WorldWideScience

Sample records for cultured liver cells

  1. Experimental study of bioartificial liver with cultured human liver cells

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    AIM To establish an extracorporeal bioartificial liver support system (EBLSS) using cultured human liver cells and to study its support effect for fulminant hepatic failure (FHF).METHODS The liver support experiment of EBLSS consisting of aggregates cultured human liver cells, hollow fiber bioreactor, and circulation unit was carried out in dizhepatic dogs.RESULTS The viability of isolated hepatocytes and nonparenchymal liver cells reached 96%. These cells were successfully cultured as multicellular spheroids with synthetic technique. The typical morphological appearance was retained up to the end of the artificial liver experiment. Compared with the control dogs treated with EBLSS without liver cells, the survival time of artificial liver support dogs was significantly prolonged. The changes of blood pressure, heart rate and ECG were slow. Both serum ammonia and lactate levels were significantly lowered at the 3rd h and 5th h. In addition, a good viability of human liver cells was noted after 5 h experiment.CONCLUSION EBLSS playing a metabolic role of cultured human hepatocytes, is capable of compensating the function of the liver, and could provide effective artificial liver support and therapy for patients with FHF.

  2. Cell sources for in vitro human liver cell culture models.

    Science.gov (United States)

    Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-09-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described.

  3. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells

    Directory of Open Access Journals (Sweden)

    Anthony Finoli

    2016-01-01

    Full Text Available Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications.

  4. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells.

    Science.gov (United States)

    Finoli, Anthony; Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications.

  5. Comparative Pathogenicity of Liver Homogenate and Cell Culture Propagated Hydropericardium Syndrome Virus in Broiler Birds

    Directory of Open Access Journals (Sweden)

    M. D. Ahmad, S. Zaman1, M. H. Mushtaq*, A. A. Anjum1 and M. Akram1

    2011-10-01

    Full Text Available Comparative pathogenicity of liver homogenate and cell culture propagated agents of hydropericardium syndrome was studied in broiler birds. In Experiment I, 25-day-old while in experiment II, broiler birds at different ages were inoculated through different routes. In Experiment I, liver homogenate caused 64% mortality through intramuscular route and 33.33% mortality through oral route. The cell culture propagated HPS virus caused 60 and 13.33% mortality in broiler birds through intramuscular and oral routes, respectively. In Experiment II, none of the day-old-chicks died when challenged with liver homogenate and cell culture propagated HPS virus through S/C and oral route. The liver homogenate and cell culture propagated HPS virus caused higher mortality in different age groups of broiler birds through s/c route compared to oral route. The values of hemoglobin (Hb and packed cell volume (PCV showed highly significant (P<0.05 reduction indicating anemia. The values of Hb and PCV of the broiler birds inoculated with infectious liver homogenate were significantly lower as compared to birds inoculated with cell culture propagated HPS virus. The results indicated that the liver homogenate is more pathogenic than cell culture propagated HPS virus. These changes may be due to adoptability of the original FAdVs (fowl adenovirus after continued passages in the culture of chicken embryo liver cells. Importance of this study in vaccine production is also discussed.

  6. Surface proteins in normal and transformed rat liver epithelial cells in culture.

    Science.gov (United States)

    Bannikov, G. A.; Saint Vincent, L.; Montesano, R.

    1980-01-01

    The pattern of surface proteins of different types of normal and transformed rat liver cells have been studied in culture by means of lactoperoxidase-catalysed iodination procedures, followed by SDS-gel electrophoresis. The cells examined were primary cultures of epithelial liver cells, long-term cultures of epithelial liver cells, in vitro transformed epithelial liver cell lines and liver tumour-cell lines; mesenchymal cells from liver and skin were also examined. The principal surface proteins of primary cultures of epithelial cells from adult or neonatal rats had components with mol. wts of 140,000-160,000, 100,000 and 40,000-70,000. A band that had the same position as fibronectin from mesenchymal cells was also present and this band, as well as other iodinated components, were less sensitive to trypsin than fibroblastic fibronectin. A similar pattern of iodinated proteins was seen in long-term cultures of epithelial liver cells, with a great reduction in the number and intensity of the bands in the mol. wt region below 100,000. Almost all the in vitro transformed and tumour epithelial cell lines contain a protein with a mol. wt 135,000 as one of the major iodinated bands, and in contrast to the observation in transformed fibroblasts, the fibronectin was retained by most of these transformed cell lines. Images Fig. 1 Fig. 2 Fig. 3 PMID:7053205

  7. Preparation and Primary Culture of Liver Cells Isolated from Adult Rats by Dispase Perfusion

    Directory of Open Access Journals (Sweden)

    Wahid,Syarifuddin

    1984-06-01

    Full Text Available The dispase perfusion technique was used to isolate liver cells from adult rats. The optimum conditions for obtaining many isolated liver cells with high viability were an enzyme concentration of 2000 U/ml, a pH of 7.5 and a perfusion time of 20 min. The population of isolated liver cells prepared with dispase consisted of 43.6% cells with diameters less than 20 micron and 56.4% cells with diameters above 20 micron. The isolated liver cells were cultured in basal culture medium either supplemented with or without dexamethasone (1 X 10(-5M and insulin (10 micrograms/ml. The addition of hormones to the culture medium improved the attachment efficiency of the isolated liver cells and delayed the disappearance of mature hepatocytes. Epithelial-like clear cells proliferated early in primary culture even in the presence of hormones. Therefore, functioning mature hepatocytes and proliferating epithelial-like clear cells coexisted well in the hormone-containing medium. Furthermore, the number of cultured cells reached a maximal level earlier in the presence of hormones than in the absence of hormones. The level of TAT activity in primary cultured cells was higher up to 3 days after inoculation in the presence of hormones than in their absence. No difference between G6Pase activity in primary cultured cells in the presence of hormones and that in the absence of hormones was found.

  8. Three-dimensional perfusion bioreactor culture supports differentiation of human fetal liver cells.

    Science.gov (United States)

    Schmelzer, Eva; Triolo, Fabio; Turner, Morris E; Thompson, Robert L; Zeilinger, Katrin; Reid, Lola M; Gridelli, Bruno; Gerlach, Jörg C

    2010-06-01

    The ability of human fetal liver cells to survive, expand, and form functional tissue in vitro is of high interest for the development of bioartificial extracorporeal liver support systems, liver cell transplantation therapies, and pharmacologic models. Conventional static two-dimensional culture models seem to be inadequate tools. We focus on dynamic three-dimensional perfusion technologies and developed a scaled-down bioreactor, providing decentralized mass exchange with integral oxygenation. Human fetal liver cells were embedded in a hyaluronan hydrogel within the capillary system to mimic an in vivo matrix and perfusion environment. Metabolic performance was monitored daily, including glucose consumption, lactate dehydrogenase activity, and secretion of alpha-fetoprotein and albumin. At culture termination cells were analyzed for proliferation and liver-specific lineage-dependent cytochrome P450 (CYP3A4/3A7) gene expression. Occurrence of hepatic differentiation in bioreactor cultures was demonstrated by a strong increase in CYP3A4/3A7 gene expression ratio, lower alpha-fetoprotein, and higher albumin secretion than in conventional Petri dish controls. Cells in bioreactors formed three-dimensional structures. Viability of cells was higher in bioreactors than in control cultures. In conclusion, the culture model implementing three-dimensionality, constant perfusion, and integral oxygenation in combination with a hyaluronan hydrogel provides superior conditions for liver cell survival and differentiation compared to conventional culture.

  9. Feeder-independent continuous culture of the PICM-19 pig liver stem cell line

    Science.gov (United States)

    The PICM-19 pig liver stem cell line is a bipotent cell line, i.e., capable of forming either bile ductules or hepatocyte monolayers in vitro, that was derived from the primary culture of pig embryonic stem cells. The cell line has been strictly feeder-dependent in that cell replication morphology,...

  10. The insecticide DDT decreases membrane potential and cell input resistance of cultured human liver cells.

    Science.gov (United States)

    Schefczik, K; Buff, K

    1984-10-03

    The resting membrane potential, Em, and the cell input resistance, Rinp, of cultured human Chang liver cells were measured using the single electrode 'double-pulse' current clamp technique, following exposure of the cells to the insecticide DDT (20 microM). In control (unexposed) cells, the mean Em was -24 mV, and the mean Rinp was 30 M omega. Neither parameter was significantly impaired after 1 h of cell exposure to DDT. But after 7 and 48 h, the Em was depolarized by 15 and 25 mV, respectively, in parallel with a decrease of the cell input resistance. The strongly time-delayed effect of DDT on Chang liver cell membranes may indicate a mode of interaction different from excitable membranes.

  11. Long-term culture of genome-stable bipotent stem cells from adult human liver

    NARCIS (Netherlands)

    Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M A; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N M; Nieuwenhuis, Edward E S; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R G; van der Laan, Luc J W; Cuppen, Edwin; Clevers, Hans

    2015-01-01

    Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be

  12. Long-term culture of genome-stable bipotent stem cells from adult human liver

    NARCIS (Netherlands)

    M. Huch (Meritxell); H. Gehart (Helmuth); R. Van Boxtel (Ruben); K. Hamer (Karien); F. Blokzijl (Francis); M.M.A. Verstegen (Monique); E. Ellis (Ewa); M. Van Wenum (Martien); S.A. Fuchs (Sabine A.); J. de Ligt (Joep); M. van de Wetering (M.); N. Sasaki (Nobuo); S.J. Boers (Susanne J.); H. Kemperman (Hans); J. de Jonge (Jeroen); J.N.M. IJzermans (Jan); E.E.S. Nieuwenhuis (Edward); R. Hoekstra (Ruurdtje); S. Strom (Stephen); R.R.G. Vries (Robert R.G.); L.J.W. van der Laan (Luc); E. Cuppen (Edwin); H.C. Clevers (Hans)

    2015-01-01

    textabstractDespite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro

  13. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver

    NARCIS (Netherlands)

    Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M. A.; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A.; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J.; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N. M.; Nieuwenhuis, Edward E. S.; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R. G.; van der Laan, Luc J. W.; Cuppen, Edwin; Clevers, Hans

    2015-01-01

    Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be

  14. An attempt to eliminate fibroblast-like cells from primary cultures of fetal human livers.

    Directory of Open Access Journals (Sweden)

    Tokiwa,Takayoshi

    1986-04-01

    Full Text Available The elimination of fibroblast-like cells from primary cultures of fetal human livers was studied. A fibroblast-like cell line (HuF, which was obtained by subculturing fetal human liver cells 4 or more times, was briefly treated with hydrocortisone (HC or putrescine (PUT. The growth of HuF cells was inhibited by HC at a concentration of 10(-2 M and by PUT at a concentration higher than 10(-3 M. Long-term treatment of HuF cells with 10(-3 M HC inhibited the growth of the cells. Primary cultures of fetal human livers were made in medium containing HC or PUT, and morphological and functional examinations were made. The cultures were predominantly composed of epithelial-like cells, with few fibroblast-like cells, when the HC concentration was 10(-5M to 10(-3 M. A high amount of albumin was secreted at these concentrations of HC. On the other hand, at 10(-3 M PUT, many epithelial-like cells were seen, but albumin was undetectable. The present results indicate that albumin-producing epithelial-like cells can be selectively maintained in medium containing HC, in primary cultures of fetal human livers.

  15. Multi-cellular 3D human primary liver cell culture elevates metabolic activity under fluidic flow.

    Science.gov (United States)

    Esch, Mandy B; Prot, Jean-Matthieu; Wang, Ying I; Miller, Paula; Llamas-Vidales, Jose Ricardo; Naughton, Brian A; Applegate, Dawn R; Shuler, Michael L

    2015-05-21

    We have developed a low-cost liver cell culture device that creates fluidic flow over a 3D primary liver cell culture that consists of multiple liver cell types, including hepatocytes and non-parenchymal cells (fibroblasts, stellate cells, and Kupffer cells). We tested the performance of the cell culture under fluidic flow for 14 days, finding that hepatocytes produced albumin and urea at elevated levels compared to static cultures. Hepatocytes also responded with induction of P450 (CYP1A1 and CYP3A4) enzyme activity when challenged with P450 inducers, although we did not find significant differences between static and fluidic cultures. Non-parenchymal cells were similarly responsive, producing interleukin 8 (IL-8) when challenged with 10 μM bacterial lipoprotein (LPS). To create the fluidic flow in an inexpensive manner, we used a rocking platform that tilts the cell culture devices at angles between ±12°, resulting in a periodically changing hydrostatic pressure drop between reservoirs and the accompanying periodically changing fluidic flow (average flow rate of 650 μL min(-1), and a maximum shear stress of 0.64 dyne cm(-2)). The increase in metabolic activity is consistent with the hypothesis that, similar to unidirectional fluidic flow, primary liver cell cultures increase their metabolic activity in response to fluidic flow periodically changes direction. Since fluidic flow that changes direction periodically drastically changes the behavior of other cells types that are shear sensitive, our findings support the theory that the increase in hepatic metabolic activity associated with fluidic flow is either activated by mechanisms other than shear sensing (for example increased opportunities for gas and metabolite exchange), or that it follows a shear sensing mechanism that does not depend on the direction of shear. Our mode of device operation allows us to evaluate drugs under fluidic cell culture conditions and at low device manufacturing and operation

  16. 3D hepatic cultures simultaneously maintain primary hepatocyte and liver sinusoidal endothelial cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Yeonhee Kim

    Full Text Available Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes and non-parenchymal (liver sinusoidal endothelial, LSEC cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs were cultured in a layered three-dimensional (3D configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM, which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1 demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism

  17. Primary culture of adult rat liver cells. I. Preparation of isolated cells from trypsin-perfused liver of adult rat

    Directory of Open Access Journals (Sweden)

    Miyazaki,Masahiro

    1977-12-01

    Full Text Available Isolated hepatic cells from adult rats were prepared by perfusing the livers with trypsin. The highest yield of viable cells was obtained by perfusing the liver with 0.1% trypsin, pH 7.0, at 37 degrees C for 30 min. Following this treatment about 70% of cells excluded trypan blue. The isolated cells contained many binucleate cells. Between 60 and 70% of DNA present originally in the liver was recovered from the isolated hepatic cells, which had higher glucose 6-phosphatase activity than the liver. Thus the resulting cell population seems to be rich in hepatocytes. The isolated hepatic cells, however, lost some of their cellular proteins such as alanine and tyrosine amino-transferases. It was suggested that the membranes of isolated hepatic cells might be damaged by both enzymatic digestion and mechanical destruction.

  18. Prevention of liver fibrosis by intrasplenic injection of high-density cultured bone marrow cells in a rat chronic liver injury model.

    Directory of Open Access Journals (Sweden)

    Jie Lian

    Full Text Available Endothelial progenitor cells (EPCs from bone marrow have proven to be functional for the prevention of liver fibrosis in chronic liver injury. However, expansion of EPCs in culture is complicated and expansive. Previously, we have established a simple method that could enrich and expand EPCs by simple seeding bone marrow cells in high density dots. The purpose of this study is to evaluate whether cells derived from high-density (HD culture of rat bone marrow cells could prevent the liver fibrosis in a chronic liver injury rat model, induced by carbon tetrachloride (CCl4. Flow cytometric analysis showed that cells from HD culture were enriched for EPCs, expressing high levels of EPC markers. Intrasplenic injection of HD cultured bone marrow cells in the CCl4-induced liver injury rat showed an enhanced antifibrogenic effect compared with animals treated with cells from regular-density culture. The antifibrogenic effect was demonstrated by biochemical and histological analysis 4 weeks post-transplantation. Furthermore, cells from HD culture likely worked through increasing neovascularization, stimulating liver cell proliferation, and suppressing pro-fibrogenic factor expression. HD culture, which is a simple and cost-effective procedure, could potentially be used to expand bone marrow cells for the treatment of liver fibrosis.

  19. In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration.

    Science.gov (United States)

    Hu, Chenxia; Li, Lanjuan

    2015-08-01

    Various liver diseases result in terminal hepatic failure, and liver transplantation, cell transplantation and artificial liver support systems are emerging as effective therapies for severe hepatic disease. However, all of these treatments are limited by organ or cell resources, so developing a sufficient number of functional hepatocytes for liver regeneration is a priority. Liver regeneration is a complex process regulated by growth factors (GFs), cytokines, transcription factors (TFs), hormones, oxidative stress products, metabolic networks, and microRNA. It is well-known that the function of isolated primary hepatocytes is hard to maintain; when cultured in vitro, these cells readily undergo dedifferentiation, causing them to lose hepatocyte function. For this reason, most studies focus on inducing stem cells, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), hepatic progenitor cells (HPCs), and mesenchymal stem cells (MSCs), to differentiate into hepatocyte-like cells (HLCs) in vitro. In this review, we mainly focus on the nature of the liver regeneration process and discuss how to maintain and enhance in vitro hepatic function of isolated primary hepatocytes or stem cell-derived HLCs for liver regeneration. In this way, hepatocytes or HLCs may be applied for clinical use for the treatment of terminal liver diseases and may prolong the survival time of patients in the near future.

  20. Characteristics of HCV replication and expression in a cultured human liver carcinoma cell line in vitro

    Institute of Scientific and Technical Information of China (English)

    SONG Zhi-qing; HAO Fei; MIN Feng; LIU Dao-jian

    2001-01-01

    Objective: To establish a cell culture system to support HCV long-term replication in vitro. Methods: A human hepatoma cell line 7721 was tested for its susceptibility to HCV by incubating with a serum from chronic hepatitis C patient. Cells and supernatant of the culture medium were harvested at various time-phases during the culturing periods. The presence of HCV RNA, the expression of HCV antigens in cells and/or supematant were examined with RT-PCR, in situ hybridization and immunohistochemistry respectively. Results: It was found that the intracellular HCV RNA was first detected on the 2nd day after culture, and then could be intermittently detected in both cells and supernatant over a period of at least 3 months after culture. HCV NS3, CP10 antigens were expressed in the cells. The fresh cells could be infected with the supernatant from cultured infected cells and the transmission of viral genome from HCV-infected 7721 cells to peripheral blood mononuclear cells (PBMCs) was also observed. Conclusion: Our findings suggest that the human liver carcinoma cell line7721 is not only susceptible to HCV but also can support its long replication in vitro. This cell line with HCV infection in vitro can serve as a useful tool for the study of the mechanism of HCV infection and replication, the evaluation of antiviral agents, and the primary selection of neutralization assays and HCV vaccine development.

  1. Prediction of Drug-Induced Liver Injury in HepG2 Cells Cultured with Human Liver Microsomes.

    Science.gov (United States)

    Choi, Jong Min; Oh, Soo Jin; Lee, Ji-Yoon; Jeon, Jang Su; Ryu, Chang Seon; Kim, Young-Mi; Lee, Kiho; Kim, Sang Kyum

    2015-05-18

    Drug-induced liver injury (DILI) via metabolic activation by drug-metabolizing enzymes, especially cytochrome P450 (CYP), is a major cause of drug failure and drug withdrawal. In this study, an in vitro model using HepG2 cells in combination with human liver microsomes was developed for the prediction of DILI. The cytotoxicity of cyclophosphamide, a model drug for bioactivation, was augmented in HepG2 cells cultured with microsomes in a manner dependent on exposure time, microsomal protein concentration, and NADPH. Experiments using pan- or isoform-selective CYP inhibitors showed that CYP2B6 and CYP3A4 are responsible for the bioactivation of cyclophosphamide. In a metabolite identification study employing LC-ESI-QTrap and LC-ESI-QTOF, cyclophosphamide metabolites including phosphoramide mustard, a toxic metabolite, were detected in HepG2 cells cultured with microsomes, but not without microsomes. The cytotoxic effects of acetaminophen and diclofenac were also potentiated by microsomes. The potentiation of acetaminophen cytotoxicity was dependent on CYP-dependent metabolism, and the augmentation of diclofenac cytotoxicity was not mediated by either CYP- or UDP-glucuronosyltransferase-dependent metabolism. The cytotoxic effects of leflunomide, nefazodone, and bakuchiol were attenuated by microsomes. The detoxication of leflunomide by microsomes was attributed to mainly CYP3A4-dependent metabolism. The protective effect of microsomes against nefazodone cytotoxicity was dependent on both CYP-mediated metabolism and nonspecific protein binding. Nonspecific protein binding but not CYP-dependent metabolism played a critical role in the attenuation of bakuchiol cytotoxicity. The present study suggests that HepG2 cells cultured with human liver microsomes can be a reliable model in which to predict DILI via bioactivation by drug metabolizing enzymes.

  2. Phenotypic and functional analysis of human fetal liver hematopoietic stem cells in culture.

    Science.gov (United States)

    Rollini, Pierre; Faes-Van't Hull, Eveline; Kaiser, Stefan; Kapp, Ursula; Leyvraz, Serge

    2007-04-01

    Steady-state hematopoiesis and hematopoietic transplantation rely on the unique potential of stem cells to undergo both self-renewal and multilineage differentiation. Fetal liver (FL) represents a promising alternative source of hematopoietic stem cells (HSCs), but limited by the total cell number obtained in a typical harvest. We reported that human FL nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells (SRCs) could be expanded under simple stroma-free culture conditions. Here, we sought to further characterize FL HSC/SRCs phenotypically and functionally before and following culture. Unexpanded or cultured FL cell suspensions were separated into various subpopulations. These were tested for long-term culture potential and for in vivo repopulating function following transplantation into NOD/SCID mice. We found that upon culture of human FL cells, a tight association between classical stem cell phenotypes, such as CD34(+) /CD38(-) and/or side population, and NOD/SCID repopulating function was lost, as observed with other sources. Although SRC activity before and following culture consistently correlated with the presence of a CD34(+) cell population, we provide evidence that, contrary to umbilical cord blood and adult sources, stem cells present in both CD34(+) and CD34(-) FL populations can sustain long-term hematopoietic cultures. Furthermore, upon additional culture, CD34-depleted cell suspensions, devoid of SRCs, regenerated a population of CD34(+) cells possessing SRC function. Our studies suggest that compared to neonatal and adult sources, the phenotypical characteristics of putative human FL HSCs may be less strictly defined, and reinforce the accumulated evidence that human FL represents a unique, valuable alternative and highly proliferative source of HSCs for clinical applications.

  3. Use of liposome encapsulated hemoglobin as an oxygen carrier for fetal and adult rat liver cell culture.

    Science.gov (United States)

    Montagne, Kevin; Huang, Hongyun; Ohara, Keikou; Matsumoto, Kunio; Mizuno, Atsushi; Ohta, Katsuji; Sakai, Yasuyuki

    2011-11-01

    Engineering liver tissue constructs with sufficient cell mass for transplantation implies culturing large numbers of hepatocytes in a reduced volume; however, providing sufficient oxygen to dense cell cultures is still not feasible using only conventional culture medium. Liposome-encapsulated hemoglobin (LEH), an oxygen-carrying blood substitute originally designed for short-term perfusion, may be a good candidate as an oxygen carrier to cultured liver cells. In this study, we investigated the feasibility of maintaining long term hepatocyte cultures using LEH. Primary fetal and adult rat liver cells were directly exposed to LEH for 6 to 14 days in static culture or in a perfused flat plate bioreactor. The functions and viability of adult rat hepatocytes exposed to LEH were not adversely affected in static monolayer culture and were even improved in the bioreactor. However, some cytotoxicity of LEH was observed with fetal rat liver cells after 4 days of culture. LEH, though a suitable oxygen carrier for long-term culture of mature hepatocytes, is not suitable in its present form for perfusing fetal hepatocyte cultures in direct contact with the liposomes; either the LEH will have to be made less toxic or a more sophisticated bioreactor that prevents the direct contact between hepatocytes and perfusates will have to be designed if fetal cells are to be used for liver tissue engineering.

  4. Passage of bone-marrow-derived liver stem cells in a proliferating culture system

    Institute of Scientific and Technical Information of China (English)

    Yun-Feng Cai; Ji-Sheng Chen; Shu-Ying Su; Zuo-Jun Zhen; Huan-Wei Chen

    2009-01-01

    AIM: To explore the feasibility of passage of bonemarrow-derived liver stem cells (BDLSCs) in culture systems that contain cholestatic serum. METHODS: Whole bone marrow cells of rats were purified with conditioning selection media that contained 50 mL/L cholestatic serum. The selected BDLSCs were grown in a proliferating culture system and a differentiating culture system. The culture systems contained factors that stimulated the proliferation and differentiation of BDLSCs. Each passage of the proliferated stem cells was subjected to flow cytometry to detect stem cell markers. The morphology and phenotypic markers of BDLSCs were characterized using immunohistochemistry, reverse transcription polymerase chain reaction (RT-PCR) and electron microscopy. The metabolic functions of differentiated cells were also determined by glycogen staining and urea assay. RESULTS: The conditioning selection medium isolated BDLSCs directly from cultured bone marrow cells. The selected BDLSCs could be proliferated for six passages and maintained stable markers in our proliferating system. When the culture system was changed to a differentiating system, hepatocyte-like colony-forming units (H-CFUs) were formed. H-CFUs expressed markers of embryonic hepatocytes (alpha-fetoprotein, albumin and cytokeratin 8/18), biliary cells (cytokeratin 19), hepatocyte functional proteins (transthyretin and cytochrome P450-2b1), and hepatocyte nuclear factors 1α and -3β). They also had glycogen storage and urea synthesis functions, two of the critical features of hepatocytes. CONCLUSION: BDLSCs can be selected directly from bone marrow cells, and pure BDLSCs can be proliferated for six passages. The differentiated cells have hepatocyte-like phenotypes and functions. BDLSCs represent a new method to provide a readily available alternate source of cells for clinical hepatocyte therapy.

  5. Studies on responsiveness of hepatoma cells to catecholamines. II. Comparison of beta-adrenergic responsiveness of rat ascites hepatoma cells with cultured normal rat liver cells.

    Science.gov (United States)

    Miyamoto, K; Matsunaga, T; Takemoto, N; Sanae, F; Koshiura, R

    1985-05-01

    The pharmacological properties of beta-adrenoceptors in rat ascites hepatoma cells were compared with those in normal rat liver cells which were cultured for 24 hr after collagenase digestion. Adenylate cyclases in the homogenates of cultured normal rat liver cells and rat ascites hepatoma cells, AH44, AH66, AH109A, AH130 and AH7974, were all activated by isoproterenol or NaF to different degrees. The enzyme in rat liver cells was activated by several beta 2-agonists but those in all hepatoma cells hardly responded. Furthermore, salbutamol, a beta 2-partial agonist, antagonized the cyclase activation by isoproterenol in AH130 cells. The Kact value of isoproterenol for the activation of adenylate cyclase in AH130 cells was smaller than that in rat liver cells. A comparison of the Ki values of beta-antagonists for the inhibition of isoproterenol-stimulated cyclase activity shows that while the Ki values of propranolol and butoxamine in AH130 cells were similar to those in rat liver cells, a significant difference was observed in the values for beta 1-selective antagonists between AH130 cells and rat liver cells. The Ki values of metoprolol and atenolol for AH130 cells were 137- and 90-fold lower, respectively, than for normal rat liver cells. From these findings, it is strongly suggested that beta-adrenoceptors in rat ascites hepatoma cells including AH130 cells have similar properties to the mammalian beta 1-receptor.

  6. Effects of leptin on glucose oxidation and glucokinase gene expression in cultured liver cells

    Institute of Scientific and Technical Information of China (English)

    曹筱佩

    1999-01-01

    Objective: To observe the effects of leptin on glucose oxidation and glueokinase gene expression in rat liver cells. Methods: Rat liver cells were incubated with leptin of different doses (ranging from 10μg/L to 200μg/L). Control liver cells were

  7. Effect of Co-Culturing of Mice Liver Cells and Embryonic Carcinomatous Stem Cells on the Rate of Differentiation to Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    AA Pourfatollah

    2005-10-01

    Full Text Available Introduction: Considering the importance of co-culture in differentiation of embryonic stem cells, the aim of this study was evaluation of the effect of co-culturing fetal liver stroma cells with P19 cells on the line of differentiation. Materials and Methods: For this purpose, P19 cells were cultured directly in semisolid medium. These cells proliferated and primarily differentiated to colonies know as embryoid bodies (EBs after 8-12 days. The Ebs cells were trypsinized and dissociated to single or double cells. Then these cells were co-cultured on the mouse fetal liver feeder layer in the absence of exogenous factors. After 14-18 days, the colonies were studied morphologically by benzidine and giemsa staining and also counted under invert microscope. Results: The percentages of benzidine positive (or erythroid and negative colonies were 94% and 6% respectively and also the cells of colonies were studied by Giemsa staining. Results showed that they were myeloid or lymphoid type cells. Thus, the results show that in the presence of mouse fetal liver feeder layer, the number of erythroid colonies was increased. Conclusions: Therefore, this technique may be effective for differentiation of stem cells from different sources into hematopoietic cells and can be used in future for human cell therapy.

  8. Induction of Hepatic and Endothelial Differentiation by Perfusion in a Three-Dimensional Cell Culture Model of Human Fetal Liver.

    Science.gov (United States)

    Pekor, Christopher; Gerlach, Jörg C; Nettleship, Ian; Schmelzer, Eva

    2015-07-01

    The development of functional engineered tissue constructs depends on high cell densities and appropriate vascularization. In this study we implemented a four-compartment three-dimensional perfusion bioreactor culture model for studying the effects of medium perfusion on endothelial, hepatic, and hematopoietic cell populations of primary human fetal liver in an in vivo-like environment. Human fetal liver cells were cultured in bioreactors configured to provide either perfusion or diffusion conditions. Metabolic activities of the cultures were monitored daily by measuring glucose consumption and lactate production. Cell viability during culture was analyzed by lactate dehydrogenase activity. Hepatic functionality was determined by the release of albumin and alpha-fetoprotein (AFP) in culture medium samples. After 4 days of culture, cells were analyzed for the expression of a variety of endothelial, hepatic, and hematopoietic genes, as well as the surface marker expression of CD31 and CD34 in flow cytometry. We found that medium perfusion increased the gene expression of endothelial markers such as CD31, von Willebrand factor (vWF), CD140b, CD309, and CD144 while decreasing the gene expression of the erythrocyte-surface marker CD235a. Hepatic differentiation was promoted under perfusion conditions as demonstrated by lower AFP and higher albumin secretion compared with cultures not exposed to medium perfusion. Additionally, cultures exposed to medium perfusion gave higher rates of glucose consumption and lactate production, indicating increased metabolic activity. In conclusion, high-density bioreactors configured to provide constant medium perfusion significantly induced hepatic and endothelial cell differentiation and provided improved conditions for the culture of human fetal liver cells compared with cultures without perfusion.

  9. Dimethylnitrosamine genotoxicity in rat liver primary cell cultures with low cytochrome P-450 levels.

    Science.gov (United States)

    Mendoza-Figueroa, T

    1984-12-01

    Liver primary cell cultures (LPCC) with decreasing concentrations of cytochrome P-450 were used to investigate the genotoxicity of the hepatic carcinogen dimethylnitrosamine (DMN) and the correlation between DMN genotoxicity and cytochrome P-450 levels. Hepatocytes were isolated from partially hepatectomized rats and incubated with [3H]thymidine; single-strand DNA molecular weight was determined by alkaline sucrose sedimentation. The molecular weight of DNA decreased 50% in LPCC plated either 2 or 24 h before being treated for 24 h with 70 micron DMN. Cytochrome P-450 content was 188 pmol per mg protein in freshly isolated hepatocytes, whereas it was 70 and 32 pmol per mg protein in hepatocytes that had been cultured 24 and 48 h, respectively. Incorporation of 14C into acid-insoluble material was the same in LPCC exposed 24 h to [14C]DMN starting either 2 or 24 h after cell plating. At non-toxic concentrations (0.01-1 microM), SKF 525-A, an inhibitor of mixed-function oxidase enzymes, inhibited approximately 20% of the binding of 14C from [14C]DMN to acid-insoluble material in LPCC plated either 2 or 24 h before they were exposed to DMN for 24 h. Hepatocyte cultures exposed to the direct-acting alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (at concentrations ranging between 6.8 X 10(-8) and 6.8 X 10(-5) M) starting 2 and 24 h after plating, exhibited significant unscheduled DNA synthesis. These results indicate that DMN genotoxicity was similar in LPCC differing considerably in cytochrome P-450 levels, and they suggest that DMN genotoxicity in these cultures is due mainly to similar DMN activation than to decreased DNA repair.

  10. Study of Silymarin and Vitamin E Protective Effects on Silver Nanoparticle Toxicity on Mice Liver Primary Cell Culture

    Directory of Open Access Journals (Sweden)

    Firouz Faedmaleki

    2016-03-01

    (IC50 value = 121.7 ppm or µg/ml. Then the hepatoprotective effect of silymarin and vitamin E were experimented on silver nanoparticle toxicity on mice liver primary cell culture. The results showed that silymarin at 600µg/ml and vitamin E at 2500µmol/l have protective effects on silver nanoparticle toxicity on mice liver primary cell culture. Viability percentage of the primary liver cell of the mouse were exposed to silver nanoparticles at 121.7ppm and co-treatment of silymarin, and vitamin E is more than viability percentage of the primary liver cell of the mouse were exposed to silver nanoparticles and silymarin or silver nanoparticles and vitamin E.

  11. Dimethylnitrosamine genotoxicity in rat liver primary cell cultures with low cytochrome P-450 levels

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Figueroa, T.

    1984-12-01

    Liver primary cell cultures (LPCC) with decreasing concentrations of cytochrome P-450 were used to investigate the genotoxicity of the hepatic carcinogen dimethylnitrosamine (DMN) and the correlation between DMN genotoxicity and cytochrome P-450 levels. Hepatocytes were isolated from partially hepatectomized rats and incubated with (/sup 3/H)thymidine; single-strand DNA molecular weight was determined by alkaline sucrose sedimentation. The molecular weight of DNA decreased 50% in LPCC plated either 2 or 24 h before being treated for 24 h with 70 micron DMN. Cytochrome P-450 content was 188 pmol per mg protein in freshly isolated hepatocytes, whereas it was 70 and 32 pmol per mg protein in hepatocytes that had been cultured 24 and 48 h, respectively. Incorporation of /sup 14/C into acid-insoluble material was the same in LPCC exposed 24 h to (/sup 14/C)DMN starting either 2 or 24 h after cell plating. At non-toxic concentrations (0.01-1 microM), SKF 525-A, an inhibitor of mixed-function oxidase enzymes, inhibited approximately 20% of the binding of /sup 14/C from (/sup 14/C)DMN to acid-insoluble material in LPCC plated either 2 or 24 h before they were exposed to DMN for 24 h. Hepatocyte cultures exposed to the direct-acting alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (at concentrations ranging between 6.8 X 10(-8) and 6.8 X 10(-5) M) starting 2 and 24 h after plating, exhibited significant unscheduled DNA synthesis.

  12. Evaluation of a hybrid artificial liver module based on a spheroid culture system of embryonic stem cell-derived hepatic cells.

    Science.gov (United States)

    Mizumoto, Hiroshi; Hayashi, Shunsuke; Matsumoto, Kinya; Ikeda, Kaoru; Kusumi, Tomoaki; Inamori, Masakazu; Nakazawa, Kohji; Ijima, Hiroyuki; Funatsu, Kazumori; Kajiwara, Toshihisa

    2012-01-01

    Hybrid artificial liver (HAL) is an extracorporeal circulation system comprised of a bioreactor containing immobilized functional liver cells. It is expected to not only serve as a temporary liver function support system, but also to accelerate liver regeneration in recovery from hepatic failure. One of the most difficult problems in developing a hybrid artificial liver is obtaining an adequate cell source. In this study, we attempt to differentiate embryonic stem (ES) cells by hepatic lineage using a polyurethane foam (PUF)/spheroid culture in which the cultured cells spontaneously form spherical multicellular aggregates (spheroids) in the pores of the PUF. We also demonstrate the feasibility of the PUF-HAL system by comparing ES cells to primary hepatocytes in in vitro and ex vivo experiments. Mouse ES cells formed multicellular spheroids in the pores of PUF. ES cells expressed liver-specific functions (ammonia removal and albumin secretion) after treatment with the differentiation-promoting agent, sodium butyrate (SB). We designed a PUF-HAL module comprised of a cylindrical PUF block with many medium-flow capillaries for hepatic differentiation of ES cells. The PUF-HAL module cells expressed ammonia removal and albumin secretion functions after 2 weeks of SB culture. Because of high proliferative activity of ES cells and high cell density, the maximum expression level of albumin secretion function per unit volume of module was comparable to that seen in primary mouse hepatocyte culture. In the animal experiments with rats, the PUF-HAL differentiating ES cells appeared to partially contribute to recovery from liver failure. This outcome indicates that the PUF module containing differentiating ES cells may be a useful biocomponent of a hybrid artificial liver support system.

  13. Three-Dimensional Culture of Human Embryonic Stem Cell Derived Hepatic Endoderm and Its Role in Bioartificial Liver Construction

    Directory of Open Access Journals (Sweden)

    Ruchi Sharma

    2010-01-01

    Full Text Available The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed to bridge patients to liver transplantation. Existing support devices improve hepatic encephalopathy to a certain extent; however their usage is associated with side effects. The major hindrance in the development of bioartificial liver devices and cellular therapies is the limited availability of human hepatocytes. Moreover, primary hepatocytes are difficult to maintain and lose hepatic identity and function over time even with sophisticated tissue culture media. To overcome this limitation, renewable cell sources are being explored. Human embryonic stem cells are one such cellular resource and have been shown to generate a reliable and reproducible supply of human hepatic endoderm. Therefore, the use of human embryonic stem cell-derived hepatic endoderm in combination with tissue engineering has the potential to pave the way for the development of novel bioartificial liver devices and predictive drug toxicity assays.

  14. Studies on responsiveness of hepatoma cells to catecholamines. III. Difference between the receptor-adenylate cyclase regulating systems in AH130 cells and cultured normal rat liver cells.

    Science.gov (United States)

    Sanae, F; Matsunaga, T; Miyamoto, K; Koshiura, R

    1986-10-01

    The responsiveness to three beta-adrenergic agonists, isoproterenol (IPN), epinephrine (Epi) and norepinephrine (NE) in AH13O cells was examined compared with that in normal rat liver cells which were cultured for 24 hr after collagenase digestion. As regards to the activation of adenylate cyclase in the cell homogenates, the relative affinity of the three agonists was in order of IPN greater than NE greater than Epi in AH130 cells and IPN greater than Epi greater than NE in cultured normal liver cells. While the efficacies of the three agonists were similar in cultured liver cells, those of NE and Epi were markedly lower than that of IPN in AH13O cells and were increased to the similar level of IPN by pretreatment with phentolamine, but not with prazosin. Clonidine inhibited the activation of adenylate cyclase by IPN in AH13O cells. When cells were preincubated with islet-activating protein (IAP), the activity of adenylate cyclase in the presence or absence of agonist in both cell lines increased. In IAP-treated AH13O cells, the efficacies of NE and Epi became close to that of IPN. Adenylate cyclase in IAP-treated AH13O cells was activated by GTP in a dose-dependent manner, but that in IAP-treated cultured liver cells was not. In the presence of IPN, biphasic (activatory and inhibitory) effects of GTP on the cyclase were observed, and the inhibitory phase was eliminated by the IAP-treatment in both cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Promoted differentiation of cynomolgus monkey ES cells into hepatocyte-like cells by co-culture with mouse fetal liver-derived cells

    Institute of Scientific and Technical Information of China (English)

    Ko Saito; Masahide Yoshikawa; Yukiteru Ouji; Kei Moriya; Mariko Nishiofuku; Shigehiko Ueda; Noriko Hayashi; Shigeaki Ishizaka; Hiroshi Fukui

    2006-01-01

    AIM:To explore whether a co-culture of cynomolgus monkey embryonic stem (cES) cells with embryonic liver cells could promote their differentiation into hepatocytes.METHODS:Mouse fetal liver-derived cells (MFLCs) were prepared as adherent cells from mouse embryos on embryonic d (ED) 14, after which undifferentiated cES cells were co-cultured with MFLCs. The induction of cES cells along a hepatic lineage was examined in MFLCassisted differentiation, spontaneous differentiation,and growth factors (GF) and chemicals-induced differentiations (GF-induced differentiation) using retinoic acid, leukemia inhibitory factor (LIF), FGF2, FGF4,hepatocyte growth factor (HGF), oncostatin M (OSM),and dexamethasone.RESULTS:The mRNA expression of α-fetoprotein,albumin (ALB), α-1-antitrypsin, and hepatocyte nuclear factor 4α was observed earlier in the differentiating cES cells co-cultured with MFLCs, as compared to cES cells undergoing spontaneous differentiation and those subjected to GF-induced differentiation. The expression of cytochrome P450 7a1, a possible marker for embryonic endoderm-derived mature hepatocytes,was only observed in cES cells that had differentiated in a co-culture with MFLCs. Further, the disappearance of Oct3/4, a representative marker of an undifferentiated state, was noted in cells co-cultured with MFLCs, but not in those undergoing spontaneous or GF-induced differentiation. Tmmunocytochemical analysis revealed an increased ratio of ALS-immunopositive cells among cES cells co-cultured with MFLCs, while glycogen storage and urea synthesis were also demonstrated.CONCLUSION:MFLCs showed an ability to induce cES cells to differentiate toward hepatocytes. The co-culture system with MFLCs is a useful method for induction of hepatocyte-like cells from undifferentiated cES cells.

  16. Organotypic functional cultures of human liver cells for long-term maintenance and assessment of drug-induced metabolome effects

    OpenAIRE

    MÜLLER Daniel

    2011-01-01

    The goals of this thesis were (i) to establish and improve organotypic liver cell culture techniques for long-term pharmacological studies and (ii) to develop and apply a metabolomics based approach for the assessment of drug-induced effects. As first model, a 3D bioreactor system was characterized in terms of cell physiology and functionality. Primary human hepatocytes could be kept viable and functional for more than 2 weeks in this system. Optimization of the system allowed determination o...

  17. The nitric oxide donor S-nitrosoglutathione reduces apoptotic primary liver cell loss in a three-dimensional perfusion bioreactor culture model developed for liver support.

    Science.gov (United States)

    Prince, Jose M; Vodovotz, Yoram; Baun, Matthew J; Monga, Satdarshan Pal; Billiar, Timothy R; Gerlach, Jörg C

    2010-03-01

    Artificial extracorporeal support for hepatic failure has met with limited clinical success. In hepatocytes, nitric oxide (NO) functions as an antiapoptotic modulator in response to a variety of stresses. We hypothesized that NO administration would yield improved viability and hepatocellular restructuring in a four-compartment, hollow fiber-based bioreactor with integral oxygenation for dynamic three-dimensional perfusion of hepatic cells in bioartificial liver support systems. Isolated adult rat liver cells were placed in culture medium alone (control) or medium supplemented with various concentrations of an NO donor (S-nitrosoglutathione [GSNO]) in the bioreactors. Media samples were obtained from the cell perfusion circuit to monitor cellular response. After 24 and 72 h, histology biopsies were taken to investigate spontaneous restructuring of the cells. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed to quantify apoptotic nuclei. Control bioreactors exhibited 47.9 +/- 2.9% (mean +/- standard error of the mean) apoptotic nuclei. In contrast, NO-treated bioreactors exhibited a biphasic response. Fewer apoptotic nuclei were seen in the 200 and 500 microM GSNO groups (14.4 +/- 0.4%). No effect was observed in the 10 microM GSNO group (47.3%), and increased TUNEL staining was observed in the 1000 microM GSNO group (82.6%). Media lactate dehydrogenase levels were lower in bioreactor groups treated with 200 or 500 microM GSNO (310 +/- 38 IU/L) compared with the control group (919 +/- 188 IU/L; p bioreactors at 24 h vs. 110 +/- 13 in controls; p = 0.851). Histologically, all of the bioreactor groups exhibited liver cell aggregates with some attached to the bioreactor capillaries. Increased numbers of cells in the aggregates and superior spontaneous restructuring of the cells were seen at 24 and 72 h in the bioreactor groups treated with either 200 or 500 microM GSNO compared with the control groups. Addition of an NO donor

  18. Uptake of liposomes containing phosphatidylserine by liver cells in vivo and by sinusoidal liver cells in primary culture : In vivo-in vitro differences

    NARCIS (Netherlands)

    Kamps, JAAM; Morselt, HWM; Scherphof, GL

    1999-01-01

    The interaction with liver cells of liposomes containing different mol fractions of phosphatidylserine was investigated in vivo and in vitro. Increasing the amount of liposomal phosphatidylserine from 10 to 30 mol% leads to a faster blood disappearance of the liposomes. Within the liver, which is ma

  19. Characterization of CD133~+ parenchymal cells in the liver: Histology and culture

    Institute of Scientific and Technical Information of China (English)

    Seiichi Yoshikawa; Yoh Zen; Takahiko Fujii; Yasunori Sato; Tetsuo Ohta; Yutaka Aoyagi; Yasuni Nakanuma

    2009-01-01

    AIM: To reveal the characteristics of CD133~+ cells in the liver.METHODS: This study examined the histological characteristics of CD133~+ cells in non-neoplastic and neoplastic liver tissues by immunostaining, and also analyzed the biological characteristics of CD133~+ cells derived from human hepatocellular carcinoma (HCC) or cholangiocarcinoma cell lines.RESULTS: Immunostaining revealed constant expression of CD133 in non-neoplastic and neoplastic biliary epithelium, and these cells had the immunophenotype CD133~+/CK19+/HepPar-1~-. A small number of CD133~+/CK19~-/HepPar-1~+ cells were also identified in HCC and combined hepatocellular and cholangiocarcinoma. In addition, small ductal structures, resembling the canal of Hering, partly surrounded by hepatocytes were positive for CD133. CD133 expression was observed in three HCC (HuH7, PLC5 and HepG2) and two cholangiocarcinoma cell and HepG2) and two cholangiocarcinoma cell lines (HuCCT1 and CCKS1). Fluorescence-activated cell sorting (FACS) revealed that CD133~+ and CD133~-cells derived from HuH7 and HuCCT1 cells similarly produced CD133~+ and CD133~-cells during subculture. To examine the relationship between CD133~+ cells and the side population (SP) phenotype, FACS was performed using Hoechst 33342 and a monoclonal antibody against CD133. The ratios of CD133~+/CD133~-cells were almost identical in the SP and non-SP in HuH7. In addition, four different cellular populations (SP/CD133~+, SP/CD133~-, non-SP/CD133~+, and non-SP/CD133~-) could similarly produce CD133~+ and CD133~-cells during subculture. CONCLUSION: This study revealed that CD133 could be a biliary and progenitor cell marker in vivo. However, CD133 alone is not sufficient to detect tumor-initiating cells in cell lines.

  20. Aroclor 1254 increases the genotoxicity of several carcinogens to liver primary cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Figueroa, T.; Lopez-Revilla, R.; Villa-Trevino, S.

    1985-01-01

    The genotoxicity of both direct-acting and precarcinogenic chemicals was evaluated in liver primary cell cultures (LPCC) from untreated and Aroclor 1254 (Ar) pretreated rats. Hepatocytes were isolated from partially hepatectomized rats and their DNA was labeled in vitro with (/sup 3/H) dThd; the molecular weight of single-stranded DNA was determined by alkaline sucrose sedimentation. Two parameters of DNA damage were defined: 1) the mean effective dose (ED50), i.e., the carcinogen concentration that decreased the DNA molecular weight to half the original, and 2) the DNA breaking potency (DBP), i.e., the number of breaks per DNA molecule produced by 2 h exposure to 1mM concentration of the chemical. Two hours exposure of LPCC from untreated rats to the direct-acting alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) (6.8-340..mu..M) and to the precarcinogens benzo(a)pyrene (BaP) (0.05-0.33 mM) and dimethylnitrosamine (DMN) (0.45-16 mM) produced a concentration-dependent decrease in the molecular weight of DNA. Pretreatment of rats with Ar decreased significantly the sedimentation velocity of DNA and increased five, three, and two times the DBP of MNNG, BaP, and DMN, respectively. These results show that Ar-pretreatment of rats increases the genotoxicity of both direct-acting and precarcinogenic chemicals and suggest that Ar might increase the genotoxicity of chemical carcinogens perhaps by enhancing their metabolic activation, by producing direct genotoxic effects, or both. Our results also emphasize the carcinogenic risk that the environmental pollution by polychlorinated biphenyls might represent to humans.

  1. Aroclor 1254 increases the genotoxicity of several carcinogens to liver primary cell cultures.

    Science.gov (United States)

    Mendoza-Figueroa, T; López-Revilla, R; Villa-Treviño, S

    1985-01-01

    The genotoxicity of both direct-acting and precarcinogenic chemicals was evaluated in liver primary cell cultures (LPCC) from untreated and Aroclor 1254 (Ar) pretreated rats. Hepatocytes were isolated from partially hepatectomized rats and their DNA was labeled in vitro with [3H] dThd; the molecular weight of single-stranded DNA was determined by alkaline sucrose sedimentation. Two parameters of DNA damage were defined: the mean effective dose (ED50), i.e., the carcinogen concentration that decreased the DNA molecular weight to half the original, and the DNA breaking potency (DBP), i.e., the number of breaks per DNA molecule produced by 2 h exposure to 1 mM concentration of the chemical. Two hours exposure of LPCC from untreated rats to the direct-acting alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) (6.8-340 microM) and to the precarcinogens benzo[a]pyrene (BaP) (0.05-0.33 mM) and dimethylnitrosamine (DMN) (0.45-16 mM) produced a concentration-dependent decrease in the molecular weight of DNA. Pretreatment of rats with Ar decreased significantly the sedimentation velocity of DNA and increased five, three, and two times the DBP of MNNG, BaP, and DMN, respectively. These results show that Ar-pretreatment of rats increases the genotoxicity of both direct-acting and precarcinogenic chemicals and suggest that Ar might increase the genotoxicity of chemical carcinogens perhaps by enhancing their metabolic activation, by producing direct genotoxic effects, or both. Our results also emphasize the carcinogenic risk that the environmental pollution by polychlorinated biphenyls might represent to humans.

  2. Co-culture of primary rat hepatocytes with rat liver epithelial cells enhances interleukin-6-induced acute-phase protein response

    NARCIS (Netherlands)

    Peters, S.J.A.C.; Vanhaecke, T.; Papeleu, P.; Rogiers, V.; Haagsman, H.P.; Norren, van K.

    2010-01-01

    Three different primary rat hepatocyte culture methods were compared for their ability to allow the secretion of fibrinogen and albumin under basal and IL-6- stimulated conditions. These culture methods comprised the co-culture of hepatocytes with rat liver epithelial cells (CCRLEC), a collagen type

  3. Growth characteristics and Ha-ras mutations of cell cultures isolated from chemically induced mouse liver tumours.

    Science.gov (United States)

    Pedrick, M S; Rumsby, P C; Wright, V; Phillimore, H E; Butler, W H; Evans, J G

    1994-09-01

    Cells have been isolated from liver tumours that have arisen in control C3H/He mice, in mice given 10 micrograms diethylnitrosamine (DEN) during the neonatal period or in mice given a diet containing phenobarbitone (PB) to allow a daily intake of 85 mg/kg/day. The cells were grown to the 8 degrees subculture when their growth characteristics were investigated in monolayer culture and following suspension in soft agar and on transplantation into nude mice. In addition, DNA was isolated from the cultures and from tumours that grew in nude mice and analysed for mutations at codon 61 of the Ha-ras oncogene. All cells derived from DEN-induced hepatocellular carcinomas (HCC) demonstrated a lack of density inhibition of growth in monolayer culture, grew in soft agar and formed tumours in nude mice with an average mean latency of 29 days. Three of the seven lines showed mutations in Ha-ras: two were CAA-->AAA transversions and one showed a CAA-->CTA transversion. In contrast, cells isolated from eosinophilic nodules in mice given PB showed inhibition of growth at confluence, did not grow in soft agar and only four of eight formed tumours in nude mice with a mean average latent period of 181 days. Cells grown from HCC in mice given PB showed a lack of density inhibition of growth, however, they did not grow in soft agar nor did they form tumours in nude mice. A single spontaneous HCC from a control mouse showed a similar growth pattern to HCC cells isolated from mice given PB. Cells from a basophilic nodule, taken from a control untreated mouse grew vigorously in culture and in soft agar and formed tumours in nude mice with a latency of 6 days. None of the cells isolated from control mice or from mice given PB showed evidence of mutations at codon 61 of Ha-ras. These data confirm that there are fundamental differences in the biology of cells grown from tumours that develop in mice under different treatment regimes. These studies also demonstrate the utility of cell culture

  4. Physical supports from liver cancer cells are essential for differentiation and remodeling of endothelial cells in a HepG2-HUVEC co-culture model.

    Science.gov (United States)

    Chiew, Geraldine Giap Ying; Fu, Afu; Low, Kar Perng; Luo, Kathy Qian

    2015-06-08

    Blood vessel remodeling is crucial in tumor growth. Growth factors released by tumor cells and endothelium-extracellular matrix interactions are highlighted in tumor angiogenesis, however the physical tumor-endothelium interactions are highly neglected. Here, we report that the physical supports from hepatocellular carcinoma, HepG2 cells, are essential for the differentiation and remodeling of endothelial cells. In a HepG2-HUVEC co-culture model, endothelial cells in direct contact with HepG2 cells could differentiate and form tubular structures similar to those plated on matrigel. By employing HepG2 cell sheet as a supportive layer, endothelial cells formed protrusions and sprouts above it. In separate experiments, fixed HepG2 cells could stimulate endothelial cells differentiation while the conditioned media could not, indicating that physical interactions between tumor and endothelial cells were indispensable. To further investigate the endothelium-remodeling mechanisms, the co-culture model was treated with inhibitors targeting different angiogenic signaling pathways. Inhibitors targeting focal adhesions effectively inhibited the differentiation of endothelial cells, while the growth factor receptor inhibitor displayed little effect. In conclusion, the co-culture model has provided evidences of the essential role of cancer cells in the differentiation and remodeling of endothelial cells, and is a potential platform for the discovery of new anti-angiogenic agents for liver cancer therapy.

  5. Physical supports from liver cancer cells are essential for differentiation and remodeling of endothelial cells in a HepG2-HUVEC co-culture model

    Science.gov (United States)

    Chiew, Geraldine Giap Ying; Fu, Afu; Perng Low, Kar; Qian Luo, Kathy

    2015-01-01

    Blood vessel remodeling is crucial in tumor growth. Growth factors released by tumor cells and endothelium-extracellular matrix interactions are highlighted in tumor angiogenesis, however the physical tumor-endothelium interactions are highly neglected. Here, we report that the physical supports from hepatocellular carcinoma, HepG2 cells, are essential for the differentiation and remodeling of endothelial cells. In a HepG2-HUVEC co-culture model, endothelial cells in direct contact with HepG2 cells could differentiate and form tubular structures similar to those plated on matrigel. By employing HepG2 cell sheet as a supportive layer, endothelial cells formed protrusions and sprouts above it. In separate experiments, fixed HepG2 cells could stimulate endothelial cells differentiation while the conditioned media could not, indicating that physical interactions between tumor and endothelial cells were indispensable. To further investigate the endothelium-remodeling mechanisms, the co-culture model was treated with inhibitors targeting different angiogenic signaling pathways. Inhibitors targeting focal adhesions effectively inhibited the differentiation of endothelial cells, while the growth factor receptor inhibitor displayed little effect. In conclusion, the co-culture model has provided evidences of the essential role of cancer cells in the differentiation and remodeling of endothelial cells, and is a potential platform for the discovery of new anti-angiogenic agents for liver cancer therapy. PMID:26053957

  6. Cultured Mycelium Cordyceps sinensis allevi¬ates CCl4-induced liver inflammation and fibrosis in mice by activating hepatic natural killer cells.

    Science.gov (United States)

    Peng, Yuan; Huang, Kai; Shen, Li; Tao, Yan-yan; Liu, Cheng-hai

    2016-02-01

    Recent evidence shows that cultured mycelium Cordyceps sinensis (CMCS) effectively protects against liver fibrosis in mice. Here, we investigated whether the anti-fibrotic action of CMCS was related to its regulation of the activity of hepatic natural killer (NK) cells in CCl4-treated mice. C57BL/6 mice were injected with 10% CCl4 (2 mL/kg, ip) 3 times per week for 4 weeks, and received CMCS (120 mg·kg(-1)·d(-1), ig) during this period. In another part of experiments, the mice were also injected with an NK cell-deleting antibody ASGM-1 (20 μg, ip) 5 times in the first 3 weeks. After the mice were sacrificed, serum liver function, and liver inflammation, hydroxyproline content and collagen deposition were assessed. The numbers of hepatic NK cells and expression of NKG2D (activation receptor of NK cells) on isolated liver lymphocytes were analyzed using flow cytometry. Desmin expression and cell apoptosis in liver tissues were studied using desmin staining and TUNEL assay, respectively. The levels of α-SMA, TGF-β, RAE-1δ and RAE-1ε in liver tissues were determined by RT-qPCR. In CCl4-treated mice, CMCS administration significantly improved liver function, attenuated liver inflammation and fibrosis, and increased the numbers of hepatic NK cells and expression level of NKG2D on hepatic NK cells. Furthermore, CMCS administration significantly decreased desmin expression in liver tissues, and increased TUNEL staining adjacent to hepatic stellate cells. Injection with NK cell-deleting ASGM-1 not only diminished the numbers of hepatic NK cells, but also greatly accelerated liver inflammation and fibrosis in CCl4-treated mice. In CCl4-treated mice with NK cell depletion, CMCS administration decelerated the rate of liver fibrosis development, and mildly upregulated the numbers of hepatic NK cells but without changing NKG2D expression. CMCS alleviates CCl4-induced liver inflammation and fibrosis via promoting activation of hepatic NK cells. CMCS partially reverses ASGM

  7. Self-renewal and pluripotency is maintained in human embryonic stem cells by co-culture with human fetal liver stromal cells expressing hypoxia inducible factor 1alpha.

    Science.gov (United States)

    Ji, Lei; Liu, Yu-xiao; Yang, Chao; Yue, Wen; Shi, Shuang-shuang; Bai, Ci-xian; Xi, Jia-fei; Nan, Xue; Pei, Xue-Tao

    2009-10-01

    Human embryonic stem (hES) cells are typically maintained on mouse embryonic fibroblast (MEF) feeders or with MEF-conditioned medium. However, these xenosupport systems greatly limit the therapeutic applications of hES cells because of the risk of cross-transfer of animal pathogens. The stem cell niche is a unique tissue microenvironment that regulates the self-renewal and differentiation of stem cells. Recent evidence suggests that stem cells are localized in the microenvironment of low oxygen. We hypothesized that hypoxia could maintain the undifferentiated phenotype of embryonic stem cells. We have co-cultured a human embryonic cell line with human fetal liver stromal cells (hFLSCs) feeder cells stably expressing hypoxia-inducible factor-1 alpha (HIF-1alpha), which is known as the key transcription factor in hypoxia. The results suggested HIF-1alpha was critical for preventing differentiation of hES cells in culture. Consistent with this observation, hypoxia upregulated the expression of Nanog and Oct-4, the key factors expressed in undifferentiated stem cells. We further demonstrated that HIF-1alpha could upregulate the expression of some soluble factors including bFGF and SDF-1alpha, which are released into the microenvironment to maintain the undifferentiated status of hES cells. This suggests that the targets of HIF-1alpha are secreted soluble factors rather than a cell-cell contact mechanism, and defines an important mechanism for the inhibition of hESCs differentiation by hypoxia. Our findings developed a transgene feeder co-culture system and will provide a more reliable alternative for future therapeutic applications of hES cells.

  8. Cellular and molecular toxicology of lead. I. Effect of lead on cultured cell proliferation. [Comparison of toxicity to rat liver, glioma, and neuroblastoma cell lives

    Energy Technology Data Exchange (ETDEWEB)

    Kusell, M.; O' Cheskey, S.; Gerschenson, L.E.

    1978-07-01

    Growth studies were done on a cultured rat liver cell line (RLC-GAI) grown in a chemically defined medium in the presence of lead nitrate. Lead reversibly inhibited the growth of these cells even after 6 d of exposure to the heavy metal. To compare lead sensitivity in various cell lines, G150 and LD50 values were determined in the RLC-GAI cells as well as two glioma cell lines (B82 and C/sub 6/) and a neuroblastoma cell line (N18). The LD50 values paralleled but were consistently lower than the G150 values. Since lead is known to affect heme synthesis, hemin was added to test the possibility of preventing the growth-inhibitory effect of the lead. The growth capacity of lead-treated cells did not change with the addition of hemin. It is thought that differential cultured cell lines such as these could be useful in examining the molecular mechanism of lead toxicity.

  9. Efficient proliferation and maturation of fetal liver cells in three-dimensional culture by stimulation of oncostatin M, epidermal growth factor, and dimethyl sulfoxide.

    Science.gov (United States)

    Koyama, Toshie; Ehashi, Tomo; Ohshima, Norio; Miyoshi, Hirotoshi

    2009-05-01

    For the purpose of applying fetal liver cells (FLCs) as a cell source to tissue-engineered bioartificial livers, three-dimensional (3-D) cultures of FLCs using a porous polymer scaffold, as well as monolayer cultures as a control, were simultaneously performed. To achieve efficient growth and differentiation, the FLCs were cultured in the growth medium for the first 3 weeks and then cultured in the differentiation medium for 3 more weeks. In these cultures, stimulating factors (oncostatin M (OSM), epidermal growth factor (EGF), hepatocyte growth factor (HGF), or dimethyl sulfoxide (DMSO)) were added to the media, and their effects were examined. When the growth medium containing OSM and EGF was used, EGF stimulated the growth of FLCs synergistically with OSM. For the differentiation of FLCs into mature hepatocytes, DMSO added to the differentiation medium remarkably enhanced albumin secretion in the 3-D and monolayer cultures, although HGF was effective only in the monolayer culture. Microscopic observation proved that FLCs exhibited hepatocyte-like morphology only in the media containing DMSO. In conclusion, successive supply of the growth medium containing EGF and OSM and the differentiation medium containing DMSO efficiently induced the growth of the 3-D cultured FLCs and their differentiation into mature hepatocytes.

  10. Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture.

    Science.gov (United States)

    Sahu, Saura C; Zheng, Jiwen; Graham, Lesley; Chen, Lynn; Ihrie, John; Yourick, Jeffrey J; Sprando, Robert L

    2014-11-01

    The use of silver nanoparticles in food, food contact materials, dietary supplements and cosmetics has increased significantly owing to their antibacterial and antifungal properties. As a consequence, the need for validated rapid screening methods to assess their toxicity is necessary to ensure consumer safety. This study evaluated two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, as tools for assessing the potential cytotoxicity of food- and cosmetic-related nanoparticles. The two cell culture models were utilized to compare the potential cytotoxicity of 20-nm silver. The average size of the silver nanoparticle determined by our transmission electron microscopy (TEM) analysis was 20.4 nm. The dynamic light scattering (DLS) analysis showed no large agglomeration of the silver nanoparticles. The concentration of the 20-nm silver solution determined by our inductively coupled plasma-mass spectrometry (ICP-MS) analysis was 0.962 mg ml(-1) . Our ICP-MS and TEM analysis demonstrated the uptake of 20-nm silver by both HepG2 and Caco2 cells. Cytotoxicity, determined by the Alamar Blue reduction assay, was evaluated in the nanosilver concentration range of 0.1 to 20 µg ml(-1) . Significant concentration-dependent cytotoxicity of the nanosilver in HepG2 cells was observed in the concentration range of 1 to 20 µg ml(-1) and at a higher concentration range of 10 to 20 µg ml(-1) in Caco2 cells compared with the vehicle control. A concentration-dependent decrease in dsDNA content was observed in both cell types exposed to nanosilver but not controls, suggesting an increase in DNA damage. The DNA damage was observed in the concentration range of 1 to 20 µg ml(-1) . Nanosilver-exposed HepG2 and Caco2 cells showed no cellular oxidative stress, determined by the dichlorofluorescein assay, compared with the vehicle control in the concentration range used in this study. A concentration-dependent decrease in

  11. DNA breaks induced by micromolar concentrations of dimethylnitrosamine in liver primary cell cultures from untreated and phenobarbital treated rats.

    Science.gov (United States)

    Mendoza-Figueroa, T; López-Revilla, R; Villa-Treviño, S

    1983-05-01

    Direct genotoxic effects of the alkylating agent dimethylnitrosamine (DMN) have been difficult to detect in several short-term tests. We simplified our method to detect DNA breaks induced by DMN in rat liver primary cell cultures, and increased its sensitivity about 150 times by changing the conditions of ultracentrifugation and exposure to DMN. Additionally we increased 4 times the sensitivity of the improved assay by isolating hepatocytes from rats treated with phenobarbital (PB). Treatment for 24 h with 60 microM and 13.5 microM DMN of hepatocytes isolated from untreated and PB-treated rats, respectively, decreased the molecular weight of DNA by 50%. After 24 h exposure to 13.5 microM [14C]DMN, hepatocytes from PB-treated rats incorporated 3 times more radioactivity into trichloroacetic acid precipitable material than hepatocytes from untreated rats. Also PB-treatment increased remarkably cytotoxic effects of DMN while it did not modify the cytotoxicity nor the genotoxicity of the direct-acting alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. These results show that DMN is more genotoxic for hepatocytes from PB-treated rats, and suggest that the enhanced genotoxicity is probably due to an augmented metabolism of DMN by these cultures. Our improved assay of DNA breaks as an indicator of DMN genotoxicity is now as sensitive but faster to perform than hepatocyte-mediated mutagenesis. It could be used to explore genotoxic effects of other alkylating agents and the action of microsomal enzyme modifiers on genotoxicity.

  12. Hydrolyzed fish proteins modulates both inflammatory and antioxidant gene expression as well as protein expression in a co culture model of liver and head kidney cells isolated from Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Holen, Elisabeth; He, Juyun; Araujo, Pedro; Seliussen, Jørgen; Espe, Marit

    2016-07-01

    Hydrolyzed fish proteins (H-pro) contain high concentrations of free amino acids and low molecular peptides that potentially may benefit fish health. The following study aimed to test whether the water-soluble phase of H-pro could attenuate lipopolysaccharide (LPS) provoked inflammation in liver cells and head kidney cells isolated from Atlantic salmon. Cells were grown as mono cultures or co cultures to assess possible crosstalk between immune cells and metabolic cells during treatments. Cells were added media with or without H-pro for 2 days before LPS exposure and harvested 24 h post LPS exposure. Respective cells without H-pro and LPS were used as controls. H-pro alone could affect expression of proteins directly as H-pro increased catalase protein expression in head kidney- and liver cells, regardless of culturing methods and LPS treatment. Leukotriene B4 (LTB4) production was also increased by H-pro in head kidney cells co cultured with liver cells. H-pro increased LPS induced interleukin 1β (IL-1β) transcription in liver cells co cultured with head kidney cells. All cultures of head kidney cells showed a significant increase in IL-1β transcription when treated with H-pro + LPS. H-pro decreased caspase-3 transcription in liver cells cultured co cultured with head kidney cells. Peroxisome proliferator activated receptor α (PPAR α) was upregulated, regardless of treatment, in liver cells co cultured with head kidney cells clearly showing that culturing method alone affected gene transcription. H-pro alone and together with LPS as an inflammation inducer, affect both antioxidant and inflammatory responses.

  13. Arginine-glycine-aspartic acid-polyethylene glycol-polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture.

    Science.gov (United States)

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system.

  14. Biochemical Testing of Potentially Hazardous Chemicals for Toxicity Using Mammalian Liver Cell Cultures.

    Science.gov (United States)

    1992-04-09

    the 1i. a. neeeae ind -nc.-.Dlenrn I rp, 1 •he ŽIP’Ton .)? f.-tm ’ ltn ’pC .Die,, ’t’J P h f, burden " .’.’- !re . j’ t ther 4sIe’ t jf-’s * oIle ,lion I...amines, nitrosamines and aflatoxins , are among the important classes of chemical carcinogens that become bound to tissue macromolecules (e.g...g centrifugation of the cell homogenate. When protein concentration was determined, it rose sharply between 2 and 4h, was essentially unchanged

  15. Arginine–glycine–aspartic acid–polyethylene glycol–polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture

    Directory of Open Access Journals (Sweden)

    Chen Z

    2016-08-01

    Full Text Available Zhanfei Chen,1,* Fen Lian,1,* Xiaoqian Wang,1 Yanling Chen,1,2 Nanhong Tang1,2 1Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 2Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, People’s Republic of China *These authors contributed equally to this work Abstract: The polyamidoamine (PAMAM dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine–glycine–aspartic acid (RGD peptide. Our studies demonstrate that RGD–polyethylene glycol (PEG–PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT–MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system. Keywords: dendrimer, arginine–glycine–aspartic acid (RGD, liver cell, spheroid culture, ammonia metabolism

  16. Liver-specific gene expression in mesenchymal stem cells is induced by liver cells

    Institute of Scientific and Technical Information of China (English)

    Claudia Lange; Philipp Bassler; Michael V. Lioznov; Helge Bruns; Dietrich Kluth; Axel R. Zander; Henning C. Fiegel

    2005-01-01

    AIM: The origin of putative liver cells from distinct bone marrow stem cells, e.g. hematopoietic stem cells or multipotent adult progenitor cells was found in recent in vitro studies. Cell culture experiments revealed a key role of growth factors for the induction of liver-specific genes in stem cell cultures. We investigated the potential of rat mesenchymal stem cells (MSC) from bone marrow to differentiate into hepatocytic cells in vitro. Furthermore,we assessed the influence of cocultured liver cells on induction of liver-specific gene expression.METHODS: Mesenchymal stem cells were marked with green fluorescent protein (GFP) by retroviral gene transduction. Clonal marked MSC were either cultured under liver stimulating conditions using fibronectin-coated culture dishes and medium supplemented with SCF, HGF,EGF, and FGF-4 alone, or in presence of freshly isolated rat liver cells. Cells in cocultures were harvested and GFP+ or GFP- cells were separated using fluorescence activated cell sorting. RT-PCR analysis for the stem cell marker Thy1 and the hepatocytic markers CK-18, albumin, CK-19,and AFP was performed in the different cell populations.RESULTS: Under the specified culture conditions, rat MSC cocultured with liver cells expressed albumin-, CK-18,CK-19, and AFP-RNA over 3 weeks, whereas MSC cultured alone did not show liver specific gene expression.CONCLUSION: The results indicate that (1) rat MSC from bone marrow can differentiate towards hepatocytic lineage in vitro, and (2) that the microenvironment plays a decisive role for the induction of hepatic differentiation of rMSC.

  17. Diffusive and convective transport through hollow fiber membranes for liver cell culture.

    Science.gov (United States)

    Curcio, E; De Bartolo, L; Barbieri, G; Rende, M; Giorno, L; Morelli, S; Drioli, E

    2005-05-25

    For an efficient membrane bioreactor design, transport phenomena determining the overall mass flux of metabolites, catabolites, cell regulatory factors, and immune-related soluble factors, need to be clarified both experimentally and theoretically. In this work, experiments and calculations aimed at discerning the simultaneous influence of both diffusive and convective mechanisms to the transport of metabolites. In particular, the transmembrane mass flux of glucose, bovine serum albumin (BSA), APO-transferrin, immunoglobulin G, and ammonia was experimentally measured, under pressure and concentration gradients, through high-flux microporous hydrophilic poly-ether-sulphone (PES-HFMs) and poly-sulphone hollow fiber membranes (PS-HFMs). These data were analyzed by means of a model based on the mechanism of capillary pore diffusion, assuming that solute spherical molecules pass through an array of solvent-filled cylindrical pores with a diffusive permeation corrected for friction and steric hindrances. Additionally, resistances to the mass transfer were taken into account. Convective permeation data were discussed in terms of morphological properties of the polymeric membranes, molecular Stokes radius, and solute-membrane interactions according to information given by contact angle measurements. The observed steady-state hydraulic permeance of PS-HFMs was 0.972 L/m2hmbar, about 15.6-fold lower than that measured for PES-HFMs (15.2 L/m2h); in general, PS-HFMs provided a significant hindrance to the transport of target species. Diffusion coefficients of metabolites were found to be similar to the corresponding values in water through PES-HFMs, but significantly reduced through PS-HFMs (D(Glucose)(Membrane)=2.8x10(-6)+/-0.6x10(-6)cm2/s, D(BSA)(Membrane)=6.4 x 10(-7)+/-1 x 10(-7)cm(/s, D(Apotransferrin)(Membrane)=2.3 x 10(-7)+/-0.25 x 10(-7)cm2/s).

  18. Comparative evaluation of cytotoxicity of cadmium in rat liver cells cultured in serum-containing medium and commercially available serum-free medium.

    Science.gov (United States)

    Latinwo, Lekan M; Badisa, Veera L D; Odewumi, Caroline O; Ikediobi, Christopher O; Badisa, Ramesh B; Brooks-Walter, Alexis; Lambert, Ayuk-Takem T; Nwoga, Jude

    2008-07-01

    Cadmium (Cd) is an industrial pollutant and carcinogenic metal. Most in vitro Cd toxicity studies have been carried out in various cell lines cultured in 10% fetal bovine serum (FBS) containing medium. In this report, we compared the toxic effect of Cd (0-300 microM) on cell growth, total RNA, total proteins, and antioxidant enzymes in rat normal liver cells cultured in medium with 10% FBS or commercially available serum-free medium for 4 or 8 hours. With Cd concentration at above 100 microM, the total levels of RNA, protein and cell growth decreased in serum-containing medium, while their levels increased in serum-free medium compared to the controls. The glutathione peroxidase and glutathione reductase levels were lower in serum-free medium than in serum-containing medium, indicating less oxidative stress in cells grown in serum-free medium. These results clearly suggest that Cd showed higher toxicity to liver cells grown in serum-containing medium in comparison to commercially available serum-free medium. It is speculated that albumin and other substances present in commercial serum-free medium chelated Cd and thereby protected these cells against Cd toxicity. Even under in vivo conditions, cadmium enters into various organs after passing through blood which contains serum. Based on these studies, it appears that media containing serum may be ideal for in vivo toxicity correlation studies with animal cells.

  19. Establishment and characterization of feeder-cell-dependent bovine fetal liver cell lines

    Science.gov (United States)

    The establishment and initial characterization of bovine fetal liver cell lines is described. Bovine fetal hepatocytes were cultured from the liver of a 34-day bovine fetus by physical disruption of the liver tissue. Released liver cells and clumps of cells were plated on STO feeder layers and wer...

  20. Alcohol dehydrogenase and cytochrome P450 2E1 can be induced by long-term exposure to ethanol in cultured liver HEP-G2 cells.

    Science.gov (United States)

    Balusikova, Kamila; Kovar, Jan

    2013-09-01

    It has been shown in previous studies that liver HEP-G2 cells (human hepatocellular carcinoma) lose their ability to express active alcohol dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1). Although both are ethanol-inducible enzymes, short-term exposure to ethanol does not cause any changes in expression or activity in cultured HEP-G2 cells. Therefore, we tested the effect of long-term exposure to ethanol on the expression and activity of both ADH and CYP2E1 in these cells. The expression of ADH and CYP2E1 was assessed at the mRNA and/or protein level using real-time PCR and Western blot analysis. Specific colorimetric assays were used for the measurement of ADH and CYP2E1 enzymatic activities. Caco-2 cells (active CYP2E1 and inactive ADH) were used as control cells. Significantly increased protein expression of ADH (about 2.5-fold) as well as CYP2E1 (about 1.6-fold) was found in HEP-G2 cells after long-term (12 mo) exposure to ethanol. The activity of ADH and CYP2E1 was also significantly increased from 12 ± 3 and 6 ± 1 nmol/h/mg of total protein to 191 ± 9 and 57 ± 9 nmol/h/mg of total protein, respectively. We suggest that the loss of activity of ethanol-metabolizing enzymes in cultured HEP-G2 cells is reversible and can be induced by prolonged exposure to ethanol. We are therefore able to reactivate HEP-G2 cells metabolic functions concerning ethanol oxidation just by modification of in vitro culture conditions without necessity of transfection with its side effect - enzyme overexpression.

  1. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    Directory of Open Access Journals (Sweden)

    Wan Nurlina Wan Yahya

    2014-07-01

    Full Text Available Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration.

  2. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    Science.gov (United States)

    Yahya, Wan Nurlina Wan; Kadri, Nahrizul Adib; Ibrahim, Fatimah

    2014-01-01

    Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP) force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration. PMID:24991941

  3. Vitellogenin synthesis in primary cultures of fish liver cells as endpoint for in vitro screening of the (anti)estrogenic activity of chemical substances.

    Science.gov (United States)

    Navas, José M; Segner, Helmut

    2006-10-25

    Concern over possible adverse effects of endocrine-disrupting compounds on fish has caused the development of appropriate testing methods. In vitro screening assays may provide initial information on endocrine activities of a test compound and thereby may direct and optimize subsequent testing. Induction of vitellogenin (VTG) is used as a biomarker of exposure of fish to estrogen-active substances. Since VTG induction can be measured not only in vivo but also in fish hepatocytes in vitro, the use of VTG induction response in isolated fish liver cells has been suggested as in vitro screen for identifying estrogenic-active substances. The main advantages of the hepatocyte VTG assay are considered its ability to detect effects of estrogenic metabolites, since hepatocytes in vitro remain metabolically competent, and its ability to detect both estrogenic and anti-estrogenic effects. In this article, we critically review the current knowledge on the VTG response of cultured fish hepatocytes to (anti)estrogenic substances. In particular, we discuss the sensitivity, specificity, and variability of the VTG hepatocyte assay. In addition, we review the available data on culture factors influencing basal and induced VTG production, the response to natural and synthetic estrogens as well as to xenoestrogens, the detection of indirect estrogens, and the sources of assay variability. The VTG induction in cultured fish hepatocytes is clearly influenced by culture conditions (medium composition, temperature, etc.) and culture system (hepatocyte monolayers, aggregates, liver slices, etc.). The currently available database on estrogen-mediated VTG induction in cultured teleost hepatocytes is too small to support conclusive statements on whether there exist systematic differences of the VTG response between in vitro culture systems, VTG analytical methods or fish species. The VTG hepatocyte assay detects sensitively natural and synthetic estrogens, whereas the response to

  4. Long-Term Adult Feline Liver Organoid Cultures for Disease Modeling of Hepatic Steatosis

    Directory of Open Access Journals (Sweden)

    Hedwig S. Kruitwagen

    2017-04-01

    Full Text Available Hepatic steatosis is a highly prevalent liver disease, yet research is hampered by the lack of tractable cellular and animal models. Steatosis also occurs in cats, where it can cause severe hepatic failure. Previous studies demonstrate the potential of liver organoids for modeling genetic diseases. To examine the possibility of using organoids to model steatosis, we established a long-term feline liver organoid culture with adult liver stem cell characteristics and differentiation potential toward hepatocyte-like cells. Next, organoids from mouse, human, dog, and cat liver were provided with fatty acids. Lipid accumulation was observed in all organoids and interestingly, feline liver organoids accumulated more lipid droplets than human organoids. Finally, we demonstrate effects of interference with β-oxidation on lipid accumulation in feline liver organoids. In conclusion, feline liver organoids can be successfully cultured and display a predisposition for lipid accumulation, making them an interesting model in hepatic steatosis research.

  5. Fetal and adult liver stem cells for liver regeneration and tissue engineering.

    Science.gov (United States)

    Fiegel, H C; Lange, Claudia; Kneser, U; Lambrecht, W; Zander, A R; Rogiers, X; Kluth, D

    2006-01-01

    For the development of innovative cell-based liver directed therapies, e.g. liver tissue engineering, the use of stem cells might be very attractive to overcome the limitation of donor liver tissue. Liver specific differentiation of embryonic, fetal or adult stem cells is currently under investigation. Different types of fetal liver (stem) cells during development were identified, and their advantageous growth potential and bipotential differentiation capacity were shown. However, ethical and legal issues have to be addressed before using fetal cells. Use of adult stem cells is clinically established, e.g. transplantation of hematopoietic stem cells. Other bone marrow derived liver stem cells might be mesenchymal stem cells (MSC). However, the transdifferentiation potential is still in question due to the observation of cellular fusion in several in vivo experiments. In vitro experiments revealed a crucial role of the environment (e.g. growth factors and extracellular matrix) for specific differentiation of stem cells. Co-cultured liver cells also seemed to be important for hepatic gene expression of MSC. For successful liver cell transplantation, a novel approach of tissue engineering by orthotopic transplantation of gel-immobilized cells could be promising, providing optimal environment for the injected cells. Moreover, an orthotopic tissue engineering approach using bipotential stem cells could lead to a repopulation of the recipients liver with healthy liver and biliary cells, thus providing both hepatic functions and biliary excretion. Future studies have to investigate, which stem cell and environmental conditions would be most suitable for the use of stem cells for liver regeneration or tissue engineering approaches.

  6. Temporal metabolomic responses of cultured HepG2 liver cells to high fructose and high glucose exposures

    Science.gov (United States)

    Meissen, John K.; Hirahatake, Kristin M.; Adams, Sean H.; Fiehn, Oliver

    2014-01-01

    High fructose consumption has been implicated with deleterious effects on human health, including hyperlipidemia elicited through de novo lipogenesis. However, more global effects of fructose on cellular metabolism have not been elucidated. In order to explore the metabolic impact of fructose-containing nutrients, we applied both GC-TOF and HILIC-QTOF mass spectrometry metabolomic strategies using extracts from cultured HepG2 cells exposed to fructose, glucose, or fructose + glucose. Cellular responses were analyzed in a time-dependent manner, incubated in media containing 5.5 mM glucose + 5.0 mM fructose in comparison to controls incubated in media containing either 5.5 mM glucose or 10.5 mM glucose. Mass spectrometry identified 156 unique known metabolites and a large number of unknown compounds, which revealed metabolite changes due to both utilization of fructose and high-carbohydrate loads independent of hexose structure. Fructose was shown to be partially converted to sorbitol, and generated higher levels of fructose-1-phosphate as a precursor for glycolytic intermediates. Differentially regulated ratios of 3-phosphoglycerate to serine pathway intermediates in high fructose media indicated a diversion of carbon backbones away from energy metabolism. Additionally, high fructose conditions changed levels of complex lipids toward phosphatidylethanolamines. Patterns of acylcarnitines in response to high hexose exposure (10.5 mM glucose or glucose/fructose combination) suggested a reduction in mitochondrial beta-oxidation. PMID:26190955

  7. Generation and characterization of rat liver stem cell lines and their engraftment in a rat model of liver failure.

    Science.gov (United States)

    Kuijk, Ewart W; Rasmussen, Shauna; Blokzijl, Francis; Huch, Meritxell; Gehart, Helmuth; Toonen, Pim; Begthel, Harry; Clevers, Hans; Geurts, Aron M; Cuppen, Edwin

    2016-02-26

    The rat is an important model for liver regeneration. However, there is no in vitro culture system that can capture the massive proliferation that can be observed after partial hepatectomy in rats. We here describe the generation of rat liver stem cell lines. Rat liver stem cells, which grow as cystic organoids, were characterized by high expression of the stem cell marker Lgr5, by the expression of liver progenitor and duct markers, and by low expression of hepatocyte markers, oval cell markers, and stellate cell markers. Prolonged cultures of rat liver organoids depended on high levels of WNT-signalling and the inhibition of BMP-signaling. Upon transplantation of clonal lines to a Fah(-/-) Il2rg(-/-) rat model of liver failure, the rat liver stem cells engrafted into the host liver where they differentiated into areas with FAH and Albumin positive hepatocytes. Rat liver stem cell lines hold potential as consistent reliable cell sources for pharmacological, toxicological or metabolic studies. In addition, rat liver stem cell lines may contribute to the development of regenerative medicine in liver disease. To our knowledge, the here described liver stem cell lines represent the first organoid culture system in the rat.

  8. Role of liver functions on liver cell mitosis

    Directory of Open Access Journals (Sweden)

    Takata,Tameyuki

    1974-06-01

    Full Text Available The control mechanism of mitosis in the regenerating rat liver was studied in relation to the cell functions. Partial hepatec· tomy induces a series of changes prior to the initiation of mitosis, i. e. decrease in serum glucose and albumin levels, loss of glycogen from liver cells, and increased lipid mobilization to liver cells. Massive supplies of glucose and fructose suppressed significantly hepatocellu. lar mitosis with suppression of lipid accumulation and preservation of glycogen in the liver cells and of blood sugar level. Homologous serum administration also suppressed the rate of liver cell mitosis after hepatectomy preventing the decrease in serum albumin level, but did not suppress the lipid accumulation in the liver. Starvation, which would relieve the liver cell from the work of detoxication of intesti. nal toxic products, did not show any suppressive effect on the mitotic rate of liver cells after partial hepatectomy in single animals. But starvation induced severe hypoglycemia, moderate hypoalbuminemia and loss of glycogen content in the liver. These changes in metabo. lism by starvation and partial hepatectomy were suppressed by con· jugating the animals with nonhepatectomized fed.partners by aortic anastomosis, and mitosis was suppressed in the residual liver of the fasting animals in this parabiosis. The results indicate that all the major functions of parenchymal live cells tested, sugar metabolism, serum albumin production, and detoxication, are closely related to the control of liver cell mitosis. Accumulation of lipids in the liver remnant after partial hepatectomy is thought to be for the compensa. tion of reduced glycogen storage and not concerned directly with the liver cell mitosis. Discussion was made briefly on the humoral factor and portal blood factor in relation to excess load of functions on resi. dual liver cells.

  9. A study of structural differences between liver cancer cells and normal liver cells using FTIR spectroscopy

    Science.gov (United States)

    Sheng, Daping; Xu, Fangcheng; Yu, Qiang; Fang, Tingting; Xia, Junjun; Li, Seruo; Wang, Xin

    2015-11-01

    Since liver cancer seriously threatens human health, it is very urgent to explore an effective method for diagnosing liver cancer early. In this study, we investigated the structure differences of IR spectra between neoplastic liver cells and normal liver cells. The major differences of absorption bands were observed between liver cancer cells and normal liver cells, the values of A2955/A2921, A1744/A1082, A1640/A1535, H1121/H1020 might be potentially useful factors for distinguishing liver cancer cells from normal liver cells. Curve fitting also provided some important information on structural differences between malignant and normal liver cancer cells. Furthermore, IR spectra combined with hierarchical cluster analysis could make a distinction between liver cancer cells and normal liver cells. The present results provided enough cell basis for diagnosis of liver cancer by FTIR spectroscopy, suggesting FTIR spectroscopy may be a potentially useful tool for liver cancer diagnosis.

  10. Insect Cell Culture

    NARCIS (Netherlands)

    Oers, van M.M.; Lynn, D.E.

    2010-01-01

    Insect cell cultures are widely used in studies on insect cell physiology, developmental biology and microbial pathology. In particular, insect cell culture is an indispensable tool for the study of insect viruses. The first continuously growing insect cell cultures were established from lepidoptera

  11. Insect Cell Culture

    NARCIS (Netherlands)

    Oers, van M.M.; Lynn, D.E.

    2010-01-01

    Insect cell cultures are widely used in studies on insect cell physiology, developmental biology and microbial pathology. In particular, insect cell culture is an indispensable tool for the study of insect viruses. The first continuously growing insect cell cultures were established from lepidoptera

  12. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Qing, E-mail: zeng.xiaoqing@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Na, E-mail: Linala.2009@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Pan, Du-Yi, E-mail: lasikesmi@hotmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Miao, Qing, E-mail: sadsadvenus@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Gui-Fen, E-mail: ma.guifen@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Liu, Yi-Mei, E-mail: liuyimei1988@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Tseng, Yu-Jen, E-mail: dianatseng14@gmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Feng, E-mail: li.feng2@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Xu, Li-Li, E-mail: xu.lili3@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: chen.shiyao@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Institute of Endoscopic Research of Zhongshan Hospital, Fudan University, Shanghai (China)

    2015-09-04

    Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway. - Highlights: • Overexpression of KLF2 inhibits the proliferation and migration of LSECs. • Overexpression of KLF2 inhibits the angiogenesis of LSECs. • ERK1/2 signaling pathway involved in the anti-angiogenic process of KLF2 on LSECs.

  13. Role of liver stem cells in hepatocarcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Lei-Bo; Xu; Chao; Liu

    2014-01-01

    Liver cancer is an aggressive disease with a high mortality rate. Management of liver cancer is strongly dependent on the tumor stage and underlying liver disease. Unfortunately, most cases are discovered when the cancer is already advanced, missing the opportunity for surgical resection. Thus, an improved understanding of the mechanisms responsible for liver cancer initiation and progression will facilitate the detection of more reliable tumor markers and the development of new small molecules for targeted therapy of liver cancer. Recently, there is increasing evidence for the "cancer stem cell hypothesis", which postulates that liver cancer originates from the malignant transformation of liver stem/progenitor cells(liver cancer stem cells). This cancer stem cell model has important significance for understanding the basic biology of liver cancer and has profound importance for the development of new strategies for cancer prevention and treatment. In this review, we highlight recent advances in the role of liver stem cells in hepatocarcinogenesis. Our review of the literature shows that identification of the cellular origin and the signaling pathways involved is challenging issues in liver cancer with pivotal implications in therapeutic perspectives. Although the dedifferentiation of mature hepatocytes/cholangiocytes in hepatocarcinogenesis cannot be excluded, neoplastic transformation of a stem cell subpopulation more easily explains hepatocarcinogenesis. Elimination of liver cancer stem cells in liver cancer could result in the degeneration of downstream cells, which makes them potential targets for liver cancer therapies. Therefore, liver stem cells could represent a new target for therapeutic approaches to liver cancer in the near future.

  14. Liver involvement in Langerhans cell histiocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Adelaine; Ortiz-Neira, Clara L.; Abou Reslan, Walid; Kaura, Deepak [Alberta Children' s Hospital, Department of Diagnostic Imaging, Calgary, Alberta (Canada); Sharon, Raphael; Anderson, Ronald [Alberta Children' s Hospital, Department of Oncology, Calgary, AB (Canada); Pinto-Rojas, Alfredo [Alberta Children' s Hospital, Department of Pathology, Calgary, AB (Canada)

    2006-10-15

    Liver involvement in Langerhans cell histiocytosis (LCH) typically presents with hepatomegaly and other signs of liver dysfunction. We present an 11-month-old child having only minimally elevated liver enzymes as an indication of liver involvement. Using sonography as the initial diagnostic tool followed by MRI, LCH of the liver was revealed. A review of sonographic, CT, MRI and MR cholangiopancreatography findings in liver LCH is presented. We recommend that physicians consider sonography and MRI screening for liver involvement in patients with newly diagnosed LCH, as periportal involvement may be present with little or no liver function abnormality present, as in this patient. (orig.)

  15. Cell Culture Made Easy.

    Science.gov (United States)

    Dye, Frank J.

    1985-01-01

    Outlines steps to generate cell samples for observation and experimentation. The procedures (which use ordinary laboratory equipment) will establish a short-term primary culture of normal mammalian cells. Information on culture vessels and cell division and a list of questions to generate student interest and involvement in the topics are…

  16. 10-(6'-Plastoquinonyl)decyltriphenylphosphonium (SkQ1) Does Not Increase the Level of Cytochromes P450 in Rat Liver and Human Hepatocyte Cell Culture.

    Science.gov (United States)

    Myasoedova, K N; Silachev, D N; Petrov, A D

    2016-12-01

    Mitochondria-targeted antioxidant SkQ1 did not increase the content of cytochromes P450 in livers of rats that were given SkQ1 in drinking water for 5 days in a dose (2.5 µmol per kg body weight) that exceeded 10 times the SkQ1 therapeutic dose. SkQ1 did not affect the levels of cytochrome P450 forms CYP1A2, CYP2B6, and CYP3A4 in monolayer cultures of freshly isolated human hepatocytes, while specific inducers of these forms (omeprazole, phenobarbital, and rifampicin, respectively) significantly increased expression of the cytochromes P450 under the same conditions. We conclude that therapeutic doses of SkQ1 do not induce cytochromes P450 in liver, and the absence of the inducing effect cannot be explained by poor availability of hepatocytes to SkQ1 in vivo.

  17. Molluscan cells in culture: primary cell cultures and cell lines

    OpenAIRE

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as bi...

  18. Convenient and efficient enrichment of the CD133+ liver cells from rat fetal liver as a source of liver stem/progenitor cells.

    Science.gov (United States)

    Liu, Weihui; You, Nan; Dou, Kefeng

    2012-01-01

    Although stem cells are commonly isolated by fluorescence-activated cell sorting or magnetic affinity cell sorting, they are very expensive, and they need known markers. However, there is no specific marker for liver stem/progenitor cells (LSPCs). Here, we describe a convenient and efficient method (three-step method) to enrich LSPCs. The fetal liver cells (FLCs) were firstly enriched by Percoll discontinuous gradient centrifugation from the rat fetal liver. Then the FLCs in culture were purified to be homogeneous in size by differential trypsinization and differential adherence. Finally, fetal liver stem/progenitor cells (FLSPCs) were enriched from purified FLCs by Percoll continuous gradient centrifugation. Flow cytometric analysis combining with marker CD133 was used to detect the purity of FLSPCs and evaluate the isolating effects of the three-step method.

  19. DNA Ploidy and Liver Cell Dysplasia in Liver Biopsies from Patients with Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Sayed S El-Sayed

    2004-01-01

    Full Text Available There is controversy among pathologists when assessing the presence or absence of liver cell dysplasia in liver biopsies taken from cirrhotic patients. The objective of the present study was to determine the DNA ploidy pattern of hepatocytes of patients with liver cirrhosis and its relationship to liver cell dysplasia. A total of 48 male patients diagnosed with liver cirrhosis based on clinical, laboratory and histopathological criteria were included in the study. A liver biopsy was taken from each patient; one part of the biopsy was subjected to histopathology, and the other to flow cytometry. The histopathological examination revealed liver cell dysplasia in 60% of patients with liver cirrhosis (62% of them had large cell dysplasia [LCD] and 38% had small cell dysplasia [SCD]. Abnormal DNA content (aneuploidy was found in 81.5% of positive liver cell dysplasia specimens and found only in 11.1% of negative liver cell dysplasia specimens, with a statistically significant difference (P0.05 in comparison with SCD. In conclusion, SCD (similar to LCD is also associated with aneuploidy and elevated DNA index, and may carry the same risk for progression to hepatocellular carcinoma.

  20. Cytological alteration of cultured rat liver cells by 3'-methyl-4-dimethylaminoazobenzene with special reference to chromosome changes, changes of growth patterns at a colony level and alpha-fetoprotein production.

    Directory of Open Access Journals (Sweden)

    Tokiwa,Takayoshi

    1980-06-01

    Full Text Available A near diploid clone derived from a rat liver cell line was continuously treated with various concentrations of 3'-methyl-4-dimethylaminoazobenzene (3'-Me-DAB in culture. By treatment with 2.8 micrograms/ml, cells with 41 chromosomes formed a mode and which then shifted to 39. The chromosome numbers of cells treated with 5.4 micrograms/ml were widely distributed at early stages, but later the mode shifted to hypotetraploid region. Untreated control cells were confirmed as near diploid. Increased plating efficiency by 3'-Me-DAB as well as the appearance of large sized colonies was obtained. The production of alpha-fetoprotein (AFP by the cells was slightly enhanced by treatment with 3'-Me-DAB. The cells treated with and without 3'-Me-DAB did not produce any tumor in rats 6 months after their intraperitoneal injection.

  1. Hepatocytic differentiation of mesenchymal stem cells in cocultures with fetal liver cells

    Institute of Scientific and Technical Information of China (English)

    Claudia Lange; Helge Bruns; Dietrich Kluth; Axel R Zander; Henning C Fiegel

    2006-01-01

    AIM: To investigate the hepatocytic differentiation of mesenchymal stem cells (MSCs) in co-cultures with fetal liver cells (FLC) and the possibility to expand differentiated hepatocytic cells.METHODS: MSCs were marked with green fluorescent protein (GFP) by retroviral gene transduction. Clonal marked MSCs were either cultured under liver stimulating conditions using fibronectin-coated culture dishes and medium supplemented with stem cell factor (SCF),hepatocyte growth factor (HGF), epidermal growth factor (EGF), and fibroblast growth factor 4 (FGF-4) alone, or in presence of freshly isolated FLC. Cells in co-cultures were harvested, and GFP+ or GFP- cells were separated using fluorescence activated cell sorting. Reverse transcription-polymerase chain reaction (RT-PCR) for the liver specific markers cytokeratin-18 (CK-18), albumin,and alpha-fetoprotein (AFP) was performed in different cell populations.RESULTS: Under the specified culture conditions, rat MSCs co-cultured with FLC expressed albumin, CK-18,and AFP-RNA over two weeks. At wk 3, MSCs lost hepatooytic gene expression, probably due to overgrowth of the cocultured FLC. FLC also showed a stable liver specific gene expression in the co-cultures and a very high growth potential.CONCLUSION: The rat MSCs from bone marrow can differentiate hepatocytic cells in the presence of FLC in vitro and the presence of MSCs in co-cultures also prorides a beneficial environment for expansion and differentiation of FLC.

  2. Nucleoside transporters and liver cell growth

    National Research Council Canada - National Science Library

    Valdés, Raquel; Mata, João F; Del Santo, Belén; Pastor-Anglada, Marçal; Felipe, Antonio; Casado, F Javier

    1998-01-01

    .... This review summarizes work performed in our laboratory on these transport systems, particularly nucleoside transporters, which are up-regulated in physiological situations associated with liver cell growth...

  3. Mathematical modelling of cell aggregation in liver tissue engineering

    OpenAIRE

    Green, John Edward E.

    2006-01-01

    A promising method for growing functional liver tissue in vitro involves culturing hepatocytes as spheroidal cell aggregates. In this thesis, we develop mathematical models of cell aggregation, and use them to determine how hepatocytes' interactions with the extracellular matrix (ECM) on which they are seeded, and with stellate cells, affect the process. Chapters 2-4 focus on the effect that cell-ECM coupling has on the aggregation process. We use a novel formulation that couples a mechani...

  4. Mammalian Cell Culture Simplified.

    Science.gov (United States)

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A tissue culture experiment that does not require elaborate equipment and that can be used to teach sterile technique, the principles of animal cell line maintenance, and the concept of cell growth curves is described. The differences between cancerous and normal cells can be highlighted. The procedure is included. (KR)

  5. Fish stem cell cultures.

    Science.gov (United States)

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-04-13

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  6. Fish Stem Cell Cultures

    Directory of Open Access Journals (Sweden)

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Full Text Available Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  7. Liver stem cells - Methods and protocols

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-09-01

    Full Text Available The brief and concise preface written by prof. Takahiro Ochiya is particularly well addressed to scholars belonging to different scientific fields: cellular and molecular biology, liver and cancer biology, tissue engineering and stem cell therapy. By a few lines prof Ochiya is telling us that we are getting exciting results, at the lab and the preclinical level, in treating liver injuries thanks to the unprecedented advances in our knowledge on liver stem cells biology....

  8. Stem cells in liver disease

    NARCIS (Netherlands)

    Poll, D. van

    2008-01-01

    Failure of the liver, the largest vital organ in the body, unequivocally results in death. Hepatic failure most commonly evolves over a period of several years as a result of chronic liver disease, most often viral hepatitis or alcoholic liver damage. In rarer cases, the organ shuts down within

  9. Stem cells in liver disease

    NARCIS (Netherlands)

    Poll, D. van

    2008-01-01

    Failure of the liver, the largest vital organ in the body, unequivocally results in death. Hepatic failure most commonly evolves over a period of several years as a result of chronic liver disease, most often viral hepatitis or alcoholic liver damage. In rarer cases, the organ shuts down within week

  10. Flow cytometric analysis of mitotic cycle perturbation by chemical carcinogens in cultured epithelial cells. [Effects of benzo(a)pyrene-diol-epoxide on mitotic cycle of cultural mouse liver epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, A.L.

    1978-08-01

    A system for kinetic analysis of mitotic cycle perturbation by various agents was developed and applied to the study of the mitotic cycle effects and dependency of the chemical carcinogen benzo(a)pyrene-diolepoxide, DE, upon a mouse lever epithelial cell line, NMuLi. The study suggests that the targets of DE action are not confined to DNA alone but may include cytoplasmic structures as well. DE was found to affect cells located in virtually every phase of the mitotic cycle, with cells that were actively synthesizing DNA showing the strongest response. However, the resulting perturbations were not confined to S-phase alone. DE slowed traversal through S-phase by about 40% regardless of the cycle phase of the cells exposed to it, and slowed traversal through G/sub 2/M by about 50%. When added to G/sub 1/ cells, DE delayed recruitment of apparently quiescent (G/sub 0/) cells by 2 hours, and reduced the synchrony of the cohort of cells recruited into active proliferation. The kinetic analysis system consists of four elements: tissue culture methods for propagating and harvesting cell populations; an elutriation centrifugation system for bulk synchronization of cells in various phases of the mitotic cycle; a flow cytometer (FCM), coupled with appropriate staining protocols, to enable rapid analysis of the DNA distribution of any given cell population; and data reduction and analysis methods for extracting information from the DNA histograms produced by the FCM. The elements of the system are discussed. A mathematical analysis of DNA histograms obtained by FCM is presented. The analysis leads to the detailed implementation of a new modeling approach. The new modeling approach is applied to the estimation of cell cycle kinetic parameters from time series of DNA histograms, and methods for the reduction and interpretation of such series are suggested.

  11. Liver stem cell-derived β-cell surrogates for treatment of type 1 diabetes☆

    Science.gov (United States)

    Yang, Li-Jun

    2012-01-01

    Consistent with the common embryonic origin of liver and pancreas as well the similar glucose-sensing systems in hepatocytes and pancreatic β-cells, it should not be surprising that liver stem cells/hepatocytes can transdifferentiate into insulin-producing cells under high-glucose culture conditions or by genetic reprogramming. Persistent expression of the pancreatic duodenal homeobox-1 (Pdx1) transcription factor or its super-active form Pdx1-VP16 fusion protein in hepatic cells reprograms these cells into pancreatic β-cell precursors. In vitro culture at elevated glucose concentrations or in vivo exposure to a hyperglycemia are required for further differentiation and maturation of liver-derived pancreatic β-cell precursor into functional insulin-producing pancreatic β-like cells. Under appropriate conditions, multiple pancreatic transcription factors can work in concert to reprogram liver stem/adult liver cells into functional insulin-producing cells. If such autologous liver-derived insulin-producing cells can be made to escape the type 1 diabetes-associated autoimmunity, they may serve as a valuable cell source for future cell replacement therapy without the need for life-long immunosuppression. PMID:16890895

  12. Convenient and efficient enrichment of the CD133+ liver cells from rat fetal liver cells as a source of liver stem/progenitor cells.

    Science.gov (United States)

    Liu, Wei-hui; Li, Ren; Dou, Ke-feng

    2011-03-01

    Although the stem cells are commonly isolated by FACS or MACS, they are very expensive and these is no specific marker for liver stem/progentior cells (LSPCs). This paper applied a convenient and efficient method to enrich LSPCs. The fetal liver cells (FLCs) were firstly enriched by Percoll discontinuous gradient centrifugation (PDGC) from the rat fetal liver. Then the FLCs in culture were purified to be homogeneous in size by differential trypsinization and differential adherence (DTDA). Flow cytometric analysis revealed more than half of the purified FLCs expressed alternative markers of LSPCs (CD117, c-Met, Sca-1, CD90, CD49f and CD133). In other words, the purified FLCs were heterogeneous. Therefore, they were sequentially layered into six fractions by Percoll continuous gradient centrifugation (PCGC). Both CD133 and CD49f expressed decreasingly from fraction 1 to 6. In fraction 1 and 2, about 85% FLCs expressed CD133, which were revealed to be LSPCs by high expressions of AFP and CK-19, low expressions of G-6-P and ALB. To conclude, the purity of CD133(+) LSPCs enriched by combination of PDGC, DTDA and PCGC is close to that obtained by MACS. This study will greatly contribute to two important biological aspects: liver stem cells isolation and liver cell therapy.

  13. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures and ti...

  14. Foetal hepatic progenitor cells assume a cholangiocytic cell phenotype during two-dimensional pre-culture.

    Science.gov (United States)

    Anzai, Kazuya; Chikada, Hiromi; Tsuruya, Kota; Ida, Kinuyo; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tesuya; Kamiya, Akihide

    2016-06-23

    Liver consists of parenchymal hepatocytes and other cells. Liver progenitor cell (LPC) is the origin of both hepatocytes and cholangiocytic cells. The analyses of mechanism regulating differentiation of LPCs into these functional cells are important for liver regenerative therapy using progenitor cells. LPCs in adult livers were found to form cysts with cholangiocytic characteristics in 3D culture. In contrast, foetal LPCs cannot form these cholangiocytic cysts in the same culture. Thus, the transition of foetal LPCs into cholangiocytic progenitor cells might occur during liver development. Primary CD45(-)Ter119(-)Dlk1(+) LPCs derived from murine foetal livers formed ALBUMIN (ALB)(+)CYTOKERATIN (CK)19(-) non-cholangiocytic cysts within 3D culture. In contrast, when foetal LPCs were pre-cultured on gelatine-coated dishes, they formed ALB(-)CK19(+) cholangiocytic cysts. When hepatocyte growth factor or oncostatin M, which are inducers of hepatocytic differentiation, was added to pre-culture, LPCs did not form cholangiocytic cysts. These results suggest that the pre-culture on gelatine-coated dishes changed the characteristics of foetal LPCs into cholangiocytic cells. Furthermore, neonatal liver progenitor cells were able to form cholangiocytic cysts in 3D culture without pre-culture. It is therefore possible that the pre-culture of mid-foetal LPCs in vitro functioned as a substitute for the late-foetal maturation step in vivo.

  15. Molluscan cells in culture: primary cell cultures and cell lines.

    Science.gov (United States)

    Yoshino, T P; Bickham, U; Bayne, C J

    2013-06-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome.

  16. Natural Killer cells and liver fibrosis

    Directory of Open Access Journals (Sweden)

    Frank eFasbender

    2016-01-01

    Full Text Available In the 40 years since the discovery of Natural Killer (NK cells it has been well established that these innate lymphocytes are important for early and effective immune responses against transformed cells and infections with different pathogens. In addition to these classical functions of NK cells, we now know that they are part of a larger family of innate lymphoid cells and that they can even mediate memory-like responses. Additionally, tissue resident NK cells with distinct phenotypical and functional characteristics have been identified. Here we focus on the phenotype of different NK cell subpopulations that can be found in the liver and summarize the current knowledge about the functional role of these cells with a special emphasis on liver fibrosis. NK cell cytotoxicity can contribute to liver damage in different forms of liver disease. However, NK cells can limit liver fibrosis by killing hepatic stellate cell-derived myofibroblasts, which play a key role in this pathogenic process. Therefore, liver NK cells need to be tightly regulated in order to balance these beneficial and pathological effects.

  17. The secretion of high molecular weight cathepsin B from cultured human liver cancers.

    Directory of Open Access Journals (Sweden)

    Ohsawa,Toshiya

    1989-02-01

    Full Text Available The biochemical characteristics of cathepsin B secreted from cultured human liver cancer cells were examined. The enzyme activity of culture medium against a synthetic substrate, N-carbobenzoxy-L-arginyl-L-arginine-4-methyl-coumaryl-7-amide, was dependent on the addition of cysteine, and the optimal pH was found to be 6.0. No activity was observed when the enzyme source was fresh medium not used for culture. These results suggest that the enzyme released from liver cancer cells is the thiol-protease cathepsin B. The molecular weight of the enzyme with 90% of the total activity was 40,000. Two cathepsin B molecules were found in liver tissue from patients with hepatocellular carcinoma (HCC; one was equivalent in size to the secreted enzyme, and a smaller one was the same as normal liver cathepsin B (27,000, which was also obtained from HCC-bearing cirrhotic liver. These results demonstrate that two molecules of cathepsin B are synthesized in liver cancer, and that the larger one is released into the surrounding tissue.

  18. Cell Culturing of Cytoskeleton

    Science.gov (United States)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  19. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  20. Hepatic tissue engineering: from transplantation to customized cell-based liver directed therapies from the laboratory.

    Science.gov (United States)

    Fiegel, Henning C; Kaufmann, Peter M; Bruns, Helge; Kluth, Dietrich; Horch, Raymund E; Vacanti, Joseph P; Kneser, Ulrich

    2008-01-01

    Today, liver transplantation is still the only curative treatment for liver failure due to end-stages liver diseases. Donor organ shortage, high cost and the need of immunosuppressive medications are still the major limitations in the field of liver transplantation. Thus, alternative innovative cell-based liver directed therapies, e.g. liver tissue engineering, are under investigation with the aim, that in future an artificial liver tissue could be created and be used for the replacement of the liver function in patients. Using cells instead of organs in this setting should permit (i) expansion of cells in an in vitro phase, (ii) genetic or immunological manipulation of cells for transplantation, (iii) tissue typing and cryopreservation in a cell bank, and (iv) the ex vivo genetic modification of patient's own cells prior re-implantation. Function and differentiation of liver cells are influenced by the three-dimensional organ architecture. The use of polymeric matrices permits the three dimensional formation of a neo-tissue and specific stimulation by adequate modification of the matrix-surface which might be essential for appropriate differentiation of transplanted cells. Additionally, culturing hepatocytes on three dimensional matrices permits culture in a flow bioreactor system with increased function and survival of the cultured cells. Based on bioreactor technology, bioartificial liver devices (BAL) are developed for extracorporeal liver support. Although BALs improved clinical and metabolic conditions, increased patient survival rates have not been proven yet. For intra-corporeal liver replacement, a concept which combines Tissue Engineering using three-dimensional, highly porous matrices with cell transplantation could be useful. In such a concept, whole liver mass transplantation, long term engraftment and function as well as correction of a metabolic defect in animal models could be achieved with a principally reversible procedure. Future studies have to

  1. Characterization of the liver-macrophages isolated from a mixed primary culture of neonatal swine hepatocytes

    Directory of Open Access Journals (Sweden)

    Hiroshi Kitani

    2014-01-01

    Full Text Available We recently developed a novel procedure to obtain liver-macrophages in sufficient number and purity using a mixed primary culture of rat and bovine hepatocytes. In this study, we aim to apply this method to the neonatal swine liver. Swine parenchymal hepatocytes were isolated by a two-step collagenase perfusion method and cultured in T75 culture flasks. Similar to the rat and bovine cells, the swine hepatocytes retained an epithelial cell morphology for only a few days and progressively changed into fibroblastic cells. After 5–13 days of culture, macrophage-like cells actively proliferated on the mixed fibroblastic cell sheet. Gentle shaking of the culture flask followed by the transfer and brief incubation of the culture supernatant resulted in a quick and selective adhesion of macrophage-like cells to a plastic dish surface. After rinsing dishes with saline, the attached macrophage-like cells were collected at a yield of 106 cells per T75 culture flask at 2–3 day intervals for more than 3 weeks. The isolated cells displayed a typical macrophage morphology and were strongly positive for macrophage markers, such as CD172a, Iba-1 and KT022, but negative for cytokeratin, desmin and α-smooth muscle actin, indicating a highly purified macrophage population. The isolated cells exhibited phagocytosis of polystyrene microbeads and a release of inflammatory cytokines upon lipopolysaccharide stimulation. This shaking and attachment method is applicable to the swine liver and provides a sufficient number of macrophages without any need of complex laboratory equipments.

  2. Liver stem cells: from preface to advancements.

    Science.gov (United States)

    Rehman, Kanwal; Iqbal, Muhammad Javed; Zahra, Nureen; Akash, Muhammad Sajid Hamid

    2014-01-01

    Liver is a major metabolic organ of the body and is known to comprise of two epithelial cell lineages, namely, hepatocytes and cholangiocytes which are known to originate from hepatoblasts during fetal developing stages. Upon acute injury, the hepatocytes and cholangiocytes undergo cellular division to compensate the loss, however, chronic damage may suppress this proliferative ability and as a consequence hepatic and extra-hepatic stem cells may contribute for liver regeneration. Facultative liver stem cells (oval cells) may emerge, proliferate and contribute in replacing damaged hepatic cells. Similarly, bone marrow and mesenchymal stem cells are also known for contributing in liver regeneration having their ability of self renewal and differentiation. However, a closer look is still required to bridge the existing knowledge gaps between functionality and limitations. Thereby, we have discussed the detailed mechanistic insights of both hepatic and extra-hepatic stem cells including, stem/progenitor cells, adult/fetal hepatocytes, oval cells, bone marrow and mesenchymal stem cells. We have also focused on few in vitro and in vivo studies elucidating therapeutic applications and challenges related to the liver stem cells. We believe that such conversations may provide invaluable contribution for realistic advancement in the state of therapeutic stem-cell transplantation.

  3. Assessing Concordance of Drug-Induced Transcriptional Response in Rodent Liver and Cultured Hepatocytes.

    Directory of Open Access Journals (Sweden)

    Jeffrey J Sutherland

    2016-03-01

    Full Text Available The effect of drugs, disease and other perturbations on mRNA levels are studied using gene expression microarrays or RNA-seq, with the goal of understanding molecular effects arising from the perturbation. Previous comparisons of reproducibility across laboratories have been limited in scale and focused on a single model. The use of model systems, such as cultured primary cells or cancer cell lines, assumes that mechanistic insights derived from the models would have been observed via in vivo studies. We examined the concordance of compound-induced transcriptional changes using data from several sources: rat liver and rat primary hepatocytes (RPH from Drug Matrix (DM and open TG-GATEs (TG, human primary hepatocytes (HPH from TG, and mouse liver/HepG2 results from the Gene Expression Omnibus (GEO repository. Gene expression changes for treatments were normalized to controls and analyzed with three methods: 1 gene level for 9071 high expression genes in rat liver, 2 gene set analysis (GSA using canonical pathways and gene ontology sets, 3 weighted gene co-expression network analysis (WGCNA. Co-expression networks performed better than genes or GSA when comparing treatment effects within rat liver and rat vs. mouse liver. Genes and modules performed similarly at Connectivity Map-style analyses, where success at identifying similar treatments among a collection of reference profiles is the goal. Comparisons between rat liver and RPH, and those between RPH, HPH and HepG2 cells reveal lower concordance for all methods. We observe that the baseline state of untreated cultured cells relative to untreated rat liver shows striking similarity with toxicant-exposed cells in vivo, indicating that gross systems level perturbation in the underlying networks in culture may contribute to the low concordance.

  4. Differential Proteomics in Malignant and Normal Liver Cell Lines

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-jun; WANG Bin; YAN Zhi-yong; QIAN Dong-meng; SONG Xu-xia; Ding Shou-yi; BAI Zhi-qiang

    2007-01-01

    Objective: To detect differential protein expression in malignant and normal liver cell lines in vitro using the SELDI ProteinChip platform, for investigating the pathogenesis of liver cancer. Methods: Two cell lines, human normal liver cell line L02 and hepatoma cell line SMMC-7721 were cultured routinely, harvested in good condition and lysed. After quantification, the supernatant of the lysate was tested by IMAC3 (Immobilized Mental Affinity Capture) and WCX2 (Weak Cation Exchange) chips on the SELDI-TOF-MS ProteinChip reader. Results: Protein expression differed between the malignant and normal liver cell lines. A total of 20 differentially expressed proteins were found, among which, 7 were captured by the IMAC3 chip and 14 by the WCX2 chip. Peaks at 5,419, 7,979 and 11,265 Da were higher and at 8,103, 8,492, 10,160 and 11,304 Da lower in SMMC-7721 cells by the IMAC3 chip; peaks at 7,517, 7,945 and 7,979 Da were higher and at 5,061, 5,551, 5,818, 7,439, 9,401,10,100, 10,312, 11,621, 11,662, 11,830 and 12,772 Da lower in SMMC-7721 cells by the WCX2 chip. Interestingly, both chips captured the 7,979 Da peak. In addition, the 11,081 Da peak corresponded precisely with the molecular mass of the calcium binding protein S100A10, which may participate in the formation of liver cancer in association with p36. Conclusion: Detecting differential protein expression in malignant and normal liver cell lines using the SELDI ProteinChip platform was simple, sensitive and repeatable. The results we obtained can serve as a basis for investigating the pathogenesis of liver cancer and aid the discovery of new therapeutic targets.

  5. Natural killer cells in liver disease

    National Research Council Canada - National Science Library

    Tian, Zhigang; Chen, Yongyan; Gao, Bin

    2013-01-01

    Natural killer (NK) cells are enriched in lymphocytes within the liver and have unique phenotypic features and functional properties, including tumor necrosis factor–related apoptosis‐inducing ligand...

  6. Dose-dependent DNA ruptures induced by the procarcinogen dimethylnitrosamine on primary rat liver cultures.

    Science.gov (United States)

    Mendoza-Figueroa, T; López-Revilla, R; Villa-Treviño, S

    1979-08-01

    The effect of certain procarcinogens, among which demethylnitrosamine (DMN) is included, has been difficult to detect in several short-term assays. An alternative system, in which DMN effects could be easily quantitated, might be useful in studies of chemical carcinogenesis and environmental contamination. To develop such a system, we tested the possibility of measuring the amount of breakage produced by DMN on radiolabeled DNA of primary liver cultures. Rat liver cells were isolated 20 to 24 hr after partial hepatectomy, cultured, and pulse labeled in vitro with [3H]thymidine. Radioactively labeled cultures were treated with DMN or with the direct carcinogen N-methyl-N'-nitro-N-nitrosoguanidine and then lysed directly onto alkaline sucrose gradients. DMN and N-methyl-N'-nitro-N-nitrosoguanidine caused a dose-dependent reduction in the molecular weight of DNA, N-methyl-N'-nitro-N-nitrosoguanidine being approximately 1000 times more potent than DMN. DNA breaks appeared to be carcinogen specific and not due to cell death since treatment with high doses of cycloheximide, a noncarcinogenic hepatotoxic, was without significant effect. Our data indicate that detection of DNA breaks constitutes a more sensitive assay of DMN effects than does unscheduled DNA synthesis in primary liver cultures. Therefore, it could be useful to extend our work to determine the general applicability of quantitation of DNA breaks in liver cells as a short-term assay for the identification of possible carcinogens and procarcinogens.

  7. Hepatic Stellate Cells Support Hematopoiesis and are Liver-Resident Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Claus Kordes

    2013-02-01

    Full Text Available Background/Aims: Hematopoiesis can occur in the liver, when the bone marrow fails to provide an adequate environment for hematopoietic stem cells. Hepatic stellate cells possess characteristics of stem/progenitor cells, but their contribution to hematopoiesis is not known thus far. Methods: Isolated hepatic stellate cells from rats were characterized with respect to molecular markers of bone marrow mesenchymal stem cells (MSC and treated with adipocyte or osteocyte differentiation media. Stellate cells of rats were further co-cultured with murine stem cell antigen-1+ hematopoietic stem cells selected by magnetic cell sorting. The expression of murine hematopoietic stem cell markers was analyzed by mouse specific quantitative PCR during co-culture. Hepatic stellate cells from eGFP+ rats were transplanted into lethally irradiated wild type rats. Results: Desmin-expressing stellate cells were associated with hematopoietic sites in the fetal rat liver. Hepatic stellate cells expressed MSC markers and were able to differentiate into adipocytes and osteocytes in vitro. Stellate cells supported hematopoietic stem/progenitor cells during co-culture similar to bone marrow MSC, but failed to differentiate into blood cell lineages after transplantation. Conclusion: Hepatic stellate cells are liver-resident MSC and can fulfill typical functions of bone marrow MSC such as the differentiation into adipocytes or osteocytes and support of hematopoiesis.

  8. Laminin and Fibronectin in Cell Adhesion: Enhanced Adhesion of Cells from Regenerating Liver to Laminin

    Science.gov (United States)

    Carlsson, Roland; Engvall, Eva; Freeman, Aaron; Ruoslahti, Erkki

    1981-04-01

    Laminin, a basement membrane glycoprotein isolated from cultures of mouse endodermal cells and rat yolk sac carcinoma cells, promoted the attachment of liver cells obtained from regenerating mouse liver. Cells from normal mouse liver attached readily to dishes coated with fibronectin but attached poorly to surfaces coated with laminin. Both proteins efficiently promoted the attachment of cells from livers undergoing regeneration. After regeneration, the attachment to laminin returned to the low levels found in animals not subjected to partial hepatectomy but attachment to fibronectin remained high. Immunofluorescent staining of sections of normal liver with antilaminin revealed the presence of laminin in or adjacent to the walls of the bile ducts and blood vessels. After induction of regeneration by partial hepatectomy, increased amounts of laminin appeared in the sinusoidal areas. After carbon tetrachloride poisoning, staining for laminin was especially pronounced in the necrotic and postnecrotic areas around the central veins. This additional expression of laminin was transient. It reached a maximum around 5-6 days after the injury and then gradually disappeared. These findings show that laminin is an adhesive protein. The increase of laminin in regenerating liver and the adhesiveness of cells from such livers to laminin suggest a role for laminin in the maintenance of a proper tissue organization during liver regeneration.

  9. Perfusion Based Cell Culture Chips

    Science.gov (United States)

    Heiskanen, A.; Emnéus, J.; Dufva, M.

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers.

  10. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers.......Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...

  11. Microfluidic Cell Culture Device

    Science.gov (United States)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  12. Endothelial cell promotion of early liver and pancreas development.

    Science.gov (United States)

    Freedman, Deborah A; Kashima, Yasushige; Zaret, Kenneth S

    2007-01-01

    Different steps of embryonic pancreas and liver development require inductive signals from endothelial cells. During liver development, interactions between newly specified hepatic endoderm cells and nascent endothelial cells are crucial for the endoderm's subsequent growth and morphogenesis into a liver bud. Reconstitution of endothelial cell stimulation of hepatic cell growth with embryonic tissue explants demonstrated that endothelial signalling occurs independent of the blood supply. During pancreas development, midgut endoderm interactions with aortic endothelial cells induce Ptf1a, a crucial pancreatic determinant. Endothelial cells also have a later effect on pancreas development, by promoting survival of the dorsal mesenchyme, which in turn produces factors supporting pancreatic endoderm. A major goal of our laboratory is to determine the endothelial-derived molecules involved in these inductive events. Our data show that cultured endothelial cells induce Ptf1a in dorsal endoderm explants lacking an endogenous vasculature. We are purifying endothelial cell line product(s) responsible for this effect. We are also identifying endothelial-responsive regulatory elements in genes such as Ptf1a by genetic mapping and chromatin-based assays. These latter approaches will allow us to track endothelial-responsive signal pathways from DNA targets within progenitor cells. The diversity of organogenic steps dependent upon endothelial cell signalling suggests that cross-regulation of tissue development with its vasculature is a general phenomenon.

  13. Purification of fetal liver stem/progenitor cells containing all the repopulation potential for normal adult rat liver

    DEFF Research Database (Denmark)

    Oertel, Michael; Menthena, Anuradha; Chen, Yuan-Qing

    2008-01-01

    and characteristic properties in vitro and their proliferative and differentiation potential in vivo after transplantation into normal adult rat liver. RESULTS: Rat ED14 FLSPC were purified to 95% homogeneity and exhibited cell culture and gene expression characteristics expected for hepatic stem/progenitor cells...

  14. Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells.

    Science.gov (United States)

    Chou, Song; Lodish, Harvey F

    2010-04-27

    Previously we showed that the ~2% of fetal liver cells reactive with an anti-CD3epsilon monoclonal antibody support ex vivo expansion of both fetal liver and bone marrow hematopoietic stem cells (HSCs); these cells express two proteins important for HSC ex vivo expansion, IGF2, and angiopoietin-like 3. Here we show that these cells do not express any CD3 protein and are not T cells; rather, we purified these HSC-supportive stromal cells based on the surface phenotype of SCF(+)DLK(+). Competitive repopulating experiments show that SCF(+)DLK(+) cells support the maintenance of HSCs in ex vivo culture. These are the principal fetal liver cells that express not only angiopoietin-like 3 and IGF2, but also SCF and thrombopoietin, two other growth factors important for HSC expansion. They are also the principal fetal liver cells that express CXCL12, a factor required for HSC homing, and also alpha-fetoprotein (AFP), indicating that they are fetal hepatic stem or progenitor cells. Immunocytochemistry shows that >93% of the SCF(+) cells express DLK and Angptl3, and a portion of SCF(+) cells also expresses CXCL12. Thus SCF(+)DLK(+) cells are a highly homogenous population that express a complete set of factors for HSC expansion and are likely the primary stromal cells that support HSC expansion in the fetal liver.

  15. Immature hematopoietic stem cells undergo maturation in the fetal liver.

    Science.gov (United States)

    Kieusseian, Aurelie; Brunet de la Grange, Philippe; Burlen-Defranoux, Odile; Godin, Isabelle; Cumano, Ana

    2012-10-01

    Hematopoietic stem cells (HSCs), which are defined by their capacity to reconstitute adult conventional mice, are first found in the dorsal aorta after 10.5 days post coitus (dpc) and in the fetal liver at 11 dpc. However, lympho-myeloid hematopoietic progenitors are detected in the dorsal aorta from 9 dpc, raising the issue of their role in establishing adult hematopoiesis. Here, we show that these progenitors are endowed with long-term reconstitution capacity, but only engraft natural killer (NK)-deficient Rag2γc(-/-) mice. This novel population, called here immature HSCs, evolves in culture with thrombopoietin and stromal cells, into HSCs, defined by acquisition of CD45 and MHC-1 expression and by the capacity to reconstitute NK-competent mice. This evolution occurs during ontogeny, as early colonization of fetal liver by immature HSCs precedes that of HSCs. Moreover, organ culture experiments show that immature HSCs acquire, in this environment, the features of HSCs.

  16. Adult liver stem cells in hepatic regeneration and cancer

    NARCIS (Netherlands)

    Nantasanti, Sathidpak

    2015-01-01

    An alternative source of livers for transplantation in patients with (genetic) liver diseases and liver failure is needed because liver donors are scarce. HPC-derived hepatocyte-like cells could be one of the options. Because dogs and humans share liver-pathologies and disease-pathways, the dog is c

  17. Organoids from adult liver and pancreas: Stem cell biology and biomedical utility.

    Science.gov (United States)

    Hindley, Christopher J; Cordero-Espinoza, Lucía; Huch, Meritxell

    2016-12-15

    The liver and pancreas are critical organs maintaining whole body metabolism. Historically, the expansion of adult-derived cells from these organs in vitro has proven challenging and this in turn has hampered studies of liver and pancreas stem cell biology, as well as being a roadblock to disease modelling and cell replacement therapies for pathologies in these organs. Recently, defined culture conditions have been described which allow the in vitro culture and manipulation of adult-derived liver and pancreatic material. Here we review these systems and assess their physiological relevance, as well as their potential utility in biomedicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Abnormal hepatic copper accumulation of spheroid composed of liver cells from LEC rats in vitro.

    Science.gov (United States)

    Ueno, K; Yoshizawa, M; Satoh, T; Yoneda, S; Ohmichi, M; Yamazaki, M; Mori, Y; Suzuki, K T

    1995-11-01

    The LEC rat is a mutant strain displaying hereditary hepatitis, and shows abnormal accumulation of copper (Cu) similar to that occurring in Wilson's disease. We prepared a multicellular spheroid composed of LEC rat liver cells to investigate the mechanism for abnormal accumulation of Cu. These multicellular spheroids were prepared by detaching the monolayer on the collagen-conjugated thermo-responsive polymer coated culture dish at a temperature below the critical solution temperature and culturing on the non-adhesive substratum. Long-term cultured spheroids of LEC rat liver cells as well as SD rat liver cells were attempted. Non-parenchymal cells obtained by collagenase perfusion from the LEC liver were fewer than those from the SD liver. Cells from the LEC rat, over 11 weeks of age, did not form a cell sheet; however, a mixture of parenchymal cells from LEC rats over aged 11 weeks and non-parenchymal cells from SD rats of any age yielded intact spheroids. We examined the toxicity, the accumulation and distribution of Cu in spheroids. The accumulation of Cu in LEC spheroids was higher than that in SD spheroids. Results suggest that spheroids consisting of LEC liver cells are useful as an alternative model to in vivo tests to investigate the mechanism for abnormal accumulation of Cu in liver.

  19. In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells.

    Directory of Open Access Journals (Sweden)

    Sarada Devi Ramachandran

    Full Text Available In this study we used differentiated adult human upcyte® cells for the in vitro generation of liver organoids. Upcyte® cells are genetically engineered cell strains derived from primary human cells by lenti-viral transduction of genes or gene combinations inducing transient proliferation capacity (upcyte® process. Proliferating upcyte® cells undergo a finite number of cell divisions, i.e., 20 to 40 population doublings, but upon withdrawal of proliferation stimulating factors, they regain most of the cell specific characteristics of primary cells. When a defined mixture of differentiated human upcyte® cells (hepatocytes, liver sinusoidal endothelial cells (LSECs and mesenchymal stem cells (MSCs was cultured in vitro on a thick layer of Matrigel™, they self-organized to form liver organoid-like structures within 24 hours. When further cultured for 10 days in a bioreactor, these liver organoids show typical functional characteristics of liver parenchyma including activity of cytochromes P450, CYP3A4, CYP2B6 and CYP2C9 as well as mRNA expression of several marker genes and other enzymes. In summary, we hereby describe that 3D functional hepatic structures composed of primary human cell strains can be generated in vitro. They can be cultured for a prolonged period of time and are potentially useful ex vivo models to study liver functions.

  20. Stem cell differentiation and human liver disease

    Institute of Scientific and Technical Information of China (English)

    Wen-Li Zhou; Claire N Medine; Liang Zhu; David C Hay

    2012-01-01

    Human stem cells are scalable cell populations capable of cellular differentiation.This makes them a very attractive in vitro cellular resource and in theory provides unlimited amounts of primary cells.Such an approach has the potential to improve our understanding of human biology and treating disease.In the future it may be possible to deploy novel stem cell-based approaches to treat human liver diseases.In recent years,efficient hepatic differentiation from human stem cells has been achieved by several research groups including our own.In this review we provide an overview of the field and discuss the future potential and limitations of stem cell technology.

  1. Hepatocyte function within a stacked double sandwich culture plate cylindrical bioreactor for bioartificial liver system.

    Science.gov (United States)

    Xia, Lei; Arooz, Talha; Zhang, Shufang; Tuo, Xiaoye; Xiao, Guangfa; Susanto, Thomas Adi Kurnia; Sundararajan, Janani; Cheng, Tianming; Kang, Yuzhan; Poh, Hee Joo; Leo, Hwa Liang; Yu, Hanry

    2012-11-01

    Bioartificial liver (BAL) system is promising as an alternative treatment for liver failure. We have developed a bioreactor with stacked sandwich culture plates for the application of BAL. This bioreactor design addresses some of the persistent problems in flat-bed bioreactors through increasing cell packing capacity, eliminating dead flow, regulating shear stress, and facilitating the scalability of the bioreactor unit. The bioreactor contained a stack of twelve double-sandwich-culture plates, allowing 100 million hepatocytes to be housed in a single cylindrical bioreactor unit (7 cm of height and 5.5 cm of inner diameter). The serial flow perfusion through the bioreactor increased cell-fluid contact area for effective mass exchange. With the optimal perfusion flow rate, shear stress was minimized to achieve high and uniform cell viabilities across different plates in the bioreactor. Our results demonstrated that hepatocytes cultured in the bioreactor could re-establish cell polarity and maintain liver-specific functions (e.g. albumin and urea synthesis, phase I&II metabolism functions) for seven days. The single bioreactor unit can be readily scaled up to house adequate number of functional hepatocytes for BAL development.

  2. Cell culture's spider silk road.

    Science.gov (United States)

    Perkel, Jeffrey

    2014-06-01

    A number of synthetic and natural materials have been tried in cell culture and tissue engineering applications in recent years. Now Jeffrey Perkel takes a look at one new culture component that might surprise you-spider silk.

  3. LIVER AND BONE MARROW STEM/PROGENITOR CELLS AS REGULATORS OF REPARATIVE REGENERATION OF DAMAGED LIVER

    Directory of Open Access Journals (Sweden)

    А. V. Lundup

    2010-01-01

    Full Text Available In this review the modern information about effectiveness of liver insufficiency treatment by stem/ progenitor cells of liver (oval cells and bone marrow (hemopoietic cells and mesenchymal cells was presented. It is shown that medical action of these cells is referred on normalization of liver cell interaction and reorganization of processes of a reparative regeneration in damaged liver. It is believed that application of mesenchymal stromal cells from an autological bone marrow is the most perspective strategy. However, for definitive judgement about regenerative possibilities of the autological bone marrow cells it is necessary to carry out large-scale double blind clinical researches. 

  4. Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases

    Science.gov (United States)

    Yarygin, Konstantin N.

    2017-01-01

    The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable. PMID:28210629

  5. Transplantation of fetal liver epithelial progenitor cells ameliorates experimental liver fibrosis in mice

    Institute of Scientific and Technical Information of China (English)

    Jin-Fang Zheng; Li-Jian Liang; Chang-Xiong Wu; Jin-Song Chen; Zhen-Sheng Zhang

    2006-01-01

    AIM: To investigate the effect of transplanted fetal liver epithelial progenitor (FLEP) cells on liver fibrosis in mice.METHODS: FLEP cells were isolated from embryonal day (ED) 14 BALB/c mice and transplanted into female syngenic BALB/c mice (n = 60). After partial hepatectomy (PH), diethylnitrosamine (DEN) was administered to induce liver fibrosis. Controls received FLEP cells and non-supplemented drinking water, the model group received DEN-spiked water, and the experimental group received FLEP cells and DEN.Mice were killed after 1, 2, and 3 mo, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), hyaluronic acid (HA), and laminin (LN) in serum,and hydroxyproline (Hyp) content in liver were assessed.Alpha-smooth muscle actin (α-SMA) of liver was tested by immunohistochemistry. Transplanted male mice FLEP cells were identified by immunocytochemistry for sry (sex determination region for Y chromosome) protein.RESULTS: Serum ALT, AST, HA, and LN were markedly reduced by transplanted FLEP cells. Liver Hyp content and α-SMA staining in mice receiving FLEP cells were lower than that of the model group, which was consistent with altered liver pathology. Transplanted cells proliferated and differentiated into hepatocytes and bile duct epithelial cells with 30%-50% repopulation in the liver fibrosis induced by DEN after 3 mo.CONCLUSION: Transplanted FLEP cells proliferate and differentiate into hepatocytes and bile duct epithelial cells with high repopulation capacity in the fiberized liver induced by DEN, which restores liver function and reduces liver fibrosis.

  6. Isolation of Human Fetal Liver Progenitors and Their Enhanced Proliferation by Three-Dimensional Coculture with Endothelial Cells

    Science.gov (United States)

    Xiong, Anming; Austin, Timothy W.; Lagasse, Eric; Uchida, Nobuko; Tamaki, Stanley; Bordier, Bruno B.; Weissman, Irving L.; Glenn, Jeffrey S.; Millan, Maria T.

    2008-01-01

    Liver progenitor cells, characterized by the coexpression of biliary and hepatocyte lineage markers and the ability to form colonies in culture, were isolated by flow cytometry from primary human fetal livers. These prospectively isolated liver progenitor cells supported hepatitis D virus infection, expressed, and produced albumin and α-fetoprotein, as tracked by albumin-and α-fetoprotein–driven lentiviral promoter reporter constructs and measured by ELISA, respectively. Coculture in three-dimensional (3D) fibrin gel with endothelial cells resulted in the formation of vascular structures by the endothelial cells and increased proliferation of liver progenitors. The enhanced proliferation of liver progenitors that was observed when liver progenitors and endothelial cells were cultured in direct contact was not achieved when liver progenitors and endothelial cells were cultured on adjacent but separate matrices and when they were cultured across transwell membranes. In conclusion, coculture of liver progenitors and endothelial cells in three-dimensional matrix resulted in enhanced liver progenitor proliferation and function. This coculture methodology offers a novel coculture system that could be applied for the development of engineered liver tissues. PMID:19230124

  7. Lineage tracing reveals conversion of liver sinusoidal endothelial cells into hepatocytes.

    Science.gov (United States)

    Tan, Zhaoli; Chen, Keyan; Shao, Yong; Gao, Lihua; Wang, Yan; Xu, Jianming; Jin, Yang; Hu, Xianwen; Wang, Youliang

    2016-09-01

    Although liver sinusoidal endothelial cells (LSECs) have long been known to contribute to liver regeneration following injury, the exact role of these cells in liver regeneration remains poorly understood. In this work, we performed lineage tracing of LSECs in mice carrying Tie2-Cre or VE-cadherin-Cre constructs to facilitate fate-mapping of LSECs in liver regeneration. Some YFP-positive LSECs were observed to convert into hepatocytes following a two-thirds partial hepatectomy (PH). Furthermore, human umbilical vein endothelial cells (HUVECs) could be triggered to convert into cells that closely resembled hepatocytes when cultured with serum from mice that underwent an extended PH. These findings suggest that mature non-hepatocyte LSECs play an essential role in mammalian liver regeneration by converting to hepatocytes. The conversion of LSECs to hepatocyte-like (iHep) cells may provide a new approach to tissue engineering.

  8. Interpretation of cell culture phenomena.

    Science.gov (United States)

    Vierck, J L; Dodson, M V

    2000-03-01

    This paper discusses the dilemma of interpreting unusual or abnormal phenomena seen in cell cultures and is not intended to address the statistical design of experiments. Problems that can be encountered when growing cells in experimental situations include low or decreasing cell numbers, abnormal cell morphology, microbial contamination, and detachment of the cell monolayer. If any of these situations occur, it is not realistic to proceed with data analysis until the problem is corrected. The best policy is to attempt to standardize all types of cultures used for analysis and to avoid using any cultures that display atypical characteristics.

  9. Long-term culture of cholangiocytes from liver fibro-granulomatous lesions

    Directory of Open Access Journals (Sweden)

    Borojevic Radovan

    2006-04-01

    Full Text Available Abstract Background Extensive bile duct proliferation is a key feature of the tissue reaction to clinical and experimental forms of liver injury. Experimental infection of mice by Schistosoma mansoni is a well-studied model of liver fibrosis with bile duct hyperplasia. However, the regulatory mechanisms of bile duct changes are not well understood. In this study we report the reproducible isolation of long-term cultures of cholangiocytes from mice livers with schistosomal fibrosis. Methods We have isolated a cholangiocyte cell line from Schistosoma-induced liver granulomas using a combination of methods including selective adhesion and isopyknic centrifugation in Percoll. Results The cell line was characterized by morphological criteria in optical and transmission electron microscopy, ability to form well differentiated ductular structures in collagen gels and by a positive staining for cytokeratin 18 and cytokeratin 19. To our knowledge, this is the first murine cholangiocyte cell line isolated from schistosomal fibrosis reported in the literature. Conclusion After 9 months and 16 passages this diploid cell line maintained differentiated characteristics and a high proliferative capacity. We believe the method described here may be a valuable tool to study bile duct changes during hepatic injury.

  10. Regulation of Liver Enriched Transcription Factors in Rat Hepatocytes Cultures on Collagen and EHS Sarcoma Matrices.

    Directory of Open Access Journals (Sweden)

    Jürgen Borlak

    Full Text Available Liver-enriched transcription factors (LETF play a crucial role in the control of liver-specific gene expression and for hepatocytes to retain their molecular and cellular functions complex interactions with extra cellular matrix (ECM are required However, during cell isolation ECM interactions are disrupted and for hepatocytes to regain metabolic competency cells are cultured on ECM substrata. The regulation of LETFs in hepatocytes cultured on different ECM has not been studied in detail. We therefore compared two common sources of ECM and evaluated cellular morphology and hepatocyte differentiation by investigating DNA binding activity of LETFs at gene specific promoters and marker genes of hepatic metabolism. Furthermore, we studied testosterone metabolism and albumin synthesis to assess the metabolic competence of cell cultures. Despite significant difference in morphological appearance and except for HNF1β (p<0.001 most LETFs and several of their target genes did not differ in transcript expression after Bonferroni adjustment when cultured on collagen or Matrigel. Nonetheless, Western blotting revealed HNF1β, HNF3α, HNF3γ, HNF4α, HNF6 and the smaller subunits of C/EBPα and C/EBPβ to be more abundant on Matrigel cultured cells. Likewise, DNA binding activity of HNF3α, HNF3β, HNF4α, HNF6 and gene expression of hepatic lineage markers were increased on Matrigel cultured hepatocytes. To further investigate hepatic gene regulation, the effects of Aroclor 1254 treatment, e.g. a potent inducer of xenobiotic defense were studied in vivo and in vitro. The gene expression of C/EBP-α increased in rat liver and hepatocytes cultured on collagen and this treatment induced DNA binding activity of HNF4α, C/EBPα and C/EBPβ and gene expression of CYP1A1 and CYP1A2 in vivo and in vitro. Taken collectively, two sources of ECM greatly affected hepatocyte morphology, activity of liver enriched transcription factors, hepatic gene expression and

  11. Donor liver natural killer cells alleviate liver allograft acute rejection in rats

    Institute of Scientific and Technical Information of China (English)

    Jian-Dong Yu; Tian-Zhu Long; Guo-Lin Li; Li-Hong Lv; Hao-Ming Lin; Yong-Heng Huang; Ya-Jin Chen; Yun-Le Wan

    2011-01-01

    BACKGROUND: Liver enriched natural killer (NK) cells are of high immune activity. However, the function of donor liver NK cells in allogeneic liver transplantation (LTx) remains unclear. METHODS: Ten Gy of whole body gamma-irradiation (WBI) from a 60Co source at 0.6 Gy/min was used for depleting donor-derived leukocytes, and transfusion of purified liver NK cells isolated from the same type rat as donor (donor type liver NK cells, dtlNKs) through portal vein was performed immediately after grafting the irradiated liver. Post-transplant survival observation on recipients and histopathological detection of liver grafts were adoptive to evaluate the biological impact of donor liver NK cells on recipients' survival in rat LTx. RESULTS: Transfusion of dtlNKs did not shorten the survival time among the recipients of spontaneous tolerance model (BN to LEW rat) after rat LTx, but prolonged the liver graft survival among the recipients depleted of donor-derived leukocytes in the acute rejection model (LEW to BN rat). Compared to the recipients in the groups which received the graft depleted of donor-derived leukocytes, better survival and less damage in the allografts were also found among the recipients in the two different strain combinations of liver allograft due to transfusion of dtlNKs. CONCLUSIONS: Donor liver NK cells alone do not exacerbate liver allograft acute rejection. Conversely, they can alleviate it, and improve the recipients' survival.

  12. Signal molecule-mediated hepatic cell communication during liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Zhen-Yu Zheng; Shun-Yan Weng; Yan Yu

    2009-01-01

    Liver regeneration is a complex and well-orchestrated process, during which hepatic cells are activated to produce large signal molecules in response to liver injury or mass reduction. These signal molecules, in turn, set up the connections and cross-talk among liver cells to promote hepatic recovery. In this review, we endeavor to summarize the network of signal molecules that mediates hepatic cell communication in the regulation of liver regeneration.

  13. A red wine polyphenolic extract reduces the activation phenotype of cultured human liver myofibroblasts

    Institute of Scientific and Technical Information of China (English)

    Véronique Neaud; Jean Rosenbaum

    2008-01-01

    AIM: To test the effect of a standardized red wine polyphenolic extract (RWPE) on the phenotype of human liver myofibroblasts in culture.METHODS: Human myofibroblasts grown from liver explants were used in this study. Cell proliferation was measured with the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. Signaling events were analyzed by western blot with phosphospecific antibodies. Matrix-metalloproteinase activity was measured with gel zymography.RESULTS: We found that cell proliferation was dosedependently decreased by up to 90% by RWPE while cell viability was not affected. Exposure to RWPE also greatly decreased the phosphorylation of ERK1/ERK2 and Akt in response to stimulation by the mitogenic factor platelet-derived growth factor BB (PDGF-BB).Finally, RWPE affected extracellular matrix remodeling by decreasing the secretion by myofibroblasts of matrixmetalloproteinase-2 and of tissue inhibitor of matrixmetalloproteinases-1.CONCLUSION: Altogether, RWPE decreases the activation state of liver myofibroblasts. The identification of the active compounds in RWPE could offer new therapeutic strategies against liver fibrosis.

  14. An Efficient Protocol for Deriving Liver Stem Cells from Neonatal Mice: Validating Its Differentiation Potential

    Directory of Open Access Journals (Sweden)

    Sugapriya Dhanasekaran

    2015-01-01

    Full Text Available The success of liver regeneration depends on the availability of suitable cell types and their potential to differentiate into functional hepatocytes. To identify the stem cells which have the ability to differentiate into hepatocytes, we used neonatal liver as source. However, the current protocol for isolating stem cells from liver involves enzymes like collagenase, hyaluronidase exposed for longer duration which limits the success. This results in the keen interest to develop an easy single step enzyme digestion protocol for isolating stem cells from liver for tissue engineering approaches. Thus, the unlimited availability of cell type favors setting up the functional recovery of the damaged liver, ensuring ahead success towards treating liver diseases. We attempted to isolate liver stem derived cells (LDSCs from mouse neonatal liver using single step minimal exposure to enzyme followed by in vitro culturing. The cells isolated were characterized for stem cell markers and subjected to lineage differentiation. Further, LDSCs were induced to hepatocyte differentiation and validated with hepatocyte markers. Finally, we developed a reproducible, efficient protocol for isolation of LDSCs with functional hepatocytes differentiation potential, which further can be used as in vitro model system for assessing drug toxicity assays in various preclinical trials.

  15. Three-dimentional growth of liver / stem cells in vitro under simulated microgravity

    Science.gov (United States)

    Feng, Mei Fu

    Liver is a important and largest parenchymatous organ in vivo, and have complex and diverse structures and functions. In the world, there are many peoples suffers from liver injury and dis-ease, especially in Asia, but serious shortage of donor organ, especially for organic pathological changes, is a big problem in the world. Stem cells have the capabilities to self-renew and differ-entiate into multiple lineages, and are very significant in both theoretical research and clinical applications. Compared with traditional cell culture, cells of 3D growth are more close to their situation in vivo. The specific physics environment in space provides a great opportunity for 3D growth of cells and tissues. Due to the chance for entering into the space is so scarce, to mimic microgravity effects using a rotating cell culture system (RCCS) designed by NASA, and some other methods were studied for cellular 3D growth in vitro. Neonatal mouse liver Cells, hepatic progenitor/stem cells from fetal liver and WB-F344 cells were cultured in a 1:1 mixture of DMEM and F-12 supplemented with 10 % FCS and several factors, and seeded into the RCCS, 6-well and 24-well plates. Their growth characteristic, metabolism, differentiation and gene expression were studied by SEM, Histochemistry, Flow Cytometry, RT-PCR and so on. The results showed: 1. Neonatal mouse liver Cells (1day after birth) seem easy to grow for a three-dimentional-like structure, when the cells were cultured in the RCCS, a cell aggregate formed after 1 day of culture and were kept during 10 days culture. The size of aggregate was about 1 2 mm in diameter. 2. Hepatic progenitor/stem cells from fetal liver seem a good cell resource for liver disease'cell therapy. They expressed AFP and CKs, and no mature hepato-cytes marker and bile duct epithelial cells marker were detected. When were transplanted into Nod-Scid mice, they had multi-potential differentiation. 3. WB-F344 cells, a liver epithelial cell line, could grew well on

  16. Mouse cell culture - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-12-01

    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  17. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused 3D Porous Polymer Scaffold for Liver Tissue Engineering

    DEFF Research Database (Denmark)

    Hemmingsen, Mette; Muhammad, Haseena Bashir; Mohanty, Soumyaranjan

    A huge shortage of liver organs for transplantation has motivated the research field of tissue engineering to develop bioartificial liver tissue and even a whole liver. The goal of NanoBio4Trans is to create a vascularized bioartificial liver tissue, initially as a liver-support system. Due...... to limitations of primary hepatocytes regarding availability and maintenance of functionality, stem cells and especially human induced pluripotent stem cells (hIPS cells) are an attractive cell source for liver tissue engineering. The aim of this part of NanoBio4Trans is to optimize culture and hepatic...... differentiation of hIPS-derived definitive endoderm (DE) cells in a 3D porous polymer scaffold built-in a perfusable bioreactor. The use of a microfluidic bioreactor array enables the culture of 16 independent tissues in one experimental run and thereby an optimization study to be performed....

  18. Hepatitis C virus proteins do not directly trigger fibrogenic events in cultured human liver myofibroblasts.

    Science.gov (United States)

    Tan, K; Guibert, C; Neaud, V; Rosenbaum, J

    2003-11-01

    Although liver fibrosis is the major complication of hepatitis C virus (HCV) infection, the mechanisms of fibrogenesis in this setting are not completely understood. The aim of this study was to test the direct effect of HCV proteins on signalling- and fibrosis-related events in cultured human liver myofibroblasts, the effector cells of liver fibrogenesis. Cultured myofibroblasts were exposed to recombinant HCV core, a structural protein, and nonstructural proteins (NS) 3, NS 4 and NS 5. HCV proteins did not significantly increase DNA synthesis in myofibroblasts. We then examined if these proteins affected early signalling events. None of the HCV proteins affected the phosphorylation of the mitogen activated protein kinases/extracellular regulated kinases 1 and 2, or of the phosphatidylinositol 3-kinase target, Akt. HCV proteins had also no effect on intracellular calcium concentration. In other experiments, fibrogenesis-related parameters were measured. None of the HCV proteins had any effect on the secretion of type I collagen, tissue inhibitor of matrix metalloproteinases type 1, gelatinase or urokinase. Alpha-smooth muscle actin expression was also not modified. In summary, our experiments do not support a direct effect of these HCV proteins on fibrogenic cells.

  19. Characteristics of liver cancer stem cells and clinical correlations.

    Science.gov (United States)

    Cheng, Zhuo; Li, Xiaofeng; Ding, Jin

    2016-09-01

    Liver cancer is an aggressive malignant disease with a poor prognosis. Patients with liver cancer are usually diagnosed at an advanced stage and thus miss the opportunity for surgical resection. Chemotherapy and radiofrequency ablation, which target tumor bulk, have exhibited limited therapeutic efficacy to date. Liver cancer stem cells (CSCs) are a small subset of undifferentiated cells existed in liver cancer, which are considered to be responsible for liver cancer initiation, metastasis, relapse and chemoresistance. Elucidating liver CSC characteristics and disclosing their regulatory mechanism might not only deepen our understanding of the pathogenesis of liver cancer but also facilitate the development of diagnostic, prognostic and therapeutic approaches to improve the clinical management of liver cancer. In this review, we will summarize the recent advances in liver CSC research in terms of the origin, identification, regulation and clinical correlation.

  20. Cell culture purity issues and DFAT cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shengjuan [College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi Province 712100 (China); Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States); Bergen, Werner G. [Program in Cellular and Molecular Biosciences/Department of Animal Sciences, Auburn University, Auburn, AL 36849 (United States); Hausman, Gary J. [Animal Science Department, University of Georgia, Athens, GA 30602-2771 (United States); Zan, Linsen, E-mail: zanls@yahoo.com.cn [College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi Province 712100 (China); Dodson, Michael V., E-mail: dodson@wsu.edu [Department of Animal Sciences, Washington State University, Pullman, WA 99164 (United States)

    2013-04-12

    Highlights: •DFAT cells are progeny cells derived from dedifferentiated mature adipocytes. •Common problems in this research is potential cell contamination of initial cultures. •The initial cell culture purity is crucial in DFAT cell research field. -- Abstract: Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.

  1. Role of Th17 cells in common liver diseases

    Directory of Open Access Journals (Sweden)

    WEI Linlin

    2013-06-01

    Full Text Available In recent years, it has been found that T helper type 17 (Th17 cells are a new subset of CD4+ Th cells. Th17 cells play an important role in the onset and development of many liver diseases and have become the research focus in immunology. This paper summarizes the studies on the relationship between Th17 cells and various liver diseases in order to provide a new idea for the study and treatment of liver diseases.

  2. Memory NK cells: why do they reside in the liver?

    OpenAIRE

    Jiang, Xiaojun; Chen, Yonglin; Peng, Hui; Tian, Zhigang

    2013-01-01

    Immune memory is the hallmark of adaptive immunity. However, recent studies have shown that natural killer (NK) cells, key components of the innate immune system, also mediate memory responses in mice and humans. Strikingly, memory NK cells were liver-resident in some models, raising the question as to whether the liver is a special organ for the acquisition of NK cell memory. Here, we review the characteristics of NK cell memory by summarizing recent progress and discuss how the liver may ge...

  3. Transcriptome atlas of eight liver cell types uncovers effects of histidine catabolites on rat liver regeneration

    Indian Academy of Sciences (India)

    C. F. Chang; J. Y. Fan; F. C. Zhang; J. Ma; C. S. Xu

    2010-12-01

    Eight liver cell types were isolated using the methods of Percoll density gradient centrifugation and immunomagnetic beads to explore effects of histidine catabolites on rat liver regeneration. Rat Genome 230 2.0 Array was used to detect the expression profiles of genes associated with metabolism of histidine and its catabolites for the above-mentioned eight liver cell types, and bioinformatic and systems biology approaches were employed to analyse the relationship between above genes and rat liver regeneration. The results showed that the urocanic acid (UA) was degraded from histidine in Kupffer cells, acts on Kupffer cells itself and dendritic cells to generate immune suppression by autocrine and paracrine modes. Hepatocytes, biliary epithelia cells, oval cells and dendritic cells can convert histidine to histamine, which can promote sinusoidal endothelial cells proliferation by GsM pathway, and promote the proliferation of hepatocytes and biliary epithelia cells by GqM pathway.

  4. Transcriptome atlas of eight liver cell types uncovers effects of histidine catabolites on rat liver regeneration.

    Science.gov (United States)

    Chang, C F; Fan, J Y; Zhang, F C; Ma, J; Xu, C S

    2010-12-01

    Eight liver cell types were isolated using the methods of Percoll density gradient centrifugation and immunomagnetic beads to explore effects of histidine catabolites on rat liver regeneration. Rat Genome 230 2.0 Array was used to detect the expression profiles of genes associated with metabolism of histidine and its catabolites for the above-mentioned eight liver cell types, and bioinformatic and systems biology approaches were employed to analyse the relationship between above genes and rat liver regeneration. The results showed that the urocanic acid (UA) was degraded from histidine in Kupffer cells, acts on Kupffer cells itself and dendritic cells to generate immune suppression by autocrine and paracrine modes. Hepatocytes, biliary epithelia cells, oval cells and dendritic cells can convert histidine to histamine, which can promote sinusoidal endothelial cells proliferation by GsM pathway, and promote the proliferation of hepatocytes and biliary epithelia cells by GqM pathway.

  5. Human Adipose Tissue Derived Stem Cells Promote Liver Regeneration in a Rat Model of Toxic Injury

    Directory of Open Access Journals (Sweden)

    Eva Koellensperger

    2013-01-01

    Full Text Available In the light of the persisting lack of donor organs and the risks of allotransplantations, the possibility of liver regeneration with autologous stem cells from adipose tissue (ADSC is an intriguing alternative. Using a model of a toxic liver damage in Sprague Dawley rats, generated by repetitive intraperitoneal application of retrorsine and allyl alcohol, the ability of human ADSC to support the restoration of liver function was investigated. A two-thirds hepatectomy was performed, and human ADSC were injected into one remaining liver lobe in group 1 (n = 20. Injection of cell culture medium performed in group 2 (n = 20 served as control. Cyclosporine was applied to achieve immunotolerance. Blood samples were drawn weekly after surgery to determine liver-correlated blood values. Six and twelve weeks after surgery, animals were sacrificed and histological sections were analyzed. ADSC significantly raised postoperative albumin (P < 0.017, total protein (P < 0.031, glutamic oxaloacetic transaminase (P < 0.001, and lactate dehydrogenase (P < 0.04 levels compared to injection of cell culture medium alone. Transplanted cells could be found up to twelve weeks after surgery in histological sections. This study points towards ADSC being a promising alternative to hepatocyte or liver organ transplantation in patients with severe liver failure.

  6. Adult human liver mesenchymal progenitor cells express phenylalanine hydroxylase.

    Science.gov (United States)

    Baruteau, Julien; Nyabi, Omar; Najimi, Mustapha; Fauvart, Maarten; Sokal, Etienne

    2014-09-01

    Phenylketonuria (PKU) is one of the most prevalent inherited metabolic diseases and is accountable for a severe encephalopathy by progressive intoxication of the brain by phenylalanine. This results from an ineffective L-phenylalanine hydroxylase enzyme (PAH) due to a mutated phenylalanine hydroxylase (PAH) gene. Neonatal screening programs allow an early dietetic treatment with restrictive phenylalanine intake. This diet prevents most of the neuropsychological disabilities but remains challenging for lifelong compliance. Adult-derived human liver progenitor cells (ADHLPC) are a pool of precursors that can differentiate into hepatocytes. We aim to study PAH expression and PAH activity in a differenciated ADHLPC. ADHLPC were isolated from human hepatocyte primary culture of two different donors and differenciated under specific culture conditions. We demonstrated the high expression of PAH and a large increase of PAH activity in differenciated LPC. The age of the donor, the cellular viability after liver digestion and cryopreservation affects PAH activity. ADHLPC might therefore be considered as a suitable source for cell therapy in PKU.

  7. An efficient method of sorting liver stem cells by using immuno-magnetic microbeads

    Institute of Scientific and Technical Information of China (English)

    Yu-Fei He; Yin-Kun Liu; Dong-Mei Gao; Jun Chen; Peng-Yuan Yang

    2006-01-01

    AIM: To develop a method to isolate liver stem cells fast and efficiently.METHODS: Fetal mouse liver cells were characterized by cell surface antigens (c-Kit and CD45/TER119) using flow cytometry. The candidate liver stem cells were sorted by using immuno-magnetic microbeads and identified by clone-forming culture, RT-PCR and immunofluorescence assays.RESULTS: The c-Kit-(CD45/TER119)-cell population with 97.9% of purity were purified by immuno-magnetic microbeads at one time. The yield of this separation was about 6% of the total sorting cells and the cell viability was above 98%. When cultured in vitro these cells had high clone-forming and self-renewing ability and expressed markers of hepatocytes and bile duct cells.Functionally mature hepatocytes were observed after 21 d of culture.CONCLUSION: This method offers an excellent tool for the enrichment of liver stem cells with high purity and viability, which could be used for further studies. It is fast, efficient, simple and not expensive.

  8. Mechanisms of xenogeneic baboon platelet aggregation and phagocytosis by porcine liver sinusoidal endothelial cells.

    Directory of Open Access Journals (Sweden)

    Qiang Peng

    Full Text Available BACKGROUND: Baboons receiving xenogeneic livers from wild type and transgenic pigs survive less than 10 days. One of the major issues is the early development of profound thrombocytopenia that results in fatal hemorrhage. Histological examination of xenotransplanted livers has shown baboon platelet activation, phagocytosis and sequestration within the sinusoids. In order to study the mechanisms of platelet consumption in liver xenotransplantation, we have developed an in vitro system to examine the interaction between pig endothelial cells with baboon platelets and to thereby identify molecular mechanisms and therapies. METHODS: Fresh pig hepatocytes, liver sinusoidal and aortic endothelial cells were isolated by collagenase digestion of livers and processing of aortae from GTKO and Gal+ MGH-miniature swine. These primary cell cultures were then tested for the differential ability to induce baboon or pig platelet aggregation. Phagocytosis was evaluated by direct observation of CFSE labeled-platelets, which are incubated with endothelial cells under confocal light microscopy. Aurintricarboxylic acid (GpIb antagonist blocking interactions with von Willebrand factor/vWF, eptifibatide (Gp IIb/IIIa antagonist, and anti-Mac-1 Ab (anti-α(Mβ(2 integrin Ab were tested for the ability to inhibit phagocytosis. RESULTS: None of the pig cells induced aggregation or phagocytosis of porcine platelets. However, pig hepatocytes, liver sinusoidal and aortic endothelial cells (GTKO and Gal+ all induced moderate aggregation of baboon platelets. Importantly, pig liver sinusoidal endothelial cells efficiently phagocytosed baboon platelets, while pig aortic endothelial cells and hepatocytes had minimal effects on platelet numbers. Anti-MAC-1 Ab, aurintricarboxylic acid or eptifibatide, significantly decreased baboon platelet phagocytosis by pig liver endothelial cells (P<0.01. CONCLUSIONS: Although pig hepatocytes and aortic endothelial cells directly caused

  9. Modulating the Substrate Stiffness to Manipulate Differentiation of Resident Liver Stem Cells and to Improve the Differentiation State of Hepatocytes

    Directory of Open Access Journals (Sweden)

    Angela Maria Cozzolino

    2016-01-01

    Full Text Available In many cell types, several cellular processes, such as differentiation of stem/precursor cells, maintenance of differentiated phenotype, motility, adhesion, growth, and survival, strictly depend on the stiffness of extracellular matrix that, in vivo, characterizes their correspondent organ and tissue. In the liver, the stromal rigidity is essential to obtain the correct organ physiology whereas any alteration causes liver cell dysfunctions. The rigidity of the substrate is an element no longer negligible for the cultivation of several cell types, so that many data so far obtained, where cells have been cultured on plastic, could be revised. Regarding liver cells, standard culture conditions lead to the dedifferentiation of primary hepatocytes, transdifferentiation of stellate cells into myofibroblasts, and loss of fenestration of sinusoidal endothelium. Furthermore, standard cultivation of liver stem/precursor cells impedes an efficient execution of the epithelial/hepatocyte differentiation program, leading to the expansion of a cell population expressing only partially liver functions and products. Overcoming these limitations is mandatory for any approach of liver tissue engineering. Here we propose cell lines as in vitro models of liver stem cells and hepatocytes and an innovative culture method that takes into account the substrate stiffness to obtain, respectively, a rapid and efficient differentiation process and the maintenance of the fully differentiated phenotype.

  10. The emerging role of mast cells in liver disease.

    Science.gov (United States)

    Jarido, Veronica; Kennedy, Lindsey; Hargrove, Laura; Demieville, Jennifer; Thomson, Joanne; Stephenson, Kristen; Francis, Heather

    2017-08-01

    The depth of our knowledge regarding mast cells has widened exponentially in the last 20 years. Once thought to be only important for allergy-mediated events, mast cells are now recognized to be important regulators of a number of pathological processes. The revelation that mast cells can influence organs, tissues, and cells has increased interest in mast cell research during liver disease. The purpose of this review is to refresh the reader's knowledge of the development, type, and location of mast cells and to review recent work that demonstrates the role of hepatic mast cells during diseased states. This review focuses primarily on liver diseases and mast cells during autoimmune disease, hepatitis, fatty liver disease, liver cancer, and aging in the liver. Overall, these studies demonstrate the potential role of mast cells in disease progression.

  11. A SMALL POPULATION OF LIVER ENDOTHELIAL CELLS UNDERGOES ENDOTHELIAL TO MESENCHYMAL TRANSITION IN RESPONSE TO CHRONIC LIVER INJURY.

    Science.gov (United States)

    Ribera, Jordi; Pauta, Montse; Melgar-Lesmes, Pedro; Cordoba, Bernat; Bosch, Anna; Calvo, Maria; Rodrigo-Torres, Daniel; Sancho-Bru, Pau; Mira, Aurea; Jimenez, Wladimiro; Morales-Ruiz, Manuel

    2017-08-10

    Rising evidence points to endothelial-to-mesenchymal transition (EndMT) as a significant source of the mesenchymal cell population in fibrotic diseases. In this context, we hypothesized that liver endothelial cells undergo EndMT during fibrosis progression. Cirrhosis in mice was induced by CCl4 A transgenic mouse expressing a red fluorescent protein reporter under the control of Tie2 promoter (Tie2-tdTomato) was used to trace the acquisition of EndMT. Sinusoidal vascular connectivity was evaluated by intravital microscopy and high resolution 3D confocal microscopy. A modest but significant fraction of liver endothelial cells from both cirrhotic patients and CCl4-treated Tie2-tdTomato mice acquired an EndMT phenotype characterized by the co-expression of CD31 and α-SMA, compared with non-cirrhotic livers. BMP-7 inhibited the acquisition of EndMT induced by TGF-β1 treatment in cultured MLiECs from control mice. EndMT was also reduced significantly in vivo in cirrhotic Tie2-tdTomato mice treated intraperitoneally with BMP-7 compared with untreated mice (1.9±0.2 vs. 3.8±0.3 %, respectively; p<0.05). The decrease of EndMT in cirrhotic livers correlated with a significant decrease in liver fibrosis (p<0.05) and an improvement in the vascular disorganization rate (p<0.05). We demonstrated the acquisition of the EndMT phenotype by a subpopulation of endothelial cells from cirrhotic livers in both animal models and patients. BMP-7 treatment decreases the occurrence of the EndMT phenotype and has a positive impact on the severity of disease by reducing fibrosis and sinusoidal vascular disorganization. Copyright © 2017, American Journal of Physiology-Gastrointestinal and Liver Physiology.

  12. Decellularization and Recellularization of Rat Livers With Hepatocytes and Endothelial Progenitor Cells.

    Science.gov (United States)

    Zhou, Pengcheng; Huang, Yan; Guo, Yibing; Wang, Lei; Ling, Changchun; Guo, Qingsong; Wang, Yao; Zhu, Shajun; Fan, Xiangjun; Zhu, Mingyan; Huang, Hua; Lu, Yuhua; Wang, Zhiwei

    2016-03-01

    Whole-organ decellularization has been identified as a promising choice for tissue engineering. The aim of the present study was to engineer intact whole rat liver scaffolds and repopulate them with hepatocytes and endothelial progenitor cells (EPCs) in a bioreactor. Decellularized liver scaffolds were obtained by perfusing Triton X-100 with ammonium hydroxide. The architecture and composition of the original extracellular matrix were preserved, as confirmed by morphologic, histological, and immunolabeling methods. To determine biocompatibility, the scaffold was embedded in the subcutaneous adipose layer of the back of a heterologous animal to observe the infiltration of inflammatory cells. Hepatocytes were reseeded using a parenchymal injection method and cultured by continuous perfusion. EPCs were reseeded using a portal vein infusion method. Morphologic and functional examination showed that the hepatocytes and EPCs grew well in the scaffold. The present study describes an effective method of decellularization and recellularization of rat livers, providing the foundation for liver engineering and the development of bioartificial livers.

  13. Role of Kupffer cells in the pathogenesis of liver disease

    Institute of Scientific and Technical Information of China (English)

    George Kolios; Vassilis Valatas; Elias Kouroumalis

    2006-01-01

    Kupffer cells, the resident liver macrophages have long been considered as mostly scavenger cells responsible for removing particulate material from the portal circulation. However, evidence derived mostly from animal models, indicates that Kupffer cells may be implicated in the pathogenesis of various liver diseases including viral hepatitis, steatohepatitis, alcoholic liver disease, intrahepatic cholostasis, activation or rejection of the liver during liver transplantation and liver fibrosis. There is accumulating evidence, reviewed in this paper, suggesting that Kupffer cells may act both as effector cells in the destruction of hepatocytes by producing harmful soluble mediators as well as antigen presenting cells during viral infections of the liver. Moreover they may represent a significant source of chemoattractant molecules for cytotoxic CD8 and regulatory T cells. Their role in fibrosis is well established as they are one of the main sources of TGFβ1 production, which leads to the transformation of stellate cells into myofibroblasts. Whether all these variable functions in the liver are mediated by different Kupffer cell subpopulations remains to be evaluated. In this review we propose a model that demonstrates the role of Kupffer cells in the pathogenesis of liver disease.

  14. Biochemical and phenotypic characterization of human basophilic cells derived from dispersed fetal liver with murine T cell factors

    Energy Technology Data Exchange (ETDEWEB)

    Seldin, D.C.; Caulfield, J.P.; Hein, A.; Osathanondh, R.; Nabel, G.; Schlossman, S.F.; Stevens, R.L.; Austen, K.F.

    1986-03-15

    Metachromatically granulated cells were generated from human fetal liver stem cells cultured in heterologous mouse conditioned medium rich in interleukin 3. After 2 to 3 wk of culture with biweekly changes of medium and selection of nonadherent cells, all cells present in five cultures had cytoplasmic granules. Ultrastructurally, many granules contained fibrillar material or electron-dense cores with fibrils and vesicular fragments. In addition, the granules of many cells were filled with electron-dense material, which in some cases had a fine structure consisting of concentric whorls or a reticular pattern. Analysis of high-affinity IgE receptors on the cultured cells by flow cytometry demonstrated a unimodel fluorescence pattern, suggesting that most cells were in the basophil or mast cell lineage. The cells contained 52 ng/10/sup 6/ cells of histamine and incorporated (/sup 35/S)sulfate at an average rate of 31,300 cpm/10/sup 6/ cells/4 hr into 175,000 m.w. chondroitin sulfate A proteoglycans. Upon activation with 1 ..mu..M calcium ionophore A23187, the cultured cells released 53% of their cell-associated histamine and metabolized arachidonic acid to 15.0 ng/10/sup 6/ cells of immunoreactive leukotriene C/sub 4/ equivalents, 0.5 ng/10/sup 6/ cells of leukotriene B/sub 4/, and 3.1 ng/10/sup 6/ cells of prostaglandin D/sub 2/ (means, n = 3). Thus, stem cells present in human fetal liver give rise, as do stem cells in mouse fetal liver, to metachromatically granulated cells when cultured in the presence of mouse interleukin 3.

  15. Cell culture purity issues and DFAT cells.

    Science.gov (United States)

    Wei, Shengjuan; Bergen, Werner G; Hausman, Gary J; Zan, Linsen; Dodson, Michael V

    2013-04-12

    Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.

  16. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells.

    Science.gov (United States)

    Kegel, Victoria; Deharde, Daniela; Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg

    2016-03-30

    Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine(1). Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models.

  17. Bimodal role of Kupffer cells during colorectal cancer liver metastasis

    OpenAIRE

    Wen, Shu Wen; Ager, Eleanor I; Christophi, Christopher

    2013-01-01

    Kupffer cells (KCs) are resident liver macrophages that play a crucial role in liver homeostasis and in the pathogenesis of liver disease. Evidence suggests KCs have both stimulatory and inhibitory functions during tumor development but the extent of these functions remains to be defined. Using KC depletion studies in an orthotopic murine model of colorectal cancer (CRC) liver metastases we demonstrated the bimodal role of KCs in determining tumor growth. KC depletion with gadolinium chloride...

  18. Methods of Liver Stem Cell Therapy in Rodents as Models of Human Liver Regeneration in Hepatic Failure.

    Science.gov (United States)

    Hashemi Goradel, Nasser; Darabi, Masoud; Shamsasenjan, Karim; Ejtehadifar, Mostafa; Zahedi, Sarah

    2015-09-01

    Cell therapy is a promising intervention for treating liver diseases and liver failure. Different animal models of human liver cell therapy have been developed in recent years. Rats and mice are the most commonly used liver failure models. In fact, rodent models of hepatic failure have shown significant improvement in liver function after cell infusion. With the advent of stem-cell technologies, it is now possible to re-programme adult somatic cells such as skin or hair-follicle cells from individual patients to stem-like cells and differentiate them into liver cells. Such regenerative stem cells are highly promising in the personalization of cell therapy. The present review article will summarize current approaches to liver stem cell therapy with rodent models. In addition, we discuss common cell tracking techniques and how tracking data help to direct liver cell therapy research in animal models of hepatic failure.

  19. Inhibitory effects of capsaicin on hepatic stellate cells and liver fibrosis.

    Science.gov (United States)

    Yu, Fu-Xiang; Teng, Yin-Yan; Zhu, Qian-Dong; Zhang, Qi-Yu; Tang, Yin-He

    2014-10-01

    Hepatic stellate cells (HSCs) play an important role in the process of liver fibrosis. In this study, we investigated the inhibitory effects of capsaicin on HSCs and liver fibrosis. Cultured HSCs were incubated with various concentrations of capsaicin. Cell proliferation was examined using a cell counting kit. Production of hydrogen peroxide was determined using a 2',7'-dichlorofluorescin diacetate (DCFH-DA) assay. The mRNA and protein expression of target genes was analyzed by reverse transcription PCR and Western blot analysis, respectively. Cell apoptosis was evaluated by annexin V-FITC and propidium iodide (PI) costaining followed by flow cytometric analysis. A CCl4 rat liver fibrosis model was used to assess in vivo effects of capsaicin by histological examination and measurement of liver fibrosis markers, including hydroxyproline content, serum type III collagen, and hyaluronic acid (HA) levels. Our results show that capsaicin dose-dependently inhibited cell proliferation, suppressed cell activation, and decreased hydrogen peroxide production in cultured HSCs. Capsaicin reduced the mRNA levels of tissue inhibitors of metalloproteinase 1 (TIMP-1) and transforming growth factor-β1 (TGF-β1) in HSCs. Moreover, capsaicin-induced cell apoptosis was associated with increased expression of Bax, cytochrome c (cyt c), and caspase-3, but reduced levels of Bcl-2. The animal studies further revealed that capsaicin efficiently reduced the extent of liver fibrosis, inhibited HSC proliferation, and promoted cell apoptosis. Our findings suggest that capsaicin might inhibit fibrogenesis by inhibiting the activities of HSCs.

  20. AFM imaging of fenestrated liver sinusoidal endothelial cells.

    Science.gov (United States)

    Braet, F; Wisse, E

    2012-12-01

    Each microscope with its dedicated sample preparation technique provides the investigator with a specific set of data giving an instrument-determined (or restricted) insight into the structure and function of a tissue, a cell or parts thereof. Stepwise improvements in existing techniques, both instrumental and preparative, can sometimes cross barriers in resolution and image quality. Of course, investigators get really excited when completely new principles of microscopy and imaging are offered in promising new instruments, such as the AFM. The present paper summarizes a first phase of studies on the thin endothelial cells of the liver. It describes the preparation-dependent differences in AFM imaging of these cells after isolation. Special point of interest concerned the dynamics of the fenestrae, thought to filter lipid-carrying particles during their transport from the blood to the liver cells. It also describes the attempts to image the details of these cells when alive in cell cultures. It explains what physical conditions, mainly contributed to the scanning stylus, are thought to play a part in the limitations in imaging these cells. The AFM also offers promising specifications to those interested in cell surface details, such as membrane-associated structures, receptors, coated pits, cellular junctions and molecular aggregations or domains. The AFM also offers nano-manipulation possibilities, strengths and elasticity measurements, force interactions, affinity measurements, stiffness and other physical aspects of membranes and cytoskeleton. The potential for molecular approaches is there. New developments in cantilever construction and computer software promise to bring real time video imaging to the AFM. Home made accessories for the first generation of AFM are now commodities in commercial instruments and make the life of the AFM microscopist easier. Also, the combination of different microscopies, such as AFM and TEM, or AFM and SEM find their way to the

  1. Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway.

    Science.gov (United States)

    Neumann, Katrin; Rudolph, Christine; Neumann, Christian; Janke, Marko; Amsen, Derk; Scheffold, Alexander

    2015-07-01

    Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T-cell responses towards tolerance. However, the role of LSECs in the regulation of T-cell-induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro-inflammatory Th1-cell differentiation in mice. Using in vitro co-culture systems and subsequent cytokine analysis, we showed that LSECs induced high amounts of the anti-inflammatory cytokine IL-10 in developing Th1 cells. These LSEC-stimulated Th1 cells had no pro-inflammatory capacity in vivo but instead actively suppressed an inflammatory Th1-cell-induced delayed-type hypersensitivity reaction. Blockage of IL-10 signaling in vivo inhibited immunosuppressive activity of LSEC-stimulated Th1 cells. We identified the Notch pathway as a mechanism how LSECs trigger IL-10 expression in Th1 cells. LSECs expressed high levels of the Delta-like and Jagged family of Notch ligands and induced expression of the Notch target genes hes-1 and deltex-1 in Th1 cells. Blockade of Notch signaling selectively inhibited IL-10 induction in Th1 cells by LSECs. Our findings suggest that LSEC-induced IL-10 expression in Th1 cells via the Notch pathway may contribute to the control of hepatic inflammatory immune responses by induction of a self-regulatory mechanism in pro-inflammatory Th1 cells.

  2. Intra-por tal transplantation of bone marrow stromal cells ameliorates liver ifbrosis in mice

    Institute of Scientific and Technical Information of China (English)

    Jin-Fang Zheng; Li-Jian Liang

    2008-01-01

    BACKGROUND: Bone marrow cells can differentiate into hepatocytes in a suitable microenvironment. This study was undertaken to investigate the effects of transplanted bone marrow stromal cells (BMSCs) on liver ifbrosis in mice. METHODS: BMSCs were harvested and cultured from male BALB/c mice, then transplanted into female syngenic BALB/c mice via the portal vein. After partial hepatectomy, diethylnitrosamine (DEN) was administered to induce liver ifbrosis. Controls received BMSCs and non-supplemented drinking water, the model group received DEN with their water, and the experimental group received BMSCs and DEN. Mice were killed after 3 months, and ALT, AST, hyaluronic acid (HA), and laminin (LN) in serum and hydroxyproline (Hyp) in the liver were assessed. Alpha-smooth muscle actin (α-SMA) in the liver was assessed by immunohistochemistry. Bone marrow-derived hepatocytes were identiifed by lfuorescent in situ hybridization (FISH) in liver sections. RESULTS: BMSCs were shown to differentiate into hepatocyte-like phenotypes after hepatocyte growth factor treatment in vitro. Serum ALT, AST, HA, and LN were markedly reduced by transplanted BMSCs. Liver Hyp content andα-SMA staining in mice receiving BMSCs were lower than in the model group, consistent with altered liver pathology. FISH analysis revealed the presence of donor-derived hepatocytes in the injured liver after cross-gender mouse BMSC transplantation. After three months, about 10%of cells in the injured liver were bone marrow-derived. CONCLUSION: BMSCs transplanted via the portal vein can convert into hepatocytes to repair liver injury induced by DEN, restore liver function, and reduce liver ifbrosis.

  3. Cell culture compositions

    Science.gov (United States)

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yiao, Jian

    2014-03-18

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6 (SEQ ID NO:1 encodes the full length endoglucanase; SEQ ID NO:4 encodes the mature form), and the corresponding endoglucanase VI amino acid sequence ("EGVI"; SEQ ID NO:3 is the signal sequence; SEQ ID NO:2 is the mature sequence). The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  4. Stem cell-derived hepatocytes for functional liver replacement

    Directory of Open Access Journals (Sweden)

    Bruno eChrist

    2012-06-01

    Full Text Available Mesenchymal stem cells (MSC represent an alternate cell source to substitute for primary hepatocytes in hepatocyte transplantation because of their multiple differentiation potential and nearly unlimited availability. They may differentiate into hepatocyte-like cells in vitro and maintain specific hepatocyte functions also after transplantation into the regenerating livers of mice or rats both under injury and non-injury conditions. Depending on the underlying liver disease their mode of action is either to replace the diseased liver tissue or to support liver regeneration through their anti-inflammatory and anti-apoptotic as well as their pro-proliferative action.

  5. SECs (Sinusoidal Endothelial Cells), Liver Microenvironment, and Fibrosis

    Science.gov (United States)

    Natarajan, Vaishaali; Harris, Edward N.

    2017-01-01

    Liver fibrosis is a wound-healing response to chronic liver injury such as alcoholic/nonalcoholic fatty liver disease and viral hepatitis with no FDA-approved treatments. Liver fibrosis results in a continual accumulation of extracellular matrix (ECM) proteins and paves the way for replacement of parenchyma with nonfunctional scar tissue. The fibrotic condition results in drastic changes in the local mechanical, chemical, and biological microenvironment of the tissue. Liver parenchyma is supported by an efficient network of vasculature lined by liver sinusoidal endothelial cells (LSECs). These nonparenchymal cells are highly specialized resident endothelial cell type with characteristic morphological and functional features. Alterations in LSECs phenotype including lack of LSEC fenestration, capillarization, and formation of an organized basement membrane have been shown to precede fibrosis and promote hepatic stellate cell activation. Here, we review the interplay of LSECs with the dynamic changes in the fibrotic liver microenvironment such as matrix rigidity, altered ECM protein profile, and cell-cell interactions to provide insight into the pivotal changes in LSEC physiology and the extent to which it mediates the progression of liver fibrosis. Establishing the molecular aspects of LSECs in the light of fibrotic microenvironment is valuable towards development of novel therapeutic and diagnostic targets of liver fibrosis. PMID:28293634

  6. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering.

    Science.gov (United States)

    Lee, Jin Woo; Choi, Yeong-Jin; Yong, Woon-Jae; Pati, Falguni; Shim, Jin-Hyung; Kang, Kyung Shin; Kang, In-Hye; Park, Jaesung; Cho, Dong-Woo

    2016-01-12

    Several studies have focused on the regeneration of liver tissue in a two-dimensional (2D) planar environment, whereas actual liver tissue is three-dimensional (3D). Cell printing technology has been successfully utilized for building 3D structures; however, the poor mechanical properties of cell-laden hydrogels are a major concern. Here, we demonstrate the printing of a 3D cell-laden construct and its application to liver tissue engineering using 3D cell printing technology through a multi-head tissue/organ building system. Polycaprolactone (PCL) was used as a framework material because of its excellent mechanical properties. Collagen bioink containing three different types of cells-hepatocytes (HCs), human umbilical vein endothelial cells , and human lung fibroblasts--was infused into the canals of a PCL framework to induce the formation of capillary--like networks and liver cell growth. A co-cultured 3D microenvironment of the three types of cells was successfully established and maintained. The vascular formation and functional abilities of HCs (i.e., albumin secretion and urea synthesis) demonstrated that the heterotypic interaction among HCs and nonparenchymal cells increased the survivability and functionality of HCs within the collagen gel. Therefore, our results demonstrate the prospect of using cell printing technology for the creation of heterotypic cellular interaction within a structure for liver tissue engineering.

  7. Stem cells in liver regeneration and their potential clinical applications.

    Science.gov (United States)

    Drosos, Ioannis; Kolios, George

    2013-10-01

    Stem cells constitute a population of "primitive cells" with the ability to divide indefinitely and give rise to specialized cells under special conditions. Because of these two characteristics they have received particular attention in recent decades. These cells are the primarily responsible factors for the regeneration of tissues and organs and for the healing of lesions, a feature that makes them a central key in the development of cell-based medicine, called Regenerative Medicine. The idea of wound and organ repair and body regeneration is as old as the mankind, reflecting the human desire for inhibiting aging and immortality and it is first described in the ancient Greek myth of Prometheus. It is of interest that the myth refers to liver, an organ with remarkable regenerative ability after loss of mass and function caused by liver injury or surgical resection. Over the last decade there has been an important progress in understanding liver physiology and the mechanisms underlying hepatic development and regeneration. As liver transplantation, despite its difficulties, remains the only effective therapy for advanced liver disease so far, scientific interest has nowadays been orientated towards Regenerative Medicine and the use of stem cells to repair damaged liver. This review is focused on the available literature concerning the role of stem cells in liver regeneration. It summarizes the results of studies concerning endogenous liver regeneration and stem cell experimental protocols. Moreover, this review discusses the clinical studies that have been conducted in humans so far.

  8. Pitavastatin suppressed liver cancer cells in vitro and in vivo

    Science.gov (United States)

    You, He-Yi; Zhang, Wei-Jian; Xie, Xue-Meng; Zheng, Zhi-Hai; Zhu, Heng-Liang; Jiang, Fei-Zhao

    2016-01-01

    Pitavastatin classically functions as a blood cholesterol-lowering drug. Previously, it was discovered with antiglioma stem cell properties through drug screening. However, whether it can be used for liver cancer cell therapy has never been reported. In this study, the cell viability and colony formation assay were utilized to analyze the cytotoxicity of pitavastatin on liver cancer cells. The cell cycle alteration was checked after pitavastatin treatment. Apoptosis-related protein expression and the effect of caspase inhibitor were also checked. The in vivo inhibitory effect of pitavastatin on the growth of liver tumor was also tested. It was found that pitavastatin inhibited growth and colony formation of liver cancer Huh-7 cells and SMMC7721 cells. It induced arrest of liver cancer cells at the G1 phase. Increased proportion of sub-G1 cells was observed after pitavastatin treatment. Pitavastatin promoted caspase-9 cleavage and caspase-3 cleavage in liver cancer cells. Caspase inhibitor Z-VAD-FMK reversed the cleavage of cytotoxic effect of pitavastatin. Moreover, pitavastatin decreased the tumor growth and improved the survival of tumor-bearing mice. This study suggested the antiliver cancer effect of the old drug pitavastatin. It may be developed as a drug for liver cancer therapy. PMID:27621652

  9. Liver-derived systemic factors drive β-cell hyperplasia in insulin resistant states

    Energy Technology Data Exchange (ETDEWEB)

    El Ouaamari, Abdelfattah; Kawamori, Dan; Dirice, Ercument; Liew, Chong Wee; Shadrach, Jennifer L.; Hu, Jiang; Katsuta, Hitoshi; Hollister-Lock, Jennifer; Qian, Weijun; Wagers, Amy J.; Kulkarni, Rohit N.

    2013-02-21

    Integrative organ cross-talk regulates key aspects of energy homeostasis and its dysregulation may underlie metabolic disorders such as obesity and diabetes. To test the hypothesis that cross-talk between the liver and pancreatic islets modulates β-cell growth in response to insulin resistance, we used the Liver-specific Insulin Receptor Knockout (LIRKO) mouse, a unique model that exhibits dramatic islet hyperplasia. Using complementary in vivo parabiosis and transplantation assays, and in vitro islet culture approaches, we demonstrate that humoral, non-neural, non-cell autonomous factor(s) induce β-cell proliferation in LIRKO mice. Furthermore, we report that a hepatocyte-derived factor(s) stimulates mouse and human β-cell proliferation in ex vivo assays, independent of ambient glucose and insulin levels. These data implicate the liver as a critical source of β-cell growth factors in insulin resistant states.

  10. In Vitro transformation of LW13 Rat liver epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    SHICAN; KARLFETNANSKY; 等

    1992-01-01

    A rat liver epithelial cell line designated LW 13 was established using a sequential sedimentation method.The cell line retained many normal proerties of liver epithelial cells and showed some structural and functional features resembling those of liver parenchymal cells,LW13 cells became malignant after the intrduction of exogenous transforming EJ Ha ras gene,Tumors produced by inoculation of the transformed cells into baby rats contained areas of poorly differentialted hepatocellular carcinoma,In situ hybridization analysis confirmed the random rather than specific integration of exogenous ras gene into host chromosomes.Furthermore,an at least tenfold increase in the expression of the endogenous c mys gene was detected among transformed cell lines,suggesting the involvement of the c myc proto oncogene in the in vitro transformation of rat liver epithelial cells by EJ Ha ras oncogene.

  11. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kostadinova, Radina; Boess, Franziska [Non-Clinical Safety, Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Building 73 / Room 117b, 4070 Basel (Switzerland); Applegate, Dawn [RegeneMed, 9855 Towne Centre Drive Suite 200, San Diego, CA 92121 (United States); Suter, Laura; Weiser, Thomas; Singer, Thomas [Non-Clinical Safety, Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Building 73 / Room 117b, 4070 Basel (Switzerland); Naughton, Brian [RegeneMed, 9855 Towne Centre Drive Suite 200, San Diego, CA 92121 (United States); Roth, Adrian, E-mail: adrian_b.roth@roche.com [Non-Clinical Safety, Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Building 73 / Room 117b, 4070 Basel (Switzerland)

    2013-04-01

    Drug-induced liver injury (DILI) is the major cause for liver failure and post-marketing drug withdrawals. Due to species-specific differences in hepatocellular function, animal experiments to assess potential liabilities of drug candidates can predict hepatotoxicity in humans only to a certain extent. In addition to animal experimentation, primary hepatocytes from rat or human are widely used for pre-clinical safety assessment. However, as many toxic responses in vivo are mediated by a complex interplay among different cell types and often require chronic drug exposures, the predictive performance of hepatocytes is very limited. Here, we established and characterized human and rat in vitro three-dimensional (3D) liver co-culture systems containing primary parenchymal and non-parenchymal hepatic cells. Our data demonstrate that cells cultured on a 3D scaffold have a preserved composition of hepatocytes, stellate, Kupffer and endothelial cells and maintain liver function for up to 3 months, as measured by the production of albumin, fibrinogen, transferrin and urea. Additionally, 3D liver co-cultures maintain cytochrome P450 inducibility, form bile canaliculi-like structures and respond to inflammatory stimuli. Upon incubation with selected hepatotoxicants including drugs which have been shown to induce idiosyncratic toxicity, we demonstrated that this model better detected in vivo drug-induced toxicity, including species-specific drug effects, when compared to monolayer hepatocyte cultures. In conclusion, our results underline the importance of more complex and long lasting in vitro cell culture models that contain all liver cell types and allow repeated drug-treatments for detection of in vivo-relevant adverse drug effects. - Highlights: ► 3D liver co-cultures maintain liver specific functions for up to three months. ► Activities of Cytochrome P450s remain drug- inducible accross three months. ► 3D liver co-cultures recapitulate drug-induced liver toxicity

  12. Cytoglobin is expressed in hepatic stellate cells, but not in myofibroblasts, in normal and fibrotic human liver.

    Science.gov (United States)

    Motoyama, Hiroyuki; Komiya, Tohru; Thuy, Le Thi Thanh; Tamori, Akihiro; Enomoto, Masaru; Morikawa, Hiroyasu; Iwai, Shuji; Uchida-Kobayashi, Sawako; Fujii, Hideki; Hagihara, Atsushi; Kawamura, Etsushi; Murakami, Yoshiki; Yoshizato, Katsutoshi; Kawada, Norifumi

    2014-02-01

    Cytoglobin (CYGB) is ubiquitously expressed in the cytoplasm of fibroblastic cells in many organs, including hepatic stellate cells. As yet, there is no specific marker with which to distinguish stellate cells from myofibroblasts in the human liver. To investigate whether CYGB can be utilized to distinguish hepatic stellate cells from myofibroblasts in normal and fibrotic human liver, human liver tissues damaged by infection with hepatitis C virus (HCV) and at different stages of fibrosis were obtained by liver biopsy. Immunohistochemistry was performed on histological sections of liver tissues using antibodies against CYGB, cellular retinol-binding protein-1 (CRBP-1), α-smooth muscle actin (α-SMA), thymocyte differentiation antigen 1 (Thy-1), and fibulin-2 (FBLN2). CYGB- and CRBP-1-positive cells were counted around fibrotic portal tracts in histological sections of the samples. The expression of several of the proteins listed above was examined in cultured mouse stellate cells. Quiescent stellate cells, but not portal myofibroblasts, expressed both CYGB and CRBP-1 in normal livers. In fibrotic and cirrhotic livers, stellate cells expressed both CYGB and α-SMA, whereas myofibroblasts around the portal vein expressed α-SMA, Thy-1, and FBLN2, but not CYGB. Development of the fibrotic stage was positively correlated with increases in Sirius red-stained, α-SMA-positive, and Thy-1-positive areas, whereas the number of CYGB- and CRBP-1-positive cells decreased with fibrosis development. Primary cultured mouse stellate cells expressed cytoplasmic CYGB at day 1, whereas they began to express α-SMA at the cellular margins at day 4. Thy-1 was undetectable throughout the culture period. In human liver tissues, quiescent stellate cells are CYGB positive. When activated, they also become α-SMA positive; however, they are negative for Thy-1 and FBLN2. Thus, CYGB is a useful marker with which to distinguish stellate cells from portal myofibroblasts in the damaged human

  13. STUDY ON DIFFERENTIATION OF RATS EMBRYONIC STEM CELLS CULTURED IN BRL-CM INTO NEURAL PRECURSOR CELLS

    Institute of Scientific and Technical Information of China (English)

    张晓智; 李旭; 徐海伟; 陈葳

    2003-01-01

    Objective To investigate whether buffalo rat liver cell-conditioned medium (BRL-CM) can be used as the culture medium of embryonic stem (ES) cells, and to get relatively pure neural precursor cells (NPCs) for treatment aim. Methods Mouse ES cells were cultured in BRL-CM and medium contain leukemia inhibitory factor (LIF), respectively. NPCs were selectively cultured in serum-free medium. Alkaline phosphatase activity was visualized with NBT/BCIP and nestin antigen was detected with immunocytochemical methods. Results BRL-CM could be used as an efficiency culture condition instead of LIF in ES cells culture. About 86% of cells derived from ES cells in the serum-free culture were NPCs. Conclusion BRL-CM can replace LIF to use in ES cell culture. High purity of NPC can be induced from ES cells with serum-free culture method.

  14. Insect Cell Culture and Biotechnology

    Institute of Scientific and Technical Information of China (English)

    Robert R.Granados; Guoxun Li; G.W.Blissard

    2007-01-01

    The continued development of new cell culture technology is essential for the future growth and application of insect cell and baculovirus biotechnology. The use of cell lines for academic research and for commercial applications is currently dominated by two cell lines; the Spodoptera frugiperda line, SF21 (and its clonal isolate, SF9), and the Trichoplusia ni line, BTI 5B1-4, commercially known as High Five cells. The long perceived prediction that the immense potential application of the baculovirus-insect cell system, as a tool in cell and molecular biology, agriculture, and animal health, has been achieved. The versatility and recent applications of this popular expression system has been demonstrated by both academia and industry and it is clear that this cell-based system has been widely accepted for biotechnological applications. Numerous small to midsize startup biotechnology companies in North America and the Europe are currently using the baculovirus-insect cell technology to produce custom recombinant proteins for research and commercial applications. The recent breakthroughs using the baculovirus-insect cell-based system for the development of several commercial products that will impact animal and human health will further enhance interest in this technology by pharma. Clearly, future progress in novel cell and engineering advances will lead to fundamental scientific discoveries and serve to enhance the utility and applications of this baculovirus-insect cell system.

  15. Macrophages and dendritic cells in the development of liver injury leading to liver failure.

    Science.gov (United States)

    Ananiev, J; Penkova, M; Tchernev, G; Chokoeva, A A; Philipov, S; Tana, C; Gulubova, M; Wollina, U

    2014-01-01

    Liver failure (LF) continues to be a serious problem due to different underlying disorders. Not only hepatocytes but Kupffer cells (KCs) and dendritic cells (DCs) are of importance in this instance. We wanted to investigate the possible role of KCs and liver DCs in the development of liver injury in patients with liver failure. Liver specimens from 23 patients who died after liver failure were examined for the presence and distribution of CD68-positive KCs and CD83-positive DCs by immunohistochemistry. The distribution of the CD83-positive DC in the sinusoidal and the periportal spaces was not even. While 39.1% of patients had a high sinusoidal density of CD83-positive cells, 60.9% demonstrated a high density of CD83-positive cells in the periportal tract. The number of CD83-positive DCs in periportal tracts in patients with advanced liver fibrosis (n=5) were high, while those with mild liver fibrosis (n=18) had low numbers of mature dendritic cells (χ2=4.107; p=0.043). In addition, all patients with intensive fibrosis had low counts of CD68-positive KC’s in portal tracts vs patients with mild fibrosis of which 67% had high counts (χ2=6.97; p=0.008). In seven of the patients with moderate steatosis (87.5%) low numbers of CD68-positive KCs were found in sinusoids, in contrast to those with severe steatosis, where 12 patients (80%) had high KC counts (χ2=13.4; p less than 0.001). The distribution and number of CD68-positive KC and CD83-positive DC reflect the progression of liver fibrosis leading to liver failure.

  16. Mobilization of hematopoietic progenitor cells in patients with liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Ursula; M; Gehling; Marc; Willems; Kathleen; Schlagner; Ralf; A; Benndorf; Maura; Dandri; Jrg; Petersen; Martina; Sterneck; Joerg-Matthias; Pollok; Dieter; K; Hossfeld; Xavier; Rogiers

    2010-01-01

    AIM:To test the hypothesis that liver cirrhosis is associated with mobilization of hematopoietic progenitor cells. METHODS:Peripheral blood samples from 72 patients with liver cirrhosis of varying etiology were analyzed by flow cytometry.Identified progenitor cell subsets were immunoselected and used for functional assays in vitro. Plasma levels of stromal cell-derived factor-1(SDF-1) were measured using an enzyme linked immunosorbent assay.RESULTS:Progenitor cells with a CD133 + /CD45 + CD14 + phenotype we...

  17. A Transcriptomic Signature of Mouse Liver Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Adam M. Passman

    2016-01-01

    Full Text Available Liver progenitor cells (LPCs can proliferate extensively, are able to differentiate into hepatocytes and cholangiocytes, and contribute to liver regeneration. The presence of LPCs, however, often accompanies liver disease and hepatocellular carcinoma (HCC, indicating that they may be a cancer stem cell. Understanding LPC biology and establishing a sensitive, rapid, and reliable method to detect their presence in the liver will assist diagnosis and facilitate monitoring of treatment outcomes in patients with liver pathologies. A transcriptomic meta-analysis of over 400 microarrays was undertaken to compare LPC lines against datasets of muscle and embryonic stem cell lines, embryonic and developed liver (DL, and HCC. Three gene clusters distinguishing LPCs from other liver cell types were identified. Pathways overrepresented in these clusters denote the proliferative nature of LPCs and their association with HCC. Our analysis also revealed 26 novel markers, LPC markers, including Mcm2 and Ltbp3, and eight known LPC markers, including M2pk and Ncam. These markers specified the presence of LPCs in pathological liver tissue by qPCR and correlated with LPC abundance determined using immunohistochemistry. These results showcase the value of global transcript profiling to identify pathways and markers that may be used to detect LPCs in injured or diseased liver.

  18. EMP-1 is a junctional protein in a liver stem cell line and in the liver.

    Science.gov (United States)

    Lee, Hsuan-Shu; Sherley, James L; Chen, Jeremy J W; Chiu, Chien-Chang; Chiou, Ling-Ling; Liang, Ja-Der; Yang, Pan-Chyr; Huang, Guan-Tarn; Sheu, Jin-Chuan

    2005-09-09

    In an attempt to discover cell markers for liver stem cells, a cDNA microarray analysis was carried out to compare the gene expression profiles between an adult liver stem cell line, Lig-8, and mature hepatocytes. Several genes in the categories of extracellular matrix, cell membrane, cell adhesion, transcription factor, signal molecule, transporter, and metabolic enzyme were shown to be differentially expressed in Lig-8 cells. Among them, epithelial membrane protein (EMP)-1 has been previously implicated with stem cell phenotypes. Antiserum to EMP-1 was produced to localize its expression. On monolayers of Lig-8 cells, EMP-1 was expressed along the intercellular border. In the liver harboring proliferating oval cells, the liver progenitors, EMP-1 was localized as ribbon bands, a staining pattern for epithelial junctions, all the way through bile duct epithelia, oval cell ductules, and into peri-hepatocytic regions. These peri-hepatocytic regions were proved to be bile canaliculi by co-localization of EMP-1 and dipeptidyl peptidase IV, an enzyme located on bile canaliculi. This report is the first to indicate EMP-1 to be a junctional protein in the liver.

  19. Cell therapy for liver diseases: current medicine and future promises.

    Science.gov (United States)

    Alejandra, Meza-Ríos; Juan, Armendáriz-Borunda; Ana, Sandoval-Rodríguez

    2015-06-01

    Liver diseases are a major health problem worldwide since they usually represent the main causes of death in most countries, causing excessive costs to public health systems. Nowadays, there are no efficient current therapies for most hepatic diseases and liver transplant is infrequent due to the availability of organs, cost and risk of transplant rejection. Therefore, alternative therapies for liver diseases have been developed, including cell-based therapies. Stem cells (SCs) are characterized by their self-renewing capacity, unlimited proliferation and differentiation under certain conditions into tissue- or organ-specific cells with special functions. Cell-based therapies for liver diseases have been successful in experimental models, showing anti-inflammatory, antifibrogenic and regenerative effects. Nowadays, clinical trials using SCs for liver pathologies are increasing in number, and those that have reached publication have achieved favorable effects, encouraging us to think that SCs will have a potential clinical use in a short time.

  20. In vitro cultivation and differentiation of fetal liver stem cells from mice

    Institute of Scientific and Technical Information of China (English)

    Ren Qing FENG; Li Ying DU; Zhen Quan GUO

    2005-01-01

    During embryonic development, pluripotent endoderm tissue in the developing foregut may adopt pancreatic fate or hepatic fate depending on the activation of key developmental regulators. Transdifferentiation occurs between hepatocytes and pancreatic cells under specific conditions. Hepatocytes and pancreatic cells have the common endodermal progenitor cells. In this study we isolated hepatic stem/progenitor cells from embryonic day (ED) 12-14 Kun-Ming mice with fluorescence-activated cell sorting (FACS). The cells were cultured under specific conditions. The cultured cells deploy dithizone staining and immunocytochemical staining at the 15th, 30th and 40th day after isolation. The results indicated the presence of insulin-producing cells. When the insulin-producing cells were transplanted into alloxaninduced diabetic mice, the nonfasting blood glucose level was reduced. These results suggested that fetal liver stem/progenitor cells could be converted into insulin-producing cells under specific culture conditions. Fetal liver stem/progenitor cells could become the potential source of insulin-producing cells for successful cell transplantation therapy strategies of diabetes.

  1. Chip-based human liver-intestine and liver-skin co-cultures--A first step toward systemic repeated dose substance testing in vitro.

    Science.gov (United States)

    Maschmeyer, Ilka; Hasenberg, Tobias; Jaenicke, Annika; Lindner, Marcus; Lorenz, Alexandra Katharina; Zech, Julie; Garbe, Leif-Alexander; Sonntag, Frank; Hayden, Patrick; Ayehunie, Seyoum; Lauster, Roland; Marx, Uwe; Materne, Eva-Maria

    2015-09-01

    Systemic repeated dose safety assessment and systemic efficacy evaluation of substances are currently carried out on laboratory animals and in humans due to the lack of predictive alternatives. Relevant international regulations, such as OECD and ICH guidelines, demand long-term testing and oral, dermal, inhalation, and systemic exposure routes for such evaluations. So-called "human-on-a-chip" concepts are aiming to replace respective animals and humans in substance evaluation with miniaturized functional human organisms. The major technical hurdle toward success in this field is the life-like combination of human barrier organ models, such as intestine, lung or skin, with parenchymal organ equivalents, such as liver, at the smallest biologically acceptable scale. Here, we report on a reproducible homeostatic long-term co-culture of human liver equivalents with either a reconstructed human intestinal barrier model or a human skin biopsy applying a microphysiological system. We used a multi-organ chip (MOC) platform, which provides pulsatile fluid flow within physiological ranges at low media-to-tissue ratios. The MOC supports submerse cultivation of an intact intestinal barrier model and an air-liquid interface for the skin model during their co-culture with the liver equivalents respectively at (1)/100.000 the scale of their human counterparts in vivo. To increase the degree of organismal emulation, microfluidic channels of the liver-skin co-culture could be successfully covered with human endothelial cells, thus mimicking human vasculature, for the first time. Finally, exposure routes emulating oral and systemic administration in humans have been qualified by applying a repeated dose administration of a model substance - troglitazone - to the chip-based co-cultures.

  2. The inhibition of the human cholesterol 7α-hydroxylase gene (CYP7A1) promoter by fibrates in cultured cells is mediated via the liver x receptor α and peroxisome proliferator-activated receptor α heterodimer

    OpenAIRE

    Gbaguidi, G. Franck; Agellon, Luis B.

    2004-01-01

    In previous work, we showed that the binding of the liver x receptor α:peroxisome proliferator-activated receptor α (LXRα:PPARα) heterodimer to the murine Cyp7a1 gene promoter antagonizes the stimulatory effect of their respective ligands. In this study, we determined if LXRα:PPARα can also regulate human CYP7A1 gene promoter activity. Co-expression of LXRα and PPARα in McArdle RH7777 hepatoma cells decreased the activity of the human CYP7A1 gene promoter in response to fibrates and 25-hydrox...

  3. Methylglyoxal Induces Mitochondrial Dysfunction and Cell Death in Liver

    OpenAIRE

    Seo, Kyuhwa; Ki, Sung Hwan; Shin, Sang Mi

    2014-01-01

    Degradation of glucose is aberrantly increased in hyperglycemia, which causes various harmful effects on the liver. Methylglyoxal is produced during glucose degradation and the levels of methylglyoxal are increased in diabetes patients. In this study we investigated whether methylglyoxal induces mitochondrial impairment and apoptosis in HepG2 cells and induces liver toxicity in vivo. Methylglyoxal caused apoptotic cell death in HepG2 cells. Moreover, methylglyoxal significantly promoted the p...

  4. Spheroid culture for enhanced differentiation of human embryonic stem cells to hepatocyte-like cells.

    Science.gov (United States)

    Subramanian, Kartik; Owens, Derek Jason; Raju, Ravali; Firpo, Meri; O'Brien, Timothy D; Verfaillie, Catherine M; Hu, Wei-Shou

    2014-01-15

    Stem cell-derived hepatocyte-like cells hold great potential for the treatment of liver disease and for drug toxicity screening. The success of these applications hinges on the generation of differentiated cells with high liver specific activities. Many protocols have been developed to guide human embryonic stem cells (hESCs) to differentiate to the hepatic lineage. Here we report cultivation of hESCs as three-dimensional aggregates that enhances their differentiation to hepatocyte-like cells. Differentiation was first carried out in monolayer culture for 20 days. Subsequently cells were allowed to self-aggregate into spheroids. Significantly higher expression of liver-specific transcripts and proteins, including Albumin, phosphoenolpyruvate carboxykinase, and asialoglycoprotein receptor 1 was observed. The differentiated phenotype was sustained for more than 2 weeks in the three-dimensional spheroid culture system, significantly longer than in monolayer culture. Cells in spheroids exhibit morphological and ultrastructural characteristics of primary hepatocytes by scanning and transmission electron microscopy in addition to mature functions, such as biliary excretion of metabolic products and cytochrome P450 activities. This three-dimensional spheroid culture system may be appropriate for generating high quality, functional hepatocyte-like cells from ESCs.

  5. Epigenetic regulation of hepatic stellate cell activation and liver fibrosis.

    Science.gov (United States)

    El Taghdouini, Adil; van Grunsven, Leo A

    2016-12-01

    Chronic liver injury to hepatocytes or cholangiocytes, when left unmanaged, leads to the development of liver fibrosis, a condition characterized by the excessive intrahepatic deposition of extracellular matrix proteins. Activated hepatic stellate cells constitute the predominant source of extracellular matrix in fibrotic livers and their transition from a quiescent state during fibrogenesis is associated with important alterations in their transcriptional and epigenetic landscape. Areas covered: We briefly describe the processes involved in hepatic stellate cell activation and discuss our current understanding of alterations in the epigenetic landscape, i.e DNA methylation, histone modifications and the functional role of non-coding RNAs that accompany this key event in the development of chronic liver disease. Expert commentary: Although great progress has been made, our understanding of the epigenetic regulation of hepatic stellate cell activation is limited and, thus far, insufficient to allow the development of epigenetic drugs that can selectively interrupt liver fibrosis.

  6. Interaction of low density lipoproteins with rat liver cells

    NARCIS (Netherlands)

    L. Harkes (Leendert)

    1985-01-01

    textabstractThe most marked conclusion is the establishment of the important role of non-parenchymal cells in the catabolism of the low density lipoproteins by the rat liver. Because the liver is responsible for 70-80% of the removal of LDL from blood this conclusion can be extended to total LDL tur

  7. Hepatic reconstruction from fetal porcine liver cells using a radial flow bioreactor

    Institute of Scientific and Technical Information of China (English)

    Yuji Ishii; Ryota Saito; Hideki Marushima; Ryusuke Ito; Taro Sakamoto; Katsuhiko Yanaga

    2008-01-01

    AIM:To examine the efficacy of the radial flow bioreactor (RFB) as an extracorporeal bioartificial liver (BAL) and the reconstruction of liver organoids using embryonic pig liver cells.METHODS:We reconstructed the liver organoids using embryonic porcine liver cells in the RFB.We also determined the gestational time window for the optimum growth of embryonic porcine liver cells.Five weeks of gestation was designated as embryonic day (E) 35 and 8 wk of gestation was designated as E56.These cells were cultured for one week before morphological and functional examinations.Moreover,the efficacy of pulsed administration of a high concentration hepatocyte growth factor (HGF) was examined.RESULTS:Both cell growth and function were excellent after harvesting on E3S.The pulsed administration of a high concentration of HGF promoted the differentiation and maturation of these fetal hepatic cells.Microscopic examination of organoids in the RFB revealed palisading and showed that bile duct-like structures were well developed,indicating that the organoids were mini livers.Transmission electron microscopy revealed microvilli on the luminal surfaces of bile duct-like structures and junctional complexes,which form the basis of the cytoskeleton of epithelial tissues.Furthermore,strong expression of connexin (Cx) 32,which is the mainprotein of hepatocyte gap junctions,was observed.With respect to liver function,ammonia detoxification and urea synthesis were shown to be performed effectively.CONCLUSION:Our system can potentially be applied in the fields of BAL and transplantation medicine.

  8. SURVIVAL OF LIVER CELLS, IMMOBILIZED ON 3D-MATRIXES, IN LIVER FAILURE MODEL

    Directory of Open Access Journals (Sweden)

    M. Y. Shagidulin

    2011-01-01

    Full Text Available It was examined a new method for correction of hepatic failure by transplantation of liver support biounit (liver cells, immobilized on biocompatible and biodegradable 3D-matrixes ElastoPOB® into small intestine mesentery. It was determined that after modeling of acute hepatic failure on dogs by 65–70% liver resection and transplantation liver support biounit the restoration of disturbed biochemical indecies (such as total protein, lactate, cytolytic ensymes-ALT, AST, ALP, LDH, fibrinogen, protrombine index and others took place more rapidly on 9–14th day instead of 18th day in control. It was made a preposition about efficiency of the suggested method for correction both acute hepatic failure because even 90 days after transplantation of liver support biounit alive hepatocytes and neogenic plethoric vessels, growing through matrix were revealed. 

  9. Multiple hormonal control of enzyme synthesis in liver and hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, F.T.; Lee, K.L.; Pomato, N.; Nickol, J.M.

    1978-01-01

    Synthesis of hepatic tyrosine aminotransferase is accelerated in vivo by either of the pancreatic hormones, insulin and glucagon as well as by glucocorticoids, and glucagon acts via the intracellular mediator, cyclic AMP. The mechanisms responsive to these hormones have also been retained in cultured hepatoma cells: in H-35 cells the responses appear to be essentially identical to those in liver, especially in that each inducer can act independently of the others. In this paper we describe recent analyses of the cellular mechanisms involved in this multiple hormonal control of synthesis of a single enzyme. These experiments have been done with rat liver in vivo, owing to a need for larger quantities of cellular components that can readily be obtained from cultured cells. As some of these results appear to be at variance in important respects with those of earlier analyses carried out in H-35 cells, we briefly review these earlier experiments as well.

  10. Structural and functional aspects of the liver and liver sinusoidal cells in relation to colon carcinoma metastasis

    Institute of Scientific and Technical Information of China (English)

    Katrien Vekemans; Filip Braet

    2005-01-01

    Nowadays, liver metastasis remains difficult to cure. When tumor cells escape and arrive in the liver sinusoids, they encounter the local defense mechanism specific to the liver. The sinusoidal cells have been widely described in physiologic conditions and in relation to metastasis during the past 30 years. This paper provides an "overview" of how these cells function in health and in diseases such as liver metastasis.

  11. 9 CFR 101.6 - Cell cultures.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue...

  12. Density-dependent expression of keratins in transformed rat liver cell lines.

    Science.gov (United States)

    Troyanovsky, S M; Bannikov, G A; Montesano, R; Vasiliev, J M

    1986-04-01

    Immunomorphological examination of the distribution of three keratins in cultured rat liver-derived epithelial cell lines of the IAR series was performed in order to find out the effects of neoplastic evolution on the expression of these epithelium-specific markers. Specific monoclonal antibodies were used to reveal various intermediate filament proteins: keratins with molecular masses of 55, 49 or 40 kD (K55, K49 or K40), and vimentin. The expression of keratins was negligible in sparse and dense cultures of non-transformed lines, which had typical epithelial morphology. The examined keratins were also absent in the sparse cultures of transformed lines, which have lost partially or completely the morphological features of epithelia. However, cells in dense cultures of most transformed lines contained numerous keratin filaments. It is suggested that the paradoxical increase of keratin expression after transformation is due to increased saturation density of transformed cultures; this high density favours the expression. As shown by the experiments with culture wounding, the effects of density are local and reversible. While K55 was present in all the cells of dense cultures, the expression of the other two keratins was dependent on the cell position within these cultures. It is suggested that the expression of the latter two keratins, besides high cell density, also requires the presence (K40) or the absence (K49) of cell-substratum contacts. Possible mechanisms of the effects of cell density on the expression of keratins are discussed.

  13. Stem cells for liver tissue repair:Current knowledge and perspectives

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Stem cells from extra- or intrahepatic sources have been recently characterized and their usefulness for the generation of hepatocyte-like lineages has been demonstrated.Therefore,they are being increasingly considered for future applications in liver cell therapy.In that field,liver cell transplantation is currently regarded as a possible alternative to whole organ transplantation,while stem cells possess theoretical advantages on hepatocytes as they display higher in vitro culture performances and could be used in autologous transplant procedures.However,the current research on the hepatic fate of stem cells is still facing difficulties to demonstrate the acquisition of a full mature hepatocyte phenotype,both in vitro and in vivo.Furthermore,the lack of obvious demonstration of in vivo hepatocyte-like cell functionality remains associated to low repopulation rates obtained after current transplantation procedures.The present review focuses on the current knowledge of the stern cell potential for liver therapy.We discuss the characteristics of the principal cell candidates and the methods to demonstrate their hepatic potential in vitro and in vivo.We finally address the question of the future clinical applications of stem cells for liver tissue repair and the technical aspects that remain to be investigated.

  14. Signals and Cells Involved in Regulating Liver Regeneration

    Directory of Open Access Journals (Sweden)

    Liang-I. Kang

    2012-12-01

    Full Text Available Liver regeneration is a complex phenomenon aimed at maintaining a constant liver mass in the event of injury resulting in loss of hepatic parenchyma. Partial hepatectomy is followed by a series of events involving multiple signaling pathways controlled by mitogenic growth factors (HGF, EGF and their receptors (MET and EGFR. In addition multiple cytokines and other signaling molecules contribute to the orchestration of a signal which drives hepatocytes into DNA synthesis. The other cell types of the liver receive and transmit to hepatocytes complex signals so that, in the end of the regenerative process, complete hepatic tissue is assembled and regeneration is terminated at the proper time and at the right liver size. If hepatocytes fail to participate in this process, the biliary compartment is mobilized to generate populations of progenitor cells which transdifferentiate into hepatocytes and restore liver size.

  15. [Correction of cronic liver failure by transplantation of liver cells suspension and cell-engineering designs (experimental investigation)].

    Science.gov (United States)

    Got'e, S V; Shagidulin, M Iu; Onishchenko, N A; Krasheninnikov, M E; Il'inskiĭ, I M; Mozheĭko, N P; Liundup, A V; Volkova, E A; Petrakov, K I; Avramov, P V; Perova, N V; Sevast'ianov, V I

    2013-01-01

    On an experimental model of chronic fibrotic liver damage (male rats Wistar (n-60), damage of CCl4, the duration of the experiment 90 days) it was studied the effectiveness of cell therapy for the correction of chronic liver failure. These rats were divided into 3 experimental groups: in the Ist-group (control, n=10) isotonic saline (650 mkl.) was injected; in the IInd-group (n=20) suspension of liver cells was applicated in a dose 8 - l0 x 10(6) cells; in the IIIrd-group (n=30) suspension of liver cells and bone marrow cells (mesenchymal stromal cells) in ratio 5:1 were used as cell associates on microparticles intjectable heterogeneous biopolymer hydrogel "SpheroGEL" (cell-engineering design) in common dose 8 - l0 x 10(6) It was ascertained that in the 2nd and in the 3rd groups the accelerated normalization of disturbed liver functional indices (ALT, AST, ALP) took place - to 30 days, but in the control group only to 90 days. The reliable differences in rats ofnormalization offunctional indices were absent between the IInd and the IIIrd groups. But in 90 days by using special histological dyeing it was found out that defibrotic processes in liver tissue were more expressed in the IIIrd group in comparison with the IIIrd group. Received results were consequence of prolonged vital activity of cells (liver cells and mesenchymal stromal bone marrow cells) into cell-engineering designs, which were transplanted in the IIIrd group. The obtained effect can be explained by that the developed cell-engineering designs provide adequate conditions for prolonged vital activity of the transplanted cells.

  16. Therapeutic Implications of Mesenchymal Stem Cells in Liver Injury

    Directory of Open Access Journals (Sweden)

    Maria Ausiliatrice Puglisi

    2011-01-01

    Full Text Available Mesenchymal stem cells (MSCs, represent an attractive tool for the establishment of a successful stem-cell-based therapy of liver diseases. A number of different mechanisms contribute to the therapeutic effects exerted by MSCs, since these cells can differentiate into functional hepatic cells and can also produce a series of growth factors and cytokines able to suppress inflammatory responses, reduce hepatocyte apoptosis, regress liver fibrosis, and enhance hepatocyte functionality. To date, the infusion of MSCs or MSC-conditioned medium has shown encouraging results in the treatment of fulminant hepatic failure and in end-stage liver disease in experimental settings. However, some issues under debate hamper the use of MSCs in clinical trials. This paper summarizes the biological relevance of MSCs and the potential benefits and risks that can result from translating the MSC research to the treatment of liver diseases.

  17. Hepatic stellate cells and innate immunity in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Yang-Gun Suh; Won-Il Jeong

    2011-01-01

    Constant alcohol consumption is a major cause of chronic liver disease, and there has been a growing concern regarding the increased mortality rates worldwide. Alcoholic liver diseases (ALDs) range from mild to more severe conditions, such as steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The liver is enriched with innate immune cells (e.g. natural killer cells and Kupffer cells) and hepatic stellate cells (HSCs), and interestingly, emerging evidence suggests that innate immunity contributes to the development of ALDs (e.g. steatohepatitis and liver fibrosis). Indeed, HSCs play a crucial role in alcoholic steatosis via production of endocannabinoid and retinol metabolites. This review describes the roles of the innate immunity and HSCs in the pathogenesis of ALDs, and suggests therapeutic targets and strategies to assist in the reduction of ALD.

  18. Defining viability in mammalian cell cultures

    OpenAIRE

    Browne, Susan M.; Al-Rubeai, Mohamed

    2011-01-01

    Abstract A large number of assays are available to monitor viability in mammalian cell cultures with most defining loss of viability as a loss of plasma membrane integrity, a characteristic of necrotic cell death. However, the majority of cultured cells die by apoptosis and early apoptotic cells, although non-viable, maintain an intact plasma membrane and are thus ignored. Here we measure the viability of cultures of a number of common mammalian cell lines by assays that measure me...

  19. Chlamydia pneumoniae replicates in Kupffer cells in mouse model of liver infection

    Institute of Scientific and Technical Information of China (English)

    Antonella Marangoni; Manuela Donati; Francesca Cavrini; Rita Aldini; Silvia Accardo; Vittorio Sambri; Marco Montagnani; Roberto Cevenini

    2006-01-01

    AIM: To develop an animal model of liver infection with Chlamydia pneumoniae (C.pneumoniae) in intraperitoneally infected mice for studying the presence of chlamydiae in Kupffer cells and hepatocytes.METHODS: A total of 80 BALB/c mice were inoculated intraperitoneally with C. pneumoniae and sacrificed at various time points after infection. Chlamydiae were looked for in liver homogenates as well as in Kupffer cells and hepatocytes separated by liver perfusion with collagenase. C. pneumoniae was detected by both isolation in LLC-MK2 cells and fluorescence in situ hybridization (FISH). The releasing of TNFA-α by C. pneumoniae in vitro stimulated Kupffer cells was studied by enzymelinked immunosorbent assay.RESULTS: C. pneumoniae isolation from liver homogenates reached a plateau on d 7 after infection when 6 of 10 animals were positive, then decreased, and became negative by d 20. C. pneumoniae isolation from separated Kupffer cells reached a plateau on d 7 when 5 of 10 animals were positive, and became negative by d 20.The detection of C. pneumoniae in separated Kupffer cells by FISH, confirmed the results obtained by culture.Isolated hepatocytes were always negative. Stimulation of Kupffer cells by alive C. pneumoniae elicited high TNF-α levels.CONCLUSION: A productive infection by C. pneumoniae may take place in Kupffer cells and C. pneumoniae induces a local pro-inflammatory activity. C. pneumoniae is therefore, able to act as antigenic stimulus when localized in the liver. One could speculate that C. pneumoniae infection, involving cells of the innate immunity such as Kupffer cells, could also trigger pathological immune reactions involving the liver, as observed in human patients with primary biliary cirrhosis.

  20. Characterization and enrichment of hepatic progenitor cells in adult rat liver

    Institute of Scientific and Technical Information of China (English)

    Ai-Lan Qin; Xia-Qiu Zhou; Wei Zhang; Hong Yu; Qin Xie

    2004-01-01

    AIM: To detect the markers of oval cells in adult rat liver and to enrich them for further analysis of characterization in vitro.METHODS: Rat model for hepatic oval cell proliferation was established with 2-acetylaminofluorene and two third partial hepatectomy (2-AAF/PH). Paraffin embedded rat liver sections from model (11 d after hepatectomy) and control groups were stained with HE and OV6, cytokeratin19 (CK19),albumin, alpha fetoprotein (AFP), connexin43, and c-kit antibodies by immunohistochemistry. Oval cell proliferation was measured with BrdU incorporation test. C-kit positive oval cells were enriched by using magnetic activated cell sorting (MACS) .The sorted oval cells were cultured in a low density to observe colony formation and to examine their characterization in vitroby immunocytochemistry and RT-PCR. RESULTS: A 2-AAF/PH model was successfully established to activate the oval cell compartment in rat liver. BrdU incorporation test of oval cell was positive. The hepatic oval cells coexpressed oval cell specific marker OV6, hepatocytemarker albumin and cholangiocyte-marker CK19. They also expressed AFP and connexin 43. C-kit, one hematopoietic stem cell receptor, was expressed in hepatic oval cells at high levels. By using c-kit antibody in conjunction with MACS,we developed a rapid oval cell isolation protocol. The sorted cells formed colony when cultured in vitro. Cells in the colony expressed albumin or CK19 or coexpressed both and BrdU incorporation test was positive. RT-PCR on colony showed expression of albumin and CK19 gene.CONCLUSION: Hepatic oval cells in the 2-AAF/PH model had the properties of hepatic stem/progenitor cells. Using MACS, we established a method to isolate oval cells. The sorted hepatic oval cells can form colony in vitro which expresses different combinations of phenotypic markers and genes from both hepatocytes and cholangiocyte lineage.

  1. Mesenchymal stem cells support hepatocyte function in engineered liver grafts.

    Science.gov (United States)

    Kadota, Yoshie; Yagi, Hiroshi; Inomata, Kenta; Matsubara, Kentaro; Hibi, Taizo; Abe, Yuta; Kitago, Minoru; Shinoda, Masahiro; Obara, Hideaki; Itano, Osamu; Kitagawa, Yuko

    2014-01-01

    Recent studies suggest that organ decellularization is a promising approach to facilitate the clinical application of regenerative therapy by providing a platform for organ engineering. This unique strategy uses native matrices to act as a reservoir for the functional cells which may show therapeutic potential when implanted into the body. Appropriate cell sources for artificial livers have been debated for some time. The desired cell type in artificial livers is primary hepatocytes, but in addition, other supportive cells may facilitate this stem cell technology. In this context, the use of mesenchymal stem cells (MSC) is an option meeting the criteria for therapeutic organ engineering. Ideally, supportive cells are required to (1) reduce the hepatic cell mass needed in an engineered liver by enhancing hepatocyte function, (2) modulate hepatic regeneration in a paracrine fashion or by direct contact, and (3) enhance the preservability of parenchymal cells during storage. Here, we describe enhanced hepatic function achieved using a strategy of sequential infusion of cells and illustrate the advantages of co-cultivating bone marrow-derived MSCs with primary hepatocytes in the engineered whole-liver scaffold. These co-recellularized liver scaffolds colonized by MSCs and hepatocytes were transplanted into live animals. After blood flow was established, we show that expression of adhesion molecules and proangiogenic factors was upregulated in the graft.

  2. Dynamized Preparations in Cell Culture

    Directory of Open Access Journals (Sweden)

    Ellanzhiyil Surendran Sunila

    2009-01-01

    Full Text Available Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929 and Chinese Hamster Ovary (CHO cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The effect of dynamized medicines to induce apoptosis was also evaluated and we studied how dynamized medicines affected genes expressed during apoptosis. Mother tinctures as well as some dynamized medicines showed significant cytotoxicity to cells during short and long-term incubation. Potentiated alcohol control did not produce any cytotoxicity at concentrations studied. The dynamized medicines were found to inhibit CHO cell colony formation and thymidine uptake in L929 cells and those of Thuja, Hydrastis and Carcinosinum were found to induce apoptosis in DLA cells. Moreover, dynamized Carcinosinum was found to induce the expression of p53 while dynamized Thuja produced characteristic laddering pattern in agarose gel electrophoresis of DNA. These results indicate that dynamized medicines possess cytotoxic as well as apoptosis-inducing properties.

  3. Human telomerase activity, telomerase and telomeric template expression in hepatic stem cells and in livers from fetal and postnatal donors.

    Science.gov (United States)

    Schmelzer, Eva; Reid, Lola M

    2009-10-01

    Although telomerase activity has been analyzed in various normal and malignant tissues, including liver, it is still unknown to what extent telomerase can be associated with specific maturational lineage stages. We assessed human telomerase activity, protein and gene expression for the telomerase reverse transcriptase, as well as expression of the telomeric template RNA hTER in hepatic stem cells and in various developmental stages of the liver from fetal to adult. In addition, the effect of growth factors on telomerase activity was analyzed in hepatic stem cells in vitro. Telomerase was found to be highly active in fetal liver cells and was significantly higher than in hepatic stem cells, correlating with gene and protein expression levels. Activity in postnatal livers from all donor ages varied considerably and did not correlate with age or gene expression levels. The hter expression could be detected throughout the development. A short stimulation by growth factors of cultured hepatic stem cells did not increase telomerase activity. Telomerase is considerably active in fetal liver and variably in postnatal livers. Although telomerase protein is present at varying levels in liver cells of all donor ages, gene expression is solely associated with fetal liver cells.

  4. GP73-regulated oncolytic adenoviruses possess potent killing effect on human liver cancer stem-like cells

    Science.gov (United States)

    Zhang, Rong; Ma, Buyun; Liu, Tao; Yang, Yu; Xie, Wenjie; Liu, Xianglei; Huang, Fang; Liu, Tao; Zhou, Xiumei; Liu, Xinyuan; Wang, Yigang

    2016-01-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, are highly metastatic, chemo-resistant and tumorigenic, and are critical for cancer development, maintenance and recurrence. Oncolytic adenovirus could targetedly kill CSCs and has been acted as a promising anticancer agent. Currently, a novel GP73-regulated oncolytic adenovirus GD55 was constructed to specifically treat liver cancer and exhibited obvious cytotoxicity effect. However, there remains to be confirmed that whether GD55 could effectively eliminate liver CSCs. We first utilized the suspension culture to enrich the liver CSCs-like cells, which acquires the properties of liver CSCs in self-renewal, differentiation, quiescence, chemo-resistance and tumorigenicity. The results indicated that GD55 elicited more significant cytotoxicity and stronger oncolytic effect in liver CSC-like cells compared to common oncolytic virus ZD55. Additionally, GD55 possessed the greater efficacy in suppressing the growth of implanted tumors derived from liver CSC-like cells than ZD55. Furthermore, GD55 induced remarkable apoptosis of liver CSC-like cells in vitro and in vivo, and inhibited the propogation of cells and angiogenesis in xenograft tumor tissues. Thus, GD55 may virtually represent an attractive therapeutic agent for targeting liver CSCs to achieve better clinical outcomes for HCC patients. PMID:27121064

  5. [Isolation and purification of primary Kupffer cells from mouse liver].

    Science.gov (United States)

    Sun, Chao; Luo, Qingbo; Lu, Xiuxian; Zheng, Daofeng; He, Diao; Wu, Zhongjun

    2016-08-01

    Objective To isolate and purify Kupffer cells (KCs) from BALB/c mice by an efficient method of low-speed centrifugation and rapid adherence. Methods The mouse liver tissue was perfused in situ and digested with 0.5 g/L collagenase type IV in vitro by water bath. Then, through the low-speed centrifugation, KCs were separated from the mixed hepatocytes, and purified by rapid adherent characteristics. Finally, the production and activity of KCs obtained by this modified method were compared with those isolated by Percoll density gradient centrifugation. We used F4/80 antibody immunofluorescence technique to observe morphological features of KCs, flow cytometry (FCM) to detect the expression of F4/80 antibody and the ink uptake test to observe the phagocytic activity. Moreover, using FCM, we evaluated the expressions of molecules associated with antigen presentation, including major histocompatibility complex class II (MHC II), CD40, CD86 and CD68 on the surface of KCs subjected to hypoxia/reoxygenation (H/R) modeling. And, ELISA was conducted to measure tumor necrosis factor-α (TNF-α) production of the cultured KCs following H/R. Results The yield of KCs was (5.83±0.54)×10(6) per mouse liver and the survival rate of KCs was up to 92% by low-speed centrifugation and rapid adherent method. Compared with Percoll density gradient centrifugation [the yield of KCs was (2.19±0.43)×10(6) per liver], this new method significantly improved the yield of KCs. F4/80 immunofluorescence showed typical morphologic features of KCs such as spindle or polygon shapes and FCM identified nearly 90% F4/80 positive cells. The phagocytic assay showed that lots of ink particles were phagocytosed into the isolated cells. KC H/R models expressed more MHC II, CD40 and CD86 and produced more TNF-α participating in inflammation. Conclusion The efficient method to isolate and purify KCs from BALB /c mice has been successfully established.

  6. Expanding intestinal stem cells in culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    2015-01-01

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  7. Expanding intestinal stem cells in culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  8. Establishment and identification of induced pluripotent stem cells in liver cancer patients

    Institute of Scientific and Technical Information of China (English)

    Da-Ming Zhang; Jian-Jun Li; Peng Yan; Jian-Ting Hu

    2014-01-01

    Objective: To induce pluripotent stem (IPS) cells from fibrocytes that are separated from liver cancer patients. Methods: The fibrocytes were reprogrammed to IPS cells by lentiviral vector, stained and identified by immunohistochemistry. Results: The IPS cells were successfully established from fibrocytes after infection, and IPS cell clones formed in round shape under a microscopy. The induction rate was 0.013%±0.007%. No tumor formed at the back of nude mice within 8 weeks after the inoculation of cell clones. However, tetatoma appeared in nude mice within 1 week after IPS inoculation. A few tumors formed in nude mice within 4 weeks after the inoculation of cell clones. However, subcutaneous tumors formed within 1 week after IPS inoculation. The induced IPS cells showed three germ layers in tetatoma. Nanog and OCT4 in the induced IPS cells showed hypomethylation. SSEA-A, TRA-1-6-, TRA-1-81 and Nanog were highly expressed in the induced IPS cells, indicating the IPS cells possessed the similar ability as the stem cells. Conclusion: The IPS cells of liver cancer patients can be established effectively from fibrocytes and can be cultured stably in vitro, which provides an approach for the treatment of intermediate or advanced stage liver cancer.

  9. Liver cancer stem cell markers: Progression and therapeutic implications

    Science.gov (United States)

    Sun, Jing-Hui; Luo, Qing; Liu, Ling-Ling; Song, Guan-Bin

    2016-01-01

    Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets. PMID:27053846

  10. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    Science.gov (United States)

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture.

  11. Best practices in cell culture: an overview.

    Science.gov (United States)

    Baust, John M; Buehring, Gertrude Case; Campbell, Lia; Elmore, Eugene; Harbell, John W; Nims, Raymond W; Price, Paul; Reid, Yvonne A; Simione, Frank

    2017-08-14

    This overview describes a series of articles to provide an unmet need for information on best practices in animal cell culture. The target audience primarily consists of entry-level scientists with minimal experience in cell culture. It also include scientists, journalists, and educators with some experience in cell culture, but in need of a refresher in best practices. The articles will be published in this journal over a six-month period and will emphasize best practices in: (1) media selection; (2) use and evaluation of animal serum as a component of cell culture medium; (3) receipt of new cells into the laboratory; (4) naming cell lines; (5) authenticating cell line identity; (6) detecting and mitigating risk of cell culture contamination; (7) cryopreservation and thawing of cells; and (8) storing and shipping viable cells.

  12. Hepatic stellate cell-specific deletion of SIRT1 exacerbates liver fibrosis in mice.

    Science.gov (United States)

    Li, Min; Hong, Wenxuan; Hao, Chenzhi; Li, Luyang; Xu, Huihui; Li, Ping; Xu, Yong

    2017-09-14

    Liver fibrosis is widely perceived as a host defense mechanism that aids tissue repair following liver injury. Excessive fibrogenesis, however, serves to disrupts normal liver structure and precedes such irrevocable human pathologies as cirrhosis and hepatocellular carcinoma. Activation of hepatic stellate cells (HSCs) is a hallmark event during liver fibrosis. In the present study we investigated the mechanism by which the lysine deacetylase SIRT1 regulates HSC activation. We report here that SIRT1 levels were decreased in the liver in different mouse models and in cultured HSCs undergoing activation. SIRT1 down-regulation paralleled HDAC4 up-regulation. HDAC4 was recruited to the SIRT1 promoter during HSC activation and removed acetylated histones H3 and H4 from the SIRT1 promoter leading to SIRT1 trans‑repression. HDAC4 silencing restored SIRT1 expression and attenuated HSC activation in SIRT1-dependent manner. More important, selective deletion of SIRT1 in HSCs exacerbated CCl4-induced liver fibrosis in mice. Mechanistically, SIRT1 deacetylated PPARγ to block HSC activation. Together, our data reveal an HDAC4-SIRT1-PPARγ axis that contributes to the regulation of HSC activation and liver fibrosis. Copyright © 2017. Published by Elsevier B.V.

  13. Role of stem cells during diabetic liver injury.

    Science.gov (United States)

    Wan, Ying; Garner, Jessica; Wu, Nan; Phillip, Levine; Han, Yuyan; McDaniel, Kelly; Annable, Tami; Zhou, Tianhao; Francis, Heather; Glaser, Shannon; Huang, Qiaobing; Alpini, Gianfranco; Meng, Fanyin

    2016-02-01

    Diabetes mellitus is one of the most severe endocrine metabolic disorders in the world that has serious medical consequences with substantial impacts on the quality of life. Type 2 diabetes is one of the main causes of diabetic liver diseases with the most common being non-alcoholic fatty liver disease. Several factors that may explain the mechanisms related to pathological and functional changes of diabetic liver injury include: insulin resistance, oxidative stress and endoplasmic reticulum stress. The realization that these factors are important in hepatocyte damage and lack of donor livers has led to studies concentrating on the role of stem cells (SCs) in the prevention and treatment of liver injury. Possible avenues that the application of SCs may improve liver injury include but are not limited to: the ability to differentiate into pancreatic β-cells (insulin producing cells), the contribution for hepatocyte regeneration, regulation of lipogenesis, glucogenesis and anti-inflammatory actions. Once further studies are performed to explore the underlying protective mechanisms of SCs and the advantages and disadvantages of its application, there will be a greater understand of the mechanism and therapeutic potential. In this review, we summarize the findings regarding the role of SCs in diabetic liver diseases.

  14. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients.

    Science.gov (United States)

    Zhang, Zheng; Lin, Hu; Shi, Ming; Xu, Ruonan; Fu, Junliang; Lv, Jiyun; Chen, Liming; Lv, Sa; Li, Yuanyuan; Yu, Shuangjie; Geng, Hua; Jin, Lei; Lau, George K K; Wang, Fu-Sheng

    2012-03-01

    Decompensated liver cirrhosis (LC), a life-threatening complication of chronic liver disease, is one of the major indications for liver transplantation. Recently, mesenchymal stem cell (MSC) transfusion has been shown to lead to the regression of liver fibrosis in mice and humans. This study examined the safety and efficacy of umbilical cord-derived MSC (UC-MSC) in patients with decompensated LC. A total of 45 chronic hepatitis B patients with decompensated LC, including 30 patients receiving UC-MSC transfusion, and 15 patients receiving saline as the control, were recruited; clinical parameters were detected during a 1-year follow-up period. No significant side-effects and complications were observed in either group. There was a significant reduction in the volume of ascites in patients treated with UC-MSC transfusion compared with controls (P decompensated LC. UC-MSC transfusion, therefore, might present a novel therapeutic approach for patients with decompensated LC.

  15. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells.

    Science.gov (United States)

    Yang, Chao; Ji, Lei; Yue, Wen; Shi, Shuang-Shuang; Wang, Ruo-Yong; Li, Yan-Hua; Xie, Xiao-Yan; Xi, Jia-Fei; He, Li-Juan; Nan, Xue; Pei, Xue-Tao

    2012-02-01

    Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.

  16. Featured Article: Isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells

    Science.gov (United States)

    Pfeiffer, Elisa; Kegel, Victoria; Zeilinger, Katrin; Hengstler, Jan G; Nüssler, Andreas K; Seehofer, Daniel

    2015-01-01

    Primary human hepatocytes (PHH) are considered to be the gold standard for in vitro testing of xenobiotic metabolism and hepatotoxicity. However, PHH cultivation in 2D mono-cultures leads to dedifferentiation and a loss of function. It is well known that hepatic non-parenchymal cells (NPC), such as Kupffer cells (KC), liver endothelial cells (LEC), and hepatic stellate cells (HSC), play a central role in the maintenance of PHH functions. The aims of the present study were to establish a protocol for the simultaneous isolation of human PHH and NPC from the same tissue specimen and to test their suitability for in vitro co-culture. Human PHH and NPC were isolated from tissue obtained by partial liver resection by a two-step EDTA/collagenase perfusion technique. The obtained cell fractions were purified by Percoll density gradient centrifugation. KC, LEC, and HSC contained in the NPC fraction were separated using specific adherence properties and magnetic activated cell sorting (MACS®). Identified NPC revealed a yield of 1.9 × 106 KC, 2.7 × 105 LEC and 4.7 × 105 HSC per gram liver tissue, showing viabilities >90%. Characterization of these NPC showed that all populations went through an activation process, which influenced the cell fate. The activation of KC strongly depended on the tissue quality and donor anamnesis. KC became activated in culture in association with a loss of viability within 4–5 days. LEC lost specific features during culture, while HSC went through a transformation process into myofibroblasts. The testing of different culture conditions for HSC demonstrated that they can attenuate, but not prevent dedifferentiation in vitro. In conclusion, the method described allows the isolation and separation of PHH and NPC in high quality and quantity from the same donor. PMID:25394621

  17. Hepato-biliary profile of potential candidate liver progenitor cells from healthy rat liver

    Institute of Scientific and Technical Information of China (English)

    Céric Maerckx; Isabelle Scheers; Tatiana Tondreau; David Campard; Omar Nyabi; Mustapha Najimi; Etienne Sokal

    2012-01-01

    AIM:To evaluate the presence of progenitor cells in healthy adult rat liver displaying the equivalent advanced hepatogenic profile as that obtained in humans.METHODS:Rat fibroblastic-like liver derived cells (rFLDC) were obtained from collagenase-isolated liver cell suspensions and characterized and their phenotype profile determined using flow cytometry,immunocyto-chemistry,reverse transcription polymerase chain reaction and functional assays.RESULTS:rFLDC exhibit fibroblastoid morphology,express mesenchymal (CD73,CD90,vimentin,α-smooth muscle actin),hepatocyte (UGT1A1,CK8) and biliary (CK19) markers.Moreover,these cells are able to store glycogen,and have glucose 6 phosphatase activity,but not UGT1A1 activity.Under the hepatogenic differentiation protocol,rFLDC display an up-regulation of hepatocyte markers expression (albumin,tryptophan 2,3-dioxygenase,G6Pase) correlated to a down-regulation of the expression of the biliary marker CK19.CONCLUSION:Advanced hepatic features observed in human liver progenitor cells could not be demonstrated in rFLDC.However,we demonstrated the presence of an original rodent hepato-biliary cell type.

  18. Plasminogen binding to rat hepatocytes in primary culture and to thin slices of rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Gonias, S.L.; Braud, L.L.; Geary, W.A.; VandenBerg, S.R. (Univ. of Virginia Health Sciences Center, Charlottesville (USA))

    1989-08-01

    Human {sup 125}I-plasminogen bound readily to rat hepatocytes in primary culture at 4 {degree}C and at 37{degree}C. Binding was inhibited by lysine and reversed by lysine, epsilon-aminocaproic acid, or nonradiolabeled plasminogen. The Kd for binding of {sup 125}I-plasminogen to hepatocytes was 0.59 +/- 0.16 mumol/L, as determined from the saturation isotherm by nonlinear regression (r2 = 0.99) and the Scatchard transformation by linear regression (r2 = 0.93). The number of sites per cell was 14.1 +/- 1.1 x 10(6). Fibrinogen synthesis and secretion by hepatocytes was insufficient to account for the major fraction of plasminogen binding, as determined by enzyme-linked immunosorbent assay (ELISA). Polyacrylamide gel electrophoresis and trichloroacetic acid precipitation studies demonstrated that plasminogen is neither activated nor degraded when bound to hepatocytes at 37{degree}C. Thin slices of whole rat liver (500 microns), isolated and prepared totally at 4{degree}C, bound {sup 125}I-plasminogen. Binding was inhibited by lysine. {sup 125}I-albumin binding to liver slices was minimal and not inhibited by lysine. Activation of plasminogen by tissue plasminogen activator (t-PA) was enhanced by hepatocytes in primary culture. When lysine was included in the media, the enhanced rate of activation was no longer observed. After activation with t-PA, much of the plasmin remained associated with hepatocyte surfaces and was partially protected from inhibition by alpha 2-antiplasmin. These studies suggest that hepatocyte plasminogen binding sites may provide important surface anticoagulant activity.

  19. Hepatocytes Polyploidization and Cell Cycle Control in Liver Physiopathology

    Directory of Open Access Journals (Sweden)

    Géraldine Gentric

    2012-01-01

    Full Text Available Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of “diploid-polyploid conversion” during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels, oxidative stress, toxic insult, and chronic hepatitis etc.. Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth.

  20. The antiproliferative drug doxorubicin inhibits liver fibrosis in bile duct-ligated rats and can be selectively delivered to hepatic stellate cells in vivo

    NARCIS (Netherlands)

    Greupink, R; Bakker, HI; Bouma, W; Reker-Smit, C; Meijer, DKF; Beljaars, L; Poelstra, K

    Hepatic stellate cell (HSC) proliferation is a key event in liver fibrosis; therefore, pharmacological intervention with antiproliferative drugs may result in antifibrotic effects. In this article, the antiproliferative effect of three cytostatic drugs was tested in cultured rat HSC. Subsequently,

  1. Cell density monitoring and control of microencapsulated CHO cell cultures

    OpenAIRE

    Cole, Harriet Emma

    2015-01-01

    Though mammalian cells play a key role in the manufacturing of recombinant glycosylated proteins, cell cultures and productivity are limited by the lack of suitable systems to enable stable perfusion culture. Microencapsulation, or entrapping cells within a semi-permeable membrane, offers the potential to generate high cell density cultures and improve the productivity by mimicking the cells natural environment. However, the cells being secluded by the microcapsules membrane are difficult to ...

  2. Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Yoshiyuki Takahara; Mitsuo Takahashi; Hiroki Wagatsuma; Fumihiko Yokoya; Qing-Wei Zhang; Mutsuyo Yamaguchi; Hiroyuki Aburatani; Norifumi Kawada

    2006-01-01

    AIM: To determine the gene expression profile data for the whole liver during development of dimethylnitrosamine (DMN)-induced hepatic fibrosis.METHODS: Marker genes were identified for different types of hepatic cells, including hepatic stellate cells (HSCs), Kupffer cells (including other inflammatory cells),and hepatocytes, using independent temporal DNA microarray data obtained from isolated hepatic cells.RESULTS: The cell-type analysis of gene expression gave several key results and led to formation of three hypotheses: (1) changes in the expression of HSCspecific marker genes during fibrosis were similar to gene expression data in in vitro cultured HSCs, suggesting a major role of the self-activating characteristics of HSCs in formation of fibrosis; (2) expression of mast cell-specific marker genes reached a peak during liver fibrosis,suggesting a possible role of mast cells in formation of fibrosis; and (3) abnormal expression of hepatocytespecific marker genes was found across several metabolic pathways during fibrosis, including sulfur-containing amino acid metabolism, fatty acid metabolism, and drug metabolism, suggesting a mechanistic relationship between these abnormalities and symptoms of liver fibrosis.CONCLUSION: Analysis of marker genes for specific hepatic cell types can identify the key aspects of fibrogenesis. Sequential activation of inflammatory cells and the self-supporting properties of HSCs play an important role in development of fibrosis.

  3. A selective tropism of transfused oval cells for liver

    Institute of Scientific and Technical Information of China (English)

    Jian-Zhi Chen; Hai Hong; Jin Xiang; Ling Xue; Guo-Qiang Zhao

    2003-01-01

    AIM: To explore the biological behaviors of hepatic oval cells after transfused into the circulation of experimental animals.METHODS: Oval cells from male SD rat were transfused into the circulation of a female rat which were treated by a 2-AAF/CCl4 program, through caudal vein. Sex-determining gene sry which located on Y chromosome was examined by PCR and in situ hybridization technique in liver, kidney and spleen of the experimental animals, respectively.RESULTS: The results of the cell-transplant experiment showed that the srygene was detectable only in the liver but not in spleen and kidney of the experimental rats, and no signals could be detected in the control animals. It can be also morphologically proved that some exogenous cells had migrated into the parenchyma of the liver and settled there.CONCLUSION: The result means that there are exogenous cells located in the liver of the experimental animal and the localization is specific to the liver. This indicates that some "signal molecules" must exist in the circulation of the rats treated by 2-AAF/CCl4. These "signal molecules" might play an important role in specific localization and differentiation of transfused oval cells.

  4. Fetal liver stromal cells promote hematopoietic cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kun; Hu, Caihong [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Zhou, Zhigang [Shanghai 1st People Hospital, Shanghai Jiao Tong University, Shanghai 201620 (China); Huang, Lifang; Liu, Wenli [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Sun, Hanying, E-mail: shanhum@163.com [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)

    2009-09-25

    Future application of hematopoietic stem and progenitor cells (HSPCs) in clinical therapies largely depends on their successful expansion in vitro. Fetal liver (FL) is a unique hematopoietic organ in which hematopoietic cells markedly expand in number, but the mechanisms involved remain unclear. Stromal cells (StroCs) have been suggested to provide a suitable cellular environment for in vitro expansion of HSPCs. In this study, murine StroCs derived from FL at E14.5, with a high level of Sonic hedgehog (Shh) and Wnt expression, were found to have an increased ability to support the proliferation of HSPCs. This effect was inhibited by blocking Shh signaling. Supplementation with soluble Shh-N promoted the proliferation of hematopoietic cells by activating Wnt signaling. Our findings suggest that FL-derived StroCs support proliferation of HSPCs via Shh inducing an autocrine Wnt signaling loop. The use of FL-derived StroCs and regulation of the Shh pathway might further enhance HPSC expansion.

  5. Cell culture techniques in honey bee research

    Science.gov (United States)

    Cell culture techniques are indispensable in most if not all life science disciplines to date. Wherever cell culture models are lacking scientific development is hampered. Unfortunately this has been and still is the case in honey bee research because permanent honey bee cell lines have not yet been...

  6. Cell Culture as an Alternative in Education.

    Science.gov (United States)

    Nardone, Roland M.

    1990-01-01

    Programs that are intended to inform and provide "hands-on" experience for students and to facilitate the introduction of cell culture-based laboratory exercises into the high school and college laboratory are examined. The components of the CellServ Program and the Cell Culture Toxicology Training Programs are described. (KR)

  7. Cryopreserved hepatic progenitor cells derived from human embryonic stem cells can arrest progression of liver fibrosis in rats.

    Science.gov (United States)

    Mandal, Arundhati; Raju, Sheena; Viswanathan, Chandra

    2016-10-01

    Hepatocytes generated from human embryonic stem cells (hESCs) are considered to be an excellent candidate for restoring the liver function deficiencies. We have earlier standardized a three-step differentiation protocol to generate functional hepatocyte-like cells (HLCs) from hESCs, which expressed the major hepatic markers. We have also found that the HLCs remain stable and functional even after extended period of in vitro culture and cryopreservation. In the present study, we have aimed to investigate the therapeutic potential of cryopreserved-thawed hESC-derived hepatic progenitor cells following transplantation in carbon tetrachloride-induced fibrotic rat livers. Significant therapeutic effects, including improved hepatic histology and normal serum biochemistry of hepatic enzymes along with increased survival rate, were observed in the cell transplanted rats. This result is an encouraging indication to develop methods for clinical application of hESC-derived hepatic lineage cells.

  8. Cultivation of adult rat hepatocytes on 3T3 cells: expression of various liver differentiated functions.

    Science.gov (United States)

    Kuri-Harcuch, W; Mendoza-Figueroa, T

    1989-08-01

    Adult rat hepatocytes were maintained in culture for at least 1 month without losing the expression of their differentiated functions; they were cultured on lethally treated 3T3 fibroblasts inoculated at 35,000 cells/cm2 with medium containing 10-25 micrograms/ml hydrocortisone. Hepatocytes showed their typical morphology; they formed bile canaliculi, microvilli, and intercellular junctions with desmosomes and nexus; some formed structures that may resemble the perisinusoidal space of Disse. In addition, they showed DNA synthesis and expressed some liver-specific functions. They synthesized albumin and other proteins, which were exported to the culture medium. Like parenchymal liver cells in vivo, de novo fatty acid synthesis and esterification took place, and more than 80% of the lipids synthesized by the hepatocytes were secreted into the medium as triglycerides; they also showed cytochrome-P450 activity that was inducible with phenobarbital, suggesting that the hepatocytes have the capacity to metabolize drugs. These culture conditions allow the study of various hepatocyte differentiated functions, and they may provide the means to analyze the effect on liver of hormones, viruses and hepatotoxic chemicals and drugs; they may also indicate conditions adequate for serial growth of hepatocytes.

  9. Primary Culture of Porcine Pancreatic Acinar Cells

    OpenAIRE

    2001-01-01

    OBJECTIVE: To develop a method for the primary culture of porcine pancreatic acinar cells. INTERVENTIONS: Dispersed pancreatic acinar cells available utilizing RPMI-1640 medium containing collagenase III. After purification, the isolated acinar cells were cultured in RPMI-1640 medium with the addition of 2.5% fetal bovine serum. MAIN OUTCOME MEASURES: The morphological characteristics of acinar cells were described. (3)H-thymidine incorporation of acinar cells and the activity of amylase or l...

  10. MBD3 inhibits formation of liver cancer stem cells

    Science.gov (United States)

    Li, Ruizhi; He, Qihua; Han, Shuo; Zhang, Mingzhi; Liu, Jinwen; Su, Ming; Wei, Shiruo; Wang, Xuan; Shen, Li

    2017-01-01

    Liver cancer cells can be reprogrammed into induced cancer stem cells (iCSCs) by exogenous expression of the reprogramming transcription factors Oct4, Sox2, Klf4 and c-Myc (OSKM). The nucleosome remodeling and deacetylase (NuRD) complex is essential for reprogramming somatic cells. In this study, we investigated the function of NuRD in the induction of liver CSCs. We showed that suppression of methyl-CpG binding domain protein 3 (MBD3), a core subunit of the NuRD repressor complex, together with OSKM transduction, induces conversion of liver cancer cells into stem-like cells. Expression of the transcription factor c-JUN is increased in MBD3-depleted iCSCs, and c-JUN activates endogenous pluripotent genes and regulates iCSC-related genes. These results indicate that MBD3/NuRD inhibits the induction of iCSCs, while c-JUN facilitates the generation of CSC-like properties. The iCSC reprogramming approach devised here provides a novel platform for dissection of the disordered signaling in liver CSCs. In addition, our results indicate that c-JUN may serve as a potential target for liver cancer therapy. PMID:27894081

  11. Alcohol-induced steatosis in liver cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Alcohol-induced fatty liver (steatosis) was believed to result from excessive generation of reducing equivalents from ethanol metabolism, thereby enhancing fat accumulation. Recent findings have revealed a more complex picture in which ethanol oxidation is still required,but specific transcription as well as humoral factors also have important roles. Transcription factors involved include the sterol regulatory element binding protein 1 (SREBP-1)which is activated to induce genes that regulate lipid biosynthesis. Conversely, ethanol consumption causes a general down-regulation of lipid (fatty acid) oxidation, a reflection of inactivation of the peroxisome proliferatoractivated receptor-alpha (PPAR-α) that regulates genes involved in fatty acid oxidation. A third transcription factor is the early growth response-1 (Egr-1), which is strongly induced prior to the onset of steatosis. The activities of all these factors are governed by that of the principal regulatory enzyme, AMP kinase. Important humoral factors, including adiponectin, and tumor necrosis factor-α(TNF-α), also regulate alcohol-induced steatosis. Their levels are affected by alcohol consumption and by each other. This review will summarize the actions of these proteins in ethanol-elicited fatty liver. Because steatosis is now regarded as a significant risk factor for advanced liver pathology, an understanding of the molecular mechanisms in its etiology is essential for development of effective therapies.

  12. Fabrication of 3D-culture platform with sandwich architecture for preserving liver-specific functions of hepatocytes using 3D bioprinter.

    Science.gov (United States)

    Arai, Kenichi; Yoshida, Toshiko; Okabe, Motonori; Goto, Mitsuaki; Mir, Tanveer Ahmad; Soko, Chika; Tsukamoto, Yoshinari; Akaike, Toshihiro; Nikaido, Toshio; Zhou, Kaixuan; Nakamura, Makoto

    2017-06-01

    The development of new three-dimensional (3D) cell culture system that maintains the physiologically relevant signals of hepatocytes is essential in drug discovery and tissue engineering research. Conventional two-dimensional (2D) culture yields cell growth, proliferation, and differentiation. However, gene expression and signaling profiles can be different from in vivo environment. Here, we report the fabrication of a 3D culture system using an artificial scaffold and our custom-made inkjet 3D bioprinter as a new strategy for studying liver-specific functions of hepatocytes. We built a 3D culture platform for hepatocytes-attachment and formation of cell monolayer by interacting the galactose chain of galactosylated alginate gel (GA-gel) with asialoglycoprotein receptor (ASGPR) of hepatocytes. The 3D geometrical arrangement of cells was controlled by using 3D bioprinter, and cell polarity was controlled with the galactosylated hydrogels. The fabricated GA-gel was able to successfully promote adhesion of hepatocytes. To observe liver-specific functions and to mimic hepatic cord, an additional parallel layer of hepatocytes was generated using two gel sheets. These results indicated that GA-gel biomimetic matrices can be used as a 3D culture system that could be effective for the engineering of liver tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1583-1592, 2017. © 2017 Wiley Periodicals, Inc.

  13. The inhibition of the human cholesterol 7alpha-hydroxylase gene (CYP7A1) promoter by fibrates in cultured cells is mediated via the liver x receptor alpha and peroxisome proliferator-activated receptor alpha heterodimer.

    Science.gov (United States)

    Gbaguidi, G Franck; Agellon, Luis B

    2004-01-01

    In previous work, we showed that the binding of the liver x receptor alpha:peroxisome proliferator-activated receptor alpha (LXRalpha:PPARalpha) heterodimer to the murine Cyp7a1 gene promoter antagonizes the stimulatory effect of their respective ligands. In this study, we determined if LXRalpha:PPARalpha can also regulate human CYP7A1 gene promoter activity. Co-expression of LXRalpha and PPARalpha in McArdle RH7777 hepatoma cells decreased the activity of the human CYP7A1 gene promoter in response to fibrates and 25-hydroxycholesterol. In vitro, the human CYP7A1 Site I bound LXRalpha:PPARalpha, although with substantially less affinity compared with the murine Cyp7a1 Site I. The binding of LXRalpha:PPARalpha to human CYP7A1 Site I was increased in the presence of either LXRalpha or PPARalpha ligands. In HepG2 hepatoblastoma cells, fibrates and 25-hydroxycholesterol inhibited the expression of the endogenous CYP7A1 gene as well as the human CYP7A1 gene promoter when co-transfected with plasmids encoding LXRalpha and PPARalpha. However, a derivative of the human CYP7A1 gene promoter that contains a mutant form of Site I that does not bind LXRalpha:PPARalpha was not inhibited by WY 14,643 or 25-hydroxycholesterol in both McArdle RH7777 and HepG2 cells. The ligand-dependent recruitment of LXRalpha:PPARalpha heterodimer onto the human CYP7A1 Site I can explain the inhibition of the human CYP7A1 gene promoter in response to fibrates and 25-hydroxycholesterol.

  14. Modulation of insulin degrading enzyme activity and liver cell proliferation.

    Science.gov (United States)

    Pivovarova, Olga; von Loeffelholz, Christian; Ilkavets, Iryna; Sticht, Carsten; Zhuk, Sergei; Murahovschi, Veronica; Lukowski, Sonja; Döcke, Stephanie; Kriebel, Jennifer; de las Heras Gala, Tonia; Malashicheva, Anna; Kostareva, Anna; Lock, Johan F; Stockmann, Martin; Grallert, Harald; Gretz, Norbert; Dooley, Steven; Pfeiffer, Andreas F H; Rudovich, Natalia

    2015-01-01

    Diabetes mellitus type 2 (T2DM), insulin therapy, and hyperinsulinemia are independent risk factors of liver cancer. Recently, the use of a novel inhibitor of insulin degrading enzyme (IDE) was proposed as a new therapeutic strategy in T2DM. However, IDE inhibition might stimulate liver cell proliferation via increased intracellular insulin concentration. The aim of this study was to characterize effects of inhibition of IDE activity in HepG2 hepatoma cells and to analyze liver specific expression of IDE in subjects with T2DM. HepG2 cells were treated with 10 nM insulin for 24 h with or without inhibition of IDE activity using IDE RNAi, and cell transcriptome and proliferation rate were analyzed. Human liver samples (n = 22) were used for the gene expression profiling by microarrays. In HepG2 cells, IDE knockdown changed expression of genes involved in cell cycle and apoptosis pathways. Proliferation rate was lower in IDE knockdown cells than in controls. Microarray analysis revealed the decrease of hepatic IDE expression in subjects with T2DM accompanied by the downregulation of the p53-dependent genes FAS and CCNG2, but not by the upregulation of proliferation markers MKI67, MCM2 and PCNA. Similar results were found in the liver microarray dataset from GEO Profiles database. In conclusion, IDE expression is decreased in liver of subjects with T2DM which is accompanied by the dysregulation of p53 pathway. Prolonged use of IDE inhibitors for T2DM treatment should be carefully tested in animal studies regarding its potential effect on hepatic tumorigenesis.

  15. Culture of Cells from Amphibian Embryos.

    Science.gov (United States)

    Stanisstreet, Martin

    1983-01-01

    Describes a method for in vitro culturing of cells from amphibian early embryos. Such cells can be used to demonstrate such properties of eukaryote cells as cell motility, adhesion, differentiation, and cell sorting into tissues. The technique may be extended to investigate other factors. (Author/JN)

  16. Novel 3D Culture Systems for Studies of Human Liver Function and Assessments of the Hepatotoxicity of Drugs and Drug Candidates.

    Science.gov (United States)

    Lauschke, Volker M; Hendriks, Delilah F G; Bell, Catherine C; Andersson, Tommy B; Ingelman-Sundberg, Magnus

    2016-12-19

    The liver is an organ with critical importance for drug treatment as the disposition and response to a given drug is often determined by its hepatic metabolism. Patient-specific factors can entail increased susceptibility to drug-induced liver injury, which constitutes a major risk for drug development programs causing attrition of promising drug candidates or costly withdrawals in postmarketing stages. Hitherto, mainly animal studies and 2D hepatocyte systems have been used for the examination of human drug metabolism and toxicity. Yet, these models are far from satisfactory due to extensive species differences and because hepatocytes in 2D cultures rapidly dedifferentiate resulting in the loss of their hepatic phenotype and functionality. With the increasing comprehension that 3D cell culture systems more accurately reflect in vivo physiology, in the recent decade more and more research has focused on the development and optimization of various 3D culture strategies in an attempt to preserve liver properties in vitro. In this contribution, we critically review these developments, which have resulted in an arsenal of different static and perfused 3D models. These systems include sandwich-cultured hepatocytes, spheroid culture platforms, and various microfluidic liver or multiorgan biochips. Importantly, in many of these models hepatocytes maintain their phenotype for prolonged times, which allows probing the potential of newly developed chemical entities to cause chronic hepatotoxicity. Moreover, some platforms permit the investigation of drug action in specific genetic backgrounds or diseased hepatocytes, thereby significantly expanding the repertoire of tools to detect drug-induced liver injuries. It is concluded that the development of 3D liver models has hitherto been fruitful and that systems are now at hand whose sensitivity and specificity in detecting hepatotoxicity are superior to those of classical 2D culture systems. For the future, we highlight the

  17. [Hepatic cell transplantation: a new therapy in liver diseases].

    Science.gov (United States)

    Pareja, Eugenia; Cortés, Miriam; Martínez, Amparo; Vila, Juan José; López, Rafael; Montalvá, Eva; Calzado, Angeles; Mir, José

    2010-07-01

    Liver transplantation has been remarkably effective in the treatment in patients with end-stage liver disease. However, disparity between solid-organ supply and increased demand is the greatest limitation, resulting in longer waiting times and increase in mortality of transplant recipients. This situation creates the need to seek alternatives to orthotopic liver transplantation.Hepatocyte transplantation or liver cell transplantation has been proposed as the best method to support patients. The procedure consists of transplanting individual cells to a recipient organ in sufficient quantity to survive and restore the function. The capacity of hepatic regeneration is the biological basis of hepatocyte transplantation. This therapeutic option is an experimental procedure in some patients with inborn errors of metabolism, fulminant hepatic failure and acute and chronic liver failure, as a bridge to orthotopic liver transplantation. In the Hospital La Fe of Valencia, we performed the first hepatocyte transplantation in Spain creating a new research work on transplant program. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.

  18. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Yoshikazu [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Itoh, Tohru, E-mail: itohru@iam.u-tokyo.ac.jp [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Miyajima, Atsushi [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2009-09-10

    Hedgehog (Hh) signaling plays crucial roles in development and homeostasis of various organs. In the adult liver, it regulates proliferation and/or viability of several types of cells, particularly under injured conditions, and is also implicated in stem/progenitor cell maintenance. However, the role of this signaling pathway during the normal developmental process of the liver remains elusive. Although Sonic hedgehog (Shh) is expressed in the ventral foregut endoderm from which the liver derives, the expression disappears at the onset of the liver bud formation, and its possible recurrence at the later stages has not been investigated. Here we analyzed the activation and functional relevance of Hh signaling during the mouse fetal liver development. At E11.5, Shh and an activation marker gene for Hh signaling, Gli1, were expressed in Dlk{sup +} hepatoblasts, the fetal liver progenitor cells, and the expression was rapidly decreased thereafter as the development proceeded. In the culture of Dlk{sup +} hepatoblasts isolated from the E11.5 liver, activation of Hh signaling stimulated their proliferation and this effect was cancelled by a chemical Hh signaling inhibitor, cyclopamine. In contrast, hepatocyte differentiation of Dlk{sup +} hepatoblasts in vitro as manifested by the marker gene expression and acquisition of ammonia clearance activity was significantly inhibited by forced activation of Hh signaling. Taken together, these results demonstrate the temporally restricted manner of Hh signal activation and its role in promoting the hepatoblast proliferation, and further suggest that the pathway needs to be shut off for the subsequent hepatic differentiation of hepatoblasts to proceed normally.

  19. Primary Culture of Porcine Pancreatic Acinar Cells

    Directory of Open Access Journals (Sweden)

    Zhao X

    2001-03-01

    Full Text Available OBJECTIVE: To develop a method for the primary culture of porcine pancreatic acinar cells. INTERVENTIONS: Dispersed pancreatic acinar cells available utilizing RPMI-1640 medium containing collagenase III. After purification, the isolated acinar cells were cultured in RPMI-1640 medium with the addition of 2.5% fetal bovine serum. MAIN OUTCOME MEASURES: The morphological characteristics of acinar cells were described. (3H-thymidine incorporation of acinar cells and the activity of amylase or lipase were determined during the culture process. RESULTS: There were no remarkable morphological changes in the pancreatic acinar cells during the 20 days culture. The acini showed a tendency to gather but did not attach to the walls of the culture disks. A good (3H-thymidine incorporation of acinar cells in the primary culture was maintained. The secretion of amylase or lipase from the acini decreased with the length of time of the culture. DISCUSSION: The primary culture of acinar cells from a porcine pancreas which was carried out in this study maintained the normal morphology of the acinar cells and their ability to grow but not their secretion of amylase or lipase. The method would benefit by the further experiments on acini of porcine pancreas.

  20. Effect of human patient plasma ex vivo treatment on gene expression and progenitor cell activation of primary human liver cells in multi-compartment 3D perfusion bioreactors for extra-corporeal liver support.

    Science.gov (United States)

    Schmelzer, Eva; Mutig, Kerim; Schrade, Petra; Bachmann, Sebastian; Gerlach, Jörg C; Zeilinger, Katrin

    2009-07-01

    Cultivation of primary human liver cells in innovative 3D perfusion multi-compartment capillary membrane bioreactors using decentralized mass exchange and integral oxygenation provides in vitro conditions close to the physiologic environment in vivo. While a few scale-up bioreactors were used clinically, inoculated liver progenitors in these bioreactors were not investigated. Therefore, we characterized regenerative processes and expression patterns of auto- and paracrine mediators involved in liver regeneration in bioreactors after patient treatment. Primary human liver cells containing parenchymal and non-parenchymal cells co-cultivated in bioreactors were used for clinical extra-corporeal liver support to bridge to liver transplantation. 3D tissue re-structuring in bioreactors was studied; expression of proteins and genes related to regenerative processes and hepatic progenitors was analyzed. Formation of multiple bile ductular networks and colonies of putative progenitors were observed within parenchymal cell aggregates. HGF was detected in scattered cells located close to vascular-like structures, expression of HGFA and c-Met was assigned to biliary cells and hepatocytes. Increased expression of genes associated to hepatic progenitors was detected following clinical application. The results confirm auto- and paracrine interactions between co-cultured cells in the bioreactor. The 3D bioreactor provides a valuable tool to study mechanisms of progenitor activation and hepatic regeneration ex vivo under patient plasma treatment. (c) 2009 Wiley Periodicals, Inc.

  1. Embryonic Stem Cells: Isolation, Characterization and Culture

    Science.gov (United States)

    Amit, Michal; Itskovitz-Eldor, Joseph

    Embryonic stem cells are pluripotent cells isolated from the mammalian blastocyst. Traditionally, these cells have been derived and cultured with mouse embryonic fibroblast (MEF) supportive layers, which allow their continuous growth in an undifferentiated state. However, for any future industrial or clinical application hESCs should be cultured in reproducible, defined, and xeno-free culture system, where exposure to animal pathogens is prevented. From their derivation in 1998 the methods for culturing hESCs were significantly improved. This chapter wills discuss hESC characterization and the basic methods for their derivation and maintenance.

  2. Cell Suspension Culture of Neem Tree

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The establishment of suspension culture system for neem (Azadirachta indica A. Juss) cells and the suspension culture condition was studied. It shows that the neem cell suspension culture system was best in B5 liquid medium, 2.0~4.0mg/L NAA with direct spill method. Based on the integrated analysis of cell biomass, Azadirachtin content and productivity, the optimum culture conditions were B5 liquid medium, 2.0-4.0 mg/L NAA, 3% sucrose at 25 ℃. The optimum rotating speed of the shaker and broth content d...

  3. Culture of proliferating and differentiating fat-storing cells in 3T3-conditioned medium.

    Science.gov (United States)

    Mendoza-Figueroa, T; Argüello, C; Kuri-Harcuch, W

    1988-01-01

    There is growing evidence suggesting that hepatic fat-storing cells (FSC) or Ito cells have an important function in vitamin A storage and metabolism and in the synthesis of connective tissue components in normal liver and during fibrogenesis. The purified FSC acquire a fibroblastic morphology and their vitamin A content decreases in culture. We cultivated cells under in vitro conditions that allowed the expression of FSC morphological and functional characteristics for 3-4 weeks of primary culture. Cells were isolated from rat liver by the collagenase-perfusion method without further purification and cultured with 3T3-conditioned medium, which seemed to stimulate the selective proliferation of the FSC. After 8-10 days, round and stellate cells grew actively from a few precursor cells in the primary culture and were not subcultivated; the stellate cells had the ability to become round and vice versa and were highly motile. The cells had intracytoplasmic lipid droplets, a well developed rough endoplasmic reticulum, Golgi complex, numerous vesicles filled with electron-dense material, and extracellular matrix (ECM) components on their surface. Both stellate and round cells showed the presence of desmin by immunofluorescence and vitamin A autofluorescence, but lacked peroxidase activity. The culture conditions we describe allowed the selective proliferation of cells with morphological and functional characteristics of the FSC in the normal liver, raising the possibility of studying FSC proliferation and differentiation.

  4. Gene expression profiling and secretome analysis differentiate adult-derived human liver stem/progenitor cells and human hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Silvia Berardis

    Full Text Available Adult-derived human liver stem/progenitor cells (ADHLSC are obtained after primary culture of the liver parenchymal fraction. The cells are of fibroblastic morphology and exhibit a hepato-mesenchymal phenotype. Hepatic stellate cells (HSC derived from the liver non-parenchymal fraction, present a comparable morphology as ADHLSC. Because both ADHLSC and HSC are described as liver stem/progenitor cells, we strived to extensively compare both cell populations at different levels and to propose tools demonstrating their singularity. ADHLSC and HSC were isolated from the liver of four different donors, expanded in vitro and followed from passage 5 until passage 11. Cell characterization was performed using immunocytochemistry, western blotting, flow cytometry, and gene microarray analyses. The secretion profile of the cells was evaluated using Elisa and multiplex Luminex assays. Both cell types expressed α-smooth muscle actin, vimentin, fibronectin, CD73 and CD90 in accordance with their mesenchymal origin. Microarray analysis revealed significant differences in gene expression profiles. HSC present high expression levels of neuronal markers as well as cytokeratins. Such differences were confirmed using immunocytochemistry and western blotting assays. Furthermore, both cell types displayed distinct secretion profiles as ADHLSC highly secreted cytokines of therapeutic and immuno-modulatory importance, like HGF, interferon-γ and IL-10. Our study demonstrates that ADHLSC and HSC are distinct liver fibroblastic cell populations exhibiting significant different expression and secretion profiles.

  5. Expression pattern of mda-7/IL-24 receptors in liver cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Hong Zhu; Zhi-Bin Yang

    2009-01-01

    BACKGROUND: The mda-7/IL-24 receptor belongs to the typeⅡ cytokine receptor family, and its two heterodimeric receptors are IL-22R1/IL-20R2 and IL-20R1/IL-20R2. Mda-7/IL-24 receptor expression in liver cancer cell lines has not yet been described. This information may be helpful for further clinical gene therapy. METHODS: With normal skin total RNA as template, the cDNA sequences of IL-20R1, IL-20R2 and IL-22R were ampliifed by RT-PCR. Total RNA was extracted from cultured liver cancer cell lines and a normal liver cell line, then detected by northern blotting, and the expression of mda-7/IL-24 receptors was analyzed. RESULTS: PLC/PRF/5 and SMMC-7721 expressed IL-20R1;BEL-7402, Hep3B, HepG2, and PLC/PRF/5 expressed IL-20R2; and HepG2 and PLC/PRF/5 expressed IL-22R. Only HepG2 expressed the IL-22R/IL-20R2 receptor complex. PLC/PRF/5 completely expressed both heterodimeric receptors. Huh-7, QGY-7701 and WRL-68 did not express the IL-24 receptor. CONCLUSION: Complete mda-7/IL-24 receptors are seldom expressed in liver cancer cell lines.

  6. Cross effects of resveratrol and mesenchymal stem cells on liver regeneration and homing in partially hepatectomized rats.

    Science.gov (United States)

    Okay, Erdem; Simsek, Turgay; Subasi, Cansu; Gunes, Abdullah; Duruksu, Gokhan; Gurbuz, Yesim; Gacar, Gulcin; Karaoz, Erdal

    2015-04-01

    In this study, we examined the effect of preoperatively administered resveratrol (RV) and mesenchymal stem cells (MSCs) on regeneration of partially hepatectomized rat liver. We also evaluated the effect of RV on homing of MSCs. MSCs were isolated from bone marrow and cultured in vitro. Wistar albino rats were randomly divided into four groups. In groups, rats received (1) no treatment, (2) single dose RV, (3) MSCs and (4) RV plus MSCs before partial hepatectomy (PH). Injected MSCs were traced by labeling them with green fluorescent protein, and liver regeneration was determined by comparison of liver weight gain, histological examination and immunohistochemical staining with proliferating cell nuclear antigen (PCNA) for mitotic cells. The expression levels of tumor necrosis factor -alpha (TNF-α), interleukin-6 (IL-6) and hepatocyte growth factor (HGF) were also determined in the parafin sections of liver specimens with immunohistochemical staining. Administration of RV and MSCs separately or together enhanced liver regeneration despite decreasing the TNF-α and IL-6 expression. This positive contribution was probably due to direct raising effect on HGF for RV and HGF expression for MSCs that we demonstrated with immunohistochemical staining. Additionally, RV increased the homing of MSCs in liver probably related to life prolonging effect on MSCs. These results indicate that preoperative RV as well as MSCs application enhances liver regeneration after partial hepatectomy in rats. Paying attention to RV about the effect on liver regeneration and homing of MSCs might be the goal of further investigations.

  7. [Effects of beryllium chloride on cultured cells].

    Science.gov (United States)

    Sakaguchi, T; Sakaguchi, S; Nakamura, I; Kagami, M

    1984-05-01

    The effects of beryllium on cultured cells were investigated. Three cell-lines (HeLa-S3, Vero, HEL-R66) were used in these experiments and they were cultured in Eagle's MEM plus 5 or 10% FBS (Fetal Bovine Serum) containing beryllium in various concentrations. HeLa cells or Vero cells were able to grow in the medium with 10 micrograms Be/ml (1.1 mM). On the other hand, the growth of HEL cells were strongly inhibited, even when cultured in the medium with 1 microgram Be/ml (1.1 X 10(-1) mM) and the number of living cells showed markedly low level as compared to that of the control samples cultured in the medium without beryllium. The cytotoxic effects of beryllium on these cells, which were cultured for three days in the medium with beryllium, were observed. None of cytotoxic effects were found on HeLa cells cultured with 0.5 micrograms/ml (5.5 X 10(-2) mM) and on Vero cells cultured with 0.05 micrograms Be/ml (5.5 X 10(-3) mM), while HEL cells received cytotoxic effects even when cultured in the medium containing 0.05 micrograms Be/ml (5.5 X 10(-3) mM), and these effects on the cells appeared strong when cultured in the medium without FBS. It was revealed from these experiments that HEL cells are very sensitive in terms of toxic effects of beryllium. Therefore, there cells can be used for the toxicological study on low level concentrations of the metal.

  8. The effect of Sachalin rhodiola rhizome extract on liver starch and liver cell morphous of sports fatigue rat

    Institute of Scientific and Technical Information of China (English)

    JI Yu-bin; LI Rui; JI Chen-feng

    2008-01-01

    Objective To inspect the effect of Sachalin rhodiola rhizome extract to the swimming time and content of liver starch and liver cells morphous of sports fatigue rat. Methods Using weight loading swimming to determine swimming time, using kits to determine liver starch, using transmission electron microscope to observe the diversify of rat liver ceils morphous and construction. Results To compare with negative control group, the Sachalin rhodiola rhizome extract can obviously extend survival time of swimming rat, increase the content of liver starch. Conclusions Sachalin rhodiola rhizome extract can raise the staying power of sports fatigue rat, strengthen sport ability and play a part in antifatigue by increasing the content of liver starch and protecting liver cells of sports fatigue rat.

  9. Hypercholesterolemia Induces Differentiation of Regulatory T Cells in the Liver.

    Science.gov (United States)

    Mailer, Reiner K W; Gisterå, Anton; Polyzos, Konstantinos A; Ketelhuth, Daniel F J; Hansson, Göran K

    2017-05-26

    The liver is the central organ that responds to dietary cholesterol intake and facilitates the release and clearance of lipoprotein particles. Persistent hypercholesterolemia leads to immune responses against lipoprotein particles that drive atherosclerosis. However, the effect of hypercholesterolemia on hepatic T-cell differentiation remains unknown. To investigate hepatic T-cell subsets upon hypercholesterolemia. We observed that hypercholesterolemia elevated the intrahepatic regulatory T (Treg) cell population and increased the expression of transforming growth factor-β1 in the liver. Adoptive transfer experiments revealed that intrahepatically differentiated Treg cells relocated to the inflamed aorta in atherosclerosis-prone low-density lipoprotein receptor deficient (Ldlr(-/-)) mice. Moreover, hypercholesterolemia induced the differentiation of intrahepatic, but not intrasplenic, Th17 cells in wild-type mice, whereas the disrupted liver homeostasis in hypercholesterolemic Ldlr(-/-) mice led to intrahepatic Th1 cell differentiation and CD11b(+)CD11c(+) leukocyte accumulation. Our results elucidate a new mechanism that controls intrahepatic T-cell differentiation during atherosclerosis development and indicates that intrahepatically differentiated T cells contribute to the CD4(+) T-cell pool in the atherosclerotic aorta. © 2017 American Heart Association, Inc.

  10. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    Full Text Available In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs we isolated human fetal liver stromal cells (hFLSCs from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days. Basic fibroblast growth factor (bFGF is known to play an important role in promoting self-renewal of human embryonic stem (hES cells. So, we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF, insulin-like growth factor 2 (IGF-2, and transforming growth factor β (TGF-β, thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together, bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.

  11. Analysis of drug metabolism activities in a miniaturized liver cell bioreactor for use in pharmacological studies.

    Science.gov (United States)

    Hoffmann, Stefan A; Müller-Vieira, Ursula; Biemel, Klaus; Knobeloch, Daniel; Heydel, Sandra; Lübberstedt, Marc; Nüssler, Andreas K; Andersson, Tommy B; Gerlach, Jörg C; Zeilinger, Katrin

    2012-12-01

    Based on a hollow fiber perfusion technology with internal oxygenation, a miniaturized bioreactor with a volume of 0.5 mL for in vitro studies was recently developed. Here, the suitability of this novel culture system for pharmacological studies was investigated, focusing on the model drug diclofenac. Primary human liver cells were cultivated in bioreactors and in conventional monolayer cultures in parallel over 10 days. From day 3 on, diclofenac was continuously applied at a therapeutic concentration (6.4 µM) for analysis of its metabolism. In addition, the activity and gene expression of the cytochrome P450 (CYP) isoforms CYP1A2, CYP2B6, CYP2C9, CYP2D6, and CYP3A4 were assessed. Diclofenac was metabolized in bioreactor cultures with an initial conversion rate of 230 ± 57 pmol/h/10(6) cells followed by a period of stable conversion of about 100 pmol/h/10(6) cells. All CYP activities tested were maintained until day 10 of bioreactor culture. The expression of corresponding mRNAs correlated well with the degree of preservation. Immunohistochemical characterization showed the formation of neo-tissue with expression of CYP2C9 and CYP3A4 and the drug transporters breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2) in the bioreactor. In contrast, monolayer cultures showed a rapid decline of diclofenac conversion and cells had largely lost activity and mRNA expression of the assessed CYP isoforms at the end of the culture period. In conclusion, diclofenac metabolism, CYP activities and gene expression levels were considerably more stable in bioreactor cultures, making the novel bioreactor a useful tool for pharmacological or toxicological investigations requiring a highly physiological in vitro representation of the liver.

  12. Dynamic culture improves cell reprogramming efficiency.

    Science.gov (United States)

    Sia, Junren; Sun, Raymond; Chu, Julia; Li, Song

    2016-06-01

    Cell reprogramming to pluripotency is an inefficient process and various approaches have been devised to improve the yield of induced pluripotent stem cells. However, the effect of biophysical factors on cell reprogramming is not well understood. Here we showed that, for the first time, dynamic culture with orbital shaking significantly improved the reprogramming efficiency in adherent cells. Manipulating the viscosity of the culture medium suggested that the improved efficiency is mainly attributed to convective mixing rather than hydrodynamic shear stress. Temporal studies demonstrated that the enhancement of reprogramming efficiency required the dynamic culture in the middle but not early phase. In the early phase, fibroblasts had a high proliferation rate, but as the culture became over-confluent in the middle phase, expression of p57 was upregulated to inhibit cell proliferation and consequently, cell reprogramming. Subjecting the over confluent culture to orbital shaking prevented the upregulation of p57, thus improving reprogramming efficiency. Seeding cells at low densities to avoid over-confluency resulted in a lower efficiency, and optimal reprogramming efficiency was attained at a high seeding density with dynamic culture. Our findings provide insight into the underlying mechanisms of how dynamic culture condition regulate cell reprogramming, and will have broad impact on cell engineering for regenerative medicine and disease modeling.

  13. New culture medium concepts for cell transplantation.

    Science.gov (United States)

    Lee, S; Kim, B Y; Yeo, J E; Nemeno, J G; Jo, Y H; Yang, W; Nam, B M; Namoto, S; Tanaka, S; Sato, M; Lee, K M; Hwang, H S; Lee, J I

    2013-10-01

    Before cell or tissue transplantation, cells or tissues have to be maintained for a certain period in vitro using culture medium and methods. Most culture media contain substances such as pH indicators and buffers. It is not known whether some of these substances are safe for subsequent application in the transplantation of cells or tissues into the human body. We investigated culture media and methods with respect to the safety of the components in future transplantation applications. A modified culture medium--medical fluid-based culture medium (FCM)--was designed by using various fluids and injectable drugs that are already currently permitted for use in clinical medicine. Medium components necessary for optimal cell growth were obtained from approved drugs. FCM was manufactured with adjusted final concentrations of the medium components similar to those in commercial Dulbecco's modified Eagle's medium (DMEM). In particular, 1029.40 mg/L amino acids, approximately 88.85 mg/L vitamins, 13,525.77 mg/L inorganic salts, and 4500 mg/L D-glucose comprise the high-glucose FCM. Next, human fat synovium-derived mesenchymal stem cells and rat H9c2 (2-1) cells were cultured under 2 conditions: (1) DMEM-high glucose (HG), an original commercial medium, and (2) optimized FCM-HG. We assessed the morphologies and proliferation rates of these cells. We observed that FCM-HG was able to induce the growth of FS-MSC and commercially available H9c2 cell. The morphologies and proliferation patterns of these cells cultured under FCM-HG showed no differences compared with cells grown in DMEM-HG. Our data suggest that FCM, which we developed for the first time according to the concept of drug repositioning, was a useful culture medium, especially in cultured cells intended for human cell transplantation. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  14. Liver cell adenoma with malignant transformation: A case report

    Institute of Scientific and Technical Information of China (English)

    Masahiro Ito; Makoto Sasaki; Chun-Yang Wen; Masahiro Nakashima; Toshihito Ueki; Hiromi Ishibashi; Michitami Yano; Masayoshi Kage; Masamichi Kojiro

    2003-01-01

    A 57-year-old woman was referred to our hospital because of a liver mass detected by computed tomography. She had taken oral contraceptives for only one month at the age of thirty. Physical examination revealed no abnormalities, and laboratory data, including hepatic function tests, were within the normal range, with the exception of elevated levels of those serum proteins induced by the absence of vitamin K or by raised levels of the antagonist (PIVKA)-Ⅱ (3 502 AU/ml).Abdominal ultrasonography revealed a hyperechoic mass measuring 10x10 cm in the left posterior segment of the liver. Because hepatocellular carcinoma could not be completely excluded, this mass was resected. The tumor consisted of sheets of uniform cells with clear cytoplasm,perinuclear eosinophilic granules and round nuclei. These histological findings were consistent with liver cell adenoma.Background hepatic tissue appeared normal. After resection of the tumor, serum PIVKA-Ⅱ fell to within the normal range.An area of hepatocellular carcinoma (HCC) with a midtrabecular pattern was immunohistochemically found, which was positive for PIVKA-Ⅱ. Sinusoidal endothelial cells were CD34-positive, containing scattered PIVKA-Ⅱ positive cells.This tumor was therefore finally diagnosed as liver cell adenoma with focal malignant transformation to HCC.

  15. [Expression of gamma-glutamyl transpeptidase in the IAR 2 cell line cultured on a nonadhesive substrate].

    Science.gov (United States)

    Anfimova, M L; Bannikov, G A

    1985-07-01

    Expression of gamma-glutamyltranspeptidase (GGT) in liver epithelial IAR 2 cells was studied after culturing on adhesive and non-adhesive substrates. IAR 2 cells are non-tumorigenic and do not express GGT under normalcy. Culturing these cells on a non-adhesive substrate dramatically retards the normal spreading up of these cells. Individual "islets" of the cells begin to express GGT activity tested by histochemistry. Biochemical testing of GGT activity in IAR 2 cells cultured on adhesive and non-adhesive substrates confirmed an assumption that maximal expression of GGT coincides in time with maximal morphological differences in the cells cultured on these substrates.

  16. Role of transcription factor CCAAT/enhancer-binding protein alpha in human fetal liver cell types in vitro.

    Science.gov (United States)

    Gerlach, Jörg C; Over, Patrick; Foka, Hubert G; Turner, Morris E; Thompson, Robert L; Gridelli, Bruno; Schmelzer, Eva

    2015-08-01

    The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) has been shown to play an important role in liver development, cell proliferation and differentiation. It is, however, largely unknown if C/EBPα regulates cell differentiation and proliferation differently in the diverse cell types of the human liver. We investigated the role of C/EBPα in primary human fetal liver cells and liver cell subpopulations in vitro using a 3-D perfusion bioreactor as an advanced in vivo-like human organ culture model. Human fetal liver cells were investigated in vitro. C/EBPα gene expression was knocked down using siRNA or overexpressed by plasmid transfection. Cell type-specific gene expression was studied, cell populations and their proliferation were investigated, and metabolic parameters were analyzed. When C/EBPα gene expression was knocked down, we observed a significantly reduced expression of typical endothelial, hematopoietic and mesenchymal genes such as CD31, vWF, CD90, CD45 and α-smooth muscle actin in fetal cells. The intracellular expression of hepatic proteins and genes for liver-specific serum proteins α-fetoprotein and albumin were reduced, their protein secretion was increased. Fetal endothelial cell numbers were reduced and hepatoblast numbers were increased. C/EBPα overexpression in fetal cells resulted in increased endothelial numbers, but did not affect mesenchymal cell types or hepatoblasts. We demonstrated that the effects of C/EBPα are specific for the different human fetal liver cell types, using an advanced 3-D perfusion bioreactor as a human in vivo-like model. © 2014 The Japan Society of Hepatology.

  17. Liver involvement of Langerhans’ cell histiocytosis in children

    Science.gov (United States)

    Yi, Xiaoping; Han, Tong; Zai, Hongyan; Long, Xueying; Wang, Xiaoyi; Li, Wenzheng

    2015-01-01

    Objective: Liver involvement is relatively frequent in children with Langerhans cell histiocytosis (LCH). Its features remain poorly defined. Methods: A retrospective study was carried out on 14 hepatic LCH children in our hospital. The Clinicopathological and radiological features of this disease was discussed. Results: The rate of liver involvement in children LCH patients is 51.9%. Majority of the patients were disseminated cases. Hepatomegaly was clinically confirmed in 11 cases (78.6%). Liver function dysfunction was seen in nine (64.3%) children. The association of multi-modal imaging significantly yielded more diagnostic information. There are some imaging characteristics of this disease, CT and MRI could help to assess the staging, extent of the hepatic lesions. We found that liver involvement had a significant impact on survival. Patients treated with systemic chemotherapy earlier from time of diagnosis had a relatively better outcome. Conclusions: The rate of liver involvement in children LCH patients maybe much higher than that of expected. We suggest that clinical and biological liver evaluation and abdominal imaging must be performed regularly onwards to screen every LCH children patient from the time of the initial diagnosis. Patient should be treated with systemic chemotherapy earlier. PMID:26221247

  18. Bone marrow mesenchymal stem cell transplantation via different approaches in treatment of liver cirrhosis in mice

    Directory of Open Access Journals (Sweden)

    ZHANG Lixia

    2016-10-01

    Full Text Available Objective To investigate the clinical effects of bone marrow mesenchymal stem cell (BMSC transplantation via different approaches in the treatment of liver cirrhosis in mice. Methods A total of 46 BALB/c mice were randomly divided into normal control group with 5 mice and liver cirrhosis model group with 41 mice. Subcutaneously injected carbon tetrachloride olive oil was used to establish the mouse model of liver cirrhosis. A total of 36 mice with liver cirrhosis were randomly divided into control group, caudal vein BMSC transplantation group, and spleen BMSC transplantation group, with 12 mice in each group. Whole bone marrow adherent culture was performed to obtain the third-generation BMSCs, and flow cytometry was used for cell surface identification. BMSCs were injected into the mice through the caudal vein or spleen. Blood samples were collected at 4 weeks after transplantation to measure liver function. HE and Masson staining and α-smooth muscle actin (α-SMA immunohistochemistry were performed for liver sections. Liver injury and fibrosis in mice were examined. A one-way analysis of variance was used for comparison between groups. Results At 8 weeks after the establishment of the model, the mice in the model group had sparse and dark yellow hair, reduced food consumption and activity, and a reduction in body weight. After transplantation, compared with the model control group, the caudal vein BMSC transplantation group and spleen BMSC transplantation group showed a significant increase in albumin and significant reductions in alanine aminotransferase and aspartate aminotransferase (all P<0.01. There were no significant differences between the two transplantation approaches (P>0.05. After transplantation, there were significant changes in diseased tissue, alleviated liver cirrhosis, reduced collagen fiber and necrotic area, and a good structure. Immunohistochemistry showed both transplantation groups showed significant reductions in

  19. Autofluorescence of viable cultured mammalian cells.

    Science.gov (United States)

    Aubin, J E

    1979-01-01

    The autofluorescence other than intrinsic protein emission of viable cultured mammalian cells has been investigated. The fluorescence was found to originate in discrete cytoplasmic vesicle-like regions and to be absent from the nucleus. Excitation and emission spectra of viable cells revealed at least two distinct fluorescent species. Comparison of cell spectra with spectra of known cellular metabolites suggested that most, if not all, of the fluorescence arises from intracellular nicotinamide adenine dinucleotide (NADH) and riboflavin and flavin coenzymes. Various changes in culture conditions did not affect the observed autofluorescence intensity. A multiparameter flow system (MACCS) was used to compare the fluorescence intensities of numerous cultured mammalian cells.

  20. Methylthioadenosine (MTA) Regulates Liver Cells Proteome and Methylproteome: Implications in Liver Biology and Disease*

    Science.gov (United States)

    Bigaud, Emilie; Corrales, Fernando J.

    2016-01-01

    Methylthioadenosine phosphorylase (MTAP), a key enzyme in the adenine and methionine salvage pathways, catalyzes the hydrolysis of methylthioadenosine (MTA), a compound suggested to affect pivotal cellular processes in part through the regulation of protein methylation. MTAP is expressed in a wide range of cell types and tissues, and its deletion is common to cancer cells and in liver injury. The aim of this study was to investigate the proteome and methyl proteome alterations triggered by MTAP deficiency in liver cells to define novel regulatory mechanisms that may explain the pathogenic processes of liver diseases. iTRAQ analysis resulted in the identification of 216 differential proteins (p MTA levels in SK-Hep1+ cells parallels the specific methylation of 56 proteins, including KRT8, TGF, and CTF8A, which provides a novel regulatory mechanism of their activity with potential implications in carcinogenesis. Inhibition of RNA-binding proteins methylation is especially relevant upon accumulation of MTA. As an example, methylation of quaking protein in Arg242 and Arg256 in SK-Hep1+ cells may play a pivotal role in the regulation of its activity as indicated by the up-regulation of its target protein p27kip1. The phenotype associated with a MTAP deficiency was further verified in the liver of MTAP± mice. Our data support that MTAP deficiency leads to MTA accumulation and deregulation of central cellular pathways, increasing proliferation and decreasing the susceptibility to chemotherapeutic drugs, which involves differential protein methylation. Data are available via ProteomeXchange with identifier PXD002957 (http://www.ebi.ac.uk/pride/archive/projects/PXD002957). PMID:26819315

  1. Transdifferentiation of Fetal Liver-delivered Mesenchymal Stem Cells into Cardiomyocyte-like Cells

    Institute of Scientific and Technical Information of China (English)

    Chang Jing; Cheng Jian-bin; Jia Feng-peng; Lei Han

    2006-01-01

    Objectives To explore the possibility to induce mesenchymal stem cells from human fetal livers (FMSCs) to differentiate along cardiac lineage and the way to obtain high rate of differentiation. Methods Cells from passage 6-9 were plated at the density of 1.5 × 104/cm2 and were treated with the combination of 5-azacytine(5-aza), retinoitic acid(RA) and Dimethylsulfoxide (DMSO) in different doses when near confluence. 24 hours later, the treatment was removed by changing into normal medium without inducers. Different culture conditions were tried, including temperature, oxygen content and medium. Results When FMSCs were treated with highdose combination ( 5-aza 50 μM +RA 10-1 μM +DMSO 1%) and modified combination(5-aza 50 μM+RA 10-3 μM + DMSO 0.8 %) in cardiac differentiation medium (CDM), at 37℃ and 20% O2, the cardiac differentiation was induced. When near confluence, cells became round and tended to gather together to form ball-like structures. 3 weeks after treatment, the cells were harvested and stained with anti-desmin and cardiac troponin I antibodies, and about 40% of the cells were positively stained. No beating cells observed during observation. Conclusions FMSCs have the potential to differentiate along cardiac lineage, and the stimulus for the cardiac differentiation is different from those for MSCs from different species.

  2. Pro-B cells propagated in stromal cell-free cultures reconstitute functional B-cell compartments in immunodeficient mice.

    Science.gov (United States)

    von Muenchow, Lilly; Tsapogas, Panagiotis; Albertí-Servera, Llucia; Capoferri, Giuseppina; Doelz, Marianne; Rolink, Hannie; Bosco, Nabil; Ceredig, Rhodri; Rolink, Antonius G

    2017-02-01

    Up to now long-term in vitro growth of pro-B cells was thought to require stromal cells. However, here we show that fetal liver (FL) and bone marrow (BM) derived pro-B cells can be propagated long-term in stromal cell-free cultures supplemented with IL-7, stem cell factor and FLT3 ligand. Within a week, most cells expressed surface CD19, CD79A, λ5, and VpreB antigens and had rearranged immunoglobulin D-J heavy chain genes. Both FL and BM pro-B cells reconstituted the B-cell compartments of immuno-incompetent Rag2-deficient mice, with FL pro-B cells generating follicular, marginal zone (MZB) and B1a B cells, and BM pro-B cells giving rise mainly to MZB cells. Reconstituted Rag2-deficient mice generated significant levels of IgM and IgG antibodies to a type II T-independent antigen; mice reconstituted with FL pro-B cells generated surprisingly high IgG1 titers. Finally, we show for the first time that mice reconstituted with mixtures of pro-B and pro-T cells propagated in stromal cell-free in vitro cultures mounted a T-cell-dependent antibody response. This novel stromal cell-free culture system facilitates our understanding of B-cell development and might be applied clinically. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Emulsions Containing Perfluorocarbon Support Cell Cultures

    Science.gov (United States)

    Ju, Lu-Kwang; Lee, Jaw Fang; Armiger, William B.

    1990-01-01

    Addition of emulsion containing perfluorocarbon liquid to aqueous cell-culture medium increases capacity of medium to support mammalian cells. FC-40 Fluorinert (or equivalent) - increases average density of medium so approximately equal to that of cells. Cells stay suspended in medium without mechanical stirring, which damages them. Increases density enough to prevent cells from setting, and increases viscosity of medium so oxygen bubbled through it and nutrients stirred in with less damage to delicate cells.

  4. Observations of liver cancer cells in scanning probe acoustic microscope: a preliminary study

    Science.gov (United States)

    Chen, Xiaohui; Fang, Xiaoyue; Xi, Qing; Guo, Hua; Zhang, Ning; Ding, Mingyue

    2016-04-01

    Scanning probe acoustic microscope (SPAM) can be used to acquire the morphology image as well as the non-destructive internal structures acoustic image. However, the observations of the morphology image as well as the internal structures acoustic image of liver cancer cells in SPAM are few. In this paper, we cultured 4 different types of liver cancer cells on the silicon wafer and coverslip to observe their morphology images as well as acoustic images in SPAM, and made a preliminary study of the 8 types of cells specimens (hereinafter referred to as the silicon specimens and coverslips specimens). The experimental measurement results showed that some cellular pseudopodium were observed in the morphology images of the coverslip specimens while no such cellular pseupodium were appeared in the morphology images of the silicon specimens, which concluded that the living liver cancer cells were less likely to grow on the silicon wafer. SPAM provides a rapid and sensitive visual method for studying the morphology and internal structures of the cancer cells. The proposed method can be also used to obtain the morphology and internal information in both solid and soft material wafers, such as silicon and cells, with the resolution of nanometer scale.

  5. Cell culture processes for monoclonal antibody production

    OpenAIRE

    LI Feng; Vijayasankaran, Natarajan; Shen, Amy (Yijuan); Kiss, Robert; Amanullah, Ashraf

    2010-01-01

    Animal cell culture technology has advanced significantly over the last few decades and is now generally considered a reliable, robust and relatively mature technology. A range of biotherapeutics are currently synthesized using cell culture methods in large scale manufacturing facilities that produce products for both commercial use and clinical studies. The robust implementation of this technology requires optimization of a number of variables, including (1) cell lines capable of synthesizin...

  6. Adhesion of pancreatic cancer cells in a liver-microvasculature mimicking coculture correlates with their propensity to form liver-specific metastasis in vivo.

    Science.gov (United States)

    Chowdhury, Mohammad Mahfuz; Danoy, Mathieu; Rahman, Farhana; Shinohara, Marie; Kaneda, Shohei; Shiba, Kiyotaka; Fujita, Naoya; Fujii, Teruo; Sakai, Yasuyuki

    2014-01-01

    Organ-specific characteristic of endothelial cells (ECs) is crucial for specific adhesion of cancer cells to ECs, which is a key factor in the formation of organ-specific metastasis. In this study, we developed a coculture of TMNK-1 (immortalized liver sinusoidal ECs) with 10T1/2 (resembling hepatic stellate cells) to augment organ-specific characteristic of TMNK-1 and investigated adhesion of two pancreatic cancer cells (MIA-PaCa-2 and BxPC-3) in the culture. MIA-PaCa-2 and BxPC-3 adhesion in TMNK-1+10T1/ 2|coating culture (TMNK-1 monolayer over 10T1/2 layer on collagen coated surface) were similar. However, in TMNK-1+10T1/ 2|gel (coculture on collagen gel surface), MIA-PaCa-2 adhesion was significantly higher than BxPC-3, which was congruent with the reported higher propensity of MIA-PaCa-2 than BxPC-3 to form liver metastasis in vivo. Notably, as compared to BxPC-3, MIA-PaCa-2 adhesion was lower and similar in TMNK-1 only culture on the collagen coated and gel surfaces, respectively. Investigation of the adhesion in the representative human umbilical vein ECs (HUVECs) cultures and upon blocking of surface molecules of ECs revealed that MIA-PaCa-2 adhesion was strongly dependent on the organ-specific upregulated characteristics of TMNK-1 in TMNK-1+10T1/ 2|gel culture. Therefore, the developed coculture would be a potential assay for screening novel drugs to inhibit the liver-microvasculature specific adhesion of cancer cells.

  7. Adhesion of Pancreatic Cancer Cells in a Liver-Microvasculature Mimicking Coculture Correlates with Their Propensity to Form Liver-Specific Metastasis In Vivo

    Directory of Open Access Journals (Sweden)

    Mohammad Mahfuz Chowdhury

    2014-01-01

    Full Text Available Organ-specific characteristic of endothelial cells (ECs is crucial for specific adhesion of cancer cells to ECs, which is a key factor in the formation of organ-specific metastasis. In this study, we developed a coculture of TMNK-1 (immortalized liver sinusoidal ECs with 10T1/2 (resembling hepatic stellate cells to augment organ-specific characteristic of TMNK-1 and investigated adhesion of two pancreatic cancer cells (MIA-PaCa-2 and BxPC-3 in the culture. MIA-PaCa-2 and BxPC-3 adhesion in TMNK-1+10T1/2coating culture (TMNK-1 monolayer over 10T1/2 layer on collagen coated surface were similar. However, in TMNK-1+10T1/2gel (coculture on collagen gel surface, MIA-PaCa-2 adhesion was significantly higher than BxPC-3, which was congruent with the reported higher propensity of MIA-PaCa-2 than BxPC-3 to form liver metastasis in vivo. Notably, as compared to BxPC-3, MIA-PaCa-2 adhesion was lower and similar in TMNK-1 only culture on the collagen coated and gel surfaces, respectively. Investigation of the adhesion in the representative human umbilical vein ECs (HUVECs cultures and upon blocking of surface molecules of ECs revealed that MIA-PaCa-2 adhesion was strongly dependent on the organ-specific upregulated characteristics of TMNK-1 in TMNK-1+10T1/2gel culture. Therefore, the developed coculture would be a potential assay for screening novel drugs to inhibit the liver-microvasculature specific adhesion of cancer cells.

  8. 3D Cell Culture in Alginate Hydrogels

    Directory of Open Access Journals (Sweden)

    Therese Andersen

    2015-03-01

    Full Text Available This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent, and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  9. Insect cell culture in reagent bottles.

    Science.gov (United States)

    Rieffel, S; Roest, S; Klopp, J; Carnal, S; Marti, S; Gerhartz, B; Shrestha, B

    2014-01-01

    Growing insect cells with high air space in culture vessel is common from the early development of suspension cell culture. We believed and followed it with the hope that it allows sufficient air for optimal cell growth. However, we missed to identify how much air exactly cells need for its growth and multiplication. Here we present the innovative method that changed the way we run insect cell culture. The method is easy to adapt, cost-effective and useful for both academic and industrial research labs. We believe this method will revolutionize the way we run insect cell culture by increasing throughput in a cost-effective way. In our study we identified:•Insect cells need to be in suspension; air space in culture vessel and type of culture vessel is of less importance. Shaking condition that introduces small air bubbles and maintains it in suspension for longer time provides better oxygen transfer in liquid. For this, high-fill volume in combination with speed and shaking diameter are important.•Commercially available insect cells are not fragile as original isolates. These cells can easily withstand higher shaking speed.•Growth condition in particular lab set-up needs to be optimized. The condition used in one lab may not be optimum for another lab due to different incubators from different vendors.

  10. The Role of NK Cell in T Cell Recruitment in Murine Liver Infected with Adenovirus

    Institute of Scientific and Technical Information of China (English)

    游上游; 艾洪武; 黄巍; 张楚瑜

    2003-01-01

    To study the role of natural killer (NK) cells in T cell recruitment in murine liver infected with virus, mice wereintravenously injected daily with anti-NK1.1+ antibody to deplete NK cells. Lymphocytes in the liver tissue of mice infectedwith type 5 adenovirus depleted in the E1 and E3 regions were assessed by fluorometric activated cell sorting (FACS). Ex-pression of chemokine IP-10 and its receptor CXCR3 mRNA in the liver, hepatic lymphocytes and spleen tissue were examined by reverse transcription polymerase chain reaction (RT-PCR). Serum almfine aminotransferase (ALT) was measured asan indicator of liver injury. It was found that infection of adenovims and anfi-Fas monoclonal antibody (mAb) into mice caused liver injury and high expression of interfemn-γ inducible protein-10 (IP-10) mRNA in the liver. Anfi-NK1.1+ mAb, which was intraperitoneally injected into the mice infected with adenovirus, suppresses T cell recruitment and expression of IP-10 mRNA in the hver. Slighter hver injury was also observed. After vires infection, expression of CXCR3 mRNAin spleen and hver tissue was observed at different time. The results suggested that T cell recruitment was initiated by NKcell dependent chemokine IP-10, which induced activated T cells priming in the spleen to the hver of the mouse. NK cells played a key role in T cell recruitment in the liver of mouse infected with adenovims.

  11. Regenerative medicine using dental pulp stem cells for liver diseases

    Science.gov (United States)

    Ohkoshi, Shogo; Hara, Hajime; Hirono, Haruka; Watanabe, Kazuhiko; Hasegawa, Katsuhiko

    2017-01-01

    Acute liver failure is a refractory disease and its prognosis, if not treated using liver transplantation, is extremely poor. It is a good candidate for regenerative medicine, where stem cell-based therapies play a central role. Mesenchymal stem cells (MSCs) are known to differentiate into multiple cell lineages including hepatocytes. Autologous cell transplant without any foreign gene induction is feasible using MSCs, thereby avoiding possible risks of tumorigenesis and immune rejection. Dental pulp also contains an MSC population that differentiates into hepatocytes. A point worthy of special mention is that dental pulp can be obtained from deciduous teeth during childhood and can be subsequently harvested when necessary after deposition in a tooth bank. MSCs have not only a regenerative capacity but also act in an anti-inflammatory manner via paracrine mechanisms. Promising efficacies and difficulties with the use of MSC derived from teeth are summarized in this review. PMID:28217369

  12. Heat stable cell growth inhibiting factor isolated from rat liver microsomes.

    Directory of Open Access Journals (Sweden)

    Inaba,Kozo

    1979-08-01

    Full Text Available A heat stable cell growth inhibiting factor was isolated from rat liver microsomes by hot salt extraction, ethanol fractionation and the hot phenol method. The factor was contained in the RNA fraction (designated as mhRNA. mhRNA inhibited the growth of mouse fibroblast (L-929 cells at a relatively low concentration (55 microgram/ml of culture medium. The molecular weight of mhRNA was about 27,000 and the base composition was guanine and cytosine rich.

  13. Congenital hepatic fibrosis, liver cell carcinoma and adult polycystic kidneys.

    Science.gov (United States)

    Manes, J L; Kissane, J M; Valdes, A J

    1977-06-01

    In reviewing the literature, we found no liver cell carcinoma (LCC) or well-documented adult polycystic kidneys (APK) associated with congenital hepatic fibrosis (CHF). We report a 69-year-old man with CHF, LCC, APK, duplication cyst of distal portion of stomach, two calcified splenic artery aneurysms, myocardial fibrosis and muscular hypertrophy of esophagus. The LCC was grossly predunculated and microscopically showed prominent fibrosis and hyaline intracytoplasmic inclusions in the tumor cells.

  14. Cell culture from sponges: pluripotency and immortality.

    Science.gov (United States)

    de Caralt, Sònia; Uriz, María J; Wijffels, René H

    2007-10-01

    Sponges are a source of compounds with potential pharmaceutical applications. In this article, methods of sponge cell culture for production of these bioactive compounds are reviewed, and new approaches for overcoming the problem of metabolite supply are examined. The use of embryos is proposed as a new source of sponge material for cell culture. Stem cells are present in high amounts in embryos and are more versatile and resistant to infections than adult cells. Additionally, genetic engineering and cellular research on apoptotic mechanisms are promising new fields that might help to improve cell survival in sponge-cell lines. We propose that one topic for future research should be how to reduce apoptosis, which appears to be very high in sponge cell cultures.

  15. Rotating cell culture systems for human cell culture: human trophoblast cells as a model.

    Science.gov (United States)

    Zwezdaryk, Kevin J; Warner, Jessica A; Machado, Heather L; Morris, Cindy A; Höner zu Bentrup, Kerstin

    2012-01-18

    The field of human trophoblast research aids in understanding the complex environment established during placentation. Due to the nature of these studies, human in vivo experimentation is impossible. A combination of primary cultures, explant cultures and trophoblast cell lines support our understanding of invasion of the uterine wall and remodeling of uterine spiral arteries by extravillous trophoblast cells (EVTs), which is required for successful establishment of pregnancy. Despite the wealth of knowledge gleaned from such models, it is accepted that in vitro cell culture models using EVT-like cell lines display altered cellular properties when compared to their in vivo counterparts. Cells cultured in the rotating cell culture system (RCCS) display morphological, phenotypic, and functional properties of EVT-like cell lines that more closely mimic differentiating in utero EVTs, with increased expression of genes mediating invasion (e.g. matrix metalloproteinases (MMPs)) and trophoblast differentiation. The Saint Georges Hospital Placental cell Line-4 (SGHPL-4) (kindly donated by Dr. Guy Whitley and Dr. Judith Cartwright) is an EVT-like cell line that was used for testing in the RCCS. The design of the RCCS culture vessel is based on the principle that organs and tissues function in a three-dimensional (3-D) environment. Due to the dynamic culture conditions in the vessel, including conditions of physiologically relevant shear, cells grown in three dimensions form aggregates based on natural cellular affinities and differentiate into organotypic tissue-like assemblies. The maintenance of a fluid orbit provides a low-shear, low-turbulence environment similar to conditions found in vivo. Sedimentation of the cultured cells is countered by adjusting the rotation speed of the RCCS to ensure a constant free-fall of cells. Gas exchange occurs through a permeable hydrophobic membrane located on the back of the bioreactor. Like their parental tissue in vivo, RCCS

  16. Porcine mitral valve interstitial cells in culture.

    Science.gov (United States)

    Lester, W; Rosenthal, A; Granton, B; Gotlieb, A I

    1988-11-01

    There are connective tissue cells present within the interstitium of the heart valves. This study was designed to isolate and characterize mitral valve interstitial cells from the anterior leaflet of the mitral valve. Explants obtained from the distal part of the leaflet, having been scraped free of surface endocardial cells, were incubated in medium 199 supplemented with 10% fetal bovine serum. Cells grew out of the explant after 3 to 5 days and by 3 weeks these cells were harvested and passaged. Passages 1 to 22 were characterized in several explant sets. The cells showed a growth pattern reminiscent of fibroblasts. Growth was dependent on serum concentration. Cytoskeletal localization of actin and myosin showed prominent stress fibers. Ultrastructural studies showed many elongated cells with prominent stress fibers and some gap junctions and few adherens junctions. There were as well cells with fewer stress fibers containing prominent Golgi complex and dilated endoplasmic reticulum. In the multilayered superconfluent cultures, the former cells tended to be on the substratum of the dish or surface of the multilayered culture, whereas the latter was generally located within the layer of cells. Extracellular matrix was prominent in superconfluent cultures, often within the layers as well. Labeling of the cells with antibody HHF 35 (Tsukada T, Tippens D, Gordon D, Ross R, Gown AM: Am J Pathol 126:51, 1987), which recognizes smooth muscle cell actin, showed prominent staining of the elongated stress fiber-containing cells and much less in the secretory type cells. These studies show that interstitial mitral valve cells can be grown in culture and that either two different cell types or one cell type with two phenotypic expressions is present in culture.

  17. Stem Cells in Liver Diseases and Cancer: Recent Advances on the Path to New Therapies

    OpenAIRE

    Rountree, C. Bart; Mishra, Lopa; Willenbring, Holger

    2012-01-01

    Stem cells have potential for therapy of liver diseases, but may also be involved in the formation of liver cancer. Recently, the AASLD Henry M. and Lillian Stratton Basic Research Single Topic Conference “Stem Cells in Liver Diseases and Cancer: Discovery and Promise” brought together a diverse group of investigators to define the status of research on stem cells and cancer stem cells in the liver and identify problems and solutions on the path to clinical translation. This report summarizes...

  18. Cell culture processes for monoclonal antibody production.

    Science.gov (United States)

    Li, Feng; Vijayasankaran, Natarajan; Shen, Amy Yijuan; Kiss, Robert; Amanullah, Ashraf

    2010-01-01

    Animal cell culture technology has advanced significantly over the last few decades and is now generally considered a reliable, robust and relatively mature technology. A range of biotherapeutics are currently synthesized using cell culture methods in large scale manufacturing facilities that produce products for both commercial use and clinical studies. The robust implementation of this technology requires optimization of a number of variables, including 1) cell lines capable of synthesizing the required molecules at high productivities that ensure low operating cost; 2) culture media and bioreactor culture conditions that achieve both the requisite productivity and meet product quality specifications; 3) appropriate on-line and off-line sensors capable of providing information that enhances process knowledge; and 4) good understanding of culture performance at different scales to ensure smooth scale-up. Successful implementation also requires appropriate strategies for process development, scale-up and process characterization and validation that enable robust operation that is compliant with current regulations. This review provides an overview of the state-of-the art technology in key aspects of cell culture, e.g., engineering of highly productive cell lines and optimization of cell culture process conditions. We also summarize the current thinking on appropriate process development strategies and process advances that might affect process development.

  19. Cell culture processes for monoclonal antibody production

    Science.gov (United States)

    Li, Feng; Vijayasankaran, Natarajan; Shen, Amy (Yijuan); Kiss, Robert

    2010-01-01

    Animal cell culture technology has advanced significantly over the last few decades and is now generally considered a reliable, robust and relatively mature technology. A range of biotherapeutics are currently synthesized using cell culture methods in large scale manufacturing facilities that produce products for both commercial use and clinical studies. The robust implementation of this technology requires optimization of a number of variables, including (1) cell lines capable of synthesizing the required molecules at high productivities that ensure low operating cost; (2) culture media and bioreactor culture conditions that achieve both the requisite productivity and meet product quality specifications; (3) appropriate on-line and off-line sensors capable of providing information that enhances process control; and (4) good understanding of culture performance at different scales to ensure smooth scale-up. Successful implementation also requires appropriate strategies for process development, scale-up and process characterization and validation that enable robust operation and ensure compliance with current regulations. This review provides an overview of the state-of-the art technology in key aspects of cell culture, e.g., generation of highly productive cell lines and optimization of cell culture process conditions. We also summarize the current thinking on appropriate process development strategies and process advances that might affect process development. PMID:20622510

  20. Complement proteins C7 and CFH control the stemness of liver cancer cells via LSF-1.

    Science.gov (United States)

    Seol, Hyang Sook; Lee, Sang Eun; Song, Joon Seon; Rhee, Je-Keun; Singh, Shree Ram; Chang, Suhwan; Jang, Se Jin

    2016-03-01

    Tumor-initiating cells are important for the formation and maintenance of tumor bulks in various tumors. To identify surface markers of liver tumor-initiating cells, we performed primary tumorsphere culture and analyzed the expression of cluster of differentiation (CD) antigen genes using NanoString. Interestingly, we found significant upregulation of the complement proteins (p = 1.60 × 10(-18)), including C7 and CFH. Further studies revealed that C7 and CFH are required to maintain stemness in liver cancer cells. Knockdown of C7 and CFH expression abrogated tumorsphere formation and induced differentiation, whereas overexpression stimulated stemness factor expression as well as in vivo cell growth. Mechanistically, by studying C7 and CFH-dependent LSF-1 expression and its direct role on stemness factor transcription, we found that LSF-1 is involved in this regulation. Taken together, our data demonstrate the unprecedented role of complement proteins on the maintenance of stemness in liver tumor-initiating cells.

  1. The effectiveness of a novel cartridge-based bioreactor design in supporting liver cells.

    Science.gov (United States)

    Niu, Mei; Hammond, Paul; Coger, Robin N

    2009-10-01

    There are a number of applications--ranging from temporary strategies for organ failure to pharmaceutical testing--that rely on effective bioreactor designs. The significance of these devices is that they provide an environment for maintaining cells in a way that allows them to perform key cellular and tissue functions. In the current study, a novel cartridge-based bioreactor was developed and evaluated. Its unique features include its capacity for cell support and the adaptable design of its cellular space. Specifically, it is able to accommodate functional and reasonably sized tissue (>2.0 x 10(8) cells), and can be easily modified to support a range of anchorage-dependent cells. To evaluate its efficacy, it was applied to liver support in the current study. This involved evaluating the performance of rat primary hepatocytes within the unique cartridges in culture--sans bioreactor--and after being loaded within the novel bioreactor. Compared to collagen sandwich culture functional controls, hepatocytes within the unique cartridge design demonstrated significantly higher albumin production and urea secretion rates when cultured under dynamic flow conditions--reaching peak values of 170 +/- 22 microg/10(6) cells/day and 195 +/- 18 microg/10(6) cells/day, respectively. The bioreactor's effectiveness in supporting live and functioning primary hepatocytes is also presented. Cell viability at the end of 15 days of culture in the new bioreactor was 84 +/- 18%, suggesting that the new design is effective in maintaining primary hepatocytes for at least 2 weeks in culture. Liver-specific functions of urea secretion, albumin synthesis, and cytochrome P450 activity were also assessed. The results indicate that hepatocytes are able to achieve good functional performance when cultured within the novel bioreactor. This is especially true in the case of cytochrome P450 activity, where by day 15 of culture, hepatocytes within the bioreactor reached values that were 56.6% higher

  2. Functional changes of dendritic cells derived from allogeneic partial liver graft undergoing acute rejection in rats

    Institute of Scientific and Technical Information of China (English)

    Ming-Qing Xu; Zhen-Xiang Yao

    2003-01-01

    AIM: To investigate functional change of dendritic cells (DCs)derived from allogeneic partial liver graft undergoing acuterejection in rats.METHODS: Allogeneic (SD rat to LEW rat) whole and 50 %partial liver transplantation were performed. DCs from livergrafts 0 hr and 4 days after transplantation were isolated andpropagated in the presence of GM-CSFin vitro. Morphologicalcharacteristics of DCs propagated for 4 days and 10 dayswere observed by electron rmicroscopy. Phenotypical featuresof DCs propagated for 10 days were analyzed by flowcytometry. Expression of IL-12 protein and IL-12 receptormRNA in DCs propagated for 10 days was also measured byWestern blotting and semiquantitative RT-PCR, respectively.Histological grading of rejection were determined.RESULTS: Allogeneic whole liver grafts showed no featuresof rejection at day 4 after transplantation. In contrast,allogeneic partial liver grafts demonstrated moderate tosevere rejection at day 4 after transplantation. DCs derivedfrom allogeneic partial liver graft 4 days after transplantationexhibited typical morphological characteristics of DC after 4days' culture in the presence of GM-CSF. DCs from allogeneicwhole liver graft 0 hr and 4 days after transplantation didnot exhibit typical morphological characteristics of DC untilafter 10 days' culture in the presence of GM-CSF. After 10days' propagationin vitro, DCs derived from allogeneic wholeliver graft exhibited features of immature DC, with absenceof CD40, CD80 and CD86 surface expression, and low levelsof IL-12 proteins (IL-12 p35 and IL-12 p40) and IL-12receptor (IL-12Rβ1 and IL-12Rβ2) mRNA, whereas DCs fromallogeneic partial liver graft 4 days after transplantationdisplayed features of mature DC, with high levels of CD40,CD80 and CD86 surface expression, and as a consequence,higher expression of IL-12 proteins (IL-12 p35 and IL-12 p40)and IL-12 receptors (IL-12Rβ1 and IL-12Rβ2) mRNA thanthose of DCs both from partial liver graft 0 hr and whole livergraft

  3. A preliminary study for constructing a bioartificial liver device with induced pluripotent stem cell-derived hepatocytes

    Directory of Open Access Journals (Sweden)

    Iwamuro Masaya

    2012-12-01

    Full Text Available Abstract Background Bioartificial liver systems, designed to support patients with liver failure, are composed of bioreactors and functional hepatocytes. Immunological rejection of the embedded hepatocytes by the host immune system is a serious concern that crucially degrades the performance of the device. Induced pluripotent stem (iPS cells are considered a desirable source for bioartificial liver systems, because patient-derived iPS cells are free from immunological rejection. The purpose of this paper was to test the feasibility of a bioartificial liver system with iPS cell-derived hepatocyte-like cells. Methods Mouse iPS cells were differentiated into hepatocyte-like cells by a multi-step differentiation protocol via embryoid bodies and definitive endoderm. Differentiation of iPS cells was evaluated by morphology, PCR assay, and functional assays. iPS cell-derived hepatocyte-like cells were cultured in a bioreactor module with a pore size of 0.2 μm for 7 days. The amount of albumin secreted into the circulating medium was analyzed by ELISA. Additionally, after a 7-day culture in a bioreactor module, cells were observed by a scanning electron microscope. Results At the final stage of the differentiation program, iPS cells changed their morphology to a polygonal shape with two nucleoli and enriched cytoplasmic granules. Transmission electron microscope analysis revealed their polygonal shape, glycogen deposition in the cytoplasm, microvilli on their surfaces, and a duct-like arrangement. PCR analysis showed increased expression of albumin mRNA over the course of the differentiation program. Albumin and urea production was also observed. iPS-Heps culture in bioreactor modules showed the accumulation of albumin in the medium for up to 7 days. Scanning electron microscopy revealed the attachment of cell clusters to the hollow fibers of the module. These results indicated that iPS cells were differentiated into hepatocyte-like cells after culture

  4. Role of stellate cells in alcoholic liver fibrosis

    Directory of Open Access Journals (Sweden)

    Krzysztof Plewka

    2009-07-01

    Full Text Available Many different diseases and toxins can cause liver damage, which is diffi cult to treat and often leads to the development of liver fi brosis or even cirrhosis. The key event in this process is the activation of hepatic stellate cells (HSCs. During such activation, HSCs undergo a dramatic transformation in morphology and behavior, changing from a neuronal-like to a fi broblast-like morphology. After activation, HSCs increase their proliferation rate and extracellular matrix (ECM production. Overproduction of ECM, which contains mainly collagen type I, is a direct cause of liver disruption. HSCs also produce substances which inhibit protease activities, such as TIMPs, which enhance ECM deposition in the liver. On the molecular level, HSCs are activated by cytokines, growth factors, and oxidative stress, which are abundant in affl icted liver. These factors induce intracellular signals transmitted by many kinases, the most important of which are JNK, ERK1/2, p38, TAK-1, PKC, FAK, and P3IK. Signals transmitted via these pathways change the activities of transcription factors such as Smad, AP-1, and NF-κβ. This in turn causes changes In gene transcription and ultimately alters the whole cell’s behavior and morphology. The cell begins the production collagen type I, TIMP-1, and aSMA. Activated HSCs can sustain their own activation by producing growth factors such as PDGF and TGF-β. Despite the vast knowledge about the mechanisms causing liver fi brosis and cirrhosis, there is still no effective cure. Further studies are therefore needed to solve this problem.

  5. Isolation of mitochondria from tissue culture cells.

    Science.gov (United States)

    Clayton, David A; Shadel, Gerald S

    2014-10-01

    The number of mitochondria per cell varies substantially from cell line to cell line. For example, human HeLa cells contain at least twice as many mitochondria as smaller mouse L cells. This protocol starts with a washed cell pellet of 1-2 mL derived from ∼10⁹ cells grown in culture. The cells are swollen in a hypotonic buffer and ruptured with a Dounce or Potter-Elvehjem homogenizer using a tight-fitting pestle, and mitochondria are isolated by differential centrifugation. © 2014 Cold Spring Harbor Laboratory Press.

  6. Long live the liver: immunohistochemical and stereological study of hepatocytes, liver sinusoidal endothelial cells, Kupffer cells and hepatic stellate cells of male and female rats throughout ageing.

    Science.gov (United States)

    Marcos, Ricardo; Correia-Gomes, Carla

    2016-12-01

    Male/female differences in enzyme activity and gene expression in the liver are known to be attenuated with ageing. Nevertheless, the effect of ageing on liver structure and quantitative cell morphology remains unknown. Male and female Wistar rats aged 2, 6, 12 and 18 months were examined by means of stereological techniques and immunohistochemical tagging of hepatocytes (HEP), liver sinusoidal endothelial cells (LSEC), Kupffer cells (KC) and hepatic stellate cells (HSC) in order to assess the total number and number per gram of these cells throughout life. The mean cell volume of HEP and HSC, the lobular position and the collagen content of the liver were also evaluated with stereological techniques. The number per gram of HSC was similar for both genders and was maintained throughout ageing. The mean volume of HSC was also conserved but differences in the cell body and lobular location were observed. Statistically significant gender differences in HEP were noted in young rats (females had smaller and more binucleated HEP) but were attenuated with ageing. The same occurred for KC and LSEC, since the higher number per gram in young females disappeared in older animals. Liver collagen increased with ageing but only in males. Thus, the numbers of these four cell types are related throughout ageing, with well-defined cell ratios. The shape and lobular position of HSC change with ageing in both males and females. Gender dimorphism in HEP, KC and LSEC of young rat liver disappears with ageing.

  7. The organoid-initiating cells in mouse pancreas and liver are phenotypically and functionally similar

    Directory of Open Access Journals (Sweden)

    Craig Dorrell

    2014-09-01

    Full Text Available Pancreatic Lgr5 expression has been associated with organoid-forming epithelial progenitor populations but the identity of the organoid-initiating epithelial cell subpopulation has remained elusive. Injury causes the emergence of an Lgr5+ organoid-forming epithelial progenitor population in the adult mouse liver and pancreas. Here, we define the origin of organoid-initiating cells from mouse pancreas and liver prior to Lgr5 activation. This clonogenic population was defined as MIC1-1C3+/CD133+/CD26− in both tissues and the frequency of organoid initiation within this population was approximately 5% in each case. The transcriptomes of these populations overlapped extensively and showed enrichment of epithelial progenitor-associated regulatory genes such as Sox9 and FoxJ1. Surprisingly, pancreatic organoid cells also had the capacity to generate hepatocyte-like cells upon transplantation to Fah−/− mice, indicating a differentiation capacity similar to hepatic organoids. Although spontaneous endocrine differentiation of pancreatic progenitors was not observed in culture, adenoviral delivery of fate-specifying factors Pdx1, Neurog3 and MafA induced insulin expression without glucagon or somatostatin. Pancreatic organoid cultures therefore preserve many key attributes of progenitor cells while allowing unlimited expansion, facilitating the study of fate determination.

  8. CELL-ENGINEERING DESIGNS TRANSPLANTED INTO LIVER PROVIDE WITH PROLONGED SUPPORT OF RECOVERY PROCESSES IN DAMAGED LIVER

    Directory of Open Access Journals (Sweden)

    M. Y. Shagidulin

    2013-01-01

    Full Text Available Aim is to develop a method for a prolonged support of recovery processes in damaged liver. Materials and me- thods. It was carried out 3 groups of experiments on Wistar rats with the modeling of chronic fibrotic liver injury (n = 70: I group control (n = 20; in the II group (n = 20 a suspension of liver cells was transplanted into liver; in the III group (n = 30 cell-engineering designs (CED, which contained liver cells and BM MMSC, enclosed in a heterogeneous biodegradable gel “Sphero®GEL-long” were transplanted into damaged liver. The activity of recovery processes was evaluated by using biochemical and morphological methods in dynamics on 30, 60, 90 and 180 days. Results. It was shown that in the II and III gr. significantly accelerated the recovery processes in damaged livers compared with the I gr. The normalization of biochemical parameters took place in II and III du- ring 30 days instead of 90 days in the I group. However, the normalization of morphological signs of hepatocytes theirs viability and a degree of defibrotic changes in liver were more pronounced and prolonged in the III group. A study showed integration of CED by liver structures with formation of new bile ducts after 90 and 180 days. Conclusion. Higher levels and prolonged periods of recovery processes in damaged liver after CED transplanta- tion were due to the creation of biologically appropriate conditions for prolonged cell activity, included in their structure (donor liver cells and BM MMSC. 

  9. Resistance of activated stellate cells to cell death in liver fibrosis : mechanisms and targets for intervention

    NARCIS (Netherlands)

    Dunning, Sandra

    2008-01-01

    In the normal liver, the hepatic stellate cell has a quiescent (i.e. non-proliferating) phenotype. It is the main storage site for vitamin A (retinoids) and it produces the appropriate quality and quantity of extracellular matrix. In chronic liver injury, a sustained wound healing response takes

  10. Notch Signaling Contributes to Liver Inflammation by Regulation of Interleukin-22-Producing Cells in Hepatitis B Virus Infection

    Science.gov (United States)

    Wei, Xin; Wang, Jiu-Ping; Hao, Chun-Qiu; Yang, Xiao-Fei; Wang, Lin-Xu; Huang, Chang-Xing; Bai, Xue-Fan; Lian, Jian-Qi; Zhang, Ye

    2016-01-01

    The mechanism of hepatitis B virus (HBV) induced liver inflammation is not fully elucidated. Notch signaling augmented interleukin (IL)-22 secretion in CD4+ T cells, and Notch-IL-22 axis fine-tuned inflammatory response. We previously demonstrated a proinflammatory role of IL-22 in HBV infection. Thus, in this study, we analyzed the role of Notch in development of IL-22-producing cells in HBV infection by inhibition of Notch signaling using γ-secretase inhibitor DAPT in both hydrodynamic induced HBV-infected mouse model and in peripheral blood cells isolated from patients with HBV infection. mRNA expressions of Notch1 and Notch2 were significantly increased in livers and CD4+ T cells upon HBV infection. Inhibition of Notch signaling in vivo leaded to the reduction in NKp46+ innate lymphoid cells 22 (ILC22) and lymphoid tissue inducer 4 (LTi4) cells in the liver. This process was accompanied by downregulating the expressions of IL-22 and related proinflammatory cytokines and chemokines in the liver, as well as blocking the recruitment of antigen-non-specific inflammatory cells into the liver and subsequent liver injury, but did not affect HBV antigens production and IL-22 secretion in the serum. Furthermore, IL-22 production in HBV non-specific cultured CD4+ T cells, but not HBV-specific CD4+ T cells, was reduced in response to in vitro inhibition of Notch signaling. In conclusion, Notch siganling appears to be an important mediator of the liver inflammation by modulating hepatic ILC22. The potential proinflammatory effect of Notch-mediated ILC22 may be significant for the development of new therapeutic approaches for treatment of hepatitis B.

  11. Notch Signaling Contributes to Liver Inflammation by Regulation of Interleukin-22-Producing Cells in Hepatitis B Virus Infection.

    Science.gov (United States)

    Wei, Xin; Wang, Jiu-Ping; Hao, Chun-Qiu; Yang, Xiao-Fei; Wang, Lin-Xu; Huang, Chang-Xing; Bai, Xue-Fan; Lian, Jian-Qi; Zhang, Ye

    2016-01-01

    The mechanism of hepatitis B virus (HBV) induced liver inflammation is not fully elucidated. Notch signaling augmented interleukin (IL)-22 secretion in CD4(+) T cells, and Notch-IL-22 axis fine-tuned inflammatory response. We previously demonstrated a proinflammatory role of IL-22 in HBV infection. Thus, in this study, we analyzed the role of Notch in development of IL-22-producing cells in HBV infection by inhibition of Notch signaling using γ-secretase inhibitor DAPT in both hydrodynamic induced HBV-infected mouse model and in peripheral blood cells isolated from patients with HBV infection. mRNA expressions of Notch1 and Notch2 were significantly increased in livers and CD4(+) T cells upon HBV infection. Inhibition of Notch signaling in vivo leaded to the reduction in NKp46(+) innate lymphoid cells 22 (ILC22) and lymphoid tissue inducer 4 (LTi4) cells in the liver. This process was accompanied by downregulating the expressions of IL-22 and related proinflammatory cytokines and chemokines in the liver, as well as blocking the recruitment of antigen-non-specific inflammatory cells into the liver and subsequent liver injury, but did not affect HBV antigens production and IL-22 secretion in the serum. Furthermore, IL-22 production in HBV non-specific cultured CD4(+) T cells, but not HBV-specific CD4(+) T cells, was reduced in response to in vitro inhibition of Notch signaling. In conclusion, Notch siganling appears to be an important mediator of the liver inflammation by modulating hepatic ILC22. The potential proinflammatory effect of Notch-mediated ILC22 may be significant for the development of new therapeutic approaches for treatment of hepatitis B.

  12. Culture and transfection of axolotl cells.

    Science.gov (United States)

    Denis, Jean-François; Sader, Fadi; Ferretti, Patrizia; Roy, Stéphane

    2015-01-01

    The use of cells grown in vitro has been instrumental for multiple aspects of biomedical research and especially molecular and cellular biology. The ability to grow cells from multicellular organisms like humans, squids, or salamanders is important to simplify the analyses and experimental designs to help understand the biology of these organisms. The advent of the first cell culture has allowed scientists to tease apart the cellular functions, and in many situations these experiments help understand what is happening in the whole organism. In this chapter, we describe techniques for the culture and genetic manipulation of an established cell line from axolotl, a species widely used for studying epimorphic regeneration.

  13. Substrate stiffness and matrix composition coordinately control the differentiation of liver progenitor cells.

    Science.gov (United States)

    Kourouklis, Andreas P; Kaylan, Kerim B; Underhill, Gregory H

    2016-08-01

    Recent approaches have utilized microfabricated platforms to examine combinations of microenvironmental signals that regulate stem and progenitor cell differentiation. However, the majority of these efforts have focused on the biochemical properties of extracellular matrix (ECM) or soluble factors without simultaneously exploring the biomechanical effects of cell-substrate interactions. To address this need, we combined a high-throughput approach for the analysis of combinatorial ECM cues with substrates of modular stiffness and traction force microscopy. This integrated approach enabled the characterization of cell-generated traction stress and phenotypic expression in response to ECM cues. We investigated the impact of substrate stiffness and ECM composition on the differentiation of bipotential mouse embryonic liver (BMEL) progenitor cells. We observed that hepatocyte differentiation was primarily regulated by ECM composition, and cholangiocyte differentiation was cooperatively influenced by ECM proteins and stiffness properties. In particular, stiffness-mediated cholangiocyte differentiation was observed for cells cultured on fibronectin, while collagen IV promoted differentiation independent of substrate stiffness. We demonstrated the influence of cell contractility and traction stress in early cholangiocyte specification and further uncovered the roles of ERK and ROCK in this differentiation process. Overall, these findings illustrate the involvement of biomechanical signals in liver progenitor differentiation. Further, this approach could enable investigations for a broad range of cell types and ECM proteins, providing an integrated platform for evaluating the combinatorial effects of biochemical and biophysical signals in cell differentiation.

  14. MicroRNAs involved in neoplastic transformation of liver cancer stem cells

    Directory of Open Access Journals (Sweden)

    Wang Xinchuan

    2010-12-01

    Full Text Available Abstract Background The existence of cancer stem cells in hepatocellular carcinoma (HCC has been verified by characterizing side population (SP cells based on efflux of Hoechst 33342 dye from stem cells. Recent advances in microRNA (miRNA biology have revealed that miRNAs play an important role in embryonic development and tumorigenesis. However, it is still unclear which miRNAs participate in the neoplastic transformation of liver cancer stem cells (LCSCs during hepatocarcinogenesis. Methods To identify the unique set of miRNAs differentially regulated in LCSCs, we applied SP sorting to primary cultures of F344 rat HCC cancer cells treated with diethylnitrosamine (DEN and normal syngenic fetal liver cells, and the stem-like characteristics of SP cells were verified through detecting expression of CD90.1, AFP and CK-7. Global miRNA expression profiles of two groups of SP cells were screened through microarray platform. Results A total of 68 miRNAs, including miR-10b, miR-21, miR-470*, miR-34c-3p, and let-7i*, were identified as overexpressed in SP of HCC cells compared to fetal liver cells. Ten miRNAs were underexpressed, including miR-200a* and miR-148b*. These miRNAs were validated using stem-loop real-time reverse transcriptase polymerase chain reaction (RT-PCR. Conclusions Our results suggest that LCSCs may have a distinct miRNA expression fingerprint during hepatocarcinogenesis. Dissecting these relationships will provide a new understanding of the function of miRNA in the process of neoplastic transformation of LCSCs.

  15. Liver grafts contain a unique subset of natural killer cells that are transferred into the recipient after liver transplantation.

    NARCIS (Netherlands)

    Moroso, V.; Metselaar, H.J.; Mancham, S.; Tilanus, H.W.; Eissens, D.N.; Meer, A. van der; Laan, L.J. van der; Kuipers, E.J.; Joosten, I.; Kwekkeboom, J.

    2010-01-01

    In contrast to other solid organ transplantations, liver grafts have tolerogenic properties. Animal models indicate that donor leukocytes transferred into the recipient after liver transplantation (LTX) play a relevant role in this tolerogenic phenomenon. However, the specific donor cell types invol

  16. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation.

    Science.gov (United States)

    Broutier, Laura; Andersson-Rolf, Amanda; Hindley, Christopher J; Boj, Sylvia F; Clevers, Hans; Koo, Bon-Kyoung; Huch, Meritxell

    2016-09-01

    Adult somatic tissues have proven difficult to expand in vitro, largely because of the complexity of recreating appropriate environmental signals in culture. We have overcome this problem recently and developed culture conditions for adult stem cells that allow the long-term expansion of adult primary tissues from small intestine, stomach, liver and pancreas into self-assembling 3D structures that we have termed 'organoids'. We provide a detailed protocol that describes how to grow adult mouse and human liver and pancreas organoids, from cell isolation and long-term expansion to genetic manipulation in vitro. Liver and pancreas cells grow in a gel-based extracellular matrix (ECM) and a defined medium. The cells can self-organize into organoids that self-renew in vitro while retaining their tissue-of-origin commitment, genetic stability and potential to differentiate into functional cells in vitro (hepatocytes) and in vivo (hepatocytes and endocrine cells). Genetic modification of these organoids opens up avenues for the manipulation of adult stem cells in vitro, which could facilitate the study of human biology and allow gene correction for regenerative medicine purposes. The complete protocol takes 1-4 weeks to generate self-renewing 3D organoids and to perform genetic manipulation experiments. Personnel with basic scientific training can conduct this protocol.

  17. Comparative analysis of 3D culture methods on human HepG2 cells.

    Science.gov (United States)

    Luckert, Claudia; Schulz, Christina; Lehmann, Nadja; Thomas, Maria; Hofmann, Ute; Hammad, Seddik; Hengstler, Jan G; Braeuning, Albert; Lampen, Alfonso; Hessel, Stefanie

    2017-01-01

    Human primary hepatocytes represent a gold standard in in vitro liver research. Due to their low availability and high costs alternative liver cell models with comparable morphological and biochemical characteristics have come into focus. The human hepatocarcinoma cell line HepG2 is often used as a liver model for toxicity studies. However, under two-dimensional (2D) cultivation conditions the expression of xenobiotic-metabolizing enzymes and typical liver markers such as albumin is very low. Cultivation for 21 days in a three-dimensional (3D) Matrigel culture system has been reported to strongly increase the metabolic competence of HepG2 cells. In our present study we further compared HepG2 cell cultivation in three different 3D systems: collagen, Matrigel and Alvetex culture. Cell morphology, albumin secretion, cytochrome P450 monooxygenase enzyme activities, as well as gene expression of xenobiotic-metabolizing and liver-specific enzymes were analyzed after 3, 7, 14, and 21 days of cultivation. Our results show that the previously reported increase of metabolic competence of HepG2 cells is not primarily the result of 3D culture but a consequence of the duration of cultivation. HepG2 cells grown for 21 days in 2D monolayer exhibit comparable biochemical characteristics, CYP activities and gene expression patterns as all 3D culture systems used in our study. However, CYP activities did not reach the level of HepaRG cells. In conclusion, the increase of metabolic competence of the hepatocarcinoma cell line HepG2 is not due to 3D cultivation but rather a result of prolonged cultivation time.

  18. Culture of Mouse Neural Stem Cell Precursors

    OpenAIRE

    Currle, D. Spencer; Hu, Jia Sheng; Kolski-Andreaco, Aaron; Monuki, Edwin S

    2007-01-01

    Primary neural stem cell cultures are useful for studying the mechanisms underlying central nervous system development. Stem cell research will increase our understanding of the nervous system and may allow us to develop treatments for currently incurable brain diseases and injuries. In addition, stem cells should be used for stem cell research aimed at the detailed study of mechanisms of neural differentiation and transdifferentiation and the genetic and environmental signals that direct the...

  19. Wound Coverage by Cultured Skin Cells

    Science.gov (United States)

    1988-11-01

    and spread. 6 We later coated collagen sponges with human or porcine plasma. Although this coating improved the plating of epidermal cells, it did not...healing by cultured epidermal grafts, we have found that: - We were able to grow epidermal cells on collapsed collagen sponges . As a result, we can create...plastic. Epidermal cells grown on collagen sponges formed four to five layers of nucleated cells, compared to only one layer on plastic surfaces. The use of

  20. Macrophages and dendritic cells emerge in the liver during intestinal inflammation and predispose the liver to inflammation.

    Directory of Open Access Journals (Sweden)

    Yohei Mikami

    Full Text Available The liver is a physiological site of immune tolerance, the breakdown of which induces immunity. Liver antigen-presenting cells may be involved in both immune tolerance and activation. Although inflammatory diseases of the liver are frequently associated with inflammatory bowel diseases, the underlying immunological mechanisms remain to be elucidated. Here we report two murine models of inflammatory bowel disease: RAG-2(-/- mice adoptively transferred with CD4(+CD45RB(high T cells; and IL-10(-/- mice, accompanied by the infiltration of mononuclear cells in the liver. Notably, CD11b(-CD11c(lowPDCA-1(+ plasmacytoid dendritic cells (DCs abundantly residing in the liver of normal wild-type mice disappeared in colitic CD4(+CD45RB(high T cell-transferred RAG-2(-/- mice and IL-10(-/- mice in parallel with the emergence of macrophages (Mφs and conventional DCs (cDCs. Furthermore, liver Mφ/cDCs emerging during intestinal inflammation not only promote the proliferation of naïve CD4(+ T cells, but also instruct them to differentiate into IFN-γ-producing Th1 cells in vitro. The emergence of pathological Mφ/cDCs in the liver also occurred in a model of acute dextran sulfate sodium (DSS-induced colitis under specific pathogen-free conditions, but was canceled in germ-free conditions. Last, the Mφ/cDCs that emerged in acute DSS colitis significantly exacerbated Fas-mediated hepatitis. Collectively, intestinal inflammation skews the composition of antigen-presenting cells in the liver through signaling from commensal bacteria and predisposes the liver to inflammation.

  1. Nano scaffolds and stem cell therapy in liver tissue engineering

    Science.gov (United States)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  2. Generation of functional insulin-producing cells from neonatal porcine liver-derived cells by PDX1/VP16, BETA2/NeuroD and MafA.

    Directory of Open Access Journals (Sweden)

    Dong-Sik Ham

    Full Text Available Surrogate β-cells derived from stem cells are needed to cure type 1 diabetes, and neonatal liver cells may be an attractive alternative to stem cells for the generation of β-cells. In this study, we attempted to generate insulin-producing cells from neonatal porcine liver-derived cells using adenoviruses carrying three genes: pancreatic and duodenal homeobox factor1 (PDX1/VP16, BETA2/NeuroD and v-maf musculo aponeurotic fibrosarcoma oncogene homolog A (MafA, which are all known to play critical roles in pancreatic development. Isolated neonatal porcine liver-derived cells were sequentially transduced with triple adenoviruses and grown in induction medium containing a high concentration of glucose, epidermal growth factors, nicotinamide and a low concentration of serum following the induction of aggregation for further maturation. We noted that the cells displayed a number of molecular characteristics of pancreatic β-cells, including expressing several transcription factors necessary for β-cell development and function. In addition, these cells synthesized and physiologically secreted insulin. Transplanting these differentiated cells into streptozotocin-induced immunodeficient diabetic mice led to the reversal of hyperglycemia, and more than 18% of the cells in the grafts expressed insulin at 6 weeks after transplantation. These data suggested that neonatal porcine liver-derived cells can be differentiated into functional insulin-producing cells under the culture conditions presented in this report and indicated that neonatal porcine liver-derived cells (NPLCs might be useful as a potential source of cells for β-cell replacement therapy in efforts to cure type I diabetes.

  3. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    2016-01-01

    Full Text Available Human liver stem cells (HLSCs are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs, and dendritic cells (DCs in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2 and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs, HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  4. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation.

    Science.gov (United States)

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  5. Contextualizing Hepatocyte Functionality of Cryopreserved HepaRG Cell Cultures.

    Science.gov (United States)

    Jackson, Jonathan P; Li, Linhou; Chamberlain, Erica D; Wang, Hongbing; Ferguson, Stephen S

    2016-09-01

    Over the last decade HepaRG cells have emerged as a promising alternative to primary human hepatocytes (PHH) and have been featured in over 300 research publications. Most of these reports employed freshly differentiated HepaRG cells that require time-consuming culture (∼28 days) for full differentiation. Recently, a cryopreserved, predifferentiated format of HepaRG cells (termed here "cryo-HepaRG") has emerged as a new model that improves global availability and experimental flexibility; however, it is largely unknown whether HepaRG cells in this format fully retain their hepatic characteristics. Therefore, we systematically investigated the hepatocyte functionality of cryo-HepaRG cultures in context with the range of interindividual variation observed with PHH in both sandwich-culture and suspension formats. These evaluations uncovered a novel adaptation period for the cryo-HepaRG format and demonstrated the impact of extracellular matrix on cryo-HepaRG functionality. Pharmacologically important drug-metabolizing alleles were genotyped in HepaRG cells and poor metabolizer alleles for CYP2D6, CYP2C9, and CYP3A5 were identified and consistent with higher frequency alleles found in individuals of Caucasian decent. We observed liver enzyme inducibility with aryl hydrocarbon receptor, constitutive androstane receptor (CAR), and pregnane X receptor activators comparable to that of sandwich-cultured PHH. Finally, we show for the first time that cryo-HepaRG supports proper CAR cytosolic sequestration and translocation to hepatocyte nuclei in response to phenobarbital treatment. Taken together, these data reveal important considerations for the use of this cell model and demonstrate that cryo-HepaRG are suitable for metabolism and toxicology screening.

  6. Hepatic progenitor cells in human liver tumor development

    Institute of Scientific and Technical Information of China (English)

    Louis Libbrecht

    2006-01-01

    In recent years, the results of several studies suggest that human liver tumors can be derived from hepatic progenitor cells rather than from mature cell types.The available data indeed strongly suggest that most combined hepatocellular-cholangiocarcinomas arise from hepatic progenitor cells that retained their potential to differentiate into the hepatocytic and biliary lineages.Hepatic progenitor cells could also be the basis for some hepatocellular carcinomas and hepatocellular adenomas, although it is very difficult to determine the origin of an individual hepatocellular carcinoma. There is currently not enough data to make statements regarding a hepatic progenitor cell origin of cholangiocarcinoma.The presence of hepatic progenitor cell markers and the presence and extent of the cholangiocellular component are factors that are related to the prognosis of hepatocellular carcinomas and combined hepatocellularcholangiocarcinomas, respectively.

  7. Sponge cell culture? A molecular identification method for sponge cells

    NARCIS (Netherlands)

    Sipkema, D.; Heilig, G.H.J.; Akkermans, A.D.L.; Osinga, R.; Tramper, J.; Wijffels, R.H.

    2003-01-01

    Dissociated sponge cells are easily confused with unicellular organisms. This has been an obstacle in the development of sponge-cell lines. We developed a molecular detection method to identify cells of the sponge Dysidea avara in dissociated cell cultures. The 18S ribosomal RNA gene from a Dysidea

  8. Effect of Tissue-Culture Substratum and Extracellular Matrix Overlay on Liver-Selective and Xenobiotic Inducible Gene Expression in Primary Rat Hepatocytes

    Science.gov (United States)

    SIDHU, J.S.; FARIN, F.M.; KAVANAGH, T.J.; OMIECINSKI, C.J.

    2012-01-01

    In a previous study (Sidhu et al., 1993), we demonstrated that a combination of certain cell culture media, hormone addition, and extracellular matrix (ECM) overlay coordinately modulated the expression of certain liver-selective genes in primary rat hepatocyte cultures, including the responsiveness of genes to phenobarbital. However, little is known about the interactions between the type of substratum upon which hepatocytes are adhered and the ECM overlay, as codeterminants of liver-selective gene expression. The present study was undertaken to compare specific substrata, including tissue culture-grade plastic, Primaria, and type 1 collagen-coated plastic, in combination with the presence or absence of standard ECM or a growth-factor-reduced ECM overlay. Hepatocyte cultures were assessed either as control cultures or subsequent to treatment for 24 h with phenobarbital (0.1 or 1 mM), or beta-naphthoflavone (22 μM), to monitor responses of hepatocytes to two prototypic gene-inducing agents. Analyses of maintenance and induction of cytochrome P450 and liver-selective gene expression included measures of mRNA levels using Northern blot and slot-blot hybridization and single cell immunofluorescence assays to measure levels of specific cytochrome P450 proteins. The results of these experiments demonstrated that hepatocyte-selective expression, including the absolute level of induction response (relative to those observed in the rat liver in vivo) was highly dependent on the presence of ECM overlay but independent of the substratum employed. As studied herein, the establishment of optimal conditions for primary hepatocyte culture, enabling reproduction of responses observed in vivo, is important to further prospects for in vitro toxicity testing and for investigating molecular mechanisms of phenobarbital-mediated gene regulation. PMID:24817786

  9. Primary cell cultures of bovine colon epithelium: isolation and cell culture of colonocytes.

    Science.gov (United States)

    Föllmann, W; Weber, S; Birkner, S

    2000-10-01

    Epithelial cells from bovine colon were isolated by mechanical preparation combined with an enzymatic digestion from colon specimens derived from freshly slaughtered animals. After digestion with collagenase I, the isolated tissue was centrifuged on a 2% D-sorbitol gradient to separate epithelial crypts which were seeded in collagen I-coated culture flasks. By using colon crypts and omitting the seeding of single cells a contamination by fibroblasts was prevented. The cells proliferated under the chosen culture conditions and formed monolayer cultures which were maintained for several weeks, including subcultivation steps. A population doubling time of about 21 hr was estimated in the log phase of the corresponding growth curve. During the culture period the cells were characterized morphologically and enzymatically. By using antibodies against cytokeratine 7 and 13 the isolated cells were identified as cells of epithelial origin. Antibodies against vimentin served as negative control. Morphological features such as microvilli, desmosomes and tight junctions, which demonstrated the ability of the cultured cells to restore an epithelial like monolayer, were shown by ultrastructural investigations. The preservation of the secretory function of the cultured cells was demonstrated by mucine cytochemistry with alcian blue staining. A stable expression of enzyme activities over a period of 6 days in culture occurred for gamma-glutamyltranspeptidase, acid phosphatase and NADH-dehydrogenase activity under the chosen culture conditions. Activity of alkaline phosphatase decreased to about 50% of basal value after 6 days in culture. Preliminary estimations of the metabolic competence of these cells revealed cytochrome P450 1A1-associated EROD activity in freshly isolated cells which was stable over 5 days in cultured cells. Then activity decreased completely. This culture system with primary epithelial cells from the colon will be used further as a model for the colon

  10. Phenotypic changes of human cells in human-rat liver during partial hepatectomy-induced regeneration

    Institute of Scientific and Technical Information of China (English)

    Yan Sun; Dong Xiao; Hong-An Li; Jin-Fang Jiang; Qing Li; Ruo-Shuang Zhang; Xi-Gu Chen

    2009-01-01

    AIM: To examine the human hepatic parenchymal and stromal components in rat liver and the phenotypic changes of human cells in liver of human-rat chimera (HRC) generated by in utero transplantation of human cells during partial hepatectomy (PHx)-induced liver regeneration. METHODS: Human hepatic parenchymal and stromal components and phenotypic changes of human cells during liver regeneration were examined by flow cytometry, in situ hybridization and immunohistochemistry. RESULTS: ISH analysis demonstrated human Alupositive cells in hepatic parenchyma and stroma of recipient liver. Functional human hepatocytes generated in this model potentially constituted human hepatic functional units with the presence of donor-derived human endothelial and biliary duct cells in host liver. Alpha fetoprotein (AFP)+, CD34+ and CD45+ cells were observed in the chimeric liver on day 10 after PHxinduced liver regeneration and then disappeared in PHx group, but not in non-PHx group, suggesting that dynamic phenotypic changes of human cells expressing AFP, CD34 and CD45 cells may occur during the chimeric liver regeneration. Additionally, immunostaining for human proliferating cell nuclear antigen (PCNA) showed that the number of PCNA-positive cells in the chimeric liver of PHx group was markedly increased, as compared to that of control group, indicating that donor-derived human cells are actively proliferated during PHx-induced regeneration of HRC liver.

  11. Human cell culture in a space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  12. Flux analysis of mammalian cell culture

    NARCIS (Netherlands)

    Martens, D.E.; Tramper, J.

    2010-01-01

    Animal cells are used for the production of vaccines and pharmaceutical proteins. The increase in demand for these products requires an increase in volumetric productivity of animal cell culture processes, which can be attained through an increase in biomass concentration and/or specific productivit

  13. Xylogenesis in zinnia (Zinnia elegans) cell cultures

    NARCIS (Netherlands)

    Iakimova, Elena T.; Woltering, Ernst J.

    2017-01-01

    Main conclusion: Physiological and molecular studies support the view that xylogenesis can largely be determined as a specific form of vacuolar programmed cell death (PCD). The studies in xylogenic zinnia cell culture have led to many breakthroughs in xylogenesis research and provided a background

  14. Flux analysis of mammalian cell culture

    NARCIS (Netherlands)

    Martens, D.E.; Tramper, J.

    2010-01-01

    Animal cells are used for the production of vaccines and pharmaceutical proteins. The increase in demand for these products requires an increase in volumetric productivity of animal cell culture processes, which can be attained through an increase in biomass concentration and/or specific

  15. Liver grafts contain a unique subset of natural killer cells that are transferred into the recipient after liver transplantation.

    Science.gov (United States)

    Moroso, Viviana; Metselaar, Herold J; Mancham, Shanta; Tilanus, Hugo W; Eissens, Diana; van der Meer, Arnold; van der Laan, Luc J W; Kuipers, Ernst J; Joosten, Irma; Kwekkeboom, Jaap

    2010-07-01

    In contrast to other solid organ transplantations, liver grafts have tolerogenic properties. Animal models indicate that donor leukocytes transferred into the recipient after liver transplantation (LTX) play a relevant role in this tolerogenic phenomenon. However, the specific donor cell types involved in modulation of the recipient alloresponse are not yet defined. We hypothesized that this unique property of liver grafts may be related to their high content of organ-specific natural killer (NK) and CD56(+) T cells. Here, we show that a high proportion of hepatic NK cells that detach from human liver grafts during pretransplant perfusion belong to the CD56bright subset, and are in an activated state (CD69(+)). Liver NK cells contained perforin and granzymes, exerted stronger cytotoxicity against K562 target cells when compared with blood NK cells, and secreted interferon-gamma, but no interleukin-10 or T helper 2 cytokines, upon stimulation with monokines. Interestingly, whereas the CD56bright subset is classically considered as noncytolytic, liver CD56bright NK cells showed a high content of cytolytic molecules and degranulated in response to K562 cells. After LTX, but not after renal transplantation, significant numbers of donor CD56dim NK and CD56(+) T cells were detected in the recipient circulation for approximately 2 weeks. In conclusion, during clinical LTX, activated and highly cytotoxic NK cells of donor origin are transferred into the recipient, and a subset of them mixes with the recirculating recipient NK cell pool. The unique properties of the transferred hepatic NK cells may enable them to play a role in regulating the immunological response of the recipient against the graft and therefore contribute to liver tolerogenicity.

  16. Response of Human Fetal Liver Progenitor Cell Types to Temperature and pH Stresses In Vitro.

    Science.gov (United States)

    Schmelzer, Eva; Foka, Hubert G; Thompson, Robert L; Luca, Angelo; Gridelli, Bruno; Gerlach, Jörg C

    2017-09-11

    Prolonged physiological stresses including abnormal pH and temperature are deleterious. Yet, human hepatic progenitors have been shown to be quite tolerant of temporary temperature stress such as in cold ischemia. We aimed to identify how various stresses affect liver progenitors, and to determine whether distinct effects exist on different progenitor cells of the human liver. Total fetal liver cells were exposed to low (25°C), normal (37°C), or high (40°C) temperatures, or low (6.76), normal (7.35), or high (7.88) pH in vitro. Culture at 25°C increased cell numbers and percentages of proliferation marker Ki67 positive total cells. In total cell cultures, percentages of CD326+ hepatic progenitors co-expressing DLK1 (delta-like 1 homolog), SSEA4, or CD90 increased, as well as proliferation of SSEA4+ and CD235a+ progenitors. Analyses of pre-sorted hepatic progenitors revealed that culture at 25°C increased cell numbers of CD326+ hepatic stem/progenitor cells but not DLK+ hepatoblasts. The expressions of several mesenchymal genes were reduced, and distinct hepatic stem/progenitor cell colonies emerged. At 40°C, numbers of adherent hepatic cells decreased but those of hematopoietic non-adherent cells increased. High pH did not cause major effects. Acidic pH resulted in decreased total cell numbers and affected hematopoietic cells. Percentages of DLK1+ hepatoblasts were increased but those of hematopoietic mature CD45+ cells were decreased. In particular, proliferation of adherent hepatic CD326+, SSEA4+ progenitors, and hematopoietic CD45+ cells and CD235a+ erythroblasts were reduced. Conclusively, our data indicate that low-temperature stress stimulates hepatic progenitor and erythroblast proliferation, whereas acidic pH promotes hepatic maturation and reduces hematopoietic cells.

  17. Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice.

    Directory of Open Access Journals (Sweden)

    Marina E Fomin

    Full Text Available Liver sinusoidal endothelial cells (LSECs form a semi-permeable barrier between parenchymal hepatocytes and the blood. LSECs participate in liver metabolism, clearance of pathological agents, immunological responses, architectural maintenance of the liver and synthesis of growth factors and cytokines. LSECs also play an important role in coagulation through the synthesis of Factor VIII (FVIII. Herein, we phenotypically define human LSECs isolated from fetal liver using flow cytometry and immunofluorescence microscopy. Isolated LSECs were cultured and shown to express endothelial markers and markers specific for the LSEC lineage. LSECs were also shown to engraft the liver when human fetal liver cells were transplanted into immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA transgene (uPA-NOG mice. Engrafted cells expressed human Factor VIII at levels approaching those found in human plasma. We also demonstrate engraftment of adult LSECs, as well as hepatocytes, transplanted into uPA-NOG mice. We propose that overexpression of uPA provides beneficial conditions for LSEC engraftment due to elevated expression of the angiogenic cytokine, vascular endothelial growth factor. This work provides a detailed characterization of human midgestation LSECs, thereby providing the means for their purification and culture based on their expression of CD14 and CD32 as well as a lack of CD45 expression. The uPA-NOG mouse is shown to be a permissive host for human LSECs and adult hepatocytes, but not fetal hepatoblasts. Thus, these mice provide a useful model system to study these cell types in vivo. Demonstration of human FVIII production by transplanted LSECs encourages further pursuit of LSEC transplantation as a cellular therapy for the treatment of hemophilia A.

  18. Pitfalls in cell culture work with xanthohumol.

    Science.gov (United States)

    Motyl, M; Kraus, B; Heilmann, J

    2012-01-01

    Xanthohumol, the most abundant prenylated chalcone in hop (Humulus lupulus L.) cones, is well known to exert several promising pharmacological activities in vitro and in vivo. Among these, the chemopreventive, anti-inflammatory and anti-cancer effects are probably the most interesting. As xanthohumol is hardly soluble in water and able to undergo conversion to isoxanthohumol we determined several handling characteristics for cell culture work with this compound. Recovery experiments revealed that working with xanthohumol under cell culture conditions requires a minimal amount of 10% FCS to increase its solubility to reasonable concentrations (-50-75 micromol/l) for pharmacological in vitro tests. Additionally, more than 50% of xanthohumol can be absorbed to various plastic materials routinely used in the cell culture using FCS concentrations below 10%. In contrast, experiments using fluorescence microscopy in living cells revealed that detection of cellular intake of xanthohumol is hampered by concentrations above 1% FCS.

  19. Liver-Resident Memory CD8(+) T Cells Form a Front-Line Defense against Malaria Liver-Stage Infection.

    Science.gov (United States)

    Fernandez-Ruiz, Daniel; Ng, Wei Yi; Holz, Lauren E; Ma, Joel Z; Zaid, Ali; Wong, Yik Chun; Lau, Lei Shong; Mollard, Vanessa; Cozijnsen, Anton; Collins, Nicholas; Li, Jessica; Davey, Gayle M; Kato, Yu; Devi, Sapna; Skandari, Roghieh; Pauley, Michael; Manton, Jonathan H; Godfrey, Dale I; Braun, Asolina; Tay, Szun Szun; Tan, Peck Szee; Bowen, David G; Koch-Nolte, Friedrich; Rissiek, Björn; Carbone, Francis R; Crabb, Brendan S; Lahoud, Mireille; Cockburn, Ian A; Mueller, Scott N; Bertolino, Patrick; McFadden, Geoffrey I; Caminschi, Irina; Heath, William R

    2016-10-18

    In recent years, various intervention strategies have reduced malaria morbidity and mortality, but further improvements probably depend upon development of a broadly protective vaccine. To better understand immune requirement for protection, we examined liver-stage immunity after vaccination with irradiated sporozoites, an effective though logistically difficult vaccine. We identified a population of memory CD8(+) T cells that expressed the gene signature of tissue-resident memory T (Trm) cells and remained permanently within the liver, where they patrolled the sinusoids. Exploring the requirements for liver Trm cell induction, we showed that by combining dendritic cell-targeted priming with liver inflammation and antigen recognition on hepatocytes, high frequencies of Trm cells could be induced and these cells were essential for protection against malaria sporozoite challenge. Our study highlights the immune potential of liver Trm cells and provides approaches for their selective transfer, expansion, or depletion, which may be harnessed to control liver infections or autoimmunity. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Hepatic differentiation of embryonic stem cells by murine fetal liver mesenchymal cells.

    Science.gov (United States)

    Ishii, Takamichi; Yasuchika, Kentaro; Ikai, Iwao

    2013-01-01

    Hepatocytes derived from embryonic stem cells (ESCs) are a potential cell source for regenerative medicine. However, it has been technically difficult to differentiate ESCs into mature hepatocytes because the definitive growth factors and molecular mechanisms governing hepatocyte differentiation have not yet been well defined. The CD45(-)CD49f(+/-)Thy1(+)gp38(+) mesenchymal cells that reside in murine fetal livers induce hepatic progenitor cells to differentiate into mature hepatocytes by direct cell-cell contact. Utilizing these cells, we employ a two-step procedure for hepatic maturation of ESCs: first, ESCs are differentiated into endodermal cells or hepatic progenitor cells, and second, ESC-derived endodermal cells are matured into functional hepatocytes by coculture with murine fetal liver mesenchymal cells. The ESC-derived hepatocyte-like cells possess hepatic functions, including ammonia removal activity, albumin secretion ability, glycogen synthesis and storage, and cytochrome P450 enzymatic activity.

  1. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  2. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  3. Teratogenic and cytotoxic effects of VOsalen complex on chicken embryos, hepatic and fibroblastic- cell cultures

    Directory of Open Access Journals (Sweden)

    Abdolmaleki A

    2013-04-01

    Full Text Available Background: Salen metal complexes are used successfully in a wide range of asymmet-ric reactions and important in the pharmaceutical and industry. On the toxicity of salen vanadium oxide (VOsalen on embryo and cell cultures, little information is available. In the present study, the toxic and teratogenic effects of VOsalen was evaluated against chicken embryos as a animal model and liver and fibroblast cell cultures which was derived from the embryo.Methods: The VOsalen compound was synthesized. The compound solution was inject-ed in triplicate examination, in the air sac of the eggs, at third day of incubation. Treat-ed and control eggs, on day 19 of incubation opened and embryos were weighted, then mortality rate was recorded. The liver and fibroblast cell culture were treated by this and survival fraction was recorded.Results: The survived fraction of the embryos depends on the compound concentration. In concentration of 300μM/egg, 36/32% of the embryos survived and the Lethal dose 50% (LD50 was 226/37 μM/egg. Morphological study of the treated embryos showed retarded growth, and skeletal staining showed the deletion of caudal vertebrate. The compound was inhibited liver and fibroblast cells growth with IC50 1047/25 and 1036/82μM respectively. The cytoplasm of treated cells became dense and their interco-nnections were loosed.Conclusion: The VOsalen compound had low toxic effects against the embryos and the cultured cells at the concentrations. Significant cytotoxic effect was not observed in the treated cells. However the proliferative cells were affected significantly in comparison with the cells which their growth was stopped. The effect of VOsalen compound against replication of liver cells were lower than fibroblast cells.

  4. The Role of Lymphatic Endothelial Cells in Liver Injury and Tumor Development

    Science.gov (United States)

    Lukacs-Kornek, Veronika

    2016-01-01

    Lymphatics and lymphatic endothelial cells (LECs) possess multiple immunological functions besides affecting immune cell migration, such as inhibiting T cell proliferation and antigen presentation by dendritic cells. Moreover, they control the trans-endothelial transport of multiple molecules and antigens. Emerging evidence suggest their active involvements in immunregulation, tumor, and metastases formation. In the liver, increased lymphangiogenesis, specifically at the portal area has been associated with multiple liver diseases in particular primary biliary cirrhosis, idiopathic portal hypertension, and liver malignancies. Nevertheless, the exact role and contribution of LECs to liver diseases are poorly understood. The review summarizes the current understanding of LECs in liver diseases. PMID:27965673

  5. The role of lymphatic endothelial cells in liver injury and tumor development

    Directory of Open Access Journals (Sweden)

    Veronika Lukacs-Kornek

    2016-11-01

    Full Text Available Lymphatics and lymphatic endothelial cells (LECs possess multiple immunological functions besides affecting immune cell migration such as inhibiting T cell proliferation and antigen presentation by dendritic cells. Moreover, they control the trans-endothelial transport of multiple molecules and antigens. Emerging evidence suggests their active involvements in immunoregulation, tumor and metastases formation. In the liver, increased lymphangiogenesis, specifically at the portal area has been associated with multiple liver diseases in particular primary biliary cirrhosis, idiopathic portal hypertension, and liver malignancies. Nevertheless, the exact role and contribution of LECs to liver diseases are poorly understood. The review summarizes the current understanding of LECs in liver diseases.

  6. Structural changes in the cytoskeleton in regenerating mouse liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Gleiberman, A.S.; Bannikov, G.A.; Troyanovskii, S.M.

    1985-05-01

    After CCl/sub 4/ poisoning induced in rats poisoning centrilobular necroses formed in the liver during the next 24 h. Single a-feto protein-containing cells appeared onnthe second day of regeneration. By the end of the 2nd day a perinecrotic layer of cells containing AFP was formed. There is a definite correlation between loss of biliary capillary antigen, the appearance of bundles of prekeratin and actin, and expression of AFP synthesis. It is possible to include all these features in a single marker ocmplex of ''embronalization'' of the hepatocyte.

  7. A child with pulmonary and liver Langerhans'-cell histiocytosis

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-li; SHEN Kun-ling; WANG Bin

    2012-01-01

    Clinical categories of Langerhans cell histiocytosis (LCH) include single and multi-system disease.Pulmonary LCH is rare,which is an unusual interstitial lung disease with the characteristics of monoclonal proliferation and infiltration of Langerhans' cells to organs.We report our experience of a rare LCH case of multiple organs such as pulmonary and liver as the main clinical manifestation.The patient was treated with chemotherapy which included prednisone,vinblastine,methotrexate and 6-mercaptopurine for 52 weeks and follow up all along.The patient has a favorable clinical outcome.

  8. Long-lasting inhibitory effects of fetal liver mesenchymal stem cells on T-lymphocyte proliferation.

    Directory of Open Access Journals (Sweden)

    Massimo Giuliani

    Full Text Available Human bone marrow mesenchymal stem cells (BM-MSC are multipotent progenitor cells that have transient immunomodulatory properties on Natural Killer (NK cells, Dendritic Cells (DC, and T cells. This study compared the use of MSC isolated from bone marrow and fetal liver (FL-MSC to determine which displayed the most efficient immunosuppressive effects on T cell activation. Although both types of MSC exhibit similar phenotype profile, FL-MSC displays a much more extended in vitro life-span and immunomodulatory properties. When co-cultured with CD3/CD28-stimulated T cells, both BM-MSC and FL-MSC affected T cell proliferation by inhibiting their entry into the cell cycle, by inducing the down-regulation of phospho-retinoblastoma (pRb, cyclins A and D1, as well as up-regulating p27(kip1 expression. The T cell inhibition by MSC was not due to the soluble HLA-G5 isoform, but to the surface expression of HLA-G1, as shown by the need of cell-cell contact and by the use of neutralizing anti-HLA-G antibodies. To note, in a HLA-G-mediated fashion, MSC facilitated the expansion of a CD4(low/CD8(low T subset that had decreased secretion of IFN-γ, and an induced secretion of the immunomodulatory cytokine IL-10. Because of their longer lasting in vitro immunosuppressive properties, mainly mediated by HLA-G, and their more efficient induction of IL-10 production and T cell apoptosis, fetal liver MSC could be considered a new tool for MSC therapy to prevent allograft rejection.

  9. Transcription Profiles of Marker Genes Predict The Transdifferentiation Relationship between Eight Types of Liver Cell during Rat Liver Regeneration

    Directory of Open Access Journals (Sweden)

    Xiaguang Chen

    2015-07-01

    Full Text Available Objective: To investigate the transdifferentiation relationship between eight types of liver cell during rat liver regeneration (LR. Materials and Methods: 114 healthy Sprague-Dawley (SD rats were used in this experimental study. Eight types of liver cell were isolated and purified with percoll density gradient centrifugation and immunomagentic bead methods. Marker genes for eight types of cell were obtained by retrieving the relevant references and databases. Expression changes of markers for each cell of the eight cell types were measured using microarray. The relationships between the expression profiles of marker genes and transdifferentiation among liver cells were analyzed using bioinformatics. Liver cell transdifferentiation was predicted by comparing expression profiles of marker genes in different liver cells. Results: During LR hepatocytes (HCs not only express hepatic oval cells (HOC markers (including PROM1, KRT14 and LY6E, but also express biliary epithelial cell (BEC markers (including KRT7 and KRT19; BECs express both HOC markers (including GABRP, PCNA and THY1 and HC markers such as CPS1, TAT, KRT8 and KRT18; both HC markers (KRT18, KRT8 and WT1 and BEC markers (KRT7 and KRT19 were detected in HOCs. Additionally, some HC markers were also significantly upregulated in hepatic stellate cells ( HSCs, sinusoidal endothelial cells (SECs , Kupffer cells (KCs and dendritic cells (DCs, mainly at 6-72 hours post partial hepatectomy (PH. Conclusion: Our findings indicate that there is a mutual transdifferentiation relationship between HC, BEC and HOC during LR, and a tendency for HSCs, SECs, KCs and DCs to transdifferentiate into HCs.

  10. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture.

    Science.gov (United States)

    Wagner, Ilka; Materne, Eva-Maria; Brincker, Sven; Süssbier, Ute; Frädrich, Caroline; Busek, Mathias; Sonntag, Frank; Sakharov, Dmitry A; Trushkin, Evgeny V; Tonevitsky, Alexander G; Lauster, Roland; Marx, Uwe

    2013-09-21

    Current in vitro and animal tests for drug development are failing to emulate the systemic organ complexity of the human body and, therefore, to accurately predict drug toxicity. In this study, we present a multi-organ-chip capable of maintaining 3D tissues derived from cell lines, primary cells and biopsies of various human organs. We designed a multi-organ-chip with co-cultures of human artificial liver microtissues and skin biopsies, each a (1)/100,000 of the biomass of their original human organ counterparts, and have successfully proven its long-term performance. The system supports two different culture modes: i) tissue exposed to the fluid flow, or ii) tissue shielded from the underlying fluid flow by standard Transwell® cultures. Crosstalk between the two tissues was observed in 14-day co-cultures exposed to fluid flow. Applying the same culture mode, liver microtissues showed sensitivity at different molecular levels to the toxic substance troglitazone during a 6-day exposure. Finally, an astonishingly stable long-term performance of the Transwell®-based co-cultures could be observed over a 28-day period. This mode facilitates exposure of skin at the air-liquid interface. Thus, we provide here a potential new tool for systemic substance testing.

  11. Hepatic non-parenchymal cells and extracellular matrix participate in oval cell-mediated liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Xiao-Ping Chen; Wan-Guang Zhang; Feng Zhang; Shuai Xiang; Han-Hua Dong; Lei Zhang

    2009-01-01

    AIM: To elucidate the interaction between nonparenchymal cells, extracellular matrix and oval cells during the restituting process of liver injury induced by partial hepatectomy (PH). METHODS: We examined the localization of oval cells, non-parenchymal cells, and the extracellular matrix components using immunohistochemical and double immunofluorescent analysis during the proliferation and differentiation of oval cells in N-2-acetylaminofluorene (2-AAF)/PH rat model. RESULTS: By day 2 after PH, small oval cells began to proliferate around the portal area. Most of stellate cells and laminin were present along the hepatic sinusoids in the periportal area. Kupffer cells and fibronectin markedly increased in the whole hepatic lobule. From day 4 to 9, oval cells spread further into hepatic parenchyma, closely associated with stellate cells, fibronectin and laminin. Kupffer cells admixed with oval cells by day 6 and then decreased in the periportal zone. From day 12 to 15, most of hepatic stellate cells (HSCs), laminin and fibronectin located around the small hepatocyte nodus, and minority of them appeared in the nodus. Kupffer cells were mainly limited in the pericentral sinusoids. After day 18, the normal liver lobule structures began to recover.CONCLUSION: Local hepatic microenvironment may participate in the oval cell-mediated liver regeneration through the cell-cell and cell-matrix interactions.

  12. Therapeutic benefits in thalassemic mice transplanted with long term cultured bone marrow cells

    Science.gov (United States)

    Hatada, Seigo; Walton, William; Hatada, Tomoko; Wofford, Anne; Fox, Raymond; Liu, Naiyou; Lill, Michael C.; Fair, Jeffery H.; Kirby, Suzanne L.; Smithies, Oliver

    2011-01-01

    Objective Autologous bone marrow (BM) cells with a faulty gene corrected by gene targeting could provide a powerful therapeutic option for patients with genetic blood diseases. Achieving this goal is hindered by the low abundance of therapeutically useful BM cells and the difficulty of maintaining them in tissue culture long enough for completing gene targeting without them differentiating. Our objective was to devise a simple long-term culture system, using unfractioned BM cells, that maintains and expands therapeutically useful cells for ≥4 weeks. Materials and Methods From 2 to 60 million BM cells from wild-type (WT) mice, or from mice carrying a truncated erythropoietin receptor transgene (tEpoR-tg), were plated with or without irradiated fetal-liver derived AFT024 stromal cells in 25 cm2 culture flasks. Four-week cultured cells were analyzed and transplanted into sublethally irradiated thalassemic mice (1 million cells / mouse). Results After 4 weeks, the cultures with AFT024 cells had extensive “cobblestone” areas. Optimum expansion of Sca-1 positive cells was 5.5-fold with 20 × 106 WT cells/flask and 27-fold with 2 × 106 tEpoR-tg cells. More than 85% of thalassemic mice transplanted with either type of cells had almost complete reversal of their thalassemic phenotype for at least 6 months, including blood smear dysmorphology, reticulocytosis, high ferritin plasma levels and hepatic/renal hemosiderosis. Conclusion When plated at high cell densities on irradiated fetal-liver derived stromal cells, BM cells from WT mice maintain their therapeutic potential for 4 weeks in culture, which is sufficient time for correction of a faulty gene by targeting. PMID:21184801

  13. Pinoresinol from Ipomoea cairica cell cultures.

    Science.gov (United States)

    Páska, Csilla; Innocenti, Gabbriella; Ferlin, Mariagrazia; Kunvári, Mónika; László, Miklós

    2002-10-01

    Ipomoea cairica cell cultures produced a tetrahydrofuran lignan, (+)-pinoresinol, identified by UV, IR, MS and NMR methods, not yet found in the intact plant, and new in the Convolvulaceae family. Pinoresinol was found to have antioxidant and Ca2+ antagonist properties. As it could be requested for its biological activity, we examined the possibility to raise the pinoresinol yield of I. cairica cultures, as well as we continued investigations on lignans' response to optimization.

  14. Free Fatty Acids Differentially Downregulate Chemokines in Liver Sinusoidal Endothelial Cells: Insights into Non-Alcoholic Fatty Liver Disease.

    Science.gov (United States)

    McMahan, Rachel H; Porsche, Cara E; Edwards, Michael G; Rosen, Hugo R

    2016-01-01

    Non-alcoholic fatty liver disease is a prevalent problem throughout the western world. Liver sinusoidal endothelial cells (LSEC) have been shown to play important roles in liver injury and repair, but their role in the underlying pathogenetic mechanisms of non-alcoholic fatty liver disease remains undefined. Here, we evaluated the effects of steatosis on LSEC gene expression in a murine model of non-alcoholic fatty liver disease and an immortalized LSEC line. Using microarray we identified distinct gene expression profiles following exposure to free fatty acids. Gene pathway analysis showed a number of differentially expressed genes including those involved in lipid metabolism and signaling and inflammation. Interestingly, in contrast to hepatocytes, fatty acids led to decreased expression of pro-inflammatory chemokines including CCL2 (MCP-1), CXCL10 and CXCL16 in both primary and LSEC cell lines. Chemokine downregulation translated into a significant inhibition of monocyte migration and LSECs isolated from steatotic livers demonstrated a similar shift towards an anti-inflammatory phenotype. Overall, these pathways may represent a compensatory mechanism to reverse the liver damage associated with non-alcoholic fatty liver disease.

  15. Free Fatty Acids Differentially Downregulate Chemokines in Liver Sinusoidal Endothelial Cells: Insights into Non-Alcoholic Fatty Liver Disease.

    Directory of Open Access Journals (Sweden)

    Rachel H McMahan

    Full Text Available Non-alcoholic fatty liver disease is a prevalent problem throughout the western world. Liver sinusoidal endothelial cells (LSEC have been shown to play important roles in liver injury and repair, but their role in the underlying pathogenetic mechanisms of non-alcoholic fatty liver disease remains undefined. Here, we evaluated the effects of steatosis on LSEC gene expression in a murine model of non-alcoholic fatty liver disease and an immortalized LSEC line. Using microarray we identified distinct gene expression profiles following exposure to free fatty acids. Gene pathway analysis showed a number of differentially expressed genes including those involved in lipid metabolism and signaling and inflammation. Interestingly, in contrast to hepatocytes, fatty acids led to decreased expression of pro-inflammatory chemokines including CCL2 (MCP-1, CXCL10 and CXCL16 in both primary and LSEC cell lines. Chemokine downregulation translated into a significant inhibition of monocyte migration and LSECs isolated from steatotic livers demonstrated a similar shift towards an anti-inflammatory phenotype. Overall, these pathways may represent a compensatory mechanism to reverse the liver damage associated with non-alcoholic fatty liver disease.

  16. Cell culture experiments planned for the space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  17. 21 CFR 864.2280 - Cultured animal and human cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2280 Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro...

  18. Novel therapeutic Strategies for Targeting Liver Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Naoki Oishi, Xin Wei Wang

    2011-01-01

    Full Text Available The cancer stem cell (CSC hypothesis was first proposed over 40 years ago. Advances in CSC isolation were first achieved in hematological malignancies, with the first CSC demonstrated in acute myeloid leukemia. However, using similar strategies and technologies, and taking advantage of available surface markers, CSCs have been more recently demonstrated in a growing range of epithelial and other solid organ malignancies, suggesting that the majority of malignancies are dependent on such a compartment.Primary liver cancer consists predominantly of hepatocellular carcinoma (HCC and intrahepatic cholangiocarcinoma (ICC. It is believed that hepatic progenitor cells (HPCs could be the origin of some HCCs and ICCs. Furthermore, stem cell activators such as Wnt/β-catenin, TGF-β, Notch and Hedgehog signaling pathways also expedite tumorigenesis, and these pathways could serve as molecular targets to assist in designing cancer prevention strategies. Recent studies indicate that additional factors such as EpCAM, Lin28 or miR-181 may also contribute to HCC progression by targeting HCC CSCs. Various therapeutic drugs that directly modulate CSCs have been examined in vivo and in vitro. However, CSCs clearly have a complex pathogenesis, with a considerable crosstalk and redundancy in signaling pathways, and hence targeting single molecules or pathways may have a limited benefit for treatment. Many of the key signaling molecules are shared by both CSCs and normal stem cells, which add further challenges for designing molecularly targeted strategies specific to CSCs but sparing normal stem cells to avoid side effects. In addition to the direct control of CSCs, many other factors that are needed for the maintenance of CSCs, such as angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance, should be taken into consideration when designing therapeutic strategies for HCC.Here we provide a brief

  19. Human Liver Cells Expressing Albumin and Mesenchymal Characteristics Give Rise to Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Irit Meivar-Levy

    2011-01-01

    Full Text Available Activation of the pancreatic lineage in the liver has been suggested as a potential autologous cell replacement therapy for diabetic patients. Transcription factors-induced liver-to-pancreas reprogramming has been demonstrated in numerous species both in vivo and in vitro. However, human-derived liver cells capable of acquiring the alternate pancreatic repertoire have never been characterized. It is yet unknown whether hepatic-like stem cells or rather adult liver cells give rise to insulin-producing cells. Using an in vitro experimental system, we demonstrate that proliferating adherent human liver cells acquire mesenchymal-like characteristics and a considerable level of cellular plasticity. However, using a lineage-tracing approach, we demonstrate that insulin-producing cells are primarily generated in cells enriched for adult hepatic markers that coexpress both albumin and mesenchymal markers. Taken together, our data suggest that adult human hepatic tissue retains a substantial level of developmental plasticity, which could be exploited in regenerative medicine approaches.

  20. Toxicity monitoring with primary cultured hepatocytes underestimates the acetaminophen-induced inflammatory responses of the mouse liver.

    Science.gov (United States)

    Tachibana, Shinjiro; Shimomura, Akiko; Inadera, Hidekuni

    2011-01-01

    In vitro gene expression profiling with isolated hepatocytes has been used to assess the hepatotoxicity of certain chemicals because of animal welfare issues. However, whether an in vitro system can completely replace the in vivo system has yet to be elucidated in detail. Using a focused microarray established in our laboratory, we examined gene expression profiles in the mouse liver and primary cultured hepatocytes after treatment with different doses of acetaminophen, a widely used analgesic that frequently causes liver injury. The acute hepatotoxicity of acetaminophen was confirmed by showing the induction of an oxidative stress marker, heme oxygenase-1, elevated levels of serum transaminase, and histopathological findings. In vivo microarray and network analysis showed that acetaminophen treatment provoked alterations in relation to the inflammatory response, and that tumor necrosis factor-α plays a central role in related pathway alterations. By contrast, pathway analyses in in vitro isolated hepatocytes did not find such prominent changes in the inflammation-related networks compared with the in vivo situation. Thus, although in vitro gene expression profiles are useful for evaluating the direct toxicity of chemicals, indirect toxicities including inflammatory responses mediated by cell-cell interactions or secondary toxicity due to pathophysiological changes in the whole body may be overlooked. Our results indicate that the in vitro hepatotoxicity prediction system using isolated hepatocytes does not fully reflect the in vivo cellular response. An in vitro system may be appropriate, therefore, for high throughput screening to detect the direct hepatotoxicity of a test compound.

  1. Cytotoxicity of Marchantia convoluta leaf extracts to human liver and lung cancer cells

    Directory of Open Access Journals (Sweden)

    Xiao J.B.

    2006-01-01

    Full Text Available The cytotoxicity of three extracts (petroleum ether, ethyl acetate and n-butanol from a plant used in folk medicine, Marchantia convoluta, to human non-small cell lung carcinoma (H1299 and liver carcinoma (HepG2 cell lines was tested. After 72-h incubation of lung and liver cancer cell cultures with varying concentrations of extracts (15 to 200 µg/mL, cytotoxicity was determined by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay and reported in terms of cell viability. The extracts that showed a significant cytotoxicity were subjected to gas chromatography-mass spectrometry analysis to identify the components. The ethyl acetate, but not the petroleum ether or n-butanol extract, had a significant cytotoxicity against lung and liver carcinoma cells with IC50 values of 100 and 30 µg/mL, respectively. A high concentration of ethyl acetate extract (100 µg/mL rapidly reduced the number of H1299 cells. At lower concentrations of ethyl acetate extract (15, 30, and 40 µg/mL, the numbers of HepG2 cells started to decrease markedly. Gas chromatography-mass spectrometry analysis of the ethyl acetate extract revealed the presence of several compounds such as phytol (23.42%, 1,2,4-tripropylbenzene (13.09%, 9-cedranone (12.75%, ledene oxide (7.22%, caryophyllene (1.82%, and caryophyllene oxide (1.15%. HPLC analysis result showed that there were no flavonoids in ethyl acetate extract, but flavonoids are abundant in n-butanol extract. Further studies are needed regarding the identification, toxicity, and mechanism of action of active compounds.

  2. The Roles of Innate Immune Cells in Liver Injury and Regeneration

    Institute of Scientific and Technical Information of China (English)

    Zhongjun Dong; Haiming Wei; Rui Sun; Zhigang Tian

    2007-01-01

    For predominant abundance with liver-specific Kupffer cells, natural killer (NK) cells, and natural killer T (NKT)cells and their rapid responses to several stimuli, the liver is considered as an organ with innate immune features.In contrast to their roles in the defense of many infectious agents like hepatitis viruses and parasites, hepatic innate immune cells are also involved in the immunopathogenesis of human clinical liver diseases and several murine hepatitis models such as concanavalin A (Con A), lipopolysaccharide (LPS), or polyinosinic-polycytidylic acid (Poly I:C)-induced liver injury. In this review, the destructive roles of NK cells, NKT cells and Kupffer cells in the processes of immune-mediated liver injury and regeneration will be discussed, and some putative mechanisms involving the impairment of liver regeneration caused by activated hepatic innate immune cells are also proposed.

  3. Transient mTOR inhibition facilitates continuous growth of liver tumors by modulating the maintenance of CD133+ cell populations.

    Directory of Open Access Journals (Sweden)

    Zhaojuan Yang

    Full Text Available The mammalian target of the rapamycin (mTOR pathway, which drives cell proliferation, is frequently hyperactivated in a variety of malignancies. Therefore, the inhibition of the mTOR pathway has been considered as an appropriate approach for cancer therapy. In this study, we examined the roles of mTOR in the maintenance and differentiation of cancer stem-like cells (CSCs, the conversion of conventional cancer cells to CSCs and continuous tumor growth in vivo. In H-Ras-transformed mouse liver tumor cells, we found that pharmacological inhibition of mTOR with rapamycin greatly increased not only the CD133+ populations both in vitro and in vivo but also the expression of stem cell-like genes. Enhancing mTOR activity by over-expressing Rheb significantly decreased CD133 expression, whereas knockdown of the mTOR yielded an opposite effect. In addition, mTOR inhibition severely blocked the differentiation of CD133+ to CD133- liver tumor cells. Strikingly, single-cell culture experiments revealed that CD133- liver tumor cells were capable of converting to CD133+ cells and the inhibition of mTOR signaling substantially promoted this conversion. In serial implantation of tumor xenografts in nude BALB/c mice, the residual tumor cells that were exposed to rapamycin in vivo displayed higher CD133 expression and had increased secondary tumorigenicity compared with the control group. Moreover, rapamycin treatment also enhanced the level of stem cell-associated genes and CD133 expression in certain human liver tumor cell lines, such as Huh7, PLC/PRC/7 and Hep3B. The mTOR pathway is significantly involved in the generation and the differentiation of tumorigenic liver CSCs. These results may be valuable for the design of more rational strategies to control clinical malignant HCC using mTOR inhibitors.

  4. Generating induced pluripotent stem cells from common marmoset (Callithrix jacchus) fetal liver cells using defined factors, including Lin28.

    Science.gov (United States)

    Tomioka, Ikuo; Maeda, Takuji; Shimada, Hiroko; Kawai, Kenji; Okada, Yohei; Igarashi, Hiroshi; Oiwa, Ryo; Iwasaki, Tsuyoshi; Aoki, Mikio; Kimura, Toru; Shiozawa, Seiji; Shinohara, Haruka; Suemizu, Hiroshi; Sasaki, Erika; Okano, Hideyuki

    2010-09-01

    Although embryonic stem (ES) cell-like induced pluripotent stem (iPS) cells have potential therapeutic applications in humans, they are also useful for creating genetically modified human disease models in nonhuman primates. In this study, we generated common marmoset iPS cells from fetal liver cells via the retrovirus-mediated introduction of six human transcription factors: Oct-3/4, Sox2, Klf4, c-Myc, Nanog, and Lin28. Four to five weeks after introduction, several colonies resembling marmoset ES cells were observed and picked for further expansion in ES cell medium. Eight cell lines were established, and validation analyses of the marmoset iPS cells followed. We detected the expression of ES cell-specific surface markers. Reverse transcription-PCR showed that these iPS cells expressed endogenous Oct-3/4, Sox2, Klf4, c-Myc, Nanog and Lin28 genes, whereas all of the transgenes were silenced. Karyotype analysis showed that two of three iPS cell lines retained a normal karyotype after a 2-month culture. Both embryoid body and teratoma formation showed that marmoset iPS cells had the developmental potential to give rise to differentiated derivatives of all three primary germ layers. In summary, we generated marmoset iPS cells via the transduction of six transcription factors; this provides a powerful preclinical model for studies in regenerative medicine.

  5. Three dimensional co-culture of MIN6 cells and liver-derived perfusion-decellularized bioscaffold for potential clinical practice%肝脏脱细胞支架与MIN6细胞三维共培养移植治疗Ⅰ型糖尿病实验研究

    Institute of Scientific and Technical Information of China (English)

    朱沙俊; 王雷

    2015-01-01

    Objective:To observe the growth and function of primary mouse islets in the liver decellularized bioscaf-fold (LDB). At the same time, a new method of tissue engineering for treatment of diabetes was explored. Methods: The whole mouse liver was perfused by using detergent through hepatic portal vein in a continuous way and the whole liver de-cellularized bioscaffold was manufactured with the complete structure. The MIN6 cells cultured in the 3D bioscaffold. Then the hematoxylin-eosin (HE) staining, insulin immunohistochemical analysis and fluorescence quantitative polymerase chain reaction (PCR) were performed. qRT-PCR was conducted for the functional gene of INS1 and INS2 to further illuminate its function. The function of the recellularized pancreatic scaffold was monitored in vivo. Results:The liver decellularized bioscaffold, the extracellular cell matrix (ECM) of the LDB maintained their original round shape after decellularization and demonstrated a complete lack of nuclear staining as well as a complete network of blood vessel. Insulin gene expression was displayed, and the expression level of insulin in LDB was greater than that of the plate culture with statistical signifi-cance (P<0.05). MIN6 cells grown in the scaffold were better than those cultured on the culture dish. The recellularized pancreatic scaffold can control the blood glucose of the diabetic mice. Conclusion:LDB 3D culture system showed cell vi-ability with effective insulin secretion.%目的:通过体外制备小鼠肝脏脱细胞支架并种植MIN6细胞,观测其定植生长并检测其功效发挥,为体外构建胰岛素分泌器官提供理论基础。方法:灌注法制备全肝脏脱细胞支架,将小鼠MIN6细胞种植入支架中于三维培养体系中培养,通过苏木精-伊红染色、胰岛素免疫组化分析及荧光定量聚合酶链反应检测其功效。检测MIN6细胞功能基因Insulin表达。将种植MIN6细胞的肝脏脱细胞支架移植入糖尿

  6. Participation of liver progenitor cells in liver regeneration: lack of evidence in the AAF/PH rat model.

    Science.gov (United States)

    Dusabineza, Ange-Clarisse; Van Hul, Noémi K; Abarca-Quinones, Jorge; Starkel, Peter; Najimi, Mustapha; Leclercq, Isabelle A

    2012-01-01

    When hepatocyte proliferation is impaired, liver progenitor cells (LPC) are activated to participate in liver regeneration. We used the 2-acetaminofluorene/partial hepatectomy (AAF/PH) model to evaluate the contribution of LPC to liver cell replacement and function restoration. Fischer rats subjected to AAF/PH (or PH alone) were investigated 7, 10 and 14 days post-hepatectomy. Liver mass recovery (LMR) was estimated, and the liver mass to body weight ratio calculated. We used serum albumin and bilirubin levels, and liver albumin mRNA levels to assess the liver function. LPC expansion was analyzed by cytokeratin 19 (CK19), glutathione S-transferase protein (GSTp) immunohistochemistry and by CK19, CD133, transforming growth factor-β1 and hepatocyte growth factor mRNA expression in livers. Cell proliferation was evaluated by Ki67 and BrdU immunostaining. Compared with PH alone where LMR was ∼100% 14 days post-PH, LMR was defective in AAF/PH rats (64.1±15.5%, P=0.0004). LPC expansion was scarce in PH livers (0.5±0.4% of CK19(+) area), but significant in AAF/PH livers (8.5±7.2% of CK19(+)), and inversely correlated to LMR (r(2)=0.63, PPH animals presented liver failure (low serum albumin and high serum bilirubin) 14 days post-PH. Compared with animals with preserved function, this was associated with a lower LMR (50±6.8 vs 74.6±9.4%, P=0.0005), a decreased liver to body weight ratio (2±0.3 vs 3.5±0.6%, P=0.001), and a larger LPC expansion such as proliferating Ki67(+) LPC covered 17.4±4.2% of the liver parenchyma vs 3.1±1.5%, (Plivers with preserved function. These observations suggest that, in this model, the efficient recovery of the liver function was ensured rather by the proliferation of mature hepatocytes than by the LPC expansion and differentiation into hepatocytes.

  7. Diagnosis and significance of liver metastases in small cell carcinoma of the lung

    Energy Technology Data Exchange (ETDEWEB)

    Mulshine, J.L.; Makuch, R.W.; Johnston-Early, A.; Matthews, M.J.; Carney, D.N.; Ihde, D.C.; Cohen, M.H.; Bates, H.R.; Dunnick, N.R.; Minna, J.D.

    1984-07-01

    One hundred fifty-seven consecutive patients with small cell lung cancer seen at the National Cancer Institute over a four-year period underwent a series of pretherapy liver staging procedures to determine optimal means of detection and prognostic implications of hepatic metastases. Liver evaluation included physical examination, liver function tests, and liver scan (radionuclide or computerized tomography (CT)), as well as percutaneous and/or peritoneoscopy-directed liver biopsy when possible (74%). Liver metastases were detected in 26% of patients. Peritoneoscopy was the most sensitive method of liver evaluation and increased the detection of liver metastases when done in a sequential fashion after percutaneous liver biopsy from 18 to a total of 27 patients. Of the noninvasive procedures, radionuclide and CT liver scan were the most accurate concurring with liver biopsy in 87% of patients but permitting correct discrimination of stage in excess of 96% of patients. The accuracy of this noninvasive procedure was enhanced by an algorithm combining the results of radionuclide liver scan with liver function tests to detect patients with high or low likelihood of liver involvement. The survival and response of patients with liver metastases was significantly worse than those without such metastases with no three-year disease-free survivors among patients with liver metastases.

  8. Fibrogenic potential of human multipotent mesenchymal stromal cells in injured liver.

    Directory of Open Access Journals (Sweden)

    Reto M Baertschiger

    Full Text Available Multipotent mesenchymal stromal cells (MSC are currently investigated clinically as cellular therapy for a variety of diseases. Differentiation of MSC toward endodermal lineages, including hepatocytes and their therapeutic effect on fibrosis has been described but remains controversial. Recent evidence attributed a fibrotic potential to MSC. As differentiation potential might be dependent of donor age, we studied MSC derived from adult and pediatric human bone marrow and their potential to differentiate into hepatocytes or myofibroblasts in vitro and in vivo. Following characterization, expanded adult and pediatric MSC were co-cultured with a human hepatoma cell line, Huh-7, in a hepatogenic differentiation medium containing Hepatocyte growth factor, Fibroblast growth factor 4 and oncostatin M. In vivo, MSC were transplanted into spleen or liver of NOD/SCID mice undergoing partial hepatectomy and retrorsine treatment. Expression of mesenchymal and hepatic markers was analyzed by RT-PCR, Western blot and immunohistochemistry. In vitro, adult and pediatric MSC expressed characteristic surface antigens of MSC. Expansion capacity of pediatric MSC was significantly higher when compared to adult MSC. In co-culture with Huh-7 cells in hepatogenic differentiation medium, albumin expression was more frequently detected in pediatric MSC (5/8 experiments when compared to adult MSC (2/10 experiments. However, in such condition pediatric MSC expressed alpha smooth muscle more strongly than adult MSC. Stable engraftment in the liver was not achieved after intrasplenic injection of pediatric or adult MSC. After intrahepatic injection, MSC permanently remained in liver tissue, kept a mesenchymal morphology and expressed vimentin and alpha smooth muscle actin, but no hepatic markers. Further, MSC localization merges with collagen deposition in transplanted liver and no difference was observed using adult or pediatric MSC. In conclusion, when transplanted into an

  9. General overview of neuronal cell culture.

    Science.gov (United States)

    Gordon, Jennifer; Amini, Shohreh; White, Martyn K

    2013-01-01

    In this introductory chapter, we provide a general overview of neuronal cell culture. This is a rapidly evolving area of research and we provide an outline and contextual framework for the different chapters of this book. These chapters were all contributed by scientists actively working in the field who are currently using state-of-the-art techniques to advance our understanding of the molecular and cellular biology of the central nervous system. Each chapter provides detailed descriptions and experimental protocols for a variety of techniques ranging in scope from basic neuronal cell line culturing to advanced and specialized methods.

  10. What Is Liver Cancer?

    Science.gov (United States)

    ... Research? Liver Cancer About Liver Cancer What Is Liver Cancer? Cancer starts when cells in the body ... structure and function of the liver. About the liver The liver is the largest internal organ. It ...

  11. Differentiation and selection of hepatocyte precursors in suspension spheroid culture of transgenic murine embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Elke Gabriel

    Full Text Available Embryonic stem cell-derived hepatocyte precursor cells represent a promising model for clinical transplantations to diseased livers, as well as for establishment of in vitro systems for drug metabolism and toxicology investigations. This study aimed to establish an in vitro culture system for scalable generation of hepatic progenitor cells. We used stable transgenic clones of murine embryonic stem cells possessing a reporter/selection vector, in which the enhanced green fluorescent protein- and puromycin N-acetyltransferase-coding genes are driven by a common alpha-fetoprotein gene promoter. This allowed for "live" monitoring and puromycin selection of the desired differentiating cell type possessing the activated alpha-fetoprotein gene. A rotary culture system was established, sequentially yielding initially partially selected hepatocyte lineage-committed cells, and finally, a highly purified cell population maintained as a dynamic suspension spheroid culture, which progressively developed the hepatic gene expression phenotype. The latter was confirmed by quantitative RT-PCR analysis, which showed a progressive up-regulation of hepatic genes during spheroid culture, indicating development of a mixed hepatocyte precursor-/fetal hepatocyte-like cell population. Adherent spheroids gave rise to advanced differentiated hepatocyte-like cells expressing hepatic proteins such as albumin, alpha-1-antitrypsin, cytokeratin 18, E-cadherin, and liver-specific organic anion transporter 1, as demonstrated by fluorescent immunostaining. A fraction of adherent cells was capable of glycogen storage and of reversible up-take of indocyanine green, demonstrating their hepatocyte-like functionality. Moreover, after transplantation of spheroids into the mouse liver, the spheroid-derived cells integrated into recipient. These results demonstrate that large-scale hepatocyte precursor-/hepatocyte-like cultures can be established for use in clinical trials, as well as in

  12. CD8+ T cells induce platelet clearance in the liver via platelet desialylation in immune thrombocytopenia

    Science.gov (United States)

    Qiu, Jihua; Liu, Xuena; Li, Xiaoqing; Zhang, Xu; Han, Panpan; Zhou, Hai; Shao, Linlin; Hou, Yu; Min, Yanan; Kong, Zhangyuan; Wang, Yawen; Wei, Yu; Liu, Xinguang; Ni, Heyu; Peng, Jun; Hou, Ming

    2016-01-01

    In addition to antiplatelet autoantibodies, CD8+ cytotoxic T lymphocytes (CTLs) play an important role in the increased platelet destruction in immune thrombocytopenia (ITP). Recent studies have highlighted that platelet desialylation leads to platelet clearance via hepatocyte asialoglycoprotein receptors (ASGPRs). Whether CD8+ T cells induce platelet desialylation in ITP remains unclear. Here, we investigated the cytotoxicity of CD8+ T cells towards platelets and platelet desialylation in ITP. We found that the desialylation of fresh platelets was significantly higher in ITP patients with positive cytotoxicity of CD8+ T cells than those without cytotoxicity and controls. In vitro, CD8+ T cells from ITP patients with positive cytotoxicity induced significant platelet desialylation, neuraminidase-1 expression on the platelet surface, and platelet phagocytosis by hepatocytes. To study platelet survival and clearance in vivo, CD61 knockout mice were immunized and their CD8+ splenocytes were used. Platelets co-cultured with these CD8+ splenocytes demonstrated decreased survival in the circulation and increased phagocytosis in the liver. Both neuraminidase inhibitor and ASGPRs competitor significantly improved platelet survival and abrogated platelet clearance caused by CD8+ splenocytes. These findings suggest that CD8+ T cells induce platelet desialylation and platelet clearance in the liver in ITP, which may be a novel mechanism of ITP. PMID:27321376

  13. Liver sinusoidal endothelial and biliary cell repopulation following irradiation and partial hepatectomy

    Institute of Scientific and Technical Information of China (English)

    Petra; Krause; Margret; Rave-Frank; Hendrik; Andreas; Wolff; Heinz; Becker; Hans; Christiansen; Sarah; Koenig

    2010-01-01

    AIM: To investigate whether irradiation (IR) and partial hepatectomy (PH) may prepare the host liver for nonparenchymal cell (NPC) transplantation.METHODS: Livers of dipeptidyl peptidase(DPP)-deficient rats were pre-conditioned with external beam IR (25 Gy) delivered to two-thirds of the right liver lobules followed by a one-third PH of the untreated lob-ule. DPP-positive liver cells (NPC preparations enriched for liver sinusoidal endothelial cells (LSECs) and hepatocytes) were transplanted via the spleen i...

  14. Butachlor, a suspected carcinogen, alters growth and transformation characteristics of mouse liver cells.

    Science.gov (United States)

    Ou, Y H; Chung, P C; Chang, Y C; Ngo, F Q; Hsu, K Y; Chen, F D

    2000-12-01

    Butachlor is a widely used herbicide in Asia and South America. Previous investigations have indicated that it is a suspected carcinogen. To understand more about the biological effects of butachlor on cultured cells and the mechanism(s) of its carcinogenicity, we studied the alteration of the growth characteristics that was induced by butachlor in normal mouse liver cells (BNL CL2). This study demonstrates that butachlor decreases the population-doubling time of BNL CL2 cells, suggesting that it stimulates cell proliferation. To support this finding, a thymidine incorporation assay was conducted and a similar result that butachlor stimulates cell proliferation was elucidated. In addition, we show that butachlor increases the saturation density of the BNL CL2 cells. When combined with the tumor initiator N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), butachlor transforms cells efficiently, as demonstrated by loss of contact inhibition. These findings indicate that butachlor alters the growth characteristics of BNL CL2 cells and suggest that butachlor may induce malignant transformation through stimulation of cell proliferation, alteration of cell cycle regulation, and suppression of cell density-dependent inhibition of proliferation.

  15. Cell differentiation mediated by co-culture of human umbilical cord blood stem cells with murine hepatic cells.

    Science.gov (United States)

    Stecklum, Maria; Wulf-Goldenberg, Annika; Purfürst, Bettina; Siegert, Antje; Keil, Marlen; Eckert, Klaus; Fichtner, Iduna

    2015-02-01

    In the present study, purified human cord blood stem cells were co-cultivated with murine hepatic alpha mouse liver 12 (AML12) cells to compare the effect on endodermal stem cell differentiation by either direct cell-cell interaction or by soluble factors in conditioned hepatic cell medium. With that approach, we want to mimic in vitro the situation of preclinical transplantation experiments using human cells in mice. Cord blood stem cells, cultivated with hepatic conditioned medium, showed a low endodermal differentiation but an increased connexin 32 (Cx32) and Cx43, and cytokeratin 8 (CK8) and CK19 expression was monitored by reverse transcription polymerase chain reaction (RT-PCR). Microarray profiling indicated that in cultivated cord blood cells, 604 genes were upregulated 2-fold, with the highest expression for epithelial CK19 and epithelial cadherin (E-cadherin). On ultrastructural level, there were no major changes in the cellular morphology, except a higher presence of phago(ly)some-like structures observed. Direct co-culture of AML12 cells with cord blood cells led to less incisive differentiation with increased sex-determining region Y-box 17 (SOX17), Cx32 and Cx43, as well as epithelial CK8 and CK19 expressions. On ultrastructural level, tight cell contacts along the plasma membranes were revealed. FACS analysis in co-cultivated cells quantified dye exchange on low level, as also proved by time relapse video-imaging of labelled cells. Modulators of gap junction formation influenced dye transfer between the co-cultured cells, whereby retinoic acid increased and 3-heptanol reduced the dye transfer. The study indicated that the cell-co-cultured model of human umbilical cord blood cells and murine AML12 cells may be a suitable approach to study some aspects of endodermal/hepatic cell differentiation induction.

  16. Porcine Adipose-Derived Mesenchymal Stem Cells Retain Their Stem Cell Characteristics and Cell Activities While Enhancing the Expression of Liver-Specific Genes after Acute Liver Failure

    Directory of Open Access Journals (Sweden)

    Chenxia Hu

    2016-01-01

    Full Text Available Acute liver failure (ALF is a kind of complicated syndrome. Furthermore, adipose-derived mesenchymal stem cells (ADMSCs can serve as a useful cell resource for autotransplantation due to their abundance and micro-invasive accessability. However, it is unknown how ALF will influence the characteristics of ADMSCs and whether ADMSCs from patients suffering from end-stage liver diseases are potential candidates for autotransplantation. This study was designed to compare various properties of ALF-derived ADMSCs with normal ADMSCs in pig models, with regard to their cellular morphology, cell proliferative ability, cell apoptosis, expression of surface antigens, mitochondrial and lysosomal activities, multilineage potency, and expression of liver-specific genes. Our results showed that ALF does not influence the stem cell characteristics and cell activities of ADMSCs. Intriguingly, the expression levels of several liver-specific genes in ALF-derived ADMSCs are higher than in normal ADMSCs. In conclusion, our findings indicate that the stem cell characteristics and cell activities of ADMSCs were not altered by ALF and these cells can serve as a new source for regenerative medicine.

  17. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    Science.gov (United States)

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways.

  18. Effects of Kupffer cell inactivation on graft survival and liver regeneration after partial liver transplantation in rats

    Institute of Scientific and Technical Information of China (English)

    Hang-Yu Luo; Shan-Fang Ma; Ji-Fu Qu; De-Hu Tian

    2015-01-01

    BACKGROUND: Gadolinium chloride (GdCl3) selectively in-activates Kupffer cells and protects against ischemia/reperfu-sion and endotoxin injury. However, the effect of Kupffer cell inactivation on liver regeneration after partial liver transplan-tation (PLTx) is not clear. This study was to investigate the role of GdCl3 pretreatment in graft function after PLTx, and to explore the potential mechanism involved in this process. METHODS: PLTx (30% partial liver transplantation) was per-formed using Kamada's cuff technique, without hepatic artery reconstruction. Rats were randomly divided into the control low-dose (5 mg/kg) and high-dose (10 mg/kg) GdCl3 groups. Liver injury was determined by the plasma levels of alanine aminotransferase and aspartate aminotransferase, liver regen-eration by PCNA staining and BrdU uptake, apoptosis by TU-NEL assay. IL-6 and p-STAT3 levels were measured by ELISA and Western blotting. RESULTS: GdCl3 depleted Kupffer cells and decreased animal survival rates, but did not significantly affect alanine amino-transferase and aspartate aminotransferase (P>0.05). GdCl3 pretreatment induced apoptosis and inhibited IL-6 overex-pression and STAT3 phosphorylation after PLTx in graft tissues. CONCLUSION: Kupffer cells may contribute to the liver re-generation after PLTx through inhibition of apoptosis and activation of the IL-6/p-STAT3 signal pathway.

  19. Markers of activated inflammatory cells correlate with severity of liver damage in children with nonalcoholic fatty liver disease.

    Science.gov (United States)

    De Vito, Rita; Alisi, Anna; Masotti, Andrea; Ceccarelli, Sara; Panera, Nadia; Citti, Arianna; Salata, Michele; Valenti, Luca; Feldstein, Ariel E; Nobili, Valerio

    2012-07-01

    Concomitantly to the obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has become the leading cause of liver disease in children. NAFLD encompasses a spectrum of histological damage ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), with possible progression to cirrhosis. There is growing evidence that the immune system plays a pivotal role in the initiation and progression to NASH but the cellular nature of the hepatic inflammation is still unknown. The present study includes 34 children with biopsy-proven NAFLD. Liver damage was evaluated by the NAFLD activity score (NAS), and the inflammatory infiltrate was characterized by immunohistochemistry for CD45, CD3 and CD163 which are markers of leukocytes, T cells and activated Kupffer cells/macrophages, respectively. Our results have shown that CD45+ (Pchildren with severe histological activity (NAS≥5) compared to children with lower activity (NASchildren with severe histological activity. There was a significant association between the numbers of CD45+, CD3+ and CD163+ cells, regarding both the portal tract and liver lobule, and the severity of steatosis, ballooning and fibrosis (Pchildren with NAFLD. Moreover, a decrease in CD3+ cells may be involved in the pathogenesis of liver damage. Future studies should evaluate whether it can predict the progression of liver disease independently of established histological scores.

  20. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  1. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  2. Simple and sensitive method for monitoring drug-induced cell injury in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Shirhatti, V.; Krishna, G.

    1985-06-01

    A simple, sensitive method has been developed for evaluating cell injury noninvasively in monolayer cells in culture. The cell ATP pool was radiolabeled by incubating the cells with (/sup 14/C)adenine. The uptake and incorporation of (/sup 14/C)adenine was shown to proportional to the number of cells. As determined by HPLC, about 65-70% of the incorporated /sup 14/C label was in the ATP pool, 15-20% was in the ADP pool, and the rest was in the 5'-AMP pool. When prelabeled cells were exposed to toxic drugs (acetaminophen, calcium ionophore A-23187, or daunomycin) there was a marked decrease in cell ATP with a concomitant increase in leakage of labeled nucleotides, mainly 5'-AMP and 5'IMP. The authors have shown that leakage of /sup 14/C label into the medium from the prelabeled cells may be employed for quantitation of cell injury. This new measure of toxicity was shown to correlate very well with LDH leakage from the cells, which is a well accepted measure of cell injury. The leakage of 5'-(/sup 14/C)AMP also correlated very well with the reduction of cell ATP in cardiac myocytes. This method has been used for monitoring drug-induced toxicity in liver cells, cardiac myocytes, and LB cells.

  3. Shape memory polymers for active cell culture.

    Science.gov (United States)

    Davis, Kevin A; Luo, Xiaofan; Mather, Patrick T; Henderson, James H

    2011-07-04

    Shape memory polymers (SMPs) are a class of "smart" materials that have the ability to change from a fixed, temporary shape to a pre-determined permanent shape upon the application of a stimulus such as heat(1-5). In a typical shape memory cycle, the SMP is first deformed at an elevated temperature that is higher than its transition temperature, T(trans;) [either the melting temperature (T(m;)) or the glass transition temperature (T(g;))]. The deformation is elastic in nature and mainly leads to a reduction in conformational entropy of the constituent network chains (following the rubber elasticity theory). The deformed SMP is then cooled to a temperature below its T(trans;) while maintaining the external strain or stress constant. During cooling, the material transitions to a more rigid state (semi-crystalline or glassy), which kinetically traps or "freezes" the material in this low-entropy state leading to macroscopic shape fixing. Shape recovery is triggered by continuously heating the material through T(trans;) under a stress-free (unconstrained) condition. By allowing the network chains (with regained mobility) to relax to their thermodynamically favored, maximal-entropy state, the material changes from the temporary shape to the permanent shape. Cells are capable of surveying the mechanical properties of their surrounding environment(6). The mechanisms through which mechanical interactions between cells and their physical environment control cell behavior are areas of active research. Substrates of defined topography have emerged as powerful tools in the investigation of these mechanisms. Mesoscale, microscale, and nanoscale patterns of substrate topography have been shown to direct cell alignment, cell adhesion, and cell traction forces(7-14). These findings have underscored the potential for substrate topography to control and assay the mechanical interactions between cells and their physical environment during cell culture, but the substrates used to date

  4. Embryonic mouse STO cell-derived xenografts express hepatocytic functions in the livers of nonimmunosuppressed adult rats.

    Science.gov (United States)

    Zhang, Mingjun; Joseph, Brigid; Gupta, Sanjeev; Guest, I; Xu, Meng; Sell, Stewart; Son, Kyung-Hwa; Koch, Katherine S; Leffert, Hyam L

    2005-02-01

    Cells derived from embryonic mouse STO cell lines differentiate into hepatocytes when transplanted into the livers of nonimmunosuppressed dipeptidylpeptidase IV (DPPIV)-negative F344 rats. Within 1 day after intrasplenic injection, donor cells moved rapidly into the liver and were found in intravascular and perivascular sites; by 1 month, they were intrasinusoidal and also integrated into hepatic plates with approximately 2% efficiency and formed conjoint bile canaliculi. Neither donor cell proliferation nor host inflammatory responses were observed during this time. Detection of intrahepatic mouse COX1 mitochondrial DNA and mouse albumin mRNA in recipient rats indicated survival and differentiation of donor cells for at least 3 months. Mouse COX1 targets were also detected intrahepatically 4-9 weeks after STO cell injection into nonimmunosuppressed wild-type rats. In contrast to STO-transplanted rats, mouse DNA or RNA was not detectable in untreated or mock-transplanted rats or in rats injected with donor cell DNA. In cultured STO donor cells, DPPIV and glucose-6-phosphatase activities were observed in small clusters; in contrast, mouse major histocompatibility complex class I H-2Kq, H-2Dq, and H-2Lq and class II I-Aq markers were undetectable in vitro before or after interferon gamma treatment. Together with H-2K allele typing, which confirmed the Swiss mouse origin of the donor cells, these observations indicate that mouse-derived STO cell lines can differentiate along hepatocytic lineage and engraft into rat liver across major histocompatibility barriers.

  5. Proapoptotic Role of Potassium Ions in Liver Cells

    Directory of Open Access Journals (Sweden)

    Zhenglin Xia

    2016-01-01

    Full Text Available Potassium channels are transmembrane proteins that selectively promote the infiltration of potassium ions. The significance of these channels for tumor biology has become obvious. However, the effects of potassium ions on the tumor or normal cells have seldom been studied. To address this problem, we studied the biological effects of L02 and HepG2 cells with ectogenous potassium ions. Cell proliferation, cell cycle, and apoptosis rate were analyzed. Our results indicated that potassium ions inhibited proliferation of L02 and HepG2 cells and promoted their apoptosis. Potassium ions induced apoptosis through regulating Bcl-2 family members and depolarized the mitochondrial membrane, especially for HepG2 cell. These biological effects were associated with channel protein HERG. By facilitating expression of channel protein HERG, potassium ions may prevent it from being shunted to procancerous pathways by inducing apoptosis. These results demonstrated that potassium ions may be a key regulator of liver cell function. Thus, our findings suggest that potassium ions could inhibit tumorigenesis through inducing apoptosis of hepatoma cells by upregulating potassium ions transport channel proteins HERG and VDAC1.

  6. TRANSPLANTATION OF CRYOPRESERVED FETAL LIVER CELLS SEEDED INTO MACROPOROUS ALGINATE-GELATIN SCAFFOLDS IN RATS WITH LIVER FAILURE

    Directory of Open Access Journals (Sweden)

    D. V. Grizay

    2015-01-01

    Full Text Available Aim. To study the therapeutic potential of cryopreserved fetal liver cells seeded into macroporous alginategelatin scaffolds after implantation to omentum of rats with hepatic failure.Materials and methods.Hepatic failure was simulated by administration of 2-acetyl aminofl uorene followed partial hepatectomy. Macroporous alginate-gelatin scaffolds, seeded with allogenic cryopreserved fetal liver cells (FLCs were implanted into rat omentum. To prevent from colonization of host cells scaffolds were coated with alginate gel shell. Serum transaminase activity, levels of albumin and bilirubin as markers of hepatic function were determined during 4 weeks after failure model formation and scaffold implantation. Morphology of liver and scaffolds after implantation were examined histologically. Results. Macroporous alginate-gelatin scaffolds after implantation to healthy rats were colonized by host cells. Additional formation of alginate gel shell around scaffolds prevented the colonization. Implantation of macroporous scaffolds seeded with cryopreserved rat FLCs and additionally coated with alginate gel shell into omentum of rats with hepatic failure resulted in signifi cant improvement of hepatospecifi c parameters of the blood serum and positive changes of liver morphology. The presence of cells with their extracellular matrix within the scaffolds was confi rmed after 4 weeks post implantation.Conclusion. The data above indicate that macroporous alginate-gelatin scaffolds coated with alginate gel shell are promising cell carriers for the development of bioengineered liver equivalents.

  7. Synergistic ablation of liver tissue and liver cancer cells with high-intensity focused ultrasound and ethanol.

    Science.gov (United States)

    Hoang, Nguyen H; Murad, Hakm Y; Ratnayaka, Sithira H; Chen, Chong; Khismatullin, Damir B

    2014-08-01

    We investigated the combined effect of ethanol and high-intensity focused ultrasound (HIFU), first, on heating and cavitation bubble activity in tissue-mimicking phantoms and porcine liver tissues and, second, on the viability of HepG2 liver cancer cells. Phantoms or porcine tissues were injected with ethanol and then subjected to HIFU at acoustic power ranging from 1.2 to 20.5 W (HIFU levels 1-7). Cavitation events and the temperature around the focal zone were measured with a passive cavitation detector and embedded type K thermocouples, respectively. HepG2 cells were subjected to 4% ethanol solution in growth medium (v/v) just before the cells were exposed to HIFU at 2.7, 8.7 or 12.0 W for 30 s. Cell viability was measured 2, 24 and 72 h post-treatment. The results indicate that ethanol and HIFU have a synergistic effect on liver cancer ablation as manifested by greater temperature rise and lesion volume in liver tissues and reduced viability of liver cancer cells. This effect is likely caused by reduction of the cavitation threshold in the presence of ethanol and the increased rate of ethanol diffusion through the cell membrane caused by HIFU-induced streaming, sonoporation and heating.

  8. RED BLOOD CELL ABNORMALITIES IN DECOMPENSATED CHRONIC LIVER DISEASE (DCLD

    Directory of Open Access Journals (Sweden)

    Anbazhagan

    2015-02-01

    Full Text Available BACKGROUND: Liver plays an important role in normal erythropoiesis, especially in formation and destruction of RBC’s. Chronic liver diseases are frequently associated with hematological abnormalities. Anemia of diverge etiology occurs in about 75% patients with DCLD ( 36. This can ultimately culminate in grave complications. AIM OF THE STUDY: To detect various abnormalities in Red Blood Cells and to assess the type of anemia in DCLD. METHODS: The study was conducted in 50 patients of DCLD, in Meenakshi Medical College. A detailed History, clinical examination and also Ultrasound Abdomen, GI endoscopy to establish DCLD and complete Red Blood Cell assessment was done. RESULTS AND OBSERVATION : Among the 50 patients, 40 patients (80% had anemia and only 10 pts had normal h emoglobin above 13 gms%. About 15 patients (30% had severe Anemia of less than 6 gm%. Among the 40 patients, 25 patients had normocytic normochronic anemia, 10 patients had microcytic anemia, and 4 patients had macrocytosis and only one had dimorphic anem ia. CONCLUSION : Most common Red Blood Cell abnormality in DCLD is anemia (80% and most common anemia is normochronic normocytic anemia (62.5%, while microcytic anemia and macrocytosis were common among females and Alcoholics, respectively

  9. Expression of. gamma. -glutamyl transpeptidase in IAR 2 cells cultured on adhesive and nonadhesive substrates

    Energy Technology Data Exchange (ETDEWEB)

    Anfimova, M.L.; Bannikov, G.A.

    1985-12-01

    The effect of impairment of spreading and of cell aggregate formation on gamma-glutamyl transpeptidase (GGT) activity was studied in nontumorigenic rat liver epithelial cells. The intensity of biosynthesis was determined from the incorporation of /sup 14/C-glycine, present in the culture medium in a concentration of 10 microCu/ml. Expression of GGT activity during culture of IAR 2 cells on Hydron and on glass is shown, as well as the incorporation of /sup 3/H-Thymidine by IAR 2 cells during culture on Hydron and on glass. Impairment of the normal processes of spreading and formation of cell junctions is shown to lead to increased GGT expression by these cells.

  10. Microanalysis of gene expression in cultured cells

    NARCIS (Netherlands)

    E. van der Veer (Eveliene)

    1982-01-01

    textabstractIn this thesis two aspects of gene expression in cultured cells have been studied: the heterogeneity in gene expression in relation with the development and application of microchemical techniques for the prenatal diagnosis of inborn errors of metabolism and the possibility of inducing g

  11. 3D culture for cardiac cells.

    Science.gov (United States)

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  12. Cell Culture Microfluidic Biochips: Experimental Throughput Maximization

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2011-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory, integrating all necessary functionalities on-chip in order to perform biochemical applications. Researchers have started to propose computer-aided design tools for the synthesis of such biochips. Our focus...... metaheuristic for experimental design generation for the cell culture microfluidic biochips, and we have evaluated our approach using multiple experimental setups....

  13. Transplantation of mouse fetal liver cells for analyzing the function of hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Gudmundsson, Kristbjorn Orri; Stull, Steven W; Keller, Jonathan R

    2012-01-01

    Hematopoietic stem cells are defined by their ability to self-renew and differentiate through progenitor cell stages into all types of mature blood cells. Gene-targeting studies in mice have demonstrated that many genes are essential for the generation and function of hematopoietic stem and progenitor cells. For definitively analyzing the function of these cells, transplantation studies have to be performed. In this chapter, we describe methods to isolate and transplant fetal liver cells as well as how to analyze donor cell reconstitution. This protocol is tailored toward mouse models where embryonic lethality precludes analysis of adult hematopoiesis or where it is suspected that the function of fetal liver hematopoietic stem and progenitor cells is compromised.

  14. Nanotechnology, Cell Culture and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kazutoshi Haraguchi

    2011-01-01

    Full Text Available We have fabricated new types of polymer hydrogels and polymer nanocomposites, i.e., nanocomposite gels (NC gels and soft, polymer nanocomposites (M-NCs: solid, with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in-situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms such as film, sheet, tube, coating, etc. and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles act as multi-functional crosslinkers to form new types of network systems. Both NC gels and M-NCs have extraordinary optical and mechanical properties including ultra-high reversible extensibility, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micro-patterning, etc. For examples, the biological testing of medical devices, comprised of a sensitization test, an irritation test, an intracutaneous test and an in vitro cytotoxicity test,was carried out for NC gels and M-NCs. The safety of NC gels and M-NCs was confirmed in all tests. Also, the interaction of living tissue with NC gel was investigated in vivo by implantation in live goats; neither inflammation nor concrescence occurred around the NC gels. Furthermore, it was found that both N-NC gels consisting of poly(N-isopropylacrylamide(PNIPA/clay network and M-NCs consisting of poly(2-methoxyethyacrylate(PMEA/clay network show characteristic cell culture and subsequent cell detachment on their surfaces, although it was almost impossible to culture cells on conventional, chemically-crosslinked PNIPA hydrogels and chemically crossslinked PMEA, regardless of their crosslinker concentration. Various kinds of cells, such ashumanhepatoma cells (HepG2, normal human dermal fibroblast (NHDF, and human umbilical vein endothelial cells (HUVEC, could be cultured to be confluent on the surfaces of N

  15. The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury.

    Science.gov (United States)

    McDaniel, Kelly; Huang, Li; Sato, Keisaku; Wu, Nan; Annable, Tami; Zhou, Tianhao; Ramos-Lorenzo, Sugeily; Wan, Ying; Huang, Qiaobing; Francis, Heather; Glaser, Shannon; Tsukamoto, Hidekazu; Alpini, Gianfranco; Meng, Fanyin

    2017-07-07

    The let-7/Lin28 axis is associated with the regulation of key cellular regulatory genes known as microRNAs in various human disorders and cancer development. This study evaluated the role of the let-7/Lin28 axis in regulating a mesenchymal phenotype of hepatic stellate cells in alcoholic liver injury. We identified that ethanol feeding significantly down-regulated several members of the let-7 family in mouse liver, including let-7a and let-7b. Similarly, the treatment of human hepatic stellate cells (HSCs) with lipopolysaccharide (LPS) and transforming growth factor-β (TGF-β) significantly decreased the expressions of let-7a and let-7b. Conversely, overexpression of let-7a and let-7b suppressed the myofibroblastic activation of cultured human HSCs induced by LPS and TGF-β, as evidenced by repressed ACTA2 (α-actin 2), COL1A1 (collagen 1A1), TIMP1 (TIMP metallopeptidase inhibitor 1), and FN1 (fibronectin 1); this supports the notion that HSC activation is controlled by let-7. A combination of bioinformatics, dual-luciferase reporter assay, and Western blot analysis revealed that Lin28B and high-mobility group AT-hook (HMGA2) were the direct targets of let-7a and let-7b. Furthermore, Lin28B deficiency increased the expression of let-7a/let-7b as well as reduced HSC activation and liver fibrosis in mice with alcoholic liver injury. This feedback regulation of let-7 by Lin28B is verified in hepatic stellate cells isolated by laser capture microdissection from the model. The identification of the let-7/Lin28 axis as an important regulator of HSC activation as well as its upstream modulators and down-stream targets will provide insights into the involvement of altered microRNA expression in contributing to the pathogenesis of alcoholic liver fibrosis and novel therapeutic approaches for human alcoholic liver diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Cell Culture Assay for Human Noroviruses [response

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  17. Advances in tissue engineering through stem cell-based co-culture.

    Science.gov (United States)

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Light microscopical demonstration and zonal distribution of parasinusoidal cells (Ito cells) in normal human liver

    DEFF Research Database (Denmark)

    Horn, T; Junge, Jette; Nielsen, O;

    1988-01-01

    The parasinusoidal cells of the liver (Ito cells) were demonstrated light microscopically in autopsy specimens fixed in formalin and stained with Oil red O after dichromate treatment. The method allows examination of large samples containing numerous acini. Quantitative assessment showed a zonal...

  19. Fetal liver cell transplantation : role and nature of the fetal haemopoietic stem cell

    NARCIS (Netherlands)

    B. Löwenberg (Bob)

    1975-01-01

    textabstractFetal liver cell transplantation deserves intensified interest because, according to previous experimental evidence, it may represent a useful approach to reduce or avoid severe Graft-versus-Host (GvH) reactions following treatment with allogeneic haemopoietic cell grafts. The applicatio

  20. Light microscopical demonstration and zonal distribution of parasinusoidal cells (Ito cells) in normal human liver

    DEFF Research Database (Denmark)

    Horn, T; Junge, Jette; Nielsen, O

    1988-01-01

    The parasinusoidal cells of the liver (Ito cells) were demonstrated light microscopically in autopsy specimens fixed in formalin and stained with Oil red O after dichromate treatment. The method allows examination of large samples containing numerous acini. Quantitative assessment showed a zonal ...

  1. Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    MadanKumar, Perumal; NaveenKumar, Perumal; Manikandan, Samidurai [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); Devaraj, Halagowder [Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); NiranjaliDevaraj, Sivasithamparam, E-mail: niranjali@yahoo.com [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India)

    2014-06-01

    The anti-fibrotic effect of morin was examined in LX-2 cells (culture-activated human hepatic stellate cells) and in diethylnitrosamine induced rat model of liver fibrosis. The in vitro study was designed to determine whether morin affects the survival of cultured LX-2 cells, while the in vivo study was designed to evaluate the antioxidant and anti-fibrotic efficacy of morin on diethylnitrosamine induced liver fibrosis in male albino Wistar rat. The activities of liver function enzymes in serum, liver lipid peroxide levels, activities of serum antioxidant enzymes and liver architecture were monitored to cast light on the antioxidant and hepatoprotective nature of morin. To establish the anti-fibrotic effects of morin, the levels of key Wnt signaling molecules which are strongly associated with the signal transduction pathway of HSC activation were measured. Overall, from the in vitro results, it was observed that morin at 50 μM concentration inhibited the proliferation of cultured LX-2 cells, inhibited Wnt signaling and induced G1 cell cycle arrest. The in vivo results further confirmed that morin by downregulating the expressions of GSK-3β, β-catenin and cyclin D1 ameliorated DEN-induced liver fibrosis. Hence morin could be employed as a promising chemopreventive natural supplement for liver fibrosis. - Highlights: • In vivo and in vitro results revealed the active participation of Wnt signaling. • Morin at 50 μM inhibited LX-2 cell proliferation by suppressing Wnt signaling. • Morin exhibited hepatoprotective effects against DEN induced liver fibrosis. • Morin inhibited HSC activation in vivo by downregulating Wnt/β-catenin signaling.

  2. Identification of potential biomarkers of hepatitis B-induced acute liver failure using hepatic cells derived from human skin precursors.

    Science.gov (United States)

    Rodrigues, Robim M; Sachinidis, Agapios; De Boe, Veerle; Rogiers, Vera; Vanhaecke, Tamara; De Kock, Joery

    2015-09-01

    Besides their role in the elucidation of pathogenic processes of medical and pharmacological nature, biomarkers can also be used to document specific toxicological events. Hepatic cells generated from human skin-derived precursors (hSKP-HPC) were previously shown to be a promising in vitro tool for the evaluation of drug-induced hepatotoxicity. In this study, their capacity to identify potential liver-specific biomarkers at the gene expression level was investigated with particular emphasis on acute liver failure (ALF). To this end, a set of potential ALF-specific biomarkers was established using clinically relevant liver samples obtained from patients suffering from hepatitis B-associated ALF. Subsequently, this data was compared to data obtained from primary human hepatocyte cultures and hSKP-HPC, both exposed to the ALF-inducing reference compound acetaminophen. It was found that both in vitro systems revealed a set of molecules that was previously identified in the ALF liver samples. Yet, only a limited number of molecules was common between both in vitro systems and the ALF liver samples. Each of the in vitro systems could be used independently to identify potential toxicity biomarkers related to ALF. It seems therefore more appropriate to combine primary human hepatocyte cultures with complementary in vitro models to efficiently screen out potential hepatotoxic compounds.

  3. Influence of serum from liver-damaged rats on differentiation tendency of bone marrow-derived stem cells

    Institute of Scientific and Technical Information of China (English)

    Hai Hong; Jian-Zhi Chen; Feng Zhou; Ling Xue; Guo-Qiang Zhao

    2004-01-01

    AIM: Recent studies in both rodents and humans indicated that bone marrow (BM)-derived stem cells were able to home to the liver after they were damaged and demonstrated plasticity in becoming hepatocytes. However, the question remains as to how these stem cells are activated and led to the liver and where the signals initiating the mechanisms of activation and differentiation of stem cells originate. The aim of this study was to investigate the influence of serum from liver-damaged rats on differentiation tendency of bone marrow-derived stem cells.METHODS: Serum samples were collected from rats treated with a 2-acetylaminofluorene (2-AAF)/carbon tetrachloride (CCl4) program for varying time points and then used as stimulators of cultured BM stem cells. Expression of M2- and L-type isozymes of rat pyruvate kinase, albumin as well as integrin-β1 were then examined by reverse transcription polymerase chain reaction (RT-PCR) to estimate the differentiation state of BM stem cells.RESULTS: Expression of M2-type isozyme of pyruvate kinase (M2-PK), a marker of immature hepatocytes, was detected in each group stimulated with experimental serum, but not in controls including mature hepatocytes, BM stem cells without serum stimulation, and BM stem cells stimulated with normal control serum. As a marker expressed in the development of liver, the expression signal of integrin-β1 was also detectable in each group stimulated with experimental serum. However, expression of L-type isozyme of pyruvate kinase (L-PK) and albumin, marker molecules of mature hepatocytes, was not detected in groups stimulated with experimental serum.CONCLUSION: Under the influence of serum from rats with liver failure, BM stem cells begin to differentiate along a direction to hepatocyte lineage and to possess some features of immature hepatocytes.

  4. Cell Culture Microfluidic Biochips: Experimental Throughput Maximization

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2011-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory, integrating all necessary functionalities on-chip in order to perform biochemical applications. Researchers have started to propose computer-aided design tools for the synthesis of such biochips. Our foc...... metaheuristic for experimental design generation for the cell culture microfluidic biochips, and we have evaluated our approach using multiple experimental setups....... in this paper is on the optimization of how a biochemical application is performed on a biochip. In this paper, we consider cell culture biochips, where several cell colonies are exposed to soluble compounds and monitored in real-time to determine the right combination of factors that leads to the desired...

  5. A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing.

    Science.gov (United States)

    Materne, Eva-Maria; Ramme, Anja Patricia; Terrasso, Ana Paula; Serra, Margarida; Alves, Paula Marques; Brito, Catarina; Sakharov, Dmitry A; Tonevitsky, Alexander G; Lauster, Roland; Marx, Uwe

    2015-07-10

    Current in vitro and animal tests for drug development are failing to emulate the systemic organ complexity of the human body and, therefore, often do not accurately predict drug toxicity, leading to high attrition rates in clinical studies (Paul et al., 2010). The phylogenetic distance between humans and laboratory animals is enormous, this affects the transferability of animal data on the efficacy of neuroprotective drugs. Therefore, many neuroprotective treatments that have shown promise in animals have not been successful when transferred to humans (Dragunow, 2008; Gibbons and Dragunow, 2010). We present a multi-organ chip capable of maintaining 3D tissues derived from various cell sources in a combined media circuit which bridges the gap in systemic and human tests. A steady state co-culture of human artificial liver microtissues and human neurospheres exposed to fluid flow over two weeks in the multi-organ chip has successfully proven its long-term performance. Daily lactate dehydrogenase activity measurements of the medium and immunofluorescence end-point staining proved the viability of the tissues and the maintenance of differentiated cellular phenotypes. Moreover, the lactate production and glucose consumption values of the tissues cultured indicated that a stable steady-state was achieved after 6 days of co-cultivation. The neurospheres remained differentiated neurons over the two-week cultivation in the multi-organ chip, proven by qPCR and immunofluorescence of the neuronal markers βIII-tubulin and microtubule-associated protein-2. Additionally, a two-week toxicity assay with a repeated substance exposure to the neurotoxic 2,5-hexanedione in two different concentrations induced high apoptosis within the neurospheres and liver microtissues, as shown by a strong increase of lactate dehydrogenase activity in the medium. The principal finding of the exposure of the co-culture to 2,5-hexanedione was that not only toxicity profiles of two different doses

  6. Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue.

    Science.gov (United States)

    Esch, Mandy B; Ueno, Hidetaka; Applegate, Dawn R; Shuler, Michael L

    2016-07-05

    We have developed an expandable modular body-on-a-chip system that allows for a plug-and-play approach with several in vitro tissues. The design consists of single-organ chips that are combined with each other to yield a multi-organ body-on-a-chip system. Fluidic flow through the organ chips is driven via gravity and controlled passively via hydraulic resistances of the microfluidic channel network. Such pumpless body-on-a-chip devices are inexpensive and easy to use. We tested the device by culturing GI tract tissue and liver tissue within the device. Integrated Ag/AgCl electrodes were used to measure the resistance across the GI tract cell layer. The transepithelial resistance (TEER) reached values between 250 to 650 Ω cm(2) throughout the 14 day co-culture period. These data indicate that the GI tract cells retained their viability and the GI tract layer as a whole retained its barrier function. Throughout the 14 day co-culture period we measured low amounts of aspartate aminotransferase (AST, ∼10-17.5 U L(-1)), indicating low rates of liver cell death. Metabolic rates of hepatocytes were comparable to those of hepatocytes in single-organ fluidic cell culture systems (albumin production ranged between 3-6 μg per day per million hepatocytes and urea production ranged between 150-200 μg per day per million hepatocytes). Induced CYP activities were higher than previously measured with microfluidic liver only systems.

  7. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents.

    Science.gov (United States)

    Maschmeyer, Ilka; Lorenz, Alexandra K; Schimek, Katharina; Hasenberg, Tobias; Ramme, Anja P; Hübner, Juliane; Lindner, Marcus; Drewell, Christopher; Bauer, Sophie; Thomas, Alexander; Sambo, Naomia Sisoli; Sonntag, Frank; Lauster, Roland; Marx, Uwe

    2015-06-21

    Systemic absorption and metabolism of drugs in the small intestine, metabolism by the liver as well as excretion by the kidney are key determinants of efficacy and safety for therapeutic candidates. However, these systemic responses of applied substances lack in most in vitro assays. In this study, a microphysiological system maintaining the functionality of four organs over 28 days in co-culture has been established at a minute but standardized microsystem scale. Preformed human intestine and skin models have been integrated into the four-organ-chip on standard cell culture inserts at a size 100,000-fold smaller than their human counterpart organs. A 3D-based spheroid, equivalent to ten liver lobules, mimics liver function. Finally, a barrier segregating the media flow through the organs from fluids excreted by the kidney has been generated by a polymeric membrane covered by a monolayer of human proximal tubule epithelial cells. A peristaltic on-chip micropump ensures pulsatile media flow interconnecting the four tissue culture compartments through microfluidic channels. A second microfluidic circuit ensures drainage of the fluid excreted through the kidney epithelial cell layer. This four-organ-chip system assures near to physiological fluid-to-tissue ratios. In-depth metabolic and gene analysis revealed the establishment of reproducible homeostasis among the co-cultures within two to four days, sustainable over at least 28 days independent of the individual human cell line or tissue donor background used for each organ equivalent. Lastly, 3D imaging two-photon microscopy visualised details of spatiotemporal segregation of the two microfluidic flows by proximal tubule epithelia. To our knowledge, this study is the first approach to establish a system for in vitro microfluidic ADME profiling and repeated dose systemic toxicity testing of drug candidates over 28 days.

  8. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    Science.gov (United States)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground

  9. Dynamic cell culture system (7-IML-1)

    Science.gov (United States)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  10. Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan, Muhammad H.; Gill, Amy F.; Alvarez, Xavier; Lackner, Andrew A.; Veazey, Ronald S., E-mail: rveazey@tulane.edu

    2013-11-15

    Since the liver drains antigens from the intestinal tract, and since the intestinal tract is a major site of viral replication, we examined the dynamics of liver macrophages (Kupffer cells) throughout SIV infection. Absolute numbers of Kupffer cells increased in the livers in acute infection, and in animals with AIDS. Significantly higher percentages of proliferating (BrdU+) Kupffer cells were detected in acute infection and in AIDS with similar trends in blood monocytes. Significantly higher percentages of apoptotic (AC3+) Kupffer cells were also found in acute and AIDS stages. However, productively infected cells were not detected in liver of 41/42 animals examined, despite abundant infected cells in gut and lymph nodes of all animals. Increased rates of Kupffer cell proliferation resulting in an increase in Kupffer cells without productive infection indicate SIV infection affects Kupffer cells, but the liver does not appear to be a major site of productive viral replication. - Highlights: • Kupffer cells increase in the liver of SIV-infected macaques. • Increased proliferation and apoptosis of Kupffer cells occurs in SIV infection. • Productively infected cells are rarely detected in the liver. • The liver is not a major site for SIV replication.

  11. Interleukin-1 regulates hematopoietic progenitor and stem cells in the midgestation mouse fetal liver

    Science.gov (United States)

    Orelio, Claudia; Peeters, Marian; Haak, Esther; van der Horn, Karin; Dzierzak, Elaine

    2009-01-01

    Background Hematopoietic progenitors are generated in the yolk sac and aorta-gonad-mesonephros region during early mouse development. At embryonic day 10.5 the first hematopoietic stem cells emerge in the aorta-gonad-mesonephros. Subsequently, hematopoietic stem cells and progenitors are found in the fetal liver. The fetal liver is a potent hematopoietic site, playing an important role in the expansion and differentiation of hematopoietic progenitors and hematopoietic stem cells. However, little is known concerning the regulation of fetal liver hematopoietic stem cells. In particular, the role of cytokines such as interleukin-1 in the regulation of hematopoietic stem cells in the embryo has been largely unexplored. Recently, we observed that the adult pro-inflammatory cytokine interleukin-1 is involved in regulating aorta-gonad-mesonephros hematopoietic progenitor and hematopoietic stem cell activity. Therefore, we set out to investigate whether interleukin-1 also plays a role in regulating fetal liver progenitor cells and hematopoietic stem cells. Design and Methods We examined the interleukin-1 ligand and receptor expression pattern in the fetal liver. The effects of interleukin-1 on hematopoietic progenitor cells and hematopoietic stem cells were studied by FACS and transplantation analyses of fetal liver explants, and in vivo effects on hematopoietic stem cell and progenitors were studied in Il1r1−/− embryos. Results We show that fetal liver hematopoietic progenitor cells express the IL-1RI and that interleukin-1 increases fetal liver hematopoiesis, progenitor cell activity and promotes hematopoietic cell survival. Moreover, we show that in Il1r1−/− embryos, hematopoietic stem cell activity is impaired and myeloid progenitor activity is increased. Conclusions The IL-1 ligand and receptor are expressed in the midgestation liver and act in the physiological regulation of fetal liver hematopoietic progenitor cells and hematopoietic stem cells. PMID

  12. Metabolism of Mequindox in Isolated Rat Liver Cells

    Institute of Scientific and Technical Information of China (English)

    LI Guang-hui; SHAN Qi; WANG Jing; LI Ya-fei; GAO Yan; ZENG Zhen-ling

    2014-01-01

    Mequindox (MEQ), 3-methyl-2-quinoxalinacetyl-1,4-dioxide, is widely used in Chinese veterinary medicine as an antimicrobial agent and feed additive. Its toxicity has been reported to be closely related to its metabolism. To understand the pathways underlying MEQ’s metabolism more clearly, we studied its metabolism in isolated rat liver cells by using liquid chromatography coupled with electrospray ionization hybrid linear trap quadrupole orbitrap (LC-LTQ-Orbitrap) mass spectrometry. The structures of MEQ metabolites and their product ions were readily and reliably characterized on the basis of accurate MS2 spectra and known structure of MEQ. Eleven metabolites were detected in isolated rat liver cells, two of which were detected for the ifrst time in vitro. The major metabolic pathways reported previously for in vitro metabolism of MEQ in rat microsomes were conifrmed in this study, including N→O group reduction, carbonyl reduction, and methyl monohydroxylation. In addition, we found that acetyl hydroxylation was an important pathway of MEQ metabolism. The results also demonstrate that cellular systems more closely simulate in vivo conditions than do other in vitro systems such as microsomes. Taken together, these data contribute to our understanding of the in vivo metabolism of MEQ.

  13. Disruption of polyubiquitin gene Ubc leads to defective proliferation of hepatocytes and bipotent fetal liver epithelial progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyejin; Yoon, Min-Sik; Ryu, Kwon-Yul, E-mail: kyryu@uos.ac.kr

    2013-06-07

    Highlights: •Proliferation capacity of Ubc{sup −/−} FLCs was reduced during culture in vitro. •Ubc is required for proliferation of both hepatocytes and bipotent FLEPCs. •Bipotent FLEPCs exhibit highest Ubc transcription and proliferation capacity. •Cell types responsible for Ubc{sup −/−} fetal liver developmental defect were identified. -- Abstract: We have previously demonstrated that disruption of polyubiquitin gene Ubc leads to mid-gestation embryonic lethality most likely due to a defect in fetal liver development, which can be partially rescued by ectopic expression of Ub. In a previous study, we assessed the cause of embryonic lethality with respect to the fetal liver hematopoietic system. We confirmed that Ubc{sup −/−} embryonic lethality could not be attributed to impaired function of hematopoietic stem cells, which raises the question of whether or not FLECs such as hepatocytes and bile duct cells, the most abundant cell types in the liver, are affected by disruption of Ubc and contribute to embryonic lethality. To answer this, we isolated FLCs from E13.5 embryos and cultured them in vitro. We found that proliferation capacity of Ubc{sup −/−} cells was significantly reduced compared to that of control cells, especially during the early culture period, however we did not observe the increased number of apoptotic cells. Furthermore, levels of Ub conjugate, but not free Ub, decreased upon disruption of Ubc expression in FLCs, and this could not be compensated for by upregulation of other poly- or mono-ubiquitin genes. Intriguingly, the highest Ubc expression levels throughout the entire culture period were observed in bipotent FLEPCs. Hepatocytes and bipotent FLEPCs were most affected by disruption of Ubc, resulting in defective proliferation as well as reduced cell numbers in vitro. These results suggest that defective proliferation of these cell types may contribute to severe reduction of fetal liver size and potentially mid

  14. Culturing of retinal pigment epithelium cells.

    Science.gov (United States)

    Valtink, Monika; Engelmann, Katrin

    2009-01-01

    The retinal pigment epithelium (RPE) is a monolayer of cells adjacent to the photoreceptors of the retina. It plays a crucial role in maintaining photoreceptor health and survival. Degeneration or dysfunction of the RPE can lead to photoreceptor degeneration and as a consequence to visual impairment. The most common diseased state of the RPE becomes manifest in age-related macular degeneration, an increasing cause of blindness in the elderly. RPE cells are therefore of great interest to researchers working in the field of tissue engineering and cell transplantation. In fact, studies in animal models have proven that the transplantation of RPE cells can delay the course of photoreceptor degenerative diseases. Although first attempts to transplant RPE cells into the subretinal space in human individuals suffering from age-related macular degeneration were less successful, RPE cell transplantation is still favored as a future therapeutic option, and much work is done to develop and design cell transplants. Cell banking is a prerequisite to have well-differentiated and characterized cells at hand when needed for research purposes, but also for therapeutic approaches. In this chapter the authors will describe methods to isolate, culture and preserve adult human RPE cells for the purpose of RPE cell banking. Copyright 2009 S. Karger AG, Basel.

  15. Comparative analysis of regulatory roles of P38 signaling pathway in 8 types liver cell during liver regeneration.

    Science.gov (United States)

    Yang, Xianguang; Zhu, Lin; Zhao, Weiming; Shi, Yaohuang; He, Chuncui; Xu, Cunshuan

    2016-12-05

    P38MAPK signaling pathway was closely related to cell proliferation, apoptosis, cell differentiation, cell survival, cell death, and so on. However, the regulatory mechanism of P38MAPK signaling pathway in liver regeneration (LR) was unclear. In order to further reveal the roles of P38MAPK signaling pathway in rat liver regeneration, Ingenuity Pathway Analysis (IPA) software and related data sites were used to construct P38MAPK signaling pathway, and the pathway was confirmed by relevant documents literature. The expression changes of P38MAPK signaling pathway-related gene in eight type cells were further analyzed by Rat Genome 230 2.0 Array, and the results showed that 95 genes in P38MAPK signaling pathway had significant changes. H-cluster analysis showed that hepatocyte cell (HC), pit cell (PC), oval cell (OC) and biliary epithelial cell (BEC) are clustered together; and the same as Kupffer cell (KC), sinusoidal endothelial cell (SEC), dendritic cell (DC) and hepatic stellate cell (HSC). IPA software and expression analysis systematic explorer (EASE) were applied to functional enrichment analysis, and the results showed that P38MAPK signaling pathway was mainly involved in apoptosis, cell death, cell proliferation, cell survival, cell viability, activation, cell cycle progression, necrosis, synthesis of DNA and other physical activity during LR. In conclusion, P38MAPK signaling pathway regulated various physiological activities of LR through multiple signaling pathways.

  16. Binding of erythropoietin to CFU-E derived from fetal mouse liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Fukamachi, H.; Saito, T.; Tojo, A.; Kitamura, T.; Urabe, A.; Takaku, F.

    1987-09-01

    The binding of recombinant erythropoietin (EPO) to fetal mouse liver cells (FMLC) was investigated using a radioiodinated derivative which retained full biological activity. FMLC were fractionated using a preformed Percoll density gradient. Using the fractionated FMLC, the ability to form CFU-E colonies in a semisolid culture was examined, and the binding of (/sup 125/I)EPO was measured. The highest specific binding of (/sup 125/I)EPO was observed in a fraction with a density between 1.062 and 1.076 g/ml. The same fraction showed the highest ability to form CFU-E-derived colonies. After suspension culture of FMLC with EPO for 2 days, differentiated erythroid cells with higher density markedly increased. The specific binding of (/sup 125/I)EPO to these cells almost disappeared with differentiation. Scatchard analysis with cells of the CFU-E-enriched fraction showed a nonlinear curve, suggesting the existence of two classes of binding sites. One binding site was high-affinity (Kd1 = 0.41 nM), and the other low-affinity (Kd2 = 3.13 nM). These results suggest that the expression of EPO receptors on the erythroid cells is highest in CFU-E.

  17. Glypican-3 Targeting of Liver Cancer Cells Using Multifunctional Nanoparticles

    Directory of Open Access Journals (Sweden)

    James O. Park

    2011-01-01

    Full Text Available Imaging is essential in accurately detecting, staging, and treating primary liver cancer (hepatocellular carcinoma [HCC], one of the most prevalent and lethal malignancies. We developed a novel multifunctional nanoparticle (NP specifically targeting glypican-3 (GPC3, a proteoglycan implicated in promotion of cell growth that is overexpressed in most HCCs. Quantitative real-time polymerase chain reaction was performed to confirm the differential GPC3 expression in two human HCC cells, Hep G2 (high and HLF (negligible. These cells were treated with biotin-conjugated GPC3 monoclonal antibody (αGPC3 and subsequently targeted using superparamagnetic iron oxide NPs conjugated to streptavidin and Alexa Fluor 647. Flow cytometry demonstrated that only GPC3-expressing Hep G2 cells were specifically targeted using this αGPC3-NP conjugate (fourfold mean fluorescence over nontargeted NP, and magnetic resonance imaging (MRI experiments showed similar findings (threefold R2 relaxivity. Confocal fluorescence microscopy localized the αGPC3 NPs only to the cell surface of GPC3-expressing Hep G2 cells. Further characterization of this construct demonstrated a negatively charged, monodisperse, 50 nm NP, ideally suited for tumor targeting. This GPC3-specific NP system, with dual-modality imaging capability, may enhance pretreatment MRI, enable refined intraoperative HCC visualization by near-infrared fluorescence, and be potentially used as a carrier for delivery of tumor-targeted therapies, improving patient outcomes.

  18. Liver dendritic cells present bacterial antigens and produce cytokines upon Salmonella encounter.

    Science.gov (United States)

    Johansson, Cecilia; Wick, Mary Jo

    2004-02-15

    The capacity of murine liver dendritic cells (DC) to present bacterial Ags and produce cytokines after encounter with Salmonella was studied. Freshly isolated, nonparenchymal liver CD11c(+) cells had heterogeneous expression of MHC class II and CD11b and a low level of CD40 and CD86 expression. Characterization of liver DC subsets revealed that CD8alpha(-)CD4(-) double negative cells constituted the majority of liver CD11c(+) ( approximately 85%) with few cells expressing CD8alpha or CD4. Flow cytometry analysis of freshly isolated CD11c(+) cells enriched from the liver and cocultured with Salmonella expressing green fluorescent protein (GFP) showed that CD11c(+) MHC class II(high) cells had a greater capacity to internalize Salmonella relative to CD11c(+) MHC class II(low) cells. Moreover, both CD8alpha(-) and CD8alpha(+) liver DC internalized bacteria with similar efficiency after both in vitro and in vivo infection. CD11c(+) cells enriched from the liver could also process Salmonella for peptide presentation on MHC class I and class II to primary, Ag-specific T cells after internalization requiring actin cytoskeletal rearrangements. Flow cytometry analysis of liver CD11c(+) cells infected with Salmonella expressing GFP showed that both CD8alpha(-) and CD8alpha(+) DC produced IL-12p40 and TNF-alpha. The majority of cytokine-positive cells did not contain bacteria (GFP(-)) whereas only a minor fraction of cytokine-positive cells were GFP(+). Furthermore, only approximately 30-50% of liver DC containing bacteria (GFP(+)) produced cytokines. Thus, liver DC can internalize and process Salmonella for peptide presentation to CD4(+) and CD8(+) T cells and elicit proinflammatory cytokine production upon Salmonella encounter, suggesting that DC in the liver may contribute to immunity against hepatotropic bacteria.

  19. Induction of regulatory T cells by high-dose gp96 suppresses murine liver immune hyperactivation.

    Directory of Open Access Journals (Sweden)

    Xinghui Li

    Full Text Available Immunization with high-dose heat shock protein gp96, an endoplasmic reticulum counterpart of the Hsp90 family, significantly enhances regulatory T cell (Treg frequency and suppressive function. Here, we examined the potential role and mechanism of gp96 in regulating immune-mediated hepatic injury in mice. High-dose gp96 immunization elicited rapid and long-lasting protection of mice against concanavalin A (Con A-and anti-CD137-induced liver injury, as evidenced by decreased alanine aminotransaminase (ALT levels, hepatic necrosis, serum pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6, and number of IFN-γ (+ CD4(+ and IFN-γ (+ CD8(+ T cells in the spleen and liver. In contrast, CD4(+CD25(+Foxp3(+ Treg frequency and suppressive function were both increased, and the protective effect of gp96 could be generated by adoptive transfer of Treg cells from gp96-immunized mice. In vitro co-culture experiments demonstrated that gp96 stimulation enhanced Treg proliferation and suppressive function, and up-regulation of Foxp3, IL-10, and TGF-β1 induced by gp96 was dependent on TLR2- and TLR4-mediated NF-κB activation. Our work shows that activation of Tregs by high-dose gp96 immunization protects against Con A- and anti-CD137-induced T cell-hepatitis and provides therapeutic potential for the development of a gp96-based anti-immune hyperactivation vaccine against immune-mediated liver destruction.

  20. AKT induces erythroid-cell maturation of JAK2-deficient fetal liver progenitor cells and is required for Epo regulation of erythroid-cell differentiation.

    Science.gov (United States)

    Ghaffari, Saghi; Kitidis, Claire; Zhao, Wei; Marinkovic, Dragan; Fleming, Mark D; Luo, Biao; Marszalek, Joseph; Lodish, Harvey F

    2006-03-01

    AKT serine threonine kinase of the protein kinase B (PKB) family plays essential roles in cell survival, growth, metabolism, and differentiation. In the erythroid system, AKT is known to be rapidly phosphorylated and activated in response to erythropoietin (Epo) engagement of Epo receptor (EpoR) and to sustain survival signals in cultured erythroid cells. Here we demonstrate that activated AKT complements EpoR signaling and supports erythroid-cell differentiation in wild-type and JAK2-deficient fetal liver cells. We show that erythroid maturation of AKT-transduced cells is not solely dependent on AKT-induced cell survival or proliferation signals, suggesting that AKT transduces also a differentiation-specific signal downstream of EpoR in erythroid cells. Down-regulation of expression of AKT kinase by RNA interference, or AKT activity by expression of dominant negative forms, inhibits significantly fetal liver-derived erythroid-cell colony formation and gene expression, demonstrating that AKT is required for Epo regulation of erythroid-cell maturation.

  1. In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins.

    Science.gov (United States)

    Liu, Hua; Kim, Yonghak; Sharkis, Saul; Marchionni, Luigi; Jang, Yoon-Young

    2011-05-11

    Human induced pluripotent stem cells (iPSCs) are a potential source of hepatocytes for liver transplantation to treat end-stage liver disease. In vitro differentiation of human iPSCs into hepatic cells has been achieved using a multistage differentiation protocol, but whether these cells are functional and capable of engrafting and regenerating diseased liver tissue is not clear. We show that human iPSC-derived hepatic cells at various differentiation stages can engraft the liver in a mouse transplantation model. Using the same differentiation and transplantation protocols, we also assessed the ability of human iPSCs derived from each of the three developmental germ layer tissues (that is, ectoderm, mesoderm, and endoderm) to regenerate mouse liver. These iPSC lines, with similar but distinct global DNA methylation patterns, differentiated into multistage hepatic cells with an efficiency similar to that of human embryonic stem cells. Human hepatic cells at various differentiation stages derived from iPSC lines of different origins successfully repopulated the liver tissue of mice with liver cirrhosis. They also secreted human-specific liver proteins into mouse blood at concentrations comparable to that of proteins secreted by human primary hepatocytes. Our results demonstrate the engraftment and liver regenerative capabilities of human iPSC-derived multistage hepatic cells in vivo and suggest that human iPSCs of distinct origins and regardless of their parental epigenetic memory can efficiently differentiate along the hepatic lineage.

  2. Novel protocol including liver biopsy to identify and treat CD8+ T-cell predominant acute hepatitis and liver failure.

    Science.gov (United States)

    McKenzie, Rebecca B; Berquist, William E; Nadeau, Kari C; Louie, Christine Y; Chen, Sharon F; Sibley, Richard K; Glader, Bertil E; Wong, Wendy B; Hofmann, Lawrence V; Esquivel, Carlos O; Cox, Kenneth L

    2014-08-01

    In the majority of children with ALF, the etiology is unknown and liver transplantation is often needed for survival. A patient case prompted us to consider that immune dysregulation may be the cause of indeterminate acute hepatitis and liver failure in children. Our study includes nine pediatric patients treated under a multidisciplinary clinical protocol to identify and treat immune-mediated acute liver injury. Patients with evidence of inflammation and no active infection on biopsy received treatment with intravenous immune globulin and methylprednisolone. Seven patients had at least one positive immune marker before or after treatment. All patients had a CD8+ T-cell predominant liver injury that completely or partially responded to immune therapy. Five of the nine patients recovered liver function and did not require liver transplantation. Three of these patients subsequently developed bone marrow failure and were treated with either immunosuppression or stem cell transplant. This series highlights the importance of this tissue-based approach to diagnosis and treatment that may improve transplant-free survival. Further research is necessary to better characterize the immune injury and to predict the subset of patients at risk for bone marrow failure who may benefit from earlier and stronger immunosuppressive therapy.

  3. Taurine Biosynthesis in a Fish Liver Cell Line (ZFL) Adapted to a Serum-Free Medium.

    Science.gov (United States)

    Liu, Chieh-Lun; Watson, Aaron M; Place, Allen R; Jagus, Rosemary

    2017-05-25

    Although taurine has been shown to play multiple important physiological roles in teleosts, little is known about the molecular mechanisms underlying dietary requirements. Cell lines can provide useful tools for deciphering biosynthetic pathways and their regulation. However, culture media and sera contain variable taurine levels. To provide a useful cell line for the investigation of taurine homeostasis, an adult zebrafish liver cell line (ZFL) has been adapted to a taurine-free medium by gradual accommodation to a commercially available synthetic medium, UltraMEM™-ITES. Here we show that ZFL cells are able to synthesize taurine and be maintained in medium without taurine. This has allowed for the investigation of the effects of taurine supplementation on cell growth, cellular amino acid pools, as well as the expression of the taurine biosynthetic pathway and taurine transporter genes in a defined fish cell type. After taurine supplementation, cellular taurine levels increase but hypotaurine levels stay constant, suggesting little suppression of taurine biosynthesis. Cellular methionine levels do not change after taurine addition, consistent with maintenance of taurine biosynthesis. The addition of taurine to cells grown in taurine-free medium has little effect on transcript levels of the biosynthetic pathway genes for cysteine dioxygenase (CDO), cysteine sulfinate decarboxylase (CSAD), or cysteamine dioxygenase (ADO). In contrast, supplementation with taurine causes a 30% reduction in transcript levels of the taurine transporter, TauT. This experimental approach can be tailored for the development of cell lines from aquaculture species for the elucidation of their taurine biosynthetic capacity.

  4. Taurine Biosynthesis in a Fish Liver Cell Line (ZFL Adapted to a Serum-Free Medium

    Directory of Open Access Journals (Sweden)

    Chieh-Lun Liu

    2017-05-01

    Full Text Available Although taurine has been shown to play multiple important physiological roles in teleosts, little is known about the molecular mechanisms underlying dietary requirements. Cell lines can provide useful tools for deciphering biosynthetic pathways and their regulation. However, culture media and sera contain variable taurine levels. To provide a useful cell line for the investigation of taurine homeostasis, an adult zebrafish liver cell line (ZFL has been adapted to a taurine-free medium by gradual accommodation to a commercially available synthetic medium, UltraMEM™-ITES. Here we show that ZFL cells are able to synthesize taurine and be maintained in medium without taurine. This has allowed for the investigation of the effects of taurine supplementation on cell growth, cellular amino acid pools, as well as the expression of the taurine biosynthetic pathway and taurine transporter genes in a defined fish cell type. After taurine supplementation, cellular taurine levels increase but hypotaurine levels stay constant, suggesting little suppression of taurine biosynthesis. Cellular methionine levels do not change after taurine addition, consistent with maintenance of taurine biosynthesis. The addition of taurine to cells grown in taurine-free medium has little effect on transcript levels of the biosynthetic pathway genes for cysteine dioxygenase (CDO, cysteine sulfinate decarboxylase (CSAD, or cysteamine dioxygenase (ADO. In contrast, supplementation with taurine causes a 30% reduction in transcript levels of the taurine transporter, TauT. This experimental approach can be tailored for the development of cell lines from aquaculture species for the elucidation of their taurine biosynthetic capacity.

  5. Prevention and Detection of Mycoplasma Contamination in Cell Culture

    Directory of Open Access Journals (Sweden)

    Parvaneh Farzaneh

    2012-01-01

    Full Text Available One of the main problems in cell culture is mycoplasma infection. It can extensively affectcell physiology and metabolism. As the applications of cell culture increase in research,industrial production and cell therapy, more concerns about mycoplasma contaminationand detection will arise. This review will provide valuable information about: 1. the waysin which cells are contaminated and the frequency and source of mycoplasma species incell culture; 2. the ways to prevent mycoplasma contamination in cell culture; 3. the importanceof mycoplasma tests in cell culture; 4. different methods to identify mycoplasmacontamination; 5. the consequences of mycoplasma contamination in cell culture and 6.available methods to eliminate mycoplasma contamination. Awareness about the sourcesof mycoplasma and pursuing aseptic techniques in cell culture along with reliable detectionmethods of mycoplasma contamination can provide an appropriate situation to preventmycoplasma contamination in cell culture.

  6. Molecular Recognition of Human Liver Cancer Cells Using DNA Aptamers Generated via Cell-SELEX.

    Directory of Open Access Journals (Sweden)

    Jiehua Xu

    Full Text Available Most clinical cases of liver cancer cannot be diagnosed until they have evolved to an advanced stage, thus resulting in high mortality. It is well recognized that the implementation of early detection methods and the development of targeted therapies for liver cancer are essential to reducing the high mortality rates associated with this disease. To achieve these goals, molecular probes capable of recognizing liver cancer cell-specific targets are needed. Here we describe a panel of aptamers able to distinguish hepatocarcinoma from normal liver cells. The aptamers, which were selected by cell-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment, have Kd values in the range of 64-349 nM toward the target human hepatoma cell HepG2, and also recognize ovarian cancer cells and lung adenocarcinoma. The proteinase treatment experiment indicated that all aptamers could recognize target HepG2 cells through surface proteins. This outcome suggested that these aptamers could be used as potential probes for further research in cancer studies, such as developing early detection assays, targeted therapies, and imaging agents, as well as for the investigation of common membrane proteins in these distinguishable cancers.

  7. Molecular Recognition of Human Liver Cancer Cells Using DNA Aptamers Generated via Cell-SELEX.

    Science.gov (United States)

    Xu, Jiehua; Teng, I-Ting; Zhang, Liqin; Delgado, Stefanie; Champanhac, Carole; Cansiz, Sena; Wu, Cuichen; Shan, Hong; Tan, Weihong

    2015-01-01

    Most clinical cases of liver cancer cannot be diagnosed until they have evolved to an advanced stage, thus resulting in high mortality. It is well recognized that the implementation of early detection methods and the development of targeted therapies for liver cancer are essential to reducing the high mortality rates associated with this disease. To achieve these goals, molecular probes capable of recognizing liver cancer cell-specific targets are needed. Here we describe a panel of aptamers able to distinguish hepatocarcinoma from normal liver cells. The aptamers, which were selected by cell-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment), have Kd values in the range of 64-349 nM toward the target human hepatoma cell HepG2, and also recognize ovarian cancer cells and lung adenocarcinoma. The proteinase treatment experiment indicated that all aptamers could recognize target HepG2 cells through surface proteins. This outcome suggested that these aptamers could be used as potential probes for further research in cancer studies, such as developing early detection assays, targeted therapies, and imaging agents, as well as for the investigation of common membrane proteins in these distinguishable cancers.

  8. Immunohistochemical characterization of hepatic stem cell-related cells in developing human liver

    Institute of Scientific and Technical Information of China (English)

    XU Jun; HU Yong; WANG Jian; ZHOU Ji; ZHANG Taiping; YU Hongyu

    2007-01-01

    Little is known about the expression characteristics of the various kinds of possible markers in hepatic stem cells(HSCs)and other HSC-related cells in human fetal liver in various developmental stages.It is significant to investigate the immunohistochemical expression for better understanding of the origin,difierentiation and migration of HSCs in the developing human liver.H-E staining and immunohistochemical methods were used to observe the expression of hepatic/cholangiocellular differentiation markers(AFF,GST-π,CK7,CK19)and hematopoietic stem cell markers(CD34 and c-kit)in several kinds of HSC-related cells in thirty cases of fetal liver samples (4-35 weeks after pregnancy).AFP expression appears in fetal hepatocytes at four weeks'gestation.It Deaks at 16-24 weeks'gestation and decreases gradually afterwards.Finally,weak signals were only found in some ductal plate cells and a few limiting plate cells.GST-π was detected in hepatic cord cells from the sixth week and in the ductal plate cells from the eighth week.Twenty-six weeks later,only some ductal plate cells and a few limiting plate cells show positive signals.CK19 expression peaks during the 6th-11th weeks in hepatic cord cells and decreases gradually afterwards,except for the ductal plates.CK7 expression was limited in the ductal plate cells and bile ducts cells from the 14th week.CD34 and c-kit were detected at the eighth week in some ductal plate cells and a few mononuclear cells in the hepatic cords/mesenchymal tissue of portal areas.After 21 weeks.CD34 and c-kit were found only in ductal plate cells and a few mononuclear cells in the hepatic mesenchymal tissue of portal areas.Fetal hepatocytes at 4-16 weeks'gestation are mainly constituted by HSCs characterized with bi-potential differentiation capacity.At 16 weeks'gestation,most hepatic cord cells begin to differentiate into hepatocytes and abundant HSCs remain in ductal plate(the origin site of Hering canals).It is also indicated mat the

  9. Human ES cells: starting culture from frozen cells.

    Science.gov (United States)

    Trish, Erin; Dimos, John; Eggan, Kevin

    2006-11-09

    Here we demonstrate how our lab begins a HuES human embryonic stem cell line culture from a frozen stock. First, a one to two day old ten cm plate of approximately one (to two) million irradiated mouse embryonic fibroblast feeder cells is rinsed with HuES media to remove residual serum and cell debris, and then HuES media added and left to equilibrate in the cell culture incubator. A frozen vial of cells from long term liquid nitrogen storage or a -80 C freezer is sourced and quickly submerged in a 37 C water bath for quick thawing. Cells in freezing media are then removed from the vial and placed in a large volume of HuES media. The large volume of HuES media facilitates removal of excess serum and DMSO, which can cause HuES human embryonic stem cells to differentiate. Cells are gently spun out of suspension, and then re-suspended in a small volume of fresh HuES media that is then used to seed the MEF plate. It is considered important to seed the MEF plate by gently adding the HuES cells in a drop wise fashion to evenly disperse them throughout the plate. The newly established HuES culture plate is returned to the incubator for 48 hrs before media is replaced, then is fed every 24 hours thereafter.

  10. Universal lab-on-a-chip platform for complex, perfused 3D cell cultures

    Science.gov (United States)

    Sonntag, F.; Schmieder, F.; Ströbel, J.; Grünzner, S.; Busek, M.; Günther, K.; Steege, T.; Polk, C.; Klotzbach, U.

    2016-03-01

    The miniaturization, rapid prototyping and automation of lab-on-a-chip technology play nowadays a very important role. Lab-on-a-chip technology is successfully implemented not only for environmental analysis and medical diagnostics, but also as replacement of animals used for the testing of substances in the pharmaceutical and cosmetics industries. For that purpose the Fraunhofer IWS and partners developed a lab-on-a-chip platform for perfused cell-based assays in the last years, which includes different micropumps, valves, channels, reservoirs and customized cell culture modules. This technology is already implemented for the characterization of different human cell cultures and organoids, like skin, liver, endothelium, hair follicle and nephron. The advanced universal lab-on-a-chip platform for complex, perfused 3D cell cultures is divided into a multilayer basic chip with integrated micropump and application-specific 3D printed cell culture modules. Moreover a technology for surface modification of the printed cell culture modules by laser micro structuring and a complex and flexibly programmable controlling device based on an embedded Linux system was developed. A universal lab-on-a-chip platform with an optional oxygenator and a cell culture module for cubic scaffolds as well as first cell culture experiments within the cell culture device will be presented. The module is designed for direct interaction with robotic dispenser systems. This offers the opportunity to combine direct organ printing of cells and scaffolds with the microfluidic cell culture module. The characterization of the developed system was done by means of Micro-Particle Image Velocimetry (μPIV) and an optical oxygen measuring system.

  11. HIBADH Plays an Important Role in the Course of Liver Cell Necrosis

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Objective To observe the biological function of human 3-hydroxyisobutyrate dehydrogenase (HIBADH). Methods Human 3-hydroxyisobutyrate dehydrogenase (HIBADH, 3-hydroxy-2-methyl propanoate: NAD+oxidoreductase) recombinant protein was expressed inE. coli BL21,and puriifed by Ni+ column. The special antisera was obtained from rabbits immunized by this purified antigen. On the distribution of HIBADH, it was found that HIBADH over-expressed in the injured liver cells when serious hepatitis occurred. The phenomenon was conifrmed in the animal models of SD rats with acute liver cell injury induced by CCl4, but this phenomenon did not exist in the models induced by endotoxin combined with galactosamine. Further more, HIBADH’s overexpression in liver cells will induce cell necrosis through the pathway of oxidative stress. Results When the liver cells injured by drug or other chemical materials, HIBADH will be compensationally over-expressed for the deifciency of energy, so liver cells can make enough ATP through brand-chain amino acid catabolism. However, the overexpression of HIBADH will be harmful for liver cells through the product of much more active oxygens which will induce the cell necrosis. Conclusions HIBADH over-expression is a signal of the liver cell metabolism injury, and it can aggravate the liver cell injury through oxidative stress.

  12. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering.

    Science.gov (United States)

    Jiang, Wei-Cheng; Cheng, Yu-Hao; Yen, Meng-Hua; Chang, Yin; Yang, Vincent W; Lee, Oscar K

    2014-04-01

    Liver transplantation is the ultimate treatment for severe hepatic failure to date. However, the limited supply of donor organs has severely hampered this treatment. So far, great potentials of using mesenchymal stem cells (MSCs) to replenish the hepatic cell population have been shown; nevertheless, there still is a lack of an optimal three-dimensional scaffold for generation of well-transplantable hepatic tissues. In this study, we utilized a cryo-chemical decellularization method which combines physical and chemical approach to generate acellular liver scaffolds (ALS) from the whole liver. The produced ALS provides a biomimetic three-dimensional environment to support hepatic differentiation of MSCs, evidenced by expression of hepatic-associated genes and marker protein, glycogen storage, albumin secretion, and urea production. It is also found that hepatic differentiation of MSCs within the ALS is much more efficient than two-dimensional culture in vitro. Importantly, the hepatic-like tissues (HLT) generated by repopulating ALS with MSCs are able to act as functional grafts and rescue lethal hepatic failure after transplantation in vivo. In summary, the cryo-chemical method used in this study is suitable for decellularization of liver and create acellular scaffolds that can support hepatic differentiation of MSCs and be used to fabricate functional tissue-engineered liver constructs.

  13. Sequencing technologies for animal cell culture research.

    Science.gov (United States)

    Kremkow, Benjamin G; Lee, Kelvin H

    2015-01-01

    Over the last 10 years, 2nd and 3rd generation sequencing technologies have made the use of genomic sequencing within the animal cell culture community increasingly commonplace. Each technology's defining characteristics are unique, including the cost, time, sequence read length, daily throughput, and occurrence of sequence errors. Given each sequencing technology's intrinsic advantages and disadvantages, the optimal technology for a given experiment depends on the particular experiment's objective. This review discusses the current characteristics of six next-generation sequencing technologies, compares the differences between them, and characterizes their relevance to the animal cell culture community. These technologies are continually improving, as evidenced by the recent achievement of the field's benchmark goal: sequencing a human genome for less than $1,000.

  14. Novel, high-yield red blood cell production methods from CD34-positive cells derived from human embryonic stem, yolk sac, fetal liver, cord blood, and peripheral blood.

    Science.gov (United States)

    Olivier, Emmanuel; Qiu, Caihong; Bouhassira, Eric E

    2012-08-01

    The current supply of red blood cells expressing rare blood groups is not sufficient to cover all the existing transfusion needs for chronically transfused patients, such as sickle cell disease homozygous carriers, because of alloimmunization. In vitro production of cultured red blood cells is slowly emerging as a possible complement to the existing collection-based red blood cell procurement system. The yield of cultured red blood cells can theoretically be maximized by amplifying the stem, progenitor, or precursor compartment. Here, we combined methods designed to expand these three compartments to optimize the yield of cultured red blood cells and found that exposing CD34(+) cells to a short pulse of cytokines favorable for erythroid differentiation prior to stem cell expansion followed by progenitor expansion produced the highest yield of erythroid cells. This novel serum-free red blood cell production protocol was efficient on CD34(+) cells derived from human embryonic stem cells, 6-8-week yolk sacs, 16-18-week fetal livers, cord blood, and peripheral blood. The yields of cells obtained with these new protocols were larger by an order of magnitude than the yields observed previously. Globin expression analysis by high-performance liquid chromatography revealed that these expansion protocols generally yielded red blood cells that expressed a globin profile similar to that expected for the developmental age of the CD34(+) cells.

  15. Activated hepatic stellate cells in liver cirrhosis. A morphologic and morphometrical study.

    Science.gov (United States)

    Carpino, Guido; Franchitto, Antonio; Morini, Sergio; Corradini, Stefano Ginanni; Merli, Manuela; Gaudio, Eugenio

    2004-01-01

    Hepatic stellate cells have been considered the most important cell-type involved in hepatic fibrogenesis. Proliferation and differentiation of hepatic stellate cells into myofibroblast-like cells has been related to the development of liver fibrosis. The alpha-actin expressed by hepatic stellate cells was considered a marker of their activation to myofibroblast-like cell. The aim of this study is to evaluate the changes in morphology, distribution, percentage and alpha-smooth muscle actin expression of hepatic stellate cells in normal and cirrhotic livers, and to correlate activated hepatic stellate cells with the progression of fibrosis. Human liver biopsies (n=121) were divided in five groups: 1) normal livers (controls); 2) cirrhosis post-HCV hepatitis; 3) cirrhosis post-HBV hepatitis; 4) non viral related cirrhosis; 5) recurrent HCV hepatitis after orthotopic liver transplantation. Samples immunostained with anti alpha-smooth muscle actin antibody by immunoperoxidase method were semi-quantitatively evaluated. Liver fibrosis was quantified by computer image analysis on specimens stained with Masson's trichrome. In normal adult livers stellate cells were very rarely stained for alpha-smooth muscle actin. In cirrhotic livers, a strongly enhanced percentage of stellate cells expressing alpha-smooth muscle actin was detected in cirrhotic fragments with respect to the control group, with a significant correlation between alpha-smooth muscle actin positive stellate cells and the volume fraction of fibrosis. Moreover, liver biopsies of recurrent hepatitis revealed an increased number of activated stellate cells compared to normal livers, and intermediate volume fraction of fibrosis. These results confirmed that a direct correlation existed between activated stellate cells and the progression of fibrosis. Alpha-smooth muscle actin confirmed to be a reliable marker of hepatic stellate cells activation also in precocious stages of the disease.

  16. Intrahepatic infiltrating NK and CD8 T cells cause liver cell death in different phases of dengue virus infection.

    Science.gov (United States)

    Sung, Jui-Min; Lee, Chien-Kuo; Wu-Hsieh, Betty A

    2012-01-01

    Elevated liver enzyme level is an outstanding feature in patients with dengue. However, the pathogenic mechanism of liver injury has not been clearly demonstrated. In this study, employing a mouse model we aimed to investigate the immunopathogenic mechanism of dengue liver injury. Immunocompetent C57BL/6 mice were infected intravenously with dengue virus strain 16681. Infected mice had transient viremia, detectable viral capsid gene and cleaved caspase 3 in the liver. In the mean time, NK cell and T cell infiltrations peaked at days 1 and 5, respectively. Neutralizing CXCL10 or depletion of Asialo GM1(+) cells reduced cleaved caspase 3 and TUNEL(+) cells in the liver at day 1 after infection. CD8(+) T cells infiltrated into the liver at later time point and at which time intrahepatic leukocytes (IHL) exhibited cytotoxicity against DENV-infected targets. Cleaved caspase 3 and TUNEL(+) cells were diminished in mice with TCRβ deficiency and in those depleted of CD8(+) T cells, respectively, at day 5 after infection. Moreover, intrahepatic CD8(+) T cells were like their splenic counterparts recognized DENV NS4B(99-107) peptide. Together, these results show that infiltrating NK and CD8(+) T cells cause liver cell death. While NK cells were responsible for cell death at early time point of infection, CD8(+) T cells were for later. CD8(+) T cells that recognize NS4B(99-107) constitute at least one of the major intrahepatic cytotoxic CD8(+) T cell populations.

  17. Intrahepatic infiltrating NK and CD8 T cells cause liver cell death in different phases of dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Jui-Min Sung

    Full Text Available Elevated liver enzyme level is an outstanding feature in patients with dengue. However, the pathogenic mechanism of liver injury has not been clearly demonstrated. In this study, employing a mouse model we aimed to investigate the immunopathogenic mechanism of dengue liver injury. Immunocompetent C57BL/6 mice were infected intravenously with dengue virus strain 16681. Infected mice had transient viremia, detectable viral capsid gene and cleaved caspase 3 in the liver. In the mean time, NK cell and T cell infiltrations peaked at days 1 and 5, respectively. Neutralizing CXCL10 or depletion of Asialo GM1(+ cells reduced cleaved caspase 3 and TUNEL(+ cells in the liver at day 1 after infection. CD8(+ T cells infiltrated into the liver at later time point and at which time intrahepatic leukocytes (IHL exhibited cytotoxicity against DENV-infected targets. Cleaved caspase 3 and TUNEL(+ cells were diminished in mice with TCRβ deficiency and in those depleted of CD8(+ T cells, respectively, at day 5 after infection. Moreover, intrahepatic CD8(+ T cells were like their splenic counterparts recognized DENV NS4B(99-107 peptide. Together, these results show that infiltrating NK and CD8(+ T cells cause liver cell death. While NK cells were responsible for cell death at early time point of infection, CD8(+ T cells were for later. CD8(+ T cells that recognize NS4B(99-107 constitute at least one of the major intrahepatic cytotoxic CD8(+ T cell populations.

  18. Gastrointestinal stem cells. III. Emergent themes of liver stem cell biology: niche, quiescence, self-renewal, and plasticity.

    Science.gov (United States)

    Theise, Neil D

    2006-02-01

    This essay will address areas of liver stem/progenitor cell studies in which consensus has emerged and in which controversy still prevails over consensus, but it will also highlight important themes that inevitably should be a focus of liver stem/progenitor cell investigations in coming years. Thus concepts regarding cell plasticity, the existence of a physiological/anatomic stem cell niche, and whether intrahepatic liver stem/progenitor cells comprise true stem cells or progenitor cells (or both) will be approached in some detail.

  19. Mouse cell culture: methods and protocols

    OpenAIRE

    Elvira M. Guerra Shinohara

    2010-01-01

    The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases), starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward ...

  20. Embryo forming cells in carrot suspension cultures.

    OpenAIRE

    Toonen, M.A.J.

    1997-01-01

    Somatic cells of many plant species can be cultured in vitro and induced to form embryos that are able to develop into mature plants. This process, termed somatic embryogenesis, was originally described in carrot (Daucus carota L.). Somatic embryos develop through the same characteristic morphological stages, i.e. the globular-, heartand torpedo-stage respectively, as their zygotic counterparts. Due to the different cellular origin of somatic embryos, it is less clear to what extent the earli...

  1. PHYTOCHEMICAL STUDY OF CELL CULTURE JATROPHA CURCAS

    OpenAIRE

    KOMAR RUSLAN; ARTRI; ELFAHMI

    2011-01-01

    Jatropha curcas belongs to the Euphorbiaceae family which has potential economically. This plant has been reported to contain toxic compounds such as curcin and phorbol ester and its derivatives. These compounds may become a problem if J. curcas will be explored as a source of biofuel. In order to provide safety plants, the research on the study of phytochemical and initiation of cell and organ culture have been carried out. J curcas which has been collected from different regions in Indonesi...

  2. The Complex Relationship between Liver Cancer and the Cell Cycle: A Story of Multiple Regulations

    Energy Technology Data Exchange (ETDEWEB)

    Bisteau, Xavier [Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673 (Singapore); Caldez, Matias J.; Kaldis, Philipp, E-mail: kaldis@imcb.a-star.edu.sg [Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673 (Singapore); National University of Singapore (NUS), Department of Biochemistry, Singapore 117597 (Singapore)

    2014-01-13

    The liver acts as a hub for metabolic reactions to keep a homeostatic balance during development and growth. The process of liver cancer development, although poorly understood, is related to different etiologic factors like toxins, alcohol, or viral infection. At the molecular level, liver cancer is characterized by a disruption of cell cycle regulation through many molecular mechanisms. In this review, we focus on the mechanisms underlying the lack of regulation of the cell cycle during liver cancer, focusing mainly on hepatocellular carcinoma (HCC). We also provide a brief summary of novel therapies connected to cell cycle regulation.

  3. The Complex Relationship between Liver Cancer and the Cell Cycle: A Story of Multiple Regulations

    Directory of Open Access Journals (Sweden)

    Xavier Bisteau

    2014-01-01

    Full Text Available The liver acts as a hub for metabolic reactions to keep a homeostatic balance during development and growth. The process of liver cancer development, although poorly understood, is related to different etiologic factors like toxins, alcohol, or viral infection. At the molecular level, liver cancer is characterized by a disruption of cell cycle regulation through many molecular mechanisms. In this review, we focus on the mechanisms underlying the lack of regulation of the cell cycle during liver cancer, focusing mainly on hepatocellular carcinoma (HCC. We also provide a brief summary of novel therapies connected to cell cycle regulation.

  4. Extracellular-signal regulated kinase (Erk1/2), mitogen-activated protein kinase-activated protein kinase 2 (MK2) and tristetraprolin (TTP) comprehensively regulate injury-induced immediate early gene (IEG) response in in vitro liver organ culture.

    Science.gov (United States)

    Tran, Doan Duy Hai; Koch, Alexandra; Saran, Shashank; Armbrecht, Marcel; Ewald, Florian; Koch, Martina; Wahlicht, Tom; Wirth, Dagmar; Braun, Armin; Nashan, Björn; Gaestel, Matthias; Tamura, Teruko

    2016-05-01

    Differentiated hepatocytes are long-lived and normally do not undergo cell division, however they have the unique capacity to autonomously decide their replication fate after liver injury. In this context, the key players of liver regeneration immediately after injury have not been adequately studied. Using an in vitro liver culture system, we show that after liver injury, p38 mitogen-activated protein kinase (p38MAPK), mitogen-activated protein kinase-activated protein kinase 2 (MK2) and extracellular-signal regulated kinase (Erk)1/2 were activated within 15 min and continued to be phosphorylated for more than 2h. Both p38MAPK and Erk1/2 were activated at the edge of the cut as well as on the liver surface where the mesothelial cell sheet expresses several cytokines. Notably, in human liver Erk1/2 was also activated under the mesothelial cell sheet shortly after liver resections. Furthermore, in in vitro liver slice culture immediate early genes (IEGs) were upregulated within 1-2 h and the S phase marker proliferation-cell-nuclear-antigen (PCNA) appeared 24 h after injury. Although Erk1/2 was activated after injury, in MK2 depleted liver a set of IEGs, such as Dusp1, Cox2, or c-Myc and proliferation marker gene Ki67 were not induced. In addition, in immortalized hepatocyte cells, THLE-2, the same subset of genes was upregulated upon stimulation with lipopolysaccharide (LPS), but not in the presence of MK2 inhibitor. The protein level of tristetraprolin (TTP), a substrate for MK2 that plays a role in mRNA degradation, was increased in the presence of MK2 inhibitor. In this context, the depletion of TTP gene rescued Dusp1, Cox2, or c-Myc upregulation in the presence of MK2 inhibitor. These data imply that MK2 pathway is positively involved in Erk1/2 induced IEG response after liver injury. These data also suggest that in vitro liver culture may be a useful tool for measuring the proliferation potential of hepatocytes in individual liver.

  5. Maintenance of high quality rat precision cut liver slices during culture to study hepatotoxic responses: Acetaminophen as a model compound.

    Science.gov (United States)

    Granitzny, Anne; Knebel, Jan; Schaudien, Dirk; Braun, Armin; Steinberg, Pablo; Dasenbrock, Clemens; Hansen, Tanja

    2017-08-01

    Precision cut liver slices (PCLiS) represent a promising tool in reflecting hepatotoxic responses. However, the culture of PCLiS varies considerably between laboratories, which can affect the performance of the liver slices and thus the experimental outcome. In this study, we describe an easily accessible culture method, which ensures optimal slice viability and functionality, in order to set the basis for reproducible and comparable PCLiS studies. The quality of the incubated rat PCLiS was assessed during a 24h culture period using ten readouts, which covered viability (lactate dehydrogenase-, aspartate transaminase- and glutamate dehydrogenase-leakage, ATP content) and functionality parameters (urea, albumin production) as well as histomorphology and other descriptive characteristics (protein content, wet weight, slice thickness). The present culture method resulted in high quality liver slices for 24h. Finally, PCLiS were exposed to increasing concentrations of acetaminophen to assess the suitability of the model for the detection of hepatotoxic responses. Six out of ten readouts revealed a toxic effect and showed an excellent mutual correlation. ATP, albumin and histomorphology measurements were identified as the most sensitive readouts. In conclusion, our results indicate that rat PCLiS are a valuable liver model for hepatotoxicity studies, particularly if they are cultured under optimal standardized conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Influence of cell culture configuration on the post-cryopreservation viability of primary rat hepatocytes.

    Science.gov (United States)

    Magalhães, Raquel; Nugraha, Bramasta; Pervaiz, Shazib; Yu, Hanry; Kuleshova, Lilia L

    2012-01-01

    Cryopreservation has been identified as a necessary barrier to overcome in the production of tissue engineered products for clinical application. Liver engineering and bioartificial liver assisting devices are on the forefront of tissue engineering research due to its high demand and clinical potential. In this study we propose that the cryopreservation of primary mammalian hepatocytes yields better results when these cells are in a tissue-like culture configuration since cell attachment is essential for cell survival in this cell type. We used two different tissue-engineered culture configurations: monolayers and spheroid culture; and two different concepts of cryopreservation, namely vitrification and freezing. Cell suspensions were also cryopreserved using both approaches and results were compared to the engineered cultures. Both engineered configurations and suspension were cryopreserved using both conventional freezing (cooling at 1 °C/minute using 10% DMSO in foetal calf serum) and vitrification (using 40% ethylene glycol 0.6 m sucrose supplemented with 9% Ficoll). These two approaches differ on the degree of mechanical stress they inflict on the material to be cryopreserved. The maintenance of cell-to-cell and the integrity of the actin cytoskeleton were assessed using scanning electron microscopy and immunohistochemistry respectively. Results showed that while there was no significant difference between the degree of integrity shown between vitrified and control engineered cultures, the same did not happen to the frozen engineered constructs. The disruption of the cytoskeletal structure correlated with increased levels of apoptotic markers. With cryopreserved suspensions there was evidence of disruption of the cytoskeletal structure. This study concluded that cell-to-cell contact is beneficial in the maintenance of viability post-cryopreservation and that the vitrification approach was far superior to those of conventional freezing when applied to 2D and 3

  7. Selective tropism of liver stem cells to hepatocellular carcinoma in vivo

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the selective tropism of liver stem cells to hepatocellular carcinoma (HCC) in an animal model and its feasibility as a vector to deliver therapeutic genes for targeted therapy of HCC.METHODS: WB-F344, a kind of rat liver stem cell,was infected with recombinant virus to establish a cell line with stable, high-level expressing enhanced green fluorescent protein (EGFP). An animal model of HCC in Wistar rats was established by implanting HCC cells (CBRH7919) combined with an immunosuppressive drug.EGFP labeled liver stem cells were injected into caudal veins of the animals and distribution was observed at different time points after injection. SDF-1 and c-kit expression in non-tumor liver and tumor tissue were analysed by immunohistochemistry for the relationshiop between the expression and migration of liver stem cells.Furthermore, hepatic stem cells were injected via the portal vein, hepatic artery, caudal vein, or directly into the pericancerous liver tissue, respectively, and effects on migration, localization, and proliferation of the hepatic stem cells within the tumor tissue were observed and analyzed.RESULTS: Recombinant adenovirus could deliver the EGFP gene to hepatic stem cells. A new stem cell line,named WB-EGFP, was established that stably expressed EGFP. WB-EGFP cells still showed selective tropism towards HCC and EGFP expression was stable in vivo.According to immunohistochemistry results, SDF-1 may not be related to the mechanisms of tropism of hepatic stem cells. Different application sites affected the distribution of liver stem cells. Injection via the portal vein was superior with regard to selective migration,localization, and proliferation of the hepatic stem cells within the tumor tissue.CONCLUSION: Liver stem cells have the biological behavior of selective migration to HCC in vivo and they could localize and proliferate within HCC tissue stably expressing the target gene. Liver stem cells are a potential tool for a targeted

  8. Tailoring microfluidic systems for organ-like cell culture applications using multiphysics simulations

    Science.gov (United States)

    Hagmeyer, Britta; Schütte, Julia; Böttger, Jan; Gebhardt, Rolf; Stelzle, Martin

    2013-03-01

    Replacing animal testing with in vitro cocultures of human cells is a long-term goal in pre-clinical drug tests used to gain reliable insight into drug-induced cell toxicity. However, current state-of-the-art 2D or 3D cell cultures aiming at mimicking human organs in vitro still lack organ-like morphology and perfusion and thus organ-like functions. To this end, microfluidic systems enable construction of cell culture devices which can be designed to more closely resemble the smallest functional unit of organs. Multiphysics simulations represent a powerful tool to study the various relevant physical phenomena and their impact on functionality inside microfluidic structures. This is particularly useful as it allows for assessment of system functions already during the design stage prior to actual chip fabrication. In the HepaChip®, dielectrophoretic forces are used to assemble human hepatocytes and human endothelial cells in liver sinusoid-like structures. Numerical simulations of flow distribution, shear stress, electrical fields and heat dissipation inside the cell assembly chambers as well as surface wetting and surface tension effects during filling of the microchannel network supported the design of this human-liver-on-chip microfluidic system for cell culture applications. Based on the device design resulting thereof, a prototype chip was injection-moulded in COP (cyclic olefin polymer). Functional hepatocyte and endothelial cell cocultures were established inside the HepaChip® showing excellent metabolic and secretory performance.

  9. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids.

    Science.gov (United States)

    Massai, Diana; Isu, Giuseppe; Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A; Falvo D'Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto

    2016-01-01

    A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future.

  10. Conversion of primordial germ cells to pluripotent stem cells: methods for cell tracking and culture conditions.

    Science.gov (United States)

    Nagamatsu, Go; Suda, Toshio

    2013-01-01

    Primordial germ cells (PGCs) are unipotent cells committed to germ lineage: PGCs can only differentiate into gametes in vivo. However, upon fertilization, germ cells acquire the capacity to differentiate into all cell types in the body, including germ cells. Therefore, germ cells are thought to have the potential for pluripotency. PGCs can convert to pluripotent stem cells in vitro when cultured under specific conditions that include bFGF, LIF, and the membrane-bound form of SCF (mSCF). Here, the culture conditions which efficiently convert PGCs to pluripotent embryonic germ (EG) cells are described, as well as methods used for identifying pluripotent candidate cells during culture.

  11. [POLYPEPTIDES INFLUENCE ON TISSUE CELL CULTURES REGENERATION OF VARIOUS AGE RATS].

    Science.gov (United States)

    Ryzhak, A P; Chalisova, N I; Lin'kova, N S; Khalimov, R I; Ryzhak, G A; Zhekalov, A N

    2015-01-01

    A comparative study of polypeptides extracted from the tissues of calves: Cortexin (from brain cortex), Epinorm (from pineal gland), Ventvil (from liver), Prostatilen (from prostate), Thymalin (from thymus), Chelohart (from heart), Chondrolux (from cartilage) on the relevant organotypic tissue cultures of young and old rats, in concentration 0,01-100 ng/ml was performed. Polypeptides specifically stimulated "young" and "old" cell cultures growth in concentration 20-50 ng/ml. This effect correlates with increasing of PCNA and decreasing of p53 expression in brain cortex, pineal gland, liver, prostate, heart, cartilage. Moreover, Thymalin activated CD5, CD20 expression--markers of B-cells differentiation. These data show that polypeptides isolated from different tissues have selective molecular activity on the regeneration of suitable tissues in aging.

  12. Phenobarbital induces alterations in the proteome of hepatocytes and mesenchymal cells of rat livers.

    Directory of Open Access Journals (Sweden)

    Philip Klepeisz

    Full Text Available Preceding studies on the mode of action of non-genotoxic hepatocarcinogens (NGCs have concentrated on alterations induced in hepatocytes (HCs. A potential role of non-parenchymal liver cells (NPCs in NGC-driven hepatocarcinogenesis has been largely neglected so far. The aim of this study is to characterize NGC-induced alterations in the proteome profiles of HCs as well as NPCs. We chose the prototypic NGC phenobarbital (PB which was applied to male rats for a period of 14 days. The livers of PB-treated rats were perfused by collagenase and the cell suspensions obtained were subjected to density gradient centrifugation to separate HCs from NPCs. In addition, HCs and NPC isolated from untreated animals were treated with PB in vitro. Proteome profiling was done by CHIP-HPLC and ion trap mass spectrometry. Proteome analyses of the in vivo experiments showed many of the PB effects previously described in HCs by other methods, e.g. induction of phase I and phase II drug metabolising enzymes. In NPCs proteins related to inflammation and immune regulation such as PAI-1 and S100-A10, ADP-ribosyl cyclase 1 and to cell migration such as kinesin-1 heavy chain, myosin regulatory light chain RLC-A and dihydropyrimidinase-related protein 1 were found to be induced, indicating major PB effects on these cells. Remarkably, in vitro treatment of HCs and NPCs with PB hardly reproduced the proteome alterations observed in vivo, indicating differences of NGC induced responses of cells at culture conditions compared to the intact organism. To conclude, the present study clearly demonstrated that PB induces proteome alterations not only in HCs but also in NPCs. Thus, any profound molecular understanding on the mode of action of NGCs has to consider effects on cells of the hepatic mesenchyme.

  13. Phenobarbital Induces Alterations in the Proteome of Hepatocytes and Mesenchymal Cells of Rat Livers

    Science.gov (United States)

    Klepeisz, Philip; Sagmeister, Sandra; Haudek-Prinz, Verena; Pichlbauer, Melanie; Grasl-Kraupp, Bettina; Gerner, Christopher

    2013-01-01

    Preceding studies on the mode of action of non-genotoxic hepatocarcinogens (NGCs) have concentrated on alterations induced in hepatocytes (HCs). A potential role of non-parenchymal liver cells (NPCs) in NGC-driven hepatocarcinogenesis has been largely neglected so far. The aim of this study is to characterize NGC-induced alterations in the proteome profiles of HCs as well as NPCs. We chose the prototypic NGC phenobarbital (PB) which was applied to male rats for a period of 14 days. The livers of PB-treated rats were perfused by collagenase and the cell suspensions obtained were subjected to density gradient centrifugation to separate HCs from NPCs. In addition, HCs and NPC isolated from untreated animals were treated with PB in vitro. Proteome profiling was done by CHIP-HPLC and ion trap mass spectrometry. Proteome analyses of the in vivo experiments showed many of the PB effects previously described in HCs by other methods, e.g. induction of phase I and phase II drug metabolising enzymes. In NPCs proteins related to inflammation and immune regulation such as PAI-1 and S100-A10, ADP-ribosyl cyclase 1 and to cell migration such as kinesin-1 heavy chain, myosin regulatory light chain RLC-A and dihydropyrimidinase-related protein 1 were found to be induced, indicating major PB effects on these cells. Remarkably, in vitro treatment of HCs and NPCs with PB hardly reproduced the proteome alterations observed in vivo, indicating differences of NGC induced responses of cells at culture conditions compared to the intact organism. To conclude, the present study clearly demonstrated that PB induces proteome alterations not only in HCs but also in NPCs. Thus, any profound molecular understanding on the mode of action of NGCs has to consider effects on cells of the hepatic mesenchyme. PMID:24204595

  14. An Introductory Undergraduate Course Covering Animal Cell Culture Techniques

    Science.gov (United States)

    Mozdziak, Paul E.; Petitte, James N.; Carson, Susan D.

    2004-01-01

    Animal cell culture is a core laboratory technique in many molecular biology, developmental biology, and biotechnology laboratories. Cell culture is a relatively old technique that has been sparingly taught at the undergraduate level. The traditional methodology for acquiring cell culture training has been through trial and error, instruction when…

  15. An Introductory Undergraduate Course Covering Animal Cell Culture Techniques

    Science.gov (United States)

    Mozdziak, Paul E.; Petitte, James N.; Carson, Susan D.

    2004-01-01

    Animal cell culture is a core laboratory technique in many molecular biology, developmental biology, and biotechnology laboratories. Cell culture is a relatively old technique that has been sparingly taught at the undergraduate level. The traditional methodology for acquiring cell culture training has been through trial and error, instruction when…

  16. Capacity for intracellular pH compensation during hypercapnia in white sturgeon primary liver cells.

    Science.gov (United States)

    Huynh, Khuong Tuyen; Baker, Daniel W; Harris, Robert; Church, John; Brauner, Colin J

    2011-10-01

    Fish, exposed to elevated water CO(2), experience a rapid elevation in blood CO(2) (hypercapnia), resulting in acidification of both intra- and extra-cellular compartments. White sturgeon, Acipenser transmontanus, are exceptionally CO(2) tolerant and can regulate tissue intracellular pH (pH(i)) in the presence of a pronounced hypercapnic acidosis (preferential pH(i) regulation). In this study, pH(i) regulatory capacity of sturgeon liver cells in primary culture was examined to assess the suitability of employing this in vitro system to understand in vivo CO(2) tolerance in sturgeon. Using the pH-sensitive fluoroprobe BCECF, real-time changes in resting pH(i) and rates of pH(i) recovery were investigated during exposure to hypercapnia (3 and 6% CO(2)) in the absence and presence of additional acid loads induced by (20 mM) ammonium prepulse. During short-term (10 min) exposure to hypercapnia (3 and 6% CO(2)), sturgeon cells were acidified and no pH(i) compensation was observed. However, when exposure to 6% CO(2) was extended to over 19 h, the CO(2)-induced intracellular acidosis was partially compensated by a pH(i) increase of over 0.2 pH unit despite the sustained extracellular acidosis, indicative of a capacity for preferential pH(i) regulation in vitro. Since this capacity in sturgeon liver is present both in vivo and in vitro, the transmembrane transporters involved may be the same. Therefore, cell culture may be a suitable tool to identify the transporters (i.e., the cellular mechanisms underlying in vivo CO(2) tolerance) in white sturgeon and possibly in other hypercapnia-tolerant species.<