last but not least, NPSH depletion and reactive oxygen species (ROS) overproduction showed an obvious oxidative stress in neurons. However, memantine pre-treatment dose-dependently antagonized MeHg-induced neuronal toxic effects, apoptosis, Ca 2+ dyshomeostasis, NMDARs expression alteration, and oxidative stress. In conclusion, the

  19. Development of striatal patch/matrix organization in organotypic co-cultures of perinatal striatum, cortex and substantia nigra.

    Science.gov (United States)

    Snyder-Keller, A; Costantini, L C; Graber, D J

    2001-01-01

    Organotypic cultures of fetal or early postnatal striatum were used to assess striatal patch formation and maintenance in the presence or absence of dopaminergic and glutamatergic influences. Vibratome-cut slices of the striatum prepared from embryonic day 19 to postnatal day 4 rat pups were maintained in static culture on clear membrane inserts in Dulbecco's modified Eagle's medium/F12 (1:1) with 20% horse serum. Some were co-cultured with embryonic day 12-16 ventral mesencephalon and/or embryonic day 19 to postnatal day 4 cortex, which produced a dense dopaminergic innervation and a modest cortical innervation. Donors of striatal and cortical tissue were previously injected with bromo-deoxyuridine (BrdU) on embryonic days 13 and 14 in order to label striatal neurons destined to populate the patch compartment of the striatum. Patches of BrdU-immunoreactive cells were maintained in organotypic cultures of late prenatal (embryonic days 20-22) or early postnatal striatum in the absence of nigral dopaminergic or cortical glutamatergic influences. In slices taken from embryonic day 19 fetuses prior to the time of in vivo patch formation, patches were observed to form after 10 days in vitro, in 39% of nigral-striatal co-cultures compared to 6% of striatal slices cultured alone or in the presence of cortex only. Patches of dopaminergic fibers, revealed by tyrosine hydroxylase immunoreactivity, were observed in the majority of nigral-striatal co-cultures. Immunostaining for the AMPA-type glutamate receptor GluR1 revealed a dense patch distribution in nearly all cultures, which developed in embryonic day 19 cultures after at least six days in vitro. These findings indicate that striatal patch/matrix organization is maintained in organotypic culture, and can be induced to form in vitro in striatal slices removed from fetuses prior to the time of in vivo patch formation. Furthermore, dopaminergic innervation from co-cultured pieces of ventral mesencephalon enhances patch

  20. Comparison of mesencephalic free-floating tissue culture grafts and cell suspension grafts in the 6-hydroxydopamine-lesioned rat

    DEFF Research Database (Denmark)

    Meyer, Morten; Widmer, H R; Wagner, B

    1998-01-01

    of grafted dopaminergic neurons and to correlate that with the behavioral effects. Additional cultures and acutely prepared explants were also fixed and stored for histological investigation in order to estimate the loss of dopaminergic neurons in culture and after transplantation. Similar behavioral...... numbers of TH-immunoreactive (TH-ir) neurons in grafts of cultured tissue (775 +/- 98, mean +/- SEM) and grafts of fresh, dissociated cell suspension (806 +/- 105, mean +/- SEM). Cell counts in fresh explants, 7-day-old cultures, and grafted cultures revealed a 68.2% loss of TH-ir cells 7 days after......Ventral mesencephalon (VM) of fetal rat and human origin grown as free-floating roller-tube (FFRT) cultures can survive subsequent grafting to the adult rat striatum. To further explore the functional efficacy of such grafts, embryonic day 13 ventral mesencephalic tissue was grafted either after 7...

  1. Changes in expression of a functional Gi protein in cultured rat heart cells

    International Nuclear Information System (INIS)

    Allen, I.S.; Gaa, S.T.; Rogers, T.B.

    1988-01-01

    The muscarinic cholinergic agonist, carbachol, and pertussis toxin were used to examine the functional status of the guanine nucleotide-binding protein that inhibits adenylate cyclase (G i ) in cultured neonatal rat heart myocytes. The isoproterenol stimulation of adenylate cyclase activity in myocyte membranes and adenosine 3',5'-cyclic monophosphate (cAMP) accumulation in intact cells (4 days in culture) were insensitive to carbachol. However, in cells cultured for 11 days, carbachol inhibited isoproterenol-stimulated cAMP accumulation by 30%. Angiotensin II (ANG II) was also found to inhibit isoproterenol-stimulated cAMP accumulation in day 11 cells in a dose-dependent manner. Pertussis toxin treatment reversed the inhibitory effects of both ANG II and carbachol, suggesting a role for G i in the process. Carbachol binding to membranes from day 4 cells was relatively insensitive to guanine nucleotides when compared with binding to membranes from day 11 or adult cells. Furthermore, pertussis toxin-mediated 32 P incorporation into a 39- to 41-kDa substrate in day 11 membranes was increased 3.2-fold over that measured in day 4 membranes. These findings support the view that, although G i is expressed, it is nonfunctional in 4-day-old cultured neonatal rat heart myocytes and acquisition of functional G i is dependent on culture conditions. Furthermore, the ANG II receptor can couple to G i in heart

  2. Specific rescue by ortho-hydroxy atorvastatin of cortical GABAergic neurons from previous oxygen/glucose deprivation: role of pCREB.

    Science.gov (United States)

    Guirao, Verónica; Martí-Sistac, Octavi; DeGregorio-Rocasolano, Núria; Ponce, Jovita; Dávalos, Antoni; Gasull, Teresa

    2017-11-01

    The statin atorvastatin (ATV) given as a post-treatment has been reported beneficial in stroke, although the mechanisms involved are not well understood so far. Here, we investigated in vitro the effect of post-treatment with ATV and its main bioactive metabolite ortho-hydroxy ATV (o-ATV) on neuroprotection after oxygen and glucose deprivation (OGD), and the role of the pro-survival cAMP response element-binding protein (CREB). Post-OGD treatment of primary cultures of rat cortical neurons with o-ATV, but not ATV, provided neuroprotection to a specific subset of cortical neurons that were large and positive for glutamic acid decarboxylase (large-GAD (+) neurons, GABAergic). Significantly, only these GABAergic neurons showed an increase in phosphorylated CREB (pCREB) early after neuronal cultures were treated post-OGD with o-ATV. We found that o-ATV, but not ATV, increased the neuronal uptake of glutamate from the medium; this provides a rationale for the specific effect of o-ATV on pCREB in large-GABAergic neurons, which have a higher ratio of synaptic (pCREB-promoting) vs extrasynaptic (pCREB-reducing) N-methyl-D-aspartate (NMDA) receptors (NMDAR) than that of small-non-GABAergic neurons. When we pharmacologically increased pCREB levels post-OGD in non-GABAergic neurons, through the selective activation of synaptic NMDAR, we observed as well long-lasting neuronal survival. We propose that the statin metabolite o-ATV given post-OGD boosts the intrinsic pro-survival factor pCREB in large-GABAergic cortical neurons in vitro, this contributing to protect them from OGD. © 2017 International Society for Neurochemistry.

  3. Induction of peroxisomal beta-oxidation by a microbial catabolite of cholic acid in rat liver and cultured rat hepatocytes.

    Science.gov (United States)

    Nishimaki-Mogami, T; Takahashi, A; Toyoda, K; Hayashi, Y

    1993-01-01

    The capability of (4R)-4-(2,3,4,6,6a beta,7,8,9,9a alpha,9b beta-decahydro-6a beta-methyl-3-oxo-1H-cyclopental[f]quinolin-7 beta-yl)valeric acid (DCQVA), a catabolite of cholic acid produced by enterobacteria, to induce peroxisome proliferation in vivo and in vitro was studied. Rats given 0.3% DCQVA in the diet for 2 weeks showed marked increases in peroxisomal beta-oxidation, mitochondrial 2,4-dienoyl-CoA reductase and microsomal laurate omega-oxidation activities in the liver compared with control rats given the diet without DCQVA. Cultured rat hepatocytes treated with DCQVA for 72 h also exhibited greatly enhanced beta-oxidation activity. The increased activity was concentration-dependent and the effective concentrations were comparable with those of clofibric acid that produced the same degree of induction in the assay. The results demonstrate that DCQVA is a potent peroxisome proliferator that occurs naturally in rat intestine. PMID:8216219

  4. Tissue culture of osteogenic sarcoma in rats, induced by radioactive phosphorus P-32 and the effect of the anti-cancerous agents on these tumor cells under tissue culture

    International Nuclear Information System (INIS)

    Osaka, Shunzo

    1976-01-01

    Small pieces of osteogenic sarcoma, induced into albino rats of the C.F. Wistar strain by injection of radioactive phosphorus 32 P, were cultured in mixtures of Eagle's minimum essential medium and 20% calf serum. The tumor cells cultured in this way were transplanted into the subcutaneous tissue or the intraabdominal cavity to healthy albino rats. The effect of the anticancerous agents was evaluated by the decrease of nucleic acid composition in these cultured tumor cells. As anti-cancerous agents, cyclophosphamide (CPA), mitomycin C(MMC), and 5-fluorouracil(5-FU) were put into contact with the tumor cells in cultures for two hours under the following dilutions: CPA; 10 -6 , 10 -5 , 10 -4 g/ml. MMC; 2 x 10 -8 , 2 x 10 -7 , 2 x 10 -6 g/ml. 5-FU; 2 x 10 -6 , 2 x 10 -5 , 2 x 10 -4 g/ml. The results are as follows: Three of the seven osteogenic sarcomas in rats were successfully cultured, one of them through more than eighteen generations. After about five hundred thousand cultured cells had been transplanted into the subcutaneous tissues or abdominal cavities of rats, tumors grew in all of them. The histological findings of the tumors in the second generation were quite similar to those of the original tumor. The same process was repeated three times and the tumor showed histogical findings similar to those of the original ones. The capability of nucleic acid synthesis in these cells was decreased at twenty fours after CPA contact and at forty eight hours after MMC. (J.P.N.)

  5. Altered renal expression of angiotensin II receptors, renin receptor, and ACE-2 precede the development of renal fibrosis in aging rats.

    Science.gov (United States)

    Schulman, Ivonne Hernandez; Zhou, Ming-Sheng; Treuer, Adriana V; Chadipiralla, Kiranmai; Hare, Joshua M; Raij, Leopoldo

    2010-01-01

    The susceptibility to fibrosis and progression of renal disease is mitigated by inhibition of the renin-angiotensin system (RAS). We hypothesized that activation of the intrarenal RAS predisposes to renal fibrosis in aging. Intrarenal expression of angiotensin II type 1 (AT(1)R), type 2 (AT(2)R), and (pro)renin receptors, ACE and ACE-2, as well as pro- and antioxidant enzymes were measured in 3-month-old (young), 14-month-old (middle-aged), and 24-month-old (old) male Sprague-Dawley rats. Old rats manifested glomerulosclerosis and severe tubulointerstitial fibrosis with increased fibronectin and TGF-β expression (7-fold). AT(1)R /AT(2)R ratios were increased in middle-aged (cortical 1.6-fold, medullary 5-fold) and old rats (cortical 2-fold, medullary 4-fold). Similarly, (pro)renin receptor expression was increased in middle-aged (cortical 2-fold, medullary 3-fold) and old (cortical 5-fold, medullary 3-fold) rats. Cortical ACE was increased (+35%) in old rats, whereas ACE-2 was decreased (-50%) in middle-aged and old rats. NADPH oxidase activity was increased (2-fold), whereas antioxidant capacity and expression of the mitochondrial enzyme manganese superoxide dismutase (cortical -40%, medullary -53%) and medullary endothelial nitric oxide synthase (-48%) were decreased in old rats. Age-related intrarenal activation of the RAS preceded the development of severe renal fibrosis, suggesting that it contributes to the increased susceptibility to renal injury observed in the elderly. Copyright © 2010 S. Karger AG, Basel.

  6. Comparative effects of sodium channel blockers in short term rat whole embryo culture

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Mats F, E-mail: Mats.Nilsson@farmbio.uu.se [Department of Pharmaceutical Biosciences, Uppsala University (Sweden); Sköld, Anna-Carin; Ericson, Ann-Christin; Annas, Anita; Villar, Rodrigo Palma [AstraZeneca R and D Södertälje (Sweden); Cebers, Gvido [AstraZeneca R and D, iMed, 141 Portland Street, Cambridge, MA 02139 (United States); Hellmold, Heike; Gustafson, Anne-Lee [AstraZeneca R and D Södertälje (Sweden); Webster, William S [Department of Anatomy and Histology, University of Sydney (Australia)

    2013-10-15

    This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effect on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development.

  7. Comparative effects of sodium channel blockers in short term rat whole embryo culture

    International Nuclear Information System (INIS)

    Nilsson, Mats F; Sköld, Anna-Carin; Ericson, Ann-Christin; Annas, Anita; Villar, Rodrigo Palma; Cebers, Gvido; Hellmold, Heike; Gustafson, Anne-Lee; Webster, William S

    2013-01-01

    This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effect on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development

  8. Evaluation of castor oil-based polyurethane membranes in rat bone-marrow cell culture.

    Science.gov (United States)

    Cerejo, Sofia de Amorim; Rahal, Sheila Canevese; Lima Neto, João Ferreira de; Voorwald, Fabiana Azevedo; Alvarenga, Fernanda da Cruz Landim e

    2011-10-01

    To evaluate three methods to isolate rats MSCs and to analyze the potential of a castor oil polyurethane base membrane as a scaffold for MSCs. Four male Wistar rats, aged 20-30 days were used. Bone marrow aspirates from femur and tibia were harvested using DMEM high glucose and heparin. The cell culture was performed in three different ways: direct culture and two types of density gradients. After 15 days, was made the 1st passage and analyzed cell viability with markers Hoerscht 33342 and propidium iodide. The MSCs were characterized by surface markers with the aid of flow cytometry. After this, three types of castor oil polyurethane membranes associated with the MSCs were kept on the 6-well plate for 5 days and were analyzed by optical microscopy to confirm cell aggregation and growth. Separation procedures 1 and 2 allowed adequate isolation of MSCs and favored cell growth with the passage being carried out at 70% confluence after 15 days in culture. The cells could not be isolated using procedure 3. When the 3 castor oil polyurethane membrane types were compared it was possible to observe that the growth of MSCs was around 80% in membrane type 3, 20% in type 2, and 10% in type 1. Both Ficoll-Hypaque densities allow isolation of rat MSCs, and especially castor oil-based membrane type 3 may be used as a scaffold for MSCs.

  9. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits

    Science.gov (United States)

    Ramanathan, Dhakshin S.; Conner, James M.; Anilkumar, Arjun A.

    2014-01-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  10. Effect of 710 nm visible light irradiation on neurite outgrowth in primary rat cortical neurons following ischemic insult

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Dong-Hee [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Department of Medical Science, Konkuk University School of Medicine, Seoul (Korea, Republic of); Lee, Kyoung-Hee; Kim, Ji-Hye; Kim, Moon Young [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Lim, Jeong Hoon [Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of); Rehabilitation Medicine, Division of Neurology, Department of Medicine, National University Hospital, National University Health System (Singapore); Lee, Jongmin, E-mail: leej@kuh.ac.kr [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer 710 nm wavelength light (LED) has a protective effect in the stroke animal model. Black-Right-Pointing-Pointer We determined the effects of LED irradiation in vitro stroke model. Black-Right-Pointing-Pointer LED treatment promotes the neurite outgrowth through MAPK activation. Black-Right-Pointing-Pointer The level of synaptic markers significantly increased with LED treatment. Black-Right-Pointing-Pointer LED treatment protects cell death in the in vitro stroke model. -- Abstract: Objective: We previously reported that 710 nm Light-emitting Diode (LED) has a protective effect through cellular immunity activation in the stroke animal model. However, whether LED directly protects neurons suffering from neurodegeneration was entirely unknown. Therefore, we sought to determine the effects of 710 nm visible light irradiation on neuronal protection and neuronal outgrowth in an in vitro stroke model. Materials and methods: Primary cultured rat cortical neurons were exposed to oxygen-glucose deprivation (OGD) and reoxygenation and normal conditions. An LED array with a peak wavelength of 710 nm was placed beneath the covered culture dishes with the room light turned off and were irradiated accordingly. LED treatments (4 min at 4 J/cm{sup 2} and 50 mW/cm{sup 2}) were given once to four times within 8 h at 2 h intervals for 7 days. Mean neurite density, mean neurite diameter, and total fiber length were also measured after microtubule associated protein 2 (MAP2) immunostaining using the Axio Vision program. Synaptic marker expression and MAPK activation were confirmed by Western blotting. Results: Images captured after MAP2 immunocytochemistry showed significant (p < 0.05) enhancement of post-ischemic neurite outgrowth with LED treatment once and twice a day. MAPK activation was enhanced by LED treatment in both OGD-exposed and normal cells. The levels of synaptic markers such as PSD 95, GAP 43, and synaptophysin significantly

  11. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    Science.gov (United States)

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes

    DEFF Research Database (Denmark)

    Helms, Hans C; Brodin, Birger

    2014-01-01

    -brain barrier. The present protocol describes the setup of an in vitro coculture model based on primary cultures of endothelial cells from bovine brain microvessels and primary cultures of rat astrocytes. The model displays a high electrical tightness and expresses blood-brain barrier marker proteins....

  13. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse

    Science.gov (United States)

    Biryukov, Nikolay S.

    2016-01-01

    The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: «C», «C+L», «HS», and «HS+L». The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin «C+L» and «HS+L». However, lecithin treatment for three days resulted in an increase in cell stiffness; in the «C+L» group, cell stiffness was significantly higher by 22.7% (p lecithin treatment: the beta-actin and gamma-actin mRNA content in group «C+L» increased by 200% compared with that of group «C», and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively, but the levels of Tmod1 and Svil decreased by 2- and 5-fold, respectively. However, gravitational disuse did not result in changes in the mRNA content of Arpc3, Tmod1, Svil or Lcp1. Anti-orthostatic suspension for 6 hours resulted in a decrease in the mRNA content of alpha

  14. Effect of a growth hormone treatment on bone orthotropic elasticity in dwarf rats

    Science.gov (United States)

    Kohles, S. S.; Martinez, D. A.; Bowers, J. R.; Vailas, A. C.; Vanderby, R. Jr

    1997-01-01

    A refinement of the current ultrasonic elasticity technique was used to measure the orthotropic elastic properties of rat cortical bone as well as to quantify changes in elastic properties, density, and porosity of the dwarf rat cortex after a treatment with recombinant human growth hormone (rhGH). The ultrasonic elasticity technique was refined via optimized signal management of high-frequency wave propagation through cubic cortical specimens. Twenty dwarf rats (37 days old) were randomly assigned to two groups (10 rats each). The dwarf rat model (5-10% of normal GH) was given subcutaneous injections of either rhGH or saline over a 14-day treatment period. Density was measured using Archimedes technique. Porosity and other microstructural characteristics were also explored via scanning electron microscopy and image analysis. Statistical tests verified significant decreases in cortical orthotropic Young's (-26.7%) and shear (-16.7%) moduli and density (-2.42%) concomitant with an increase in porosity (+125%) after rhGH treatments to the dwarf model (p bone properties at this time interval. Structural implications of these changes throughout physiological loading regimens should be explored.

  15. Morphological Characterization of the African Giant Rat (Cricetomys ...

    African Journals Online (AJOL)

    olayemitoyin

    gambianus, Waterhouse) Brain Across Age Groups: Gross Features of. Cortices ... Keywords: African giant rats, Brain, Morphology, Cerebrum, Cerebellum, Olfactory bulb ..... as shrinkage with aging rather than selective .... lasting increase in the number of proliferating cells, ... radial glia in the adult rat dentate gyrus.

  16. Transcranial direct current stimulation (tDCS) neuromodulatory effects on mechanical hyperalgesia and cortical BDNF levels in ovariectomized rats.

    Science.gov (United States)

    da Silva Moreira, Sônia Fátima; Medeiros, Liciane Fernandes; de Souza, Andressa; de Oliveira, Carla; Scarabelot, Vanessa Leal; Fregni, Felipe; Caumo, Wolnei; Torres, Iraci L S

    2016-01-15

    Epidemiological studies show that painful disorders are more prevalent in women than in men, and the transcranial direct current stimulation (tDCS) technique has been tested in chronic pain states. We explored the effect of tDCS on pain behavior and brain-derived neurotrophic factor (BDNF) levels in ovariectomized rats. Forty-five female Wistar adult rats were distributed into five groups: control (CT), ovariectomy + tDCS (OT), ovariectomy + sham tDCS (OS), sham ovariectomy + tDCS (ST), and sham ovariectomy+shamtDCS (SS). The rats were subjected to cathodal tDCS. The vaginal cytology and the estradiol levels confirmed the hormonal status. In addition, nociceptive behavior was evaluated using the tail-flick, von Frey, and hot-plate tests, as well as the BDNF levels in the serum, hypothalamus, hippocampus, spinal cord, and cerebral cortex. One-way analysis of variance (ANOVA) or two-way ANOVA was used for statistical analysis, followed by the Bonferroni, and P-value b 0.05 was considered significant. The ovariectomized animals presented a hypersensitivity response in the hot-plate (P b 0.01) and von Frey (P b 0.05) tests, as well as increased serum BDNF (P b 0.05) and decreased hypothalamic BDNF (P b 0.01) levels. The OT, OS, ST, and SS groups showed decreased hippocampal BDNF levels as compared with the control group (P b 0.001). The interaction between tDCS and ovariectomy on the cortical BDNF levels (P b 0.01) was observed. The ovariectomy induced nociceptive hypersensitivity and altered serum and hypothalamic BDNF levels. The cathodal tDCS partially reversed nociceptive hypersensitivity.

  17. Ouabain binding to cultured vascular smooth muscle cells of the spontaneously hypertensive rat

    International Nuclear Information System (INIS)

    Hopp, L.; Khalil, F.; Tamura, H.; Kino, M.; Searle, B.M.; Tokushige, A.; Aviv, A.

    1986-01-01

    The binding of ouabain and K + to the Na + pump were analyzed in serially passed cultured vascular smooth muscle cells (VSMCs) originating from spontaneously hypertensive (SH) Wistar-Kyoto (WKY), and American Wistar (W) rats. The techniques have utilized analyses of displacement of [ 3 H]ouabain by both unlabeled ouabain and K + from specific binding sites on the VSMCs. The authors have found that 1) each of the VSMC preparations from the three rat strains appeared to demonstrate one population of specific ouabain receptors (Na + pumps); 2) the number of Na + pump units of both the SH and WKY rats was significantly lower than the number of Na + pump units of W rat VSMCs; 3) the equilibrium dissociation constant values (μM) for ouabain in VSMCs of SH and WKY rats were similar but were significantly higher than that of VSMCs derived from W rats; and 4) among the VSMCs originating from the three rat strains, the apparent equilibrium dissociation constant value for K + (mM) was the lowest in those of the SH rat compared with VSMCs of the WKY rat and W rat. Previous studies have demonstrated increased passive Na + and K + transport rate constants of SH rat VSMCs compared with either W or WKY rat cells. These findings suggest the possibility of higher permeabilities of the SH cells. They propose that the combined effect of a low number of Na + pump units with higher permeabilities to Na + and K + predisposes VSMCs of the SH rat to disturbances in their cellular ionic regulation. These genetic defects, if they occur in vivo, may lead to an increase in the vascular tone

  18. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    Science.gov (United States)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  19. Lack of direct mitogenic activity of dichloroacetate and trichloroacetate in cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Walgren, Jennie L.; Kurtz, David T.; McMillan, JoEllyn M.

    2005-01-01

    Dichloroacetate (DCA) and trichloroacetate (TCA) are hepatocarcinogenic metabolites of the common groundwater contaminant, 1,1,2-trichloroethylene. DCA and TCA have been shown to induce hepatocyte proliferation in vivo, but it is not known if this response is the result of direct mitogenic activity or whether cell replication occurs indirectly in response to tissue injury or inflammation. In this study we used primary cultures of rat hepatocytes, a species susceptible to DCA- but not TCA-induced hepatocarcinogenesis, to determine whether DCA and TCA are direct hepatocyte mitogens. Rat hepatocytes, cultured in growth factor-free medium, were treated with 0.01-1.0 mM DCA or TCA for 10-40 h; cell replication was then assessed by measuring incorporation of 3 H-thymidine into DNA and by cell counts. DCA or TCA treatment did not alter 3 H-thymidine incorporation in the cultured hepatocytes. Although an increase in cell number was not observed, DCA treatment significantly abrogated the normal background cell loss, suggesting an ability to inhibit apoptotic cell death in primary hepatocyte cultures. Furthermore, treatment with DCA synergistically enhanced the mitogenic response to epidermal growth factor. The data indicate that DCA and TCA are not direct mitogens in hepatocyte cultures, which is of interest in view of their ability to stimulate hepatocyte replication in vivo. Nevertheless, the synergistic enhancement of epidermal growth factor-induced hepatocyte replication by DCA is of particular interest and warrants further study

  20. Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task

    Science.gov (United States)

    Laubach, Mark; Wessberg, Johan; Nicolelis, Miguel A. L.

    2000-06-01

    When an animal learns to make movements in response to different stimuli, changes in activity in the motor cortex seem to accompany and underlie this learning. The precise nature of modifications in cortical motor areas during the initial stages of motor learning, however, is largely unknown. Here we address this issue by chronically recording from neuronal ensembles located in the rat motor cortex, throughout the period required for rats to learn a reaction-time task. Motor learning was demonstrated by a decrease in the variance of the rats' reaction times and an increase in the time the animals were able to wait for a trigger stimulus. These behavioural changes were correlated with a significant increase in our ability to predict the correct or incorrect outcome of single trials based on three measures of neuronal ensemble activity: average firing rate, temporal patterns of firing, and correlated firing. This increase in prediction indicates that an association between sensory cues and movement emerged in the motor cortex as the task was learned. Such modifications in cortical ensemble activity may be critical for the initial learning of motor tasks.

  1. Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease

    Institute of Scientific and Technical Information of China (English)

    Rui Li; Le Sun; Ai Fang; Peng Li; Qian Wu; Xiaoqun Wang

    2017-01-01

    The development of a cerebral organoid culture in vitro offers an opportunity to generate human brain-like organs to investigate mechanisms of human disease that are specific to the neurogenesis of radial glial (RG) and outer radial glial (oRG) cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing neocortex.Modeling neuronal progenitors and the organization that produces mature subcortical neuron subtypes during early stages of development is essential for studying human brain developmental diseases.Several previous efforts have shown to grow neural organoid in culture dishes successfully,however we demonstrate a new paradigm that recapitulates neocortical development process with VZ,OSVZ formation and the lamination organization of cortical layer structure.In addition,using patient-specific induced pluripotent stem cells (iPSCs) with dysfunction of the Aspm gene from a primary microcephaly patient,we demonstrate neurogenesis defects result in defective neuronal activity in patient organoids,suggesting a new strategy to study human developmental diseases in central nerve system.

  2. Does the cerebral cortex exacerbate dopaminergic cell death in the substantia nigra of 6OHDA-lesioned rats?

    Science.gov (United States)

    Luquin, Natasha; Mitrofanis, John

    2008-01-01

    We have explored the survival of dopaminergic cells of the substantia nigra pars compacta (SNc) in 6 hydroxydopamine (6OHDA)-lesioned rats with prior cortical removal. There were approximately 35% more dopaminergic cells in the ventral sector of SNc (vSNc) of 6OHDA-lesioned rats that had prior cortical removal compared to those that did not. By contrast, there were no differences in dopaminergic cell number between these experimental groups in the ventral tegmental area (VTA) and the dorsal sector of SNc (dSNc). Hence, prior cortical removal in 6OHDA-lesioned rats neuroprotected vSNc--but not VTA or dSNc--dopaminergic cells from death.

  3. Altering the trajectory of early postnatal cortical development can lead to structural and behavioural features of autism

    Directory of Open Access Journals (Sweden)

    Chomiak Taylor

    2010-08-01

    Full Text Available Abstract Background Autism is a behaviourally defined neurodevelopmental disorder with unknown etiology. Recent studies in autistic children consistently point to neuropathological and functional abnormalities in the temporal association cortex (TeA and its associated structures. It has been proposed that the trajectory of postnatal development in these regions may undergo accelerated maturational alterations that predominantly affect sensory recognition and social interaction. Indeed, the temporal association regions that are important for sensory recognition and social interaction are one of the last regions to mature suggesting a potential vulnerability to early maturation. However, direct evaluation of the emerging hypothesis that an altered time course of early postnatal development can lead to an ASD phenotype remains lacking. Results We used electrophysiological, histological, and behavioural techniques to investigate if the known neuronal maturational promoter valproate, similar to that in culture systems, can influence the normal developmental trajectory of TeA in vivo. Brain sections obtained from postnatal rat pups treated with VPA in vivo revealed that almost 40% of cortical cells in TeA prematurely exhibited adult-like intrinsic electrophysiological properties and that this was often associated with gross cortical hypertrophy and a reduced predisposition for social play behaviour. Conclusions The co-manifestation of these functional, structural and behavioural features suggests that alteration of the developmental time course in certain high-order cortical networks may play an important role in the neurophysiological basis of autism.

  4. Decreased ipsilateral [123I]iododexetimide binding to cortical muscarinic receptors in unilaterally 6-hydroxydopamine lesioned rats

    International Nuclear Information System (INIS)

    Knol, Remco J.J.; Bruin, Kora de; Opmeer, Brent; Voorn, Pieter; Jonker, Allert J.; Eck-Smit, Berthe L.F. van; Booij, Jan

    2014-01-01

    Introduction: Dysfunction of the cholinergic neurotransmitter system is present in Parkinson’s disease, Parkinson’s disease related dementia and dementia with Lewy bodies, and is thought to contribute to cognitive deficits in these patients. In vivo imaging of the cholinergic system in these diseases may be of value to monitor central cholinergic disturbances and to select cases in which treatment with cholinesterase inhibitors could be beneficial. The muscarinic receptor tracer [ 123 I]iododexetimide, predominantly reflecting M 1 receptor binding, may be an appropriate tool for imaging of the cholinergic system by means of SPECT. In this study, we used [ 123 I]iododexetimide to study the effects of a 6-hydroxydopamine lesion (an animal model of Parkinson’s disease) on the muscarinic receptor availability in the rat brain. Methods: Rats (n = 5) were injected in vivo at 10–13 days after a confirmed unilateral 6-hydroxydopamine lesion. Muscarinic receptor availability was measured bilaterally in multiple brain areas on storage phosphor images by region of interest analysis. Results: Autoradiography revealed a consistent and statistically significant lower [ 123 I]iododexetimide binding in all examined neocortical areas on the ipsilateral side of the lesion as compared to the contralateral side. In hippocampal and subcortical areas, such asymmetry was not detected. Conclusions: This study suggests that evaluation of muscarinic receptor availability in dopamine depleted brains using [ 123 I]iododexetimide is feasible. We conclude that 6-hydroxydopamine lesions induce a decrease of neocortical muscarinic receptor availability. We hypothesize that this arises from down regulation of muscarinic postsynaptic M 1 receptors due to hyperactivation of the cortical cholinergic system in response to dopamine depletion. Advances in knowledge: In rats, dopamine depletion provokes a decrease in neocortical muscarinic receptor availability, which is evaluable by [ 123 I

  5. Uptake of SPECT radiopharmaceuticals in neocortical brain cultures

    Energy Technology Data Exchange (ETDEWEB)

    Jong, B.M. de; Royen, E.A. van

    1989-01-01

    The uptake, retention and uptake antagonism of /sup 201/Tl-DDC, /sup 201/Tl-Cl, /sup 123/I-IMP, /sup 99m/Tc-HMPAO and /sup 99m/Tc-O4/sup -/ were compared in rat neocortex cultures. /sup 201/Tl-DDC and /sup 123/I-IP revealed the highest uptake of radioactivity in the cultures. /sup 99m/Tc-HMPAO and /sup 123/I-IMP showed the highest retention of radioactivity within the tissue in washout experiments. Blocking of bioelectric activity by tetrodotoxin did not significantly affect the uptake of the radiopharmaceuticals (RPHA). Inhibition of Na K ATPase by ouabain inhibited the uptake of /sup 201/Tl-Cl (77%) and /sup 201/Tl-DDC (27%). Imipramine showed a significantly stronger inhibitory effect on /sup 123/I-IMP uptake in comparison with the effect on other RPHA. /sup 99m/Tc-O4/sup -/ was not concentrated within the cultured tissue. Under the in vitro conditions used in this study, the various RPHA were characterised by distinct differences in their interaction with cortical brain tissue.

  6. Rat glomerular epithelial cells in culture. Parietal or visceral epithelial origin

    International Nuclear Information System (INIS)

    Norgaard, J.O.

    1987-01-01

    Isolated glomeruli from rats were explanted under standard culture conditions and outgrowths were studied by light and electron microscopy in order to identify the cells. Rat glomerular samples contained 20 to 30% structurally well-preserved encapsulated glomeruli which had a large rate of attachment to the substrate and very constantly gave rise to cellular outgrowth. In order to label cells from which outgrowth originated the glomerular incorporation of [ 3 H]thymidine was studied in the preattachment phase. By light and electron microscope autoradiograph it was demonstrated that label was located only over visceral and parietal epithelial cells during the first 3 days of culture. Incorporation of [ 3 H]thymidine was seen in mesangial cells after 5 days, i.e., after the glomeruli had attached to the culture vessels and the initial outgrowth had appeared. Consequently the first cells to grow out were of epithelial origin. Glomeruli were then incubated with [ 3 H]thymidine for the first 2 1/2 days of culture in order to label the epithelial cells, then were allowed to attach to the substrate and induce cell outgrowth. By light microscope autoradiography performed with the outgrowths in situ two types of cells with labeled nuclei were seen: (a) a small, polyhedral ciliated cell which grew in colonies where the cells were joined by junctional complexes (type I), and (b) a second very large, often multinucleated cell (type II). Based on the structural resemblance with their counterparts in situ and on comparisons with positively identified visceral epithelial cells in outgrowths from other species it is suggested that type I cells are derived from the parietal epithelium of Bowman's capsule and type II cells from the visceral epithelium

  7. Ionic currents and charge movements in organ-cultured rat skeletal muscle.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W; Robson, E

    1984-12-01

    The middle of the fibre voltage-clamp technique was used to measure ionic currents and non-linear charge movements in intact, organ-cultured (in vitro denervated) mammalian fast-twitch (rat extensor digitorum longus) muscle fibres. Muscle fibres organ cultured for 4 days can be used as electrophysiological and morphological models for muscles in vivo denervated for the same length of time. Sodium currents in organ-cultured muscle fibres are similar to innervated fibres except that in the temperature range 0-20 degrees C (a) in the steady state, the voltage distribution of inactivation in cultured fibres is shifted negatively some 20 mV; (b) at the same temperature and membrane potential, the time constant of inactivation in cultured fibres is about twice that of innervated fibres. Potassium currents in innervated and cultured fibres at 15 degrees C can be fitted with the Hodgkin-Huxley n variable raised to the second power. Despite the large range we would estimate that the maximum value of the steady-state potassium conductance of cultured fibres is about one-half that of innervated fibres. The estimated maximum amount of charge moved in cultured fibre is about one-third that in innervated fibres. Compared to innervated fibres, culturing doubles the kinetics of the decay phase of charge movement. The possibility of a negative shift of the voltage distribution of charge movements in cultured fibres is discussed.

  8. Inhibition of Cathepsins B Induces Neuroprotection Against Secondary Degeneration in Ipsilateral Substantia Nigra After Focal Cortical Infarction in Adult Male Rats

    Directory of Open Access Journals (Sweden)

    Xialin Zuo

    2018-05-01

    Full Text Available Stroke is the leading cause of adult disability in the world. In general, recovery from stroke is incomplete. Accumulating evidences have shown that focal cerebral infarction leads to dynamic trans-neuronal degeneration in non-ischemic remote brain regions, with the disruption of connections to synapsed neurons sustaining ischemic insults. Previously, we had reported that the ipsilateral striatum, thalamus degenerated in succession after permanent distal branch of middle cerebral artery occlusion (dMCAO in Sprague-Dawley (SD rats and cathepsin (Cath B was activated before these relay degeneration. Here, we investigate the role of CathB in the secondary degeneration of ipsilateral substantia nigra (SN after focal cortical infarction. We further examined whether the inhibition of CathB with L-3-trans-(Propyl-carbamoyloxirane-2-carbonyl-L-isoleucyl-L-proline methyl ester (CA-074Me would attenuate secondary degeneration through enhancing the cortico-striatum-nigral connections and contribute to the neuroprotective effects. Our results demonstrated that secondary degeneration in the ipsilateral SN occurred and CathB was upregulated in the ipsilateral SN after focal cortical infarction. The inhibition of CathB with CA-074Me reduced the neuronal loss and gliosis in the ipsilateral SN. Using biotinylated dextran amine (BDA or pseudorabies virus (PRV 152 as anterograde or retrograde tracer to trace striatum-nigral and cortico-nigral projections pathway, CA-074Me can effectively enhance the cortico-striatum-nigral connections and exert neuroprotection against secondary degeneration in the ipsilateral SN after cortical ischemia. Our study suggests that the lysosomal protease CathB mediates the secondary damage in the ipsilateral SN after dMCAO, thus it can be a promising neuroprotective target for the rehabilitation of stroke patients.

  9. Dense neuron clustering explains connectivity statistics in cortical microcircuits.

    Directory of Open Access Journals (Sweden)

    Vladimir V Klinshov

    Full Text Available Local cortical circuits appear highly non-random, but the underlying connectivity rule remains elusive. Here, we analyze experimental data observed in layer 5 of rat neocortex and suggest a model for connectivity from which emerge essential observed non-random features of both wiring and weighting. These features include lognormal distributions of synaptic connection strength, anatomical clustering, and strong correlations between clustering and connection strength. Our model predicts that cortical microcircuits contain large groups of densely connected neurons which we call clusters. We show that such a cluster contains about one fifth of all excitatory neurons of a circuit which are very densely connected with stronger than average synapses. We demonstrate that such clustering plays an important role in the network dynamics, namely, it creates bistable neural spiking in small cortical circuits. Furthermore, introducing local clustering in large-scale networks leads to the emergence of various patterns of persistent local activity in an ongoing network activity. Thus, our results may bridge a gap between anatomical structure and persistent activity observed during working memory and other cognitive processes.

  10. Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat.

    Directory of Open Access Journals (Sweden)

    Bertrand Degos

    Full Text Available Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized the impact of high-frequency electrical stimulation of the subthalamic nucleus, a procedure alleviating parkinsonian symptoms. We provided evidence that a lesion restricted to the substantia nigra pars compacta resulted in a marked increase in the mean firing rate and bursting pattern of pyramidal neurons of the motor cortex. These alterations were underlain by changes of the electrical membranes properties of pyramidal cells including depolarized resting membrane potential and increased input resistance. The modifications induced by the dopaminergic loss were more pronounced in cortico-striatal than in cortico-subthalamic neurons. Furthermore, subthalamic nucleus high-frequency stimulation applied at parameters alleviating parkinsonian signs regularized the firing pattern of pyramidal cells and restored their electrical membrane properties.

  11. Interhemispheric claustral circuits coordinate somatomotor and visuomotor cortical areas that regulate exploratory behaviors

    Directory of Open Access Journals (Sweden)

    Jared Brent Smith

    2014-05-01

    Full Text Available The claustrum has a role in the interhemispheric transfer of certain types of sensorimotor information. Whereas the whisker region in rat motor (M1 cortex sends dense projections to the contralateral claustrum, the M1 forelimb representation does not. The claustrum sends strong ipsilateral projections to the whisker regions in M1 and somatosensory (S1 cortex, but its projections to the forelimb cortical areas are weak. These distinctions suggest that one function of the M1 projections to the contralateral claustrum is to coordinate the cortical areas that regulate peripheral sensor movements during behaviors that depend on bilateral sensory acquisition. If this hypothesis is true, then similar interhemispheric circuits should interconnect the frontal eye fields (FEF with the contralateral claustrum and its network of projections to vision-related cortical areas. To test this hypothesis, anterograde and retrograde tracers were placed in physiologically-defined parts of the FEF and primary visual cortex (V1 in rats. We observed dense FEF projections to the contralateral claustrum that terminated in the midst of claustral neurons that project to both FEF and V1. While the FEF inputs to the claustrum come predominantly from the contralateral hemisphere, the claustral projections to FEF and V1 are primarily ipsilateral. Detailed comparison of the present results with our previous studies on somatomotor claustral circuitry revealed a well-defined functional topography in which the ventral claustrum is connected with visuomotor cortical areas and the dorsal regions are connected with somatomotor areas. These results suggest that subregions within the claustrum play a critical role in coordinating the cortical areas that regulate the acquisition of modality-specific sensory information during exploration and other behaviors that require sensory attention.

  12. Fear Expression Suppresses Medial Prefrontal Cortical Firing in Rats.

    Directory of Open Access Journals (Sweden)

    Thomas F Giustino

    Full Text Available The medial prefrontal cortex (mPFC plays a crucial role in emotional learning and memory in rodents and humans. While many studies suggest a differential role for the prelimbic (PL and infralimbic (IL subdivisions of mPFC, few have considered the relationship between neural activity in these two brain regions recorded simultaneously in behaving animals. Importantly, how concurrent PL and IL activity relate to conditioned freezing behavior is largely unknown. Here we used single-unit recordings targeting PL and IL in awake, behaving rats during the acquisition and expression of conditioned fear. On Day 1, rats received either signaled or unsignaled footshocks in the recording chamber; an auditory conditioned stimulus (CS preceded signaled footshocks. Twenty-four hours later, animals were returned to the recording chamber (modified to create a novel context where they received 5 CS-alone trials. After fear conditioning, both signaled and unsignaled rats exhibited high levels of post-shock freezing that was associated with an enduring suppression of mPFC spontaneous firing, particularly in the IL of signaled rats. Twenty-four hours later, CS presentation produced differential conditioned freezing in signaled and unsignaled rats: freezing increased in rats that had received signaled shocks, but decreased in animals in the unsignaled condition (i.e., external inhibition. This group difference in CS-evoked freezing was mirrored in the spontaneous firing rate of neurons in both PL and IL. Interestingly, differences in PL and IL firing rate highly correlated with freezing levels. In other words, in the signaled group IL spontaneous rates were suppressed relative to PL, perhaps limiting IL-mediated suppression of fear and allowing PL activity to dominate performance, resulting in high levels of freezing. This was not observed in the unsignaled group, which exhibited low freezing. These data reveal that the activity of mPFC neurons is modulated by both

  13. Isolated rat dental pulp cell culture and transplantation with an alginate scaffold.

    Science.gov (United States)

    Fujiwara, Shiro; Kumabe, Shunji; Iwai, Yasutomo

    2006-05-01

    Many studies have been conducted on tissue stem cells in the field of regenerative medicine, and cultured dental pulp mesenchymal cells have been reported to secrete dentin matrix. In the present study we used alginate as a scaffold to transplant subcultured rat dental-pulp-derived cells subcutaneously into the back of nude mice. We found that when beta-glycerophosphate was added to the culture medium, the mRNA of the dentin sialophosphoprotein (DSPP) gene coding dentin sialoprotein (DSP) and dentin phosphoprotein (DPP) was expressed, and an increase in alkaline phosphatase, an early marker of odontoblast differentiation, was also demonstrated. Six weeks after implantation, subcutaneous formation of radiopaque calcified bodies was observed in situ. Immunohistochemical and fine structure studies identified expression of type I collagen, type III collagen, and DSP in the mineralizing transplants, and isolated odontoblast-like cells began to form dentin-like hard tissue formation. Scattered autolyzing apoptotic cells were also observed in the transplants. The study showed that subcultured rat dental-pulp-derived cells actively differentiate into odontoblast-like cells and induce calcification in an alginate scaffold.

  14. Electrical stimulation of the epileptic focus in absence epileptic WAG/RIJ rats: assessment of local and network excitability

    NARCIS (Netherlands)

    Luttjohann, A.K.; Zhang, S.W.; Peijper, R.A.G. de; Luijtelaar, E.L.J.M. van

    2011-01-01

    [Objective] The study aims to investigate whether there is a higher excitability in the deep cortical layers of the pen-oral region of the somatosensory cortex as compared to other cortical regions in absence epileptic WAG/Rij rats and whether this is unique for this type of epileptic rats, as would

  15. Effect of basic amino acids and aminoglycosides on 3H-gentamicin uptake in cortical slices of rat and human kindney

    International Nuclear Information System (INIS)

    Bennett, W.M.; Plamp, C.E.; Elliott, W.C.; Parker, R.A.; Porter, G.A.

    1982-01-01

    The uptake of 3 H-gentamicin was assessed in renal cortical slices of Fischer 344 male rats and four human cadaver kidneys not utilized for renal transplantation. In both species the uptake was maximal at 90 min and maintained a steady state therafter. The characteristics of the energy-dependent component of 3 H-gentamicin uptake were not altered by various basic amino acids, but competitive inhibition was induced by other aminoglycosides in a dose-dependent fashion. Thus aminoglycosides appear to share a transport process that is distinct from those of organic bases or other cationic substances. In addition, under the experimental conditions employed, the basolateral membranes of the tubular cell is capable of energy-dependent uptake of gentamicin. The role of this route of cellular uptake of aminoglycoside in clinical nephrotoxicity is speculative

  16. Age-related differences in the bone mineralization pattern of rats following exercise

    International Nuclear Information System (INIS)

    McDonald, R.; Hegenauer, J.; Saltman, P.

    1986-01-01

    The effect of 12 weeks of treadmill exercise on the mineralization of trabecular and cortical bone was studied in rats 7, 14, and 19 months of age. Bone mineralization was evaluated by measuring concentrations of Ca, Mg, and hydroxyproline as well as uptake of 45Ca concentration in the femur, humerus, rib and calvaria. The 7- and 14-month-old rats increased mineralization in those cortical bones directly involved in exercise. The 19-month animal responded to exercise by increasing mineralization in all bones examined, including the nonweight bearing trabecular calvaria and cortical rib. From these data, it is apparent that the older animals undergo a total skeletal mineralization in response to exercise compared with local adaptation in the younger animal. Further, we provide evidence to support the use of the rat as a model in which to study mammalian bone physiology during the aging process

  17. Distraction-like phenomena in maxillary bone due to application of orthodontic forces in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Apostolos I Tsolakis

    2012-01-01

    Full Text Available Background: Orthodontic forces may not only influence the dentoalveolar system, but also the adjacent and surrounding cortical bone. Aim: Since there is very limited information on this issue, we aimed to study the possible changes in maxillary cortical bone following the application of heavy orthodontic forces in mature normal and osteoporotic rats. Materials and Methods: Twenty-four 6-month-old female rats were selected and divided into an ovariectomized group and a normal group. In both groups, the rats were subjected to a 60 grFNx01 orthodontic force on the upper right first molar for 14 days. Results: In both groups, histological sections showed that the application of this force caused hypertrophy and fatigue failure of the cortical maxillary bone. The osteogenic reaction to distraction is expressed by the formation of subperiosteal callus on the outer bony side, resembling that seen in distracted bones. Conclusion: From this study we concluded that heavy experimental orthodontic forces in rats affect the maxillary cortical bone. The osteogenic reaction to these forces, expressed histologically by subperiosteal callus formation, is similar to that seen in distraction osteogenesis models.

  18. Renal pathophysiologic role of cortical tubular inclusion bodies.

    Science.gov (United States)

    Radi, Zaher A; Stewart, Zachary S; Grzemski, Felicity A; Bobrowski, Walter F

    2013-01-01

    Renal tubular inclusion bodies are rarely associated with drug administration. The authors describe the finding of renal cortical tubular intranuclear and intracytoplasmic inclusion bodies associated with the oral administration of a norepinephrine/serotonin reuptake inhibitor (NSRI) test article in Sprague-Dawley (SD) rats. Rats were given an NSRI daily for 4 weeks, and kidney histopathologic, ultrastructural pathology, and immunohistochemical examinations were performed. Round eosinophilic intranuclear inclusion bodies were observed histologically in the tubular epithelial cells of the renal cortex in male and female SD rats given the NSRI compound. No evidence of degeneration or necrosis was noted in the inclusion-containing renal cells. By ultrastructural pathology, inclusion bodies consisted of finely granular, amorphous, and uniformly stained nonmembrane-bound material. By immunohistochemistry, inclusion bodies stained positive for d-amino acid oxidase (DAO) protein. In addition, similar inclusion bodies were noted in the cytoplasmic tubular epithelial compartment by ultrastructural and immunohistochemical examination.  This is the first description of these renal inclusion bodies after an NSRI test article administration in SD rats. Such drug-induced renal inclusion bodies are rat-specific, do not represent an expression of nephrotoxicity, represent altered metabolism of d-amino acids, and are not relevant to human safety risk assessment.

  19. Folate and S-adenosylmethionine modulate synaptic activity in cultured cortical neurons: acute differential impact on normal and apolipoprotein-deficient mice

    International Nuclear Information System (INIS)

    Serra, Michael; Chan, Amy; Dubey, Maya; Shea, Thomas B; Gilman, Vladimir

    2008-01-01

    Folate deficiency is accompanied by a decline in the cognitive neurotransmitter acetylcholine and a decline in cognitive performance in mice lacking apolipoprotein E (ApoE−/− mice), a low-density lipoprotein that regulates aspects of lipid metabolism. One direct consequence of folate deficiency is a decline in S-adenosylmethionine (SAM). Since dietary SAM supplementation maintains acetylcholine levels and cognitive performance in the absence of folate, we examined herein the impact of folate and SAM on neuronal synaptic activity. Embryonic cortical neurons from mice expressing or lacking ApoE (ApoE+/+ or −/−, respectively) were cultured for 1 month on multi-electrode arrays, and signaling was recorded. ApoE+/+ cultures displayed significantly more frequent spontaneous signals than ApoE−/− cultures. Supplementation with 166 µm SAM (not normally present in culture medium) increased signal frequency and decreased signal amplitude in ApoE+/+ cultures. SAM also increased the frequency of tightly clustered signal bursts. Folate deprivation reversibly reduced signal frequency in ApoE+/+ cultures; SAM supplementation maintained signal frequency despite folate deprivation. These findings support the importance of dietary supplementation with folate and SAM on neuronal health. Supplementation with 166 µm SAM did not alter signaling in ApoE−/− cultures, which may be a reflection of the reduced SAM levels in ApoE−/− mice. The differential impact of SAM on ApoE+/+ and −/− neurons underscores the combined impact of nutritional and genetic deficiencies on neuronal homeostasis. (communication)

  20. Effects of taurine on oxidative-antioxidative status of renal tissue in diabetic rats

    International Nuclear Information System (INIS)

    Chen Yingjian; Tu Xiaowen; Yin Qiuxia; Hu Chenjing

    2004-01-01

    Objective: To investigate the effects of taurine on the oxidative-antioxidative status of renal tissue in diabetic rats. Methods: Diabetic models of rat were induced with streptozotocin. Half of the models (n=7) were treated with taurine for 4 weeks. Blood glucose, uric acid and MDA, 24h urinary albumin and renal cortical homogenate MDA, SOD, GSH-Px contents were determined with appropriate laboratory technics in 1) diabetic rats without taurine treatment, n=7 2) diabetic rats treated with taurine, n=7 and 3) control rats, n=7. Results: There were no significant differences between the blood glucose levels in the two groups of diabetic rats. Blood uric acid and 24h urinary albumin contents in the untreated diabetic rats were significantly higher than those in the controls (P<0.01). However, in the taurine treated rats, the blood uric acid levels approximated to those in the controls, with decreased but still higher than normal 24h urinary albumin contents. In the untreated rats, the renal cortical SOD and GSH-Px activities were about the same as those in control rats but there were significantly higher levels of blood and cortical MDA contents (P<0.01). With taurine treatment, the SOD and GSH-Px activities were significantly higher than those in the two other groups (P<0.05); the MDA contents were lower than those in non-treated rats (P<0.05), but still higher than those in controls (P<0.05). Conclusion: Taurine could enhance the anti-oxidative capability and attenuated the oxidative stress in diabetic rats renal tissue with partial protection of renal function. (authors)

  1. Sleep/wake dependent changes in cortical glucose concentrations.

    Science.gov (United States)

    Dash, Michael B; Bellesi, Michele; Tononi, Giulio; Cirelli, Chiara

    2013-01-01

    Most of the energy in the brain comes from glucose and supports glutamatergic activity. The firing rate of cortical glutamatergic neurons, as well as cortical extracellular glutamate levels, increase with time spent awake and decline throughout non rapid eye movement sleep, raising the question whether glucose levels reflect behavioral state and sleep/wake history. Here chronic (2-3 days) electroencephalographic recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of glucose ([gluc]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to 3 h of sleep deprivation. [Gluc] progressively increased during non rapid eye movement sleep and declined during rapid eye movement sleep, while during wake an early decline in [gluc] was followed by an increase 8-15 min after awakening. There was a significant time of day effect during the dark phase, when rats are mostly awake, with [gluc] being significantly lower during the last 3-4 h of the night relative to the first 3-4 h. Moreover, the duration of the early phase of [gluc] decline during wake was longer after prolonged wake than after consolidated sleep. Thus, the sleep/wake history may affect the levels of glucose available to the brain upon awakening. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  2. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse.

    Directory of Open Access Journals (Sweden)

    Irina V Ogneva

    Full Text Available The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: "C", "C+L", "HS", and "HS+L". The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin "C+L" and "HS+L". However, lecithin treatment for three days resulted in an increase in cell stiffness; in the "C+L" group, cell stiffness was significantly higher by 22.7% (p < 0.05 compared with that of group "C". The mRNA content of genes encoding beta- and gamma-actin and beta-tubulin did not significantly differ before and after suspension in the corresponding groups. However, there was a significant increase in the mRNA content of these genes after lecithin treatment: the beta-actin and gamma-actin mRNA content in group "C+L" increased by 200% compared with that of group "C", and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7. In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively

  3. Gel entrapment culture of rat hepatocytes for investigation of tetracycline-induced toxicity

    International Nuclear Information System (INIS)

    Shen Chong; Meng Qin; Schmelzer, Eva; Bader, Augustinus

    2009-01-01

    This paper aimed to explore three-dimensionally cultured hepatocytes for testing drug-induced nonalcoholic steatohepatitis. Gel entrapped rat hepatocytes were applied for investigation of the tetracycline-induced steatohepatitis, while hepatocyte monolayer was set as a control. The toxic responses of hepatocytes were systematically evaluated by measuring cell viability, liver-specific function, lipid accumulation, oxidative stress, adenosine triphosphate content and mitochondrial membrane potential. The results suggested that gel entrapped hepatocytes showed cell death after 96 h of tetracycline treatment at 25 μM which is equivalent to toxic serum concentration in rats, while hepatocyte monolayer showed cell death at a high dose of 200 μM. The concentration-dependent accumulation of lipid as well as mitochondrial damage were regarded as two early events for tetracycline hepatotoxicity in gel entrapment culture due to their detectability ahead of subsequent increase of oxidative stress and a final cell death. Furthermore, the potent protection of fenofibrate and fructose-1,6-diphosphate were evidenced in only gel entrapment culture with higher expressions on the genes related to β-oxidation than hepatocyte monolayer, suggesting the mediation of lipid metabolism and mitochondrial damage in tetracycline toxicity. Overall, gel entrapped hepatocytes in three-dimension reflected more of the tetracycline toxicity in vivo than hepatocyte monolayer and thus was suggested as a more relevant system for evaluating steatogenic drugs.

  4. The endocannabinoid anandamide inhibits potassium conductance in rat cortical astrocytes

    Czech Academy of Sciences Publication Activity Database

    Vignali, M.; Benfenati, V.; Caprini, M.; Anděrová, Miroslava; Nobile, M.; Ferroni, S.

    2009-01-01

    Roč. 57, č. 7 (2009), s. 791-806 ISSN 0894-1491 R&D Projects: GA ČR GA305/06/1316; GA ČR GA305/06/1464; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50390512 Keywords : cortical astroglia * potassium conductance * endocannabinoids Subject RIV: FH - Neurology Impact factor: 4.932, year: 2009

  5. Effect of quinolinic acid in the nucleus basalis magnocellularis on cortical high-affinity choline uptake

    Energy Technology Data Exchange (ETDEWEB)

    Metcalf, R.H.; Boegman, R.J.; Quirion, R.; Riopelle, R.J.; Ludwin, S.K.

    1987-08-01

    A transient 45% increase in cortical high-affinity choline uptake (HACU) was observed after an injection of quinolinic acid (QUIN) into the nucleus basalis magnocellularis (nbM) of the rat. This was followed by a steady decline in choline uptake, which resulted in a 46% decrease by day 7. Specific (/sup 3/H)hemicholinium-3 binding to coronal brain sections showed a similar pattern following injections of QUIN into the nbM. The increase in cortical HACU elicited by QUIN appeared to be dose dependent.

  6. Regulation of pro-adrenocorticotropin-endorphin synthesis and secretion in cultured neonatal rat anterior pituitary

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S.M.; Mains, R.E. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1987-08-01

    Previous work demonstrated that newborn rat anterior pituitary corticotropes display processing patterns for pro-ACTH/endorphin that are different from the adult. The synthesis and release of beta-endorphin-related peptides was examined in dispersed cell and explant cultures of newborn anterior pituitary to investigate corticotrope development further. The temporal pattern of pro-ACTH/endorphin processing differed significantly from adult rat melanotropes and AtT-20 cells. While pro-ACTH/endorphin processing begins within 30 min of synthesis in adult melanotropes and AtT-20 cells, pulse-labeling of newborn corticotropes in culture indicated that pro-ACTH/endorphin remained uncleaved for at least 90 min after synthesis. With further incubation, there was a decrease in radioactivity associated with the precursor and an equivalent rise in the radioactivity associated with beta-endorphin and beta-lipotropin. However, unprocessed precursor still remained in the cultured newborn anterior pituitary cells after a 25-h chase. Although intact pro-ACTH/endorphin from newborn corticotropes was very long-lived, the precursor did undergo oligosaccharide maturation and became endoglycosidase H resistant within 1 h after synthesis. Similar to the adult, pro-ACTH/endorphin synthesis was doubled in cultures of newborn anterior pituitary chronically treated with 10 nM CRF resulting in a 3- to 4-fold stimulation of secretion over the basal rate. However, unlike the AtT-20 cell or adult rat corticotrope, the proteolytic processing of pro-ACTH/endorphin in the newborn corticotrope was altered by chronic secretagogue treatment; less pro-ACTH/endorphin was converted to beta-endorphin in secretagogue-treated corticotropes than in controls. Thus processing of pro-ACTH/endorphin in the corticotrope is not mature by birth and can be regulated by chronic CRF treatment.

  7. Regulation of pro-adrenocorticotropin-endorphin synthesis and secretion in cultured neonatal rat anterior pituitary

    International Nuclear Information System (INIS)

    Sato, S.M.; Mains, R.E.

    1987-01-01

    Previous work demonstrated that newborn rat anterior pituitary corticotropes display processing patterns for pro-ACTH/endorphin that are different from the adult. The synthesis and release of beta-endorphin-related peptides was examined in dispersed cell and explant cultures of newborn anterior pituitary to investigate corticotrope development further. The temporal pattern of pro-ACTH/endorphin processing differed significantly from adult rat melanotropes and AtT-20 cells. While pro-ACTH/endorphin processing begins within 30 min of synthesis in adult melanotropes and AtT-20 cells, pulse-labeling of newborn corticotropes in culture indicated that pro-ACTH/endorphin remained uncleaved for at least 90 min after synthesis. With further incubation, there was a decrease in radioactivity associated with the precursor and an equivalent rise in the radioactivity associated with beta-endorphin and beta-lipotropin. However, unprocessed precursor still remained in the cultured newborn anterior pituitary cells after a 25-h chase. Although intact pro-ACTH/endorphin from newborn corticotropes was very long-lived, the precursor did undergo oligosaccharide maturation and became endoglycosidase H resistant within 1 h after synthesis. Similar to the adult, pro-ACTH/endorphin synthesis was doubled in cultures of newborn anterior pituitary chronically treated with 10 nM CRF resulting in a 3- to 4-fold stimulation of secretion over the basal rate. However, unlike the AtT-20 cell or adult rat corticotrope, the proteolytic processing of pro-ACTH/endorphin in the newborn corticotrope was altered by chronic secretagogue treatment; less pro-ACTH/endorphin was converted to beta-endorphin in secretagogue-treated corticotropes than in controls. Thus processing of pro-ACTH/endorphin in the corticotrope is not mature by birth and can be regulated by chronic CRF treatment

  8. A cortical–hippocampal–cortical loop of information processing during memory consolidation

    Science.gov (United States)

    Rothschild, Gideon; Eban, Elad; Frank, Loren M

    2018-01-01

    Hippocampal replay during sharp-wave ripple events (SWRs) is thought to drive memory consolidation in hippocampal and cortical circuits. Changes in neocortical activity can precede SWR events, but whether and how these changes influence the content of replay remains unknown. Here we show that during sleep there is a rapid cortical–hippocampal–cortical loop of information flow around the times of SWRs. We recorded neural activity in auditory cortex (AC) and hippocampus of rats as they learned a sound-guided task and during sleep. We found that patterned activation in AC precedes and predicts the subsequent content of hippocampal activity during SWRs, while hippocampal patterns during SWRs predict subsequent AC activity. Delivering sounds during sleep biased AC activity patterns, and sound-biased AC patterns predicted subsequent hippocampal activity. These findings suggest that activation of specific cortical representations during sleep influences the identity of the memories that are consolidated into long-term stores. PMID:27941790

  9. Increased phencyclidine-induced hyperactivity following cortical cholinergic denervation.

    Science.gov (United States)

    Mattsson, Anna; Lindqvist, Eva; Ogren, Sven Ove; Olson, Lars

    2005-11-07

    Altered cholinergic function is considered as a potential contributing factor in the pathogenesis of schizophrenia. We hypothesize that cortical cholinergic denervation may result in changes in glutamatergic activity. Therefore, we lesioned the cholinergic corticopetal projections by local infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of rats. Possible effects of this lesion on glutamatergic systems were examined by phencyclidine-induced locomotor activity, and also by N-methyl-D-aspartate receptor binding. We find that cholinergic lesioning of neocortex leads to enhanced sensitivity to phencyclidine in the form of a dramatic increase in horizontal activity. Further, N-methyl-D-aspartate receptor binding is unaffected in denervated rats. These results suggest that aberrations in cholinergic function might lead to glutamatergic dysfunctions, which might be of relevance for the pathophysiology for schizophrenia.

  10. Extracellular matrix components influence DNA synthesis of rat hepatocytes in primary culture

    International Nuclear Information System (INIS)

    Sawada, N.; Tomomura, A.; Sattler, C.A.; Sattler, G.L.; Kleinman, H.K.; Pitot, H.C.

    1986-01-01

    The effects of several extracellular matrix components (EMCs) - fibronectin (Fn), laminin (Ln), type I (C-I) and type IV (C-IV) collagen - on DNA synthesis in rat hepatocytes in primary culture were examined by both quantitative scintillation spectrometry and autoradiography of [ 3 H]thymidine incorporation. Hepatocytes cultured on Fn showed the most active DNA synthesis initiated by epidermal growth factor (EGF) with decreasing levels of [ 3 H]thymidine uptake exhibited in the cell cultured on C-IV, C-I, and Ln, respectively. The decreasing level of DNA synthesis in hepatocytes cultured on Fn, C-IV, C-I, and Ln respectively was not influenced by cell density. The number of EGF receptors of hepatocytes was also not influenced by EMCs. These data suggest that EMCs modify hepatocyte DNA synthesis by means of post-EGF-receptor mechanisms which are regulated by both growth factors and cell density

  11. Distinct angiotensin II receptor in primary cultures of glial cells from rat brain

    International Nuclear Information System (INIS)

    Raizada, M.K.; Phillips, M.I.; Crews, F.T.; Sumners, C.

    1987-01-01

    Angiotensin II (Ang-II) has profound effects on the brain. Receptors for Ang-II have been demonstrated on neurons, but no relationship between glial cells and Agn-II has been established. Glial cells (from the hypothalamus and brain stem of 1-day-old rat brains) in primary culture have been used to demonstrate the presence of specific Ang-II receptors. Binding of 125 I-Ang-II to glial cultures was rapid, reversible, saturable, and specific for Ang-II. The rank order of potency of 125 I-Ang-II binding was determined. Scatchard analysis revealed a homogeneous population of high-affinity binding sites with a B/sub max/ of 110 fmol/mg of protein. Light-microscopic autoradiography of 125 I-Ang-II binding supported the kinetic data, documenting specific Ang-II receptors on the glial cells. Ang-II stimulated a dose-dependent hydrolysis of phosphatidylinositols in glial cells, an effect mediated by Ang-II receptors. However, Ang-II failed to influence [ 3 H] norepinephrine uptake, and catecholamines failed to regulate Ang-II receptors, effects that occur in neurons. These observations demonstrate the presence of specific Ang-II receptors on the glial cells in primary cultures derived from normotensive rat brain. The receptors are kinetically similar to, but functionally distinct from, the neuronal Ang-II receptors

  12. Comparison of radiometric and conventional culture systems in detecting Haemophilus influenzae type b bacteremia in rats

    International Nuclear Information System (INIS)

    Mitchell, M.J.; Zwahlen, A.; Elliott, H.L.; Ford, N.K.; Charache, F.P.; Moxon, E.R.

    1985-01-01

    To compare the efficiency of detecting Haemophilus influenzae type b bacteremia by the BACTEC radiometric system and a conventional Trypticase soy broth blood culture system, the authors developed an in vivo model of bacteremia in rats. After intravenous injection of 50 to 200 CFU into adult rats, there was a linear logarithmic increase in CFU per milliliter of rat blood during the first 10 h (r = 0.98), allowing accurate prediction of the level of bacteremia with time. Culture bottles were inoculated with 0.5 ml of blood obtained by cardiac puncture and processed as clinical samples in the microbiology laboratory with RS and conventional protocols. They found the following. (i) The first detection of bacteremia by RS was similar to that by TSB if a Gram stain of the TSB was done on day 1 and was superior if that smear was omitted (P less than 0.01). (ii) The detection times in both systems were comparable at different magnitudes of bacteremia (10(1) to 10(4) CFU/ml). (iii) Supplementation of inoculated bottles with 2 ml of sterile rat blood interfered with Gram stain detection in TSB but resulted in increased 14 CO 2 production in RS. (iv) No difference in detection time was found between RS and TSB for four different clinical isolates. These studies show that, in a biologically relevant model, the detection of positive blood cultures for H. influenzae type b by RS was comparable to or better than detection by TSB when blood was processed analogously to clinical specimens

  13. Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression

    Science.gov (United States)

    Sakadžić, Sava; Yuan, Shuai; Dilekoz, Ergin; Ruvinskaya, Svetlana; Vinogradov, Sergei A.; Ayata, Cenk; Boas, David A.

    2009-01-01

    We developed a novel imaging technique that provides real-time two-dimensional maps of the absolute partial pressure of oxygen and relative cerebral blood flow in rats by combining phosphorescence lifetime imaging with laser speckle contrast imaging. Direct measurement of blood oxygenation based on phosphorescence lifetime is not significantly affected by changes in the optical parameters of the tissue during the experiment. The potential of the system as a novel tool for quantitative analysis of the dynamic delivery of oxygen to support brain metabolism was demonstrated in rats by imaging cortical responses to forepaw stimulation and the propagation of cortical spreading depression waves. This new instrument will enable further study of neurovascular coupling in normal and diseased brain. PMID:19340106

  14. Acute hypothalamic suppression significantly affects trabecular bone but not cortical bone following recovery and ovariectomy surgery in a rat model

    Directory of Open Access Journals (Sweden)

    Vanessa R. Yingling

    2016-01-01

    Full Text Available Background. Osteoporosis is “a pediatric disease with geriatric consequences.” Bone morphology and tissue quality co-adapt during ontogeny for sufficient bone stiffness. Altered bone morphology from hypothalamic amenorrhea, a risk factor for low bone mass in women, may affect bone strength later in life. Our purpose was to determine if altered morphology following hypothalamic suppression during development affects cortical bone strength and trabecular bone volume (BV/TV at maturity.Methods. Female rats (25 days old were assigned to a control (C group (n = 45 that received saline injections (.2 cc or an experimental group (GnRH-a (n = 45 that received gonadotropin releasing hormone antagonist injections (.24 mg per dose for 25 days. Fifteen animals from each group were sacrificed immediately after the injection protocol at Day 50 (C, GnRH-a. The remaining animals recovered for 135 days and a subset of each group was sacrificed at Day 185 ((C-R (n = 15 and (G-R (n = 15. The remaining animals had an ovariectomy surgery (OVX at 185 days of age and were sacrificed 40 days later (C-OVX (n = 15 and (G-OVX (n = 15. After sacrifice femurs were mechanically tested and scanned using micro CT. Serum C-terminal telopeptides (CTX and insulin-like growth factor 1 (IGF-1 were measured. Two-way ANOVA (2 groups (GnRH-a and Control X 3 time points (Injection Protocol, Recovery, post-OVX was computed.Results. GnRH-a injections suppressed uterine weights (72% and increased CTX levels by 59%. Bone stiffness was greater in the GnRH-a groups compared to C. Ash content and cortical bone area were similar between groups at all time points. Polar moment of inertia, a measure of bone architecture, was 15% larger in the GnRH-a group and remained larger than C (19% following recovery. Both the polar moment of inertia and cortical area increased linearly with the increases in body weight. Following the injection protocol, trabecular BV/TV was 31% lower in the Gn

  15. Initiation of sleep-dependent cortical-hippocampal correlations at wakefulness-sleep transition.

    Science.gov (United States)

    Haggerty, Daniel C; Ji, Daoyun

    2014-10-01

    Sleep is involved in memory consolidation. Current theories propose that sleep-dependent memory consolidation requires active communication between the hippocampus and neocortex. Indeed, it is known that neuronal activities in the hippocampus and various neocortical areas are correlated during slow-wave sleep. However, transitioning from wakefulness to slow-wave sleep is a gradual process. How the hippocampal-cortical correlation is established during the wakefulness-sleep transition is unknown. By examining local field potentials and multiunit activities in the rat hippocampus and visual cortex, we show that the wakefulness-sleep transition is characterized by sharp-wave ripple events in the hippocampus and high-voltage spike-wave events in the cortex, both of which are accompanied by highly synchronized multiunit activities in the corresponding area. Hippocampal ripple events occur earlier than the cortical high-voltage spike-wave events, and hippocampal ripple incidence is attenuated by the onset of cortical high-voltage spike waves. This attenuation leads to a temporary weak correlation in the hippocampal-cortical multiunit activities, which eventually evolves to a strong correlation as the brain enters slow-wave sleep. The results suggest that the hippocampal-cortical correlation is established through a concerted, two-step state change that first synchronizes the neuronal firing within each brain area and then couples the synchronized activities between the two regions. Copyright © 2014 the American Physiological Society.

  16. Effect of ADH on rubidium transport in isolated perfused rat cortical collecting tubules

    International Nuclear Information System (INIS)

    Schafer, J.A.; Troutman, S.L.

    1986-01-01

    Unidirectional fluxes of 86Rb+ were measured as an indicator of potassium transport in isolated rat cortical collecting tubules perfused and bathed at 38 degrees C with isotonic solutions in which Rb+ replaced K+. Under control conditions the lumen-to-bath flux (Jl----b) was significantly less than the bath-to-lumen flux (Jb----l), indicating net Rb+ secretion. Net secretion increased approximately 180% after addition of 100 microU/ml of arginine vasopressin (ADH) to the bathing solution, due to a rapid and reversible increase in Jb----l from 4.6 +/- 0.8 to 9.0 +/- 1.9 pmol X min-1 X mm-1 with no significant change in Jl----b. The ADH effect was completely inhibited by 2 mM luminal Ba2+. The average transepithelial voltage (Ve) was not significantly different from zero in the control period but became lumen negative (-5 to -10 mV) after ADH. With 10(-5) M amiloride in the lumen Ve was lumen positive (+2 to +4 mV) and was unaltered by ADH or Ba2+, yet ADH produced a significant but attentuated increase in Jb----l with no change in Jl----b. The results indicate that ADH augments net K+ secretion either by an increase in the Ba2+-sensitive conductance of the apical membrane or by an increase in the electrochemical potential driving force for net Rb+ secretion through this pathway

  17. Early effects of aldosterone on Na-K pump in rat cortical collecting tubules

    International Nuclear Information System (INIS)

    Fujii, Y.; Takemoto, F.; Katz, A.I.

    1990-01-01

    Sustained exposure to aldosterone (Aldo) increases the abundance and activity of the Na-K pump in cortical collecting tubules (CCT). However, the onset and mechanism of the early interaction of Aldo with the CCT pump, especially in adrenal-intact animals, are unclear. We evaluated the short-term effects of the hormone on Na-K-adenosinetriphosphatase (ATPase) activity and on ouabain-sensitive 86Rb uptake, a measure of the transporting rate of the pump, in microdissected CCT from adrenal-intact rats. Incubation with Aldo (10(-8) M, 2 h) had no effect on Na-K-ATPase activity (Vmax), whereas it produced at least a twofold increase in 86Rb uptake. This effect was generated by physiological concentrations of the hormone (threshold 10(-10) M; apparent K1/2 approximately 10(-9) M), after a short lag of less than or equal to 30 min. Incubation with Aldo in the presence of amiloride or nystatin or in a Na-free medium (choline chloride) did not prevent the enhanced 86Rb uptake seen after Aldo alone; possible interpretations of these observations are discussed. We conclude that Aldo produces a rapid stimulation of pump function in CCT that precedes its induction of new pump synthesis; the physiological significance of this effect is suggested by its occurrence in tubules from adrenal-intact animals within the time frame and concentration range of the hormone's effects on electrolyte transport

  18. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-12-31

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 {mu}M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 {mu}M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  19. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-01-01

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 [mu]M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 [mu]M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  20. Carbon Tetrachloride Increases Intracellular Calcium in Rat Liver and Hepatocyte Cultures

    Science.gov (United States)

    1986-05-12

    tible to destruction by CC14 ( Head ~ al., 1981). Thus, the activation of CC14 to a toxic moiety clearly depends upon metabolism by one or more... embryologic development (Wyllie, 1986). In contrast, Toyo-oka et al. (1985) could not establish that phospholipase& or proteases were involved in ischemic...D. M. Bissell, and u. A Meyer. (1977) Drug Metabolism in Adult Rat Hepatocyte& in Primary Monolayer Culture. Gastroenterology 72:1232-1239. Head , B

  1. MDMA ‘ecstasy’ increases cerebral cortical perfusion determined by bolus-tracking arterial spin labelling (btASL) MRI

    Science.gov (United States)

    Rouine, J; Gobbo, O L; Campbell, M; Gigliucci, V; Ogden, I; McHugh Smith, K; Duffy, P; Behan, B; Byrne, D; Kelly, M E; Blau, C W; Kerskens, C M; Harkin, A

    2013-01-01

    Background and Purpose The purpose of this study was to assess cerebral perfusion changes following systemic administration of the recreational drug 3,4-methylendioxymethamphetamine (MDMA ‘ecstasy’) to rats. Experimental Approach Cerebral perfusion was quantified using bolus-tracking arterial spin labelling (btASL) MRI. Rats received MDMA (20 mg·kg−1; i.p.) and were assessed 1, 3 or 24 h later. Rats received MDMA (5 or 20 mg·kg−1; i.p.) and were assessed 3 h later. In addition, rats received MDMA (5 or 10 mg·kg−1; i.p.) or saline four times daily over 2 consecutive days and were assessed 8 weeks later. Perfusion-weighted images were generated in a 7 tesla (7T) MRI scanner and experimental data was fitted to a quantitative model of cerebral perfusion to generate mean transit time (MTT), capillary transit time (CTT) and signal amplitude. Key Results MDMA reduces MTT and CTT and increases amplitude in somatosensory and motor cortex 1 and 3 h following administration, indicative of an increase in perfusion. Prior exposure to MDMA provoked a long-term reduction in cortical 5-HT concentration, but did not produce a sustained effect on cerebral cortical perfusion. The response to acute MDMA challenge (20 mg·kg−1; i.p.) was attenuated in these animals indicating adaptation in response to prior MDMA exposure. Conclusions and Implications MDMA provokes changes in cortical perfusion, which are quantifiable by btASL MRI, a neuroimaging tool with translational potential. Future studies are directed towards elucidation of the mechanisms involved and correlating changes in cerebrovascular function with potential behavioural deficits associated with drug use. PMID:23517012

  2. Cortical Reorganization in Dual Innervation by Single Peripheral Nerve.

    Science.gov (United States)

    Zheng, Mou-Xiong; Shen, Yun-Dong; Hua, Xu-Yun; Hou, Ao-Lin; Zhu, Yi; Xu, Wen-Dong

    2017-09-21

    Functional recovery after peripheral nerve injury and repair is related with cortical reorganization. However, the mechanism of innervating dual targets by 1 donor nerve is largely unknown. To investigate the cortical reorganization when the phrenic nerve simultaneously innervates the diaphragm and biceps. Total brachial plexus (C5-T1) injury rats were repaired by phrenic nerve-musculocutaneous nerve transfer with end-to-side (n = 15) or end-to-end (n = 15) neurorrhaphy. Brachial plexus avulsion (n = 5) and sham surgery (n = 5) rats were included for control. Behavioral observation, electromyography, and histologic studies were used for confirming peripheral nerve reinnervation. Cortical representations of the diaphragm and reinnervated biceps were studied by intracortical microstimulation techniques before and at months 0.5, 3, 5, 7, and 10 after surgery. At month 0.5 after complete brachial plexus injury, the motor representation of the injured forelimb disappeared. The diaphragm representation was preserved in the "end-to-side" group but absent in the "end-to-end" group. Rhythmic contraction of biceps appeared in "end-to-end" and "end-to-side" groups, and the biceps representation reappeared in the original biceps and diaphragm areas at months 3 and 5. At month 10, it was completely located in the original biceps area in the "end-to-end" group. Part of the biceps representation remained in the original diaphragm area in the "end-to-side" group. Destroying the contralateral motor cortex did not eliminate respiration-related contraction of biceps. The brain tends to resume biceps representation from the original diaphragm area to the original biceps area following phrenic nerve transfer. The original diaphragm area partly preserves reinnervated biceps representation after end-to-side transfer. Copyright © 2017 by the Congress of Neurological Surgeons

  3. β-adrenergic receptor binding characteristics and responsiveness in cultured Wistar-Kyoto rat arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Jazayeri, A.; Meyer, W.J. III

    1988-01-01

    The tone of arterial blood vessels is regulated by the catecholamines through their receptors on arterial smooth muscle cells (ASMC). β- 2 -adrenergic receptors of ASMC mediate vasodilation through agonist mediated c-AMP production. Previous reports have described these receptors on freshly isolated blood vessels. This study demonstrates the presence of β 2 -adrenergic receptors on cultured rat ASMC and that these receptors are functional. β-adrenergic receptor binding was measured using [ 3 H]-dihydroalprenolol (DHA) binding to the membrane of cultured ASMC from normotensive Wistar-Kyoto rats. The ASMC β-adrenergic receptors have a Kd of 0.56 +/- 0.16 nM and a Bmax of 57.2 +/- 21.7 fmol/mg protein. Competition binding studies revealed a much greater affinity of these receptors for epinephrine than norepinephrine, indicating the preponderance of a β 2 -adrenergic receptor subtype. Isoproterenol stimulation of cultured ASMC resulted in a 14 +/- 7 fold increase in intracellular c-AMP content of these cells indicating these receptors are functional. β-adrenergic receptors of cultured ASMC provide an excellent system in which the association between hypertension and observed β-adrenergic receptor differences can be further explored

  4. Insulin-like growth factor-II receptors in cultured rat hepatocytes: regulation by cell density

    International Nuclear Information System (INIS)

    Scott, C.D.; Baxter, R.C.

    1987-01-01

    Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [ 125 I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density

  5. Effects of parathyroid hormone on cortical porosity, non-enzymatic glycation and bone tissue mechanics in rats with type 2 diabetes mellitus.

    Science.gov (United States)

    Campbell, G M; Tiwari, S; Hofbauer, C; Picke, A-K; Rauner, M; Huber, G; Peña, J A; Damm, T; Barkmann, R; Morlock, M M; Hofbauer, L C; Glüer, C-C

    2016-01-01

    Type 2 diabetes mellitus increases skeletal fragility; however, the contributing mechanisms and the efficacy of bone-forming agents are unclear. We studied diabetes and parathyroid hormone (PTH) treatment effects on cortical porosity (Ct.Po), non-enzymatic glycation (NEG) and bone mechanics in Zucker diabetic fatty (ZDF) rats. Eleven-week old ZDF diabetic (DB) and non-diabetic (ND) rats were given 75μg/kg PTH (1-84) or vehicle 5days per week over 12weeks. The right femora and L4 vertebrae were excised, micro-CT scanned, and tested in 3-point bending and uniaxial compression, respectively. NEG of the samples was determined using fluorescence. Diabetes increased Ct.Po (vertebra (vert): +40.6%, femur (fem): +15.5% vs. ND group, pbone tissue mechanics where reductions in vertebral maximum strain (-22%) and toughness (-42%) were observed in the DB vs. ND group (pbone mechanics, which were not improved with PTH treatment. PTH therapy alone may worsen diabetic bone mechanics through formation of new bone with high AGEs cross-linking. Optimal treatment regimens must address both improvements of bone mass and glycemic control in order to successfully reduce diabetic bone fragility. This article is part of a Special Issue entitled "Bone and diabetes". Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Cortical cholinergic deficiency enhances amphetamine-induced dopamine release in the accumbens but not striatum.

    Science.gov (United States)

    Mattsson, Anna; Olson, Lars; Svensson, Torgny H; Schilström, Björn

    2007-11-01

    Cholinergic dysfunction has been implicated as a putative contributing factor in the pathogenesis of schizophrenia. Recently, we showed that cholinergic denervation of the neocortex in adult rats leads to a marked increase in the behavioral response to amphetamine. The main objective of this study was to investigate if the enhanced locomotor response to amphetamine seen after cortical cholinergic denervation was paralleled by an increased amphetamine-induced release of dopamine in the nucleus accumbens and/or striatum. The corticopetal cholinergic projections were lesioned by intraparenchymal infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of adult rats. Amphetamine-induced dopamine release in the nucleus accumbens or striatum was monitored by in vivo microdialysis 2 to 3 weeks after lesioning. We found that cholinergic denervation of the rat neocortex leads to a significantly increased amphetamine-induced dopamine release in the nucleus accumbens. Interestingly, the cholinergic lesion did not affect amphetamine-induced release of dopamine in the striatum. The enhanced amphetamine-induced dopamine release in the nucleus accumbens in the cholinergically denervated rats could be reversed by administration of the muscarinic agonist oxotremorine, but not nicotine, prior to the amphetamine challenge, suggesting that loss of muscarinic receptor stimulation is likely to have caused the observed effect. The results suggest that abnormal responsiveness of dopamine neurons can be secondary to cortical cholinergic deficiency. This, in turn, might be of relevance for the pathophysiology of schizophrenia and provides a possible link between cholinergic disturbances and alteration of dopamine transmission.

  7. Visualization of migration of human cortical neurons generated from induced pluripotent stem cells.

    Science.gov (United States)

    Bamba, Yohei; Kanemura, Yonehiro; Okano, Hideyuki; Yamasaki, Mami

    2017-09-01

    Neuronal migration is considered a key process in human brain development. However, direct observation of migrating human cortical neurons in the fetal brain is accompanied by ethical concerns and is a major obstacle in investigating human cortical neuronal migration. We established a novel system that enables direct visualization of migrating cortical neurons generated from human induced pluripotent stem cells (hiPSCs). We observed the migration of cortical neurons generated from hiPSCs derived from a control and from a patient with lissencephaly. Our system needs no viable brain tissue, which is usually used in slice culture. Migratory behavior of human cortical neuron can be observed more easily and more vividly by its fluorescence and glial scaffold than that by earlier methods. Our in vitro experimental system provides a new platform for investigating development of the human central nervous system and brain malformation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Feasibility of direct oxygenation of primary-cultured rat hepatocytes using polyethylene glycol-decorated liposome-encapsulated hemoglobin (LEH).

    Science.gov (United States)

    Naruto, Hirosuke; Huang, Hongyun; Nishikawa, Masaki; Kojima, Nobuhiko; Mizuno, Atsushi; Ohta, Katsuji; Sakai, Yasuyuki

    2007-10-01

    We tested the short-term efficacy of liposome-encapsulated hemoglobin (LEH) in cultured rat hepatocytes. Supplementation with LEH (20% of the hemoglobin concentration of blood) did not lower albumin production in static culture, and completely reversed the cell death and deterioration in albumin production caused by an oxygen shortage in 2D flat-plate perfusion bioreactors.

  9. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  10. Locally formed dopamine inhibits Na sup + -K sup + -ATPase activity in rat renal cortical tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Seri, I.; Kone, B.C.; Gullans, S.R.; Aperia, A.; Brenner, B.M.; Ballermann, B.J. (Harvard Medical School, Boston, MA (USA) Karolinska Institute, Stockholm (Sweden))

    1988-10-01

    Dopamine, generated locally from L-dopa, inhibits Na{sup +}-K{sup +}-ATPase in permeabilized rat proximal tubules under maximum transport rate conditions for sodium. To determine whether locally formed dopamine inhibits Na{sup +}-K{sup +}-ATPase activity in intact cortical tubule cells we studied the effect of L-dopa on ouabain-sensitive oxygen consumption rate ({dot Q}o{sub 2}) and {sup 86}Rb uptake in renal cortical tubule cell suspensions. L-Dopa did not affect ouabain-insensitive {dot Q}o{sub 2} or mitochondrial respiration. However, L-dopa inhibited ouabain-sensitive {dot Q}o{sub 2} in a concentration-dependent manner, with half-maximal inhibition (K{sub 0.5}) of 5 {times} 10{sup {minus}7} M and a maximal inhibition of 14.1 {plus minus} 1.5% at 10{sup {minus}4}M. L-Dopa also blunted the nystatin-stimulated {dot Q}o{sub 2} in a concentration-dependent manner, indicating the L-dopa directly inhibits Na{sup +}-K{sup +}-ATPase activity and not sodium entry. Ouabain-sensitive {sup 86}Rb uptake was also inhibited by L-dopa. Carbidopa, an inhibitor of the conversion of L-dopa to dopamine, eliminated the effect of L-dopa on ouabain-sensitive {dot Q}o{sub 2} and {sup 86}Rb uptake, indicating that dopamine rather than L-dopa was the active agent. The finding that the L-dopa concentration-response curve was shifted to the left by one order of magnitude in the presence of nystatin suggests that the inhibitory effect is enhanced when the intracellular sodium concentration is increased. By studying the effect of L-dopa on ouabain-sensitive {dot Q}o{sub 2} at increasing extracellular sodium concentrations in the presence of nystatin, the authors demonstrated that the inhibitory effect of locally formed dopamine on the Na{sup +}-K{sup +}-ATPase is indeed dependent on the sodium available for the enzyme and occurs in an uncompetitive manner.

  11. Reorganization of motor cortex and impairment of motor performance induced by hindlimb unloading are partially reversed by cortical IGF-1 administration.

    Science.gov (United States)

    Mysoet, Julien; Canu, Marie-Hélène; Gillet, Christophe; Fourneau, Julie; Garnier, Cyril; Bastide, Bruno; Dupont, Erwan

    2017-01-15

    Immobilization, bed rest, or sedentary lifestyle, are known to induce a profound impairment in sensorimotor performance. These alterations are due to a combination of peripheral and central factors. Previous data conducted on a rat model of disuse (hindlimb unloading, HU) have shown a profound reorganization of motor cortex and an impairment of motor performance. Recently, our interest was turned towards the role of insulin-like growth factor 1 (IGF-1) in cerebral plasticity since this growth factor is considered as the mediator of beneficial effects of exercise on the central nervous system, and its cortical level is decreased after a 14-day period of HU. In the present study, we attempted to determine whether a chronic subdural administration of IGF-1 in HU rats could prevent deleterious effects of HU on the motor cortex and on motor activity. We demonstrated that HU induces a shrinkage of hindlimb cortical representation and an increase in current threshold to elicit a movement. Administration of IGF-1 in HU rats partially reversed these changes. The functional evaluation revealed that IGF-1 prevents the decrease in spontaneous activity found in HU rats and the changes in hip kinematics during overground locomotion, but had no effect of challenged locomotion (ladder rung walking test). Taken together, these data clearly indicate the implication of IGF-1 in cortical plastic mechanisms and in behavioral alteration induced by a decreased in sensorimotor activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Reliability in the location of hindlimb motor representations in Fischer-344 rats: laboratory investigation.

    Science.gov (United States)

    Frost, Shawn B; Iliakova, Maria; Dunham, Caleb; Barbay, Scott; Arnold, Paul; Nudo, Randolph J

    2013-08-01

    The purpose of the present study was to determine the feasibility of using a common laboratory rat strain for reliably locating cortical motor representations of the hindlimb. Intracortical microstimulation techniques were used to derive detailed maps of the hindlimb motor representations in 6 adult Fischer-344 rats. The organization of the hindlimb movement representation, while variable across individual rats in topographic detail, displayed several commonalities. The hindlimb representation was positioned posterior to the forelimb motor representation and posterolateral to the motor trunk representation. The areal extent of the hindlimb representation across the cortical surface averaged 2.00 ± 0.50 mm(2). Superimposing individual maps revealed an overlapping area measuring 0.35 mm(2), indicating that the location of the hindlimb representation can be predicted reliably based on stereotactic coordinates. Across the sample of rats, the hindlimb representation was found 1.25-3.75 mm posterior to the bregma, with an average center location approximately 2.6 mm posterior to the bregma. Likewise, the hindlimb representation was found 1-3.25 mm lateral to the midline, with an average center location approximately 2 mm lateral to the midline. The location of the cortical hindlimb motor representation in Fischer-344 rats can be reliably located based on its stereotactic position posterior to the bregma and lateral to the longitudinal skull suture at midline. The ability to accurately predict the cortical localization of functional hindlimb territories in a rodent model is important, as such animal models are being increasingly used in the development of brain-computer interfaces for restoration of function after spinal cord injury.

  13. The effect of amyotrophic lateral sclerosis-linked exogenous SOD1-G93A on electrophysiological properties and intracellular calcium in cultured rat astrocytes.

    Science.gov (United States)

    Milošević, Milena; Bataveljić, Danijela; Nikolić, Ljiljana; Bijelić, Dunja; Andjus, Pavle

    2016-01-01

    Over 150 mutations in the SOD1 gene that encodes Cu/Zn superoxide dismutase (SOD1) cause 20-25% of familial ALS, albeit without a known gain-of-function mechanism. ALS is also non-cell-autonomous, the interactions between motor neurons and their glial neighbours being implicated in disease progression. The aim here was to investigate the biophysical effects of the exogenous human mutant SOD1-G93A on rat astrocytes in culture. Primary cortical astrocyte cultures were treated with recombinant human apo- mSOD1-G93A vs. wild-type control (wtSOD1) and recorded by patch-clamp and calcium imaging. Results showed that exogenous mSOD1 as well as wtSOD1 induced a decrease of membrane resistance, the effect being persistent (up to 13 min) only for the mutant form. Similarly, whole-cell inward currents in astrocytes were augmented by both wt and mSOD1, but the effect was twice larger and only progressed continuously for the latter. Both forms of SOD1 also induced a rise in intracellular Ca(2+) activity, the effect being dependent on external Ca(2+) and again only persisted with mSOD1, becoming significantly different from wtSOD1 only at longer times (14 min). In conclusion, this study points to membrane permeability and Ca(2+) signalling as processes affected by SOD1-G93A that presents the humoral factor triggering the role of astrocytes in ALS pathophysiology.

  14. Bone mineral content in the senescent rat femur: an assessment using single photon absorptiometry

    International Nuclear Information System (INIS)

    Kiebzak, G.M.; Smith, R.; Howe, J.C.; Sacktor, B.

    1988-01-01

    The single photon absorptiometry technique was evaluated for measuring bone mineral content (BMC) of the excised femurs of the rat, and the system was used to examine the changes in cortical and trabecular bone from young adult (6 mo), mature adult (12 mo), and senescent (24 mo) male and female animals. BMC of the femur midshaft, representing cortical bone, apparently increased progressively with advancing age. The width of the femur at the scan site also increased with age. Normalizing the midshaft BMC by width partially compensated for the age-associated increase. However, when bone mineral values were normalized by the cortical area at the scan site, to take into account the geometric differences in the femurs of different aged animals, maximum bone densities were found in the mature adult and these values decreased slightly in the femurs from senescent rats. In contrast, the BMC of the femur distal metaphysis, representing trabecular bone, decreased markedly in the aged rat. The loss of trabecular bone was also evident from morphological examination of the distal metaphysis. These findings indicated that bone mineral loss with age was site specific in the rat femur. These studies provided additional evidence that the rat might serve as a useful animal model for specific experiments related to the pathogenesis of age-associated osteopenia

  15. Partridgeberry polyphenols protect rat primary cortical neurons from oxygen-glucose deprivation-reperfusion-induced injury via suppression of inflammatory adipokines and regulation of HIF-1α and PPARγ.

    Science.gov (United States)

    Bhullar, Khushwant S; Rupasinghe, H P Vasantha

    2016-07-01

    The aim of this study was to investigate the neuroprotective ability of partridgeberry polyphenols in rat primary cortical neurons against oxygen-glucose deprivation/reperfusion (OGD/R) injury in vitro and explore the underlying therapeutic mechanism(s). The OGD/R injury was induced in rat primary cortical neurons by incubation with deoxygenated glucose-free medium in a hypoxia chamber. The strongest activity in this regard was exhibited by partridgeberry-derived PPF2 and PPF3, i.e. the flavan-3-ol- and flavonol-rich polyphenol fractions of partridgeberry (P ≤ 0.05). Moreover, partridgeberry polyphenol pre-treatment reduced the membrane damage in primary neurons, as measured by the lactose dehydrogenase (LDH) release assay (P ≤ 0.05). Furthermore, PPF2 and PPF3 pre-treatment (100 µg ml(-1)) for 24 hours, before OGD/R, resulted in the strongest suppression of interleukin (IL)-6 and tumor necrosis factor-α induction by OGD/R injury, compared with the control group (P ≤ 0.05). Additionally, the protein levels of hypoxia-inducible factor (HIF-1α) and PPARγ, quantified by ELISA presented a significant modulation following PPFs treatment (100 µg ml(-1)), favorably toward neuroprotection, compared with the respective controls after OGD/R injury in vitro (P ≤ 0.05). In summary, partridgeberry polyphenols at concentrations of 1-100 µg ml(-1), significantly induced a decline in OGD/R injury-triggered apoptosis in vitro, suppressed the inflammatory biomarkers in primary neurons, and modulated the activity of HIF-1α and proliferator-activated receptor gamma (PPARγ) following hypoxic injury.

  16. Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress

    International Nuclear Information System (INIS)

    Kaur, Parvinder; Aschner, Michael; Syversen, Tore

    2007-01-01

    Certain discrete areas of the CNS exhibit enhanced sensitivity towards MeHg. To determine whether GSH is responsible for this particular sensitivity, we investigated its role in MeHg-induced oxidative insult in primary neuronal and astroglial cell cultures of both cerebellar and cortical origins. For this purpose, ROS and GSH were measured with the fluorescent indicators, CMH 2 DCFDA and MCB. Cell associated-MeHg was measured with 14 C-radiolabeled MeHg. The intracellular GSH content was modified by pretreatment with NAC or DEM. For each of the dependent variables (ROS, GSH, and MTT), there was an overall significant effect of cellular origin, MeHg and pretreatment in all the cell cultures. A trend towards significant interaction between origin x MeHg x pretreatment was observed only for the dependent variable, ROS (astrocytes p = 0.056; neurons p = 0.000). For GSH, a significant interaction between origin x MeHg was observed only in astrocytes (p = 0.030). The cerebellar cell cultures were more vulnerable (astrocytes mean = 223.77; neurons mean = 138.06) to ROS than the cortical cell cultures (astrocytes mean = 125.18; neurons mean 107.91) for each of the tested treatments. The cell associated-MeHg increased when treated with DEM, and the cerebellar cultures varied significantly from the cortical cultures. Non-significant interactions between origin x MeHg x pretreatment for GSH did not explain the significant interactions responsible for the increased amount of ROS produced in these cultures. In summary, although GSH modulation influences MeHg-induced toxicity, the difference in the content of GSH in cortical and cerebellar cultures fails to account for the increased ROS production in cerebellar cultures. Hence, different approaches for the future studies regarding the mechanisms behind selectivity of MeHg have been discussed

  17. Contrasting Nephropathic Responses to Oral Administration of Extract of Cultured Penicillium polonicum in Rat and Primate

    Directory of Open Access Journals (Sweden)

    John E. Fincham

    2010-08-01

    Full Text Available Liquid- or solid substrate-cultured Penicillium polonicum administered in feed to rats over several days evokes a histopathological response in kidney involving apoptosis and abnormal mitosis in proximal tubules. The amphoteric toxin is yet only partly characterized, but can be isolated from cultured sporulating biomass in a fraction that is soluble in water and ethanol, and exchangeable on either anion- or cation-exchange resins. After several weeks of treatment renal proximal tubule distortion became striking on account of karyocytomegaly, but even treatment for nearly two years remained asymptomatic. Extract from a batch of solid substrate fermentation of P. polonicum on shredded wheat was incorporated into feed for rats during four consecutive days, and also given as an aqueous solution by oral gavage to a vervet monkey daily for 10 days. Treatment was asymptomatic for both types of animal. Rat response was evident as the typical renal apoptosis and karyomegaly. In contrast there was no such response in the primate; and neither creatinine clearance nor any haematological characteristic or serum component concentration deviated from a control or from historical data for this primate. The contrast is discussed concerning other negative findings for P. polonicum in pigs and hamsters. Renal karyomegaly, as a common rat response to persistent exposure to ochratoxin A, is not known in humans suspected as being exposed to more than the usual trace amounts of dietary ochratoxin A. Therefore the present findings question assumptions that human response to ochratoxin A conforms to that in the rat.

  18. Localized Induced Current Stimulation to Neuronal Culture Using Soft Magnetic Material

    Science.gov (United States)

    Saito, Atsushi; Saito, Aki; Moriguchi, Hiroyuki; Kotani, Kiyoshi; Jimbo, Yasuhiko

    To establish precisely focused magnetic stimulation, we developed a Mu-meal based low-frequency localized induced current (LIC) stimulation system with micro-fabricated dual cell-culture chamber. The dual cell-culture chamber was arranged in a concentric circle manner. Between the inner and outer chambers, 4 or 8 connecting micro-channels were fabricated using polydimethylsiloxane (PDMS). Rat cortical neurons were separately cultured in outer and inner chambers. Through the micro-channels, functional synaptic connections were formed. Mu-metal that has very high magnetic permeability was aligned along the outer circle, which allowed us of LIC stimulation to the cells in the outer chamber. Applying low-frequency magnetic fields to the Mu-metal, induced currents were generated and the electrical activity of the cells in the outer chamber was modified depending on the stimulation intensity. Following the modified activity in the outer circles, the cells in the inner chamber also showed slightly depressed activity patterns. These results suggested that our system would be promising for localized stimulation of neuronal networks and highly regulation of network activities.

  19. Cortical projection patterns of magnocellular basal nucleus subdivisions as revealed by anterogradely transported Phaseolus vulgaris leucoagglutinin

    NARCIS (Netherlands)

    Luiten, P.G.M.; Gaykema, R.P.A.; Traber, J.; Spencer Jr., D.G.

    1987-01-01

    The present paper deals with a detailed analysis of cortical projections from the magnocellular basal nucleus (MBN) and horizontal limb of the diagonal band of Broca (HDB) in the rat. The MBN and HDB were injected iontophoretically with the anterograde tracer Phaseolus vulgaris leucoagglutinin

  20. Abnormal bone collagen morphology and decreased bone strength in growth hormone-deficient rats

    DEFF Research Database (Denmark)

    Lange, Martin; Qvortrup, Klaus; Svendsen, Ole Lander

    2004-01-01

    collagen morphology and bone mineralisation in cortical bone as well as bone strength in GHD rats to try to clarify the explanation for the increased fracture rate. The Dw-4 rat was used as a model for GHD. This strain of rats has an autosomal recessive disorder, reducing GH synthesis to approximately 10...

  1. Enhanced expression of contractile endothelin ET(B) receptors in rat coronary artery after organ culture

    DEFF Research Database (Denmark)

    Johnsson, E.; Maddahi, A.; Wackenfors, A.

    2008-01-01

    . In cardiovascular disease and in organ culture in vitro, endothelin ET(B) receptors are up-regulated on smooth muscle cells. The objectives of the present study were to characterise the endothelin receptor-induced vasoconstriction and quantify the endothelin receptor mRNA levels and immunoreactivity in fresh...... and cultured rat coronary arteries. We demonstrate that endothelin-1 induces strong and equal concentration-dependent contractions in fresh and cultured segments from the left anterior descending coronary artery. Sarafotoxin 6c, an endothelin ET(B) receptor agonist, had negligible effect in fresh arteries...... but produced significant vasoconstriction after organ culture. The endothelin ET(B) receptor mRNA level and the receptor protein immunoreactivity were increased, whereas the level of endothelin ET(A) receptor mRNA was down-regulated but not its receptor protein immunoreactivity after organ culture...

  2. Toxicity evaluation of new agricultural fungicides in primary cultured cortical neurons.

    Science.gov (United States)

    Regueiro, Jorge; Olguín, Nair; Simal-Gándara, Jesús; Suñol, Cristina

    2015-07-01

    Fungicides are crucial for food protection as well as for the production of crops of suitable quality and quantity to provide a viable economic return. Like other pesticides, fungicides are widely sprayed on agricultural land, especially in wine-growing areas, from where they can move-off after application. Furthermore, residues of these agrochemicals can remain on crops after harvest and even after some food processing operations, being a major exposure pathway. Although a relatively low toxicity has been claimed for this kind of compounds, information about their neurotoxicity is still scarce. In the present study, nine fungicides recently approved for agricultural uses in the EU - ametoctradin, boscalid, cyazofamid, dimethomorph, fenhexamid, kresoxim-methyl, mepanipyrim, metrafenone and pyraclostrobin - have been evaluated for their toxicity in primary cultured mouse cortical neurons. Exposure to 0.1-100µM for 7 days in vitro resulted in a dose-dependent toxicity in the MTT cell viability assay. Strobilurin fungicides kresoxim-methyl (KR) and pyraclostrobin (PY) were the most neurotoxic compounds (lethal concentration 50 were in the low micromolar and nanomolar levels, respectively) causing a rapid raise in intracellular calcium [Ca(2+)]i and strong depolarization of mitochondrial membrane potential. KR- and PY-induced cell death was reversed by the calcium channels blockers MK-801 and verapamil, suggesting that calcium entry through NMDA receptors and voltage-operated calcium channels are involved in KR- and PY-induced neurotoxicity. These results highlight the need for further evaluation of their neurotoxic effects in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Species and Sex Differences in the Morphogenic Response of Primary Rodent Neurons to 3,3'-Dichlorobiphenyl (PCB 11).

    Science.gov (United States)

    Sethi, Sunjay; Keil, Kimberly P; Lein, Pamela J

    2017-12-23

    PCB 11 is an emerging global pollutant that we recently showed promotes axonal and dendritic growth in primary rat neuronal cell cultures. Here, we address the influence of sex and species on neuronal responses to PCB 11. Neuronal morphology was quantified in sex-specific primary hippocampal and cortical neuron-glia co-cultures derived from neonatal C57BL/6J mice and Sprague Dawley rats exposed for 48 h to vehicle (0.1% DMSO) or PCB 11 at concentrations ranging from 1 fM to 1 nM. Total axonal length was quantified in tau-1 immunoreactive neurons at day in vitro (DIV) 2; dendritic arborization was assessed by Sholl analysis at DIV 9 in neurons transfected with MAP2B-FusRed. In mouse cultures, PCB 11 enhanced dendritic arborization in female, but not male, hippocampal neurons and male, but not female, cortical neurons. In rat cultures, PCB 11 promoted dendritic arborization in male and female hippocampal and cortical neurons. PCB 11 also increased axonal growth in mouse and rat neurons of both sexes and neuronal cell types. These data demonstrate that PCB 11 exerts sex-specific effects on neuronal morphogenesis that vary depending on species, neurite type, and neuronal cell type. These findings have significant implications for risk assessment of this emerging developmental neurotoxicant.

  4. Estrone is neuroprotective in rats after traumatic brain injury.

    Science.gov (United States)

    Gatson, Joshua W; Liu, Ming-Mei; Abdelfattah, Kareem; Wigginton, Jane G; Smith, Scott; Wolf, Steven; Simpkins, James W; Minei, Joseph P

    2012-08-10

    In various animal and human studies, early administration of 17β-estradiol, a strong antioxidant, anti-inflammatory, and anti-apoptotic agent, significantly decreases the severity of injury in the brain associated with cell death. Estrone, the predominant estrogen in postmenopausal women, has been shown to be a promising neuroprotective agent. The overall goal of this project was to determine if estrone mitigates secondary injury following traumatic brain injury (TBI) in rats. Male rats were given either placebo (corn oil) or estrone (0.5 mg/kg) at 30 min after severe TBI. Using a controlled cortical impact device in rats that underwent a craniotomy, the right parietal cortex was injured using the impactor tip. Non-injured control and sham animals were also included. At 72 h following injury, the animals were perfused intracardially with 0.9% saline followed by 10% phosphate-buffered formalin. The whole brain was removed, sliced, and stained for TUNEL-positive cells. Estrone decreased cortical lesion volume (pcerebral cortical levels of TUNEL-positive staining (pprotective pathways such as the ERK1/2 and BDNF pathways, decreases ischemic secondary injury, and decreases apoptotic-mediated cell death. These results suggest that estrone may afford protection to those suffering from TBI.

  5. The Effect of Rosiglitazone on Bone Quality in a Rat Model of Insulin Resistance and Osteoporosis

    Science.gov (United States)

    Sardone, Laura Donata

    Rosiglitazone (RSG) is an insulin-sensitizing drug used to treat Type 2 Diabetes Mellitus (T2DM). Clinical trials show that women taking RSG experience more limb fractures than patients taking other T2DM drugs. The purpose of this study is to understand how RSG (3mg/kg/day and 10mg/kg/day) and the bisphosphonate alendronate (0.7mg/kg/week) alter bone quality in the male, female and female ovariectomized (OVX) Zucker fatty rat model over a 12 week period. Bone quality was evaluated by mechanical testing of cortical and trabecular bone. Microarchitecture, bone mineral density (BMD), cortical bone porosity, bone formation/resorption and mineralization were also measured. Female OVX RSG10mg/kg rats had significantly lower vertebral BMD and compromised trabecular architecture versus OVX controls. Increased cortical porosity and decreased mechanical properties occurred in these rats. ALN treatment prevented these negative effects in the OVX RSG model. Evidence of reduced bone formation and excess bone resorption was detected in female RSG-treated rats.

  6. Effects of dimeric PSD-95 inhibition on excitotoxic cell death and outcome after controlled cortical impact in rats

    DEFF Research Database (Denmark)

    Sommer, Jens Bak; Bach, Anders; Rytter, Hana Malá

    2017-01-01

    Therapeutic effects of PSD-95 inhibition have been demonstrated in numerous studies of stroke; however only few studies have assessed the effects of PSD-95 inhibitors in traumatic brain injury (TBI). As the pathophysiology of TBI partially overlaps with that of stroke, PSD-95 inhibition may also...... assessed in a water maze at two weeks post-trauma, and at four weeks lesion volumes were estimated. Overall, UCCB01-144 did not protect against NMDA-toxicity in neuronal cultures or experimental TBI in rats. Important factors that should be investigated further in future studies assessing the effects...... be an effective therapeutic strategy in TBI. The objectives of the present study were to assess the effects of a dimeric inhibitor of PSD-95, UCCB01-144, on excitotoxic cell death in vitro and outcome after experimental TBI in rats in vivo. In addition, the pharmacokinetic parameters of UCCB01-144 were...

  7. Piezoelectric ceramic (PZT) modulates axonal guidance growth of rat cortical neurons via RhoA, Rac1, and Cdc42 pathways.

    Science.gov (United States)

    Wen, Jianqiang; Liu, Meili

    2014-03-01

    Electrical stimulation is critical for axonal connection, which can stimulate axonal migration and deformation to promote axonal growth in the nervous system. Netrin-1, an axonal guidance cue, can also promote axonal guidance growth, but the molecular mechanism of axonal guidance growth under indirect electric stimulation is still unknown. We investigated the molecular mechanism of axonal guidance growth under piezoelectric ceramic lead zirconate titanate (PZT) stimulation in the primary cultured cortical neurons. PZT induced marked axonal elongation. Moreover, PZT activated the excitatory postsynaptic currents (EPSCs) by increasing the frequency and amplitude of EPSCs of the cortical neurons in patch clamp assay. PZT downregulated the expression of Netrin-1 and its receptor Deleted in Colorectal Cancer (DCC). Rho GTPase signaling is involved in interactions of Netrin-1 and DCC. PZT activated RhoA. Dramatic decrease of Cdc42 and Rac1 was also observed after PZT treatment. RhoA inhibitor Clostridium botulinum C3 exoenzyme (C3-Exo) prevented the PZT-induced downregulation of Netrin-1 and DCC. We suggest that PZT can promote axonal guidance growth by downregulation of Netrin-1 and DCC to mediate axonal repulsive responses via the Rho GTPase signaling pathway. Obviously, piezoelectric materials may provide a new approach for axonal recovery and be beneficial for clinical therapy in the future.

  8. Gastric secretion elicited by conditioning in rats.

    Science.gov (United States)

    Caboclo, José Liberato Ferreira; Cury, Francico de Assis; Borin, Aldenis Albanese; Caboclo, Luís Otávio Sales Ferreira; Ribeiro, Maria Fernanda Sales Caboclo; de Freitas, Pedro José; Andersson, Sven

    2009-01-01

    To investigate whether interdigestive gastric acid secretion can be controlled by a possible memory-related cortical mechanism. To evaluate gastric secretion in rats, we used a methodology that allows gastric juice collection in rats in their habitual conditions (without any restraining) by pairing sound as the conditioning stimulus (CS) and food as the unconditioning stimulus (US). The levels of gastric acid secretion under basal conditions and under sound stimulation were recorded and the circulating gastrin levels determined. When the gastric juice was collected in the course of the conditioning procedure, the results showed that under noise stimulation a significant increase in gastric acid secretion occurred after 10 days of conditioning (p<0.01). The significance was definitively demonstrated after 13 days of conditioning (p<0.001). Basal secretions of the conditioned rats reached a significant level after 16 days of conditioning. The levels of noise-stimulated gastric acid secretion were the highest so far described in physiological experiments carried out in rats and there were no significant increases in the circulating gastrin levels. The results point to the important role played by cortical structures in the control of interdigestive gastric acid secretion in rats. If this mechanism is also present in humans, it may be involved in diseases caused by inappropriate gastric acid secretion during the interprandial periods.

  9. Characteristics of electrode impedance and stimulation efficacy of a chronic cortical implant using novel annulus electrodes in rat motor cortex

    Science.gov (United States)

    Wang, Chun; Brunton, Emma; Haghgooie, Saman; Cassells, Kahli; Lowery, Arthur; Rajan, Ramesh

    2013-08-01

    Objective. Cortical neural prostheses with implanted electrode arrays have been used to restore compromised brain functions but concerns remain regarding their long-term stability and functional performance. Approach. Here we report changes in electrode impedance and stimulation thresholds for a custom-designed electrode array implanted in rat motor cortex for up to three months. Main Results. The array comprises four 2000 µm long electrodes with a large annular stimulating surface (7860-15700 µm2) displaced from the penetrating insulated tip. Compared to pre-implantation in vitro values there were three phases of impedance change: (1) an immediate large increase of impedance by an average of two-fold on implantation; (2) a period of continued impedance increase, albeit with considerable variability, which reached a peak at approximately four weeks post-implantation and remained high over the next two weeks; (3) finally, a period of 5-6 weeks when impedance stabilized at levels close to those seen immediately post-implantation. Impedance could often be temporarily decreased by applying brief trains of current stimulation, used to evoke motor output. The stimulation threshold to induce observable motor behaviour was generally between 75-100 µA, with charge density varying from 48-128 µC cm-2, consistent with the lower current density generated by electrodes with larger stimulating surface area. No systematic change in thresholds occurred over time, suggesting that device functionality was not compromised by the factors that caused changes in electrode impedance. Significance. The present results provide support for the use of annulus electrodes in future applications in cortical neural prostheses.

  10. Antioxidant and protective mechanisms against hypoxia and hypoglycaemia in cortical neurons in vitro.

    Science.gov (United States)

    Merino, José Joaquín; Roncero, César; Oset-Gasque, María Jesús; Naddaf, Ahmad; González, María Pilar

    2014-02-12

    In the present work, we have studied whether cell death could be induced in cortical neurons from rats subjected to different period of O2 deprivation and low glucose (ODLG). This "in vitro" model is designed to emulate the penumbra area under ischemia. In these conditions, cortical neurons displayed loss of mitochondrial respiratory ability however, nor necrosis neither apoptosis occurred despite ROS production. The absence of cellular death could be a consequence of increased antioxidant responses such as superoxide dismutase-1 (SOD1) and GPX3. In addition, the levels of reduced glutathione were augmented and HIF-1/3α overexpressed. After long periods of ODLG (12-24 h) cortical neurons showed cellular and mitochondrial membrane alterations and did not recuperate cellular viability during reperfusion. This could mean that therapies directed toward prevention of cellular and mitochondrial membrane imbalance or cell death through mechanisms other than necrosis or apoptosis, like authophagy, may be a way to prevent ODLG damage.

  11. Antioxidant and Protective Mechanisms against Hypoxia and Hypoglycaemia in Cortical Neurons in Vitro

    Directory of Open Access Journals (Sweden)

    José Joaquín Merino

    2014-02-01

    Full Text Available In the present work, we have studied whether cell death could be induced in cortical neurons from rats subjected to different period of O2 deprivation and low glucose (ODLG. This “in vitro” model is designed to emulate the penumbra area under ischemia. In these conditions, cortical neurons displayed loss of mitochondrial respiratory ability however, nor necrosis neither apoptosis occurred despite ROS production. The absence of cellular death could be a consequence of increased antioxidant responses such as superoxide dismutase-1 (SOD1 and GPX3. In addition, the levels of reduced glutathione were augmented and HIF-1/3α overexpressed. After long periods of ODLG (12–24 h cortical neurons showed cellular and mitochondrial membrane alterations and did not recuperate cellular viability during reperfusion. This could mean that therapies directed toward prevention of cellular and mitochondrial membrane imbalance or cell death through mechanisms other than necrosis or apoptosis, like authophagy, may be a way to prevent ODLG damage.

  12. The Risk Evaluation of Tungsten Oxide Nanoparticles in Cultured Rat Liver Cells for Its Safe Applications in Nanotechnology

    Directory of Open Access Journals (Sweden)

    Hasan Turkez

    2014-08-01

    Full Text Available Tungsten (VI oxide (WO3 nanoparticles (NPs are used for many industrial purposes in everyday life. However, their effects on human health have not been sufficiently evaluated. Therefore, the present study was designed to investigate the toxicity potentials of various concentrations (0 to 1000 ppm of WO3NPs (<100 nm particle size in cultured primary rat hepatocytes. The results of cell viability assay showed that the higher concentrations of dispersed WO3 NPs (300, 500 and 1000 ppm caused significant (p<0.05 decreases of cell viability. Also, dose dependent negative alterations were observed in oxidative status and antioxidant capacity levels after the application of WO3 in cultured rat primary hepatocytes. The results of genotoxicity tests revealed that these NPs did not cause significant increases of micronucleated hepatocytes (MNHEPs but increased 8-oxo-2-deoxyguanosine (8-OH-dG levels as compared to the control culture.

  13. Short-term treatment with diminazene aceturate ameliorates the reduction in kidney ACE2 activity in rats with subtotal nephrectomy.

    Directory of Open Access Journals (Sweden)

    Elena Velkoska

    Full Text Available Angiotensin converting enzyme (ACE 2 is an important modulator of the renin angiotensin system (RAS through its role to degrade angiotensin (Ang II. Depletion of kidney ACE2 occurs following kidney injury due to renal mass reduction and may contribute to progressive kidney disease. This study assessed the effect of diminazine aceturate (DIZE, which has been described as an ACE2 activator, on kidney ACE2 mRNA and activity in rats with kidney injury due to subtotal nephrectomy (STNx. Sprague Dawley rats were divided into Control groups or underwent STNx; rats then received vehicle or the DIZE (s.c. 15 mg/kg/day for 2 weeks. STNx led to hypertension (P<0.01, kidney hypertrophy (P<0.001 and impaired kidney function (P<0.001 compared to Control rats. STNx was associated with increased kidney cortical ACE activity, and reduced ACE2 mRNA in the cortex (P<0.01, with reduced cortical and medullary ACE2 activity (P<0.05, and increased urinary ACE2 excretion (P<0.05 compared to Control rats. Urinary ACE2 activity correlated positively with urinary protein excretion (P<0.001, and negatively with creatinine clearance (P=0.04. In STNx rats, DIZE had no effect on blood pressure or kidney function, but was associated with reduced cortical ACE activity (P<0.01, increased cortical ACE2 mRNA (P<0.05 and increased cortical and medullary ACE2 activity (P<0.05. The precise in vivo mechanism of action of DIZE is not clear, and its effects to increase ACE2 activity may be secondary to an increase in ACE2 mRNA abundance. In ex vivo studies, DIZE did not increase ACE2 activity in either Control or STNx kidney cortical membranes. It is not yet known if chronic administration of DIZE has long-term benefits to slow the progression of kidney disease.

  14. Acute phencyclidine administration induces c-Fos-immunoreactivity in interneurons in cortical and subcortical regions

    DEFF Research Database (Denmark)

    Hervig, Mona E; Thomsen, Morten S; Kalló, Imre

    2016-01-01

    and thalamus of rats. A single dose of PCP (10mg/kg, s.c.) significantly increased total number of c-Fos-IR in: (1) the prelimbic, infralimbic, anterior cingulate, ventrolateral orbital, motor, somatosensory and retrosplenial cortices as well as the nucleus accumbens (NAc), field CA1 of the hippocampus (CA1......) field of hippocampus and mediodorsal thalamus (MD); (2) PV-IR cells in the ventrolateral orbitofrontal and retrosplenial cortices and CA1 field of hippocampus; and (3) CB-IR cells in the motor cortex. Overall, our data indicate that PCP activates a wide range of cortical and subcortical brain regions...... and subcortical areas, but whether such induction occurs in specific populations of GABAergic interneuron subtypes still remains to be established. We performed an immunohistochemical analysis of the PCP-induced c-Fos-immunoreactivity (IR) in parvalbumin (PV) and calbindin (CB) interneuron subtypes in the cortex...

  15. Functional states of rat cortical circuits during the unpredictable availability of a reward-related cue.

    Science.gov (United States)

    Fernández-Lamo, Iván; Sánchez-Campusano, Raudel; Gruart, Agnès; Delgado-García, José M

    2016-11-21

    Proper performance of acquired abilities can be disturbed by the unexpected occurrence of external changes. Rats trained with an operant conditioning task (to press a lever in order to obtain a food pellet) using a fixed-ratio (1:1) schedule were subsequently placed in a Skinner box in which the lever could be removed randomly. Field postsynaptic potentials (fPSPs) were chronically evoked in perforant pathway-hippocampal CA1 (PP-CA1), CA1-subiculum (CA1-SUB), CA1-medial prefrontal cortex (CA1-mPFC), mPFC-nucleus accumbens (mPFC-NAc), and mPFC-basolateral amygdala (mPFC-BLA) synapses during lever IN and lever OUT situations. While lever presses were accompanied by a significant increase in fPSP slopes at the five synapses, the unpredictable absence of the lever were accompanied by decreased fPSP slopes in all, except PP-CA1 synapses. Spectral analysis of local field potentials (LFPs) recorded when the animal approached the corresponding area in the lever OUT situation presented lower spectral powers than during lever IN occasions for all recording sites, apart from CA1. Thus, the unpredictable availability of a reward-related cue modified the activity of cortical and subcortical areas related with the acquisition of operant learning tasks, suggesting an immediate functional reorganization of these neural circuits to address the changed situation and to modify ongoing behaviors accordingly.

  16. Effects of metal ions on agonist-stimulated accumulation of inositol phosphates in hippocampal and cortical slices

    International Nuclear Information System (INIS)

    Bonner, M.J.; Tilson, H.A.

    1990-01-01

    [ 3 H]-inositol was incorporated into rat hippocampal or cortical slices. Zinc chloride and three different forms of inorganic lead compounds, lead chloride, lead nitrate, and lead acetate were used to stimulate PI metabolism at concentrations between 10 -15 and 10 -9 M. At these concentrations, these metal ions did not produce any significant stimulation of IP release. In birth hippocampal and cortical slices, carbachol produced equal levels of IP release. Norepinephrine (NE) produced a 10-15% higher stimulation than carbachol. When the metal ions were added to hippocampal slices together with the agonists, there was a general suppression of carbachol- or NE-induced IP release. This general suppression was not observed in cortical slices. These data suggest that the trace metals used inhibit agonist-induced second messenger release in the hippocampus

  17. Radial oxygen gradients over rat cortex arterioles

    OpenAIRE

    Galler, Michael

    2011-01-01

    Purpose: We present the results of the visualisation of radial oxygen gradients in rats’ cortices and their use in neurocritical management. Methods: PO2 maps of the cortex of 10 wistar rats were obtained with a camera (SensiMOD, PCO, Kehlheim, Germany). Those pictures were analyzed and edited by a custom-made software. We chose a vessel for examination. A matrix, designed to evaluate the cortical O2 partial pressure, was placed vertically to the artery and afterwards multiple regio...

  18. Strain differences in the response to morphine on incorporation of 3H-lysine into rat brain protein

    International Nuclear Information System (INIS)

    Ford, D.H.; Rhines, R.K.; Levi, M.A.

    1977-01-01

    The effect of morphine on the specific activity (SA) of lysine in the plasma free amino acid (FFA) fraction and in the cerebral cortical FAA and protein fractions, as well as on the specific accumulation and incorporation, was determined in male Sprague-Dawley and Wistar rats at various time intervals after intravenous injection of drug and amino acid into unanesthetized animals. The lysine SA was higher in Sprague-Dawley than in Wistar rats in the plasma and brain FAA fraction and in the protein fraction. In the SD strain, morphine decreased the SA of plasma FAA significantly, but had only slight effects in the Wistar strain. In the cortical gray matter, morphine elevated the SA of lysine significantly in both strains. SA of the lysine in cerebral cortical protein increased in both strains with time. When the data for the free amino acids were expressed in terms of specific accumulation, the observed rates were higher in the Sprague-Dawley animals and reached a point of maximal concentration, which was not observed in animals of the Wistar strain. Morphine elevated the levels of specific accumulation of lysine into the cortical free amino acid pool in both strains of rat. It is concluded that Sprague-Dawley and Wistar rats are not equivalent in relation to the accumulation of an amino acid in the brain FAA pool from the plasma and that the effect of morphine on specific incorporation of lysine into brain protein is greater in Wistar rats. (author)

  19. CaMKII and MEK1/2 inhibition time-dependently modify inflammatory signaling in rat cerebral arteries during organ culture

    DEFF Research Database (Denmark)

    Waldsee, Roya; Eftekhari, Sajedeh; Ahnstedt, Hilda

    2014-01-01

    MKII) II and extracellular signal-regulated kinase1/2 (ERK1/2) on inflammatory mediators in rat cerebral arteries using organ culture as a method for inducing ischemic-like vascular wall changes. METHODS: Rat basilar arteries were cultured in serum-free medium for 0, 3, 6 or 24 hours in the presence...... of phosphorylated c-Jun N-terminal kinase and p-p38, as evaluated by immunohistochemistry. KN93 affected the increase in caspase-3 mRNA expression only when given at the start of incubation, while U0126 had an inhibitory effect when given up to six hours later. Tumor necrosis factor receptor 1 was elevated after...

  20. The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination.

    Science.gov (United States)

    Gerfen, C R

    1989-10-20

    The basal ganglia, of which the striatum is the major component, process inputs from virtually all cerebral cortical areas to affect motor, emotional, and cognitive behaviors. Insights into how these seemingly disparate functions may be integrated have emerged from studies that have demonstrated that the mammalian striatum is composed of two compartments arranged as a mosaic, the patches and the matrix, which differ in their neurochemical and neuroanatomical properties. In this study, projections from prefrontal, cingulate, and motor cortical areas to the striatal compartments were examined with the Phaseolus vulgaris-leucoagglutinin (PHA-L) anterograde axonal tracer in rats. Each cortical area projects to both the patches and the matrix of the striatum; however, deep layer V and layer VI corticostriatal neurons project principally to the patches, whereas superficial layer V and layer III and II corticostriatal neurons project principally to the matrix. The relative contribution of patch and matrix corticostriatal projections varies among the cortical areas examined such that allocortical areas provide a greater number of inputs to the patches than to the matrix, whereas the reverse obtains for neocortical areas. These results demonstrate that the compartmental organization of corticostriatal inputs is related to their laminar origin and secondarily to the cytoarchitectonic area of origin.

  1. Synergistic toxicity of ethanol and MDMA towards primary cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Pontes, Helena; Sousa, Carla; Silva, Renata; Fernandes, Eduarda; Carmo, Helena; Remiao, Fernando; Carvalho, Felix; Bastos, Maria Lourdes

    2008-01-01

    Ethanol is frequently consumed along with 3,4-methylenedioxymethamphetamine (MDMA; ecstasy). Since both compounds are hepatotoxic and are metabolized in the liver, an increased deleterious interaction resulting from the concomitant use of these two drugs seems plausible. Another important feature of MDMA-induced toxicity is hyperthermia, an effect known to be potentiated after continuous exposure to ethanol. Considering the potential deleterious interaction, the aim of the present study was to evaluate the hepatotoxic effects of ethanol and MDMA mixtures to primary cultured rat hepatocytes and to elucidate the mechanism(s) underlying this interaction. For this purpose, the toxicity induced by MDMA to primary cultured rat hepatocytes in absence or in presence of ethanol was evaluated, under normothermic (36.5 deg. C) and hyperthermic (40.5 deg. C) conditions. While MDMA and ethanol, by themselves, had discrete effects on the analysed parameters, which were slightly aggravated under hyperthermia, the simultaneous incubation of MDMA and ethanol for 24 h, resulted in high cell death ratios accompanied by a significant disturbance of cellular redox status and decreased energy levels. Evaluation of apoptotic/necrotic features provided clear evidences that the cell death occurs preferentially through a necrotic pathway. All the evaluated parameters were dramatically aggravated when cells were incubated under hyperthermia. In conclusion, co-exposure of hepatocytes to ethanol and MDMA definitely results in a synergism of the hepatotoxic effects, through a disruption of the cellular redox status and enhanced cell death by a necrotic pathway in a temperature-dependent extent

  2. The Rat Homolog of the Schizophrenia Susceptibility Gene ZNF804A Is Highly Expressed during Brain Development, Particularly in Growth Cones.

    Directory of Open Access Journals (Sweden)

    Katja Hvid Hinna

    Full Text Available A single nucleotide polymorphism in the ZNF804A gene, rs1344706, is associated with schizophrenia. The polymorphism has been suggested to alter fetal expression of ZNF804A. It has also been reported to be associated with altered cortical functioning and neural connectivity in the brain. Since developmental mechanisms are suggested in the pathophysiology for schizophrenia, expression of Zfp804A, the rat homolog of ZNF804A, was investigated in the developing rat brain. We found that expression of Zfp804A in most brain regions is developmentally regulated and peaks around birth, where after it decreases towards adult levels. This time point is developmentally the equivalent to the second trimester of fetal development in humans. An exception to this expression pattern is the hippocampus where the expression of Zfp804A appears to increase again in the adult brain. Using laser capture and quantitative PCR we found that Zfp804A mRNA expression in the adult rat hippocampus is highest in the CA1 sub region, where the overall firing rates of neurons is higher than in the CA3 region. In cultured cortical neurons Zfp804A mRNA expression peaked at day 4 and then decreased. The ZFP804A protein expression was therefore investigated with immunochemistry in such cultures. Interestingly, before day 4, the protein is mostly found in the perinuclear region of the cell but at day 4, ZFP804A was instead found throughout the cell and particularly in the growth cones. In conclusion we demonstrate that Zfp804A increases in the rat brain at the time of birth, coinciding with neuronal differentiation. We also show that ZFP804A is localized to growth cones of growing neurites. These data implicate ZFP804A in growth cone function and neurite elongation. The polymorphism rs1344706 lowers expression of ZNF804A during prenatal brain development. This may affect ZNF804A's role in cone function and neurite elongation leading to synaptic deficits and altered neural connectivity.

  3. Resveratrol protects primary cortical neuron cultures from transient oxygen-glucose deprivation by inhibiting MMP-9.

    Science.gov (United States)

    Gao, Dakuan; Huang, Tao; Jiang, Xiaofan; Hu, Shijie; Zhang, Lei; Fei, Zhou

    2014-06-01

    It was recently shown that resveratrol exerts neuroprotective effects against cerebral ischemia in mice. The aim of the present study was to further confirm these effects in in vitro primary cortical neuron cultures with transient oxygen-glucose deprivation (OGD), and to investigate whether these effects are due to the inhibition of matrix metalloproteinase-9 (MMP-9) and of cell apoptosis. Neuronal primary cultures of cerebral cortex were prepared from BALB/c mice embryos (13-15 days). Cells from 14- to 16-day cultures were subjected to OGD for 3 h, followed by 21 h of reoxygenation to simulate transient ischemia. Different doses of resveratrol were added into the culture medium during the simulation of transient ischemia. The effect of the extracellular signal-regulated kinase (ERK) inhibitor U0126 was studied by adding U0126 (5 µg/µl, 4 µl) into the culture medium during transient ischemia; as a control, we used treatment of cells with 50 µM of resveratrol. Cell viability was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction assay. Cell apoptosis was assessed by flow cytometry. The effects of resveratrol on the expression of MMP-9 were analyzed by western blotting and reverse transcription-polymerase chain reaction (RT-PCR), while the levels of ERK, phosphorylated (p)-ERK, cleaved caspase-3, Bax and Bcl-2 were measured by western blotting. The results of the MTT assay showed that cell viability is significantly reduced by transient OGD. OGD induced cell apoptosis, the expression of Bax and the activation of caspase-3 and ERK, inhibited the expression of Bcl-2 and increased the expression of MMP-9, while these effects were reversed by treatment with resveratrol. The therapeutic efficacy of resveratrol was shown to be dose-dependent, with the most suitable dose range determined at 50-100 µM. Treatment with U0126 inhibited MMP-9 and Bax expression and caspase-3 activation, while it further promoted the

  4. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats

    International Nuclear Information System (INIS)

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥ 0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and CNPase + and OLIG2 + oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho + oligodendrocytes were detected in the corpus callosum at ≥ 0.1%. In the dentate gyrus, CPZ at ≥ 0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1 + and GRIN2A + hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2 + granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. - Highlights: • We examined developmental cuprizone (CPZ) neurotoxicity in maternally exposed rats. • Multiple brain region-specific global gene expression profiling was performed. • CPZ decreased

  5. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hajime [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Tanaka, Takeshi; Mizukami, Sayaka [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Hasegawa-Baba, Yasuko [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥ 0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and CNPase{sup +} and OLIG2{sup +} oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho{sup +} oligodendrocytes were detected in the corpus callosum at ≥ 0.1%. In the dentate gyrus, CPZ at ≥ 0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1{sup +} and GRIN2A{sup +} hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2{sup +} granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. - Highlights: • We examined developmental cuprizone (CPZ) neurotoxicity in maternally exposed rats. • Multiple brain region-specific global gene expression profiling

  6. Androgen receptor immunoreactivity in rat occipital cortex after callosotomy

    Directory of Open Access Journals (Sweden)

    G Lepore

    2009-08-01

    Full Text Available Gonadal steroidogenesis can be influenced by direct neural links between the central nervous system and the gonads. It is known that androgen receptor (AR is expressed in many areas of the rat brain involved in neuroendocrine control of reproduction, such as the cerebral cortex. It has been recently shown that the occipital cortex exerts an inhibitory effect on testicular stereoidogenesis by a pituitary-independent neural mechanism. Moreover, the complete transection of the corpus callosum leads to an increase in testosterone (T secretion of hemigonadectomized rats. The present study was undertaken to analyze the possible corticocortical influences regulating male reproductive activities. Adult male Wistar rats were divided into 4 groups: 1 intact animals as control; 2 rats undergoing sham callosotomy; 3 posterior callosotomy; 4 gonadectomy and posterior callosotomy. Western blot analysis showed no remarkable variations in cortical AR expression in any of the groups except in group I where a significant decrease in AR levels was found. Similarly, both immunocytochemical study and cell count estimation showed a lower AR immunoreactivity in occipital cortex of callosotomized rats than in other groups. In addition, there was no difference in serum T and LH concentration between sham-callosotomized and callosotomized rats. In conclusion, our results show that posterior callosotomy led to a reduction in AR in the right occipital cortex suggesting a putative inhibiting effect of the contralateral cortical area.

  7. Mitochondrial activity assessed by cytofluorescence after in-vitro-irradiation of primary rat brain cultures

    International Nuclear Information System (INIS)

    Cervos-Navarro, J.; Hamdorf, G.

    1993-01-01

    Mitochondria play a key role in cell homeostasis and are the first cell organells affected by ionizing irradiation, as it was proved by previous electron microscopic investigations. In order to observe functional parameters of mitochondria after low-dose irradiation, primary rat brain cultures (prepared from 15-day-old rat fetuses) were irradiated from a 60 Co-source with 0.5 and 1 Gy at the age of 2 or 7 days in vitro (div). Cytofluorescence measurement was made by a Cytofluor trademark2350 using Rhodamine 123. This fluorescent dye is positively charged and accumulates specifically in the mitochondria of living cells without cytotoxic effect. Since its retention depends on the negative membrane potential as well as the proton gradient that exists across the inner mitochondrial membrane, Rhodamine 123 accumulation reflects the status of mitochondrial activity as a whole. After irradiation with 0.5 and 1 Gy on day 2 in culture there was a decrease in Rhodamine uptake in the irradiated cultures during the first week after the irradiation insult which reached minimum values after 3 days. Rhodamine uptake increased during the following period and finally reached the values of the control cultures. In the second experiment with irradiated cultures on day 7 and the same doses of 0.5 and 1 Gy the accumulation of Rhodamine decreased only initially then increased tremendously. After both doses values of Rhodamine-accumulation were higher than the control level. The results demonstrated that irradiation caused a change in mitochondrial activity depending on the time of irradiation. The dramatic increase over the control levels after irradiation on day 7 in vitro is attributed to the fact that at this time synapses have already developed. Deficiency of mitochondrial activity as well as hyperactivity and the consequent change in energy production may lead to changes in neuronal metabolism including an increase in production of free radicals

  8. Mild prenatal protein malnutrition increases alpha 2C-adrenoceptor expression in the rat cerebral cortex during postnatal life.

    Science.gov (United States)

    Sierralta, Walter; Hernández, Alejandro; Valladares, Luis; Pérez, Hernán; Mondaca, Mauricio; Soto-Moyano, Rubén

    2006-05-15

    Mild reduction in the protein content in the diet of pregnant rats from 25 to 8% casein, calorically compensated by carbohydrates, does not alter body and brain weights of rat pups at birth, but results in significant changes of the concentration and release of cortical noradrenaline during postnatal life, together with impaired long-term potentiation and memory formation. Since some central noradrenergic receptors are critically involved in neuroplasticity, the present study evaluated, by utilizing immunohistochemical methods, the effect of mild prenatal protein malnutrition on the alpha 2C-adrenoceptor expression in the frontal and occipital cortices of 8- and 60-day-old rats. At day 8 of postnatal age, prenatally malnourished rats exhibited a three-fold increase of alpha 2C-adrenoceptor expression in both the frontal and the occipital cortices, as compared to well-nourished controls. At 60 days of age, prenatally malnourished rats showed normal expression levels scores of alpha 2C-adrenoceptor in the neocortex. Results suggest that overexpression of neocortical alpha 2C-adrenoceptors during early postnatal life, subsequent to mild prenatal protein malnutrition, could in part be responsible for neural and behavioral disturbances showing prenatally malnourished animals during the postnatal life.

  9. Sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured rat caput epididymal epithelium.

    Science.gov (United States)

    Zuo, Wu-Lin; Li, Sheng; Huang, Jie-Hong; Yang, Deng-Liang; Zhang, Geng; Chen, Si-Liang; Ruan, Ye-Chun; Ye, Ke-Nan; Cheng, Christopher H K; Zhou, Wen-Liang

    2011-01-01

    The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+)/HCO(3)(-) cotransporter in the pH regulation in rat epididymis. Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F) and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH) solution, the intracellular pH (pHi) recovery from NH(4)Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+)/H(+) exchanger (NHE). Immediately changing of the KH solution from HEPES buffered to HCO(3)(-) buffered would cause another pHi recovery. The pHi recovery in HCO(3)(-) buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), the inhibitor of HCO(3)(-) transporter or by removal of extracellular Na(+). The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH. The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium.

  10. Differential Involvement of Amygdala and Cortical NMDA Receptors Activation upon Encoding in Odor Fear Memory

    Science.gov (United States)

    Hegoburu, Chloé; Parrot, Sandrine; Ferreira, Guilaume; Mouly, Anne-Marie

    2014-01-01

    Although the basolateral amygdala (BLA) plays a crucial role for the acquisition of fear memories, sensory cortices are involved in their long-term storage in rats. However, the time course of their respective involvement has received little investigation. Here we assessed the role of the glutamatergic N-methyl-D-aspartate (NMDA) receptors in the…

  11. Reliability in the Location of Hindlimb Motor Representations in Fischer-344 Rats

    Science.gov (United States)

    Frost, Shawn B.; Iliakova, Maria; Dunham, Caleb; Barbay, Scott; Arnold, Paul; Nudo, Randolph J.

    2014-01-01

    Object The purpose of the present study was to determine the feasibility of using a common laboratory rat strain for locating cortical motor representations of the hindlimb reliably. Methods Intracortical Microstimulation (ICMS) techniques were used to derive detailed maps of the hindlimb motor representations in six adult Fischer-344 rats. Results The organization of the hindlimb movement representation, while variable across individuals in topographic detail, displayed several commonalities. The hindlimb representation was positioned posterior to the forelimb motor representation and postero-lateral to the motor trunk representation. The areal extent of the hindlimb representation across the cortical surface averaged 2.00 +/− 0.50 mm2. Superimposing individual maps revealed an overlapping area measuring 0.35 mm2, indicating that the location of the hindlimb representation can be predicted reliably based on stereotactic coordinates. Across the sample of rats, the hindlimb representation was found 1.25–3.75 mm posterior to Bregma, with an average center location ~ 2.6 mm posterior to Bregma. Likewise, the hindlimb representation was found 1–3.25 mm lateral to the midline, with an average center location ~ 2 mm lateral to midline. Conclusions The location of the cortical hindlimb motor representation in Fischer-344 rats can be reliably located based on its stereotactic position posterior to Bregma and lateral to the longitudinal skull suture at midline. The ability to accurately predict the cortical localization of functional hindlimb territories in a rodent model is important, as such animal models are being used increasingly in the development of brain-computer interfaces for restoration of function after spinal cord injury. PMID:23725395

  12. GDNF/GFRα1 Complex Abrogates Self-Renewing Activity of Cortical Neural Precursors Inducing Their Differentiation

    Directory of Open Access Journals (Sweden)

    Antonela Bonafina

    2018-03-01

    Full Text Available Summary: The balance between factors leading to proliferation and differentiation of cortical neural precursors (CNPs determines the correct cortical development. In this work, we show that GDNF and its receptor GFRα1 are expressed in the neocortex during the period of cortical neurogenesis. We show that the GDNF/GFRα1 complex inhibits the self-renewal capacity of mouse CNP cells induced by fibroblast growth factor 2 (FGF2, promoting neuronal differentiation. While GDNF leads to decreased proliferation of cultured cortical precursor cells, ablation of GFRα1 in glutamatergic cortical precursors enhances its proliferation. We show that GDNF treatment of CNPs promoted morphological differentiation even in the presence of the self-renewal-promoting factor, FGF2. Analysis of GFRα1-deficient mice shows an increase in the number of cycling cells during cortical development and a reduction in dendrite development of cortical GFRα1-expressing neurons. Together, these results indicate that GDNF/GFRα1 signaling plays an essential role in regulating the proliferative condition and the differentiation of cortical progenitors. : In this article, Ledda and colleagues show that GDNF acting through its receptor GFRα1 plays a critical role in the maturation of cortical progenitors by counteracting FGF2 self-renewal activity on neural stem cells and promoting neuronal differentiation. Keywords: GDNF, GFRα1, cortical precursors, proliferation, postmitotic neurons, neuronal differentiation

  13. Endocytosis of heat-denatured albumin by cultured rat Kupffer cells

    International Nuclear Information System (INIS)

    Brouwer, A.; Knook, D.L.

    1982-01-01

    Purified Kupffer cells were obtained by centrifugal elutriation of sinusoidal cells isolated by pronase treatment of the rat liver. The endocytosis of radioactively labeled heat-aggregated colloidal albumin (CA 125 I) was investigated in maintenance cultures of the purified Kupffer cells. The endocytic capacity of the cells was studied during 4 days of culture. Maximum uptake was observed after 24 hr of culture, with a gradual decline during the following days. When the uptake was measured after incubation with increasing concentrations of CA 125 I, a saturation effect was observed. This finding and the observed high rate of uptake are strong indications that receptor sites on the cell membrane are involved in the mechanism of endocytosis. The uptake of CA 125 I by Kupffer cells was inhibited by the metabolic inhibitors fluoride and antimycin A, indicating that endocytosis of CA 125 I is dependent on energy derived from both glycolysis and mitochondrial respiration. The mechanism of internalization may also require the action of microfilaments as well as intact microtubules, since both cytochalasin B and colchicine inhibited the uptake of CA 125 I. The intracellular degradation of CA 125 I by Kupffer cells was strongly inhibited by chloroquine but not by colchicine. The degradation of ingested CA 125 I occurred within the Kupffer cell lysosomes

  14. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    Science.gov (United States)

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship

  15. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Junker, L.H.; Davis, R.A.

    1989-01-01

    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of [14C]cholesterol from [2-14C]acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of [14C]cholesterol from [2-14C]acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis

  16. Role of cyclic GMP in cells with the properties of smooth muscle cultured from the rat myometrium

    International Nuclear Information System (INIS)

    Krall, J.F.; Morin, A.

    1986-01-01

    Cells growing in culture with previously described properties of rat uterine smooth muscle accumulated 45 Ca 2+ from the medium. Ca 2+ uptake by these cells was stimulated by the addition to the medium of 8-bromo-cGMP but not by 8-bromo-cAMP. Ca 2+ uptake was also stimulated by carbachol and by the nitro-vasodilator nitroprusside. Although cholinergic agonists have been shown previously to stimulate contraction but not cGMP synthesis in the rat myometrium, both carbachol and nitroprusside stimulated cGMP production by the cultured cells. These results suggested the cells had cholinergic receptor-medicated functions that reflected some neurotransmitter-sensitive properties of uterine smooth muscle in situ. When determined by a specific radioligand binding assay, subcellular fractions of the cultured cells bound muscarinic cholinergic agonists and antagonists with affinities expected of the muscarinic receptor. The cells were also sensitive to the β-adrenergic catecholamine agonist isoproterenol, which stimulated cAMP production but not Ca 2+ uptake. Carbachol failed to inhibit isoproterenol-dependent cAMP production, which is an important property of the cholinergic receptor in uterine smooth muscle in situ. These results suggest some but not all acetylcholine-sensitive properties of uterine smooth muscle may be retained in cell culture

  17. Ethanol affects network activity in cultured rat hippocampus: mediation by potassium channels.

    Directory of Open Access Journals (Sweden)

    Eduard Korkotian

    Full Text Available The effects of ethanol on neuronal network activity were studied in dissociated cultures of rat hippocampus. Exposure to low (0.25-0.5% ethanol concentrations caused an increase in synchronized network spikes, and a decrease in the duration of individual spikes. Ethanol also caused an increase in rate of miniature spontaneous excitatory postsynaptic currents. Higher concentrations of ethanol eliminated network spikes. These effects were reversible upon wash. The effects of the high, but not the low ethanol were blocked by the GABA antagonist bicuculline. The enhancing action of low ethanol was blocked by apamin, an SK potassium channel antagonist, and mimicked by 1-EBIO, an SK channel opener. It is proposed that in cultured hippocampal networks low concentration of ethanol is associated with SK channel activity, rather than the GABAergic receptor.

  18. Cortical and limbic excitability in rats with absence epilepsy

    Czech Academy of Sciences Publication Activity Database

    Tolmacheva, Elena A.; van Luijtelaar, G.; Chepurnov, S. A.; Kaminskij, Julij; Mareš, Pavel

    2004-01-01

    Roč. 62, č. 2-3 (2004), s. 189-198 ISSN 0920-1211 Institutional research plan: CEZ:AV0Z5011922 Keywords : excitability * cortex * rats WAG/Rij Subject RIV: FH - Neurology Impact factor: 2.897, year: 2004

  19. A new method to model electroconvulsive therapy in rats with increased construct validity and enhanced translational value.

    Science.gov (United States)

    Theilmann, Wiebke; Löscher, Wolfgang; Socala, Katarzyna; Frieling, Helge; Bleich, Stefan; Brandt, Claudia

    2014-06-01

    Electroconvulsive therapy is the most effective therapy for major depressive disorder (MDD). The remission rate is above 50% in previously pharmacoresistant patients but the mechanisms of action are not fully understood. Electroconvulsive stimulation (ECS) in rodents mimics antidepressant electroconvulsive therapy (ECT) in humans and is widely used to investigate the underlying mechanisms of ECT. For the translational value of findings in animal models it is essential to establish models with the highest construct, face and predictive validity possible. The commonly used model for ECT in rodents does not meet the demand for high construct validity. For ECT, cortical surface electrodes are used to induce therapeutic seizures whereas ECS in rodents is exclusively performed by auricular or corneal electrodes. However, the stimulation site has a major impact on the type and spread of the induced seizure activity and its antidepressant effect. We propose a method in which ECS is performed by screw electrodes placed above the motor cortex of rats to closely simulate the clinical situation and thereby increase the construct validity of the model. Cortical ECS in rats induced reliably seizures comparable to human ECT. Cortical ECS was more effective than auricular ECS to reduce immobility in the forced swim test. Importantly, auricular stimulation had a negative influence on the general health condition of the rats with signs of fear during the stimulation sessions. These results suggest that auricular ECS in rats is not a suitable ECT model. Cortical ECS in rats promises to be a valid method to mimic ECT. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Permanently Hypoxic Cell Culture Yields Rat Bone Marrow Mesenchymal Cells with Higher Therapeutic Potential in the Treatment of Chronic Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Yihua Liu

    2017-11-01

    Full Text Available Background: The mismatch between traditional in vitro cell culture conditions and targeted chronic hypoxic myocardial tissue could potentially hamper the therapeutic effects of implanted bone marrow mesenchymal stem cells (BMSCs. This study sought to address (i the extent of change to BMSC biological characteristics in different in vitro culture conditions and (ii the effectiveness of permanent hypoxic culture for cell therapy in treating chronic myocardial infarction (MI in rats. Methods: rat BMSCs were harvested and cultured in normoxic (21% O2, n=27 or hypoxic conditions (5% O2, n=27 until Passage 4 (P4. Cell growth tests, flow cytometry, and Bio-Plex assays were conducted to explore variations in the cell proliferation, phenotype, and cytokine expression, respectively. In the in vivo set-up, P3-BMSCs cultured in normoxia (n=6 or hypoxia (n=6 were intramyocardially injected into rat hearts that had previously experienced 1-month-old MI. The impact of cell therapy on cardiac segmental viability and hemodynamic performance was assessed 1 month later by 2-Deoxy-2[18F]fluoro-D-glucose (18F-FDG positron emission tomography (PET imaging and pressure-volume catheter, respectively. Additional histomorphological examinations were conducted to evaluate inflammation, fibrosis, and neovascularization. Results: Hypoxic preconditioning significantly enhanced rat BMSC clonogenic potential and proliferation without altering the multipotency. Different profiles of inflammatory, fibrotic, and angiogenic cytokine secretion were also documented, with a marked correlation observed between in vitro and in vivo proangiogenic cytokine expression and tissue neovessels. Hypoxic-preconditioned cells presented a beneficial effect on the myocardial viability of infarct segments and intrinsic contractility. Conclusion: Hypoxic-preconditioned BMSCs were able to benefit myocardial perfusion and contractility, probably by modulating the inflammation and promoting

  1. Permanently Hypoxic Cell Culture Yields Rat Bone Marrow Mesenchymal Cells with Higher Therapeutic Potential in the Treatment of Chronic Myocardial Infarction.

    Science.gov (United States)

    Liu, Yihua; Yang, Xiaoxi; Maureira, Pablo; Falanga, Aude; Marie, Vanessa; Gauchotte, Guillaume; Poussier, Sylvain; Groubatch, Frederique; Marie, Pierre-Yves; Tran, Nguyen

    2017-01-01

    The mismatch between traditional in vitro cell culture conditions and targeted chronic hypoxic myocardial tissue could potentially hamper the therapeutic effects of implanted bone marrow mesenchymal stem cells (BMSCs). This study sought to address (i) the extent of change to BMSC biological characteristics in different in vitro culture conditions and (ii) the effectiveness of permanent hypoxic culture for cell therapy in treating chronic myocardial infarction (MI) in rats. rat BMSCs were harvested and cultured in normoxic (21% O2, n=27) or hypoxic conditions (5% O2, n=27) until Passage 4 (P4). Cell growth tests, flow cytometry, and Bio-Plex assays were conducted to explore variations in the cell proliferation, phenotype, and cytokine expression, respectively. In the in vivo set-up, P3-BMSCs cultured in normoxia (n=6) or hypoxia (n=6) were intramyocardially injected into rat hearts that had previously experienced 1-month-old MI. The impact of cell therapy on cardiac segmental viability and hemodynamic performance was assessed 1 month later by 2-Deoxy-2[18F]fluoro-D-glucose (18F-FDG) positron emission tomography (PET) imaging and pressure-volume catheter, respectively. Additional histomorphological examinations were conducted to evaluate inflammation, fibrosis, and neovascularization. Hypoxic preconditioning significantly enhanced rat BMSC clonogenic potential and proliferation without altering the multipotency. Different profiles of inflammatory, fibrotic, and angiogenic cytokine secretion were also documented, with a marked correlation observed between in vitro and in vivo proangiogenic cytokine expression and tissue neovessels. Hypoxic-preconditioned cells presented a beneficial effect on the myocardial viability of infarct segments and intrinsic contractility. Hypoxic-preconditioned BMSCs were able to benefit myocardial perfusion and contractility, probably by modulating the inflammation and promoting angiogenesis. © 2017 The Author(s). Published by S. Karger AG

  2. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs.

    Science.gov (United States)

    Garcia, J A D; Souza, A L T; Cruz, L H C; Marques, P P; Camilli, J A; Nakagaki, W R; Esteves, A; Rossi-Junior, W C; Fernandes, G J M; Guerra, F D; Soares, E A

    2015-11-01

    The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179 ± 2.5 g. The rats were divided into three groups (n=06): CT (control), AC (chronic alcoholic), DT (detoxification). After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT) allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC) presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC - UNIFENAS.

  3. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs

    Directory of Open Access Journals (Sweden)

    J. A. D. Garcia

    Full Text Available Abstract The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179±2.5 g. The rats were divided into three groups (n=06: CT (control, AC (chronic alcoholic, DT (detoxification. After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC – UNIFENAS.

  4. Bone Mechanical Properties and Mineral Density in Response to Cessation of Jumping Exercise and Honey Supplementation in Young Female Rats

    Directory of Open Access Journals (Sweden)

    Somayeh Sadat Tavafzadeh

    2015-01-01

    Full Text Available This study investigated effects of cessation of exercise and honey supplementation on bone properties in young female rats. Eighty-four 12-week-old Sprague-Dawley female rats were divided into 7 groups: 16S, 16J, 16H, 16JH, 8J8S, 8H8S, and 8JH8S (8 = 8 weeks, 16 = 16 weeks, S = sedentary without honey supplementation, H = honey supplementation, and J = jumping exercise. Jumping exercise consisted of 40 jumps/day for 5 days/week. Honey was given to the rats at a dosage of 1 g/kg body weight/rat/day via force feeding for 7 days/week. Jumping exercise and honey supplementation were terminated for 8 weeks in 8J8S, 8H8S, and 8JH8S groups. After 8 weeks of cessation of exercise and honey supplementation, tibial energy, proximal total bone density, midshaft cortical moment of inertia, and cortical area were significantly higher in 8JH8S as compared to 16S. Continuous sixteen weeks of combined jumping and honey resulted in significant greater tibial maximum force, energy, proximal total bone density, proximal trabecular bone density, midshaft cortical bone density, cortical area, and midshaft cortical moment of inertia in 16JH as compared to 16S. These findings showed that the beneficial effects of 8 weeks of combined exercise and honey supplementation still can be observed after 8 weeks of the cessation and exercise and supplementation.

  5. Infection in a rat model reactivates attenuated virulence after long-term axenic culture of Acanthamoeba spp

    Directory of Open Access Journals (Sweden)

    Carolina De Marco Verissimo

    2013-11-01

    Full Text Available Prolonged culturing of many microorganisms leads to the loss of virulence and a reduction of their infective capacity. However, little is known about the changes in the pathogenic strains of Acanthamoeba after long culture periods. Our study evaluated the effect of prolonged culturing on the invasiveness of different isolates of Acanthamoeba in an in vivo rat model. ATCC strains of Acanthamoeba, isolates from the environment and clinical cases were evaluated. The in vivo model was effective in establishing the infection and differentiating the pathogenicity of the isolates and re-isolates. The amoebae cultured in the laboratory for long periods were less virulent than those that were recently isolated, confirming the importance of passing Acanthamoeba strains in animal models.

  6. Cortical tremor: a variant of cortical reflex myoclonus.

    Science.gov (United States)

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  7. Renal cortical calcification in syngeneic intact rats and those receiving an infrarenal thoracic aortic graft: possible etiological roles of endothelin, nitrate and minerals, and different preventive effects of long-term oral treatment with magnesium, citrate and alkali-containing preparations.

    Science.gov (United States)

    Schmiedl, A; Schmiedl, P O; Bonucci, E; Seitz, T; Schwille, R M; Manoharan, M

    2001-08-01

    Renal cortical nephrocalcinosis (C-NC) is a rare disorder of uncertain etiology. Using highly inbred (syngeneic) male Lewis rats, we describe the spontaneous occurrence of histologically detectable C-NC in sham operated control rats (Sham; n=12), its aggravation following grafting of the ascending thoracic aorta from a donor rat to the infrarenal aorta of a recipient (ATx; n=12), and differences in C-NC inhibition after 12 weeks of oral administration of magnesium (Mg), citrate and alkali. C-NC is characterized by Kossa-positive areas located in cells of the proximal tubule close to blood vessels and also, to a lesser extent, within glomeruli. After ATx there was vascular overproduction of endothelin (ET-1) but decreased production of nitrate; in renal cortical tissue there was an excess of calcium over Mg and phosphorus and oxalate over citrate. In plasma there was an increase in calcium and creatinine within the normal range. Calcification of tubular cells was eliminated by a preparation containing potassium, sodium and bases (from citrate degradation and bicarbonate) in addition to Mg. Less effective than the latter was Mg-potassium citrate and least effective, Mg citrate. The former treatment also normalized calcemia and urinary nitrate, but only incompletely suppressed ET-1 and had no significant effect on glomerular calcification or tissue and urinary oxalate. Urinary ET-1 excess appeared directly related to the cortical tissue calcium/Mg ratio, and urinary excretion of Mg, citrate and total protein appeared to be inversely related to the severity of C-NC. It was concluded that (1) the highly inbred rat is prone to precipitation of calcium phosphate in the renal cortex; (2) this type of C-NC occurs in close proximity to and within renal vascular tissue and is associated with an imbalance of vasoconstrictors and vasodilators of endothelial origin; (3) effective inhibition of C-NC can be achieved by an alkalinizing combination of Mg, potassium, sodium and

  8. Effect of oxygen deprivation on metabolism of arachidonic acid by cultures of rat heart cells

    International Nuclear Information System (INIS)

    Freyss-Beguin, M.; Millanvoye-van Brussel, E.; Duval, D.

    1989-01-01

    To investigate the mechanisms responsible for the impairment of phospholipid metabolism observed in ischemic cells, we have studied the effect of conditions simulating ischemia on the metabolism of arachidonic acid (AA) by muscle (M-) and nonmuscle (F-) cells isolated from newborn rat hearts and cultured separately. In muscle cells, oxygen deprivation induces a significant stimulation of the release of [ 14 C]AA from prelabeled cells associated with a preferential redistribution of [ 14 C]AA into cell triglycerides but not formation of radioactive prostaglandins. Moreover, the fatty acid content of phospholipids, as measured by capillary gas chromatography, appears markedly reduced in ischemic myocardial cells. This fact may be related to phospholipase stimulation during ischemia as suggested by the antagonistic effect of mepacrine or p-bromophenacyl bromide. In contrast, oxygen deprivation failed to induce any significant alteration of AA metabolism in fibroblast-like heart cells. Our results indicate that these cultures of newborn rat heart cells, which exhibit many of the features observed in intact organ during ischemia, may represent a useful experimental model to investigate the pharmacological control of the membrane phospholipid turnover

  9. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase....... 3. Addition of microvascular endothelial cells to the cultured skeletal muscle cells enhanced the contraction-induced accumulation of extracellular adenosine (P Skeletal muscle cells were...... in the extracellular adenosine concentration (421 +/- 91 and 235 +/- 30 nmol (g protein)-1, respectively; P muscle cells (161 +/- 20 nmol (g protein)-1). The ATP concentration was lower (18%; P contracted, but not in the moderately contracted muscle cells...

  10. Epigenetic profiling reveals a developmental decrease in promoter accessibility during cortical maturation in vivo.

    Science.gov (United States)

    Venkatesh, Ishwariya; Simpson, Matthew T; Coley, Denise M; Blackmore, Murray G

    2016-12-01

    Axon regeneration in adult central nervous system (CNS) is limited in part by a developmental decline in the ability of injured neurons to re-express needed regeneration associated genes (RAGs). Adult CNS neurons may lack appropriate pro-regenerative transcription factors, or may display chromatin structure that restricts transcriptional access to RAGs. Here we performed epigenetic profiling around the promoter regions of key RAGs, and found progressive restriction across a time course of cortical maturation. These data identify a potential intrinsic constraint to axon growth in adult CNS neurons. Neurite outgrowth from cultured postnatal cortical neurons, however, proved insensitive to treatments that improve axon growth in other cell types, including combinatorial overexpression of AP1 factors, overexpression of histone acetyltransferases, and pharmacological inhibitors of histone deacetylases. This insensitivity could be due to intermediate chromatin closure at the time of culture, and highlights important differences in cell culture models used to test potential pro-regenerative interventions.

  11. Imaging separation of neuronal from vascular effects of cocaine on rat cortical brain in vivo

    International Nuclear Information System (INIS)

    Yuan, Z.; Du, C.; Luo, Z.; Volkow, N.D.; Pan, Y.

    2011-01-01

    MRI techniques to study brain function assume coupling between neuronal activity, metabolism and flow. However, recent evidence of physiological uncoupling between neuronal and cerebrovascular events highlights the need for methods to simultaneously measure these three properties. We report a multimodality optical approach that integrates dual-wavelength laser speckle imaging (measures changes in blood flow, blood volume and hemoglobin oxygenation), digital-frequency-ramping optical coherence tomography (images quantitative 3D vascular network) and Rhod2 fluorescence (images intracellular calcium for measure of neuronal activity) at high spatiotemporal resolutions (30 (micro)m, 10 Hz) and over a large field of view (3 x 5 mm 2 ). We apply it to assess cocaine's effects in rat cortical brain and show an immediate decrease 3.5 ± 0.9 min, phase (1) in the oxygen content of hemoglobin and the cerebral blood flow followed by an overshoot 7.1 ± 0.2 min, phase (2) lasting over 20 min whereas Ca 2+ increased immediately (peaked at t = 4.1 ± 0.4 min) and remained elevated. This enabled us to identify a delay (2.9 ± 0.5 min) between peak neuronal and vascular responses in phase 2. The ability of this multimodality optical approach for simultaneous imaging at high spatiotemporal resolutions permits us to distinguish the vascular versus cellular changes of the brain, thus complimenting other neuroimaging modalities for brain functional studies (e. g., PET, fMRI).

  12. Imaging separation of neuronal from vascular effects of cocaine on rat cortical brain in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Z.; Du, C.; Yuan, Z.; Luo, Z.; Volkow, N.D.; Pan, Y.; Du, C.

    2010-09-08

    MRI techniques to study brain function assume coupling between neuronal activity, metabolism and flow. However, recent evidence of physiological uncoupling between neuronal and cerebrovascular events highlights the need for methods to simultaneously measure these three properties. We report a multimodality optical approach that integrates dual-wavelength laser speckle imaging (measures changes in blood flow, blood volume and hemoglobin oxygenation), digital-frequency-ramping optical coherence tomography (images quantitative 3D vascular network) and Rhod2 fluorescence (images intracellular calcium for measure of neuronal activity) at high spatiotemporal resolutions (30 {micro}m, 10 Hz) and over a large field of view (3 x 5 mm{sup 2}). We apply it to assess cocaine's effects in rat cortical brain and show an immediate decrease 3.5 {+-} 0.9 min, phase (1) in the oxygen content of hemoglobin and the cerebral blood flow followed by an overshoot 7.1 {+-} 0.2 min, phase (2) lasting over 20 min whereas Ca{sup 2+} increased immediately (peaked at t = 4.1 {+-} 0.4 min) and remained elevated. This enabled us to identify a delay (2.9 {+-} 0.5 min) between peak neuronal and vascular responses in phase 2. The ability of this multimodality optical approach for simultaneous imaging at high spatiotemporal resolutions permits us to distinguish the vascular versus cellular changes of the brain, thus complimenting other neuroimaging modalities for brain functional studies (e. g., PET, fMRI).

  13. Rat intermediate lobe in culture: a histological and biochemical characterization.

    Science.gov (United States)

    Chronwall, B M; Bishop, J F; Gehlert, D R

    1988-01-01

    The histology, immunohistochemistry, peptide synthesis and secretion as well as proliferation rate of rat intermediate lobe (IL) were studied in primary cultures. The cultures contained two populations of cells: melanotrophs either organized in free floating lobules or in lobules which attached to the dishes and formed a monolayer. Both populations retained their in vivo morphology: polyhedral cells with smooth, ovoid nuclei and a large number of cytoplasmic secretory coated vesicles, a well developed Golgi apparatus, abundant mitochondria and extensive areas of rough endoplasmic reticulum. The melanotrophs stained with varying intensity for alpha-MSH and in situ hybridization showed the presence of pro-opiomelanocortin (POMC) mRNA. 35S-methionine incorporation combined with 2-D gel electrophoresis demonstrated POMC peptide synthesis and radioimmunoassay confirmed its secretion into the medium. 3H-thymidine uptake in the attached melanotrophs was considerably higher than that in the free-floating melanotrophs, demonstrating the dependency of proliferation rate on the cytoarchitecture of the explant. The retention of melanotroph morphology, biosynthetic and proliferative capacity in vitro affords a valid model system for studying POMC gene expression.

  14. Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue.

    Science.gov (United States)

    Tamashiro, Tami T; Dalgard, Clifton Lee; Byrnes, Kimberly R

    2012-08-15

    Microglia account for approximately 12% of the total cellular population in the mammalian brain. While neurons and astrocytes are considered the major cell types of the nervous system, microglia play a significant role in normal brain physiology by monitoring tissue for debris and pathogens and maintaining homeostasis in the parenchyma via phagocytic activity. Microglia are activated during a number of injury and disease conditions, including neurodegenerative disease, traumatic brain injury, and nervous system infection. Under these activating conditions, microglia increase their phagocytic activity, undergo morpohological and proliferative change, and actively secrete reactive oxygen and nitrogen species, pro-inflammatory chemokines and cytokines, often activating a paracrine or autocrine loop. As these microglial responses contribute to disease pathogenesis in neurological conditions, research focused on microglia is warranted. Due to the cellular heterogeneity of the brain, it is technically difficult to obtain sufficient microglial sample material with high purity during in vivo experiments. Current research on the neuroprotective and neurotoxic functions of microglia require a routine technical method to consistently generate pure and healthy microglia with sufficient yield for study. We present, in text and video, a protocol to isolate pure primary microglia from mixed glia cultures for a variety of downstream applications. Briefly, this technique utilizes dissociated brain tissue from neonatal rat pups to produce mixed glial cell cultures. After the mixed glial cultures reach confluency, primary microglia are mechanically isolated from the culture by a brief duration of shaking. The microglia are then plated at high purity for experimental study. The principle and protocol of this methodology have been described in the literature. Additionally, alternate methodologies to isolate primary microglia are well described. Homogenized brain tissue may be separated

  15. Specific receptor for endothelin in cultured rat cardiocytes

    International Nuclear Information System (INIS)

    Hirata, Y.; Fukuda, Y.; Yoshimi, H.; Emori, T.; Shichiri, M.; Marumo, F.

    1989-01-01

    Specific binding sites for the endothelium-derived vasoconstrictor endothelin (ET) and its effect on cytosolic free Ca2+ concentrations [( Ca2+]i) were studied in a primary culture of cardiocytes from neonatal rats. Binding studies using 125 I-labeled-porcine ET as a radioligand revealed the presence of a single class of high-affinity binding sites for ET in cardiocytes with an apparent Kd of 6-9 x 10(-10) M and a Bmax of 50,000-80,000 sites/cell. Neither various vasoconstrictors nor Ca2+-channel blockers affected the binding. Pretreatment with ET substantially reduced the total number of ET receptors without changing their affinity. ET dose-dependently increased [Ca2+]i in fura-2-loaded cardiocytes. These data indicate that cardiocytes have specific ET receptors that are controlled by a down-regulation mechanism, and that ET induces a receptor-mediated increase in [Ca2+]i in cardiocytes

  16. Turnover and release of GABA in rat cortical slices: effect of a GABA-T inhibitor, gabaculine

    International Nuclear Information System (INIS)

    Szerb, J.C.

    1982-01-01

    The turnover and release of endogenous and labeled GABA were followed in rat cortical slices after incubation with [ 3 H]GABA. High performance liquid chromatography was used to measure endogenous GABA and to separate [ 3 H]GABA from its metabolites. During superfusion with 3 mM K + the slices rapidly lost their [ 3 H]GABA content while maintaining constant GABA levels. Exposure to 50 mM K + for 25 min caused an initial rapid rise in the release of both endogenous and [ 3 H]GABA followed by a more rapid decline in the release of the latter. The specific activity of released GABA was two to four times higher than that in the slices. Depolarization lead to a net synthesis of GABA. The GABA -T inhibitor, gabaculine, (5 micrometers) in vitro arrested the metabolism of [ 3 H]GABA and rapidly doubled the GABA content but did not significantly increase the high K + evoked release of endogenous GABA. In vivo pretreatment with 0.5 mM/kg gabaculine quadrupled GABA content and increased both the spontaneous and evoked release of endogenous GABA but while its Ca 2 + -dependent release increased by 50%, the Ca 2 + -independent release was enhanced sevenfold. This large Ca 2 + -independent release of GABA is likely to have different functional significance from the normal Ca 2 + -dependent release

  17. Behavior in the open field predicts the number of KCl-induced cortical spreading depressions in rats.

    Science.gov (United States)

    Bogdanov, Volodymyr Borysovych; Bogdanova, Olena Viktorivna; Koulchitsky, Stanislav Vladimirovich; Chauvel, Virginie; Multon, Sylvie; Makarchuk, Mykola Yukhymovych; Brennan, Kevin Christopher; Renshaw, Perry Franklin; Schoenen, Jean

    2013-01-01

    Anxiety disorders are known to be comorbid with migraine, and cortical spreading depression (CSD) is the most likely cause of the migraine aura. To search for possible correlations between susceptibility to CSD and anxiety we used the open field test in male Sprague-Dawley rats chronically treated with the preventive anti-migraine drugs valproate or riboflavin. Animals avoiding the central area of the open field chamber and those with less exploratory activity (i.e. rearing) were considered more anxious. After 4 weeks of treatment CSDs were elicited by application of 1M KCl over the occipital cortex and the number of CSDs occurring over a 2h period was compared to the previously assessed open field behavior. Higher anxiety-like behavior was significantly correlated with a higher frequency of KCl-induced CSDs. In saline-treated animals, fewer rearings were found in animals with more frequent CSDs (R=-1.00). The duration of ambulatory episodes in the open field center correlated negatively with number of CSDs in the valproate group (R=-0.83; popen field center in both groups (R=-0.75; p<0.05 and R=-0.58; p<0.1 respectively). These results suggest that anxiety symptoms are associated with susceptibility to CSD and might explain why it can be an aggravating factor in migraine with aura. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size.

    Science.gov (United States)

    Otani, Tomoki; Marchetto, Maria C; Gage, Fred H; Simons, Benjamin D; Livesey, Frederick J

    2016-04-07

    Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Development of rat telencephalic neurons after prenatal x-irradiation

    International Nuclear Information System (INIS)

    Norton, S.

    1979-01-01

    Telencephalic neurons of rats, irradiated at day 15 of gestation with 125 R, develop synaptic connections on dendrites during maturation which appear to be normal spines in Golgi-stained light microscope preparations. At six weeks of postnatal age both control and irradiated rats have spiny dendritic processes on cortical pyramidal cells and caudate Golgi type II neurons. However, when the rats are 6 months old the irradiated rats have more neurons with beaded dendritic processes that lack spines or neurons and are likely to be degenerating neurons. The apparently normal development of the neurons followed by degeneration in the irradiated rat has a parallel in previous reports of the delayed hyperactivity which develops in rats irradiated on the fifteenth gestational day

  20. Sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured rat caput epididymal epithelium.

    Directory of Open Access Journals (Sweden)

    Wu-Lin Zuo

    Full Text Available The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+/HCO(3(- cotransporter in the pH regulation in rat epididymis.Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH solution, the intracellular pH (pHi recovery from NH(4Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+/H(+ exchanger (NHE. Immediately changing of the KH solution from HEPES buffered to HCO(3(- buffered would cause another pHi recovery. The pHi recovery in HCO(3(- buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS, the inhibitor of HCO(3(- transporter or by removal of extracellular Na(+. The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH.The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium.

  1. Effect of synthetic cell-binding peptide on the healing of cortical segmental bone defects

    International Nuclear Information System (INIS)

    Cakmak, G.; Bolukbasi, S.; Simsek, A.; Senkoylu, A.; Erdem, O.; Yilmaz, G.

    2006-01-01

    To determine the effect of inorganic bone matric/Pepgen P-15 (ABM/P-15) on the healing of a critical sized segmental defect in a rat radius using a radiological and histological grading system. We carried out this study at the Research Laboratories, Gazi University School of Medicine in 2004. Critical sized segmental defects were created in the radius of 36 Wistar rats. Thirteen defects were filled with ABM/P-15 Flow (gel form), 12 defects were filled with ABM/P-15, and 11 defects were used as a control group. The rats were sacrified at the tenth week, and healing of the defects was evaluated radiographically and histologically. The usage of ABM/P-15 and ABM/P-15 Flow were demonstrated to improve healing of segmental bone defects compared with the control group. Statistical evaluation showed that there were significant differences between control sites, and the sites treated with P-15 and P-15 Flow (p=0.011). The highest radiological and histological grades were achieved by P-15. Segmental cortical bone defects may be treated with ABM/P-15 instead of bone allografts, and autografts. According to the radiological and histological parameters measured in this study, the implantation of ABM/P-15 resulted in optimum healing of the segmental cortical bone defects. Pepgen P-15 has a positive effect on bone healing, without any immunogenic features and disease transmission risk. Therefore, ABM/P-15 can also be used for orthopedic surgery. (author)

  2. Non-specific interference of certain components of tissue culture media with the radioimmunoassay of rat alpha-foetoprotein

    International Nuclear Information System (INIS)

    Dambuyant, C.; Sizaret, Ph.

    1975-01-01

    Interferences of 'Williams' tissue culture medium used for cultivating rat hepatocytes upon rat alpha-foetoprotein (AFP) radioimmunoassay have been investigated. They are not due to foetal calf serum proteins which are added as growth factor and can be abolished by dialysis which appears to be necessary for the distinction between AFP non-producer and low-producer cell lines. Of the three major groups of non-mineral components examined, amino acid solution played a major role. When individual amino acids were examined using the double antibody technique, arginine was found to interfere predominantly; its dose-response curve was parallel to that of rat AFP which confirmed that an immunological identity between two substances cannot be established on the basis of parallelism as the only criterion

  3. Laminar-specific distribution of zinc: evidence for presence of layer IV in forelimb motor cortex in the rat.

    Science.gov (United States)

    Alaverdashvili, Mariam; Hackett, Mark J; Pickering, Ingrid J; Paterson, Phyllis G

    2014-12-01

    The rat is the most widely studied pre-clinical model system of various neurological and neurodegenerative disorders affecting hand function. Although brain injury to the forelimb region of the motor cortex in rats mostly induces behavioral abnormalities in motor control of hand movements, behavioral deficits in the sensory-motor domain are also observed. This questions the prevailing view that cortical layer IV, a recipient of sensory information from the thalamus, is absent in rat motor cortex. Because zinc-containing neurons are generally not found in pathways that run from the thalamus, an absence of zinc (Zn) in a cortical layer would be suggestive of sensory input from the thalamus. To test this hypothesis, we used synchrotron micro X-ray fluorescence imaging to measure Zn distribution across cortical layers. Zn maps revealed a heterogeneous layered Zn distribution in primary and secondary motor cortices of the forelimb region in the adult rat. Two wider bands with elevated Zn content were separated by a narrow band having reduced Zn content, and this was evident in two rat strains. The Zn distribution pattern was comparable to that in sensorimotor cortex, which is known to contain a well demarcated layer IV. Juxtaposition of Zn maps and the images of brain stained for Nissl bodies revealed a "Zn valley" in primary motor cortex, apparently starting at the ventral border of pyramidal layer III and ending at the close vicinity of layer V. This finding indicates the presence of a conspicuous cortical layer between layers III and V, i.e. layer IV, the presence of which previously has been disputed. The results have implications for the use of rat models to investigate human brain function and neuropathology, such as after stroke. The presence of layer IV in the forelimb region of the motor cortex suggests that therapeutic interventions used in rat models of motor cortex injury should target functional abnormalities in both motor and sensory domains. The finding

  4. Culturated rat cerebral cortex explants and their application in the study of SPECT scan radiopharaceuticals

    International Nuclear Information System (INIS)

    Jong, B.M. de.

    1989-01-01

    In this thesis mechanics that result in the distinct localization of radiopharmaceuticals within the brain have been investigated. In order to 'get more insight' in uptake and binding of radiopharmaceuticals bu brain tissue, use has been made of the tissue culture technique. Tissue culture privides the opportunity of doing experiments with brain tissue under stable conditions, in the absence of a blood-brain barrier, and without interference by cerebral blood flow. The present thesis is presented in two sections. The first part focusses on longterm culture of 'organotypic' cerebral neocortex tissue, obtained from neonatal rat brain and explanted into a chemically defined medium. Procedures were developed which enabled culturing of this tissue without the occurence of central necrosis and with the preservation of a characteristic histiotypic organization. Morphological characteristics of the cultures were described and measured at various ages in vitro. In the second part, the cultures were used to study mechanisms that might contribute to the tissue uptake of radiopharmaceuticals which are in clinical use for SPECT brain imaging. (author). 369 refs.; 50 figs.; 13 tabs

  5. Ketamine analgesia for inflammatory pain in neonatal rats: a factorial randomized trial examining long-term effects

    Directory of Open Access Journals (Sweden)

    Bhutta Adnan T

    2008-08-01

    Full Text Available Abstract Background Neonatal rats exposed to repetitive inflammatory pain have altered behaviors in young adulthood, partly ameliorated by Ketamine analgesia. We examined the relationships between protein expression, neuronal survival and plasticity in the neonatal rat brain, and correlated these changes with adult cognitive behavior. Methods Using Western immunoblot techniques, homogenates of cortical tissue were analyzed from neonatal rats 18–20 hours following repeated exposure to 4% formalin injections (F, N = 9, Ketamine (K, 2.5 mg/kg × 2, N = 9, Ketamine prior to formalin (KF, N = 9, or undisturbed controls (C, N = 9. Brain tissues from another cohort of rat pups (F = 11, K = 12, KF = 10, C = 15 were used for cellular staining with Fos immunohistochemistry or FluoroJade-B (FJB, followed by cell counting in eleven cortical and three hippocampal areas. Long-term cognitive testing using a delayed non-match to sample (DNMS paradigm in the 8-arm radial maze was performed in adult rats receiving the same treatments (F = 20, K = 24, KF = 21, C = 27 in the neonatal period. Results Greater cell death occurred in F vs. C, K, KF in parietal and retrosplenial areas, vs. K, KF in piriform, temporal, and occipital areas, vs. C, K in frontal and hindlimb areas. In retrosplenial cortex, less Fos expression occurred in F vs. C, KF. Cell death correlated inversely with Fos expression in piriform, retrosplenial, and occipital areas, but only in F. Cortical expression of glial fibrillary acidic protein (GFAP was elevated in F, K and KF vs. C. No significant differences occurred in Caspase-3, Bax, and Bcl-2 expression between groups, but cellular changes in cortical areas were significantly correlated with protein expression patterns. Cluster analysis of the frequencies and durations of behaviors grouped them as exploratory, learning, preparatory, consumptive, and foraging behaviors. Neonatal inflammatory pain exposure reduced exploratory behaviors in adult

  6. Distribution of phospholipase C isozymes in various rat tissues and cultured cells

    International Nuclear Information System (INIS)

    Suh, P.G.; Ryu, S.H.; Choi, W.C.; Lee, K.Y.; Rhee, S.G.

    1987-01-01

    Monoclonal antibodies prepared against PLC-I or PLC-II enzyme did not cross-react with the other. Using a pair of antibodies which recognizes 2 different antigenic sites on the same molecule, radioimmunoassays were developed for the quantitation of PLC-I and PLC-II in homogenates of various tissues and cultured cells, prepared by homogenization in a 2 M KCl buffer. The contents of PLC enzymes were measured in 19 rat tissues, in human platelets and in 17 cultured cells. Results indicate that the concentration of PLC-I and PLC-II is very high in brain, PLC-I is localized mainly in brain and partly in seminal vesicles, PLC-II is found in most tissues and cells. PLC-I is highly localized even in brain: 5 different neuroblastoma did not contain PLC-I while 2 glioma and 1 astrocytoma contained significant amounts

  7. The endozepine ODN stimulates [3H]thymidine incorporation in cultured rat astrocytes

    International Nuclear Information System (INIS)

    Gandolfo, P.; Patte, C.; Thoumas, J.L.; Leprince, J.; Vaudry, H.; Tonon, M.C.

    1999-01-01

    High concentrations of diazepam-binding inhibitor (DBI) mRNA have been detected in astrocytoma, suggesting that DBI-derived peptides may play a role in glial cell proliferation. In the present study, we have investigated the effect of a processing product of DBI, the octadecaneuropeptide ODN, on DNA synthesis in cultured rat astrocytes. At very low concentrations (10 -14 to 10 -11 M), ODN caused a dose-dependent increase of [ 3 H]thymidine incorporation. At higher doses (10 -10 to 10 -5 M), the effect of ODN gradually declined. The central-type benzodiazepine receptor antagonist flumazenil (10 -6 M) completely suppressed the stimulatory action of ODN whereas the peripheral-type benzodiazepine receptor ligand, PK11195 (10 -6 M) had no effect. The ODN-induced stimulation of [ 3 H]thymidine incorporation was mimicked by methyl 6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM). The GABA A receptor antagonist bicuculline (10 -4 M) suppressed the effect of both ODN and DMCM on DNA synthesis. Exposure of cultured astrocytes to the specific GABA A agonist 3APS (10 -10 to 10 -4 M) also induced a dose-related increase of [ 3 H]thymidine incorporation. The present study indicates that ODN, acting through central-type benzodiazepine receptors associated with the GABA A receptor complex, stimulates DNA synthesis in rat glial cells. These data provide evidence for an autocrine role of endozepines in the control of glial cell proliferation. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Hemodynamic monitoring in different cortical layers with a single fiber optical system

    Science.gov (United States)

    Yu, Linhui; Noor, M. Sohail; Kiss, Zelma H. T.; Murari, Kartikeya

    2018-02-01

    Functional monitoring of highly-localized deep brain structures is of great interest. However, due to light scattering, optical methods have limited depth penetration or can only measure from a large volume. In this research, we demonstrate continuous measurement of hemodynamics in different cortical layers in response to thalamic deep brain stimulation (DBS) using a single fiber optical system. A 200-μm-core-diameter multimode fiber is used to deliver and collect light from tissue. The fiber probe can be stereotaxically implanted into the brain region of interest at any depth to measure the di use reflectance spectra from a tissue volume of 0.02-0.03 mm3 near the fiber tip. Oxygenation is then extracted from the reflectance spectra using an algorithm based on Monte Carlo simulations. Measurements were performed on the surface (cortical layer I) and at 1.5 mm depth (cortical layer VI) of the motor cortex in anesthetized rats with thalamic DBS. Preliminary results revealed the oxygenation changes in response to DBS. Moreover, the baseline as well as the stimulus-evoked change in oxygenation were different at the two depths of cortex.

  9. Extent of cortical involvement in amyotrophic lateral sclerosis--an analysis based on cortical thickness.

    Science.gov (United States)

    Thorns, Johannes; Jansma, Henk; Peschel, Thomas; Grosskreutz, Julian; Mohammadi, Bahram; Dengler, Reinhard; Münte, Thomas F

    2013-10-18

    Besides the defining involvement of upper and lower motor neurons, the involvement of extramotor structures has been increasingly acknowledged in amyotrophic lateral sclerosis (ALS). Here we investigated a group of 14 mildly to moderately affected ALS patients and 14 age-matched healthy control participants using cortical thickness analysis. Cortical thickness was determined from high resolution 3D T1 magnetic resonance images and involved semiautomatic segmentation in grey and white matter, cortical alignment and determination of thickness using the Laplace method. In addition to a whole-cortex analysis a region of interest approach was applied. ALS patients showed regions of significant cortical thinning in the pre- and postcentral gyri bilaterally. Further regions of cortical thinning included superior and inferior parietal lobule, angular and supramarginal gyrus, insula, superior frontal, temporal and occipital regions, thus further substantiating extramotor involvement in ALS. A relationship between cortical thickness of the right superior frontal cortex and clinical severity (assessed by the ALS functional rating scale) was also demonstrated. Cortical thickness is reduced in ALS not only in motor areas but in widespread non-motor cortical areas. Cortical thickness is related to clinical severity.

  10. Scaling Up Cortical Control Inhibits Pain

    Directory of Open Access Journals (Sweden)

    Jahrane Dale

    2018-05-01

    Full Text Available Summary: Acute pain evokes protective neural and behavioral responses. Chronic pain, however, disrupts normal nociceptive processing. The prefrontal cortex (PFC is known to exert top-down regulation of sensory inputs; unfortunately, how individual PFC neurons respond to an acute pain signal is not well characterized. We found that neurons in the prelimbic region of the PFC increased firing rates of the neurons after noxious stimulations in free-moving rats. Chronic pain, however, suppressed both basal spontaneous and pain-evoked firing rates. Furthermore, we identified a linear correlation between basal and evoked firing rates of PFC neurons, whereby a decrease in basal firing leads to a nearly 2-fold reduction in pain-evoked response in chronic pain states. In contrast, enhancing basal PFC activity with low-frequency optogenetic stimulation scaled up prefrontal outputs to inhibit pain. These results demonstrate a cortical gain control system for nociceptive regulation and establish scaling up prefrontal outputs as an effective neuromodulation strategy to inhibit pain. : Dale et al. find that acute pain increases activity levels in the prefrontal cortex. Chronic pain reduces both basal spontaneous and pain-evoked activity in this region, whereas neurostimulation to restore basal activities can in turn enhance nociception-evoked prefrontal activities to inhibit pain. Keywords: chronic pain, neuromodulation, prefrontal cortex, PFC, cortical gain control

  11. REMODELING SENSORY CORTICAL MAPS IMPLANTS SPECIFIC BEHAVIORAL MEMORY

    Science.gov (United States)

    Bieszczad, Kasia M.; Miasnikov, Alexandre A.; Weinberger, Norman M.

    2013-01-01

    Neural mechanisms underlying the capacity of memory to be rich with sensory detail are largely unknown. A candidate mechanism is learning-induced plasticity that remodels adult sensory cortex. Here, expansion in the primary auditory cortical (A1) tonotopic map of rats was induced by pairing a 3.66 kHz tone with activation of the nucleus basalis, mimicking the effects of natural associative learning. Remodeling of A1 produced de novo specific behavioral memory, but neither memory nor plasticity were consistently at the frequency of the paired tone, which typically decreased in A1 representation. Rather, there was a specific match between individual subjects’ area of expansion and the tone that was strongest in each animal’s memory, as determined by post-training frequency generalization gradients. These findings provide the first demonstration of a match between the artificial induction of specific neural representational plasticity and artificial induction of behavioral memory. As such, together with prior and present findings for detection, correlation and mimicry of plasticity with the acquisition of memory, they satisfy a key criterion for neural substrates of memory. This demonstrates that directly remodeling sensory cortical maps is sufficient for the specificity of memory formation. PMID:23639876

  12. Borders and Comparative Cytoarchitecture of the Perirhinal and Postrhinal Cortices in an F1 Hybrid Mouse

    Science.gov (United States)

    Beaudin, Stephane A.; Singh, Teghpal; Agster, Kara L.

    2013-01-01

    We examined the cytoarchitectonic and chemoarchitectonic organization of the cortical regions associated with the posterior rhinal fissure in the mouse brain, within the framework of what is known about these regions in the rat. Primary observations were in a first-generation hybrid mouse line, B6129PF/J1. The F1 hybrid was chosen because of the many advantages afforded in the study of the molecular and cellular bases of learning and memory. Comparisons with the parent strains, the C57BL6/J and 129P3/J are also reported. Mouse brain tissue was processed for visualization of Nissl material, myelin, acetyl cholinesterase, parvalbumin, and heavy metals. Tissue stained for heavy metals by the Timm’s method was particularly useful in the assignment of borders and in the comparative analyses because the patterns of staining were similar across species and strains. As in the rat, the areas examined were parcellated into 2 regions, the perirhinal and the postrhinal cortices. The perirhinal cortex was divided into areas 35 and 36, and the postrhinal cortex was divided into dorsal (PORd) and ventral (PORv) subregions. In addition to identifying the borders of the perirhinal cortex, we were able to identify a region in the mouse brain that shares signature features with the rat postrhinal cortex. PMID:22368084

  13. Dopamine depletion increases the power and coherence of high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    Science.gov (United States)

    Ge, Shunnan; Yang, Chen; Li, Min; Li, Jiang; Chang, Xiaozan; Fu, Jian; Chen, Lei; Chang, Chongwang; Wang, Xuelian; Zhu, Junling; Gao, Guodong

    2012-07-17

    Studies on patients with Parkinson's disease and in animal models have observed enhanced synchronization of oscillations in several frequency bands within and between the cortical-basal ganglia (BG) structures. Recent research has also shown that synchronization of high-voltage spindles (HVSs) in the cortex, striatum and substantia nigra pars reticulate is increased by dopamine depletion. However, more evidence is needed to determine whether HVS activity in the whole cortex-BG network represents homologous alteration following dopamine depletion. As the globus pallidus (GP) is in a central position to propagate and synchronize oscillations in the cortical-BG circuits, we employed local-field potentials and electrocorticogram to simultaneously record oscillations in the GP and primary (M1) and secondary (M2) motor cortices on freely moving 6-hydroxydopamine (6-OHDA) lesioned and control rats. Results showed that HVS episodes recorded from GP, and M2 and M1 cortex areas were more numerous and longer in 6-OHDA lesioned rats compared to controls. Relative power associated with HVS activity in the GP, and M2 and M1 cortices of 6-OHDA lesioned rats was significantly greater than that for control rats. Coherence values for HVS activity between the GP, and M2 and M1 cortex areas were significantly increased by dopamine depletion. Time lag between the M1 cortex HVS and GP HVS was significantly shorter for dopamine depleted than normal rats. Findings indicate a crucial rule for dopamine in the regulation of HVS activity in the whole cortical-BG circuit, and suggest a close relationship between abnormally synchronized HVS oscillations in the cortex-BG network and Parkinson's disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Effects of activated ACM on expression of signal transducers in cerebral cortical neurons of rats.

    Science.gov (United States)

    Wang, Xiaojing; Li, Zhengli; Zhu, Changgeng; Li, Zhongyu

    2007-06-01

    To explore the roles of astrocytes in the epileptogenesis, astrocytes and neurons were isolated, purified and cultured in vitro from cerebral cortex of rats. The astrocytes were activated by ciliary neurotrophic factor (CNTF) and astrocytic conditioned medium (ACM) was collected to treat neurons for 4, 8 and 12 h. By using Western blot, the expression of calmodulin dependent protein kinase II (CaMK II), inducible nitric oxide synthase (iNOS) and adenylate cyclase (AC) was detected in neurons. The results showed that the expression of CaMK II, iNOS and AC was increased significantly in the neurons treated with ACM from 4 h to 12 h (PACM and such signal pathways as NOS-NO-cGMP, Ca2+/CaM-CaMK II and AC-cAMP-PKA might take part in the signal transduction of epileptogenesis.

  15. Changes in responsiveness of rat tracheal epithelial cells to growth factors during preneoplastic transformation in cell culture

    International Nuclear Information System (INIS)

    Thomassen, D.G.

    1988-01-01

    Preneoplastic rat tracheal epithelial (RTE) cell lines require fewer growth factors for clonal proliferation in culture than normal cells. Serum-free media missing various combinations of growth factors (e.g., cholera toxin, serum albumin, epidermal growth factor, hydrocortisone) required for proliferation of normal, but not preneoplastic, RTE cells can be used to select for carcinogen-induced preneoplastic variants having an increased proliferative potential in culture. These results suggest that reductions in growth factor requirements are primary events in the carcinogenic process. (author)

  16. 125I-iomazenil - benzodiazepine receptor binding and serum corticosterone level during psychological stress in a rat model

    International Nuclear Information System (INIS)

    Fukumitsu, Nobuyoshi; Ogi, Shigeyuki; Uchiyama, Mayuki; Mori, Yutaka

    2004-01-01

    To test the hypothesis that benzodiazepine receptor density decreases in response to stress, we correlated 125 I-iomazenil ( 125 I-IMZ) binding with serum corticosterone levels in a rat model. Wistar male rats were divided into four groups; control group (CON, 10 rats), no physical or psychological stress; and one-, three-, and five-day stress groups of 12 rats each (1-DAY, 3-DAY, and 5-DAY, respectively), receiving psychological stress for the given number of days. Psychological stress were given to rats with a communication box. The standardized uptake value (SUV) of 125 I-iomazenil of the 3-DAY and 5-DAY showed that 125 I-iomazenil - benzodiazepine receptor binding was significantly reduced in the cortices, accumbens nuclei, amygdala and caudate putamen (p 125 I-IMZ is a useful radioligand to reflect received stress and its binding in the cortices, accumbens nuclei, amygdala and caudate putamen is strongly affected by psychological stress

  17. Nanofibrillar scaffolds induce preferential activation of Rho GTPases in cerebral cortical astrocytes

    Science.gov (United States)

    Tiryaki, Volkan Mujdat; Ayres, Virginia M; Khan, Adeel A; Ahmed, Ijaz; Shreiber, David I; Meiners, Sally

    2012-01-01

    Cerebral cortical astrocyte responses to polyamide nanofibrillar scaffolds versus poly-L-lysine (PLL)-functionalized planar glass, unfunctionalized planar Aclar coverslips, and PLL-functionalized planar Aclar surfaces were investigated by atomic force microscopy and immunocytochemistry. The physical properties of the cell culture environments were evaluated using contact angle and surface roughness measurements and compared. Astrocyte morphological responses, including filopodia, lamellipodia, and stress fiber formation, and stellation were imaged using atomic force microscopy and phalloidin staining for F-actin. Activation of the corresponding Rho GTPase regulators was investigated using immunolabeling with Cdc42, Rac1, and RhoA. Astrocytes cultured on the nanofibrillar scaffolds showed a unique response that included stellation, cell–cell interactions by stellate processes, and evidence of depression of RhoA. The results support the hypothesis that the extracellular environment can trigger preferential activation of members of the Rho GTPase family, with demonstrable morphological consequences for cerebral cortical astrocytes. PMID:22915841

  18. Antagonists of group I metabotropic glutamate receptors and cortical afterdischarges in immature rats

    Czech Academy of Sciences Publication Activity Database

    Lojková-Janečková, Denisa; Ng, Jessica; Mareš, Pavel

    2009-01-01

    Roč. 50, č. 9 (2009), s. 2123-2129 ISSN 0013-9580 R&D Projects: GA ČR(CZ) GA305/06/1188 Institutional research plan: CEZ:AV0Z50110509 Keywords : cortical seizures * metabotropic glutamate receptors * development Subject RIV: FH - Neurology Impact factor: 4.052, year: 2009

  19. Cortico-cortical communication dynamics

    Directory of Open Access Journals (Sweden)

    Per E Roland

    2014-05-01

    Full Text Available IIn principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG, and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review.

  20. Puerarin exhibits greater distribution and longer retention time in neurons than astrocytes in a co-cultured system

    Directory of Open Access Journals (Sweden)

    Shu-Yong Wei

    2015-01-01

    Full Text Available The phytoestrogen puerarin has been shown to protect neurons and astrocytes in the brain, and is therefore an attractive drug in the treatment of Alzheimer′s disease, Parkinson′s disease and cerebral ischemia. Whether puerarin exhibits the same biological processes in neurons and astrocytes in vitro has rarely been reported. In this study, cortical neurons and astrocytes of newborn Sprague-Dawley rats were separated, identified and co-cultured in a system based on Transwell membranes. The retention time and distribution of puerarin in each cell type was detected by fluorescence spectrophotometry and fluorescence microscope. The concentration of puerarin in both co-cultured and separately cultured neurons was greater than that of astrocytes. Puerarin concentration reached a maximum 20 minutes after it was added. At 60 minutes after its addition, a scant amount of drug was detected in astrocytes; however in both separately cultured and co-cultured neurons, the concentration of puerarin achieved a stable level of about 12.8 ng/mL. The results indicate that puerarin had a higher concentration and longer retention time in neurons than that observed in astrocytes.

  1. Differential response of risedronate on tibial and mandibular bone quality in glucocorticoid-treated growing rats

    International Nuclear Information System (INIS)

    Fujita, Yuko

    2008-01-01

    Glucocorticoids induce bone loss and retard bone growth in children. In this study we investigated the effect of treatment with risedronate on glucocorticoid -prednisolone-induced decreases in bone density, quality, strength and growth of the tibia and mandible in growing rats. Trabecular and cortical bone structure was measured by peripheral quantitative computed tomography (pQCT) and three-dimensional (3D) micro-computed tomography (micro-CT). Indicators of bone strength were calculated from cortical bone density and the modulus of sections obtained from pQCT analysis. Tibial and mandibular bone sizes were also measured. Prednisolone decreased the bone growth of both tibia and mandible. It also caused deterioration of trabecular and cortical bone structure and strength in the mandible, and in cortical bone in the tibia, but had no effect on trabecular bone in the tibia. Risedronate inhibited the prednisolone-induced decreases in tibial width and mandibular length and height but did not improve the retardation of longitudinal bone growth. Risedronate prevented prednisolone-induced deterioration of trabecular and cortical bone architecture. In the mandible, this protective effect of risedronate was accompanied by an increase in cortical bone density and in bone strength. These findings show that risedronate inhibits prednisolone-induced loss of bone density, structure, decrease in bone strength, and retardation of bone growth in the mandible in young growing rats. (author)

  2. Elastase effect on the extracellular matrix of rat aortic smooth muscle cells in culture

    International Nuclear Information System (INIS)

    Kispert, J.; Mogayzel, P.J. Jr.; Pratt, C.A.; Toselli, P.; Wolfe, B.L.; Faris, B.; Franzblau, C.

    1986-01-01

    The effect of porcine pancreatic elastase on the extracellular matrix (ECM) of neonatal rat aortic smooth muscle cell cultures was monitored both chemically and ultrastructurally. Initially, the elastin appeared as non-coalesced material closely associated with filaments, presumably microfibrils. The insoluble elastin accumulated in the ECM of cells in culture for 6 weeks accounted for 40-45% of the total protein. After exposure to elastase for 30-60 minutes, the elastin content was reduced to 14-20%. The reduction in the total protein content of the cultures after elastase treatment was due primarily to the loss of elastin. Although the amino acid compositions of the elastin isolated from cultures both before and after elastase treatment were similar, there were striking ultrastructural differences in the amorphous elastin. The elastin assumed a mottled appearance after elastase exposure, similar to that seen in in vivo emphysema models. Pulse experiments with 3 H-valine demonstrated an increase in protein synthesis by the cells 20 hours after elastase exposure, suggesting the potential for elastin repair. The use of this culture system will aid in clarifying the role of elastolysis in pulmonary and vascular injuries

  3. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    Science.gov (United States)

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  4. UP-DOWN cortical dynamics reflect state transitions in a bistable network.

    Science.gov (United States)

    Jercog, Daniel; Roxin, Alex; Barthó, Peter; Luczak, Artur; Compte, Albert; de la Rocha, Jaime

    2017-08-04

    In the idling brain, neuronal circuits transition between periods of sustained firing (UP state) and quiescence (DOWN state), a pattern the mechanisms of which remain unclear. Here we analyzed spontaneous cortical population activity from anesthetized rats and found that UP and DOWN durations were highly variable and that population rates showed no significant decay during UP periods. We built a network rate model with excitatory (E) and inhibitory (I) populations exhibiting a novel bistable regime between a quiescent and an inhibition-stabilized state of arbitrarily low rate. Fluctuations triggered state transitions, while adaptation in E cells paradoxically caused a marginal decay of E-rate but a marked decay of I-rate in UP periods, a prediction that we validated experimentally. A spiking network implementation further predicted that DOWN-to-UP transitions must be caused by synchronous high-amplitude events. Our findings provide evidence of bistable cortical networks that exhibit non-rhythmic state transitions when the brain rests.

  5. The effects of inorganic lead on the spontaneous and potassium-evoked release of 3H-5-HT from rat cortical synaptosome interaction with calcium

    International Nuclear Information System (INIS)

    Oudar, P.; Caillard, L.; Fillion, G.

    1989-01-01

    Interaction of lead with the serotonergic system has been studied in vitro in rat brain synaptosomal fraction prepared from cortical tissue. Synaptosomes were loaded with 3 H-5-HT and spontaneous and K + -evoked release of the amine was examined in the presence and the absence of calcium. It was shown that lead itself induced the release of 3 H-5-HT (EC50=27 μM). This effect decreased (40%) in the presence of calcium without modification of the EC50. Moreover, lead markedly inhibited the K + -evoked release of 3 H-5-HT observed in the presence of calcium. This effect was obtained either in the presence of lead or using synaptosomes pretreated with lead and washed. These results indicate that lead interferes with neuronal 5-HT release by mechanism(s) involving calcium. (author)

  6. Does status epilepticus induced at early postnatal period change excitability after cortical epileptic afterdischarges?

    Czech Academy of Sciences Publication Activity Database

    Mareš, Pavel; Kubová, Hana

    2016-01-01

    Roč. 57, č. 8 (2016), E183-E186 ISSN 0013-9580 R&D Projects: GA MŠk(CZ) LH11015; GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP302/10/0971; GA ČR(CZ) GA15-16605S Institutional support: RVO:67985823 Keywords : status epilepticus * cortical stimulation * epileptic afterdischarges * ontogeny * rat Subject RIV: FH - Neurology Impact factor: 5.295, year: 2016

  7. Suppression of sterol 27-hydroxylase mRNA and transcriptional activity by bile acids in cultured rat hepatocytes

    NARCIS (Netherlands)

    Twisk, J.; Wit, E.C.M. de; Princen, H.M.G.

    1995-01-01

    In previous work we have demonstrated suppression of cholesterol 7α-hydroxylase by bile acids at the level of mRNA and transcription, resulting in a similar decline in bile acid synthesis in cultured rat hepatocytes. In view of the substantial contribution of the 'alternative' or '27-hydroxylase'

  8. Studies of aluminum in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  9. Studies of aluminum in rat brain

    International Nuclear Information System (INIS)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using 14 C autoradiography to measure the uptake of 14 C 2-deoxy-D-glucose ( 14 C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-μm resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The 14 C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of 14 C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10 9 Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab

  10. Connectivities and synchronous firing in cortical neuronal networks

    International Nuclear Information System (INIS)

    Jia, L.C.; Sano, M.; Lai, P.-Y.; Chan, C.K.

    2004-01-01

    Network connectivities (k-bar) of cortical neural cultures are studied by synchronized firing and determined from measured correlations between fluorescence intensities of firing neurons. The bursting frequency (f) during synchronized firing of the networks is found to be an increasing function of k-bar. With f taken to be proportional to k-bar, a simple random model with a k-bar dependent connection probability p(k-bar) has been constructed to explain our experimental findings successfully

  11. Long-term lithium treatment increases intracellular and extracellular brain-derived neurotrophic factor (BDNF) in cortical and hippocampal neurons at subtherapeutic concentrations.

    Science.gov (United States)

    De-Paula, Vanessa J; Gattaz, Wagner F; Forlenza, Orestes V

    2016-12-01

    The putative neuroprotective effects of lithium treatment rely on the fact that it modulates several homeostatic mechanisms involved in the neurotrophic response, autophagy, oxidative stress, inflammation, and mitochondrial function. Lithium is a well-established therapeutic option for the acute and long-term management of bipolar disorder and major depression. The aim of this study was to evaluate the effects of subtherapeutic and therapeutic concentrations of chronic lithium treatment on brain-derived neurotrophic factor (BDNF) synthesis and secretion. Primary cultures of cortical and hippocampal neurons were treated with different subtherapeutic (0.02 and 0.2 mM) and therapeutic (2 mM) concentrations of chronic lithium treatment in cortical and hippocampal cell culture. Lithium treatment increased the intracellular protein expression of cortical neurons (10% at 0.02 mM) and hippocampal neurons (28% and 14% at 0.02 mM and 0.2 mM, respectively). Extracellular BDNF of cortical neurons increased 30% and 428% at 0.02 and 0.2 mM, respectively and in hippocampal neurons increased 44% at 0.02 mM. The present study indicates that chronic, low-dose lithium treatment up-regulates BDNF production in primary neuronal cell culture. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The radioprotective role of Gamma-Tocopherol on cholinergic and electrical activities in the brain of Gamma irradiated rats

    International Nuclear Information System (INIS)

    M, A.M.; Saada, H.N.

    1997-01-01

    Data of the present study revealed that whole body gamma exposure of adult male albino rats at 8 Gy causes a significant increase in the acetylcholine (ACh)content of the two cerebral hemispheres concomittant with a marked inhibition in the activity of acetylcholinesterase (AChE) enzyme 1,3,7,and 10 days after irradiation. The electroencephalogram (EEG) activity of frontal cortical area showed a significant increase in the faster frequencies (Bita-rhythm) and a decrease in the slower rhythm (delta - frequencies). Pretreatment of rats with α-tocopherol, 2 hr, prior irradiation provides the rats with a partial protection from the radiation induced changes in the acetent and cholinesterase activity of cerebral hemispheres. Injection of α-tocopherol has also provided the rats with some protection against the changes recorded for EEG activity of the cortical frontal area

  13. Failure of zinc to prevent dysmorphogenesis of cultured rat conceptuses by anti-yolk sac antiserum

    International Nuclear Information System (INIS)

    Marlow, R.; Freeman, S.J.

    1989-01-01

    Day 10 rat conceptuses were cultured for 48h in the presence of either cadmium or anti-vesceral yolk sac antiserum (AVYS). Cadmium was embryotoxic at concentrations exceeding 0.25 ug/ml while AVYS caused embryonic dysmorphogenesis, particularly affecting the optic vesicles, at concentrations of 2 ul/ml and above. The effect of pretreatment with zinc on embryotoxicity caused by cadmium or AVYS was studied. Zinc ameliorated the effects of cadmium but had no effect on AVYS-induced embryonic abnormalities. In a second set of experiments inhibition of 125 I-labelled PVP uptake by the yolk sac of cultured whole conceptuses was studied. Cadmium and AVYS both inhibited uptake compared to control cultures. Zinc again ameliorated the effect of cadmium but had no action against AVYS-induced inhibition. These results are in contrast to their previous findings using isolated cultured yolk sacs in which zinc ameliorated the inhibitory effects on 125 I-labelled PVP uptake of both cadmium and AVYS. These data show that in experiments using the isolated cultured yolk sac and the intact cultured conceptus, a qualitatively different response in yolk sac behavior is observed under similar experimental conditions

  14. U.V.-enhanced reactivation of u.v.-irradiated herpes virus by primary cultures of rat hepatocytes

    International Nuclear Information System (INIS)

    Zurlo, J.; Yager, J.D.

    1984-01-01

    Carcinogen treatment of cultured mammalian cells prior to infection with u.v.-irradiated virus results in enhanced virus survival and mutagenesis suggesting the induction of SOS-type processes. In this paper, we report the development of a primary rat hepatocyte culture system to investigate cellular responses to DNA damage which may be relevant to hepatocarcinogenesis in vivo. We have obtained data demonstrating that enhanced reactivation of u.v.-irradiated Herpes simplex virus type 1 (HSV-1) occurs in hepatocytes irradiated with u.v. Cultured hepatocytes were pretreated with u.v. at the time of enhanced DNA synthesis. These treatments caused an inhibition followed by a recovery of DNA synthesis. At various times after pretreatment, the hepatocytes were infected with control or u.v.-irradiated HSV-1 at low multiplicity, and virus survival was measured by direct plaque assay. U.v.-irradiated HSV-1 exhibited the expected two-component survival curve in control or u.v. pretreated hepatocytes. The magnitude of enhanced reactivation of HSV-1 was dependent on the u.v. dose to the hepatocytes, the time of infection following u.v. pretreatment, and the level of DNA synthesis at the time of pretreatment. These results suggest that u.v. treatment of rat hepatocytes causes the induction of SOS-type functions that may have a role in the initiation of hepatocarcinogenesis

  15. Peripheral Nerve Injury in Developing Rats Reorganizes Representation Pattern in Motor Cortex

    Science.gov (United States)

    Donoghue, John P.; Sanes, Jerome N.

    1987-02-01

    We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stimuli activated shoulder and trunk muscles in experimental animals. In addition, an expanded cortical representation of intact body parts was present and there was an absence of a distinct portion of motor cortex. These data demonstrate that representation patterns in motor cortex can be altered by peripheral nerve injury during development.

  16. Micropit: a new cell culturing approach for characterization of solitary astrocytes and small networks of these glial cells

    Directory of Open Access Journals (Sweden)

    William Lee

    2008-12-01

    Full Text Available Astrocytes play an important role in cell-cell signaling in the mammalian central nervous system. The ability of astrocytes to communicate with surrounding cells through gap-junctional coupling or signaling via the release of transmitters makes characterization of these cells difficult in vitro and even more so in vivo. To simplify the complexity of common in vitro systems, introduced by intercellular communication between astrocytes, we developed a novel cell culturing method, in which purified rat visual cortical astrocytes were grown in spatially defined cell-adhesion wells which we termed micropits. We showed that astrocytes cultured in micropit regions were viable and exhibited similar characteristics of Ca2+ dynamics and astrocytic marker expression to those of cells cultured in non-micropit regions. Examination of intracellular Ca2+ oscillations in solitary astrocytes cultured in micropits revealed less variable oscillations than those of non-micropit grouped astrocytes, which were in contact with their neighbors. Solitary cells in micropit regions can undergo ATP-mediated astrocyte-microglia signaling, demonstrating that this culturing method can also be used to investigate glial-glial interactions in a spatially well-defined microenvironment.

  17. Deficits in novelty exploration after controlled cortical impact.

    Science.gov (United States)

    Wagner, Amy K; Postal, Brett A; Darrah, Shaun D; Chen, Xiangbai; Khan, Amina S

    2007-08-01

    Experimental models of traumatic brain injury (TBI) have been utilized to characterize the behavioral derangements associated with brain trauma. Several studies exist characterizing motor function in the controlled cortical impact (CCI) injury model of TBI, but less research has focused on how CCI affects exploratory behavior. The goal of this study was to characterize deficits in three novelty exploration tasks after the CCI. Under anesthesia, 37 adult male Sprague Dawley rats received CCI (2.7 mm and 2.9 mm; 4 m/sec) over the right parietal cortex or sham surgery. For days 1-6 post-surgery, the beam balance and beam walking tasks were used to assess motor deficits. The Open Field, Y-Maze, and Free Choice Novelty (FCN) tasks were used to measure exploratory deficits from days 7-14 post-surgery. Injured rats displayed a significant, but transient, deficit on each motor task (p Open Field results showed that injured rats had lower activity levels than shams (p time in the novel arm versus the familiar arms when compared to shams (p time and had fewer interactions with objects in the novel environment compared to shams (p < 0.05). These results suggest that several ethological factors contribute to exploratory deficits after CCI and can be effectively characterized with the behavioral tasks described. Future work will utilize these tasks to evaluate the neural substrates underlying exploratory deficits after TBI.

  18. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Oscar Daniel; Cappa, Andrea Isabel; Paola, Matilde de; Zanetti, María Natalia [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Fukuda, Mitsunori [Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Fissore, Rafael A. [Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003 (United States); Mayorga, Luis S. [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Michaut, Marcela A., E-mail: mmichaut@gmail.com [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (Argentina)

    2016-09-10

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs. - Highlights: • Rab3A has a similar migration pattern to cortical granules in mouse oocytes. • Rab3A can be a marker of

  19. The in vitro biokinetics of chlorpromazine and diazepam in aggregating rat brain cell cultures after repeated exposure

    NARCIS (Netherlands)

    Broeders, Jessica J W; Hermens, Joop L M; Blaauboer, Bas J; Zurich, Marie-Gabrielle

    2015-01-01

    Neurotoxic effects of compounds can be tested in vitro using cell systems. One example is aggregating rat brain cell cultures. For the extrapolation of in vitro data to the in vivo situation, it is important to take the biokinetics of the test compound into account. In addition, the exposure in vivo

  20. SynGAP regulates protein synthesis and homeostatic synaptic plasticity in developing cortical networks.

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    Full Text Available Disrupting the balance between excitatory and inhibitory neurotransmission in the developing brain has been causally linked with intellectual disability (ID and autism spectrum disorders (ASD. Excitatory synapse strength is regulated in the central nervous system by controlling the number of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs. De novo genetic mutations of the synaptic GTPase-activating protein (SynGAP are associated with ID and ASD. SynGAP is enriched at excitatory synapses and genetic suppression of SynGAP increases excitatory synaptic strength. However, exactly how SynGAP acts to maintain synaptic AMPAR content is unclear. We show here that SynGAP limits excitatory synaptic strength, in part, by suppressing protein synthesis in cortical neurons. The data presented here from in vitro, rat and mouse cortical networks, demonstrate that regulation of translation by SynGAP involves ERK, mTOR, and the small GTP-binding protein Rheb. Furthermore, these data show that GluN2B-containing NMDARs and the cognitive kinase CaMKII act upstream of SynGAP and that this signaling cascade is required for proper translation-dependent homeostatic synaptic plasticity of excitatory synapses in developing cortical networks.

  1. Dopamine1 receptors in rat kidneys identified with 125I-Sch 23982

    International Nuclear Information System (INIS)

    Felder, R.A.; Jose, P.A.

    1988-01-01

    Dopamine1 receptors were studied in rat kidney using the selective dopamine1 antagonist 125I-labeled Sch 23982. The specific binding of 125I-Sch 23982 (defined by 5 microM Sch 23390) to renal cortical homogenates incubated at room temperature was rapid, saturable with time and ligand concentration, and reversible. Analysis of Rosenthal plots revealed a single class of receptors with an apparent dissociation constant of 12.2 +/- 1.9 nM and maximum receptor density of 1.03 +/- 0.15 pmol/mg protein (n = 6). However, competition experiments with the dopamine1 antagonist Sch 23390 revealed a low- and high-affinity binding site with inhibition constants of 1 x 10(-6) and 1 x 10(-8) M, respectively. The competition experiments were also indicative of dopamine1 receptors with stereoselectivity noted for dopamine1 but not for dopamine2 antagonists. The inhibition constants for dopamine1 antagonists and agonists were two orders of magnitude greater in renal cortical than striatal homogenates. Different buffers affected striatal but not renal cortical binding. Autoradiographic studies revealed 125I-Sch 23982 binding in renal cortical but not medullary tissue. These studies confirm the presence of dopamine1 receptors in the cortex of the rat kidney

  2. Negative correlation of cortical thickness with the severity and duration of abdominal pain in Asian women with irritable bowel syndrome.

    Science.gov (United States)

    Chua, Chian Sem; Bai, Chyi-Huey; Shiao, Chen-Yu; Hsu, Chien-Yeh; Cheng, Chiao-Wen; Yang, Kuo-Ching; Chiu, Hung-Wen; Hsu, Jung-Lung

    2017-01-01

    Irritable bowel syndrome (IBS) manifests as chronic abdominal pain. One pathophysiological theory states that the brain-gut axis is responsible for pain control in the intestine. Although several studies have discussed the structural changes in the brain of IBS patients, most of these studies have been conducted in Western populations. Different cultures and sexes experience different pain sensations and have different pain responses. Accordingly, we aimed to identify the specific changes in the cortical thickness of Asian women with IBS and to compare these data to those of non-Asian women with IBS. Thirty Asian female IBS patients (IBS group) and 39 healthy individuals (control group) were included in this study. Brain structural magnetic resonance imaging was performed. We used FreeSurfer to analyze the differences in the cortical thickness and their correlations with patient characteristics. The left cuneus, left rostral middle frontal cortex, left supramarginal cortex, right caudal anterior cingulate cortex, and bilateral insula exhibited cortical thinning in the IBS group compared with those in the controls. Furthermore, the brain cortical thickness correlated negatively the severity as well as duration of abdominal pain. Some of our findings differ from those of Western studies. In our study, all of the significant brain regions in the IBS group exhibited cortical thinning compared with those in the controls. The differences in cortical thickness between the IBS patients and controls may provide useful information to facilitate regulating abdominal pain in IBS patients. These findings offer insights into the association of different cultures and sexes with differences in cortical thinning in patients with IBS.

  3. Is the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex important for motor recovery in rats with photochemically induced cortical lesions?

    Science.gov (United States)

    Takata, Kotaro; Yamauchi, Hideki; Tatsuno, Hisashi; Hashimoto, Keiji; Abo, Masahiro

    2006-01-01

    To determine whether the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex is important for motor recovery after brain damage in the photochemically initiated thrombosis (PIT) model. We induced PIT in the sensorimotor cortex in rats and examined the recovery of motor function using the beam-walking test. In 24 rats, the right sensorimotor cortex was lesioned after 2 days of training for the beam-walking test (group 1). After 10 days, PIT was induced in the left sensorimotor cortex. Eight additional rats (group 2) received 2 days training in beam walking, then underwent the beam-walking test to evaluate function. After 10 days of testing, the left sensorimotor cortex was lesioned and recovery was monitored by the beam-walking test for 8 days. In group 1 animals, left hindlimb function caused by a right sensorimotor cortex lesion recovered within 10 days after the operation. Right hindlimb function caused by the left-side lesion recovered within 6 days. In group 2, right hindlimb function caused by induction of the left-side lesion after a total of 12 days of beam-walking training and testing recovered within 6 days as with the double PIT model. The training effect may be relevant to reorganization and neuromodulation. Motor recovery patterns did not indicate whether motor recovery was dependent on the ipsilateral cortex surrounding the lesion or the cortex of the contralateral side. The results emphasize the need for selection of appropriate programs tailored to the area of cortical damage in order to enhance motor functional recovery in this model. Copyright 2006 S. Karger AG, Basel.

  4. Cortical Visual Impairment

    Science.gov (United States)

    ... resolves by one year of life. Is “cortical blindness” the same thing as CVI? Cortical blindness is ... What visual characteristics are associated with CVI? • Distinct color preferences • Variable level of vision loss, often demonstrating ...

  5. Influence of flow conditions and matrix coatings on growth and differentiation of three-dimensionally cultured rat hepatocytes.

    Science.gov (United States)

    Fiegel, Henning C; Havers, Joerg; Kneser, Ulrich; Smith, Molly K; Moeller, Tim; Kluth, Dietrich; Mooney, David J; Rogiers, Xavier; Kaufmann, Peter M

    2004-01-01

    Maintenance of liver-specific function of hepatocytes in culture is still difficult. Improved culture conditions may enhance the cell growth and function of cultured cells. We investigated the effect of three-dimensional culture under flow conditions, and the influence of surface modifications in hepatocyte cultures. Hepatocytes were harvested from Lewis rats. Cells were cultured on three-dimensional polymeric poly-lactic-co-glycolic acid (PLGA) matrices in static culture, or in a pulsatile flow-bioreactor system. Different surface modifications of matrices were investigated: coating with collagen I, collagen IV, laminin, or fibronectin; or uncoated matrix. Hepatocyte numbers, DNA content, and albumin secretion rate were assessed over the observation period. Culture under flow condition significantly enhanced cell numbers. An additional improvement of this effect was observed, when matrix coating was used. Cellular function also showed a significant increase (4- to 5-fold) under flow conditions when compared with static culture. Our data showed that culture under flow conditions improves cell number, and strongly enhances cellular function. Matrix modification by coating with extracellular matrix showed overall an additive stimulatory effect. Our conclusion is that combining three-dimensional culture under flow conditions and using matrix modification significantly improves culture conditions and is therefore attractive for the development of successful culture systems for hepatocytes.

  6. Effect of human vascular endothelial growth factor gene transfer on endogenous vascular endothelial growth factor mRNA expression in a rat fibroblast and osteoblast culture model.

    Science.gov (United States)

    Li, Ru; Li, Claire H; Nauth, Aaron; McKee, Michael D; Schemitsch, Emil H

    2010-09-01

    Vascular endothelial growth factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy enhances bone healing of a rabbit tibia segmental bone defect in vivo. The aim of this project was to examine the effect of exogenous human VEGF on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Rat fibroblasts and osteoblasts were harvested from the dermal tissue and periosteum, respectively, of Fisher 344 rats. The cells were then cultured and transfected with pcDNA-human VEGF using Superfect reagent (Qiagen). Four experimental groups were created: 1) fibroblast-VEGF; 2) osteoblast-VEGF; 3) nontransfected fibroblast controls; and 4) nontransfected osteoblast controls. The cultured cells were harvested at 1, 3, and 7 days after the gene transfection. The total mRNA was extracted (Trizol; Invitrogen); both human VEGF and rat VEGF mRNA were measured by reverse transcriptase-polymerase chain reaction and quantified by VisionWorksLS. The human VEGF165 mRNA was detected by reverse transcriptase-polymerase chain reaction from transfected fibroblasts and osteoblasts at 1, 3, and 7 days after gene transfection. The human VEGF165 levels peaked at Day 1 and then gradually reduced expression in both transfected fibroblasts and osteoblasts. Two endogenous rat VEGF isoforms were detected in this cell culture model: rat VEGF120 and rat VEGF164. We compared the rat VEGF120 and rat VEGF164 expression level of the fibroblasts or osteoblasts that were transfected with human VEGF165, with nontransfected control cells. Both the transfected fibroblasts and osteoblasts showed greater expression of rat VEGF164 than nontransfected controls at Day 1 (peak level) and Day 3, but not at Day 7. The expression of rat VEGF120 was lower in transfected fibroblasts, but higher in transfected osteoblasts, than the relevant control groups at any time point

  7. Prenatal Mercuric Chloride Exposure Causes Developmental Deficits in Rat Cortex

    Directory of Open Access Journals (Sweden)

    Tayebeh Rastegar

    2011-09-01

    Full Text Available Introduction: Environmental pollution with heavy metals such as mercury is a major health problem. Growing studies on the field have shown the deleterious effects of mercury on human and nonhuman nervous system, especially in infants, however the effects of prenatal exposure to mercuricchloride on cortical development are not yet well understood. The aim of this study was to investigate the effect of prenatal exposure to mercuric chloride on morphological characteristics of brain cortex. Methods: Mercuric chloride (2 mg/kg or normal saline were injected (I.P. to 36 Sprague – dawley rats in the 8th, 9th or 10th day of gestation. The embryos were surgically removed in the 15th day of gestation, and brain cortices were studied by histological techniques. Results: Histological studies showed that embryos of mercuric chloride treated rats hadcortical neuronal disarrangement withdifferent orientations of nuclei, increased diameter of cortex, increased mitosis of cells, increased cell death, decreased cellular density and increased intracellular space. Conclusion: These findings suggest some micro structural abnormalities in cortical regions after prenatal exposure to mercuric chloride. These structural abnormalities may underliesome neurologic disturbances following mercury intoxication.

  8. In vitro expansion and differentiation of rat pancreatic duct-derived stem cells into insulin secreting cells using a dynamicthree-dimensional cell culture system.

    Science.gov (United States)

    Chen, X C; Liu, H; Li, H; Cheng, Y; Yang, L; Liu, Y F

    2016-06-27

    In this study, a dynamic three-dimensional cell culture technology was used to expand and differentiate rat pancreatic duct-derived stem cells (PDSCs) into islet-like cell clusters that can secrete insulin. PDSCs were isolated from rat pancreatic tissues by in situ collagenase digestion and density gradient centrifugation. Using a dynamic three-dimensional culture technique, the cells were expanded and differentiated into functional islet-like cell clusters, which were characterized by morphological and phenotype analyses. After maintaining 1 x 108 isolated rat PDSCs in a dynamic three-dimensional cell culture for 7 days, 1.5 x 109 cells could be harvested. Passaged PDSCs expressed markers of pancreatic endocrine progenitors, including CD29 (86.17%), CD73 (90.73%), CD90 (84.13%), CD105 (78.28%), and Pdx-1. Following 14 additional days of culture in serum-free medium with nicotinamide, keratinocyte growth factor (KGF), and b fibroblast growth factor (FGF), the cells were differentiated into islet-like cell clusters (ICCs). The ICC morphology reflected that of fused cell clusters. During the late stage of differentiation, representative clusters were non-adherent and expressed insulin indicated by dithizone (DTZ)-positive staining. Insulin was detected in the extracellular fluid and cytoplasm of ICCs after 14 days of differentiation. Additionally, insulin levels were significantly higher at this time compared with the levels exhibited by PDSCs before differentiation (P cell culture system, PDSCs can be expanded in vitro and can differentiate into functional islet-like cell clusters.

  9. Effect of sucralfate and its components on taurocholate-induced damage to rat gastric mucosal cells in tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Romano, M.; Razandi, M.; Ivey, K.J. (Long Beach VA Medical Center, CA (USA))

    1990-04-01

    The present study evaluated the effect of sucralfate and its components, sucrose octasulfate and aluminum hydroxide, on: (1) damage to rat cultured gastric mucosal cells induced by sodium taurocholate in a neutral environment and in conditions independent of systemic factors, (2) prostaglandin E2 and on 6-keto prostaglandin F1 alpha release by cultured cells, and (3) sulfhydryl content of cultured cells. Cell damage was quantitated by chromium-51 release assay. Prostaglandin E2 and 6-keto prostaglandin F1 alpha were measured by radioimmunoassay. Total sulfhydryl content of cultured cells was determined calorimetrically. Microscopically, sucralfate was found to adhere tightly to epithelial cell surfaces despite frequent washings. Sucralfate 2 mg/ml and 5 mg/ml significantly decreased taurocholate-induced damage, reducing taurocholate-induced specific 51Cr release by 11.8 points (equal to 29% decrease in cell damage, P less than 0.01) and 22.9 points (equal to 56% decrease in cell damage, P less than 0.001), respectively. Sucrose octasulfate and aluminum hydroxide did not exert significant protection against damage induced by sodium taurocholate. The protective effect of sucralfate was not prevented by indomethacin, nor was it counteracted by the sulfhydryl blocker, iodoacetamide. Sucralfate, but not its components, significantly and dose-dependently stimulated prostaglandin E2 (r = 0.94, P less than 0.05) and 6-keto prostaglandin F1 alpha (r = 0.89, P less than 0.05) production by cultured cells. Neither sucralfate nor its components affected sulfhydryl content of cultured cells. In conclusion, sucralfate, but not its components, (1) protects rat gastric mucosal cells against taurocholate-induced damage in conditions independent of systemic factors and in a neutral environment and (2) significantly stimulates prostaglandin production by cultured cells.

  10. Effect of sucralfate and its components on taurocholate-induced damage to rat gastric mucosal cells in tissue culture

    International Nuclear Information System (INIS)

    Romano, M.; Razandi, M.; Ivey, K.J.

    1990-01-01

    The present study evaluated the effect of sucralfate and its components, sucrose octasulfate and aluminum hydroxide, on: (1) damage to rat cultured gastric mucosal cells induced by sodium taurocholate in a neutral environment and in conditions independent of systemic factors, (2) prostaglandin E2 and on 6-keto prostaglandin F1 alpha release by cultured cells, and (3) sulfhydryl content of cultured cells. Cell damage was quantitated by chromium-51 release assay. Prostaglandin E2 and 6-keto prostaglandin F1 alpha were measured by radioimmunoassay. Total sulfhydryl content of cultured cells was determined calorimetrically. Microscopically, sucralfate was found to adhere tightly to epithelial cell surfaces despite frequent washings. Sucralfate 2 mg/ml and 5 mg/ml significantly decreased taurocholate-induced damage, reducing taurocholate-induced specific 51Cr release by 11.8 points (equal to 29% decrease in cell damage, P less than 0.01) and 22.9 points (equal to 56% decrease in cell damage, P less than 0.001), respectively. Sucrose octasulfate and aluminum hydroxide did not exert significant protection against damage induced by sodium taurocholate. The protective effect of sucralfate was not prevented by indomethacin, nor was it counteracted by the sulfhydryl blocker, iodoacetamide. Sucralfate, but not its components, significantly and dose-dependently stimulated prostaglandin E2 (r = 0.94, P less than 0.05) and 6-keto prostaglandin F1 alpha (r = 0.89, P less than 0.05) production by cultured cells. Neither sucralfate nor its components affected sulfhydryl content of cultured cells. In conclusion, sucralfate, but not its components, (1) protects rat gastric mucosal cells against taurocholate-induced damage in conditions independent of systemic factors and in a neutral environment and (2) significantly stimulates prostaglandin production by cultured cells

  11. A subpopulation of dopaminergic neurons co-expresses serotonin in ventral mesencephalic cultures but not after intrastriatal transplantation in a rat model of Parkinsons disease

    DEFF Research Database (Denmark)

    Di Santo, Stefano; Seiler, Stefanie; Ducray, Angélique

    2017-01-01

    Cell replacement therapy is a promising avenue into the investigation and treatment of Parkinson’s disease (PD) and in some cases significant long-term motor improvements have been demonstrated. The main source of donor tissue is the human fetal ventral mesencephalon (VM), which consists...... 30% of the dopaminergic neurons in the donor tissue co-expressed serotonin, no co-localization could be detected in grafts one month after intrastriatal transplantation into hemi-parkinsonian rats. In conclusion, a significant and susceptible sub-population of dopaminergic neurons in fetal VM tissues...... both fetal rat and human dissociated, organotypic and neurosphere VM cultures as well as an animal model of PD were investigated. In dissociated rat VM cultures approximately 30% of the TH positive neurons co-expressed serotonin, while no co-localization with GABA was observed. Interestingly, co...

  12. Study on the regulation of focal adesions and cortical actin by matrix nanotopography in 3D environment

    Science.gov (United States)

    Han, Jingjing; Lin, Keng-Hui; Chew, Lock Yue

    2017-11-01

    Matrix nanotopography plays an important role in regulating cell be